
Orthologic with Axioms

SIMON GUILLOUD and VIKTOR KUNČAK, EPFL, IC, INR 318, Station 14, Switzerland

We study the proof theory and algorithms for orthologic, a logical system based on ortholattices, which have

shown practical relevance in simplification and normalization of verification conditions. Ortholattices weaken

Boolean algebras while having polynomial-time equivalence checking that is sound with respect to Boolean

algebra semantics. We generalize ortholattice reasoning and obtain an algorithm for proving a larger class of

classically valid formulas.

As the key result, we analyze a proof system for orthologic augmented with axioms. An important feature of

the system is that it limits the number of formulas in a sequent to at most two, which makes the extension with

axioms non-trivial. We show a generalized form of cut elimination for this system, which implies a sub-formula

property. From there we derive a cubic-time algorithm for provability from axioms, or equivalently, for validity

in finitely presented ortholattices. We further show that propositional resolution of width 5 proves all formulas

provable in orthologic with axioms. We show that orthologic system subsumes resolution of width 2 and

arbitrarily wide unit resolution and is complete for reasoning about generalizations of propositional Horn

clauses.

Moving beyond ground axioms, we introduce effectively propositional orthologic (by analogy with EPR

for classical logic), presenting its semantics as well as a sound and complete proof system. Our proof system

implies the decidability of effectively propositional orthologic, as well as its fixed-parameter tractability for a

bounded maximal number of variables in each axiom. As a special case, we obtain a generalization of Datalog

with negation and disjunction.

1 INTRODUCTION
Our goal is to construct efficient building blocks for theorem proving and program verification.

coNP-hardness of propositional logic already presents a barrier to large-scale reasoning, such as

simplification of large formulas and using intermediate assertions to help software verification. We

aim to improve the worst-case efficiency of reasoning while preserving the spirit of a specification

language with conjunction, disjunction, and negation. We therefore investigate the concepts of

ortholattices and orthologics as a basis of predictable reasoning.
Non-distributive generalizations of classical logic, including orthologic, were introduced as

quantum logic to describe experiments in quantum mechanics, where it was realized that dis-

tributivity fails [Bell 1983; Birkhoff and Von Neumann 1936]. The term orthologic was used in

[Goldblatt 1974] for the logic corresponding to the algebraic class of ortholattices, a generalization

of Boolean algebras. In particular, the class of closed subsets of a Hilbert space is an ortholattice,

but not a Boolean algebra [Rawling and Selesnick 2000]. In theoretical physics, ortholattices are

an intermediate step towards the study of orthomodular lattices and modular ortholattices among

others, [Hardegree 1981; Hyčko 2005; Kalmbach 1983; Sherif 1997]. Ortholattices have also found

application in modelling of epistemic modal logic [Holliday 2023; Holliday and Mandelkern 2022].

Recently, researchers have proposed to use ortholattices as an efficient approximation to classical

logic in automated reasoning. This approach has been applied to design kernels of proof assistants

[Guilloud et al. 2023b], as well as in software verification tools [Guilloud et al. 2023a]. These results

suggest that ortholattices can be used to simplify large formulas using polynomial-time algorithms,

while providing soundness, as well as a clear mental model of the degree of its incompleteness.

In the domain of proof assistants and automated provers, it is a necessary property of proofs that

Authors’ address: Simon Guilloud; Viktor Kunčak, EPFL, IC, INR 318, Station 14, CH-1015 Lausanne, Switzerland, firstname.

lastname@epfl.ch.

. XXXX-XXXX/2023/10-ART

https://doi.org/

, Vol. 1, No. 1, Article . Publication date: October 2023.

https://doi.org/

2 Simon Guilloud and Viktor Kunčak

they can be efficiently and reliably checked. However, tools and users building said proof may

enjoy the additional flexibility offered by a partial yet predictable and efficient automation over

either a heuristic approach or strictly syntactic approach. This was the motivation behind the use

of 𝑂𝐿-reasonning in the logical Kernel of the LISA proof assistant [Guilloud et al. 2023b].

In [Guilloud et al. 2023a], an efficient normal form algorithm for ortholattices is used in a

software verifier to improve the cache hit ratio of verification conditions. It also serves to simplify

and shorten formulas before sending them to a general but potentially costly SMT solver. This

approach generally improved the performance of the verifier.

We believe there are other applications in the domain of programming languages, and possibly

more broadly in computer science, for which long runtime and non-determinism leading to difficul-

ties in reproducing results are major drawbacks, and hence where, predictability and efficiency

at the expense of classical completeness can be a desirable tradeoff. For example, type checking

procedures for programming language with variants of liquid and refinement types [Freeman and

Pfenning 1991; Vazou et al. 2014] or union/intersection types may benefit from a similar approach.

Logic programming, in particular extensions of Datalog with a negation operator [Clark 1978;

Kunen 1987] is also a suitable candidate. This last point is supported by our results in Section 6.

As an example, an ortholattice algorithm in [Guilloud et al. 2023a] may reduce 𝑥 ∧ 𝑧 ∧¬(𝑢 ∧¬𝑥)
to the normal form 𝑥 ∧ 𝑧. This normal form is based on the laws that hold in all ortholattices
(equivalently, in the free ortholattice). This makes the technique widely applicable, but it also makes

it weak in terms of classical and domain-specific tautologies it can prove. This paper explores

making orthologic-based reasoning more precise and more usable, asking the following questions:

(1) Can we formally extend orthologic with non-logical axioms?

(2) Can we find a complete and efficient algorithm for it?

(3) What are classes of formulas in classical logic for which orthologic proofs always exist?

(4) Can orthologic be used effectively beyond propositional logic, for classes of predicate logic?

Our approach to these questions is to use a sound and complete proof system for orthologic that

we extend to support arbitrary non-logical axioms. Algebraically, our proof system is complete

for establishing inequalities in the class of ortholattices specified by a given presentation, a set
of ortholattice inequalities. From the practical point of view, using axioms to represent part of

the input formula gives a sound and strictly stronger approximation of classical logic than using

ortholattices without axioms.

1.1 Ortholattices
Ortholattices are a weaker structure than Boolean algebras, where distributivity does not necessarily

hold. Table 1 shows their axiomatization. All Boolean algebras are ortholattices; they are precisely

those ortholattices that are distributive. Figure 1 shows two characteristic finite non-distributive

ortholattices; keeping these structures in mind may provide intuition for reasoning inside the class

of all ortholattices. Orthologic is the logical system that corresponds to ortholattices, analogously to

how classical logic corresponds to Boolean algebras (and intuitionistic logic to Heyting algebras).

1.2 Example of Using Axioms
Using axioms in orthologic inference allows us to provemore classical implications than by encoding

the entire problem into one formula, increasing the power of reasoning. To understand why, note

that proving validity of an implication 𝐿 → 𝑅 in all ortholattices can be phrased as proving 𝐿 ≤ 𝑅

in all ortholattices, for all values to which 𝐿 and 𝑅 can evaluate in those ortholattices. Such an

inequality needs to hold in the ortholattice 𝑂6 in Figure 1 when 𝐿 evaluates to, for example, 𝑏. On

the other hand, using axioms, we can encode an implication problem as follows: prove that, in

, Vol. 1, No. 1, Article . Publication date: October 2023.

Orthologic with Axioms 3

V1: 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 V1’: 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥
V2: 𝑥 ∨ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∨ 𝑧 V2’: 𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧
V3: 𝑥 ∨ 𝑥 = 𝑥 V3’: 𝑥 ∧ 𝑥 = 𝑥

V4: 𝑥 ∨ 1 = 1 V4’: 𝑥 ∧ 0 = 0

V5: 𝑥 ∨ 0 = 𝑥 V5’: 𝑥 ∧ 1 = 𝑥

V6: ¬¬𝑥 = 𝑥

V7: 𝑥 ∨ ¬𝑥 = 1 V7’: 𝑥 ∧ ¬𝑥 = 0

V8: ¬(𝑥 ∨ 𝑦) = ¬𝑥 ∧ ¬𝑦 V8’: ¬(𝑥 ∧ 𝑦) = ¬𝑥 ∨ ¬𝑦
V9: 𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥 V9’: 𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥

Table 1. Laws of ortholattices, algebraic varieties with signature (𝑆,∧,∨, 0, 1,¬) from [Guilloud et al. 2023a].
These non-minimal laws illustrate the duality between ∧ and ∨ and have explicit bottom and top element.
See, e.g., [McCune 1998] for an equivalent smaller axiomatization.

1

𝑏

𝑎

¬𝑎

¬𝑏

0

1

0

¬𝑎𝑎 𝑏 ¬𝑏

Fig. 1. Ortholattices 𝑂6 and𝑀4. An ortholattice is distributive iff if it contains neither as a sub-ortholattice.

every ortholattice, if 𝐿 = 1, then also 𝑅 = 1. Because 𝐿 is restricted to be 1, what remains to prove is

a weaker statement, provable for more formulas. The conclusion remains sound with respect to the

{0, 1} lattice of classical logic, where 𝐿 = 1 is the only non-trivial case to check for inequality.

For example, 𝑥 ∧ (¬𝑥 ∨ 𝑢) ≤ 𝑢 does not hold in 𝑂6 of Figure 1 (take 𝑥 ↦→ 𝑏, 𝑢 ↦→ 𝑎 as a

counterexample). On the other hand, in any ortholattice, if 𝑥 ∧ (¬𝑥 ∨ 𝑢) = 1 then 𝑢 = 1. Indeed,

consider any ortholattice, and suppose 𝑥 ∧ (¬𝑥 ∨ 𝑢) = 1. Recall that, in any bounded lattice with

1 as a top element, if 𝑝 ∧ 𝑞 = 1 then 𝑝 = 1 and 𝑞 = 1 because 1 ≤ 𝑝 ∧ 𝑞 ≤ 𝑝 . In our example, we

conclude 𝑥 = 1 and (¬𝑥 ∨ 𝑢) = 1. Now, substituting 𝑥 = 1 and using ¬1 = 0 gives us 𝑢 = 1.

Such algebraic reasoning has a counterpart in proof-theoretic derivations. We present in Section 3

a system for derivation of formulas from axioms. Our system is complete for algebraic reasoning

in ortholattices, allowing us to derive 𝑢 if we allow 𝑥 ∧ (¬𝑥 ∨ 𝑢) as an axiom. Importantly, proof

search in our system remains polynomial time, a result that we establish by showing a generalized

notion of cut elimination.

The use of axioms (equivalently, ortholattice presentations) cannot emulate all instances of
classical propositional logic axioms (indeed, proof search in our system remains in polynomial

time instead of coNP). However, the above example hints that we can indeed use axioms to prove a

larger set of classically valid problems than by using one monolithic formula in orthologic. Indeed,

we show a number of practically important classes of problems for which reasoning in orthologic

from axioms is complete, pointing to scenarios where orthologic may find useful applications.

, Vol. 1, No. 1, Article . Publication date: October 2023.

4 Simon Guilloud and Viktor Kunčak

1.3 Contributions
This paper shows how to use ortholattice reasoning with axioms as a sound polynomial-time

deductive approach. We make the following contributions:

• We first show that a proof system for orthologic with axioms satisfies a form of the Cut

Elimination property, where Cut rules are restricted to eliminate only axioms and can only

appear near leaves in the proof. From this, we deduce a subformula property.

• We show that, in the presence of axioms, there is an orthologic backward proof search

procedure with worst case asymptotic time O(𝑛2 (|𝐴| + 1)), where 𝑛 is the size of the problem

and |𝐴| the total number of axioms. Without axioms, the algorithm is quadratic.

• We study how orthologic can help solve some classes of classical problems and show that

special case of satisfiability instances (2CNF, Horn clauses, renamed Horn, q-Horn, extended

Horn) admit orthologic proofs, i.e. these problems are satisfiable in orthologic if and only if

they are satisfiable in classical logic.

• We show that orthologic decision problems can be flattened, similarly to the Tseitin transform

[Tseitin 1983], and we use this to give an upper bound on the proving power of orthologic in

terms of the width of classical resolution proofs.

• We show how orthologic reasoning can be extended to fragments of predicate logic. We show

that such quantified orthologic agrees with classical logic on the semantic of Datalog, and

hence that Datalog programs admit 𝑂𝐿 proofs, making 𝑂𝐿 another possible generalization of

Datalog to logic programming with negation and disjunction.

2 PRELIMINARIES
We briefly present key concepts and notation which will be used in the present article. Ortholattices

are the algebraic variety whose equational laws are presented in Table 1. As in any lattice, we can

define an order relation ≤ by:

𝑎 ≤ 𝑏 ⇐⇒ (𝑎 = (𝑎 ∧ 𝑏))
which is also equivalent to (𝑏 = (𝑎 ∨ 𝑏)). This yields a partially ordered set (poset) whose corre-

sponding axiomatization is shown in Table 2 [Kalmbach 1983; Meinander 2010]. Note also that for

any terms 𝑥,𝑦 we have 𝑥 = 𝑦 if and only if both 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 . The relation = defined this way is

a congruence relation for ≤, ∧, ∨ and ¬ and thus becomes equality in the quotient structure. From

the point of view of first-order logic with equality, each model of Table 1 axioms can be extended

to a model of Table 2 by defining the inequality 𝑎 ≤ 𝑏 as the truth value of the atomic formula

𝑎 = (𝑎 ∧ 𝑏). Moreover, we have the converse: each model of Table 2 axioms induces a quotient

structure with respect to the 𝑥 ≤ 𝑦 & 𝑦 ≤ 𝑥 relation; this structure is a model of Table 1 axioms.

By definition, Boolean algebras are precisely ortholattices that are distributive. Figure 1 shows

ortholattices𝑂6 and𝑀4 that are not Boolean algebras. In fact, an ortholattice is a Boolean algebra if

and only if it does not contain𝑂6 nor𝑀4 as a sub-ortholattice [Davey and Priestley 2002; Kalmbach

1983]. Despite being strictly weaker than laws of Boolean algebra, properties in Table 1 and Table 2

allow us to prove a number of desirable facts: all laws of bounded lattices (absorption, reordering

and de-duplicating conjuncts and disjuncts), and laws relating complement to lattice operators

(including the laws needed to transform formulas to negation-normal form). Laws of Boolean

algebra that do not necessarily hold include distributivity, modularity, and properties such as

(¬𝑥 ∨ 𝑦) = 1 implying 𝑥 ≤ 𝑦.

