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Abstract

Neural machine translation (MT) and text generation have recently reached very high levels

of quality. However, both areas share a problem: in order to reach these levels, they require

massive amounts of data. When this is not present, they lack generalization abilities. This

is the main problem we address in our thesis: how can we increase the generalization abil-

ities of these models when they are trained in low-resource settings? We propose various

regularization techniques to address this problem.

In Part I of the thesis we study the impact of training the weights of a model so that they set

in flatter regions of the parameter space, by indirectly guiding them with a more regularized

training regime than would be normal in better-resourced settings. We pursue an empirical

approach to this. Firstly, without directly measuring the landscape of the loss function in

the parameter space, we show that in low-resource settings NMT systems benefit from more

aggressive regularization, which can be achieved by modifying several hyper-parameters, and

show that a combination of these factors improves scores more than any single factor. Our

explanation is that a less precise optimizer – due to increased regularization – is more likely

to fall into flatter regions of the loss landscape, leading to more robust systems. We test this

hypothesis on a series of low-resource datasets and observe an improvement of quality of 3–6

BLEU points. Secondly, we propose a cost-effective method to directly estimate the flatness

of the neighborhood of a point in the parameter space (a model checkpoint) using random

perturbations and interpolation. We propose several metrics and compare them. Thirdly, we

propose a method to directly train a system into flatter regions by looking ahead for variations

of the loss function before performing gradient descent.

In Part II we show that the use of auxiliary and synthetic data for neural MT, which is another

way to perform regularization, also improves quality in low-resource settings. Firstly, we

simplify a state-of-the-art complex pipeline for low-resource translation with no loss in perfor-

mance. Secondly, we propose a fixed-schedule multitask training regime, with improvements

of 1–3 BLEU points. Thirdly, we demonstrate the design of a novel self-paced learning algo-

rithm that balances languages on a multilingual many-to-one regime, by measuring model

weight variation throughout training. Fourthly, we show that many-to-many systems improve

over well-optimized unidirectional systems.

In Part III we present an approach to text generation for a low-resource domain, poetry. Firstly,
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Abstract

we train a LM and design a rule-based algorithm that generates various structures and rhymes

based on user’s specifications. Secondly, we show that synthetic poetry generated by this

system helps to fine-tune a LM so that it learns to generate appropriate poems without rule-

based constraints. In other words, the use of synthetic data helps to generalize a LM trained

on a small in-domain data set.

Overall, this thesis offers a unified perspective that improves our understanding of the follow-

ing regularization techniques: hyper-parameter tuning, loss flatness measuring, multitasking,

and usage of auxiliary data. The thesis also shows that these are effective and efficient strate-

gies for improving low-resource neural machine translation and text generation.

Keywords: machine translation, text generation, low-resource training, regularization,

machine learning.
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Résumé

La traduction automatique neuronale (TA) et la génération de texte ont récemment

atteint des niveaux de qualité très élevés. Cependant, les deux domaines partagent un

même problème : pour atteindre ces niveaux, les modèles ont besoin de très grandes

quantités de données. Lorsque de telles quantités ne sont pas disponibles, les capacités

de généralisation des modèles sont très réduites. Le principal problème que nous

abordons dans notre thèse est donc le suivant : comment augmenter les capacités de

généralisation de ces modèles lorsqu’ils sont entraînés avec peu de ressources? Nous

proposons diverses techniques de régularisation pour résoudre ce problème.

Dans la première partie de la thèse, nous étudions l’entraînement des modèles de TA

afin que leurs poids se situent dans des régions plus plates de l’espace des paramètres.

Nous guidons indirectement les modèles avec un régime d’entraînement plus régula-

risé que lorsque de grands volumes de données sont disponibles. Nous poursuivons

l’approche empirique suivante. Premièrement, sans observer directement l’aspect de

la fonction de coût dans l’espace des paramètres, nous montrons que lorsque peu de

données sont disponibles, les systèmes bénéficient d’une régularisation plus agressive,

qui peut être obtenue en modifiant plusieurs hyperparamètres. De plus, une combinai-

son de ces paramètres améliore les scores plus que n’importe quel facteur utilisé seul.

Notre explication est qu’un optimiseur moins précis -– en raison d’une régularisation

accrue -– est plus susceptible de tomber dans des régions plus plates de la fonction

de coût, conduisant à des systèmes plus robustes. Nous testons cette hypothèse sur

diverses données de volume réduit observons une amélioration entre 3 et 6 points BLEU.

Deuxièmement, nous proposons une méthode pour estimer directement la planéité du

voisinage d’un point dans l’espace des paramètres (un état du modèle) en utilisant des

perturbations aléatoires et l’interpolation. Nous proposons plusieurs métriques et les

comparons. Troisièmement, nous proposons une méthode pour entraîner directement

un système dans des régions plus plates en anticipant les variations de la fonction de

coût avant d’effectuer une descente de gradient.

Dans la deuxième partie de la thèse, nous montrons que l’utilisation de données auxi-

liaires et synthétiques pour la TA neuronale, qui est un autre moyen d’effectuer une

régularisation, améliore également la qualité lorsque peu de données sont disponibles.

Premièrement, nous simplifions sans perte de performances une chaîne de traitement
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Résumé

récente pour la TA. Deuxièmement, nous proposons un régime d’entraînement multi-

tâche à programme fixe, avec des améliorations entre 1 et 3 points BLEU. Troisièmement,

nous présentons un nouvel algorithme d’apprentissage multitâche qui équilibre les

langues en mesurant la variation de poids du modèle tout au long de la formation.

Quatrièmement, nous montrons que les systèmes de TA traduisant plusieurs langues

sources et cibles sont meilleurs que des systèmes unidirectionnels, même optimisés.

Dans la troisième partie de la thèse, nous présentons une approche de la génération de

texte pour un domaine à faibles ressources, la poésie. Premièrement, nous entraînons

un modèle de langage et concevons des règles qui génèrent diverses structures et rimes

en fonction des spécifications de l’utilisateur. Deuxièmement, nous montrons que les

poèmes générés par ce système, utilisés comme données d’entraînement, permettent à

un modèle de langage de générer des poèmes qui riment, sans contraintes basées sur

des règles. Autrement dit, l’utilisation de données synthétiques permet de généraliser

un modèle entraîné sur un petit ensemble de données du domaine.

Dans l’ensemble, cette thèse offre une perspective unifiée qui améliore notre compré-

hension des principales techniques de régularisation : réglage des hyperparamètres,

aspect de la fonction de coût, entraînement multitâche, et utilisation de données auxi-

liaires. La thèse montre également que celles-ci sont des stratégies efficaces et efficientes

pour améliorer la traduction automatique neuronale et la génération de texte à faibles

ressources.

Mots clés : traduction automatique, génération de texte, entraînement à faibles res-

sources, régularisation, apprentissage automatique.
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1 Introduction

In this thesis we propose several solutions based on regularization to address the general-

ization problems that arise from training in low-resource settings in two areas of Natural

Language Processing (NLP): Neural Machine Translation (NMT) and Text Generation with

Language Models (LMs). These solutions are: adaptation of hyper-parameters, training into

flatter regions of the weight space, usage of multitask and multilingual training, and training

on synthetic data.

In this chapter we will introduce some general (Subsection 1.1.1) and specific (Subsection 1.1.2)

concepts in order to present the main research questions of the thesis (Subsection 1.2), and

finally we will specifically present our contributions and the general outline of this thesis

(Subsection 1.3).

1.1 Context of the Thesis

In recent years, the quality of neural machine translation has sharply grown, even leading

to some reports of human parity (Hassan et al., 2018), although these have been challenged

(Läubli et al., 2018; Toral, 2020; Läubli et al., 2020). Translation systems are turning more and

more useful, becoming an everyday tool for some, particularly after the re-development of

Google Translate into a neural system in late 2016 and other neural competitors such as DeepL

in 2017. Similarly, and even more recently, text generation has gone through a comparable

process in its numerous applications, with some of the more prominent ones being question

and answering. Few things could make this clearer than the immediate popularity of ChatGPT

by OpenAI after its introduction in late 2022. However, this increase in quality is very closely

tied to an increase in training data (and therefore in computational cost and training time).

When training NMT and LM systems without enough training data, problems arise when

testing on new, unseen data.

The difference between a model’s scores on a train set and on a test set is called the generaliza-

tion gap. A model’s generalization ability represents how well its training allows it to perform
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Chapter 1. Introduction

on unseen data. In this sense, test error can also be called generalization error. Successfully

training a neural network means lowering its generalization error as much as possible, given

the available training data.

Current NMT systems usually consist of a Transformer-based network trained on parallel texts,

i.e. datasets of sentence-aligned (parallel data), one of them being the human translation of

the other. The model is given one of the datasets as input, and is trained to generate the other

as output (the source and target, respectively). The amount of parallel data that is available

determines whether we are in a low-resource scenario.

1.1.1 Generalization Gap and Regularization

Sometimes we constrain our model during training in order to limit its ability to identify

patterns in the training data, expecting that the more generalizable patterns will be learned,

and the more local ones will not. This means that when we apply these constraints, we

expect the model to perform better on test sets, although it may perform worse (or simply not

improve) on the training set. Such constraints are called regularization techniques.

Regularization is one of the most common ways to lower generalization error. This is achieved

by a range of techniques that attempt to lower generalization error without necessarily reduc-

ing training error. Early stopping or dropout, for instance, are unlikely to lower training error

but they may lower test error. On the contrary, increasing the training data or the amount of

epochs during which the model is trained should reduce training error along with test error –

as such, neither is a regularization technique.

Now that we have introduced the notion of regularization, let us also introduce three related

concepts to better illustrate it: overfitting, capacity, and bias versus variance trade-off. Indeed,

any regularization technique can be understood as constraining the model in order to reduce

overfitting and lower effective capacity, which we define as follows. Overfitting occurs when a

model decreases or stabilizes its training error, but increases its test or validation error. Usually

it is characterized by an over-training curve during the training schedule, where the error on

some validation set lowers in an initial phase, but after a certain point it begins to increase

again, due to the model over-focusing on patterns from the training data, while training error

remains stable or continues to decrease. A generic representation of overfitting is shown

in Figure 1.1. In NMT this can become apparent by the model repeating a small amount of

phrases over and over in its output, for example. We say that the model is overfitting after

the lowest point of the test error curve. Intuitively, we can think of this as the point where

the model starts recognizing too many patterns in the training data that are not universal or

cannot be generalized to other datasets.

We can think of this excessive recognition of patterns in the training data as a problem in the

capacity of the model. Representational capacity (or model complexity) refers to the family

of functions that the learning algorithm can choose from to maximize a training objective.

2



1.1 Context of the Thesis

Figure 1.1: Graphical representation of overfitting due to over-training (Géron, 2017, Figure
4.20). In this image, RMSE is simply an example of an error metric.

Effective capacity is the capacity the model has once a function has been chosen.1 More

complex models (i.e. models with a larger capacity) will be more likely to overfit, and therefore

will require more regularization. In other words, the larger the representational capacity

of a model, the more constraints we need to place in order to lower its effective capacity —

but without lowering it so much that the model underfits. Encoding or latent space is part

of a model’s capacity, regarding specifically the richness with which each input token can

be represented. Embedding size and sequence context (input layer size) are its two main

parameters.

We have introduced two of the three fundamental concepts – overfitting and capacity – to

better understand the notion of regularization. The following observation will lead us to

introduce the third one: the more capacity a model has, the more variance error and the less

bias error it will have, as represented in Figure 1.2. Generalization error is the sum of the bias

and the variance errors (plus irreducible error, due to the natural variability of the data).

A high-variance model is excessively sensitive to variations in the data, which will make it

more likely to overfit.2 If we were to feed an infinitely large training set to our model (with

infinite capacity), the only generalization error possible would be bias error: a high-bias model

learns wrong patterns on the data, which makes it more likely to underfit.3 Although high bias

1Representational capacity is determined by various factors, including the amount of layers of the neural
network, linear vs. nonlinear activations, total amount of trainable parameters (weights), etc., whereas effective
capacity is determined by various factors of the training regime, such as early stopping or dropout. If the chosen
training function once the model has been trained is suboptimal, the model’s effective capacity will be lower than
its maximal representational capacity.

2In its extreme form, a high-variance low-bias model represents a data sample as an atomic element: it is unable
to establish any patterns between two data samples if there is just one difference among the two.

3In its extreme form, a high-bias low-variance model outputs the same prediction regardless of what input data
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Figure 1.2: Effects of capacity on overfitting and generalization, and bias-variance error.
Inspired by Goodfellow et al. (2016, Figure 5.3, 5.6).

and variance or low bias and variance models are possible, in practice successfully training

a model is a trade-off between bias and variance. Regularization consists in lowering the

variance error without increasing bias error too much.

We could be tempted to position all generalization errors on the underfitting-overfitting

error spectrum: either a model does not generalize well to other datasets because it has not

recognized all useful patterns in its training, or because it has over-focused on some of them

that are not easily generalizable. Suggestions that generalization can be divided between over-

and underfitting have appeared in the machine learning literature for a long time (Guyon et al.,

1991; Wang et al., 1993; Hochreiter and Schmidhuber, 1994).

Other likely causes of generalization errors, such as insufficient training data, or domain

mis-match between train and test sets, could also a priori be placed on the same spectrum.

Indeed, Figure 1.1 shows a typical overfitting situation as a common cause of generalization

error. The solution is to stop training the model (before getting to 500 epochs), around the

point marked as "best model", which would lower test error while slightly increasing train

error. This fits our previous definition of regularization, and can be achieved in this case by

early stopping.

it is given.
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1.1 Context of the Thesis

1.1.2 Flat Minima Theory

The loss of a model is a real-valued function of the model’s parameters (the weights of the

network) that serves as the model’s training objective. In other words, it is a performance

measure that the model iteratively tries to minimize. Throughout the thesis, the negative log-

likelihood is computed: the cross-entropy between the training data (typically in a minibatch,

a small subset of the training data) and the predictions of a model on that same data. Formally,

a loss function J of a model with weights θ is defined as

J (θ) =−Ex,y∼p̂data logpmodel(y |x),

where pmodel are the predictions of the model, and x, y is the input data and correct labels,

respectively (Goodfellow et al., 2016, Eq. 6.12).

The aspect of the loss, which we call the loss landscape, depends on the data that is used to

compute the loss for a given value of the weights. Two different datasets, such as for instance

train vs. test data, will lead to two different landscapes. Nonetheless, the more similar the

two datasets are, the more we expect the two landscapes to be similar. In a nutshell, the flat

minima theory states that a model whose weights are in a region where the loss landscape is

rather flat will have a higher chance of generalizing well compared to a model whose weights

are around a sharper point of the loss landscape (Hochreiter and Schmidhuber, 1994; Keskar

et al., 2016). The higher chance of generalizing well is due to the fact that on a new dataset, the

loss landscape is different from the training set, but if the region of the parameters is flat, then

the loss on the new dataset will be close to the training loss, hence presumably still quite low.

How can we guide a model’s weights during training towards flatter minima of the loss land-

scape? Certain hyper-parameters can help to increase the amount of regularization that a

model has during training: some examples are the batch size, the learning rate, or the dropout.

A more regularized model will have a less precise optimizer over the train set, and therefore

will be more likely to set its weights in flatter regions rather than in sharper ones, according to

the flat minima theory. We illustrate this in Figure 1.3, and we further analyze the literature on

this theory in Section 2.4.

As introduced in Subsection 1.1.1, overfitting is usually characterized by some form of over-

training curve where the generalization gap is deemed “too large” (Goodfellow et al., 2016,

page 110). It is less clear whether the generalization error resulting from optimizing weights

into suboptimal regions of the loss landscape (i.e. sharper ones, as explained above) is still

due to overfitting. Some authors have claimed that regularization, or the use of less accurate

gradients, leads the weights towards flatter regions of the weight space during optimization,

and therefore explicitly minimize overfitting (Hochreiter and Schmidhuber, 1994). Other

authors, however, have explicitly rejected the idea that the improved generalization is due to

less overfitting (Keskar et al., 2016).

In Figure 1.4, we illustrate with examples of real systems the problem of explaining the role
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Figure 1.3: Illustration of the effect on generalization of the loss landscape (the values of the
loss in the space of the model’s weights). Weights from a flat minimum generalize well in the
sense that the test loss will likely be similar to the train loss.

of regularization, in relation to flat minima and the generalization gap (or, more broadly,

training and testing error). In the upper left part of Figure 1.4 we show an graph from Keskar

et al. (2016, Figure 2): it shows a modification of Alexnet (a convolutional neural network)

trained on a computer vision task (CIFAR-10) either with small batches (SB) or with large

ones (LB), (i.e. with more or less regularization, respectively). The other three graphs are our

own Transformer-based models for low-resource NMT tasks, trained with baseline hyper-

parameters or with a combination of more regularized ones: dropout, gradient norm, warmup

steps, and learning rate.4

While Figure 1.1 showed a typical example of overfitting, which can be solved by reducing the

amount of over-training (e.g. performing early stopping), consider, however, the upper left

graph in Figure 1.4, which appears to show a different cause for generalization error. Obtaining

the lowest test error in this setting requires increasing regularization (SB), which improves test

and train accuracy. Additionally, if we look at the final accuracy results between SB and LB,

there is no significant reduction in the generalization gap either. This seems to show that the

generalization error from the less regularized model (LB) is not due to overfitting – a point that

the authors themselves explicitly make (Keskar et al., 2016).

The remaining three graphs in Figure 1.4 are all generated from our experiments with neural

machine translation presented in Chapter 3, in similar settings: their training sets are all

low-resource translation sets, ranging from 20k lines to 120k, and each of them trained in a

different language pair. The changes in hyper-parameters between Baseline and Regularized

4The models are presented in detail in Chapter 3, Section 3.8. Upper right: DE-EN with 120k training lines,
lower left: SK-EN with 60k lines, lower right: HSB-DE with 20k lines.
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1.1 Context of the Thesis

Figure 1.4: Effects of increased regularization factors on the generalization of a model, as found
by experiments in computer vision (Keskar et al., 2016, Figure 2) (upper left) and low-resource
NMT (from our experiments in Chapter 3). Models with more regularization are in blue.

models are identical. In all cases the Regularized model’s test accuracy increases. However, we

can see different behaviors regarding their train and the test set accuracies: in the upper right

graph, the training accuracy of Regularized underperforms when compared with the training

accuracy of Baseline, and the generalization gap of Regularized is very small, i.e. the accuracy

in the train and test set are very similar. In the lower left graph, the training accuracies of

Baseline and Regularized are much more similar, but the reduction in generalization gap that

Regularized offers is a lot smaller. In the lower right graph, the training accuracies of Baseline

and Regularized are identical, but we still observe an improvement in generalization from

Regularized.

In all of the fourteen models trained in Section 3.8, we did not observe in any case the training

accuracy of the more regularized model ever surpassing the training accuracy of the baseline

model. The improvements provided by the Regularized models is not due to a reduction of

overfitting with respect to the Baseline ones, since no over-training curve can be observed,

and both training and testing accuracy continue improving throughout its training. Instead,

as we argue in Chapter 3 this is due to this more aggressive regularization implicitly guiding

the weights towards flatter regions of the loss landscape.
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As a conclusion, we can see that the impact of regularization on low-resource NMT is not fully

understood, as discussed in Section 2.5, but explaining it only as a reduction in overfitting does

not seem sufficient. At the same time, differences between training and testing performance

(such as the generalization gap) also seem unstable and hard to predict, as shown in the

disparity across our three models in Figure 1.4. Results from computer vision explaining it in

terms of flat-optimization cannot be accepted in a straightforward way for NMT, due to the

big variability on results between datasets.

1.2 Research Questions

Both machine translation and text generation experience the problem of data shortage: in

order to function properly and achieve high, usable levels of quality, lots of data are needed to

train these neural networks. In a best-case scenario, if data is available, proper training requires

long training times, which can be unaffordable. In a worst-case scenario, data shortage blocks

the development of systems for most practitioners, particularly for some languages or domains.

Low-resource settings are those where the amount of data available to train the systems is small.

Hence, training with such data requires careful tuning of the training process, sometimes also

with particularly tailored techniques, like back-translation, in order to achieve satisfactory

results. In a low-resource setting, maximizing a model’s generalization abilities is harder to do,

because the model does not have as good a frame of reference to judge whether a pattern in

the training data is an artifact of the small dataset, that would not be prominent anymore if it

were trained on more data, or whether it is a pattern in a language, or between two languages,

that should hold in other datasets as well (in other words, that is generalizable).

The main goal of our thesis is to build neural models by training them to identify patterns

in the training data which are generalizable to other pieces of data. We do not want our

model to learn all patterns occurring on the training set, since then it will perform poorly on

test sets where these patterns are not found. How, then, can we increase the robustness of

encoder-decoder models when trained in low-resource settings for machine translation and

text generation? We break down this goal into three main research questions, which we answer

respectively in each part of the thesis.

1. What role does regularization through hyper-parameters play in low-resource NMT?

Since some hyper-parameters such as batch size or learning rate can act as regularization

factors, their impact, both individually and when combined, must be understood in

low-resource settings. In particular, their effect on flat vs. sharp optimization also affects

the generalization abilities of low-resource NMT models. This has been studied with

some detail in computer vision, but much less in NLP, and minimally in low-resource

NMT.

2. How to make use of auxiliary data for low-resource NMT? Data in the form of monolin-

gual data, synthetic data, or additional languages can help the training of low-resource

8
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NMT systems. We put aside approaches that use several models (transfer learning) due

to considerations of efficiency and simplicity. Approaches that focus on the exploitation

of such data within one model include multitasking, multilingual training, and back-

translation. Although well-performing low-resource systems often make use of these

techniques, the individual impact of each task or dataset is still not well understood.

This calls for a study of the optimal use of auxiliary data, particularly when it features

different levels of complexity, or when many different datasets are available, such as in

multilingual NMT.

3. How to improve form and textual diversity for text generation with LMs in low-

resource settings? When training in a low-resource setting, it is not only sequence-to-

sequence models on tasks like MT that encounter the problems presented above: LMs

face the same problems. In particular, when used for text generation, autoregressive

LMs trained or fine-tuned with small amounts of data easily overfit to their training

data, and they require of some form of control over their generation in order to be able

to properly output a variety of forms and domains.

1.3 Contributions and Outline of the Thesis

When we train an MT system in a low-resource setting, we run intro problems that call for

special solutions that we do not have as much need when we have plenty of available training

data. Intuitively, these problems mainly arise from the fact that our model does not have

enough data to differentiate between patterns specific to the training sample and those that

will allow it to generalize to unseen data.

In this thesis, we propose three regularization solutions to answer the research questions

regarding the difficulties of low-resource training: i) in Part I, we show how to use regularization

factors to indirectly guide an NMT model to settle on flatter regions of its parameter space,

and propose a method to estimate the neighborhood of the loss landscape of a model; ii) in

Part II, we study the usage of multitasking with denoising tasks or additional languages for

NMT; iii) and in Part III, we demonstrate that we can use synthetic data for LMs for poetry

generation, a very specific text generation task.

In Chapter 3 (Part I) we explore the roles and interactions of the hyper-parameters governing

regularization, and propose a range of values applicable to low-resource neural machine

translation. We demonstrate that default or recommended values for high-resource settings

are not optimal for low-resource ones, and that more aggressive regularization is needed

when resources are scarce, in proportion to their scarcity. We explain our observations by

the generalization abilities of sharp vs. flat basins in the loss landscape of a neural network.

Results for four regularization factors corroborate our claim: batch size, learning rate, dropout

rate, and gradient clipping. Moreover, we show that optimal results are obtained when using

several of these factors, and that our findings generalize across datasets of different sizes and

languages.
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Figure 1.5: Diagram of the thesis. We propose a solution in each of the three parts of the thesis
to the problems that arise from training in a low-resource setting.

In Chapter 4 (Part I) we propose a method to estimate the flatness of the neighborhood of a

point (a model checkpoint) in the parameter space. We randomly perturb the model’s weights

and define some local region around the point by measuring the euclidean distance between

the perturbed weights and the model checkpoint. Then we define several models with linear

interpolation between the original point and the various perturbation to simulate a much

less expensive mapping of the loss landscape around the central point. We propose various

metrics to measure the flatness of this neighborhood. We also propose a method to directly

train a system into flatter regions. This method uses our estimations of the neighborhood of

the loss landscape of a point, and consists of comparing various candidate sets of weights

before updating the model, and choosing one based on its neighborhood’s flatness.

In Chapter 5 (Part II) we propose a simplified pipeline for low-resource and unsupervised MT,

which we compare to the best submissions to the WMT 2021 Shared Task on Unsupervised MT

and Very Low Resource Supervised MT. Training neural MT systems for low-resource language

pairs or in unsupervised settings (i.e. with no parallel data) often involves a large number of

auxiliary systems. These may include parent systems trained on higher-resource pairs and

used for initializing the parameters of child systems, multilingual systems for neighboring

languages, and several stages of systems trained on pseudo-parallel data obtained through

back-translation. Our pipeline only needs two parents, two children, one round of back-
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translation for low-resource directions and two for unsupervised ones and obtains better or

similar scores when compared to more complex alternatives.

In Chapter 6 (Part II) we present the systems submitted by our team from the Institute of ICT

(HEIG-VD / HES-SO) to the Unsupervised MT and Very Low Resource Supervised MT task.

We first study the improvements brought to a baseline system by techniques such as back-

translation and initialization from a parent model. We find that both techniques are beneficial

and suffice to reach performance that compares with more sophisticated systems from the

2020 task. We then present the application of this system to the 2021 task for low-resource

supervised Upper Sorbian (HSB) to German translation, in both directions. Finally, we present

a contrastive system for HSB-DE in both directions, and for unsupervised German to Lower

Sorbian (DSB) translation, which uses multi-task training with various training schedules to

improve over the baseline.

In Chapter 7 (Part II) we design and present a self-paced multilingual translation system.

In particular, we design a many-to-one system that balances the training on tasks (which

are translations into English) based on the smoothed per-task variation of training weights,

measured with Kullback-Leibler divergence. Our objective is to not over-train on tasks in which

the model is already competent, and allocate more training time to tasks in which it is not. We

observe that training on simple, uniformly balanced, multilingual updates performs better

than more sophisticated monolingual updates. We also note that the model’s weight variation

in the training set, as measured by Kullback-Leibler divergence, is not a good competence

measure, at least when dealing with small datasets. This is because with smaller datasets,

confirming that a model has been well-trained on the training set does not entail a good

generalization ability.

In Chapter 8 (Part II) we present additional results, which complement those in Chapter 7

(Part II), on the impact of increased regularization and many-to-many training for low-resource

translation. We observe that very low-resource translation benefits greatly from a combination

of the two, when translating to up to three languages. Moreover, better-resourced translation

tasks (but still low-resource ones) benefit less from added target languages. With this combi-

nation, we observe improvements of around 8 BLEU points for a lower-resourced pair and 5

for a more resourced one, when compared to a less regularized unidirectional baseline.

In Chapter 9 (Part III) we describe a system for interactive poem generation, which combines

neural language models (LMs) for poem generation with explicit constraints that can be set

by users on form, topic, emotion, and rhyming scheme. LMs cannot learn such constraints

from the data, which is scarce with respect to their needs even for a well-resourced language

such as French. We propose a method to generate verses and stanzas by combining LMs with

rule-based algorithms, and compare several approaches for adjusting the words of a poem to

a desired combination of topics or emotions. An approach to automatic rhyme setting using a

phonetic dictionary is proposed as well. Our system has been demonstrated at public events,

and log analysis shows that users found it engaging.
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In Chapter 10 (Part III) we propose a novel solution for learning to rhyme, which is required for

poem generation with language models, based on synthetic data generated with a rule-based

rhyming algorithm. The algorithm and an evaluation metric use a phonetic dictionary and

the definitions of perfect and assonant rhymes. We fine-tune a GPT-2 English model with

124M parameters on 142 MB of natural poems and find that this model generates consecutive

rhymes infrequently (11%). We then fine-tune the model on 6 MB of synthetic quatrains

with consecutive rhymes and obtain nearly 60% of rhyming lines in samples generated by

the model. Alternating rhymes (ABAB) are more difficult to model because of longer-range

dependencies, but they are still learnable from synthetic data, reaching 45% of rhyming lines

in generated samples.

1.4 Chapters of the Thesis as Publications

Work on this thesis has resulted in published articles in peer-reviewed conferences. We

now present each of the chapters that correspond to a published piece, plus my specific

contribution in case of collaborative work.

Chapter 3 “Regularization Factors and Flat Minima":

• Àlex R. Atrio and Andrei Popescu-Belis. 2021. Small Batch Sizes Improve Training of

Low-Resource Neural MT. In Proceedings of the 18th International Conference on Natural

Language Processing (ICON 2021), pages 18–24, National Institute of Technology Silchar,

Silchar, India.

• Àlex R. Atrio and Andrei Popescu-Belis. 2022. On the Interaction of Regularization

Factors in Low-resource Neural Machine Translation. In Proceedings of the 23rd Annual

Conference of the European Association for Machine Translation (EAMT 2022), pages

111–120, Ghent, Belgium.

Chapter 5 “A Simplified Training Pipeline for Low-Resource and Unsupervised MT". I was

responsible for the design of the entire system, with help from the second author for the

implementation:

• Àlex R. Atrio, Alexis Allemann, Ljiljana Dolamic and Andrei Popescu-Belis. 2023. A

Simplified Training Pipeline for Low-Resource and Unsupervised Machine Translation.

In Proceedings of the Sixth Workshop on Technologies for Machine Translation of Low-

Resource Languages (LoResMT 2023), Dubrovnik, Croatia.

Chapter 6 “Fixed-Scheduled Multitasking". I was responsible for the design of the baseline

system and the design and implementation of the contrastive system:

• Àlex R. Atrio, Gabriel Luthier, Axel Fahy, Giorgos Vernikos, Andrei Popescu-Belis, and

Ljiljana Dolamic. 2021. The IICT-Yverdon System for the WMT 2021 Unsupervised MT
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and Very Low Resource Supervised MT Task. In Proceedings of the Sixth Conference on

Machine Translation (WMT 2021), pages 973–981, Online.

Chapter 7 “Can the Variation of Model Weights be used as a Criterion for Self-Paced Mul-

tilingual NMT?". I was responsible for the design of the self-paced algorithm, which was

implemented by the second author:

• Àlex R. Atrio, Alexis Allemann, and Andrei Popescu-Belis. 2023. Can the Variation of

Model Weights be used as a Criterion for Self-Paced Multilingual NMT? Submitted to

ACL Rolling Review (4 pages).

Chapter 9 “Constraining at Inference-Time for Targeted Generation". I designed and im-

plemented the first generation stage (using a general LM) and the module applying the

rhyming scheme at the last stage of the process:

• Andrei Popescu-Belis, Àlex R. Atrio, Valentin Minder, Aris Xanthos, Gabriel Luthier, Si-

mon Mattei, and Antonio Rodriguez. 2022. Constrained Language Models for Interactive

Poem Generation. In Proceedings of the Thirteenth Language Resources and Evaluation

Conference (LREC 2022), pages 3519–3529, Marseille, France.

Chapter 10 “Domain-Specific Data Augmentation". I contributed to the design of the

experiment and the design and implementation of an automatic measure of rhyming, while

the implementation of the learning experiment was done by three EPFL MSc students (3rd,

4th and 5th authors):

• Andrei Popescu-Belis, Àlex R. Atrio, Bastien Bernath, Étienne Boisson, Xavier Theimer-

Liemard, Teo Ferrari and Giorgos Vernikos. 2023. GPoeT: a Language Model Trained for

Rhyme Generation on Synthetic Data. In Proceedings of the 7th Joint SIGHUM Workshop

on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and

Literature (LaTeCH-CLfL 2023), Dubrovnik, Croatia.

During this thesis I have participated in the following projects:

1. “On-demand Knowledge for Document-level Machine Translation" (DOMAT), funded

by the Swiss National Science Foundation, grant n. 175693 (2019-2023).

2. FamilyMT, funded by Armasuisse (2020-2021).

3. UNISUB, funded by Armasuisse (2022-2023).

4. Agora project “Digital Lyric", funded by the Swiss National Science Foundation, (grant

n. 184330, Agora Optimus prize) (2019-2020).
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2 Background

In this chapter we present background concepts that are relevant to this thesis, either from

general machine learning or specifically from NMT. Section 2.1 covers various general concepts

from machine learning, from the theoretical aspects of regularization and generalization, to

more applied ones such as techniques like dropout, or the function of the learning rate. In

Section 2.3 we introduce concepts specific to NMT and Language Models, mainly techniques

commonly used in a low-resource setting, relevant for Parts II and III. Section 2.4 discusses

theories regarding the parameter space, sometimes called the loss landscape, which we refer to

in Part I. In Section 2.5 we discuss recent studies on the effects of regularization on NMT, which

we also refer to in Part I. Finally, in Section 2.6 we cover related work on poetry generation,

both constrained and unconstrained, relevant to Part III.

2.1 Fundamentals of Machine Learning

In this section we present three core, theoretically important concepts on machine learning:

regularization, capacity, and generalization.

2.1.1 Definitions of Regularization

There is no single theoretical definition of regularization: Goodfellow et al. (2016, page 224)

view it as a collection of methods “intended to reduce generalization error but not training

error.” Géron (2017, pages 57, 406) defines it as “constraining” to make a model simpler and

reduce overfitting, thus improving generalization ability. Schmidhuber (2015, page 89) simply

refers to regularization as “searching for solution-computing but simple, low-complexity”

models. Overall, regularization is commonly understood in terms of reducing overfitting, as

well as reducing model complexity (Section 2.1.2), improving generalization (Section 2.1.3),

(which is related to data diversity, see Section 2.3.4).

Recent NMT models are based on the Transformer (Vaswani et al., 2017), a deep encoder-

decoder neural network which is quite sensitive to the hyper-parameters governing regu-
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larization factors during training. In the absence of a general treatment of regularization

factors, most studies combine them empirically and search only a very small part of the

hyper-parameter space.

Peng et al. (2015) study regularization techniques independently as well as in combination,

although without a common theoretical underpinning. On two NLP tasks, they observe that

using two factors – namely, L2 norm of weights and embeddings, and dropout – is better than

using them independently. Moreover, when using both factors, if one is set to its optimal value

obtained when used alone, the other one must be lowered, which means that the optimal

values obtained individually are not optimal when used together.

Kukačka et al. (2017) provide a taxonomy of regularization factors, but continue to define

them simply as techniques to improve generalization. Similarly, in their survey, Moradi

et al. (2020) consider as regularization any “component of the learning process or prediction

procedure that is added to alleviate data shortage,” but do not provide a common measure of

regularization or consider the combination of factors.

2.1.2 Capacity and Encoding Space

Regularization is related to the complexity of a network: a generalizable model tends to be a

large model with good regularization, instead of a more tight-fitting one (Goodfellow et al.,

2016, page 225). Likewise, regarding overfitting, a classic consideration is that an over-capacity

model (w.r.t. the complexity of the task) is more likely to overfit when not properly regularized

(Goodfellow et al., 2016, page 110). A model with sub-optimal capacity will underfit, and as

capacity is increased, assuming no additional constraints, training error will start to go down,

but eventually generalization error will increase. Super-optimal capacity means the size of

the gap between the training and test errors increases while decreasing training error, thus

overfitting (Goodfellow et al., 2016, page 113).

The complexity of a model can be presented as representational capacity when considering the

family of functions “the learning algorithm can choose from when varying the parameters in

order to reduce a training objective", but since the final training function is likely not optimal,

the network’s effective capacity is smaller than its representational capacity (Goodfellow et al.,

2016, 111). Regularization, such as early stopping, can be considered as constraining the

effective capacity of a model which has much larger representational capacity (Goodfellow

et al., 2016, 243).

2.1.3 Generalization

Bias error is the measure of the expected deviation between the predictions of a model and

the true value of the training function. Formally, the bias of a model θ̂m is

bias(θ̂m) = E(θ̂m)−θ,
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where θ is the true data-generating function (Goodfellow et al., 2016, Eq. 5.20).

Variance error is the deviation that can be caused between different models depending on par-

ticular sampling of the training data (Goodfellow et al., 2016, page 127). Géron (2017, page 196)

defines generalization error as the sum of bias error, variance error, and noise or irreducible

error. Bias error means the model likely underfits the training data, and excessive variance

error makes the model overfit, with both of them limiting generalization capacity. Additionally,

a model’s complexity usually increases its variance and reduces its bias. Regularization, then,

can also be understood as a trade-off between bias and variance (Goodfellow et al., 2016, page

225).

In order to diminish the generalization gap, Lin et al. (2020) proposed to use an efficient

method known as extragradient (Korpelevich, 1976), consisting of computing the gradient of

a local extrapolated point in the parameter space for distributed training, which is different

from the actual point from which the model will be updated, essentially performing a look

ahead step. This results in a smoothing of the loss landscape, which stabilizes the trajectory of

training over the loss landscape while avoiding sharp minima, that is, points in the parameter

space where the loss changes suddenly in their immediate neighborhood (see Section 2.4).

The connection between generalization and memorization is also related to the generalization

gap. For instance, when training a network on a classification task with random labels, the

model is able to learn the training set: Zhang et al. (2021a) show that standard convolutional

networks (CNNs) have the necessary effective capacity to memorize random labels.

