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Abstract

Predictive models based on machine learning (ML) offer a compelling promise: bringing
clarity and structure to complex natural and social environments. However, the use
of ML poses substantial risks related to the privacy of their training data as well as
the security and reliability of their operation. This thesis explores the relationships
between privacy, security, and reliability risks of ML. Our research aims to re-evaluate
the standard practices and approaches to mitigating and measuring these risks in order
to understand their connections and scrutinize their effectiveness.

The first area we study is data privacy, particularly the standard privacy-preserving
learning technique of differentially private (DP) training. DP training introduces
controlled randomization to limit information leakage. This randomization has side
effects such as performance loss and widening of performance disparities across
population groups. In the thesis, we investigate additional side effects. On the positive
side, we highlight the “What You See Is What You Get” property that DP training
achieves. Models trained with standard methods often exhibit significant differences
between training and testing phases, whereas privacy-preserving training guarantees
similar behavior. Leveraging this property, we introduce competitive algorithms for
group-distributionally robust optimization, addressing privacy-performance trade-offs,
and mitigating robust overfitting. On the negative side, we show that decisions of
DP-trained models can be arbitrary: due to the randomness in training, equally private
models can yield drastically different predictions for the same input. We examine the
costs of standard DP training algorithms in terms of arbitrariness, raising concerns
about the justifiability of their decisions in high-stakes scenarios.

Next, we study the standard measure of privacy leakage: vulnerability of models to
membership inference attacks. We analyze how the vulnerability to these attacks, thus
privacy risks, are unequally distributed across the population groups. We emphasize the
need and provide methods to consider privacy leakage across diverse subpopulations
to avoid disproportionate harm and address inequities.

Finally, our study focuses on analyzing the security risks in tabular domains, which are
commonly found in high-stakes ML settings. We challenge the assumptions behind
existing security evaluation methods, which primarily consider threat models based
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Abstract

on input geometry. We highlight that real-world adversaries in these settings face
practical constraints, prompting the need for cost and utility-aware threat models. We
propose a framework that tailors adversarial models to tabular domains, enabling the
consideration of cost and utility constraints in high-stakes decision-making situations.

Overall, the thesis sheds light on the subtle effects of DP training, emphasizes the
importance of diverse subpopulations in risk measurements, and highlights the need
for realistic threat models and security measures. By challenging assumptions and
re-evaluating risk mitigation and measurement approaches, the thesis paves the way
for more robust and ethically grounded studies of ML risks.

Keywords: machine learning, differential privacy, membership inference attacks, algo-
rithmic fairness, predictive multiplicity, adversarial robustness, adversarial examples
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Résumé

Les modèles prédictifs basés sur l’apprentissage automatique (machine learning ; ML)
offrent une promesse convaincante : apporter clarté et structure à des environnements
naturels et sociaux complexes. Cependant, l’utilisation de l’apprentissage automatique
pose des risques substantiels liés à la confidentialité des données d’apprentissage ainsi
qu’à la sécurité et à la fiabilité de leur fonctionnement. Cette thèse explore les relations
entre les risques liés à la confidentialité, à la sécurité et à la fiabilité. Notre recherche
vise à réévaluer les pratiques et les approches standard pour atténuer et mesurer ces
risques afin de comprendre leurs liens et d’examiner leur efficacité.

Le premier domaine que nous étudions est celui de la confidentialité des données,
en particulier la technique d’apprentissage classique préservant la confidentialité, à
savoir l’entraı̂nement différentiellement privé (DP). L’entraı̂nement DP introduit une
randomisation contrôlée pour limiter les fuites d’informations. Cette randomisation a
des effets secondaires tels que la perte de performances et l’augmentation des disparités
de performance entre les groupes de population. Dans cette thèse, nous étudions d’autres
effets secondaires. Du côté positif, nous soulignons la propriété “Ce que vous voyez est
ce que vous obtenez” que l’entraı̂nement DP permet d’obtenir. Les modèles formés avec
des méthodes standard présentent souvent des différences significatives entre les phases
d’entraı̂nement et de test, alors que l’entraı̂nement préservant la confidentialité garantit
un comportement similaire. En tirant parti de cette propriété, nous introduisons des
algorithmes compétitifs pour l’optimisation distributionnelle de groupe, en abordant
les compromis entre confidentialité et performance, et en atténuant le surajustement
robuste. Du côté négatif, nous montrons que les décisions des modèles entraı̂nés par DP
peuvent être arbitraires : en raison du caractère aléatoire de l’entraı̂nement, des modèles
également privés peuvent produire des prédictions radicalement différentes pour la
même entrée. Nous examinons les coûts des algorithmes standard d’entraı̂nement
DP vis-à-vis de ces décisions arbitraires, ce qui soulève des inquiétudes quant à la
justification de leurs décisions dans les scénarios à fort enjeu.

Ensuite, nous étudions la mesure classique de l’atteinte à la vie privée : la vulnérabilité
des modèles aux attaques par inférence d’appartenance. Nous analysons comment
la vulnérabilité à ces attaques, et donc les risques d’atteinte à la vie privée, sont
inégalement répartis entre les groupes de population. Nous insistons sur la nécessité de
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prendre en compte la fuite de données personnelles dans diverses sous-populations
afin d’éviter des dommages disproportionnés et de remédier aux inégalités.

Enfin, notre étude se concentre sur l’analyse des risques de sécurité dans les domaines
tabulaires, que l’on trouve couramment dans les contextes de ML à enjeu élevé. Nous
remettons en question les hypothèses sous-jacentes des méthodes d’évaluation de la
sécurité existantes, qui considèrent principalement les modèles de menace basés sur
la géométrie d’entrée. Nous soulignons que les adversaires du monde réel, dans ces
contextes, sont confrontés à des contraintes pratiques, d’où la nécessité de considerer
des modèles de menace tenant compte des coûts et de l’utilité. Nous proposons un
cadre qui adapte les modèles d’adversaires aux domaines tabulaires, ce qui permet de
prendre en compte les contraintes de coût et d’utilité dans les situations de prise de
décision à fort enjeu.

En conclusion, notre thèse met en lumière les effets subtils de l’entraı̂nement DP,
souligne l’importance de la diversité des sous-populations dans la mesure des risques et
met en évidence la nécessité de modèles de menace et de mesures de sécurité réalistes.
En remettant en question les hypothèses et en réévaluant les approches d’atténuation et
de mesure des risques, la thèse ouvre la voie à des études plus robustes et plus éthiques,
fondées sur les risques liés à l’apprentissage automatique.

Mots clés : apprentissage automatique, confidentialité différentielle, attaques d’inférence
d’appartenance, équité algorithmique,multiplicité prédictive, robustesse aux adversaires,
exemples adversariaux.
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Introduction

In a time defined by the increasing reliance on data-driven decision-making, predictive
models based on machine learning (ML) present an especially compelling promise.
This promise is to bring legibility [4, 155]—clarity and structure—to the unclear and
unstructured mess of natural and social environments. Legibility, in turn, is thought to
enable companies, organizations, and governments to optimize, control, and rule those
environments effectively. The use of ML, however, comes with risks.

A crucial outcome of ML models being built on data is that the resulting predictive
models might give a false impression of being an objective tool that provides an
unbiased gaze from nowhere. In practice, they are anything but unbiased. Being trained
on historical data, they are bound to reproduce both the good and the ugly sides of
the processes that generated the data [11]. Moreover, such predictive models could
issue predictions that are influenced by either their designers’ arbitrary decisions or
even the randomness involved in their creation or operation [18]. This influence is
especially concerning in high-stakes settings such as healthcare and scoring of credit
or fraud risk. In these settings, the combination of the false promise of objectivity
and unbiasedness with the arbitrariness of decisions is bound to create bureaucratic-
technological traps [4, 39] for the decision subjects of these models. Even more, as the
predictions can be arbitrary to a degree, the predictive models can also be gamed into
producing arbitrary outputs through simple manipulations of their inputs [71, 77].

Another inherent risk resulting from ML being built on data comes when the data
contains privacy-sensitive information. It might not be evident to practitioners that
the ML models can leak this information when no precautions are in place [161], even
if the data itself is collected and stored securely. The European Union data protection
regulation (GDPR), as well as similar legislation around the world [73], mandates strict
data protection, which, arguably, covers such data leakage from trained models [172].

This thesis makes a step towards understanding these seemingly different yet closely
interconnected privacy, security, and reliability risks within a broader social and
technical context. Instead of studying them in isolation, we aim to re-evaluate the
standard practices and approaches to mitigating and measuring these risks considering
their interactions and intersections. What are some inherent relationships between the
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risks? Do mitigations of these risks hold up to scrutiny within such a broader view?
We summarize our contributions toward answering these questions next.

Side Effects of Differential Privacy. We begin our exploration from the perspective
of data privacy. To address the previously mentioned concerns with privacy leakage,
scholars have proposed multiple techniques for privacy-preserving learning, which
aim to safeguard sensitive data while enabling effective model training. In particular,
we study a standard way to learn while ensuring privacy, differentially private (DP)
training. This approach relies on a somewhat disruptive intervention to the training
process of ML models: introducing a controlled level of randomization. Random noise
injected as part of the training process limits the potential leakage of information from
the data but comes with side effects. Some well-known side effects are the loss of
performance on average and the widening of performance disparities across population
groups. In this thesis, we aim to explore the additional effects that can arise from
incorporating random noise during the training process. We delve into this question in
Chapters 2 and 3.

In Chapter 2, we study a positive side effect of DP training beyond privacy. Privacy-
preserving training achieves similar behavior between training and deployment (test)
time, which we refer to as the “What You See Is What You Get” (WYSIWYG) property.
This is in contrast tomodels trainedwith standard non-privatemethodswhose behaviors
can differ significantly between the training and testing phases. We show this by
quantifying this property with a notion of distributional generalization, a measure
of the similarity of outputs of the predictive models between training and test data.
Leveraging this connection, we construct simple algorithms that outperform state-of-
the-art approaches to train models for robust performance across population groups,
improve the trade-offs between privacy and performance disparities, and mitigate
artifacts of securing models against input manipulations. Thus, the randomization
introduced in DP training can have unexpected—in a good sense—side effects spanning
beyond privacy and standard on-average performance measures.

In Chapter 3, we turn to a negative side effect of DP training. We reveal a significant but
unnoticed effect of randomization in training: it leads to the arbitrariness of decisions.
Specifically, equally-private models can provide drastically different predictions for
the same input example due to randomness in training. We investigate the costs of
several algorithms for DP training in terms of arbitrary decisions, both theoretically
and through extensive experiments. Our findings show that as the level of privacy
increases, the degree of arbitrariness invariably rises across tasks and models, impacting
different individuals and demographic groups differently. This raises concerns about
the justifiability of decisions made using this kind of privacy-preserving models in
high-stakes scenarios.

Unequal Access to Privacy. Next, we take a step back and focus on the methods
to measure privacy leakage. In Chapter 4, we study the standard measure of privacy
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leakage: vulnerability to membership inference attacks. Membership inference attacks
are a fundamental threat to the privacy of the training data in which an attacker aims
to guess whether a given data record was used as part of the training data or not.
Vulnerability to these attacks is a manifestation of data leakage. Our first finding is that
a standard notion of vulnerability to membership inference is equivalent to the notion
of distributional generalization described previously. This result bridges the concepts
of performance quality and privacy in ML. We use this finding as a basic theoretical
tool for investigating the fundamental issue with the standard approaches to measuring
leakage: privacy leakage is not adequately studied across diverse subpopulations. We
find that privacy risks can vary significantly across different groups. Ignoring this
disparate impact and failing to account for the uneven distribution of privacy leakage
could result in disproportionate harm and exacerbate existing inequities.

Realistic Adversarial Modeling for Tabular Data. Having explored the intersec-
tions of privacy on the one hand and bias and arbitrariness on the other, we turn to the
security risks in the final part of the thesis. In Chapter 5, we show that the current
landscape of attacks against ML models primarily revolves around threat models that
focus on the geometry of inputs. In reality, adversaries face practical limitations such
as cost and utility constraints, making the real-world threat landscape significantly
different from the idealized scenarios considered in the existing attack methodologies.
This discrepancy between the assumptions made in attack models and the realistic
constraints faced by adversaries raises concerns about the effectiveness and real-world
applicability of current security measures in ML. To address these limitations, we
propose cost and utility-aware threat models tailored explicitly to attackers targeting
tabular domains, in which the decisions of the predictive models are often high-stakes.
Our framework enables the design of attack mechanisms that take into account cost
and utility constraints, such as a financial budget. We demonstrate the effectiveness of
our approach on realistic ML tasks with economic and social implications.

In sum, we highlight the nuanced effects of differentially private training on model
behavior beyond privacy, the importance of considering diverse subpopulations in
privacy measurements, and the need for realistic threat models and security measures.
While delving into these topics, we have challenged and re-evaluated assumptions in
the mitigation and measurement of privacy, security, and reliability risks of ML. We
have provided tools that enable practitioners and regulators to have a broad picture
of these risks, paving the way for more robust and ethically grounded approaches to
studying, evaluating, and mitigating them.
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Chapter 1

Technical Preliminaries

In this chapter, we briefly introduce concepts and notation that commonly occur
throughout the thesis.

Common notation. We use Id to denote the d-by-d identity matrix, 1[·] to denote
the indicator function, and 2V to denote the power set of the set V . We use Lp to refer
to a p-norm, defined for 0 < p <∞ and an input x ∈ Rd as follows:

∥x∥p ≜

(
d∑

i=1
|xi|p

) 1
p

. (1.1)

For a special case of p =∞, it is defined as:

∥x∥∞ ≜ max
i=1,...,d

|xi|. (1.2)

An Lp norm for p <∞ can have a weighted variant. For a vector w ∈ Rd, we define a
w-weighted Lp norm as follows:

∥x∥p,w =
(

d∑
i=1

wi · |xi|p
) 1

p

. (1.3)

1.1 Probability, Statistics, and Statistical Distance

We denote by N (µ, Σ) the d-dimensional normal distribution with mean µ ∈ Rd and
covariance matrix Σ ∈ Rd×d. If Σ = σ2 · Id, then we call the distribution isotropic. We
denote by Φ(·) the cumulative distribution function of a standard normal distribution.
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Probability distributions. We commonly make use of analyses based on the theory
of probability and statistics. We study probability distributions P over a given sample
space D. We denote a random variable X over the sample space D that is distributed
according to the distribution P as X ∼ P . For any subset of the sample space V ⊆ D,
the distribution defines a function which satisfies:

P (V ) = Pr[X ∈ V ]. (1.4)

If V is a finite set, in a slight abuse of notation we also use X ∼ V to denote that X is
a random variable uniformly distributed on V .

For a given probability distribution P over D and a function π : D→ Rd, we use π♯P
to denote a pushforward, the distribution of π(X) for X ∼ P .

A continuous probability distribution P over R is the one that has an associated
probability density function v : R→ R such that for any V ⊆ R:

P (V ) =
∫

V
v(x) dx (1.5)

Statistical distance. Suppose that P and Q are two probability distributions over a
space D. Statistical distance, also known as the total-variation (TV) distance is a measure
of difference between the two distributions, defined as follows:

dTV(P, Q) ≜ sup
V ⊆D
|P (V )−Q(V )|. (1.6)

Next, we highlight several useful properties of the TV distance. An important property
is that it is non-increasing under post-processing: For any post-processing function
π : D→ Rk, it holds that:

dTV(π♯P, π♯Q) ≤ dTV(P, Q). (1.7)

TV distance is a metric. In particular, it satisfies the triangle inequality:

dTV(P, Q) ≤ dTV(P, W ) + dTV(W, Q), (1.8)

where P, Q, W are any probability distributions on the same space D.

The total-variation distance takes on the following useful forms:
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• It has the equivalent variational form:

dTV(P, Q) = sup
ϕ:D→[0,1]

∣∣∣∣ E
X∼P

ϕ(X)− E
Y ∼Q

ϕ(Y )
∣∣∣∣ (1.9)

• Over a binary sample space D = {0, 1}, the TV distance simplifies to the
difference of expectations:

dTV(P, Q) =
∣∣∣∣ E
X∼P

[X]− E
Y ∼Q

[Y ]
∣∣∣∣ (1.10)

• In the case that P and Q are both continuous probability distributions over R
with density functions vP (x) and vQ(x), respectively, the total-variation distance
can be written as:

dTV(P, Q) = 1
2

∫
R
|vP (x)− vQ(x)| dx. (1.11)

We refer to Polyanskiy and Wu [144] for an in-depth treatment of the subject.

1.2 Learning to Predict

Statistical learning. Throughout the thesis, we consider a machine learning (ML)
task with a population of labeled examples D ≜ X×Y, where X is the space of examples
(also referred to as feature vectors) and Y is the space of labels. The goal of the learning
task is to produce a predictive model that, given an example and its label z ≜ (x, y) can
predict the label y ∈ Y by only observing the feature vector x ∈ X. Given a dataset
S ∈ Dn, we use a possibly randomized training algorithm T : Dn → Θ that outputs
a parameter vector θ of a predictive model from the set Θ. The predictive model
parameterized by θ defines a prediction function fθ(x), which aims to reproduce the
label y of a given example z = (x, y).

We capture the error of the prediction using a loss function ℓ(z; θ) > 0, with higher
values of the loss function representing a higher degree of error. In classification tasks,
that is, settings where Y is discrete and finite, a loss function that we commonly use in
our analyses is the 0-1 loss: ℓ((x, y); θ) = 1[fθ(x) ̸= y].

For some of the analyses in the thesis, we assume that there exists a data distribution of
labeled examples P defined over the data space D = X× Y. We denote sampling of a
labeled example z = (x, y) from this distribution as z ∼ P . We then further make a
standard assumption that a dataset S ∈ Dn that is input to the training algorithm is an
independently and identically distributed (i.i.d.) sample from P , denoted as S ∼ P n.
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In this probabilistic setting, a common measure of the quality of a predictive model is
its expected loss (equivalently, expected error, or expected risk):

R(θ) ≜ E
z∼P

[ℓ(z; θ)]. (1.12)

We are often interested in finding predictive models that minimize the expected loss.

Binary classification. In some parts of the thesis, we focus on the setting of binary
classification in which there are only two possible labels, Y = {0, 1}. In this case, we
assume that the predictive model has a special structure. The model (classifier in this
case) associates a confidence score to each input x ∈ X, denoted as hθ(x) ∈ [0, 1]. If the
confidence score is higher than some threshold τ ∈ [0, 1], then the decision is positive
(y = 1). Otherwise, it is negative (y = 0). The classifier’s prediction is thus obtained by
applying a threshold to the confidence score:

fθ(x) ≜ 1[hθ(x) > τ ]. (1.13)

In the rest of the thesis, we assume a standard threshold of τ = 0.5.

Bayes error. Under the probabilistic assumption that the data comes from a
distribution P , the classifier that achieves the minimum possible expected loss is called
the Bayes (or Bayes-optimal) classifier. In the case of the 0-1 loss, the Bayes classifier
has a closed form:

f ∗(x) ≜ max
y∈{0,1}

Pr
(x,y)∼P

[y | x]. (1.14)

The expected error of the Bayes classifier is called the Bayes error. For our case of 0-1
loss, it is defined as:

R∗ ≜ E
(x,y)∼P

1[f ∗(x) ̸= y] = Pr[f ∗(x) ̸= y] (1.15)

By definition, the Bayes error is at least as low as the error of any other possible
classifier in terms of the same loss function. That is, for any parameter vector θ ∈ Θ
we have:

R∗ ≤ R(θ) = E
(x,y)∼P

1[fθ(x) ̸= y] = Pr[fθ(x) ̸= y] (1.16)

The Bayes error has a useful characterization in the case of balanced binary classification,
that is, when the marginal probabilities of classes are equal: Pr[y = 1] = Pr[y = 0] =
1/2. This setting is also known as having the uniform prior.

Consider the class-conditional probability distributions P1 and P0, defined for any V ⊆ X

8
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Algorithm 1 SGD
Input: Dataset S, loss function ℓ(z; θ), initial parameters θ0, learning rate η, number
of steps tmax, mini-batch size b
Output: Parameters of the trained model θtmax

for t = 1, . . . , tmax do
Sample mini-batch St ← Sampleb(S)
θt ← θt−1 − η · 1

b

∑
z∈St
∇ℓ(z; θt−1)

as follows:
P1(V ) ≜ Pr[x ∈ V | y = 1]
P0(V ) ≜ Pr[x ∈ V | y = 0],

(1.17)

over the randomness of (x, y) ∼ P . Then, the Bayes error is proportional to the TV
distance between the class-conditional distributions:

R∗ = E
(x,y)∼P

1[f ∗(x) ̸= y] = 1/2− 1/2 · dTV(P1, P0) (1.18)

We refer to Devroye et al. [49] for additional details.

Empirical risk minimization. A standard approach for obtaining the parameters of
a predictive model tailored to a given dataset S is finding optimal parameters θ∗ that
minimize empirical risk—the average loss over the examples in the dataset—as follows:

θ∗ ∈ arg min
θ

1
n

∑
z∈S

ℓ(z; θ). (1.19)

As long as the dataset size is large enough, empirical risk approximates the expected
error. There are different ways to solve this optimization problem depending on the
type of the predictive model. We present one of the algorithms to do so next.

Stochastic gradient descent. A common method for training predictive models that
are differentiable in their parameters θ is stochastic gradient descent (SGD), presented
in Algorithm 1. SGD also serves as a basic building block for more complex training
algorithms. Given a dataset S and an initial vector of parameters θ, the algorithm
randomly samples multiple mini-batches of size b ≤ |S|. We denote the sampling
procedure which returns a mini-batch by Sampleb(S). For each mini-batch, the
algorithm then computes the gradient of the (differentiable) loss function∇θℓ(z; θ) for
each z in the mini-batch, and updates the parameters by the scaled average gradient.

Generalization and overfitting. Generalization is a measure of closeness between
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the empirical error of the model θ on the training dataset S to its expected error:∣∣∣∣∣ 1n ∑
z∈S

ℓ(z; θ)− E
z∼P

[ℓ(z; θ)]
∣∣∣∣∣ (1.20)

When the gap in Eq. (1.20) is large—where the definition of large depends on the
concrete learning setting—we say that the model θ overfits to its training data.

In practice, generalization is approximated using an independent dataset sample
S̄ ∼ P m, called the test dataset as follows:∣∣∣∣∣∣ 1n

∑
z∈S

ℓ(z; θ)− 1
m

∑
z∈S̄

ℓ(z; θ)

∣∣∣∣∣∣ (1.21)

We also use a related notion of generalization, called on-average generalization, or
generalization in expectation [159]:∣∣∣∣∣∣ E

S∼P n

z∼S

ℓ(z; T (S))− E
S∼P n

z∼P

ℓ(z; T (S))

∣∣∣∣∣∣ , (1.22)

where the first term is a shorthand notation:

E
S∼P n

z∼S

ℓ(z; T (S)) ≜ E
S∼P n

1
n

∑
z∈S

ℓ(z; T (S)). (1.23)

Population subgroups. The data space could contain distinct groups (or subgroups)
of examples. We use the words group and subgroup interchangeably. In the case that
the data describes people, such groups could represent salient demographic populations
such as those corresponding to a gender, race, ethnicity, etc. Formally, we assume the
data distribution P is a mixture of m groups indexed by the set G = {G1, . . . , Gm},
such that P = ∑m

i=1 qiPi. The vector (qi, . . . , qm) ∈ [0, 1]m represents the group
probabilities, with ∑m

i=1 qi = 1. We denote a group as G ∈ G and its corresponding
distribution as PG.

We make the following assumption about the relationship between the example and its
group: for any x ∈ X we can determine the group to which x belongs as G = g(x). In
a slight abuse of notation, we also write g(z) to denote the group of a labeled example.
This assumption commonly holds in practice, e.g., when a group annotation G is a part
of the feature vector x. For a dataset S, we denote its part consisting only of examples
belonging to group G ∈ G as SG.
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1.3 Differentially Private Learning

In this thesis, we often consider learning tasks where the training data is privacy-
sensitive (e.g., healthcare). In such settings, learning with differential privacy (DP) is
one of the standard approaches to train predictive models [54, 56]. A randomized
learning algorithm T : Dn → Θ is (ϵ, δ)-differentially private (DP) if for any two
neighbouring datasets (i.e., datasets differing by at most one example) S, S ′, for any
subset of parameter vectors V ⊆ Θ, it holds that

Pr[T (S) ∈ V ] ≤ exp(ϵ) Pr[T (S ′) ∈ V ] + δ. (1.24)

We denote the fact that two datasets are neighbouring as S ≃ S ′. Informally, the
respective probability distributions of models produced on any two neighbouring
datasets should be similar to a degree defined by parameters (ϵ, δ). The parameters
represent the level of privacy: low ϵ and low δ mean better privacy. DP mathematically
encodes a notion of plausible deniability of the inclusion of an example in the dataset.

A special case when δ = 0 is called pure DP. In this case, we denote that an algorithm
satisfies the condition by omitting δ = 0 and simply writing it as ϵ-DP.

The definition can be thought as an upper bound on a special probability distance
between the distributions of T (S) and T (S ′). As is the case with TV distance, the
distance constrained by DP is also non-increasing under post-processing. Thus, if
an algorithm T : Dn → Θ satisfies (ϵ, δ)-DP, then for any post-processing function
π : Θ→ Rk, their composition π(T (S)) also satisfies (ϵ, δ)-DP.

There is a multitude of methods that achieve DP. Next, we present two important ones.

Output perturbation. Output perturbation [33, 148, 190] is a simple method for
achieving DP that takes an output parameter vector of a non-private training procedure,
and privatizes it by adding random noise, e.g., sampled from the isotropic Gaussian
distribution. Concretely, suppose that Tnp : Dn → Θ is a non-private learning algorithm.
Denoting its output parameters as θnp = Tnp(S), we obtain the privatized parameters
θpriv ∈ Θ as:

θpriv = θnp + ξ, where ξ ∼ N (0, σ2Id). (1.25)

The exact level of DP provided by this procedure depends on the specifics of the
non-private training algorithm Tnp(S). In particular, in order to achieve (ϵ, δ)-DP, it is
sufficient to set the noise scale as follows:

σ = C ·

√
2 log(1.25/δ)

ϵ
, (1.26)

where C ≜ maxS≃S′ ∥Tnp(S)− Tnp(S ′)∥2 is the sensitivity of the non-private training
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Algorithm 2 DP-SGD
Input: Dataset S, loss function ℓ(z; θ), initial parameters θ0, learning rate η, maximal
gradient norm C , noise parameter σ, number of steps tmax, sampling rate p
Output: Parameters of the trained model θtmax

for t = 1, . . . , tmax do
Sample mini-batch St ← Poisp(S)

gradt ← ∇θℓ(z; θt−1)
˜gradt ← 1

|St|
∑

z∈St
1/max{1, C−1·∥gradt∥2}︸ ︷︷ ︸

Gradient clipping

·gradt +N (0, σ2 C2 Id)︸ ︷︷ ︸
Gradient noise

θt ← θt−1 − η · ˜gradt

algorithm, the maximum discrepancy in terms of the L2 distance between parameter
vectors obtained by training on any two neighbouring datasets S and S ′.

Output perturbation is not commonly used in practice on its own, as adding noise
directly to the parameter vector can significantly deteriorate the error of the predictive
model [33]. It is, however, used as a building block for more complicated methods to
achieve DP.

DP-SGD. DP-SGD [1] is a standard method to achieve DP when training complex ML
models such as neural networks.

DP-SGD, given in Algorithm 2, is a modification of SGD that achieves privacy by
controlling the amount of information that is transferred from the training data to
the parameter vector at each step. First, in order to ease the analysis of the privacy
properties, the algorithm samples a mini-batch from the dataset using Poisson sampling,
that is, every example z ∈ S has the same probability p ∈ [0, 1] of being sampled into
the batch. We denote this sampling procedure as Poisp(S). Second, each gradient
vector is clipped to have a maximum L2 norm of at most a given parameter C . Third,
the algorithm adds noise sampled from an isotropic Gaussian distribution to the clipped
gradient. One can view this as an application of the output perturbation mechanism
above to each step of SGD.

1.4 Adversarial Robustness

Predictive models can operate in adversarial settings where adversaries might want
to manipulate their feature vectors x in order to obtain a desired prediction. For
instance, X could be a space of images, and fθ(·) a classifier of banned image content
used by a social-media website to screen uploaded images. Then, there could exist an
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entity—the adversary—that wants to modify x containing banned content into x∗ in
a way that does not interfere with how the image is perceived by humans, yet does
flip the classifier’s prediction fθ(x∗) in order to evade detection. In image domains,
assuming X = Rd, given a parameter vector θ and an initial example (x, y) ∈ X× Y,
such task is commonly formalized using the following optimization problem to find an
adversarial perturbation [123]:

δ∗ ∈ arg max
δ∈Rd

ℓ((x + δ, y), θ) s.t. ∥δ∥p ≤ ε. (1.27)

The adversarial example x∗ is obtained by applying the perturbation: x∗ = x + δ∗. The
parameters p and ε define in which way the adversary wants the example x∗ to be
similar to the initial x. Informally, the adversary aims to maximize the loss incurred by
x∗ while keeping x∗ within a certain distance from the initial example x. The crucial
assumption in this definition is that any small perturbation within ε distance from an
initial example (x, y) does not distort the example enough to change its semantics and
the true label y.

Let us denote the attack, i.e., an algorithm which outputs an adversarial example for
a given initial example z as Aθ(z), omitting the parameters p and ε for conciseness.
Then, we can measure robustness of a model to adversarial examples with adversarial
(or robust) error:

RA(θ) ≜ E
z∼P

[ℓ(Aθ(z); θ)]. (1.28)

In the case that Aθ((x, y)) = x + δ∗ solves Eq. (1.27) exactly, the adversarial error has
the following closed form:

RA(θ) = E
z∼P

[ max
∥δ∥p≤ε

ℓ((x + δ, y), θ)]. (1.29)

Projected gradient descent. One way to solve the optimization problem in Eq. (1.27)
is using projected gradient descent (PGD) [123], described in Algorithm 3. The algorithm
repeatedly makes steps in the direction of the gradient of the loss, followed by a
projection that ensures that the perturbation stays within the Lp constraint. Note that
the gradient is computed with respect to the perturbation and not the parameters θ as
is done in SGD. The projection operator finds the closest vector to a given input that
satisfies the Lp constraint in Eq. (1.27):

Projx,p,ε(x′) ∈ arg min
x̄∈Rd
∥x̄− x′∥2 s.t. ∥x̄− x∥p ≤ ε. (1.30)

Adversarial training. A common way to mitigate the risks posed by adversarial
examples is adversarial training [71], which means training on adversarial examples
using the initial labels. This can be formalized [123] as finding model parameters that
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Algorithm 3 PGD Attack
Input: Initial example (x, y), step size α, bound ε, number of iterations tmax
Output: Adversarial example xtmax

1: xt ← x
2: for t in 1, . . . , tmax do
3: gradt ← ∇δℓ((xt−1 + δ, y); θ)
4: xt ← Projx,p,ε(xt−1 + α · gradt)

Algorithm 4 Adversarial Training
Input: Dataset S, loss function ℓ(z; θ), initial parameters θ0, learning rate η, number
of steps tmax, mini-batch size b, attack algorithm Aθ(·)
Output: Parameters of the trained model θtmax

for t = 1, . . . , tmax do
Sample mini-batch St ← Sampleb(S)
S∗

t ← {}
for z ∈ St do

S∗
t ← S∗

t ∪ {Aθ(z)}
θt ← θt−1 − η · 1

b

∑
z∗∈S∗

t
∇θℓ(z∗; θt−1)

minimize the empirical version of adversarial error:

min
θ∈Θ

1
n

∑
(x,y)∈S

ℓ(Aθ(z); θ) (1.31)

A way to solve this optimization problem is using a modification of SGD described in
Algorithm 4. Instead of computing the loss gradients with respect to an example z ∈ S
as in standard SGD, in adversarial training the gradients are computed with respect to
adversarial examples Aθ(z) obtained, e.g., by running the PGD attack in Algorithm 3.
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Chapter 2

Privacy and Reliable Learning

This chapter is based on a peer-reviewed article entitled “What You See is What You Get:
Principled Deep Learning via Distributional Generalization” [107] by Bogdan Kulynych,
Yao-Yuan Yang, Yaodong Yu, Jarosław Błasiok, and Preetum Nakkiran, published in
2022 Advances in Neural Information Processing Systems (NeurIPS).

The concept of distributional generalization (DG) was introduced concurrently by
Nakkiran and Bansal [129] and Kulynych et al. [106]. The latter work is the basis of
Chapter 4. Although DG was not initially introduced in the paper on which the present
chapter is based, we first describe it in Section 2.2 as opposed to Chapter 4 for clarity.
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Figure 2.1: Differential privacy ensures the desired behavior of importance
sampling on test data. The train and test accuracy of ResNets on CelebA, evaluated
on the worst-performing (“male, blond”) subgroup. Left: Standard SGD has a large
generalization gap on this subgroup, and Importance Sampling (IS) has little effect.
Right: DP-SGD provably has small generalization gap on all subgroups, and IS improves
subgroup performance as intended. See Section 2.5 for details.

2.1 Introduction

Much of machine learning (ML), both in theory and in practice, operates under two
assumptions. First, we have independent and identically distributed (i.i.d.) samples.
Second, we care only about a single averaged scalar metric (error, loss, risk). Under
these assumptions, we have mature methods and theory: Modern learning methods
excel when trained on i.i.d. data to directly optimize a scalar loss, and there are
many theoretical tools for reasoning about generalization, which explain when does
optimization of a scalar on the training data translates to similar values of this scalar at
test time.

