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Abstract
Side-channel disassembly attacks recover CPU instructions from power or electromagnetic side-channel traces measured 
during code execution. These attacks typically rely on physical access, proximity to the victim device, and high sampling 
rate measuring instruments. In this work, however, we analyze the CPU instruction-level power side-channel leakage in an 
environment that lacks physical access or expensive measuring equipment. We show that instruction leakage is present even in 
a multitenant FPGA scenario, where the victim uses a soft-core CPU, and the adversary deploys on-chip voltage-fluctuation 
sensors. Unlike previous remote power side-channel attacks, which either require a considerable number of victim traces 
or attack large victim circuits such as machine learning accelerators, we take an evaluator’s point of view and provide an 
analysis of the instruction-level power side-channel leakage of a small open-source RISC-V soft processor core. To inves-
tigate whether the power side-channel traces leak secrets, we profile the victim device and implement various instruction 
opcode classifiers based on both classical machine learning algorithms used in disassembly attacks, and novel, deep learning 
approaches. We explore how parameters such as placement, trace averaging, profiling templates, and different FPGA families 
(including a cloud-scale FPGA) impact the classification accuracy. Despite the limited leakage of the soft-core CPU victim 
and a reduced accuracy and sampling rate of on-chip sensors, we show that in a worst-case scenario for the evaluator, i.e., 
an attacker breaching physical separation, we can identify the opcode of executed instructions with an average accuracy as 
high as 86.46%. Our analysis shows that determining the executed instruction type is not a classification bottleneck, while 
leakages between instructions of the same type can be challenging for deep learning models to distinguish. We also show that 
the instruction-level leakage is significantly reduced in a cloud-scale FPGA scenario with higher soft-core CPU frequencies. 
Nevertheless, our results show that even small circuits, such as soft-core CPUs, leak potentially exploitable information 
through on-chip power side channels, and users should deploy mitigation techniques against disassembly attacks to protect 
their proprietary code and data.
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1 Introduction

Due to the end of Moore’s law and the breakdown of Den-
nard’s scaling, datacenters are transitioning from homogene-
ous and processor-dominated systems towards heterogeneous 
architectures. As a result, today’s datacenters feature not only 
central processing units (CPUs), but also graphics processing 

units (GPUs) and special-purpose integrated circuits such as 
field-programmable gate arrays (FPGAs). FPGAs reached 
wide deployment in datacenters thanks to their highly paral-
lel architecture, programmability, and energy efficiency [1, 
2]. Even though FPGA vendors offer FPGA-based system-
on-chips (SoCs) with hardened CPUs [3, 4], cloud providers 
are exclusively integrating regular FPGAs in their servers 
because servers are already abundant in high-end server-
grade CPUs. Amazon EC2 F1 [1], Azure [2], Baidu [5], 
and Tencent [6] deploy AMD Virtex or Kintex Ultrascale+ 
FPGAs, while Alibaba deploys Intel Arria 10 and Agilex 
FPGAs [7].

In the FPGA-accelerated cloud, highly-parallel tasks are 
accelerated on FPGAs. At the same time, developers rely on 
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host CPUs for general computation, particularly nonitera-
tive and user event-dependent control algorithms, which are 
significantly easier to implement and maintain in software 
than in hardware. However, the FPGA-CPU communication 
incurs high latency, especially for short data transfers [8]. 
If such delays are of no concern, then the control software 
can be deployed on a cloud CPU instance; yet, only a lim-
ited range of FPGA applications—usually data movement 
ones—can afford the resulting communication latency. 
Therefore, in the case of latency-critical control algorithms, 
system designers resort to using soft-core CPUs as real-time 
co-processors (e.g., Microblaze [9], Nios [10], PicoRV [11]), 
which allow tight and customizable integration with FPGA 
accelerators, and short communication latencies.

Recent efforts focus on extending the multitenancy and 
resource virtualization from CPUs to FPGAs, to improve the 
efficiency of datacenter resource provisioning. A specific 
research focus is achieving spatial or temporal multiplexing 
of FPGA resources [12–14]. The challenges are numerous, 
such as partitioning the FPGA resources among multiple 
users, providing communication protocols between the host 
virtual machine and the accelerators, and ensuring proper 
physical and logical isolation between the tenants [15].

Unfortunately, FPGA multitenancy introduces security 
threats that cannot be mediated by physical or logical isola-
tion between tenants. The reason is the shared power delivery 
network (PDN), which instigates power side-channel attacks, 
covert communication [16, 17], and denial-of-service and 
fault attacks [18, 19]. An attacker does not require physical 
access to the board, as the fine logic and wiring granularity 
of FPGAs enables malicious users to craft almost arbitrary 
hardware, which includes implementing on-chip sensors for 
measuring the shared power supply voltage fluctuations [20]. 
Several remote power-analysis attacks have already been 
demonstrated: a simple-power analysis (SPA) attack on RSA 
exponentiation [21], correlation power analysis (CPA) attacks 
against AES (requiring a large number of victim power 
traces) [22–24], and reverse engineering attacks on neural 
network accelerators (which occupy a significant portion of 
the FPGA resources) [25–28].

For an FPGA user, secret information is not limited to 
their bitstream, the cryptographic key, or neural network 
accelerator parameters and architecture. If their design 
contains a soft-core CPU, the code being executed can be 
proprietary or contain secrets. If an attacker, by observing 
power side-channel traces during CPU code execution, can 
determine which instructions are being executed, the con-
fidentiality of the code will be compromised. In embedded 
applications and smart cards, where adversaries have physi-
cal access to the target device to measure power and elec-
tromagnetic side-channel leakage, attacks that aim at code 
recovery are termed side-channel disassembly attacks [29, 
30]. Unlike statistical-based power analysis attacks such as 

CPA, side-channel disassembly attacks are profiling attacks 
and assume the attacker can record a limited number of vic-
tim execution traces.

Our work takes an evaluator’s point of view: we explore to 
which extent soft-core CPUs leak instruction-level informa-
tion through the remote power side channel, in cases when 
an evaluator (or a potential attacker) has no physical access 
to the device but can deploy on-chip voltage-drop sensors. 
Unlike traditional side-channel disassembly attacks—where 
the CPU runs at frequencies orders of magnitude lower 
than the sampling rate of the oscilloscope—sensors used in 
remote power analysis attacks have sampling frequencies in 
the same operating range as soft-core CPUs. Our work ana-
lyzes if and under which conditions soft-core CPU instruc-
tions contain power side-channel leakage and incentivizes 
the use of protection methods in multitenant FPGAs. As our 
leakage evaluation targets, we choose two RISC-V soft-core 
CPUs using the 32-bit RISC-V base integer instruction set 
architecture (RV32I), most suitable for lightweight real-time 
co-processors [31].

To start, we record the side-channel traces correspond-
ing to the execution of every CPU instruction. Then, to 
investigate whether the traces leak secrets, we train diverse 
machine learning (ML) classifiers used in previous work and 
also explore the use of novel deep learning (DL) classifiers 
to improve the extraction of the power side-channel leak-
age. The results reveal that, despite the limited accuracy and 
sampling rate of on-chip sensors compared to oscilloscopes 
used in disassembly attacks with physical access, the limited 
leakage compared to previous remote reverse-engineering 
attacks, and the limited number of victim trace acquisitions 
compared to statistical-based attacks, instruction-level leak-
ages still exist: we can determine the executed instructions 
with average accuracy higher than 80%. These results call 
for proper mitigations to limit power side-channel leakage 
of soft-core CPUs in shared FPGAs.

We make the following contributions:

• To the best of our knowledge, we present the first analy-
sis of instruction-level leakage of soft-core CPUs in a 
shared FPGA setting.

• While power side-channel traces recorded by an on-chip 
FPGA sensor during the execution of one RISC-V soft-
core CPU instruction contain limited visually observ-
able leakage, we demonstrate that, in certain conditions, 
advanced ML techniques can extract sufficient infor-
mation to identify the opcode of the executed instruc-
tions. The maximum average instruction accuracy we 
achieve on the RV32I instruction set architecture (ISA) 
is 86.46%.

• Besides evaluating previous side-channel disassembly 
approaches, we explore new, DL-based instruction clas-
sifiers, and experimentally find that they are superior at 
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extracting leakage compared to common ML techniques 
deployed in previous work, and should be used for future 
side-channel security evaluations.

• We perform an extensive experimental analysis that 
compares how different leakage evaluation scenarios, 
such as the number and placement of sensors, number of 
templates, and type of templates, affect the instruction-
level leakage. We also demonstrate our results on two 
soft CPU cores and two different FPGA families. In addi-
tion to the leakage analysis of the RISC-Y [32] soft-core 
CPU running at 80 MHz on the Sakura-X board [33], we 
show results on a cloud-scale, AMD Alveo U200 data-
center accelerator card, using the compact PicoRV [11] 
soft-core CPU, running at 320 MHz. With our on-chip 
sensors running at 320 MHz, the side-channel traces have 
only four sensor samples per CPU clock cycle on Sakura-
X, and only one sensor sample per CPU clock cycle on 
Alveo U200; significantly lower than in traditional side-
channel disassembly attacks.

• We provide a detailed discussion of our experimental results 
and their impact on soft-core CPU leakage evaluation, 
which we use to motivate appropriate mitigation techniques.

Our work aims to provide a leakage evaluation methodology 
for soft-core CPUs in remotely accessible scenarios and to 
benefit future power side-channel disassembly attacks by 
providing novel DL power trace classification techniques. 
Therefore, we make all our FPGA designs, associated soft-
ware, and ML code openly available for the reproducibility 
of the experiments and the results in this work [34].

2  Background

Almost a decade ago, Microsoft pioneered the use of FPGAs 
in cloud computing. Their Catapult project pilot of 1,632 
FPGA-enabled datacenter servers demonstrated a dramatic 
improvement in Bing search latency, launching the era of 
FPGA-accelerated cloud computing [35]. Other cloud ser-
vice providers soon followed. Today, Amazon AWS, Azure, 

Alibaba, Baidu, and Tencent offer their customers remote 
access to datacenter FPGAs, to develop, test, and deploy 
their custom hardware accelerators [1, 5–7].

To remote users, FPGAs are typically exposed through 
a host CPU virtual machine interface and a shell-role use 
model [15]. The shell is deployed by the cloud service pro-
viders and shares the FPGA logic with the users. In addition, 
it implements platform-specific management tasks: PCIe, 
direct memory access engine, DRAM controller, and debug-
ging interfaces. The FPGA region reserved for each user 
is called a role, and users deploy their accelerators within 
their role. The shell-role separation helps faster accelerator 
deployment and ensures different privilege levels between 
the cloud service providers and the external users.

In both academia and industry, increased efforts are 
being made to extend multitenancy and resource virtualiza-
tion from CPUs to FPGAs, to enable better management 
and use of available datacenter resources [12, 15, 36–46]. 
Multitenancy can be achieved through spatial and tempo-
ral multiplexing. Temporal multiplexing separates users in 
time, ensuring that each tenant gets their own, exclusive 
instance. In spatial multiplexing, FPGA roles are occupied 
by potentially different tenants, and consequently, the cloud 
service providers need to ensure security and privacy to all 
of them [45, 47, 48].