Chatterjee and Zielinski (2022) study the following question: why are neural networks able to

generalize when they have enough capacity to memorize the data? They hypothesize that this

is related to the similarity between training examples. If learning different examples results

in moving in different directions in the parameter space, learning an average of them will

give more importance to shared directions among examples. The more commonality there

is for the gradient on each individual example, the larger the average gradient will be, and

therefore the updates of the weights will be more significant as examples are more similar.

In the opposite case, if a group of examples have no common direction in their gradients,

training on their average will result in memorization.

Over-parameterized networks, the standard in modern deep learning, are able to generalize

well, despite a seeming unbalance between their bias and variance, and despite having the

necessary capacity to memorize the training data. An explanation for this has been given in

the form of “deep double descent” (Belkin et al., 2019): as model capacity increases, the test

error initially decreases, and then increases as the model overfits (as expected in a classical

setting), but then starts to decrease again after a point of over-parameterization of the model.

This point is called an interpolation threshold, i.e. a point in the representational capacity of a

model where the model can memorize the training data. This point determines an over- or

under-parameterized model, and the former can still generalize well, even though it could

simply memorize the data. The authors observed this behavior on a variety of computer vision
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tasks, without experimenting with Transformer-based models.

A similar behavior was observed by Power et al. (2022), which the authors call “grokking",

where long after the model has overfit, test error is very high, and no changes in train or test

error have occurred, test error suddenly decreases until achieving very high generalization

scores.1 They show that dataset size is a relevant factor to explain why over-parameterized

networks are able to generalize well, specifically by observing that models require larger

amounts of optimization to generalize when training on smaller datasets, past the point of

overfitting. Davies et al. (2023) provide a potentially unifying treatment of grokking and deep

double descent, although in other papers they are still treated as separate concepts, despite

their relatedness in terms of generalization, capacity, and overfitting.

In her recent thesis, Karimi Mahabadi (2023) explores generalization for pre-trained language

models when fine-tuned for specific NLP tasks, such as natural language understanding

or entailment, although not MT. She proposes to remove biases from the training data by

leveraging these biases with bias-only models, which can improve generalization of a base

model. The bias-only models are used during the training of the base model to adjust the base

model’s loss by weighting down the biased samples and focusing training on harder examples,

a kind of implicit scheduling (Karimi Mahabadi et al., 2020). Additionally, she proposes to use

regularization by compressing the encoder’s sentence representation and deleting irrelevant

features when fine-tuning on low-resource target tasks (Karimi Mahabadi et al., 2021a). She

also uses multitasking to increase generalization abilities, in particular during the fine-tuning

regime, by defining adapter hypernetworks that are shared across different tasks, trained to

generate task and layer-specific adapter parameters (Karimi Mahabadi et al., 2021b). Although

research on generalization for NLP is active, further research on generalization for MT on

low-resource settings still needs to be done.

Li et al. (2020) showed that extremely over-parameterized models can be more computationally-

efficient than smaller models, because they can converge earlier. Additionally, vastly over-

parameterized models are more robust to compression than smaller ones, so they recommend

to prune the larger models to a smaller model instead of training a smaller model from scratch.

Until now, we have shown how the relation between regularization, capacity, and generaliza-

tion is not straightforward. Classical treatments like trade-off between bias and variance to

explain overfitting or lack of generalization, for instance, are not sufficient in modern deep

learning treatments. More recent approaches focus on characteristics of the data (Chatterjee

and Zielinski, 2022), training time (Power et al., 2022), over-parameterization (Belkin et al.,

2019; Li et al., 2020), and recent interest specifically on NLP (Hupkes et al., 2022; Karimi Ma-

habadi, 2023).

The amount of data available to train also is an important factor for determining generalization.

Bottou and Bousquet (2011) propose a qualitative difference between small-scale and large-

1“to grok" means to understand something extremely well.
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scale training, due to computational bottlenecks, where the latter depends on the properties

of the training function, and the computational properties of the training algorithm (SGD,

in their case). They also note that faster convergence is not necessarily desirable, since it

may lead to overfitting. We continue our treatment of regularization, specifically for NMT, in

Sections 2.4 and 2.5, where we focus on the shape of the parameter space and the impact of

regularization factors, respectively.

2.2 Regularization Factors

In this section we present four common factors in various applications of deep learning that

affect regularization, which are also common in NMT: batch size, learning rate, dropout, and

gradient clipping, to which we later refer in Section 2.5 and the entire Part I.

2.2.1 Batch Size in Minibatch Gradient Descent

Optimizers for machine learning typically compute each weight update based on an expected

value of the cost function, using only a subset of the terms of the full cost function. Instead of

evaluating the model on every example in the dataset, these expectations are computed by

randomly sampling a small number of examples, which are then averaged. Minibatch gradient

descent (GD) uses more than one sample but not the whole training set, stochastic GD uses a

single sample at a time, and deterministic (or batch) GD uses the entire training set, processed

simultaneously in a single batch.

The effects that batch learning can have on training are presented in Section 2.4 through

a theory on the shape of the parameter space, and in Section 2.5 we explain its role as a

regularization factor specifically regarding NMT. In the field of computer vision observations

have been made on the effect of batch learning. For instance, in a model trained for image

classification on ImageNet Goyal et al. (2017), large batch sizes cause a loss of accuracy in the

trained model, although this can be addressed by linearly scaling the learning rate as a function

of the minibatch size. Other adaptive strategies have been adopted, but by varying the batch

size dynamically, instead of the learning rate (Devarakonda et al., 2017). Golmant et al. (2018)

observed that across many tasks, domains, and architectures in computer vision, increasing

the batch size beyond a certain point may not benefit the quality of the model. Increasing the

batch size, in some occasions, does not result in less training time until convergence, and this

batch size limit tends to be well below the standard capacity of common GPUs. Formal ways

of optimizing batch size have also been proposed, for instance by measuring gradient noise

(McCandlish et al., 2018; Smith et al., 2017).
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2.2.2 Learning Rate

The learning rate is a positive scalar that controls how much the weights are updated. A

commonly used dynamic learning schedule is ‘noam’ (Vaswani et al., 2017, Eq. 3). During the

initial steps, known as warmup, the learning rate increases linearly from zero, reaching its

highest value at the last warmup step w . Afterwards, it decays proportionally to the inverse

square root of the step number s. At each step, this value is multiplied by a factor based on

the output size of the embedding layer dmodel (512 in Transformer-Base). Moreover, in some

frameworks such as OpenNMT-py, an additional scaling factor (sf ) is included. The learning

rate lr at each step s is defined as follows:

lr(s) = sf ·d−0.5
model ·min

(
s−0.5, s ·w−1.5) (2.1)

Many different constant and dynamic learning rates are used, sometimes with or without

initial warmup steps. Some dynamic learning rates can be cyclical, instead of decaying, or

adaptive. For instance, Baydin et al. (2018) propose a dynamically-updated learning rate that

leverages the model’s gradient for continuous updates. They show that their method reduces

notably the importance of selecting an optimal initial learning rate. The learning rate is a

regularization factor, because it can alter the optimization of the model during training, as we

develop in Sections 2.4 and 2.5.

2.2.3 Dropout

Dropout (Srivastava et al., 2014) is a regularization factor consisting of a masking noise: a

probability that a unit is turned off during training. It is usually applied on the output of

each hidden layer, including the output of the attention layers, but not on the embedding

layers, so no loss of input or output data occurs. This encourages each hidden unit to perform

well regardless of other units, discouraging co-adaptation of units (Goodfellow et al., 2016,

Chapter 7.12).

Although dropout is usually applied randomly, Guided Dropout (Keshari et al., 2019) is a

variation where individual units are dropped based on their importance. In particular, very

active units are dropped more often, so that less active units are less likely to remain co-

adapted. This importance value is a learned parameter, per-unit, based on comparing a unit

with others from its own layer.

R-Drop (Liang et al., 2021) is a training strategy to force the network’s output to be more

consistent when normal dropout is applied. This is achieved by introducing a regularization

term to standard negative log-likelihood loss that measures the bidirectional Kullback-Leibler

divergence between two different runs of the same input with dropout.

AutoDropout (Pham and Le, 2021) sets different adaptive dropout patterns per layer based on

a trained controller model, which learns from the target model’s validation performance.
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2.2.4 Gradient Clipping

Gradient clipping (Mikolov, 2012) consists of renormalizing the gradient g to a threshold v

if the gradient exceeds the threshold. We consider it another factor for regularization, since

limiting the norm of the gradient places a constraint on the effective capacity of the model.

The norm of the gradient is clipped so that if ||g || > v , then g ← g v/||g || (same direction but

bounded norm). Therefore, the smaller the value of v , the more aggressively the gradients are

clipped (Goodfellow et al., 2016, Chapter 10.11.1). The larger the difference between gradient

g and threshold v , the more different the weight update is with the clipped gradients than it

would be normally, and therefore less accurate to the training data of the step.

2.3 Neural Machine Translation and Language Models

In the previous section we introduced key concepts in machine learning, theoretically im-

portant for our research. In this section we present specific concepts on NLP directly tied to

our research, in order to explain the main techniques used in low-resource NMT. First, we

introduce the architecture used in most NMT and in this thesis, the Transformer, as well as the

state of the art regarding Language Models, which we use in Part III for text generation. Then,

we describe the main techniques used specifically in low-resource NMT: data augmentation,

transfer learning, and multitask training.

2.3.1 Transformer Models

In the early years of NMT, Recurrent Neural Networks (RNNs) were the most common used

architectures, although others like Convolutional Neural Networks (CNNs) were used as

well. RNNs were used largely due to their ability to model long-term dependencies instead

of more limited context windows. More specifically, Long Short-Term Memory networks

(LSTMs) (Sutskever et al., 2014) became popular, as well as Gated Recurrent Unit networks

(Cho et al., 2014). A particularly significant improvement on long-term dependency modeling

occurred with the introduction of attention (Bahdanau et al., 2015). Although RNNs initially

underperformed when trained with small amounts of data (Koehn and Knowles, 2017), it has

been shown that with careful tuning they can perform well in a low-resource setting (Sennrich

and Zhang, 2019).

The Transformer model (Vaswani et al., 2017) shows that attention by itself is enough, without

recurrence being necessary, in order to achieve state-of-the-art performance on translation.

Transformer-based networks have became the norm in other areas of natural language pro-

cessing. Long-term dependencies are also modeled better, since the Transformer does not

process the input data sequentially, but as a whole, and instead introduces a positional em-

bedding to represent sequential information, which avoids the vanishing gradient problem

that plagued recurrent networks. Transformer-based systems have been shown to be able to

train with very small amounts of data, although careful hyper-parameter tuning is necessary

20



2.3 Neural Machine Translation and Language Models

(Araabi and Monz, 2020). Although variations of the original Transformer have been proposed,

such as for tackling multiple or large documents, like Longformer (Beltagy et al., 2020) or

Hierarchical Transformer (Liu and Lapata, 2019), the standard Transformer (Vaswani et al.,

2017) remains the most common architecture in use to date.

Decoding is usually performed using beam search (Graves, 2012; Sutskever et al., 2014), where

the predicted sentence is generated token-by-token, left-to-right, by maximizing the con-

ditional probability while keeping a number of candidates at each step with the highest

probability (this beam size is usually five). The final translation is the candidate (or beam)

with the highest log-probability normalized by its size.

2.3.2 Language Models

Any model that assigns or defines a probability over a sequence of tokens (like words) is a

language model (Jurafsky and Martin 2023, p.31; Goodfellow et al. 2016, p.456). Specifically, a

neural language model is a neural network that learns an output probability distribution over

a vocabulary from an input sequence of tokens.

In recent years, a shift has occurred where extensive quantities of unlabeled data are now es-

sential for effective training. This data is incorporated into the network through the utilization

of simple tasks. Stand-alone language models can be useful, for instance as text generators,

as shown in the Section 2.6. However, they can be useful also for various transfer learning

approaches, in particular for initializing the weights of NMT systems. In Table 2.1 we present

a selection of recent LMs that are particularly relevant to this thesis, either due to their use for

text generation in Part III, or due to their multitask training being relevant to Part II.

2.3.3 Tokenization

Input sequences for NMT are not split into individual words before being fed into the neural

system. This is done to avoid dealing with an excessively large vocabulary, as even a small

corpus can contain tens of thousands of different word types. Splitting the sequences into

words would lead to encountering out-of-vocabulary words more frequently. Instead, the

standard method to address these issues is to tokenize the data into subwords: units of variable

length, including entire words, fragments of words, and characters. Various algorithms have

been used successfully, such as BPE (Sennrich et al., 2016b), WordPiece (Wu et al., 2016), or

Unigram (Kudo and Richardson, 2018).

These methods all rely on a pre-tokenization step: the raw text is split into tokens (which

usually are words, with possible exceptions like “Mr.”), which is typically done with a rule-

based model. Then, a subword vocabulary is assembled by combining individual characters

from the raw text. Additionally, when using a subword vocabulary to tokenize raw text,

removing some subword units has been shown to make the model representations more

robust (Provilkov et al., 2020), as well as serving as a form of data augmentation, by performing
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Model Description

BERT
(Devlin et al.,
2019)

BERT consists of an encoder-only Transformer trained on a primary masking
task, where tokens of the input sequence are substituted by a [MASK] token (12%)
or replaced by another (1.5%), and a secondary next-sentence prediction task.
Some variations have also been introduced such as RoBERTa (Liu et al., 2019).

MASS
(Song et al.,
2019)

MASS uses a sequence-to-sequence model to reconstruct masked input se-
quences, training both the encoder and decoder during pre-training, both of
them being later successfully used when fine-tuning on downstream tasks.

GPT, GPT-2,
GPT-3
(Radford
et al., 2018,
2019; Brown
et al., 2020)

The models of the GPT family are decoder-only Transformers trained on a causal
language modeling task (predicting the following token given a sequence), which
means that the model does not take advantage of the bidirectionality of systems
like BERT, but improves on standard left-to-right English text generation. The
three GPT models largely consist of a similar training regime but increased
amount of model parameters and training data.

Chat-GPT
by OpenAI2

Chat-GPT is a chatbot application by OpenAI, released in late 2022, consisting of a
language model (GPT-3) fine-tuned through reinforcement learning with human
feedback on a downstream task. Chat-GPT has made an enormous impact in
mainstream media, artistic environments, and even on more specialized research
and technical areas, such as programming.

CTRL
(Keskar et al.,
2019)

CTRL introduces tags (control codes) in the training data that denote domains
(such as Wikipedia, Books, Horror, etc.) and tasks (question and answering,
translation) among others. CTRL is trained on English, German, French and
Spanish, allowing for user prompts in either language, and with combinations
at inference time between language prompts or control codes not seen in the
training data (zero shot). The authors also present a new sampling strategy to
achieve near-greedy decoding, but without the known problem of repetitive
output, by explicitly excluding from the probability calculation the scores from
previously generated tokens.

XLM
(Conneau
and Lample,
2019)

XLM introduces a parallel translation language modeling task, in which source
and target were concatenated in the input, with both being masked, encouraging
the model to learn an alignment between the source and target in order to help
with the unmasking process.

BART
(Lewis et al.,
2020)

BART uses a standard encoder-decoder Transformer, expanding the token mask-
ing task to also sentence permutation, document rotation, token deletion, and
text infilling, and removed the next-sentence prediction task from BERT. This was
also extended to mBART, a massive multilingual system (25 languages) which
included low-resource languages (Liu et al., 2020b).

T5
(Raffel et al.,
2020)

T5 uses a standard encoder-decoder Transformer, and extended the kinds of
tasks used for pre-training to others that would otherwise require changes in the
network’s architecture, such as coreference resolution or sentiment analysis, by
presenting them all as text-to-text tasks.

Table 2.1: A selection of LMs from recent years, relevant to this thesis.

22



2.3 Neural Machine Translation and Language Models

several rounds and then combining the results.

SentencePiece (Kudo and Richardson, 2018) is an exception since it forgoes pre-tokenization,

which is useful for languages with no whitespaces, or when a trained pre-tokenizer is not

available. Although other forms of subword tokenization have been studied, such as byte-

based (Costa-jussà et al., 2017), character-based (Libovický et al., 2022), or Huffman-coding-

based (Wolleb et al., 2023), they are not as common as the above ones.

Although Transformer-based architectures have also been adapted for tokenization into

smaller units, such as bytes (Xue et al., 2022) or characters (Tay et al., 2021), the original

Transformer with subword tokenization remains the state of the art.

2.3.4 Data Augmentation

The addition of synthetic data and forms of data augmentation can also be considered a type

of regularization (Goodfellow et al., 2016, page 253).

Khayrallah and Koehn (2018) compare how different artificial noises in the data degrade

performance for NMT, with a recurrent neural network. They show that for some sources

of noise, even a small amount of noise may significantly lower scores. This shows that the

regularization benefits provided by noise in the data need to be carefully managed not to

produce negative results. Paraphrasing can be used as a data augmentation technique with

an authentic parallel corpus by simply training a source→target system, and generating

translations of the source side. These translations are paired with the authentic target to

assemble a paraphrasing dataset. Khayrallah et al. (2020) showed that this generation can be

improved with respect to standard beam-search, greedy, or sampling decoding, by trying to

approximate the full space of possible translations by sampling a paraphrase of the reference

sentence from a paraphraser model and training the MT model to predict the paraphraser’s

distribution over possible tokens.

Back-translation is another form of data augmentation, particularly common in low-resource

NMT. It consists in automatically translating monolingual data from the target language, in

order to create a synthetic parallel corpus which can be used for training (Sennrich et al.,

2016a). Edunov et al. (2018) showed that the benefits of back-translated data depend on the

decoding algorithms used to generate it, and that beam search is not the best-performing

option unless the amount of data to back-translate is small. This, however, can be mitigated

by differentiating authentic and synthetic data with tags (Caswell et al., 2019). This process

can also be performed iteratively, as shown by Hoang et al. (2018), with either the same model

generating initial back-translated data, improving its performance, and re-generating the data,

or by training a new model for each round of back-translation, which improves the quality of

the synthetic data. Iterative back-translation for low-resource translation has been shown to

offer diminishing returns after approximately two rounds (Haddow et al., 2022).

Morphology-based tasks, such as re-inflection after lemmatization, can also be used in addi-
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tion to the translation task to improve performance on some languages (Dhar et al., 2022). A

simple copying task may also be used as an auxiliary task, sometimes even achieving com-

parable results with back-translation, albeit at a much smaller expense (Burlot and Yvon,

2018).

2.3.5 Transfer Learning for Low-Resource and Unsupervised NMT

Transfer learning, as well as data augmentation, is a common technique in low-resource NMT.

The lack of training data can be mitigated by leveraging models that were trained with more

easily available data. This means training a model with data from a different domain than the

target one, or, the case in this thesis, from other pairs of languages, and then fine-tuning (by

using the already trained weights) into the target languages. More specifically, transfer learning

consists in training a model on a high-resource pair (parent) that initializes a model trained on

a lower-resource one (child). Initially, Zoph et al. (2016) kept the same target language between

parent and child. Kocmi and Bojar (2018), however, showed that the identity or relatedness of

the target languages is not essential, and that all of the weights of the child systems can be

initialized with those of the parent model without changing the training routine.

Models that have been trained without child-specific subword vocabulary can also be used for

transfer learning. Kocmi and Bojar (2020) showed that transforming the parent vocabulary

into the child vocabulary can significantly improve training time when fine-tuning. This is

done by keeping the shared tokens between the two vocabularies, and substituting the tokens

in the parent vocabulary if they do not appear in the child vocabulary with the most common

tokens in the child vocabulary.

Artetxe et al. (2020b) proposed that the learned weights from a parent model can be leveraged

for fine-tuning by freezing them, and training the model on a child dataset (with the same

masked language model objective) with a new embedding layer.

More recently, Gogoulou et al. (2022) showed that a direct transfer where the entire model is

fine-tuned on child data can still be successfully done even if no child vocabulary is present in

pre-training, simply by switching the parent and child vocabularies in the model, under the

assumption that the ordering by token frequency of both vocabularies will mean that the i th

child token is initialized with the i th parent token, which may play a similar role.

When large monolingual corpora are available, fully unsupervised NMT can be achieved

by using masked language modeling, denoising, or translation language modeling (Lample

et al., 2017, 2018; Conneau and Lample, 2019). This results in cross-lingual language models

(Conneau and Lample, 2019), which can further be trained on back-translated data. Such sys-

tems perform best when jointly trained on very large monolingual datasets and when a small

amount of parallel data is available (Song et al., 2019; Liu et al., 2020b). Baziotis et al. (2021)

compare various pre-training objectives for unsupervised translation: masking, shuffling,

word-replacement based on context. In (semi-) supervised NMT, varying the pre-training
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objective leads to surprisingly small differences in the fine-tuned performance, unsupervised

NMT is much more sensitive to it. When starting from pre-trained models the difference

shrinks even further. In both cases, shuffle produces the worst results.

2.3.6 Multitasking, Adaptive Scheduling and Curriculum Learning

Multitasking (Caruana, 1993) on low-resource NMT consists in training on additional tasks,

other than the target translation task. These additional tasks can use other kinds of data,

such as monolingual data or parallel data between other languages. The training between

the different additional tasks and the target translation task is performed by the same model,

which distinguishes multitasking from transfer learning more generally.

Multitasking can provide an improvement during training, because training in one of the

auxiliary tasks may help with the main task, and these auxiliary tasks can provide regularization

so that the model does not overfit to the main task.

With a standard single-encoder and single-decoder Transformer-based model, it is possible

to train on several tasks at the same time by tagging each of them with a unique tag, usually

prepended to each sample. Alternatively, however, it may be beneficial to introduce them in

the training regime following some schedule. Curriculum learning (Bengio et al., 2009) is a

type of schedule in which the order of tasks is determined based on their complexity.

Multitasking has been proven to benefit many NLP tasks (Raffel et al., 2020). Similarly to data

augmentation, multitasking can improve generalization by pooling the examples of several

tasks. These examples can be seen as soft constraints imposed on the parameters (Goodfellow

et al., 2016, page 258).

Additional languages (multilinguality) can also serve as multitasking. A common approach

for low-resource translation is to develop massive multilingual models, that translate many-

to-many languages, leveraging better-resourced pairs. Aharoni et al. (2019) translate up to

100 languages with one model, and observe improvements in low-resource languages (see

Section 7.2 for more recent work on multilingual and adaptive NMT.).

In Section 6.2 we present additional related work, specifically on multitask and adaptive NMT,

and curriculum learning. In Section 7.2 we discuss relevant work, specifically on multilingual

NMT.

2.4 Topography of the Weight Space

The generalization gap, defined as the difference between the training and the testing error

(see Section 2.1.3), has been explained using the shape of the loss landscape. This shape (or

topography) can be defined as the variation rate of the cost function around a given point

of the parameter space. For instance, smaller variations of the cost function imply a flatter
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landscape, and vice-versa. In this section we will review studies that argue that models that

are optimized in flatter regions of the parameter space tend to generalize better. We will use

this hypothesis to explain our results in Chapter 3, and we will further study it in Chapter 4.

More specifically, it is argued that less accurate gradients give models a higher probability of

finding these flatter regions, because these regions require less precision to be described.

Since regularization factors affect the accuracy of the gradient with respect to the model’s

training data, these factors may have an effect on the topography of the loss landscape of

the trained model. For instance, Goodfellow et al. (2016, Chapter 8.1.3) explain that models

trained with smaller batch sizes tend to optimize into low-precision regions because they use

noisier gradient estimates than when training with larger batch sizes.

If we want to train our models so that their weights are set in flat regions, we may think of two

possible ways, which we will present in the following two subsections: the first option is to

approach it indirectly, making use of theoretical considerations. For instance, if optimizing

into flat regions requires less precision than optimizing into sharp points, a reduction of the

gradient accuracy by lowering the batch size will increase the likelihood for the model’s weights

to set into flatter regions. Alternatively, we may approach it directly, by measuring during

training the neighborhood around a point in the parameter space, computing its flatness,

and updating the model accordingly. Since this direct approach would mean to evaluate an

infinite amount of points in order to measure the flatness around a central point, this second

approach must rely on some kind of estimation of the true parameter space.

2.4.1 Indirectly Training into Flat Regions

Hochreiter and Schmidhuber (1994) propose an algorithm (Flat Minimum Search) for training

low-complexity networks to find flatter regions, which they define as a connected region where

weights have small losses. Flat minima, then, would correspond to simple models and low

expected overfitting. This approach means that models whose parameters are optimal within

a flat region do generalize better because they are lower-complexity than models optimized

around sharper regions (Schmidhuber, 2015).

Keskar et al. (2016) study fully connected networks and CNNs on computer vision tasks. They

show that training with small batch sizes tends to lead to systems that generalize better than

when training with larger ones. They explain this by their more noisy gradient estimation,

which makes them more likely to optimize into flatter regions of the parameter space. In

order to simulate the parameter space they compare linear and curved path methods from

Goodfellow et al. (2015), consisting in evaluating the loss of a model θ̂ for various values of α

between two true points θ0 and θ1 as: θ̂ = (1−α)θ0 +αθ1. They then propose a measure for

sharpness to approximate the sensitivity of the training function, by looking at the highest

training loss in a small neighborhood around a point. They also show that small batch sizes

allow for an exploration phase, where their sharpness and training loss are similar to those of

larger batch sizes, but as training continues they guide optimization into flatter regions.
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Following the hypothesis that noisier gradients improve the chance of a model to optimize

into flatter regions, which also affects computer vision tasks, Smith and Le (2017) and Smith

et al. (2017) propose a gradient noise scale to measure how learning rate should be adjusted to

the batch size, on image data. They estimate the average gradient noise g for each batch as

g = ϵ (N /B −1) ≈ ϵN /B where ϵ is the learning rate, N the size of the training set, and B the

batch size, assuming that N ≫ B . This shows that “increasing the batch size and decaying the

learning rate are quantitatively equivalent” (Smith et al., 2017, Sec. 1).

Hoffer et al. (2017) explore the reason for better generalization when training with smaller

batch sizes on computer vision with the same networks as Keskar et al. (2016). They show

that during the warmup of the learning rate the amount of distance that weights move grows

rapidly (logarithmically) with the number of updates, and explain the generalization gap by

the difference between the number of steps that small and large batch sizes result in. They

show that adapting the regime by modifying the learning rate may bridge the gap depending

on the batch size.

Jastrzȩbski et al. (2018) note that the proportionality of batch size and learning rate is crucial:

higher ratios lead to flatter regions, which generalize better. This observation has been noted

elsewhere too, although whether the relation between batch size and learning rate is linear,

squared, or otherwise, has not been conclusively determined (Krizhevsky, 2014; Hoffer et al.,

2017; Popel and Bojar, 2018).

Stochastic-Weight Averaging (SWA) (Izmailov et al., 2018) consists in optimizing into flatter

minima by averaging weights, which in practice supports the previously mentioned hypothesis

of these points requiring less precision to optimize than sharper ones. This, together with a

cyclical learning rate on computer vision tasks, allows for greater exploration of flatter basins.

This has recently been successfully used also for knowledge distillation on pre-trained LMs

(Lu et al., 2022).

Wortsman et al. (2021) outperform SWA by learning diverse, high-accuracy subspaces con-

sisting of lines, curves, and simplexes, which are later ensembled. This diversity is achieved

with the addition of a regularization term between subspaces, whose objective is to increase

weight distance by keeping their cosine similarity at 0.

2.4.2 Directly Training into Flat Regions

Li et al. (2017) propose a visualization of the weight space with CNNs on computer vision,

and show that skip (residual) connections promote flat minimizers of the train and test loss

functions. Additionally to the previously mentioned method of linear path, they propose a

filter-wise normalization to mitigate the scale invariance problem between network weights.

Dinh et al. (2017), however, provide evidence against the flat minimizer hypothesis by showing

that the weights that define a flat minimizer can be transformed to land in a sharp point,

while still defining an equivalent model, i.e. a model such that it produces the same loss
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for each sample of the training set as the competing, flat-optimized model. They try three

competing definitions of flatness and show that equivalent models corresponding to arbitrarily

sharper minima can always be built. Chaudhari et al. (2017) add a regularization term to

stochastic gradient descent in order to maximize an estimation of the depth and flatness

of the neighborhood around a minimizer. This, however, has a noticeable computational

cost, essentially creating a nested loop to compute the gradient of the local entropy for each

true step. Dziugaite and Roy (2018) verify that this method works works by optimizing the

Bayesian prior, developing PAC-Bayes bounds for data-dependent priors obtained via some

differentially private mechanism. Sankar et al. (2021) propose measuring the landscape per

layer, to check how it correlates with the overall space, by computing each layer’s Hessian,

which they show to be similar to the entire network’s Hessian. With this, they present a

regularizer that mainly affects the middle layers, although yielding modest improvements.

Sharpness-Aware Minimization (SAM) (Foret et al., 2020) introduces a measure of sharpness

to the standard loss minimization, obtaining good results in computer vision tasks. This is

done by computing at each step an adversarial loss of the model θ as ϵ̂= ρ ∇L(θ)
||∇L(θ)||2 , where ρ is

a hyperparameter to measure the neighborhood radius. This adversarial loss is then added as

a regularization term to the normal loss. SAM therefore requires two forward-backward passes

per update, although the adversarial loss can be computed with micro-batches, noticeably

reducing training time. Du et al. (2022) made SAM more efficient, reducing its overhead from

twice the training time to only an additional 0.4, through an approximation of the sharpness

measure by stochastically sampling a set of weights in each step, and using only a subset of data

particularly sensitive to sharpness in order to minimize the SAM loss. Recently, an application

of SAM to natural language has been made by Bahri et al. (2022), on question-answering and

language understanding, with particularly good improvements on low-resource settings, by

fine-tuning T5 (Raffel et al., 2020) and mT5 (Xue et al., 2021), with only an additional 0.25

compute time. They note that the neighborhood radius value, ρ, requires careful tuning.

Kaddour et al. (2022) compare SWA and SAM on many tasks, in particular question-answering

and natural language understanding. They show their key difference, SWA being implicitly

biased towards flat minima, and SAM explicitly approximating it, resulted in SAM optimizing

more on the limits of flatter regions, closer to sharper areas than SWA.

As we can see, in recent years there has been ample research on the effects that the topography

of the parameter space has on the generalization abilities of a model, and promising results

have been obtained, both through indirect and direct means. However, only a small percentage

of these studies have consisted of NLP tasks, and no direct study has been made in relation

with NMT, let alone low-resource NMT.

2.5 Effects of Regularization in NMT

Empirical studies have been made regarding the use of regularization on low-resource NMT,

which can be understood together under the flat minimizer hypothesis presented in Sec-
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tion 2.4. We now present the most relevant empirical studies on regularization factors specifi-

cally for NMT.

Popel and Bojar (2018) report that BLEU scores increase with batch size in a Transformer-

based NMT system, although with diminishing returns, and recommend setting a large batch

size. They observe moderate changes across a large range of learning rates, and find thresholds

beyond which training was much slower or diverged. They make similar observations for

warmup steps, concluding that the search space for learning rate and warmup steps was

wide. Their experiments are performed on large datasets, leaving their questions open for

low-resource settings.

Sennrich and Zhang (2019) experimented with a recurrent neural network in a low-resource

setting and found that smaller batch sizes were beneficial, along with other regularization

factors. They experimented with two batch sizes of 4,000 and 1,000 tokens, and observed

improvements with the latter of 0.30 and 0.04 BLEU points on data sets with 5k and 160k

sentence pairs, respectively. As the regularization factors were not disentangled, it is difficult to

predict their individual influence. They applied learning rate changes together with additional

forms of regularization, so it is not possible to judge the individual improvement provided by

learning rate. Similarly, they also applied dropout at the same time as other factors, so it’s not

known how much each improves performance. It is difficult to predict from these results what

the optimal batch size is for Transformer-based NMT.

Araabi and Monz (2020) conducted an empirical investigation, utilizing the Transformer

model, to explore the effects of varying batch sizes and other hyperparameters on different

subsets of a single dataset, similar to the study conducted by Sennrich and Zhang (2019). Their

findings indicate that decreasing the default batch size of 4,096 did not yield any discernible

benefits. However, when working with corpora consisting of 80k and 165k sentence pairs, they

observed improved performance by increasing the batch size to 8,192 and 12,288, respectively.

In order to explain their differences in results with respect to Sennrich and Zhang (2019), who

observed benefits from reducing batch size even with comparable or larger training sets, they

argue that Transformer models require larger batch sizes compared to recurrent networks.

It is important to note, however, that a potential flaw in this comparison arises due to the

grid search methodology employed. Specifically, Araabi and Monz (2020) tested various batch

sizes towards the end of their hyperparameter optimization process, by which point they had

already introduced additional regularization to the model, primarily through increased word,

activation, and layer dropouts, in contrast to Sennrich and Zhang (2019). Considering the

possibility that smaller batch sizes yield improved generalization by introducing noise to the

gradient, the absence of benefits observed in reducing batch size aligns with the aforemen-

tioned theory. Consequently, it becomes evident that the experimental schedule employed

by Araabi and Monz (2020) is inadequate for accurately assessing the impact of batch sizes

on low-resource Neural Machine Translation (NMT). It can be argued that if the order of

hyperparameter search were reversed, i.e., if batch size were explored earlier and subsequent

regularization techniques were introduced later, the authors might have observed benefits in
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reducing batch size, followed by diminished benefits with the introduction of various dropout

techniques. This rationale also elucidates why Araabi and Monz (2020) did not observe any

benefits in altering the learning rate or warmup steps, the final hyperparameters to be tested,

considering the model was already subject to sufficient regularization.

Xu et al. (2020b) computed gradients while accumulating minibatches, and observed that

increasing batch size stabilizes gradient direction up to a certain point, after which it starts to

fluctuate. Performing an update when the direction of the gradient starts to fluctuate allows

them to dynamically adjust batch sizes while training. In their experiments with large training

sets (4.5M and 36M sentence pairs), their average batch size was around 26k on two GPUs, and

never lower than 7k. Their observations on the gradient direction as more minibatches are

accumulated are consistent with the findings of Popel and Bojar (2018), who see diminishing

returns when increasing batch size.

Studies on the optimization and effects of regularization factors thus remain scarce. Many

previous studies optimize parameters in sequence. While this strategy is certainly a faster

approach to optimization, it does not shed full light on each factor in isolation, as we do below

in Sections 3.3 to 3.6, or in combination, as we study in Sections 3.7 and 3.8.

2.6 Poetry Generation

Regularization is important for low-resource NMT, as we have shown. In other fields of NLP,

such as Natural Language Generation (NLG), it can be also necessary, particularly when

operating in a low-resource setting. NLG makes use of LMs, usually by sampling from the

LM’s output distribution, and feeding the context plus the newly generated token back to

the model. State-of-the-art language models, however, as we have seen in Section 2.3.2, are

nearly universally trained with vast amounts of data. When much less data is available, for

example due to a specific domain, LMs benefit from training in a more similar way to what

we have shown for low-resource NMT, for instance by making use of multitasking or data

augmentation techniques (Hangya et al., 2022; Popescu-Belis et al., 2023). In this section we

will review some related work on one of these specific domains within NLG, poetry generation,

an area which we will study in Part III.

Poetry generation is a specific task within the field of NLG, but also a topic of interest in the

field of computational creativity (McGregor et al., 2016). Before the advent of deep neural

LMs, various combinations of rule-based approaches and n-gram LMs have been tried. For

instance, in their broad discussion of computational creativity, McGregor et al. (2016) define a

poem generation model, which uses word vectors to infer semantic relations, followed by a

phonological model, an n-gram LM, and a sentiment model. Their basis for poem generation

are topics from Switchboard conversations annotated with sentiment scores.

Large neural LMs have brought high expectations regarding their capacities to generate struc-

tured texts such as poems, and clearly improved fluency for high-resource languages. Poem
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generation with GPT-2 (Radford et al., 2019) was discussed, for instance, by Branwen and

Presser (2019) in a blog entry shortly after the model was made available. More recently,

ChatGPT has tremendously improved the quality and relevance of generated text. However,

anecdotal evidence shows that it cannot reliably generate a given rhyming pattern. Deep

neural networks have been used several times for poem generation, mostly in English or in

Chinese (see Section 9.2). The main challenge is to learn and use the constraints of poetic

style from the data, and most studies focus on rhythm and rhymes. Additionally, the lack of

training data due to the specificity of the domain poses serious problems to the training of

LMs for poetry generation.

2.7 Conclusion

In this chapter we have presented background for our thesis, both theoretical and applied. We

have introduced general concepts from machine learning, as well as more specific concepts

regarding regularization factors and NMT, which will be relevant for Parts I and II. We have

also presented the state of the art regarding LMs, which will be relevant for Part III, on poetry

generation. Similarly, we have provided background for a treatment of multitasking and

scheduling, specific to Part II, as well as a treatment of the theory of the flat minima and the

effects of regularization on NMT, with a specific focus on low-resource NMT, which will be

addressed in Part I. Finally, we have introduced a specific area of NLG, poetry generation,

which we address in Part III. We will now present our work on the effect of regularization

factors on low-resource NMT, explaining the empirical results under the theoretical umbrella

of the flat minima hypothesis.
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3 Regularization Factors
and Flat Minima1

In this chapter, we explore the roles and interactions of the hyper-parameters governing

regularization, and propose a range of values applicable to low-resource neural machine

translation. We show that default or recommended values for high-resource settings are

not optimal for low-resource ones, and that more aggressive regularization is needed when

resources are scarce, in proportion to their scarcity. We explain our observations by the

generalization abilities of sharp vs. flat basins in the loss landscape of a neural network.