The focus on scalar metrics such as average error, however, misses many theoretically,
practically, and socially relevant aspects of model performance. For example, models
with small average error often have high error on salient minority subgroups [24, 98]. In
general, ML models are applied to the heterogeneous and long-tailed data distributions
of the real world [171]. Attempting to summarize their complex behavior with only a
single scalar misses many rich and important aspects of learning.

These issues are compounded for modern overparameterized networks, as their
nuanced test-time behavior is not reflected at training time. For example, consider
the setting of importance sampling: suppose we know that a certain subgroup of
inputs is underrepresented in the training data compared to the test distribution
(breaking the i.i.d. assumption). For underparameterized models, we can upsample
this underrepresented group to account for the distribution shift [see, e.g., 74]. This
approach, however, is known to empirically fail for overparameterized models [25].
Because “what you see” (on the training data) is not “what you get” (at test time), we
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cannot make principled train-time interventions to affect test-time behaviors. This
issue extends beyond importance sampling. For example, theoretically principled
methods for distributionally robust optimization (e.g. Namkoong and Duchi [130]) fail
for overparameterized deep networks, and require ad-hoc modifications [151].

We develop a theoretical framework which sheds light on these existing issues, and
leads to improved practical methods in privacy, fairness, and distributional robustness.
The core object in our framework is what we call the “What You See Is What You Get”
(WYSIWYG) property. A training procedure with the WYSIWYG property does not
exhibit the “pathologies” of standard stochastic gradient descent (SGD): all test-time
behaviors will be expressed on the training data as well, and there will be “no surprises”
in generalization.

What You See Is What You Get (WYSIWYG) as a Design Principle. The
WYSIWYG property is desirable for two reasons. The first is diagnostic: as there are
“no surprises” at test time, all properties of a model at test time are already evident at
the training stage. It cannot be the case, for example, that a WYSIWYG model has small
disparate impact on the training data, but large disparate impact at test time. The second
reason is algorithmic: to mitigate any unwanted test-time behavior, it is sufficient to
mitigate this behavior on the training data. This means that algorithm designers can
be concerned only with achieving desirable behavior at train time, as the WYSIWYG
property guarantees it holds at test time too. In practice, this enables the usage of many
theoretically principled algorithms which were developed in the underparameterized
regime to also apply in the modern overparameterized (deep learning) setting. For
example, we find that interventions such as importance sampling, or algorithms for
distributionally robust optimization, which fail without additional regularization, work
exactly as intended with WYSIWYG (See Fig. 2.1 for an illustration).

As WYSIWYG is a high-level conceptual property, we have to formalize it to use in
computational practice. We do so using the notion of Distributional Generalization (DG).
If classical generalization ensures that the values of the model’s loss on the training
dataset and at test time are close on average [159], distributional generalization ensures
that values of any other bounded test function—not only loss—are close on training
and test time. We say that a model which satisfies an appropriately high level of
distributional generalization exhibits the WYSIWYG property.

Achieving DG in Practice. Our key observation is that distributional generalization
is formally implied by differentially private (DP) training (see Section 1.3). The spirit of
this observation is not novel: DP training is known to satisfy much stronger notions of
generalization (e.g., robust generalization, see Section 2.6 for more details), and stability
than standard SGD [13, 44, 57, 164]. We show that a similar connection holds for the
notion of distributional generalization, and prove (and improve) tight bounds relating
DP, stability, and DG. This guarantees the WYSIWYG property for any method that is
differentially-private, including DP-SGD on deep neural networks [1].
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We demonstrate how DG can be a useful design principle in three concrete settings.
First, we show that we can mitigate disparate impact of DP training [8, 145] by
leveraging importance sampling. Second, we study the setting of distributionally robust
optimization [e.g., 86, 151]. We show how ideas from DP can be used to construct
heuristic optimizers, which do not formally satisfy DP, yet empirically exhibit DG. Our
heuristics lead to competitive results with SOTA algorithms in five datasets in the
distributional robustness setting. Third, we show that the heuristic optimizer is also
capable of reducing overfitting of adversarial loss in adversarial training [123, 147, 197].

Our Contributions. We develop the theoretical connection between Differential
Privacy (DP) and Distributional Generalization (DG), and we leverage our theory
to improve empirical performance in privacy, fairness, and robustness applications.
Theoretically (Sections 2.2 to 2.4):

1. We provide tighter bounds than previously reported connecting DP and strong
forms of generalization, and show that DP training methods satisfy DG, thus the
WYSIWYG property.

2. We introduce DP-IS-SGD, an importance-sampling version of DP-SGD, and show
it satisfies DP and DG.

Experimentally (Section 2.5):

1. We use our framework to shed light on disparate impact: The disparity in accuracy
across groups at test time is provably reflected by the accuracy disparity on the
train dataset.

2. We use our DP-IS-SGD algorithm to largely mitigate the disparate impact of DP
using importance sampling.

3. Based on our theoretical intuitions, we propose a DP-inspired heuristic: addition
of gradient noise. We find this empirically achieves competitive and even
improved results in several DRO settings, and reduces overfitting of adversarial
loss in adversarial training.

Taken together, our results emphasize the central role of the WYSIWYG property in
designing machine learning algorithms which avoid the “pathologies” of standard
SGD. We also establish DP as a useful tool for achieving WYSIWYG, thus extend its
applications further beyond privacy.
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2.2 Theory of “What You See is What You Get” Generalization

2.2 Theory of “What You See is What You Get” Gen-
eralization

We first review the notion of distributional generalization and demonstrate why it
captures the WYSIWYG property. Second, we show that strong stability notions imply
distributional generalization. Finally, we improve on the known stability guarantees of
differential privacy. As a result, we extend the connections between differential privacy,
stability, and generalization to distributional generalization, showing that stability and
privacy imply the WYSIWYG property.

2.2.1 Distributional Generalization and WYSIWYG

If on-average generalization (see Section 1.2) guarantees closeness only of loss values
on train and test data, distributional generalization (DG) also guarantees closeness of
values of all test functions ϕ(z; θ) ∈ [0, 1] beyond only loss:

Definition 2.1 (Based on Nakkiran and Bansal [129]). An algorithm T (S) satisfies
δ-distributional generalization if for all ϕ : D×Θ→ [0, 1],∣∣∣∣ E

S∼P n

z∼S

ϕ
(
z; T (S)

)
− E

S∼P n

z∼P

ϕ
(
z; T (S)

)∣∣∣∣ ≤ δ. (2.1)

By the variational form of the TV distance (see Section 1.1), Eq. (2.1) is equivalent to
the bound dTV(P1, P0) ≤ δ, where P1 and P0 are both distributions of

(
z, T (S)

)
over

the randomness of S ∼ P n and the training algorithm T (·), with the difference that
z ∼ S in the case of P1 (train), and z ∼ P in the case of P0 (test).

It might seem that DG only ensures average closeness of bounded tests on train and
test data. This is not, however, the full picture. Consider generalization in terms of a
broader class of functions:

Definition 2.2. An algorithm T (S) satisfies (δ, π)-distributional generalization if for
a given property function π : D×Θ→ Rk it holds that dTV(π♯P1, π♯P0) ≤ δ.

Because bounds on TV distance are preserved under post-processing, we can see
that δ-distributional generalization implies (δ, π)-distributional generalization for all
property functions. Informally, δ-DG means that for all numeric property functions
π(z; θ) of a model, the distributions of the property values are close on the train and
test data, on average. This fact captures the high-level idea of the “What You See is
What You Get” (WYSIWYG) guarantee. Some example property functions:
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• Subgroup loss: π(z; θ) = 1[z ∈ G] · ℓ(z; θ), for some subgroup G ∈ G.
• Counterfactual fairness: π((x, y); θ) = fθ(x′)−fθ(x), where x′ is a counterfactual
version of x had it had a different value of a sensitive attribute [109].

• Robustness to corruptions: π(z; θ) = ℓ(A(z); θ), where A(x) is a possibly ran-
domized transformation that distorts the example, e.g., by adding Gaussian
noise.

• Adversarial robustness: π(z; θ) = ℓ(Aθ(z); θ), where Aθ(z) is an adversarial
example, e.g. generated using the PGD attack (see Section 1.4).

In the next sections, we show how a training algorithm can provably satisfy DG and
therefore provide WYSIWYG guarantees for all properties, including the ones above.

2.2.2 Distributional Generalization from Stability and Differen-
tial Privacy

The connections between privacy, stability, and generalization are well-known. In
particular, stability of the learning algorithm—its non-sensitivity to limited changes in
the training data—implies generalization [20, 159]. In turn, differential privacy implies
strong forms of stability, thus ensuring generalization through the chain Privacy⇒
Stability⇒ Generalization [57, 58, 146, 178].

DP mathematically encodes a notion of plausible deniability of the inclusion of an
example in the dataset. However, it can also be thought as a strong form of stability [58].
As such, DP implies other notions of stability. We consider the following notion, which
has been studied in the literature under multiple names. In the context of privacy,
it is equivalent to (0, δ)-differential privacy, and has been called additive differential
privacy [67], and total-variation privacy [10]. In the context of learning, it has been
called total-variation (TV) stability [13]. We take this last approach and refer to it as
TV stability:

Definition 2.3 (TV Stability). An algorithm T (S) is δ-TV stable if for any two
neighbouring datasets S, S ′ of size n, for any subset V ⊆ Θ it holds that

Pr[T (S) ∈ V ] ≤ Pr[T (S ′) ∈ V ] + δ. (2.2)

Equivalently, dTV(T (S), T (S ′)) ≤ δ.

It is easy to see that (ϵ, δ)-DP immediately implies δ′-TV stability with:

δ′ = exp(ϵ)− 1 + δ. (2.3)
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Figure 2.2: DG bound from ϵ-DP.

From Classical to Distributional Generalization. Similarly to the classical
generalization, one way to achieve distributional generalization is through strong
stability:

Theorem 2.1. Suppose that the training algorithm is δ-TV stable. Then, the algorithm
satisfies δ-DG.

We refer to Appendix A.1 for the proofs of this and all other formal statements in the
rest of the chapter.

As DP implies TV-stability, by Theorem 2.1 we have that DP also implies DG. We show
that DP algorithms enjoy a significantly stronger stability guarantee than previously
known, which means that the DG guarantee that one obtains from DP is also stronger.

Proposition 2.2.1. An algorithm which is (ϵ, δ)-DP is also δ′-TV stable with:

δ′ = exp(ϵ)− 1 + 2δ

exp(ϵ) + 1 .

In Appendix B.1.2, we discuss the relationship of this result to other works in the
literature on information-theoretic generalization. In particular, to Steinke and
Zakynthinou [164] whose results can also be used to relate DP and DG. Fig. 2.2 shows
that the known bounds quickly become vacuous unlike the bound in Proposition 2.2.1.
In fact, we show that our bound is tight in Appendix A.1.

Stronger Distributional Generalization Guarantees. Although DG immediately
implies generalization for all bounded properties, it is possible to obtain tighter bounds
from TV stability. For example, directly applying DG to the subgroup loss property
yields a bound that decays with the size of the subgroup: accuracy on very small
subgroups is not guaranteed to generalize well.
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2.3 Example Applications

To demonstrate that WYSIWYG is a useful property in algorithm design, in the
remainder of this chapter we use it to construct simple and high-performing algorithms
for three example applications: mitigation of disparate impact of DP, ensuring group-
distributional robustness, and mitigation of robust overfitting in adversarial training.

Mitigating Disparate Impact of DP. First, we consider applications in which learning
presents privacy concerns, e.g., in the case that the training data contains sensitive
information. Using training procedures that satisfy DP is a standard way to guarantee
privacy in such settings. Training with DP, however, is known to incur disparate
impact on the model accuracy: some subgroups of inputs can have worse test accuracy
than others. For example, Bagdasaryan et al. [8] show that using DP-SGD—a standard
algorithm for satisfying DP [1]—in place of regular SGD causes a significant accuracy
drop on “darker skin” faces in models trained on the CelebA dataset of celebrity
faces [117], but a less severe drop on “lighter skin” faces. Our goal is to mitigate
such disparate impact. This issue—a quality-of-service harm [122]—is but one of
many possible harms due to ML systems. We do not aim to mitigate any other broad
fairness-related issues, nor claim this is possible within our framework.

For given parameters (ϵ, δ), we want to learn a model θ that simultaneously satisfies
(ϵ, δ)-DP, has high overall accuracy, and incurs small loss disparity:

max
G,G′∈G

∣∣∣∣∣ E
z∼PG

[ℓ(z; θ)]− E
z∼PG′

[ℓ(z; θ)]
∣∣∣∣∣ . (2.4)

Group-Distributional Robustness. Next, we consider a setting of group-
distributionally robust optimization [e.g., 86, 151]. If in the standard learning approach
we want to train a model that minimizes average loss, in this setting, we want to
minimize the worst-case (highest) group loss. This objective can be used to mitigate
fairness concerns such as those discussed previously, as well as to avoid learning
spurious correlations [151].

Formally, we want to learn a model θ that minimizes the worst-case group loss:

max
G∈G

E
z∼PG

[ℓ(z; θ)] . (2.5)

Unlike the previous application, in this setting, we do not require privacy of the training
data. We use training with DP as a tool to ensure the generalization of the worst-case
group loss.

Mitigating Robust Overfitting. Finally, we consider the setting of robustness to
test-time adversarial examples through adversarial training (see Section 1.4):
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E
z∼P

[ℓ(Aθ(z); θ)]. (2.6)

Rice et al. [147] observed that adversarially trained models exhibit “robust overfitting”:
higher generalization gap of robust loss than that of the regular loss. In this application,
we similarly aim to use a relaxed version of training with DP as a tool to ensure
generalization of robust loss, thus mitigate robust overfitting.

2.4 Algorithms which Distributionally Generalize

In this section, we construct algorithms for the applications in Section 2.3. Our approach
follows the blueprint: First, we apply a principled algorithmic intervention that ensures
desired behavior on the training data (e.g., importance sampling). Second, we modify
the resulting algorithm to additionally ensure DG, which guarantees that the desired
behavior generalizes to test time.

2.4.1 DP Training with Importance Sampling

Our first algorithm, DP-IS-SGD (Algorithm 5), is a version of DP-SGD [1] which
performs importance sampling. DP-IS-SGD is designed to mitigate disparate impact
while retaining DP guarantees. The standard DP-SGD samples data batches using
uniform Poisson subsampling: Each example in the training set is chosen into the batch
according to the outcome of a Bernoulli trial with probability p̄ ∈ [0, 1]. To correct for
unequal representation and the resulting disparate impact, we use non-uniform Poisson
subsampling: Each example z ∈ S has a possibly different probability p(z) of being
selected into the batch, where p(z) does not depend on the dataset S otherwise, and is
bounded: 0 ≤ p(z) ≤ p∗ ≤ 1. We denote this subsampling procedure as Poisp(·)(S).

We choose p(z) to satisfy two properties. First, to increase the sampling probability
for examples in minority groups: p(z) ∝ 1/qg(z). Second, to keep the average batch
size equal to p̄ · n as in standard DP-SGD. In the rest of the chapter, we assume that
the group probabilities (q1, . . . , qm) are known, but it is possible to estimate them in
a private way using standard methods [133]. We present DP-IS-SGD in Algorithm 5,
along with its differences to the standard DP-SGD.

DP Properties of DP-IS-SGD. Uniform Poisson subsampling is well-known to amplify
the privacy guarantees of an algorithm [32, 114]. For example, Li et al. [114] show
that if an algorithm T (S) satisfies (ϵ, δ)-DP, then T ◦ Poisp̄(S) provides approximately
(O(p̄ϵ), p̄δ)-DP for small values of ϵ. We show in Appendix A.1 that non-uniform
Poisson subsampling provides the same amplification guarantee with p̄ = p∗, where p∗

is the maximum value of p(·).
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Algorithm 5 DP-IS-SGD (DP Importance Sampling SGD)
Input: Dataset S, loss ℓ(z; θ), initial parameters θ0, learning rate η, maximal
gradient norm C , noise parameter σ, number of steps tmax, sampling rate p̄,
group probabilities (q1, . . . , qm) .
for t = 1, . . . , tmax do

Sample batch St ← Poisp(·)(S), with sampling probabilities p(z) ≜ p̄/m·qg(z)

˜gradt ← 1
|St|

∑
z∈St

1/max{1, C−1·∥∇θℓ(z;θt−1)∥2}︸ ︷︷ ︸
Gradient clipping

·∇θℓ(z; θt−1) +N (0, σ2 C2 Id)︸ ︷︷ ︸
Gradient noise

θt ← θt−1 − η · ˜gradt

The highlighted parts indicate the differences with respect to DP-SGD. We obtain DP-SGD as a special
case when we have a single group with q = 1 (implying p(z) = p̄).

As this guarantee is independent of the internal workings of T (S), it is loose. For
DP-SGD, one way of computing tight privacy guarantees of subsampling is using the
notion of Gaussian differential privacy (GDP) [51]. GDP is parameterized by a single
parameter µ. If an algorithm T (S) satisfies µ-GDP, one can efficiently compute a set
of (ϵ, δ)-DP guarantees also satisfied by T (S) [51]. We show that we can use any
GDP-based mechanism for computing the privacy guarantee of DP-SGD to obtain the
privacy guarantees of DP-IS-SGD in a black-box manner:
Proposition 2.4.1. Let us denote by µ(p̄, σ, C, T ) (see Algorithm 5) a function that
returns a µ-GDP guarantee of DP-SGD. Then, DP-IS-SGD satisfies a GDP guarantee
µ(p∗, σ, C, T ).

2.4.2 Gaussian Gradient Noise

We showed that DP-IS-SGD enjoys theoretical guarantees for both DP and DG. DP
models, however, often have lower test accuracy compared to standard training [33].
This can be an unnecessary disadvantage in settings where privacy is not required,
such as in our robustness applications. Thus, we explore training algorithms which are
inspired by our theory yet do not come with generic theoretical guarantees of DG.

Note that DP-SGD uses gradient clipping and noise (see Algorithm 5). Individually,
these are used as regularization for improving stability and generalization [79, 132].
Following this, we relax DP-IS-SGD to only use gradient noise. This sacrifices privacy
guarantees in exchange for practical performance. Specifically, we apply gradient noise
to three standard algorithms for achieving group-distributional robustness: importance
sampling (IS-SGD), importance weighting (IW-SGD) [74], and gDRO [151]. This results
in the following variations: IS-SGD-n, IW-SGD-n, gDRO-n, respectively. Similarly, we
apply gradient noise to standard PGD adversarial training [123]. See Appendix B.2 for
additional details.
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2.5 Experiments

We empirically study the distributional generalization in real-world applications.

Datasets. We use the following datasets with group annotations: CelebA [117],
UTKFace [202], iNaturalist2017 (iNat) [84], CivilComments [19], MultiNLI [151, 184],
and ADULT [100]. For every dataset, each example belongs to one group (e.g., CelebA)
or multiple groups (e.g., CivilComments). For example, in the CelebA dataset, there
are four groups: “blond male”, “male with other hair color”, “blond female”, and
“female with other hair color”. Additionally, we use the CIFAR-10 [103] dataset for
the adversarial-overfitting application. We present more details on the datasets, their
groups, and used model architectures in Appendix B.3.

2.5.1 Enforcing DG in Practice

We empirically confirm that a training procedure with DP guarantees also has a
bounded DG gap.

In practice, it is not possible to compute the exact DG gap. As a proxy in applications
which concern subgroup performance in this section, and Sections 2.5.2 and 2.5.3,
we use the difference between train-time and test-time worst-group accuracy. This
(a) follows the empirical approach by Nakkiran and Bansal [129] which proposes to
estimate the gap in Eq. (2.1) using a finite set of test functions, and (b) measures the
aspect of distributional generalization that is relevant to our applications. We provide
more details on this choice of the proxy measure in Appendix B.3.2.

We train a model on CelebA using DP-SGD for varying levels of ϵ. Fig. 2.3 shows that
the gap between training and testing worst-group accuracy increases as the level of
privacy decreases, which is consistent with our theoretical bounds.

2.5.2 Disparate Impact of Differentially Private Models

We evaluate DP-IS-SGD (Algorithm 5), and demonstrate that it can mitigate the
disparate impact in realistic settings where both privacy and fairness are required.

Fig. 2.4 shows the accuracy disparity, test accuracy, and worst-case group accuracy,
computed as in Eq. (2.4), as a function of the privacy budget ϵ. The models are trained
with DP-SGD and DP-IS-SGD. When comparing DP-SGD and DP-IS-SGD with the
same or similar ϵ, we observe that DP-IS-SGD achieves lower disparity on all datasets.
However, this comes with a drop in average accuracy. On CelebA, with ϵ ∈ [2, 12],
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Figure 2.3: Privacy induces DG. Train/test worst-case group accuracies as a function
of privacy parameter ϵ of DP-SGD on CelebA (x axis). Increasing privacy reduces the
generalization gap.
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Figure 2.4: Importance Sampling Improves Disparate Impact of DP-SGD. The
accuracy disparity of the models trained with DP-SGD and DP-IS-SGD on CelebA.
Adding importance sampling (IS) improves disparate impact at most privacy budgets in
this setting. We set δ = 1/2n, where n is the number of training examples. We use GDP
accountant to compute the privacy budget ϵ.

DP-IS-SGD has around 8 p.p. lower test accuracy than DP-SGD. At the same time, the
disparity drop ranges from 40 p.p. to 60 p.p., which is significantly higher than the
accuracy drop. We observe similar results on UTKFace. On iNat, however, although
DP-IS-SGD decreases disparity, the overall test accuracy suffers a significant hit. This
is likely because the minority subgroup is very small, which results in high maximum
sampling probability p∗, thus deteriorating the privacy guarantee. Details for UTKFace
and iNat are in Appendix B.3.3.

In summary, we find that DP-IS-SGD can achieve lower disparity at the same privacy
budget compared to standard DP-SGD, with mild impact on test accuracy.

Comparison to DP-SGD-F [192]. DP-SGD-F is a variant of DP-SGD which
dynamically adapts gradient-clipping bounds for different groups to reduce the disparate
impact. We did not manage to achieve good overall performance of DP-SGD-F on the
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2.5 Experiments

datasets above. In Appendix B.3.3, we compare it to DP-IS-SGD on the ADULT dataset
(used by Xu et al. [192]), finding that DP-IS-SGD obtains lower disparity for the same
privacy level, yet also lower overall accuracy.

2.5.3 Group-Distributionally Robust Optimization

We investigate whether our proposed versions of standard algorithms with Gaussian
gradient noise (Section 2.4.2) can improve group-distributional robustness. To do
so, we evaluate empirical DG using worst-group accuracy as a proxy for DG gap as
in Section 2.5.1, following the evaluation criteria in prior work [88, 151]. State-of-
the-art (SOTA) methods apply L2 regularization and early-stopping to achieve the
best performance. We compare three baselines with L2 regularization, IS-SGD-L2,
IW-SGD-L2, and gDRO-L2 to our noisy-gradient variations as well as DP-IS-SGD. We
use the validation set to select the best-performing regularization parameter and epoch
(for early stopping) for each method. See Appendix B.3.4 for details on the experimental
setup.

Table 2.1 shows the worst-group accuracy of each algorithm on five datasets. When
comparing IS-SGD, IW-SGD, and gDRO with their noisy counterparts, we observe that
the noisy versions in general have similar or slightly better performance compared
to non-noisy counterparts. For instance, IS-SGD-n improves the SOTA results on
CivilComments dataset. This showcases that in terms of learning distributionally
robust models, noisy gradient can be a more effective regularizer than the currently
standard L2 regularizer. We also find that DP-IS-SGD improves on baseline methods or
even achieves SOTA-competetitive performance on several datasets. For instance, on
CelebA and MNLI, DP-IS-SGD achieves better performance than IS-SGD-ℓ2. This is
surprising, as DP tends to deteriorate performance. This suggests that distributional
robustness and privacy are not incompatible goals. Moreover, DP can be a useful tool
even when privacy is not required.

2.5.4 Mitigating Robust Overfitting

As in the previous section, we expect that a modification of a standard projected gradient
descent (PGD) method for adversarial training [123] with added Gaussian gradient
noise (Section 2.4.2) improves the generalization behavior of adversarial training.

To verify this, we adversarially train models on the CIFAR-10 dataset with varying
levels of the noise magnitude. We provide more details on the setup in Appendix B.3.5.
Fig. 2.5 shows that in standard adversarial training without noise the gap between
robust training accuracy and robust test accuracy is large at approximately 30 p.p.,
which is consistent with the prior observations of Rice et al. [147]. By injecting noise
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Chapter 2. Privacy and Reliable Learning

Table 2.1: Our noisy-gradient algorithms produce competitive results compared
to counterparts with L2 regularization. The table shows the worst-group accuracy
of each algorithm. Baselines are in the top rows; our algorithms are in the bottom.
For gDRO-L2-SOTA, we show avg. ± std. over five runs from Idrissi et al. [88]. For
CelebA, we show avg. ± std. over three random splits.

CelebA UTKFace iNat. Civil. MNLI
SGD-L2 73.0 ± 2.2 86.3 41.8 57.4 67.9
IS-SGD-L2 82.4 ± 0.5 85.8 70.6 64.3 70.4
IW-SGD-L2 89.0 ± 0.9 86.5 67.6 65.7 68.1
gDRO-L2 84.5 ± 0.8 85.2 67.3 67.3 75.9
gDRO-L2-SOTA 86.9 ± 0.5 — — 69.9 ± 0.5 78.0 ± 0.3
DP-IS-SGD 86.0 ± 0.8 82.5 51.4 70.4 72.3
IS-SGD-n 84.9 ± 1.0 85.5 71.0 71.9 70.8
IW-SGD-n 88.5 ± 0.4 88.5 70.9 69.9 69.7
gDRO-n 83.3 ± 0.5 87.5 56.4 71.3 78.0

into the gradient, our proposed approach decreases the generalization gap of robust
accuracy by more than 3× to less than 10 p.p. Surprisingly, in our experiments,
training with gradient noise achieves both a small adversarial accuracy gap and better
adversarial test accuracy compared to standard adversarial training, when using a small
noise magnitude (σ = 5× 10−4). In terms of resulting robust accuracy, the method’s
performance is comparable to early stopping, identified as the most effective way to
prevent robust overfitting by Rice et al. [147]. These experimental results demonstrate
how WYSIWYG can be a useful design principle in practice.

2.6 Related Work

DP and Strong Generalization. DP is known to imply a stronger than standard
notion of generalization, called robust generalization1 [13, 44]. Robust generalization
can be thought as a high-probability counterpart of DG: generalization holds with high
probability over the train dataset, not only on average over datasets. We focus on our
notion of DG for both conceptual and theoretical simplicity. A more comprehensive
discussion of relations to robust generalization is in Appendix B.1.1. Other than
robust generalization, our connections in Section 2.2 can also be derived from weaker
generalization bounds that rely on information-theoretic measures [164]. We detail
this in Appendix B.1.2.

Disparate Impact of DP. Bagdasaryan et al. [8], Pujol et al. [145] have shown that
ensuring DP in algorithmic systems can cause error disparity across population groups.

1Unrelated to “robust overfitting” in adversarial training.
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Figure 2.5: Noisy gradient reduces overfitting in adversarial training. We show
the generalization gap of robust accuracy (left), and test-time robust accuracy (right) of
adversarially trained models with different levels of noise magnitude. The dash orange
lines represent the performance of adversarial training with early stopping. The model
trained without noise exhibits “robust overfitting” of about 30 p.p. Gradient noise
reduces the generalization gap by more than 3× for all values of the noise parameter at
a cost of decreased robust accuracy as the noise gets larger.

Xu et al. [192] proposed a variant of DP-SGD for reducing disparate impact. We
compare our method to DP-SGD-F in Appendix B.3.3. In another line of related work,
Cummings et al. [45], Sanyal et al. [154] show fundamental trade-offs between model’s
loss and DP training. As our theoretical results concern generalization, not loss per se,
our results do not contradict these theoretical trade-offs. We discuss the relationship in
detail in Appendix B.1.3.

Group-Distributional Robustness. Group-distributional robustness aims to improve
the worst-case group performance. Existing approaches include using worst-case
group loss [127, 151, 199], balancing majority and minority groups by reweighting or
subsampling [25, 88, 152], leveraging generative models [70], and applying various
regularization techniques [27, 151]. Although some work [27, 151] discusses the
importance of regularization in distributional robustness, they have not explored
potential reasons for this (e.g. via the connection to generalization). Another line of
work studies how to improve group performancewithout group annotations [41, 53, 116],
which is a different setting from ours as we assume the group annotations are known.

Robust Overfitting. Rice et al. [147], Yu et al. [196] have shown that adversarially
trained models tend to overfit in terms of robust loss. Rice et al. [147] proposed to use
regularization to mitigate overfitting, but the noisy gradient has not been explored for
this. We showed that the WYSIWYG framework can serve as an alternative direction
for mitigating and explaining this issue.
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2.7 Conclusions and Future Work

We argue that a “What You See is What You Get” property, which we formalize through
the notion of distributional generalization (DG), can be desirable for learning algorithms,
as it enables principled algorithm design in settings including deep learning. We show
that this property is possible to achieve with DP training. This enables us to leverage
advances in DP to enforce DG in many applications.

We propose enforcing DG as a general design principle, and we use it to construct
simple yet effective algorithms in three settings. In certain fairness settings, we largely
mitigate the disparate impact of differential privacy by using importance sampling
and enforcing DG in our new algorithm DP-IS-SGD. In our analysis, however, the
privacy and DG guarantees of DP-IS-SGD deteriorate in the presence of very small
groups. Future work could explore individual-level accounting [63] for a tighter
analysis. In certain worst-case generalization settings, inspired by DP-SGD, we propose
using a noisy-gradient regularizer. Compared to SOTA algorithms in DRO, noisy
gradient achieves competitive results across many standard benchmarks. In certain
adversarial-robustness settings, our proposed noisy-gradient regularizer significantly
reduces robust overfitting. An interesting direction for future work would be to explore
its effectiveness in large-scale settings, e.g., ImageNet [43]. We hope future work can
explore extending this design principle to ensure generalization of other properties,
such as calibration and counterfactual fairness.

30



Chapter 3

Privacy and Arbitrary Decisions

This chapter is based on a peer-reviewed article entitled “Arbitrary Decisions are a
Hidden Cost of Differentially Private Training” [108] by Bogdan Kulynych, Hsiang
Hsu, Carmela Troncoso, and Flavio du Pin Calmon, published in the proceedings of the
2023 ACM Conference on Fairness, Accountability, and Transparency (FAccT).
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Figure 3.1: The region of examples which exhibit high variance of decisions
(dark) across similar models grows as the privacy level increases (lower ϵ). Each
plot shows the level of decision disagreement across m = 5,000 logistic-regression
models (darker means higher disagreement) trained with varying levels of differen-
tial privacy (ϵ value, lower means more private) using the objective-perturbation
method [33]. All models attain at least 72% accuracy on the test dataset (50% is the
baseline). The disagreement value of 1.0 means that out of the m models, half output the
positive decision, whereas the other half output the negative one for a given example.
The values of disagreement are shown for different possible two-dimensional examples,
with x and y axes corresponding to the two dimensions. The markers show training
data examples belonging to two classes (denoted as × and +, respectively). Without
DP, there is a single optimal classification model. The dotted line - - shows the decision
boundary of this optimal non-private model. See Section 3.5 for details.

3.1 Introduction

In many high-stakes prediction tasks (e.g., lending, healthcare), training data used
to fit parameters of machine-learning models are privacy-sensitive. As explained in
Section 1.3, a standard technical approach to ensure privacy is to use training procedures
that satisfy differential privacy (DP) [54, 56]. DP is a formal condition that, intuitively,
guarantees a degree of plausible deniability on the inclusion of an individual sample in
the training data. In order to satisfy this condition, non-trivial differentially-private
training procedures use randomization (see, e.g., Abadi et al. [1], Chaudhuri et al. [33]).
The noisy nature of DP mechanisms is key to guarantee plausible deniability of a
record’s inclusion in the training data. Unfortunately, randomization comes at a cost:
it often leads to decreased accuracy compared to non-private training [89]. Reduced
accuracy, however, is not the only cost incurred by differentially-private training. DP
mechanisms can also increase predictive multiplicity, discussed next.

In a prediction task, there can exist multiple models that achieve comparable levels of ac-
curacy yet output drastically different predictions for the same input. This phenomenon
is known as predictive multiplicity [124], and has been documented in multiple realistic
machine-learning settings [85, 124, 182]. Predictive multiplicity can appear due to
under-specification and randomness in the model’s training procedure [17].
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3.1 Introduction

Predictive multiplicity formalizes the arbitrariness of decisions based on a model’s
output. In practice, predictive multiplicity can lead to questions such as “Why has a
model issued a negative decision on an individual’s loan application if other models with
indistinguishable accuracy would have issued a positive decision?” or “Why has a model
suggested a high dose of a medicine for an individual if other models with comparable
average accuracy would have prescribed a lower dose?” These examples highlight that
acting on predictions of a single model without regard for predictive multiplicity can
result in arbitrary decisions. Models produced by training algorithms that exhibit high
predictive multiplicity face fundamental challenges to their credibility and justifiability
in high-stakes settings [18, 59].

