
Vol.:(0123456789)1 3

Journal of Hardware and Systems Security
https://doi.org/10.1007/s41635-023-00135-1

Instruction‑Level Power Side‑Channel Leakage Evaluation of Soft‑Core
CPUs on Shared FPGAs

Ognjen Glamočanin1 · Shashwat Shrivastava1 · Jinwei Yao1 · Nour Ardo1 · Mathias Payer1 · Mirjana Stojilović1

Received: 14 January 2023 / Accepted: 26 July 2023
© The Author(s) 2023

Abstract
Side-channel disassembly attacks recover CPU instructions from power or electromagnetic side-channel traces measured
during code execution. These attacks typically rely on physical access, proximity to the victim device, and high sampling
rate measuring instruments. In this work, however, we analyze the CPU instruction-level power side-channel leakage in an
environment that lacks physical access or expensive measuring equipment. We show that instruction leakage is present even in
a multitenant FPGA scenario, where the victim uses a soft-core CPU, and the adversary deploys on-chip voltage-fluctuation
sensors. Unlike previous remote power side-channel attacks, which either require a considerable number of victim traces
or attack large victim circuits such as machine learning accelerators, we take an evaluator’s point of view and provide an
analysis of the instruction-level power side-channel leakage of a small open-source RISC-V soft processor core. To inves-
tigate whether the power side-channel traces leak secrets, we profile the victim device and implement various instruction
opcode classifiers based on both classical machine learning algorithms used in disassembly attacks, and novel, deep learning
approaches. We explore how parameters such as placement, trace averaging, profiling templates, and different FPGA families
(including a cloud-scale FPGA) impact the classification accuracy. Despite the limited leakage of the soft-core CPU victim
and a reduced accuracy and sampling rate of on-chip sensors, we show that in a worst-case scenario for the evaluator, i.e.,
an attacker breaching physical separation, we can identify the opcode of executed instructions with an average accuracy as
high as 86.46%. Our analysis shows that determining the executed instruction type is not a classification bottleneck, while
leakages between instructions of the same type can be challenging for deep learning models to distinguish. We also show that
the instruction-level leakage is significantly reduced in a cloud-scale FPGA scenario with higher soft-core CPU frequencies.
Nevertheless, our results show that even small circuits, such as soft-core CPUs, leak potentially exploitable information
through on-chip power side channels, and users should deploy mitigation techniques against disassembly attacks to protect
their proprietary code and data.

Keywords FPGA · Multitenancy · CPU instruction identification · Power side-channel attack

1 Introduction

Due to the end of Moore’s law and the breakdown of Den-
nard’s scaling, datacenters are transitioning from homogene-
ous and processor-dominated systems towards heterogeneous
architectures. As a result, today’s datacenters feature not only
central processing units (CPUs), but also graphics processing

units (GPUs) and special-purpose integrated circuits such as
field-programmable gate arrays (FPGAs). FPGAs reached
wide deployment in datacenters thanks to their highly paral-
lel architecture, programmability, and energy efficiency [1,
2]. Even though FPGA vendors offer FPGA-based system-
on-chips (SoCs) with hardened CPUs [3, 4], cloud providers
are exclusively integrating regular FPGAs in their servers
because servers are already abundant in high-end server-
grade CPUs. Amazon EC2 F1 [1], Azure [2], Baidu [5],
and Tencent [6] deploy AMD Virtex or Kintex Ultrascale+
FPGAs, while Alibaba deploys Intel Arria 10 and Agilex
FPGAs [7].

In the FPGA-accelerated cloud, highly-parallel tasks are
accelerated on FPGAs. At the same time, developers rely on

 * Ognjen Glamočanin
 ognjen.glamocanin@epfl.ch

 * Mirjana Stojilović
 mirjana.stojilovic@epfl.ch

1 School of Computer and Communication Sciences, EPFL,
Route Cantonale, Lausanne 1015, Vaud, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-023-00135-1&domain=pdf

 Journal of Hardware and Systems Security

1 3

host CPUs for general computation, particularly nonitera-
tive and user event-dependent control algorithms, which are
significantly easier to implement and maintain in software
than in hardware. However, the FPGA-CPU communication
incurs high latency, especially for short data transfers [8].
If such delays are of no concern, then the control software
can be deployed on a cloud CPU instance; yet, only a lim-
ited range of FPGA applications—usually data movement
ones—can afford the resulting communication latency.
Therefore, in the case of latency-critical control algorithms,
system designers resort to using soft-core CPUs as real-time
co-processors (e.g., Microblaze [9], Nios [10], PicoRV [11]),
which allow tight and customizable integration with FPGA
accelerators, and short communication latencies.

Recent efforts focus on extending the multitenancy and
resource virtualization from CPUs to FPGAs, to improve the
efficiency of datacenter resource provisioning. A specific
research focus is achieving spatial or temporal multiplexing
of FPGA resources [12–14]. The challenges are numerous,
such as partitioning the FPGA resources among multiple
users, providing communication protocols between the host
virtual machine and the accelerators, and ensuring proper
physical and logical isolation between the tenants [15].

Unfortunately, FPGA multitenancy introduces security
threats that cannot be mediated by physical or logical isola-
tion between tenants. The reason is the shared power delivery
network (PDN), which instigates power side-channel attacks,
covert communication [16, 17], and denial-of-service and
fault attacks [18, 19]. An attacker does not require physical
access to the board, as the fine logic and wiring granularity
of FPGAs enables malicious users to craft almost arbitrary
hardware, which includes implementing on-chip sensors for
measuring the shared power supply voltage fluctuations [20].
Several remote power-analysis attacks have already been
demonstrated: a simple-power analysis (SPA) attack on RSA
exponentiation [21], correlation power analysis (CPA) attacks
against AES (requiring a large number of victim power
traces) [22–24], and reverse engineering attacks on neural
network accelerators (which occupy a significant portion of
the FPGA resources) [25–28].

For an FPGA user, secret information is not limited to
their bitstream, the cryptographic key, or neural network
accelerator parameters and architecture. If their design
contains a soft-core CPU, the code being executed can be
proprietary or contain secrets. If an attacker, by observing
power side-channel traces during CPU code execution, can
determine which instructions are being executed, the con-
fidentiality of the code will be compromised. In embedded
applications and smart cards, where adversaries have physi-
cal access to the target device to measure power and elec-
tromagnetic side-channel leakage, attacks that aim at code
recovery are termed side-channel disassembly attacks [29,
30]. Unlike statistical-based power analysis attacks such as

CPA, side-channel disassembly attacks are profiling attacks
and assume the attacker can record a limited number of vic-
tim execution traces.

Our work takes an evaluator’s point of view: we explore to
which extent soft-core CPUs leak instruction-level informa-
tion through the remote power side channel, in cases when
an evaluator (or a potential attacker) has no physical access
to the device but can deploy on-chip voltage-drop sensors.
Unlike traditional side-channel disassembly attacks—where
the CPU runs at frequencies orders of magnitude lower
than the sampling rate of the oscilloscope—sensors used in
remote power analysis attacks have sampling frequencies in
the same operating range as soft-core CPUs. Our work ana-
lyzes if and under which conditions soft-core CPU instruc-
tions contain power side-channel leakage and incentivizes
the use of protection methods in multitenant FPGAs. As our
leakage evaluation targets, we choose two RISC-V soft-core
CPUs using the 32-bit RISC-V base integer instruction set
architecture (RV32I), most suitable for lightweight real-time
co-processors [31].

To start, we record the side-channel traces correspond-
ing to the execution of every CPU instruction. Then, to
investigate whether the traces leak secrets, we train diverse
machine learning (ML) classifiers used in previous work and
also explore the use of novel deep learning (DL) classifiers
to improve the extraction of the power side-channel leak-
age. The results reveal that, despite the limited accuracy and
sampling rate of on-chip sensors compared to oscilloscopes
used in disassembly attacks with physical access, the limited
leakage compared to previous remote reverse-engineering
attacks, and the limited number of victim trace acquisitions
compared to statistical-based attacks, instruction-level leak-
ages still exist: we can determine the executed instructions
with average accuracy higher than 80%. These results call
for proper mitigations to limit power side-channel leakage
of soft-core CPUs in shared FPGAs.

We make the following contributions:

• To the best of our knowledge, we present the first analy-
sis of instruction-level leakage of soft-core CPUs in a
shared FPGA setting.

• While power side-channel traces recorded by an on-chip
FPGA sensor during the execution of one RISC-V soft-
core CPU instruction contain limited visually observ-
able leakage, we demonstrate that, in certain conditions,
advanced ML techniques can extract sufficient infor-
mation to identify the opcode of the executed instruc-
tions. The maximum average instruction accuracy we
achieve on the RV32I instruction set architecture (ISA)
is 86.46%.

• Besides evaluating previous side-channel disassembly
approaches, we explore new, DL-based instruction clas-
sifiers, and experimentally find that they are superior at

Journal of Hardware and Systems Security

1 3

extracting leakage compared to common ML techniques
deployed in previous work, and should be used for future
side-channel security evaluations.

• We perform an extensive experimental analysis that
compares how different leakage evaluation scenarios,
such as the number and placement of sensors, number of
templates, and type of templates, affect the instruction-
level leakage. We also demonstrate our results on two
soft CPU cores and two different FPGA families. In addi-
tion to the leakage analysis of the RISC-Y [32] soft-core
CPU running at 80 MHz on the Sakura-X board [33], we
show results on a cloud-scale, AMD Alveo U200 data-
center accelerator card, using the compact PicoRV [11]
soft-core CPU, running at 320 MHz. With our on-chip
sensors running at 320 MHz, the side-channel traces have
only four sensor samples per CPU clock cycle on Sakura-
X, and only one sensor sample per CPU clock cycle on
Alveo U200; significantly lower than in traditional side-
channel disassembly attacks.

• We provide a detailed discussion of our experimental results
and their impact on soft-core CPU leakage evaluation,
which we use to motivate appropriate mitigation techniques.

Our work aims to provide a leakage evaluation methodology
for soft-core CPUs in remotely accessible scenarios and to
benefit future power side-channel disassembly attacks by
providing novel DL power trace classification techniques.
Therefore, we make all our FPGA designs, associated soft-
ware, and ML code openly available for the reproducibility
of the experiments and the results in this work [34].

2 Background

Almost a decade ago, Microsoft pioneered the use of FPGAs
in cloud computing. Their Catapult project pilot of 1,632
FPGA-enabled datacenter servers demonstrated a dramatic
improvement in Bing search latency, launching the era of
FPGA-accelerated cloud computing [35]. Other cloud ser-
vice providers soon followed. Today, Amazon AWS, Azure,

Alibaba, Baidu, and Tencent offer their customers remote
access to datacenter FPGAs, to develop, test, and deploy
their custom hardware accelerators [1, 5–7].

To remote users, FPGAs are typically exposed through
a host CPU virtual machine interface and a shell-role use
model [15]. The shell is deployed by the cloud service pro-
viders and shares the FPGA logic with the users. In addition,
it implements platform-specific management tasks: PCIe,
direct memory access engine, DRAM controller, and debug-
ging interfaces. The FPGA region reserved for each user
is called a role, and users deploy their accelerators within
their role. The shell-role separation helps faster accelerator
deployment and ensures different privilege levels between
the cloud service providers and the external users.

In both academia and industry, increased efforts are
being made to extend multitenancy and resource virtualiza-
tion from CPUs to FPGAs, to enable better management
and use of available datacenter resources [12, 15, 36–46].
Multitenancy can be achieved through spatial and tempo-
ral multiplexing. Temporal multiplexing separates users in
time, ensuring that each tenant gets their own, exclusive
instance. In spatial multiplexing, FPGA roles are occupied
by potentially different tenants, and consequently, the cloud
service providers need to ensure security and privacy to all
of them [45, 47, 48].

Once the shell and the tenants share the FPGA die, they
also share the PDN illustrated in Fig. 1. On the printed cir-
cuit board (PCB) level, the PDN starts with the primary
voltage regulator. The power is then distributed through
several levels of voltage regulators if needed, and the power
and ground planes. Inside the FPGA, a PDN resembling
a dense mesh supplies power to all FPGA logic and rout-
ing resources. On all the levels—board, package, chip—the
PDN contains resistive, capacitive, and inductive compo-
nents, some of them intended and some parasitic, which
create a medium for voltage fluctuations in one FPGA role
to propagate to another. Gnad et al. were the first to demon-
strate that a malicious FPGA tenant can, through excessive
logic switching, draw too much current and, consequently,
reset the host FPGA [18]. Their findings temporarily put on

Package

Die

Package capacitors

On-die capacitors

Power grid

VICTIM ADVERSARY

power pins

C4 bumps

ground pins

PCB
On-board capacitors

VDD power plane

Ground plane

Voltage
Regulators

Fig. 1 Power delivery network coupling across the board, package, and the FPGA die

 Journal of Hardware and Systems Security

1 3

hold the FPGA multitenancy in the cloud and pushed many
researchers to investigate new attack surfaces, threat models,
and countermeasures [49, 50].

One of such new attack surfaces called remote power
analysis attacks, was first demonstrated by Zhao and Suh
[21] and Schellenberg et al. [22]. Leveraging the fine granu-
larity of reconfigurable logic and routing in FPGAs allowed
the designing and implementing of circuits that sense on-
chip power supply voltage variations. Unlike traditional
power analysis attacks, which require physical access to the
victim to measure its power consumption with an oscillo-
scope [51], using on-chip sensor circuits made these attacks
remote, no longer requiring physical access to the device. An
example of such a sensing circuit is a simple ring oscillator
(RO), composed of an odd number of inverters connected
to form a closed chain. Its oscillation frequency depends on
the delays of the inverters and routing resources which, in
turn, depend on the power supply voltage. Hence, one can
also sense the voltage variations by measuring the RO fre-
quency. Another example is a delay-line sensor, also called
time-to-digital converter (TDC) [20], which we will discuss
in detail in Sect. 4. In a multitenant FPGA setting, an adver-
sary can use such sensors to collect the power side-channel
information leaked from a co-located tenant and use it to
infer secret information: indeed, on-chip sensors allowed
remote attacks on cryptographic circuits, ML accelerators,
and other circuits. We summarize the most relevant previous
work in Sect. 11.

3 Threat Model

Research on the security of multitenant FPGAs follows
a well-established threat model of the fault and side-
channel attacks on remote shared FPGAs [19, 21, 23,

28, 49, 52–54]. The primary assumption is that at least
two users can remotely deploy their designs on the same
FPGA instance simultaneously. For security reasons,
these remote users are given control over dedicated partial
reconfiguration regions, which are logically and physically
isolated; thus, the attacker has no direct access or control
over the victim or the victim’s deployment. The adversary
can deploy voltage fluctuation sensors to record power
side-channel traces and send them over the network for
remote analysis.