Results for four regularization factors corroborate our claim: batch size, learning rate, dropout

rate, and gradient clipping. Moreover, we show that optimal results are obtained when using

several of these factors, and that our findings generalize across datasets of different sizes and

languages.

3.1 Introduction

The training of neural machine translation (NMT) models is governed by many hyper-para-

meters, which play a central role in the performances of the trained models, especially their

generalization abilities. While most of the NMT frameworks recommend default values for the

hyper-parameters, when it comes to low-resource settings, fewer guidelines are available.

This chapter systematically explores the roles and interactions of a subset of hyper-parameters

in low-resource NMT settings, namely those acting as regularization factors. Regularizers do

not fall under a single theoretical definition: Goodfellow et al. (2016, page 224) view them as

a collection of methods “intended to reduce generalization error but not training error.” We

present here a unified perspective on several regularizers which act upon the estimation of

the gradients during back-propagation. We focus on constraining effective representation, so

we do not consider changes to the architecture of the network. Additionally, we condense the

search on various parameters associated with dropout (such as activation dropout, attention

dropout, etc.) into general dropout (i.e., each unit of a hidden layer is dropped with probability

p). Due to experimental constraints, we consider the most common hyper-parameters used,

1This work was published in Atrio and Popescu-Belis (2021, 2022)
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3.2 Data and Systems

although additional ones like label smoothing could also be considered.

When computing the value of the loss of a model (which in this chapter is calculated with

cross-entropy, as previously presented formally in Section 1.1.2) while varying its weights, the

aspect of this function, both on train and test data, will have flatter and sharper regions. The

flat minima hypothesis (Hochreiter and Schmidhuber, 1994; Keskar et al., 2016) (introduced

above in Section 2.4 and illustrated in Figure 1.3) states that models whose weights settle in

flatter regions of this loss landscape will have better abilities for generalization to unseen data

than those on sharper regions. Additionally, since a small variation of the weights on sharper

regions results in a large change of the loss, the less precise an optimizer is, the less likely it will

be to settle on sharper regions and more likely on flatter ones. We measure the generalization

ability of our models computing BLEU and chrF (see Section 3.2). Specifically, in this chapter,

we defend three claims:

1. NMT models benefit from more aggressive regularization when the amount of training

data is small. We demonstrate this for four different regularizers: batch size, learning

rate, dropout, and gradient clipping. We compare the default regularization hyper-

parameters of the OpenNMT-py framework for mid-to-high resources – comparable to

those of the original Transformer (Vaswani et al., 2017) – with the ones we optimized for

a low-resource setting (Sections 3.3-3.6)

2. The combination of different regularization sources is preferable over their individual use.

When used together, an amount of regularization from each of the four factors under

study outperforms the use of any single one alone, and the best scores are robust with

respect to the variation of each factor (Section 3.7).

3. Regularization factors optimized on one low-resource dataset are beneficial for low-

resource datasets in other languages, and benefit from more aggressive regularization as

the amount of training data decreases. We demonstrate this by comparing our default

and optimized settings on data samples of varying sizes from our main corpus and four

additional low-size datasets (Section 3.8).

3.2 Data and Systems

We train our NMT systems with the Upper Sorbian (HSB) to German (DE) training data

of the WMT 2020 Low-Resource Translation Task (Fraser, 2020). We also use the HSB-DE

development and test sets provided by the WMT 2020 and 2021 Low-Resource Translation

Tasks (Fraser, 2020; Libovický and Fraser, 2021), each consisting of 2k sentences. As length-

based filtering does not show significant differences, we do not filter our data. Additionally, in

Section 3.8, we train systems for translation from Galician (GL), Slovenian (SL), and Slovak (SK)

into English (EN), using tokenized and cleaned transcriptions of TED Talks, with the provided

dev and test sets (Qi et al., 2018).2 Finally, we train a larger German to English system using

2https://github.com/neulab/word-embeddings-for-nmt
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Dataset Src-tgt Train Words (tgt) Dev Test
WMT20 Low-res HSB-DE 60k 823k 2000 2000
= = 40k 550k = =
= = 20k 273k = =
NewsComm. v13 DE-EN 120k 3M 1500 1500
TED Talks SK-EN 61k 1.3M 2271 2445
= SL-EN 19k 443k 1068 1251
= GL-EN 10k 214k 682 1007

Table 3.1: Numbers of lines of the original corpora used in our experiments. Sections 3.3-3.7
use only the first dataset. We do not use monolingual or back-translated data, and train our
tokenizers using only each parallel corpus.

120k lines from News Commentary v13 (Bojar et al., 2018), and sample 1,500 lines each for

development and testing. Table 3.1 presents these resources.

Tokenization into subwords is done with a Unigram LM model (Kudo, 2018) from Senten-

cePiece.3 For each language pair we build a shared vocabulary of 10k subwords (based on

preliminary tests) using only the parallel corpus, with character coverage of 0.98, nbest of 1

and alpha of 0.

We use the Transformer-Base architecture (Vaswani et al., 2017) implemented in OpenNMT-py

(Klein et al., 2017, 2020).4 Our default setting of hyper-parameters is the one recommended by

OpenNMT-py5 which is close to the original Transformer (Vaswani et al., 2017). For Adam, β1 =
0.9, β2 = 0.998 and ϵ= 10−8. The regularization factors appear with relatively low strengths

in this setting, as is usual when large datasets are available. The setting includes the ‘noam’

learning rate schedule with a scaling factor of 2, warmup steps of 8000, dropout rate of 0.1,

batch size of 4096, and no gradient clipping.

We train our models for a maximum of 100 hours, although they generally converge earlier.

When comparing batch sizes in Section 3.3, it could be argued that epochs might provide a

fairer comparison, but we measure real clock time as the most relevant measure for practition-

ers.

A batch consists of lines (tokenized sentences) that are translated one by one, with a fixed

maximum length of 512 tokens for Transformer-Base. Lines are padded if shorter, and filtered

out if longer. Following common practice, sentences are sorted by their length in tokens

to avoid unnecessary padding. We train all models on two GPUs with 11 GB of memory

each (GeForce RTX 1080Ti). Each device processes several batches, depending on the batch

size, which are afterwards accumulated and used to update the model. The effective batch

size and the batch_size parameter of OpenNMT-py are two different values: the former

3https://github.com/google/sentencepiece
4We make public our configuration files at https://github.com/AlexRAtrio/reg-factors.
5https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model
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3.3 Batch Size

is G × A ×batch_size, where G is the number of GPUs and A the number of accumulated

batches, here equal to two.6 Throughout the chapter, we report the batch_size parameter,

but the effective batch size is in fact four times larger.

Based on preliminary tests, we generate translations with a beam size of seven, with con-

secutive ensembles of four checkpoints. For each model we report the highest BLEU score

(Papineni et al., 2002) calculated with SacreBLEU (Post, 2018) on detokenized text7 as well as

the chrF score (Popović, 2015). We test the statistical significance of differences in scores at

the 95% confidence level using paired bootstrap resampling from SacreBLEU.

3.3 Batch Size

In this section we train models with batch sizes ranging from 500 to 10,000, with all other

hyper-parameters set to default. Models with batch sizes of 100 and 250 were also trained, but

did not converge. The largest tested batch size is the largest value supported by our GPUs.

Batch size train dev test
Xent Acc. BLEU chrF BLEU chrF

0.5k 0.02 99.93 50.54* 73.35 43.95^ 69.25
1k 0.01 99.94 52.02 74.63 44.40^ 70.02
3k 0.01 99.96 50.16* 73.38 43.91^ 69.16
6k 0.01 99.97 49.66+ 73.09 42.55− 68.85
9k 0.01 99.96 49.42+ 73.10 42.22− 68.40

10k 0.01 99.97 48.46 72.49 42.19− 68.38

Table 3.2: HSB-DE scores with various batch sizes, all other settings being default ones. Values
with the same color or symbol are not significantly different. The highest scores are in bold.

The BLEU and chrF scores in Table 3.2 show that lowering the batch size improves quality of

NMT, likely due to the regularizing effect of a less accurate gradient, according to our theoreti-

cal perspective. In particular, we observe improved results with a batch size smaller than 3,000

(+1.71 BLEU) and an optimal size around 1,000 (+2.21), with scores gradually decreasing as

batch size increases. These results are in line with previous observations (Sennrich and Zhang,

2019; Atrio and Popescu-Belis, 2021).

There is no clear correlation between the training accuracy or cross-entropy loss and the

generalization capacity, i.e. the scores on the development and test sets. The lower scores of

models trained with larger batch sizes are likely not due to overfitting, because the testing

curves of these models do not show any decrease late in the training. This further supports the

claim that better generalization abilities are due to flat minima (Keskar et al., 2016, Section 2.1).

6https://forum.opennmt.net/t/epochs-determination/3119
7https://github.com/mjpost/sacrebleu with the signature nrefs:1|bs:1000|seed:12345|case:mixed|eff:no

|tok:13a|smooth:exp|version:2.0.0.
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Figure 3.1: Throughput (subwords/second, in blue) and speed (epochs/hour, in green) for the
tested batch sizes.

Our results are competitive with the submitted systems from the WMT20 shared task on low-

resource NMT for HSB-DE (Fraser, 2020), which used the same parallel data.8 The baseline

BLEU scores of Knowles et al. (2020), Libovický et al. (2020) and Kvapilíková et al. (2020) were

respectively 44.1, 43.4, and 38.7 on the test set.

Regularization through smaller batch sizes thus provides visible improvements with respect

to the default setting. Larger batch sizes, however, exploit more fully the memory of the GPUs,

which enables higher throughput in terms of subwords processed per second, as illustrated in

Figure 3.1, although this does not increase linearly: instead, we observe diminishing returns

as batch size increases. Still, while a batch size of 10k has the lowest BLEU scores, it nearly

doubles the throughput with respect to the highest-scoring batch size (1k). Due to differences

in hardware and software, these values are difficult to compare to other studies, but the trends

are similar to those observed by Popel and Bojar (2018, Section 4.1).

If the regularization attained with lower batch sizes can also be obtained by using other

regularization factors, this would allow the use of larger batch sizes for a more efficient

training. Therefore, in the next sections, we will compare a large batch size (10k) and the

optimal, regularized one (1k), and verify that none of the other regularization factors that will

be optimized have an impact on speed.

3.4 Learning Rate

Previous studies by Smith et al. (2017) and Smith and Le (2017) have shown that the regular-

ization effects of the batch size and of the learning rate may be comparable. In this section,

8Some of these systems used in fact larger monolingual HSB, DE and/or CS datasets for training their tokenizers,
while we only used 60k lines of parallel HSB-DE text.
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3.4 Learning Rate

we study the role of varying schedules of the learning rate (3.4.1) and the effect of reset-

ting the schedule in mid-training, i.e. suddenly increasing the learning rate before another

decrease (3.4.2).

3.4.1 Regularization through Learning Rate

Since all our models have the same dimension of embeddings (dmodel in Eq. 2.1 above), the

only variables influencing the learning rate in the ‘noam’ schedule are the number of warmup

steps and the scaling factor (Vaswani et al., 2017, Eq. 3). We test two different values for the

former: 8k (default) and 16k. For the latter, we test even values from 2 (default) to 14. Figure 3.2

displays some tested schedules, including our default one (8k, 2) and the ‘noam’ original one

(4k, 1).

Figure 3.2: ‘Noam’ learning rate schedules with different scaling factors (sf ) and numbers of
warmup steps (w).

Figure 3.3: BLEU scores on the test set for 10k and 1k batch sizes, 8k and 16k warmup steps,
and varying scaling factors (x-axis). The y-axis is cut-off at 41 BLEU to zoom on the extremes
of the curves.
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The results in Table 3.3 show that both batch sizes reach similar maximal scores (46.20 and

46.29), although with different scaling factors: 6 for a batch size of 1k vs. 10 for a batch size of

10k. The improvement is 1.8 BLEU points for a batch size of 1k, and 4.1 for 10k. As a batch size

of 1k is already a strong regularization factor, a smaller value of the learning rate (hence less

regularization through this factor) is sufficient, compared to the case of a larger batch size.

Batch Warmup Scaling factor
size 2 4 6 8 10 12 14
1k 8k 44.40 45.42 38.90 0.65 0.18 0.05 0.60

16k 43.96 45.74 46.20* 46.07* 45.79* 45.24* 42.24
10k 8k 42.19 44.59 45.27⋆ 45.93− 45.87− 45.34⋆ 45.31⋆

16k 41.70 44.36 45.32+ 45.89^ 46.29^ 45.69+ 45.69+

Table 3.3: BLEU scores on the HSB-DE test set for batch sizes of 1k and 10k and various
learning schedules. We denote scores that are not significantly different row-wise with the
same color or symbol.

The models trained with the larger batch size (10k) are more stable when learning rates increase

(larger scaling factors) likely due to more accurate estimates of the gradients (compare lines 1

vs. 3, and 2 vs. 4). Similarly, these models have a higher maximal learning rate beyond which

they diverge (compare in Table 3.3 the large difference between lines 1 and 2 with the small

difference between lines 3 and 4). This shows the importance of increasing the number of

warmup steps as the scaling factor increases, to avoid reaching high maxima of the learning

rate (the peaks visible on the schedules in Figure 3.2). Moreover, the regularization provided

by other factors (in this case, batch size) needs to be taken into account when increasing

the amount of regularization from the learning rate. Finally, as long as the maximal learning

rate remains below the values that make a model diverge, the BLEU scores do not change

significantly when the scaling factor increases above a certain value, as also observed by Popel

and Bojar (2018, 4.6, Fig. 7).

3.4.2 Resetting the Learning Rate during Training

From the perspective of the loss landscape, we hypothesize that introducing more noise into

the gradient when the scores have already leveled-off, namely by resetting the learning rate

schedule, should increase the probability for the weights to escape the sharp minima basins

and avoid falling back into them, which should improve the generalization abilities of the

trained model. Since a model trained with a smaller batch size has a higher chance, during the

first part of training, to fall into flat minima due to an increased gradient noise (Smith et al.,

2017), we expect the larger batch sizes to benefit more from this strategy than the smaller ones.

In Table 3.4 we provide the scores after training for 50 hours (half of their training time); the

scores after 100 hours when continuing to train from the 50-hour checkpoint; and the final

score after training for 50 hours with a schedule reset at the 50-hour checkpoint. The results

corroborate our hypothesis: both batch sizes benefit significantly from the strategy of resetting
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3.5 Dropout Rate

Hours
50 100 100

Batch size no lr reset reset lr
1k BLEU 44.25 44.40 45.85

chrF 69.78 70.02 70.84
Train. Acc. 99.93 99.94 99.84
Xent 0.02 0.01 0.02
∆ +0.15 +1.60

10k BLEU 41.60 42.19 45.25
chrF 68.03 68.38 70.57
Train. Acc. 99.94 99.97 99.92
Xent 0.01 0.01 0.01
∆ +0.59 +3.65

Table 3.4: BLEU and chrF scores on the HSB-DE test set, training accuracy and cross-entropy
on the training set, and change of BLEU scores when continuing training until 100 hours vs.
resetting the learning rate at 50h.

the learning rate, and the large batch size more than the smaller one ((+3.65 vs. +1.6 BLEU

points). As both models reached their highest BLEU scores before 25 hours, the difference is

likely not due to that fact that the first model trained with a larger batch size saw more times

the training data thanks to its higher throughput. Furthermore, after increasing the learning

rate mid-training, both the loss and training accuracy worsen or remain stable, while BLEU

scores improve, likely due to reaching flatter basins, not lower minima.

3.5 Dropout Rate

The dropout of a certain proportion of neurons during training is another frequent source of

regularization. As this amounts to removing certain terms from the summation of gradients,

its role can also be considered from the perspective of flat vs. sharp minimizers.

Figure 3.4: Scores on the test set for batch sizes of 10k and 1k. Dropout rates of 0.8 and 0.9 are
not shown due to small scores, but they continue the trend.
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Batch Dropout
size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1k 44.40* 45.35+ 45.39+ 44.87* 44.54* 42.58 37.69 19.83

10k 42.19 43.76 44.74 45.40^ 45.39^ 45.26^ 42.91 35.52

Table 3.5: Dropout scores on the HSB-DE test set for 1k and 10k batch sizes. We denote
row-wise lack of significant differences with the same color or symbol. Dropout rates of 0.9
have considerably lower scores.

BLEU scores in Table 3.5 show that the model trained with a larger batch size – hence subject

to less regularization – requires a more aggressive dropout of around 0.4–0.6 in order to reach

its highest scores, with respect to a model trained with a smaller batch size, which reaches its

highest score for 0.2–0.3. This is consistent with our previous findings from Section 3.4.1 and

Table 3.3, which also showed that the model subject to less regularization from a factor (larger

batch size) required more regularization from another factor in order to reach its highest

scores.

3.6 Gradient Clipping

Finally, we experiment with our fourth regularization factor: gradient clipping. Since it directly

involves constraining the norm of the gradient, the perspective based on flat vs. sharp basins

in the loss landscape also holds for it.

Batch size Dropout Gradient Clipping
None 20 10 5 2.5

1k 0.1 44.40 44.75 44.92 44.74 44.54
10k 0.1 42.19 42.41 42.01 42.30 42.20
10k 0.2 43.76 44.15 44.34 43.98 43.85

0.3 44.74 45.36 44.72 44.75 44.99
0.4 45.40 45.56 45.30 45.45 45.48

Scaling
factor

10k 2 42.19 42.41 42.01 42.30 42.20
10k 6 45.27 45.61 45.24 45.29 45.32

10 45.87 45.45 45.77 45.55 45.35

Table 3.6: BLEU scores on the HSB-DE test set for batch sizes of 10k and 1k on the test set,
with a dropout rate of 0.1 (default), for several upper limits of the gradients. Scaling factor
rows have default warmup steps of 8k.

As in the previous sections, we compare models trained with batch sizes of 1k and 10k, but

observe no statistically significant differences between them when using default values for

other hyper-parameters, with BLEU scores shown in Table 3.6 – although values of 10 or

20 are always among the best. This is likely because default settings do not feature enough
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3.7 Combining Regularization Factors

regularization (i.e., they do not increase enough the gradient’s norm) for the gradients to be

affected by clipping. For this reason, we perform additional experiments with a batch size of

10k (due to its advantage for speed) with more regularizing dropout values of 0.2, 0.3, and 0.4,

and scaling factor of 6 and 10. Regarding the models with increasing dropout rate, we only

observe a statistically significant difference between the best and worst results (for dropout of

0.2), the best and two worst results (for 0.3), and no differences at all (for 0.4). Regarding the

models with increasing scaling factor, there is no row-wise statistically significant difference.

We conclude that gradient clipping only marginally affects training in these settings.

3.7 Combining Regularization Factors

We will now show that a combination of regularization factors can produce higher scores than

individual factors used separately, and that the maximal scores are stable when varying the

strengths of regularizers around their optimal values. The batch size is fixed at 10k, since

this enables a higher training speed than 1k with similar best scores, provided that other

regularization factors are used, as shown in Tables 3.3, 3.4 and 3.5.

The number of warmup steps is fixed at 16k since we showed in Section 3.4.1 that this parame-

ter mainly limits the peaks of the learning rate and thus prevents models from diverging early

in the training. Our search space for the other regularization factors is shown in Table 3.8.

Factor Value Xent Tr. acc. BLEU chrF ∆

Defaults - 0.01 99.97 42.19 68.38 -
Batch size 1k 0.02 99.94 44.40 70.02 +2.21
Scaling factor 10 0.01 99.94 45.93 70.74 +3.74
S.f. + warmup steps 10 + 16k 0.01 99.94 46.29 71.22 +4.10
Learning rate reset 50% 0.01 99.92 45.25 70.57 +3.06
Dropout 0.4 0.07 99.46 45.40 71.00 +3.21
Clipping 10 0.01 99.96 42.41 68.43 +0.22
Combination Table 3.8 0.03 99.78 47.11 71.88 +4.92

+ l.r. reset - 0.06 99.30 47.20 71.80 +5.01

Table 3.7: HSB-DE scores on the test set when the regularization factors are used either
independently (lines 2–6) or in combination (line 7), in the latter case with the optimal values
from Table 3.8. The last column shows increases in BLEU scores over the default settings.

We present in Table 3.7 the highest scores achieved using individual regularization factors,

along with those from the default setup (first line) and from the combination of factors (last

two lines). Regularization factors are already present in the default setup, but at low strengths.

The comparison of scores in Table 3.7 shows that each factor used independently allows

the model to outperform the default setting by 2–4 BLEU points. However, the use of a

combination of factors achieves the highest score of 47.20 BLEU points (+ 5.01), which is

significantly above all others. In the case of resetting the learning rate, although this has
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a visible effect when used with default parameters, its effect is much smaller when used

jointly with other regularization factors, likely because a flat basin is found before the reset.

Moreover, the combination of factors results in a higher loss and a lower accuracy on the train

set than the default setup or factors used individually, which supports our interpretation of

the improvement based on flatter minima.

Gradient Scaling Dropout
clipping factor 0.1 0.3 0.5 0.7
None 2 42.19 44.74 45.39 42.91

6 45.32 46.70 46.22 43.66
10 46.29 47.06 46.93 43.18
14 45.69 46.84 47.07 43.61
18 45.26 46.89 46.67 43.19

5 2 41.39 44.47 45.05 43.48
6 45.20 46.62 46.70 43.88
10 45.65 47.11 46.76 44.04
14 45.57 47.11 47.06 43.63
18 44.72 46.59 47.02 42.72

Table 3.8: HSB-DE BLEU scores for a combination of the scaling factor, gradient clipping, and
dropout rate, for a batch size of 10k and 16k warmup steps. The highest scores are in bold.

Table 3.8 shows that the best scores reached with increased regularization are quite stable

when varying the intensity of the factors. The optimal region of the scaling factor is around

10, with a relatively flat neighborhood, similar to the case when it was optimized individually

(Section 3.4). Optimal dropout rates are now around 0.3–0.5, compared to 0.4–0.6 when used

individually (Section 3.5). Finally, gradient clipping has only a marginal effect in combination

with other factors, presumably because it cannot help to increase the gradients.

3.8 Testing on Additional Corpora

In this section, we confirm our claims using additional low-resource datasets. We consider two

smaller samples with 40k and 20k lines from the HSB-DE corpus, as well as parallel datasets for

Galician, German, Slovak and Slovenian (see Section 3.2). We do not optimize regularization

factors on each dataset, but only use the optimal hyper-parameters found above on HSB-DE

with 60k lines.

Table 3.9 demonstrates that these hyper-parameter values bring significant improvements

of BLEU and chrF scores over the baseline for all datasets, including four new low-resource

datasets (rows 4-7) and two sub-samples of the dataset used until now (rows 2 and 3). When

comparing the latter, we find that as the amount of data decreases, the positive effects of

our regularization parameters increase, with up to 21% improvement in BLEU scores for the

smallest subset. Furthermore, we also observe an increase in the loss over all datasets with

the optimized setup, which shows that the reason why their less accurate gradients generalize
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Corpus Lines Default Optimized ∆

Xent Tr. Acc. BLEU chrF Xent Tr. Acc. BLEU chrF BLEU
HSB-DE 60k 0.01 99.97 42.19 68.38 0.06 99.30 47.20 71.80 +5.01
HSB-DE 40k 0.01 99.98 32.38 60.68 0.03 99.80 37.63 65.12 +5.25
HSB-DE 20k 0.01 99.98 22.93 51.42 0.02 99.93 27.84 56.27 +4.91
DE-EN 120k 0.10 98.20 29.94 56.81 0.60 84.71 35.77 61.44 +5.83
SK-EN 61k 0.02 99.89 25.61 46.42 0.40 89.29 29.71 49.67 +4.01
SL-EN 19k 0.01 99.93 15.53 34.99 0.09 98.89 18.43 37.75 +2.90
GL-EN 10k 0.01 99.98 16.00 34.52 0.04 99.69 19.04 37.84 +3.04

Table 3.9: BLEU scores on test sets of different corpora and subsets of our main HSB-DE corpus
(first line), comparing our default setup and our optimized setup as presented in Section 3.7.

better is not due to finding lower but rather flatter minima of loss.

Araabi and Monz (2020) report similar improvements with another optimization of the Trans-

former for the low-resource datasets GL-EN, SL-EN, and SK-EN, although their scores are not

fully comparable with ours, since there are slight differences between their training data sizes

and ours. In particular, their improvements are 13.1 to 22.3 for GL-EN, 9.1 to 15.5 for SL-EN,

and 24.8 to 29.9 for SK-EN.

3.9 Conclusion

In this chapter, we presented a unified perspective on the role of four regularization factors in

low-resource settings: batch size, learning schedule, gradient clipping and dropout rate. The

results support our claim that more regularization is beneficial in such settings, with respect

to the default values that are recommended for high-resource settings. We first substantiated

the claim for each factor taken individually, and then showed that a combination of factors

leads to improved scores and is robust when factors vary. Finally, we showed that our findings

generalize across different low-resource sizes and languages. Overall, we interpreted the

results from the perspective of the loss landscape, and argued that more regularization is

beneficial because the noise it introduces in the estimation of gradients leads to finding flatter

minima of the loss, which have better generalization abilities.
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4 Loss Landscape

4.1 Introduction

In this chapter we study the role of the loss landscape for low-resource NMT. In particular, we

study the relation between the area within the loss landscape that a model occupies (whether

it is flatter or sharper) and the model’s generalization ability. As in Chapter 3, we measure the

latter with BLEU (Papineni et al., 2002), and the loss is the negative log-likelihood between the

models’ predictions and the true data, that the model trains to minimize.

First, we study how well the loss landscape can be measured using linear interpolation, and

propose a cost-effective method to estimate the immediate neighborhood around a point.

Then, we propose various ways to measure the flatness of this neighborhood. Finally, we

propose a solution to integrate an estimation of the loss landscape into the SGD algorithm to

improve training of low-resource NMT systems, and perspectives to expand this work by using

our method to quantify the relation between flatness and regularization and generalization.

4.2 Estimating the Loss Landscape

In this section we study whether an interpolation method is suitable for measuring the loss

landscape around a point in the parameter space (Section 4.2.1). We build on these observa-

tions and propose a cost-effective method to estimate the immediate neighborhood of a point

in the parameter space without the use of back-propagation (Section 4.2.2).

4.2.1 Accuracy of Interpolation Method

Data and Systems

In this section we use a Transformer-base system from OpenNMT-py, trained on two low

resource datasets, in either directions.1 We train the system on a HSB-DE dataset (60k lines)

1This system is presented in Chapter 8.
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and a DE-EN dataset (120k lines) and evaluate it on the HSB-DE test data, as presented in

Chapters 3 and 8 . The hyper-parameters for our optimized systems are the ones obtained for

our best-performing models in Chapter 3. We choose this model as a well-performing system

on low-resource NMT datasets, trained with large amounts of regularization.

We use Google’s SentencePiece2 to learn a joint trilingual vocabulary, from the HSB-DE and

the DE-EN dataset. We train the tokenizer with character_coverage=1. We add language tags in

the vocabulary for each target language (<HSB>, <DE>, <EN>).

Linear Interpolation between Two Parameter Sets

We define linear interpolation between two points of the weight space θt1 and θt3 as (1−
α) ·θt1 +α ·θt3 . We define α as a default to 0.5. We take this strategy from Goodfellow et al.

(2015), who use it to plot the training trajectory of a CNN and of fully connected feed-forward

networks.

We take a model, trained normally, and for each ordered group of X = 5 checkpoints (separated

by Y = 2500 steps each) θt1 , θt2 , θt3 , we interpolate θ′t2
with θt1 and θt3 , and compare the

difference in score between θt2 and θ′t2
. If the difference is small, this means that linear

interpolation serves as an accurate approximation to map the loss landscape. Conversely, if

the loss landscape is highly irregular, we expect that a simple interpolation of the weights for

each layer will not fall in the same region as gradient descent would.

That being said, if the interpolated models score higher, this can be explained as this method

allowing the weights to set in flatter regions (since they require less precision to define), which

mean more generalizable models. If the scores of the interpolated weights, however, are lower,

then the method is not accurate enough to plot the landscape.

From Table 4.1 we can conclude that when training a model normally, between two steps,

either (i) the trajectory of the training in the weight space is very straightforward, which

means that we can estimate it by using linear interpolation, or (ii) the amount of space

around a model that is typically covered within a few steps is very regular, and even if linear

interpolation is not retracing the path that the training trajectory took, it stills results in models

of comparable quality. We also note that the model shown here is very regularized, both in

terms of hyper-parameters and auxiliary data, which might explain why the area around all the

trained checkpoints is regular; since a heavily regularized model is more unlikely to optimize

into sharper points.

Using Extrapolation to Predict New Weights

We now show how to use an interpolation method to predict the direction for a new set of

weights. We present the following experiment: by increasing α above 1, we should be able to

2https://github.com/google/sentencepiece

47

https://github.com/google/sentencepiece


Chapter 4. Loss Landscape

Step Original Estimated Difference

12500 43.1 43.3 0.2
25000 47.0 47.9 0.9
37500 48.2 48.1 -0.1
50000 48.6 48.7 0.1
62500 48.3 48.7 0.4
75000 48.6 48.6 0.0
87500 48.7 48.9 0.2

100000 49.0 49.2 0.2
112500 48.6 49.1 0.5
125000 49.2 49.2 0.0
137500 48.7 49.2 0.5

Table 4.1: Linearly interpolating selected checkpoints of a trained model with previous and
next checkpoints, with α= 0.5. We note the difference between the BLEU development scores
from the estimated weights and the original ones, with positive values indicating better scores
with the estimated weights. We can observe very small differences in scores between the
actually trained models and the interpolated models from trained models.

predict, or extrapolate, a new set of weights. With this, we consider the following idea: with

a hyper-parameter σ, we take initial existing weights θt1 , θt2 , and then for every σ steps, we

define θ′t3
as the extrapolation between θt1 and θt2 with α> 1. This means that when σ= 1,

only the first two sets of weights would be actually learned, and when σ= 10, every tenth set

of weights would be predicted, not learned.

In Figure 4.1 we show BLEU scores with σ = 5 and α = 1.5. We observe, particularly at the

beginning, that this prediction is noticeably worse, although as weights stabilize by training

for longer, the decrease in score is not as significant.

Extrapolation Model BLEU θ′t3
−θt3

- θt1 (7500 steps) 36.8 -
- θt2 (10000 steps) 40.9 -
- θt3 (12500 steps) 43.1 -

θ′t3

extrapolate(θt1 ,θt2 ,α= 1.15) 41.0 -2.1
extrapolate(θt1 ,θt2 ,α= 1.25) 40.9 -2.2
extrapolate(θt1 ,θt1 ,α= 1.50) 40.3 -2.8
extrapolate(θt1 ,θt2 ,α= 1.75) 36.4 -6.7
extrapolate(θt1 ,θt2 ,α= 2.00) 3.7 -39.4

Table 4.2: Predicting the equivalent of θt3 (θ′t3
) for two training steps, by extrapolating θt1 and

θt2 . Using σ of 5, we take the first and last data point in Figure 4.1, and together with the value
of α of 1.5 already shown in the figure, we also extrapolate with various values. The checkpoint
being extrapolated is found early during the training (at 12500 steps out of 137500).

We now take the first checkpoint (for σ = 5) and the last one for our trained model, and
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Figure 4.1: Scores of extrapolated weights. The normally-trained model
(hsb+de+en_tagged) overperforms the points predicted with extrapolation
(hsb+de+en_tagged_predict_interp, presented in Section 4.2.1), but when using
interpolation to find middle points between the trajectory of normal training, we obtain
slightly higher scores (hsb+de+en_tagged_interp, presented in Section 4.2.1).

Extrapolation Model BLEU θ′t3
−θt3

- θt1 (132500 steps) 49.0 -
- θt2 (135000 steps) 49.3 -
- θt3 (137500 steps) 48.7 -

θ′t3

extrapolate(θt1 ,θt2 ,α= 1.15) 49.2 0.5
extrapolate(θt1 ,θt2 ,α= 1.25) 49.2 0.5
extrapolate(θt1 ,θt2 ,α= 1.50) 49.0 0.3
extrapolate(θt1 ,θt2 ,α= 1.75) 38.4 -10.3
extrapolate(θt1 ,θt2 ,α= 2.00) 34.9 -13.8

Table 4.3: As in Table 4.2, but extrapolating one of the last checkpoints during training until
model convergence.

compare the trained checkpoint θt3 with our estimated model θ′t3
, from θt1 and θt2 , with

various values of α. We observe differences depending on the point in the training that

the model is. At the beginning of training (Table 4.2), we cannot obtain significantly better

results by predicting a step with linear interpolation than by learning the weights (which is a

reasonable result). Additionally, quality quickly degrades the farthest away we move from our

last set of trained weights, θt2 .

However, when the model has been well trained (Table 4.3), it seems that the space around

it in the loss landscape is different. We see how smaller values of α result in an increase of

half a BLEU point. This can be explained by the model setting on sharper and lower regions

of the landscape, in order to minimize training loss: the less precise method of interpolation

improves the results, since it is more likely to set on flatter areas (due to it being less precise),
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which in turn generalizes better to the test set.

These results show that interpolating from existing sets of weights can provide further regu-

larization to the model, as well as additional exploratory abilities, all with a lower computing

time than training another step. However, if we compare the results from Tables 4.2 and 4.3,

we observe that deciding at which points during training to apply this method is a non trivial

question.

It remains to be seen whether curved interpolation (si n(απ2 )θt +cos(απ2 )θt1) might model with

more precision the loss landscape, as well as whether considering various previous models,

instead of just two as we have done in this section, might improve as well the modeling of

the training trajectory, or training a model to interpolated a set of weights, from an ordered

sequence of previous ones.

4.2.2 Flatness of the Loss Landscape

In this section we estimate the flatness of the loss landscape around a point in the parameter

space, that is, a model θ.

Data

For our experiments in this section, we train an NMT system on the very low-resource Galician

(GL) - English (EN) dataset from the multilingual TED corpus (Qi et al., 2018), with sizes of

training, development and test sets shown in Table 4.4.

Train Dev Test
Lines Words (tgt) Lines Lines

GL-EN 10017 214k 682 1007

Table 4.4: Data used in this chapter.

We filter lines longer than 100 tokens, resulting in 9970 lines. We train a Unigram LM model

(Kudo, 2018) from SentencePiece3 with a character coverage of 1.0, nbest of 1 and alpha

of 0, and build a vocabulary with tokens occurring at least twice, which results in a shared

vocabulary of 9271 tokens.

NMT System

For this section, we train a Transformer model (Vaswani et al., 2017) in our own Pytorch-based

implementation4, and in order to reduce training time, we consider a Transformer with only

3 layers in the encoder and another 3 in the decoder. Additionally, our model consists of 8

3github.com/google/sentencepiece
4Based on github.com/bentrevett/pytorch-seq2seq.
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attention heads, hidden layer of 256 units, and FFN of 512 units. We use the Adam optimizer

(Kingma and Ba, 2014), with beta values of 0.9 and 0.998, dropout rate of 0.1, and a batch

size of 90 lines. We use cross-entropy loss. This results in ∼12M parameters, compared to the

∼50M that Transformer-base models tends to have.5 We train on a single GPU (Nvidia GTX

1080 or RTX 2080) with no gradient accumulation. Our implementation is simpler than the

one used in Section 4.2.1 to better monitor the training algorithm and to be able to modify

easily the training method subsequently.

To assess the impact on translation quality of our simple implementation and reduced archi-

tecture, we train four different baseline models and compare their scores. In particular, we

compare values of the constant learning rate 0.0001, 0.0005, and 0.00001, dropout rates 0.1

and 0.3, and varying training times. We conclude by training a model with a constant learning

rate of 0.0005, which after 50 epochs (in about thirty minutes) obtains development and test

scores of 15.38 and 13.16 BLEU points, respectively, with a loss value on the train set of 0.346.

Translations are generated with greedy decoding and no model ensembling. For each model

we consider the scores of the checkpoint with the highest development BLEU score (Papineni

et al., 2002), calculated with SacreBLEU (Post, 2018) on detokenized text.6

For comparison, with a very optimized model, Araabi and Monz (2020) improve scores on the

same dataset from a Transformer-base baseline of 13 BLEU points on the test set to 22, which

are comparable to what we also obtain in Chapter 3 on the same dataset. Furthermore, we

note that compared with a Transformer-base model trained with OpenNMT-py (Klein et al.,

2017, 2020), our systems train in less than half the amount of time, reaching similar loss values

on the train set and development BLEU scores, with only a decrease of ∼1.5 BLEU points.

Estimating the Neighborhood

Given a model θ, we estimate its neighborhood in the loss landscape in the following manner.

We define N = 10 random directions from a point by iterating over all the weight matrices of

the point N times, and for each one performing a random perturbation of the weights. This

results in models θr and1 , . . . ,θr andN . Then, we estimate the area between θ and each of the

random directions by the linear interpolation method described in Section 4.2.1.

In particular, we fix n_alphas= 25, and interpolate n_alphas between θ and each of the

random directions. We therefore estimate the neighborhood around θ as a matrix Φ of shape

(N , n_alphas), such that (i , j ) is (1−α j ) ·θ+α j ·θr andi , where α j is a given value of α. In

particular, we sample n_alphas values of α evenly from the interval [0,0.1]. This results in a

maximal euclidean distance between θ and θr andi of ∼2000. Since we use a constant learning

rate, the average euclidean distance between each epoch during normal training is ∼225. This

5Transformer-Base models have 6 encoder/decoder layers, 8 attention heads, hidden layer of 512 units, and
FFN of 2,048 units.