In this chapter, we demonstrate a fundamental connection between privacy and
predictive multiplicity: For a fixed training dataset and model class, DP training
results in models that ensure the same degree of privacy and achieve comparable
accuracy, yet assign conflicting outputs to individual inputs. DP training produces
conflicting models even when non-private training results in a single optimal model.
Thus, in addition to decreased accuracy, DP-ensuring training methods also incur an
arbitrariness cost by exacerbating predictive multiplicity. We show that the degree of
predictive multiplicity varies significantly across individuals and can disproportionately
impact certain population groups. Fig. 3.1 illustrates the predictive-multiplicity cost of
DP training in a simple synthetic scenario (see Section 3.5 for examples on real-world
datasets).

Our main contributions are:

1. We provide the first analysis of the predictive-multiplicity cost of differentially-
private training.

2. We analyze a method for estimating the predictive-multiplicity properties of
randomized machine-learning algorithms using re-training. We derive the first
bound on the sample complexity of estimating predictive multiplicity with
this approach. Our bound enables practitioners to determine the number of
re-trainings required to estimate the predictive-multiplicity cost of randomized
training algorithms up to a desired level of accuracy.

3. We conduct a theoretical analysis of the predictive-multiplicity cost of the output
perturbation mechanism [33] used to obtain a differentially-private logistic-
regression model. We characterize the exact dependence of predictive multiplicity
on the level of privacy for this method.

4. We conduct an empirical study of predictive multiplicity of two practical DP-
ensuring learning algorithms: DP-SGD [1] and objective perturbation [33].
We use one synthetic dataset and five real-world datasets in the domains of
finance, healthcare, and image classification. Our results confirm that, for these
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mechanisms, increasing the level of privacy invariably increases the level of
predictive multiplicity. Moreover, we find that different examples exhibit different
levels of predictive multiplicity. In particular, different demographic groups can
have different average levels of predictive multiplicity.

In summary, the level of privacy in DP training significantly impacts the level of
predictive multiplicity. This, in turn, means that decisions supported by differentially-
private models can have an increased level of arbitrariness: a given decision would
have been different had we used a different random seed in training, even when all
other aspects of training are kept fixed and the optimal non-private model is unique.
Before deploying DP-ensuring models in high-stakes situations, we suggest that
practitioners quantify predictive multiplicity of these models over salient populations
and—if possible to do so without violating privacy—measure predictive multiplicity
of individual decisions during model operation. Such audits can help practitioners
evaluate whether the increase in privacy threatens the justifiability of decisions, choose
whether to enact a decision based on a model’s output, and determine whether to
deploy a model in the first place.

3.2 Technical Background

3.2.1 Problem Setup and Notation

We study randomized training algorithms T : Dn → Θ, which produce a parameter
vector of a binary classifier in a randomized way. Thus, given a training dataset,
T (S) is a random variable. We denote by PT (S) the model distribution, the probability
distribution over Θ generated by the random variable T (S).

In general, the source of randomness in the training procedure could include, e.g.,
random initializations of θ prior to training. However, we consider only those sources
which are introduced by the privacy-preserving techniques, as we explain in the next
section. Throughout this chapter, the datasets, as well as any input example x ∈ X,
are not random variables but fixed values. The only randomness we consider in our
notation is due to the internal randomization of the training procedure T (·).

For instance, denoting by T (S) = Tnp(S) + ξ the output-perturbation procedure in
Eq. (1.25), we treat T (S) as a random variable over the randomness of the injected noise
ξ. Other methods to achieve DP such as objective perturbation [33] also inject noise
as part of training. In those cases, we similarly consider T (S) as a random variable
over such injected noise, and treat all other aspects of training such as pre-training
initialization as fixed.
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3.2 Technical Background

3.2.2 Predictive Multiplicity

Predictive multiplicity occurs when multiple classification models achieve comparable
average accuracy yet produce conflicting predictions on a given example [124]. To
quantify predictivemultiplicity in randomized training, we need tomeasure dissimilarity
of predictions among themodels sampled from the probability distributionPT (S) induced
by differentially-private training. For this, we use a definition of disagreement which
has appeared in different forms in [18, 59, 124].

Definition 3.1 (Disagreement). For a given fixed input example x ∈ X, we define the
disagreement µ(x) as:

µ(x) ≜ 2 Pr
θ,θ′∼PT (S)

[fθ(x) ̸= fθ′(x)]. (3.1)

In the above definition, θ, θ′ ∼ PT (S) denotes two models sampled independently from
PT (S). We use a scaling factor of two in order to ensure that µ(x) is in the [0, 1]
range for the ease of interpretation. A disagreement value µ(x) ≈ 1 indicates that
the prediction for x is approximately equal to an unbiased coin flip. Moreover, a
disagreement µ(x) ≈ 0 implies that, with high probability, the prediction for x does
not significantly change if two models are independently sampled from PT (S) (i.e., by
re-training a model twice with different random seeds).

In the literature, a commonly studied source of variance of outcomes of training
algorithms is from re-sampling of the dataset S, usually under the assumption that it is
an i.i.d. sample from some data distribution. We do not study variance arising from
dataset re-sampling, and are only interested in the predictive-multiplicity properties of
the randomized training procedure T (·) itself. Thus, we fix both the dataset S used
in training and the input example x for which we compute the level of predictive
multiplicity, and make sure that the randomness is only due to internal randomization
of the training procedure T (·).

When evaluating dissimilarity across models, many prior works that study predictive
multiplicity (e.g., [85, 124, 157, 182]) only consider models that surpass a certain
accuracy threshold. Although conditioning on model accuracy is theoretically valid,
it can bring about confusion in the context of private learning, as in practice such
conditioning would demand special mechanisms in order to satisfy DP (see, e.g., [136]).
In particular, first applying a DP training method that guarantees an (ϵ, δ)-level of
privacy, and then selecting or discarding the resulting model based on accuracy, would
result in models that violate the initial (ϵ, δ)-DP guarantees. We note, however, that our
results and experiments involving estimation of predictive multiplicity in Sections 3.4
and 3.5 extend to the case in which we add additional conditioning on top of model
distribution PT (S) to control for accuracy.
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Figure 3.2: The noise scale in output perturbation mechanisms increases
predictive multiplicity for examples which do not attain high non-private
prediction confidence. On the left, the x axis shows the noise scale used for
output perturbation (higher values of σ correspond to better privacy). The noise
scale corresponds to different levels of privacy depending on the sensitivity of the
non-private training algorithm and the δ parameter (see Section 1.3). On the right, the
x axis (logarithmic scale) shows a possible level of privacy ϵ for δ = 10−5, assuming
that the non-private training algorithm has sensitivity of C = 0.2. The y axis shows
the hypothetical prediction confidence for a given example. The color intensity shows
the level of disagreement (darker means higher disagreement).

Before proceeding with our analyses of disagreement, we first state a simple yet useful
relation between disagreement and statistical variance. Observe that for a given input
x, the output prediction fθ(x) is a random variable over the randomness of the training
procedure θ ∼ PT (S). As we assume that the decisions are binary, and training runs are
independent, we have that fθ(x) ∼ Bernoulli(px) for some input-specific parameter
px. Having noted this fact, we show that disagreement, defined in Eq. (3.1), can be
expressed as a continuous transformation of px:

Proposition 3.2.1. For binary classifiers, disagreement for a given example x ∈ X is
proportional to variance of decisions over the distribution of models generated by the
training algorithm:

µ(x) = 4 Varθ∼PT (S)(fθ(x)) = 4px (1− px). (3.2)

We provide the proof of this and all the following formal statements in Appendix A.2.
Additionally, in Appendix C.2, we provide an analysis using an alternative measure of
predictive multiplicity.
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3.3 Predictive Multiplicity of Output Perturbation

3.3 Predictive Multiplicity of Output Perturbation

To demonstrate how DP training can lead to an increase in predictive multiplicity, we
theoretically analyze the multiplicity properties of the output-perturbation mechanism
described in Section 1.3.

Following Chaudhuri et al. [33] and Wu et al. [190], we study the case of logistic
regression. In a logistic-regression model parameterized by vector θ ∈ Rd, we compute
the confidence score for an input x ∈ X ⊆ Rd as hθ(x) = sigmoid(θ⊺x), where

sigmoid(t) ≜ 1
1 + exp(−t) . (3.3)

Recall that the classifier’s prediction is obtained by applying a threshold to the
confidence score by Eq. (1.13), in this case as fθ(x) = 1[sigmoid(θ⊺x) > 0.5]. Note that
the quantity θ⊺x is interchangeable with confidence, as one can be obtained from the
other using an invertible transformation. We show the exact relationship between
disagreement and the scale of noise σ in this setting:

Proposition 3.3.1. Let θnp = Tnp(S) be a non-private parameter vector of a logistic-
regression model. Suppose that the privatized θpriv is obtained using Gaussian noise of
scale σ as in Eq. (1.25). Then, the disagreement of a private logistic-regression model
parameterized by θpriv is:

µ(x) = 4 px(1− px),where px = Φ
(

θ⊺np x

∥x∥ · σ

)
. (3.4)

We visualize the relationship in Fig. 3.2, assuming the input space is normalized so
that ∥x∥ = 1. There are two main takeaways from this result. First, disagreement is
high when the level of privacy is high. Second, the level of multiplicity is unevenly
distributed across input examples. This is because the exact relationship between
multiplicity and privacy also depends on the confidence of the non-private model,
θ⊺np x, with lower-confidence examples generally having higher multiplicity in this
setting. We note that, in this illustration, the simple relationship between confidence
and predictive multiplicity is an artifact of normalized features, i.e., ∥x∥ = 1. In general,
examples with high-confidence predictions can display high predictive multiplicity
after DP-ensuring training, as illustrated in Section 3.5.2.

Other methods for DP training, such as gradient perturbation [1], are not as straight-
forward to analyze theoretically. In the next sections, we study predictive multiplicity
of these algorithms using a Monte-Carlo method.

37



Chapter 3. Privacy and Arbitrary Decisions

3.4 Measuring Predictive Multiplicity of Randomized
Algorithms

Theoretically characterizing predictive multiplicity of DP algorithms beyond the output-
perturbation mechanism and for more complex model classes is a challenging problem
(see, e.g. [85, Section 4]). For instance, the accuracy and generalization behavior of the
DP-SGD algorithm [1] used for DP training of neural networks is an active area of
research (e.g., [176]). Even in simpler model classes, where training amounts to solving
a convex optimization problem (e.g., support vector machines), DP mechanisms such
as objective perturbation [33] display a complex interplay between privacy, accuracy,
and distortion of model parameters.

For these theoretically intractable cases, we adopt a simple Monte-Carlo strategy [17, 59]:
Train multiple models on the same dataset with different randomization seeds, and
compute statistics of the outputs of these models. Note that this procedure does not
preserve differential privacy, which we discuss in more detail in Section 3.7.2.

In this section, we formalize this simple and intuitive approach, and provide the first
sample complexity bound for estimating predictive multiplicity. Our bound has a
closed-form expression, so a practitioner can use it to determine how many re-trainings
are required to estimate predictive multiplicity up to a given approximation error.

At first, re-trainingmight appear as a blunt approach for analyzing predictivemultiplicity
in DP. Our results indicate that this is not the case. Surprisingly, we prove that, if
one wants to estimate disagreement in Eq. (3.1) for k input examples, the number
of required re-trainings increases logarithmically in k. This result demonstrates that
re-training can be an effective strategy to estimate predictive multiplicity regardless of
the intricacies of a specific DP mechanism, and that a moderate number of re-trainings
is sufficient to estimate disagreement for a large number of examples.

Recall that, according to Proposition 3.2.1, disagreement of an example x is proportional
to the variance of outputs within the model distribution PT (S). We use this connection
to provide an unbiased estimator for disagreement.

Proposition 3.4.1. Suppose we have m models sampled from the model distribution:
θ1, θ2, . . . , θm ∼ PT (S). Then, the following expression is an unbiased estimator for
disagreement µ(x) for a single example x ∈ X:

µ̂(x) ≜ 4 m

m− 1 p̂x(1− p̂x), (3.5)

where p̂x = 1
m

∑m
i=1 fθi

(x) is the sample mean of fθ(x).

How many models θ1, θ2, . . . , θm do we need to sample in order to estimate disagree-
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ment? To answer this, we provide an upper bound on estimation accuracy given the
number of samples from the model distribution, as well as a bound on the number of
samples required for a given level of estimation accuracy.

Proposition 3.4.2. Formmodels sampled from themodel distribution, θ1, θ2, . . . , θm ∼
PT (S), with probability at least 1 − ρ, for ρ ∈ (0, 1] the additive estimation error
α ≜ |µ̂(x)− µ(x)| satisfies:

α ≤ 1
(m− 1) + 4 m

m− 1

√
log(2/ρ)

2m

1 +
√

log(2/ρ)
2m

 . (3.6)

For example, this bound yields that 5,000 re-trainings result in the estimation error
of at most 0.08 with probability 95%. In Appendix A.2.2, we provide a closed-form
expression for computing the number of samples m required to achieve a given error
level α. We also provide a visualization of the bound in Fig. C.3a (Appendix).

In practice, one might need to estimate disagreement for multiple examples, e.g.,
to compute average disagreement over a test dataset. When doing so naively, the
re-training costs could mount to infeasible levels if we assume that each estimation
requires the same number of models, m, for each input example. In contrast, we show
that in such cases sample complexity grows only logarithmically.

Proposition 3.4.3. Let x1, x2, . . . , xk ∈ X. If θ1, θ2, . . . , θm ∼ PT (S) are i.i.d. samples
from the model distribution, then with probability at least 1 − ρ, for ρ ∈ (0, 1] the
maximum additive error satisfies:

max
j∈1,...,k

|µ(xj)− µ̂(xj)| ≤
1

(m− 1)+

+ 4m

m− 1

√
log(2k/ρ)

2m

1 +
√

log(2k/ρ)
2m

 .

(3.7)

This positive result shows that auditing models for predictive multiplicity for large
populations and datasets is practical, as the sample complexity grows slowly in the
number of examples.

3.5 Empirical Studies

In this section, we empirically explore the predictive multiplicity of DP algorithms. We
use a low-dimensional synthetic dataset in order to visualize the level of multiplicity
across the input space. To study predictive-multiplicity effects in realistic settings, we
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use real-world tabular datasets representative of high-stakes domains, namely lending
and healthcare, and one image dataset.

3.5.1 Experimental Setup

Datasets and Tasks. We use the following datasets:

• A Synthetic dataset containing data belonging to two classes with class-
conditional distributions X0 ∼ N (µ0, Σ0) and X1 ∼ N (µ1, Σ1), respectively.
We set the distribution parameters to be:

µ0 = [1, 1], Σ0 =
(

1 1/2
1/2 1

)
,

µ1 = [−1,−1], Σ1 =
(

1 1/10
1/10 1

)
.

(3.8)

The classes in this synthetic dataset are well-separable by a linear model (see
Fig. 3.1)

• Credit Approval tabular dataset (Credit). The task is to predict whether a credit
card application should be approved or rejected based on several attributes which
describe the application and the applicant.

• Contraceptive Method Choice tabular dataset (Contraception) based on 1987
National Indonesia Contraceptive Prevalence Survey. The task is to predict the
choice of a contraception method based on demographic and socio-economic
characteristics of a married couple.

• Mammographic Mass tabular dataset (Mammography) collected at the Institute
of Radiology of the University Erlangen-Nuremberg in 2003 – 2006. The task
is to predict whether a screened tumor is malignant or benign based on several
clinical attributes.

• Dermatology tabular dataset. The task is to predict a dermatological disease
based on a set of clinical and histopathological attributes.

• CIFAR-10 [103], an image dataset of pictures labeled as one of ten classes. The
task is to predict the class.

We take the realistic tabular datasets (Credit, Contraception, Mammography, and
Dermatology) from the University of California Irvine Machine Learning (UCIML)
dataset repository [52]. We provide a summary of the dataset characteristics in Table 3.1.
In Appendix C.2, we provide additional details about processing of the datasets.
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Table 3.1: Summary of datasets used in our experimental evaluations.

Dataset Size Number of features Train size Test size
Synthetic ∞ 2 2000 20,000
Credit 653 46 489 164
Contraception 1,473 9 1,104 369
Mammography 830 5 622 208
Dermatology 358 34 268 90
CIFAR-10 60,000 32× 32× 3 50,000 10,000

For the synthetic dataset, we obtain the training dataset by sampling 1,000 examples
from each of the distributions. In order to have precise estimates of population accuracy,
we sample a larger test dataset of 20,000 examples. For tabular datasets, we use a
random 75% subset for training, and use the rest as a held-out test dataset for model
evaluations. For CIFAR-10, we use the default 50K/10K train-test split.

Models and training algorithms. For the synthetic and tabular datasets, we use
logistic regression with objective perturbation [33]. For the image dataset, we train a
convolutional neural network on ScatterNet features [134] using DP-SGD [1], following
the approach by Tramer and Boneh [169]. We provide more details in Appendix C.2.

Metrics. The goal of our experiments is to quantify predictive multiplicity and explain
the factors which impact it. For all settings, we measure disagreement to capture the
dissimilarity of predictions, and predictive performance of the models to quantify the
effect of performance on multiplicity. Concretely, we measure:

• Disagreement for examples on a test dataset, computed using the unbiased
estimator in Section 3.4. As this disagreement metric is tailored to binary
classification, we use a special procedure for the ten-class task on CIFAR-10: we
treat each multi-class classifier as ten binary classifiers, and we report average
disagreement across those ten per-class classifiers. Additionally, in Appendix C.2,
we also report predictive multiplicity in terms of confidence scores instead of
predictions following the recent approach by Watson-Daniels et al. [182].

• Performance on a test dataset. For tabular datasets, we report the standard area
under the ROC Curve (AUC for short). For CIFAR-10, we report accuracy.

Experiment outline. For a given dataset and a value of the privacy parameter ϵ, we
train multiple models on exactly the same data with different randomization seeds.

For the synthetic and tabular datasets, we use several values of ϵ between 0.5 (which
provides a good guaranteed level of privacy [see, e.g. 189, Section 4]) and 2.5, with
δ = 0. For each value of ϵ we train m = 5,000 models. For CIFAR-10, we train
m = 50 neural-network models because of computational constraints. We use DP-SGD
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parameters that provide privacy guarantees from ϵ ≈ 2 to ϵ ≈ 7 at the standard choice
of δ = 10−5.

3.5.2 Predictive Multiplicity and Privacy

First, we empirically study how multiplicity evolves with increasing privacy. In
Fig. 3.1, we visualize the two-dimensional synthetic examples and their disagreement
for different privacy levels. As privacy increases, so do the areas for which model
decisions exhibit high disagreement (darker areas). Although the regions with higher
disagreement correlate with model confidence and accuracy, the level of privacy
contributes significantly. For instance, some points which are relatively far from the
decision boundary, which means they are confidently classified as either class, can
nevertheless have high predictive multiplicity.

Fig. 3.3 shows the experimental results for our tabular datasets and CIFAR-10. On the
left side, we show the relationship between the privacy level and performance. On the
right, between the privacy level and disagreement. As with the theoretical analysis and
the results on synthetic data, we can clearly see that models with higher level of privacy
(low ϵ) invariably exhibit higher predictive multiplicity. Notably, even for datasets
such as Mammography and CIFAR-10 for which average disagreement is relatively low,
there exist examples whose disagreement is 100%. See Table C.1 in the Appendix for
detailed information on the distribution of the disagreement values across the test data.

Implications. The increase in the privacy level results in making more decisions
which are partially or fully explained by randomness in training. Let us give an
example with a concrete data record from the Mammography dataset representing a
56-year-old patient labeled as having a malignant tumor. Classifiers with low level of
privacy ϵ = 2.5 predict the correct malignant class for this individual most of the time
(approx. 55% disagreement). If we set the level of privacy to the high ϵ = 0.5, this
record is classified close to 42% of the time as benign, and 58% of the time as malignant
(approx. 97% disagreement). Thus, if one were to use a model with the high level of
privacy to inform treatment of this patient, the model’s decision would have been close
in its utility to a coin flip.

3.5.3 What Causes the Increase in Predictive Multiplicity?

In the previous section, we showed that the increase in privacy causes an increase
in predictive multiplicity. It is not clear, however, what is the exact mechanism
through which DP impacts predictive multiplicity. Hypothetically, the contribution to
multiplicity could be through two pathways:
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Figure 3.3: Increasing the level of privacy increases the level of predictive
multiplicity in real-world datasets. For all plots, the x axis shows the level of
privacy (ϵ, lower value is more privacy). The plots on the left shows the performance
level (AUC for tabular datasets, and accuracy for CIFAR-10). The error bands/bars on
the left side are 95% confidence intervals (CI) over the models in the model distribution.
The plots on the right show the degree of disagreement across m = 5,000 models in the
case of tabular datasets, and across m = 50 models in the case of CIFAR-10. The error
bands/bars on the right side are 95% CI over the examples in a test dataset. Although
average disagreement might be relatively low for some datasets such as Mammography
and CIFAR-10, there exist examples for which disagreement is 100% (see Table C.1 in
the Appendix).
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Figure 3.4: Models achieving a similar level of accuracy can have different levels
of predictive multiplicity. The plot shows the top 5% percentile of disagreement on
the synthetic test dataset for all models which attain at least certain level of accuracy,
for different values of the privacy parameter (ϵ, lower value is more privacy). The x
axis shows the deviation of accuracy from that of an optimal non-private model, with 0
being equal to the accuracy of the optimal non-private model. As even such a small
decrease in accuracy as 0.01 can see disagreement rise from 0 to 0.8 for some examples,
this result suggests that the change in the level of privacy on its own can cause a big
change in disagreement.

(1) Direct: The increase in predictive multiplicity is the result of the variability in the
learning process stemming from randomization, regardless of the performance
decrease.

(2) Indirect: The increase in predictive multiplicity is the result of the decrease in
performance.

These two options are not mutually exclusive, and it is possible that both play a role.
In both cases, the desire for a given level of privacy—which determines the degree
of randomization added during training—is ultimately the cause of the increase in
multiplicity. Nevertheless, how randomization contributes to the increase has practical
implications: If our results are explained by pathway (2), we should be able to reduce
the impact of privacy on predictive multiplicity by designing algorithms which achieve
better accuracy at the same privacy level.

For output perturbation, our analysis in Section 3.3 shows that multiplicity is directly
caused by randomization—pathway (1)—as only the privacy level, confidence, and the
norm of a predicted example impact disagreement. Therefore, performance does not
have a direct impact on predictive multiplicity in output perturbation.
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In Fig. 3.4, to quantify the impact of performance on predictive multiplicity for the
case of objective perturbation, we show the top 5% disagreement values for varying
levels of accuracy on the synthetic dataset. We use the synthetic dataset to ensure
that test accuracy estimates are reliable, as we have a large test dataset in this case.
We see that, for a given level of accuracy, different privacy parameters can result in
different disagreement. This suggests that randomization caused by DP training can
have a direct effect on predictive multiplicity, so we observe pathway (1).

Implications. This observation indicates that there exist cases for which improving
accuracy of a DP-ensuring algorithm at a given privacy level will not necessarily lower
predictive multiplicity.

3.5.4 Disparities in Predictive Multiplicity

The visualizations in Fig. 3.1 show that different examples can exhibit highly varying
levels of predictive multiplicity. This observation holds for real-world datasets too.
Fig. 3.5a shows the distributions of the disagreement values across the population of
examples in the test data for tabular datasets. For example, for lower privacy levels (high
ϵ) on the Contraception dataset, there are groups of individuals with different values of
predictive multiplicity. As the level of privacy increases (low ϵ), the disagreement tends
to concentrate around 1, with decisions for a majority of examples largely explained by
randomness in training.

Next, we verify if the differences in the level of disagreement also exist across
demographic groups. In Fig. 3.5b, we show average disagreement across points from
three different age groups in the Contraception dataset. As before, for low levels of
privacy (high ϵ) we see more disparity in disagreement. The disparities even out as we
increase the privacy level (low ϵ), with groups having average disagreement closer to
1. Thus, disagreement is not only unevenly distributed across individuals, but across
salient demographic groups.

Implications. As some groups and individuals can have higher predictive multiplicity
than others, evaluations of training algorithms in terms of their predictive multiplicity
must account for such disparities. For instance, our experiments on the Contraception
dataset (in Fig. 3.5b) show that, for different privacy levels, decisions for individuals in
the 16–30 age bracket exhibit higher predictive multiplicity than of patients between
30 and 40 years old. Predictions for individuals under 30, therefore, systematically
exhibit more dependence on randomness in training than on the relevant features for
prediction. This highlights the need to conduct disaggregated evaluations as opposed
to only evaluating average disagreement on whole datasets.
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Figure 3.5: The level of predictive multiplicity varies from one example to
another, and across population groups. As the level of privacy grows, more
predictions exhibit similarly high disagreement.
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3.6 Related Work

Rashomon Effect and Predictive Multiplicity. The Rashomon effect, observed
and termed by Breiman [21], describes the phenomenon where a multitude of distinct
models achieve similar average loss. The Rashomon effect occurs even for simple
models such as linear regression, decision trees, and shallow neural networks [7]. When
no privacy constraints are present, predictive multiplicity can be viewed as a facet of
the Rashomon effect in classification tasks, where similarly-accurate models produce
conflicting outputs. One of the main challenges in studying predictive multiplicity
is measuring it. Semenova et al. [157] proposed the Rashomon ratio to measure the
Rashomon effect and used a Monte Carlo technique to sample decision tree models
for estimation. Marx et al. [124] quantified predictive multiplicity using optimization
formulations to find the worst-case disagreement among all candidate models while
controlling for accuracy. Recently, Hsu and Calmon [85], Watson-Daniels et al. [182]
proposed other metrics for quantifying predictive multiplicity: Rashomon capacity and
viable prediction range. Black et al. [18] proposed measures of predictive multiplicity
which are applicable to randomized learning. Our Proposition 3.4.3 complements the
prior work by providing a closed-form expression for sample complexity of estimating
predictive multiplicity which arises due to randomness in training.

Side Effects of Differential Privacy. To the best of our knowledge, our work is
the first one to study the properties of DP training in terms of predictive multiplicity.
Multiple works, however, have studied other unintended consequences of private
learning. In particular, a number of works [8, 66, 154] show that DP training comes
at a cost of decreased performance for groups which are under-represented in the
data. Relatedly, Cummings et al. [45] show that DP training is incompatible with some
notions of algorithmic fairness.

3.7 Discussion

Our theoretical and empirical results show that training with DP and, more broadly,
applying randomization in training increases predictive multiplicity. We demonstrated
that higher privacy levels result in higher multiplicity. If a training algorithm exhibits
high predictive multiplicity for a given input example, the decisions supported by a
model’s output for this example lose their justifiability: these decisions depend on
the randomness used in training rather than on relevant properties or features of
this example. The connection between privacy in learning and decision arbitrariness
might not be obvious to practitioners. This lack of awareness is potentially damaging
in high-stakes settings (e.g., medical diagnostics, lending, education), where deci-
sions of significant—and potentially life-changing—consequence could be significantly
influenced by randomness used to ensure privacy.
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In this concluding section, we discuss whether predictive multiplicity is indeed a valid
concern for DP-ensuring algorithms, and outline a path forward.

3.7.1 Can the Increase in Predictive Multiplicity be Beneficial?

Despite the harms of arbitrariness, one might argue that multiplicity can, in some cases,
be beneficial.

Opportunities for satisfying desirable properties beyond accuracy? Black
et al. [18] and Semenova et al. [157] argue that multiplicity presents a valuable
opportunity. In non-private training, the existence of many models that achieve
comparable accuracy creates an opportunity for selecting a model which satisfies both
an acceptable accuracy level and other useful properties beyond performance, such as
fairness [40], interpretability [64], or generalizability [157]. In order to leverage this
opportunity, one needs to deliberately steer training towards the model which satisfies
desirable properties beyond accuracy, or search the “Rashomon set” of good models
[64]. However, with randomization alone (e.g., adding Gaussian noise to gradients in
training), model designers cannot steer training without compromising DP guarantees,
and can only arrive at a model which satisfies additional desirable properties by chance.
Thus, this positive side of the multiplicity phenomenon is not necessarily present in
DP-ensuring training.

It is an open problem to find whether specially-crafted noise distributions or post-
processing techniques could be designed to provide the same level of privacy as the
standard approaches, and at the same time attain additional useful properties such as
algorithmic fairness.

Predictive multiplicity is individually fair? Individual fairness [55] is a formal-
ization of the “treat like alike” principle: an individually fair classifier makes similar
decisions for individuals who are thought to be similar. A way to formally satisfy
individual fairness is, in fact, through randomization of decisions. This could lead to an
argument that predictive multiplicity is individually fair. For instance, suppose that a
predictive model used to assist with hiring decisions is applied to several individuals
who are all equally qualified to get the job. Consider two possible decision rules for
selecting the candidate to hire with different multiplicity levels. The first rule has high
multiplicity: produce a random decision. The second rule has low multiplicity: select a
candidate based on lexicographic order. As the second decision rule results in a breach
of individual fairness and, possibly, a systemic exclusion of some candidates, the first
rule with high multiplicity seems preferable.

This argument, however, only holds if there is randomness at the prediction stage. This
is not the case for standard DP-ensuring algorithms such as the ones we study. DP
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training produces one deterministic classifier that is used for all predictions. Thus,
once training is done, there is no randomization of decisions as in the example above.
Thus, the decisions due to such DP-ensuring models are no different than arbitrary
rules such as selection based on lexicographic ordering.

Overcoming the algorithmic Leviathan? Creel and Hellman [42] consider a setting
where different decision-making systems which have high impact on an individual’s
livelihood, e.g., credit scoring systems from competing bureaus in the USA [39], are
trained in ways that lead to all of them outputting the same decisions. This algorithmic
monoculture would completely remove the possibility of accessing resources for some
individuals, as turning to a competing decision-maker would not change the outcome.
In this case, Creel and Hellman argue that high predictive multiplicity could be a
desirable property as it enables to access resources across the decision-makers.

In some high-stakes settings, such as healthcare, an algorithmic monoculture might
not pose a concern. Indeed, one would wish that predictive models used as a part of a
diagnostic procedure for a disease output a consistent decision so that patients can be
treated (or not treated) as needed. In this scenario, in fact, predictive multiplicity could
potentially harm patients by either delaying a patient’s treatment, or recommending a
treatment when the patient is healthy. In such settings, the positive impact of predictive
multiplicity in avoiding an algorithmic Leviathan loses meaning.

Regardless of whether algorithmic monoculture is a legitimate concern or not for a
given application, it is helpful for model designers and decision subjects to be informed
of the level of predictive multiplicity, whether to gauge the likelihood of recourse, or
brace for the arbitrariness of decisions.

3.7.2 Open Problems

Reporting mutiplicity. Potential mitigations of the harms of predictive multiplicity
could be to abstain from outputting a prediction with high multiplicity, or to communi-
cate the magnitude of multiplicity to the stakeholders. Doing so is challenging: any
sort of communication of disagreement values could partially reveal information about
the privacy-sensitive training data and break DP guarantees. Consider, as before, the
setting of using a predictive model to assist in a medical diagnosis. Whether a model
abstains from predictions or outputs them along with disagreement estimates, there
is a certain amount of information leakage about the training data to doctors. If the
disagreement estimates are computed on privacy-sensitive data and are used without
appropriate privatization—whether published or used to decide on abstention—they
can reveal information about the data. To address this issue, one could use privacy-
preserving technologies such as DP to abstain from making a prediction based on a
high disagreement value or report the disagreement estimate in a privacy-preserving
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way. Studying whether effective privatization of disagreement computations is possible
is an open problem for future work.

General characterization of the predictive-multiplicity costs of DP. We have the-
oretically characterized the predictive-multiplicity behavior of the output-perturbation
mechanism as applied to logistic regression. Doing so for other mechanisms and model
families is a non-trivial undertaking. In this work, we resort to empirical measurement
with re-training. An open problem is finding whether we can characterize these
behaviors for a wider range of model families, mechanisms, or even for any general
mechanism which satisfies DP.

3.7.3 Recommendations Moving Forward

As discussed in the previous sections, existing techniques do not enable model designers
to eliminate, or even mitigate, the implications of predictive multiplicity when using
DP-ensuring models. We have pointed out which open problems would need to
be solved in order to reduce the impact of predictive multiplicity in high-stakes
privacy-sensitive scenarios. Until DP mechanisms that mitigate multiplicity become
available, the negative effects of multiplicity can only be countered by auditing for
multiplicity prior to deployment. Therefore, in order to understand the impact of
privacy on the justifiability of model decisions, model designers should directly measure
predictive multiplicity when using DP training, e.g., using the methods we introduce
in Section 3.4. If at the desired level of privacy the training algorithm exhibits high
predictive multiplicity (either in general or for certain populations), model designers
should carefully consider whether the use of such models is justified in the first place.

50



Chapter 4

Unequal Access to Privacy

This chapter is based on a peer-reviewed article entitled “Disparate Vulnerability
to Membership Inference Attacks” [106] by Bogdan Kulynych, Mohammad Yaghini,
Giovanni Cherubin, Michael Veale, and Carmela Troncoso, published in the 2022
Proceedings on Privacy Enhancing Technologies (PoPETS).