In this work, we assume an evaluator’s point of view: we
evaluate the security of a victim that uses a soft processor
core in their shared FPGA platform, for example, to config-
ure and control the operation of an accelerator. This work
analyzes instruction-level leakage to assess if and under
which circumstances soft-core CPUs leak instruction infor-
mation through the power side channel in shared FPGAs,
with the goal of motivating the use of countermeasures.

When evaluating the side-channel security of a device, it
is a common practice to consider the worst-case estimates
(even if not practically achievable by an attacker), as they
quantify the limits of the leakage. For example, in the con-
text of cyber-physical devices, white-box power side-chan-
nel leakage evaluation methods leverage proprietary archi-
tectural information (unavailable to attackers) to build better
power models for power analysis attacks [55]. Removing the
plastic cover of a chip to record near-field EM emanations
is another example of a common practice in leakage evalu-
ations, even though attackers might not always be able to
remove the casing. Consequently, our experiments assume
and evaluate various scenarios: from worst-case (a breach of
physical and logical separation, no additional noise sources,
and averaging of traces) to more realistic scenarios, includ-
ing physical separation, no averaging, and noise from sur-
rounding instructions and the shell.

Voltage
sensors

Trace buffer

Voltage
sensors

Trace buffer

Power
side-channel

traces

TrainingProfiling

Attack Best fit
classifier

Power
side-channel

traces

Library of
classifiersSoftcore

CPU

Softcore
CPU

Remote FPGA
instance

Victim
Victim

Adversary

Lo
gi

ca
l i

so
la

tio
n

Adversary

Adversary

Remote FPGA
instances

Proprietary

secret code

Classifier
selection

Fig. 2 Threat model. The top half illustrates the profiling phase, which results in a library of side-channel instruction classifiers, for a number of
FPGA instances and CPU and sensor placements. The bottom half shows the attack

Journal of Hardware and Systems Security

1 3

In reality, a hypothetical attacker mounting a profil-
ing attack on soft processor cores would have to perform
a procedure similar to the one shown in Fig. 2. To pre-
pare for the attack, an adversary would start by renting an
FPGA instance as its only tenant. On this FPGA instance,
the adversary would need to calibrate the voltage fluctua-
tion sensors and use them to profile the execution of the
CPU instructions for various operating frequencies and
several CPU placements. Then, the attacker could train
side-channel instruction classifiers. This step would have
to be repeated for many FPGA instances, each uniquely
identified (e.g., by fingerprinting cloud FPGAs as sug-
gested by Tian et al. [56]).

To perform an exploit using the library of trained classifi-
ers, the attacker would need to rent a shared FPGA instance.
Using fingerprinting to identify the shared FPGA instance,
the attacker can focus on the subset of the classifiers in the
library trained on that particular FPGA instance. Once side-
channel traces are obtained, the adversary would need to
identify that the co-located user is using a soft-core CPU
(and repeat until a victim with a soft-core CPU is identi-
fied), using workload classification techniques [54]. Then
the attacker could further prune the subset of trained clas-
sifiers using the same workload classification techniques—
which can distinguish between different soft-core implemen-
tations in shared FPGAs—and run the inference. Finally, in
addition to the attack procedure, the attacker would need
to train models robust to noise from the shell or any other
accelerator the victim might be using alongside their soft
processor core.

Our aim is to evaluate how and under which circum-
stances soft-core CPUs leak instruction information in
shared FPGAs, we therefore focus on assessing instruction
leakage. We refer to related work for FPGA identification
and workload classification.

4 Experimental Setup

The Sakura-X (Sasebo-GIII) board [33] and the Alveo
U200 datacenter accelerator card serve as our target
evaluation platforms. Sakura-X is an evaluation board
designed for power side-channel analysis and, hence,
commonly used in both cryptologic research [57, 58] and
research on side-channel attacks on shared FPGAs [22,
27, 59]. Sakura-X has one AMD Kintex-7 FPGA and one
AMD Spartan-6 FPGA. The former FPGA is the larger
of the two, often referred to as main or target FPGA, as
it hosts the adversary and the victim as two logically iso-
lated FPGA tenants. The second FPGA, often referred to
as auxiliary or control FPGA, reduces unwanted noise by
implementing the communication protocol between the
target FPGA and the host machine [33]. For our evalua-
tion, the Sakura-X architecture increases the already low
signal-to-noise ratio (SNR) of soft-core CPUs and helps
isolate the instruction-level power side-channel leak-
age. To evaluate the leakages in a more realistic, cloud-
scale FPGA scenario, we use the Alveo U200 datacenter
accelerator card. This card contains an AMD UltraScale+
XCU200-2FSGD2104E FPGA, and is commonly used
in publicly available cloud FPGA instances [2]. Unlike
Sakura-X, Alveo U200 contains a single FPGA consist-
ing of three super-logic regions (SLRs). The shell, con-
taining resources necessary for communicating with the
DRAM and host CPU, is instantiated in the middle SLR
and physically separated from both the attacker and the
victim. The placement of the sensor and the victim CPU
varies across experiments, however, in most cases, we
physically separate the sensors and the victim soft CPU
core to conform with the standard shared FPGA threat
scenario described in Sect. 3.

SHELL

FPGA

INDIVIDUAL SENSOR
CALIBRATIONS

SENSOR
TRACES
(FIFO)

CONTROLLER (FSM)

Victim
Adversary

RISC-V
CPU

INSTRUCTION
AND DATA
MEMORY

start

start

end

end

HOST
PC

ctrl data ctrl data

SENSORS

POWER SUPPLY SIDE CHANNEL

IS
O

LA
TI

O
N...

Fig. 3 Overview of the experimental setup

 Journal of Hardware and Systems Security

1 3

Figure 3 gives an overview of the experimental setup
for both boards. The target FPGA design contains the
victim and the hypothetical attacker logic and has four
main components: a soft-core RISC-V processor, the
on-chip voltage-drop sensors, the control finite state
machine (FSM), and the shell. As discussed in Sect. 1,
the primary purpose of using soft-core CPUs is to imple-
ment latency-critical control algorithms, especially
ones subject to change over time. Therefore, our study
assumes the victim uses small soft-core CPUs, common
in embedded bare-metal applications [60]. These soft-
core CPUs are usually lightweight, with no advanced
microarchitectural features such as cashing or specula-
tive execution. They have a low area overhead and can
run at high clock frequencies. Their microarchitectural
simplicity allows easy and tight integration with FPGA
hardware, facilitating low-latency communication. Inte-
grating larger soft-core CPUs would reduce the operating
frequency (e.g., Rocketchip can run on a couple of tens
of MHz only [61]), increase the area overhead (reduc-
ing the available resources for hardware accelerators),
and adversely affect the communication latency (as com-
munication would take place through memory mapped
interfaces or an operating system).

For the RISC-V soft-core designs, we chose RISCY
and PicoRV32, both openly available [11, 32]. Table 1
summarizes the FPGA resource overhead. As a reference,
we also show the resource usage of Rocket Chip [61], a
larger, more complex soft-core RISC-V implementation.
RISCY, used on the Sakura-X board, implements a clas-
sic five-stage pipeline and supports the complete RV32I
ISA at the cost of a lower operating clock frequency.
On Sakura-X, the maximum operating frequency of the
RISCY CPU is 100 MHz; however, our system runs it at
80 MHz, to have an integer number of sensor samples per
one CPU clock cycle. PicoRV32, used on the Alveo U200
board, has a multicycle CPU microarchitecture designed
to minimize resources and maximize the CPU operating
frequency. Our system runs PicoRV32 at the maximum
operating clock frequency of 320 MHz. In the following
subsections, we describe the voltage-drop sensors and the
controller in detail.

4.1 FPGA Voltage‑Drop Sensors

Commonly deployed FPGA voltage-drop sensors fall into
two groups: TDCs and RO-based sensors [49, 62]. They
both produce an output in the function of their circuit delay,
which is approximately inversely proportional to the sup-
ply voltage. Hence, the change in the sensor logic delays
indirectly exposes the core voltage fluctuations, caused by
the switching activity and power consumption of the vic-
tim [21]. The key criterion when choosing between a TDC
and an RO-based sensor is the required sensor sampling rate:
RO-based sensors cannot be sampled as frequently as TDC
sensors. However, RO-based sensors have a smaller foot-
print and need not be calibrated, unlike TDCs. Good use
cases for RO-based sensors are FPGA undervolting-based
attacks [53, 63] and covert communication [64]. For side-
channel analysis, given the importance of a high sampling
rate, TDCs are the preferred solution [22, 23, 28]; they are
able to record voltage fluctuations with sampling periods in
the nanosecond range [20].

The baseline design of a TDC was proposed by Zick
et al. [20]. It consisted of two principal components, (1) one
delay line implemented using fast carry chain logic and (2)
latches, connected to the output of every delay element in the
delay chain. At the input of the carry chain, a high-frequency
clock signal was connected; let us refer to it as input clock.
Another clock signal, the sampling clock, of the same fre-
quency but a slightly different phase, was used to capture
the propagation depth of the rising edge of the input clock
through the delay chain. The propagation depth reflected the
changes of the carry logic delay, which were primarily caused
by the power supply variations. More recently, TDC sensors
have replaced latches with flip flops and used a digital clock
manager (DCM) to control the phase delay between the input
and the sample clock. Proper selection of the phase shift and
the delay line length is critical for correct sensor calibration,
i.e., for ensuring that the rising edge is indeed captured and
not missed. Since the calibration is a lengthy process of trial
and error, in our attack model it must be automated. Hence,
we design and implement a TDC with a tunable phase shift
mechanism and, as suggested in previous work, we avoid
instantiating a DCM primitive to reduce jitter [65].

Table 1 Resource utilization of
the soft-core CPUs

CPU FPGA LUT FF BRAM36 DSP

RISCY [32] Kintex-7 2544 1944 40 0
XC7K160T-1FBGC

PicoRV32 [11] Virtex Ultrascale+ 1442 1473 8 0
XCU200-FSGD2104-2-E

Rocket Chip [61] Virtex Ultrascale+ 25785 12654 12 15
XCU200-FSGD2104-2-E

Journal of Hardware and Systems Security

1 3

The design of our TDC is inspired by the implementa-
tion of Gnad et al. [16]. Its high-level architecture is shown
in Fig. 4. The TDC is composed of fine calibration slices,
coarse calibration slices, and an observable delay line, which
is periodically sampled and its state saved in the output
register. The input and the sample clocks are the same. To
control the phase shift between the input and the sample
clock, fine and coarse calibration slices are inserted on the
input clock path. In the fine calibration slice, as shown in
Fig. 5a, calibration inputs control the number of carry chain
multiplexers on the clock path. The fine calibration slices
are then connected to the coarse calibration slices (Fig. 5b),
where the calibration inputs control the number of coarser
delay elements on the clock path. In our TDC design, unlike
in Gnad et al. [16], coarse delay elements are implemented
as LUTs followed by latches, to achieve coarser delay incre-
ments. The third and last stage is the observable delay line
(Fig. 5c). This sensor is considered correctly calibrated when
the signal propagating through the chain of delay elements
reaches approximately the middle of the observable delay
line by the moment it gets captured in the output register.

In this work, TDC sensors have a 16-bit observable delay
line. Through experimentation, we found that this length is suf-
ficient to capture the supply voltage variations caused by the
CPU operation on both FPGA boards. Table 1 lists the FPGA
resources used for our TDC implementation on both boards.
The sensor clock frequency was set to 320 MHz on both boards,
the highest operating frequency that satisfied timing constraints.
Consequently, the sensor captures four samples per one clock
cycle of the RISCY CPU running at 80 MHz, and one sample
per clock cycle of the PicoRV32 CPU running at 320 MHz.

Previous work has shown that the side-channel information
captured by voltage-drop sensors varies with both the absolute
location of the sensors as well as their relative position to the
victim [66]. It is, therefore, to be expected that an attacker
may instantiate more than one power side-channel sensor. The
exact number is usually limited by the linearly scaling on-chip
memory resources and the data transfer word size. For exam-
ple, to improve the success of their attack, Gravellier et al. [24]
deployed eight sensors on an AMD Artix-7 FPGA. In our
experimental setup, we instantiate five TDCs on Sakura-X,

and 29 TDCs on Alveo U200, the highest number that fits in a
communication message exchanged between the FPGA [33]
and the host PC. In Sects. 6 and 7, we will show to what extent
having multiple sensors affects the attack efficiency.

4.2 Controller

The controller coordinates the experiments by executing and
replying to the commands from the host machine through the
shell. It is in charge of initializing the CPU instruction memory
with the code to be executed, triggering the execution of the
code, and saving the corresponding sensor traces to the on-
chip memory. Once the CPU code execution is completed,
the controller receives a trigger from the CPU, which initiates
the transfer of sensor traces to the host machine. In each mes-
sage sent from the FPGA to the host, the controller inserts five
(Sakura-X) or 29 (Alveo U200) simultaneous sensor readings
and the 32-bit word of the corresponding CPU instruction. We
replace the default read-only instruction memory of both CPUs
with a dual-port block RAM, connecting one memory port to
the CPU while exposing the other port to the controller. This
temporary change permits the controller to write arbitrary code
in the CPU instruction memory before triggering its execution
and recording the side-channel traces.

Prior to starting the experiments, the controller calibrates
every sensor. The calibration is performed iteratively. First, a
test code sequence is loaded to the instruction memory, and the
number of elements in the sensor’s initial delay line is set to zero.
The code execution is triggered, and the obtained sensor trace is
inspected. If no clock transition is observed or the transition is
located too close to the two extremes of the observable delay line,
the fine and coarse calibration slices are adjusted. This process
is repeated until the sensor is calibrated. The calibration settings
are then communicated to the host machine for record keeping.

5 Instruction Classification

Like all hardware circuits, soft-core CPUs leak information
through the power side channel. Various ALU operations,
memory accesses, and control-flow changes all impact power

Fig. 4 TDC sensor architec-
ture with a tunable phase shift
between the clock that enters
the observable delay line and
the clock that samples the
output (i.e., takes a snapshot of
the observable delay line). The
exact number of slices in our
implementation is in Table 2

CLK

Fine calibration slices

Coarse calibration slices

Observable delay line

SENSOR OUTPUT

. . .

.