6github.com/mjpost/sacrebleu with the signature nrefs:1|bs:1000|seed:12345|case:mixed|eff:no
|tok:13a|smooth:exp|version:2.0.0.
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heuristic choice means that our notion of neighborhood comprises the area that would be

traveled in approximately eight epochs during normal training. Further empirical testing on

different orders of magnitude of the euclidean distance is required to ascertain up to what

distance the interpolation method can reliably estimate the immediate neighborhood of a

model.

For each set of weights inΦwe build the model (with the same architecture as θ) and compute

its training loss, obtaining a matrix of train lossesΨ: the loss neighborhood of θ. We empirically

observe near identical values when measuring the training loss over the entire dataset and

over a random collection of 10 batches of 90 lines each (∼10% of the dataset), at only a third of

the training time. Overall, computing Φ and train loss values for each of its models only takes

3.5 minutes on a RTX 2080.

Flatness Measures

We now compare the following methods in order to measure the flatness of the loss landscape

of the loss values inΨ.

1. Standard deviation (STD):
√

1
M−1

∑
i , j (Ψi , j −Ψ)2, where Ψ is the average of the loss

neighborhood Ψ, and M is the number of elements of Ψ.

2. Peak-average ratio (PAR): Ψmax −Ψ, where Ψmax is the highest value of Ψ, and Ψ is the

average of Ψ.

3. Shannon entropy (ENT): −∑
i , j p(Ψi , j )logp(Ψi , j ), where p(Ψi , j ) is the result of normal-

izingΨ as
Ψi , j∑

p,q Ψp,q
.

4. Variance drop (VAR): we propose to iteratively compute the variance of the flattened Ψ,

sorted from highest train loss to lowest, and at each time removing the highest value.

Each variance is divided by the median of Ψ, and the flatness ofΨ then is the mean of

the normalized variances.

When computing Φ, we also compute the Euclidean distance between θ and each model θ′ in

Φ as follows:
∑L

l=1

∑
i , j ||θl

i , j −θ′li , j ||, where L is the number of layers in θ. We use its inverse to

create weights, so that models that are farthest away are less important to the calculation of

the flatness ofΦ, since the linear interpolation method is less reliable the farthest away it is.

This results in a total of eight scores, since we compute each of the metrics with and without

weights.

Results

We present here a selection of the scores obtained from the metrics presented above, computed

for 20 epochs, evenly sampled from the total of 50, of the system described in Section 4.2.2.
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In particular, in Table 4.5 we show the total Pearson correlation of each metric (with and

without weights) with respect to BLEU score on the development set. We can see that our

proposed measure of Variance drop, unweighted, is useful to predict generalization score on

our system,which is consistent with our observations on Section 4.2.1. Similarly, although with

less strength, other metrics also show that can be considered to give important information

on the generalization ability of a model.

Metric ρ

Weighted VAR -0.9085
Train Loss -0.9046

Weighted ENT -0.7439
ENT -0.6149
PAR -0.2031
STD -0.1568

Weighted PAR -0.1289
Weighted STD -0.0818

VAR 0.6200
Epoch 0.7414

Table 4.5: Pearson correlation of the flatness metrics with BLEU score on the development set,
measured each epoch during training for a total of 50 epochs. This indicates that our proposed
Variance drop metric (VAR) is useful to predict model generalization, and most neighborhood
flatness metrics provide as similar information as the train loss of the model itself.

4.3 Training Weights into Flat Minima

In this section we present our strategy to integrate an estimation of the loss landscape into the

SGD algorithm to improve training of low-resource NMT systems.

Given a training set D :=∪n
i=1{(xi , yi )}, training steps s, learning rate schedule η1, . . . ,ηs , batch

size |B| and loss function L, we add the following hyper-parameters: a number of training

branches κ> 0 a number of local random directions N > 0, and the amount of interpolated

models n_alphas> 0, which results in a neighborhood of size N ×n_alphas. We propose the

following, for each step t on regular intervals:

1. Sample a mini-batch B from D.

2. Draw κ models θ(1)
t , . . . ,θ(κ)

t from θt , by training on microbatches with high regular-

ization. The objective of this is to store simultaneously various candidates for θt +1,

branching from θt , that are far enough apart in the weight space that they can be

considered to inhabit different neighborhoods.

3. In order to cost-efficiently estimate the neighborhood of each of the κ branches, for

each of them N copies are created of of θ(i )
t , resulting in θ(i )

tr and1
, . . . ,θ(i )

tr andN
, as explained
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in Section 4.2.2.

4. For each direction θ(i )
tr andi

, we compute n_alphas models by (1−α) · θ(i )
t +α · θ(i )

tr andN
.

We sample n_alphas values of α evenly from the interval [0,0.1], as detailed in Sec-

tion 4.2.2. This results in the estimated neighborhood of θ(i )
t , a matrix of models of size

N ×n_alphas.

5. For each estimated neighborhood, training losses are computed with a small amount of

batches, and their flatness is measured with a metric presented in Section 4.2.2.

6. θt+1 is defined as the model in θ(i )
tr and1

, . . . ,θ(i )
tr andN

with the lowest value of the mean of its

loss and the flatness of its neighborhood.

4.4 Conclusion and Perspectives

In this chapter we have presented evidence that shows that linear interpolation is enough to

estimate the loss landscape of a model. We have also provided evidence that at different points

in training, a well-regularized model settles on different-looking regions of the landscape,

which affects the precision of the interpolation method. We have proposed a cost-effective

method to estimate the immediate neighborhood of a model in the loss landscape, as well

as empirical demonstration of several metrics to measure its flatness for a normally-trained

model. Finally, we have also proposed a solution to integrate this estimation into standard

training, which at some computational cost, would help particularly low-resource NMT mod-

els to settle into flatter regions of the loss landscape, hence improving their generalization

abilities.

We conclude by observing that empirical testing of the loss-landscape-aware SGD algorithm

will require extensive future experiments. Additionally, more theoretical results stemming

from our neighborhood-estimation method should also be studied experimentally, namely to

find out whether models trained with different amounts of regularization settle on regions of

the loss landscape with different flatness values, and whether a connection can be quantified

between flatness and generalization ability of a model, by comparing how models settled on

regions with different flatness values perform on a set of unseen datasets, ranked on similarity

to the training set used to train the models.
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5 A Simplified Training Pipeline
for Low-Resource and
Unsupervised MT1

Training neural MT systems for low-resource language pairs or in unsupervised settings (i.e.

with no parallel data) often involves a large number of auxiliary systems. These may include

parent systems trained on higher-resource pairs and used for initializing the parameters of

child systems, multilingual systems for neighboring languages, and several stages of systems

trained on pseudo-parallel data obtained through back-translation. In this chapter, we pro-

pose a simplified pipeline, which we compare to the best submissions to the WMT 2021 Shared

Task on Unsupervised MT and Very Low Resource Supervised MT. Our pipeline only needs

two parents, two children, one round of back-translation for low-resource directions and two

for unsupervised ones and obtains better or similar scores when compared to more complex

alternatives.

After showing in this chapter that various techniques commonly used in low-resource NMT

are often used superfluously, in the next two chapters of Part II we will study whether a more

sophisticated approach to multitasking (Chapter 6) and multilingual training (Chapter 7) can

prove beneficial in a low-resource setting.

5.1 Introduction

Several known techniques enable the design of neural MT systems with little or no parallel

data for the source and target languages. Among them are the initialization with a parent

model trained on parallel data from related languages (Zoph et al., 2016; Kocmi and Bojar,

2018) and repeated cycles of back-translation of monolingual data that create pseudo-parallel

corpora used for training (Sennrich et al., 2016a; Hoang et al., 2018). When designing a very

low-resource or unsupervised system, many practitioners rightfully consider as a guideline

the best-performing systems found in several shared tasks, such as WMT Shared Task on

1This work was performed in collaboration with Alexis Allemann and Ljiljana Dolamic, and published in Atrio
et al. (2023). Alexis Allemann worked on the training of the models.
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Unsupervised MT and Very Low Resource Supervised MT (Fraser, 2020; Libovický and Fraser,

2021a; Weller-Di Marco and Fraser, 2022), where teams compete in order to achieve the

highest translation quality among them. While these systems typically do obtain very high

scores, in this chapter we show that the pipelines of the highest-scoring systems in this task

may be unnecessarily complex, and they can be substantially simplified while still achieving

comparable results. Our research sheds light on designing more efficient NMT systems,

considering the balance of cost (in training time and complexity) and benefit that commonly

used techniques have, when used in conjunction with each other.

To solve this shared task, high-resource parent models have been leveraged to initialize child

models for low-resource languages, which in turn have been used to warm-start the training

for unsupervised directions. However, the submissions to the above-mentioned shared task

typically developed several dozen models, with numerous parent/child models in both direc-

tions as well as increasingly better models trained on several rounds of back-translated data.

These models were finally ensembled for best results.

For the 2021 edition of the task, the unsupervised language pair was Lower Sorbian–German

(DSB-DE), with parallel data only available for testing, while the low-resource pair was Upper

Sorbian–German (HSB-DE). A large amount of German–Czech (DE-CS) parallel or monolin-

gual data is available to train parent models, due to the similarity of Sorbian dialects to Czech.

Moreover, given the similarity of the two Sorbian dialects, child low-resource models can

become parents of “grandchild” systems for the unsupervised task. As a result, these systems

are quite complex, which raises the question: up to which point can these architectures be

simplified with virtually no loss of performance?

Our study answers this question by presenting a simpler pipeline than the ones submitted to

the shared task, which reaches superior or comparable scores to the ones from the highest-

scoring teams. In our pipeline, we apply the same selection and filtering of data as the

best-performing team for comparability. We train high-resource parent models on authentic

parallel data in two directions (CS↔DE), and then use them to initialize child low-resource

models (HSB↔DE). We improve these systems with one round of back-translated monolingual

data, and finally use them to initialize systems and to produce back-translated data for the

unsupervised pair (DSB↔DE). More specifically, our simplifications are the following2:

1. only training from one initialization per parent-child-grandchild;

2. no multitasking and no multilingual models;

3. length-based filtering of back-translated data instead of language model-based one;

4. no monolingual data and only moderate amount of authentic parallel data for high-

resource parent models;

5. a single round of back-translation for low-resource directions and two for unsupervised

2We make public the configuration files that create these systems within the OpenNMT-py framework
(github.com/AlexRAtrio/simplified-pipeline).
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directions;

6. same subword vocabulary for all translation directions;

7. moderately-sized Transformer-Base instead of Big;

8. unique set of values for hyper-parameters such as learning rate and label smoothing.

5.2 Analysis of Submissions to the WMT21 Shared Task

Six teams competed for the highest scores in the low-resource Upper Sorbian / German and

the unsupervised Lower Sorbian / German translation tasks at the WMT 2021 Shared Tasks

on Unsupervised MT and Very Low Resource Supervised MT (Libovický and Fraser, 2021a).

The datasets used in the tasks are presented in Section 5.4.1 below. The organizers scored

the submissions using automatic metrics (BLEU, chrF, BERTScore) over held-out test sets.

NRC-CNRC (Knowles and Larkin, 2021) and LMU (Libovický and Fraser, 2021b) achieved

some of the highest scores in both tasks. Other competitive scores were achieved by CL_RUG

(Edman et al., 2021) and NoahNMT (Zhang et al., 2021c), followed at some distance by our

own contribution labeled as IICT-Yverdon (Atrio et al., 2021). Since no team participated in

both tasks, and NoahNMT used a particularly complex pipeline with very large amounts of

training data and a pre-trained BERT encoder, we decided to work towards the simplification

of the NRC-CNRC and LMU 2021 pipelines.

The NRC-CNRC submission (Knowles and Larkin, 2021) experimented with various numbers

of BPE merges (Sennrich et al., 2016b) for different translation directions and for generat-

ing synthetic data for training. Their final vocabularies contain 25k and 20k subwords for

the supervised and unsupervised models, respectively. They built the BPE tokenizer from

upscaled HSB, CS and DE data, but without DSB. The architecture is based on Transformer-

Base (Vaswani et al., 2017), with frequent ensembling throughout the pipeline. They use

Moore-Lewis filtering (Moore and Lewis, 2010) of back-translated sentences. They train parent

CS↔DE models on the entire parallel CS-DE data in Table 5.1, with BPE-dropout (Provilkov

et al., 2020). From them, they initialize child HSB↔DE models, which are further fine-tuned

into grandchildren DSB↔DE.

The final HSB→DE system from NRC-CNRC is an ensemble of eight different models. Six of

them are children and grandchildren of CS-DE models, and two are multilingual CS-DE and

HSB-DE models (with no transfer learning). Among the other six, there are different values for

hyper-parameters like learning rate or label smoothing. After training with various filtering

strategies for back-translated sentences, Moore-Lewis filtering was found to perform best,

although differences are generally smaller than 1 BLEU point. Some models are fine-tuned

only with back-translations, or only authentic data, or both. For DE→HSB translation, the

translation is generated with an ensemble of seven systems. The final NRC-CNRC submission

to the DSB→DE unsupervised task is an ensemble of two grandchild systems trained with

different back-translated corpora, and for DE→DSB it is an ensemble of four grandchildren,

with different rounds of back-translation, different learning rates, and at least one different
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CS-DE parent model.

The LMU submission (Libovický and Fraser, 2021b) starts with a BPE tokenizer with 16k

merges, on the entire HSB, DE, CS and DSB data. Parent Transformer-Base CS↔DE models

are trained on the entire CS-DE parallel data, which is filtered by length and sentences that

are not Czech or German. To this authentic data, they add 20M lines of monolingual CS and

DE respectively for back-translation, which they use to train another set of parent models

with Transformer-Big, sampling and tagged back-translation. Child HSB→DE and DE→HSB

models (also Transformer-Big) are trained from CS-DE parents, first on authentic parallel

data. Then, they are used to iteratively back-translate 15M lines of DE and the entire HSB

monolingual data for four rounds, with a new model initialization for each round. To obtain

DSB→DE and DE→DSB grandchildren systems, iterative back-translation is performed for

eight rounds, initialized from the respective HSB/DE Transformer-Big child systems.

A similar shared task was again organized at WMT 2022, including HSB↔DE and DSB↔DE

translation (Weller-Di Marco and Fraser, 2022). Additional parallel HSB-DE data was pro-

vided, increasing the total to about 0.5 million lines, which likely increased scores for the

low-resource supervised tasks HSB↔DE. Moreover, new tracks were introduced so that all

directions between HSB, DSB, and DE were studied in both low-resource and unsupervised

settings.

Four teams participated in the low-resource supervised tasks, and three in the unsupervised

ones. In most tasks, HuaweiTSC (Shapiro et al., 2022) achieved by far the highest scores,

thanks to a deep 35-layer encoder, 6-layer decoder Transformer (Wei et al., 2021) and a parent

multilingual model trained on vast amounts of data (including 55M lines of DE-CS, 66M lines

of DE-PL, and 20M of monolingual DE). In addition to the techniques we study in this chapter,

Shapiro et al. (2022) used regularized dropout (Liang et al., 2021) to improve consistency while

training. Their setup thus also consisted of numerous and expensive training steps, just as the

NRC-CNRC and LMU systems to which we compare our proposal.

5.3 Proposed Pipeline

We propose a simplified training pipeline represented in Figure 5.1, which reaches comparable

or better results than the above systems. The pipeline is minimal, in the sense that only

eight systems are trained for HSB↔DE and DSB↔DE translation, including parent systems

for initialization. We show that one round of back-translation for low-resource directions

and two for unsupervised ones are sufficient. In comparison with the numerous rounds

and checkpoints of the NRC-CNRC and LMU systems, our pipeline is an order of magnitude

smaller.

We start by training from scratch parent models DE→CSparent and CS→DEparent on authentic

parallel data. From their best-performing checkpoint, we respectively initialize DE→HSBauthentic

and HSB→DEauthentic models, which we train only on authentic parallel data. We then use
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Figure 5.1: Pipeline of implemented systems. Solid arrows represent the parent systems used,
and dashed arrows represent creation of synthetic data through back-translation. The datasets
in color are those presented in Table 5.1. The datasets in white, to the right of dashed lines, are
the back-translations (BT) generated by our systems. The unsupervised models are trained
with two rounds of back-translation. Figure reproduced from Atrio et al. (2023).

their best-performing checkpoints to generate synthetic parallel data (back-translations) by

translating monolingual target data (resulting in synthetic datasets HSBBT-DEmono and DEBT-

HSBmono). We initialize from the best-performing checkpoints of the previous systems new

models DE→HSBauthentic+BT and HSB→DEauthentic+BT which we train on upscaled authentic

parallel data and back-translated data.

Finally, with the best-performing checkpoint of system HSB→DEauthentic+BT, we perform back-

translation of monolingual DSB data (resulting in DEBT1-DSBmono), and train with this first

round of synthetic parallel data the unsupervised DE→DSBunsupervised(a) model. We use this

system for the first round of back-translation in the opposite direction, of the DE part of the

HSB-DE authentic data and monolingual DE (resulting in DSBBT1-DE and DSBBT2-DEmono)

into DSB, on which we train the unsupervised DSB→DEunsupervised(a) model. We then use

this system for the second round of back-translation of monolingual DSB data and train

another unsupervised DE→DSBunsupervised(b) model, and with it we perform a second round

of back-translation of monolingual DE to train a final unsupervised DSB→DSBunsupervised(b)

model.

61



Chapter 5. A Simplified Training Pipeline for Low-Resource and Unsupervised MT

Language Name of dataset Original After filtering
sentences words sentences words

DE-CS

DGT v8 4,924 88,616 4,894 85,423
Europarl v8 569 13,337 569 13,337
JW300 1,052 16,342 1,039 16,180
News Commentary v16 204 4,494 197 4,445
OpenSubtitles 16,380 115,950 16,358 115,729
WMT-News 20 438 20 437

DE-HSB
WMT 2020 Train 60 741 60 741
WMT 2021 Train 88 1,266 88 1,266

HSBmono

WMT20 Sorbian Institute 340 5,951 340 5,951
WMT20 Web 134 2,137 133 2,137
WMT20 Witaj 222 3,236 222 3,234

DSBmono WMT21 Monolingual 145 2,381 145 2,381
DEmono WMT21 News Crawl 19 1,500 41,907 1,500 41,907

Table 5.1: Monolingual and parallel corpora with their languages and numbers of lines (sen-
tences) and words, before and after filtering, in thousands. For the bilingual corpora we only
give the values of the DE side.

5.4 Data, Preprocessing and Systems

5.4.1 Corpora

The datasets we use are listed in Table 5.1, and the identifiers correspond to those in Figure 5.1.

They encode the language and index number for authentic parallel DE-CS, authentic parallel

DE-HSB, and monolingual HSB, DSB, and DE. For the CS↔DE parent models we use parallel

data from DGT (Tiedemann, 2012; Steinberger et al., 2012), Europarl (Koehn, 2005), JW300

(Agić and Vulić, 2019), OpenSubtitles (Lison and Tiedemann, 2016), News Commentary, and

WMT-News.3 Our HSB↔DE models use datasets from the 2020 edition of the task, with

monolingual HSB data from three sources: (a) the Sorbian Institute provided a mix of high-

and medium-quality HSB data; (b) the Witaj Sprachzentrum provided high-quality HSB

data; (c) the Web data consists of web-scraped noisier HSB data gathered by the Center for

Information and Language Processing at LMU Munich (Fraser, 2020). Our DSB↔DE models

use only the monolingual Lower Sorbian (DSB) dataset from the 2021 shared task.

To evaluate our systems, we use the ‘Newstest2019-csde’ as a test set for our CS↔DE models.

For our HSB↔DE and DSB↔DE models we use the ‘devel’ set from the WMT20 task during

development, and ‘devel_test’ for final evaluations. Since the official scores of the task are

calculated on an undisclosed subset of the blind test set, we cannot compare our results with

the final official ones. We will thus compare them with the scores on ‘devel_test’ reported

by each team in their articles. Our two evaluation metrics are the same as in the shared

3statmt.org/wmt20/translation-task.html
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task. We use the SacreBLEU library (Post, 2018) to compute BLEU (Papineni et al., 2002).4

We also use BERTScore5(Zhang et al., 2019a), with the XLM-RoBERTa-Large model (Conneau

et al., 2020) for translations into German, as provided with the BERTScore toolkit. We test

the statistical significance of differences in scores at the 95% confidence level using paired

bootstrap resampling from SacreBLEU.

5.4.2 Data Filtering

For comparison purposes, we follow closely the data preparation procedure of the NRC-CNRC

team (Knowles and Larkin, 2021). We first clean the training data with the clean_utf8.py
script from PortageTextProcessing.6 Subsequently, parallel training data is filtered with

the clean-corpus-n.perl script from Moses (Koehn et al., 2007) to remove sentence pairs

with a length ratio larger than 15. Punctuation is then normalized using the normalize-
punctuation.perl script from Moses. Finally, non-breaking spaces (Unicode U+00A0 or

‘\xa0’) and empty lines are deleted.

For all DE-CS parallel data and all monolingual DE and CS data, lines that contain characters

which have not been observed in DE-HSB training data, WMT-News, or Europarl corpora are

deleted. This is done to eliminate encoding issues and text that is clearly in other languages.

The DE monolingual dataset consists of a likewise cleaned random sample of the full WMT21

News Crawl 19 corpus. The numbers of lines after filtering are shown in the two rightmost

columns of Table 5.1.

5.4.3 Tokenization

We start tokenizing sentences into words with the Moses tokenizer: tokenizer.perl -a -l
$LNG, where $LNG is cs or de, using the cs code also for HSB and DSB data. Then, we use

Byte Pair Encoding (BPE) (Sennrich et al., 2016b)7 to build a vocabulary of 20k subwords.

For building the BPE models, we used all HSB-DE data, the Sorbian Institute and Witaj

monolingual HSB data (but not the Web-crawled HSB data, which is too noisy), both sides of

CS-DE data, and News-Commentary (DE) data. The HSB data was upscaled twice. The same

datasets were used for extracting the joint vocabulary, which was then used to tokenize the

source and target sides with a BPE-Dropout rate of 0.1 (Provilkov et al., 2020).

In post-processing, we detokenize BPE subwords with the BPE toolkit and then with a script

from Moses: detokenizer.perl -a -l $LNG, where $LNG is cs or de, using the cs code

also for HSB and DSB data.

4github.com/mjpost/sacrebleu, signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1.

5github.com/Tiiiger/bert_score, signature:
xlm-roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.26.0)_fast-tokenizer

6github.com/nrc-cnrc/PortageTextProcessing
7github.com/rsennrich/subword-nmt
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5.4.4 System Architecture

We use Transformer models (Vaswani et al., 2017) from the OpenNMT-py library (Klein

et al., 2017) version 2.3.0.8 We use the following default values of hyper-parameters from

Transformer-Base: 6 encoder/decoder layers, 8 attention heads, Adam optimizer (Kingma

and Ba, 2014), label smoothing of 0.1, dropout of 0.1, hidden layer of 512 units, and FFN of

2,048 units. We share the vocabulary and use the same embedding matrix for both input and

output languages. The batch size is 8,192 tokens, and the maximum sequence length for both

source and target is 501 tokens. We keep OpenNMT-py’s scaling factor of 2 over the learning

rate. We use standard values for hyper-parameters in order to maintain a simplified pipeline,

although it is likely that a more regularized system could further improve scores (Atrio and

Popescu-Belis, 2022).

We do not use any early stopping measure and train for a sufficiently large amount of steps to

ensure convergence. We train the parent CS↔DE models for 500,000 steps, and the children

and grand-children ones for 100,000 steps. To train our models we use between one and four

Nvidia RTX 2080 Ti with 11 GB RAM which amounts to around 80 hours for parent models, 30

hours for children models (systems 3/4 and 5/6), and 15 hours for grandchildren models. As

better parent systems lead to better children, we trained the parents for a longer time, given

also the larger parallel data available.

We save checkpoints every 4,000 steps during training, and obtain the testing scores from

an ensemble of the four best checkpoints in terms of BLEU scores on the validation data.

When testing, we use a beam size of 5 for all systems, except when indicated otherwise for

back-translation.

5.5 Results of the Proposed Pipeline

5.5.1 Parent DE to and from CS Systems

We first train the DE→CSparent and CS→DEparent models (see Figure 5.1) on the authentic

parallel CS-DE data presented in Table 5.1. The BLEU and BERTScore of these systems, shown

in Table 5.2, are respectively 20.2 and 22.1. These are comparable with the ones reported by

NRC-CNRC (22–25 BLEU points) and with those with the same architecture appearing in the

Opus-MT leaderboard9, trained on OPUS parallel data (Tiedemann, 2012) using Opus-MT-

Train (Tiedemann and Thottingal, 2020).

Choosing Czech for the parent model is reasonable due to its similarity with Upper and Lower

Sorbian, but we have found that this similarity is not crucial (Atrio et al., 2021). Using a similar

setup, we observed almost identical results with a Polish↔German parent model, and a loss of

only 1.3 BLEU points with a French↔German one.

8github.com/OpenNMT/OpenNMT-py
9opus.nlpl.eu/leaderboard/DE→CS and CS→DE
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5.5 Results of the Proposed Pipeline

5.5.2 Child DE to and from HSB Systems

We initialize the child systems DE→HSBauthentic and HSB→DEauthentic models from the highest-

scoring checkpoint of the respective parent, and trained them on authentic parallel HSB-DE

data. The systems reached BLEU scores of 56.7 and 56.1 respectively (see Table 5.2).

System BLEU BERTScore
DE→CSparent 20.2 .936
CS→DEparent 22.1 .938
DE→HSBauthentic 56.7 -
HSB→DEauthentic 56.1 .975

Table 5.2: BLEU and BERTScore on newstest2019 for CS-DE parent models and devel_test
for HSB-DE models trained only on authentic data.

One round of back-translation. We hypothesize that due to the already existing authentic

parallel data, one round of back-translation (BT) could be sufficient. We use the above systems

to generate synthetic parallel data from monolingual DE and HSB corpora. To generate

it, we decode by sampling from the entire model distribution rather than applying beam

search, following Edunov et al. (2018). As shown in Figure 5.1, with the HSB→DEauthentic and

DE→HSBauthentic systems we translate the DEmono data into HSBBT. Similarly, we translate the

HSBmono data into DEBT. Therefore, we obtain two pseudo-parallel datasets with authentic

target sides. We apply to them the same filtering process as in Section 5.4.2, except for a

more restrictive cut-off for clean-corpus-n.perl, using a maximum ratio of 1.5 between

sentences instead of 15. This filtering results in the deletion of respectively 5% and 11% of the

HSB-DE and DE-HSB pseudo-parallel datasets.

We continue training the HSB→DEauthentic and DE→HSBauthentic systems with authentic par-

allel HSB-DE data and the back-translated data, with the former being upscaled to match the

number of lines of the latter. We obtain respectively the systems noted HSB→DEauthentic+BT

and DE→HSBauthentic+BT. The improvements brought by this round of back-translation are

only of about 1 BLEU point (see Table 5.5). Our scores are similar to those reported by NRC-

CNRC without inter-model ensembling (57-58 BLEU). With the highest-scoring checkpoint

for each of HSB→DEauthentic+BT and DE→HSBauthentic+BT we generate synthetic data for the

unsupervised case by translating monolingual DSB and DE.

Iterative back-translation. We found that our pipeline does not benefit from multiple rounds

of back-translation thanks to an additional experiment, not included in the final pipeline.

Following Libovický and Fraser (2021b), for each round of back-translation i (with i = a, b,

c), systems HSB→DEauthentic+BT(i ) and DE→HSBauthentic+BT(i ) are respectively initialized from

the parent models CS→DEparent and DE→CSparent trained on CS-DE data, instead of child

systems trained on only authentic data HSB→DEauthentic and DE→HSBauthentic as performed

above. Decoding and filtering remain as described above as well. Otherwise, the first round

of back-translation remains as above, and the second round results in new pseudo-parallel

datasets on which we train new systems in both directions (also including upscaled authentic
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parallel data HSB-DE), resulting in systems HSB→DEauthentic+BT(b) and DE→HSBauthentic+BT(b).

We perform a third round to obtain systems HSB→DEauthentic+BT(c) and DE→HSBauthentic+BT(c).

Hence, this method differs from our main proposed pipeline in the usage of three rounds

versus one, and the initialization of models from CS-DE parents instead of the child HSB-DE

systems trained on authentic parallel data.

While several studies have suggested that multiple back-translation rounds are beneficial, our

findings are more nuanced. As we observe in Table 5.3, for the direction DE→HSB, the first

round of back-translation improves BLEU by 1.2 points, but afterwards scores decrease. For

the direction HSB→DE, on the contrary, BLEU scores continue to improve with more iterations,

although with diminishing returns, with a final improvement of 0.7 points. We hypothesize

that this is due to the monolingual DE dataset being larger than the HSB one.

Direction System BLEU

DE→HSB

DE→HSBauthentic 56.7
DE→HSBauthentic+BT(a) 57.9⋆
DE→HSBauthentic+BT(b) 57.6⋆
DE→HSBauthentic+BT(c) 57.4

HSB→DE

HSB→DEauthentic 56.1*
HSB→DEauthentic+BT(a) 56.5*
HSB→DEauthentic+BT(b) 56.5*
HSB→DEauthentic+BT(c) 56.8

Table 5.3: BLEU scores for only authentic parallel data, and three rounds of back-translation:
DE→HSB systems are trained with DEBT(i )-HSBmono and HSB→DE systems are trained with
HSBBT(i )-DEmono. We note in bold the highest score in each direction. We denote scores that
are not significantly different per direction with the same symbol.

In contrast, Libovický and Fraser (2021b) observed more significant improvements over four

rounds of iterative back-translation, although also with diminishing returns. For HSB→DE,

their improvement was 2.7 (up to 56.1 BLEU), starting however from a lower score than ours

(53.4) and getting half of the improvement in the first iteration. For the DE→HSB, they achieve

a smaller improvement of 1.6, up to 56.5 overall, starting from 54.9. Their highest scores are

obtained after two rounds. We hypothesize that the difference between our results and theirs

regarding the HSB→DE direction is explained by their use of ten times more monolingual DE

data, coupled with a larger architecture.

Following Edunov et al. (2018) we experimented with various decoding methods for the back-

translation stage. As a comparison to the full unrestricted sampling we use in all systems, we

studied restricted sampling of the top 10 candidates, as well as the dropout of 10% of the words

after standard decoding, and their combination. For DE→HSBauthentic+BT(a) the three methods

obtained nearly identical scores (57.54, 57.54, and 57.51), and none of them substantially

deviated from our original method. This supports previous observations by Edunov et al.

(2018) showing that differences between decoding algorithms for back-translation are only

noticeable when the monolingual data size is large (e.g. more than 8M lines).
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5.5.3 Grandchild DE to and from DSB Systems

In contrast with the DE↔HSB low-resource case, we hypothesize that more than one round of

back-translation may be useful in the unsupervised case, due to the lack of parallel data. We

used system HSB→DEauthentic+BT to create the pseudo-parallel dataset DEBT-DSBmono, with

which we trained system

DE→DSBunsupervised(a). With this system, we generated synthetic DSB data from the DE

part of the HSB-DE authentic data as well as monolingual DE, resulting in DSBBT1-DE and

DSBBT2-DEmono. For rounds b and c we repeated the process as with HSB-DE, initializ-

ing system DE→DSBunsupervised(b), (and then c) and system DSB→DEunsupervised(b) (and then

c), respectively from the highest-scoring checkpoint from systems DE→HSBauthentic+BT and

HSB→DEauthentic+BT, and generating synthetic data with each other. Filtering removed be-

tween 6-9% of the lines. The scores of the resulting systems are shown in Table 5.4.

Direction System BLEU

DE→DSB

DE→DSBunsupervised(a) 26.1
DE→DSBunsupervised(b) 29.4⋆
DE→DSBunsupervised(c) 29.5⋆

DSB→DE

DSB→DEunsupervised(a) 36.5
DSB→DEunsupervised(b) 38.1*
DSB→DEunsupervised(c) 38.4*

Table 5.4: BLEU scores for three rounds of back-translation: DE→DSB systems are trained with
DEBT(i )-DSBmono and DSB→DE systems are trained with DSBBT(i )-DEmono and DSBBT(i )-DE
(the DE part of the authentic HSB-DE data). The highest score in each direction is in bold.
Scores that are not significantly different per direction are marked with the same symbol.

System DE→HSB HSB→DE DE→DSB DSB→DE
BLEU BLEU BERTScore BLEU BLEU BERTScore

NRC-CNRC 59.9 60.0 - 31.0 34.9 -
LMU 56.5 56.2 .938 30.1 33.8 .874
NoahNMT 58.3 58.5 - - - -
CL_RUG 52.1 51.6 - 24.9 32.1 -
IICT-Yverdon 54.6 53.2 - 9.62 - -
Ours 57.4 57.0 .976 29.4 38.1 .958

Table 5.5: BLEU and BERTScore on the ‘devel_test’ set of the best-performing system of each
team, with our proposals at the bottom. The highest score per direction is in bold. The systems
are referenced in Section 5.2 above, and ‘-’ indicates that the score is not available.

For DE→DSB, the second round of back-translation produced a large improvement of 3.3

BLEU points over the first round, but the third round resulted in a minimal improvement of

0.1. The large improvement of system DE→DSBunsupervised(b) may be explained by the fact

that the synthetic data used to train it is the first DE set translated by a true DSB system

(DSB→DEunsupervised(a)). For DSB→DE we also observe improvements from several rounds

of back-translation, with the second one improving BLEU by 1.6 points and the third round
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improving only minimally by 0.3 points. We hypothesize that this difference is due to the lower

amount of DSB monolingual data versus DE, and the back-translation of the DSB data being

generated by a model that had not been trained on DSB. For both directions (DE→DSB and

DSB→DE) the difference between systems a and b was significant, but not between b and c.

As a result, we excluded extra rounds of back-translation for low-resource HSB-DE from our

simplified pipeline, and only performed two rounds for unsupervised DSB-DE.

5.6 Discussion and Conclusion

We show in Table 5.5 the final results of our pipeline, compared to the highest scores for each

direction obtained in the WMT 2021 shared task (Libovický and Fraser, 2021a). Scores from

CFILT (Khatri et al., 2021) are not shown because we do not have access to their ‘devel_test’

scores. HSB-DE scores from CL_RUG are intermediate scores for their unsupervised DSB-DE

systems.

On both low-resource directions (HSB↔DE) our simpler pipeline obtains comparable results

to the three highest-scoring teams (NRC-CNRC, LMU and NoahNMT systems). Our scores

on one unsupervised direction (DSB→DE) surpass those of the three participants, while on

the other (DE→DSB) our scores are comparable to those of the two highest-scoring teams

(NRC-CNRC and LMU). To explain the latter result, we hypothesize that our simplified pipeline

is more sensitive to weight initialization, and therefore is less robust across all directions than

a more complex pipeline.

Compared to the NRC-CNRC submission, our pipeline uses the same data selection and

filtering, a single vocabulary for the tokenizer, trains from a single random initialization for

each of the translation direction, does not train multitask or multilingual models, uses a

much simpler filtering for back-translated sentence pairs, and sets a single set of values for

hyper-parameters such as learning rate and label smoothing.

Compared to LMU, our pipeline uses a smaller amount of authentic parallel data for the parent

CS↔DE models, does not use monolingual data back-translated for these parent models, and

uses an architecture with fewer parameters (Transformer-Base instead of Big). Moreover, we

use only one round of back-translation instead of four for the child HSB↔DE systems and two

instead of eight for the grandchild DSB↔DE systems submitted by LMU.

NoahNMT also produced high scores on the supervised tasks, although with the use of a

pre-trained BERT model (Devlin et al., 2019), vast amounts of monolingual data (100M lines),

and dual parent transfer. CL_RUG scored well in the unsupervised tasks, but made use of

sequence masking, denoising auto-encoding, cross-lingual back-translation, and vocabulary

alignment between HSB and DSB with VecMap (Artetxe et al., 2018). IICT-Yverdon applied

a scheduled multitask training to both the supervised and unsupervised directions, which

appeared to be particularly ineffective for the unsupervised task.
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5.7 Perspectives

We now provide some tentative explanations on why our simplified pipeline produces scores

that are comparable with those from more complex ones. Firstly, a much better trained

parent model does not necessarily result in noticeable better child models. Whatever the

cause of the improvement of the parent models (additional parent training data, parent back-

translation, or additional parent pairs), when several stages in the training pipeline can be

found afterwards (such as training on authentic data, then children back-translation, then

grandchildren back-translation, etc.), the initial benefit may be lost later in the pipeline. This

is particularly exacerbated when child systems are later trained with data of dubious quality,

such as back-translations. Artetxe et al. (2020a), for instance, showed that when performing

iterative back-translation, the quality of the initial system has minimal effect on the final

performance, as systems tend to converge to scores dictated by the monolingual data.

This first explanation feeds into a second explanation: large amounts of parent parallel or

monolingual data make it reasonable for practitioners to choose larger architectures, which

must then be carried over to the lower-resource children, since pruning rarely happens mid-

pipeline. Although there is evidence that fitting large models to very small amounts of data

is not necessarily detrimental (Belkin et al., 2019) and can even be beneficial (Li et al., 2020),

it is unclear if this still holds with a more complex training pipeline. In any case, a smaller

architecture in a low-resource setting, while still over-parameterized, can perform as well as a

larger one.