As detailed in Chapter 2, the concept of distributional generalization (DG) was initially
introduced in the article on which the present chapter is based. In this thesis, however,
the concept is introduced in Chapter 2 for clarity of exposition.
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4.1 Introduction

Membership Inference Attacks (MIAs), in which an adversary aims to determine
whether an example is part of the training set, are one of the main privacy attacks
against machine-learning (ML) models. Since they were first described in the context
of ML [161], many works have studied the potential of these attacks under diverse
circumstances [90, 119, 131], aswell as the causes and limits of these attacks [62, 112, 194].
In both empirical and theoretical approaches researchers focus on the average MIA
success across examples. However, there is empirical evidence that the vulnerability to
MIAs is not always evenly distributed: it can differ across target classes [161], it can be
more effective against some individuals [119], and it can vary across subgroups [31].
These results imply that average-based studies can overestimate the privacy for some
individuals [61].

In this chapter, we present the first theoretical analysis of the disparate vulnerability
to MIAs across populations and subgroups. Our contributions encompass several
key aspects. First, we introduce a novel characterization of vulnerability to MIAs,
establishing a necessary and sufficient condition for these attacks to succeed. We
find out that such necessary and sufficient condition is, in fact, poor distributional
generalization, described in Chapter 2. Specifically, vulnerability arises when the
distribution of a model’s properties, such as loss or outputs, differs between examples
from the training dataset and those outside it.

We extend this analysis to explore disparate vulnerability across subgroups, introducing
the first formal examination of this phenomenon. We provide insights into necessary
and sufficient conditions for preventing MIAs while considering subgroup vulnerability
and disparate vulnerability. Additionally, we address the challenges associated with
estimating the magnitude of disparate vulnerability when subgroups are small. To
tackle this issue, we present a statistical framework and methods for estimating
disparate vulnerability and determining its significance. Our study reveals that not
all vulnerability estimation mechanisms are suitable for analyzing subgroups, and we
discuss the implications of these difficulties for regulatory compliance.

Our contributions are the following:

• We introduce a novel characterization of the vulnerability to MIAs, which
provides a necessary and sufficient condition for these attacks to succeed: lack of
distributional generalization. Vulnerability to MIA arises when the distribution of
a model’s property (e.g., loss, or outputs) is different for samples in and out of the
training dataset. This result complements previous studies that demonstrated
the lack of standard generalization (i.e., overfitting) to be a sufficient but not
necessary condition for vulnerability to MIAs [119, 194].
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• We introduce the first formal analysis of disparate vulnerability and extend our
results on necessary and sufficient conditions for preventing MIAs to subgroup
vulnerability and disparate vulnerability.

• We show that estimating the magnitude of the disparate vulnerability is non-
trivial when subgroups are small. We provide a statistical framework and
methods to estimate disparate vulnerability and its significance. We show that
not all vulnerability estimation mechanisms used in prior work are adequate
for subgroups. We discuss the implications of these difficulties for regulation
compliance.

• We prove that satisfying algorithmic-fairness constraints can decrease disparate
vulnerability to limited classes of attackers. We also show that training with
differential privacy bounds the magnitude of the disparate vulnerability.

• We empirically evaluate disparate vulnerability on synthetic and on real-world
datasets, demonstrating that disparate vulnerability exists in realistic models
with high statistical significance.

• We discuss the importance of disaggregating privacy measurements when
evaluating the legal implications of privacy attacks. In particular, the importance
of studying the consequences of privacy attacks for subgroups when analyzing
the privacy risks of a deployment, as opposed to studying individual privacy
risks [118] that can be dismissed as residual and acceptable.

In summary, this chapter offers a comprehensive analysis of the disparate vulnerability
to MIAs, unveiling necessary and sufficient conditions for their success, exploring
subgroup vulnerability, and providing statistical frameworks for estimation. By demon-
strating the effectiveness of fairness constraints and differential privacy in mitigating
vulnerability and presenting empirical evidence, this work contributes insights into
the practical implications of privacy attacks. Our emphasis on subgroup analysis
underscores the importance of considering privacy risks for different populations,
ensuring an inclusive approach to privacy protection.

4.2 Membership Inference Attacks

Membership Inference Attacks (MIAs) are the basic privacy risk against which differen-
tially private training aims to protect (see Section 1.3). The goal of a MIA is to predict
whether an example z ∈ D is a member or a non-member of the training dataset S
of a given predictive model fθ(·). We assume a threat model where a MIA adversary
observes the target model’s behavior that relates to z, and has information about the
data distribution P , training-data sampling, and the training algorithm. We formalize
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MIAs using the indistinguishability game by Yeom et al. [194]. We say that the game is
between an adversary that aims to conduct a MIA and a challenger. Formally, the game
MIA(A, T, n, P ) proceeds as follows:

1. S ← P n; θ = T (S)
2. m ∼ {0, 1}
3. if m = 1 then z ∼ S, else z ∼ P
4. m̂← A(z; θ, T, n, P )
5. return m = m̂

In this game, the challenger obtains a dataset S as an i.i.d. sample from the data
distribution, and trains a model θ using the training algorithm T (·) (line 1). The
challenger then draws a secret m uniformly at random (line 2). The value of m denotes
x’s membership in S: m = 1 if the challenge example z is sampled from the training
dataset S (line 4), and m = 0 if it is sampled from the data distribution P (line 6).
As Yeom et al. [194], we assume that the population is large enough that the chance
of sampling a member z ∈ S from P is negligible. Given the challenge example z,
the target model θ and its training algorithm T (·), the sampling parameter n, and the
distribution of the training data P , the MIA adversary A(·) makes a guess m̂ about
the example’s membership in S (line 5). We use this formalization as it is common,
although there are other ways to formalize MIAs [see, e.g., 87]. Note that the MIA
game defines a joint probability distribution over training datasets S, membership
labels m, and challenge examples z.

4.2.1 Attack Strategy

As described in the MIA game, the adversary’s knowledge is limited to (z; θ, T, n, P ),
and their goal is to guess the membership of z. We define a general strategy to perform
a membership attack that encompasses several instances of MIA, e.g., [131, 161, 194].
This strategy consists of two phases.

First, the adversary prepares an attack algorithm AttT,n,P (·) which depends on the
target training algorithm T (·), and the data-sampling parameters n and P , e.g., by
training a shadow-model attack classifier [161]. We drop the subscripts in AttT,n,P

where the setting is clear from the context.

In the second phase, the adversary extracts features w ∈ W using the feature extraction
functionw = π(z; θ), describing the targetmodel and the example, and applies the attack
algorithm to the extracted features to obtain the membership guess, m̂← AttT,n,P (w).
Thus, the guess m̂ is obtained by applying the attack algorithm to the extracted features:

A(z; θ, T, n, P ) ≜ AttT,n,P ◦ π(z; θ)
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This formalization is flexible: it captures both white-box and black-box adversarial
models. For example, the features could be the outputs of the model and the example’s
label w = (fθ(x), y) [161], the model’s loss for the challenge example, w = ℓ(z; θ)
[194], or the model’s gradients as in some white-box attacks [131]. We denote byAπ an
adversary that uses features π(z; θ). We drop the subscripts where clear from context.

In this chapter, we distinguish two kinds of adversaries depending on the features
they use: regular adversaries that do not use subgroup information (G /∈ w), and
subgroup-aware adversaries that do use this information (G ∈ w). As described in
Chapter 1, we assume that the latter adversary can obtain the subgroup G from the
examples z themselves as G = g(z). That is the case for our experiments on real-world
data in Section 4.6. Prior work has mainly considered regular adversaries.

Given a feature function π(z; θ) that does not include subgroup information, we denote
a feature function that uses subgroup information in addition to features of π(z; θ)
as π ◦ g. Therefore, if Aπ is a regular adversary, then Aπ ◦ g is a subgroup-aware
adversary.

4.2.2 Vulnerability

We introduce the concept of vulnerability of an ML model to membership inference
attacks (MIAs). Vulnerability measures the success of an adversary against the
model. We also introduce worst-case (Bayes) vulnerability, i.e., vulnerability against an
information-theoretically optimal adversary.

Vulnerability to MIAs is the normalized advantage [194] of adversary A over random
guessing:
Definition 4.1.We define vulnerability to adversary A as:

V (A) ≜ 2 Pr[MIA(A, T, n, P ) = 1]− 1 (4.1)

We also extend the definition to subgroups:
Definition 4.2. Let G ∈ G be a subgroup of the population. We define subgroup
vulnerability to adversary A as:

VG(A) ≜ 2 Pr[MIA(A, T, n, P ) = 1 | z ∈ G]− 1.

which captures the normalized advantage of a MIA adversaryA for challenge examples
coming from a given subgroup G.

Optimal adversaries. We base our analysis on information-theoretically optimal
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adversaries. Theworst-case vulnerability to any adversary that leverages featuresπ(z; θ)
is:

max
Att:W 7→{0,1}

V (Att ◦ π). (4.2)

The maximum is achieved by a Bayes adversary which uses the following strategy for
the attack [36, 150]:

Att∗(w) ≜ argmax
m∈{0,1}

Pr[m | w], (4.3)

over the randomness of the MIA(A, T, n, P ). In other words, the Bayes adversary uses
a Bayes classifier (see Chapter 1) to perform the attack. We denote the Bayes adversary
as A∗

π ≜ Att∗ ◦ π.

Subgroup-aware Bayes adversary. We assume the adversary can know the subgroup
G to which each example z belongs. Recall that we refer to this adversary as subgroup-
aware. As the vulnerability to the Bayes adversary grows if the adversary has more
information about the examples, the worst-case vulnerability to a subgroup-aware
adversary is equal or higher compared to a regular adversary:

Proposition 4.2.1. V (A∗
π ◦ g) ≥ V (A∗

π) .

We defer the proof to Appendix A.3.

In our experimental evaluations, we only consider subgroup-aware adversaries as they
are guaranteed to attain higher advantage in the worst case.

4.3 Distributional Generalization and Vulnerability
to MIAs

An ML model is said to overfit, or poorly generalize, when its average loss on the
training set differs from its loss on new samples from the population. Previous work
showed that, while overfitting is an important factor for evaluating MIA [161], it
is not necessary for MIA vulnerability [119, 194]. In this section, we aim to find a
characterization of MIAs that enables us to determine the necessary and sufficient
conditions for models to be vulnerable to these attacks.

Fig. 4.1 illustrates with an example why the absence of standard overfitting does not,
in general, prevent MIAs. The figure shows a model’s loss values on its training and
test data. The standard, average-based definition of overfitting cannot distinguish
between the two distributions; but an adversary potentially can, and the model can be
vulnerable to MIAs. In order to establish the necessary and sufficient conditions for
models to be vulnerable to MIAs, we use the extended notion of generalization that
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S

ℓ(z; θ)

S̄

ℓ(z; θ)

Figure 4.1: Loss values of a model θ on train data S (left) and test data S̄ (right).
According to the standard notion of generalization, this model does not overfit as the
average loss (area) on training and test data is identical. Some population individuals,
however, are more penalized on the test data. This discrepancy is captured by
distributional generalization.

goes beyond comparing the average loss on train and test data introduced in Chapter 2,
distributional generalization.

Specifically, let us restate the property-distributional generalization from Definition 2.2
in terms of its violation. We make use of the two probability distributions of examples
and models on train and test data, respectively:

P1 ≜ (z; T (S)), where S ∼ P n, z ∼ S

P0 ≜ (z; T (S)), where S ∼ P n, z ∼ P
(4.4)

Consider a property, any function that takes as input a model and an example: π(z; θ),
and returns a numeric vector in Rk. A property function could be, for instance, a loss
function, the gradient, or the prediction from the model.

Definition 4.3. For a given property π : D×Θ→ Rk, we define the π-distributional
generalization (DG) gap as follows:

δ(π) ≜ dTV(π♯P1, π♯P0) (4.5)

This generic definition subsumes the version of DG defined in Definition 2.1 if we take
π(z; θ) = (z; θ), and extends classical on-average generalization in Section 1.2.

Evaluating distributional generalization enables us to assess the generalization of an
ML model on the entire population, rather than on average. In Fig. 4.1 it is clear that the
model’s actual loss across the entire population is concentrated on a few individuals.
Distributional generalization enables us to capture this discrepancy, whereas standard
generalization does not.

As shown in Chapter 1, the ability of any classifier to successfully distinguish between
observations of two classes can be characterized by the total variation between the class-
conditional distributions of observations. By applying this fact to the worst-case MIA
attackers, we can characterize vulnerability in terms of distributional generalization:
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Proposition 4.3.1. The worst-case vulnerability to MIAs with adversary’s features
π(z; θ) is equal to the DG gap:

V (A∗
π) = δ(π).

According to Proposition 4.3.1, when the property function π(z; θ) matches the
adversary’s feature extraction mechanism, the DG gap is equal to the worst-case
vulnerability to adversaries that use features π(z; θ).

Proof. The Bayes error R∗ in the case of Att∗ is:

R∗ ≜ Pr[Att∗(w) ̸= m]

Recall that vulnerability is defined through the success probability of an adversary:

V (Aπ) ≜ 2 Pr[Att(w) = m]− 1

Thus, for a Bayes adversary, V (A∗
W ) uses the complement of the Bayes error R∗:

V (Aπ) = 2(1− Pr[Att∗(w) ̸= m])− 1 = 1− 2R∗.

As outlined in Chapter 1, the Bayes error of the binary classifier under uniform prior is
characterized by the TV distance between two class-conditional distributions. In our
case, the class is the membership label m, thus:

R∗ = 1/2− 1/2 · dTV

 Pr
S∼P n

z∼S

[π(z; T (S))], Pr
S∼P n

z∼P

[π(z; T (S))]


= 1/2− 1/2 · dTV (π♯P1, π♯P0) ,

This implies the sought form.

This form is a straightforward consequence of our Bayes-optimal approach to vulnera-
bility and is an application of a well-known result in statistical theory. It provides us
with an intuitive interpretation of the worst-case vulnerability to MIAs—as it is equal
to the distributional-generalization gap—thus with a guideline on how to prevent MIAs.
The result holds for both white-box and black-box adversary models.

Let us visually illustrate distributional generalization and worst-case vulnerability.
Consider adversary’s features of the confidence scores π((x, y); θ) = hθ(x) ∈ [0, 1]. As

58



4.3 Distributional Generalization and Vulnerability to MIAs

m = 0m = 1

ŷ = fθ(x)

vm(ŷ)

Figure 4.2: Distributional-generalization gap for models confidence scores ŷ = hθ(x) ∈
[0, 1]. The curves represent the probability density functions of models’ outputs on
the training datasets (m = 1) and outside (m = 0). The striped area shows the
distributional-generalization gap: total variation between distributions of model’s
outputs on training and outside. Proposition 4.3.1 shows that the the size of the striped
area exactly equals to the worst-case vulnerability to any adversary that uses model
outputs ŷ as features for distinguishing members from non-members.

the property function is continuous, the DG gap becomes (see Section 1.1):

δ(π) = dTV (π♯P1, π♯P0)

= 1
2

∫ 1

0

∣∣∣v1(ŷ)− v0(ŷ)
∣∣∣ dŷ,

where v1 and v0 are probability density functions associated with probability distri-
butions π♯P1 and π♯P0, respectively. See Fig. 4.2 for a visualization. The worst-case
vulnerability to adversaries using features ŷ = hθ(x) is the area between the densities
of the “in” and “out” output distributions.

Note that the distance used in Proposition 4.3.1 is average-dataset. That is, when
computing the features π(z, θ), the model θ is a random variable over the randomness
of T (·) and S ∼ P n. To train models with minimal vulnerability to MIAs, Li et al. [113]
used a similar yet different notion of distance, the distance between outputs of a fixed
model on its training dataset and a validation dataset. Although conceptually similar,
such distance cannot be directly used to evaluate the worst-case vulnerability using
Proposition 4.3.1.

Overfitting and worst-case vulnerability. The absence of overfitting in the
standard sense does not necessarily preclude MIAs [119, 194]. But, a straightforward
implication of Proposition 4.3.1 shows there is a case when the standard generalization
gap does bound the worst-case vulnerability:

Corollary 4.3.1. Let ℓ((x, y); θ) = 1[fθ(x) ̸= y] be the 0-1 loss, and the adversary’s fea-
tures be the loss values π(z; θ) = ℓ(z; θ). Then, the standard on-average generalization
gap (see Section 1.2) equals worst-case vulnerability:

V (A∗
ℓ) =

∣∣∣∣∣∣ E
S∼P n

z∼S

ℓ(z; T (S))− E
S∼P n

z∼P

ℓ(z; T (S)

∣∣∣∣∣∣ (4.6)
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Proof. As 0-1 loss is binary-valued, δ(ℓ) simplifies by a property of the TV distance (see
Section 1.1):

δ(ℓ) =
∣∣∣∣∣ E
L∼ℓ♯P1

[L]− E
L∼ℓ♯P0

[L]
∣∣∣∣∣

=
∣∣∣∣∣ E
(z,θ)∼P1

[ℓ(z; θ)]− E
(z,θ)∼P0

[ℓ(z; θ)]
∣∣∣∣∣

= | E
S∼P n

z∼S

[ℓ(z; T (S)]− E
S∼P n

z∼P

[ℓ(z; T (S)]|,

where the last transition is by definition of P1 and P0.

Therefore, if a MIA adversary only observes whether a queried example has a correct
or incorrect prediction by the target model, the upper bound on the success of any such
attack has a direct relationship to standard overfitting. Thus, for such an adversarial
model, no overfitting does imply no vulnerability to MIAs.

4.3.1 Disparate Vulnerability

In this section, we provide a theoretical analysis of vulnerability to MIAs disaggregated
by subgroups.

We introduce a subgroup-specific version of distributional generalization, in which
the distributions of the property π are computed on examples that belong to a given
subgroup. We define the group-specific distributions:

P1,G ≜ (z; T (S)), where S ∼ P n, z ∼ SG,

P0,G ≜ (z; T (S)), where S ∼ P n, z ∼ PG.
(4.7)

Definition 4.4. For a property function π : D×Θ→ Rk, the DG gap of group G ∈ G
is defined as:

δG(π) ≜ dTV
(
π♯P1,G, π♯P0,G

)
,

Subgroup vulnerability from distributional generalization. To extend the
worst-case analysis to subgroups, we use the worst-case subgroup vulnerability under
adversary’s features π(z; θ) to the corresponding Bayes adversary: VG(A∗

π). We show
that this subgroup vulnerability is also related to distributional generalization:

Proposition 4.3.2. The worst-case vulnerability of a subgroup G is bounded:

VG(A∗
π) ≤ δG(π) (4.8)
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Moreover, for subgroup-aware adversaries the bound becomes an equality:

VG(A∗
π ◦ g) = δG(π) (4.9)

We defer the proof to Appendix A.3.

Formalizing disparate vulnerability. Finally, having discussed subgroup vulnera-
bility, we can analyze disparate vulnerability. We define disparity in vulnerability:

Definition 4.5. Disparity in vulnerability (or disparity for short) between two sub-
groups G and G′ is the difference in vulnerability of these subgroups:

∆VG,G′(A∗
π) ≜ VG(A∗

π)− V ∗
G′(A∗

π) .

The previous results on the connection between subgroup vulnerability and distribu-
tional generalization enable us to relate disparity to degrees of distributional general-
ization across different population subgroups. From Proposition 4.3.2, we can see that
the magnitude of disparity can be trivially bounded using distributional-generalization
gaps of the involved subgroups:

Corollary 4.3.2. Magnitude of disparity between subgroup G and G′ is upper bounded:∣∣∣∆VG,G′(A∗
π)
∣∣∣ ≤ max{δG(π), δG′(π)} (4.10)

Moreover, disparity has an exact closed form for subgroup-aware adversaries:

Corollary 4.3.3. Suppose that a subgroup-aware adversary uses features (π, G).
Then, disparity between subgroups G and G′ is the difference between distributional
generalization gaps of these subgroups:

∆VG,G′(A∗
π ◦ g) = δG(π)− δG′(π) . (4.11)

4.3.2 Takeaways

Necessary and sufficient condition for MIA vulnerability. Without making
any parametric assumptions, we have showed that the vulnerability to MIAs can
be characterized using an extended notion of generalization, and that disparity is
bounded by the difference in levels of distributional generalization across population
subgroups. This interpretation of a standard result in statistical theory generalizes and
complements the theoretical findings of Yeom et al. [194] and Sablayrolles et al. [150].
It also confirms that the presence of standard overfitting is not a necessary condition
for MIAs to succeed [119, 194].
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Hardness of defending againstMIAs. The interpretation of worst-case vulnerability
through distributional generalization has important consequences for practical defences
against MIA that do not rely on differential privacy.

In order to reduce the vulnerability against adversaries that use features w = π(z; θ),
the distribution of w for examples that are outside of the training set has to be close to
that for the training set examples. This means that, to avoid vulnerability, a target model
has to—either implicitly or explicitly—learn the distribution ofw [94] which is a stronger
requirement than what is typically necessary for its main task (i.e. generalization in
terms of accuracy, or average error).

Moreover, adversaries are not limited to one set of features; thus, the distribution
has to be learned for a multitude of possible configurations of adversary’s features.
Additionally, to prevent disparity in vulnerability, the distribution of w has to be learned
across population subgroups—an even more challenging task.

4.4 Detecting and Measuring Disparate Vulnerability

We showed in Section 4.3 that vulnerability to MIAs appears when a model lacks in
distributional generalization. The degree to which records are vulnerable can vary
across subgroups in the data, potentially resulting in disparate vulnerability. In this
section, we provide mechanisms to reliably estimate subgroup vulnerability and its
disparity in practice.

To empirically estimate MIA vulnerability, we simulate the MIA game with a real
attack. If we could play the game infinite times, then estimating the success probability
of the adversary would be trivial. In practice, however, we can only run the game a
finite amount of times, which provides us with a finite number of challenge examples
z. We group these examples into two sets of datasets of n elements: a set of r datasets
{Si}i=1..r composed of n “in” examples (i.e., sampled as in line 4 of the MIA game, used
for training), and r datasets {S̄i}i=1..r composed of n “out” examples (i.e., sampled as
in line 6 of the MIA game, not used for training). Each pair of datasets Si and S̄i can
be seen as the train and test datasets of one model.

We define the estimate of vulnerability as:

V̂ (A) ≜ 1
r

r∑
i=1

vi (4.12)

where vi is the model-specific estimate of vulnerability: the advantage of the adversary
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against a single target model. We compute vi for a pair of datasets Si and S̄i as:

vi ≜ 2 · 1
2n

 n∑
j=1

1[A(S(j)
i , T (Si), n, P ) = 1] +

n∑
j=1

1[A(S̄(j)
i , T (Si), n, P ) = 0]

− 1,

(4.13)
As r increases, V̂ (A) approximates the value of the true vulnerability V .

We use the same approach to estimate subgroup vulnerability VG(A), but we only use
examples that belong to the subgroup of interest G when computing the model-specific
estimate of subgroup vulnerability vi,G. We omit A when it is clear from context.

4.4.1 Statistical Detection of Disparity

When evaluating subgroup vulnerability, we have to rely on subsets of (Si, S̄i) formed by
subgroup examples. These subsets are possibly of size much smaller than n. Due to the
variance of the empirical averages in the Eq. (4.13), an estimate of subgroup vulnerability
is in general less statistically reliable than the estimate of overall vulnerability that uses
datasets (Si, S̄i) in their entirety. As a result, when estimating disparate vulnerability
using the estimates of subgroup vulnerability, we need to statistically ensure that, if
found, disparity is not due to random chance.

More formally, given estimates {vi,G}i=1..r across different subgroups, we want to find
statistical evidence that the actual subgroup vulnerabilities differ:

VG1

?
̸= VG2

?
̸= . . .

?
̸= VGt (4.14)

Multiple subgroups. This problem is an instance of a standard within-subjects
experimental design: We have multiple measurements (model-specific vulnerability
estimates for different subgroups vi,G1 , vi,G2 , . . . , vi,Gt) for the same subject (model
T (Si)). We want to know whether the means of vulnerability values differ across
subgroups. Therefore, we can determine whether the training algorithm exhibits
disparate vulnerability using the repeated-measures one-way anova model (see, e.g.,
Seltman [156, Chapter 14]). This approach enables us to use the anova F-test to establish
whether there is evidence of disparate vulnerability. Following the standard protocol, if
the F-test is positive, we perform post-hoc followup tests to determine which particular
pairs of subgroups exhibit disparity. For the post-hoc tests, we use pairwise dependent
t-tests with correction for multiple comparisons. As the correction method, we use the
standard Benjamini-Hochberg procedure for controlling the false detection rate.

Two subgroups. When comparing only two subgroups, G and G′, the procedure
naturally simplifies to running one dependent t-test that checks if the difference
between means of two groups is significant.
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4.4.2 The Bias Problem

Some attacks in the literature assume that the adversary has additional knowledge beyond
the tuple (z; θ, T, n, P ). This knowledge can result in the vulnerability estimation being
positively biased: indicating higher vulnerability than the actual worst case within
the knowledge model of (z; θ, T, n, P ). Overestimating vulnerability is not necessarily
an issue, as pessimistic estimates incentivize caution in deployment. However, if the
positive bias is correlated with the parameters of a subgroup (e.g., higher bias for
smaller subgroups), it leads to incorrect conclusions about disparate vulnerability.

In this section, we check whether estimates of vulnerability using attacks proposed in
the literature are biased. We evaluate three attacks:

• Shadow-model attack [161]. An adversary trains a number of shadow models
using the target training algorithm T (·) on datasets sampled from P n. The
adversary uses these shadow models to train a machine-learning classifier to
guess the membership from observed features. In our evaluation, we use 30
shadows and Gradient Boosting Trees as the attack classifier.

• Average-threshold attack [194]. An adversary has additional knowledge:
the average loss on the training dataset τ and the loss function ℓ(z; θ) used to
compute this average, (τ, ℓ(z; θ)), where τ ≜ 1

n

∑
z∈S ℓ(z; θ). When attacking,

the adversary uses τ as threshold to decide whether the challenge example was
“in” (the example’s loss less than threshold) or “out” (greater than threshold).

• Optimal-threshold attack [31, 162]. An adversary has additional knowledge:
the loss function ℓ and the optimal loss threshold τ ∗ that separates the losses in
the best way, (τ ∗, ℓ(z, θ)), where

τ ∗ ≜ arg max
τ

1
n

∑
z∈S

1[ℓ(z; θ) ≤ τ ] + E
z∼P

[
1[ℓ(z; θ) > τ ]

]
The attack proceeds as the average-threshold one.

We deviate slightly from the attacks’ original formulations. The threshold attacks
use π(z; θ) = ℓ(z; θ) as features, where the loss function is cross-entropy, whereas
the original shadow-model attack used π((x, y); θ) = (fθ(x), y). For fairness of the
comparison, we make all adversaries use the threshold attacks’ features.

As we want to evaluate subgroup-aware adversaries, we use features π(z; θ) =
(ℓ(z; θ), g(z)) for all attacks, with cross-entropy as loss function. We make the attacks
subgroup-aware as follows. For the shadow-model attack, the adversary trains separate
attack classifiers for each subgroup, and then applies the appropriate classifier to each
challenge example. For the threshold attacks, we assume the adversary has different
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Figure 4.3: Distribution of values in our synthetic data. x-axis: value of the 1-st
dimension of the synthetic data, y-axis: value of the 2-nd dimension. We use 100-
dimensional data for our experiments.

thresholds for each subgroup [31, 163], i.e., average loss, respectively optimal threshold,
per subgroup.

Method. It is hard to tell exactly if an estimate is higher than the worst-case
vulnerability, as in practice the worst case is unknowable. We propose a simple test for
bias within our adversarial model: run the estimation method against data-independent
models. A target model can be independent of its training data, e.g., if it is completely
random, constant, or trainedwith differential privacy parameter ϵ ≈ 0 (see Section 4.5.2).
If the model is independent of the data, we expect the estimates of overall and subgroup
vulnerabilities, as well as disparity, to all be zero in expectation. We refer to any
violation of this property as null-model bias. We are not only interested in whether a
method exhibits such bias, but in whether this bias is correlated with subgroups.

Dataset. To have control over the distributions of subgroups and their representation,
we create a synthetic dataset. We assume that the examples have binary class labels
y ∈ {0, 1}, and belong to one of two subgroups G ∈ {ctrl, treatment}. We generate
the examples from the multivariate normal distributions:

Pr(z | y = 0, G = ctrl) ∼ N (−1/2 · 1d, Σ)
Pr(z | y = 1, G = ctrl) ∼ N (1 · 1d, Σ)

Pr(z | y = 0, G = treatment) ∼ N (0 · 1d, Σ)
Pr(z | y = 1, G = treatment) ∼ N (1/2 · 1d, Σ),

where 1d is a d-dimensional vector of all ones, and the covariance matrix Σ is generated
such that ||Σ||max ≤ 1. We use d = 100 dimensions, and set Pr[y = 1] = 1/2. See
Fig. 4.3 for an illustration.
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To reflect that some subgroups can be harder to learn than others, the distributions
are designed in such a way that the subgroup G = ctrl is more separable and hence
more easily learnable than the subgroup G = treatment. In our experiments we
use the subgroup G = ctrl as the control (or majority) subgroup with fixed number
of representatives in the data, and G = treatment as the treatment (or minority)
subgroup whose size we vary.

Setup. To see if the potential null-model bias depends on the sizes of subgroups, we
generate multiple synthetic datasets such that each contains data belonging to two
subgroups: control and treatment. The control subgroup has 1000 representatives in
each dataset; the size of the treatment subgroup varies between 25 and 1000, with 8
distinct values. We run 8 experiments with different subgroup proportions. Within
each experiment, we train 200 target models on freshly generated datasets. We set the
target training algorithm to output the same classifier for any input training dataset.
Recall that because the models are independent of the input, we expect all vulnerability
estimates to be zero on average. We estimate disparity using three attacks described
above, and run t-tests to see if the estimates are statistically significant as explained in
Section 4.4.1.

Results on our synthetic dataset. In Fig. 4.4, we can see that the estimates of
disparity produced with the shadow-model attack and the average-threshold attack are
centered around zero, with the statistical tests confirming no significant difference from
zero. The estimates coming from the optimal-threshold attack, however, are highly
biased compared to the other attacks, as the estimates are consistently and significantly
(p < 0.001) different from zero. The bias is always positive — overestimates disparity —
and gets higher as the size of the treatment subgroup decreases. As the target models
are independent of their training data and thus cannot have disparate vulnerability, we
conclude that the use of the optimal-threshold attack results in significant null-model
bias that grows as the subgroup size gets smaller.

Results on the dataset by Chang and Shokri [31]. To verify that our results are
not artifacts of our specific synthetic data setup, we also reproduce the data setup used
by Chang and Shokri to evaluate their subgroup-aware optimal-threshold attack. In
their setup, they have one fixed dataset containing four subgroups that we denote as
“0-0”, “0-1”, “1-0”, “1-1”, where the first number indicates simulated demographic group
and the second number the class y (we refer to the original work [31] for details). The
subgroups have 50, 450, 1000, and 1000 examples, respectively, with the total dataset
size of 2500 examples. Following Chang and Shokri, we randomly subsample training
datasets of size 1250 from the full dataset, and train one model on each. As before, we
“train” a data-independent model. In this experiment, we only use threshold attacks
due to the small size of the dataset (see Section 4.6 for more details). We use the anova
F-test as described in Section 4.4.1 to determine whether any of the subgroups have
differing subgroup vulnerabilities.
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Figure 4.4: Null-model bias of methods to estimate disparate vulnerability. Disparity
in percentage points (y-axis) vs. size of the treatment subgroup in the training data
(x-axis). Computed on synthetic datasets with fixed control subgroup (1000 examples)
.The target training algorithm is data-independent: actual MIA vulnerability, subgroup
vulnerabilities, and disparity in vulnerability are all zero. The error bars represent the
variation across 200 model-specific estimates. The diamond marker (♢) means that an
estimate significantly differs from zero with p < 0.001.

Fig. 4.5 shows that significant null-model bias of the optimal-threshold attack also
appears on this dataset (F-test p < 0.001). In particular, the subgroup vulnerability
for the smallest subgroup “0-0” with 50 examples appears as 4%. At the same time,
the estimates from the average-threshold attack are centered around 0 and do not
significantly differ (F-test p ≈ 0.1), suggesting no null-model bias.

This bias, however, should not affect the conclusions by Chang and Shokri [31]. Rather
than directly using the estimates of subgroup vulnerability, their analysis used differences
in estimates of subgroup vulnerability between two models (a “fair” and a “regular”
model). In their particular scenario, the bias introduced by the estimation should be
cancelled out in the final difference. Although the conclusions of Chang and Shokri
should not be affected by the bias, estimation methods such as the optimal-threshold
attack should be avoided when evaluating disparate vulnerability in general.

Takeaways. Biased estimators of vulnerability can result in consistent overestimation
of disparity if the bias correlates with subgroup parameters. The shadow-model attack
does not have such bias as it does not have access to any information about a specific
target. Interestingly, the average-threshold attack, despite using an additional piece of
knowledge that goes beyond our adversarial model, also does not exhibit such bias. On
the contrary, the optimal-threshold attack produces significantly biased estimates for
small groups.

Our results show the need to evaluate bias of the estimation method when measuring
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Figure 4.5: Null-model bias on the synthetic data setup from Chang and Shokri
[31]. Estimate of disparity in percentage points (y-axis) vs. subgroup (x-axis). The
target training algorithm is data-independent, thus actual MIA vulnerability, subgroup
vulnerabilities, and disparity in vulnerability are all zero.

disparate vulnerability. To this end, we proposed to measure null-model bias, which
detects bias when the worst-case vulnerability is zero. This test does not preclude a
method from having bias if the worst-case vulnerability is larger. However, in practice
MIA vulnerability has been shown to be relatively low.