Similarly to how Boolean Algebra is the algebraic structure corresponding to classical logic, we

find it natural that ortholattices form a class of structures that corresponds to a logic, orthologic, for
which we study proof-theoretic and algorithmic properties in the following sections. We denote

classical logic by 𝐶𝐿 and orthologic by 𝑂𝐿.

, Vol. 1, No. 1, Article . Publication date: October 2023.

Orthologic with Axioms 5

P1: 𝑥 ≤ 𝑥

P2: 𝑥 ≤ 𝑦 & 𝑦 ≤ 𝑧 =⇒ 𝑥 ≤ 𝑧

P3: 0 ≤ 𝑥 P3’: 𝑥 ≤ 1

P4: 𝑥 ∧ 𝑦 ≤ 𝑥 P4’: 𝑥 ≤ 𝑥 ∨ 𝑦
P5: 𝑥 ∧ 𝑦 ≤ 𝑦 P5’: 𝑦 ≤ 𝑥 ∨ 𝑦
P6: 𝑥 ≤ 𝑦 & 𝑥 ≤ 𝑧 =⇒ 𝑥 ≤ 𝑦 ∧ 𝑧 P6’: 𝑥 ≤ 𝑧 & 𝑦 ≤ 𝑧 =⇒ 𝑥 ∨ 𝑦 ≤ 𝑧

P7: 𝑥 ≤ ¬¬𝑥 P7’: ¬¬𝑥 ≤ 𝑥

P8: 𝑥 ≤ 𝑦 =⇒ ¬𝑦 ≤ ¬𝑥
P9: 𝑥 ∧ ¬𝑥 ≤ 0 P9’: 1 ≤ 𝑥 ∨ ¬𝑥

Table 2. Axiomatization of ortholattices in the signature (𝑆, ≤,∧,∨, 0, 1,¬) as partially ordered sets. We use &

for conjunction between atomic formulas of axioms, to differentiate it from the term-level lattice operation ∧.
This axiomatization corresponds to one in Table 1 defining 𝑥 ≤ 𝑦 to be 𝑥 ∧𝑦 = 𝑥 in one direction and 𝑥 = 𝑦 to
be (𝑥 ≤ 𝑦) & (𝑦 ≤ 𝑥) in the other.

Definition 2.1 (Terms). T𝑂𝐿 denotes the term algebra over the signature of ortholattices over a

fixed countably infinite set of variables, that is, the set of all terms which can be built from variables

and (∧,∨, 0, 1,¬). We typically represent terms with lowercase Greek letters and variables with

𝑥,𝑦, 𝑧, possibly with indices. Terms are constructed inductively as trees. Leaves are labeled with 0,

1, or variables. Nodes are labeled with logical symbols. Since ∨ and ∧ are commutative, the children

of a node form a set (non-ordered). T𝐶𝐿 = T𝑂𝐿 , and is also the set of formulas for both classical logic

and orthologic.

Note that the laws of both 𝑂𝐿 and 𝐶𝐿 imply that 0 can always be represented by 𝑥 ∧ ¬𝑥 and 1 as

𝑥 ∨ ¬𝑥 . To simplify proofs, we thus may omit the cases corresponding to 0 and 1.

The word problem for an algebra consists in, given two terms in the language of the algebra,

deciding if they are always equal by the laws of the algebra or not. For ortholattices, we can relax

the definition to allow inequality queries, as they can be expressed as equivalent equalities. A

(finite) presentation for an algebra is a (finite) set of equalities (which we relax to inequalities in

ortholattices) {𝜙1 ≤ 𝜓1, ..., 𝜙𝑛 ≤ 𝜓𝑛}. The uniform word problem for presented ortholattices is the

task consisting in, given a presentation 𝐴 and two terms 𝜙 and𝜓 , deciding if 𝜙 ≤ 𝜓 follows from

the laws of ortholattices and the axioms in 𝐴.

In the terminology of classical first-order logic, the laws of ortholattice in Table 2 are a finite

set of universally quantified formulas, T , and they define a first-order theory. The presentation

(axioms) 𝐴 is a set of quantifier-free formulas, whereas 𝜙 ≤ 𝜓 is also a quantifier-free formula, with

variables possibly in common with those of 𝐴. We can then view the uniform word problem as a

special case of the question of semantic consequence in first-order logic: T ∪𝐴 |= 𝜙 ≤ 𝜓 .

3 COMPLETE PROOF SYSTEM AND CUT ELIMINATION
We formulate our proof system for orthologic as a sequent calculus. We represent sequents by

decorating the formulas with superscript
𝐿
or

𝑅
, depending on whether they appear on the left or

right side. For example, 𝜙𝐿, 𝜙𝑅
stands for 𝜙 ⊢ 𝜓 in more conventional notation.

Definition 3.1. If 𝜙 is a formula, we call 𝜙𝐿
and 𝜙𝑅

annotated formulas. A sequent is a set of at
most two annotated formulas. We use Γ and Δ to represent sets that are either empty or contain

exactly one annotated formula (|Γ | ≤ 1, |Δ| ≤ 1).

Figure 2 shows our sequent calculus for orthologic, parameterised by a set of sequents 𝐴 called

axioms. In the present article, orthologic, or 𝑂𝐿 denotes this specific proof system. Without the

, Vol. 1, No. 1, Article . Publication date: October 2023.

6 Simon Guilloud and Viktor Kunčak

support for arbitrary axioms, an equivalent system, with a different presentation, was introduced

in [Schulte Mönting 1981].

Note that the axioms we consider in this section are not universally quantified: they refer to

arbitrary but fixed propositions.

Hyp

𝜙𝐿, 𝜙𝑅

Γ,𝜓𝑅 𝜓𝐿,Δ
Cut

Γ,Δ

Γ
Weaken

Γ,Δ

Γ, 𝜙𝐿

LeftAnd

Γ, (𝜙 ∧𝜓)𝐿
Γ, 𝜙𝑅 Γ,𝜓𝑅

RightAnd

Γ, (𝜙 ∧𝜓)𝑅

Γ, 𝜙𝐿 Γ,𝜓𝐿

LeftOr

Γ, (𝜙 ∨𝜓)𝐿
Γ, 𝜙𝑅

RightOr

Γ, (𝜙 ∨𝜓)𝑅

Γ, 𝜙𝑅

LeftNot

Γ, (¬𝜙)𝐿
Γ, 𝜙𝐿

RightNot

Γ, (¬𝜙)𝑅

(a) Deduction rules of Orthologic. Each holds for arbitrary Γ, Δ, 𝜙 ,𝜓

Ax(Γ,Δ) If Γ ∪ Δ ∈ 𝐴
Γ,Δ

(b) Rule for additional non-logical axioms.

Fig. 2. Sequent-calculus rules for Orthologic derivations from a set of axioms 𝐴. Sets Γ and Δ are either
empty or a single formula on any side.

One can think of this proof system as Gentzen’s sequent calculus for classical logic [Gentzen

1935] restricted to ensure the following syntactic invariant:

At any given place in a proof, a sequent never has more than two formulas on both sides combined.
This restriction on the proof system bears resemblance to the syntactic restriction of intuitionistic

sequent calculus, where a sequent can never have more than one formula on the right side, a

restriction lifted in the classical logic sequent calculus system. Compared to intuitionistic logic,

orthologic allows us to prove ⊢ 𝜙,¬𝜙 , represented as 𝜙𝑅, (¬𝜙)𝑅 , using the following steps.

Hyp

𝜙𝐿, 𝜙𝑅

RightNot

𝜙𝑅, (¬𝜙)𝑅
On the other hand, orthologic restricts the number of assumptions on the left side of the sequent. This

strong restriction will be rewarded by the existence of a polynomial-time proof search procedure.

Definition 3.2. We say that a deduction rule is admissible if any sequent that can be proven with

the rule can be proven without.

, Vol. 1, No. 1, Article . Publication date: October 2023.

Orthologic with Axioms 7

3.1 Ortholattice Semantics for Orthologic
We interpret a sequent 𝜙𝐿,𝜓𝑅

as 𝜙 ≤ 𝜓 in an ortholattice. More generally, we have the following

definition.

Definition 3.3. The interpretation of a sequent is given by the following table, where ∅ denotes
the empty sequent:

sequent 𝑆 ortholattice inequality 𝑆 (up to equivalence)

𝜙𝐿,𝜓𝑅 𝜙 ≤ 𝜓
𝜙𝐿,𝜓𝐿 𝜙 ≤ ¬𝜓
𝜙𝑅,𝜓𝑅 ¬𝜙 ≤ 𝜓
𝜙𝐿 𝜙 ≤ 0

𝜙𝑅
1 ≤ 𝜙

∅ 1 ≤ 0

The intended reading of the table above is a mapping of sequents (which are sets) to ortholattice

atomic formulas up to logical equivalence. The set {𝜙𝐿,𝜓𝐿} can be mapped to either 𝜙 ≤ ¬𝜓 or to

¬𝜓 ≤ 𝜙 , but these are equivalent in an ortholattice (analogously for mapping {𝜙𝑅,𝜓𝑅}).
The interpretation of a deduction rule in Figure 2 with 𝑘 premises 𝑃1, . . . , 𝑃𝑘 and a conclusion 𝐶 ,

is the universally quantified first-order logic formula 𝑃1 & . . . & 𝑃𝑛 =⇒ 𝐶 .

Given an axiom set 𝐴 we talk about ortholattice with presentation 𝐴 by taking the interpretation

of all axioms in𝐴. Our proof system can prove every axiom of ortholattices (Table 2) and, conversely.

Lemma 3.4 (Soundness and Completeness of𝑂𝐿 Deduction Rules). Let 𝐴 be an arbitrary (possibly

infinite) set of axioms. A sequent has a derivation from 𝐴 using the rules of orthologic (Figure 2) iff

its interpretation is in the first-order theory of ortholattices (Table 2) with presentation 𝐴.

Proof. Sketch. For every Table 2 law of the form 𝑃1 ∧ . . . ∧ 𝑃𝑛 → 𝐶 , a matching deduction rule

𝑃1 ... 𝑃𝑛

𝐶

is easily seen to be admissible. Conversely, for every deduction rule of Figure 2, the corresponding

law is a consequence (in first order logic) of the axioms of Table 2. □

For any axiom set 𝐴, this makes our system (with the Cut rule) sound and complete for the

class of all ortholattices satisfying axioms in 𝐴. Note that this interpretation is compatible with

the interpretation of sequents in classical logic. We can use the soundness and completeness to

obtain simple model-theoretic proofs for orthologic. We can show, for example, that substitution of

equivalent formulas is admissible.

Lemma 3.5. Let Γ and Δ denote sets with at most one labelled formula each. Let Γ [𝜒 := 𝜙]
denote the substitution inside Γ of 𝜒 (a placeholder formula symbol) by𝜓 . The following rule for

substitution of equivalent formulas is admissible in orthologic:

Γ [𝜒 := 𝜙],Δ[𝜒 := 𝜙] 𝜙𝐿,𝜓𝑅 𝜓𝐿, 𝜙𝑅

Subst

Γ [𝜒 := 𝜓],Δ[𝜒 := 𝜓]
Said otherwise, if both 𝜙𝐿,𝜓𝑅

and𝜓𝐿, 𝜙𝑅
can be shown then arbitrary occurrences of 𝜙 in a proven

sequent can be replaced by𝜓 .

, Vol. 1, No. 1, Article . Publication date: October 2023.

8 Simon Guilloud and Viktor Kunčak

Proof. The argument is semantic. Fix any ortholattice O satisfying the axioms. Since both

𝜙𝐿,𝜓𝑅
and 𝜓𝐿, 𝜙𝑅

are provable, it follows that 𝜙 = 𝜓 in O. Hence, Γ [𝜒 := 𝜙] = Γ [𝜒 := 𝜓] and
Δ[𝜒 := 𝜙] = Δ[𝜒 := 𝜓]. By completeness, the sequent Γ [𝜒 := 𝜓],Δ[𝜒 := 𝜓] is provable. □

3.2 Partial Cut Elimination
As a sequent calculus, our system has structural rules, introduction rules for each logical symbol

and a Cut rule, but no elimination rule. Consequently, by inspecting all rules, we conclude that Cut
is the only rule whose premises contain formulas that are not subformulas of the concluding sequent.

Definition 3.6. In an instance of a Cut rule in Figure 2, we call the formula𝜓 the cut formula. In
an instance of a left or right rule, the newly constructed formula is called the principal formula. In
the Weaken rule, if Δ contains a formula, it is also called the principal formula.

[Schulte Mönting 1981] showed that orthologic, without arbitrary non-logical axioms, admits cut

elimination. The crucial challenge is that, in contrast to classical or intuitionistic calculus, we cannot

simply add additional assumptions to the left-hand side of sequents in orthologic derivations. The

reason is the restriction on the number of formulas in sequents. The following example illustrates

this phenomenon.

Example 3.1. We saw in Section 1.2 that (𝑥 ∧ (¬𝑥 ∨𝑢)) ≤ 𝑢 is not always valid. In particular, the

sequent (𝑥 ∧ (¬𝑥 ∨ 𝑢))𝐿, 𝑢𝑅 is not provable in orthologic without axioms. However, with axiom

(𝑥 ∧ (¬𝑥 ∨ 𝑢))𝑅 , the sequent 𝑢𝑅 is provable as follows. First, (¬𝑥 ∨ 𝑢)𝑅 is provable:

Ax

(𝑥 ∧ (¬𝑥 ∨ 𝑢))𝑅

Hyp

(¬𝑥 ∨ 𝑢)𝐿, (¬𝑥 ∨ 𝑢)𝑅
L.And

(𝑥 ∧ (¬𝑥 ∨ 𝑢))𝐿, (¬𝑥 ∨ 𝑢)𝑅
Cut

(¬𝑥 ∨ 𝑢)𝑅
Then,

(¬𝑥 ∨ 𝑢)𝑅

Ax

(𝑥 ∧ (¬𝑥 ∨ 𝑢))𝑅

Hyp

𝑥𝐿, 𝑥𝑅
L.And

(𝑥 ∧ (¬𝑥 ∨ 𝑢))𝐿, 𝑥𝑅
Cut

𝑥𝑅
L.Not

(¬𝑥)𝐿
Weaken

(¬𝑥)𝐿, 𝑢𝑅
Hyp

𝑢𝐿, 𝑢𝑅

L.Or

(¬𝑥 ∨ 𝑢)𝐿, 𝑢𝑅
Cut

𝑢𝑅

In a classical sequent calculus system, the above derivation using the axiom 𝑥 ∧ (¬𝑥 ∨ 𝑢) could be

transformed into a new derivation where each sequent has an additional assumption 𝑥 ∧ (¬𝑥 ∨ 𝑢)
and where the use of axiom rule is replaced with the use of the Hyp rule. This transformation does

not apply to 𝑂𝐿: it would create sequents with more than two formulas, which, by the definition in

Figure 2 cannot appear in 𝑂𝐿 proofs.