Finally, modern Transformer-based systems are robust, and there seems to be a large area

of “acceptable results" which is relatively easy to access, as we have empirically shown with

our comparison to five different submissions to the WMT shared task. However, our pipeline

is only trained on a group of similar languages (Czech, Upper Sorbian, and Lower Sorbian)

to and from German, which may not generalize in the same manner to other languages or

domains.

To sum up, although the competition to achieve first place in shared tasks such as the one

discussed here leads participants towards increasingly complex pipelines, we have shown

that competitive or even better results can be achieved with a much simpler training pipeline.

Nonetheless, the lack of available parallel data for low-resource NMT calls for research on

a useful usage of monolingual data even on a complex pipeline. In the following chapter,

we study whether a more complex use of monolingual data, in the form of fixed-scheduled

multitasking with auxiliary tasks, can improve the scores on a low-resource pipeline.

5.7 Perspectives

The conclusions from the main experiments in this study should be strengthened by repli-

cating them with more datasets. It would be interesting to replicate our final results across

several runs, particularly the unsupervised ones, to observe the variation that can be expected

with different initial weights. Although it would be computationally expensive, a natural

progression of this study would be to perform various ablation studies where we explicitly
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compare our pipeline to various specific techniques, in order to better control the effects of

each low-resource translation techniques, instead of only comparing a simplified pipeline to

other studies.
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6 Fixed-Scheduled Multitask Training1

In this chapter, we present the systems submitted by our team from the Institute of ICT at

HEIG-VD to the Unsupervised MT and Very Low Resource Supervised MT task at WMT 2021

(Libovický and Fraser, 2021a). We first study the improvements brought to a baseline system

by techniques such as back-translation and initialization from a parent model. We find that

both techniques are beneficial and suffice to reach performance that compares with more

sophisticated systems from the 2020 task. We then present the application of this system to

the 2021 task for low-resource supervised Upper Sorbian (HSB) to German translation, in both

directions. Finally, we present a contrastive system for HSB-DE in both directions, and for

unsupervised German to Lower Sorbian (DSB) translation, which uses multi-task training with

various training schedules to improve over the baseline.

6.1 Introduction

In this study, we present the systems submitted to the WMT 2021 task on Unsupervised MT

and Very Low Resource Supervised MT. We first build a series of baseline systems, driven

mostly by considerations of simplicity, trained on data from the 2020 edition of the task, for

translation between Upper Sorbian (HSB) and German (DE). These systems, described in

Section 6.4, enable us to quantify the merits of using additional back-translated data (Sennrich

et al., 2016a) and of initializing the system for a low-resource pair with parameters learned on

a high-resource pair (same target language and related source language).

The systems described above serve as the basis for our submitted to the shared task, for

DE→HSB and HSB→DE, presented in Section 6.5, which improves upon our 2020 baseline

with the addition of more parallel data, and achieves competitive performance with the use of

back-translation and parent-initialization only. However, this approach does not lead to an

effective baseline for unsupervised German to Lower Sorbian (DSB) translation (Section 6.6).

1This work was performed in collaboration with Gabriel Luthier, Axel Fahy, and Giorgos Vernikos and published
in Atrio et al. (2021). I was responsible for the design of the baseline system and the design and implementation of
the contrastive system.
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In Section 6.7, we present experiments with a contrastive system that implements multi-

task learning, with several schedules, in which denoising tasks together with translation are

presented to the systems in increasing order of complexity, leading to more robust HSB↔DE

systems, together with a strategy of diverse ensembling. We also use our DE→HSB system to

initialize a multi-task DE→DSB system for the unsupervised task, although in this case the

performance is not competitive.

6.2 Related Work

Generally, as illustrated in Figure 6.1, there are three main components to scheduling of

tasks: a difficulty measurer, which provides a quantified measure of the complexity of a

task, a scheduler, which determines on what a step will be trained on, and a batcher, which

determines how the samples of potentially different tasks will be assembled. In the following

we provide a general summary for each of these concepts, and refer to Table 6.1 for the specific

literature.

Figure 6.1: Abstract structure of adaptive scheduling.

A difficulty measurer can be static, i.e. determined before the multitask model starts training.

This in itself can be a simple heuristic such as considering long samples as more complex

than shorter ones, or it can rely on some pre-trained model. Alternatively, the complexity of a

sample or task can be calculated during training, that is, dynamically, typically using some

measure of the performance of the model at a given point during its regime.

A scheduler can be explicit (determining which examples can be sampled by the batcher to

train on) or implicit (assigning different weights to examples that can be trained on). Each can

be static or dynamic as well, and can range from simple methods such as a linear schedule

over the total amount of training steps to scaling the gradients of samples or tasks based on

the model’s performance. Dynamic scheduling methods are sometimes called competence or

self-pacing.

A batcher can be continuous if there is no intra-classification among samples or discrete

otherwise. If it is continuous it typically samples examples based on length (the standard too

outside of scheduled multitasking), and if it is discrete it may do so according to classifications

based on task, linguistic features, or otherwise. Discrete batching can be called sharding.

Wang et al. (2020d) train on a bitext machine translation task and two auxiliary tasks (masked

LM and denoising auto-encoding), and present two dynamic schedules: a dynamic sampling

of tasks with a temperature-based scheduler based on epochs, and a dynamic noising ratio

based on steps, to increase the difficulty of the auxiliary tasks. They observe improvements
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Difficulty measurer: Static
Heuristics (length, frequencies, etc.) Kocmi and Bojar (2017)

Platanios et al. (2019)
Linguistic features (parsing depth, etc.) Kocmi and Bojar (2017)
Pre-trained model Lu and Zhang (2021)
Filtering (Moore-Lewis, etc.) Zhang et al. (2019b)

Difficulty measurer: Dynamic
Loss (absolute) Zaremoodi and Haffari (2019)
Decline of loss (relative) Xu et al. (2020a)
Variance over M runs (dropout, etc.) Wan et al. (2020)

Scheduler: Static
{Steps, epochs, etc.}×{Linear, sqrt, etc.} Platanios et al. (2019)
Boosting or replacing Zhang et al. (2018)

Scheduler: Dynamic
Current vs. pre-trained Xu et al. (2020a); Jean et al. (2019)
Weighted loss Zaremoodi and Haffari (2019)

Gan et al. (2021); Wan et al. (2020)
Scaled gradients or learning rate Jean et al. (2019)

Batcher: Continuous
By length Kocmi and Bojar (2017)
By difficulty Xu et al. (2020a)

Batcher: Discrete
By difficulty Zhang et al. (2018)
By features Kocmi and Bojar (2017)

Table 6.1: Main options for adaptive scheduling / curriculum learning. Certain methods, like
genetic meta-learning, are not represented here, which intends to be a more tailored view of
standard methods in NLP. For a more detailed taxonomy, see recent surveys by Wang et al.
(2021); Soviany et al. (2022).

particularly on low-resource languages. Liu et al. (2020a) propose to use the sum of the norm

of the token embeddings of a sample as a difficulty measurer, and the source embedding of the

NMT model at a given step as a competence measure (to filter out examples from sampling).

They also present a weighting formula from the two measures in order to not over-sample easy

examples. They observe improvements in quality and training time on high-resource datasets.

In Section 7.2 we present more related work, specifically regarding data balancing for multilin-

gual and adaptive NMT.

6.3 Datasets

We use various Upper Sorbian datasets from the 2020 edition of the task, and additional

WMT data, as presented in Table 6.2, and previously in Chapter 5. The monolingual HSB data

from 2020 comes from three sources: sorbian_institute_monolingual consists of a mix of
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high- and medium-quality HSB data provided by the Sorbian Institute; witaj_monolingual
consists of high-quality HSB data from the Witaj Sprachzentrum; finally, web_monolingual
consists of web-scraped noisier HSB data gathered by the Center for Information and Language

Processing from LMU Munich (Fraser, 2020). We kept from all datasets only sentences that

have strictly more than 2 and strictly fewer than 301 words.

Dataset Lang. Before filtering After filtering
sentences words sentences words

Sorbian Institute Mono. HSB 339,822 5,044,079 339,822 5,044,079

Web Monolingual HSB 121,003 1,661,898 115,632 1,651,154

Witaj Monolingual HSB 222,027 2,672,255 215,370 2,660,805

Europarl v8 DE 2,234,583 48,430,884 2,186,477 48,347,698

JW300 DE 2,366,722 34,782,112 2,182,801 34,519,064

News Commentary v15 DE 422,009 8,942,517 409,955 8,939,335

Europarl v8 CS-DE CS 568,589 11,571,876 562,716 11,561,049

Europarl v8 CS-DE DE = 13,098,638 = 13,086,320

JW300 CS-DE CS 1,052,338 13,579,350 982,034 13,435,536

JW300 CS-DE DE = 15,133,882 = 14,992,424

News Comm. v13 CS-DE CS 174,789 3,486,672 172,987 3,479,819

News Comm. v13 CS-DE DE = 3,751,102 = 3,746,708

WMT 2020 HSB-DE Train DE 60,000 724,572 59,030 722,076

WMT 2020 HSB-DE Train HSB = 639,740 = 637,883

WMT 2021 HSB-DE Train DE 87,521 1,251,339 87,502 1,251,287

WMT 2021 HSB-DE Train HSB = 1,094,421 = 1,094,375

Table 6.2: Monolingual and parallel corpora with their languages and numbers of lines (sen-
tences) and words, before and after filtering by length (keeping sentences with more than 2
and fewer than 301 words).

6.4 Baseline HSB→DE System on 2020 Data

6.4.1 Subword Vocabulary

For the HSB→DE system, we use CS→DE initialization in several experiments, because Czech

(CS) is a high-resource language and close neighbor to Upper Sorbian. Therefore, we create

a tri-lingual shared subword vocabulary (CS, DE, HSB) using the Unigram LM model (Kudo,

2018) as implemented in SentencePiece.2 We apply 32,000 merges and the other parame-

ters of SentencePiece are kept to default values. We obtain 600k sentences of HSB data from

sorbian_institute_monolingual, witaj_monolingual and train.hsb-de, the latter be-

ing the HSB side of the 2020 training data. We do not use web_monolingual as it appears to

be noisy, due to the collection process. For CS and DE, 600k sentences are selected randomly

from the monolingual corpora listed in Table 6.2. The vocabulary generated by SentencePiece

is converted from log probabilities to frequencies using the spm_to_vocab.py tool from the

2https://github.com/google/sentencepiece (v. 0.1.95)
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OpenNMT-py toolkit. Using a common SentencePiece model for the three languages is not

obligatory, but appeared to improve the performance by 2-3 BLEU points in most cases.

6.4.2 System Parameters and Results

We use OpenNMT-py (Klein et al., 2017) for our experiments.3 We start with Transformer-Base

(Vaswani et al., 2017) (78M parameters) but also experiment with Transformer-Big (245M

parameters), with their main parameters described in Table 6.3. We apply the same regulariza-

tion and optimization procedures to the two models. We accumulate gradients over 2 batches

and train on 2 GPUs, with a batch_size of 1k for Base and and 2k for Big. We use the “noam”

learning rate schedule (Vaswani et al., 2017) with its values at each step multiplied by two,

and 8k warmup steps. We evaluate and save checkpoints every 5k steps. Final translations

are generated with a beam width of 5, ensembling the last two checkpoints in these experi-

ments. We report BLEU scores (Papineni et al., 2002) obtained with SacreBLEU (Post, 2018) on

detokenized text.

N h dmodel dff Pdrop steps
Base 6 8 512 2048 0.1 60k
Big 6 16 1024 4096 0.3 100k

Table 6.3: Parameters of the two Transformer models used in our experiments. Other parame-
ters are set to the default values of the OpenNMT-py toolkit.

6.4.3 Use of Back-translated Data

The first HSB→DE system we trained, for comparison purposes, used only the HSB/DE parallel

data provided for the WMT 2020 Low-Resource task. Its BLEU scores are 47.98 on the ‘dev’

set (devel.hsb-de) and 41.22 on the ‘devtest’ set (devel_test.hsb-de) after 60k steps of

training (first line of Table 6.4). The already high BLEU scores that are reached, compared to

scores generally observed on high-resource language pairs, indicate that the ‘dev’ and ‘devtest’

sets are probably quite similar to the training data.

We obtain additional training data through back-translation (Sennrich et al., 2016a) of widely

available monolingual German data. To this end, we train a DE→HSB model on the same

parallel corpus as above, which reaches BLEU scores of 45.23 / 40.62 respectively on ‘dev’ and

‘devtest’. Using this model, we translate News Commentary V15 from German into Upper

Sorbian. The resulting pseudo-parallel data (noisy on the HSB side) is used in addition to the

initial data for training a new HSB→DE model, which reaches a score of 52.91 / 44.39 (second

line of Table 6.4). The improvement of this single enrichment with imperfect data of the initial

low-resource system thus exceeds 4 BLEU points.

3https://github.com/OpenNMT/OpenNMT-py (v. 2.0.1)
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6.4.4 Initialization with Parameters from a High-Resource Pair

The second technique we use for improvement is transfer from a high-resource pair (Zoph

et al., 2016; Kocmi and Bojar, 2018), i.e. initialization with parameters from an MT system

trained on such a pair. As Upper Sorbian has many similarities with Czech, which is a high-

resource language, we initialize the HSB-DE model with the parameters of a model trained for

CS→DE, then train it with the same data as in the previous subsection. Firstly, the CS→DE

model is trained using Europarl and News Commentary, and reaches a BLEU score of 27.13 on

a sample test set extracted from these two corpora.

The resulting HSB→DE system reaches BLEU scores of 55.99 / 47.53, a further increase of

about 3 BLEU points (third line of Table 6.4). The use of an even larger dataset further

improves performance: the addition of the JW300 corpus (Agić and Vulić, 2019) to the CS→DE

training data increases BLEU by half a point (56.5 on ‘dev’). The rather small increase could be

attributed to the large difference in domains between JW300 and the HSB/DE data.

Since back-translation can provide very large amounts of data, we also trained a Transformer

Big (with the parameters shown in Table 6.3) with the addition of the monolingual German

corpora of Europarl and JW300 backtranslated into Upper Sorbian. This model reaches 58.08 /

49.99 BLEU points respectively on ‘dev’ and ‘devtest’, improving performance by more than

1.5 BLEU points. This is currently our best baseline model for HSB→DE, obtained with two

simple augmentation techniques only.

We can compare this score with three of the highest-scoring systems on the 2020 HSB→DE ‘de-

vtest’ set, noting some of the differences between them and our baseline. Scherrer et al. (2020)

achieved a BLEU score of 56.9 using back-translation and bilingual pre-training with CS→DE,

but also scheduled multitask with several monolingual and multilingual tasks. Knowles et al.

(2020) achieved a BLEU score of 58.9 using iterative back-translation, multiplication of the

HSB data for BPE training, and character- and word-level lexical modifications of Czech to

make it more similar to Upper Sorbian. Libovický et al. (2020) achieved a score of 56.0 with

much larger corpora for back-translation and CS→DE pre-training (14M lines) and the use of

an unsupervised CS→HSB system to translate the CS side of the DE/CS parallel data into HSB.

6.4.5 Initialization with Parameters from Other High-Resource Pairs

We studied the role of the closeness between Upper Sorbian and the high-resource source

language used for initialization, by reproducing the above initialization experiments (CS→DE)

with Polish and French instead of Czech. Polish is a West Slavic language just as Czech and

Upper Sorbian, although geographically more remote, whereas French is a Romance language:

we thus expected the former to outperform the latter. To keep training time more manageable,

we used a Transformer-Base, and trained the parent model on Europarl and JW300, because

News Commentary is not available for Polish. For each experiment we build a different

tri-lingual SentencePiece model trained with 600k sentences per language.
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System HSB→DE DE→HSB
dev devtest dev devtest

1. Transformer-Base, 2020 parallel data 47.98 41.22 45.23 40.62

2. Add back-translated data to #1 52.91 44.39 51.00 43.23
(+4.93) (+3.17) (+5.77) (+2.61)

3. Initialize #2 with high-resource pair 55.99 47.53 – –
(+3.08) (+3.14)

4. Transformer-Big with #3 58.08 49.99 – –
(+2.09) (+2.46)

5. Add 2021 parallel data to #4 59.29 51.86 57.22 49.95
(+1.21) (+1.87) (+6.22) (+6.72)

Table 6.4: Scores of our 2020 (1–4) and 2021 (5) baseline systems, with absolute improvements
brought by each additional technique or data set.

The use of the PL→DE model (with a 22.33 BLEU score on its respective test set) for initial-

ization leads to a HSB→DE performance of 56.07 / 47.94, which is very similar to the system

initialized with CS→DE parameters (55.99 / 47.53). The use of the FR→DE model (with a

19.25 BLEU score) for initialization leads to a HSB→DE system reaching 54.92 / 46.30. This

is about 1.3 BLEU points lower than with Polish or Czech, although the difference is smaller

than expected given the linguistic distance between French and Upper Sorbian. These results

are in line with the findings of Aji et al. (2020) who argue that no parent is clearly better than

other for transfer learning in MT.

6.4.6 Two Rounds of Back-Translation

Multiple rounds of back-translation can be done on each side, but this computational effort is

not always compensated by a significant increase of the BLEU score. Using the best HSB→DE

system above, we translate monolingual HSB data and use it to train an improved DE→HSB

model, which reaches 51.00 on the ‘dev’ data (+5.77 with respect to the initial DE→HSB

system) and 43.23 on the ‘devtest’ data (+2.61). We then use this improved model to translate

the monolingual German data again and use the resulting pseudo-parallel data to train a

new HSB→DE model. The model without CS initialization reaches BLEU scores of 53.62 on

‘dev’ (+0.62) and 44.95 on ‘devtest’ (+0.43). If CS initialization is used, the models reaches

respectively 58.44 (+0.36) and 50.03 (+0.04) on ‘dev’ and ‘devtest’. The improvement brought

by the additional rounds of back-translation is quite marginal, therefore we do not pursue this

approach, and focus on a system which is initialized from a parent high-resource pair and

trained with original and back-translated data, where the latter comes from a reverse system

trained only with the original parallel HSB-DE data provided by the shared task.
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6.5 Baseline HSB↔DE Low Resource Systems for 2021

Given the results of the previous section, we choose the Transformer-Big for our 2021 baseline.

We change the dropout level from 0.3 to 0.1 since our experiments revealed an increase in

performance with the latter value. Furthermore, we add the 87,502 sentences of additional

parallel HSB-DE training data provided in 2021 to the datasets used in our 2020 baseline. We

use the same SentencePiece model with DE, HSB, and CS data that we used for our 2020

baseline system, with approximately 700k lines for each language. At translation time, after

observing a number of out-of-vocabulary tokens, we replace the unknown tokens with the

source token that has the highest attention weight. We do not make any further changes

regarding our 2020 Transformer-Big model.

The scores of our baseline systems on 2020 and 2021 data are synthesized in Table 6.4 for

the various techniques we experimented with. Our baseline HSB→DE model with combined

2021 and 2020 data is system #5 in Table 6.4: it reaches BLEU scores of 59.29 on the ‘dev’ set

and 51.86 on the ‘devtest’ set after training for 150,000 steps and by ensembling the best 4

saved checkpoints. For our DE→HSB model, we obtain 57.22 on the ‘dev’ set and 49.95 on the

‘devtest’ set after training for 85,000 steps and by ensembling the best 4 saved checkpoints.

After the submission to the 2021 shared task, we continued training the above HSB→DE model

up to 300,000 steps- Ensembling the last 4 saved checkpoints, BLEU scores were close to

the ones shown in the last line of Table 6.4, reaching 59.42 on the ‘dev’ set and 51.37 on the

‘devtest’ set. However, several checkpoints gained almost 2 BLEU points on ‘dev’, pointing to

the potential benefits of training for a longer time.

6.6 Baseline for Unsupervised DE→DSB Translation

Moreover, we studied the same techniques for translating Lower Sorbian (DSB), for which

no parallel resources are provided. We translated the monolingual DSB data provided by

the organizers with our HSB→DE model, hypothesizing that the differences between DSB

and HSB are small enough to obtain an acceptable DSB-DE pseudo-parallel corpus, with

high-quality text on the DSB side, following insights from our experience with Swiss-German

dialects (Honnet et al., 2018).

We use the parameters from our best DE→HSB model to initialize a DE→DSB model that

we train for 120k steps with the DSB-DE pseudo-parallel data. When ensembling the best 4

checkpoints, we reach BLEU scores of 8.25 / 8.22 without observing any significant increase of

the scores during training. In fact, the initial score, which is the performance of a DE→HSB

model on the DE-DSB ‘devtest’ data, is even slightly higher. An even lower BLEU score was

reached when using our CS→DE model to translate monolingual DSB data into DE to obtain

a pseudo-parallel corpus, thus confirming the finding that this approach does not lead to

pseudo-parallel corpora of sufficient quality. Therefore, we did not submit these translations

to the 2021 shared task.
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6.7 Contrastive HSB↔DE and DE→DSB Systems using Multi-Task

Learning

In contrast to the baseline systems presented above, we study an innovative approach, in

which we train multitask systems with denoising auxiliary tasks that are presented in order of

increasing complexity. This insight is drawn from curriculum learning (Bengio et al., 2009).

We thus test whether increasing the complexity of the tasks makes it easier for an NMT model

to learn the simple tasks first, and the harder ones later in training. In particular, we will use

a heuristic difficulty measurer based on estimated task complexity (see Section 6.7.1). With

respect to related work in Table 6.1, Kocmi and Bojar (2017) and Platanios et al. (2019) also

used heuristics, although with different criteria. We will also use a static scheduler, comparable

with Platanios et al. (2019); Zhang et al. (2018), that we present in Section 6.7.2.

As Raffel et al. (2020) showed, source–to–source pre-training and multitasking improves

translation, but not enough to compete with state-of-the-art setups. Therefore, instead, we

perform target–to–target and source+target–to–target denoising. Considering their findings,

we decide not to introduce special tokens into our vocabulary, such as mask tokens (instead

just deleting the tokens with wish to mask), or sentence and language separators. Finally, due

to computational constraints, we use the Transformer-Base as our architecture.

6.7.1 Data and Auxiliary Tasks

For our contrastive system we consider two new monolingual corpora in Czech and in German:

the document-separated news crawls from WMT20 (Barrault et al., 2020), consisting of text

extracted from online newspapers. They contain 17M lines and 43M lines respectively in

each language. To keep training time within acceptable limits, we sample 1.4M lines from

these corpora (including empty lines that serve as document-separators), we apply the same

length-based filtering criterion (2 < L < 301) as for our baseline data, and we also delete all

sentences that are made of more than 15% non-alphabetic characters. The resulting Czech

corpus is 1.3M lines and 131,644 documents long, and the German corpus is 1.2M lines and

130,891 documents long.

For our document-level denoising tasks, we first divide into “chunks” a tokenized document-

separated corpus so that each chunk is no more than 500 subwords in length, made up of con-

secutive lines in the same document; we only select documents made of at least 3 sentences.

In Table 6.5 we list all corpora that we use to create our auxiliary data, including monolingual

corpora back-translated with our baseline systems. The DE→DSB back-translated data was

obtained with a baseline DE→HSB model.

We make use of the four following auxiliary denoising tasks (the main task being of course

standard sentence-level translation, with all parallel and back-translated data), with the first

two inspired by Devlin et al. (2019); Raffel et al. (2020) and Conneau and Lample (2019):
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1. Masking (MASK): randomly delete 15% of words of a line on the source side, but keep the

full original sequence on the target side.

2. Translation Language Modeling (TLM): concatenate the source and target sentences

from a parallel corpus, and apply separately the MASK algorithm to each one. The target

is the original target sentence.

3. Mask Document First Words (MF): for each chunk, leave the first sentence untouched,

and for the remaining ones delete the first word of each sentence, with the target being

the full original sequence in the same language.

4. Next Sentence Generation (NSG): for each chunk, leave all the sentences untouched

except the last one, of which delete all but the two longest words; the model has to

output the full original sequence. Keeping the two longest words (in characters) is based

on the assumption that they are the most informative ones in the sentence.

The denoising tasks are listed above by increasing complexity. Indeed, MASK, as a monolingual

sentence-level task, is the simplest denoising task we present, with TLM following, as it includes

a context in a different language which needs to be identified. The two document-level tasks

are more complex, as they require a larger context. In particular, NSG is harder than MF,

since it consists of reconstructing a whole sentence with just two words from the original

sequence, forcing the model to look for a more abundant context to estimate the correct answer.

Furthermore, predicting the first word requires to take into account exclusively inter-sentential

context, whereas masking a single random word allows also for the use of intra-sentential

context, with the latter providing more direct context than the former. These document-level

tasks represent an increase in complexity with respect to the sentence-level tasks, and we

additionally hope that the training on intersentential context might prove beneficial for our

models.

Corpus Lines Words Aux. tasks
CS-DE 1.5M 25M / 28M TLM
HSB-DE 144k 2M / 2M TLM
CS 1.3M 41M MF, NSG
DE 1.2M 44M MF, NSG
HSB 640k 9M MASK
DSB 128k 2M MASK
HSB→DE 4.5M 94M / 104M
DE→HSB 637k 10M / 9M
DE→DSB 124k 2M / 2M

Table 6.5: Parallel (2), monolingual (4), and back-translated corpora (3) used for our contrastive
system trained with multi-tasking. Each corpus is assembled from the raw datasets presented
in Table 6.2 with the filtering setup described in Subsection 6.7.1. For bilingual corpora, we
indicate the number of words in each language.
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6.7.2 Training Schedules

All our models translate to one target language only, therefore the target side of our datasets

is always the same language, be it for the monolingual denoising tasks or for TLM. Since

all datasets correspond to sequence-to-sequence tasks, we are in essence simply removing

and introducing datasets during training. The specific splits of the tasks in each training

schedule have been manually set, guided by the reasons given below, without any attempt for

fine-tuning.

All the hyperparameters of the models are those presented in Section 6.4, with the only

exception of the parameters of CS↔DE models for initialization, which were trained on 4

GPUs to reduce training time. When we introduce new tasks during the training of a model,

we continue training from the last checkpoint of the previous task4.

Training CS↔DE models.Both directions are trained according to the same schedule, shown

in Table 6.6, with simply the source and target languages switched. First, we train for 30k steps

with a TLM task, then we train for another 30k steps with a mixture of the MF auxiliary task (50%

of the samples) and the main translation task (50%). Then we continue for another 30k steps,

changing MF to NSG. Finally, we finish with 30k steps on translation only. In total, the model is

being trained for 30k steps (25%) with TLM, 15k steps (12.5%) with MF, 15k steps (12.5%) with

NSG, and 60k steps (50%) with the main task, i.e. sentence-level translation.

Steps ×1000
Task 0-30 30-60 60-90 90-120
TLM 100%
MF 50%
NSG 50%
Translation 50% 50% 100%

Table 6.6: Training schedule of the parent models in CS↔DE. For each direction, the model is
only trained to output target language, so corpora differ depending on the direction (see 6.7.1).
Both models are trained for 120k steps with three auxiliary denoising tasks and the main
sentence-level translation task.

HSB→DE. The schedules of the child models are shown in Table 6.7 for the (DE, HSB) pair.

For HSB→DE, we continue training from the best scoring checkpoint of the last 60k steps

of the parent CS→DE model, and start with a TLM task for 60k steps. Then, we introduce

back-translated data only for 60k steps. We continue with 60k steps with true parallel data

only.

Additionally, we train two more models by continuing to train another 60k steps from the

4We empirically confirm that results are stable across multiple runs of CS↔DE MF, so we only train one instance
of each.
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best scoring checkpoint (which is also the last one saved), with one of the models having its

learning rate schedule reset. Although at first performance worsens due to a more aggressive

learning rate during the warmup steps, the model ends up converging to a score similar to

the one we obtain if we continue to train without resetting the learning rate schedule. The

goal is to emulate a multiple-run seeding strategy for ensembling, by achieving a different

weight distribution among the two models. We additionally train a randomly-initialized model

with parallel data only, for 60k steps, also for ensembling. We generate our translations of

the test data with an ensembling of 16 models: the best 4 checkpoints from the parallel-only

randomly-initialized model, the best 4 of our main setup during the first 60k steps of parallel-

only training, and the 4 checkpoints each for the two runs that continued to train with, and

respectively without, resetting the learning rate schedule.

DE→HSB. We continue training from the best-scoring checkpoint of the last 60k steps of

DE→CS, and provide it with a MASK task for 60k steps, since the model has not seen the target

language at all during pre-training, for this direction. Then, we provide the model with a TLM
task for 60k steps. Since in this direction we have much less back-translated data than in

the opposite, we decide to train for 60k more steps with 50% of the samples being from the

back-translated data, and the other 50% from the true parallel corpora. Finally, we continue

training two more models in the same manner as explained for the HSB→DE direction. We

additionally train a randomly-initialized parallel data only model for 60k steps for ensembling.

We translate with the same ensembling setup as described for the HSB→DE direction.

Steps ×1000
Task 0-60 60-120 120-180

HSB→DE
TLM 100%
Trans-BT 100%
Trans-Parallel 100%

DE→HSB
MASK 100%
TLM 100%
Trans-BT 50%
Trans-Parallel 50%

Table 6.7: Training schedule of the child models for the HSB→DE and DE→HSB models
presented in 6.7.2.

DE→DSB. We start training with a MASK task for 60k steps from the highest-scoring checkpoint

DE→HSB. We continue training for 60k steps with just the back-translated data, although we

notice that the quality of the translation affects negatively the scores. To address this issue, for

another 60k steps we give it the back-translated corpus for 50% of the samples and the MASK
task for the other 50%, starting training from the previous highest-scoring checkpoint. Finally,

for another 60k steps we give it a parallel-only DE-HSB task for 50% of the samples, MASK for
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30%, and back-translated data for 20%. After testing, using just the highest-scoring checkpoint

for the back-translation only, back-translation + MASK, and DE-HSB + back-translation + MASK
appeared to work better on the development data than using the highest four ones.

Steps ×1000
Task 0-60 60-120 120-180 180-240
MASK 100% 50% 30%
Trans-BT 100% 50% 20%
DE-HSB 50%

Table 6.8: Training schedule of the child DE→DSB models presented in 6.7.2

6.7.3 Results

The scores of the parent DE→CS and CS→DE models obtained with multi-task training are

shown in Table 6.9. We observe that training the models on mixtures of MF and NSG with

translation produces positive results (rows 1 and 2). Compared to the CS→DE models from

Sections 6.4 and 6.5, the present models have markedly lower scores. This difference can

be due to the use of Transformer-Base vs. Big, or to differences in training data, apart from

the multi-task training procedure itself. Still, we decided to use these models as parents for

initializing the DE→HSB and HSB→DE models respectively, so that both parents and children

are trained with multi-tasking. Although changes in the parameters of a parent model that

result in better translations may not necessarily also result in better child initialization, it

would be interesting to also test here the parent models from Section 6.5.

System DE→CS CS→DE
1. MF + translation 14.05 15.46
2. NSG + translation 15.30 16.17
3. Translation 18.19 19.80

Table 6.9: BLEU scores of parent models after each stage of the training schedule described
in 6.7.2, on the ‘devtest’ set from 6.5.

Our child DE↔HSB models show that the scheduled training improves results over the baseline.

The HSB→DE model with a training schedule (system 2 in Table 6.10), trained with a lighter

architecture (Base vs. Big) and lower quality parent model (19.8 vs. 24.5), achieves a higher

BLEU score than the system in Section 6.5, as shown in Table 6.4: 52.2 vs. 51.86. Additionally,

the diversity of the ensembling of the models appears to improve the overall quality of the

translation.

The scores of our DE→DSB model (Table 6.11) show that the quality of the back-translated

data with our HSB→DE model improved slightly with the addition of the MASK monolingual

task, but not with the addition of a DE→HSB translation task. However, when including in

the ensemble the models trained on a DE→HSB task, scores improved from 8.7 to 9.6 on

the ‘devtest’ set. This was the version submitted to the shared task on unsupervised MT
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System DE→HSB HSB→DE
1. Parallel data 50.37 48.50
2. Multi-task 52.10 52.21
3. #2 cont. train 53.42 52.37
4. #2 cont. train

with l. r. reset 53.05 52.12
Ensemble 54.58 53.21

Table 6.10: BLEU scores of child DE↔HSB models for various training schedules on the 2021
‘devtest’ set.

(DE→DSB).

System DE→DSB
1. Back-translation only 8.23
2. BT + MASK 8.57
3. BT + MASK + DE→HSB 7.14
Ensemble 9.62

Table 6.11: BLEU scores of child DE↔DSB models for various training schedules on the 2021
‘devtest’ set.

Finally, as we can see in Table 6.12, even with our possibly suboptimally trained parent models

and lighter architecture, the strategy of diverse ensembles and scheduled multi-task training

improved over our best performing baselines given in Section 6.5 for all directions of the

low-resource MT task. It remains to be seen whether a combination of the fixed-schedule

multitasking approach presented in the current chapter and the simplified pipeline presented

in Chapter 5 (the experiments of which were performed after this chapter) would continue to

improve these scores.

HSB→DE DE→HSB DE→DSB
dev devtest dev devtest dev devtest

62.74 53.21 62.49 54.58 9.22 9.62
(+3.45) (+1.35) (+5.27) (+4.63) (+0.97) (+1.40)

Table 6.12: BLEU scores of our primary system’s final configurations, on the development data,
with the improvements over our highest baselines from Section 6.5.

6.8 Conclusion

In this chapter, we showed that non-iterative back-translation and parent-model transfer learn-

ing provide improvements for translation in a low-resource setting. Furthermore, multi-task

scheduled training with monolingual or cross-lingual tasks also resulted in better models. In

particular, child models starting with Translation Language Modeling tasks and Masking tasks

improved over the baseline in all translation directions. Finally, our strategy of ensembling

84



6.9 Perspectives

diverse models also produced higher scores than a mere checkpoint ensemble strategy.

6.9 Perspectives

A comparison with stronger baselines may result in a smaller, but more reliable, improvement

from our method. Additionally, it should be studied why our method does not perform

successfully in an unsupervised direction. Finally, an interesting continuation of this study

would be to replicate our strategy with languages for which document-level test data exists,

and check their performance in this data. Since our two novel tasks are both document-level

tasks, it is possible that the resulting models improve translation that involves longer-range

dependencies.
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7 Dynamically-Scheduled
Multilingual Training1

Many-to-one neural machine translation systems have been shown to improve over one-to-

one systems when training data is scarce. In this chapter, we design and test a novel algorithm

for selecting the language of minibatches when training such systems. The algorithm changes

the language of the minibatch when the weights of the model do not evolve significantly, as

measured by the smoothed KL divergence between all layers of the Transformer network.

This algorithm outperforms the use of alternating monolingual batches, although not the use

of shuffled batches, in terms of translation quality (measured with BLEU and COMET) and

convergence speed.

7.1 Introduction

Multilingual neural machine translation (MNMT) systems can be trained with several lan-

guages on the source side, or on the target side, or on both sides (Firat et al., 2016; Johnson

et al., 2017). Many-to-one MNMT systems are particularly effective for low-resource languages

(LRLs) on the source side, when they are accompanied by high-resource languages (HRLs)

related to them (Gu et al., 2018). For instance, Neubig and Hu (2018) trained a many-to-one

recurrent model on a multilingual dataset of almost 60 languages and showed that including

HRLs in the training data reduces the chance of overfitting to the LRLs and improves transla-

tion quality. Aharoni et al. (2019) used Transformer models (Vaswani et al., 2017) to further

improve over these results.

Many-to-one MNMT systems are usually trained with multilingual batches sampled from all

source languages to avoid catastrophic forgetting (Jean et al., 2019), but the presence of several

languages in a minibatch may ineffectively constrain the model and prevent it from training

1This work was performed in collaboration with Alexis Allemann, and is submitted to the ACL Rolling Review
system for presentation to an ACL venue. I was responsible for the design of the system and the setup of experi-
ments, while the implementation of the self-paced algorithm and the training of the models was done by Alexis
Allemann.
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on the languages where training is most needed. An open question in many-to-one MNMT,

therefore, is how the data from different source languages should be sampled during training,

particularly when massive imbalances in sizes or difficulties occur across languages.

In this chapter, we propose a dynamic scheduling approach which samples minibatches from

the source languages based on the variation of weights in the layers of a Transformer. The

main idea is the following one: when a model becomes competent for translating a certain

source language, as indicated by a decreasing variation of a model’s weights across consecutive

training steps, then the language of the minibatches should be switched to a new one, in order

to allocate more time to more challenging, hence presumably more useful tasks.

The main contributions of this study are the precise formulation and testing of the idea.

Specifically, we propose to:

• measure variation of weights by comparing the weights of all layers of a Transformer

across two consecutive training steps with the same source language;

• compare weights by using symmetric KL divergence between softmaxes of layers, with

exponential smoothing across time;

• trigger a change of task, i.e. source language, when weight variation decreases;

• compare translation quality and convergence speed for 8-to-1 MNMT on a dataset with

four language families on the source side, and one HRL and one LRL for each of them

(Neubig and Hu, 2018).