4.4.3 Does Disparate Vulnerability Exist in ML Models?

Having established suitable methods for measuring disparate vulnerability, we apply
them in a synthetic setup, and show that disparate vulnerability arise in practice.

Setup. To capture the effect of subgroup size in the training data, we create several
experiments with different subgroup proportions. Within each experiment, we sample
200 dataset pairs Si and S̄i from our data distribution. In each dataset, the size of
the control subgroup is fixed at 2500, and we vary the size of the treatment subgroup
between experiments: 100, 500, 1000, and 2500. We estimate subgroup vulnerabilities
using the subgroup-aware shadow-model attack (see Section 4.4.2), because this attack
is guaranteed to not have null-model bias. As before, we use π(z; θ) = (ℓ(z; θ), g(z))
as adversary’s features. To train shadow models, we independently sample 30 fresh
datasets from our data distribution. We use t-tests to determine whether measured
disparity is statistically significant (see Section 4.4.1).

Targets. We evaluate the following model families: logistic regression, and two ReLU
neural networks with one hidden layer containing 8 and 32 neurons, respectively. We
use the scikit-learn library [140] to train these models. All our models attain close to
100% test accuracy in our synthetic data setup.
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Figure 4.6: Disparate vulnerability vs. subgroup representation in a training dataset.
The y-axis represents disparity in vulnerability between the treatment group G and
control group G′ whose size is fixed to 2500, in percentage points. The error bars
represent the variation across 200 model-specific estimates. Statistical significance
markers: p < 0.001 (♢), p < 0.01 (◦), p ≥ 0.01 (·).

Results. The results in Fig. 4.6 show thatMLmodels can exhibit disparate vulnerability,
even on a simple dataset. For all treatment sizes and targets, our estimates of disparity
are significant (p < 0.001), with the exception of the logistic regression when the
treatment subgroup is relatively well-represented (500 – 2500 examples). We also see
that the sample size of the subgroup plays an important role in disparate vulnerability:
the less represented is a group in the training data, the higher the disparate vulnerability
as compared to a better represented group. Even though the sample size seems to be the
dominant effect, we observe small but significant disparate vulnerability even when
the subgroups are equally represented in training.

4.5 Mitigating Disparate Vulnerability

We study whether existing methods for addressing privacy and fairness in ML prevent
disparate vulnerability.

4.5.1 Fairness Constraints

Due to the dependency of disparate vulnerability on the disparate behavior of the
model across subgroups, minimizing the between-subgroup discrepancy in any given
property, such as model’s outputs or loss [38], intuitively could decrease disparate
vulnerability.

Formally, let us denote by δG,G′(π) the total-variation distance between distributions of
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Figure 4.7: Effect of algorithmic-fairness constraints on disparate vulnerability. The
vulnerability is estimated with subgroup-aware attacks that use models’ outputs as
the feature (left), and the models’ loss (right). The results for logistic regression are
provided for reference (its values here are not comparable with the results of other
experiments as the data dimensionality is different). See Fig. 4.6 caption for details.
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Figure 4.8: Effect of differentially private training on disparate vulnerability (left), and
test accuracy (right). The results for logistic regression are provided for reference. See
Fig. 4.6 caption for details.

some property of a model π(z; θ) on examples coming from two subgroups G and G′:

δG,G′(π) ≜ dTV

 Pr
S∼P n

z∼P

[π(z; θ) | z ∈ G], Pr
S∼P n

z∼P

[π(z; θ) | z ∈ G′]
 .

Certain notions of algorithmic fairness provide an upper bound, or are equivalent to,
the above gap given an appropriate choice of the property function: if we choose
the model property to be its outputs, then with π((x, y); θ) = fθ(x), we obtain
demographic parity [55]. Similarly, for the 0-1 loss property of the model, choosing
π((x, y); θ) = 1[fθ(x) ̸= y] gives us accuracy equality.

In practice, a notion of fairness is satisfied on the training dataset rather than the whole
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data distribution. To capture this, we define an in-training gap as follows:

δ̂G,G′(π) ≜ dTV

 Pr
S∼P n

z∼S

[π(z; θ) | z ∈ G], Pr
S∼P n

z∼S

[π(z; θ) | z ∈ G′]
 .

The following proposition establishes that, if the in-training gap is bounded and the
model generalizes its fairness condition well, then vulnerability disparity is bounded to
adversaries that use the property addressed by the fairness notion:
Proposition 4.5.1. Suppose a subgroup-aware adversary uses features π ◦ g, and the
following two conditions are satisfied:

1. Fairness on the training data: δ̂G,G′(π) ≤ η

2. On-average fairness generalization: |δG,G′(π)− δ̂G,G′(π)| ≤ ν

Then, the magnitude of disparity in worst-case vulnerability is bounded as follows:

|∆VG,G′(A∗
π,g)| ≤ 2η + ν.

We defer the proof to Appendix A.3.

We note that these guarantees only apply to adversaries targeting the features addressed
by the implemented the fairness notion. In other words, just as in algorithmic-fairness
literature where no single fairness measure is appropriate in a general context [65], no
one fairness measure can provide guarantees for bounding disparate vulnerability for
any adversary.

Empirical evaluation

Fairness notions. To validate the theoretical results, we estimate vulnerability of models
that satisfy two algorithmic-fairness notions: First, demographic parity [55] which
ensures that distributions of model outputs between demographic subgroups are close:
δG,G′(ŷ) ≈ 0. Second, equalized odds, which ensures that true-positive rates and
false-positive rates between the subgroups are close [78]. We choose these notions as
they are common in the literature, and there exist efficient algorithms and tooling for
producing classifiers that satisfy them. To train the classifiers, we use the threshold
post-processing approach [78], applied to a logistic regression classifier.

Setup. Within the setup of Section 4.4.3, we run the following two experiments:

E1 We fulfill the requirements of Proposition 4.5.1. For this, we estimate vulnerability
using features equalized by demographic parity: π((x, y); θ) = (fθ(x), g(z)). By
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Proposition 4.5.1, we expect low disparity in vulnerability for both classifiers
as long as they generalize their fairness property well. In Appendix A.3, we
show that in our data setup equalized odds implies demographic parity, thus the
theoretical guarantee also applies for equality of odds.

E2 We estimate vulnerability using adversary’s features π(z; θ) = (ℓ(z; θ), g(z))
which do not match what the fairness property does, so the requirements of
Proposition 4.5.1 are not fulfilled.

We find that with 100 dimensions in our setup, the threshold-optimization algorithm
produces models that classify the data with 100% accuracy and no vulnerability.
To demonstrate a setting where disparate vulnerability arises, we deviate from the
parameters of Section 4.4.3 and use the synthetic dataset with 10 dimensions.

Results. We present the results in Fig. 4.7. For E1, we see that demographic parity
decreases disparate vulnerability compared to standard logistic regression. This
empirically confirms Proposition 4.5.1. For E2, as expected, both equalized odds and
demographic parity do not completely prevent disparate vulnerability. Yet, they do
decrease its magnitude by 3× compared to the standard logistic regression.

In our particular setup, the constrained models do not perform worse than the
unconstrained models. In general, however, fairness notions can be inherently at odds
with accuracy [203].

4.5.2 Differentially Private Training

In this section, we look at how learning with differential privacy (see Chapter 1) relates
to disparity in vulnerability.

DP training limits the contribution of any individual in the dataset to the model training.
Thus, DP should decrease vulnerability to MIAs. In particular, Yeom et al. [194] and
Humphries et al. [87], showed the advantage of a MIA adversary is bounded by DP in
the setting of the MIA game. For example:

Proposition 4.5.2 (Adapted from Yeom et al. [194]). If the training algorithm satisfies
ϵ-DP, the worst-case vulnerability with any adversary’s features W is bounded:

V (A∗
W ) ≤ exp(ϵ)− 1 (4.15)

These guarantees extend to disparate vulnerability under a technical condition that
aims to avoid undefined behavior:
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Proposition 4.5.3. For any two given subgroups G, G′ ∈ G, suppose that the dataset
sampling in theMIA game (see Section 4.2) ensures that eachS has some representatives
of each subgroup. Formally, we condition the sampling on |SG| > 0 and |SG′| > 0.
Moreover, if the training algorithm satisfies ϵ-DP, then the worst-case subgroup
vulnerability of G, as well as magnitude of vulnerability disparity between G and G′, is
uniformly bounded for any adversary’s features π(z; θ):

VG(A∗
π) ≤ exp(ϵ)− 1

exp(ϵ) + 1 ,
∣∣∣∆VG,G′(A∗

π)
∣∣∣ ≤ exp(ϵ)− 1

exp(ϵ) + 1 . (4.16)

We defer the proof to Appendix A.3.

Empirical evaluation. To study how DP affects disparate vulnerability we train DP
models with different privacy levels. As target models, we use DP logistic regression
trained using the objective perturbation method [33]. We use a min-max scaler, and
provide a maximum row norm estimated on a separate sample from the data distribution.
We use privacy levels ϵ = 0.1, 1, 2, 10.

We see in Fig. 4.8 that, for all evaluated values of ϵ, DP training considerably reduces
disparity compared to the non-private logistic regression, with statistical tests not
detecting significant deviations from 0.

On the downside, unlike training with fairness constraints, DP training results in a
significant decrease in accuracy of the models: from 45 p.p. to 5 p.p. drop depending
on the value of ϵ.

4.5.3 Takeaways

Fairness only bounds disparate vulnerability in certain scenarios. Even when the
classifier’s fairness property generalizes beyond the training set, the bound is restricted
to the adversarial strategy covered by the chosen fairness notion. Covering one
adversarial strategy, however, is a weak security guarantee: the model could be
(disparately) vulnerable to other strategies. Moreover, it is known that different
fairness constraints are at odds with each other [65]. Hence, a model protected by one
fairness notion may be inherently insecure against adversaries exploiting non-protected
features.

Differential privacy bounds disparate vulnerability. We show that DP provides an upper
bound on the vulnerability of all individuals, subgroups, and therefore on disparate
vulnerability too. On the flip side, because DP guarantees are often at odds with
accuracy, in practical applications ϵ is usually set high, allowing for a lot of variation
within the upper bound of Proposition 4.5.3. Practically, the particular approach to
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DP training that we evaluated has mitigated disparity even with a high privacy level
ϵ = 10 that results in vacuous theoretical bounds, but at significant accuracy costs.

4.6 Evaluation on Real-World Data

To investigate if we can detect disparate vulnerability in a realistic setting, we use the
following two datasets as case studies:

• ADULT dataset [100]. The dataset contains 48,842 examples from the 1994 Census
database1. The task is to determine if a yearly salary is over/under $50K. It
contains attributes such as age, sex, education, race, native country, etc. After
one-hot encoding, the dataset contains 91 features. We use the race column as
the subgroup attribute.

• Texas-50K dataset. We create this dataset based on 2013 Texas Hospital Discharge
data2. As our evaluation setup is computationally expensive, to accommodate the
same training algorithms as used in the synthetic data experiments, we randomly
subsample 50,000 examples, and reduce the number of features for training. We
use the following columns: type of admission, illness severity, mortality risk,
principal diagnosis code (out of more than 6000 codes, we only keep the top
1000 and create one separate code for the rest), length of stay, and patient’s
demographic attributes: sex, race, ethnicity. After one-hot encoding, we have
1025 features. We use the race column as the subgroup attribute. As a task,
analogously to the ADULT dataset, we use prediction of whether the total amount
of charges is greater than a threshold (e.g., for health-insurance risk-scoring). As
the threshold we pick the median total charges on the subsampled dataset.

Table 4.1 provides details about the subgroups.

Target models. We consider as target models logistic regression and neural networks
with 8 and 32 neurons in the hidden layer (Section 4.4.3), logistic regression with
fairness constraints (Section 4.5.1), and differentially private logistic regression with ϵ
values 1, 2, and 10 (Section 4.5.2). All the models beat the random accuracy baseline on
the tasks.

Estimationmethod. As opposed to our synthetic data setup in which datasets to train
shadow models can be directly sampled from the data-generating distribution, when
real data is involved we can only sample data from the available finite dataset. We split

1https://archive.ics.uci.edu/ml/datasets/adult
2https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
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Table 4.1: Subgroup representation in the datasets.

Dataset G Size
ADULT “White” (WH) 38,903

“Black” (BL) 4,228
“Asian-Pac-Islander” (AI) 1,303
“Amer-Indian-Eskimo” (AE) 435
“Other” (OT) 353
All 48,842

Texas-50K 4 31,514
5 10,883
3 6,451
2 1,019
1 133
All 50,000

the dataset in two parts: one for training of the shadow models, and one for evaluation
of vulnerability [161]. As a result, the amount of available training data is greatly
reduced, in particular, for minority subgroups that already have few representatives
in the dataset. To avoid this problem, in this section we use the average-threshold
attack for vulnerability estimation, which does not require training shadow models.
Our evaluation in Section 4.4.2 showed that this attack is not null-model biased.

Setup. To train each target model, we randomly subsample 50% of the dataset to use
for training (Si), and hold out the remaining data (S̄i). We train 200 models for each
model family on different splits of the dataset. For our statistical tests (see Section 4.4.1),
we use α = 0.01 as significance level.

Results. We summarize the results in Table 4.2. As in our synthetic experiments, we
observe evidence of disparity in neural networks. Importantly, the results show that
low vulnerability in absolute terms does not imply absence of disparity. On ADULT, the
8-neuron network shows relatively low 0.4% vulnerability but statistically significant
disparity (p < 10−4). Interestingly, on Texas-50K, we also see statistical evidence of
disparate vulnerability for logistic regression with demographic-parity constraints,
although its overall vulnerability of 1.46% is comparable to standard logistic regression.

For the models with F-test p < 0.01, we conduct follow-up post-hoc tests to see which
particular pairs of subgroups have high disparity (we defer the detailed results of
the post-hoc tests to Appendix D.2). On ADULT, consistently with our synthetic
experiments, the smaller subgroups “Asian-Pac-Islander” (AI, 1,302 examples), and
“Other” (OT, 353 examples), exhibit disparity between themselves and other more
populous subgroups. On Texas-50K, almost all subgroup pairs exhibit significant
disparity for 32-neuron network.
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Table 4.2: Summary of models performance and vulnerability on ADULT and Texas-50K.
Columns: Disparity test: p-value of the anova F-test that checks if any of the subgroups
have differing subgroup vulnerabilities, Test acc.: Test accuracy of models, Gen. gap:
Per-model difference between train accuracy and test accuracy, Vuln.: Aggregate
vulnerability V (A). Bold font indicates models that have statistically significant
disparity (p < 0.01).

ADULT Disparity test Test acc. Gen. gap Vuln., %
p avg std avg std avg std

Model
Logistic Regression (LR) 0.3230 0.8404 0.0018 0.0012 0.0034 0.0942 0.4093
8-Neuron NN 0.0000 0.8421 0.0018 0.0044 0.0033 0.4052 0.3927
32-Neuron NN 0.0000 0.8410 0.0019 0.0131 0.0033 1.1373 0.4178
DP LR, ϵ = 1 0.8534 0.7797 0.0135 0.0006 0.0040 0.0830 0.3478
DP LR, ϵ = 2 0.0500 0.8053 0.0076 0.0004 0.0036 0.0563 0.3360
DP LR, ϵ = 10 0.0419 0.8321 0.0023 0.0011 0.0032 0.0888 0.4100
Fair LR (Dem. Parity) 0.8945 0.8267 0.0018 0.0011 0.0035 0.0980 0.3331
Fair LR (Equalized Odds) 0.7089 0.7941 0.0095 0.0006 0.0038 0.0782 0.3521

Texas-50K Disparity test Test acc. Gen. gap Vuln., %
p avg std avg std avg std

Model
Logistic Regression (LR) 0.2666 0.7833 0.0021 0.0152 0.0036 1.3905 0.4374
8-Neuron NN 0.0112 0.8836 0.0068 0.0282 0.0055 2.2384 0.5916
32-Neuron NN 0.0000 0.8639 0.0060 0.0686 0.0060 6.6238 0.7212
DP LR, ϵ = 1 0.6192 0.6175 0.0191 0.0002 0.0045 0.0540 0.4317
DP LR, ϵ = 2 0.0522 0.6363 0.0136 0.0014 0.0040 0.2125 0.3916
DP LR, ϵ = 10 0.9737 0.7114 0.0146 0.0038 0.0041 0.5224 0.3245
Fair LR (Dem. Parity) 0.0078 0.7609 0.0028 0.0143 0.0039 1.2393 0.3444
Fair LR (Equalized Odds) 0.7174 0.7477 0.0180 0.0133 0.0038 1.4676 0.3983

The results for the logistic regression with fairness constraints are unlike the synthetic
experiments. As opposed to a minority subgroup, as in the previous results, disparity
appears between the most populous subgroup “4” (31,514 examples) and subgroups “2”,
“3” and “5”. This disparity does not exist in the standard logistic regression. Thus, this
result shows that fairness constraints can introduce disparity when the conditions of
Proposition 4.5.1 are not met.

Discussion. We have used binary classification tasks for compatibility with the
fairness definitions, but we expect disparity to be more pronounced in multi-class
settings. As detailed in Section 4.3.2, disparate vulnerability is bound to happen
whenever a model does not faithfully learn the distributional properties of the data for
some subgroups. Prior research suggests it is likely to appear when the task has many
features, or many classes in the case of classification [153].
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We also only considered relatively small dataset sizes. Bigger datasets, on the one
hand, enable better learning of the models thus decreasing vulnerability and disparate
vulnerability, but on the other hand, they would enable the adversary to use shadow-
model attacks that could provide better results than the average-threshold attack used
in our experiments.

We leave investigations of the effect of the number of classes and dataset size on
disparate vulnerability for future work.

4.7 Related Work

Theory studies on MIA. Yeom et al. studied the relation of MIAs to overfitting [194];
in their work, they formalize MIA as an indistinguishability game, which we adapt to
construct our theoretical framework. Farokhi et al. analyzed the dependence of MIA’s
success on the amount of information the model memorizes [62], and Jayaraman et al.
investigated their dependence on the prior probability that the example given to the
adversary is a member or non-member of the training set [90]. Yeom et al. [194], and
Cherubin et al. [36] showed that MIAs success is bounded by DP. Humphries et al. [87]
showed these bounds only apply so long as the training data are i.i.d.-sampled. All these
analyses, however, are only meaningful for the average-case MIA. A classifier thought
to be secure according to these analyses may provide weaker protection to certain
individuals or subpopulations. Our work complements these studies and generalizes
the notion of MIA risk to subgroups of the population, enabling study of vulnerability
for subsets of the records’ labels, individuals, and subpopulations.

Disparate impact. The work on disparity in machine learning is centered on under-
standing and mitigating disparate impact of algorithmic decisions on subpopulations
[11, 37]. Bagdasaryan et al. [8] and Pujol et al. [145] study disparity in accuracy under
differential privacy (DP), and show that training with DP can increase disparate impact.
In this work, we develop a theory that supports the empirical evidence that disparate
impact would also cause disparity in vulnerability to MIAs [31, 118, 161].

4.8 Concluding Remarks

We have provided the first formal analysis of the disparate vulnerability of population
subgroups to membership inference attacks. Our analysis provides new insights into
why and when vulnerability to MIAs arises and why and when these attacks have
disparate impact.
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Key takeaways. The first key learning of our study is that fully preventing MIAs,
and thus preventing disparate vulnerability can only be done in two ways. Either by
significantly increasing the complexity of the learning problem to ensure distributional
generalization; or using a differentially-private training algorithm with the associated
side effects.

The second learning surfaces a more general problem: the consequences of the unrelia-
bility of privacy estimation for demographic groups with a minority representation
in the data. We show that for small subgroups it is easy to incorrectly estimate their
protection indirectly via aggregate privacy measures, or directly when not considering
biases adequately.

Why disparate vulnerability is important. Disparate vulnerability has crucial
legal and policy significance. Companies moving data between organizations or
across borders face frictions designed to protect fundamental rights established by the
approximately 140 countries with largely conceptually and textually similar privacy
regulation around the world [73]. For example, moving data from Europe into a country
with significant state surveillance apparatus, such as the United States, is difficult
after the European Court of Justice’s judgement in Schrems II. Other countries, such as
several in South Asia, have established specific personal data localization laws [14].
As a consequence, there is growing interest in attempting to replace a direct trade in
personal data with various forms of trade in models trained on this data.

Yet vulnerability of models to MIAs or other attacks compromising confidentiality might
in some situations qualify models themselves as personal data [172]. The accountability
principle in European data protection law places the onus on data controllers to
demonstrate that a model should not be classified this way, for example through
privacy-estimation techniques. Our study indicates there is a real risk of “privacy-
washing”, laundering a model with aggregate statistics that mask vulnerabilities of
subgroups. It is true that prior work has also indicated that aggregate analysis can
hide MIA vulnerability to attacks focusing on structurally vulnerable records [119].
However, this appears easier to dismiss as an acceptable residual leakage risk compared
to disparate risks concerning members of salient minority groups, as in a liberal
democracy, a regulator is more accountable towards these than towards a socially
arbitrary selection of persons.

Open challenges. Our results also uncover a new challenge. It is difficult for auditors
or regulators to practically inspect disparate vulnerability, because they might lack a
sufficient number of examples relating to a minority group. When the subgroup data is
scarce, our methods could be underpowered to detect disparity; however, not using
the statistical tests and unbiased estimation methods from Section 4.4 risks flagging
disparity always whenever subgroup data differ, devaluing the meaning of the estimate.
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This points to a need for theoretical results that can be used as foundation in practical
regulatory contexts. Theoretical results may be able to help regulators better ascertain
the limits of metrics presented to them, and the conditions under which a model is
structurally likely to be vulnerable to different types of privacy attacks even without
difficult-to-obtain empirical evidence. The initial results provided in this chapter can
already significantly contribute to discussions around the classification of machine
learning systems in relation to their risk of data leakage as business practices of using
models to transport information continue to evolve.
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Chapter 5

Realistic Adversarial Modeling for
Tabular Data

This chapter is based on a peer-reviewed article entitled “Adversarial Robustness
for Tabular Data through Cost and Utility Awareness” [97] by Klim Kireev, Bogdan
Kulynych, and Carmela Troncoso, published in the Proceedings of 2023 Network and
Distributed System Security (NDSS) Symposium.
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5.1 Introduction

Adversarial examples are inputs deliberately crafted by an adversary to cause a
classification mistake. They pose a threat in applications for which such mistakes can
have a negative impact on deployed models (e.g., a financial loss [68] or a security
breach [47, 75, 101]). Adversarial examples also have positive uses. For instance,
they offer a means of redress in applications in which classification causes harm to
its subjects (e.g., privacy-invasive applications [2, 91, 105]). We review a standard
approach to formalizing adversarial examples in Section 1.4.

The literature on adversarial examples largely focuses on image [28, 71, 123, 128, 138,
168] and text domains [60, 111, 115, 179, 193]. Yet, many of the applications where
adversarial examples are most damaging or helpful are not images or text. High-stakes
fraud and abuse detection systems [29], risk-scoring systems [68], operate on tabular
data: A cocktail of categorical, ordinal, and numeric features. As opposed to images,
each of these features has its own different semantics. For example, in a typical
representation of an image, all dimensions of an input vector are similar in their
semantics: they represent a color of a pixel. In tabular data, one dimension could
correspond to a numeric value of a person’s salary, another to their age, and another
to a categorical value representing their marital status. The properties of the image
domain have shaped the way adversarial examples and adversarial robustness are
approached in the literature [128] and have greatly influenced adversarial robustness
research in the text domain. In this chapter, we argue that adversarial examples in
tabular domains are of a different nature, and adversarial robustness has a different
meaning. Thus, the definitions and techniques used to study these phenomena need to
be revisited to reflect the tabular context.

We argue that two high-level differences need to be addressed. First, imperceptibility,
which is the main requirement considered for image and text adversarial examples, is
ill-defined and can be irrelevant for tabular data. Second, existing methods assume
that all adversarial inputs have the same value for the adversary, whereas in tabular
domains different examples can bring drastically different gains.

Imperceptibility and semantic similarity are not necessarily the primary
constraints in tabular domains. The existing literature commonly formalizes the
concept of “an example deliberately crafted to cause a misclassification” as a natural
example, i.e., an example coming from the data distribution, that is imperceptibly
modified by an adversary in a way that the classifier’s decision changes. Typically,
imperceptibility is formalized as closeness according to a mathematical distance such
as Lp [160, 200].

In tabular data, however, imperceptibility is not necessarily relevant. Let us consider
the following toy example of financial-fraud detection: Assume a fraud detector
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takes as input two features: (1) transaction amount, and (2) device from which the
transaction was sent. The adversary aims to create a fraudulent financial transaction.
The adversary starts with a natural example (amount=$200, device=‘Android phone’)
and changes the feature values until the detector no longer classifies the example as
fraud. In this example, imperceptibility is not well-defined. Is a modification to the
amount feature from $200 to $201 imperceptible? What increase or decrease would we
consider perceptible? The issue is even more apparent with categorical data, for which
standard distances such as L2, L∞ cannot even capture imperceptibility: Is a change of
the device feature from Android to an iPhone imperceptible? Even if imperceptibility
was well-defined, imperceptibility might not be relevant. Should we only be concerned
about adversaries making “imperceptible” changes, e.g., modifying amount from $200
to $201? What about attack vectors in which the adversary evades detection while
changing the transaction by a “perceptible” amount: from $200 to $2,000?

Formalizing adversarial examples as imperceptible modifications narrows the mathe-
matical tools that can be used to study adversarial examples in their broad sense. In
the case of tabular data, this prevents the study of techniques that adversaries could
employ in “perceptible”, yet effective ways.

We argue that in tabular data the primary constraint should be adversarial cost, rather
than any notion of similarity. Instead of looking at how visually or semantically
similar are the feature vectors, the focus should be on how costly it is for an adversary
to enact a modification. Costs capture the effort of the adversary, e.g., financial or
computational. “How much money does the adversary have to spend to evade the
detector?” better captures the possibility that an adversary deploys an attack than
establishing a threshold on the Lp distance the adversary could tolerate. In the
fraud-detection example, regardless of whether a change from Android to iPhone is
imperceptible and semantically similar or not, it is certain that the change costs the
adversary a certain amount of resources. How significant are these costs determines
the likelihood of the adversary deploying such an attack.

Different tabular adversarial examples are of different value to the adversary.
In the literature, with a notable exception of Zhang and Evans [201], defenses against
adversarial examples implicitly assume that all adversarial examples are equal in their
importance [71, 158, 187, 198]. In tabular data domains, however, different adversarial
examples can bring very different gains to the adversary. In the fraud-detection
example, if a fraudulent transaction with transaction amount of $2,000 successfully
evades the detector, it could be significantly more profitable to the adversary than a
transaction with amount of $200.

Using the adversarial cost as the primary constraint for adversarial examples provides
a natural way to incorporate the variability in adversarial gain. The adversary is
expected to care about the profit obtained from the attack, i.e., the difference between
the cost associated with crafting an adversarial example, and the gain from its successful
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deployment. We call this difference the utility of the attack. We show how utility can
be incorporated into the design of attacks to ensure their economic profitability, and
into the design of defenses to ensure protection against adversaries that focus on profit.

In this chapter, we introduce a framework to study adversarial examples tailored to
tabular data. Our contributions:

• We propose two adversarial objectives for tabular data that address the limitations
of the standard approaches: a cost-bounded objective that substitutes standard
imperceptibility constraints with adversarial costs; and a novel utility-bounded
objective in which the adversary adjusts their expenditure on different adversarial
examples proportionally to the potential gains from deploying them.

• We propose a practical attack algorithm based on greedy best-first graph search
for crafting adversarial examples that achieve the objectives above.

• We empirically evaluate our attacks in realistic conditions demonstrating their
applicability to real-world security scenarios, showing that these attacks can
bring about utility to the adversary.

In summary, this chapter presents a framework for studying adversarial robustness
that is specifically designed for tabular data from ground-up.

5.2 Evasion Attacks

This section introduces the notation and the formal setup of evasion attacks [see, e.g.,
15, 137] in tabular domains, which is closely related but differs from the standard
setting of adversarial robustness introduced in Section 1.4.

Feature space in tabular domains. The input domain’s feature space X is composed
of m features: X ⊆ X1 ×X2 × · · · ×Xm. For example x ∈ X, we denote the value of its
i-th feature as xi. Features xi can be categorical, ordinal, or numeric. Each example is
associated with a binary class label y ∈ {0, 1}.

Target classifier. We assume the adversary’s target to be a binary classifier
fθ(x) ∈ {0, 1}, with a confidence score function hθ(x) ∈ [0, 1]. We omit the θ subscript
in this chapter for conciseness. We focus on binary classification as it is the task in
which adversarial dynamics typically arise in tabular domains (e.g., fraud detection [29]
or risk-scoring systems [68]).

Adversarial examples. An evasion attack proceeds as follows: The adversary starts
with an initial example x ∈ X with a label y = ys. We call this class the adversary’s
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source class. The adversary’s goal is to modify x to produce an adversarial example
x∗ that is classified as f(x∗) = yt, ys ̸= yt. We call this the adversary’s target class.
The attack is successful if the adversary can produce such an adversarial example.
Depending on the adversarial objective, the adversarial example might also need to
satisfy additional constraints, as detailed in Section 5.3.

Because an attack is performed using an adversarial example, as in the literature, we
use the terms adversarial example and attack interchangeably.

Our methods can be used in a multi-class setting as they are agnostic to which class is
the target one. Our notation, however, is specific to the binary setting for clarity.

Adversarial model. In terms of capabilities, we assume the adversary can only
perform modifications that are within the domain constraints. In the fraud-detection
example, the adversary can change the transaction amount, but the value must be
positive. For a given initial labeled example (x, y), we denote the set of feasible
adversarial examples that can be reached within the capabilities of the adversary as
F(x, y) ⊆ X.

In terms of knowledge, we assume that the adversary has black-box access to the target
classifier: The adversary can issue queries using arbitrary examples and obtain h(x).
In our evaluation (Section 5.5) we compare this adversary against existing attacks with
white-box access to the gradients.

Preservation of semantics. It is common to require that an adversarial example is
semantics-preserving [142, 160]: the adversarial example retains the same true class as
the original example. We do not impose such a requirement. The only constraint we
impose is that the modifications leading to an adversarial example are feasible within
the domain constraints, i.e., that the adversarial example belongs to the set F(x, y).
This is because in tabular domains limiting F(x, y) to those adversarial examples that
also preserve semantics is counterproductive: As long as the adversary successfully
achieves their goal with an adversarial example that is feasible and is within their
budget (see Section 5.3), the attack presents a valid threat.

5.3 Adversarial Objectives in Tabular Data

As we detail in Section 5.1, the approaches to adversarial modeling tailored to image or
text data have two critical limitations when applied to tabular domains:

1. Focus on imperceptibility and semantic similarity. Neither closeness to natural
examples in Lp distance, nor closeness in terms of semantic similarity, is a
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well-applicable definition of adversarial examples in tabular domains. This is
because such similarities are either ill-defined for mixed-type features (e.g., as
is the case with Lp distance), or potentially irrelevant to the quantification of
adversarial constraints (both Lp and semantic similarity).

2. Assuming all adversarial examples are equally useful. Most existing defenses
against adversarial examples do not distinguish different attacks in terms of their
value for the adversary. In tabular domains, due to the inherent heterogeneity of
the data, some attacks could bring significantly more gain to the adversary.

Next, we propose adversarial objectives which aim to address these limitations.

5.3.1 Cost-Bounded Objective

Evasion attacks which use adversarial costs were first formalized in early works on
adversarial machine learning [12, 121]. In these works, the adversary aims to find
evading examples with minimal cost. Since the discovery of adversarial examples in
computer vision models [168], this formalization was largely abandoned in favor of
constraints based on Lp and other mathematical distances (e.g., Wasserstein distance
[188] or LPIPS [96, 110]). In this work, we revisit the cost-oriented approach, which
better reflects the adversary’s capabilities in tabular domains.

In a standard way to obtain an adversarial example (see Section 1.4), the adversary
aims to construct an example that maximizes the classification loss incurred by the
target classifier fθ(x), while keeping the Lp-distance from the initial example bounded:

max
x′∈F(x,y)

ℓ((x′, y); θ) s.t. ∥x′ − x∥p ≤ ε (5.1)

This objective implicitly assumes that the adversary wants to keep the adversarial
example as similar to the initial example as possible in terms of the examples’ feature
values. The closeness in terms of Lp distance aims to capture imperceptibility and to
preserve the original example’s semantics [160].

From Distances to Costs. To address the fact that imperceptibility or semantic
similarity is not necessarily relevant for adversarial settings in tabular domains, we
adapt the definition in Eq. (5.1) to the tabular setting by introducing a cost constraint.

This constraint represents the limited amount of resources available to the adversary
to evade the target classifier. If the adversary can find an adversarial example that
achieves this goal within the cost budget, the adversary proceeds with the attack.
Formally, we associate a cost to the modifications needed to generate any adversarial
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example x′ ∈ F(x, y) from the original example (x, y). We encode this cost as a
function c : X × X → R+. We assume the generation cost is zero if and only if no
change is enacted: c(x, x′) = 0 ⇐⇒ x = x′.