Once the shell and the tenants share the FPGA die, they 
also share the PDN illustrated in Fig. 1. On the printed cir-
cuit board (PCB) level, the PDN starts with the primary 
voltage regulator. The power is then distributed through 
several levels of voltage regulators if needed, and the power 
and ground planes. Inside the FPGA, a PDN resembling 
a dense mesh supplies power to all FPGA logic and rout-
ing resources. On all the levels—board, package, chip—the 
PDN contains resistive, capacitive, and inductive compo-
nents, some of them intended and some parasitic, which 
create a medium for voltage fluctuations in one FPGA role 
to propagate to another. Gnad et al. were the first to demon-
strate that a malicious FPGA tenant can, through excessive 
logic switching, draw too much current and, consequently, 
reset the host FPGA [18]. Their findings temporarily put on 
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hold the FPGA multitenancy in the cloud and pushed many 
researchers to investigate new attack surfaces, threat models, 
and countermeasures [49, 50].

One of such new attack surfaces called remote power 
analysis attacks, was first demonstrated by Zhao and Suh 
[21] and Schellenberg et al. [22]. Leveraging the fine granu-
larity of reconfigurable logic and routing in FPGAs allowed 
the designing and implementing of circuits that sense on-
chip power supply voltage variations. Unlike traditional 
power analysis attacks, which require physical access to the 
victim to measure its power consumption with an oscillo-
scope [51], using on-chip sensor circuits made these attacks 
remote, no longer requiring physical access to the device. An 
example of such a sensing circuit is a simple ring oscillator 
(RO), composed of an odd number of inverters connected 
to form a closed chain. Its oscillation frequency depends on 
the delays of the inverters and routing resources which, in 
turn, depend on the power supply voltage. Hence, one can 
also sense the voltage variations by measuring the RO fre-
quency. Another example is a delay-line sensor, also called 
time-to-digital converter (TDC) [20], which we will discuss 
in detail in Sect. 4. In a multitenant FPGA setting, an adver-
sary can use such sensors to collect the power side-channel 
information leaked from a co-located tenant and use it to 
infer secret information: indeed, on-chip sensors allowed 
remote attacks on cryptographic circuits, ML accelerators, 
and other circuits. We summarize the most relevant previous 
work in Sect. 11.

3  Threat Model

Research on the security of multitenant FPGAs follows 
a well-established threat model of the fault and side-
channel attacks on remote shared FPGAs  [19, 21, 23, 

28, 49, 52–54]. The primary assumption is that at least 
two users can remotely deploy their designs on the same 
FPGA instance simultaneously. For security reasons, 
these remote users are given control over dedicated partial 
reconfiguration regions, which are logically and physically 
isolated; thus, the attacker has no direct access or control 
over the victim or the victim’s deployment. The adversary 
can deploy voltage fluctuation sensors to record power 
side-channel traces and send them over the network for 
remote analysis.

In this work, we assume an evaluator’s point of view: we 
evaluate the security of a victim that uses a soft processor 
core in their shared FPGA platform, for example, to config-
ure and control the operation of an accelerator. This work 
analyzes instruction-level leakage to assess if and under 
which circumstances soft-core CPUs leak instruction infor-
mation through the power side channel in shared FPGAs, 
with the goal of motivating the use of countermeasures.

When evaluating the side-channel security of a device, it 
is a common practice to consider the worst-case estimates 
(even if not practically achievable by an attacker), as they 
quantify the limits of the leakage. For example, in the con-
text of cyber-physical devices, white-box power side-chan-
nel leakage evaluation methods leverage proprietary archi-
tectural information (unavailable to attackers) to build better 
power models for power analysis attacks [55]. Removing the 
plastic cover of a chip to record near-field EM emanations 
is another example of a common practice in leakage evalu-
ations, even though attackers might not always be able to 
remove the casing. Consequently, our experiments assume 
and evaluate various scenarios: from worst-case (a breach of 
physical and logical separation, no additional noise sources, 
and averaging of traces) to more realistic scenarios, includ-
ing physical separation, no averaging, and noise from sur-
rounding instructions and the shell.
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In reality, a hypothetical attacker mounting a profil-
ing attack on soft processor cores would have to perform 
a procedure similar to the one shown in Fig. 2. To pre-
pare for the attack, an adversary would start by renting an 
FPGA instance as its only tenant. On this FPGA instance, 
the adversary would need to calibrate the voltage fluctua-
tion sensors and use them to profile the execution of the 
CPU instructions for various operating frequencies and 
several CPU placements. Then, the attacker could train 
side-channel instruction classifiers. This step would have 
to be repeated for many FPGA instances, each uniquely 
identified (e.g., by fingerprinting cloud FPGAs as sug-
gested by Tian et al. [56]).

To perform an exploit using the library of trained classifi-
ers, the attacker would need to rent a shared FPGA instance. 
Using fingerprinting to identify the shared FPGA instance, 
the attacker can focus on the subset of the classifiers in the 
library trained on that particular FPGA instance. Once side-
channel traces are obtained, the adversary would need to 
identify that the co-located user is using a soft-core CPU 
(and repeat until a victim with a soft-core CPU is identi-
fied), using workload classification techniques [54]. Then 
the attacker could further prune the subset of trained clas-
sifiers using the same workload classification techniques—
which can distinguish between different soft-core implemen-
tations in shared FPGAs—and run the inference. Finally, in 
addition to the attack procedure, the attacker would need 
to train models robust to noise from the shell or any other 
accelerator the victim might be using alongside their soft 
processor core.

Our aim is to evaluate how and under which circum-
stances soft-core CPUs leak instruction information in 
shared FPGAs, we therefore focus on assessing instruction 
leakage. We refer to related work for FPGA identification 
and workload classification.

4  Experimental Setup

The Sakura-X (Sasebo-GIII) board [33] and the Alveo 
U200 datacenter accelerator card serve as our target 
evaluation platforms. Sakura-X is an evaluation board 
designed for power side-channel analysis and, hence, 
commonly used in both cryptologic research [57, 58] and 
research on side-channel attacks on shared FPGAs [22, 
27, 59]. Sakura-X has one AMD Kintex-7 FPGA and one 
AMD Spartan-6 FPGA. The former FPGA is the larger 
of the two, often referred to as main or target FPGA, as 
it hosts the adversary and the victim as two logically iso-
lated FPGA tenants. The second FPGA, often referred to 
as auxiliary or control FPGA, reduces unwanted noise by 
implementing the communication protocol between the 
target FPGA and the host machine [33]. For our evalua-
tion, the Sakura-X architecture increases the already low 
signal-to-noise ratio (SNR) of soft-core CPUs and helps 
isolate the instruction-level power side-channel leak-
age. To evaluate the leakages in a more realistic, cloud-
scale FPGA scenario, we use the Alveo U200 datacenter 
accelerator card. This card contains an AMD UltraScale+ 
XCU200-2FSGD2104E FPGA, and is commonly used 
in publicly available cloud FPGA instances [2]. Unlike 
Sakura-X, Alveo U200 contains a single FPGA consist-
ing of three super-logic regions (SLRs). The shell, con-
taining resources necessary for communicating with the 
DRAM and host CPU, is instantiated in the middle SLR 
and physically separated from both the attacker and the 
victim. The placement of the sensor and the victim CPU 
varies across experiments, however, in most cases, we 
physically separate the sensors and the victim soft CPU 
core to conform with the standard shared FPGA threat 
scenario described in Sect. 3.
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Figure 3 gives an overview of the experimental setup 
for both boards. The target FPGA design contains the 
victim and the hypothetical attacker logic and has four 
main components: a soft-core RISC-V processor, the 
on-chip voltage-drop sensors, the control finite state 
machine (FSM), and the shell. As discussed in Sect. 1, 
the primary purpose of using soft-core CPUs is to imple-
ment latency-critical control algorithms, especially 
ones subject to change over time. Therefore, our study 
assumes the victim uses small soft-core CPUs, common 
in embedded bare-metal applications [60]. These soft-
core CPUs are usually lightweight, with no advanced 
microarchitectural features such as cashing or specula-
tive execution. They have a low area overhead and can 
run at high clock frequencies. Their microarchitectural 
simplicity allows easy and tight integration with FPGA 
hardware, facilitating low-latency communication. Inte-
grating larger soft-core CPUs would reduce the operating 
frequency (e.g., Rocketchip can run on a couple of tens 
of MHz only [61]), increase the area overhead (reduc-
ing the available resources for hardware accelerators), 
and adversely affect the communication latency (as com-
munication would take place through memory mapped 
interfaces or an operating system).

For the RISC-V soft-core designs, we chose RISCY 
and PicoRV32, both openly available [11, 32]. Table 1 
summarizes the FPGA resource overhead. As a reference, 
we also show the resource usage of Rocket Chip [61], a 
larger, more complex soft-core RISC-V implementation. 
RISCY, used on the Sakura-X board, implements a clas-
sic five-stage pipeline and supports the complete RV32I 
ISA at the cost of a lower operating clock frequency. 
On Sakura-X, the maximum operating frequency of the 
RISCY CPU is 100 MHz; however, our system runs it at 
80 MHz, to have an integer number of sensor samples per 
one CPU clock cycle. PicoRV32, used on the Alveo U200 
board, has a multicycle CPU microarchitecture designed 
to minimize resources and maximize the CPU operating 
frequency. Our system runs PicoRV32 at the maximum 
operating clock frequency of 320 MHz. In the following 
subsections, we describe the voltage-drop sensors and the 
controller in detail.

4.1  FPGA Voltage‑Drop Sensors

Commonly deployed FPGA voltage-drop sensors fall into 
two groups: TDCs and RO-based sensors [49, 62]. They 
both produce an output in the function of their circuit delay, 
which is approximately inversely proportional to the sup-
ply voltage. Hence, the change in the sensor logic delays 
indirectly exposes the core voltage fluctuations, caused by 
the switching activity and power consumption of the vic-
tim [21]. The key criterion when choosing between a TDC 
and an RO-based sensor is the required sensor sampling rate: 
RO-based sensors cannot be sampled as frequently as TDC 
sensors. However, RO-based sensors have a smaller foot-
print and need not be calibrated, unlike TDCs. Good use 
cases for RO-based sensors are FPGA undervolting-based 
attacks [53, 63] and covert communication [64]. For side-
channel analysis, given the importance of a high sampling 
rate, TDCs are the preferred solution [22, 23, 28]; they are 
able to record voltage fluctuations with sampling periods in 
the nanosecond range [20].

The baseline design of a TDC was proposed by Zick 
et al. [20]. It consisted of two principal components, (1) one 
delay line implemented using fast carry chain logic and (2) 
latches, connected to the output of every delay element in the 
delay chain. At the input of the carry chain, a high-frequency 
clock signal was connected; let us refer to it as input clock. 
Another clock signal, the sampling clock, of the same fre-
quency but a slightly different phase, was used to capture 
the propagation depth of the rising edge of the input clock 
through the delay chain. The propagation depth reflected the 
changes of the carry logic delay, which were primarily caused 
by the power supply variations. More recently, TDC sensors 
have replaced latches with flip flops and used a digital clock 
manager (DCM) to control the phase delay between the input 
and the sample clock. Proper selection of the phase shift and 
the delay line length is critical for correct sensor calibration, 
i.e., for ensuring that the rising edge is indeed captured and 
not missed. Since the calibration is a lengthy process of trial 
and error, in our attack model it must be automated. Hence, 
we design and implement a TDC with a tunable phase shift 
mechanism and, as suggested in previous work, we avoid 
instantiating a DCM primitive to reduce jitter [65].

