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Data-driven LPV Control for Disturbance Rejection
in a Hybrid Isolation Platform

Elias Klauser, and Alireza Karimi

Abstract—A novel approach for linear parameter-varying
(LPV) controller synthesis for adaptive rejection of frequency-
varying sinusoidal disturbances is proposed. Only the frequency
response data of a linear time-invariant (LTI) multiple-input
multiple-output (MIMO) system is used to design the LPV
controller that stabilizes the system for arbitrarily fast variation
of the disturbance frequencies. Global stability is achieved thanks
to the specific structure of the LPV controller and the use of
integral quadratic constraints (IQC) to represent the frequency
variations. The LPV controller is designed by convex optimization
in the frequency domain. For experimental validation of the
proposed method, a hybrid micro-vibration damping platform
for space applications is considered. An LPV controller for
rejection of unknown frequency-varying sinusoidal disturbances
is designed and implemented on the real system. Experimental
results demonstrate the effectiveness of the proposed approach
in asymptotically rejecting disturbances and ensuring closed-
loop stability against arbitrarily fast variations in disturbance
frequencies.

Index Terms—Data-driven control, Adaptive control, Linear
parameter-varying systems, Convex optimization, Frequency-
domain identification for control.

I. INTRODUCTION

Disturbance rejection is a very important task in control
design, as noise or external perturbations can significantly
degrade the control performance. Numerous applications such
as active suspension systems [1], optical stabilisation [2],
control of robotic systems [3], vibration suppression in ma-
chinery [4] and active noise canceling systems [5], [6] rely
on an effective disturbance rejection control. Oftentimes, the
perturbation signals in such systems are periodic and can be
represented as a sum of sinusoidal signals.
In such cases when the disturbance model is known a priori,
control design based on the internal model principle (IMP)
can be applied. An adaptive IMP- and model-based control
design can be implemented using an observer to estimate the
states of the disturbance model. These estimated states can
then be used to adaptively reject a harmonic disturbance [7],
[8]. Alternatively, the disturbance can be modeled as a linear
parameter-varying (LPV) system in a linear fractional repre-
sentation (LFR) [6]. The frequency variation of the sinusoidal
disturbance is captured by the scheduling parameter of the
LPV model, while the same scheduling parameter is used for
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the adaptation of an LPV controller. A collection of different
approaches to a benchmark on adaptive rejection of unknown
and time-varying multiple narrow band disturbances can be
found in [9]. An active suspension system composed of a
passive damper, an inertial actuator, a shaker, a transducer
and an integrated controller is used for the study. The goal is
to achieve rejection of multiple narrow-band sinusoidal distur-
bances without measuring them by using a feedback approach.
As the disturbance signal is unknown, it must be estimated
for controller adaptation. The authors in [10] propose an
inverse plant model approximation. The compensation signal
is generated by applying the estimated disturbance signal to
the inverse plant model. An indirect adaptation approach is
presented in [11] where a fixed-order H∞ gain-scheduled
controller is designed using convex optimization methods. This
LPV controller, designed based on frequency-domain data,
uses the estimated disturbance harmonics as scheduling signals
for disturbance rejection. The case of adaptive rejection of un-
known narrow-band disturbances in the presence of uncertain
plants is treated in [12]. A dual Youla-Kuçera parametrization
is used to incorporate the description of the plant model
uncertainties by expressing a relation between the nominal and
the uncertain plant. These model-based approaches require the
availability of an accurate parametric plant model that must
otherwise be identified. This system identification step can
be very time-consuming and therefore costly, especially for
complex systems.

For that reason, data-driven control design techniques are
becoming increasingly attractive for industrial applications
thanks to recent technological developments leading to higher
computational power and improved sensor technologies. These
techniques can directly minimize a control criterion based on
measured input-output data, making them particularly advan-
tageous in cases where a parametric plant model is unavailable
or is difficult to identify. Frequency response data can effec-
tively be used for the analysis and synthesis of linear control
systems, as it can be easily computed from input-output
data avoiding any modelling error. Such methods are widely
used in industry, as demonstrated by the classic loop shaping
technique. As most control performance and robust stability
conditions can be represented in the frequency domain, new
data-driven methods that employ only frequency-domain data
and convex optimisation programming to compute robust con-
trollers have been proposed in the literature. A fixed-structure
data-driven controller design method for multivariable systems
with mixed H2/H∞ sensitivity performance is proposed in
[13] and applied to passivity-based controller design [14] and
distributed control of microgrids [15]. This approach can be
extended to linear parameter-varying (LPV) control design
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by gridding the scheduling parameter vector using a fixed
number of operating points [16]. A similar approach is applied
to a Cartesian robot with nonlinear dynamics for position-
dependent control in [17]. A frequency-domain gain-scheduled
control design for rejection of time-varying narrow-band dis-
turbances is presented in [11]. All of these methods consider
control design constraints at frozen operating points and do
not strictly guarantee stability for the time-varying nature of
the scheduling parameters. Intrinsic stability guarantees for
arbitrarily fast variation of scheduling parameters have been
proposed for model-based approaches [6] and are missing in
the state of the art of data-driven methods.