For this reason, the ability to add non-logical axioms is crucial in orthologic. We aim to extend

the cut elimination property to proofs containing arbitrary axioms. This will allow us to devise

an efficient decision procedure for orthologic with axioms, and, by extension, the word problem

for finitely presented ortholattices. Moreover, the proof we present is constructive, in the sense

that it shows an algorithmic way to eliminate instances of the Cut rule from a proof. Furthermore,

we need not worry about the size of the transformed proof, because our Cut elimination property

will enable us to derive a subformula property and a bound on the size of the proof of any given

formula.

, Vol. 1, No. 1, Article . Publication date: October 2023.

Orthologic with Axioms 9

However, the system does not allow for complete cut elimination in the presence of axioms, as

the following short example shows.

Example 3.2. Let 𝑥1, 𝑥2, 𝑦 be distrinct variables and let the sequent (𝑥1 ∨ 𝑥2)𝐿, 𝑦𝑅 be the only

axiom. The sequent 𝑥𝐿
1
, 𝑦𝑅 is then provable:

Hyp

𝑥𝐿
1
, 𝑥𝑅

1

RightOr

𝑥𝐿
1
, (𝑥1 ∨ 𝑥2)𝑅

Ax

(𝑥1 ∨ 𝑥2)𝐿, 𝑦𝑅

𝑥𝐿
1
, 𝑦𝑅

but it cannot be proven without using the Cut rule. To see why, note that Hyp, LeftAnd, RightAnd,

LeftOr, RightOr, LeftNot, RightNot do not yield sequents whose syntactic form can be 𝑥𝐿
1
, 𝑦𝑅 .

Furthermore, Ax does not produce the desired sequent as it is not the axiom. Finally, Weaken does

not help because its premise would not be provable: neither 𝑥𝐿
1
nor 𝑦𝑅 are individually provable

from the axiom, as can be seen by a semantic argument: it could be, for example, that both 𝑥1 and 𝑦

have value 0 or both have value 1 in an ortholattice that satisfies the axiom.

Thus, cut rule is in general necessary when reasoning from axioms, and we need to formulate a

suitable generalization of the concept of cut elimination. For this purpose, we define the rank of an

instance of the cut rule.

Definition 3.7. An instance of the Cut rule has rank 1 if either of its premises is an axiom. It has

rank 2 if either of its premises is the conclusion of a rank 1 Cut rule.

The following theorem is our main result. It implies that the Cut rule can be eliminated or

restricted to only cut with respect to axioms. Part (1) has immediate consequences for the subformula

property. Part (2) gives further insight into normalized proofs, further restricts our proof procedure

in the next section, and it helps with the inductive argument in the proof of the theorem.

Theorem 3.8 (Cut Elimination for Orthologic). If a sequent is provable in the system of Figure 2

with axioms

Ax(𝑎◦𝑖 ,𝑏
□
𝑖)𝑎◦𝑖 , 𝑏

□
𝑖

for all (𝑎◦𝑖 ,𝑏□𝑖) ∈ 𝐴 (𝑎𝑖 and 𝑏𝑖 are formulas,
◦
and

□
are side annotation), then there is a proof of that

sequent from the same axioms such that:

(1) All instances of the Cut rule use only formulas among 𝑎1, ...𝑎𝑛, 𝑏1, ..., 𝑏𝑛 as cut formulas.

(2) All instances of the Cut rule are rank 1 or 2.

Proof. If a proof does not satisfy the properties (1) and (2) of the theorem statement, then there

is a Cut rule for which the condition in (1) or (2) does not hold. Consider a derivation using such a

Cut rule as the last step; when Cut is not bottommost, the properties follow trivially by induction.

Let the proof be of the form:

A
Γ,𝜓𝑅

B
𝜓𝐿,Δ

Cut
Γ,Δ

where A and B are the proof trees whose conclusions are respectively the left and right premises

and𝜓 is the Cut formula. We show that there exists a proof of Γ,Δ that satisfies the two properties

of the theorem.

We proceed by induction on the length of the proof. Hence, we can assume by induction that A
and B satisfy properties 1 and 2. By induction hypothesis, it suffices to show how to transform

the proof of Γ,Δ into one where Cut is used only in subproofs strictly smaller than the proof we

, Vol. 1, No. 1, Article . Publication date: October 2023.

10 Simon Guilloud and Viktor Kunčak

started with. We do case analysis on A and B, showing for each case how to transform the proof

in this way. ↩→ denotes this transformation.

Case 1. Suppose A ends (and hence starts) with a Hypothesis rule. Then, Γ = 𝜓𝐿
and𝜓𝐿,Δ can

be reached using only B. The case where B is a Hypothesis rule is symmetric.

Case 2. (A ends with Weaken)

Case 2.a SupposeA ends with a Weaken rule and𝜓𝑅
is not the principal formula (see Definition 3.6).

A′
𝜓𝑅

Weaken

Γ,𝜓𝑅

B
𝜓𝐿,Δ

Cut
Γ,Δ

↩→

A′
𝜓𝑅

B
𝜓𝐿,Δ

Cut
Δ

Weaken
Γ,Δ

In the transformed proof, A′ is part of A, so Cut applies to a smaller subproof and can be trans-

formed to satisfy the properties (1) and (2) by inductive hypothesis.

Case 2.b Suppose A ends with a Weaken rule and𝜓𝑅
is the principal formula.

A′
Γ

Weaken

Γ,𝜓𝑅

B
𝜓𝐿,Δ

Cut
Γ,Δ

↩→
A′
Γ

Weaken
Γ,Δ

Case 3. (A ends with a Left rule where𝜓 is not principal)

Case 3.a Suppose A ends with a LeftAnd rule where Γ = (𝛼 ∧ 𝛽)𝐿

A′
𝛼𝐿,𝜓𝑅

LeftAnd

(𝛼 ∧ 𝛽)𝐿,𝜓𝑅

B
𝜓𝐿,Δ

Cut

(𝛼 ∧ 𝛽)𝐿,Δ

↩→

A′
𝛼𝐿,𝜓𝑅

B
𝜓𝐿,Δ

Cut

𝛼𝐿,Δ
LeftAnd

(𝛼 ∧ 𝛽)𝐿,Δ

Case 3.b Suppose A ends with a LeftOr rule where 𝜙 = 𝛼 ∨ 𝛽

A′
𝛼𝐿,𝜓𝑅

A′′
𝛽𝐿,𝜓𝑅

LeftOr

(𝛼 ∨ 𝛽)𝐿,𝜓𝑅

B
𝜓𝐿,Δ

Cut

(𝛼 ∨ 𝛽)𝐿,Δ
↩→

A′
𝛼𝐿,𝜓𝑅

B
𝜓𝐿,Δ

Cut

𝛼𝐿,Δ

A′′
𝛽𝐿,𝜓𝑅

B
𝜓𝐿,Δ

Cut

𝛽𝐿,Δ
LeftOr

(𝛼 ∨ 𝛽)𝐿,Δ
Case 3.c Suppose A ends with a LeftNot rule, i.e. Γ = ¬𝛼

A′
𝛼𝑅,𝜓𝑅

LeftNot

(¬𝛼)𝐿,𝜓𝑅

B
𝜓𝐿,Δ

Cut

𝛼𝐿,Δ

↩→ in

A′
𝛼𝑅,𝜓𝑅

B
𝜓𝐿,Δ

Cut

𝛼𝑅,Δ
LeftNot

(¬𝛼)𝐿,Δ
The cases where B ends with a Right rule are symmetric.

, Vol. 1, No. 1, Article . Publication date: October 2023.

Orthologic with Axioms 11

Case 4. If A ends with Right rule where𝜓𝑅
is not the principal formula, the transformation is

symmetric to the Left rule case. Similarly if B ends with a Left rule where𝜓𝐿
is not the principal

formula.

Case 5. (A ends with Right rule and B with a Left rule,𝜓 is principal in both)

Case 5.a Suppose A ends with a RightOr rule, i.e. 𝜓 = (𝛼 ∨ 𝛽). In this case, B has to end with a

LeftOr rule, as it is the only Left rule that can produce (𝛼 ∨ 𝛽)𝐿

A′
Γ, 𝛼𝑅

RightOr

Γ, (𝛼 ∨ 𝛽)𝑅

B′
𝛼𝐿,Δ

B′′
𝛽𝐿,Δ

LeftOr

(𝛼 ∨ 𝛽)𝐿,Δ
Cut

Γ,Δ

↩→
A′
Γ, 𝛼𝑅

B′
𝛼𝐿,Δ

Cut
Γ,Δ

Case 5.b IfA ends with a RightAnd rule and B with a LeftAnd, the transformation is symmetric to

case 5.a

Case 5.c If A ends with a RightNot rule and B a LeftNot rule, and 𝜙 = ¬𝛼 is principal in both:

A′
Γ, 𝛼𝐿

RightNot

Γ, (¬𝛼)𝑅

B′
𝛼𝑅,Δ

RightNot

(¬𝛼)𝐿,Δ
Cut

Γ,Δ

↩→
A′
Γ, 𝛼𝐿

B′
𝛼𝑅,Δ

Cut
Γ,Δ

Case 6. Suppose either A or B end with an Axiom rule. Then, properties 1 and 2 are immediate.

Case 7. Suppose A ends with a Cut rule, which by induction we can assume is rank 1 or 2.

Case 7.a IfA is rank 1, the following transformation works, since ifA′′ is an axiom both properties

immediately hold for both Cuts, and if A′ is an axiom, both properties hold for the last cut and the

other cut has smaller size.

A′
Γ, 𝜙𝑅

A′′
𝜙𝐿,𝜓𝑅

Cut

Γ,𝜓𝑅

B
𝜓𝐿,Δ

Cut
Γ,Δ

↩→ A′
Γ, 𝜙𝑅

A′′
𝜙𝐿,𝜓𝑅

B
𝜓𝐿,Δ

Cut

𝜙𝐿,Δ
Cut

Γ,Δ

Case 7.b Suppose A is rank 2 and it is A′ that ends with a rank 1 Cut:

A′
1

Γ, 𝜒𝑅
A′

2

𝜒𝐿, 𝜙𝑅

Cut
1

Γ, 𝜙𝑅

A′′
𝜙𝐿,𝜓𝑅

Cut
2

Γ,𝜓𝑅

B
𝜓𝐿,Δ

Cut
3

Γ,Δ

EitherA′
1
orA′

2
is an axiom. IfA′

2
is, the same transformation as above works because the last cut

again has the axiom 𝜙 as a cut formula. If A′
1
is an Axiom, we transform to the following:

↩→ A′
1

Γ, 𝜒𝑅

A′
2

𝜒𝐿, 𝜙𝑅

A′′
𝜙𝐿,𝜓𝑅

Cut
1

𝜒𝐿,𝜓𝑅

B
𝜓𝐿,Δ

Cut
2

𝜒𝑅,Δ
Cut

3

Γ,Δ

, Vol. 1, No. 1, Article . Publication date: October 2023.

12 Simon Guilloud and Viktor Kunčak

Then, the new Cut
3
is of rank 1 and its cut formula is part of an axiom. Cut

2
is of strictly smaller

size than the proof we started from, so by induction its conclusion can be obtained with a proof

satisfying properties 1 and 2.

Case 7.c Suppose now that A′′ is a rank 1 Cut. We transform the proof as follows:

A′
Γ, 𝜙𝑅

A′′
1

𝜙𝐿, 𝜒𝑅

A′′
2

𝜒𝐿,𝜓𝑅

Cut

𝜙𝐿,𝜓𝑅

Cut

Γ,𝜓𝑅

B
𝜓𝐿,Δ

Cut
Γ,Δ

↩→
A′
Γ, 𝜙𝑅

A′′
1

𝜙𝐿, 𝜒𝑅

Cut
1

Γ, 𝜒𝑅

A′′
2

𝜒𝐿,𝜓𝑅

B
𝜓𝐿,Δ

Cut
2

𝜒𝐿,Δ
Cut

3

Γ,Δ

Either A′′
1
or A′′

2
is an axiom. In both cases, Cut

3
is of rank 2 and its cut formula is part of an

axiom. The proofs ending with Cut
1
and Cut

2
are of strictly smaller size than the original proof, so

by induction they can be made to satisfy the desired properties 1 and 2 (one of them is already rank

1).

The above cases cover all possibilities for how the premises of the topmost cut in the proof are

constructed, concluding the proof. □

Since sequent calculus for orthologic has no elimination rule, traversing a sequent 𝑆 backwards

in its proof obtained by Theorem 3.8 we obtain the following subformula property.

Corollary 3.9 (Subformula Property for Orthologic). If a sequent 𝑆 has a proof in the proof system

of Figure 2 with axioms, then it has such a proof where each formula in each sequent ocurring in

the proof is a subformula of 𝑆 or a subformula of an axiom.

Proof. Let 𝑆 be a sequent that has a proof. By Theorem 3.8, consider a proof of 𝑆 with properties

(1) and (2). We view the proof as a directed tree with root 𝑆 , whose nodes are the sequents occurring

in the proof. We show that each formula in the node is a subformula of 𝑆 or of an axiom, by

induction on the distance of the tree node to the root 𝑆 . The property trivially holds for the root 𝑆 .