Table 1  Resource utilization of 
the soft-core CPUs

CPU FPGA LUT FF BRAM36 DSP

RISCY [32] Kintex-7 2544 1944 40 0
XC7K160T-1FBGC

PicoRV32 [11] Virtex Ultrascale+ 1442 1473 8 0
XCU200-FSGD2104-2-E

Rocket Chip [61] Virtex Ultrascale+ 25785 12654 12 15
XCU200-FSGD2104-2-E
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The design of our TDC is inspired by the implementa-
tion of Gnad et al. [16]. Its high-level architecture is shown 
in Fig. 4. The TDC is composed of fine calibration slices, 
coarse calibration slices, and an observable delay line, which 
is periodically sampled and its state saved in the output 
register. The input and the sample clocks are the same. To 
control the phase shift between the input and the sample 
clock, fine and coarse calibration slices are inserted on the 
input clock path. In the fine calibration slice, as shown in 
Fig. 5a, calibration inputs control the number of carry chain 
multiplexers on the clock path. The fine calibration slices 
are then connected to the coarse calibration slices (Fig. 5b), 
where the calibration inputs control the number of coarser 
delay elements on the clock path. In our TDC design, unlike 
in Gnad et al. [16], coarse delay elements are implemented 
as LUTs followed by latches, to achieve coarser delay incre-
ments. The third and last stage is the observable delay line 
(Fig. 5c). This sensor is considered correctly calibrated when 
the signal propagating through the chain of delay elements 
reaches approximately the middle of the observable delay 
line by the moment it gets captured in the output register.

In this work, TDC sensors have a 16-bit observable delay 
line. Through experimentation, we found that this length is suf-
ficient to capture the supply voltage variations caused by the 
CPU operation on both FPGA boards. Table 1 lists the FPGA 
resources used for our TDC implementation on both boards. 
The sensor clock frequency was set to 320 MHz on both boards, 
the highest operating frequency that satisfied timing constraints. 
Consequently, the sensor captures four samples per one clock 
cycle of the RISCY CPU running at 80 MHz, and one sample 
per clock cycle of the PicoRV32 CPU running at 320 MHz.

Previous work has shown that the side-channel information 
captured by voltage-drop sensors varies with both the absolute 
location of the sensors as well as their relative position to the 
victim [66]. It is, therefore, to be expected that an attacker 
may instantiate more than one power side-channel sensor. The 
exact number is usually limited by the linearly scaling on-chip 
memory resources and the data transfer word size. For exam-
ple, to improve the success of their attack, Gravellier et al. [24] 
deployed eight sensors on an AMD Artix-7 FPGA. In our 
experimental setup, we instantiate five TDCs on Sakura-X, 

and 29 TDCs on Alveo U200, the highest number that fits in a 
communication message exchanged between the FPGA [33] 
and the host PC. In Sects. 6 and 7, we will show to what extent 
having multiple sensors affects the attack efficiency.

4.2  Controller

The controller coordinates the experiments by executing and 
replying to the commands from the host machine through the 
shell. It is in charge of initializing the CPU instruction memory 
with the code to be executed, triggering the execution of the 
code, and saving the corresponding sensor traces to the on-
chip memory. Once the CPU code execution is completed, 
the controller receives a trigger from the CPU, which initiates 
the transfer of sensor traces to the host machine. In each mes-
sage sent from the FPGA to the host, the controller inserts five 
(Sakura-X) or 29 (Alveo U200) simultaneous sensor readings 
and the 32-bit word of the corresponding CPU instruction. We 
replace the default read-only instruction memory of both CPUs 
with a dual-port block RAM, connecting one memory port to 
the CPU while exposing the other port to the controller. This 
temporary change permits the controller to write arbitrary code 
in the CPU instruction memory before triggering its execution 
and recording the side-channel traces.

Prior to starting the experiments, the controller calibrates 
every sensor. The calibration is performed iteratively. First, a 
test code sequence is loaded to the instruction memory, and the 
number of elements in the sensor’s initial delay line is set to zero. 
The code execution is triggered, and the obtained sensor trace is 
inspected. If no clock transition is observed or the transition is 
located too close to the two extremes of the observable delay line, 
the fine and coarse calibration slices are adjusted. This process 
is repeated until the sensor is calibrated. The calibration settings 
are then communicated to the host machine for record keeping.

5  Instruction Classification

Like all hardware circuits, soft-core CPUs leak information 
through the power side channel. Various ALU operations, 
memory accesses, and control-flow changes all impact power 

Fig. 4  TDC sensor architec-
ture with a tunable phase shift 
between the clock that enters 
the observable delay line and 
the clock that samples the 
output (i.e., takes a snapshot of 
the observable delay line). The 
exact number of slices in our 
implementation is in Table 2

CLK

Fine calibration slices

Coarse calibration slices

Observable delay line

SENSOR OUTPUT

. . .

. . . . . .
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consumption differently. In addition, as a combination of fetch, 
ALU, memory, and program counter operations, instructions 
also leak information: in the form of unique patterns spread 
across the time and amplitude domain of the recorded power 

traces. For example, on the one hand, memory instructions 
might have high power consumption both in the ALU stage, 
when the address is computed, and in the later stages of 
instruction execution, i.e., when the data is read/written to the 

Fig. 5  The implementation of 
each slice in the TDC sensor in 
Fig. 4, including the calibration 
and sensor output registers. For 
space reasons, CARRY4 chain 
is shown horizontally; in the 
FPGA design layout, it spans 
vertically

Table 2  Coarse calibration, 
fine calibration, and observable 
delay line slices per sensor

FPGA Fine calibration Coarse calibration Observable line

Kintex-7 24 slices 8 slices 4 slices
XC7K160T-1FBGC (= 96 stages) (= 32 LUTs and Latches) (= 16 FFs)
Virtex Ultrascale+ 12 slices 4 slices 2 slices
XCU200-FSGD2104-2-E (= 96 stages) (= 32 LUTs and Latches) (= 16 FFs)
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memory. On the other hand, arithmetic instructions might only 
have a power consumption peak during the ALU stage.

To analyze the instruction-level power side-channel leakage 
of soft-core CPUs, we employ an ML-inspired method illus-
trated in Fig. 6. The key idea behind this approach is that leak-
age patterns are discovered during ML model training, while 
the leakage is assessed using the prediction accuracy achieved 
on templates unseen during training. For this purpose, we first 
build a large set of template assembly codes for all the target 
instructions: we generate a set of 10,000 templates for every 
instruction. Once the templates database is ready, we run the 
experiments to collect the corresponding power side-channel 
traces. As leakage evaluators, we reduce the background noise 
and improve the signal-to-noise ratio by executing each tem-
plate multiple times and averaging the side-channel traces: 
100 times for Sakura-X and 1000 times for Alveo U200. 
Even though our work represents an instruction-level leakage 
analysis, averaging is still a commonly used noise reduction 
approach even in real attack scenarios: for an attack, the victim 
code is often executed frequently, allowing averaging, while 
during training, the attacker can execute templates an arbitrary 
amount of times [67–70]. Finally, to spread out the impact of 
environmental noise equally across all instruction classes, we 
record traces in an interleaved fashion: we record a single trace 
of each class, in a round-robin order, before continuing the 
acquisition of the next power trace. Subsequently, we prepare 
the acquired side-channel traces for the training and inference 
steps. Similar to previous work [67, 71, 72], we partition the 
final dataset into a training set (for training the instruction clas-
sifier) and a test set, for evaluating the instruction classification 
accuracy and the leakage learned by the models. The following 
subsections explain the template generation and the training of 
the side-channel instruction classifiers in greater detail.

5.1  Instruction Template Generation

For our leakage analysis, we create two templating configura-
tions. In the first, denominated as N, the target instruction is 
surrounded by NOP instructions. We use this set of templates 
to analyze the instruction-level leakage without additional noise 

from the surrounding instructions. In the second configuration, 
denominated by R, we surround the target instruction with a 
random instruction before and after. We use the R templating 
configuration to analyze instruction-level leakage in the pres-
ence of other instructions, which represents a more realistic 
leakage scenario: in practice, the target instruction will be sur-
rounded by a pair of random instructions instead of NOPs.

For both templating configurations, we generate 10,000 
templates for every instruction from the RV32I ISA, which are 
listed in Table 3. The process of template generation is detailed 
in Algorithm 1. The first step is the initialization of x registers 
with random values. Then, if needed, we insert additional prep-
aration instructions (e.g., to initialize the contents of a memory 
location for the load instruction). The central and key part of 
the template contains the target instruction itself: in the case of 
N templating, similarly to previous work [71, 72], we surround 
the target instruction with a few NOPs to separate it from the 
setup phase, while in the case of R templating, we insert a ran-
dom instruction before and after, making sure the control flow 

Instruction
templates

Sensors

Is
ol

at
io

n

Buffer

CPU

Target FPGA

Traces ...

... ... Training
dataset

...

... ...
Training

...

... ...

Test
dataset

Classifier

Instruction
predictions

Fig. 6  Side-channel instruction leakage evaluation
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is not altered. Finally, at the end of the template code, we insert 
an instruction with an invalid opcode, to trigger a signal to the 
controller that the code execution is completed (see Fig. 3).

5.2  Instruction Classification Models

Most power side-channel disassemblers in previous work 
used traditional ML methods and common classification algo-
rithms, e.g., quadratic discriminant analysis (QDA), k-nearest 
neighbors (k-NN), support vector machines (SVM), Gaussian 
Diffusion Model (GDM) [67, 69, 71–73]. However, the accu-
racy of these algorithm-driven ML classifiers dramatically 
depends on the preprocessing for dimensionality reduction 
and feature extraction. Without suitable preprocessing, the 
noise in the dataset can significantly affect the classification 
results. For these reasons, previous research relied on the 
high sampling rate of the oscilloscope to achieve reasonable 
accuracy. In this work, considering the limited sampling fre-
quency of the on-chip sensors with respect to the soft-core 
CPU operating frequency, besides testing how well the ML 
methods proposed in previous work perform in this scenario, 
we explore leakage analysis using DL-based classifiers.

First, we treat the side-channel instruction classification 
as a time-series classification problem, as different instruc-
tions have unique patterns spread across the time and ampli-
tude domain. Since we use multiple sensors for classifica-
tion, we represent the trace of each sensor as a separate input 
channel. Fig. 7 shows the classification process.

 A class of networks naturally suited to processing 
sequential data is recurrent neural networks (RNNs), specifi-
cally long short-term memory (LSTM) models [74]. They 
have an internal state that can represent context information, 
and they keep information about past inputs for an amount 
of time that is not fixed but depends on the weights and the 
input data. As LSTMs do not perform well when directly 
extracting features from raw data, they are commonly paired 
with more complex networks for feature extraction [75, 
76], such as convolution neural networks (CNNs). In prac-
tice, feature extraction with CNNs can be applied before 
or after the LSTM model. Moreover, recent work showed 
that 1D-CNNs consisting of single-dimensional convolu-
tional layers achieved good results in time-series classifi-
cation [77]. Finally, CNNs structured as residual networks 
(ResNets) have shown to be very performant in time-series 
classification, achieving high accuracy across a range of 
datasets [77]. Therefore, we train and compare the follow-
ing models: LSTM, a small 1D-CNN, a large 1D-CNN, and 
the combination of LSTM and 1D-CNN (LSTM followed by 
1D-CNN and LSTM preceded by 1D-CNN), a multi-layer 
perceptron (MLP), and a time-series ResNet [77].

6  Evaluation on Sakura‑X

In this section, we provide a detailed instruction-level leakage 
analysis on Sakura-X. The first step in experimental evalua-
tion is deciding the hypothetical attacker and victim’s place-
ment. Given the power delivery network imperfections and 
knowing that side-channel leakage picked up by the sensors 
varies with both the absolute and the relative positions of the 
victim and the attacker [66], we opt to assign the victim to an 
arbitrary FPGA region and vary the sensor placement.