The Integral Quadratic Constraints (IQC) framework, intro-
duced in [18], provides a flexible mathematical approach for
the representation and analysis of various forms of nonlin-
earities and uncertainties, including parametric uncertainties,
time-varying parameter, time-delays, and norm and sector
bounded nonlinearities. This framework can be used to estab-
lish sufficient stability conditions in frequency domain and to
analyze systems with multiple uncertainty types using a single
composite IQC. Various techniques have been developed for
model-based robust control analysis and synthesis using IQC
framework [19], [20], including a MATLAB toolbox [21].
However, in the data-driven context, there are limited results.
A necessary and sufficient condition has been developed
for a linear time-invariant (LTI) system to satisfy a given
IQC using single input-output trajectory of finite length [22].
Data-driven methods that combine robust stability and per-
formance analysis in an IQC-based optimisation have been
explored for designing MIMO linear parameter-varying (LPV)
controllers directly from frequency-domain data [23]. This
method is employed for LPV controller design of control
moment gyroscopes (CMG) in [24]. Note again that all the
presented LPV control design approaches provide only local
stability guarantees for frozen dynamics at selected operating
points. Stability guarantees for the variation of the scheduling
parameter are not strictly provided.

In this paper, the objective is to synthesize a control system
that can effectively reject unknown frequency-varying sinu-
soidal disturbances while ensuring closed-loop stability. This
is achieved using only the frequency-domain data obtained
from the LTI plant model and no parametric model is required.
The control system consists of three main components: an
online disturbance frequency estimator, an LPV controller
with a scheduling parameter as a function of the estimated
disturbance frequency, and an LTI controller. The LPV control
part is designed to asymptotically reject the sinusoidal distur-
bances. Meanwhile, the LTI controller is designed to guarantee
closed-loop stability, even in the presence of rapid variations in
the estimated frequency within the LPV controller. The main
idea is to augment the LTI plant model with the LPV controller
in the frequency domain and pull out the scheduling parameter
as a time-varying uncertainty. Then, the IQC formalism is used
to compute an LTI controller for the augmented LPV plant
which stabilizes the closed-loop system for the arbitrarily fast
variation of the scheduling parameter. A novel linear matrix
inequality (LMI) based on the IQC framework is presented
allowing to guarantee stability for a bounded interval of the
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Fig. 1. Basic feedback configuration

scheduling parameter. In addition, a significant reduction of
computational complexity over current data-driven methods
(e.g. [17], [23]) is achieved as no gridding of the scheduling
parameter vector is required.

The remainder of the paper is organised as follows: First,
the notations, the basic problem, the IQC formalism and a
general frequency-domain control synthesis for LFT systems
are introduced (Section II). Then, an iterative LPV control
design algorithm for single- and multi-harmonic rejection is
presented using an IQC-based LMI constraint (Section III).
The resulting controller guarantees stability for arbitrarily fast
variation of the scheduling parameters lying in a bounded
interval. Finally, the proposed method is used to design an
adaptive control scheme for a hybrid active-passive micro-
vibration damping platform (MIVIDA) with the goal of adap-
tively rejecting unknown external perturbations (Section IV).
The MIVIDA is a demonstrator for a spaceborne system that
was designed to actively isolate a sensitive payload from
vibrations present on board the spacecraft.

II. PRELIMINARIES

Notations: The set of real rational stable transfer func-
tions with bounded infinity norm is denoted by RH∞.
A ≻ (⪰)B indicates that A−B is a positive (semi-) definite
matrix and A ≺ (⪯)B indicates A−B is negative (semi-)
definite. The zero and identity matrices of appropriate size are
denoted 0 and I respectively. The transpose of a matrix A
is denoted by AT and its conjugate transpose by A∗. Right
inverse of A is denoted as AR := A∗(AA∗)−1, and its left
inverse is denoted as AL := (A∗A)−1A∗.