 Journal of Hardware and Systems Security

1 3

consumption differently. In addition, as a combination of fetch,
ALU, memory, and program counter operations, instructions
also leak information: in the form of unique patterns spread
across the time and amplitude domain of the recorded power

traces. For example, on the one hand, memory instructions
might have high power consumption both in the ALU stage,
when the address is computed, and in the later stages of
instruction execution, i.e., when the data is read/written to the

Fig. 5 The implementation of
each slice in the TDC sensor in
Fig. 4, including the calibration
and sensor output registers. For
space reasons, CARRY4 chain
is shown horizontally; in the
FPGA design layout, it spans
vertically

Table 2 Coarse calibration,
fine calibration, and observable
delay line slices per sensor

FPGA Fine calibration Coarse calibration Observable line

Kintex-7 24 slices 8 slices 4 slices
XC7K160T-1FBGC (= 96 stages) (= 32 LUTs and Latches) (= 16 FFs)
Virtex Ultrascale+ 12 slices 4 slices 2 slices
XCU200-FSGD2104-2-E (= 96 stages) (= 32 LUTs and Latches) (= 16 FFs)

Journal of Hardware and Systems Security

1 3

memory. On the other hand, arithmetic instructions might only
have a power consumption peak during the ALU stage.

To analyze the instruction-level power side-channel leakage
of soft-core CPUs, we employ an ML-inspired method illus-
trated in Fig. 6. The key idea behind this approach is that leak-
age patterns are discovered during ML model training, while
the leakage is assessed using the prediction accuracy achieved
on templates unseen during training. For this purpose, we first
build a large set of template assembly codes for all the target
instructions: we generate a set of 10,000 templates for every
instruction. Once the templates database is ready, we run the
experiments to collect the corresponding power side-channel
traces. As leakage evaluators, we reduce the background noise
and improve the signal-to-noise ratio by executing each tem-
plate multiple times and averaging the side-channel traces:
100 times for Sakura-X and 1000 times for Alveo U200.
Even though our work represents an instruction-level leakage
analysis, averaging is still a commonly used noise reduction
approach even in real attack scenarios: for an attack, the victim
code is often executed frequently, allowing averaging, while
during training, the attacker can execute templates an arbitrary
amount of times [67–70]. Finally, to spread out the impact of
environmental noise equally across all instruction classes, we
record traces in an interleaved fashion: we record a single trace
of each class, in a round-robin order, before continuing the
acquisition of the next power trace. Subsequently, we prepare
the acquired side-channel traces for the training and inference
steps. Similar to previous work [67, 71, 72], we partition the
final dataset into a training set (for training the instruction clas-
sifier) and a test set, for evaluating the instruction classification
accuracy and the leakage learned by the models. The following
subsections explain the template generation and the training of
the side-channel instruction classifiers in greater detail.

5.1 Instruction Template Generation

For our leakage analysis, we create two templating configura-
tions. In the first, denominated as N, the target instruction is
surrounded by NOP instructions. We use this set of templates
to analyze the instruction-level leakage without additional noise

from the surrounding instructions. In the second configuration,
denominated by R, we surround the target instruction with a
random instruction before and after. We use the R templating
configuration to analyze instruction-level leakage in the pres-
ence of other instructions, which represents a more realistic
leakage scenario: in practice, the target instruction will be sur-
rounded by a pair of random instructions instead of NOPs.

For both templating configurations, we generate 10,000
templates for every instruction from the RV32I ISA, which are
listed in Table 3. The process of template generation is detailed
in Algorithm 1. The first step is the initialization of x registers
with random values. Then, if needed, we insert additional prep-
aration instructions (e.g., to initialize the contents of a memory
location for the load instruction). The central and key part of
the template contains the target instruction itself: in the case of
N templating, similarly to previous work [71, 72], we surround
the target instruction with a few NOPs to separate it from the
setup phase, while in the case of R templating, we insert a ran-
dom instruction before and after, making sure the control flow

Instruction
templates

Sensors

Is
ol

at
io

n

Buffer

CPU

Target FPGA

Traces ...

... ... Training
dataset

...

... ...
Training

...

... ...

Test
dataset

Classifier

Instruction
predictions

Fig. 6 Side-channel instruction leakage evaluation

 Journal of Hardware and Systems Security

1 3

is not altered. Finally, at the end of the template code, we insert
an instruction with an invalid opcode, to trigger a signal to the
controller that the code execution is completed (see Fig. 3).

5.2 Instruction Classification Models

Most power side-channel disassemblers in previous work
used traditional ML methods and common classification algo-
rithms, e.g., quadratic discriminant analysis (QDA), k-nearest
neighbors (k-NN), support vector machines (SVM), Gaussian
Diffusion Model (GDM) [67, 69, 71–73]. However, the accu-
racy of these algorithm-driven ML classifiers dramatically
depends on the preprocessing for dimensionality reduction
and feature extraction. Without suitable preprocessing, the
noise in the dataset can significantly affect the classification
results. For these reasons, previous research relied on the
high sampling rate of the oscilloscope to achieve reasonable
accuracy. In this work, considering the limited sampling fre-
quency of the on-chip sensors with respect to the soft-core
CPU operating frequency, besides testing how well the ML
methods proposed in previous work perform in this scenario,
we explore leakage analysis using DL-based classifiers.

First, we treat the side-channel instruction classification
as a time-series classification problem, as different instruc-
tions have unique patterns spread across the time and ampli-
tude domain. Since we use multiple sensors for classifica-
tion, we represent the trace of each sensor as a separate input
channel. Fig. 7 shows the classification process.

 A class of networks naturally suited to processing
sequential data is recurrent neural networks (RNNs), specifi-
cally long short-term memory (LSTM) models [74]. They
have an internal state that can represent context information,
and they keep information about past inputs for an amount
of time that is not fixed but depends on the weights and the
input data. As LSTMs do not perform well when directly
extracting features from raw data, they are commonly paired
with more complex networks for feature extraction [75,
76], such as convolution neural networks (CNNs). In prac-
tice, feature extraction with CNNs can be applied before
or after the LSTM model. Moreover, recent work showed
that 1D-CNNs consisting of single-dimensional convolu-
tional layers achieved good results in time-series classifi-
cation [77]. Finally, CNNs structured as residual networks
(ResNets) have shown to be very performant in time-series
classification, achieving high accuracy across a range of
datasets [77]. Therefore, we train and compare the follow-
ing models: LSTM, a small 1D-CNN, a large 1D-CNN, and
the combination of LSTM and 1D-CNN (LSTM followed by
1D-CNN and LSTM preceded by 1D-CNN), a multi-layer
perceptron (MLP), and a time-series ResNet [77].

6 Evaluation on Sakura‑X

In this section, we provide a detailed instruction-level leakage
analysis on Sakura-X. The first step in experimental evalua-
tion is deciding the hypothetical attacker and victim’s place-
ment. Given the power delivery network imperfections and
knowing that side-channel leakage picked up by the sensors
varies with both the absolute and the relative positions of the
victim and the attacker [66], we opt to assign the victim to an
arbitrary FPGA region and vary the sensor placement.

Figures 8, 9, and 10 zoom in on the FPGA floorplan
containing three different placements of the target CPU and
the sensors. In the floorplan in Fig. 8, we place the sensors
inside the region occupied by the target CPU, in the top-left
clock region of the Kintex-7 FPGA (X0Y4). Even though
this floorplan does not conform to the standard shared
FPGA threat model—where the FPGA regions assigned to

Table 3 RV32I base integer instructions for template generation

Category Instructions

Arithmetic ADD, ADDI, SUB, LUI, AUIPC
Logical XOR, XORI, OR, ORI, AND, ANDI
Compare SLT, SLTI, SLTU, SLTIU
Shifts SLL, SLLI, SRL, SRLI, SRA, SRAI
Loads LB, LH, LW, LBU, LHU
Stores SB, SH, SW
Branches BEQ, BNE, BLT, BGE, BLTU, BGEU
Jump & Link JAL, JALR

Fig. 7 Classification process.
The power trace of each sensor
(S1 to SN) is used as one of N
input channels. The input is
then forwarded to the model,
and the instruction prediction
is collected for accuracy evalu-
ation

S1

SN
N input

channels Power trace
Instruction prediction

ML model

Journal of Hardware and Systems Security

1 3

the tenants do not overlap—we use it as a worst-case leak-
age scenario for the evaluator (best-case scenario for the
attacker). In the floorplan in Fig. 9, we place our five sen-
sors to the right of the target—in the top-right clock region
(X1Y4)—in the space between the CPU and the edge of the
FPGA, simulating an attacker that spreads out the available
sensors across their entire FPGA region. In the floorplan
of Fig. 10, we move the target CPU one clock region down
(X0Y3), further away from the sensors. In the remainder of
this section, we will refer to the described floorplans as Exp-
IN, EXP-OUT1, and Exp-OUT2, respectively.

Using the leakage evaluation setup and following the
instruction classification method described in Sects. 4 and 5,
we create 10,000 templates per instruction (for both N and
R template types) and collect the corresponding power
side-channel traces, creating four datasets: Exp-IN-N, Exp-
OUT1-N, Exp-OUT1-R, and Exp-OUT2-N. We use the Exp-
IN-N dataset to evaluate the worst-case leakage (i.e., with
physical separation between the victim and the adversary
violated and no noise of surrounding instructions). Exp-
OUT1-N and Exp-OUT2-N are collected in addition to
Exp-IN-N to evaluate the impact of CPU and sensor place-
ment on the instruction-level leakage and model accuracy.
Finally, we use Exp-OUT1-R to evaluate the most realistic
scenario, where the templates contain the noise of the sur-
rounding instructions. With these four datasets, we cover
the three main goals of our instruction-level leakage evalu-
ation: worst-case for the evaluator (Exp-IN-N), the impact

of CPU and sensor placement on the accuracy (Exp-IN-N,
Exp-OUT1-N, Exp-OUT2-N), and a realistic case for the
attacker (Exp-OUT1-R).

We set the sensor trace length to T = 60 samples (i.e., 60
consecutive readings of the TDC output register), to guarantee
that all the execution cycles of the instructions in Table 3 are
captured. To ensure we are capturing the correct instruction
execution, we align the start of all instructions to the same
sample in the traces (fourth sample): we center the traces
around the correct instruction using the recorded CPU opcode.

In our experimental evaluation, we first visually analyze
the recorded power traces for multiple sensor placements.
We show that instructions of different types show limited
visual leakage patterns, while the instructions of the same
type do not display any differences. To determine the limits
of the instruction-level leakage, we train a range of DL mod-
els on the four datasets and show how the accuracy changes
depending on the placement and template type. We also use
ML techniques to further evaluate the inter- and intra-type
instruction leakage and show that most of the classification
confusion comes from two or three instructions with similar
leakage. We show that preprocessing techniques and ML
approaches used in previous work are outperformed by DL
techniques. Finally, we evaluate the limits of the instruction-
level leakage by investigating the impact of the number of
sensors, averaging, and the dataset size on the accuracy.

6.1 Visual Analysis of Sensor Traces

Before analyzing leakage using the DL-based classification
methodology described in Sect. 5.2, we first visually analyze

2S 1S 0S4S 3S3S 2S 0S1SS4

Legend:
CPU
CPU BRAMs
TDC sensors

Fig. 8 Sensor delay lines (in yellow) and CPU (in purple) in Exp-IN

S5S6S7S8S9

Legend:
CPU
CPU BRAMs
TDC sensors

Fig. 9 Sensor delay lines (in yellow) and CPU (in purple) in Exp-
OUT1

S10S11S12S13S14

Legend:
CPU
CPU BRAMs
TDC sensors

Fig. 10 Sensor delay lines (in yellow) and CPU (in purple) in Exp-
OUT2

 Journal of Hardware and Systems Security

1 3

the recorded sensor traces. In our first experiment, we inves-
tigate how sensor placement impacts the waveforms and the
leakage in the traces. Figure 11 shows the average trace of
all templates of arithmetic and logical instructions across
all 15 sensors (five in each of the three floorplans) for the
Exp-IN-N, Exp-OUT1-N, and Exp-OUT2-N datasets. We
can observe that the sensor placement significantly impacts
the shape of the traces, including the peak-to-peak ratio:
S10, the furthest from the CPU, has a peak-to-peak ratio of
less than one, while S3 has a peak-to-peak ratio of almost
six. For some sensors (e.g., S4, S8, S7, S12, and S13), we
observe peaks every four samples, perfectly synchronized
with the CPU clock. For some other sensors (e.g., S1, S2,
and S4), we observe a different pattern: slight dips every
20 sensor samples (around samples 12, 32, and 52), cor-
responding to five CPU clock cycles, i.e., to the fetch of the
next instruction. This experiment already shows the benefit
of having multiple sensors for increasing the power side-
channel leakage.

In our next experiment, we visually inspect the inter-
type instruction leakage, i.e., how different instruction
types impact the shape of the recorded side-channel traces.

Figure 12 shows the average traces of sensor S9 (Exp-
OUT1-N) for the six instruction groups in Table 3. We
chose sensor S9, as the plots in Fig. 12 were most visually
distinguishable for this particular sensor and it represents
the worst-case scenario for an evaluator. The peak in sam-
ple 48 makes the load and store instructions clearly dis-
tinguishable from other groups. Branches and jumps also
contain a distinguishable peak centered around sample 28,
surrounded by dips on both sides. This experiment shows
that, after significant averaging, some distinct visual traits
can be attributed to specific instruction groups. However,
not all instruction groups can be identified visually. For
example, just like loads and stores, jumps and branches have
very similar power consumption traces, and it is difficult
to tell the exact instruction type from visual analysis alone.

As the final visual experiment, we compare the side-
channel traces of several instructions of the same instruc-
tion type. Figure 13 shows average sensor S3 traces for
eight instructions. We chose S3 because it is in the heart
of the soft-core CPU (Fig. 8), and it shows, when aver-
aged, the biggest visual differences between instructions
of the same type. On the left, we overlap the average traces
for OR, AND, ORI, and ANDI. The differences, located
between samples 10 and 20, are difficult to notice even
with averaging across all templates, as all four instruc-
tions use the same datapath. On the right, we overlap the
average traces of four branch instructions: BEQ, BNE,
BLT, and BGE. We practically see no difference between
these instructions and cannot distinguish them visually.
Therefore, even though the visual classification of instruc-
tions is possible for some victims (e.g., sizeable ML-based
accelerators [28]), soft-core CPUs require more advanced
methods for instruction-level leakage analysis.