Figures 8, 9, and 10 zoom in on the FPGA floorplan 
containing three different placements of the target CPU and 
the sensors. In the floorplan in Fig. 8, we place the sensors 
inside the region occupied by the target CPU, in the top-left 
clock region of the Kintex-7 FPGA (X0Y4). Even though 
this floorplan does not conform to the standard shared 
FPGA threat model—where the FPGA regions assigned to 

Table 3  RV32I base integer instructions for template generation

Category Instructions

Arithmetic ADD, ADDI, SUB, LUI, AUIPC
Logical XOR, XORI, OR, ORI, AND, ANDI
Compare SLT, SLTI, SLTU, SLTIU
Shifts SLL, SLLI, SRL, SRLI, SRA, SRAI
Loads LB, LH, LW, LBU, LHU
Stores SB, SH, SW
Branches BEQ, BNE, BLT, BGE, BLTU, BGEU
Jump & Link JAL, JALR

Fig. 7  Classification process. 
The power trace of each sensor 
(S1 to SN) is used as one of N 
input channels. The input is 
then forwarded to the model, 
and the instruction prediction 
is collected for accuracy evalu-
ation

S1

SN
N input

channels Power trace
Instruction prediction

ML model
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the tenants do not overlap—we use it as a worst-case leak-
age scenario for the evaluator (best-case scenario for the 
attacker). In the floorplan in Fig. 9, we place our five sen-
sors to the right of the target—in the top-right clock region 
(X1Y4)—in the space between the CPU and the edge of the 
FPGA, simulating an attacker that spreads out the available 
sensors across their entire FPGA region. In the floorplan 
of Fig. 10, we move the target CPU one clock region down 
(X0Y3), further away from the sensors. In the remainder of 
this section, we will refer to the described floorplans as Exp-
IN, EXP-OUT1, and Exp-OUT2, respectively.

Using the leakage evaluation setup and following the 
instruction classification method described in Sects. 4 and 5, 
we create 10,000 templates per instruction (for both N and 
R template types) and collect the corresponding power 
side-channel traces, creating four datasets: Exp-IN-N, Exp-
OUT1-N, Exp-OUT1-R, and Exp-OUT2-N. We use the Exp-
IN-N dataset to evaluate the worst-case leakage (i.e., with 
physical separation between the victim and the adversary 
violated and no noise of surrounding instructions). Exp-
OUT1-N and Exp-OUT2-N are collected in addition to 
Exp-IN-N to evaluate the impact of CPU and sensor place-
ment on the instruction-level leakage and model accuracy. 
Finally, we use Exp-OUT1-R to evaluate the most realistic 
scenario, where the templates contain the noise of the sur-
rounding instructions. With these four datasets, we cover 
the three main goals of our instruction-level leakage evalu-
ation: worst-case for the evaluator (Exp-IN-N), the impact 

of CPU and sensor placement on the accuracy (Exp-IN-N, 
Exp-OUT1-N, Exp-OUT2-N), and a realistic case for the 
attacker (Exp-OUT1-R).

We set the sensor trace length to T = 60 samples (i.e., 60 
consecutive readings of the TDC output register), to guarantee 
that all the execution cycles of the instructions in Table 3 are 
captured. To ensure we are capturing the correct instruction 
execution, we align the start of all instructions to the same 
sample in the traces (fourth sample): we center the traces 
around the correct instruction using the recorded CPU opcode.

In our experimental evaluation, we first visually analyze 
the recorded power traces for multiple sensor placements. 
We show that instructions of different types show limited 
visual leakage patterns, while the instructions of the same 
type do not display any differences. To determine the limits 
of the instruction-level leakage, we train a range of DL mod-
els on the four datasets and show how the accuracy changes 
depending on the placement and template type. We also use 
ML techniques to further evaluate the inter- and intra-type 
instruction leakage and show that most of the classification 
confusion comes from two or three instructions with similar 
leakage. We show that preprocessing techniques and ML 
approaches used in previous work are outperformed by DL 
techniques. Finally, we evaluate the limits of the instruction-
level leakage by investigating the impact of the number of 
sensors, averaging, and the dataset size on the accuracy.

6.1  Visual Analysis of Sensor Traces

Before analyzing leakage using the DL-based classification 
methodology described in Sect. 5.2, we first visually analyze 
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Fig. 8  Sensor delay lines (in yellow) and CPU (in purple) in Exp-IN
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Fig. 9  Sensor delay lines (in yellow) and CPU (in purple) in Exp-
OUT1
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Fig. 10  Sensor delay lines (in yellow) and CPU (in purple) in Exp-
OUT2
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the recorded sensor traces. In our first experiment, we inves-
tigate how sensor placement impacts the waveforms and the 
leakage in the traces. Figure 11 shows the average trace of 
all templates of arithmetic and logical instructions across 
all 15 sensors (five in each of the three floorplans) for the 
Exp-IN-N, Exp-OUT1-N, and Exp-OUT2-N datasets. We 
can observe that the sensor placement significantly impacts 
the shape of the traces, including the peak-to-peak ratio: 
S10, the furthest from the CPU, has a peak-to-peak ratio of 
less than one, while S3 has a peak-to-peak ratio of almost 
six. For some sensors (e.g., S4, S8, S7, S12, and S13), we 
observe peaks every four samples, perfectly synchronized 
with the CPU clock. For some other sensors (e.g., S1, S2, 
and S4), we observe a different pattern: slight dips every 
20 sensor samples (around samples 12, 32, and 52), cor-
responding to five CPU clock cycles, i.e., to the fetch of the 
next instruction. This experiment already shows the benefit 
of having multiple sensors for increasing the power side-
channel leakage.

In our next experiment, we visually inspect the inter-
type instruction leakage, i.e., how different instruction 
types impact the shape of the recorded side-channel traces. 

Figure 12 shows the average traces of sensor S9 (Exp-
OUT1-N) for the six instruction groups in Table 3. We 
chose sensor S9, as the plots in Fig. 12 were most visually 
distinguishable for this particular sensor and it represents 
the worst-case scenario for an evaluator. The peak in sam-
ple 48 makes the load and store instructions clearly dis-
tinguishable from other groups. Branches and jumps also 
contain a distinguishable peak centered around sample 28, 
surrounded by dips on both sides. This experiment shows 
that, after significant averaging, some distinct visual traits 
can be attributed to specific instruction groups. However, 
not all instruction groups can be identified visually. For 
example, just like loads and stores, jumps and branches have 
very similar power consumption traces, and it is difficult 
to tell the exact instruction type from visual analysis alone.

As the final visual experiment, we compare the side-
channel traces of several instructions of the same instruc-
tion type. Figure 13 shows average sensor S3 traces for 
eight instructions. We chose S3 because it is in the heart 
of the soft-core CPU (Fig. 8), and it shows, when aver-
aged, the biggest visual differences between instructions 
of the same type. On the left, we overlap the average traces 
for OR, AND, ORI, and ANDI. The differences, located 
between samples 10 and 20, are difficult to notice even 
with averaging across all templates, as all four instruc-
tions use the same datapath. On the right, we overlap the 
average traces of four branch instructions: BEQ, BNE, 
BLT, and BGE. We practically see no difference between 
these instructions and cannot distinguish them visually. 
Therefore, even though the visual classification of instruc-
tions is possible for some victims (e.g., sizeable ML-based 
accelerators [28]), soft-core CPUs require more advanced 
methods for instruction-level leakage analysis.

6.2  Deep Learning‑Based Instruction Leakage 
Evaluation

After showing that visual analysis is insufficient to iden-
tify CPU instructions executing on remote FPGAs, we 
deploy advanced DL techniques. We obtain our four data-
sets by collecting all the sensor traces for each instruc-
tion in Table 3, as described in Sect. 5.2. Each data point, 
corresponding to one instruction template, is represented 
as a matrix with five rows, where each row, i.e., the input 
channel, is the trace of one of the five sensors. Using the 
newly created dataset, we first train our deep learning 
models from Sect. 5.2 using 10-fold validation and com-
pare the resulting accuracy. Then, we compare the results 
of our DL models with the classical ML methods previ-
ously proposed for side-channel disassembly attacks, and 
we evaluate if frequency-based preprocessing methods, Fig. 11  Average sensor traces for the arithmetic and logical instruc-

tions in Table 3
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shown promising in previous work [72], have any impact 
on the extracted leakage. Furthermore, we evaluate how 
the number of sensors used in the attack impacts the final 
accuracy. Finally, we evaluate how the amount of averag-
ing or a smaller dataset size can impact the leakage, i.e., 
the best model accuracy.

To train our deep learning models, we set the number of 
epochs and the batch size to 100 and 64, respectively. We use 
the Adam optimizer with an initial learning rate of 0.0001 
and the loss to monitor and adjust the learning rate. Table 4 
summarizes the model details. To facilitate reproducibility, 
we choose deep learning models with standardized param-
eters and openly available implementations [77, 78].

Table 5 lists the average test accuracy obtained with the 
four datasets, with the highest accuracy in bold. We can 
observe that overall, ResNet and 1D-CNN2, the two most 
complex DL models, achieve the highest accuracy for all 
datasets. Results in Table 5 also show that models with-
out convolutional layers do not manage to extract leakage 
well and result in low classification accuracy. Moreover, the 
accuracy drops as the sensors are placed further away from 
the target CPU. For example, for the best model (ResNet), 
Exp-OUT1-N has a 16.07% lower accuracy than Exp-IN-
N, and Exp-OUT2-N has a 22.5% lower accuracy than 
Exp-OUT1-N. Therefore, an evaluator testing local CPU 
leakage with sensors placed inside the CPU will achieve 

Fig. 12  Average traces of sensor S9 for all instruction groups in Table 3

Fig. 13  Average S3 traces for OR, AND, ORI, and ANDI (left) compared to S3 traces for BEQ, BNE, BLT, and BGE (right)
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an overestimation of the leakage—if leakage does not exist 
in a scenario such as Exp-IN-N, an evaluator can, with a 
high probability, guarantee that a potential attacker will not 
be able to exploit the leakage. Finally, Table 5 also shows 
the contrast in accuracy resulting from differences between 
isolated instructions (Exp-OUT1-N) and instructions with 
random instructions surrounding them (which is the case in 
a code sequence execution). We can observe that the drop in 
SNR caused by additional instructions results in a 10.69% 
accuracy drop for the ResNet model.

For the best model, i.e., ResNet, we explored different 
hyperparameters with the goal of increasing the accuracy 
of Exp-OUT1-R, a realistic dataset in terms of an attack. 
Increasing the initial learning rate and the number of epochs 
did not result in higher accuracy. An increase of the batch 

size to 128 or a reduction to 32 did not significantly change 
the classification accuracy. Increasing the number of ResNet 
blocks, increasing the number of layers per block, or adding 
an LSTM layer at the input did not significantly change the 
ResNet classification accuracy either.