A. Integral Quadratic Constraints

In the developments that follow, only discrete-time systems
are considered. Two discrete-time signals p and q are said to
satisfy the IQC defined by a multiplier Π, if∫

Ω

[
P (ejω)
Q(ejω)

]∗
Π(ejω)

[
P (ejω)
Q(ejω)

]
dω ≥ 0 (1)

where P (ejω) and Q(ejω) are the Fourier transform of the
signals p and q respectively and Ω := [−π/Ts, π/Ts) with the
sampling time Ts [19]. From [18, Theorem 1], the feedback
connection between H ∈ RH∞ and a bounded causal operator
Δ (see Fig. 1) is stable if,

1) the interconnection of H and τΔ is well-posed for all
τ ∈ [0, 1];

2) τΔ satisfies the IQC defined by Π for all τ ∈ [0, 1];
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3) The following inequality is satisfied:[
H(ejω)

I

]∗
Π(ejω)

[
H(ejω)

I

]
≺ 0 ∀ω ∈ Ω (2)

Remark 1: If the upper left corner of Π is positive semi-
definite and the lower right corner is negative semi-definite,
then using [18, Remark 2], τΔ satisfies the IQC defined by Π
for all τ ∈ [0, 1] if and only if Δ satisfies the IQC.

Numerous forms of multiplier matrices Π for different un-
certainty types have been proposed in literature. For arbitrarily
fast time-varying scalar uncertainties, i.e. Δ(k) = δ(k)I,
|δ(k)| ≤ η,∀k ∈ R+, a stationary multiplier Π can be defined
as [25]:

Π =

(
η2D E
ET −D

)
, (3)

where D = DT ⪰ 0, E = −ET .
A system analysis step can be performed using (2) to find

a multiplier matrix Π which satisfies the constraint. From (3),
the upper bound η on |δ(k)| can be identified allowing to
compute bounds on the uncertainty block Δ(k). Similarly, the
obtained IQC can be used as a control design constraint to
guarantee robustness for a desired fixed upper bound η.

B. Basic problem statement

The system to be controlled is a multivariable linear time-
invariant (LTI-MIMO) plant P2 referred to as secondary path
with nu input channels and ny output channels. The FRF
matrix can be acquired from classical system identification
experiments [26]. Given nu sets of finite sampled input/output
data which can be acquired from nu open-loop identification
experiments, the corresponding discrete-time FRF can be
estimated as:

P2(e
jω) =

[
M−1∑
k=0

Y(k)e−jωTsk

][
M−1∑
k=0

U(k)e−jωTsk

]−1

(4)

where M is the number of data points and each column of
U(k) and Y(k) represents respectively the inputs and outputs
at the time sample k at one experiment. It is assumed that
P2(e

jω) is bounded for all frequencies ω ∈ Ω. The estimation
errors can be considered as model uncertainty and taken into
account for the controller design, however, they are neglected
to focus on the main subject of this paper. In addition, an
LTI perturbation model P1(e

jω) representative of the primary
path can be used to model the propagation of an exogenous
perturbation signal d to the measurement y (see Fig. 3). For
the presented control method, the disturbance signal d is
supposed to contain sinusoidal components with an unknown
time-varying harmonic frequency ρ(k). The variation of the
frequency can be large and fast but occurs seldom. The control
objective is to asymptotically reject this disturbance.

C. Control design for LFT systems

A method to design fixed-structure frequency-domain con-
troller based on linear fractional transform (LFT) represen-
tation is presented in [27]. A convex optimisation problem
using LMIs is proposed to obtain an LTI controller with a

[
G11 G12

G21 G22

]

K

d

u

z

y

Fig. 2. LFT interconnection between generalized system and controller

fixed-structure parametrization. Since this method will be used
in this paper, a summary of the main result is given in this
section.

The FRF of a generalized system G with exogenous signals
d ∈ Rnd , control inputs u ∈ Rnu , measurements y ∈ Rny and
performance channels z ∈ Rnz can be presented as:[

z
y

]
=

[
G11 G12

G21 G22

] [
d
u

]
.

The aim is to design an LTI controller K in order to com-
pensate for the effect of the exogenous disturbances d on the
performance channels z. The corresponding LFT represented
in Fig. 2 is given by

Fl(G,K) = Tzd = G11 +G12K(I −G22K)−1G21. (5)

Assuming the closed-loop system is stable, the infinity norm
of Tzd can be expressed as

||Tzd||2∞ = sup
ω∈Ω

σ̄(T ∗
zd(e

jω)Tzd(e
jω))

where σ̄ is the maximum singular value. This can be evaluated
if G(ejω), the FRF of G, ∀ω ∈ Ω is available. As an example,
an H∞ control design problem can be formulated as the
minimization of the spectral norm:

min
K,γ

γ

s.t. T ∗
zd(e

jω)Tzd(e
jω) ⪯ γI, ∀ω ∈ Ω

(6)

The controller K can be parameterized as K = Y −1X , where
X and Y are both RH∞ matrix transfer functions linear in
optimization variables. Assuming that G12 is full column rank
∀ω ∈ Ω, we can define