6.2 Deep Learning‑Based Instruction Leakage
Evaluation

After showing that visual analysis is insufficient to iden-
tify CPU instructions executing on remote FPGAs, we
deploy advanced DL techniques. We obtain our four data-
sets by collecting all the sensor traces for each instruc-
tion in Table 3, as described in Sect. 5.2. Each data point,
corresponding to one instruction template, is represented
as a matrix with five rows, where each row, i.e., the input
channel, is the trace of one of the five sensors. Using the
newly created dataset, we first train our deep learning
models from Sect. 5.2 using 10-fold validation and com-
pare the resulting accuracy. Then, we compare the results
of our DL models with the classical ML methods previ-
ously proposed for side-channel disassembly attacks, and
we evaluate if frequency-based preprocessing methods, Fig. 11 Average sensor traces for the arithmetic and logical instruc-

tions in Table 3

Journal of Hardware and Systems Security

1 3

shown promising in previous work [72], have any impact
on the extracted leakage. Furthermore, we evaluate how
the number of sensors used in the attack impacts the final
accuracy. Finally, we evaluate how the amount of averag-
ing or a smaller dataset size can impact the leakage, i.e.,
the best model accuracy.

To train our deep learning models, we set the number of
epochs and the batch size to 100 and 64, respectively. We use
the Adam optimizer with an initial learning rate of 0.0001
and the loss to monitor and adjust the learning rate. Table 4
summarizes the model details. To facilitate reproducibility,
we choose deep learning models with standardized param-
eters and openly available implementations [77, 78].

Table 5 lists the average test accuracy obtained with the
four datasets, with the highest accuracy in bold. We can
observe that overall, ResNet and 1D-CNN2, the two most
complex DL models, achieve the highest accuracy for all
datasets. Results in Table 5 also show that models with-
out convolutional layers do not manage to extract leakage
well and result in low classification accuracy. Moreover, the
accuracy drops as the sensors are placed further away from
the target CPU. For example, for the best model (ResNet),
Exp-OUT1-N has a 16.07% lower accuracy than Exp-IN-
N, and Exp-OUT2-N has a 22.5% lower accuracy than
Exp-OUT1-N. Therefore, an evaluator testing local CPU
leakage with sensors placed inside the CPU will achieve

Fig. 12 Average traces of sensor S9 for all instruction groups in Table 3

Fig. 13 Average S3 traces for OR, AND, ORI, and ANDI (left) compared to S3 traces for BEQ, BNE, BLT, and BGE (right)

 Journal of Hardware and Systems Security

1 3

an overestimation of the leakage—if leakage does not exist
in a scenario such as Exp-IN-N, an evaluator can, with a
high probability, guarantee that a potential attacker will not
be able to exploit the leakage. Finally, Table 5 also shows
the contrast in accuracy resulting from differences between
isolated instructions (Exp-OUT1-N) and instructions with
random instructions surrounding them (which is the case in
a code sequence execution). We can observe that the drop in
SNR caused by additional instructions results in a 10.69%
accuracy drop for the ResNet model.

For the best model, i.e., ResNet, we explored different
hyperparameters with the goal of increasing the accuracy
of Exp-OUT1-R, a realistic dataset in terms of an attack.
Increasing the initial learning rate and the number of epochs
did not result in higher accuracy. An increase of the batch

size to 128 or a reduction to 32 did not significantly change
the classification accuracy. Increasing the number of ResNet
blocks, increasing the number of layers per block, or adding
an LSTM layer at the input did not significantly change the
ResNet classification accuracy either.

To analyze further the instruction-level leakages and
understand why the classification accuracy for Exp-OUT1-
R does not reach a number significantly higher than 60%,
we evaluate the top-K accuracy of our best model for all
four datasets. Unlike the regular model accuracy, i.e., top-1
accuracy, the top-K accuracy labels a prediction as correct
if the real class is among the top K predicted classes (ranked
by predicted scores). If the top-K accuracy is high while the
top-1 accuracy is low, this signifies that groups of classes
are often confused. Figure 14 shows the top-K accuracy for

Table 4 Architecture details of the deep learning models

Model Architecture

MLP Dense(X units, ReLU) X = (250, 350, 150, 50)
Dropout(0.2)
Dense(100, ReLU) + Dense(37, Softmax)

1D-CNN1 Conv1D(X filters, kernel size of Y) + MaxPool(2) (X,Y) = ((64,10), (64, 4))
Dropout(0.2)
Dense(100 units, ReLU) + Dense(37, Softmax)

1D-CNN2 Conv1D(X filters, kernel size of Y) + MaxPool(2) (X,Y) = ((32,12), (45, 10), (64,8), (128,4))
Dropout(0.2)
Dense(100 units, ReLU) + Dense(37, Softmax)

LSTM LSTM(100 units)
Dropout(0.2)
Dense(100 units, ReLU) + Dense(37, Softmax)

1D-CNN & LSTM Conv1D(64 filters, kernel size of 4, ReLU)
Conv1D(64 filters, kernel size of 4, leakyReLU=0.3)
Dropout(0.2)
MaxPool(2)
LSTM(100 units)
Dense(100 units, leakyReLU=0.3) + Dense(37, Softmax)

LSTM & 1D-CNN LSTM(100 units)
Conv1D(64 filters, kernel size of 2, leakyReLU=0.3) + MaxPool(2)
Dropout(0.2)
Dense(100 units, leakyReLU=0.3) + Dense(37, Softmax)

ResNet Standard time-series Resnet: 3 blocks with 3 ×Conv1D layers and residual connections [77]

Table 5 Instruction
classification accuracies (in %)
for the deep learning methods.
The highest accuracies, in
bold, are obtained using the
1D-CNN2 and ResNet models

Dataset Average Accuracy (%)

MLP 1D-CNN1 1D-CNN2 LSTM 1D-CNN &
LSTM

LSTM &
1D-CNN

ResNet

Exp-IN-N 79.24 82.38 84.91 77.21 81.53 84.04 86.46
Exp-OUT1-N 61.60 65.15 69.58 61.63 65.07 68.45 70.39
Exp-OUT1-R 52.89 56.79 59.10 50.58 55.59 58.44 59.71
Exp-OUT2-N 43.29 46.11 48.03 42.10 44.70 46.84 47.89

Journal of Hardware and Systems Security

1 3

ResNet (using 10-fold validation), for all four datasets, and
K ranging from one to six. We can observe that, for all data-
sets, the trend is the same, and the accuracy significantly
increases with K. The most significant accuracy increase is
observed between top-1 and top-2 accuracy: 15% on aver-
age. The difference reduces for every subsequent K increase
while the accuracy converges to almost 100% for all datasets
except Exp-OUT2-N. This trend shows that the main dif-
ficulty for the classification is distinguishing between two
or three similar instructions. For Exp-OUT2-N, the sensors

are far away from the soft-core CPU and record a limited
leakage compared to the other two placements, which is also
noticeable in the weaker visual trace properties in Fig. 11.

To evaluate which instructions have similar leakages and
lower the top-1 accuracy, we look into how well ResNet
distinguishes between the instructions in Table 3. The cor-
responding normalized confusion matrix is shown in Fig. 15.
We see that instructions of a similar type are more chal-
lenging to tell apart; for example, different branch instruc-
tions. Other examples include arithmetic, shift, and logical

Fig. 14 Top-K accuracy (K = 1,
2, 3, 4, 5, and 6) using ResNet,
for all four datasets

Fig. 15 Normalized confusion
matrix (in %, rounded) of the
ResNet model (100 epochs), for
Exp-OUT1-R

 Journal of Hardware and Systems Security

1 3

operations. The confusion is not surprising, as many instruc-
tions share the CPU datapath and, consequently, tend to have
very similar power consumption patterns, which makes the
classification task harder. However, it is worth noting that
the classification is highly successful for instructions of dif-
ferent types, allowing a potential attacker to easily distin-
guish between the control and data flow of the executed code
sequence. This is also confirmed by the 100% top-6 accuracy
in Fig. 14, and the visual analysis presented in Sect. 6.1.

As our final instruction leakage evaluation experiment,
we implement a hierarchical approach to instruction clas-
sification. We first perform inter-type classification—
training the ResNet model to classify between different
instruction types—and then we perform intra-type clas-
sification by training a ResNet per each instruction type.
Table 6 shows the results of inter- and intra-type clas-
sification using 10-fold validation on Exp-OUT1-R. We
can observe that the inter-type accuracy is significantly
(>20%) higher than the ResNet accuracy on the entire
dataset, as the model does not need to classify between
similar instructions of the same type. Furthermore, we
can see that the intra-type classification accuracy heavily
correlates with the confusion shown in Fig. 15: instruc-
tion types with high intra-type confusion in Fig. 15 such
as loads and branches, have very low intra-type classifica-
tion accuracy in Table 6.

Finally, Fig. 16 shows the confusion matrix of the
inter-type classification. Similar to Fig. 15, there is no
confusion between loads, stores, branches, and jumps.

The confusion is limited to arithmetic, logic, shift, and
compare instructions, which are ALU instructions and
share most of the processor datapath.

6.3 Impact of Preprocessing On Instruction Leakage

Previous work showed the importance of preprocessing
for increasing the classification accuracy when identify-
ing instructions [72, 73, 79, 80]. Furthermore, frequency-
domain analysis, particularly the continuous wavelet
transform (CWT), was shown to be well-suited for side-
channel disassembly [72]. Therefore, we evaluate our deep
learning models with CWT preprocessing to determine if
CWT is beneficial for extracting instruction-level leakage
in our setting.

From a time-series vector of M sampling points, CWT
creates a matrix of M × D entries, where the D dimensions
describe how D frequency components of the time series
change over time. Including the original time-series vector in
the CWT matrix results in a matrix of M × (D + 1) entries.
Knowing that every entry in our original dataset contains
five sensor traces, each having T samples, we create the
following two additional datasets using CWT with a scale
parameter of D. We perform CWT on each sensor trace indi-
vidually, resulting in five T × (D + 1) matrices for each data
point. For the first dataset, CWT-H, we concatenate these
matrices horizontally in a 5T × (D + 1) feature matrix. For
the second dataset, CWT-V, the matrices are concatenated
vertically, resulting in a T × 5(D + 1) feature matrix.

Table 7 shows the average 10-fold validation accuracy
drop (compared to the baseline datasets in Table 5) using DL
models with CWT. The scale parameter D for CWT is set to
49 [72]. As can be seen, most DL models do not benefit from
the increase of the input space size. For models with high
accuracy in Table 5 such as ResNet and 1D-CNN2, the over-
all accuracy drops on average by approximately 2–3%, with
a maximum drop being 16.05% for 1D-CNN & LSTM with
CWT-H. For models with originally low accuracy in Table 5
such as MLP and LSTM, preprocessing slightly increases
the accuracy: for approximately 2–3%. We can therefore
conclude that with well-fitted models, a DL approach does
not require computationally heavy CWT preprocessing, as
the models are complex enough to capture the correlation
between the traces and the instructions.

Table 6 Classification accuracy
of the ResNet model trained for
hierarchical classification on the
Exp-OUT1-R dataset

Average Hierarchical Classification Accuracy (%)

Inter-Type
Classification

Intra-Type Classification

83.60 Arithmetic Logic Compare Shift Load Store Branch Jump
86.77 72.03 81.35 70.31 49.14 100 39.62 99.20

Fig. 16 Confusion matrix in case of instruction type classification

Journal of Hardware and Systems Security

1 3

6.4 Comparison with Classical ML Approaches

Physical power side-channel disassembly attacks relied on
high-frequency oscilloscopes and classical ML techniques
to achieve high profiling accuracy. However, in our work,
we use TDC sensors sampling at 320 MHz, having a sig-
nificantly lower sampling frequency than oscilloscopes. To
evaluate how disassembly techniques used in previous work
translate on TDC sensor traces, we obtain the instruction
classification accuracy using common ML models (GDM,
QDA, k-NN, and SVM) and preprocessing techniques—
principal component analysis (PCA) and linear discriminant
analysis (LDA)—used in previous work on side-channel
disassembly, discussed in Sect. 11.2. Table 8 lists the aver-
age 10-fold validation accuracy of classical ML approaches.
We obtain the highest accuracy using SVM with PCA
and QDA with LDA: 68.74% for Exp-IN-N, 52.45% for
Exp-OUT1-N, 47.06% for Exp-OUT1-R, and 37.65% for
Exp-OUT2-N, which is 10–20% lower than the accuracy
of our best-performing DL-based classifier. Even the deep
learning models with lower accuracy (LSTM, 1D-CNN &
LSTM) are comparable with the best results in Table 8. We
can, therefore, conclude that advanced techniques, such as
deep learning, are required in the shared-FPGA attack sce-
nario, as it involves low resolution and a reduced sampling

rate of the voltage sensors coupled with a high victim CPU
frequency.

6.5 Impact of the Number of Sensors on Instruction
Leakage

To investigate the role of the number of sensors in the attack,
we analyze the impact of incrementally including additional
sensors in the dataset on the classification accuracy. The
analysis is performed for all four datasets and on sensor
data collected in the setup where all sensors are simultane-
ously present. Since the sensors record power traces of the
same events simultaneously, they are subject to the same
experimental conditions (e.g., environmental noise or tem-
perature), facilitating a fair comparison. Furthermore, as the
power-intensive measurement logic (memory and control-
lers) is placed far from the sensors, only the last few ele-
ments in their 16-bit delay lines cause differences in sensors’
switching activity, which is thus negligible compared to the
switching activity of the CPU.

In this experiment, we choose our best-performing
model: ResNet. We start by training separate models, one
for each sensor, and evaluate the instruction classification
accuracy. Table 9 summarizes the results. We can observe
that the closest sensor does not necessarily have the highest

Table 7 The increase in the instruction classification accuracies for the deep learning methods when using dataset preprocessing with CWT
compared to no preprocessing

Average Accuracy Increase (%)

Model Exp-IN-N Exp-OUT1-N Exp-OUT1-R Exp-OUT2-N

CWT-H CWT-V CWT-H CWT-V CWT-H CWT-V CWT-H CWT-V Average

MLP 3.00 3.01 3.87 4.18 1.74 1.63 2.32 2.36 2.76
1D-CNN1 –0.70 –0.27 –1.98 –0.05 –3.67 –1.93 –2.59 –1.04 –1.53
1D-CNN2 –2.40 –1.92 –4.59 –2.72 –4.95 –2.73 –4.39 –2.07 –3.22
LSTM 0.05 3.81 0.54 3.28 0.11 3.42 1.15 2.74 1.88
1D-CNN & LSTM –13.35 –3.25 –16.05 –3.41 –10.23 –2.23 –5.23 –0.95 –6.84
LSTM & 1D-CNN –0.56 –0.69 –2.56 –1.57 –3.43 –2.24 –2.78 –1.62 –1.93
ResNet –3.66 –2.04 –5.19 –2.37 –4.77 –2.25 –3.04 –2.01 –3.17

Table 8 Instruction
classification accuracies
for the classical machine-
learning methods. The highest
accuracies, in bold, are obtained
when combining SVM with
PCA and QDA with LDA

Method Average Accuracy (%)

PCA LDA

GDM QDA k-NN SVM GDM QDA k-NN SVM

Exp-IN-N 56.55 67.15 39.64 68.74 59.78 67.17 50.28 65.33
Exp-OUT1-N 45.36 48.56 26.87 51.83 48.24 52.45 36.15 50.44
Exp-OUT1-R 39.66 41.80 22.02 47.06 43.31 46.47 30.59 45.96
Exp-OUT2-N 33.74 34.23 26.63 37.65 34.82 37.19 29.02 37.11

 Journal of Hardware and Systems Security

1 3

classification accuracy—as sensor S7 has higher accuracy
than S5—which is in line with conclusions from previous
work [66]. However, we can observe that the further the
sensors are from the soft-core CPU, the smaller the accu-
racy difference between the best and the worst sensors: for
Exp-IN-N and Exp-OUT1-N the range is 10–20%, while
the sensors in Exp-OUT2-N have a maximum difference of
2–3%. This signifies that across multiple sensors, the overall
placement does have an impact on the accuracy, also con-
firmed by results in Table 5.