To analyze further the instruction-level leakages and 
understand why the classification accuracy for Exp-OUT1-
R does not reach a number significantly higher than 60%, 
we evaluate the top-K accuracy of our best model for all 
four datasets. Unlike the regular model accuracy, i.e., top-1 
accuracy, the top-K accuracy labels a prediction as correct 
if the real class is among the top K predicted classes (ranked 
by predicted scores). If the top-K accuracy is high while the 
top-1 accuracy is low, this signifies that groups of classes 
are often confused. Figure 14 shows the top-K accuracy for 

Table 4  Architecture details of the deep learning models

Model Architecture

MLP Dense(X units, ReLU)  X = (250, 350, 150, 50)
Dropout(0.2)
Dense(100, ReLU) + Dense(37, Softmax)

1D-CNN1 Conv1D(X filters, kernel size of Y) + MaxPool(2)  (X,Y) = ((64,10), (64, 4))
Dropout(0.2)
Dense(100 units, ReLU) + Dense(37, Softmax)

1D-CNN2 Conv1D(X filters, kernel size of Y) + MaxPool(2)  (X,Y) = ((32,12), (45, 10), (64,8), (128,4))
Dropout(0.2)
Dense(100 units, ReLU) + Dense(37, Softmax)

LSTM LSTM(100 units)
Dropout(0.2)
Dense(100 units, ReLU) + Dense(37, Softmax)

1D-CNN & LSTM Conv1D(64 filters, kernel size of 4, ReLU)
Conv1D(64 filters, kernel size of 4, leakyReLU=0.3)
Dropout(0.2)
MaxPool(2)
LSTM(100 units)
Dense(100 units, leakyReLU=0.3) + Dense(37, Softmax)

LSTM & 1D-CNN LSTM(100 units)
Conv1D(64 filters, kernel size of 2, leakyReLU=0.3) + MaxPool(2)
Dropout(0.2)
Dense(100 units, leakyReLU=0.3) + Dense(37, Softmax)

ResNet Standard time-series Resnet: 3 blocks with 3 ×Conv1D layers and residual connections [77]

Table 5  Instruction 
classification accuracies (in %) 
for the deep learning methods. 
The highest accuracies, in 
bold, are obtained using the 
1D-CNN2 and ResNet models

Dataset Average Accuracy (%)

MLP 1D-CNN1 1D-CNN2 LSTM 1D-CNN & 
LSTM

LSTM & 
1D-CNN

ResNet

Exp-IN-N 79.24 82.38 84.91 77.21 81.53 84.04 86.46
Exp-OUT1-N 61.60 65.15 69.58 61.63 65.07 68.45 70.39
Exp-OUT1-R 52.89 56.79 59.10 50.58 55.59 58.44 59.71
Exp-OUT2-N 43.29 46.11 48.03 42.10 44.70 46.84 47.89
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ResNet (using 10-fold validation), for all four datasets, and 
K ranging from one to six. We can observe that, for all data-
sets, the trend is the same, and the accuracy significantly 
increases with K. The most significant accuracy increase is 
observed between top-1 and top-2 accuracy: 15% on aver-
age. The difference reduces for every subsequent K increase 
while the accuracy converges to almost 100% for all datasets 
except Exp-OUT2-N. This trend shows that the main dif-
ficulty for the classification is distinguishing between two 
or three similar instructions. For Exp-OUT2-N, the sensors 

are far away from the soft-core CPU and record a limited 
leakage compared to the other two placements, which is also 
noticeable in the weaker visual trace properties in Fig. 11.

To evaluate which instructions have similar leakages and 
lower the top-1 accuracy, we look into how well ResNet 
distinguishes between the instructions in Table 3. The cor-
responding normalized confusion matrix is shown in Fig. 15. 
We see that instructions of a similar type are more chal-
lenging to tell apart; for example, different branch instruc-
tions. Other examples include arithmetic, shift, and logical 

Fig. 14  Top-K accuracy (K = 1, 
2, 3, 4, 5, and 6) using ResNet, 
for all four datasets

Fig. 15  Normalized confusion 
matrix (in %, rounded) of the 
ResNet model (100 epochs), for 
Exp-OUT1-R
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operations. The confusion is not surprising, as many instruc-
tions share the CPU datapath and, consequently, tend to have 
very similar power consumption patterns, which makes the 
classification task harder. However, it is worth noting that 
the classification is highly successful for instructions of dif-
ferent types, allowing a potential attacker to easily distin-
guish between the control and data flow of the executed code 
sequence. This is also confirmed by the 100% top-6 accuracy 
in Fig. 14, and the visual analysis presented in Sect. 6.1.

As our final instruction leakage evaluation experiment, 
we implement a hierarchical approach to instruction clas-
sification. We first perform inter-type classification—
training the ResNet model to classify between different 
instruction types—and then we perform intra-type clas-
sification by training a ResNet per each instruction type. 
Table 6 shows the results of inter- and intra-type clas-
sification using 10-fold validation on Exp-OUT1-R. We 
can observe that the inter-type accuracy is significantly 
(>20%) higher than the ResNet accuracy on the entire 
dataset, as the model does not need to classify between 
similar instructions of the same type. Furthermore, we 
can see that the intra-type classification accuracy heavily 
correlates with the confusion shown in Fig. 15: instruc-
tion types with high intra-type confusion in Fig. 15 such 
as loads and branches, have very low intra-type classifica-
tion accuracy in Table 6.

Finally, Fig.  16 shows the confusion matrix of the 
inter-type classification. Similar to Fig. 15, there is no 
confusion between loads, stores, branches, and jumps. 

The confusion is limited to arithmetic, logic, shift, and 
compare instructions, which are ALU instructions and 
share most of the processor datapath.

6.3  Impact of Preprocessing On Instruction Leakage

Previous work showed the importance of preprocessing 
for increasing the classification accuracy when identify-
ing instructions [72, 73, 79, 80]. Furthermore, frequency-
domain analysis, particularly the continuous wavelet 
transform (CWT), was shown to be well-suited for side-
channel disassembly [72]. Therefore, we evaluate our deep 
learning models with CWT preprocessing to determine if 
CWT is beneficial for extracting instruction-level leakage 
in our setting.

From a time-series vector of M sampling points, CWT 
creates a matrix of M × D entries, where the D dimensions 
describe how D frequency components of the time series 
change over time. Including the original time-series vector in 
the CWT matrix results in a matrix of M × (D + 1) entries. 
Knowing that every entry in our original dataset contains 
five sensor traces, each having T samples, we create the 
following two additional datasets using CWT with a scale 
parameter of D. We perform CWT on each sensor trace indi-
vidually, resulting in five T × (D + 1) matrices for each data 
point. For the first dataset, CWT-H, we concatenate these 
matrices horizontally in a 5T × (D + 1) feature matrix. For 
the second dataset, CWT-V, the matrices are concatenated 
vertically, resulting in a T × 5(D + 1) feature matrix.

Table 7 shows the average 10-fold validation accuracy 
drop (compared to the baseline datasets in Table 5) using DL 
models with CWT. The scale parameter D for CWT is set to 
49 [72]. As can be seen, most DL models do not benefit from 
the increase of the input space size. For models with high 
accuracy in Table 5 such as ResNet and 1D-CNN2, the over-
all accuracy drops on average by approximately 2–3%, with 
a maximum drop being 16.05% for 1D-CNN & LSTM with 
CWT-H. For models with originally low accuracy in Table 5 
such as MLP and LSTM, preprocessing slightly increases 
the accuracy: for approximately 2–3%. We can therefore 
conclude that with well-fitted models, a DL approach does 
not require computationally heavy CWT preprocessing, as 
the models are complex enough to capture the correlation 
between the traces and the instructions.

Table 6  Classification accuracy 
of the ResNet model trained for 
hierarchical classification on the 
Exp-OUT1-R dataset

Average Hierarchical Classification Accuracy (%)

Inter-Type 
Classification

Intra-Type Classification

83.60 Arithmetic Logic Compare Shift Load Store Branch Jump
86.77 72.03 81.35 70.31 49.14 100 39.62 99.20

Fig. 16  Confusion matrix in case of instruction type classification
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6.4  Comparison with Classical ML Approaches

Physical power side-channel disassembly attacks relied on 
high-frequency oscilloscopes and classical ML techniques 
to achieve high profiling accuracy. However, in our work, 
we use TDC sensors sampling at 320 MHz, having a sig-
nificantly lower sampling frequency than oscilloscopes. To 
evaluate how disassembly techniques used in previous work 
translate on TDC sensor traces, we obtain the instruction 
classification accuracy using common ML models (GDM, 
QDA, k-NN, and SVM) and preprocessing techniques—
principal component analysis (PCA) and linear discriminant 
analysis (LDA)—used in previous work on side-channel 
disassembly, discussed in Sect. 11.2. Table 8 lists the aver-
age 10-fold validation accuracy of classical ML approaches. 
We obtain the highest accuracy using SVM with PCA 
and QDA with LDA: 68.74% for Exp-IN-N, 52.45% for 
Exp-OUT1-N, 47.06% for Exp-OUT1-R, and 37.65% for 
Exp-OUT2-N, which is 10–20% lower than the accuracy 
of our best-performing DL-based classifier. Even the deep 
learning models with lower accuracy (LSTM, 1D-CNN & 
LSTM) are comparable with the best results in Table 8. We 
can, therefore, conclude that advanced techniques, such as 
deep learning, are required in the shared-FPGA attack sce-
nario, as it involves low resolution and a reduced sampling 

rate of the voltage sensors coupled with a high victim CPU 
frequency.

6.5  Impact of the Number of Sensors on Instruction 
Leakage

To investigate the role of the number of sensors in the attack, 
we analyze the impact of incrementally including additional 
sensors in the dataset on the classification accuracy. The 
analysis is performed for all four datasets and on sensor 
data collected in the setup where all sensors are simultane-
ously present. Since the sensors record power traces of the 
same events simultaneously, they are subject to the same 
experimental conditions (e.g., environmental noise or tem-
perature), facilitating a fair comparison. Furthermore, as the 
power-intensive measurement logic (memory and control-
lers) is placed far from the sensors, only the last few ele-
ments in their 16-bit delay lines cause differences in sensors’ 
switching activity, which is thus negligible compared to the 
switching activity of the CPU.

In this experiment, we choose our best-performing 
model: ResNet. We start by training separate models, one 
for each sensor, and evaluate the instruction classification 
accuracy. Table 9 summarizes the results. We can observe 
that the closest sensor does not necessarily have the highest 

Table 7  The increase in the instruction classification accuracies for the deep learning methods when using dataset preprocessing with CWT 
compared to no preprocessing

Average Accuracy Increase (%)

Model Exp-IN-N Exp-OUT1-N Exp-OUT1-R Exp-OUT2-N

CWT-H CWT-V CWT-H CWT-V CWT-H CWT-V CWT-H CWT-V Average

MLP 3.00 3.01 3.87 4.18 1.74 1.63 2.32 2.36 2.76
1D-CNN1 –0.70 –0.27 –1.98 –0.05 –3.67 –1.93 –2.59 –1.04 –1.53
1D-CNN2 –2.40 –1.92 –4.59 –2.72 –4.95 –2.73 –4.39 –2.07 –3.22
LSTM 0.05 3.81 0.54 3.28 0.11 3.42 1.15 2.74 1.88
1D-CNN & LSTM –13.35 –3.25 –16.05 –3.41 –10.23 –2.23 –5.23 –0.95 –6.84
LSTM & 1D-CNN –0.56 –0.69 –2.56 –1.57 –3.43 –2.24 –2.78 –1.62 –1.93
ResNet –3.66 –2.04 –5.19 –2.37 –4.77 –2.25 –3.04 –2.01 –3.17

Table 8  Instruction 
classification accuracies 
for the classical machine-
learning methods. The highest 
accuracies, in bold, are obtained 
when combining SVM with 
PCA and QDA with LDA

Method Average Accuracy (%)

PCA LDA

GDM QDA k-NN SVM GDM QDA k-NN SVM

Exp-IN-N 56.55 67.15 39.64 68.74 59.78 67.17 50.28 65.33
Exp-OUT1-N 45.36 48.56 26.87 51.83 48.24 52.45 36.15 50.44
Exp-OUT1-R 39.66 41.80 22.02 47.06 43.31 46.47 30.59 45.96
Exp-OUT2-N 33.74 34.23 26.63 37.65 34.82 37.19 29.02 37.11
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classification accuracy—as sensor S7 has higher accuracy 
than S5—which is in line with conclusions from previous 
work [66]. However, we can observe that the further the 
sensors are from the soft-core CPU, the smaller the accu-
racy difference between the best and the worst sensors: for 
Exp-IN-N and Exp-OUT1-N the range is 10–20%, while 
the sensors in Exp-OUT2-N have a maximum difference of 
2–3%. This signifies that across multiple sensors, the overall 
placement does have an impact on the accuracy, also con-
firmed by results in Table 5.