Φ = (Y −XG22)G
L
12,

as a linear function of the optimization variables. Then, Tzd

can be expressed as

Tzd = ΦR (ΦG11 +XG21) + ΨG11 (7)

where Ψ = I − ΦRΦ = I −G12G
L
12. The constraint from (6)

can now be reformulated as,

T ∗
zdTzd = (ΦG11 +XG21)

∗
(ΦΦ∗)

−1
(ΦG11 +XG21)

+ (ΨG11)
∗(ΨG11) ≺ γI

(8)

using the fact that Ψ∗ΦR = ΨΦR = ΦR − ΦRΦΦR = 0 and
(ΦΦ∗)

R
= (ΦΦ∗)

−1. Using the Schur complement lemma, (8)
can be expressed as[

γI − Λ (ΦG11 +XG21)
∗

(ΦG11 +XG21) ΦΦ∗

]
≻ 0, (9)
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where Λ = (ΨG11)
∗(ΨG11). This constraint is not convex

and does not guarantee the closed-loop stability. It is shown
in [27] that a convex lower bound on the quadratic term ΦΦ∗

can be obtained that ensures the closed-loop stability as well:

ΦΦ∗ ⪰ ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c (10)

where Φc = (Yc −XcG22)G
L
12, and Kc = Y −1

c Xc is an
initial stabilizing controller. In practice, Kc = 0 for open-
loop stable systems. The optimisation problem (6) can now
be formulated as:

min
X,Y

γ[
γI − Λ (ΦG11 +XG21)

∗

⋆ ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c

]
(ejω) ≻ 0 ∀ω ∈ Ω,

(11)
To solve the optimisation problem, a grid-based approach
can be employed. The results can be improved using an
iterative approach where the controller K is used as the initial
stabilising control for the next iteration. This sequence of
convex optimisation problems converges to a local optimal
solution of the original nonlinear problem. For a more detailed
explanation of the method, refer to [27].

III. MAIN RESULTS

A. Controller structure for single harmonic rejection

Due to the time-varying nature of the disturbance frequency,
P2 shall be controlled by an LPV controller. We choose the
LPV controller as the multiplication of an LTI controller K(z)
and a time-varying filter N(z, θ(k)):

KN (z, θ(k)) = K(z)N(z, θ(k)),

where θ(k) ∈ Θ is the scheduling parameter. The control
system architecture is schematically presented in Fig. 3. A
time-varying filter N(z, θ(k)) for a fixed value of θ(k) = θc
ensures asymptotic performance for disturbance rejection. In
accordance with the IMP, N(z, θc) is chosen as an approx-
imation of the z-transform of a sinusoidal signal. Hence, in
the steady-state case with θc constant, disturbance rejection is
achieved based on the IMP. The scheduling parameter θ(k)
is chosen such that θ(k) = −2 cos (Tsρ(k)) where ρ(k)
is the time-varying frequency of the sinusoidal disturbance.
The scheduling parameter can be defined around a fixed
frequency θ̄ as θ(k) = θ̄ + δθ(k) with |δθ(k)| ≤ η such
that [θmin, θmax] = [θ̄ − η, θ̄ + η]. A sliding discrete Fourier
transform (SDFT) is used for the estimation of the unknown
harmonic disturbance frequency ρ(k) (see Section IV-B). The
objective is to guarantee the closed-loop stability for fast
variations of the estimated value. For a fixed stationary value
of the scheduling parameter θc = θ̄ + δθc, N(z, θc) can be
defined as:

N(z, θc) =
1

1 + β(θ̄ + δθc)z−1 + β2z−2

=

1
1+βθ̄z−1+β2z−2

1 + βz−1

1+βθ̄z−1+β2z−2 δθc
=

N(z, θ̄)

1 + βz−1N(z, θ̄)δθc
,

(12)
where β is a scalar factor allowing to adjust the damping of
the resonance frequency according to the desired attenuation

K N P2

P1

SDFT

δθ(k)I

+ y u u′ +

d

+

−
pq

Fig. 3. Control system architecture with LTI controller part

performance. As shown in (12), N(z, θc) can be represented as
a feedback loop with N(z, θ̄) in the forward path and βz−1δθc
in the feedback. Then δθc can be pulled out as an uncertainty
block in an LFR as Fl(Nc, δθc), where

Nc =

(
N(z, θ̄) −N(z, θ̄)

βz−1N(z, θ̄) −βz−1N(z, θ̄)

)
For time-varying scheduling parameter in a multivariable sys-
tem, δθc can be replaced with δθ(k)I and the LPV part of the
control system can be defined by Fl(N , δθ(k)I) (see Fig. 3):(

u′

p

)
=

(
N11 N12

N21 N22

)(
u
q

)
=

(
N(z, θ̄)I −N(z, θ̄)I

βz−1N(z, θ̄)I −βz−1N(z, θ̄)I

)(
u
q

)
,

q = δθ(k)I p
(13)

The time-invariant part of the controller is parameterised
by K(z) = Y (z)−1X(z) and is computed by a convex
optimisation problem to guarantee closed-loop stability for all
the variations in the scheduling parameter θ(k) (see Algo-
rithm 1).