Using data from Table 9, we sort the sensors by the
obtained accuracy, once in increasing order (from “worst”
to “best”) and once in decreasing order (from “best” to
“worst”). Figure 17 illustrates the accuracy increase in
function of the number and the choice of sensors in the
dataset used for training. The dashed (respectively, dot-
ted) lines show the accuracy increase when the next best
(respectively, next worst) candidate sensor is added to the
dataset. For example, the highest accuracy achieved with
a single sensor (71.52% in Fig. 17) corresponds to sensor
S3 and Exp-IN-N (Table 9), while the accuracy obtained
after adding the next best candidate (81.91% in Fig. 17)
corresponds to sensors S3 and S2 used together. The accu-
racy increase is more pronounced on the dotted lines, as
every new sensor added to the dataset has better individual
accuracy than the ones already in the dataset. Comparing
the trend of the shaded regions, we see that the sensors in
Exp-OUT1-N and Exp-OUT2-N floorplans, being further

away from the CPU, pick up less information leakage. How-
ever, the distance between the best and worst-case region
borders reduces significantly when four or five sensors are
used, showing the importance of using multiple sensors for
better leakage extraction. Finally, we can observe that the
shaded region for Exp-OUT2-N is significantly narrower
than for the other two datasets in Fig. 17: an effect that
arises because the range between the best and the worst
sensor for Exp-OUT2-N is significantly smaller than for
Exp-IN-N and Exp-OUT1-N.

6.6 Impact of Averaging on Instruction Leakage

To evaluate the impact of averaging on leakage and the
ability of DL models to extract it, we use the best model,
ResNet, and train it on the four datasets while changing
the number of traces averaged for each template. Figure 18
shows the results. We can observe that with only a sin-
gle trace (no averaging), all four datasets have very low
accuracy: approximately 30% for Exp-IN-N and 20% for
the other three datasets. Note that, in the beginning, as
we increase the number of averaged traces, the accuracy
increases significantly for all four datasets, showing the
benefit of averaging in eliminating noise. This experi-
ment also shows that increasing the averaging does not
indefinitely increase the SNR, as the curves in Fig. 18 are
logarithmic and flatten off after using roughly 80 averaged
traces per template.

Fig. 17 Average instruction
classification accuracy in the
function of the number of sen-
sors contributing to the dataset,
for all datasets, with the ResNet
model. Upper, dashed lines
correspond to including the
next best sensor in the dataset.
Lower, dotted lines correspond
to including the next worst sen-
sor in the dataset

Table 9 Average instruction classification accuracies (in %) of ResNet, when trained on the traces of a single sensor only. In bold, the highest
accuracies for each of the four datasets

Average Accuracy (%)

Exp-IN Exp-OUT1-: N (top), R (bottom) Exp-OUT2-N

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

48.76 60.22 64.59 71.52 53.14 39.32 40.52 55.50 45.00 44.34 39.78 41.24 41.79 42.38 39.69
31.17 31.54 45.86 36.92 38.16

Journal of Hardware and Systems Security

1 3

From a leakage evaluator point of view, we can see
the usefulness of averaging for identifying and analyzing
instruction-level leakages. As trace acquisition is a time-
consuming process, we see that finding a good number of
traces for averaging can help reduce the evaluation time.
From an attacker’s point of view, we can observe that record-
ing only one trace of the victim execution might not be suf-
ficient for extracting secret information: the attacker might
have to resort to recording multiple victim executions or
folding loops to accommodate averaging for a better SNR.

6.7 Impact of the Dataset Size on Instruction
Leakage

As our final experiment on the Sakura-X board, we evalu-
ate the impact of the number of templates per instruction,
i.e., the dataset size, on the accuracy of the ResNet model.
For five different input seeds, we randomly select a subset
of the templates for each instruction and train the ResNet
model. Figure 19 shows the accuracy drop compared to
the full dataset for a range of template sizes, averaged
across all five seeds. We can observe that when using only
10% of the dataset size, i.e., 1000 templates per instruc-
tion, the accuracy of Exp-IN-N drops only 4%, while it

drops approximately 7% for the Exp-OUT datasets. This
indicates that increasing the accuracy is a very difficult
problem, as the initial accuracy comes from the inter-type
classification, and the intra-type confusion cannot be sig-
nificantly improved even by increasing the dataset size by
10× . Figure 19 also shows that after some point, as with
averaging, the accuracy does not significantly increase
with a bigger dataset size. We can observe that the curves
flatten for all four datasets and that using more than 8k
templates does not significantly affect the accuracy.

7 Evaluation on Alveo U200

This section provides an instruction-level leakage analysis
on the Alveo U200 board containing a cloud-scale AMD
Virtex Ultrascale+ FPGA. Figure 20 shows the floorplan. At
the bottom, we can see the entire FPGA rotated by 90°, with
three SLRs, and the shell occupying half of the middle SLR.
Figure 20 also shows the enlarged view of SLR2. Similar to
the Exp-OUT1 placement in Fig. 9, we physically separate
the soft-core CPU (PicoRV32 [11]), the sensor region, and
the controller. As Alveo U200 contains a much larger FPGA
than Sakura-X, we instantiate 29 sensors, as described in

Fig. 18 Accuracy in the func-
tion of the number of averaged
traces per template. The dataset
size is 10,000 templates per
instruction, while the model
used for training is ResNet

Fig. 19 Accuracy drop in the
function of the dataset size
(number of templates) used for
training and testing compared
to the full dataset with 10,000
templates. Results are shown on
the ResNet model for all four
datasets

 Journal of Hardware and Systems Security

1 3

Sect. 4. However, unlike the spread-out placements in Exp-
OUT1 and Exp-OUT2, we place the 29 sensors along the
border of the sensor region, clustered in 6 equidistant groups
of five sensors (except the last group with four sensors),
simulating an attacker placing all the sensors as close to the
victim as possible.

Using the leakage evaluation setup and following the
instruction classification method described in Sects. 4 and 5,
we create 10,000 templates of N type and 20,000 templates
of R type. We collect the corresponding power side-channel
traces, creating three datasets: Exp-10k-N, Exp-10k-R, and
Exp-20k-R. Since the sensor and the soft-core CPU both
work at the same clock frequency, the sensor traces do not
need as many samples as for the Sakura-X board: we set
the sensor trace length to T = 16 samples which guarantees
that the longest instruction execution is completely cap-
tured. Like in the Sakura-X experiments, we align the start

of all instructions to the same sample in the traces using the
recorded CPU opcode.

7.1 Instruction‑Level Leakage on Cloud‑Scale FPGAs

In the first experiment on Alveo U200, we evaluate the
instruction-level leakage by training the ResNet model on
all three datasets. Table 10 shows the averaged results for
10-fold validation. We can observe that on a significantly
larger FPGA and a CPU running at the same high clock
frequency as the sensor, the accuracy for all three data-
sets is approximately 40%. The Exp-OUT-20k-R dataset
has a 20% lower accuracy than the Exp-OUT1-R dataset
on Sakura-X, while the Exp-OUT-10k-N dataset has an
approximately 30% lower accuracy than the Exp-OUT1-N
dataset. Table 10 also shows that the difference between
N and R datasets is much smaller on Alveo U200 (≈5%)
compared to Sakura-X (≈10%). As the target used on Alveo
is a multicycle CPU (PicoRV32 [11]) and the target used
on Sakura-X is a pipelined CPU (RISC-Y [32]), the impact
of surrounding instructions is smaller on a multicycle CPU.
Finally, Table 10 confirms the findings shown in Sect. 6.7,
as the accuracy difference when using 10,000 templates
(Exp-OUT-10k-R) and 20,000 templates (Exp-OUT-20k-R)
is less than 2%: after a certain threshold, increasing the
templates does not significantly impact the model’s ability
to extract leakage.

7.2 Code Sequence Classification

As our final experiment, we evaluate the leakage of code
sequences instead of single instructions. To do this, we
train a classifier to predict which sequence was executed
from a set of known code sequences. We create eight code
sequences, each comprised of multiple instructions of the
same type, separated by instructions of another type. Each
code sequence has a primary type from Table 3: load, store,
branch, arithmetic, logic, compare, and shift. For example,
the load code sequence consists of load instructions sepa-
rated by shift instructions, and the store code sequence con-
tains store instructions separated by logic instructions. The
number of instructions is tailored so that all eight sequences
have the same execution length of 40 clock cycles. This
structure makes them representative of short code sequences

Table 10 Instruction classification accuracies on Alveo U200 (in %)
for the ResNet model

Model Average Accuracy (%)

Exp-OUT-10k-N Exp-OUT-10k-R Exp-OUT-20k-R

ResNet 42.59 37.60 39.05

S10-S14

S25-S28

S15-S19

S20-S24

S5-S9

S0-S4

Legend:
CPU
CPU memory
TDC sensors
Sensor logic
Controller
Communication
Shell

SLR0

CONTROLLER
CPU SENSORS

Fig. 20 Floorplan on the Alveo U200 board. Sensor delay lines (in
yellow) and CPU (in purple)

Journal of Hardware and Systems Security

1 3

dominated by same-type instructions, commonly found in
open-source code.

The code sequence templates have the same structure
as instruction templates of type N in Algorithm 1, where
instead of a single instruction, the target is a fixed set of
instructions for the given sequence. For each code sequence,
we create 10,000 templates, each representing an execution
of the code sequence on random data. For this dataset, called
Exp-10k-S, the traces for each template are recorded as an
average across 1,000 executions of the same code sequence
and input data.

Table 11 shows the average accuracy across five differ-
ent seeds for all the DL methods in Sect. 5. We can observe
that unlike instruction-level leakages, which contain the ran-
domness of the operands and data as noise, code sequences
emit significantly higher leakage, as almost all the models
achieve high accuracy: 1D-CNN1, 1D-CNN2, LSTM &
1D-CNN, and ResNet achieve the accuracy of 100%. The
only model with a noticeably low accuracy is LSTM since
it fails to converge for four out of five seeds, while for the
remaining seed, it achieves 80% accuracy.

From an evaluator’s point of view, this experiment shows
that it is important to evaluate not only instruction-level
leakages but also the deployed code in its entirety. Moreo-
ver, since short code sequences dominated by same-type
instructions are common in open-source code, our results
demonstrate that known, i.e., open-source code sequences
can be profiled and more easily distinguished than single
instructions. For example, in an AES algorithm, the attacker
can use a load-intensive piece of code for profiling and eas-
ily differentiate it from a branch-intensive code sequence
in a control-flow algorithm. To avoid potential exploits,
users should deploy countermeasures or use proprietary
(unknown) code. From an attacker’s point of view, these
results show that attacking code sequences instead of indi-
vidual instructions requires less attack effort for a potentially
higher benefit.

8 Discussion

In Sects. 6 and 7, we have seen the evaluation of instruc-
tion-level leakages on two FPGA boards. Unlike large ML
accelerators—which require recording long execution traces

and have significant architecture- and data-dependent power
variations—the instructions of soft-core CPUs have very
short execution traces: in the range of tens of microsec-
onds. Consequently, our results show that soft-core CPUs
do not have visible leakage in power traces that SPA can
exploit; unless extensive averaging of a million traces is
performed. Through visual analysis of averaged traces, we
have observed that instructions of different types are more
likely to have different leakages. In contrast, instructions of
the same type have almost no differences despite averaging.
These results are also confirmed by DL models, as both the
confusion matrix and hierarchical classification indicate that
the classification confusion is concentrated within instruc-
tion groups, not between them. Furthermore, a significantly
higher top-K accuracy also demonstrates that the confusion
between only a few instructions prevents the models from
achieving 100% accuracy.

Our analysis demonstrates that for the evaluator’s worst-
case scenario, i.e., an attacker breaching the physical sep-
aration barrier, the highest achieved accuracy is 86.46%
using the time-series ResNet model [77]. We show that
classical ML approaches used in previous side-channel
disassembly work do not transfer well to the shared FPGA
scenario. As no high-end oscilloscope equipment is availa-
ble, using ML and preprocessing approaches from previous
work on sensor traces results in a 10–20% lower accuracy
than DL approaches.

Our results indicate that the templating impacts SNR and
the model accuracy, where Exp-OUT1-N has an approxi-
mately 10% higher accuracy than the Exp-OUT1-R dataset.
These results suggest that the evaluator should use N tem-
plating for the worst-case estimate, while for a more realistic
estimate, they should use R templating.

Throughout our experimental evaluation, we show that
placement does matter: the overall distance between the
sensors and the CPU impacts the SNR and, thus, the
accuracy. We demonstrate that increasing the distance
between the CPU and sensors (Exp-IN, Exp-OUT1, Exp-
OUT2) incurs an approximately 15% accuracy drop.
For one sensor placement, our results, like previous
work [66], also indicate that sensors closer to the CPU
do not necessarily have the highest accuracy, possibly
due to the imperfections of the PDN implementation and
different sensor calibrations. Additionally, we show the

Table 11 Code sequence classification accuracies (in %) for the deep learning methods. The highest accuracies, in bold, are obtained using the
1D-CNN1, 1D-CNN2, LSTM & 1D-CNN, and ResNet models

Average Accuracy (%)

MLP 1D-CNN1 1D-CNN2 LSTM 1D-CNN & LSTM LSTM & 1D-CNN ResNet

99.45 100 100 26.82 82.63 100 100

 Journal of Hardware and Systems Security

1 3

benefit of using multiple sensors: the accuracy increases
significantly (≈15% for Exp-IN-N) when using five sen-
sors instead of only one.