7.2 Previous Work on Multilingual and Adaptive Methods for NMT

We now present relevant previous work, specific to this chapter, on balancing of various

datasets for multilingual training and adaptive or self-paced multitask training.

Neubig and Hu (2018) study the upsampling of the LRL data when building minibatches, and

observe that keeping the original proportions of HRL and LRL performs marginally better.

Aharoni et al. (2019) also sample each batch uniformly from a concatenation of all language

pairs. Arivazhagan et al. (2019) compare a simple concatenation with uniform balancing

(Johnson et al., 2017), but observe better results for LRLs when translating into a HRL by using

a temperature-based upsampling, which has been favored afterwards (Conneau et al., 2020;

Tang et al., 2021).

Fan et al. (2021) propose a variation of temperature sampling, Sinkhorn Temperature Sampling,

as an extension to a many-to-many setting so that the distribution of languages on source

and target sides is equal to the given target distribution. On a 100-language mined dataset,

they observe big improvements, particularly when translating between non-English directions

with respect to both uniform and standard temperature-based scaling. Kumar et al. (2021)

propose a Reinforcement Learning approach, with several contextual multi-arm bandits that
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independently learn per-language sampling policies jointly with the target NMT system. Zhou

et al. (2021) apply Distributionally Robust Optimization (Ben-Tal et al., 2013; Duchi et al.,

2016) to MNMT. This new training objective produces improvements on several low-resource

languages, particularly among those that are not very low-resource. Fernandes et al. (2023)

observe a Power Law relation between the weight of one direction on the multilingual train-

ing and the model’s performance on it afterwards. Chen et al. (2023) further refine this by

proposing a Double Power Law. They perform an extensive empirical comparison of multi-

lingual models with different architectures and directions, and show that when noticeable

data imbalances occur between the directions, increasing the weight of some directions on

the training objective does not entail an improvement of performance on said directions.

Training on several languages can produce interference among them, hence decreasing per-

formance (Conneau et al., 2020). Shaham et al. (2023) propose that scaling up models and an

modification of standard temperature sampling can mitigate this interference.

Pham et al. (2022a) apply a variation of Differentiable Data Selection (Wang et al., 2020b) to

multi-domain adaptation NMT, which can also be used for MNMT, since different domain

datasets amount to different tasks. In particular, they use reinforcement learning to learn

a curriculum by evaluating the usefulness of samples during training. Wang et al. (2020a)

propose a dynamic data selection curriculum also for multi-domain NMT, in their case by

proposing instance-level features to select samples based on their usefulness across various

domains at once (cross-entropy difference between a baseline model and fine-tuned models

for specific domains). Instead of defining a schedule implicitly by assigning weights to tasks,

or explicitly by ordering them, Pham et al. (2022b) adaptively learn to assign sub-networks to

each task by applying group-dropout to selected sub-networks, by considering the similarity

between tasks, but also by allowing smaller parts of the model to focus on individual tasks.

As a method for dynamic scheduling of multitask training (Caruana, 1993), self-pacing consists

in using the target model to quantify the difficulty of each sample or dataset – that is, to

measure the model’s competence – and inform the scheduling module dynamically (Kumar

et al., 2010). Self-pacing has been used in NMT at the sample-level, for instance by measuring

variance across dropout runs (Wan et al., 2020). Similarly, Liu et al. (2020a) set a self-paced

curriculum based on the norm of a token’s embedding, for a single task.

For MNMT, Jean et al. (2019) compare adaptively upsampling a language depending on

various factors, observing best results on the LRLs when dynamically changing the gradient

norm following Chen et al. (2018). Wang et al. (2020c) adaptively balance the languages by

learning language weights based on the model’s competence on a development set. Zhang

et al. (2021b) adaptively learn a sampling strategy by measuring per-language competence

and LRL competence evaluated with a HRL’s competence. Wu et al. (2021) also balance the

data dynamically by measuring the model’s uncertainty on a development set, estimated by

the variance over several runs of Monte Carlo dropout (Gal and Ghahramani, 2016).

As previous work shows, when training MNMT models with a variety of datasets or tasks,
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balancing between the sizes of the different datasets is not a trivial matter, and complex

methods like temperature-based upsampling have been shown to improve results, particularly

on low-resource languages. Encouraged by the success of recent adaptive approaches to

MNMT, in this chapter we will combine the two, by proposing an adaptive, self-paced approach

to the balancing of dataset on low-resource languages.

7.3 Method for Self-Paced MNMT

To train a many-to-one MNMT model, we consider M parallel datasets which correspond to

as many tasks T = {T1, . . . ,TM } with different source languages and their respective English

translations. Our algorithm chooses on which task Tc to train the MNMT model, based on an

estimation of the model’s competence for each task (i.e., source language). The overall goal is

to increase time spent on tasks where the model is less competent, and to avoid over-training on

tasks where the model is already competent.

The proposed algorithm for dynamic scheduling (Algorithm 1 below) has the following ratio-

nale. If the network is trained on a task Tc and the weight variation across consecutive steps

increases, we consider that the network lacks competence on Tc and should keep training on

it. Conversely, the less the weights change, the more competent the model is. So, if weight

variation slows down, then training on the same task produces diminishing returns, and the

network should switch to a task on which it is less competent. This condition appears in line 8

of Algorithm 1. We note that our algorithm carries little computational overhead, since the

self-assessed competence is obtained from the weight variation across standard training steps.

We propose to estimate the per-task competence of the model as the average variation of its

weights in all layers (due to the back-propagation of gradients) at a given training step. We

thus propose to measure competence as the Kullback-Leibler divergence (DKL) between the

updated weights and the weights at the previous step at which the model was trained on the

same task.2 The parameters (or weights) of the model at time step t are noted θt .

Originally used to quantify the dissimilarity between two probability distributions P and Q,

DKL is defined as: DKL(P ||Q) =∑
x P (x) log(P (x)/Q(x)) where x are the possible values of the

P and Q random variables. To use DKL as a distance measure between two sets of weights

in a neural network, we apply softmax σ to convert the weights to probability distributions.

Moreover, we take the logarithm of the first term in DKL to handle the potential issue of

capacity overflow and maintain the stability of divergence calculations, following the example

of Liang et al. (2021). Finally, we symmetrize the distance by summing DKL divergence in both

directions.

Therefore, we compute the average variation between two sets of values θt−1 and θt of all the

2If the model is trained with monolingual batches, that is, all batches coming from the same dataset, then the
per-task competence is measured by keeping track of on which dataset the model is training at a given step. With
multilingual batches, computing per-task competence is more complicated, although we explain it below.
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trainable weights of a Transformer network (layers 1 through L) as follows:

D(θt−1,θt ) = 1

2L

L∑
i=1

DKL(log(σ(θi
t−1))||σ(θi

t ))+DKL log(σ(θi
t ))||σ(θi

t−1)).

With this, we compute per-task variation in weights between steps, and switch training to

another task when the weight variation is lower than in the previous step of the same task,

indicating that the model might be plateauing in its learning of that task. Furthermore, we

ensure that when the training switches to another task, the model trains on it for at least two

training steps, so that both θt−1 and θt are the result of training on minibatches of the same

source language: with this, we avoid measuring a large variation between weights simply as

the result of switching between tasks.

In order to obtain a task-switching schedule that is robust to local variations, we apply expo-

nential smoothing and compute per-task competence, transforming D into D ′
c as follows:

D ′
c (θt−1,θt ) = (1−w)D(θt−1,θt )+wD ′

c (θt−k ,θt−1)

where k ≥ 2 is the smallest value such that Bt−k ∈ Tc (in other words, t −k is the latest step

before t −1 for which the model trained on a batch that was sampled from the current training

task Tc ). The smoothing weight was set at w = 0.995 after empirical analyses (see Section 7.5.2).

We define the model’s per-task competences at step t as C = {C1, . . . ,CM }, such that Cc =
D ′

c (θ j−1,θ j ), and j ≤ t is the last step such that minibatch B j ∈ Tc . That is, for each Tc ∈T , Cc

is the result of exponential smoothing over the weight variations of all the steps in which θ has

trained on a minibatch from Tc .

We define a sampling function – noted ‘sample∗’ in line 10 of the algorithm – with the following

role:

• in the initial phase, it randomly samples any of the Tc ∈ T on which the system has

never been trained on;

• then, when all tasks have been seen at least once, it samples a new Tc ∈T based on the

softmaxed per-task competence distribution σ(C ).

Additionally, we introduce hyper-parameter α in order to compare the importance of previous

weight variation versus the current one (line 8). However, after empirical analyses, we found

that the best results were obtained with α= 1 (see Section 7.5.3).

In this study, for each MNMT system, we compare three methods: first, we train a model

on multilingual batches, by upsampling all the tasks until they are the same size and then

shuffling them. Second, we apply a cyclical alternation of monolingual batches for each task,

which results in the model being trained the same amount of time on all tasks. Third, we apply

our self-paced method as described in this section.
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Algorithm 1: Self-paced scheduling algorithm for MNMT using the variation of model
weights.

Require: tasks T = {T1, ..,TM }, steps s
1 Tc ← T1;
2 for t ← 1, . . . , s do
3 Sample minibatch Bt from Tc ;
4 θt+1 ← θt −η∇θt LBt (θt );
5 if changedTask then
6 changedTask ← False;
7 end
8 else if D ′

c (θt−1,θt ) <αD ′
c (θt−2,θt−1) then

9 Cc ← D ′
c (θt−1,θt );

10 Tc ← sample∗(T − {Tc });
11 changedTask ← True;

12 end
13 t ← t +1;

14 end

In training, we use the the ‘noam’ schedule (Vaswani et al., 2017, Eq. 3) to compute the learning

rate, which increases linearly from zero during the warmup steps, and afterwards decays

proportionally to the inverse square root of the current step. Although the variation of weights

throughout the entire training is strongly influenced by the learning rate schedule (Figure 7.2),

we find that when comparing the smoothed weight variations between two consecutive steps,

the influence of the learning rate variation is negligible.

7.4 Data and Systems

7.4.1 Corpora

We experiment on a subset of the multilingual TED corpus (Qi et al., 2018). As in previous

multilingual studies (Neubig and Hu, 2018; Wang et al., 2019), we select four pairs of LRL-HRL,

such that each pair is related, but not across pairs. We show them in Table 7.1, with the goal of

translating them into English (EN).

LRL train dev test HRL train

Belarussian (BE) 4.51k 248 664 Russian (RU) 208k
Azerbaijani (AZ) 5.94k 671 903 Turkish (TR) 182k
Galician (GL) 10.0k 682 1.0k Portuguese (PT) 51.8k
Slovak (SK) 61.5k 2.2k 2.4k Czech (CS) 103k

Table 7.1: Data sizes for pairs of LRLs and HRLs.
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7.4.2 Tokenization

As the data is already tokenized, we directly apply Byte Pair Encoding (BPE) (Sennrich et al.,

2016b) for subword extraction and vocabulary construction. We learn a vocabulary by con-

catenating 10k random lines from each language in the training data, and upsample the LRL

dataset if it has fewer lines. For experiments involving only one LRL and one HRL in the source,

we learn a vocabulary of 10k subwords. For experiments involving all four LRLs and all four

HRL in the source, our vocabulary has 32k subwords. To facilitate language identification, we

prefix each line in a dataset with a tag indicating its language.

7.4.3 System Architecture

We use Transformer models (Vaswani et al., 2017) from the OpenNMT-py library (Klein et al.,

2017) version 3.1.1. In all our systems we use the following default values of hyper-parameters

from Transformer-Base: 6 encoder/decoder layers, 8 attention heads, label smoothing of 0.1,

hidden layer of 512 units, and FFN of 2,048 units. We use Adam optimizer (Kingma and Ba,

2014) and a batch size of 10k tokens.

Moreover, we will compare systems trained with default regularization to systems using more

aggressive regularization. The former consist of a dropout rate of 0.1, OpenNMT-py’s scaling

factor of 2 over the learning rate, 8k warmup steps, and no gradient clipping. For the latter, we

increase the dropout rate to 0.3, the scaling factor to 10 and the number of warmup steps to

16k, and we re-normalize gradients if their norm is greater than 5. We obtain the values for the

hyper-parameters with more regularization from our findings in Chapter 3.

Our 2-to-1 and 8-to-1 models have 59M and 93M of parameters respectively. We train all our

models on 2 GPUs (GTX 1080 or RTX 2080) for a maximum of 26 hours. In this study we trained

approximately 40 models.

7.4.4 Evaluation

For each system, we measure the BLEU score (Papineni et al., 2002) on the LRL test set us-

ing the SacreBLEU library3 (Post, 2018) as well as the COMET score (Rei et al., 2020) using

model wmt22-comet-da. We use bootstrap resampling from SacreBLEU to compute the 95%

confidence interval around the mean of the BLEU score. We use a rolling ensemble of four

(consecutive) checkpoints and select the best ensemble on the development set for the final

translations.

3github.com/mjpost/sacrebleu
signature: nrefs:1|case:mixed|eff:no|tok:13a |smooth:exp|version:2.3.1.
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7.5 Design Choices and Results

7.5 Design Choices and Results

In this section, we perform a series of experiments to optimize our method presented in

Section 7.3. Firstly, we study the effects of several metrics to measure weight variation in order

to justify our choice of KL divergence (Section 7.5.1). Next, we perform various experiments

in order to optimize our method, involving: the smoothing parameter w (Section 7.5.2), the

importance of the previous weight variation α (Section 7.5.3), and training during the warmup

steps only on the HRL, which simulates a pre-training regime (Section 7.5.4). Experiments in

this section (except Section 7.5.1) are performed in a 2-to-1 setup (GL-PT-to-EN) using default

hyper-parameters.

7.5.1 Weight Variation Metric

Figure 7.1: Comparison between three different metrics for model weight variation (Y axis): L2
norm, inverse cosine similarity, and KL divergence. For each of them we compare monitoring
the average over all weight matrices and only the final output layer.

In order to measure the weight variation of a model between steps, firstly we train a model

on SK-to-EN and compare measuring the average of all weight matrices versus the one of the

last output layer only, and using as our metric one of: KL divergence, inverse cosine similarity,

or L2 norm. We show in Figure 7.1 these six combinations, computing the variations of the

weights every 10 steps (vertical axis) and performing a rolling average with a window size of

100. We can observe in all of them the effect of the learning rate schedule: during the warmup

steps (which are 8k) the variation in weights increases rapidly, and afterwards begins to decay).

Additionally, we also note a more regular curve when measuring the change across all matrices

versus the last layer. We decide on using KL divergence as our measure due to it striking a

balance between the irregularity of the inverse cosine similarity and the regularity of the L2

norm.
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7.5.2 Setting of the Smoothing Weight

Figure 7.2: Evolution of the bidirectional Kullback-Leibler divergence for different values of the
exponential smoothing coefficient w in an experiment on GL-PT→EN with dynamic sampling.

# System w Steps BLEU

shuffled - 44k 27.49
alternation - 44k 25.64
self-paced 0.99 48k 25.76
self-paced 0.995 48k 25.92

self-paced 0.999 40k 26.28
self-paced 0.9995 28k 25.42

Table 7.2: BLEU scores on the GL test set of our method with several values of the smoothing
coefficient, w . We denote in bold the best result among our methods, and among the baseline
ones, and we underline our chosen value for w .

In Figure 7.2 we show the average weight variation between all weight matrices when ex-

perimenting on a 2-to-1 setup (GL-PT-to-EN) using default hyper-parameters, with various

values of the smoothing weight w . In Table 7.2 we present the corresponding scores, which we

compare to shuffled and alternation. We can see that increasing w produces a more regular

weight-variation curve, and also accelerates training without much loss in test score (see

“Updates” column). Nonetheless, although some of the smoothing values produce better

scores than a simple alternation of monolingual batches, none of them improve over the multi-

lingual shuffled batches. We select a w = 0.995 for our main experiments as a balance between

translation quality and training speed, while still maintaining a regular weight variation curve.
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7.5.3 Importance of Previous Weight Variation

System α Steps BLEU

shuffled - 44k 27.49
alternation - 44k 25.64
self-paced 0.9 48k 11.12
self-paced 0.95 48k 11.91
self-paced 1.0 48k 25.92

self-paced 1.1 40k 25.04
self-paced 1.2 44k 25.37

Table 7.3: BLEU scores on the LRL test set of our method with several values of the importance
hyper-parameter α, with w = 0.995. We denote in bold the best result among our methods,
and among the baseline ones, and we underline our chosen value for α.

Similarly, we also experiment with the value of α, a hyper-parameter to weight the importance

of the previous weight variation when comparing steps t and t −1 (line 8 in Algorithm 1). In

Table 7.3 we show the results of training with our selected value of w = 0.995 and various values

for α. We observe best results without any additional weighting of the previous variation, and

therefore we select for our main experiments α= 1.

7.5.4 Training with HRL Warmup Steps

System
HRL

Steps BLEU
warmup

alternation no 36k 24.92
alternation yes 44k 26.04

self-paced no 48k 25.92

self-paced yes 48k 26.16

Table 7.4: BLEU scores on the LRL test set of our method when observing the role of HRL
warmup, with α = 1 and w = 0.995. We denote in bold the best result in the comparison
methods, as well as in our method, and underline our chosen final technique.

Due to the effect of the learning rate warmup steps on weight variation during the first 8k

steps of training, we also consider starting training the two methods with monolingual batches

(alternation and self-paced) exclusively on the HRL, which simulates a pre-training regime. We

show in Table 7.4 the effects of HRL warmup between each of these two methods. We observe

alternation benefits significantly (+1 BLEU points) from HRL warmup, but our self-paced

method much less noticeably. We do not consider HRL warmup to produce a positive balance

between complexity and score improvement for our method, so we do not perform it in our

main experiments.
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7.5.5 Amount of Task Switches and Balancing

Figure 7.3: Amount of task switches and percentage of training on the LRL (task 1).

In Figure 7.3 we show the amount of task switches in training, averaged over 100 steps, where

task 1 is the LRL. We can see that on this GL-PT→EN model, after initial learning rate warmup

steps, our method settles on one third of the training batches consisting of the LRL and two

thirds on the HRL.

7.5.6 Hyper-Parameter Search

Finally, we search for the appropriate level of regularization to apply to our approach. We

consider all four 2-to-1 MNMT systems described in Section 7.4.1. For each of the meth-

ods compared (shuffled, alternation, and self-paced) we train a model with default hyper-

parameters and another model with more regularized ones (Chapter 3), which we described

in Section 7.4.3, and present the average scores of all HRL-LRL-to-EN systems.

System BLEU COMET Steps

shuffled 22.1 64.7 36.0k
+ regularization 25.3 69.2 38.5k

alternation 20.9 63.2 35.0k
+ regularization 24.4 68.0 39.5k

self-paced 21.2 63.8 49.0k
+ regularization 24.6 68.5 36.0k

Table 7.5: Average BLEU scores on the test sets of the four LRLs on 2-to-1 setups for the three
methods for multilingual training, with standard and increased regularization (best scores in
bold).

The average BLEU scores over the four LRL tests sets of each model are shown in Table 7.5.

96



7.5 Design Choices and Results

Training with more regularization improves all three methods by 3 to 3.5 BLEU points. On this

2-to-1 setup we obtain better results when training with multilingual shuffled batches, and a

small improvement of self-paced versus an alternation of monolingual batches. All regularized

models methods reach their highest BLEU score at a very similar number of steps, although

when training with more aggressive regularization, we observe a noticeable improvement in

speed in the self-paced method. Finally, we note that the more regularized models, using the

hyper-parameters that we proposed in Chapter 3, improve over the scores of previous studies

on the same data (Neubig and Hu, 2018; Aharoni et al., 2019; Wang et al., 2020c).

7.5.7 Comparison of 2-to-1 and 8-to-1 Training

Previously we have empirically determined the best hyper-parameters for our system and

observed that increased regularization improves scores. In Table 7.6 we present the scores of

models trained on the four 2-to-1 setups (presented in Section 7.4.1) by order of increasing

absolute size of the LRL-EN dataset, as well as an 8-to-1 setup, which includes all the tasks. As

in Section 7.5.6, we compare three methods: shuffled, alternation, and our self-paced method.

Task Method
2-to-1 Training 8-to-1 Training

BLEU COMET Step BLEU COMET Step

BE→ EN

shuffled 21.7 (±1.3) 63.8 48k 20.0 (±1.4) 61.4 64k
alternation 19.8 (±1.2) 61.5 44k 18.7 (±1.3) 61.3 120k
self-paced 20.5 (±1.3) 62.8 32k 19.7 (±1.3) 61.8 128k

AZ→ EN

shuffled 15.6 (±1.0) 66.0 32k 14.3 (±1.0) 64.4 144k
alternation 14.4 (±1.0) 63.9 44k 16.6 (±1.0) 62.9 140k
self-paced 14.5 (±1.0) 64.9 48k 14.4 (±1.0) 64.0 150k

GL→ EN

shuffled 30.2 (±1.2) 70.9 50k 31.9 (±1.3) 72.8 92k
alternation 30.0 (±1.2) 71.0 50k 30.4 (±1.2) 71.3 136k
self-paced 30.2 (±1.1) 71.2 44k 30.7 (±1.2) 72.0 150k

SK→ EN

shuffled 33.6 (±0.8) 76.2 24k 33.9 (±0.9) 75.4 32k
alternation 33.4 (±0.8) 75.3 20k 31.8 (±0.9) 73.5 144k
self-paced 33.3 (±0.9) 75.3 20k 31.9 (±0.9) 74.0 128k

Avg. of
the four
LRLs

shuffled 25.3 69.2 39k 25.0 69.0 83k
alternation 24.4 68.0 40k 24.4 67.3 135k
self-paced 24.6 69.0 36k 24.2 68 139k

Table 7.6: Results of the three methods compared on four 2-to-1 setups and an 8-to-1 setup, as
well as the number of steps (Step) necessary to obtain the highest scores. We use our stronger
regularization hyper-parameters (as in Table 7.5), and denote in bold the best score in each
metric for each task.

Introducing more source languages does not improve scores in either of the three methods for

MNMT training, although we observe a small negative effect on higher-resourced LRLs, which

has been reported previously (Neubig and Hu, 2018; Aharoni et al., 2019). More specifically,

the average of all three methods decreases or remains the same with going from a 2-to-1
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setting to an 8-to-1 setting, although for shuffled we can see that the two higher-resourced

LRL (GL and SK) benefit from more source languages, +1.7 and +0.3 BLEU points respectively.

Self-paced tends to perform better than alternation on 2-to-1, but is more severely affected on

an 8-to-1 setup: alternation improves on two languages when training on an 8-to-1 setup (AZ

and GL, +2.2 and +0.4 BLEU points), while self-paced only on one (GL, +0.5 BLEU points), and

the change from a 2-to-1 setting to an 8-to-1 setting on the average across the four languages

for the alternation method is 0 and -0.7 , as measured by BLEU and COMET respectively, and

for self-paced it is -0.4 and -1. Both of these methods, which rely on monolingual steps, clearly

underperform with respect to shuffled, which is trained with multilingual batches.

Additionally, in the 2-to-1 case, the difference between shuffled and self-paced decreases as the

absolute size of the LRL→EN dataset increases, but in the 8-to-1 case, the difference increases

as the dataset size also increases (1.2, 1.1, 0.0, 0.3 BLEU points and 0.3, -0.1, 1.2, 2, respectively,

with the following LRL sizes: 4, 6, 10, and 31k lines).

This indicates that with a small amount of training tasks, the more available data, the less

important the sampling method is, but with many training tasks a self-paced selection of the

balancing of the data becomes more important for lower-resourced datasets.

Regarding convergence speed, we measure the amount of steps that each model requires

in order to reach its highest BLEU scores. We observe that all three methods train in nearly

the same speed on the 2-to-1 case, but on the 8-to-1 case we observe that training with

monolingual batches, regardless of the balancing of the tasks, results in a much slower training.

This is likely due to either the model forgetting what it learned the last time it trained on a

given task, or to the monolingual steps resulting in weights that are less useful to the other

tasks.

7.6 Analysis

In this section we will analyze why our self-paced method does not outperform training with

multilingual batches uniformly sampled from all datasets (shuffled).

In Table 7.7 we provide the percentage of the total amount of steps that an 8-to-1 model should

train on the HRL and LRL (rows 1, 2, and 3), and only on each LRL (rows 4, 5, and 6), depending

on three different data balancing criteria. Firstly, we compute the amount of steps if we did

not perform balancing of the data (rows 1 and 4), which is equivalent to the percentage of

the total training data that each dataset accounts for. Secondly, when performing a uniform

balancing, where all the datasets are balanced to be the same size, which is the balancing

used by shuffled and alternation (rows 2 and 5). Thirdly, the balancing of the data that our

self-paced method actually does, obtaining the results of the 8-to-1 column in Table 7.6.

We can observe that our method may not result in sufficient amount of training for neither

of the LRLs (rows 4-6): the model trains on all of them for a smaller amount of steps than
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uniform scaling would reach (12.5% of the steps). Since 12.5% is the is the exact proportion of

data on which shuffled is trained, obtaining the best results, our method likely should train

for more on the LRLs. Overall, our self-paced 8-to-1 model dedicates 43% of its training to

LRLs: this indicates that our competence measure is too strongly dependent on the amount of

training data. In other words, if a task contains a small amount of data, then our model learns

it easily, which according to our measure means that the smoother KL divergence between

steps flattens out, and therefore our method considers that the task is well learned.

Data BE-RU→EN AZ-TR→EN GL-PT→EN SK-CS→EN

Balancing E. Slavic C. Turkic W. Romance W. Slavic

HRL + LRL

no 33.9 30.0 9.9 26.2
uniform 25.0 25.0 25.0 25.0
self-paced 28.5 27.9 19.0 24.5

LRL

no 0.7 0.9 1.6 9.8
uniform 12.5 12.5 12.5 12.5
self-paced 12.2 10.2 9.5 10.9

Table 7.7: Percentage of the total amount of steps that an 8-to-1 model should train on each
HRL-LRL pair and each LRL, according to three data balancing methods: i) the true proportion
of the data (that is, no balancing), ii) a uniform proportion of the data, and iii) what our
self-paced method actually does.

Furthermore, if we observe the first three rows of Table 7.7, we see that our method does not

result in the training of the model being equally distributed between all the HRL-LRL pairs:

an equal proportion would be 25% of the steps to train on each pair. Instead, our method

trains for more on the HRL + LRL pairs that contain more data, and less on the lower-resourced

ones (compare row 1 and 3). This further confirms our explanation that our competence

measure relies too much on the size of the dataset of a given task, and is not an optimal metric

to measure the generalization capabilities in a task of a model.

7.7 Conclusion

In this chapter we have presented a self-paced method to balance tasks in a many-to-one

MNMT system by monitoring the average per-task weight variation across steps, with the

objective of not over-training on tasks in which the model is competent, and better allocating

resources to tasks in which the model is less competent. Our method carries only a very modest

computational overhead. However, we have observed that a multilingual, uniform balancing

of all tasks outperforms our method both on 2-to-1 and 8-to-1 setups. The effectiveness of a

temperature-based data balancing strategy is yet to be explored.

A limitation of our method may be that measuring the weight variation between two consec-
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utive steps might result in too small a value, with too many oscillations even with the use

of smoothing. Additionally, we have shown that as the amount of training tasks increases,

performing single-task steps is counter-productive, both in quality and in speed. In the future,

we hope to extend our method to assemble multilingual batches based on the per-task weight

variation in order to solve this issue.
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8 Many-to-many Multilingual Low-
Resource Training

In Chapter 6 we have discussed the use of various tasks as auxiliary tasks in a multitask setting.

In Chapter 7 we have presented a self-paced many-to-one multilingual system, making use of

translation of higher-resourced languages as an auxiliary task to improve the quality of low-

resource systems. In this appendix we will present many-to-many multilingual systems, and

show in particular that they outperform both default and stronger, regularized unidirectional

baselines.

8.1 Data and Systems

We compare models in four directions: HSB↔DE and DE↔EN using two low-resource parallel

datasets of 60k (HSB-DE) and 120k (DE-EN) lines respectively1. For each direction we train

a baseline unidirectional system with recommended hyper-parameters per OpenNMT-py

for middle and high-resource translation, as well as a unidirectional system that has more

aggressive regularization, which we proved to be beneficial on very low-resource datasets

(Chapter 3). The hyper-parameters for our optimized systems are the ones obtained for our

best-performing models in Chapter 32.

Additionally, as we show in Table 8.1, for each of the two datasets we train a bilingual (bidirec-

tional) system for each of the two sets of hyper-parameters. Finally, we also train trilingual

systems in all four directions: HSB↔DE and DE↔EN. This means that the trilingual models

are capable of HSB↔EN translation, but only zero-shot, since they have not been trained for

it.

We train all models until convergence: the unidirectional models train for a maximum of 16

hours, the bidirectional models for 22, and the trilingual for 56 hours. For the trilingual model,

we upsample by two the HSB-DE data, but since all models are trained until convergence,

1This data was presented in Chapter 3.
2We make public the configuration files that create these systems in the OpenNMT-py framework

(github.com/AlexRAtrio/many-to-many).
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Model Type Data Lines

HSB↔DE WMT20 Low-res 60k
DE↔EN NewsComm. v13 120k
HSB↔DE↔EN WMT20 Low-res (upsampled) & 60k (120k)

NewsComm. v13 120k

Table 8.1: The three types of multilingual models trained in this section (two bilinguals and a
multilingual type) and the data used to train each of them. For each of these types of models,
we train two, with different levels of regularization through their hyper-parameters as shown
in Table 8.2.

scores remain comparable. For all cases, batches are sampled uniformly from all translation

directions.

We use Google’s SentencePiece 3, to learn a joint trilingual vocabulary for all cases, from the

two datasets in Table 8.1. We train the tokenizer with character_coverage=1. We add language

tags in the vocabulary for each target language (<HSB>, <DE>, <EN>). Although for training

multilingual systems both the source and target sentences can be prepended with a language

token (Tang et al., 2021), in our system only the source is tagged (in both training and testing),

with a target language tag prepended to each sentence plus a whitespace, while the target

always remains as untagged, following previous research in multilingual NMT (Johnson et al.,

2017; Aharoni et al., 2019; Arivazhagan et al., 2019), and also more broadly in multitasking

(Raffel et al., 2020).

8.2 Results

In Table 8.2 we provide the scores for all directions (evaluated on the WMT20 devel set for HSB-

DE, and a sample of 1k lines of NC v.13 for DE-EN) as well as the comparable unidirectional

baselines and optimized scores. For each model we evaluate the checkpoint that obtains the

highest BLEU score on the dev set, and evaluate BLEU score and chrF on the test set and

cross-entropy loss on the train set.

In all four directions we obtain best scores with the regularized hyper-parameters. In the

lower-resourced directions (DE↔HSB) increasing the amount of multilingual parallel data

without increasing also the regularization does not produce consistent improvements, and on

the more resourced directions (DE↔EN) the improvements are small.

Specifically focusing on the more regularized models: for the HSB→DE direction we observe

that the bilingual model is not able to reach the score obtained by the unidirectional model

(although it still improves over the baseline), and the trilingual model reaches the highest score.

We see very similar results on the opposite DE→HSB direction, and in this case the bilingual

3https://github.com/google/sentencepiece
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Direction HPs Model BLEU↑ chrF↑ Xent↓
(test) (test) (train)

HSB→DE

bl
unidirectional 42.19 68.27 0.01
bilingual-hsb↔de 40.62 67.65 0.05
trilingual-hsb↔de↔en 41.64 68.46 0.33

reg
unidirectional 47.20 71.73 0.07
bilingual-hsb↔de 45.71 70.77 0.17
trilingual-hsb↔de↔en 49.42 73.59 0.67

DE→HSB

bl
unidirectional 40.47 66.87 0.02
bilingual-hsb↔de 40.92 67.09 0.05
trilingual-hsb↔de↔en 42.03 68.67 0.33

reg
unidirectional 46.31 70.47 0.08
bilingual-hsb↔de 46.81 70.61 0.16
trilingual-hsb↔de↔en 49.81 73.71 0.67

DE→EN

bl
unidirectional 29.94 56.72 0.16
bilingual-en↔de 32.16 58.63 0.92
trilingual-hsb↔de↔en 31.02 57.96 0.39

reg
unidirectional 35.77 61.27 0.67
bilingual-en↔de 36.06 61.83 0.91
trilingual-hsb↔de↔en 34.57 60.99 0.66

EN→DE

bl
unidirectional 21.94 53.93 0.15
bilingual-en↔de 23.63 55.34 0.78
trilingual-hsb↔de↔en 22.75 54.41 0.57

reg
unidirectional 26.61 57.72 0.85
bilingual-en↔de 27.10 58.00 0.87
trilingual-hsb↔de↔en 26.07 57.40 0.66

Table 8.2: Results of the unidirectional and multilingual systems. In each of the four directions,
for each model setup we compare two sets of hyper-parameters: a baseline, less regularized
set (bl), and an optimized, more regularized one (reg). We show in bold the best scores in
each metric for each of the four directions.

model reaches similar scores as the unidirectional one. We also observe that the trilingual

model reaches very similar scores in both directions HSB↔DE as well, which shows that the

regularization introduced by the third language and two additional directions is slightly more

beneficial to the DE→HSB direction than the other one, since the baseline scores in DE→HSB

are lower. This is unexpected, as having had more training in generating DE would reasonably

result in higher scores on the HSB→DE direction.

Regarding the DE→EN and EN→DE directions, we observe a big difference between the base-

lines (8 BLEU points), which also holds between the two optimized models, the two directions

in the bilingual model, and the two directions in the trilingual model. The improvements

provided by each of the three non-baseline models are comparable in both directions. We
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observe that the trilingual model does not improve over the regularized unidirectional model

in either of the two cases. We conclude that the addition of a third language (HSB, in this case)

benefits more if it is a higher-resource one.

8.3 Discussion

The bilingual models and the trilingual model have remarkably higher loss values than their

unidirectional counterparts. We hypothesize that the cause is the same as in Section 3.8: a

more regularized model is more likely to optimize into flatter regions of the loss landscape,

even if the loss of the weights is higher. Settling into flatter regions allows the model to

generalize better, particularly when there is more difference between its training data and the

unseen test data. In this specific case, we argue that the introduction of a multilingual task

serves as a kind of regularization, as would any auxiliary task, which explains the increase of

BLEU in the multilingual model. Similarly, the increased loss also indicates that the model is

not wasting as much of its learning in modeling dataset-specific patterns. This also maintains

our previous explanation that the smaller amount of training there is, the more regularization

is needed, which explains why the trilingual model outperforms the optimized model for

HSB→DE but not DE→EN.

As we can see, in each direction, the highest score is always achieved by a multilingual model,

despite the already well-optimized hyper-parameters of the regularized unidirectional models.

Experiments in Chapter 3 show that the optimized hyper-parameters used in the optimized

models are close to the highest amount of regularization that the model can be trained

with without lowering translation quality. The scores obtained here show that an additional

source of regularization, in the form of multitask multilingual training, can introduce even

more regularization than what can be obtained from the regularization factors (dropout,

learning rate, warmup steps, gradient clipping), without the generalization ability of the

model degrading. This shows that even if regularization coming from one source may be at its

maximum (before model quality starts decreasing), overall regularization may still be possible

if coming from an additional source.

8.4 Conclusion

In this chapter we have trained unidirectional, bilingual, and trilingual models for two low-

resource datasets, in four translation directions. For each of them, we observed improved

results by training with more regularized hyper-parameters (see Chapter 3). We show that,

particularly when coupled with increased regularization, very low-resource systems benefit

greatly from increasing the amount of languages they translate to, at least up to three (+7 and

+9 BLEU points). More resourced (but still low-resource) systems also benefit from translating

into several languages, although the best results are obtained when translating into two and

not three languages (+6 and +5 BLEU points).
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Future work should clarify the cause for this drop of improvements. We posit two options: i)

additional training on a much lower-resourced dataset does not improve results (but trans-

lating into a third language would improve them, if dataset size was higher), ii) as the main

dataset size increases, benefits from many-to-many training decrease.
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Regularization with Artificial Data
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9 Constraining at Inference-Time
for Targeted Generation1

This chapter describes a system for interactive poem generation, which combines neural

language models (LMs) for poem generation with explicit constraints that can be set by users

on form, topic, emotion, and rhyming scheme. LMs cannot learn such constraints from the

data, which is scarce with respect to their needs even for a well-resourced language such

as French. We propose a method to generate verses and stanzas by combining LMs with

rule-based algorithms, and compare several approaches for adjusting the words of a poem to

a desired combination of topics or emotions. An approach to automatic rhyme setting using a

phonetic dictionary is proposed as well. Our system has been demonstrated at public events,

and log analysis shows that users found it engaging.

9.1 Introduction

LMs, which are probability distributions over sequences of words or characters, have recently

enabled the generation of fluent sentences and texts. However, controlling such models in or-

der to generate specific text structures remains difficult. We propose solutions for constrained

language modeling with external features such as form, topics, emotions and rhymes, and

integrate them into a system for interactive poem generation, which enables the joint writing

of a poem by a human and a computer. This presents an additional difficulty: the lack of

available data that has been annotated with a variety of these features, which places this work

in a low-resource setting. Our CR-PO system2 leverages neural LMs to generate the initial draft

of a poem in a form selected by the user, and then enters a cycle of joint human-computer

co-editing, in which the user can set various parameters, according to which the computer

modifies the current creation. Manual editing is also possible at any stage. The CR-PO system

has been demonstrated at a public exhibition and other events at our institutions. The system

1This work was done in collaboration with Valentin Minder, Aris Xanthos, Gabriel Luthier, Simon Mattei and
Antonio Rodriguez, and published in Popescu-Belis et al. (2022). I designed and implemented the first generation
stage (combining a general neural LM with rules in order to constrain its generation to a desired form) and the
module applying the rhyming scheme at the last stage of the process.