B. Generalized model as LFR

After having “pulled out” δθ(k) from the LPV part of the
controller and represent it as an LFR, the LTI plant model P2

will be augmented with N and will be represented by an LFR.
The augmented plant Gs maps q and the control inputs u to
p and y2 (the output of P2) and is given by:(

p
y2

)
=

(
Gs

11 Gs
12

Gs
21 Gs

22

)(
q
u

)
=

(
−N22 N21

−P2N12 P2N11

)(
q
u

) (14)

This augmented plant does not include the disturbance d and
will be used to define a convex set of stabilizing controllers.
The scheme representing the augmented system is given in
Fig. 4.

Note that the time-varying filter ensures asymptotic attenu-
ation of the disturbances. For the transitory phase, we do not
consider the attenuation performance as the estimation of the
scheduling parameter requires a certain time lapse for con-
vergence. However, for nominal performance specifications,
another augmented plant can be defined to constrain the effect
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K
Gs

δθ(k)I

P1

W

+ y u y2

d

+ z

−

q p

Fig. 4. Closed-loop scheme with the augmented system

of the external perturbation signal d on the performance chan-
nel z (see Fig. 4). The LFR of the corresponding augmented
plant Gp is given by(

z
y

)
=

(
Gp

11 Gp
12

Gp
21 Gp

22

)(
d
u

)
(15)

=

(
P1W P2N11

−P1W −P2N11

)(
d
u

)
, (16)

where W is a weighting factor which can be chosen according
to the desired performance. A simple choice is to consider
∥Tzd∥∞ < 1 as the nominal performance and choose W as
a constant to limit the amplification of the disturbances at all
frequencies.

C. Controller Design

The stability for arbitrarily fast variation of the scheduling
parameter shall be guaranteed using an IQC-based constraint.

A simplified solution for Π in accordance to (3), choosing
D = I and E = 0, is given by

Πs =

(
η2I 0
0 −I

)
. (17)

When inserting (17) in (2), the obtained inequality can be
simplified:[

Tpq(e
jω)

I

]∗ (
η2I 0
0 −I

)[
Tpq(e

jω)
I

]
≺ 0 ∀ω ∈ Ω

⇔ T ∗
pq(e

jω)Tpq(e
jω) ≺ η−2I ∀ω ∈ Ω (18)

This inequality has the same form as the constraint in (6)
and can be converted to a set of LMIs in the same way as
for the general LFT systems presented in Section II-C and be
integrated into a feasibility problem as follows:

Find K

s.t. T ∗
zd(e

jω)Tzd(e
jω) ⪯ I, ∀ω ∈ Ω

T ∗
pq(e

jω)Tpq(e
jω) ≺ η−2I, ∀ω ∈ Ω

(19)

A feasible but undesirable solution to this problem is the con-
troller K = 0. To avoid this solution, a minimal steady-state
gain gmin of K shall be imposed. A lower-bound constraint
can be formulated as follows:

K(ejω)|ω=0 = Y −1(ejω)|ω=0X(ejω)|ω=0 ≻ gminI

⇒ X(1)− gminY (1) ≻ 0
(20)

Based on (19) and (20), we can now define an optimisa-
tion problem to maximize η. The objective is to compute a
K(z) which guarantees robust stability for all θ(k) satisfying
|δθ(k)| ≤ η. The constraints in (19) can now be transformed
into LMI in the form of (9) using the method presented in
Section II-C.

The procedure to obtain the desired controller K(z) is
summarized in Algorithm 1. An iterative approach is proposed
to reduce the conservatism related to the choice of the initial
controller Kc = 0. At each new iteration, Kc is initialized
with the optimal controller of the last iteration. The stopping
criterion ϵ > 0 should be sufficiently small such that the
problem is feasible in the first iteration. The optimisation
problems in this paper are formulated using frequency-domain
constraints for all ω ∈ Ω. They correspond to convex semi-
infinite programs (SIP) that cannot be solved with conventional
solvers. A practical approach to solve such SIP is to sample
the infinite number of constraints for the complete Ω at a large
finite set of frequencies with a reasonable amount of frequency
points Ωf = {ω1, . . . , ωf}, although this does not theoretically
guarantee that the constraints are met between the sampled
frequencies. The scenario approach [28] can be used to obtain
some probabilistic guarantee. Under some assumptions on the
maximum error between the sampled plant model and the true
system, the stability can be guaranteed using finite samples
[29].