We analyze the impact of averaging on the ResNet
model accuracy. We demonstrate that no averaging, i.e.,
only one trace recording per template, results in very low
accuracy due to noise. From the point of an evaluator,
averaging increases SNR, which reflects in our results,
showing that averaging 80 traces can significantly increase
the accuracy; however, averaging more traces brings lim-
ited to no further benefit. This means that an evaluator
can use averaging for a worst-case leakage analysis, to
identify weak points of their soft-core CPU design, while
also knowing an attacker would need to deploy additional
techniques, such as loop folding, to be able to average a
single code execution trace. We find that increasing the
dataset size does not significantly impact the accuracy:
having 10× more templates increases the accuracy at most
8% (for Exp-OUT datasets), showing again that inter-type
instruction classification is a relatively easy classification
problem, achieving a specific accuracy with only 1,000
templates per instruction. In contrast, distinguishing
between instructions of the same type is a hard classifica-
tion problem, where even 10× more templates are insuf-
ficient for increasing the accuracy significantly.

Our results show that cloud-scale FPGAs exhibit less
leakage due to their size and PDN structure. Consequently,
the accuracy on both N and R template types is approxi-
mately 40%, significantly lower than on Sakura-X. How-
ever, unlike instructions, we demonstrate that short code
sequences have significant leakage and that DL models can
predict them with an accuracy of 100%.

Finally, our experimental analysis shows that to ensure
no exploitable leakage, the evaluator should always test the
worst-case scenario: multiple sensors with no physical separa-
tion, using N-type templates on a smaller FPGA with higher
SNR, and averaging. In this case, the evaluator will either
ensure there is no leakage or, if there is, they will be able to
analyze it more efficiently and design appropriate mitigations.

9 Countermeasures

Countermeasures against power side-channel analysis have
been extensively studied, and they fall into two main cat-
egories: hiding and masking [70]. Hiding aims to reduce the
SNR of the signal recorded by the attacker. Therefore, pro-
tections can either focus on reducing the leakage signal, e.g.,
by equalizing the data-dependent power consumption [81],
or increasing the side channel noise. Because most attacks
depend on aligned traces, hiding can also be done in the
time dimension, by adding random delays or clock jitters

during the hardware execution. Masking, on the other hand,
requires processing algorithmically-randomized data, while
maintaining the correctness of the circuit operation [82].
Both hiding and masking, however, suffer from considerable
area overhead and vulnerability to higher-order attacks [70].

Mitigations for power side-channel disassembly attacks
involve restructuring the code or redesigning the hardware
to reduce leakage [83]. De Mulder et al. integrated defenses
into the microarchitecture of a soft-core RISC-V proces-
sor and tested them on a Zynq FPGA [84]. They enhanced
the side-channel security by protecting memory accesses
and introducing masking in the CPU. Another example of
a side-channel protected microprocessor is PARAM, devel-
oped and tested on a Sakura-X FPGA [85]. After analyzing
the RTL and leakage of an open-source RISC-V processor,
the authors used obfuscation to reduce datapath leakage and
to conceal the addresses sent to the cache. Alternative (or
complementary to) hardware changes are software defenses:
random code injection, code obfuscation [86], or shuffling
the instruction execution [87] are most used to protect pro-
prietary code against side-channel disassembly attacks.

On shared FPGAs, protections against side-channel anal-
ysis commonly deploy different hiding techniques, better
tenant isolation, or methods that prevent the deployment
of sensor circuits. As hiding techniques, the works of Le
Masle et al. [88] and Krautter et al. [89] are most relevant.
Le Masle et al. designed a network of on-chip RO-based
sensors to control power wasters and maintain a constant
power consumption, thus reducing the SNR [88]. They
used a proportional-integral-derivative (PID) controller as
the control circuit, while power wasters were implemented
using long routing wires (equivalent to high capacitive load).
Similarly, Krautter et al. designed an active fence composed
of ring oscillators placed between two neighboring FPGA
tenants [89]. The actuator controlling the fence in a closed-
loop control system was a TDC sensor, and the fence area
overhead was 100% compared to the unprotected design.

Additionally, Güneysu and Moradi proposed a set of
countermeasures on FPGAs [90]. Using BRAM write col-
lisions, short circuits, and shift register LUTs, they imple-
mented Gaussian noise to reduce the SNR. Sasdrich et al.
improve the resistance against FPGA side-channel attacks
by dynamically changing the hardware implementation of a
PRESENT cipher at runtime using the FPGA partial recon-
figuration [91]. All these countermeasures are independent
of the design under protection and can hence be used to
increase the side-channel security of soft-core CPUs in a
shared FPGA scenario.

The final way of preventing remote power side-channel
attacks on shared FPGAs is by detecting and forbidding sensor-
like structures in the RTL designs: Krautter et al. [92] and
La et al. [93] developed bitstream scanners, which search for
signatures of potentially malicious circuits. Deploying them

Journal of Hardware and Systems Security

1 3

on the cloud could prevent remote attackers from recording
power traces and thus achieve power side-channel security of
soft-core CPUs. However, bitstream scanners are not 100%
effective in preventing malicious designs, as researchers
have found ways to implement stealthy voltage sensors using
benign circuits [65].

10 Limitations and Future Work

In this work, we experiment with two lightweight soft-core
CPUs commonly used for embedded bare-metal applica-
tions, which support straightforward integration with FPGA
logic. Within the spectrum of embedded CPU microarchi-
tectures, we have focused on two prevalent varieties com-
monly used in previous work on power disassembly attacks:
a multicycle and a pipelined CPU. Therefore, the results and
conclusions in Sects. 6 and 7 should generalize to a good
number of embedded CPU implementations and ISAs.

Our results show that inter-type instruction leakage
is the strongest, while it is harder to distinguish instruc-
tions of the same type. This result implies that instructions
using different hardware and datapath in the CPU, typi-
cally instructions of different types, exhibit varied leak-
age, thus rendering them more distinguishable by machine
learning models. For instance, logic and arithmetic
instructions solely utilize the ALU, while loads addition-
ally fetch data from memory. Branches use the ALU and
modify the program counter, and jumps merely alter the
program counter. Conversely, instructions sharing most of
the datapath exhibit similar leakage, making them difficult
to distinguish. For example, for instructions where only
the ALU opcode differs—such as logic instructions—the
CPU controller executes the same steps, with only a dif-
ferent ALU operation. Regardless of the microarchitecture
and ISA, these observations hold. Some microarchitectures
might be single-cycle, some multicycle, and some pipe-
lined. However, the overall impact of the microarchitecture
is on the SNR, resulting in the leakage (and classifica-
tion accuracy) being stronger or weaker, but not impact-
ing our conclusions. For example, pipelined architectures
might have a more significant difference between N and
R datasets, while multicycle architectures might have a
comparably smaller difference (as is the case of RISC-Y
and PicoRV32).

Our insights on DL superseding classical ML approaches
in cases with low SNR are also general and should not
depend on the CPU microarchitecture. Similarly, our con-
clusions regarding placement, averaging, and dataset size
also apply to other soft-core CPU cores. Only in cases
with high SNR (e.g., in ML-based processors with more
straightforward differentiation between workloads) might
our conclusions change: classical and DL methods may

display more comparable accuracy if faced with an easy
classification problem.

As mentioned earlier, the evaluation presented in this
work is limited to embedded soft-core CPUs. Consider-
ing more complex processor cores would bring a new set
of challenges. Larger CPUs—superscalar, out-of-order,
and speculative—entail a higher communication latency,
lower operating frequency, and higher area overhead. These
factors impact instruction identification accuracy in vari-
ous ways. On the one hand, a larger area may make the
instruction-level leakage stronger. Conversely, the hard-
ware overhead for operating system support or instruction-
level parallelism (out-of-order and speculative execution)
could increase the noise and reduce the instruction-level
leakage. More complex cores might have a lower maxi-
mum operating frequency, allowing more sensor samples
per CPU clock cycle (i.e., higher quality measurements),
but the out-of-order execution could make synchronizing
the power traces more difficult. Evaluating the impact of
microarchitectural features of larger soft-core CPUs on the
instruction-level leakage is, therefore, an interesting avenue
for future work.

Our work evaluates instruction-level leakage of soft-
core CPUs in isolation. Future research could explore the
leakage in the context of a complete system consisting of
a soft-core CPU and an accelerator. To further justify the
need for mitigations, future work could showcase an attack
on longer code sequences, e.g., detecting loops in power
traces (with no averaging) and then folding loop executions
to obtain averaged traces, or profiling longer open-source
code sequences to detect specific code execution. Turning
to the countermeasures, Sect. 9 outlines a palette of mitiga-
tion techniques that could be implemented in many ways.
Evaluating their performance and scalability is important
and, as such, merits a study on its own.

Last but not least, the instruction-level leakage evaluation
methodology presented in this paper is general and can be
used for any CPU microarchitecture to obtain implementa-
tion-specific results and conclusions.

11 Related Work

In this section, we present the related work, of which the
most relevant to ours are power analysis attacks on shared
FPGAs and power side-channel disassembly attacks.

11.1 Power Analysis Attacks on Shared FPGAs

Zhao et al. characterized the RO and TDC voltage monitors
on an AMD Zynq-7000 SoC and successfully used them in
an SPA attack against a (1) collocated RSA cryptomodule

 Journal of Hardware and Systems Security

1 3

and (2) RSA exponentiation running on the ARM proces-
sor. The traces they recorded had visibly different amplitude
and duration, depending on whether the processed RSA
key bit had a binary value of 0 or 1. In a concurrent study,
Schnelleberg et al. demonstrated a CPA attack in which,
instead of an oscilloscope, they used a TDC sensor collo-
cated with an AES crypto module on an AMD Spartan-6
FPGA [59]. Glamočanin et al. refined the TDC sensor design
and ported it on an Amazon EC2 F1 cloud instance (AMD
Virtex UltraScale+ FPGA) to showcase a successful CPA
attack against a 128-bit AES module. Similarly to Zhao
et al., Gravellier et al. targeted AMD Zync-7000 SoC; with
correlation power analysis, they recovered the secret key of
a bare-metal implementation of Tiny AES and OpenSSL
AES [24]. These seminal works showed that physical access
is no longer required for power side-channel attacks and that
shared FPGAs are vulnerable to power analysis attacks. How-
ever, unlike our work, all the attacks mentioned above are
statistical-based attacks that depend on thousands or millions
of victim execution traces for a successful attack.

Another class of power side-channel attacks on shared
FPGAs concerns profiling and reverse engineering another
common FPGA workload: neural network accelerators. Given
the size of a neuron and the network as a whole, the change in
network topology or size can have a considerable (i.e., last-
ing and distinguishable) impact on the power supply voltage.
In a remote attack scenario involving a shared FPGA, it has
already been shown that an adversary can infer the activation
function, the weights, the number of neurons and layers, the
width and depth of convolutional layers, the width of pooling
layers, filter sizes, and the stride of convolutional and pooling
layers [25–28]. Unlike statistical-based attacks, these profil-
ing attacks require a small number of victim execution traces.
However, since the victims are ML accelerators occupying a
large portion of the FPGA logic, a good SNR results in easily
exploitable side-channel leakage and high attack accuracy.
Our work analyzes the leakage of a soft-core CPU, which is a
significantly smaller victim than ML accelerators.

In the context of side-channel attacks on ML accelera-
tors, the work of Tian et al. [28] is most relevant to us, as
the authors exploit instruction-level leakages of an ML
accelerator. The authors use TDC sensor traces to attack
a Versatile Tensor Accelerator (VTA) on an AMD Zynq-
7000 FPGA. VTA is a generic and customizable deep
learning accelerator, which realizes an ML model as a
set of VTA instructions and collates them into instruc-
tion groups, each containing a mix of LOAD, GEMM, ALU,
or STORE instructions. Firstly, Tian et al. have observed
that all TDC traces recorded during 25,000 clock cycles
(120 MHz clock frequency) for GEMM, ALU-Add, and
LOAD-and-STORE unit tests have distinctly different
shapes, allowing SPA attacks. Additionally, SPA on the
traces recorded during GEMM instructions allows the

reverse engineering of the instruction parameters by find-
ing the time interval between adjacent peaks, counting
the number of peaks, and measuring the amplitude of the
voltage drop in the sensor trace. In our work, we ana-
lyze the leakage of a soft-core CPU, considerably smaller
than VTA. Moreover, the traces corresponding to the CPU
instructions are orders of magnitude shorter in time, and
many CPU instructions give extremely similar sensor trace
waveforms. Consequently, visual analysis of the traces is
not sufficient, and to analyze the instruction-level leak-
ages, we deploy different ML classifiers.

Instead of assuming that the victim is a cryptographic
core or a neural network, Gobulukoglu et al. used TDC
sensor traces to determine whether a cotenant application
is present and what type of application it may be [54]. On
an AMD Zynq-7000 FPGA, they deployed one TDC sensor
and nine scenarios: one without any cotenant, one power-
hungry tenant, and others covering several implementa-
tions of AES and PRESENT (a custom IP core, software
running on Microblaze, ORCA, and PicoRV soft-core pro-
cessors). They collected 250 sensor traces for each sce-
nario, transformed them into two-dimensional images, and
trained the ResNet50 classifier to predict workloads. The
reported classification accuracy ranged between 33% and
99%, with an average of around 70%. The lowest classifica-
tion accuracy was reported between AES and PRESENT
running on the same type of soft-core CPU, while the high-
est was achieved when distinguishing between very differ-
ent implementations: an AES core and a soft-core CPU. It
is worth noting that the soft-core processors were running
at 5 MHz, while the sensor was clocked at 100 MHz. In this
work, we target a considerably more challenging classifica-
tion problem; not only is our target soft-core CPU work-
ing on a higher frequency, but the information required
to determine the instruction the CPU is executing is also
contained in a significantly smaller number of sensor sam-
ples (shorter trace). Nevertheless, we show that instruction
leakage in the power traces is sufficient to achieve an accu-
racy higher than 80%.

11.2 Power Side‑Channel Disassembly Attacks

A body of research covers power side-channel attacks on
cryptographic computations, whether they are executed by
a CPU or implemented as an ASIC or FPGA circuit. Simi-
larly, researchers investigated whether power side-channel
or electromagnetic side-channel emanations can be used to
determine the instructions executed by a CPU.