Suppose now that the property holds for a node 𝑆 ′ in the tree; we show that it also holds for its

children. We consider all applicable rules in Figure 2. Hyp rule has no children, so there is nothing

to show. Consider a Cut rule and one of its children, Γ,𝜓𝑅
. Then Γ is a subformula because it is a

part of 𝑆 ′, whereas𝜓 is a part of the axiom by property (1). The case for the other child𝜓,Δ of the

Cut rule is analogous. The case of the Left and Right rules are easy: we observe that their premises

are sequents whose formulas are subformulas of the conclusion 𝑆 ′, so they are a subformula of 𝑆 ′

or of axioms, by inductive hypothesis and the transitivity of the “subformula” relation. Finally, if 𝑆 ′

is obtained using the axiom rule, then its formulas are subformulas of the axioms by definition. □

4 CUBIC-TIME PROOF SEARCH
In this section we show that the subformula property (Corollary 3.9) not only implies a quadratic

bound on the size of proofs, but also allows us to define an 𝑂 (𝑛3) proof search procedure. Such

deterministic polynomial-time search is in contrast to co-NP completeness of validity in classical

propositional logic [Cook 1971] and to PSPACE completeness of validity in intuitionistic logic

[Statman 1979; Urzyczyn 1997]. We assume that the set𝐴 of axioms is finite throughout this section.

, Vol. 1, No. 1, Article . Publication date: October 2023.

Orthologic with Axioms 13

Algorithm 1: Cubic-Time Proof Search for 𝑂𝐿 with Axioms

1 type Formula
∗ // an annotated formula or a special None value

2 A: Set[(Formula
∗
, Formula

∗
)]← Input // set of axioms

3 AxFormulas: Set[Formula]← ⋃{{𝑎,𝑏} | {𝑎□, 𝑏◦} ∈ A} // formulas from axiom sequents
4 proven: Set[(Formula

∗
, Formula

∗
)]← Set.empty // formulas already proven

5 visited: Set[(Formula
∗
, Formula

∗
)]← Set.empty // formulas whose proof is being attempted

6 def prove(Γ: Formula∗, Δ: Formula∗)
7 if proven.contains((Γ, Δ)) then return True
8 else if visited.contains((Γ, Δ)) then return False
9 else
10 visited.add((Γ, Δ)) // necessary to avoid infinite loops
11 success← {
12 ((Γ==𝜙𝐿

&& Δ == 𝜙𝑅
) || (Γ==𝜙𝑅

&& Δ == 𝜙𝐿
)) || // Hyp

13 ((Γ,Δ) ∈ A) || // Ax(Γ, Δ)
14 (Γ!=None && Δ!=None && (prove(Γ, None) || prove(None, Δ))) || // Weaken
15 (Γ==(¬𝜙)𝐿 && prove(𝜙𝑅

, Δ)) || // LeftNot
16 (Γ==(𝜙 ∧𝜓)𝐿 && (prove(𝜙𝐿

, Δ) || prove(𝜓𝐿
, Δ)) || // LeftAnd

17 (Γ==(𝜙 ∨𝜓)𝐿 && prove(𝜙𝐿
, Δ) && prove(𝜓𝐿

, Δ) || // LeftOr
18 ... || // analogous Right cases for Γ

19 ... || // analogous Left and Right cases for Δ

20 AxFormulas.exists((x:Formula)→
21 prove(Γ, x𝑅) && prove(x

𝐿
, Δ) || prove(Δ, x𝑅) && prove(x

𝐿
, Γ)) // Cut with axiom

22 }
23 if success then
24 proven.add((Γ, Δ))

25 return success

Our approach is to eliminate from the proof system in Figure 2 deduction steps which do not

satisfy the conditions of Theorem 3.8. We assume that no axiom is a trivial one 𝑎 ≤ 𝑎, as that one

does not help prove anything.

For a formula, sequent or set of formulas or sequents 𝑜 , let ∥𝑜 ∥ denote the number of subformulas

in 𝑜 . This is asymptotically equal to the number of symbols needed to represent 𝑜 . In particular for

the set of axioms, ∥𝐴∥ is the number of subformulas in all axioms of 𝐴 whereas |𝐴| is the number

of axioms.

Lemma 4.1 (Bound on Intermediate Sequents). There is a function that when given 𝑆 computes a

set relevant(𝑆) containing at most 4(∥𝑆 ∥ + ∥𝐴∥)2 intermediate sequents such that if 𝑆 is provable

then it is provable with a proof whose all sequents appear in relevant(𝑆).

Proof. By Corollary 3.9, there is a proof where each formula is a subformula of 𝑆 or of 𝐴. Let

relevant(𝑆) be the set of all sequents built from these formulas. There are at most 2(∥𝑆 ∥ + ∥𝐴∥) of
labelled subformulas. A sequent has at most two labelled subformulas, and the number of sequents

is bounded by the number of ordered pairs of labelled formulas, which is 4(∥𝑆 ∥ + ∥𝐴∥)2. □

Lemma 4.2 (Bound on Branching). Let 𝐴 be a set of axioms, and let 𝑆 be a sequent. Then, if 𝑆 has

a proof in the system of Figure 2 then there are at most 7 + 4|𝐴| valid instances of rules whose

conclusion is 𝑆 . We call the sequents above 𝑆 in these steps the possible parents of 𝑆 .

Proof. Let 𝑆 be a sequent of the form Γ,Δ. We state in parentheses the maximal number of valid

instances for each of the rules in Figure 2:

, Vol. 1, No. 1, Article . Publication date: October 2023.

14 Simon Guilloud and Viktor Kunčak

• (1) 𝑆 can be deduced by an application of the hypothesis rule or from the axiom rule (not

both as we assume the axioms are non-trivial)

• (2) Γ,Δ can follow using weakening, from either Γ or Δ
• (2) Γ,Δ can follow using a Left or a Right rule on Γ in at most two ways, depending on the

structure of Γ:
– If Γ = (¬𝜙)𝐿 then 𝑆 can be deduced from 𝜙𝑅,Δ with LeftNot

– If Γ = (𝜙 ∧𝜓)𝐿 then 𝑆 can be deduced in two ways using LeftAnd: from 𝜙𝑅,Δ and from

𝜓𝑅,Δ
– If Γ = (𝜙 ∨𝜓)𝐿 then 𝑆 can be deduced in exactly one way using LeftOr: from both 𝜙𝑅,Δ
and𝜓𝑅,Δ.

– Right rules are symmetrical and either Left or Right rules apply to Γ, not both
• (2) Γ,Δ can follow using a Left or Right rule onΔ in also at most twoways, entirely analogously

to the previous case.

• (4|𝐴|) Γ,Δ can be deduced using the Cut rule in 4|𝐴| different ways: the cut formula 𝜙 can be

any formula among the left or right sides of axioms (thanks to Theorem 3.8 property (1)), for

at most 2|𝐴| different formulas, and for each the Cut instance can be either of

Γ, 𝜙𝑅 𝜙𝐿,Δ
Cut

Γ,Δ
or

Δ, 𝜙𝑅 𝜙𝐿, Γ
Cut

Γ,Δ

We thus obtain the desired bound 1 + 2 + 2 + 2 + 4|𝐴| = 7 + 4|𝐴|. □

Theorem 4.3. There is a proof search procedure for𝑂𝐿 running in time O((1 + |𝐴|)𝑛2), where |𝐴|
is the number of given axioms and 𝑛 the total size of the problem.

Proof. In Algorithm 1 we present pseudocode for backward search. Each line from 8 to 16

corresponds to trying a specific deduction rule.

For an input sequent 𝑆 , the proof strategy consists in recursively computing the possible parents

of 𝑆 . By Lemma 4.1, proof of a sequent 𝑆 need only involve at most 4(∥𝑆 ∥ + ∥𝐴∥)2 intermediate

sequents, which is O(𝑛2). Moreover, note that to compute the possible parents of a sequent, we

need not observe the formulas entirely but only their roots, so computing one possible parent is

constant time. Moreover, by Lemma 4.2, a sequent can only have at most 𝐶 + 4|𝐴| possible parents,
so reducing a sequent to all of its possible parents has complexity O(1 + |𝐴|). The final complexity

of the proof search procedure is bounded by generating parents for all possible sequents we can

encounter, which is O((𝐶 + |𝐴|)𝑛2) = O((1 + |𝐴|)𝑛2). □

Note on the complexity of memoization. The complexity argument of the previous proof requires

memoization to be efficient. However, a naive implementation of the “visited” and “proven” sets

can increase the total runtime if the sets are implemented as lists or rely on structural equality of

formulas, which has itself complexity linear in the size of the formulas. In practice, the following is

most efficient. Assign to every annotated formula a unique integer (of size O(log(𝑛)). Then assign

a field to every annotated formula, storing a hash table m with Integers as keys and Booleans

as values. When a sequent of the form 𝑎, 𝑏 is proven, set a.m(b.id) and b.m(a.id) to True. If the

proof search fails, set them to False. With this representation, with this efficient representation, the

checks of lines 7-10 reduce to one access in a hash table with a key of O(log(𝑛)) bits (which takes

constant time in the usual word RAM model).

4.1 Merging Axioms forQuadratic Complexity
In the particular case where 𝐴 = ∅, Algorithm 1 is quadratic, which is also the best known result

for the word problem and normalization problem in both ortholattices and lattices [Guilloud et al.

, Vol. 1, No. 1, Article . Publication date: October 2023.

Orthologic with Axioms 15

2023a; Whitman 1941]. In general, it can be beneficial to keep the number of axioms as small as

possible. For this purpose, we can combine axioms with the same left-hand side into one. Given

two axioms representing 𝑎 ≤ 𝑏1 and 𝑎 ≤ 𝑏2 we can merge them into an equivalent one 𝑎 ≤ 𝑏1 ∧ 𝑏2.

Indeed, given an axiom sequent {𝑎𝐿, (𝑏1 ∧ 𝑏2)𝑅} we can derive {𝑎𝐿, 𝑏𝑅
1
} as follows:

Ax

𝑎𝐿, (𝑏1 ∧ 𝑏2)𝑅

Hyp

𝑏𝐿
1
, 𝑏𝑅

1

LeftAnd

(𝑏1 ∧ 𝑏2)𝐿, 𝑏𝑅1
Cut

𝑎𝐿, 𝑏𝑅
1

Dually, we can merge axioms with the same right-hand side, 𝑎1 ≤ 𝑏 and 𝑎2 ≤ 𝑏 into 𝑎1 ∨ 𝑎2 ≤ 𝑏.

Finally, 𝑎 ≤ ¬𝑏 can be rewritten into 𝑏 ≤ ¬𝑎 and vice versa. We can repeat this process until all left-

hand sides and all right-hand sides of axioms are distinct, and no left side is a complement of a right

side (we can even use normal forms for ortholattices to make such checks more general [Guilloud

et al. 2023a]). Such axiom pre-processing transformations do not change the set of provable

formulas. They can be done in time O(𝑛2) and they reduce |𝐴| while not increasing 𝑛. Using such

transformations can thus improve the cubic bound for certain kinds of axiom sets. As a very special

case, if all axioms have the form 1 ≤ 𝑏𝑖 and 𝑎𝑖 ≤ 0 (corresponding to singleton sequents), we can

combine them into a single axiom, obtaining O(𝑛2) complexity.

Corollary 4.4. There is an O(𝑛2) algorithm for checking provability from axiom sets 𝐴 in which

all axioms are singleton sequents.

5 PROOF STRENGTH OF ORTHOLOGIC WITH AXIOMS
The previous section established a cubic time algorithm (Algorithm 1) for deriving all consequences

of axioms that hold in orthologic. This generalization is sound for classical logic while still being

efficient. A key question then is: how precise is it as an approximation of classical logic?

To help answer this question, we present several classes of classical problems that our algorithm

solves exactly: it is not only sound for them (as it is for all problems), but also complete: it always
finds a proof if, e.g., a SAT solver would find it. Furthermore, we partly characterize our 𝑂𝐿 proof

system in terms of restricted forms of resolution for propositional logic.

We are interested in traditional classes of deduction problems that are solvable by 𝑂𝐿 proofs.

Formally, we define the deduction problem in orthologic, and, respectively, classical logic.

Definition 5.1. An instance of the deduction problem is characterized by a pair (𝐴, 𝑆) where 𝐴
is a set of axioms and 𝑆 the goal, all of which are sequents whose interpretation as inequality is

given by Section 3. The deduction problem in 𝑂𝐿 (resp. 𝐶𝐿) consists in deciding if the goal 𝑆 can be

derived from axioms 𝐴 in orthologic (resp. classical logic). If this is the case, then the instance is

called valid.

Definition 5.2. An instance of the deduction problem is 𝑂𝐿-solvable if and only if it has the same

validity in 𝑂𝐿 and 𝐶𝐿. A class of instances of the deduction problem is 𝑂𝐿-solvable if and only if all

its members are 𝑂𝐿-solvable.

As 𝑂𝐿 is sound relative to 𝐶𝐿, the following are equivalent formulations of 𝑂𝐿-solvability:

• The instance has a proof in 𝑂𝐿 if and only if it has a proof in 𝐶𝐿.

• The goal of the instance is true in all ortholattice interpretations satisfying the axioms if and

only if it is true in all {0, 1} interpretations satisfying the axioms.

In particular, if the goal of the instance is the empty sequent (hence, we talk about the consistency

of axioms), 𝑂𝐿-solvability of (𝐴, ∅) is equivalent to each of the following statements:

• The axioms of the instance are either unsatisfiable in 𝑂𝐿 or satisfiable in 𝐶𝐿.

, Vol. 1, No. 1, Article . Publication date: October 2023.

16 Simon Guilloud and Viktor Kunčak

• The axioms of the instance either have a non-trivial Boolean model, or admit only the trivial

one-element structure as a model among all ortholattices.

In particular, Theorem 4.3 gives a polynomial-time decision procedure with respect to classical

logic for any class of deduction problems instances that are 𝑂𝐿-solvable.

In the sequel, we look at the satisfiability of propositional logic formulas in conjunctive normal

form (CNF), which are conjunctions of clauses, as their analysis plays an important role in proof

theory of 𝐶𝐿 and the practice of SAT solving. Among the simplest and most studied refutationally

complete systems for 𝐶𝐿 is resolution on clauses, shown in Figure 3.