Using data from Table 9, we sort the sensors by the 
obtained accuracy, once in increasing order (from “worst” 
to “best”) and once in decreasing order (from “best” to 
“worst”). Figure 17 illustrates the accuracy increase in 
function of the number and the choice of sensors in the 
dataset used for training. The dashed (respectively, dot-
ted) lines show the accuracy increase when the next best 
(respectively, next worst) candidate sensor is added to the 
dataset. For example, the highest accuracy achieved with 
a single sensor (71.52% in Fig. 17) corresponds to sensor 
S3 and Exp-IN-N (Table 9), while the accuracy obtained 
after adding the next best candidate (81.91% in Fig. 17) 
corresponds to sensors S3 and S2 used together. The accu-
racy increase is more pronounced on the dotted lines, as 
every new sensor added to the dataset has better individual 
accuracy than the ones already in the dataset. Comparing 
the trend of the shaded regions, we see that the sensors in 
Exp-OUT1-N and Exp-OUT2-N floorplans, being further 

away from the CPU, pick up less information leakage. How-
ever, the distance between the best and worst-case region 
borders reduces significantly when four or five sensors are 
used, showing the importance of using multiple sensors for 
better leakage extraction. Finally, we can observe that the 
shaded region for Exp-OUT2-N is significantly narrower 
than for the other two datasets in Fig. 17: an effect that 
arises because the range between the best and the worst 
sensor for Exp-OUT2-N is significantly smaller than for 
Exp-IN-N and Exp-OUT1-N.

6.6  Impact of Averaging on Instruction Leakage

To evaluate the impact of averaging on leakage and the 
ability of DL models to extract it, we use the best model, 
ResNet, and train it on the four datasets while changing 
the number of traces averaged for each template. Figure 18 
shows the results. We can observe that with only a sin-
gle trace (no averaging), all four datasets have very low 
accuracy: approximately 30% for Exp-IN-N and 20% for 
the other three datasets. Note that, in the beginning, as 
we increase the number of averaged traces, the accuracy 
increases significantly for all four datasets, showing the 
benefit of averaging in eliminating noise. This experi-
ment also shows that increasing the averaging does not 
indefinitely increase the SNR, as the curves in Fig. 18 are 
logarithmic and flatten off after using roughly 80 averaged 
traces per template.

Fig. 17  Average instruction 
classification accuracy in the 
function of the number of sen-
sors contributing to the dataset, 
for all datasets, with the ResNet 
model. Upper, dashed lines 
correspond to including the 
next best sensor in the dataset. 
Lower, dotted lines correspond 
to including the next worst sen-
sor in the dataset

Table 9  Average instruction classification accuracies (in %) of ResNet, when trained on the traces of a single sensor only. In bold, the highest 
accuracies for each of the four datasets

Average Accuracy (%)

Exp-IN Exp-OUT1-: N (top), R (bottom) Exp-OUT2-N

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

48.76 60.22 64.59 71.52 53.14 39.32 40.52 55.50 45.00 44.34 39.78 41.24 41.79 42.38 39.69
31.17 31.54 45.86 36.92 38.16
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From a leakage evaluator point of view, we can see 
the usefulness of averaging for identifying and analyzing 
instruction-level leakages. As trace acquisition is a time- 
consuming process, we see that finding a good number of 
traces for averaging can help reduce the evaluation time. 
From an attacker’s point of view, we can observe that record-
ing only one trace of the victim execution might not be suf-
ficient for extracting secret information: the attacker might 
have to resort to recording multiple victim executions or 
folding loops to accommodate averaging for a better SNR.

6.7  Impact of the Dataset Size on Instruction 
Leakage

As our final experiment on the Sakura-X board, we evalu-
ate the impact of the number of templates per instruction, 
i.e., the dataset size, on the accuracy of the ResNet model. 
For five different input seeds, we randomly select a subset 
of the templates for each instruction and train the ResNet 
model. Figure 19 shows the accuracy drop compared to 
the full dataset for a range of template sizes, averaged 
across all five seeds. We can observe that when using only 
10% of the dataset size, i.e., 1000 templates per instruc-
tion, the accuracy of Exp-IN-N drops only 4%, while it 

drops approximately 7% for the Exp-OUT datasets. This 
indicates that increasing the accuracy is a very difficult 
problem, as the initial accuracy comes from the inter-type 
classification, and the intra-type confusion cannot be sig-
nificantly improved even by increasing the dataset size by 
10× . Figure 19 also shows that after some point, as with 
averaging, the accuracy does not significantly increase 
with a bigger dataset size. We can observe that the curves 
flatten for all four datasets and that using more than 8k 
templates does not significantly affect the accuracy.

7  Evaluation on Alveo U200

This section provides an instruction-level leakage analysis 
on the Alveo U200 board containing a cloud-scale AMD 
Virtex Ultrascale+ FPGA. Figure 20 shows the floorplan. At 
the bottom, we can see the entire FPGA rotated by 90°, with 
three SLRs, and the shell occupying half of the middle SLR. 
Figure 20 also shows the enlarged view of SLR2. Similar to 
the Exp-OUT1 placement in Fig. 9, we physically separate 
the soft-core CPU (PicoRV32 [11]), the sensor region, and 
the controller. As Alveo U200 contains a much larger FPGA 
than Sakura-X, we instantiate 29 sensors, as described in 

Fig. 18  Accuracy in the func-
tion of the number of averaged 
traces per template. The dataset 
size is 10,000 templates per 
instruction, while the model 
used for training is ResNet

Fig. 19  Accuracy drop in the 
function of the dataset size 
(number of templates) used for 
training and testing compared 
to the full dataset with 10,000 
templates. Results are shown on 
the ResNet model for all four 
datasets
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Sect. 4. However, unlike the spread-out placements in Exp-
OUT1 and Exp-OUT2, we place the 29 sensors along the 
border of the sensor region, clustered in 6 equidistant groups 
of five sensors (except the last group with four sensors), 
simulating an attacker placing all the sensors as close to the 
victim as possible.

Using the leakage evaluation setup and following the 
instruction classification method described in Sects. 4 and 5, 
we create 10,000 templates of N type and 20,000 templates 
of R type. We collect the corresponding power side-channel 
traces, creating three datasets: Exp-10k-N, Exp-10k-R, and 
Exp-20k-R. Since the sensor and the soft-core CPU both 
work at the same clock frequency, the sensor traces do not 
need as many samples as for the Sakura-X board: we set 
the sensor trace length to T = 16 samples which guarantees 
that the longest instruction execution is completely cap-
tured. Like in the Sakura-X experiments, we align the start 

of all instructions to the same sample in the traces using the 
recorded CPU opcode.

7.1  Instruction‑Level Leakage on Cloud‑Scale FPGAs

In the first experiment on Alveo U200, we evaluate the 
instruction-level leakage by training the ResNet model on 
all three datasets. Table 10 shows the averaged results for 
10-fold validation. We can observe that on a significantly 
larger FPGA and a CPU running at the same high clock 
frequency as the sensor, the accuracy for all three data-
sets is approximately 40%. The Exp-OUT-20k-R dataset 
has a 20% lower accuracy than the Exp-OUT1-R dataset 
on Sakura-X, while the Exp-OUT-10k-N dataset has an 
approximately 30% lower accuracy than the Exp-OUT1-N 
dataset. Table 10 also shows that the difference between 
N and R datasets is much smaller on Alveo U200 ( ≈5%) 
compared to Sakura-X ( ≈10%). As the target used on Alveo 
is a multicycle CPU (PicoRV32 [11]) and the target used 
on Sakura-X is a pipelined CPU (RISC-Y [32]), the impact 
of surrounding instructions is smaller on a multicycle CPU. 
Finally, Table 10 confirms the findings shown in Sect. 6.7, 
as the accuracy difference when using 10,000 templates 
(Exp-OUT-10k-R) and 20,000 templates (Exp-OUT-20k-R) 
is less than 2%: after a certain threshold, increasing the 
templates does not significantly impact the model’s ability 
to extract leakage.

7.2  Code Sequence Classification

As our final experiment, we evaluate the leakage of code 
sequences instead of single instructions. To do this, we 
train a classifier to predict which sequence was executed 
from a set of known code sequences. We create eight code 
sequences, each comprised of multiple instructions of the 
same type, separated by instructions of another type. Each 
code sequence has a primary type from Table 3: load, store, 
branch, arithmetic, logic, compare, and shift. For example, 
the load code sequence consists of load instructions sepa-
rated by shift instructions, and the store code sequence con-
tains store instructions separated by logic instructions. The 
number of instructions is tailored so that all eight sequences 
have the same execution length of 40 clock cycles. This 
structure makes them representative of short code sequences 

Table 10  Instruction classification accuracies on Alveo U200 (in %) 
for the ResNet model

Model Average Accuracy (%)

Exp-OUT-10k-N Exp-OUT-10k-R Exp-OUT-20k-R

ResNet 42.59 37.60 39.05

S10-S14

S25-S28

S15-S19

S20-S24

S5-S9

S0-S4

Legend:
CPU
CPU memory
TDC sensors
Sensor logic
Controller
Communication
Shell

SLR0

CONTROLLER
CPU SENSORS

Fig. 20  Floorplan on the Alveo U200 board. Sensor delay lines (in 
yellow) and CPU (in purple)
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dominated by same-type instructions, commonly found in 
open-source code.

The code sequence templates have the same structure 
as instruction templates of type N in Algorithm 1, where 
instead of a single instruction, the target is a fixed set of 
instructions for the given sequence. For each code sequence, 
we create 10,000 templates, each representing an execution 
of the code sequence on random data. For this dataset, called 
Exp-10k-S, the traces for each template are recorded as an 
average across 1,000 executions of the same code sequence 
and input data.

Table 11 shows the average accuracy across five differ-
ent seeds for all the DL methods in Sect. 5. We can observe 
that unlike instruction-level leakages, which contain the ran-
domness of the operands and data as noise, code sequences 
emit significantly higher leakage, as almost all the models 
achieve high accuracy: 1D-CNN1, 1D-CNN2, LSTM & 
1D-CNN, and ResNet achieve the accuracy of 100%. The 
only model with a noticeably low accuracy is LSTM since 
it fails to converge for four out of five seeds, while for the 
remaining seed, it achieves 80% accuracy.

From an evaluator’s point of view, this experiment shows 
that it is important to evaluate not only instruction-level 
leakages but also the deployed code in its entirety. Moreo-
ver, since short code sequences dominated by same-type 
instructions are common in open-source code, our results 
demonstrate that known, i.e., open-source code sequences 
can be profiled and more easily distinguished than single 
instructions. For example, in an AES algorithm, the attacker 
can use a load-intensive piece of code for profiling and eas-
ily differentiate it from a branch-intensive code sequence 
in a control-flow algorithm. To avoid potential exploits, 
users should deploy countermeasures or use proprietary 
(unknown) code. From an attacker’s point of view, these 
results show that attacking code sequences instead of indi-
vidual instructions requires less attack effort for a potentially 
higher benefit.