Algorithm 1 LPV control design algorithm
Require: Kc = 0, η0 = 0, ϵ > 0, i = 1
Require: η1 > ϵ

while ηi − ηi−1 > ϵ do

- max
ηi,X,Y

ηi

s.t.
(
η−2
i I − Λ (ΦsGs

11 +XGs
21)

∗

⋆ Φs(Φs
c)

∗ +Φs
c(Φ

s)∗ − Φs
c(Φ

s
c)

∗

)
≻ 0,(

I − Λ (ΦpGp
11 +XGp

21)
∗

⋆ Φp(Φp
c)

∗ +Φp
c(Φ

p)∗ − Φp
c(Φ

p
c)

∗

)
≻ 0

∀ω ∈ Ωf ,

where Φp = (Y −XGp
22) (G

p
12)

L
,

Φs = (Y +XGs
22) (G

s
12)

L
,

X(1)− gminY (1) ≻ 0,

- Kc = Y −1X

- Increment i

end while

The choice of Πs as presented in (17) is conservative
because the off-diagonal terms are set to zero. Hence, the
achievable η is somewhat larger than the value obtained with
Algorithm 1. Conservatism can be reduced using a fully
parameterized Π given by 3. Algorithm 2 can be used after
the completion of Algorithm 1 to obtain a stability guarantee
for an interval bound ηmax which is larger than ηn obtained
from the Algorithm 1 after n iterations. Algorithm 2 can be
solved using a bisection approach or by iteratively increasing
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the value of ηmax and checking the feasibility of the problem.

Algorithm 2 Stability analysis of final controller

max
Π,ηmax

ηmax

s.t.
[
Tpq(e

jω)
I

]∗
Π

[
T ∗
pq(e

jω)
I

]
≺ 0 ∀ω ∈ Ωf ,[

I
ηmaxI

]∗
Π

[
I

ηmaxI

]
≻ 0,

D = DT ≻ 0, E = −ET

D. Controller structure for multi-harmonic rejection

In presence of a sinusoidal perturbation signal containing
n harmonic frequencies ρ(k) = [ρ1, ρ2, ..., ρn], a sequence of
time-varying filters stacked in parallel can be defined as:

N (z, θ1(k), ..., θn(k)) =

n∑
i=1

N(z, θi(k)), (22)

where θi(k) = −2 cos (Tsρi(k)). In a similar way the time-
varying filter can be represented by an LFR including an LTI
filter and a time-varying block as:

q =


δθ1(k)I 0 0 0

0 δθ2(k)I 0 0

0 0
. . . 0

0 0 0 δθn(k)I

 p (23)

Similar to the development of (14), a generalized plant
Gp

n(e
jω) can be computed by defining θi(k) = θ̄i+δθi(k) (see

Eq. 21). The control system architecture for the multiharmonic
case is schemetically presented in Fig. 5.

IV. EXPERIMENTAL RESULTS

A. Hybrid micro-vibration damping platform (MIVIDA)

Novel high-precision optical instruments designed for Earth
observation missions demand an exceptionally high pointing
accuracy. These line-of-sight stability requirements constrain
the admissible level of mechanical vibration that can occur
onboard a spacecraft. Micro-vibrations are caused by primary
satellite systems such as reaction wheels, thrusters, cryocool-
ers, or solar array drive mechanisms, and have the potential

to significantly degrade the performance of the sensitive pay-
loads.

A hybrid active-passive micro-vibration damping platform
(MIVIDA), aimed at mitigating micro-vibrations and isolating
the sensitive optical payload from external disturbances, was
developed at CSEM. The objective is to study in a more
general context the stabilisation of sensitive active payloads
from multiple unknown external perturbations. The modular
platform consists of an adjustable number of passive dampers,
a set of proof mass actuators (PMA) creating a 6 degree of
freedom (DoF) force tensor, and a payload interface allowing
to accommodate various types of sensitive instruments. The
platform utilises accelerometer measurements in close prox-
imity to the payload to actively reject disturbances from the
satellite body. These external perturbations are generated using
an external inertial shaker. An image of the system is shown
in Fig. 6. All experimental tests with the platform are carried
out at the Microvibration Characterisation Facility at CSEM
in Neuchâtel, Switzerland [30].

B. Scheduling parameter estimation

The scheduling parameter is updated by estimating the main
harmonic frequency of the perturbation. As the perturbation
signal d cannot be measured directly, an estimation of the
harmonic frequency is calculated based on a sliding discrete
Fourier transform (SDFT) on the output signal y. The SDFT
is implemented using the algorithm presented in [31]. The
discrete Fourier transform (DFT) at instant k for an N length
window is given by

Yn(k) =

N−1∑
i=0

y(k − i)e−(
j2π(k−i)n

N ),

where 0 ≤ n ≤ N − 1 designates the nth bin of the N -point
DFT. The DFT can be computed recursively using the SDFT
algorithm. Essentially, the SDFT algorithm arises from the fact
that for two successive times, the sequences y(k−1) and y(k)
contain mainly identical elements. The recursive update step
of the SDFT at time k can therefore be expressed by

Yn(k) = e
j2πn
N

(
Yn(k − 1) + y(k)− y(k −N)

)
.