𝐶, 𝑥 𝐶′,¬𝑥
Resolution

𝐶,𝐶′

Hypothesis

𝐶, 𝑥,¬𝑥
𝐶

Weaken

𝐶,𝐶′

Fig. 3. The Resolution proof system with hypothesis and weakening rules. 𝐶 and 𝐶′ represent arbitrary sets
of literals. This system is complete for deriving contradictions in 𝐶𝐿, with formulas expressed in conjunctive
normal form, even without the Weaken and Hypothesis rules [Robinson and Voronkov 2001, Chapter 2].

5.1 Completeness for 2SAT
We start with the simplest example of a CNF, the 2CNF class. A 2CNF formula is a finite set of

clauses 𝐶1, ...,𝐶𝑚 , where each clause is a disjunction of two literals or a single literal. For example,

(𝑥 ∨ ¬𝑦), (¬𝑥 ∨ 𝑧), (¬𝑧) is a 2CNF formula. 2SAT if the problem of deciding if a 2CNF formula is

satisfiable, i.e. if it has a model in the two-element Boolean algebra. Conversely, the instance is

unsatisfiable if and only if the conjunction of the clauses implies falsity.

We next show how to encode a 2SAT instance into an 𝑂𝐿 deduction problem. The idea is to

view a 2SAT instance as a deduction problem (𝐴, ∅) where each axiom in 𝐴 is a sequent containing

at most two labelled variables as formulas. We create an axiom sequent for each clause, where a

negative literal ¬𝑝 becomes labelled formula 𝑝𝐿 and a positive literal 𝑝 becomes 𝑝𝑅 . For example,

{¬𝑥,𝑦} becomes 𝑥𝐿, 𝑦𝑅 . Similarly, {𝑥,𝑦} becomes 𝑥𝑅, 𝑦𝑅 , whereas {𝑥} becomes 𝑥𝑅 . This encoding is

equivalent (in 𝐶𝐿) to the 2SAT instance, with the interpretation of sequents given in Definition 3.3.

Consider the Resolution prof system shown in Figure 3. For 2SAT instances, the outcome of

resolution can be simulated by orthologic using the Cut rule, which allows us to prove the following.

Theorem 5.3. 2SAT is 𝑂𝐿-solvable.

Proof. Consider a 2CNF and its representation as a set of sequents. The instance is unsatisfiable

in 𝐶𝐿 if and only if there exist a derivation of the empty clause in Resolution. We proceed by

induction on the Resolution derivation to show that if a clause is derived, then there is an𝑂𝐿-proof

of the corresponding sequent.

Consider a Resolution step between two clauses of (at most) two elements. The sequent corre-

sponding to its conclusion can be deduced from the sequent corresponding to its premises by a

single application of the Cut rule in orthologic.

{𝛾,𝑦} {¬𝑦, 𝛿}
Resolution

𝛾, 𝛿
↩→ {Γ, 𝑦𝑅} {𝑦𝐿,Δ}

Cut
Γ,Δ

Where 𝛾 and 𝛿 are one arbitrary literals (or no literal) and Γ and Δ represent the corresponding

annotated formula (or absence thereof). Weaken and Hypothesis steps are similarly simulated by

the eponymous steps in 𝑂𝐿.

, Vol. 1, No. 1, Article . Publication date: October 2023.

Orthologic with Axioms 17

Conversely, if the empty sequent is derivable in orthologic, then no non-trivial ortholattice

satisfy the assumptions, and hence no Boolean algebra. □

5.2 Orthologic Emulates Unit Resolution
For an arbitrary clause 𝑁 ∪ 𝑃 , let it be encoded as the sequent (∧𝑁)𝐿, (∨ 𝑃)𝑅 , where 𝑁 (resp. 𝑃) is

the set of negative (resp. positive) variables in the clause. A Unit Resolution step is a Resolution step

(Figure 3) where 𝐶 = ∅ or 𝐶′ = ∅. Interpreted over sequents, the application of a Unit Resolution

step on two clauses 𝐶1 = {𝑥𝑖 } and 𝐶2 = ({¬𝑥1, . . . ,¬𝑥𝑛} ∪ 𝑃) corresponds to the deduction rule

UnitResolutionR. Dually, for 𝐶1 = {¬𝑥𝑖 } we obtain UnitResolutionL:

(𝑥𝑖)𝑅 (𝑥1 ∧ . . . ∧ 𝑥𝑖−1 ∧ 𝑥𝑖 ∧ 𝑥𝑖+1 ∧ . . . ∧ 𝑥𝑛)𝐿, (
∨

𝑃)𝑅
UnitResolutionR

(𝑥1 ∧ . . . ∧ 𝑥𝑖−1 ∧ 𝑥𝑖+1 ∧ . . . ∧ 𝑥𝑛)𝐿, (
∨

𝑃)𝑅

(𝑥𝑖)𝐿 (∧𝑁)𝐿, (𝑥1 ∨ . . . ∨ 𝑥𝑖−1 ∨ 𝑥𝑖 ∨ 𝑥𝑖+1 ∨ . . . ∨ 𝑥𝑛)𝑅
UnitResolutionL

(∧𝑁)𝐿, (𝑥1 ∨ . . . ∨ 𝑥𝑖−1 ∨ 𝑥𝑖+1 ∨ . . . ∨ 𝑥𝑛)𝑅

Lemma 5.4 (𝑂𝐿 simulates Unit Resolution). UnitResolutionL and UnitResolutionR are admissible

rules (Definition 3.2) for 𝑂𝐿 proof system of Figure 2.

Proof. We aim to show that this step is admissible in 𝑂𝐿 proofs. Instead of giving a syntactic

transformation, we can see that the steps are sound in 𝑂𝐿 with a short semantic argument. For

UnitResolutionL, consider any ortholattice and assume that the premises of the rules are true. The

meaning of𝑥𝑅𝑖 is 1 ≤ 𝑥𝑅 , which implies𝑥𝑖 = 1. This implies (𝑥1∧...∧𝑥𝑖∧...∧𝑥𝑛) = (𝑥1∧. . .∧1∧. . . 𝑥𝑛),
so the value of the non-unit premise clause reduces to the truth of the conclusion of the rule.

By completeness (Lemma 3.4), there exists a proof of the conclusion from the premises. Thus,

UnitResolutionR is admissible. The argument for UnitResolutionL is dual. □

5.3 Completeness for Horn Clauses
A Horn clause is a disjunction of literals such that at most one literal is positive. We encode a Horn

clause into a sequent as (𝑎1 ∧ ... ∧ 𝑎𝑛)𝐿, 𝑏𝑅 where 𝑎𝑖 are the negated variables of the clause (if any),

and 𝑏 the positive literal of the clause (if it exists). A Horn instance is a conjunction of Horn clauses,

and is unsatisfiable if and only if the empty clause can be deduced from it using Resolution.

We encode a Horn instance into a deduction problem by adding an axiom for each Horn clause,

and the empty sequent as the goal.

Horn instances can be solved using Unit Resolution only [Minoux 1988]. By Lemma 5.4, 𝑂𝐿 is

complete for Horn instances. Other classes solvable using only Unit Resolution include q-Horn,
extended Horn and renamed Horn instances [Čepek and Kučera 2005].

Corollary 5.5 (Horn Clause Completeness). Horn Clause instances, q-Horn instances, extended

Horn instances, and renamed Horn instances are 𝑂𝐿-solvable classes.

Note that, despite our use of semantic techniques to show completeness for resolution, the results

of Theorem 4.3 apply, provide polynomial-time guarantees for solving these instances.

Renamed Horn instances are an interesting extension of Horn instances. A conjunction of clauses

is renamed Horn if and only if there exists a set of variables 𝑉 such that complementing variables

of 𝑉 in the instance yields a Horn instance. In particular, a clause in a renamed Horn instance

can contain multiple positive and negative literals. Unit Resolution is stable under such renaming,

meaning that a unit resolution derivation of the empty clause remains a valid unit resolution

derivation of the empty clause after renaming. This is the reason that Unit Resolution is also

complete for renamed Horn clauses.

, Vol. 1, No. 1, Article . Publication date: October 2023.

18 Simon Guilloud and Viktor Kunčak

5.4 Renaming Deduction Problems
Motivated by renamed Horn instances, we now consider renaming of general deduction problems.

We show that renamings of 𝑂𝐿-solvable instances are 𝑂𝐿-solvable.

Definition 5.6. For an arbitrary variable 𝑥 , the complement of 𝑥 is ¬𝑥 and the complement of ¬𝑥
is 𝑥 . Two deduction problems 𝐼1 and 𝐼2 are renamings of each other if there exists a set of variables

𝑉 such that complementing variables of 𝑉 in the axioms and goal of 𝐼1 yields 𝐼2.

Lemma 5.7. Let 𝐼 be a deduction instance such that 𝐼 is valid in 𝑂𝐿 if and only if it is valid in 𝐶𝐿.

Then all renamed versions of 𝐼 are valid in 𝑂𝐿 if and only if they are valid in 𝐶𝐿.

Proof. In 𝑂𝐿, if 𝐼1 and 𝐼2 are renamed versions of each other by a set of variables 𝑉 , 𝐼1 and 𝐼2
have the same validity. Indeed, suppose there is an ortholattice O and assignement 𝑠1 : 𝑉 → O
that is a counter model of 𝐼 (meaning it satisfies the axioms but not the goal, so 𝐼1 is invalid). Then

define 𝑠2 such that 𝑠2 (𝑥) = 𝑠1 (𝑥) if 𝑥 ∉ 𝑉 and 𝑠2 (𝑥) = ¬𝑠1 (𝑥) if 𝑥 ∈ 𝑉 . It is then easy to check that

since ¬¬𝑥 = 𝑥 in𝑂𝐿, 𝑠2 is a counter model for 𝐼2. Hence if 𝐼1 is invalid then 𝐼2 is invalid. Conversely,

if 𝐼2 admits a counter model, then 𝐼1 admits a counter model as well.

Similarly in 𝐶𝐿, 𝐼1 and 𝐼2 have the same validity by the same argument, considering assignments

𝑉 → {0, 1} as counter models. Hence, since 𝐼1 has the same validity in 𝑂𝐿 and 𝐶𝐿, so does 𝐼2.

□

5.5 Tseitin’s Transformation for Orthologic Axioms
Tseitin’s transformation for classical logic transforms a formula with arbitrary alternations of

conjunctions and disjunctions into one in Conjunctive Normal Form (CNF) that is equisatisfiable.

The transformation works by introducing a linear number of new variables, and runs in near linear

time. This justifies the focus of SAT solvers on solving formulas in CNF.

The essence of Tseitin’s transformation in classical logic is to introduce variables, such as 𝑥 ,

that serve as names for subformulas, such as 𝐹 , with the interpretation of 𝑥 bound to be equal the

interpretation of 𝐹 . Unfortunately, we cannot express such transformation as a single 𝑂𝐿 formula,

because knowing that ¬𝑥 ∨ 𝐹 equals 1 inside a formula does not imply 𝑥 ≤ 𝐹 . On the other hand,

once wemake use of the power of axioms, the usual Tseitin’s transformation again becomes possible.

This shows the importance of adding axioms to orthologic reasoning.

Definition 5.8 (𝑶𝑳-Tseitin transformation). Given a deduction problem instance with axioms 𝐴

and goal 𝑆 (where we assume without loss of generality that all formulas are in negation normal

form), pick an arbitrary strict subexpression 𝑒 of a formula in 𝐴 or 𝑆 of the form 𝑥 ∧ 𝑦 or 𝑥 ∨ 𝑦, for
some literals 𝑥 and 𝑦. Pick a fresh variable 𝑐 , introduce the axioms 𝑐𝐿, 𝑒𝑅 and 𝑒𝐿, 𝑐𝑅 and replace 𝑒 by

𝑐 in 𝐴 and 𝑆 . Repeat until all formulas have height at most 2. We say that a problem (𝐴, 𝑆) is in
Tseitin normal form if it is obtained from another problem using this transformation.

The transformation does not alter the validity of a deduction problem instance in 𝑂𝐿, since we

merely defined aliases for subexpressions. Indeed, having both (𝑐𝐿, 𝑒𝑅) and (𝑒𝐿, 𝑐𝑅) as axioms is

equivalent to forcing 𝑒 = 𝑐 in all models.

5.6 Resolution Width for Orthologic Proofs in CNF
Consider an 𝑂𝐿 proof for a deduction problem to which we applied 𝑂𝐿-Tseitin’s transformation. If

◦ and □ denote arbitrary {_𝐿, _𝑅} annotations, the resulting problem will only contain sequents of

the form: {𝑎◦, (𝑏 ∧ 𝑐)□}, {𝑎◦, (𝑏 ∨ 𝑐)□}, {𝑎◦, 𝑏□}, {𝑎◦}, and ∅, for some literals 𝑎, 𝑏 and 𝑐 . Moreover,

remember that by the subformula property (Corollary 3.9), if the problem admits a proof, then it

has a proof that only uses formulas among 𝑎, 𝑎 ∧ 𝑏 and 𝑎 ∨ 𝑏 (for any literals 𝑎 and 𝑏 appearing in

, Vol. 1, No. 1, Article . Publication date: October 2023.

Orthologic with Axioms 19

the problem). Hence, we can constrain every proof of 𝑆 to involve only sequents of at most 4 literals.

In classical logic, every sequent appearing in the proof would then be equivalent to a conjunction

of disjunctions of literals (i.e. a conjunction of clauses). In the simplest case:

(𝑤 ∧ 𝑥)𝐿, (𝑦 ∨ 𝑧)𝑅 { (¬𝑤 ∨ ¬𝑥 ∨ 𝑦 ∨ 𝑧)

For sequents involving a left disjunction or right conjunction, using greatest lower bound and

lowest upper bound properties of ∧ and ∨:

(𝑤 ∨ 𝑥)𝐿, (𝑦 ∨ 𝑧)𝑅 { (¬𝑤 ∨ 𝑦 ∨ 𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ 𝑧)
(𝑤 ∧ 𝑥)𝐿, (𝑦 ∧ 𝑧)𝑅 { (¬𝑤 ∨ ¬𝑥 ∨ 𝑦) ∧ (¬𝑤 ∨ ¬𝑥 ∨ 𝑧)
(𝑤 ∨ 𝑥)𝐿, (𝑦 ∧ 𝑧)𝑅 { (¬𝑤 ∨ 𝑦) ∧ (¬𝑤 ∨ 𝑧) ∧ (¬𝑥 ∨ 𝑦) ∧ (¬𝑥 ∨ 𝑧)

And similarly with all combinations of
𝐿
and

𝑅
, where, for example, a conjunction with 𝐿 polarity

behaves much like a disjunction with 𝑅 polarity. We say that such a set of clauses represents the
corresponding sequent. Crucially, each of these clauses contains at most 4 literals.