This formulation is generic: it can encompass geometric and semantic distances, but it
goes beyond that. It exhibits the following desirable properties:

a. Support for arbitrary feature types and rich semantics. Whereas Lp distances only
support numeric features, our generic cost model can support any feature type.
This is because it does not enforce any structural constraints on the exact form
of cost of changing a feature value xi into x′

i. For example, the cost does not
need to obey |xi − x′

i| as would be the case with L1 distance. Moreover, unlike
mathematical distances, our model does not require the costs to be symmetric.
For instance, an increase in a feature value could have a different cost than a
decrease.

b. Enables more generic quantification of adversarial effort. Our cost model imposes
neither a geometric structure such as is the case with Lp distances, nor any ties
to semantic similarity. Thus, the costs can be quantified in those units that are
directly relevant to adversarial constraints. An important use case is that our
model supports defining costs in the financial sense, i.e., assigning a dollar cost
to mounting an attack with a given adversarial example as opposed to semantic
closeness or closeness in feature space.

c. Support for feature-level accumulation. Related literature on attacks in tabular data
often formalizes costs using indepenent per-feature constraints (see Section 5.6).
Although our generic cost model supports such a special case, it also enables
accumulation of per-feature costs. Therefore, it can encode a realistic assumption
that changing more features increases adversary’s expenditure.

The optimization problem. We assume that the cost-bounded adversary has a
budget ε. The adversary aims to find any example that flips the classifier’s decision
and that is within the cost budget:

max
x′∈F(x)

1[fθ(x′) ̸= y] s.t. c(x, x′) ≤ ε (5.2)

Alternatively, the adversary can optimize a standard surrogate objective which ensures
that the optimization problem can be solved in practice:

max
x∈F(x,y)

ℓ((x, y); θ) s.t. c(x, x′) ≤ ε, (5.3)

In the surrogate form, the optimization problem of the cost-bounded adversary is an
adaptation of Eq. (5.1) with the norm constraint substituted by the adversarial-cost
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constraint. This formalization is in line with recent formalizations of adversarial
examples [123], as opposed to early approaches which aim to find minimal-cost
attacks [121].

5.3.2 Utility-Bounded Objective

The cost-bounded adversarial objective solves the issue of imperceptibility and semantic
similarity not being suitable constraints for tabular data. It does not, however, tackle
the problem of heterogeneity of examples: the adversary cannot assign different
importance to different adversarial examples. In a realistic environment, it can be a
serious drawback. For instance, an adversary might spend more resources than they
gain from a successful attack. Another instance is the defender hypothetically suffering
serious losses due to high-impact adversarial examples, even if for the majority of
examples the defense is appropriate.

We propose to capture this heterogeneity by introducing the gain of an attack. The
gain, r : X→ R+, represents the reward (e.g., the revenue) that the adversary receives
if their attack using a given adversarial example is successful.

We also introduce the concept of utility: the net benefit of deploying a successful attack.
We define the utility ux,y(x∗) of an attack mounted with adversarial example x∗ as
simply the gain minus the costs:

ux,y(x∗) ≜ r(x∗)− c(x, x∗), (5.4)

where (x, y) is the initial example.

Recall that the adversary has black-box access to the target classifier. Thus, they can
learn whether an example x∗ evades the classifier or not (i.e., whether f(x∗) ̸= y). Then,
they can decide to deploy an attack with an adversarial example x∗ only if the utility
of the attack exceeds a given margin τ ≥ 0. Otherwise, the adversary discards this
adversarial example. Formally, we can model this process by using a utility constraint
instead of a cost constraint:

max
x∈F(x,y)

1[f(x) ̸= y] s.t. ux,y(x) ≥ τ (5.5)

If we assume that the gain is constant for any adversarial example x′ ∈ F(x, y) that is
a modification of an initial example (x, y), that is, r(x) = r(x′), this problem can also
be seen as a variant of the cost-bounded formulation in Eq. (5.2), where ε varies for
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different initial examples:

max
x′∈F(x,y)

1[f(x′) ̸= y]

s.t. ux,y(x′) ≥ τ

⇐⇒ r(x)− c(x, x′) ≥ τ

⇐⇒ c(x, x′) ≤ ε(x) ≜ r(x)− τ

(5.6)

In Appendix E.1, we discuss the formalization of a utility-maximization objective which
models an adversary which wants to maximize their profit subject to budget constraints.

5.3.3 Quantifying Cost and Utility

A natural question in our setup is how to define the adversary’s costs and gains. This
question is relevant to all related prior work on adversarial robustness in tabular data
(see Section 5.6). For example, if adversarial robustness is defined in terms of an Lp

distance, both the attacker and defender need to determine an acceptable perturbation
magnitude, which inherently comes from domain knowledge.

In our applications (see Section 5.5), we focus on the settings in which adversarial
capabilities are constrained in terms of financial costs. In such settings, we expect
that the adversary is able to quantify the financial costs c(x, x′) and gains r(x) by
practical necessity. On the defender’s side, estimating these values is trickier, as the
defender might be unaware of the exact capabilities of the adversary. The defender
thus needs to employ standard threat modeling techniques and domain knowledge.
It is worth mentioning that the defender is not required to estimate the capabilities
perfectly. Rather, they need to obtain the lower bound on the adversary’s costs. After
that, if the defended system is robust, it is robust against the adversary whose costs are
at least as high as estimated.

In our utilitarian approach, it is possible to include other concerns and constraints
of the adversary as part of the utility definition by measuring them in the same
units as the utility (e.g., financial costs). For instance, as the driving concern behind
imperceptibility-based approaches to adversarial robustness is the detection of an attack,
the gain could be adjusted for a potential risk of being detected. The adversary could
estimate the probability of being detected (e.g. using public statistics), and incorporate
it into the gain by subtracting an expected value of the attack failure due to detection.
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5.4 Finding Adversarial Examples in Tabular Do-
mains

In this section, we propose practical algorithms for finding adversarial examples suitable
to achieve the adversarial objectives we introduce in Section 5.3.

5.4.1 Graphical Framework

The optimization problems in Section 5.3 can seem daunting due to the large cardinality
of F(x, y) when the feature space is large. To make the problems tractable, we
transform them into graph-search problems, following the approach by Kulynych et al.
[104]. Consider an example-specific state-space graph parameterized by (V, E). Each
node corresponds to a feasible example in the feature space, V = F(x, y)∪ {x}. Edges
between two nodes x and x′ exist if and only if they differ in value of one feature: there
exists i = 1, . . . , n such that xi ̸= x′

i, and xj = x′
j for all j ̸= i. In other words, the

immediate descendants of a node in the graph consist of all feasible feature vectors
that differ from the parent in exactly one feature value.

Using this state-space graph abstraction, the objectives in Section 5.3 can be modeled
as graph-search problems. Even though the graph size is exponential in the number of
feature values, the search can be efficient. This is because it can construct the relevant
parts of the graph on the fly as opposed to constructing the full graph in advance.

Building the state-space graph is straightforward when features take discrete values.
To encode continuous features in the graph we discretize them by only considering
changes to a continuous feature i that lie within a finite subset of its domain Xi, in
particular, on a discrete grid. The search efficiency depends on the size of the grid.
As the grid gets coarser, finding adversarial examples becomes easier. This efficiency
comes at the cost of potentially missing adversarial examples that are not represented
on the grid but could fulfil the adversarial constraints with less cost or higher utility.

5.4.2 Attacks as Graph Search

In the remainder of the chapter, we make the following assumptions about the
adversarial model:

Assumption 5.1 (Modular costs). The adversary’s costs are modular : they decompose
by features. Formally, changing the value of each feature i from xi to x′

i has the
associated cost ci(xi, x′

i) > 0, and the total cost of modifying x into x′ is a sum of
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Algorithm 6 Best-First Search (BFS)
1: function BFSB,s,ε(x)
2: open← MinPriorityQueueB(x, 0)
3: closed← {}
4: while open is not empty do
5: v ← open.pop()
6: if v /∈ closed then
7: closed← closed ∪ {v}
8: if η(v) ≥ δ then return v

9: S ← expand(v)
10: for t ∈ S do
11: if t /∈ closed and c(x, t) ≤ ε then
12: open.add(t, s(v, t))

individual feature-modification costs:

c(x, x′) =
n∑
i

ci(xi, x′
i) (5.7)

The state-space graph can encode modular costs by assigning weights to the graph
edges. An edge between x and x′ has an associated weight of ci(xi, x′

i), where i is the
index of the feature that differs between x and x′. For pairs of examples x(0) and x(t)

that differ in more than one feature, the cost c(x(0), x(t)) is the sum of the edge costs
along the shortest path from x(0) to x(t).

Assumption 5.2 (Constant gain). For any initial example (x, y), the adversary cannot
change the gain:

∀x′ ∈ F(x, y) : r(x) = r(x′) (5.8)

This follows the approach in utility-oriented strategic classification (as detailed in
Section 5.3.2). This assumption is not formally required for our attack algorithms
(described next in this section), but we focus on this setting in our empirical evaluations.

Strategies to find adversarial examples. Under our two assumptions, the cost-
bounded objective in Eq. (5.2) and the utility-bounded objective in Eq. (5.6) can be
achieved by finding any adversarial example that is classified as target class and
is within a given cost bound. Thus, these adversarial goals can be achieved using
bounded-cost search [165].

We start with the best-first search (BFS) [81, 104], a flexible meta-algorithm that
generalizes many common graph search algorithms. In its generic version (Algorithm 6)
BFS keeps a bounded priority queue of open nodes. It iteratively pops the node v with
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the highest score value from the queue (best first), and adds its immediate descendants
to the queue. This is repeated until the queue is empty. The algorithm returns the node
with the highest score out of all popped nodes.

The BFS algorithm is parameterized by the scoring function s : V × V = X × X and
the size of the priority queue B. Different choices of the scoring function yield search
algorithms suited for solving different graph-search problems, such as Potential Search
for bounded-cost search [165, 166], and A∗ [46, 102] for finding the minimal-cost paths.
When B =∞, the algorithm might traverse the full graph and is capable of returning
the optimal solution. As the size of B decreases, the optimality guarantees are lost.
When B = 1 BFS becomes a greedy algorithm that myopically optimizes the scoring
function. When 1 < B < ∞ we get a beam search algorithm that keeps B best
candidates at each iteration.

To achieve the adversarial objectives in Section 5.3, we propose to use a concrete
instantiation of BFS, what we call the Universal Greedy (UG) algorithm. Inspired by
heuristics for cost-bounded optimization of submodular functions [95, 186], we set the
scoring function to balance the increase in the classifier’s score and the cost of change:

s(v, t) = −h(t)− h(v)
c(v, t) (5.9)

The minus sign appears because BFS expands the lowest scores first, and we need
to maximize the score. We set the beam size to B = 1 (greedy), which enables us
to find high-quality solutions to both cost-bounded and utility-bounded problems at
reasonable computational costs (see Section 5.5).

5.5 Experimental Evaluation

In this section, we show that our graph-based attacks can be used by adversaries to
obtain profit, and that our proposed defenses are effective at mitigating damage from
these attacks.

5.5.1 Setup

Datasets. We perform our experiments on three tabular datasets which represent
real-world applications for which adversarial examples can have social or economic
implications:

• TwitterBot [69]. The dataset contains information about more than 3,400 Twitter
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accounts either belonging to humans or bots. The task is to detect bot accounts.
We assume that the adversary is able to purchase bot accounts and interactions
through darknet markets, thus modifying the features that correspond to the
account age, number of likes, and retweets.

• IEEE-CIS1. The dataset contains information about around 600K financial
transactions. The task is to predict whether a transaction is fraudulent or
benign. We model an adversary that can modify three features for which we can
outline the hypothetical method of possible modification, and estimate its cost:
payment-card type, email domain, and payment-device type.

• HomeCredit2. The dataset contains financial information about 300K home-loan
applicants. The main task is to predict whether an applicant will repay the
loan or default. We use 33 features, selected based on the best solutions to the
original Kaggle competition. Of these, we assume that 28 can be modified by the
adversary, e.g., the loan appointment time.

Models. We evaluate our attacks against three types of ML models commonly applied
to tabular data. First, an L2-regularized logistic regression (LR) with a regularization
parameter chosen using 5-fold cross-validation. Second, XGBoost gradient-boosted
decision trees (XGBT). Third, TabNet [6], an attentive transformer neural network
specifically designed for tabular data. We optimize the number of steps as well as the
capacity of TabNet’s fully connected layers using grid search.

Adversarially modifiable features. We assume that the feasible set consists of all
positive values of numerical features and all possible values of categorical features.
For simplicity, we avoid features with mutual dependencies and treat the adversarially
modifiable features as independent. We detail the choice of the modifiable features and
their costs in Appendix E.2.3.

Metrics. To evaluate the effectiveness of the attacks and defenses, we use three main
metrics:

• Adversary’s success rate: The proportion of correctly classified examples from a
test dataset S̄ ∈ Dn for which adversarial examples successfully generated using
the attack algorithm A(x, y) evade the classifier:

Pr
(x,y)∼S̄

[f(A(x, y)) ̸= y ∧ f(x) = y] .

1https://www.kaggle.com/c/ieee-fraud-detection
2https://www.kaggle.com/c/home-credit-default-risk
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• Adversarial cost: Average cost of successful adversarial examples:

E
(x,y)∼S̄

[c(x,A(x, y)) | f(A(x, y)) ̸= y ∧ f(x) = y] .

• Adversarial utility: Average utility (see Eq. (5.4)) of successful adversarial exam-
ples:

E
(x,y)∼S̄

[ux,y(A(x, y)) | f(A(x, y)) ̸= y ∧ f(x) = y].

In all cases, we only consider correctly classified initial examples which enables us
to distinguish these security metrics from the target model’s accuracy. We introduce
additional metrics in the experiments when needed.

5.5.2 Design Choices of the Universal Greedy Algorithm

When designing attack algorithms in the BFS framework (see Algorithm 6), there are
two main design choices: the scoring function, and the beam size. We explore different
configurations and show that our parameter choices for the Universal Greedy attack
produce high-quality adversarial examples.

Beam size. We define the beam size of the Universal Greedy attack to be one. The other
options that we evaluate are 10 and 100. We evaluate them by running three types of
attacks: cost-bounded for three cost bounds ε, and utility-bounded at the breakeven
margin τ = 0. We compute two metrics: attack success, and the success-to-runtime
ratio. This ratio represents how much time is needed to achieve the same level of
success rate using each choice of the beam size. This metric is more informative for
our evaluation than runtime, as the runtime is simply proportional to the beam size.

For feasibility reasons, we use two datasets: TwitterBot and IEEE-CIS. We aggregate
the metrics across the three models (LR, XGBT, TabNet), and report the average. The
results on TwitterBot are equivalent to the results on IEEE-CIS, thus for conciseness
we only report IEEE-CIS results.

We find that the success rates are equal up to the percentage point for all choices of the
beam size. We show the detailed numeric results in Table E.5 in the Appendix. As the
smallest beam size of one is the fastest to run, it demonstrates the best success/time
ratio, therefore, is the best choice.

Scoring function. Recall from Eq. (5.9) that the scoring function is the cost-weighted
increase in the target classifier’s confidence, which aims to maximize the increase in
classifier confidence at the lowest cost.
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Other choices for the scoring function s(v, t) could be:

• A∗ algorithm [46, 102, 104]: s(v, t) = c(v, t) + λ · χ(t), where χ(t) is a heuristic
function, which estimates the remaining cost to a solution and λ > 0 is a
greediness parameter [143]. This scoring function balances the current known
cost of a candidate and the estimated remaining cost. We choose the model’s
confidence for the positive class, χ(x) = h(x), as a heuristic function. Intuitively,
this works as a heuristic, because the lower the confidence for the positive class,
the more likely we are close to a solution: an example classified as the target
class.

• Potential Search (PS) [165, 166]: s(v, t) = χ(t)/(ε−c(v,t)) , which additionally takes
into account the cost bound ε, thus becoming more greedy (i.e., optimizing
s(v, t) = λ ·χ(t) with λ ≈ 1/ε) when the cost of the current candidate leaves a lot
of room within the ε budget. We also choose χ(x) = h(x) as a heuristic function.

• Basic Greedy: s(v, t) = −h(t)/c(s,t) , which aims to maximize the classifier’s
confidence, yet balance it with the incurred cost. Unlike Eq. (5.9), this scoring
function does not take into account the relative increase of the confidence, only
its absolute value.

We evaluate the choice of the scoring function on the TwitterBot and IEEE-CIS datasets,
with the beam size fixed to one. We run the cost-bounded and utility-bounded attacks
in the same configuration as before, and measure two metrics averaged over the models:
Attack success, and attack success/time ratio.

Table 5.1 shows the results. On IEEE-CIS, the Universal Greedy outperforms the other
choices in terms of success rate and the success/time ratio. On the TwitterBot dataset,
it outperforms the other choices in the utility-bounded and unbounded attacks. For
cost-bounded attacks, the Universal Greedy offers very close performance to the best
option, the Basic Greedy.

5.5.3 Graph-Based Attacks vs. Baselines

We compare the Universal Greedy (UG) algorithm against two baselines: previous
work, and the minimal-cost adversarial examples.

Previous Work: PGD. As our cost model differs from the existing approaches to attacks
on tabular data, we fundamentally cannot perform a fully apples-to-apples comparison
against existing attacks (see Section 5.4). To compare against the high-level ideas from
prior work, we follow the spirit of the attack by Ballet et al. [9], which modifies the
optimization problem from Eq. (5.1) to use correlation-based weights.

95



Chapter 5. Realistic Adversarial Modeling for Tabular Data

Table 5.1: Effect of the scoring-function choice for graph-based attacks. In the majority
of settings, our Universal Greedy scoring function offers the best success rate and
performance.

(a) IEEE-CIS

Adv. success, %
Cost bound→ 10 30 Gain ∞
Scoring func. ↓
UG 45.32 56.57 56.22 68.20
A* 42.37 55.62 55.34 53.47
PS 45.32 55.14 56.18 N/A
Basic Greedy 42.37 55.46 55.38 53.82

Success/time ratio
Cost bound→ 10 30 Gain ∞
Scoring func. ↓
UG 3.78 4.80 2.53 2.06
A* 3.29 3.83 1.89 1.15
PS 3.78 4.01 2.26 N/A
Basic Greedy 3.21 3.86 2.01 1.16

(b) TwitterBot

Adv. success, %
Cost bound→ 1,000 10,000 Gain ∞
Scoring func. ↓
UG 80.24 85.35 21.63 87.00
A* 77.56 84.45 20.29 86.25
PS 79.95 85.19 21.48 N/A
Basic Greedy 80.40 85.04 21.63 86.85

Success/time ratio
Cost bound→ 1,000 10,000 Gain ∞
Scoring func. ↓
UG 208.95 205.76 64.99 205.31
A* 206.33 201.93 62.25 201.31
PS 205.85 203.18 63.76 N/A
Basic Greedy 210.20 206.20 64.32 204.96

Thus, we adapt the standard PGD attack (see Section 1.4) to (1) support categorical
features through discretization, and (2) use weighted L1 norm to support per-feature
costs. We provide a detailed description of this adaptation in Algorithm 7. In
this adaptation, we use projection onto a w-weighted L1 ball Projx,p,w,ε(x′), defined
analogously to the standard projection (see Section 1.4):

Projx,p,w,ε(x′) ≜ min
x̄∈Rd
∥x̄− x′∥2 s.t. ∥x̄− x∥p,w ≤ ε. (5.10)

We use an algorithm for efficient projection onto a weighted L1 ball by Perez et al.
[141]. We use the vector of weights to encode per-feature costs. This encoding,
however, fundamentally cannot represent all possible cost functions we support (see
Section 5.4.2). We nevertheless use it as we aim to provide a best-effort comparison to
prior work.

We run attacks using PGD with 100 and 1,000 steps, and compare it to UG (Section 5.4)
on the TwitterBot and IEEE-CIS datasets. As PGD can only operate on differentiable
models, in this comparison we only evaluate the performance of the attacks against
TabNet.

We run the cost-bounded attacks using two values of the ε bound, specific to each
dataset (see Appendix E.2 for the exact attack parameters). As before, we also run a
utility-bounded attack at the breakeven margin τ = 0. We measure the success rates
of the attacks, as well as the average cost of the obtained adversarial examples. For
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5.5 Experimental Evaluation

Algorithm 7 PGD-Based Attack
Input: Initial example (x, y), weight vector w ∈ Rm, cost bound ε, number of iterations
tmax
Output: Adversarial example xtmax

1: α← 2 ε
tmax

2: for t in 1, . . . , tmax do
3: gradt ← ∇δℓ((x + δ, y); θ)
4: xt = Projx,p,w,ε(xt−1 + α gradt

∥gradt∥1
)
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Figure 5.1: Universal Greedy attack vs Baselines. Left: Attack success rate (higher is
better for the adversary). Right: Attack cost (lower is better for the adversary). For all
cost bounds, our graph-based attack outperforms standard PGD and returns close to
optimal-cost adversarial examples (obtained with Uniform-Cost Search, UCS).

conciseness, we do not report the results on TwitterBot, as they find they are equivalent
to those on IEEE-CIS.

Fig. 5.1 shows that the UG attack consistently outperforms the PGD-based baseline
both in terms of the success rate and the costs. Our attacks are superior even when the
PGD-based baseline produces feasible adversarial examples.

Minimal-Cost Adversarial Examples. As UG is a greedy algorithm, we additionally
evaluate how far are the obtained adversarial examples from the optimal ones in terms
of cost. For this, we compare the results from UG to a standard Uniform-Cost Search
(UCS) [104]. UCS is an instantiation of the BFS framework (see Section 5.4) with
unbounded beam size, and the scoring function equal to the cost: s(v, t) = c(v, t). In
our setting, UCS is guaranteed to return optimal solutions to the following optimization
problem:

min
x′∈F(x,y)

c(x, x′) s.t. f(x′) ̸= y (5.11)

Fig. 5.1 shows that UG has almost no overhead over the minimal-cost adversarial
examples on TabNet (1.03× overhead on average). In fact, the average and median
cost overhead is 1.80× and 1× over all models, respectively. There exist some outlier
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examples, however, with over 100× cost overhead. We provide more information on
the distribution of cost overhead in Appendix E.2.

5.5.4 Attack Performance

Having shown that the attacks outperform the baseline, and the design choices are sound,
we demonstrate that the attacks bring some utility to the adversary. In this section, we
evaluate the attacks in a non-strategic setting: the models are not deliberately defended
against the attacks. For conciseness, we only evaluate cost-bounded attacks, as the
next section provides an extensive demonstration of utility-bounded attacks.

In all evaluated settings, the attacks have non-zero success rates and achieve non-zero
adversarial utility. Fig. 5.2 show the results of cost-bounded attacks for IEEE-CIS
and HomeCredit datasets. We omit the results for LR on HomeCredit as this model
does not perform better than the random baseline. An average adversarial example
obtained using the cost-bounded objective brings a profit of $125 to the adversary when
attacking the IEEE-CIS TabNet model, and close to 100% of examples in the test data
can be turned into successful adversarial examples.

Although for all models we see non-zero success and utility, some models are less
vulnerable than others, even without any protection. For example, the success rate
of the adversary against LR on IEEE-CIS is much lower than against TabNet (at least
50 p.p. lower). This model, however, is also comparatively inaccurate, with only 62%
classification accuracy.

5.6 Related Work

Our conceptual contributions span three aspects of adversarial robustness in tabular
domains: new formulations of adversarial objectives and attack strategies within these
objectives. We review the related work in each of the aspects next. We also provide a
concise summary in Table 5.2.

5.6.1 Adversarial Objectives

In this part, we review the related adversarial objectives as well as some approaches
which are similar in spirit to our adversarial objectives.

Cost-based objectives. Our generic cost-bounded objective is not the only possible
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Figure 5.2: Results of cost-bounded graph-based attacks against three types of models.
Left pane: Adversarial utility (higher is better for the adversary). Middle and right
panes: See Fig. 5.1. On IEEE-CIS, the attack can achieve utility from approximately $10
to $125 per attack depending on the target model. On HomeCredit, the average utility
ranges between $400,000 and $600,000.
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Table 5.2: Summary of related work in terms of three aspects: adversarial models,
attack strategies, and defense strategies. Adversarial models: Adv. cost — description of
(an equivalent of) an adversarial cost model. Adv. utility — whether adversarial gain is
incorporated into the model. Attacks: Targets — which target models can be attacked.
Feasibility —whether the attack is guaranteed to produce a feasible adversarial example.
Algorithm — a short description of the algorithmic approach. Defenses: Arch. — which
model architectures are supported.

Adversarial models Attack strategies
Adv. cost Adv. utility Targets Feasibility Algorithm

Ballet et al. [9] Feature-importance based — Differentiable ✗ Gradient-based
Cartella et al. [30] Feature-importance based — Any ✗ ZOO
Mathov et al. [125] Distance based — Any ✗ Gradient-based
Kantchelian et al. [93] Lp — Tree-based ✓ MILP
Andriushchenko and Hein [5] L∞ — Tree-based ✓ Custom
Chen et al. [35] Per-feature constraints — — — —
Calzavara et al. [26] Per-feature constraints — Tree-based ✓ Exhaustive search
Vos and Verwer [174] Per-feature constraints — — — —
Ours Generic (Section 5.4.2) ✓ Any ✓ Graph search

approach to model attacks in tabular domains. For example, works on adversarial
robustness in the context of decision tree-based classifiers often use per-feature
constraints as adversarial constraints [5, 34, 35]. At the low level, these constraints are
formalized either as bounds on L∞ distance [5, 34], or using functions determining
constraints for each feature value [35]. In these approaches, the feature constraints
are independent. Such independence simplifies the problem. For example, the usage
of L∞ constraints enables to split a multidimensional optimization problem into a
combination of simple one-dimension tasks [5], or to limit the set of points affected by
the split change [35]. Unfortunately, per-feature constraints cannot realistically capture
the total cost of mounting an attack: the aggregate cost of all the feature modifications
required to produce an adversarial example, which is crucial to capture in tabular
domains.

Also related to our cost-based proposal, Pierazzi et al. [142] introduce a general
framework for defining attack constraints in the problem space. Our cost-based
objective can be thought as an instance of this framework: we encode the problem-
space constraints in the set of feasible examples.

Our costmodel resembles theGower distance [72], which is also a sumof “dissimilarities”
across different categories of features. As opposed to this distance, our cost model can
accommodate a wider class of numeric features, e.g., with a non-linear cost of changes.
Also, it is not bounded to [0, 1] interval providing flexibility to model a wider range of
applications.

Utility-based objectives. The literature on strategic classification also considers
utility-oriented objectives [50, 77, 126] for their agents. In this body of work, however,
agents are not considered adversaries, and the gain is typically limited to {+1,−1}
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reflecting the classifier decision. Our model supports arbitrary gain values, which
enables us to model broader interests of the adversary such as revenue. Only the work
by Sundaram et al. [167] supports gains different from +1 or −1, but they focus on
PAC-learning guarantees in the case of linear classifiers, whereas our goal is to provide
practical attack and defense algorithms for a wider family of classifiers.

5.6.2 Attack Strategies

Tabular domains. Several works have proposed attacks on tabular data. Ballet
et al. [9] and Cartella et al. [30] propose to apply existing continuous attacks to tabular
datasets. The authors focus on crafting imperceptible adversarial examples using
standard methods from the image domain. They adapt these methods such that less
“important” features (low correlation with the target variable) can be perturbed to
a higher degree than other features. This corresponds to a special case within our
framework, in which the feature-modification costs depend on the feature importance,
with the difference that these approaches cannot guarantee that the proposed example
will be feasible. Mathov et al. [125] propose to construct a surrogate model capable of
mimicking the target classifier. A part of this surrogate model is a feature-embedding
function which maps tabular data points to a homogeneous continuous domain. They
apply projected gradient descent to produce adversarial examples in the embedding
space and map the resulting examples back to the tabular domain. As opposed to
our methods, Levy et al. cannot provide any guarantee that the produced adversarial
example lay in the feasible set. Finally, Kantchelian et al. [93] propose a MILP-based
attack and its relaxation within different Lp cost models against random-forest models.
Our attack differs from these three methods as they use Lp or similar bounds, whereas
we use a cost bound that can capture realistic constraints as explained in Sections 5.1
and 5.3.

Text domains. Our universal greedy attack algorithm is similar to the methods
for attacking classifiers that operate on text [60, 111, 115, 179, 193, 200]. All these
works, however, make use of adversarial constraints such as restrictions on the number
of modified words or sentences. These constraints do not apply to tabular domains,
as simply considering “number of changes” does not address the heterogeneity of
features. Our algorithms also differ from these approaches in that we incorporate
complex adversarial costs in the design of the algorithms. For example, the Greedy
attack by Yang et al. [193] uses the target classifier’s confidence for choosing the
best modifications to create adversarial examples while accounting for the number of
modifications. Our framework not only considers the number of modifications but also
their cost, thus capturing richer constraints of the adversary.
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5.7 Conclusions and Future Work

In this chapter, we have revisited the problem of adversarial robustness when the target
machine-learning model operates on tabular data. We showed that previous approaches,
tailored to produce adversarial image or text examples, and defend from them, perform
poorly when used in tabular domains. This is because they are conceived within a
threat model that does not capture the capabilities and goals of the tabular adversaries.
We introduced a new framework to design attacks that account for the constraints
existing in tabular adversarial scenarios: adversaries are limited by a budget to modify
features, and can assign different utility to different examples. Having evaluated these
attacks on three realistic datasets, we show that they effectively bring utility to the
adversaries, which enables more realistic security evaluations of ML models. Further
research is needed to study improvements to the attack algorithms, and to identify
concrete methodologies for defining the cost and utility-based adversarial models.
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Conclusions

In this thesis, we have re-evaluated the standard assumptions and approaches for
mitigating and measuring privacy, security, and reliability risks in ML. Next, we provide
a summary and key takeaways from each chapter.

In Chapter 2, we demonstrated that differentially private training guarantees consistent
behavior between training and test time. By leveraging a notion of distributional
generalization, we introduced new conceptual tools for designing deep learning
methods, enabling us to mitigate unwanted behaviors and construct algorithms that
outperform state-of-the-art approaches in distributional-robustness applications. The
work introduced in the chapter showed that advances in the area of differential privacy
can bring about improvements beyond just privacy.

At the same time, Chapter 3 highlighted the predictive-multiplicity cost in differentially
private learning. We revealed that the randomization techniques used to ensure DP
during model training can lead to significant variations in predictions for the same
input example across equally-private models. The increase in predictive multiplicity
with the level of privacy raises concerns about the justifiability of decisions supported
by differentially private models in high-stakes settings. We emphasize the need for
practitioners to audit the predictive multiplicity of DP-ensuring algorithms before
deploying them in applications with individual-level consequences. Future work should
focus on developing techniques to minimize or communicate the predictive multiplicity
cost while preserving privacy guarantees.

In Chapter 4, we examined the phenomenon of disparate vulnerability in membership
inference attacks (MIA). First, we established necessary and sufficient conditions
for preventing MIAs, leveraging the concept of distributional generalization. These
connections showed that a standard measure of vulnerability to membership inference
is equivalent to an extended notion of generalization, implying that an improve-
ment in either privacy or generalization necessarily implies an improvement in the
other. We showed that accurately estimating disparate vulnerability requires careful
consideration of suitable attack methods and the development of reliable statistical
frameworks. Further research should explore effective mechanisms for preventing
disparate vulnerability while preserving privacy.
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Conclusions

In Chapter 5, we addressed the unique challenges of adversarial robustness in tabular
domains, which are prevalent in safety-critical applications. We showed that existing
threat models designed for image and text domains fail to account for the cost and
utility considerations specific to tabular data. We proposed and evaluated cost and
utility-aware threat models tailored to the capabilities and constraints of attackers
targeting tabular domains. Future research should explore algorithmic improvements
and systematic methodologies for defining useful cost and utility-aware constraints.

Broader Impact. We conclude with a discussion of the broader impact of the work.

Risk intersectionality. A common theme we have explored is the importance of
considering diverse subpopulations in risk assessments. Although most research
on algorithmic fairness focuses—for good reasons—on disparities in performance or
outputs of the models, we demonstrate in Chapters 3 and 4 that bias also manifests in
other model properties such as privacy and decision arbitrariness. By recognizing the
potential disparities and inequities that can arise from inadequate privacy protections,
our work promotes a more inclusive and fair approach to evaluating and mitigating
diverse risks in ML.

Accounting for side effects of privacy. In Chapters 2 and 3, we have highlighted
fundamental trade-offs in DP training. Although such training preserves privacy
and causes predictable model behavior, it makes predictions of some inputs largely
or fully explained by randomness used in training, thus arbitrary. Our work has
provided a theoretical and practical framework for evaluating the exact level of decision
arbitrariness for use by practitioners and regulators.

Improving security measures. Our work in Chapters 4 and 5 emphasizes the need for
a broader view on the threat models and security measures in ML. In particular, by
challenging the assumptions made in existing attack methodologies and advocating for
practical constraints faced by adversaries, the research presented in Chapter 5 aims to
enhance the effectiveness and real-world applicability of security or security-related
measures. First, this can lead to more robust ML systems that are better equipped to
detect and mitigate adversarial threats. Second, the proposed techniques are useful
beyond security in settings where changing inputs to achieve a desired prediction
is a legitimate means of achieving algorithmic recourse [170], contesting harmful
systems [3, 105], or providing counterfactual explanations [175].