2CR-PO stands for Création Poétique Assistée par Ordinateur, i.e. computer assisted poetical creation in French.
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runs autonomously on an small form factor PC with a 32” touchscreen, with robust and explicit

graphical interfaces.

The goal of this chapter is to present the poem generation system and our approaches to

constrain neural LMs according to different dimensions that characterize poetry. We discuss

previous related work in Section 9.2 . We present a functional view of CR-PO in Section 9.3,

along with the setting and hardware. We introduce the third party software and the data used

to build LMs in Section 9.4. Our solutions for constrained text generation are presented in

Section 9.5, regarding the form of the poem (stanzas and lines), the adaptation of the poem

to given topics or emotions, and the rhyming scheme. We present some sample outputs in

Section 9.6. We present in Section 9.7 several actions we took towards the evaluation of CR-PO.

9.2 Related Work

As we saw in Section 2.6, the challenges of training a LM for NLG in a low-resource setting

are similar to those of low-resource NMT. Poetry generation is a specific area of NLG, where

training data is scarce. We will now present some other studies related to our study in this

current chapter and in Chapter 10.

Hopkins and Kiela (2017) train a large recurrent neural LM with LSTM units directly on the

phonetic encoding of poems (1.5 MB of text from https://www.sonnets.org), and constrain

the form with a finite state machine. In their study, human judges were not able to distinguish

machine-generated poems from human-authored ones. “Deep-speare” is a system for sonnet

generation in Shakespearean style, which captures especially rhythm and rhyme, with a fixed

form (Lau et al., 2018). The model also uses a bidirectional RNN with LSTM units. The results

of evaluation by experts show that while constraints on form can be quite easily satisfied,

readability and substance still hamper machine-generated poems. More recently, Wöckener

et al. (2021) used conditioned RNNs in a system that is able to learn stylistic features from the

data, such as length and sentiment, although not rhymes. Moreover, the authors show that

models such as GPT-2 struggle with rhymes as well.

For Chinese, one of the earliest poetry generation systems using RNNs was proposed by Zhang

and Lapata (2014), starting from user-provided keywords and generating a quatrain line-by-

line, with a convolutional sentence model and pre-defined line lengths and tonal patterns.

Previously, as done e.g. by Yan et al. (2013), the numerous constraints of Chinese poetry

were solved through numeric optimization algorithms. The task of poem generation can be

additionally constrained: for instance, Yang et al. (2019) study the problem of generating

a poem from prose, an approach that allows users to convey more precise meanings than

when seeding the poem with keywords only. Using a variational encoder and adversarial

training, the system designed by Li et al. (2018) generates a Chinese poem given the title as a

representation of its topic. They evaluate their poems in terms of topic consistency, fluency,

meaningfulness and “poeticness.” Additional constraints can be imposed: for instance, to

generate an acrostic poem where the first letters of the lines spell a given word, Agarwal and
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Kann (2020) use a left-to-right 3-layer RNN with LSTM units and a separate rhyming model.

Turning now to interactive systems, ASPERA is an expert system for prose-to-poetry conversion

in Spanish (Gervás, 2001). The rule-based system gathers information from the user about the

style and the content, and uses NLG techniques and an example-based approach to generate

a poem, although collaborative creation does not seem to be possible.

PoeTryMe is a rule-based interactive poem generation system initially designed for Portuguese

and later extended to Spanish and English (Gonçalo Oliveira, 2012; Gonçalo Oliveira et al.,

2019). Developed over a long period of time, and also available through a web-based interface,3

the system leverages its grammatical and semantic knowledge to offer capabilities for word-

level or line-level modifications in terms of number of syllables, “surprise” level, or keywords.

Although many default forms are possible, there are no direct ways to express topics or

emotions, and the fluency in English appears to be limited by the smaller amount of knowledge

available to the system.

Poem Machine (Hämäläinen, 2018b,a) was developed for Finnish and was focused from

the start on assisting primary school children in creating poetry as a follow up to previous

experiments (Kantosalo et al., 2015). To cope with the complex morphology of Finnish, the

system uses finite state transducers and a semantic network. Predefined forms and topics are

proposed, and an assistance with rhythm is provided too. Similar to what we observed when

children used CR-PO, Poem Machine helps to teach the constraints of poetic forms and makes

experiments with poem creation more entertaining for children.

Hafez was one of the first systems to combine interaction with deep neural LMs (Ghazvininejad

et al., 2016, 2017). The system proceeds in the opposite order of CR-PO: it first asks the user

for a number of parameters, including sample words, sentiment, and repetitiveness, then it

formulates internally the constraints as a set of transducers, and uses a word-based RNN LM

to generate a poem (a quatrain) satisfying these constraints. User satisfaction was shown to

increase when learning the initial parameters from previous interactions. Our system makes a

different use of the LM: we use a character-based LM which better captures the grammatical

inflections of French regardless of the forms seen during training, and we use also LMs to

replace mismatching words. Moreover, CR-PO can be run with acceptable speed (less than 5

seconds) on a small computer witout a GPU, which makes our hardware easy to set up.

Van de Cruys (2019, 2020) proposed a RNN encoder-decoder architecture with attention, with

GRUs, for English and French poems. The model is trained to generate a line of poetry given the

preceding one, with a decoder part that models the new line in reverse order. The advantage of

starting from the last word, as for Hafez, is that it can be sampled with a probability distribution

that incorporates rhyming constraints, using a rhyming dictionary similar to ours, with an

additional bias to avoid repeating the consonant group preceding the final vowel [+ consonant].

In the experiments, the ABAB CDCD pattern is always used. Human judges ranked a set of 40

3https://poetryme.dei.uc.pt/ – see also @poetartificial on Twitter.
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generated poems almost as high as human ones on several parameters. No scores are provided

for rhyming alone, likely because it is nearly perfect given the architecture, but the rhyming

component improved scores of ‘poeticness’ and human-likeliness.

PoeLM (Ormazabal et al., 2022) uses a decoder (GPT-style with 350M parameters) to learn

rhythm and syllables from a large corpus of prose in Spanish and Basque. Input text is

segmented into phrases, and for each set of phrases of a sentence a set of tags is prepended to

the sentence, e.g. <LEN:11><END:ura> for an 11-syllable phrase finishing with ‘-ura’. PoeLM

learns these control tags and can leverage them to generate lines of poetry of desired length

and endings. However, as the model does not learn rhyming rules (i.e. identity of syllables) but

only identifies actual syllables, poem generation must start by specifying exactly the ending

syllables of each line. Evaluation is done by completing the initial line of human poems with

PoeLM, and then asking human judges which version they prefer.

ByGPT5 (Belouadi and Eger, 2022) is a character-level Transformer-based decoder, with gener-

ation conditioned on rhyme, meter, and alliteration. The model is initialized on the decoder

of ByT5 (Xue et al., 2022), trained on large amounts of data, and then fine-tuned on a machine-

labeled corpus of pseudo-quatrains in English and German, separately. Meter and rhyme

are evaluated with classifiers trained on labeled data. Overall, according to automatic and

human measures, ByGPT5 produces better results than ByT5 and subword-level models such

as GPT-2 and mT5.

9.3 Overview of the System

9.3.1 Functional Description

CR-PO addresses the following research questions regarding text generation using LMs:

1. While powerful LMs are now available for text completion tasks in well-resourced lan-

guages, how can a LM be trained to generate a specific text genre if resources are scarce?

2. How can constraints on form (lines and stanzas) be applied to the unstructured output

of auto-regressive LMs? For instance, given the relative scarcity of sonnets, 4 hence the

difficulty of learning such a form from data, how can it be imposed on LM-generated

text?

3. How can the problem of cold start be addressed? I.e. text generation ex-nihilo, not text

completion.

4. As poems convey topics and emotions, how can a human steer a LM to include one or

more topics into a poem, without writing explicitly the beginning of the poem?

5. How to design a system that can function autonomously for a long time in a public

exhibition?

4A poem with two quatrains followed by two tercets.
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Select poetic form

Generate draft

Select topics

Adjust words

Manual editing

Select emotions

Adjust words

Select rhyme scheme

Adjust line endings

START

END

Figure 9.1: Functional schema of the CR-PO system. The creation of a poem proceeds clock-
wise. The quills in the white boxes indicate actions of the human user, and the cogwheels in
the gray boxes indicate actions of the system’s back-end. Manual editing is possible at any
stage. Figure reproduced from Popescu-Belis et al. (2022).

The CR-PO system attempts to answer these questions, mostly through its poem generator

presented in Section 9.5 below. To understand the entire system, a functional description is

shown in Figure 9.1. The stages of the creation of a poem are the following ones:

1. The user selects the intended form of the poem, among four predefined options: a

quatrain (four lines), a sonnet, a haiku, or free form (3–5 lines of 32–52 characters).

Although the generator adapts to any number of stanzas and lines, we found it simpler

for the user to choose among a small number of fixed options.

2. Using a general-domain LM trained on French poems, the system generates a first draft

respecting the selected form (see Section 9.5.1).

3. The user can edit the poem using a keyboard, for instance to correct mistakes, improve

readability, or express their own creativity. Manual editing is possible after each of the

system’s contributions, as shown in the central box of Figure 9.1. The editor is shown in

the Appendix of the publication (Popescu-Belis et al., 2022).

4. The user can select one or more topics using sliders, from a list of five topics labeled as

love, art, nature, spirituality or life-and-death. The system then modifies the poem by

adjusting some words to fit the desired topics (see Section 9.5.2).

5. Similarly, the user can select one or more emotions among happiness, sadness, or

aversion. The system then modifies the poem accordingly.

6. Finally, the user selects a rhyming scheme among three possibilities offered in the

interface (e.g. AABB, ABBA, or ABAB for a quatrain), and the system changes line endings
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accordingly (see Section 9.5.3). This is the last stage, and the delivery of the final poem

depends on the technical setup which we now present.

9.3.2 Implementation and Public Displays

As the focus of this chapter is the poem generator and the constraints on LMs, we list here only

briefly the main implementation decisions that make the demonstrator operational. Currently,

the generator and the GUI are in French, and are being ported to English.

1. CR-PO is implemented in Python, and the GUI uses the Kivy framework.5

2. The system runs autonomously on a small-form-factor PC with modest computational

requirements.6 Training of LMs is done separately on a workstation with two GPUs.7

3. Users interact with CR-PO through a 32” touchscreen, which is fixed on a stand together

with the computer. The system cannot be stopped as long as the physical keyboard and

mouse are hidden.

4. The stages of each poem are logged into a JSON file for further analyses, but we do not

record all interactions with the interface.

5. For users to keep a memory of their poems, solutions vary according to the presentation

setting, but all the following solutions preserve the privacy of the users:

• The poems can be automatically uploaded to a website, and when users conclude

their creation, its URL and an access code for their specific poem are displayed.

• In the exhibition mentioned below, each completed poem was printed on a large

plotter, displayed as a work of art in the center of the room.8 Users could select

parameters of the fonts used for printing.

• The poems can be printed on a regular printer, if available.

• As suggested on the final screen, users can take a picture of their poem using their

smartphones.

The system has been shown at the following events:

• The Digital Lyric exhibition in Morges, Switzerland, in spring 2020, which showcased

art works and devices demonstrating novel relations between poetry and technology.9

Poems created by visitors were made available online.

5https://kivy.org/
6A Dell Optiplex 7060 with an Intel Core i5 3 GHz processor, 8 GB RAM and 128 GB SSD.
7nVidia GeForce RTX 2080 Ti 11 GB.
8Designed by Nicolas Baldran and David Héritier from the Center for Future Publishing in Geneva, https:

//www.centerforfuturepublishing.org.
9The exhibition was held at the Château de Morges, from February 14 to May 10, 2020. Called Code/Poésie in

French, it was curated by Antonio Rodriguez (University of Lausanne) and Sarah Kenderdine (EPFL). For more
information, see https://lyricalvalley.org/digital-lyric-exposition/.
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• Open doors of the HEIG-VD in November 2021 and 2022, where CR-PO was presented

at two workshops to 10–13 years old visitors.

• Internally, CR-PO is available to visitors of the Institute for ICT at HEIG-VD in its show-

room.

• As a demonstration system in the 13th Edition of Language Resources and Evaluation

Conference (LREC) in June 2022.

9.4 Language Models and Data

9.4.1 Neural Language Models

LMs are the key technology that enables the generation of raw text, which our system trans-

forms into poems based on the user’s constraints. For the initial generation, we selected

character-level LMs in order to increase the variability of generated text, which potentially

includes non-existing but plausible French words, but also to ensure better grammatical

agreement in sentences, as not all word forms are seen during training. This is in contrast

with word-based LMs, which have a limited vocabulary, but also with subword based ones,

for which it is not entirely clear how to set the vocabulary size (actually, the number of merge

operations) when training data is rather limited (corpora of poems presented below).

The LM toolkit we used for autoregressive (left-to-right) generation of the first draft of the

poem is TextGenRNN,10 an open-source implementation by Max Woolf of a character-based

LM using recurrent neural networks (RNNs) with attention. Written in Python using Tensor-

Flow, following an approach proposed by Andrej Karpathy,11 TextGenRNN uses LSTM layers

according to the early principles of sequence modeling with RNNs (Sutskever et al., 2011;

Graves, 2013).

To generate text in a poetic style, we trained a LM on our entire collection of poems (14.45 MB

of text, presented below) without additional data from prose. Indeed, on the one hand, we

observed that the text generated by this general model is nearly always grammatical without

the need for more data, and on the other hand, it is not clear what prose genres are suitable

to train a model that generates poetry. We also trained topic-specific and emotion-specific

models based on smaller datasets presented below. The advantage of character-based RNNs

over more recent Transformer-based decoders such as GPT-2 (Radford et al., 2019) is the lower

amount of training data needed to reach acceptable quality.

For adjusting words to topics and emotions, the replacement of non-matching words is better

achieved by taking into account the left and right contexts of these words, and not by left-to-

right generation (as shown by the results in Section 9.7). We experimented with a general LM

10https://github.com/minimaxir/textgenrnn
11https://github.com/karpathy/char-rnn
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for French, namely CamemBERT (Martin et al., 2019),12 which is an encoder model trained on

a masked language modeling task with 138 GB of French text using the RoBERTa architecture

(Liu et al., 2019)13 itself an improvement of BERT (Devlin et al., 2019). We adapted CamemBERT

for 20 epochs to the topic-specific datasets presented below, following the documentation

from HuggingFace14.

9.4.2 Data Collection

We obtained about 7.72 MB of French poems from https://www.poesie-francaise.fr/, with

poems in the public domain, only used for training our LMs. We gathered more than 5,000

poems, mostly from the 19th century and before. We obtained a similar amount of French

poems (7.73 MB of text) from Project Gutenberg15 by downloading text-only versions of works

by a set of authors who have mostly written poetry, again in the public domain (about 50

authors and 76 books). The overlap between the two corpora is smaller than 4%. In order to

train TextGenRNN with both datasets, we cleaned the texts by removing characters outside

the ISO-8859-1 set, any material not part of the poems (such as Project Gutenberg metadata,

titles, author names, etc.), and any blank lines, as we do not expect the LM to learn forms from

the data.

In addition, to train topic-specific and emotion-specific LMs, we gathered annotated corpora

of poems. We used topic and emotions labels from https://www.poesie-francaise.fr/ – assigned

by the creators of the collection – to obtain small datasets for five topics and three emotions,

using a correspondence between these eight coarse-grained categories and the observed

labels.16 We augmented these datasets with a second collection of 19th century French poems

with labels, from the University of Lausanne.17 The data sizes for each topic and emotion are

the following ones:

• Topics: amour (love, 136,557 words, 776 KB of text), art (97,522 words, 561 KB), nature

(130,923 words, 775 KB), spiritualité (spirituality and religion, 95,169 words, 542 KB), vie

et mort (life and death, 153,554 words, 886 KB).

• Emotions: joie (joy, 41,126 words, 229 KB), tristesse (sadness, 62,248 words, 352 KB),

aversion (hate, 44,004 words, 253 KB).

These datasets are too small for training or adapting topic- or emotion-specific LMs. To

augment them, we used them as training sets for classifiers, which we then applied to our

12CamemBERT-Base model from https://huggingface.co/camembert-base/.
13https://huggingface.co/docs/transformers/model_doc/roberta
14https://huggingface.co/docs/transformers/model_doc/camembert
15https://www.gutenberg.org/
16Annotating emotions in poems requires in reality a broader range of categories (Haider et al., 2020) but we

were constrained here by the available labels.
17A 1,001 poem collection put together by Mélina Marchetti under the supervision of Antonio Rodriguez for the

Digital Lyric exhibition.
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entire collection of poems (15.45 MB). The classifiers are word-based Naive Bayes models:

5-way for topics and 3-way for emotions. Although they are quite imperfect, the benefits

of larger data sets thus obtained exceed their drawbacks. The augmented datasets have the

following sizes in MB:

• Topics: amour (3.3), art (1.0), nature (2.0), spiritualité (5.3), vie et mort (5.8).

• Emotions: joie (4.3), tristesse (8.2), aversion (4.9).

The quality of topic-specific and emotion-specific corpus augmentation has been evaluated

by holding out a small portion (10%) of the training data (labeled poems) and testing classifiers

on it.18 We experimented with three different options: the type of model (naive Bayes, decision

tree, or logistic regression), the representation of lexical features (Bernoulli, i.e. ‘present’ vs.

‘absent’, or multinomial, i.e. ‘number of occurrences’), and the chunks used for classification

(fixed number of lines, whole stanzas, or whole poems). Since the emotion-specific sub-

corpora are not divided in stanzas, we consider chunks of at least seven lines stopping at

the first punctuation mark. Specifically, we obtain the following F1 scores: amour - 0.45, vie

et mort - 0.36, nature - 0.36, art - 0.42, spiritualité - 0.32, with a macro-average F1 score of

0.38. Overall, our experiments led us to select a naive Bayes classifier, with lexical features

represented using the Bernoulli model, and splitting the data into stanzas.

9.5 Constrained Autoregressive Generation of Poems

9.5.1 Setting the Poetic Form

In the first stage, the character-based TextGenRNN LM generates a poem with the form chosen

by the user. Any form can be generated, with any number of stanzas, lines per stanza, and

lengths of lines, although in the current interface only four fixed possibilities are offered. The

following parameters have been set empirically.

Sampling Probability of the LM

The general LM is made of an input layer of 40 units, an embedding layer of 100 units, and two

concatenated bidirectional LSTM layers of 256 units each (128 in each direction). Attention is

applied to the concatenation of the embedding layer and the two recurrent layers, and the

softmax dense output layer has 89 units, which is the size of our character set V . This covers

largely the French character set, with common punctuation signs. We use the default values

on TextGenRNN, except for our use of bidirectional layers.

Once trained, the general LM provides a probability distribution over the character vocabulary

V , conditioned on context, i.e. on the N = 40 previous characters noted cn−1
n−N+1, with cn being

18The sizes of test sets are : amour - 257, vie et mort - 226, nature - 206, art - 133, spiritualité - 132.
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the character to generate. To sample character cn from V using this distribution, we use the

temperature parameter t available in TextGenRNN, which we set to t = 0.4. Such a value

augments the highest probability values in the distribution, and thus makes the model more

“prudent” when sampling. Formally, we sample from V with the distribution:

P ′(cn) = P (cn |cn−1
n−N+1)1/t∑

c∈V
P (c|cn−1

n−N+1)1/t
(9.1)

where P (c|cn−1
n−N+1) are the probabilities of the LM. Furthermore, in our implementation, we

consider a set F of forbidden characters from V that we disallow our system to generate at a

given stage. The use of F will be explained below.

Due to the lack of context, the initial parts of most generated sequences are often ungrammati-

cal, contain numerous repeated words, and lack variety – a phenomenon known as “cold start”.

To address this, we generate four lines that are not shown to the user, and only start displaying

the generated poem after them, i.e. after feeding the LM these four lines as initial context.

Adjusting the Length of Lines

The next goal is to control the length of the generated lines, in characters. This can be set at any

value, but in our implementation, we approximate the number of characters per syllable as 4

for French, and, for instance, for a 12-syllable line, we aim for 48 characters per line on average.

We note that existing tools allow for labeling of French text into syllables effectively. For

instance, Beaudouin and Yvon (1996) is a rules- and dictionary-based tool that transcribes a

French poem into phonemes, in order to then be split into syllables, with which they annotate

80k verses. We choose to approximate syllables with just the number of characters, based on

considerations of simplicity, and after empirically observing satisfactory results with it.

For each line, we first generate 85% of it, disallowing end-of-sentence punctuation to avoid

sentence splits in the middle of the line. Then, we set the minimum length of the remaining

part of the line to 2 characters, and the maximum length to 1.8 times the remaining length.

For instance, for a line with 48 characters, we first generate 41 characters (85% of 48), and then

allow ending sequences between 2 and 13 characters (1.8 × 15% of 48).

The algorithm makes several attempts to generate a series of characters ending with a punctu-

ation mark within the desired character limit. The attempts are made in the following order,

and when one succeeds, the algorithm stops and appends the result to the initial part of the

line.

1. Generate a sequence until the maximal ending length is reached.

2. Retry, disallowing the first character of the previous try to encourage diversity.

3. Retry, relaxing the constraint on minimal length.
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4. Retry, accepting whitespace as punctuation.

5. Retry, relaxing the constraint on maximal length.

A newline character is appended to the finished line, and the line is appended to the context

of the LM. The generation of the next line thus also takes into account the newline character,

which drives generation towards a sequence resembling a line start as learned during training.

Therefore, our lines are genuinely distinct poem lines, and not just sequences divided manually

into lines. The result is post-processed as follows:

1. Remove duplicate whitespaces.

2. Fix whitespaces before and after punctuation.

3. Uppercase line starts.

4. Delete 25% of all punctuation marks at line ends, to avoid too many lines ending with

punctuation.

5. Ensure stanzas end with hard punctuation.

Although the creativity of a character-based LM sometimes leads to interesting new words, we

decided that for a public exhibition it was preferable to spell check the output before display.

We use a French dictionary of 142,541 words19 (New et al., 2004) and replace unknown words

with their closest correct match using Python’s SequenceMatcher from the Difflib library. We

use NLTK20 for tokenization.

9.5.2 Adjusting Poems to Topics and Emotions

The next two stages enable the user to adjust the words of the poem towards one or more

desired topics, and then emotions. The principles and interfaces for topic and emotion

adjustment are similar, and we present them together. As stated in Section 9.3, when designing

the CR-PO system, we settled on five topics (love, art, nature, spirituality, life-and-death) and

three emotions (happiness, sadness, aversion) that appear frequently in poems. The user

selects the desired proportion of each topic in the poem (and then emotion) using the sliders of

the interface. The values for the m topics (or emotions) are coded as a vector w = (w1, . . . , wm)

of m weights between 0 and 1.

Poem adjustment requires two operations: select the words to be replaced (9.5.2), i.e. those

that do not match well with the desired topics or emotions, and replace them with words

that match better (9.5.2). For each operation, topic- or emotion-specific LMs (Section 9.4.2)

provide an obvious solution: words that have higher perplexities for these LMs than for the

general LM should be replaced with words generated using these specific LMs. However, we

19http://www.lexique.org/
20https://www.nltk.org/
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propose for each operation an alternative solution, which human evaluators have found to

perform better (as presented in Section 9.7).

Word Selection

Using topic- or emotion-specific LMs, the baseline criterion for word selection is the likelihood

of each word according to these specific models: words with the lowest values are good

candidates for replacement (e.g., “happy” would likely score low with the “sadness” LM). In

our implementation, we compute the difference between the weighted average (by w) of the

likelihoods given by the specific LMs and the likelihood of the general LM, then rank all words

by decreasing values, and select about 8% of the words that are at least 3 characters long.21

The second method for word selection uses independence quotients (IQs) following the ap-

proach of Egloff and Bavaud (2018). The IQ value Qi k for word i and category k is the ratio of

the observed count of word i in poems belonging to category k to its expected count assuming

independence of words and categories. Formally:

Qi k = Ci k ·C••
Ci• ·C•k

(9.2)

where Ci k is the count of word i in the poems of category k and the ‘•’ sign denotes summation

over the corresponding index. The IQ values are non-negative, smaller than 1 if word i is under-

represented in category k, greater than 1 if i is over-represented in k, and 1 if the count of i in

k equals its expected count assuming independence. The IQ matrix Q = (Qi k )1≤i≤n,1≤k≤m for

n words and m categories can be pre-computed.

The dot product Q ·wT represents the fitness values of all words given a choice of topics (or

emotions), which shows how closely the profile of IQs of each word i matches the used-defined

weights w of the categories. A fraction of the words with the lowest fitness are then replaced.

We built the IQ matrices using labeled poems from https://www.poesie-francaise.fr/ with a

mapping of their labels into our five topics or three emotions. We only considered nouns,

verbs and adjectives as found by TreeTagger22 (Schmid, 1994) and we excluded stopwords23

and words appearing fewer than 5 times. This resulted in 8,146 word types for topics and 2,621

for emotions in the respective IQ matrices.

Word Replacement

We have tested two methods for generating word replacements: either with the character-level

LM from TextGenRNN, trained from scratch with topic or emotion specific data, or with a

word-level CamemBERT model fine-tuned using the topic or emotion specific data. When

21As TextGenRNN is a character-based LM, the likelihood of a word is the average of the character probabilities.
22https://www.cis.lmu.de/~schmid/tools/TreeTagger/
23From the list available at http://members.unine.ch/jacques.savoy/clef/frenchST.txt.
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several topics (or emotions) have non-zero weights in w, we decide randomly which model to

use to generate each character or word, based on probabilities derived from w.

As the first method uses a left-to-right RNN, only the left context of the word to be replaced can

be considered. The replacement is generated character by character, forbidding punctuation

for the first three characters, then allowing it (including whitespace) and stopping when a

punctuation mark is generated. For the second method, once the specific CamemBERT model

is drawn, we give it the left and right contexts of the word to replace and a mask token in

the respective position, and we select randomly among the five words receiving the highest

probabilities.

The 2×2 options for word selection (TextGenRNN vs. IQs) and replacement (TextGenRNN vs.

CamemBERT) were evaluated by human judges, and results are summarized in Section 9.7

below.

9.5.3 Setting the Rhyming Scheme

In the final stage, the user can select a rhyming scheme to apply, represented using letters,

e.g., ‘AABB’, ‘ABAB’ or ‘ABBA’ for a quatrain. The system selects which line endings must be

changed, retrieves a list of candidate words from a dictionary, scores them with the general

LM and selects the highest-scoring one with the same POS tag as a replacement. We use the

same dictionary as in Section 9.5.1, as it includes the phonetic representation and POS tag of

each word.

The main challenge is to exploit the phonetic forms of words to identify the rhymes, i.e. the

ending sounds which must match across words. We formulate the following stages using

regular expressions: (1) identify the final vowel of the word; (2) extract either the following

consonant, if any, or the immediately previous ones, if any; (3) otherwise, extract the immedi-

ately previous vowels plus the previous consonant. All the rhymes are two or three sounds

long, as exemplified in Table 9.1.

Although these rules produce imperfect rhymes, stricter ones were also tested, but they either

did not find rhyming words, or found words that were too similar, e.g., singular vs. plural of

the same words – perhaps due to the reduced dictionary size (150k words).

To apply a rhyming scheme to a poem, we keep the final word of a line if it is the first one in

the rhyming scheme: e.g., with ‘ABBA’, the first two lines are not changed. We also store their

endings in order not to repeat them below. Then, for each line ending to change, we search for

at most five candidate words that have the same rhymes, with priority to words that have the

same POS tag as the word to be changed. We score the candidates in context with the general

LM, which is better than the specific ones, and choose the candidate with the highest score. If

the user edits the poem, the same process is run based on the edited version.
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Word Rhyme Word Rhyme
endormant m@ raisonnassent as
chipez pe perturbent yRb
plaisantions tj§ béatement m@
guet-apens p@ soumettions tj§
brouillaient ujE misait zE
vallonnés ne observées ve
fumant m@ pugilistes ist
envole Ol hydrophiles il

Table 9.1: Examples of rhymes extracted from the phonetic representations of some words in
the dictionary.

9.6 Sample Results

Three sample outputs of our system, respectively prompted internally with the strings “Je rêve”,

“Être distrait”, and “Ma tête dans les nuages” (I dream, being distracted, and my head in the

clouds, in French), are provided hereafter to illustrate its results. Put together, these outputs

constitute CR-PO’s participation to a poetry contest, on the same topic as the prompt strings.

To improve quality, the three outputs were selected from a total of six. In these cases, the

prompts provide enough context and diverse starting points to continue generation without

the problem of a cold start, so we provide the text as it is generated directly after each prompt.

Je rêve des couleurs de la forêt en silence.

La terre s’accroche aux premiers pas de l’homme.

Le soir, dans tout ce qu’il trouve dans ces tomes

Sous les champs d’or de la fleur de la naissance !

Être distrait pour la chair sourde de son âme

L’espoir d’un chant sous le cinname ;

La fille du ciel s’abat, le soir, le temps est éclatant,

Et le printemps, et le soleil se clapotant

Et ses doigts d’or s’en vont au fond du soir.

Ma tête dans les nuages, les arbres noirs, en haut,

Et les parfums pleurants s’en vont en lui rendant les cieux.

Les fleurs de la saison descend de la terre,

A l’entour des vagues du vent, les ombres de l’enfance.
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9.7 Evaluation

We performed several experiments with human users of the CR-PO system. First, we summa-

rize an experiment comparing the 2×2 adjustment methods from Section 9.5.2. Then, we

present statistics from the two public events where CR-PO was used.

9.7.1 Results from A/B Testing

We tested all four combinations of word selection and replacement methods presented in

Section 9.5.2 with 15 automatically-generated poems presented to 13 users. Each user saw the

initial poem and had to compare two outputs of topic or emotion adaptation, differing on one

of the two stages, either word selection or word replacement. Users were asked to choose the

best of the two outputs, with ties allowed, on the dimensions of topic relevance and fluency,

by answering the following questions:

• Which output is closer to the indicated topic?

• Which is the most understandable output, i.e. the one that makes the most sense in

French?

We present the answers in Table 9.2. The use of IQ values for word selection leads to poems that

are clearly perceived as more topically-relevant than when using the LM probability difference.

These poems are also perceived as more fluent, although the difference is lower. The smaller

effect on fluency can be explained by the fact that the IQ score does not consider the context

of words, which may lead to replace words that are particularly important for fluency. For

word replacement, CamemBERT clearly outperforms TextGenRNN. This can be explained

by the larger amount of training data in comparison with the RNN character-level models,

which were trained from scratch, and by the bidirectional nature of CamemBERT. As a result,

we chose IQ as a criterion for word selection, and CamemBERT for word replacement.

Question Answer Topic Fluency

Word
selection

TextGenRNN is better 17.3 24.4
IQ values are better 67.7 41.7
The two are similar 14.9 33.9

Word
replacement

TextGenRNN is better 14.3 3.1
CamemBERT is better 68.3 79.2
The two are similar 17.5 17.7

Table 9.2: Answers of human judges (%) for each method of word selection and replacement.

122



9.8 Conclusion

9.7.2 Results from Use by the General Public

As stated at the end of Section 9.3, CR-PO was presented to the general public on two occasions,

and is also available in the ICT Showroom at HEIG-VD. Upon the first occasion, at the Digital

Lyric exhibition (see footnote 9), we collected about 100 poems in 13 days, before the exhibition

was closed due to the Covid-19 pandemic. The interactions with CR-PO were logged in a central

database, which will be analyzed in the future, when more poems are collected.

CR-PO was presented at a workshop for young visitors, aged 10–13, at the HEIG-VD Open

Doors in November 2021. After a discussion about artificial creativity and an overview of

CR-PO, each visitor could experience the co-creation of a poem. We gathered 42 poems from

25 visitors, who all felt quite engaged by CR-PO and tried all its functions. Table 9.3 shows the

average number of interactions and calls to the editing window for each stage. An average of

1.62 interactions at the first stage means that some users started over and asked for a new first

draft, while 0.31 manual editing at this stage means that on average, 1 user out of 3 modified

the first draft using the editor. The topic and emotion adjustments were each tried once per

poem, on average, with manual edits in 1/4–1/3 of the times. Despite coming at the end, the

automatic generation of rhyming schemes also raised interest from users.

AVG STD
1. Generation of 1st draft 1.62 1.10

Manual editing 0.31 0.47
2. Topic adjustment 1.05 1.23

Manual editing 0.36 0.48
3. Emotion adjustment 0.95 0.91

Manual editing 0.26 0.45
4. Rhyming scheme 1.26 1.67

Manual editing 0.38 0.49

Table 9.3: Average number of interactions with the CR-PO system, for each stage, at the 2021
Open Doors of HEIG-VD (25 visitors, 42 poems).

9.8 Conclusion

We presented CR-PO, a system for interactive poetry generation in French, putting forward

solutions that combine neural LMs and rule-based constraints on form, topic, emotion, and

rhyming scheme. Together with the hardware and the graphical interfaces, we achieved a

fully functional, robust system, which was left without supervision in a public exhibition. The

system also represents a platform which can be extended through future developments, such

as porting it to English, improving the management of rhythm, and allowing users to provide

seed words.

Overall, the main observation made when combining LMs and explicit constraints is that the
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poems generated by such an approach lack a high-level meaning conveyed by several lines or

even stanzas, for instance as complex visual scenes or short narratives. This is a shortcoming

of most poem generation systems based on deep neural LMs, and only extremely large LMs

such as GPT-3 seem to be able to overcome it for plain text. Therefore, finding solutions that

increase the coherence of texts generated by smaller LMs is a promising research question.

9.9 Perspectives

The quality of our system could be improved by leveraging additional models, or by extending

our system as a multilingual model: language models benefit from their representation of

several languages, and the already existing poetic datasets in several languages allows for

training such a model. Following this, a direct evaluation of the system should be performed,

in terms of perplexity, lexical diversity, syntactic analysis, and other aspects of quality.
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10 Domain-Specific Data Augmentation1

Poem generation with language models requires the modeling of rhyming patterns. In this

chapter we propose a novel solution for learning to rhyme, based on synthetic data generated

with the rule-based algorithm presented in the previous chapter (see Section 9.5.3). The

algorithm and an evaluation metric use a phonetic dictionary and the definitions of perfect

and assonant rhymes. A GPT-2 English model with 124M parameters was fine-tuned on

142 MB of natural poems and find that this model generates consecutive rhymes infrequently

(11%). Then the model is fine-tuned on 6 MB of synthetic quatrains with consecutive rhymes

(AABB) and obtain nearly 60% of rhyming lines in samples generated by the model. Alternating

rhymes (ABAB) are more difficult to model because of longer-range dependencies, but they

are still learnable from synthetic data, reaching 45% of rhyming lines in generated samples.

10.1 Introduction

Although in recent years the quality of texts generated by language models (LM) as improved

dramatically, LMs are not yet able to regularly and correctly generate text constrained by

explicit rhyming patterns. In this chapter, we focus on the first property and propose a method

to adapt an LM so that it generates rhyming verses, with modest computing requirements.

We start from an unconstrained autoregressive LM, in our case GPT-2, which we fine-tune

first on a poetry corpus of about 120 MB to improve its style (Section 10.4). In Section 10.2 we

show how unconstrained text generation with this system does not result in a good quality of

text. We design a rule-based system which modifies text generated by the LM so that it obeys a

given rhyming pattern while retaining acceptable fluency, and we generate two datasets of

160k lines (6 MB) each with the AABB and ABAB patterns (Section 10.5). We further fine-tune

the LM on these synthetic datasets in order to generate rhyming verses with the respective

patterns, thus showing that they can be learned by a moderately-sized LM (Section 10.6).

1This work was done in collaboration with Bastien Bernath, Étienne Boisson, Teo Ferrari, Xavier Theimer-
Lienhard, and Giorgos Vernikos, and published in Popescu-Belis et al. (2023). I contributed to the design of the
experiment and the design and implementation of an automatic measure of rhyming, while the implementation
of the learning experiment was done by three EPFL MSc students (3rd, 4th and 5th authors).

125



Chapter 10. Domain-Specific Data Augmentation

We also introduce a rhyming metric (see Section 10.3) based on an English rhyming dictionary,

and use it throughout the study to count the proportion of perfect and assonant rhymes

generated by a model. We find that this is very low (11%) for the LM fine-tuned on natural

poetry with variable rhyming patterns, but increases to around 60% when the LM learns only

the AABB pattern from synthetic data. The ABAB pattern is more challenging, but can still

be learned, reaching around 45% rhyming lines. In the conclusion (Section 10.7), we discuss

some issues related to the integration of the rhyming LMs into an existing, operational system

for interactive poetry generation.2

The contributions of this chapter are the following (my own are stated explicitly):

• a metric computing how many lines have perfect or assonant rhymes that conform to a

given pattern in English;

• I show the negative effects that result from fine-tuning a LM on small amounts of data,

which justify our main strategy in this chapter;

• I designed a rule-based algorithm to generate rhyming lines of a given pattern, based

on a GPT-2 LM fine-tuned on poetry;

• it is demonstrated that even medium-scale LMs can be fine-tuned to learn a rhyming

pattern from machine-generated poems;

• evidence is provided that local rhyming patterns are more easily learned than those

implying longer-range dependencies.