We now consider again the Resolution proof system of Figure 3. Note that we work with plain

resolution and not extended resolution that introduces fresh variables on the fly [Tseitin 1983].

Definition 5.9. The width of a resolution proof is the number of literals in the largest clause

appearing in the proof.

The next theorem characterizes the width of those classical logic resolution proofs that suffice to

establish all formulas provable by 𝑂𝐿 derivations.

Theorem 5.10. An 𝑂𝐿 proof of a problem in 𝑂𝐿-Tseitin normal form can be simulated by Figure 3

proofs of width 5.

Proof. Consider an 𝑂𝐿 proof that satisfies properties of Theorem 3.8. We proceed by induction

on the structure of such proof. The cases of non-cut rules are immediate. Namely, Hypothesis and

Weakening in 𝑂𝐿 are directly simulated by the corresponding steps in Resolution. In LeftNot, the

principal formula must be a literal, so that the clause representation of the conclusion is the same

as the interpretation of the premise. In LeftOr, similarly, the representation of the conclusion is the

conjunction of the representations of the premises. LeftAnd is simulated in a Resolution proof by

Weakening. Right- steps are symmetrical to Left-steps. The only non-trivial case is the Cut rule.

The cut formula can have different shape

(1) The cut formula is a literal

Γ, 𝑥𝑅 𝑥𝐿,Δ
Cut

Γ,Δ

We then have technically 36 different cases to describe depending on whether Γ and Δ are

conjunctions, disjunctions or literals and their polarity. We show the two extreme cases, and

all other can be deduced by symmetry.

If Γ and Δ are left conjunctions, right disjunctions or literals, the Cut rule is simulated with a

single Resolution instance:

(𝑎 ∧ 𝑏)𝐿, 𝑥𝑅 𝑥𝐿, (𝑐 ∨ 𝑑)𝑅
Cut

Γ,Δ
↩→ {¬𝑎,¬𝑏, 𝑥} {¬𝑥, 𝑐, 𝑑}

Resolution{¬𝑎,¬𝑏, 𝑐, 𝑑}
If Γ and Δ are left disjunctions or right conjunctions, 2 applications of Resolution are necessary

to obtain each of the two clauses in the conclusion (4 if both):

, Vol. 1, No. 1, Article . Publication date: October 2023.

20 Simon Guilloud and Viktor Kunčak

(𝑎 ∨ 𝑏)𝐿, 𝑥𝑅 𝑥𝐿, (𝑐 ∧ 𝑑)𝑅
Cut

Γ,Δ
↩→

{¬𝑎, 𝑥}, {¬𝑏, 𝑥} {¬𝑥, 𝑐}, {¬𝑥, 𝑑}
4× Resolution{¬𝑎, 𝑐}, {¬𝑎, 𝑑}, {¬𝑏, 𝑐}, {¬𝑏, 𝑑}

Where each of the clause in the conclusion can be reached by using Resolution on two of the

clauses in the premises.

(2) Consider now the case where the Cut formula is a conjunction (the disjunction case is

symmetrical).

Γ, (𝑥 ∧ 𝑦)𝑅 (𝑥 ∧ 𝑦)𝐿,Δ
Cut

Γ,Δ
We again present the two extreme cases. If Γ and Δ are both left conjunctions or right

disjunctions:

(𝑎 ∧ 𝑏)𝐿, (𝑥 ∧ 𝑦)𝑅 (𝑥 ∧ 𝑦)𝐿, (𝑐 ∨ 𝑑)𝑅
Cut

(𝑎 ∧ 𝑏)𝐿, (𝑐 ∨ 𝑑)𝑅

↩→
{¬𝑎,¬𝑏, 𝑥}, {¬𝑎,¬𝑏,𝑦} {𝑐, 𝑑,¬𝑥,¬𝑦}

Resolution on 𝑥{¬𝑎,¬𝑏, 𝑐, 𝑑,¬𝑦}
Resolution on 𝑦{¬𝑎,¬𝑏, 𝑐, 𝑑}

The conclusion can be reached by applying Resolution twice successively, but here the

intermediate clause {¬𝑎,¬𝑏, 𝑐, 𝑑,¬𝑦} reaches width 5.

If Γ and Δ are left disjunctions or right conjunctions:

(𝑎 ∨ 𝑏)𝐿, (𝑥 ∧ 𝑦)𝑅 (𝑥 ∧ 𝑦)𝐿, (𝑐 ∧ 𝑑)𝑅
Cut

(𝑎 ∨ 𝑏)𝐿, (𝑐 ∧ 𝑑)𝑅

↩→
{¬𝑎, 𝑥}, {¬𝑎,𝑦}, {¬𝑏, 𝑥}, {¬𝑏,𝑦} {¬𝑥,¬𝑦, 𝑐}, {¬𝑥,¬𝑦,𝑑}

4× Resolution on 𝑥{¬𝑦,¬𝑎, 𝑐}, {¬𝑦,¬𝑎, 𝑑}, {¬𝑦,¬𝑏, 𝑐}, {¬𝑦,¬𝑏, 𝑑}
4× Resolution on 𝑦{¬𝑎, 𝑐}, {¬𝑎, 𝑑}, {¬𝑏, 𝑐}, {¬𝑏, 𝑑}

the Cut can be simulated by first resolving 4 times on 𝑥 and then 4 times on 𝑦.

Hence, Resolution of width 5 can simulate all 𝑂𝐿 proofs. □

6 EFFECTIVELY PROPOSITIONAL ORTHOLOGIC
So far we have studied propositional orthologic. In this section we introduce decidable classes of

predicate orthologic. Our inspiration is the Bernays–Schönfinkel-Ramsey (BSR) class of classical

first-order logic formulas [Börger et al. 1997, Section 6.2.2], which consists of formulas of first order

logic that contain predicates and term variables but no function symbols, and whose prenex normal

form is of the form ∃𝑥1, ...𝑥𝑛 .∀𝑦1, ..., 𝑦𝑛 .𝜙 where 𝜙 is quantifier free. Syntactically, a formula in the

BSR class can be represented as a quantifier-free formula with constants and variables symbols,

where the variables are implicitly universally quantified. It is also called Effectively Propositional
Logic (EPR) [Piskac et al. 2010], because deciding the validity of such formula can be reduced to

deciding the validity of a formula in propositional logic by a grounding process. This is possible

because formulas in the BSR class have finite Herbrand universe [Robinson and Voronkov 2001,

p.1798]. BSR class (with its multi-sorted logic generalization) has found applications in verification

[Padon et al. 2017].

, Vol. 1, No. 1, Article . Publication date: October 2023.

Orthologic with Axioms 21

We show that orthologic also admits a similar grounding process, allowing us to define the

class of effectively propositional orthologic. The class is EXPTIME in the worst case, in contrast to

co-NEXPTIME for BSR. Moreover, we show that it becomes polynomial if we restrict the maximal

number of variables in axioms, which is in contrast to the corresponding restriction yielding an

NP-hard class for classical logic [Börger et al. 1997, Section 6.2.2].

In this section, variables denote variable symbols at the term level, and not propositional variables.

We fix two disjoint countably infinite sets of symbols: constants 𝐶 , and variables 𝑉 . A predicate

signature Σ specifies a finite set of predicate symbols {𝑝1, . . . , 𝑝𝑛} with their non-negative arities 𝑠𝑖 ,

and a finite non-empty set of constants𝐶 = {𝑐1, . . . , 𝑐𝑛}. Define the set of atomic formulas over Σ as

𝑃Σ =

𝑛⋃
𝑖=1

{𝑝𝑖 (®𝑥) | ®𝑥 ∈ (𝑉 ∪𝐶)𝑠𝑖 }

An EPR formula (over Σ) is a formula constructed from 𝑃Σ using ∧,∨,¬, corresponding to T𝑃Σ (𝑂𝐿).
An annotated EPR formula is 𝑎𝐿 or 𝑎𝑅 where 𝑎 is an EPR formula. An EPR sequent is a set of at

most two annotated EPR formulas. The degree of a formula or sequent is the number of distinct

free variables in it. The degree of a finite set 𝐴 of sequents, 𝑑 (𝐴), is the maximum of degrees of

its sequents. An atomic formula, formula, or a sequent is ground if it contains no variables (only

constants), that is, it has degree zero.

Definition 6.1. An EPR deduction instance is a set (𝐴, 𝑆) where 𝐴 (the axioms) is a set of EPR

sequents and 𝑆 (the goal) is an EPR sequent.

Definition 6.2. An instance of a formula (respectively, sequent) is a formula (or sequent) obtained

by replacing all occurrences of some variables by other variables or constants. The expansion of a

formula 𝑠 (respectively, sequent), denoted 𝑠∗, is the set of all of its instances. 𝑠∗ is countable, and
infinite if 𝑠 contains at least one variable. If 𝐴 is a set of sequents then 𝐴∗ =

⋃{𝑠∗ | 𝑠 ∈ 𝐴}. For an
EPR deduction instance (𝐴, 𝑆) its expansion is (𝐴∗, 𝑆).

Definition 6.3. EPR-OL-D is the problem, given a signature Σ and EPR deduction instance (𝐴, 𝑆)
over Σ, decide whether its expansion (𝐴∗, 𝑆) is a valid 𝑂𝐿 deduction instance (in the sense of

Definition 5.1).

We first show as an intermediate lemma that we only need to look at instances of 𝐴 using

variables appearing in 𝑆 and constants in 𝑆 and 𝐴.

Lemma 6.4. Suppose 𝑆 has a proof P involving axioms in 𝐴∗. Then it has a proof containing only

variables that appear in 𝑆 and constants in 𝑆 and 𝐴.

Proof. If a variable 𝑧 appears somewhere in P but not in 𝑆 , then it has to be eliminated by a

Cut rule at some point.

A
Γ, 𝜙 (𝑧)𝑅

B
𝜙 (𝑧)𝐿,Δ

Cut
Γ,Δ

Let 𝑐 ∈ 𝐶 be any constant symbol of Σ. Let A[𝑧 := 𝑐] be the proof A with every instance of 𝑧

replaced by 𝑐 . For any given axiom 𝑎 ∈ 𝐴∗, 𝑎[𝑧 := 𝑐] is also an axiom of 𝐴∗, so that all axioms steps

occurring in A[𝑧 := 𝑐] are correct. It is easy to see that all non-axioms steps in A[𝑧 := 𝑐] remain

correct under the substitution. Because by assumption the Cut rules eliminates 𝑧 from the formula,

Γ does not contain 𝑧 and hence the conclusion of A[𝑧 := 𝑐] is exactly Γ, 𝜙 (𝑐)𝑅 . The same can be

done to B, so that we obtain a proof where 𝑧 does not appear:

, Vol. 1, No. 1, Article . Publication date: October 2023.

22 Simon Guilloud and Viktor Kunčak

A[𝑧 := 𝑐]
Γ, 𝜙 (𝑐)𝑅

B[𝑧 := 𝑐]
𝜙 (𝑐)𝐿,Δ

Cut
Γ,Δ

To eliminate constant, we use the same argument except that since axioms are not stable under

renaming of constants (but all other rules and in particular the hypothesis rule are), we cannot

eliminate constant symbols appearing in 𝐴. □

Theorem 6.5. The EPR-OL-D problem (𝐴, 𝑆) of size 𝑛 and degree 𝑑 (𝐴) is solvable in PTIME(𝑛𝑑 (𝐴)).

Proof. We will reduce EPR-OL-D to propositional 𝑂𝐿 deduction problems, which Algorithm 1

can then solve. By completeness of 𝑂𝐿 (Lemma 3.4), whether 𝑆 holds in all ortholattices where 𝐴

holds is equivalent to the following question: Does there exist a finite subset 𝐴′ of 𝐴∗ such that 𝑆

has an orthologic proof with axioms among 𝐴′?
Lemma 6.4 implies that for any sequent 𝑆 , we only need to consider a finite number of axioms,

namely the axioms involving variables in 𝑆 and constants in 𝐴 and 𝑆 (minimum one). Each axiom 𝑎

has at most (|𝑆 | + | |𝐴| |)𝑑 (𝐴) such instances, so the total number of axiom we need to consider is

O(|𝐴| · (|𝑆 | + | |𝐴| |)𝑑 (𝐴)) = O(𝑛𝑑 (𝐴)+1). Combining this result with Theorem 4.3 gives PTIME(𝑛𝑑 (𝐴)),
or, more precisely, O(𝑛3(𝑑 (𝐴)+1)). □

6.1 Instantiation as a Rule
Instead of starting by grounding all axioms, we can delay instantiation until later in the proof,

yielding shorter proofs in some cases. Formally, we add an instantiation step to the proof calculus

of Figure 2 over T𝑂𝐿 (𝑃):
Γ,Δ

Inst

Γ [®𝑥 := ®𝑡],Δ[®𝑥 := ®𝑡]
Holding for arbitrary sets of term variable ®𝑥 and terms ®𝑡 . We note the resulting proof system 𝑂𝐿𝐼 .

Lemma 6.6. For a sequent 𝑆 and set of axioms 𝐴 over quantifier-free predicate logic, 𝑆 has has an

𝑂𝐿 proof from 𝐴∗ if and only if 𝑆 has an 𝑂𝐿𝐼 proof from 𝐴.

Proof.

→ : Given an 𝑂𝐿 proof with axioms in 𝐴∗, said axioms can be obtained from 𝐴 in 𝑂𝐿𝐼 by an

application of the instantiation rule:

Ax

Γ∗,Δ∗
...