Informing policy and regulation. The insights and recommendations this thesis provides
can inform the development of policies and regulations related to privacy, security, and
reliability in ML. In Chapters 3 to 5, we highlight the unexpected effects of DP training
on the arbitrariness of decisions, the importance of considering diverse subpopulations
in risk measurements, and the need for realistic threat models. These findings can
guide policymakers and regulatory bodies in formulating guidelines and standards that
address the ethical and societal implications of ML technologies.
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Appendix A

Omitted Proofs

A.1 Proofs for Chapter 2

A.1.1 TV Stability implies Distributional Generalization

Proof of Theorem 2.1. First, observe that the following distributions are equivalent as
the dataset is an i.i.d. sample:

Pr
S∼P n

z∼S

[ϕ(z; T (S))] ≡ Pr
S∼P n−1

z∼P

[ϕ(z; T (S ∪ {z}))],

Pr
S∼P n

z∼P

[ϕ(z; T (S))] ≡ Pr
S∼P n−1

z∼P
z′∼P

[ϕ(z′; T (S ∪ {z}))]. (A.1)

It is thus sufficient to analyze the equivalent distributions instead. By the post-
processing property of differential privacy, for any dataset S ∈ Dn−1, any two examples
z, z′ ∈ D, and any set V ⊆ [0, 1]:

Pr[ϕ(z; T (S ∪ {z})) ∈ V ] ≤ Pr[ϕ(z; T (S ∪ {z′})) ∈ V ] + δ,

as datasets S ∪ {z} and S ∪ {z′} are neighbouring. Taking the expectation of both
sides over z, z′ ∼ P and S ∼ P n−1, we get:

Pr
S∼P n−1

z∼P

[ϕ(z; T (S ∪ {z})) ∈ V ] ≤ Pr
S∼P n−1

z∼P
z′∼P

[ϕ(z; T (S ∪ {z′})) ∈ V ] + δ

= Pr
S∼P n−1

z∼P
z′∼P

[ϕ(z′, T (S ∪ {z})) ∈ V ] + δ,
(A.2)
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where the last equality is simply renaming of the variables for convenience. Note that
analogously we also can obtain a symmetric bound:

Pr
S∼P n−1

z∼P
z′∼P

[ϕ(z′, T (S ∪ {z})) ∈ V ] ≤ Pr
S∼P n−1

z∼P

[ϕ(z; T (S ∪ {z})) ∈ V ] + δ,
(A.3)

The total variation between these two distributions is bounded:

dTV

(
Pr

S∼P n−1
z∼P

[ϕ(z; T (S ∪ {z}))], Pr
S∼P n−1

z∼P
z′∼P

[ϕ(z′, T (S ∪ {z}))]
)

= sup
V ⊆range(ϕ)

∣∣∣∣ Pr
S∼P n−1

z∼P

[ϕ(z; T (S ∪ {z})) ∈ V ]− Pr
S∼P n−1

z∼P
z′∼P

[ϕ(z′, T (S ∪ {z})) ∈ V ]
∣∣∣∣ ≤ δ,

where the last inequality is by Eq. (A.3). Using the equivalences in Eq. (A.1) we can see
that:

dTV

(
Pr

S∼P n

z∼S

[ϕ(z; T (S))] , Pr
S∼P n

z∼P

[ϕ(z; T (S))]
)

=

∣∣∣∣∣∣ E
S∼P n

z∼S

[ϕ(z; T (S)]− E
S∼P n

z∼P

[ϕ(z; T (S)]

∣∣∣∣∣∣ ≤ δ,

which is the sought result.

A.1.2 Tight Bound on TV Stability from DP

To prove Proposition 2.2.1, we make use of the hypothesis-testing interpretation of
DP [181]. Let us define the hypothesis-testing setup and the two types of errors in
hypothesis testing. For any two probability distributions P and Q defined over D, let
ϕ : D→ {0, 1} be a hypothesis-testing decision rule that aims to tell whether a given
observation from the domain D comes from P or Q.

Definition A.1 (Hypothesis-testing FPR and FNR). Without loss of generality, the
false-positive error rate αϕ (FPR, or type I error rate), and the false-negative error rate
βϕ (FNR, or type II error rate) of the decision rule ϕ : D → [0, 1] are defined as the
following probabilities:

αϕ ≜ Pr
z∼P

[ϕ(z) = 1] = E
P

[ϕ],

βϕ ≜ Pr
z∼Q

[ϕ(z) = 0] = 1− E
Q

[ϕ]. (A.4)

A well-known result due to Le Cam provides the following relationship between the
trade-off between the two types of errors and the total variation between the probability
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distributions:
αϕ + βϕ ≥ 1− dTV(P, Q). (A.5)

DP is known to provide the following relationship between FPR and FNR of any decision
rule:

Proposition A.1.1 (Kairouz et al. [92]). Suppose that an algorithm T (S) satisfies
(ϵ, δ)-DP. Then, for any decision rule ϕ : D→ [0, 1]:

αϕ + exp(ϵ) βϕ ≥ 1− δ,

exp(ϵ) αϕ + βϕ ≥ 1− δ.
(A.6)

We can now prove Proposition 2.2.1:

Proof of Proposition 2.2.1. Consider a hypothesis-testing setup in which we want to
distinguish between the distributions T (S) and T (S ′). Let us sum the two bounds in
Eq. (A.6):

(exp(ϵ) + 1)(αϕ + βϕ) ≥ 2(1− δ) =⇒ αϕ + βϕ ≥
2− 2δ

exp(ϵ) + 1 . (A.7)

Let us take the optimal decision rule ϕ∗. In this case, the bound in Eq. (A.5) holds
exactly:

dTV(T (S), T (S ′)) = 1− (αϕ∗ + βϕ∗).

Combining this with Eq. (A.7), we get:

dTV(T (S), T (S ′)) ≤ 1− 2− 2δ

exp(ϵ) + 1 = exp(ϵ)− 1 + 2δ

exp(ϵ) + 1 .

Next, we show that the upper bound is tight:

Proposition A.1.2. There is an algorithm T (S) satisfying (ε, δ)-DP, such that
dTV(T (S), T (S ′)) = exp(ε)−1+2δ

exp(ε)+1 for any two neighbouring datasets S and S ′.

Proof. We use the construction of the reduced mechanism by Kairouz et al. [92].
Consider a mechanism T : {0, 1} → {0, 1, 2, 3}, defined as follows:

P (T (0) = 0) = 0 P (T (1) = 0) = δ

P (T (0) = 1) = (1− δ) · exp(ϵ)
exp(ϵ)+1 P (T (1) = 1) = (1− δ) · 1

exp(ϵ)+1
P (T (0) = 2) = (1− δ) · 1

exp(ϵ)+1 P (T (1) = 1) = (1− δ) · exp(ϵ)
exp(ϵ)+1

P (T (0) = 3) = δ P (T (1) = 0) = 0
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Observe that thismechanism satisfies (ε, δ)-DP, and dTV(T (0), T (1)) = exp(ε)−1+2δ
exp(ε)+1 .

A.1.3 Privacy Analysis of DP-IS-SGD

First, we present a loose analysis of the privacy guarantees of non-uniform Poisson
subsampling.

Lemma A.1.1. Suppose that T (S) satisfies (ϵ, δ)-DP and Pois(S) is a Poisson sampling
procedure where each of the sampling probabilities pi depend on the element zi (but
do not depend on the set S otherwise) and is guaranteed to satisfy pi ≤ p∗. Then
T ◦ Pois satisfies (ln(1 − p∗ + p∗eϵ), p∗δ)-DP. For small ϵ this can be bounded by
(O(p∗ϵ), p∗δ)-DP.

Proof of Lemma A.1.1. Consider two neighboring datasets S and S ′ = S ∪ {z0} for
some z0 ̸∈ S. We wish to show that for any set K , we have

Pr(T (Pois(S ′)) ∈ V ) ≤ (1− p + peϵ) Pr(T (Pois(S)) ∈ V ) + pδ

and symmetrically for S and S ′. We will only prove first of those inequalities, as the
second is analogous.

Note that with probability p0 ≤ p the element z0 is included in Pois(S ′) and we have
Pois(S ′) = {z0} ∪ Pois(S), otherwise the element z0 is not included, and conditioned
on z0 not being included Pois(S ′) has the same distribution as Pois(S). Therefore,

Pr(T (Pois(S ′)) ∈ V ) = p0 Pr(T ({z0}∪Pois(S)) ∈ V )+(1−p0) Pr(T (Pois(S)) ∈ V ).
(A.8)

Now for each realization Pois(S) = S̃, we have Pr(T ({z0} ∪ S̃) ∈ V ) ≤ eϵ Pr(T (S̃) ∈
V ) + δ by the assumed DP guarantee of the algorithm T (S). We can average over all
possible subsets S̃ to get

Pr(T ({z0} ∪ Pois(S)) ∈ V ) =
∑
S̃

Pr(Pois(S) = S̃) Pr(T ({z0} ∪ S̃) ∈ V )

≤
∑
S̃

Pr(Pois(S) = S̃)(eϵ Pr(T (S̃) ∈ V ) + δ)

= eϵ Pr(T (Pois(S)) ∈ V ) + δ.

Plugging this back to the inequality (A.8), we get

Pr(T (Pois(S ′)) ∈ V ) ≤ p0(eϵ Pr(T (Pois(S)) ∈ V ) + δ) + (1− p0) Pr(T (Pois(S)) ∈ V )
≤ (1− p∗ + p∗eϵ) Pr(T (Pois(S)) ∈ V ) + p∗δ.

Finally, when ϵ ≤ 1 we have eϵ ≤ (1 + 2ϵ), and therefore (1− p∗ + p∗eϵ) ≤ 1 + 2ϵp∗ ≤
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e2ϵp∗ .

For the tight privacy analysis of non-uniform Poisson subsampling, we make use of the
notion of f -privacy:

Definition A.2 (f -Privacy Dong et al. [51]). An algorithm T (S) satisfies f -privacy if
for any two neighbouring datasets S, S ′ the following holds:

τ(T (S), T (S ′)) ≥ f,

where τ(P, Q) is a trade-off function between the FPR and FNR of distinguishing tests
(see Appendix A.1.2):

τ(P, Q)(α) = inf
ϕ: D→[0,1]

{βϕ : αϕ ≤ α}, (A.9)

and f(α) ∈ [0, 1] is a convex, continuous, non-increasing function.

Bu et al. [23] show that uniform Poisson subsampling (see Section 2.4.1) provides the
following privacy amplification:

Proposition A.1.3 (Bu et al. [23]). Suppose that T (S) satisfies f -privacy, and Pois(S)
is a uniform Poisson sampling procedure with sampling probability p̄. The composition
T ◦ Pois(S) satisfies f ′-privacy with f ′ = p̄f + (1− p̄)Id, where Id(α) = 1− α is the
trade-off function that corresponds to perfect privacy.

We show that a similar result holds for non-uniform Poisson subsampling:

Lemma A.1.2. Suppose that T (S) satisfies f -privacy, and Pois(S) is a non-uniform
Poisson sampling procedure, where the sampling probabilities pi depend on the element
zi (but do not depend on the set S otherwise) and each is guaranteed to satisfy pi ≤ p∗.
The composition T ◦ Pois(S) satisfies f ′-privacy with f ′ = p∗ + (1− p∗)Id.

To show this, we adapt the proof Proposition A.1.3, and make use of the following
lemma:

Lemma A.1.3 (Bu et al. [23]). Let {Pi}i∈I and {Qi}i∈I be two collections of probability
distributions on the same sample space for some index set I . Let (λi)i∈I ∈ [0, 1]|I| be a
collection of numbers such that ∑i∈I λi = 1. If τ(Pi, Qi) ≥ f for all i ∈ I , then for
any p ∈ [0, 1]:

τ

(∑
i

λi · Pi,
∑

i

(1− p) · λi · Pi +
∑

i

p · λi ·Qi

)
≥ pf + (1− p)Id.
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Proof of Lemma A.1.2. We can think of the result of the subsampling procedure as
outputting a binary vector b⃗ = (b1, . . . , bn) ∈ {0, 1}n, where each bit bi indicates
whether an example zi ∈ S was chosen in the subsample or not. We denote the
resulting subsample as Sb⃗ ⊆ S. By definition of Poisson subsampling, each bit bi is an
independent sample bi ∼ Bern(pi). Let us denote by λb⃗ the joint probability of b⃗. The
composition T (S) ◦ Pois(S) can be expressed as a mixture distribution:

T (S) ◦ Pois(S) =
∑

b⃗∈{0,1}n

λb⃗ · T (S).

Analogously, for a neighbouring dataset S ′ ≜ S ∪ {z0}, with the sampling probability
p0 corresponding to z0, we have:

T (S) ◦ Pois(S) =
∑

b⃗∈{0,1}n

p0 · λb⃗ · T (S ′
b⃗
∪ {z0}) +

∑
b⃗∈{0,1}n

(1− p0) · λb⃗ · T (Sb⃗).

Applying Lemma A.1.3, we get f0-privacy with f0 = p0f + (1 − p0)Id. Applying to
an arbitrary other z0 ∈ D, we potentially get the worst-case privacy guarantee for the
highest sampling probability, i.e., f = p∗f + (1− p∗)Id.

Proposition 2.4.1 is immediate from Lemma A.1.2 by the fact that GDP is a special case
of f -privacy.

A.1.4 Subgroup-level Distributional Generalization from TV
Stability

TV-stability implies a more granular, subgroup-level notion of distributional general-
ization:

Definition A.3. Suppose that the data distribution P is a mixture of group-specific
distributions PG, for G ∈ G. We define (δ, G)-subgroup-DG similarly to δ-DG as
follows:

∀ϕ, G ∈ G :
∣∣∣∣ E

S∼P n

z∼S

[ϕ(z, T (S)) | z ∈ G, |SG| > 0]− E
S∼P n

z∼P

[ϕ(z, T (S)) | z ∈ G]
∣∣∣∣ ≤ δ,

where SG denotes a subset of examples in the dataset S that belong to the group G.

Subgroup DG is a stronger notion of DG which says that the model’s behavior on
examples from each group in G distributionally generalizes in expectation, as long
as the model encounters at least one representative of the group in training. In its
definition, we explicitly prevent the case when the training dataset does not contain
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any group examples to avoid undefined behavior. Otherwise, it is unclear what is the
group accuracy on the training dataset if there are no group representatives in the
dataset.

We now show that TV stability implies this granular notion of DG:

Proposition A.1.4. δ-TV stability implies (δ, G)-subgroup-DG for any group partition-
ing G.

Proof. Observe that the following distributions are equivalent:

Pr
S∼P n

z∼S

[ϕ(z; T (S)) | z ∈ G, |SG| > 0] ≡ Pr
S∼P n−1

z∼P

[ϕ(z; T (S ∪ {z}))],

Pr
S∼P n

z∼P

[ϕ(z; T (S)) | z ∈ G] ≡ Pr
S∼P n−1

z∼P
z′∼P

[ϕ(z′; T (S ∪ {z}))]. (A.10)

By applying each step from the proof of Theorem 2.1 to the equivalent distributions
in Eq. (A.10), we have that the absolute gap between the distributions in Eq. (A.10)
is bounded by δ. Concretely, the difference with the proof of Theorem 2.1 is that
z, z′ ∼ PG, not z, z′ ∼ P .

A.2 Proofs for Chapter 3

First, we provide an explanation on the range of disagreement without normalization:

PropositionA.2.1 (Range of non-normalized disagreement). The expressionPr[fθ(x) ̸=
fθ′(x)] has range of [0, 0.5].

Proof. As fθ(x) ∈ {0, 1}, we can assume Pr[fθ(x) = 1] = p, and thus Pr[fθ(x) ̸=
fθ′(x)] = Pr[fθ(x) = 0 and fθ′(x) = 1]+Pr[fθ(x) = 1 and fθ′(x) = 0] = 2p(1−p) ∈
[0, 0.5].

Next, we provide a proof that disagreement is proportional to variance in our setup:
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Proof of Proposition 3.2.1. As fθ(x) ∈ {0, 1}, we have that

µ(x) = 2 Pr
θ,θ′∼PT (S)

[fθ(x) ̸= fθ′(x)]

= 2 E
θ,θ′∼PT (S)

[1[fθ(x) ̸= fθ′(x)]]

= 2 E
θ,θ′∼PT (S)

[(fθ(x)− fθ′(x))2]

= 2 E
θ∼PT (S)

[f 2
θ (x)]− 4 E

θ,θ′∼PT (S)
[fθ(x) · fθ′(x)]

+ 2 E
θ′∼PT (S)

[f 2
θ′(x)]

= 4 ( E
θ∼PT (S)

[fθ(x)]2

− E
θ∼PT (S)

[fθ(x)] · E
θ′∼PT (S)

[fθ′(x)])

= 4 Varθ∼PT (S)(fθ(x))
= 4px(1− px),

(A.11)

where px(1− px) is the population variance of the r.v. fθ(x) ∼ Bernoulli(px).

A.2.1 Closed-FormCharacterization of Disagreement for Output
Perturbation

Proof of Proposition 3.3.1. First, observe that the expression

px = E
θpriv∼PT (S)

[fθpriv(x)]

can be expressed as:

E[fθpriv(x)] = E[1[sigmoid(θ⊺privx) > 0.5]]
= E[1[θ⊺privx > 0]]
= Pr(θ⊺privx > 0).

(A.12)
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Denoting by ξ ≜N (0, 1) and ξd ≜N (0, Id), we can see that the score θ⊺priv x is equal to:

θ⊺priv x = (θnp + σξd)⊺x

= θ⊺np x + σ
d∑

i=1
xiξ

= θ⊺np x +

√√√√ d∑
i=1

x2
i · σξ

= θ⊺np x + ∥x∥σξ.

(A.13)

Plugging in the closed form in Eq. (A.13) into Eq. (A.12), we get:

px = Pr(θ⊺np x + ∥x∥σξ > 0) = Pr
(

ξ > −
θ⊺np x

∥x∥ · σ

)
= Φ

(
θ⊺np x

∥x∥ · σ

)
. (A.14)

A.2.2 Sample Complexity of Estimating Disagreement

Proof of Proposition 3.4.1. The 1/m−1 term comes from Bessel’s correction. Observe that

E
[

m

m− 1 p̂x(1− p̂x)
]

= m

m− 1(E[p̂x]− E[p̂2
x])

= m

m− 1(E[p̂x]− Var(p̂x)− E[p̂x]2)

= m

m− 1

(
px −

px(1− px)
m

− p2
x

)
= px(1− px)

(A.15)

Therefore, E[µ̂(x)] = 4px(1− px) = µ(x).

Proof of Proposition 3.4.2. As µ̂(x) is a continuous transformation of p̂x, we could bound
the deviation |µ̂(x) − µ(x)| by |p̂x − px|. Suppose p̂x = px + ν and ν ∈ [−η, η], we
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have ∣∣∣∣ m

m− 1 p̂x(1− p̂x)− px(1− px)
∣∣∣∣ =

=
∣∣∣∣ m

m− 1 (px + ν)(1− px − ν)− px(1− px)
∣∣∣∣

=
∣∣∣∣( m

m− 1 − 1
)

px(1− px) + m

m− 1ν(1− 2px − ν)
∣∣∣∣

≤ px(1− px)
m− 1 + m

m− 1 |ν||1− 2px + ν|

≤ px(1− px)
m− 1 + m

m− 1 |ν|(1 + |ν|)

≤ px(1− px)
m− 1 + m

m− 1η(1 + η)

≤ 1
4(m− 1) + m

m− 1η(1 + η).

(A.16)

By Chernoff-Hoeffding inequality, we have the following concentration bounds on the
sample mean p̂x,

Pr[|p̂x − px| ≥ ν] ≤ 2 exp
(
−2ν2m

)
. (A.17)

Thus with probability at least 1− ρ, we have:

|p̂x − px| ≤
√

log(2/ρ)/2m.

Combining Eq. (A.16) and Eq. (A.17), we have

|µ̂(x)− µ(x)| =
∣∣∣∣ 4m

m− 1 p̂x(1− p̂x)− 4px(1− px)
∣∣∣∣

≤ 1
(m− 1) + 4m

m− 1η(1 + η).
(A.18)

Plugging η =
√

log(2/ρ)/2m into Eq. (A.18) yields the desired result. Note that by
solving 1

(m−1) + 4m
m−1η(1 + η) ≤ α with η =

√
log(2/ρ)/2m with conditions α > 0 and

0 < ρ < 1, we have:

m ≥ 1 +
α + 2t(2 + α) + 2

√
2
√

t(1 + α)(2t + α)
α2 , (A.19)

where t = log(2/ρ).

Proof of Proposition 3.4.3. Since the samples are i.i.d., we have the following union
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bound for the concentration of sample mean,

Pr
[

k⋃
i=1
{|p̂xi

− pxi
| ≥ ν}

]
≤

k∏
i=1

Pr[|p̂xi
− pxi

| ≥ ν]

≤ 2k exp
(
−2ν2m

)
.

(A.20)

Therefore, with probability 1− ρ, |p̂xi
− pxi

| ≤
√

log(2k/ρ)/2m for i = 1, . . . , k, and
the desired result follows the derivation in Proposition 3.4.2.

A.3 Proofs for Chapter 4

A.3.1 Subgroup Vulnerability

To prove Proposition 4.3.2, we use two properties of a Bayes classifier. Within
any subgroup of the data distribution, the subgroup-aware Bayes classifier performs
optimally:

Lemma A.3.1. Consider random variables (X, T ) where X takes values in Rd, T takes
values in a finite set T, and a random variable Y that takes values in {0, 1}. Given a
Bayes classifier f ∗

X,T (x, t), defined in this setting as the following minimizer:

f ∗
X,T (x, t) ≜ arg min

f : Rd×T→{0,1}
Pr[f(X, T ) ̸= Y ], (A.21)

we have for any t ∈ T and any other classifier θ ∈ Θ:

Pr[fθ(X, T ) ̸= Y | T = t] ≥ Pr[f ∗
X,T (X, T ) ̸= Y | T = t]. (A.22)

Proof. We proceed by contradiction. Suppose that Eq. (A.22) does not hold, thus there
exists t′ ∈ T and a classifier θ′ ∈ Θ such that:

Pr[fθ′(X, T ) ̸= Y | T = t′] < Pr[f ∗
X,T (X, T ) ̸= Y | T = t′]. (A.23)

But if that is the case, then we could construct a new classifier f ′(x, t) as follows:

f ′(x, t) =

fθ′(x, t), if t = t′,

f ∗
X,T (x, t), if t ̸= t′.

(A.24)

This classifier would attain lower expected loss than the optimal f ∗, thus we have a
contradiction.
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As a result, a Bayes classifier is a combination of optimal classifiers in each subgroup:

Lemma A.3.2. In the setting of Lemma A.3.1, suppose that f ∗
X|T =t(x) is a Bayes

classifier for a subgroup:

f ∗
X|T =t(x) ≜ arg min

f : Rd→{0,1}
Pr[f(X) ̸= Y | T = t] (A.25)

Then, we have:

Pr[f ∗
X,T (X, T ) ̸= Y | T = t] = Pr[f ∗

X|T =t(X) ̸= Y | T = t]. (A.26)

Proof. As before, we proceed by contradiction.

If Pr[f ∗
X,T (X, T ) ̸= Y | T = t] > Pr[f ∗

X|T =t(X) ̸= Y | T = t], then f ∗
X,T is not a

Bayes classifier as f ∗
X|T =t(X) relies on a post-processing of (X, T ) and thus should be

dominated by f ∗
X,T (x, t).

If Pr[f ∗
X,T (X, T ) ̸= Y | T = t] < Pr[f ∗

X|T =t(X) ̸= Y | T = t], then f ∗
X|T =t is not a

conditional Bayes classifier. This is because any fX,T : Rd × T→ {0, 1} can be seen as
another classifier fX : Rd → {0, 1} as t is fixed, which should be dominated by f ∗

X(x).

We thus conclude thatPr[f ∗
X,T (X, T ) ̸= Y | T = t] = Pr[f ∗

X|T =t(X) ̸= Y | T = t].

Next, we can prove Proposition 4.3.2:

Proof of Proposition 4.3.2. By Lemma A.3.1, for any adversary Aπ◦g(z; θ) that uses
features π ◦ g (see Section 4.2), the following holds:

Pr[Aπ◦g(z; θ) = m | z ∈ G] ≤ Pr[A∗
π◦g(z; θ) = m | z ∈ G] (A.27)

over the randomness of the MIA game. This is the same as:

VG(Aπ◦g) ≤ VG(A∗
π◦g). (A.28)

As A∗
π is an instance of Aπ◦g, we have:

VG(A∗
π) ≤ VG(A∗

π◦g). (A.29)

It remains to show that VG(A∗
π◦g) = δG(π). By Lemma A.3.2:

VG(A∗
π◦g) = Pr[Aπ◦g(z; θ) ̸= m | z ∈ G] = Pr[Att∗

G(π(z; θ)) ̸= m | z ∈ G], (A.30)
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where Att∗
G(w) is the conditional Bayes classifier for group G:

Att∗
G(w) ≜ arg min

Att: W→{0,1}
Pr[Att(π(z; θ)) ̸= m | z ∈ G]. (A.31)

Thus, by the relationship between the Bayes error and TV distance (Section 1.2), we
have:

Pr[Att∗
G(π(z; θ)) ̸= m | z ∈ G] = dTV(P1,G, P0,G) = δG(π). (A.32)

A.3.2 Regular vs. Subgroup-Aware Vulnerability

Proof of Proposition 4.2.1. Observe that the features of the regular adversary π(z; θ) can
be obtained from the features of the subgroup-aware adversary (π(z; θ), g(z)). By the
post-processing property of TV distance, we thus have that:

dTV(π♯P1, π♯P0) ≤ dTV((π ◦ g)♯P1, (π ◦ g)♯P0) (A.33)

By Proposition 4.3.1, this immediately implies V (A∗
π) ≤ V (A∗

π◦g), which is the sought
inequality.

A.3.3 Bounds on Disparity from Algorithmic Fairness

Proof of Proposition 4.5.1. First, observe that a combination of the two conditions
implies:

δG,G′(π) = dTV(π♯P0,G, π♯P0,G′) ≤ η + ν

By this implication and the triangle property of total variation we have that:

dTV(π♯P0,G′ , π♯P1,G′) ≤ dTV(π♯P1,G′ , π♯P0,G) + dTV(π♯P0,G, π♯P0,G′)
≤ dTV(π♯P1,G′ , π♯P0,G) + η + ν

Applying the triangle inequality to the underlined term:

dTV(π♯P1,G′ , π♯P0,G) ≤ dTV(π♯P0,G, π♯P1,G) + dTV(π♯P1,G, π♯P1,G′)
≤ dTV(π♯P0,G, π♯P1,G) + η
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Combining the two,

dTV(π♯P0,G′ , π♯P1,G′)− η − ν ≤ dTV(π♯P1,G′ , π♯P0,G)
≤ dTV(π♯P0,G, π♯P1,G) + η

Implying:
δG′(π)− δG(π) ≤ 2η + ν

If we apply the previous steps analogously we can also obtain:

dTV(π♯P0,G, π♯P1,G)− η − ν ≤ dTV(π♯P1,G, π♯P0,G′)
≤ dTV(π♯P0,G′ , π♯P1,G′) + η

Thus,
δG(π)− δG′(π) ≤ 2η + ν

Combining the inequalities, we get:

|δG(π)− δG′(π)| ≤ 2η + ν

By Corollary 4.3.3, we obtain the sought bound.

A.3.4 Differential Privacy Bounds Subgroup Vulnerability and
Disparity

Proof of Proposition 4.5.3. By Proposition A.1.4, we have that δ-TV stability implies:

dTV(P0,G, P1,G) ≤ δ. (A.34)

By the post-processing property of TV distance, we have for any π : D×Θ→ Rk:

dTV(π♯P0,G, π♯P1,G) ≤ δ. (A.35)

Thus, by Proposition 4.3.2, we have V (A∗
π) ≤ δ. Moreover, by Corollary 4.3.2, we

have |∆VG,G′(A∗
π)| ≤ δ. Applying the tight conversion from DP to TV stability in

Proposition 2.2.1, we obtain the statement of the proposition.
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Additional Discussion and Details for
Chapter 2

B.1 Related Work Details

B.1.1 Differential Privacy and Robust Generalization

DP is known to imply a stronger notion of generalization, called robust generalization,
which is a “tail bound” version of DG [13, 44, 57]. The original motivations for robust
generalization are slightly different, but in our notation, a training procedure T is said
to satisfy (γ, η)-Robust Generalization if and only if for any test ϕ : D× Θ → [0, 1],
we have

Pr
S∼Dn

(
| E

z∼S
ϕ(z; T (S))− E

z∼D
ϕ(z; T (S))| > γ

)
≤ η.

Any training method satisfying (ϵ, δ)-DP also satisfies (O(ϵ),O(δ))-robust generaliza-
tion, as long as the sample size n is of size Ω(log(1/δ)/ϵ2) [13, Theorem 7.2], therefore
it satisfies O(ϵ + δ)-DG. Thus, it is possible to recover the result that DP implies DG as
a consequence of these previous works, although with looser bounds.

The difference between Distributional Generalization and Robust Generalization is
that DG considers all quantities in expectation, while robust generalization considers
tail bounds with respect to the train dataset. We focus on DG for two reasons: First,
we believe DG is conceptually simpler, as it can be seen as simply the TV distance
between two natural distributions, and does not involve additional parameters. This
simplicity is conceptually useful to the algorithm designer, but also enables us to prove
simpler tight theoretical bounds that are independent of sample size. Second, it is often
possible to lift results about DG to the stronger setting of robust generalization, with
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additional bookkeeping. Thus, we focus on DG in this chapter, with the understanding
that stronger guarantees can be obtained for these methods if desired.

B.1.2 Information-Theoretic Generalization Bounds

Other than robust generalization, it is also possible to obtain bounds on generalization
of arbitrary test (loss) functions using information-theoretic measures [149, 164, 191].
Recently, Steinke and Zakynthinou showed that one such information-theoretic
measure—conditional mutual information (CMI) between training algorithm outputs
and the training dataset—is bounded if the training algorithm is DP or TV stable. Thus,
we could relate stability and DG as in Section 2.2.2 using CMI as an intermediate tool.

In particular, Steinke and Zakynthinou show that for a given ϕ : D×Θ→ [0, 1]:

∣∣∣∣ E
S∼P n

z∼S

ϕ(z; T (S))− E
S∼P n

z∼P

ϕ(z; T (S))
∣∣∣∣ ≤

√
2
n
· CMIP (T ), (B.1)

where CMIP(T ) is the conditional mutual information of the training algorithm with
respect to the data distribution. If the training algorithm satisfies (ϵ, 0)-DP, they also
show that CMIP(T ) ≤ n

2 ϵ2, where n is the dataset size. Plugging this into Eq. (B.1), we
can see that the generalization upper bound (right-hand side) is ϵ. This is significantly
looser than our bound in Section 2.2.2, as illustrated in Fig. 2.2.

A recent line of work on information-theoretic bounds explores sharper generalization
bounds using individual-level measures [22, 76]. Analogously, as a direction for future
work, it could also be possible to obtain tighter bounds on DG using per-instance
notions of stability [63, 177].

B.1.3 Tension between Differential Privacy and Algorithmic
Fairness

Beyond empirical observations that training with DP results in disparate impact on
performance across subgroups [8, 145], Cummings et al. [45] and, more recently, Sanyal
et al. [154] theoretically analyze the inherent tensions between DP and algorithmic
fairness.

It might appear that this trade-off contradicts our results in which we claim that
using DP or similar noise-adding algorithms with additional train-time interventions
can reduce disparate impact. However, Cummings et al. [45] and Pujol et al. [145]
discuss the relationship between privacy and disparate performance (accuracy or false-
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positive/false-negative rates), whereas we discuss the relationship between privacy
and generalization. Even if a DP model has to incur at least a certain error on small
subgroups on average [154, Lemma 1], this error is guaranteed to be similar at train
time and test time (from our theoretical results in Section 2.2.2).

In terms of empirical results, the lower bound on subgroup error in Lemma 1 from Sanyal
et al. [154] vanishes for subgroups of size greater than 100 even for small values of
epsilon (e.g., 0.1). The subgroups and values of epsilon in our experiments in Section 2.5
are all larger than this, thus in our regime we can achieve meaningful subgroup
performance using the DP-IS-SGD algorithm despite the fundamental trade-off.

B.2 Additional Details on Algorithms

We define qG as the probability of group G, and m as the number of groups.

IS-SGD. The weight for group G is wG = 1/m·qg. Let gi be the group that the i-th
example belongs to. We then sample (with replacement) from the training set with the
i-th example having a wgi

chance of being sampled until we have b examples, where b
is the batch size. Finally, for each mini-batch, we optimize the standard cross-entropy
loss with the sampled examples.

IW-SGD. The weight for group G is wG = 1/m·qg. We optimize the following loss
function:

wg · ℓ(z; θ),

where ℓ(z, θ) is the cross-entropy loss and z ∈ S drawn uniformly random drawn from
the dataset, and G is the group to which z belongs.