Based on the m highest peaks present in Yn(k), m harmonic
frequencies ρi, i = 1, ...,m are identified in real time. The
values of ρi are then used to update the value of θi(k) =
−2 cosTsρi(k).



p1
...
pi
...
pn
y


=



−βz−1N(θ̄1)I 01×(n−1) βz−1N(θ̄1)I
...

01×(i−1) −βz−1N(θ̄i)I 01×(n−i) βz−1N(θ̄i)I
...

01×(n−1) −βz−1N(θ̄n)I βz−1N(θ̄n)I

P2N(θ̄1)I . . . P2N(θ̄i)I . . . P2N(θ̄n)I −P2

n∑
j=1

N(θ̄j)I





q1
...
qi
...
qn
u


,

u = Ky

(21)
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K N1

δθ1(k)I p1q1

...

Nn

δθn(k)I pnqn

P2

P1
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+

y2+

d

+
z

−

Fig. 5. Control scheme with N1, ...,Nn for the multi-harmonic case

Elastomeric
dampers

Proof Mass
Actuators (PMA)

Accelerometers

Payload
interface

Base
plate

Fig. 6. Hybrid micro-vibration damping platform MIVIDA developed at
CSEM, Switzerland

C. Single harmonic rejection validation on MIVIDA

The here presented method is used to design a controller for
the MIVIDA platform allowing to adaptively reject sinusoidal
disturbances. A system identification experiment is carried
out to compute an FRF matrix directly from experimental
data using a frequency grid with 1000 points and a sampling
frequency of 1 kHz. For the control design, a controller
order of 40 is chosen. The controller order is determined by
comparing the resulting η for several controllers with different
orders. For the final controller, the smallest possible order
that achieves the highest value of η is chosen. The center
frequency ρ̄ is set to 60 Hz, ϵ to 0.1, gmin to 1 and the
damping parameter β for N(z, θ(k)) is chosen as β = 0.999.
This is the highest value of β leading to a feasible solution
for this application. The performance weighting factor W
is chosen as W = −20I dB to limit the infinity norm of
the sensitivity function. The identified FRF matrices P1(e

jω)
and P2(e

jω) together with the computed sensitivity function
S(ejω, θ) =

(
I + P2(e

jω)KN (ejω, θ)
)−1

for different values
of θ are presented in Fig. 7. It can be observed that the
disturbance frequency is attenuated around 35 to 50 dB along
the three axes. The obtained controller guarantees stability
for a value of δρmax = 16 Hz. This is the resulting value

Attenuation Performance (dB)
X-axis Y-axis Z-axis

ρ(k) = ρ̄ = 60 Hz 50.40
(48.05)

44.07
(51.36)

36.06
(46.37)

ρ(k) = ρ̄ − δρmax =
44 Hz

25.87
(24.60)

24.31
(27.46)

15.30
(17.56)

ρ(k) = ρ̄ + δρmax =
76 Hz

38.38
(41.72)

10.10
(18.26)

27.13
(33.15)

TABLE I
ATTENUATION PERFORMANCE ACHIEVED WITH THE IQC-BASED LPV

CONTROLLER AT DIFFERENT VALUES OF ρ(k), THE VALUES IN THE
PARENTHESIS INDICATE THE CALCULATED ATTENUATION PERFORMANCE

FROM THE COMPUTED SENSITIVITY FUNCTION S(θ(k)) (SEE FIG. 7)

obtained with Algorithm 2 using a fully parameterized Π.
The value obtained after the last iteration with Algorithm 1 is
δρmax = 10 Hz. For comparison, an LTI controller with β = 1
was computed. With this controller, a 30 dB attenuation can
be obtained for a value of only δρ = 0.8 Hz.

A dSpace rapid prototyping platform is used as real-time
control system at a sampling frequency of 1 kHz. Two individ-
ual power amplifiers generate the power supply and the analog
input and output signals for the PMA and the accelerometers
respectively. A third control module is used for the command
of the external inertial shaker. For performance evaluation,
a sinusoidal perturbation along the x-axis is injected with
this shaker. In Fig. 8, the measured accelerations along the
three axes in open- and closed-loop are shown. The harmonic
frequency ρ(k) of the sinusoidal perturbation is shifted in the
interval of ρ(k) ∈ [44, 76] Hz increasing the frequency by 2
Hz every 5 seconds. Table 1 shows the obtained attenuation
values for different values of ρ(k). The difference between
the attenuation computed using the sensitivity function and
the experimental results comes from the magnitude of the
primary path model P1(e

jω) at the disturbance frequencies.
Furthermore, the actual limit of stability when increasing the
value of δρmax was assessed. When injecting a sinusoidal
perturbation with ρ(k) = 37 Hz, the closed-loop system
becomes unstable. Hence, there is some margin in the stability
limit determined at δρmax = 16 Hz while the experimentally
determined value is at approximately δρmax = 22 Hz.