𝑆

↩→

Ax
Γ,Δ

Inst

Γ∗,Δ∗
...

𝑆

Where (Γ,Δ) ∈ 𝐴 and (Γ∗,Δ∗) ∈ 𝐴∗.
← : Note that if the Inst rule are only uses right after axioms, then we can reverse the trans-

formation above. We show that given a proof in 𝑂𝐿𝐼 using Inst, the instances of Inst can be

swapped with other rules and be pushed to axioms. For example

A′
𝛼𝐿,Δ

A′′
𝛽𝐿,Δ

LeftOr

(𝛼 ∨ 𝛽)𝐿,Δ
Inst

(𝛼∗ ∨ 𝛽∗)𝐿,Δ∗

↩→

A′
𝛼𝐿,Δ

Inst

(𝛼∗)𝐿,Δ∗

A′′
𝛽𝐿,Δ

Inst

(𝛽∗)𝐿,Δ∗
LeftOr

(𝛼∗ ∨ 𝛽∗)𝐿,Δ∗

The cases for all other rules are similar. Then, any conclusion of an Inst rule is a member of

A∗ and can be replaced by an Axiom rule to obtain an 𝑂𝐿 proof from 𝐴∗. □

, Vol. 1, No. 1, Article . Publication date: October 2023.

Orthologic with Axioms 23

6.2 Proof Search with Unification
While searching for a proof, we usually want to delay decision-making (such as which variable

to instantiate) for as long as possible. In backward proof search, this means we want to delay it

until the sequent is an axiom of 𝐴∗. In forward proof search, however, being able to use the Inst

rule allows delaying instantiation as much as possible, as in resolution for first-order logic classical

[Robinson 1965], [Robinson and Voronkov 2001, Chapter 2].

We thus adopt unification to decide when and how to instantiate a variable, whenever we use a

rule with two premises. The corresponding directed rules are shown in Figure 4. Without function

symbols, the most general unifier of 𝜙 and 𝜓 is the substitution 𝜃 of smallest support such that

𝜃 (𝜙) = 𝜃 (𝜓) [Robinson and Voronkov 2001, Chapter 8].

Γ, 𝜙𝑅

Inst

𝜃 (Γ), 𝜃 (𝜙)𝑅
𝜓𝐿,Δ

Inst

𝜃 (𝜓)𝐿, 𝜃 (Δ)
Cut

𝜃 (Γ), 𝜃 (Δ)

where 𝜃 is the most general unifier of 𝜙 and𝜓

Γ1, 𝜙
𝑅

Inst

𝜃 (Γ1), 𝜃 (𝜙)𝑅
Γ2,𝜓

𝑅

Inst

𝜃 (Γ2), 𝜃 (𝜓)𝑅
RightAnd

𝜃 (Γ1), 𝜃 (𝜙 ∧𝜓)𝑅

Γ1, 𝜙
𝐿

Inst

𝜃 (Γ1), 𝜃 (𝜙)𝑅
Γ2,𝜓

𝐿

Inst

𝜃 (Γ2), 𝜃 (𝜓)𝑅
LeftOr

𝜃 (Γ1), 𝜃 (𝜙 ∨𝜓)𝐿

where 𝜃 is the most general unifier of Γ1 and Γ2

Fig. 4. Sequent-calculus style deduction rules with unification for Effectively Propositional Orthologic.

Theorem 6.7. A sequent 𝑆 over T𝑂𝐿 (𝑃) has a proof in 𝑂𝐿𝐼 if and only if there exists a sequent 𝑆 ′

such that 𝑆 is a particular instantiation of 𝑆 ′ and 𝑆 ′ has a proof where the Inst rule is only used in

the specific cases of Figure 4 or to rename variables.

Proof. (Sketch). The proof is once again by induction and case analysis on the proof P of 𝑆 ,

except we move the instantiation step toward the conclusion of the proof. Any instance of the Inst

rule in P can be swaped with the next rule, unless it is a Cut, LeftOr or RightAnd rule. Consider

the proof rule that follows the instantiation:

• Hypothesis is a leaf rule, so it can never follow a step.

• Weaken is immediate, as long as the variables in Δ are properly renamed

A
Γ

Inst

𝜎 (Γ)
Weaken

𝜎 (Γ),Δ

↩→

A
Γ

Weaken

𝜎 (Γ), 𝜋 (Δ)
Inst

𝜎 (Γ),Δ

Where 𝜋 is a renaming of variables in Δ to names that are fresh. In particular, it is invertible.

• LeftNot and RightNot are immediate.

• For RightOr and LeftAnd, the transformation is the same as Weaken.

• In the Cut case, assume that the two premises (Γ, 𝜙𝑅) and (𝜓𝐿,Δ) have no shared variables,

by renaming them if necessary:

, Vol. 1, No. 1, Article . Publication date: October 2023.

24 Simon Guilloud and Viktor Kunčak

Γ, 𝜙𝑅

Inst

𝜎1 (Γ), 𝜎1 (𝜙)𝑅
𝜓𝐿,Δ

Inst

𝜎2 (𝜓)𝐿, 𝜎2 (Δ)
Cut

𝜎1 (Γ), 𝜎2 (Δ)

↩→
Γ, 𝜙𝑅

Inst

𝜃 (Γ), 𝜃 (𝜙)𝑅
𝜓𝐿,Δ

Inst

𝜃 (𝜓)𝐿, 𝜃 (Δ)
Cut

𝜃 (Γ), 𝜃 (Δ)
Inst

𝜎1 (𝜓)𝐿, 𝜎2 (Δ)
Note that since 𝜃 is the most general unifier for 𝜙 and𝜓 , and 𝜎1 (𝜙) = 𝜎2 (𝜓), 𝜃 factors in both

𝜎1 and 𝜎2, so that the last Inst step is correct.

• LeftOr and RightAnd are similar to the Cut step. □

6.3 Solving and Extending Datalog Programs with Orthologic
Datalog is a logical and declarative programming language admitting formulas in a further restric-

tion of the BSR class where 𝜙 is forced to be a Horn clause (over predicates). A Datalog program is

then a conjunction of such formulas (or clauses) [Dantsin et al. 2001; Ullman 1988, 1989]. While

the validity problem for the BSR class is coNEXPTIME complete [Piskac et al. 2010; Ramsey 1930],

solving a Datalog program is only EXPTIME-complete. This makes Datalog a suitable language for

logic programming and database queries. Typically, a Datalog query asks if a certain fact (an atom

without variable) is a consequence of the clauses in the program. This naturally corresponds to

solving a deduction problem, with the axioms corresponding to the program and the goal to the

query.

Lemma 6.8. Datalog program can be evaluated using orthologic.

Proof. Datalog programs and queries form a subset of the BSR class. Theorem 6.5 shows that

such problems can be reduced via grounding to purely propositional𝑂𝐿. Moreover, as the resulting

set of axioms contains only Horn clauses, Corollary 5.5 implies that the Datalog program has the

same semantic in 𝑂𝐿 and in 𝐶𝐿. □

This means that for any Datalog program, the 𝑂𝐿 semantic agrees with the classical semantic.

Algorithm 1 hence provides a decision procedure for Datalog with complexity PTIME(𝑛𝑑 (𝐴)) (as
Theorem 6.5 shows). This matches known complexity classes of Datalog, which has exponential

query complexity (corresponding here to axioms) and polynomial data complexity (corresponding

to the goal and axioms with no variables, or facts) [Dantsin et al. 2001].

6.4 Axiomatizing Congruence and Equality Relations
We next show that, when equality is axiomatized in effectively propositional orthologic, a substitu-

tion rule becomes admissible. Let 𝑋 be a countably infinite set of term variables whose elements

are noted 𝑥,𝑦, 𝑧, Let be given a presentation with predicate symbols 𝑝1, ..., 𝑝𝑛 each of arity 𝑠𝑖
and ∼ a predicate symbol representing a congruence relation on 𝑋 . Consider the set of axiom 𝐴∼
containing the following sequents that axiomatize the equivalence property:

(𝑥 ∼ 𝑥)𝑅

(𝑥 ∼ 𝑦)𝐿,(𝑦 ∼ 𝑥)𝑅

(𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)𝐿,(𝑥 ∼ 𝑧)𝑅

, Vol. 1, No. 1, Article . Publication date: October 2023.

Orthologic with Axioms 25

and for each symbol 𝑝𝑖 and each 1 ≤ 𝑗 ≤ 𝑠𝑖 , the congruence property for 𝑝𝑖 :

(𝑥 ∼ 𝑦 ∧ 𝑝𝑖 (𝑧1, ..., 𝑧 𝑗−1, 𝑥, 𝑧 𝑗+1, ..., 𝑧𝑠𝑖))𝐿, 𝑝𝑖 (𝑧1, ..., 𝑧 𝑗−1, 𝑦, 𝑧 𝑗+1, ..., 𝑧𝑠𝑖)𝑅

Again, this does not constitute a finite presentation of an ortholattice, as there are infinitely

many possible instances of axioms. However, by Theorem 6.5, if a sequent 𝑆 over 𝑋∼ has a proof
involving axioms in 𝐴∼, then it has a proof with only variables that appear in 𝑆 . Moreover, the

degree of 𝐴∼ is 𝑑 (𝐴∼) = max(3,max𝑖 (𝑠𝑖) + 1) axioms, so that the complexity of the proof search is

exponential in the arity of the predicates in the language and polynomial in the size of the problem,

for a fixed language. The following lemma shows that in any decision problem whose axioms

contain 𝐴, we can add a substitution rule for equality.

Lemma 6.9. Fix a set of predicate symbols and constants. Let𝐴 be a set of axiom such thatA∼ ⊂ 𝐴.

The following rule for substitution of equal terms is admissible in 𝑂𝐿 with axioms in 𝐴:

Γ [𝑥 := 𝑠],Δ[𝑥 := 𝑠] 𝑠 ∼ 𝑡
Subst∼Γ [𝑥 := 𝑡],Δ[𝑥 := 𝑡]

Proof. Suppose 𝑥 occurs only once in Γ,Δ (if it appears multiple time, we repeat the argument).

Suppose without loss of generality that this unique occurrence is in Γ. Let 𝑎(𝑥) ≡ 𝑝𝑖 (𝑢1, ..., 𝑥, ...𝑢𝑠𝑖)
be the atomic formula containing this occurrence of 𝑥 , i.e. Γ = Γ′ [𝜒 := 𝑎(𝑥)], for a propositional
variable 𝜒 . Axioms in 𝐴∼ allow the following proof, where we first derive 𝑎(𝑠)𝐿, 𝑎(𝑡)𝑅 :

𝑠 ∼ 𝑡𝑅
Weak.

𝑎(𝑠)𝐿, 𝑠 ∼ 𝑡𝑅
Hyp.

𝑎(𝑠)𝐿, 𝑎(𝑠)𝑅
R.And

𝑎(𝑠)𝐿, (𝑠 ∼ 𝑡 ∧ 𝑎(𝑠))𝑅
Ax.

(𝑠 ∼ 𝑡 ∧ 𝑎(𝑠))𝐿, 𝑎(𝑡)𝑅
Cut

𝑎(𝑠)𝐿, 𝑎(𝑡)𝑅

and then conclude, using an analogous derivation of 𝑎(𝑡)𝐿, 𝑎(𝑠)𝑅

Γ [𝑥 := 𝑠],Δ
Γ′ [𝜒 := 𝑎(𝑠)],Δ 𝑎(𝑠)𝐿, 𝑎(𝑡)𝑅

𝑠 ∼ 𝑡𝑅
Ax.

𝑠 ∼ 𝑡𝐿, 𝑡 ∼ 𝑠𝑅
Cut

𝑡 ∼ 𝑠𝑅
. . . (analogous). . .

𝑎(𝑡)𝐿, 𝑎(𝑠)𝑅
Subst

Γ′ [𝜒 := 𝑎(𝑡)],Δ
Γ [𝑥 := 𝑡],Δ

The dashed lines denote syntactic equality. Note that we have shown the Subst rule for propositions

to be admissible in orthologic in Lemma 3.5. Hence, Subst∼ is admissible in orthologic with any

axiomatization containing 𝐴∼. □

7 FURTHER RELATEDWORK
Bruns [1976] first solved the word problem for free ortholattices in 1976 using algebraic techniques

extending the work of Whitman [1941], who first solved the word problem for free lattices.

The observation that we can obtain a proof system for Orthologic by restricting Gentzen’s

sequent calculus to sequents with at most two formulas was already made by Schulte Mönting

[1981]. They also showed that the system without axioms admits Cut Elimination. Egly and Tompits

[2003] used the same system to describe a backward proof-search procedure exponential both in

time and proof size, and a polynomial (Ω(𝑛7)) forward procedure. We improved this result to a

O(𝑛2) (time and size) backward proof search procedure. Other proof systems have been considered.

Meinander [2010] used a different set of inference rule to show that the word problem for finitely

, Vol. 1, No. 1, Article . Publication date: October 2023.

26 Simon Guilloud and Viktor Kunčak

presented ortholattices is decidable in polynomial time. Their solution involves exhaustive forward

deduction, and they give no precise exponent of the polynomial.

Laurent [2016] introduces two other sequent-based proof systems for orthologic using concepts

from linear logic, and in particular focusing, to constrain proof search. Their procedure is forward-

driven. While no complexity analysis is provided, their algorithm is clearly polynomial, and

experimental benchmark shows improvement over the algorithm of [Egly and Tompits 2003].

Kawano [2018] describes a proof system of a different flavour for orthologic without axioms. It is

based on label sequents and designed to allow for an implication symbol. However, no complexity

of proof search is given and the system does not have a limit on the number of formulas per sequent,

preventing a bound on the total number of sequents as in Lemma 4.2.

Guilloud et al. [2023a] use ortholattices in the context of software verification as an approximation

of Boolean algebra. They present an algorithm able to normalize any formula into an equivalent one

(by ortholattices laws) of smallest size, with the goal of improving caching efficiency and reducing

formula size for SMT solving. Their approach does not involve a proof system and does not support

axioms in general.