B.3 Additional Experiment Details

B.3.1 Details on Datasets, Software, and Model Training

Table B.1: The number of examples in each subgroup for CelebA.

training validation testing

not blond, female 71629 8535 9767
not blond, male 66874 8276 7535
blond, female 22880 2874 2480
blond, male 1387 182 180
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Table B.2: The number of examples in each subgroup for UTKFace.

training validation testing

male, White 3919 454 1105
male, Black 1700 181 437
male, Asian 1115 157 303
male, Indian 1594 190 477
male, Others 563 61 136
female, White 3316 384 902
female, Black 1606 188 414
female, Asian 1302 158 399
female, Indian 1230 152 333
female, Others 655 75 202

Table B.3: The number of examples in each subgroup for iNat.

training validation testing

Actinopterygii 2112 195 312
Amphibia 14531 1242 1930
Animalia 5362 491 737
Arachnida 4838 461 660
Aves 191773 17497 26251
Chromista 435 52 55
Fungi 6148 575 883
Insecta 96894 8648 13013
Mammalia 26724 2475 3624
Mollusca 7627 693 1057
Plantae 159843 14653 22117
Protozoa 309 25 37
Reptilia 33404 2983 4494

Table B.4: The number of examples in each subgroup for CivilComments.

training validation testing

Non-toxic, Identity 94895 15759 46185
Non-toxic, Other 143628 24366 72373
Toxic, Identity 18575 3088 9161
Toxic, Other 11940 1967 6063

Technical details. We use the following software:

• PyTorch [139] for implementing neural networks.

• opacus [195] for training PyTorch neural networks with DP-SGD.

• numpy [80], scipy [173], and pandas [135, 183] for numeric analyses.

• seaborn [180] for visualizations.
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Table B.5: The number of examples in each subgroup for MNLI.

training validation testing

Contradiction, No negation 57498 22814 34597
Contradiction, Negation 11158 4634 6655
Entailment, No negation 67376 26949 40496
Entailment, Negation 1521 613 886
Neutral, No negation 66630 26655 39930
Neutral, Negation 1992 797 1148

Table B.6: The number of examples in each subgroup for ADULT.

training validation testing

Female, income≤50k 11763 911 1749
Male, income≤50k 18700 1373 2659
Female, income>50k 1444 105 220
Male, income>50k 8093 611 1214

• For gDRO [151], we use the implementation from the WILDS benchmark [99].

To train the models, we use Nvidia 2080ti, 3080, and A100 GPUs. Our experiments
required approximately 400 hours of GPU time.

Datasets. For CelebA and CivilComments, we follow the training/validation/testing
split in Koh et al. [99]. For UTKFace and iNat, we randomly split the data into
17000/2000/4708 and 550000/50000/75170 for training/validation/testing. For MNLI, we
use the same training/validation/testing split in Sagawa et al. [151]. For Adult [100], we
randomly split the data into 35000/3000/5842 for training/validation/testing. Tables B.1
to B.6 show the dataset statistics on each group.

All the datasets are publicly available for non-commercial use. In our work, we adhere
to additional rules regulating the use of each dataset. All datasets other than iNat could
potentially contain personally identifiable information, and are likely collected without
consent, to the best of our knowledge. They are all, however, collected from manifestly
public sources, such as public posts on social media. Thus, we consider the associated
privacy risks low.

The data also contain offensive material (e.g., explicitly in the case of CivilComments
dataset). We consider the associated risks of reproducing the offensive behavior low, as
we use the datasets only to evaluate our theoretical and theoretically-inspired results.

Models. Similar to previous work [151], we use the ImageNet-1k pretrained
ResNet50 [82] from torchvision for CelebA, UTKFace, and iNat, and use the pretrained
BERT-Base [48] from huggingface [185] for CivilComments and MNLI.
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For ADULT, we follow the setup in [192] and use logistic regression with standard
optimization, and DP-based training methods. We fix the batch size to 256 (for SGD),
weight decay to 0.01, and number of epochs to 20. For the DP algorithms, we use
gradient norm clipping to 0.5, and sampling rate of 0.005. For all training algorithms,
we train five model times with different random seeds and we record the mean and
standard error of the mean of our metrics. The noise parameter σ for DP-SGD-F and
DP-SGD is set to 1.0, and we set the σ for DP-IS-SGD to 5.0 to achieve similar privacy
budget ϵ ≈ 0.7. The additional noise parameter for DP-SGD-F σ2 is set to 10σ as in Xu
et al. [192].

Hyperparameters. We run 50 epochs for CelebA, 100 epochs for UTKFace, 20 epochs
for iNat, and 5 epochs for CivilComments and MNLI. For image datasets (CelebA,
UTKFace, and iNat), we use the SGD optimizer and for NLP datasets (CivilComments
and MNLI), we use the AdamW [120] optimizer. We use opacus’s [195] implementation
of DP-SGD and DP-AdamW to achieve DP guarantees.

We fix the batch size for none-DP algorithms to 64 for CelebA and UTKFace, 256 for
iNat, 16 for CivilComments, and 32 for MNLI. For DP-SGD and DP-IS-SGD, we set
the sample rate to 0.0001 for CelebA and iNat, 0.001 for UTKFace, and 0.00005 for
CivilComments and MNLI.

B.3.2 Generalization of Worst-Case Group Accuracy as a Proxy
for the DG Gap

Although generalization of worst-case group accuracy is not explicitly implied by
DG, in our experiments it is practically equivalent to using the generalization gap of
subgroup accuracy, which is bounded by TV stability. Let us first concretely define the
generalization gap of the worst-case group accuracy:

Definition B.1. The on-average generalization gap of the worst-case accuracy is
defined as the following difference:

wggap ≜ E
S∼P n

[
max
G∈G

E
z∼SG

[ℓ(z, θ(S))]
∣∣∣∣ |SG| > 0

]
− E

S∼P n

[
max
G∈G

E
z∼PG

[ℓ(z, θ(S))]
]

,

(B.2)
where we take ℓ((x, y), θ) ≜ 1[fθ(x) ̸= y] to be the 0-1 loss. In this definition we
explicitly restrict the datasets to include elements of each group G ∈ G, which is a
technicality needed in order to avoid undefined behavior.

In all our experimental results, the worst-performing groups (the maximizers in
Eq. (B.2)) are always the same on the training and test data. As long as this holds—the
worst-performing group is the same on the train and test data—the generalization gap
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above simplifies to:

wggap = E
S∼P n

z∼SG∗

[ℓ(z, T (S)) | |SG∗| > 0]− E
S∼P n

z∼PG∗

[ℓ(z, T (S))], (B.3)

where G∗ ∈ G is the worst-performing group. In Appendix A.1.4 we show that this
simplified gap from Eq. (B.3) is bounded by TV stability.

Therefore, in practice the generalization gap in Eq. (B.2) offers a lower bound on the
DG gap in Eq. (2.1). Using it as a proxy for DG gap follows the spirit of the estimation
approach by Nakkiran and Bansal [129] which proposes to estimate the DG gap by
taking the maximum of empirical generalization gaps for a finite set of relevant test
functions (here, per-group accuracies).

Other Approaches to Estimate the DG Gap. The generalization gap of worst-case
group accuracy can be loose as a proxy. Finding the worst-case test function is an
object of study in the literature on membership inference attacks [161], because DG and
the accuracy of such attacks in their standard formalization are equivalent, as showed
in Section 4.3.1. In this work, we opt for a simpler and direct approach described above.

B.3.3 Additional Details for Section 2.5.2

Fig. B.1 shows the accuracy disparity, test accuracy, and worst-group accuracy for
CelebA, UTKFace, and iNat on DP-SGD and DP-IS-SGD.

The reason that UTKFace has a similar disparity between DP-SGD and DP-IS-SGD is
likely because UTKFace has a relatively small difference in the number of training
examples between the largest group and the smallest group. In UTKFace, the majority
group has around seven times more examples than in the minority group, whereas in
CelebA, this difference is 52×.

Comparison with DP-SGD-F [192]. We did not manage to obtain good performance
from DP-SGD-F on CelebA, UTKFace, and iNat, possibly because of the different
domain—images—than tabular data considered by Xu et al. [192]. To proceed with the
comparison, we evaluate the algorithms on the census data—ADULT dataset [100] (see
Table B.6 for dataset statistics)—that Xu et al. [192] used in their work. As subgroups,
we consider four intersectional groups composed of all possible values of the “sex”
attribute and prediction class (an income higher/lower than 50k).

We show the results in Table B.7. For a comparable epsilon value (0.69 for DP-SGD-F,
and 0.7 for our DP-IS-SGD), we see that our method has smaller accuracy disparity (Eq.
2) across the groups, although also lower overall accuracy.
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Figure B.1: The disparity (lower the better) and test accuracies of the models trained
with DP-SGD and IW-SGD on three datasets. If we care about privacy, DP-IS-SGD
improves disparate impact at most privacy budgets. For CelebA, we train the model for
30 epochs. For UTKFace, we train for 100 epochs. For iNat, we train for 20 epochs.
The GDP accountant is used to compute the privacy budget.

B.3.4 Additional Details for Section 2.5.3

We compare different algorithms, including SGD-L2 and IW-SGD-L2 as baselines,
and two other algorithms, IS-SGD-L2 [88] and gDRO-L2 [151] in terms of the group
robustness. We set the learning rate as 0.001 for CelebA, UTKFace, and iNat, 0.00002
for MNLI, and 0.00001 for CivilComments. We use the validation set to select the
hyperparameters:

1. For SGD-L2, IW-SGD-L2, IS-SGD-L2, and gDRO-L2, we select the weight decay
from 0.0001, 0.01, 0.1, and 1.0.

2. For DP-IS-SGD, we fix the gradient clipping to 1.0 (except for iNat, where we set
the value to 10.0 as 1.0 does not converge). We select the noise parameter from
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Table B.7: DP-IS-SGD has lower disparity DP-SGD-F on ADULT and better
accuracy at the same privacy level. The table shows the privacy level, maximum
accuracy disparity across groups, and overall accuracy for all algorithms.

Algorithm ϵ Accuracy disparity Overall accuracy
SGD — 0.660± 0.000 0.836± 0.000
DP-SGD 0.6573 0.852± 0.005 0.802± 0.001
DP-SGD-F 0.6964 0.657± 0.023 0.832± 0.001
DP-IS-SGD 0.7059 0.246± 0.034 0.766± 0.010

1.0, 0.1, 0.01, 0.001 on CelebA and UTKFace, select the noise parameter from
0.0000001, 0.000001, 0.00001, and 0.0001 on iNat and select the noise parameter
from 0.01 and 0.001 on CivilComments and MNLI.

3. For IW-SGD-n, IS-SGD-n, and gDRO-n, we select the standard deviation of the
random noise from 0.001, 0.01, 0.1, and 1.0 on CelebA, UTKFace, and iNat, and
we select standard deviation of the random noise from 0.00001, 0.0001, and 0.001
on CivilComments and MNLI.

Statistical Concerns. Although our results appear to be comparable to or better than
SOTA, we caution readers about the exact ordering of methods due to high estimation
variance: these benchmarks have small validation and test sets (e.g., CelebA has 182
validation examples), and so hyperparameter tuning is subject to both overfitting and
estimation error. For example, we observe validation accuracies which differ from their
test accuracies by up to 5% in our experiments. We attempt to mitigate this using three
random train/val/test splits on CelebA, and avoid large hyperparameter sweeps1, but
this is not done in prior work.

B.3.5 Additional Details for Section 2.5.4

We use the CIFAR-10 dataset [103], and ResNet-18 [82] as the network architecture.
We train the model to be robust against L∞ perturbations of at most ε = 8/255 bound,
which is a standard setup for adversarial training on this dataset. We vary σ (noise
parameter) from 0.0 (regular adversarial training without gradient noise) to 0.01. In
addition, we compare the performance of noisy gradient to adversarial training with
early stopping—a simple but effective approach for mitigating overfitting in adversarial
training [147].

1For example, we do not tune the “group adjustments” parameter for gDRO, using the default
from Koh et al. [99] instead.

129



Appendix B. Additional Discussion and Details for Chapter 2

In this experiment, we measure robust accuracy and its respective generalization gap,
thus setting ℓ((x, y), θ) ≜ 1[fθ(x) ̸= y] to be the 0-1 loss.
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Additional Discussion and Details for
Chapter 3

C.1 Multiplicity of Predictions vs. Scores

Recall that the models we consider are not only capable of outputting a binary prediction
but also a confidence score. The disagreement metric in Eq. (3.1), however, only uses
the predictions after applying a threshold. To verify if the trends we observe persist
also at the level of confidence scores, we additionally evaluate viable prediction range, a
metric for measuring multiplicity of the confidence scores proposed by Watson-Daniels
et al. [182]:

µvp(x) ≜ max
θ∼PT (S)

hθ(x)− min
θ∼PT (S)

hθ(x) (C.1)

Fig. C.1 shows the viable prediction range for different values in the input space
for logistic regression trained with objective perturbation on our synthetic dataset.
The regions with high viable prediction range overlap with the regions with high
disagreement (see Fig. 3.1). This is also consistent with the results on the tabular
datasets, for which Fig. C.2 shows both disagreement and viable prediction range
increasing on average as the level of privacy increases.

Implications. Models trained with a high level of privacy exhibit high multiplicity
both of their confidence scores (in terms of viable prediction range) and of “hard”
predictions after applying a threshold (in terms of disagreement).
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Figure C.1: Viable prediction range of logistic regression trained with objective
perturbation is high for examples for which disagreement is also high. See Fig. 3.1 for
the disagreement values and details of the plot setup.
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Figure C.2: Both the disagreement and viable prediction range of logistic regression
trained with objective perturbation on tabular datasets increases as the level of privacy
increases. See Fig. 3.3 for the details of the plot setup.
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C.2 Experiment Details

C.2.1 Details on the Experiment Setup

Datasets. For illustrative purposes, we use the following classes as our target labels.
For the Credit dataset, we use “Approved” as the target label. For the Contraception
dataset, we use “long-term method”. For the dermatology dataset, we use “seboreic
dermatitis” diagnosis. For the Mammography dataset, we use “malignant”.

CIFAR-10. We use the convolutional neural network trained over the ScatterNet
features [134] following Tramer and Boneh [169, Table 9, Appendix]. We use DP-SGD
with batch size of 2048, learning rate of 4, Nesterov momentum of 0.9, and gradient
clipping norm of 0.1. We vary the gradient noise multiplier σ to achieve the privacy
levels of ϵ ≈ 2.22, 2.73, 3.62.4.39, 5.59 as computed by the Moments accountant [1].

Software. We use the following software:

• diffprivlib [83] for the implementation of objective-perturbation for logistic
regression.

• PyTorch [139] for implementing neural networks.

• opacus [195] for training PyTorch neural networks with DP-SGD.

• numpy [80], scipy [173], and pandas [135, 183] for numeric analyses.

• seaborn [180] for visualizations.

C.2.2 Additional Figures and Tables

The rest of the chapter contains additional figures and tables.
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Table C.1: Summary statistics of the performance and predictive-multiplicity measures
on real-world datasets. For tabular datasets, the performance metrics are the area under
the ROC curve (AUC), and the harmonic mean of precision and recall (F1 score) on
the test data. For CIFAR-10, the performance metric is the accuracy on the test data.
For these, we report mean and standard deviation over the m re-trained models. For
disagreement, we report mean, standard deviation, minimum, median, maximum, the
90-th percentile, and the 95-th percentile over the examples in each respective test
dataset. Observe that for every dataset there exist multiple examples with high level of
predictive multiplicity even if the average level of predictive multiplicity for the given
dataset is low. E.g., compare the 95-th percentile of disagreement on the CIFAR-10
dataset at ϵ = 2.22 (0.81) to its mean value (0.11).

AUC F1 score Disagreement
Dataset ϵ Mean Std. Mean Std. Mean Std. Min Median Max 90 pctl. 95 pctl.
Contraception 0.50 57.51 6.72 48.72 7.86 0.90 0.10 0.48 0.93 1.00 0.99 1.00

0.75 60.26 6.20 50.29 7.54 0.82 0.17 0.24 0.88 1.00 0.99 1.00
1.00 62.50 5.47 51.56 7.09 0.73 0.23 0.11 0.79 1.00 0.98 1.00
1.25 64.27 4.71 52.62 6.62 0.65 0.27 0.05 0.70 1.00 0.97 0.99
1.50 65.62 4.00 53.53 6.14 0.57 0.30 0.02 0.60 1.00 0.96 0.99
1.75 66.65 3.38 54.31 5.67 0.51 0.32 0.00 0.50 1.00 0.95 0.99
2.00 67.43 2.86 54.98 5.21 0.45 0.33 0.00 0.42 1.00 0.94 0.98
2.50 68.49 2.10 55.97 4.39 0.37 0.33 0.00 0.27 1.00 0.92 0.97

Credit 0.50 52.22 15.95 46.48 16.38 1.00 0.00 0.99 1.00 1.00 1.00 1.00
0.75 53.72 15.70 47.84 15.70 0.99 0.01 0.98 0.99 1.00 1.00 1.00
1.00 55.16 15.41 49.15 15.05 0.99 0.01 0.96 0.99 1.00 1.00 1.00
1.25 56.56 15.06 50.39 14.46 0.98 0.02 0.94 0.98 1.00 1.00 1.00
1.50 57.86 14.69 51.59 13.89 0.97 0.03 0.91 0.98 1.00 1.00 1.00
1.75 59.10 14.31 52.72 13.35 0.96 0.03 0.89 0.97 1.00 1.00 1.00
2.00 60.26 13.91 53.77 12.85 0.95 0.04 0.86 0.96 1.00 1.00 1.00
2.50 62.41 13.12 55.70 12.05 0.93 0.06 0.80 0.95 1.00 1.00 1.00

Dermatology 0.50 62.19 19.76 48.81 17.88 0.96 0.03 0.89 0.96 1.00 1.00 1.00
0.75 66.75 17.65 52.67 16.44 0.93 0.05 0.79 0.93 1.00 0.99 0.99
1.00 70.44 15.83 55.88 15.21 0.89 0.08 0.69 0.90 1.00 0.98 0.99
1.25 73.46 14.28 58.57 14.20 0.85 0.10 0.60 0.86 1.00 0.98 0.98
1.50 75.94 12.97 60.93 13.30 0.82 0.12 0.52 0.83 1.00 0.97 0.98
1.75 78.04 11.89 62.98 12.60 0.79 0.13 0.46 0.80 1.00 0.95 0.97
2.00 79.80 10.96 64.78 12.00 0.75 0.15 0.39 0.77 0.99 0.94 0.96
2.50 82.66 9.45 67.80 10.95 0.70 0.17 0.32 0.72 0.99 0.92 0.94

Mammography 0.50 75.64 8.95 69.22 9.88 0.62 0.28 0.20 0.61 1.00 0.98 1.00
0.75 78.57 6.51 72.46 7.04 0.51 0.34 0.07 0.45 1.00 0.98 1.00
1.00 80.36 5.26 74.39 5.48 0.44 0.36 0.02 0.33 1.00 0.97 0.99
1.25 81.62 4.44 75.64 4.66 0.39 0.37 0.01 0.24 1.00 0.95 0.99
1.50 82.54 3.82 76.56 4.14 0.35 0.37 0.00 0.17 1.00 0.93 0.99
1.75 83.25 3.36 77.29 3.81 0.32 0.36 0.00 0.12 1.00 0.91 0.98
2.00 83.81 2.98 77.85 3.56 0.29 0.35 0.00 0.08 1.00 0.89 0.98
2.50 84.61 2.40 78.70 3.22 0.25 0.34 0.00 0.04 1.00 0.84 0.96

Accuracy Avg. Disagreement across Classes
Dataset ϵ Mean Std. Mean Std. Min Median Max 90 pctl. 95 pctl.
CIFAR-10 2.22 65.38 0.32 0.11 0.25 0.0 0.0 1.0 0.48 0.81

2.73 67.65 0.35 0.09 0.23 0.0 0.0 1.0 0.36 0.77
3.62 69.56 0.32 0.08 0.22 0.0 0.0 1.0 0.29 0.69
4.39 70.38 0.33 0.07 0.21 0.0 0.0 1.0 0.23 0.64
5.59 71.06 0.29 0.06 0.20 0.0 0.0 1.0 0.15 0.59
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(b) Empirical error of estimating disagree-
ment for one arbitrarily chosen example
(solid orange line —) compared to the the-
oretical maximum error w.p. 95% (dashed
blue line −−). The error bars are 95% con-
fidence intervals over 10 re-samplings of
m models. This suggests that the theoreti-
cal upper bound on error is pessimistic in
practice. y axis is logarithmic.

Figure C.3: Visualization of disagreement estimation error as a function of the number
of models sampled from the training distribution PT (S).
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Additional Details for Chapter 4

D.1 Additional Experiment Details

We use the following software:

• diffprivlib [83] for the implementation of objective-perturbation for logistic
regression.

• fairlearn [16] for the implementation of algorithmic fairness post-processing.

• numpy [80], scipy [173], and pandas [135, 183] for numeric analyses.

• seaborn [180] for visualizations.

D.2 Additional Tables

The chapter contains additional tables.
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Table D.1: Results of post-hoc tests on ADULT models. Columns: G and G′: identifiers
of subgroups, t: value of the t statistic, p: uncorrected p-value, p-corr.: p-value after the
correction for multiple comparisons.

NN-8 G G′ t p p-corr.
0 AE AI -4.4298 0.0000 0.0001
1 AE BL 0.5143 0.6076 0.6751
2 AE OT -1.7468 0.0822 0.1174
3 AE WH 0.0498 0.9604 0.9604
4 AI BL 8.8677 0.0000 0.0000
5 AI OT 1.8976 0.0592 0.0987
6 AI WH 8.9236 0.0000 0.0000
7 BL OT -2.6402 0.0089 0.0224
8 BL WH -1.3443 0.1804 0.2255
9 OT WH 2.3290 0.0209 0.0417

NN-32 G′ G′ t p p-corr.
0 AE AI -11.3216 0.0000 0.0000
1 AE BL 0.9595 0.3385 0.3761
2 AE OT -4.1972 0.0000 0.0001
3 AE WH 0.5655 0.5724 0.5724
4 AI BL 24.1213 0.0000 0.0000
5 AI OT 6.1285 0.0000 0.0000
6 AI WH 25.4526 0.0000 0.0000
7 BL OT -6.4301 0.0000 0.0000
8 BL WH -1.2845 0.2005 0.2506
9 OT WH 6.1996 0.0000 0.0000

Table D.2: Results of post-hoc tests on Texas-50K models. See Table D.1 caption for
details.

NN-32 G G′ t p p-corr.
0 1 2 -3.4973 0.0006 0.0007
1 1 3 0.2056 0.8374 0.8374
2 1 4 4.2820 0.0000 0.0000
3 1 5 3.0576 0.0025 0.0028
4 2 3 10.0174 0.0000 0.0000
5 2 4 21.2727 0.0000 0.0000
6 2 5 17.4069 0.0000 0.0000
7 3 4 21.8804 0.0000 0.0000
8 3 5 13.2434 0.0000 0.0000
9 4 5 -8.1600 0.0000 0.0000

LR (Dem. Parity) G′ G′ t p p-corr.
0 1 2 -1.2485 0.2133 0.3326
1 1 3 -1.1910 0.2351 0.3326
2 1 4 -2.4808 0.0139 0.0348
3 1 5 -0.9385 0.3491 0.3879
4 2 3 0.3151 0.7531 0.7531
5 2 4 -3.4931 0.0006 0.0020
6 2 5 1.1152 0.2661 0.3326
7 3 4 -8.8594 0.0000 0.0000
8 3 5 1.6787 0.0948 0.1896
9 4 5 12.8701 0.0000 0.0000

Table D.3: Results on ADULT, disaggregated by subgroups, for models with disparity
F-test p < 0.01.

Test acc. Gen. gap Subgroup vuln.
avg std avg std avg std

Model G

32-Neuron NN Amer-Indian-Eskimo 0.9028 0.0139 0.0115 0.0253 1.1701 4.8259
Asian-Pac-Islander 0.8165 0.0119 0.0693 0.0195 5.7713 2.6300
Black 0.9043 0.0049 0.0138 0.0086 0.8200 1.6261
Other 0.8881 0.0179 0.0492 0.0295 3.2550 5.1807
White 0.8338 0.0021 0.0109 0.0035 0.9773 0.4496

8-Neuron NN Amer-Indian-Eskimo 0.9042 0.0151 0.0041 0.0281 0.3701 4.7177
Asian-Pac-Islander 0.8264 0.0119 0.0223 0.0214 2.1320 2.7965
Black 0.9066 0.0047 0.0035 0.0093 0.1878 1.6152
Other 0.8913 0.0165 0.0149 0.0309 1.2805 5.6344
White 0.8345 0.0020 0.0039 0.0036 0.3535 0.4314
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D.2 Additional Tables

Table D.4: Results on Texas-50K, disaggregated by subgroups, for models with disparity
F-test p < 0.01.

Test acc. Gen. gap Subgroup vuln.
avg std avg std avg std

Model G

32-Neuron NN 1 0.8699 0.0380 0.0791 0.0451 8.5188 8.2829
2 0.8644 0.0153 0.1013 0.0180 10.7429 3.0129
3 0.8498 0.0085 0.0855 0.0106 8.3947 1.6121
4 0.8644 0.0066 0.0637 0.0063 6.0331 0.8261
5 0.8708 0.0063 0.0697 0.0074 6.7288 1.0840

Fair LR (Dem. Parity) 1 0.6932 0.0562 -0.0010 0.0839 0.0075 8.9200
2 0.6934 0.0203 0.0095 0.0295 0.8381 2.9201
3 0.7323 0.0084 0.0143 0.0099 0.7667 1.1361
4 0.7771 0.0027 0.0155 0.0048 1.5751 0.4952
5 0.7384 0.0068 0.0106 0.0088 0.5997 0.8448
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Appendix E

Additional Discussion and Details for
Chapter 5

E.1 Other Possible Adversarial Objectives

We propose a cost-oriented and a utility-oriented adversarial objective in Section 5.3.
These are not the only possible formalizations for our high-level goals. One other
approach is an adversary maximizing utility subject to a cost budget:

max
x∈F(x,y)

1[f(x) ̸= y] · ux,y(x′)

= 1[f(x) ̸= y] · [r(x′)− c(x, x′)]+
s.t. c(x, x′) < γ

(E.1)

This formalization is a middle ground between our cost-constrained and utility-
constrained objectives: On the one hand, the adversary is aware of the utility of a given
example. On the other hand, they do not adjust their budget for different examples, i.e.
the constraint for $10 and $1,000 stays the same, even though the adversary clearly
differentiates in their value. We conducted preliminary experiments with this objective,
and its results are marginally different from the cost-bounded one in our experimental
setup.

E.2 Additional Details on the Experiments

We provide the details of our experimental setup.
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Appendix E. Additional Discussion and Details for Chapter 5

Table E.1: IEEE-CIS and HomeCredit attack and defense parameters

Dataset Parameter Value range

IEEE-CIS Max. iterations 100K
γ (for CB attacks) [1, 3, 10, 30]
τ (for UB attacks) [0, 10, 50, 500, 1000]

HomeCredit Num. of iterations 100
γ (for CB attacks) [1, 10, 100, 1K, 10K]
τ (for UB attacks) [10K, 300K, 400K, 500K, 600K, 800K]

E.2.1 Software

We use the following software:

• PyTorch [139] for implementing neural networks.

• numpy [80], scipy [173], and pandas [135, 183] for numeric analyses.

• seaborn [180] for visualizations.

E.2.2 Hyperparameter Selection

We list our defense and attack parameters in Table E.1. The TabNet parameters are
denoted according to the original paper [6]. We set the virtual batch size to 512. As
training the clean baseline for HomeCredit was prone to overfitting in our setup, we
reduced the number of training epochs to 100. Other hyperparameters were selected
with a grid search.

E.2.3 Dataset Processing and Adversarial Cost Models

For each dataset, we create an adversarial cost based on hypothetical scenarios. In this
section, we describe how we process the data, and how we assign costs to modifications
of the features in each dataset.

TwitterBot. We use 19 numeric features from this dataset. We drop three features for
which we cannot compute the effect of a transformation as we do not have access to
the original tweets. We use the number of followers as the adversary’s gain. We assign
costs of features based on estimated costs to purchase Twitter accounts of different
characteristics on darknet markets.

142



E.2 Additional Details on the Experiments

IEEE-CIS. We ascribe cost of changes, assuming that the adversary can change the
device type and email address at a small cost. The device type can be changed with low
effort using specific software. Email domain can be changed with a registration of a
new email address which typically cannot be automated. Although also low cost, it
takes more time and effort than changing the device time. We reflect these assumptions
ascribing the costs $0.1 and $0.2 to these changes. Changing the type of the payment
card requires obtaining a new card, which costs approximately $20 in US-based darknet
marketplaces as of the time of writing. We consider the transaction amount as a gain
obtained by an adversary.

HomeCredit. The main goal of the adversary in this task is receiving a credit
approval. As one example represents a loan application, we set the credit amount to
be the gain of the example. All features which can be used by an adversary are listed
in Table E.4 with the costs we ascribe to them. We assume six groups of features and
estimate the cost as follows:

• Group 1: Features that an adversary can change with negligible effort such as an
email address, weekday, or hour of the loan application. We ascribe $0.1 cost to
these transformations.

• Group 2: Features associated to income. We use these as numerical features to
illustrate the flexibility of our method. We assume that to increase income by $1,
the adversary needs to pay $1.

• Group 3: Features associated to changing a phone number. Based on the US
darknet marketplace prices as of the time of writing, we estimate that purchasing
a SIM card costs $10.

• Group 4: Features related to official documents which can be temporally changed.
For example, a car’s ownership can be transferred from one person to another
for the application period, and returned to the original owner after it. We ascribe
a cost of $100 to these changes.

• Group 5: Features that require either document forging or permanent changes to
a person’s status. For instance, purchasing a fake university diploma. For the
sake of an example, we estimate their cost at $1,000.

• Group 6: Features related to credit scores provided by external credit-scoring
agencies. We estimate the cost of changes in this group with a manipulation
model based on a real-world phenomenon of credit piggybacking, described next.

Credit-Score Manipulation. In our feature set we include the features that contain
credit scores from unspecified external credit-scoring agencies. One reported way of
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Appendix E. Additional Discussion and Details for Chapter 5

Table E.2: Costs of changing a feature on the TwitterBot dataset

Feature Estimated cost, $

likes_per_tweet 0.025
retweets_per_tweet 0.025
user_tweeted 2
user_replied 2

Table E.3: Costs of changing a feature on the IEEE-CIS dataset

Feature Estimated cost, $

DeviceType 0.1
P_emaildomain 0.2
card_type 20

Table E.4: Costs of changing a feature on the HomeCredit dataset

Feature Estimated cost, $

name_contract_type 0.1
name_type_suite 0.1
flag_email 0.1
weekday_appr_process_start 0.1
hour_appr_process_start 0.1
amt_income_total 1
flag_emp_phone 10
flag_work_phone 10
flag_cont_mobile 10
flag_mobil 10
flag_own_car 100
flag_own_realty 100
reg_region_not_live_region 100
reg_region_not_work_region 100
live_region_not_work_region 100
reg_city_not_live_city 100
reg_city_not_work_city 100
live_city_not_work_city 100
name_income_type 100
cluster_days_employed 100
name_housing_type 100
occupation_type 100
organization_type 100
name_education_type 1000
name_family_status 1000
has_children 1000
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E.2 Additional Details on the Experiments

affecting such credit scores is using credit piggybacking 1. During piggybacking, a
rating buyer finds a “donor” willing to share a credit for a certain fee. We introduce a
model that captures costs of manipulating a credit score through piggybacking.

We assume that after one piggybacking manipulation the rating is averaged between
“donor” and recipient, and that “donors” have the maximum rating (1.0). Then, the
cost associated to increasing the rating from, e.g., 0.5 to 0.75 is the same as that of
increasing from 0.9 to 0.95. This cost cannot be represented by a linear function. Let
the initial score value be x. The updated credit score after piggybacking is x′ = (x+1)/2.
If we repeat the operation n times, the score becomes:

x′ = x + 2n − 1
2n

Thus, the number of required piggybacking operations can be computed from the
desired final score x′ as n = log2

1−x
1−x′ , and the total cost is c(x, x′) = nC , where C is

the cost of one operation. For the sake of an example, we estimate it to be $10,000.

c(x, x′) = C log2
1− x

1− x′ = C(log2(1− x)− log2(1− x′))

This is not a fully realistic model, as we cannot know how exactly credit score agencies
compute the rating. However, it is based on a real phenomenon and enables us to
demonstrate our framework’s support of non-linear costs.

1https://www.experian.com/blogs/ask-experian/what-is-piggybacking-credit
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Appendix E. Additional Discussion and Details for Chapter 5

Table E.5: Effect of beam size B in the Universal Greedy algorithm on the IEEE-CIS
dataset. The success rates are close for all choices of the beam size, thus the beam size
of one offers the best performance in terms of runtime.

Adv. success, %
Cost bound→ 10 30 Gain ∞

Beam size ↓
1 45.32 56.57 56.22 68.20
10 45.32 56.01 55.65 56.01
100 45.32 56.53 56.18 56.53

Success/time ratio
Cost bound→ 10 30 Gain ∞

Beam size ↓
1 3.78 4.80 2.53 2.06
10 2.14 2.25 1.31 1.15
100 0.66 0.65 0.65 0.66
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Presented at “Beyond Fair Computer Vision" Workshop at CVPR 2021

Adversarial for Good? How the Adversarial ML Community’s Values Impede
Socially Beneficial Uses of Attacks
K. Albert*, M. Delano*, B. Kulynych*, R. Shankar Siva Kumar*
Presented at “A Blessing in Disguise: The Prospects and Perils of Adversarial Machine Learning"
Workshop at ICML 2021

2020 Protective Optimization Technologies
B. Overdorf*, B. Kulynych*, E. Balsa, C. Troncoso, S. Gürses
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