Vermoen et al. were the first to recover the code executed
on a Java SmartCard, by correlating the average power
traces with a set of templates. Instead of power, Strobel
et al. measured the electromagnetic (EM) emanations of an
8-bit PIC16F687 MCU, running at 4 MHz [71]. The first

Journal of Hardware and Systems Security

1 3

to use ML methods, the authors deployed LDA coupled
with the k-NN algorithm and obtained instruction classi-
fication accuracy of 96% and 87% for the test and the real
codes, respectively. Cristiani et al. focused on the instruc-
tion fetch stage of a 14-bit PIC16F15376 MCU operating
at a significantly higher frequency than in previous work:
20 MHz [67]. To compensate for a higher CPU frequency,
they used a 10 GS/s oscilloscope, averaged 1,000 traces per
template to reduce noise, and were the first to record EM
side-channel traces at multiple chip locations. Using LDA
for dimensionality reduction and a QDA classifier, they
reported 95% instruction recognition accuracy. Park et al.
targeted an 8-bit ATmega328p MCU (16 MHz, two-stage
pipeline) and recorded the power side-channel traces with
a 2.5 GS/s oscilloscope [72]. The authors were the first to
deploy frequency analysis for disassembly and used CWT
to find the differences between the instructions not observ-
able in the time domain. Park et al. then applied Kullback–
Leibler (KL) divergence to identify important features, PCA
for dimensionality reduction, and a hierarchical classifica-
tion approach. On the test codes, they reported 99% instruc-
tion opcode recognition accuracy. Krishnankutty et al. were
the first to find the instruction execution boundaries in a
side-channel trace of an MSP430 MCU [69]. Their hierar-
chical classification based on SVM resulted in 86% opcode
recognition accuracy.

Common to the above works is that the victim CPU was
running at frequencies orders of magnitude lower than the
sampling rate of the oscilloscope for measuring the side-
channel traces. On FPGAs, voltage-drop sensors cannot
reach the sampling frequencies of an oscilloscope. In our
experimental setup, in one case, only four sensor samples
were available per one CPU clock cycle, whereas in the
other, only one sensor sample was available per CPU clock
cycle. Additionally, unlike power disassembly attacks which
depend on only one source of power traces, i.e., the oscil-
loscope, our work leverages multiple remote on-chip sen-
sors to increase the signal. Despite that, we show that ML
methods used in power disassembly attacks are not optimal
for remote leakage evaluation. We present new DL time-
series classifiers that can determine the type of instruction
executed with accuracy higher than 80%. Our work not only
presents new DL methods beneficial for future power side-
channel disassembly attacks, but also shows the need to
deploy countermeasures against power disassembly attacks,
even in a remote scenario.

12 Conclusions

This work analyzes the instruction-level leakages of soft-
core CPUs in shared FPGAs. We show that, unlike with ML
accelerators, potential attackers cannot rely on SPA alone, as

even with significant averaging, the visual leakage of small
soft-core CPUs is limited. Instead, to analyze the instruction-
level leakages, we compute the classification accuracy using
instruction profiling templates. We demonstrate that ML
methods from previous power disassembly attacks are insuf-
ficient for remote leakage analysis and that evaluators should
deploy DL methods: they achieve approximately 10–20%
higher accuracy when classifying instructions from power
templates. Using DL methods and a worst-case scenario for
the evaluator—a breach of physical and logical separation—
we achieve a maximum accuracy of 86.42%.

Our analysis demonstrates that as the leakage evalua-
tion scenarios become more realistic for a potential attack,
the leakage, and thus the classification accuracy, reduces.
Enforcing physical separation and placing the soft-core CPU
further away from the on-chip sensors reduces the accuracy
significantly, as well as using more realistic templates with
the target instruction surrounded by random instructions.
Furthermore, we show that most of the instruction-level
leakage is constrained to instructions of different types and
that the confusion comes from only a few similar instruc-
tions: using the top-4 accuracy metric already results in an
accuracy above 90% for most of our datasets.

We quantify the impact of averaging on the accuracy and
show that the accuracy increases, up to a certain point, as
the number of averaged traces increases. We also demon-
strate that increasing the number of templates does not sig-
nificantly increase the accuracy. Furthermore, our analysis
shows that a cloud-scale FPGA on the Alveo U200 board has
significantly less leakage, as the more prominent and higher
quality PDN results in a lower SNR. Finally, we demon-
strate that, unlike instruction-level leakages, code sequences
exhibit significantly higher leakage and can be classified
with an accuracy of 100% even on cloud-scale FPGAs.

Our work can serve as a leakage evaluation methodol-
ogy for remotely deployed soft-core CPUs. It can also be
leveraged for building more advanced power side-channel
disassembly attacks.

In conclusion, we demonstrate that even small circuits
leak information on shared FPGAs, and that potential attack-
ers can remotely extract that information with a small num-
ber of power trace acquisitions. This result highlights the
need for deploying appropriate mitigations on soft-core
CPUs, in multitenant cloud FPGAs.

Statements and Declarations

Funding Open access funding provided by EPFL Lausanne. This work
is partially supported by the Swiss National Science Foundation (grant
No. 182428).

Competing Interests The authors have no competing interests as
defined by Springer, or other interests that might be perceived to influ-
ence the results and/or discussion reported in this paper.

 Journal of Hardware and Systems Security

1 3

Author Contributions Each named author has substantially contributed
to conducting the underlying research and drafting this manuscript.
Ognjen Glamočanin, Mathias Payer, and Mirjana Stojilović wrote the
manuscript. Mirjana Stojilović created Figs. 1–6. Shashwat Shrivastava
created Figs. 10–12 and worked on the ML aspects of the project. Jinwei
Yao worked on instruction template generation and ML code. Nour
Ardo worked on the initial FPGA infrastructure. Ognjen Glamočanin
implemented the final FPGA infrastructure and the ML code, recorded
the traces, ran the ML profiling, and created the remaining figures. All
authors reviewed the final version of the manuscript.

Data Availability We make the FPGA designs, associated software, and
ML code openly available for the reproducibility of the experiments
and the results in this work [34].

Ethics Approval This research does not involve human and/or animal
studies.4

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Amazon AWS: Amazon EC2 F1 (2019) Amazon AWS. https://
aws. amazon. com/ ec2/ insta nce- types/ f1/. Accessed 18 Sep 2023

 2. Azure Cloud Services (2021) https:// learn. micro soft. com/ en- us/
azure/ virtu al- machi nes/ sizes- field- progr ammab le- gate- arrays.
Accessed 18 Sep 2023

 3. Cyclone V Hard Processor System Technical Reference Manual
(2020) https:// www. intel. com/ conte nt/ dam/ www/ progr ammab le/
us/ en/ pdfs/ liter ature/ hb/ cyclo ne-v/ cv_ 5v4. pdf. Accessed 18 Sep
2023

 4. Zynq UltraScale+ MPSoC Heterogeneous Devices. www. xilinx.
com/ produ cts/ silic on- devic es/ soc/ zynq- ultra scale- mpsoc. html.
Accessed 18 Sep 2023

 5. Baidu FPGA: Baidu Cloud (2022) Baidu FPGA. https:// cloud.
baidu. com/ produ ct/ fpga. html. Accessed 18 Sep 2023

 6. Tencent FPGA: Tencent Cloud (2022) Tencent FPGA. https://
intl. cloud. tence nt. com/ docum ent/ produ ct/ 213/ 11518# OTHER.
Accessed 18 Sep 2023

 7. Alibaba: Compute optimized instance families with FPGAs.
https:// www. aliba baclo ud. com/ help/ doc- detail/ 108504. htm.
Accessed 18 Sep 2023

 8. Choi YK, Cong J, Fang Z, Hao Y, Reinman G, Wei P (2016) A
quantitative analysis on microarchitectures of modern CPU-FPGA
platforms. In: Proceedings of the 53rd Annual Design Automation
Conference. Association for Computing Machinery, New York,
NY, USA

 9. MicroBlaze Processor (2021) https:// www. xilinx. com/ conte nt/
 dam/ xilinx/ suppo rt/ docum entat ion/ white_ papers/ wp501-
micro blaze. pdf. Accessed 18 Sep 2023

 10. Nios®V Processor (2022) https:// www. intel. com/ conte nt/ www/
us/ en/ produ cts/ detai ls/ fpga/ nios- proce ssor/v. html. Accessed 18
Sep 2023

 11. Yosys HQ: PicoRV CPU (2022) Yosys HQ
 12. Zha Y, Li J (2020) Virtualizing FPGAs in the cloud. In: Proceed-

ings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, New
York, NY, USA, pp 845–858

 13. Yazdanshenas S, Betz V (2019) The costs of confidentiality in
virtualized FPGAs. IEEE Trans Very Large Scale Integr (VLSI)
Syst 27:2272–2283

 14. Luo Y, Xu X (2019) HILL: a hardware isolation framework
against information leakage on multi-tenant fpga long-wires. In:
Proceedings of the IEEE International Conference on Field Pro-
grammable Technology, Tianjin, China, pp 12–19

 15. Bobda C, Mbongue JM, Chow P, Ewais M, Tarafdar N, Vega JC,
Eguro K, Koch D, Handagala S, Leeser M, Herbordt M, Shahzad
H, Hofste P, Ringlein B, Szefer J, Sanaullah A, Tessier R (2022)
The future of FPGA acceleration in datacenters and the cloud.
TRETS 15(3)

 16. Gnad DRE, Nguyen CDK, Gillani SH, Tahoori MB (2021) Voltage-
based covert channels using FPGAs. ACM Trans Des Autom Elec-
tron Syst 26(6)

 17. Giechaskiel I, Rasmussen KB, Eguro K (2018) Leaky wires: Infor-
mation leakage and covert communication between FPGA long
wires. In: Proceedings of 13th ACM ASIA Conference on Infor-
mation, Computer and Communications Security (ASIACCS),
Songdo, Incheon, Republic of Korea, pp 15–27

 18. Gnad DRE, Oboril F, Tahoori MB (2017) Voltage drop-based fault
attacks on FPGAs using valid bitstreams. In: Proceedings of the
27th International Conference on Field-Programmable Logic and
Applications, Ghent, Belgium, pp 1–7

 19. Mahmoud D, Stojilović M (2019) Timing violation induced faults
in multi-tenant FPGAs. In: Proceedings of the Design, Automa-
tion and Test in Europe Conference and Exhibition, Florence,
Italy, pp 1745–1750

 20. Zick KM, Srivastav M, Zhang W, French M (2013) Sensing nano-
second-scale voltage attacks and natural transients in FPGAs. In:
Proceedings of the 21th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, Monterey, CA, USA, pp 101–104

 21. Zhao M, Suh GE (2018) FPGA-based remote power side-channel
attacks. In: Proceedings of IEEE Symposium on Security and Pri-
vacy, San Francisco, CA, USA, pp 805–820

 22. Schellenberg F, Gnad DRE, Moradi A, Tahoori MB (2018) An
inside job: Remote power analysis attacks on FPGAs. In: Proceed-
ings of the Design, Automation and Test in Europe Conference
and Exhibition, Dresden, Germany, pp 1111–1116

 23. Glamočanin O, Coulon L, Regazzoni F, Stojilović M (2020) Are
cloud FPGAs really vulnerable to power analysis attacks? In: Pro-
ceedings of the Design, Automation and Test in Europe Confer-
ence and Exhibition, Grenoble, France, pp 1007–1010

 24. Gravellier J, Dutertre J-M, Teglia Y, Loubet-Moundi P, Olivier F
(2019) Remote side-channel attacks on heterogeneous SoC. 18th
Smart Card Research and Advanced Applications Conference,
CARDIS 2019. Czech Republic, Prague, pp 109–125

 25. Zhang Y, Yasaei R, Chen H, Li Z, Faruque MAA (2021) Steal-
ing neural network structure through remote FPGA side-channel
analysis. In: Proceedings of the 29th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, p 225. ACM,
Virtual

 26. Rakin AS, Yukui Luo XX, Fan D (2021) Deep-Dup: an adver-
sarial weight duplication attack framework to crush deep neural
network in multi-tenant FPGA. In: Usenix Security Symposium,
pp 1919–1936

http://creativecommons.org/licenses/by/4.0/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-field-programmable-gate-arrays
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-field-programmable-gate-arrays
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://cloud.baidu.com/product/fpga.html
https://cloud.baidu.com/product/fpga.html
https://intl.cloud.tencent.com/document/product/213/11518#OTHER
https://intl.cloud.tencent.com/document/product/213/11518#OTHER
https://www.alibabacloud.com/help/doc-detail/108504.htm
https://www.xilinx.com/content/dam/xilinx/support/documentation/white_papers/wp501-microblaze.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/white_papers/wp501-microblaze.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/white_papers/wp501-microblaze.pdf
https://www.intel.com/content/www/us/en/products/details/fpga/nios-processor/v.html
https://www.intel.com/content/www/us/en/products/details/fpga/nios-processor/v.html

Journal of Hardware and Systems Security

1 3

 27. Moini S, Tian S, Holcomb D, Szefer J, Tessier R (2021) Power
side-channel attacks on BNN accelerators in remote FPGAs.
arXiv: 2011. 07603. Accessed 18 Sep 2023

 28. Tian S, Moini S, Wolnikowski A, Holcomb D, Tessier R, Szefer
J (2021) Remote power attacks on the versatile tensor accelerator
in multi-tenant FPGAs. In: Proceedings of the 29th IEEE Sym-
posium on Field-Programmable Custom Computing Machines,
Orlando, FL, USA, pp 242–246

 29. Quisquater J-J, Samyde D (2002) Automatic code recognition
for smart cards using a Kohonen neural network. In: Smart Card
Research and Advanced Applications Conference, CARDIS 2002.
USENIX, San Jose, CA, USA

 30. Park J, Tyagi A (2017) Using power clues to hack IoT devices:
The power side channel provides for instruction-level disassembly.
IEEE Consum Electron Mag 6(3):92–102

 31. RISC-V Foundation: RV32I Instruction Set Architecture (2022)
RISC-V Foundation

 32. Subramanian K (2021) RISCY Processor. https:// github. com/
mongr elgem/ RISCY. Accessed 20 Sep 2021

 33. Lab S (2021) Sakura X side-channel evaluation board. https://
satoh. cs. uec. ac. jp/ SAKURA/ hardw are/ SAKURA- X. html.
Accessed 20 Sep 2021

 34. Glamočanin O, Shrivastava S, Yao J, Ardo N, Payer M, Stojilović
M (2023) Instruction-level power side-channel leakage evaluation
of soft-core CPUs on shared FPGAs. Zenodo, Artifacts. https://
doi. org/ 10. 5281/ zenodo. 82890 76. Accessed 28 Aug 2023

 35. Microsoft Research: Project Catapult (2019) Microsoft research.
https:// www. micro soft. com/ en- us/ resea rch/ proje ct/ proje ct-
 catap ult/. Accessed 18 Sep 2023

 36. Byma S, Steffan JG, Bannazadeh H, Garcia AL, Chow P (2014)
FPGAs in the cloud: Booting virtualized hardware accelerators
with OpenStack. In: Proceedings of the 22nd IEEE Symposium
on Field-Programmable Custom Computing Machines, Boston,
MA, USA, pp 109–116

 37. Asiatici M, George N, Vipin K, Fahmy SA, Ienne P (2017) Vir-
tualized execution runtime for FPGA accelerators in the cloud.
IEEE Access 5:1900–1910