An additional test has been performed to assess the closed-
loop stability for a fast variation of the scheduling parameter.
During that test, the harmonic frequency ρ(k) of the sinusoidal
perturbation is increased by 1 Hz every 100 milliseconds in
the interval of ρ(k) ∈ [36, 84]. From Fig. 9, it can be observed
that the stability is still guaranteed in closed-loop. Note that
the attenuation performance cannot be achieved in that case
as the estimation of the disturbance frequency leads to wrong
results. The update period of the SDFT needs to be at least
300 milliseconds to obtain a correct estimation. However, the
stability of the closed-loop is still guaranteed even if the
estimated disturbance frequency has a large error with respect
to the true one.

D. Multi-harmonic rejection validation on MIVIDA

Using the method presented in Section III-D, a controller
containing two time-varying filters in parallel was computed
to be applied on MIVIDA. The center frequency ρ̄1 is chosen
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Fig. 7. Closed-loop sensitivity functions S(ejω , θ) for different values of θ (from light blue to dark blue) and FRF matrix of perturbation model P1(ejω)
and of plant model P2(ejω)

at 50 Hz and ρ̄2 = 70 Hz with ϵ = 0.1,β = 0.999 and
a controller order of 60. The obtained controller guarantees
stability for a value of δρmax = 5 Hz. A test injecting a
sinusoidal perturbation containing two harmonics was per-
formed. The resulting attenuation performance is presented
in Table IV-D. A disturbance attenuation of up to 22.60 dB
can be experimentally achieved for the central frequency ρ̄1.
However, the achieved performance is significantly smaller for
other values of ρ1 and ρ2 and for other axes. when looking
at P2 (see Fig. 7), one can see that the overall magnitude at
ρ̄2 is smaller compared to the one at ρ̄1. The signal-to-noise
ratio of the accelerometers is therefore smaller at ρ̄2 leading
to smaller attenuation performances at higher frequencies.
Furthermore, with the given controller structure it is difficult
to achieve acceptable performance for multiharmonic rejection
due to the parametrization of N(z, θ(k)) with its limited
damping adjustment possibilities and due to the waterbed
effect. To improve the attenuation performance, a more flexible
LPV control structure K(θ) without fixed parametrization
N(z, θ(k)) can be used. In addition, it is possible to use a
fully parametrized Π as given by (3) also for control synthesis.

Such a development is part of on-going work.

Attenuation Performance (dB)
ρ1 (Hz) ρ2 (Hz) X-axis Y-axis Z-axis
50 (= ρ̄1) 18.56 20.56 20.69

70 (= ρ̄2) 18.51 11.81 17.20
50 16.04 18.37 16.22

65 12.31 12.04 9.48
50 18.42 20.43 20.70

75 18.90 2.28 18.38
45 20.68 14.24 19.41

65 19.42 17.24 22.30
45 20.54 13.58 19.37

70 19.00 9.38 21.02
45 20.54 13.42 19.53

75 19.26 -3.72 21.62
55 19.19 19.91 22.24

65 19.40 17.13 22.60
55 19.30 19.69 22.49

70 18.79 10.40 20.98
55 16.30 16.70 19.54

75 16.46 1.54 18.45
TABLE II

ATTENUATION PERFORMANCE ACHIEVED WITH THE LPV CONTROLLER
FOR DOUBLE HARMONIC REJECTION
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Fig. 8. Closed-loop attenuation test

Fig. 9. Fast parameter variation test



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH 20XX 10

V. CONCLUSIONS

Given an FRF matrix of an LTI-MIMO system, an LPV
controller is computed for adaptive rejection of an unknown
external perturbation signal. Using an IQC describing a time-
varying real scalar, an equivalent LMI is computed which is
included in a two-step iterative control design algorithm. This
method ensures the stability of the controller for arbitrarily
fast variations of the scheduling parameters lying in a bounded
interval. An LPV controller was designed for the hybrid micro-
vibration damping platform using the proposed method. The
resulting controller achieves a disturbance attenuation of up
to 50.40 dB in the case of single harmonic rejection and up
to 22.60 dB for multi-harmonic rejection while guaranteeing
stability for scheduling parameters with an arbitrarily fast
variation.
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