8  Discussion

In Sects. 6 and 7, we have seen the evaluation of instruc-
tion-level leakages on two FPGA boards. Unlike large ML 
accelerators—which require recording long execution traces 

and have significant architecture- and data-dependent power 
variations—the instructions of soft-core CPUs have very 
short execution traces: in the range of tens of microsec-
onds. Consequently, our results show that soft-core CPUs 
do not have visible leakage in power traces that SPA can 
exploit; unless extensive averaging of a million traces is 
performed. Through visual analysis of averaged traces, we 
have observed that instructions of different types are more 
likely to have different leakages. In contrast, instructions of 
the same type have almost no differences despite averaging. 
These results are also confirmed by DL models, as both the 
confusion matrix and hierarchical classification indicate that 
the classification confusion is concentrated within instruc-
tion groups, not between them. Furthermore, a significantly 
higher top-K accuracy also demonstrates that the confusion 
between only a few instructions prevents the models from 
achieving 100% accuracy.

Our analysis demonstrates that for the evaluator’s worst-
case scenario, i.e., an attacker breaching the physical sep-
aration barrier, the highest achieved accuracy is 86.46% 
using the time-series ResNet model [77]. We show that 
classical ML approaches used in previous side-channel 
disassembly work do not transfer well to the shared FPGA 
scenario. As no high-end oscilloscope equipment is availa-
ble, using ML and preprocessing approaches from previous 
work on sensor traces results in a 10–20% lower accuracy 
than DL approaches.

Our results indicate that the templating impacts SNR and 
the model accuracy, where Exp-OUT1-N has an approxi-
mately 10% higher accuracy than the Exp-OUT1-R dataset. 
These results suggest that the evaluator should use N tem-
plating for the worst-case estimate, while for a more realistic 
estimate, they should use R templating.

Throughout our experimental evaluation, we show that 
placement does matter: the overall distance between the 
sensors and the CPU impacts the SNR and, thus, the 
accuracy. We demonstrate that increasing the distance 
between the CPU and sensors (Exp-IN, Exp-OUT1, Exp-
OUT2) incurs an approximately 15% accuracy drop. 
For one sensor placement, our results, like previous 
work [66], also indicate that sensors closer to the CPU 
do not necessarily have the highest accuracy, possibly 
due to the imperfections of the PDN implementation and 
different sensor calibrations. Additionally, we show the 

Table 11  Code sequence classification accuracies (in %) for the deep learning methods. The highest accuracies, in bold, are obtained using the 
1D-CNN1, 1D-CNN2, LSTM & 1D-CNN, and ResNet models

Average Accuracy (%)

MLP 1D-CNN1 1D-CNN2 LSTM 1D-CNN & LSTM LSTM & 1D-CNN ResNet

99.45 100 100 26.82 82.63 100 100
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benefit of using multiple sensors: the accuracy increases 
significantly ( ≈15% for Exp-IN-N) when using five sen-
sors instead of only one.

We analyze the impact of averaging on the ResNet 
model accuracy. We demonstrate that no averaging, i.e., 
only one trace recording per template, results in very low 
accuracy due to noise. From the point of an evaluator, 
averaging increases SNR, which reflects in our results, 
showing that averaging 80 traces can significantly increase 
the accuracy; however, averaging more traces brings lim-
ited to no further benefit. This means that an evaluator 
can use averaging for a worst-case leakage analysis, to 
identify weak points of their soft-core CPU design, while 
also knowing an attacker would need to deploy additional 
techniques, such as loop folding, to be able to average a 
single code execution trace. We find that increasing the 
dataset size does not significantly impact the accuracy: 
having 10× more templates increases the accuracy at most 
8% (for Exp-OUT datasets), showing again that inter-type 
instruction classification is a relatively easy classification 
problem, achieving a specific accuracy with only 1,000 
templates per instruction. In contrast, distinguishing 
between instructions of the same type is a hard classifica-
tion problem, where even 10× more templates are insuf-
ficient for increasing the accuracy significantly.

Our results show that cloud-scale FPGAs exhibit less 
leakage due to their size and PDN structure. Consequently, 
the accuracy on both N and R template types is approxi-
mately 40%, significantly lower than on Sakura-X. How-
ever, unlike instructions, we demonstrate that short code 
sequences have significant leakage and that DL models can 
predict them with an accuracy of 100%.

Finally, our experimental analysis shows that to ensure 
no exploitable leakage, the evaluator should always test the 
worst-case scenario: multiple sensors with no physical separa-
tion, using N-type templates on a smaller FPGA with higher 
SNR, and averaging. In this case, the evaluator will either 
ensure there is no leakage or, if there is, they will be able to 
analyze it more efficiently and design appropriate mitigations.

9  Countermeasures

Countermeasures against power side-channel analysis have 
been extensively studied, and they fall into two main cat-
egories: hiding and masking [70]. Hiding aims to reduce the 
SNR of the signal recorded by the attacker. Therefore, pro-
tections can either focus on reducing the leakage signal, e.g., 
by equalizing the data-dependent power consumption [81], 
or increasing the side channel noise. Because most attacks 
depend on aligned traces, hiding can also be done in the 
time dimension, by adding random delays or clock jitters 

during the hardware execution. Masking, on the other hand, 
requires processing algorithmically-randomized data, while 
maintaining the correctness of the circuit operation [82]. 
Both hiding and masking, however, suffer from considerable 
area overhead and vulnerability to higher-order attacks [70].

Mitigations for power side-channel disassembly attacks 
involve restructuring the code or redesigning the hardware 
to reduce leakage [83]. De Mulder et al. integrated defenses 
into the microarchitecture of a soft-core RISC-V proces-
sor and tested them on a Zynq FPGA [84]. They enhanced 
the side-channel security by protecting memory accesses 
and introducing masking in the CPU. Another example of 
a side-channel protected microprocessor is PARAM, devel-
oped and tested on a Sakura-X FPGA [85]. After analyzing 
the RTL and leakage of an open-source RISC-V processor, 
the authors used obfuscation to reduce datapath leakage and 
to conceal the addresses sent to the cache. Alternative (or 
complementary to) hardware changes are software defenses: 
random code injection, code obfuscation [86], or shuffling 
the instruction execution [87] are most used to protect pro-
prietary code against side-channel disassembly attacks.

On shared FPGAs, protections against side-channel anal-
ysis commonly deploy different hiding techniques, better 
tenant isolation, or methods that prevent the deployment 
of sensor circuits. As hiding techniques, the works of Le 
Masle et al. [88] and Krautter et al. [89] are most relevant. 
Le Masle et al. designed a network of on-chip RO-based 
sensors to control power wasters and maintain a constant 
power consumption, thus reducing the SNR [88]. They 
used a proportional-integral-derivative (PID) controller as 
the control circuit, while power wasters were implemented 
using long routing wires (equivalent to high capacitive load). 
Similarly, Krautter et al. designed an active fence composed 
of ring oscillators placed between two neighboring FPGA 
tenants [89]. The actuator controlling the fence in a closed-
loop control system was a TDC sensor, and the fence area 
overhead was 100% compared to the unprotected design.

Additionally, Güneysu and Moradi proposed a set of 
countermeasures on FPGAs [90]. Using BRAM write col-
lisions, short circuits, and shift register LUTs, they imple-
mented Gaussian noise to reduce the SNR. Sasdrich et al. 
improve the resistance against FPGA side-channel attacks 
by dynamically changing the hardware implementation of a 
PRESENT cipher at runtime using the FPGA partial recon-
figuration [91]. All these countermeasures are independent 
of the design under protection and can hence be used to 
increase the side-channel security of soft-core CPUs in a 
shared FPGA scenario.

The final way of preventing remote power side-channel 
attacks on shared FPGAs is by detecting and forbidding sensor- 
like structures in the RTL designs: Krautter et al. [92] and 
La et al. [93] developed bitstream scanners, which search for 
signatures of potentially malicious circuits. Deploying them 
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on the cloud could prevent remote attackers from recording 
power traces and thus achieve power side-channel security of 
soft-core CPUs. However, bitstream scanners are not 100% 
effective in preventing malicious designs, as researchers 
have found ways to implement stealthy voltage sensors using 
benign circuits [65].

10  Limitations and Future Work

In this work, we experiment with two lightweight soft-core 
CPUs commonly used for embedded bare-metal applica-
tions, which support straightforward integration with FPGA 
logic. Within the spectrum of embedded CPU microarchi-
tectures, we have focused on two prevalent varieties com-
monly used in previous work on power disassembly attacks: 
a multicycle and a pipelined CPU. Therefore, the results and 
conclusions in Sects. 6 and 7 should generalize to a good 
number of embedded CPU implementations and ISAs.

Our results show that inter-type instruction leakage 
is the strongest, while it is harder to distinguish instruc-
tions of the same type. This result implies that instructions 
using different hardware and datapath in the CPU, typi-
cally instructions of different types, exhibit varied leak-
age, thus rendering them more distinguishable by machine 
learning models. For instance, logic and arithmetic 
instructions solely utilize the ALU, while loads addition-
ally fetch data from memory. Branches use the ALU and 
modify the program counter, and jumps merely alter the 
program counter. Conversely, instructions sharing most of 
the datapath exhibit similar leakage, making them difficult 
to distinguish. For example, for instructions where only 
the ALU opcode differs—such as logic instructions—the 
CPU controller executes the same steps, with only a dif-
ferent ALU operation. Regardless of the microarchitecture 
and ISA, these observations hold. Some microarchitectures 
might be single-cycle, some multicycle, and some pipe-
lined. However, the overall impact of the microarchitecture 
is on the SNR, resulting in the leakage (and classifica-
tion accuracy) being stronger or weaker, but not impact-
ing our conclusions. For example, pipelined architectures 
might have a more significant difference between N and 
R datasets, while multicycle architectures might have a 
comparably smaller difference (as is the case of RISC-Y 
and PicoRV32).

Our insights on DL superseding classical ML approaches 
in cases with low SNR are also general and should not 
depend on the CPU microarchitecture. Similarly, our con-
clusions regarding placement, averaging, and dataset size 
also apply to other soft-core CPU cores. Only in cases 
with high SNR (e.g., in ML-based processors with more 
straightforward differentiation between workloads) might 
our conclusions change: classical and DL methods may 

display more comparable accuracy if faced with an easy 
classification problem.

As mentioned earlier, the evaluation presented in this 
work is limited to embedded soft-core CPUs. Consider-
ing more complex processor cores would bring a new set 
of challenges. Larger CPUs—superscalar, out-of-order, 
and speculative—entail a higher communication latency, 
lower operating frequency, and higher area overhead. These 
factors impact instruction identification accuracy in vari-
ous ways. On the one hand, a larger area may make the 
instruction-level leakage stronger. Conversely, the hard-
ware overhead for operating system support or instruction-
level parallelism (out-of-order and speculative execution) 
could increase the noise and reduce the instruction-level 
leakage. More complex cores might have a lower maxi-
mum operating frequency, allowing more sensor samples 
per CPU clock cycle (i.e., higher quality measurements), 
but the out-of-order execution could make synchronizing 
the power traces more difficult. Evaluating the impact of 
microarchitectural features of larger soft-core CPUs on the 
instruction-level leakage is, therefore, an interesting avenue 
for future work.