 38. Chen F, Shan Y, Zhang Y, Wang Y, Franke H, Chang X, Wang K
(2014) Enabling FPGAs in the Cloud. In: Proceedings of the 11th
ACM Conference on Computing Frontiers, New York, NY, USA

 39. Vaishnav A, Pham KD, Koch D (2018) A survey on FPGA virtualiza-
tion. In: Proceedings of the 28th International Conference on Field-
Programmable Logic and Applications, Dublin, Ireland, pp 131–138

 40. István Z, Alonso G, Singla A (2018) Providing multi-tenant
services with FPGAs: Case study on a key-value store. In: 2018
28th International Conference on Field Programmable Logic and
Applications (FPL), pp 119–124

 41. Khawaja A, Landgraf J, Prakash R, Wei M, Schkufza E, Rossbach
CJ (2018) Sharing, protection, and compatibility for reconfigur-
able fabric with AmorphOS. 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18). Carlsbad,
CA, pp 107–127

 42. Paolino M, Pinneterre S, Raho D (2017) FPGA virtualization with
accelerators overcommitment for network function virtualization.
International Conference on ReConFigurable Computing and
FPGAs (ReConFig). Cancun, Mexico, pp 1–6

 43. Pinneterre S, Chiotakis S, Paolino M, Raho D (2018) vFPGA-
manager: a virtualization framework for orchestrated FPGA
accelerator sharing in 5G cloud environments. IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB). Valencia, Spain, pp 1–5

 44. Weerasinghe J, Abel F, Hagleitner C, Herkersdorf A (2015) Ena-
bling FPGAs in hyperscale data centers. In: IEEE 12th Interna-
tional Conference on Ubiquitous Intelligence and Computing and

12th International Conference on Autonomic and Trusted Com-
puting and 15th International Conference on Scalable Computing
and Communications and Its Associated Workshops (UIC-ATC-
ScalCom). Beijing, China, pp 1078–1086

 45. Mbongue JM, Kwadjo DT, Shuping A, Bobda C (2022) Deploy-
ing multi-tenant FPGAs within linux-based cloud infrastructure.
ACM Trans Reconfig Technol Syst (TRETS) 15(2):1–31

 46. Yu H, Peters AM, Akshintala A, Rossback CJ (2019) Automatic
virtualization of accelerators. Workshop on Hot Topics in Operat-
ing Systems (HotOS). Bertinoro, Italy, pp 58–65

 47. Zhao M, Gao M, Kozyrakis C (2022) ShEF: Shielded enclaves for
cloud FPGAs. 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS). Lausanne, Switzerland, pp 1070–1085

 48. Turan F, Verbauwhede I (2020) Trust in FPGA-accelerated cloud
computing. ACM Computing Surveys 53(6)

 49. Mirzargar SS, Stojilović M (2019) Physical side-channel attacks
and covert communication on FPGAs: A survey. In: Proceedings
of the 29th International Conference on Field-Programmable
Logic and Applications, Barcelona, Spain, pp 202–210

 50. Glamočanin O, Mahmoud DG, Regazzoni F, Stojilović M (2021)
Shared FPGAs and the Holy Grail: Protections against side-
channel and fault attacks. In: Proceedings of the Design, Auto-
mation and Test in Europe Conference and Exhibition, Grenoble,
France, pp 1645–1650

 51. Kocher P, Jaffe J, Jun B (1999) Differential power analysis.
Advances in Cryptology–CRYPTO ’99. Santa Barbara, CA, USA,
pp 387–397

 52. Krautter J, Gnad DRE (2018) Tahoori MB (2018) FPGAhammer:
Remote voltage fault attacks on shared FPGAs, suitable for DFA
on AES. IACR Trans Cryptogr Hardw Embed Syst 3:44–68

 53. Provelengios G, Holcomb D, Tessier R (2019) Characterizing
power distribution attacks in multi-user FPGA environments.
In: Proceedings of the 29th International Conference on Field-
Programmable Logic and Applications, Barcelona, Spain, pp
194–201

 54. Gobulukoglu M, Drewes C, Hunter W, Kastner R, Richmond
D (2021) Classifying computations on multi-tenant FPGAs. In:
Proceedings of the 58th Design Automation Conference, San
Francisco, California, USA, pp 1261–1266

 55. Mangard S, Pramstaller N, Oswald E (2005) Successfully attack-
ing masked AES hardware implementations. Cryptographic
Hardware and Embedded Systems–CHES ’05. Springer, Berlin,
Germany, pp 157–171

 56. Tian S, Xiong W, Giechaskiel I, Rasmussen KB, Szefer J (2020)
Fingerprinting cloud FPGA infrastructures. In: Proceedings of
the 28th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, Seaside, CA, USA, pp 58–64

 57. Moradi A, Schneider T (2016) Side-channel analysis protection
and low-latency in action - case study of PRINCE and Midori.
In: Advances in Cryptology - ASIACRYPT, Hanoi, Vietnam,
pp 517–547

 58. Moradi A (2014) Side-channel leakage through static power -
should we care about in practice? International Workshop on
Cryptographic Hardware and Embedded Systems. Busan, South
Korea, pp 562–579

 59. Schellenberg F, Gnad DRE, Moradi A, Tahoori MB (2018)
Remote inter-chip power analysis side-channel attacks at board-
level. 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). NY, USA, New York, pp 114–11147

 60. Todd DW (2021) Tightly coupling the PicoRV32 RISC-V pro-
cessor with custom logic accelerators via a generic interface.
Master Thesis. https:// tiger prints. clems on. edu/ cgi/ viewc ontent.
cgi? artic le= 4559& conte xt= all_ theses . Accessed 29 May 2023

http://arxiv.org/abs/2011.07603
https://github.com/mongrelgem/RISCY
https://github.com/mongrelgem/RISCY
https://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html
https://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html
https://doi.org/10.5281/zenodo.8289076
https://doi.org/10.5281/zenodo.8289076
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=4559&context=all_theses
https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=4559&context=all_theses

 Journal of Hardware and Systems Security

1 3

 61. The Rocket Chip Generator (2016) https:// github. com/ chips allia nce/
rocket- chip. Accessed 18 Sep 2023

 62. Moini S, Li X, Stanwicks P, Provelengios G, Burleson W,
Tessier R, Holcomb D (2020) Understanding and comparing
the capabilities of on-chip voltage sensors against remote power
attacks on FPGAs. 2020 IEEE 63rd International Midwest
Symposium on Circuits and Systems (MWSCAS). Springfield,
MA, USA, pp 941–944

 63. Mirzargar SS, Renault G, Guerrieri A, Stojilović M (2020) Non-
intrusive and adaptive monitoring for locating voltage attacks in
virtualized FPGAs. In: Proceedings of the IEEE International
Conference on Field Programmable Technology, Maui, HI,
USA, pp 1–2

 64. Giechaskiel I, Rasmussen KB, Szefer J (2019) Measuring long
wire leakage with ring oscillators in cloud FPGAs. In: Proceed-
ings of the 29th International Conference on Field-Programmable
Logic and Applications, Barcelona, Spain, pp 45–50

 65. Gnad DRE, Meyers V, Dang NM, Schellenberg F, Moradi A,
Tahoori MB (2021) Stealthy logic misuse for power analysis
attacks in multi-tenant FPGAs. In: Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, Vir-
tual Conference & Exhibition, pp 1012–1015

 66. Krautter J, Gnad DRE (2020) Tahoori MB (2020) CPAmap: On the
complexity of secure FPGA virtualization, multi-tenancy, and physi-
cal design. IACR Trans Cryptogr Hardw Embed Syst 3:121–146

 67. Cristiani V, Lecomte M, Hiscock T (2019) A bit-level approach
to side channel based disassembling. 18th Smart Card Research
and Advanced Applications Conference, CARDIS 2019. Czech
Republic, Prague, pp 143–158

 68. Vermoen D, Witteman M, Gaydadjiev GN (2007) Reverse engi-
neering Java card applets using power analysis. Information
Security Theory and Practices. Smart Cards, Mobile and Ubiq-
uitous Computing Systems, Berlin, Heidelberg, pp 138–149

 69. Krishnankutty D, Li Z, Robucci R, Banerjee N, Patel C (2020)
Instruction sequence identification and disassembly using power sup-
ply side-channel analysis. IEEE Trans Comput 69(11):1639–1653

 70. Mangard S, Oswald E, Popp T (2007) Power analysis attacks -
revealing the secrets of smart cards. Springer, New York, NY

 71. Strobel D, Bache F, Oswald D, Schellenberg F, Paar C (2015)
SCANDALee: a side-channel-based disassembler using local
electromagnetic emanations. In: Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition,
Grenoble, France, pp 139–144

 72. Park J, Xu X, Jin Y, Forte D, Tehranipoor M (2018) Power-based side-
channel instruction-level disassembler. In: Proceedings of the 55th
Design Automation Conference, San Francisco, CA, USA, pp 1–6

 73. Eisenbarth T, Paar C, Weghenkel B (2010) Building a side channel
based disassembler, vol. 6340, pp 78–99. Springer, Berlin, Heidelberg

 74. Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735–1780

 75. Bashivan P, Rish I, Yeasin M, Codella N (2015) Learning representa-
tions from EEG with deep recurrent-convolutional neural networks.
arXiv. https:// arxiv. org/ abs/ 1511. 06448. Accessed 18 Sep 2023

 76. Wang B, Jiang T, Zhou X, Ma B, Zhao F, Wang Y (2020) Time-
series classification based on fusion features of sequence and
visualization. Appl Sci 10(12):13911–13932

 77. Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller P-A
(2019) Deep learning for time series classification: a review. Data
Min Knowl Discov 33(4):917–963

 78. Jiménez DR (2021) Time series classification using deep learning
hybrid architectures. https:// github. com/ danyr ubiano/ deepT SC.
Accessed 20 Sep 2021

 79. Gwinn R, Matties MA, Rubin AD (2021) Wavelet selection and
employment for side-channel disassembly. arXiv: 2107. 11870.
Accessed 18 Sep 2023

 80. Debande N, Souissi Y, Aabid MAE, Guilley S, Danger J-L (2012)
Wavelet transform based pre-processing for side channel analysis.
45th Annual IEEE/ACM International Symposium on Microarchi-
tecture Workshops. Vancouver, BC, Canada, pp 32–38

 81. Tiri K, Verbauwhede I (2004) A logic level design methodology
for a secure DPA resistant ASIC or FPGA implementation. In:
Proceedings of the Design, Automation and Test in Europe Con-
ference and Exhibition, Paris, France, pp 1–6

 82. Regazzoni F, Yi W, Standaert F-X (2011) FPGA implementations of
the AES masked against power analysis attacks. In: Proceedings of
2nd International Workshop on Constructive Side-Channel Analysis
and Secure Design (COSADE), Darmstadt, Germany, pp 1–11

 83. Mahmoud DG, Lenders V, Stojilović M (2022) Electrical-level
attacks on CPUs, FPGAs, and GPUs: Survey and implications in
the heterogeneous era. ACM Comput Surv 55(3)

 84. De Mulder E, Gummalla S, Hutter M (2019) Protecting RISC-V
against side-channel attacks. In: Proceedings of the 56th Design
Automation Conference, pp 1–4. ACM, Las Vegas, NV, USA

 85. Ma KF, Ganesan V, Bodduna R, Rebeiro C (2020) PARAM: a
microprocessor hardened for power side-channel attack resistance.
2020 IEEE International Symposium on Hardware-Oriented Secu-
rity and Trust (HOST). IEEE, San Jose, CA, USA, pp 23–34

 86. Yan L, Guo Y, Chen X, Mei H (2015) A study on power side chan-
nels on mobile devices. In: Proceedings of the 7th Asia-Pacific Sym-
posium on Internetware, pp 30–38. ACM, New York, NY, USA

 87. Bayrak AG, Velicković N, Ienne P, Burleson W (2012) An
architecture-independent instruction shuffler to protect against
side-channel attacks. ACM Trans Architect Code Optim (TACO)
8(4):20–12019

 88. Masle AL, Chow GCT, Luk W (2011) Constant power reconfigur-
able computing. In: Proceedings of the IEEE International Confer-
ence on Field Programmable Technology, New Delhi, India, pp 1–8

 89. Krautter J, Gnad DRE, Schellenberg F, Moradi A, Tahoori MB
(2019) Active fences against voltage-based side channels in multi-
tenant FPGAs. 2019 IEEE/ACM International Conference on Com-
puter-Aided Design (ICCAD). Westminster, CO, USA, pp 1–8

 90. Güneysu T, Moradi A (2011) Generic side-channel countermeas-
ures for reconfigurable devices. IACR Trans Cryptogr Hardw
Embed Syst 6917(1):33–48

 91. Sasdrich P, Moradi A, Mischke O, Güneysu T (2015) Achiev-
ing side-channel protection with dynamic logic reconfiguration
on modern FPGAs. 2015 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST). IEEE, Wash-
ington, DC, USA, pp 130–136

 92. Krautter J, Gnad DRE, Tahoori MB (2019) Mitigating electrical-
level attacks towards secure multi-tenant FPGAs in the cloud.
ACM Trans Reconfig Technol Syst 12(3)

 93. La TM, Matas K, Grunchevski N, Pham KD, Koch D (2020)
FPGADefender: Malicious self-oscillator scanning for Xilinx
UltraScale + FPGAs. TRETS 13(3)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://arxiv.org/abs/1511.06448
https://github.com/danyrubiano/deepTSC
http://arxiv.org/abs/2107.11870

	Instruction-Level Power Side-Channel Leakage Evaluation of Soft-Core CPUs on Shared FPGAs
	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Experimental Setup
	4.1 FPGA Voltage-Drop Sensors
	4.2 Controller

	5 Instruction Classification
	5.1 Instruction Template Generation
	5.2 Instruction Classification Models

	6 Evaluation on Sakura-X
	6.1 Visual Analysis of Sensor Traces
	6.2 Deep Learning-Based Instruction Leakage Evaluation
	6.3 Impact of Preprocessing On Instruction Leakage
	6.4 Comparison with Classical ML Approaches
	6.5 Impact of the Number of Sensors on Instruction Leakage
	6.6 Impact of Averaging on Instruction Leakage
	6.7 Impact of the Dataset Size on Instruction Leakage

	7 Evaluation on Alveo U200
	7.1 Instruction-Level Leakage on Cloud-Scale FPGAs
	7.2 Code Sequence Classification

	8 Discussion
	9 Countermeasures
	10 Limitations and Future Work
	11 Related Work
	11.1 Power Analysis Attacks on Shared FPGAs
	11.2 Power Side-Channel Disassembly Attacks

	12 Conclusions
	References