Researchers have explored extensions of Datalog with negation and disjunction, with various

computable semantics. Most of these models do not correspond to classical models of predicate

logic. Datalog is declarative, but most of its extensions rely on procedural semantics. In a line of

work starting with [Clark 1978], negation has been introduced with a failure meaning, where if 𝑎

cannot be verified, then ¬𝑎 is taken to hold. [Kunen 1987] introduces a formal (but not decidable)

semantic for negation as failure. [Apt et al. 1988] introduces the notion of stratified programs. This

consists in specifying layers of clauses evaluated increasingly, so that if 𝑎 is not shown in a level,

¬𝑎 is assumed in the next, which differs from orthologic semantics. [Gelfond and Lifschitz 1991]

introduce a notion of classical negation but the logic is not classical, as ¬𝑎 → 𝑏 and ¬𝑏 → 𝑎 are not

equivalent in the proposed semantics. The use of Datalog in program analysis inspired researchers

to define Datalog with lattice semantics [Madsen et al. 2016], which explicitly incorporates the

concept of fixed point of particular lattices into the language semantics. Our approach is instead to

view Datalog in the broader context of validity in all ortholattices, with orthologic as a convervative

approximation of validity for classical logic that is always sound and, in several cases we identified,

complete.

8 CONCLUSIONS
We have studied algorithmic and proof-theoretic properties of orthologic, a sound generalization

of classical logic based on ortholattices. We have shown a form of generalized cut elimination for

propositional orthologic in the presence of axiom, implying a subformula property. We have used

this result to design a cubic-time proof search procedure for orthologic with axioms (quadratic

with bounded cardinality of axiom sets). Furthermore, we have shown that some classes of classical

decision problems including 2CNF, propositional Horn clause generalizations and Datalog always

admit 𝑂𝐿 proofs. This provides sound and complete polynomial-time reasoning for a number of

theorem proving tasks in classical logic. We anticipate applications of orthologic with axioms in

predictable proof automation inside proof checkers, program verifiers, and expressive type systems.

REFERENCES
Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. 1988. Towards a Theory of Declarative Knowledge. In Foundations of

Deductive Databases and Logic Programming, Jack Minker (Ed.). Morgan Kaufmann, San Francisco, CA, United States,

89–148. https://doi.org/10.1016/b978-0-934613-40-8.50006-3

J. L. Bell. 1983. Orthologic, Forcing, and The Manifestation of Attributes. In Studies in Logic and the Foundations of
Mathematics (Studies in Logic and the Foundations of Mathematics, Vol. 111), C. T. Chong and M. J. Wicks (Eds.). Elsevier,

Singapore, 13–36. https://doi.org/10.1016/S0049-237X(08)70953-4

, Vol. 1, No. 1, Article . Publication date: October 2023.

https://doi.org/10.1016/b978-0-934613-40-8.50006-3
https://doi.org/10.1016/S0049-237X(08)70953-4

Orthologic with Axioms 27

Garrett Birkhoff and John Von Neumann. 1936. The Logic of Quantum Mechanics. Annals of Mathematics 37, 4 (1936),
823–843. https://doi.org/10.2307/1968621 jstor:1968621

Egon Börger, Erich Grädel, and Yuri Gurevich. 1997. The Classical Decision Problem. Springer, Berlin, Heidelberg.

Günter Bruns. 1976. Free Ortholattices. Canadian Journal of Mathematics 28, 5 (Oct. 1976), 977–985.
https://doi.org/10.4153/CJM-1976-095-6

Ondřej Čepek and Petr Kučera. 2005. Known and New Classes of Generalized Horn Formulae with Polynomial Recognition

and SAT Testing. Discrete Applied Mathematics 149, 1 (Aug. 2005), 14–52. https://doi.org/10.1016/j.dam.2003.12.011

Keith L. Clark. 1978. Negation as Failure. In Logic and Data Bases, Hervé Gallaire and Jack Minker (Eds.). Springer US,

Boston, MA, 293–322. https://doi.org/10.1007/978-1-4684-3384-5_11

Stephen A. Cook. 1971. The Complexity of Theorem-Proving Procedures. In Proceedings of the Third Annual ACM
Symposium on Theory of Computing (Shaker Heights, Ohio, USA) (STOC ’71). Association for Computing Machinery,

New York, NY, USA, 151–158. https://doi.org/10.1145/800157.805047

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. 2001. Complexity and Expressive Power of Logic

Programming. Comput. Surveys 33, 3 (Sept. 2001), 374–425. https://doi.org/10.1145/502807.502810

B. A. Davey and H. A. Priestley. 2002. Introduction to Lattices and Order (2 ed.). Cambridge University Press, Cambridge.

https://doi.org/10.1017/CBO9780511809088

Uwe Egly and Hans Tompits. 2003. On Different Proof-Search Strategies for Orthologic. Studia Logica 73, 1 (Feb. 2003),
131–152. https://doi.org/10.1023/A:1022993408070

Tim Freeman and Frank Pfenning. 1991. Refinement Types for ML. ACM SIGPLAN Notices 26, 6 (May 1991), 268–277.

https://doi.org/10.1145/113446.113468

Michael Gelfond and Vladimir Lifschitz. 1991. Classical Negation in Logic Programs and Disjunctive Databases. New
Generation Computing 9, 3 (Aug. 1991), 365–385. https://doi.org/10.1007/BF03037169

G. Gentzen. 1935. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift 39 (1935), 176–210.
R. I. Goldblatt. 1974. Semantic Analysis of Orthologic. Journal of Philosophical Logic 3, 1 (March 1974), 19–35.

https://doi.org/10.1007/BF00652069

Simon Guilloud, Mario Bucev, Dragana Milovancevic, and Viktor Kuncak. 2023a. Formula Normalizations in Verification. In

35th International Conference on Computer Aided Verification (Lecture Notes in Computer Science). Springer, Paris, –.
Simon Guilloud, Sankalp Gambhir, and Viktor Kuncak. 2023b. LISA – A Modern Proof System. In 14th Conference on

Interactive Theorem Proving (Leibniz International Proceedings in Informatics). Daghstuhl, Bialystok, 0.
Gary M. Hardegree. 1981. Material Implication in Orthomodular (and Boolean) Lattices. Notre Dame Journal of Formal Logic

22, 2 (April 1981), 163–182. https://doi.org/10.1305/ndjfl/1093883401

Wesley H. Holliday. 2023. A Fundamental Non-Classical Logic. Logics 1, 1 (March 2023), 36–79.

https://doi.org/10.3390/logics1010004

Wesley H. Holliday and Matthew Mandelkern. 2022. The Orthologic of Epistemic Modals.

https://doi.org/10.48550/ARXIV.2203.02872

Marek Hyčko. 2005. Implications and Equivalences in Orthomodular Lattices. Demonstratio Mathematica [electronic only]
38 (Oct. 2005), III–792. https://doi.org/10.1515/dema-2005-0402

Gudrun Kalmbach. 1983. Orthomodular Lattices. Academic Press Inc, London ; New York.

Tomoaki Kawano. 2018. Labeled Sequent Calculus for Orthologic. Bulletin of the Section of Logic 47, 4 (Dec. 2018), 217–232.
https://doi.org/10.18778/0138-0680.47.4.01

Kenneth Kunen. 1987. Negation in Logic Programming. The Journal of Logic Programming 4, 4 (Dec. 1987), 289–308.

https://doi.org/10.1016/0743-1066(87)90007-0

Olivier Laurent. 2016. Focusing in Orthologic. In 1st International Conference on Formal Structures for Computation and
Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal (LIPIcs, Vol. 52), Delia Kesner and Brigitte Pientka (Eds.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, Porto, Portugal, 25:1–25:17. https://doi.org/10.4230/LIPIcs.FSCD.2016.25

Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. 2016. From Datalog to flix: a declarative language for fixed points on

lattices. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2016, June 13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, Santa Barbara, CA, USA, 194–208.

https://doi.org/10.1145/2908080.2908096

William McCune. 1998. Automatic Proofs and Counterexamples for Some Ortholattice Identities. Inf. Process. Lett. 65, 6
(1998), 285–291. https://doi.org/10.1016/S0020-0190(98)00015-5

Andrea Meinander. 2010. A Solution of the Uniform Word Problem for Ortholattices. Mathematical Structures in Computer
Science 20, 4 (Aug. 2010), 625–638. https://doi.org/10.1017/S0960129510000125

Michel Minoux. 1988. LTUR: A Simplified Linear-Time Unit Resolution Algorithm for Horn Formulae and Computer

Implementation. Inform. Process. Lett. 29, 1 (Sept. 1988), 1–12. https://doi.org/10.1016/0020-0190(88)90124-X

Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017. Paxos made EPR: decidable reasoning about

distributed protocols. Proc. ACM Program. Lang. 1, OOPSLA (2017), 108:1–108:31. https://doi.org/10.1145/3140568

, Vol. 1, No. 1, Article . Publication date: October 2023.

https://doi.org/10.2307/1968621
https://doi.org/10.4153/CJM-1976-095-6
https://doi.org/10.1016/j.dam.2003.12.011
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/502807.502810
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1023/A:1022993408070
https://doi.org/10.1145/113446.113468
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/BF00652069
https://doi.org/10.1305/ndjfl/1093883401
https://doi.org/10.3390/logics1010004
https://doi.org/10.48550/ARXIV.2203.02872
https://doi.org/10.1515/dema-2005-0402
https://doi.org/10.18778/0138-0680.47.4.01
https://doi.org/10.1016/0743-1066(87)90007-0
https://doi.org/10.4230/LIPIcs.FSCD.2016.25
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1016/S0020-0190(98)00015-5
https://doi.org/10.1017/S0960129510000125
https://doi.org/10.1016/0020-0190(88)90124-X
https://doi.org/10.1145/3140568

28 Simon Guilloud and Viktor Kunčak

Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjørner. 2010. Deciding Effectively Propositional Logic Using DPLL and

Substitution Sets. Journal of Automated Reasoning 44, 4 (April 2010), 401–424. https://doi.org/10.1007/s10817-009-9161-6

F. P. Ramsey. 1930. On a Problem of Formal Logic. Proceedings of the London Mathematical Society s2-30, 1 (1930), 264–286.

https://doi.org/10.1112/plms/s2-30.1.264

J. P. Rawling and S. A. Selesnick. 2000. Orthologic and Quantum Logic: Models and Computational Elements. J. ACM 47, 4

(July 2000), 721–751. https://doi.org/10.1145/347476.347481

John Alan Robinson. 1965. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12, 1 (1965), 23–41.

https://doi.org/10.1145/321250.321253

John Alan Robinson and Andrei Voronkov (Eds.). 2001. Handbook of Automated Reasoning (in 2 Volumes). Elsevier and MIT

Press, MIT.

Jürgen Schulte Mönting. 1981. Cut Elimination and Word Problems for Varieties of Lattices. Algebra Universalis 12, 1 (Dec.
1981), 290–321. https://doi.org/10.1007/BF02483891

M.A.E.H. Sherif. 1997. Decision Problem for Orthomodular Lattices. Algebra Universalis 37, 1 (Jan. 1997), 70–76.
https://doi.org/10.1007/PL00000328

Richard Statman. 1979. Intuitionistic Propositional Logic is Polynomial-Space Complete. Theor. Comput. Sci. 9 (1979), 67–72.
https://doi.org/10.1016/0304-3975(79)90006-9

G. S. Tseitin. 1983. On the Complexity of Derivation in Propositional Calculus. In Automation of Reasoning: 2: Classical
Papers on Computational Logic 1967–1970, Jörg H. Siekmann and Graham Wrightson (Eds.). Springer, Berlin, Heidelberg,

466–483. https://doi.org/10.1007/978-3-642-81955-1_28

Jeffrey D. Ullman. 1988. Principles of Database and Knowledge-Base Systems, Volume I. Principles of Computer Science Series,

Vol. 14. Computer Science Press, New Yor, United States.

Jeffrey D. Ullman. 1989. Principles of Database and Knowledge-Base Systems, Volume II. Computer Science Press, New Yor,

United States.

Pawel Urzyczyn. 1997. Inhabitation in Typed Lambda-Calculi (A Syntactic Approach). In Typed Lambda Calculi and
Applications, Third International Conference on Typed Lambda Calculi and Applications, TLCA ’97, April 2-4, 1997,
Proceedings (Lecture Notes in Computer Science, Vol. 1210), Philippe de Groote (Ed.). Springer, Nancy, France, 373–389.
https://doi.org/10.1007/3-540-62688-3_47

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for Haskell.

In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). Association for

Computing Machinery, New York, NY, USA, 269–282. https://doi.org/10.1145/2628136.2628161

Philip M. Whitman. 1941. Free Lattices. Annals of Mathematics 42, 1 (1941), 325–330. https://doi.org/10.2307/1969001

jstor:1969001

, Vol. 1, No. 1, Article . Publication date: October 2023.

https://doi.org/10.1007/s10817-009-9161-6
https://doi.org/10.1112/plms/s2-30.1.264
https://doi.org/10.1145/347476.347481
https://doi.org/10.1145/321250.321253
https://doi.org/10.1007/BF02483891
https://doi.org/10.1007/PL00000328
https://doi.org/10.1016/0304-3975(79)90006-9
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/3-540-62688-3_47
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.2307/1969001

	Abstract
	1 Introduction
	1.1 Ortholattices
	1.2 Example of Using Axioms
	1.3 Contributions

	2 Preliminaries
	3 Complete Proof System and Cut Elimination
	3.1 Ortholattice Semantics for Orthologic
	3.2 Partial Cut Elimination

	4 Cubic-Time Proof Search
	4.1 Merging Axioms for Quadratic Complexity

	5 Proof Strength of Orthologic with Axioms
	5.1 Completeness for 2SAT
	5.2 Orthologic Emulates Unit Resolution
	5.3 Completeness for Horn Clauses
	5.4 Renaming Deduction Problems
	5.5 Tseitin's Transformation for Orthologic Axioms
	5.6 Resolution Width for Orthologic Proofs in CNF

	6 Effectively Propositional Orthologic
	6.1 Instantiation as a Rule
	6.2 Proof Search with Unification
	6.3 Solving and Extending Datalog Programs with Orthologic
	6.4 Axiomatizing Congruence and Equality Relations

	7 Further Related Work
	8 Conclusions
	References