Our work evaluates instruction-level leakage of soft-
core CPUs in isolation. Future research could explore the 
leakage in the context of a complete system consisting of 
a soft-core CPU and an accelerator. To further justify the 
need for mitigations, future work could showcase an attack 
on longer code sequences, e.g., detecting loops in power 
traces (with no averaging) and then folding loop executions 
to obtain averaged traces, or profiling longer open-source 
code sequences to detect specific code execution. Turning 
to the countermeasures, Sect. 9 outlines a palette of mitiga-
tion techniques that could be implemented in many ways. 
Evaluating their performance and scalability is important 
and, as such, merits a study on its own.

Last but not least, the instruction-level leakage evaluation 
methodology presented in this paper is general and can be 
used for any CPU microarchitecture to obtain implementa-
tion-specific results and conclusions.

11  Related Work

In this section, we present the related work, of which the 
most relevant to ours are power analysis attacks on shared 
FPGAs and power side-channel disassembly attacks.

11.1  Power Analysis Attacks on Shared FPGAs

Zhao et al. characterized the RO and TDC voltage monitors 
on an AMD Zynq-7000 SoC and successfully used them in 
an SPA attack against a (1) collocated RSA cryptomodule 
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and (2) RSA exponentiation running on the ARM proces-
sor. The traces they recorded had visibly different amplitude 
and duration, depending on whether the processed RSA 
key bit had a binary value of 0 or 1. In a concurrent study, 
Schnelleberg et al. demonstrated a CPA attack in which, 
instead of an oscilloscope, they used a TDC sensor collo-
cated with an AES crypto module on an AMD Spartan-6 
FPGA [59]. Glamočanin et al. refined the TDC sensor design 
and ported it on an Amazon EC2 F1 cloud instance (AMD 
Virtex UltraScale+ FPGA) to showcase a successful CPA 
attack against a 128-bit AES module. Similarly to Zhao 
et al., Gravellier et al. targeted AMD Zync-7000 SoC; with 
correlation power analysis, they recovered the secret key of 
a bare-metal implementation of Tiny AES and OpenSSL 
AES [24]. These seminal works showed that physical access 
is no longer required for power side-channel attacks and that 
shared FPGAs are vulnerable to power analysis attacks. How-
ever, unlike our work, all the attacks mentioned above are 
statistical-based attacks that depend on thousands or millions 
of victim execution traces for a successful attack.

Another class of power side-channel attacks on shared 
FPGAs concerns profiling and reverse engineering another 
common FPGA workload: neural network accelerators. Given 
the size of a neuron and the network as a whole, the change in 
network topology or size can have a considerable (i.e., last-
ing and distinguishable) impact on the power supply voltage. 
In a remote attack scenario involving a shared FPGA, it has 
already been shown that an adversary can infer the activation 
function, the weights, the number of neurons and layers, the 
width and depth of convolutional layers, the width of pooling 
layers, filter sizes, and the stride of convolutional and pooling 
layers [25–28]. Unlike statistical-based attacks, these profil-
ing attacks require a small number of victim execution traces. 
However, since the victims are ML accelerators occupying a 
large portion of the FPGA logic, a good SNR results in easily 
exploitable side-channel leakage and high attack accuracy. 
Our work analyzes the leakage of a soft-core CPU, which is a 
significantly smaller victim than ML accelerators.

In the context of side-channel attacks on ML accelera-
tors, the work of Tian et al. [28] is most relevant to us, as 
the authors exploit instruction-level leakages of an ML 
accelerator. The authors use TDC sensor traces to attack 
a Versatile Tensor Accelerator (VTA) on an AMD Zynq-
7000 FPGA. VTA is a generic and customizable deep 
learning accelerator, which realizes an ML model as a 
set of VTA instructions and collates them into instruc-
tion groups, each containing a mix of LOAD, GEMM, ALU, 
or STORE instructions. Firstly, Tian et al. have observed 
that all TDC traces recorded during 25,000 clock cycles 
(120 MHz clock frequency) for GEMM, ALU-Add, and 
LOAD-and-STORE unit tests have distinctly different 
shapes, allowing SPA attacks. Additionally, SPA on the 
traces recorded during GEMM instructions allows the 

reverse engineering of the instruction parameters by find-
ing the time interval between adjacent peaks, counting 
the number of peaks, and measuring the amplitude of the 
voltage drop in the sensor trace. In our work, we ana-
lyze the leakage of a soft-core CPU, considerably smaller 
than VTA. Moreover, the traces corresponding to the CPU 
instructions are orders of magnitude shorter in time, and 
many CPU instructions give extremely similar sensor trace 
waveforms. Consequently, visual analysis of the traces is 
not sufficient, and to analyze the instruction-level leak-
ages, we deploy different ML classifiers.

Instead of assuming that the victim is a cryptographic 
core or a neural network, Gobulukoglu et al. used TDC 
sensor traces to determine whether a cotenant application 
is present and what type of application it may be [54]. On 
an AMD Zynq-7000 FPGA, they deployed one TDC sensor 
and nine scenarios: one without any cotenant, one power-
hungry tenant, and others covering several implementa-
tions of AES and PRESENT (a custom IP core, software 
running on Microblaze, ORCA, and PicoRV soft-core pro-
cessors). They collected 250 sensor traces for each sce-
nario, transformed them into two-dimensional images, and 
trained the ResNet50 classifier to predict workloads. The 
reported classification accuracy ranged between 33% and 
99%, with an average of around 70%. The lowest classifica-
tion accuracy was reported between AES and PRESENT 
running on the same type of soft-core CPU, while the high-
est was achieved when distinguishing between very differ-
ent implementations: an AES core and a soft-core CPU. It 
is worth noting that the soft-core processors were running 
at 5 MHz, while the sensor was clocked at 100 MHz. In this 
work, we target a considerably more challenging classifica-
tion problem; not only is our target soft-core CPU work-
ing on a higher frequency, but the information required 
to determine the instruction the CPU is executing is also 
contained in a significantly smaller number of sensor sam-
ples (shorter trace). Nevertheless, we show that instruction 
leakage in the power traces is sufficient to achieve an accu-
racy higher than 80%.

11.2  Power Side‑Channel Disassembly Attacks

A body of research covers power side-channel attacks on 
cryptographic computations, whether they are executed by 
a CPU or implemented as an ASIC or FPGA circuit. Simi-
larly, researchers investigated whether power side-channel 
or electromagnetic side-channel emanations can be used to 
determine the instructions executed by a CPU.

Vermoen et al. were the first to recover the code executed 
on a Java SmartCard, by correlating the average power 
traces with a set of templates. Instead of power, Strobel 
et al. measured the electromagnetic (EM) emanations of an 
8-bit PIC16F687 MCU, running at 4 MHz [71]. The first 
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to use ML methods, the authors deployed LDA coupled 
with the k-NN algorithm and obtained instruction classi-
fication accuracy of 96% and 87% for the test and the real 
codes, respectively. Cristiani et al. focused on the instruc-
tion fetch stage of a 14-bit PIC16F15376 MCU operating 
at a significantly higher frequency than in previous work: 
20 MHz [67]. To compensate for a higher CPU frequency, 
they used a 10 GS/s oscilloscope, averaged 1,000 traces per 
template to reduce noise, and were the first to record EM 
side-channel traces at multiple chip locations. Using LDA 
for dimensionality reduction and a QDA classifier, they 
reported 95% instruction recognition accuracy. Park et al. 
targeted an 8-bit ATmega328p MCU (16 MHz, two-stage 
pipeline) and recorded the power side-channel traces with 
a 2.5 GS/s oscilloscope [72]. The authors were the first to 
deploy frequency analysis for disassembly and used CWT 
to find the differences between the instructions not observ-
able in the time domain. Park et al. then applied Kullback– 
Leibler (KL) divergence to identify important features, PCA 
for dimensionality reduction, and a hierarchical classifica-
tion approach. On the test codes, they reported 99% instruc-
tion opcode recognition accuracy. Krishnankutty et al. were 
the first to find the instruction execution boundaries in a 
side-channel trace of an MSP430 MCU [69]. Their hierar-
chical classification based on SVM resulted in 86% opcode 
recognition accuracy.

Common to the above works is that the victim CPU was 
running at frequencies orders of magnitude lower than the 
sampling rate of the oscilloscope for measuring the side-
channel traces. On FPGAs, voltage-drop sensors cannot 
reach the sampling frequencies of an oscilloscope. In our 
experimental setup, in one case, only four sensor samples 
were available per one CPU clock cycle, whereas in the 
other, only one sensor sample was available per CPU clock 
cycle. Additionally, unlike power disassembly attacks which 
depend on only one source of power traces, i.e., the oscil-
loscope, our work leverages multiple remote on-chip sen-
sors to increase the signal. Despite that, we show that ML 
methods used in power disassembly attacks are not optimal 
for remote leakage evaluation. We present new DL time-
series classifiers that can determine the type of instruction 
executed with accuracy higher than 80%. Our work not only 
presents new DL methods beneficial for future power side-
channel disassembly attacks, but also shows the need to 
deploy countermeasures against power disassembly attacks, 
even in a remote scenario.

12  Conclusions

This work analyzes the instruction-level leakages of soft-
core CPUs in shared FPGAs. We show that, unlike with ML 
accelerators, potential attackers cannot rely on SPA alone, as 

even with significant averaging, the visual leakage of small 
soft-core CPUs is limited. Instead, to analyze the instruction-
level leakages, we compute the classification accuracy using 
instruction profiling templates. We demonstrate that ML 
methods from previous power disassembly attacks are insuf-
ficient for remote leakage analysis and that evaluators should 
deploy DL methods: they achieve approximately 10–20% 
higher accuracy when classifying instructions from power 
templates. Using DL methods and a worst-case scenario for 
the evaluator—a breach of physical and logical separation—
we achieve a maximum accuracy of 86.42%.

Our analysis demonstrates that as the leakage evalua-
tion scenarios become more realistic for a potential attack, 
the leakage, and thus the classification accuracy, reduces. 
Enforcing physical separation and placing the soft-core CPU 
further away from the on-chip sensors reduces the accuracy 
significantly, as well as using more realistic templates with 
the target instruction surrounded by random instructions. 
Furthermore, we show that most of the instruction-level 
leakage is constrained to instructions of different types and 
that the confusion comes from only a few similar instruc-
tions: using the top-4 accuracy metric already results in an 
accuracy above 90% for most of our datasets.

We quantify the impact of averaging on the accuracy and 
show that the accuracy increases, up to a certain point, as 
the number of averaged traces increases. We also demon-
strate that increasing the number of templates does not sig-
nificantly increase the accuracy. Furthermore, our analysis 
shows that a cloud-scale FPGA on the Alveo U200 board has 
significantly less leakage, as the more prominent and higher 
quality PDN results in a lower SNR. Finally, we demon-
strate that, unlike instruction-level leakages, code sequences 
exhibit significantly higher leakage and can be classified 
with an accuracy of 100% even on cloud-scale FPGAs.

Our work can serve as a leakage evaluation methodol-
ogy for remotely deployed soft-core CPUs. It can also be 
leveraged for building more advanced power side-channel 
disassembly attacks.

In conclusion, we demonstrate that even small circuits 
leak information on shared FPGAs, and that potential attack-
ers can remotely extract that information with a small num-
ber of power trace acquisitions. This result highlights the 
need for deploying appropriate mitigations on soft-core 
CPUs, in multitenant cloud FPGAs.
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