10.2 Effects of Fine-Tuning a LM on Small Amounts of Data

In this section we study the negative effect that fine-tuning on a small amount of data has on

language models in terms of the form diversity of the generated text, and how this motivates

our research on this chapter to generate poetry outputs with a better form. Similarly, we also

present an analysis on the problems on textual diversity, although we will not tackle them in

this work.

In particular, we compare the texts generated by GPT-2 and GPT-2 when fine-tuned (GPT-2

ft) on the Gutenberg Poetry Corpus3 (with around 3 million lines). To these two machine-

generated texts we also compare the human-generated Gutenberg Poetry Corpus (H-Gutenberg),

and the English side of the English-German News-Commentary v.13 (H-News, as an example

of non-poetic text)4.

To obtain each of the two machine-generated texts, we start text generation from scratch 300

2Source code available at github.com/heig-iict-ida/crpo.
3github.com/aparrish/gutenberg-poetry-corpus
4We also compare a sample of the full Gutenberg Corpus, which is mainly comprised of non-poetic data, but we

only observe a significant difference with H-Gutenberg in regards to its lexical diversity, which is more similar to
non-poetic data like H-News.
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10.2 Effects of Fine-Tuning a LM on Small Amounts of Data

times, in order to minimize the effect of the lack of initial context and successive consequences

from this. For each of the 300 samples we generate around 1k tokens. In total, we obtain

slightly less than 1MB of data. For the two human-generated texts, we mimic this process by

sampling randomly 300 chunks of text, obtaining a similar size of text afterwards.

10.2.1 Effect on Form

Text Bytes Lines Sentences Average Average
sent. length word length

H-News 926k 6’600 6’426 25.80 (±12.82) 4.62 (±3.04)

H-Gutenberg 785k 19’200 6’101 28.16 (±23.62) 3.73 (±2.24)

GPT-2 811k 3’667 6’403 25.81 (±21.92) 4.02 (±2.90)

GPT-2 ft 868k 21’975 8’845 18.89 (±16.69) 3.21 (±1.70)

Table 10.1: Number of generated lines, sentences, average sentence length, and average word
length of the four samples of corpora: human-generated non-poetic data (H-News), human-
generated poetic data (H-Gutenberg), text generated by GPT-2 (GPT-2), and text generated by
GPT-2 after it has been fine-tuned on human-generated poetic data (GPT-2 ft).

Firstly, in Table 10.1 we present size measures of the generated text. Column “Lines” is the

result of splitting the text on naturally-occurring newline characters, and “Sentences” is the

result of segmenting the entire text into actual sentences, regardless of newline characters

present in the text.5 We observe that the non-poetic human-generated text (H-News) obtains

similar values in both cases, since it is formatted for sentence-level translation, with one

sentence per line. The human-generated poems (H-Gutenberg) has a much larger number

of lines, since every verse ends in a newline character, however these verses amount to a

very similar number of sentences, showing that there is a syntactic continuity between verses.

GPT-2 generates more paragraphs, hence the larger number of sentences compared to lines.

GPT-2 ft learns well to generate verses, like we see in H-Gutenberg. However, it generates much

shorter sentences overall: while the human-generated poetic text has sentences that span for

3.15 lines, the machine-generated ones only span 2.48 verses.

GPT-2 ft also has problems generating longer sentences. Its average sentence length is 18.89

words, whereas its fine-tuning data (H-Gutenberg) averages 28.16 words. Non-poetic data,

both human- and machine-generated has an average sentence length of ∼25.8 words, and

does not reach the average length of true poetic data. Likewise, GPT-2 ft does not learn the

correct average word length (in characters) of its training data (H-Gutenberg): although it also

seems to learn in its fine-tuning to generate shorter words, it reduces too much their length.

Interestingly, we also observe the same behavior between the human- and machine-generated

non-poetic data.

In Figures 10.1 and 10.2 we show the distribution of sentence lengths and word lengths

5We use sent_tokenize from the NLTK library.
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Figure 10.1: Distribution of sentence lengths (in words) for the four text samples compared
in this section. Human-generated texts are in dashed lines, and machine-generated texts in
continuous lines6.

between the four texts, to further highlight the previously discussed issues. In the case of

sentence length we observe that the system is biased towards very short sentences, and in

the case of word lengths, although the human-generated poetic data (H-Gutenberg) does

feature shorter words than human-generated non-poetic data (H-News), we can observe that

text generated by GPT-2 ft increases this gap. In particular, regarding word length, GPT-2 ft

generates a total of 27 types that are one character long, whereas GPT-2 generates 75. The

frequency of punctuation signs is higher in the samples generated by GPT-2 ft: for instance, “,”

is 3.15 percentage points higher, “;" is 1.07, “!" is 0.86, and “?" is 0.31. One-character alphabetic

types like “I" and “A" are also more frequent (1.19 and 0.19 percentage points, respectively).

10.2.2 Effect on Textual Diversity

Although in this work we will only focus on improving the form generation of a LM fine-

tuned on a small amount of data, we also observe a negative impact in its lexical diversity.

In Table 10.2 we present textual diversity scores, in order to observe the lexical effects of

fine-tuning on small amounts of data. We computed the numbers of tokens and types, Type-

to-Token ratio (Templin, 1957), Yule’s I7 (Yule, 1944), and Jaccard-Diversity (JD)8 (Wang and

Wan, 2018).

We can see that the human-generated data features a larger TTR, and in particular the poetic

data. While GPT-2 shows a smaller TTR, GPT-2 ft obtains even worse results, although it has

been fine-tuned on poetic data, which has the highest TTR.

7Yule’s I is the inverse of Yule’s Characteristic Constant, which measures lexical consistency by considering
vocabulary repetition.

8We compute the average of the JD of all sentences, which is defined as the inverse maximal Jaccard similarity
between each sentence in the text and all the rest.
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Figure 10.2: Distribution of word lengths (in characters) for the four text samples compared
in this section. Human-generated texts are in dashed lines, and machine-generated texts in
continuous lines.

Text Tokens Types TTR↑ Yule’s I↑ JD↑
H-News 165’789 16’359 0.10 0.09 0.78
H-Gutenberg 171’815 21’654 0.13 0.07 0.78
GPT-2 165’291 11’849 0.07 0.10 0.74
GPT-2 ft 167’115 5’412 0.03 0.06 0.66

Table 10.2: Textual diversity scores (TTR, Yule’s I, and Jaccard-Diversity (JD)) of the four text
samples compared. For all three metrics, higher values indicate more diverse text.

Between the two human-generated text samples we observe some discrepancy between TTR

and Yule’s I, but they have a similar lexical diversity, as JD confirms. JD shows a decrease

of lexical diversity on GPT-2, but only moderately, whereas Yule’s I assigns it a larger value.

Both TTR and JD agree on a drastic loss of lexical diversity of the text generated by GPT-

2 of the same model after is has been fine-tuned on poetic data (GPT-2 ft), while Yule’s I

shows a more moderate loss. Since we know that the data used for fine-tuning the model

(H-Gutenberg) features a “normal” lexical diversity, we may conclude that fine-tuning a LM on

a comparatively small amount of data has a negative effect on its lexical diversity.

Overall, we have shown that fine-tuning a LM allows it to learn some features of the data:

specifically, the splitting of true sentences into many lines (i.e., verses), and a shortening of

the average word length. However, the fine-tuning appears to bias the model towards much

shorter sentences and words, in comparison to either human-generated text or machine-

generated text when trained with large amounts of data. Although it is possible that this

is due to the model overfitting to the fine-tuning dataset, we do not have enough data to

definitively conclude this. Similar observations have been made regarding the quality of

generative tasks on literary text, like translation of literary texts, where machine-generated
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text lags behind human text on several dimensions, such as creativity (Guerberof-Arenas and

Toral, 2022). Finally, fine-tuning on a small amount of data has strong negative effects on the

lexical diversity of generated text. We conclude that in order to ensure that features that would

be highly unlikely to appear naturally do appear in the generated text, we require either to

augment the amount of data synthetically, or to constrain the generation of the text.

10.3 Measuring the Number of Rhymes

A criterion for measuring the number of rhyming verses is key for the present study. We

present a metric that distinguishes between perfect rhymes, assonant rhymes, and no rhymes,

using a rhyming dictionary derived from an English pronunciation dictionary. We test it on a

corpus of human poetry annotated for rhyme and show that its accuracy is sufficient for use

in this study.

10.3.1 Definitions of Rhymes

Following a widespread definition,9 also adopted by Van de Cruys (2020), a perfect rhyme is

the identity of the final vowel and consonant sounds of a word, starting with the first vowel

of the last stressed syllable. An assonant rhyme is the identity of the final vowels in the last

stressed syllable, but not of the ending consonant.

Since the addition of stress information would reduce the amount of available candidates for

a rhyme, we simplify the definition of a rhyme between words w1 and w2 as follows, using the

phonetic representation of each word phon(w).

1. We have a perfect rhyme if phon(w1) and phon(w2) end with the same vowel followed

by the same consonant(s), if any.

2. We have an assonant rhyme if phon(w1) and phon(w2) end with the same vowel, fol-

lowed by one or more non-identical consonants.

3. Otherwise, the lines do not rhyme.

10.3.2 Construction of the Rhyming Dictionary

To apply the preceding definitions, and to generate rhymes according to them, we build a

rhyming dictionary starting from the Carnegie Mellon Pronouncing Dictionary of English.10

The dictionary contains pronunciations of 123,631 English words. Each word is associated

with a series of phonemes coded using ASCII letters only, for example ‘K AE M P EY N’ for

the word ‘campaign’.

9See e.g. rhymenow.com/types-of-rhymes.
10Freely available from svn.code.sf.net/p/cmusphinx/code/ trunk/cmudict/sphinxdict/cmudict_SPHINX_40.
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We distinguish 15 phonemic vowels (e.g., ‘AH’, ‘AW’, ‘EY’, ‘OY’) and consider all other phonemes

as consonants. To each word from the dictionary we associate two strings.

1. The last phonemic vowel and all the consonants following it (if any), to allow testing for

perfect rhymes.

2. The last phonemic vowel only, whether it is followed or not by consonants, to allow

testing for assonant rhymes.

Examples of entries in our rhyming dictionary are therefore (‘campaign’ → ‘eyn’, ‘ey’), (‘copy-

codes’ → ‘owdz’, ‘ow’), (‘vanilla’ → ‘ah’, ‘ah’), (‘do’ → ‘uw’, ‘uw’), and (‘wouldn’t’ → ‘ahnt’, ‘ah’).

To help with rule-based generation of rhymes, we create two dictionaries that invert the first

one, for efficiency reasons. One has the strings defining the perfect rhymes as keys and the

corresponding words as values – for instance (‘eyn’ → . . ., ‘campaign’, ‘overtrain’, ‘plane’, . . .) –

and the other one has the strings defining the assonant rhymes as keys and the corresponding

words as values. The first additional dictionary has 1,356 keys (word endings for perfect

rhymes) and an average number of 91 words per key, while the second one has only 15 keys

(the number of phonemic vowels) and an average of 6,507 words per key, ranging from 576 to

34,037.

Our metric
Perfect rhyme Assonant rhyme No rhyme

Human
annotation

Rhyming
27,174 680 6,628

(78.8%) (2.0%) (19.2%)
Not
rhyming

4,209 25,163 290,633
(1.3%) (7.9%) (90.8%)

Table 10.3: Confusion matrix for rhyming detection by our metric vs. human annotation.

10.3.3 Definition of the Metric

The proposed metric for rhymes follows from the definitions above, and makes use of the first

dictionary. Given two words – the ending words of two lines of poetry – we compare their

entries in the dictionary. If the first strings are identical, then we count a perfect rhyme. If they

are not, we examine the second strings, and if they are identical, then we count an assonant

rhyme. If not, then we consider that the words do not rhyme. The order of testing is important,

because for words ending with a vowel, such as (‘vanilla’ → ‘ah’, ‘ah’) and (‘Godzilla’ → ‘ah’,

‘ah’), both entries match, but we want to consider this as a perfect rhyme.

To apply the metric, the lines of the poem are first tokenized using NLTK’s word_tokenize()
function.11 If a line finishes with punctuation, we discard it and examine the last word of the

11From www.nltk.org.
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line. If the line ends with a contraction (such as ‘wouldn’t’) we join back the two resulting

tokens generated by word_tokenize(). If a word does not appear in the pronunciation

dictionary, then we search for the most similar one in terms of string edit distance using

the get_close_matches() function from the ‘difflib’ Python package (a time-consuming

operation). We experimented with restricting the similarity search to the initial parts of words,

because changing the end changes the rhyme, but did not observe significant differences

when validating the metric.

10.3.4 Validating the Metric

We validated our metric on the Chicago Rhyming Poetry Corpus12 which includes English

poems annotated with their rhymes. For each poem, the annotation marks the last word of

each line with an index number, and co-indexes rhyming words. For instance, a three-line

stanza could be annotated as “house pain souse” followed by “1 2 1”, indicating that its lines

end respectively with the words ‘house’, ‘pain’ and ‘souse’ and that the first line rhymes with

the third one.

From the corpus, we derive ground-truth pairs of rhyming and non-rhyming words. For each

annotated stanza with k line-ending words, we consider all k(k −1)/2 pairs of words and

separate them using the annotations in rhyming or non-rhyming pairs. During this process,

we found a small number of annotation inconsistencies, and we checked how many words

are actually present in our pronunciation dictionary. As for some poets the total number of

unknown words is quite high, we exclude them from the dataset, on the grounds that their

vocabulary or spelling is too different from modern use.13

In fact, the human assessment of rhymes may not be 100% reliable, due to the evolution of

pronunciation and the imperfections of the annotation process. Additionally, some pairs

annotated as non-rhyming may in fact rhyme, but have not been annotated as such since they

do not fit the rhyming schema of the poem. The creation of a validation corpus can thus be

improved, but the goal is to obtain the most reliable rather than the largest possible dataset,

in order to validate the metric. Overall, we obtained 34,482 rhyming word pairs and 320,005

non-rhyming ones.

We assessed if our metric, given each word pair, can correctly label it as rhyming or non-

rhyming. As the metric distinguishes perfect from assonant rhymes, we may or not merge

these two categories. Results are shown in Table 10.3. If we merge perfect and assonant

rhymes, our metric finds 80.8% of the rhymes (most of them perfect) but also labels 9.2%

of non-rhyming words as rhyming (F1 = 0.61). To maximize the F1-score, it would seem

preferable not to count assonant rhymes (then F1 = 0.83) but in what follows we will count

both types of rhymes.

12github.com/sravanareddy/rhymedata
13These are, by decreasing numbers of unknown words: Spenser, Lovelace, Drayton, Jonson, Kipling, and Byron.
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Upon inspection, recall errors are often due to words that are absent from the pronunciation

dictionary, and when replaced with similarly-spelled ones, their pronunciations differ. For

instance, ‘marinere’ → ‘mariner’ no longer rhymes with ‘hear’, or ‘thro” → ‘throw’ no longer

rhymes with ‘flew’. In other cases, the pronunciation in our dictionary does not match the

one considered by the poet: ‘stood’ rhymes with ‘blood’ and ‘thus’ rhymes with ‘albatross’

according to the corpus, but not in our dictionary. As for precision errors, a large part of them

are assonant rhymes which are not annotated in the corpus. For instance, ‘there’-‘around’-

‘howl’d’-‘swound’ is annotated as ABCB but we detect an assonance because the last three

words have the same final vowel. Finally, annotation mistakes in the corpus can lead to both

types of errors, e.g. ‘close’-‘beat’-‘sky’-‘eye’-‘feet’ is annotated as ABCCC in the corpus but

correctly labeled by us as ABCCB.

10.4 An Auto-Regressive Language Model Fine-Tuned on Poetry

The starting point is GPT-2 (Radford et al., 2019), a general-purpose decoder LM for English.

The Python implementation provided by the Huggingface library is used (Wolf et al., 2019).14

The model is enabled to generate poetry by fine-tuning it first on a corpus of English po-

etry (10.4.1), and then by designing constraints so that its output has the form of a poem, with

lines and stanzas (10.4.2). The frequency of rhymes is evaluated in the output of this model

using our metric (10.4.3), before moving on to its specific training for rhyming in the next

sections.

10.4.1 Fine-tuning GPT-2 on Poetry

Fine-tuning is on the Gutenberg Poetry Corpus15 composed of approximately 3 million lines of

poetry extracted from hundreds of poetry books from Project Gutenberg. Unlike the Chicago

Rhyming Poetry Corpus used for validation in Section 10.3.4, no author is filtered out. The

corpus is converted from the JSON format it into raw text, with poetry lines separated by new-

line characters (‘\n’) and no blank lines. Therefore, all information about stanzas, poems and

books is removed, and quotation marks and dashes are also deleted. However, to emphasize

the importance of lines, each line is prefixed with a ‘<start>’ tag, which will help generation.

The result is a text file with 3,085,063 lines (142 MB). On this data, the smallest GPT-2 model

(124M parameters) is fine-tuned for three epochs, which takes ca. 3 hours on a single Nvidia

GeForce RTX 3080 GPU.

10.4.2 Setting the Poem’s Form

Generating text in a form that is typical of poetry is essential for considering rhyming patterns

because without a division into lines (verses) there are no line endings that can rhyme. A

14huggingface.co/gpt2
15github.com/aparrish/gutenberg-poetry-corpus
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general discussion of form constraints is out of the scope of this chapter (see Section 4.1 of

Popescu-Belis et al., 2022), and we summarize the approach as follows.

We give the desired structure of the poem – number of stanzas, number of lines in each stanza,

and number of syllables in each line – to the following algorithm. The first two parameters

are easy to constrain, by inserting one or two newline characters. However, it is harder to

constrain GPT-2 to generate a pre-specified number of syllables in a line. We generate the

poem line by line, with decoding by sampling according to the word probability generated by

GPT-2, modulated by a temperature factor. To generate line k, we provide GPT-2 with lines 1, 2,

. . ., k −1 as context. To obtain the expected number of syllables SE in line k, we loop through

the following steps:

1. Require GPT-2 to generate a line L with a fixed number of tokens, computed from SE

using a ratio of 1.5 syllables per token.16

2. Count the actual number of syllables SL of the line L, using an algorithm for English by

Emre Aydin (found at eayd.in/?p=232).

3. Exit the loop with L if SL = SE , or after 10 iterations.

10.4.3 Number of Rhymes of the Baseline

Using the GPT-2 model fine-tuned on poetry, we evaluate the number of rhyming verses as a

term of comparison with further models. As we cannot make any prior assumption on the

rhyming pattern, we simply group the generated verses into pairs (or couplets) by inserting a

newline every other verse. When applying our metric to a set of 4,000 couplets generated in

this way, we find that only 4.3% have perfect rhymes, while 6.6% have assonant rhymes, and

the remaining 89.1% do not rhyme at all.

10.5 Synthetic Data with Rhymes: Rule-based Generation

We use a rule-based approach to modify the poems (see Section 9.5.3) generated by the

previous model so that they follow a given rhyme scheme, which is specified in conventional

form (e.g. AABB, ABAB or ABBA). This builds upon earlier work in Chapter 9, where we created

an interactive system for poetry generation which combines LMs with rules governing form,

rhymes, topics and emotions.

The rule-based rhyming algorithm parses the scheme, and for every second line of a rhyme

(e.g., given AABB, for the second and fourth lines), it modifies the last word so that it rhymes

with the last word of the previous line. The inverted rhyming dictionaries presented in Sec-

tion 10.3.2 and the fine-tuned GPT-2 model are used as follows.

16Technically, the decoder is given a maximum length, but in practice, we never observed end-of-sequence
symbols, so this length is always reached.
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The algorithm obtains from the first dictionary the perfect rhyme ending the word to replace,

and it searches the second dictionary for all the words that share this perfect rhyme. If none

is found, the words sharing the respective assonant rhyme are used instead. Each word is

inserted in the entire line and the result is submitted to GPT-2, which generates a likelihood

score for each of these sequences. The replacement word leading to the highest score is

selected. Therefore, to generate rhyming poems, we first generate a non-rhyming one and

then we re-generate the last words so that they rhyme according to the given patters.

Using this strategy, we generate large numbers of poems, first with the AABB rhyming pattern,

and later with the more challenging ABAB pattern. For each pattern we generate 20,000

quatrains (four-line stanzas) resulting in about 6 MB of text. Some cleaning of the data is

necessary because some lines are made mostly of punctuation or include special characters.

About 0.04% of the lines are removed. To simplify training, we insert a blank line after lines

AA and then BB of the quatrain, so that the training data is made of rhyming couplets only.

Alternatively, to learn ABAB, we insert a blank line after each quatrain. Our metric found that

the first dataset has a rhyming accuracy of 97.8%, which is expected because the rhyming

algorithm and the metric make use of the same dictionary.

Moreover, as the LM must capture dependencies between words at the end of lines regardless

of the punctuation, we hypothesize that if we remove punctuation at the end of the verses in

the training dataset, the LM would better learn rhyming patterns. The results below confirm

this hypothesis.

10.6 Learning Rhyming Patterns from Synthetic Data

10.6.1 Learning the AABB Pattern

The first experiment with fine-tuning GPT-2 on synthetic data studies the simplest rhyming

pattern, where two consecutive lines rhyme. As stated above, the synthetic data is made of

couplets, and this is what we expect the fine-tuned model, called GPoeT, to generate as well.

To measure the proportion of rhyming verses, only the couplets are considered and isolated

lines excluded, or stanzas with an odd number of lines. This ensures that we always test the

rhyming of paired lines in the sample data. During fine-tuning, we generate ca. 50 kB of text

every 10 epochs and measure the proportion of rhyming lines on this sample.17 Cleaning

the isolated lines removes ca. 20% of the text, a number which stays quite constant during

fine-tuning (red curve in Figures 10.3 and 10.6). In other words, the model produces couplets

in 80% of the cases.

The evolution of the rhyming capabilities of GPoeT during fine-tuning is shown in Figure 10.3.

The improvement with respect to the baseline (fine-tuned on the Gutenberg Poetry Corpus

only) is very substantial, from a proportion of perfectly rhyming couplets of 4.3% to 56.2% (a

17On one GPU, 10 epochs take about 25 minutes.
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Figure 10.3: Proportion of perfect and assonant rhymes generated during the fine-tuning of
GPoeT on AABB synthetic data, for 100 epochs.

factor of 13). When counting both types of rhymes, GPoeT generates 59% of rhyming couplets

vs. 7.6% for the baseline (a factor of 7.7). The proportion of perfect rhymes rises quickly and

then converges to around 56% after 70 epochs, while the proportion of assonant rhymes

remains quite constant, likely because the data used for fine-tuning has only perfect rhymes.

From the evolution of the curves, the system has likely reached its maximal performance.

The learning rate decreases linearly with the number of steps, from 5×10−5 to 9×10−7 along

10 epochs. After 10 epochs we reset the learning rate to the initial value. In this way, we force

larger updates of the parameters at regular time intervals, which makes the model more robust,

following insights from low-resource machine translation Atrio and Popescu-Belis (2022). This

may improve training, as opposed to a learning rate that decreases too quickly. We can see in

Figure 10.4 that the validation loss globally decreases over time, with small increases every 10

epochs when the learning rate is reset.

The use of quatrains stripped of the final punctuation for training is validated, hypothesizing

that such tokens may hinder the learning of rhymes. We compare the proportion of rhymes

generated by GPoeT after fine-tuning for 10 epochs on the synthetic quatrains when the final

punctuation is kept versus deleted. The results shown in Table 10.4 confirm that deleting the

punctuation from the training data is beneficial, and GPoeT was trained beyond 10 epochs on

this data only.
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Figure 10.4: Evolution of the validation loss while learning the AABB pattern.

Final punctuation
Metric kept deleted
Perfect rhymes 13.8% 18.4%
Assonant rhymes 8.1% 7.2%
No rhyme 78.1% 74.4%

Table 10.4: Scores after 10 epochs on fine-tuning on data with or without punctuation at the
end of the lines.

10.6.2 Sample Outputs of GPoeT

We provide below two unedited excerpts selected from the sample generated by the last GPoeT

checkpoint.

The prince of men in arms he heard

So bold, so bold the warrior plundered

That she herself in sorrow cried

My God! who made the earth so bide

She sees no other sun above

Nor in that cloudless sky doth dove

My God! who made the earth so fair

And on this cloudless night hath mair

—————————
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Figure 10.5: Proportion of perfect and assonant rhymes when training on natural AABB data
for 50 epochs.

To the sound of your sweet voice

As of a little bird at choice

As in a trance the dreamer hears

At length a voice, so deep, so here’s

That in itself it seems a sound

It is as if a great brown ground

10.6.3 Learning from Natural Data

In this experiment, it is attempted to teach GPoeT the AABB rhyming pattern using natural

rather than synthetic data. It is extracted from the above-mentioned Chicago Rhyming Poetry

Corpus all couplets with consecutive rhyming lines, resulting in a dataset of 2.25 MB of text,

mainly with perfect rhymes (75% according to our metric). All other parameters are identical

to those of the previous section.

The evolution of the proportions of perfect rhymes and assonant rhymes generated every 10

epochs during training is shown in Figure 10.5. The proportions are significantly smaller than

in the previous experiment, and as the total proportion of rhymes never surpassed 20%, we

only represent 50 epochs in the figure. While the model still outperforms the baseline (which

has only 7.6% of rhyming verses), it is noticeably less successful than the previous one. It is

likely that the smaller amount of data (by a factor of 3) and the larger variety of the vocabulary
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Figure 10.6: Proportion of perfect and assonant rhymes generated every 10 epochs when
training on ABAB synthetic data.

used by human poets vs. GPT-2 are the main causes of the lower performance.

10.6.4 Learning the ABAB Pattern

The ABAB rhyming pattern seems more challenging to learn, as line-endings which should

rhyme are further apart, separated by one verse. In this experiment, we use our second

synthetic dataset, with ABAB quatrains, without separating them into couplets. Quatrains are

separated by a blank line. All other parameters are identical to those of the first experiment.

We train the model until the scores stabilize, which is around 80 epochs, as shown in Figure 10.6.

The proportion of perfect rhymes rises quickly and converges at around 40%, with a total

number of rhyming verses (perfect and assonant) around 45%. Among these, 82.6% are perfect

rhymes. As before, to evaluate rhyming, we delete solitary lines, i.e. lines that are not in a

quatrain. The proportion of lines retained is 51%, which is much less than above (80%), likely

because it is harder to learn to generate a quatrain than a couplet. However, when it generates

a full quatrain, the model has clearly learned the ABAB rhyming scheme, although to a lesser

extent than the AABB scheme (45% compared to 59%).
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10.7 Discussion and Conclusion

The rhyme-generating LM presented here, GPoeT, is intended for integration into an interac-

tive poem generation system, presented in Chapter 9. While the experiments above show that

rhyming patterns can be learned from synthetic data, several issues remain to be solved in

future studies.

Our rule-based rhyming algorithm operates on a poem already generated by a LM with several

other parameters as input, e.g. a title or first verse, a desired theme or emotion, and a poetical

form (such as a sonnet). We must now integrate GPoeT in this pipeline, and ensure that the

generated rhymes are not altered by the other constrains of the system. Moreover, we must

ensure that the lexical diversity of GPoeT is not reduced by its training on synthetic data.

We intend to address the problem of generating a desired form using the rule-based algorithm

presented in Section 10.4.2, which takes advantage of a maximum length for the LM decoder.

It may seem straightforward to replace GPT-2 with GPoeT in this algorithm, in order to obtain

rhyming lines of a desired length, but our initial experiments have shown that rhymes are

less satisfactory when the desired length is very different from the synthetic data GPoeT was

trained on.

Moreover, while our rule-based rhyme generator can be easily adapted to any rhyming pattern,

this is not yet the case for GPoeT, which is trained on one pattern at a time in our proof-of-

concept. The solution lies probably in using a labeling system to indicate which lines must

rhyme, and then training a GPoeT model to learn the effects of labels rather than a single

rhyming pattern, in the style of the CTRL model (Keskar et al., 2019).

In this chapter, we demonstrated that rhyming is learnable with LMs that can be efficiently

fine-tuned and queried with very moderate computing requirements. The key to effective fine-

tuning is the use of synthetic data, which we showed how to generate in much larger amounts

than what human poets have ever written. However, not all rhyming patterns are learned

equally well: a pattern that exhibits longer-term dependencies such as ABAB is harder to learn

than a more local one such as AABB. Overall, we have demonstrated that the rhyming and

form of text generated by LMs that are fine-tuned on small amounts of data can be improved

through regularization in the form of synthetic data.

10.8 Perspectives

In future work, our synthetic data could be extended to a mixture of synthetic data and

authentic, silver-labeled data (following common practice in low-resource machine trans-

lation regarding back-translated data and authentic parallel data). Poetic and non-poetic

human-generated data, as well as synthetic data, could be labeled so that our model is able

to differentiate them during training. Additionally, the evaluation of generated poems can

be improved as follows. First, our evaluation on fluency and length can be extended to the
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data generated by the final system, as well as dedicated rhyming evaluation. Second, in order

to evaluate the poetic quality of a text, we may train a classifier to discriminate between

human-generated poetic text and human-generated prosaic text, and observed its response

on machine-generated poems.
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11.1 Conclusion

This thesis deals with some problems that arise when training neural machine translation and

text generation systems in low-resource settings. Due to the scarcity of data, these systems

have limited generalization abilities, since it is harder to differentiate between patterns in

the data that the model should learn because they are generalizable, and local patterns that

should not be learned because they are artifacts due to the small training set.

We have presented solutions to this problem that rely on the use of regularization techniques.

In Part I, we explored the benefits of regularization through hyper-parameters for low-resource

NMT and the relationship between regularization and the shape of the parameter space, as

well as an estimation of a models’ neighborhood of the loss landscape. In Part II, we studied

the methods to improve the use of auxiliary data, in the form of multitasking and multilingual

systems, for low-resource NMT. Finally, in Part III, we examined how to improve text generation

with LMs that are fine-tuned on small amounts of data, by making use of synthetic data and

rule-based constraints.

More specifically, we contributed in the following ways to the improvement of translation and

text generation training in low-resource settings.

• We showed that stronger regularization hyper-parameters improve scores for a variety

of low-resource NMT datasets (Chapter 3). We showed that standard hyper-parameters

are not suited to train Transformer networks in low-resource settings. Considering batch

size, learning rate, dropout rate, and gradient clipping, we showed that a less accurate

gradient – as the result of increasing the values of these hyper-parameters – produces

better results, in particular if several of them are applied at the same time. We explained

the improvements brought by regularization in relation to the generalization abilities of

flat regions in the parameter space.

• We showed that linear interpolation with random perturbations is an efficient method
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to estimate the neighborhood in the loss landscape around a model (Chapter 4). We

proposed various measures of flatness for an estimated neighborhood, and showed a

significant correlation with BLEU score on the development set during training, which

indicates that flatter regions generalize better. We also propose a solution to integrate

landscape flatness information on standard SDG, in order to train the model directly on

flatter areas.

• We showed that when some of the most commonly used techniques for low-resource and

unsupervised machine translation are assembled into complex multi-stage pipelines,

their usage brings minimal or no benefits to the final scores (Chapter 5). We proposed

a simplified pipeline consisting of parent-child transfer learning, one round of back-

translation for low-resource training, and two rounds for unsupervised training, with no

use of common techniques such as multiple initializations or multitask and multilingual

training. We compared our simplified pipeline with the best-scoring systems in the

WMT 2021 Shared Task on Unsupervised MT and Very Low Resource Supervised MT. Of

the four compared directions, our simpler pipeline obtains comparable scores to the

highest-scoring team in one unsupervised and the two supervised ones, and improves

over the other unsupervised direction.

• We studied the improvements provided by back-translation and transfer learning from

various parent models, and presented systems for translating from Upper Sorbian

into German and back, which rely on fixed-scheduled multitask training, for the WMT

2021 Unsupervised MT and Very Low Resource Supervised MT Task (Chapter 6). We

introduced two new document-level auxiliary monolingual tasks which encourage

the model to pay more attention to inter-sentential context. We observe that with a

schedule of various tasks, our final systems improve over our baseline, particularly when

the low-resource language is on the target side.

• We designed a self-paced many-to-one multilingual NMT system for low-resource

language pairs (Chapter 7). In particular, we studied whether the variation of weights

during training can be used as a measure of competence, and whether this can be used

to dynamically select on which task to train, in order to better allocate training resources

for tasks depending on model competence. Although we obtain better results with

multilingual shuffled batches after uniform upsampling, our system sheds light on the

role of many-to-one training for low-resource translation.

• We showed that the addition of multiple target languages during training of low-resource

NMT systems improves their scores, but only if paired with increased regularization

(Chapter 8). Additionally, less-resourced models benefit from multiple (more than two)

target languages, but better-resourced models do not benefit as much from learning to

translate into multiple languages.

• We contributed to a system for targeted generation of French and English poetry (Chap-

ter 9). We designed a hybrid system combining various language models, a phonetic
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dictionary, and algorithms for generating rhyming poetic data that can be adapted by

users to various topics and emotions, across several stages of generation. Since the very

small amount of training data makes it impossible for a neural system to learn these

objectives via training, we devised several strategies to alleviate this problem. We con-

strained the generation of lengths of verses and stanzas with rules, trained domain- and

emotion-specific language models for textual adaptation, created a rhyming dictionary

from a phonetic dictionary, and combined a rule-based algorithm with language model

scoring for rhyming adaptation.

• We contributed to a solution for fine-tuning a LM in a low-resource setting that uses

synthetic data (Chapter 10). The LM is fine-tuned with data generated by our system,

which is enabled to rhyme thanks to the above-mentioned rule-based algorithm. We

evaluated the rhyming quality of the resulting system with our own metric, and found

that the LM trained on synthetic data was able to correctly rhyme in both couplets and

quatrains. Our approach improves over the scores of the same LM when fine-tuned with

a larger set of naturally occurring data featuring general poetry.

To sum up, in this thesis we have proposed improvements for low-resource NMT and text

generation that rely on various regularization techniques, including obtaining noisier gradients

through the hyper-parameters of the model, the scheduled use of auxiliary data in the form

of denoising tasks and multilingual tasks, the combination of rules with neural systems, and

the use of synthetic data for training. We have thus shown that opportunities for knowledge

transfer across tasks are numerous, and that several hyper-parameters can be optimized by

studying how the training evolves.

11.2 Perspectives

In this thesis, we considered that the paradigm of training a model to perform a single task

with mostly fixed hyper-parameters (except dynamic ones such as the learning rate) may

not be the best paradigm that we can reach. We propose here new avenues of research to

continue improving over the paradigm of “fixed training for one task”. We hope that these will

contribute to the already existing shift towards new training paradigms that in some domains

of NLP are becoming popular, like transfer learning from pre-trained models or massively

multilingual systems.

When a neural network is trained on multiple tasks simultaneously, it can either leverage its

learning from each task to improve overall performance, but sometimes experiences perfor-

mance degradation. This difference may come from the choices of tasks, from the architecture

of the network, or from various hyper-parameters related to multitask training, like the sam-

pling between the various tasks. It is thus necessary to understand the difference in the

system’s behavior between the cases where multitask training is beneficial and the cases where

it is not. As an example, current research on distillation and pruning methods also helps to
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highlight inefficient and poorly understood network architectural choices. As an additional

example, as we have shown, low-resource multilingual NMT systems benefit more from decod-

ing into many languages than encoding many languages. By studying how network weights

are updated when successfully learning and leveraging multiple tasks, we should aim to se-

lect better-suited architectures for a given setting and optimize the limited representational

capacity of models.

A narrow expert model excels in a specific task, whereas a competent generalist model can

handle numerous tasks, albeit often lacking the quality achieved by narrow experts. (An ex-

ample would be a well-trained unidirectional translation system compared to a foundational

model like GPT-3.) However, training competent generalists necessitates vast amounts of un-

labeled data, which is difficult for most researchers and practitioners due to limited resources.

We propose as future work an approach that bridges the gap between narrow experts and

competent generalists by employing meta-learning systems. This could involve the design

of a monitoring system, which would be trained on different features from many datasets,

similarities between various training objectives or tasks, the impact of regularization factors

on gradient noise, and different network architectures. At inference time, the monitoring

system’s role is to continuously assess a narrow expert model during training by analyzing

these static and dynamic properties of the narrow expert and its data. Subsequently, it makes

regular adjustments to enhance the training process. These adjustments may include hyper-

parameter tuning, data augmentation, or multi-task and multilingual training, all aimed at

improving the narrow expert model’s primary objective.

In the process of conducting our research for this thesis, we observed multiple rediscoveries

of the same findings by different researchers. In particular, many researchers adopt their own

settings of hyper-parameters, and therefore it is uncertain how our proposals will impact the

research community, as many practitioners may independently rediscover them. To address

the high volume of applied research, we suggest employing meta-learning on scientific articles.

By extracting article structure and metadata (e.g., datasets, frameworks, architecture), systems

could be trained to provide optimal recommendations for new model training (task, data,

resources). These recommendations may include optimal architecture, hyper-parameters, or

regularization techniques like data augmentation, and should be related to dataset features

such as linguistic variation, topic, genre, or similarity to other datasets in the literature.
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