
Reinforcement learning for scaffold-free construction of
spanning structures

Gabriel Vallat
vallatga@gmail.com

EPFL
Lausanne, Switzerland

Jingwen Wang
jingwen.wang@epfl.ch

EPFL
Lausanne, Switzerland

Anna Maddux
anna.maddux@epfl.ch

EPFL
Lausanne, Switzerland

Maryam Kamgarpour∗
maryam.Kamgarpour@epfl.ch

EPFL
Lausanne, Switzerland

Stefana Parascho∗
stefana.parascho@epfl.ch

EPFL
Lausanne, Switzerland

Figure 1: Multi-robotic assembly of reinforcement learning designed structures

ABSTRACT
In construction robotics, a conventional design-to-fabrication work-
flow starts with designing a structure, followed by task and robotic
motion planning, and ultimately, fabrication. However, this ap-
proach can prove unsuccessful, as we may only discover the in-
feasibility of a design at the final stages of the process. This can
result in rework and a considerable waste of time and resources.
To overcome this challenge, we propose a design method based on
reinforcement learning (RL) where the agent makes decisions at
every step of the sequential assembly of the structure while con-
sidering assembly’s stability. In this way, we take the construction

∗Last two authors are equal co-advisers and contributed equally

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCF ’23, October 08–10, 2023, New York City, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0319-5/23/10. . . $15.00
https://doi.org/10.1145/3623263.3623359

constraints into consideration at the design stage. The research par-
ticularly focuses on the design of spanning structures that multiple
robot arms can construct without the need for scaffolding.

A series of experiments were conducted using both a centralized
and a decentralized learning setup. Our results show that while the
decentralized setup was successful in constructing smaller struc-
tures, only the centralized setup allowed active collaboration be-
tween robot arms, resulting in structures with larger spans. To
validate our approach, we fabricated two of the designed structures
with two collaborating robot arms, which confirmed the feasibility
of these designs. In summary, the proposed method opens excit-
ing possibilities for generating innovative designs that push the
boundaries of architectural creativity while simultaneously fulfill-
ing fabrication-related constraints.

CCS CONCEPTS
• Computing methodologies → Multi-agent reinforcement learn-
ing; Neural networks; Stochastic games; Cooperation and coordi-
nation; Intelligent agents; Reinforcement learning; • Applied
computing→ Computer-aided design; • Computer systems
organization→ Robotic autonomy.

https://doi.org/10.1145/3623263.3623359

SCF ’23, October 08–10, 2023, New York City, NY, USA Vallat, Wang, Maddux, Kamgarpour, Parascho

KEYWORDS
multi-agent reinforcement learning, structured networks, central-
ized training, soft actor critic, robotic fabrication

ACM Reference Format:
Gabriel Vallat, JingwenWang, AnnaMaddux, Maryam Kamgarpour, and Ste-
fana Parascho. 2023. Reinforcement learning for scaffold-free construction
of spanning structures. In Symposium on Computational Fabrication (SCF
’23), October 08–10, 2023, New York City, NY, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3623263.3623359

1 INTRODUCTION
Spanning structures refer to structures that create large unob-
structed, column-free spaces between their supports. Many of these
structures, such as arches and domes, are very material-efficient
because they have excellent load-bearing capacity with low ma-
terial use [Rippmann 2016]. However, the construction of these
structures often requires the use of temporary supports called scaf-
folds or falsework, due to their inherent instability before they are
completed. Unfortunately, this reliance on scaffolding significantly
increases the material and labor costs of the structure [Rippmann
2016], which hinders the practical construction of spanning struc-
tures.

The incorporation of multi-arms offers a promising solution to
address this issue. The use of robot arms in construction brings
numerous benefits, including increased precision, sustained per-
formance, and increased efficiency [Parascho et al. 2020]. In the
context of building spanning structures, robot arms can be used
both for assembling the structure and as temporary supports, min-
imizing the reliance on scaffolding and consequently simplifying
the complicated process of erecting spanning structures.

However, the current methodology in robotic construction fol-
lows a sequential top-down approach that includes several stages:
Design, discretization of the geometry, construction sequencing,
robotic path planning, and fabrication of the final structure. This
process often leads to the discovery that certain designs end up
being unsuitable for manufacturing, resulting in a large amount
of rework. To overcome this challenge, we explored an alternative
approach: integrating reinforcement learning (RL) into the current
workflow. By training agents to complete assigned construction
tasks independently, rather than working with specific designs, we
aim to create a multi-robotic fabrication-guided design process and
revolutionize the existing design paradigm. With this approach,
we can save time in design-related processes, reduce the need for
rework, and potentially create innovative designs.

In addition, to address scenarios where robot arms act in a decen-
tralized fashion in the construction of spanning structures, we also
explored methods of multi-agent reinforcement learning (MARL).
Rather than having a single agent control all robot arms, MARL
allows each robot arm to be represented by an agent. Particularly,
when the number of robot arms is large, MARL could improve
the performance of the training in the long run. In our case, we
aim to compare the performance of MARL-trained agents with
the single agent controlling both arms. This allows us to evaluate
what advantages but also challenges arise when MARL is used for
decision-making.

In summary, we have used (multi-agent) reinforcement learn-
ing to teach robots to build spanning structures without a scaffold.
The rest of this paper is organized as follows: Section 2 shows the
current state of the art in robotic assembly of spanning structures,
reinforcement learning in assembly tasks, and multi-agent rein-
forcement learning. In Section 3, we explain the training setup of
the algorithm in detail and present our simulation environment,
problem formulation, and agent design. Training results and discus-
sions are shown in Section 4. Validation of the algorithm (physical
construction of the structures generated by the algorithm) is pre-
sented in Section 5 and contribution, limitations, and future work
are discussed in Section 6.

2 RELATEDWORK
2.1 Robotic Assembly of Spanning Structures
Current research on robotic assembly of spanning structures mainly
focuses on two types of structures: bar structures [Bruun et al.
2022; Huang et al. 2021] and discrete element assemblies [Frick
et al. 2015]. Bar structures consist of line elements, and the main
difficulty in their construction is to make connections at the joints
of these line elements. In contrast, discrete elements consist of
individual rigid units, and the connections between each unit rely
on either cohesive materials (e.g., adhesives) or pure friction, as in
unreinforced masonry structures. This paper deals with the latter
type of spanning structures.

Previous studies, including [Parascho et al. 2020; Wang et al.
2023; Wu and Kilian 2020], have addressed robotic assembly of
spanning discrete elements. However, as highlighted in the intro-
duction, these works adhere to a sequential design, planning, and
manufacturing process. Although some works incorporate iterative
design processes to improve performance and constructability, they
are still constrained by the limitations of this top-down paradigm.
In contrast, our work aims to move away from this paradigm by pri-
oritizing design goals over specific designs. By using RL algorithms
to determine the optimal placement of each subsequent block, we
enable the creation of innovative and unconventional designs. This
approach opens new possibilities for architectural exploration and
pushes the boundaries of what can be achieved in the field of robotic
construction.

2.2 Reinforcement Learning in Assembly Tasks
Reinforcement learning (RL) has gained much interest in the last
decade. Indeed, RL algorithms have already proven useful in several
fields, from biochemistry [Jumper et al. 2021] to computer code
generation [Li et al. 2022]. Since RL optimizes a reward function
by trying different possible actions, a major problem is the large
number of trials the agent must perform before obtaining a good
solution. The recently proposed Soft Actor Critic (SAC)[Haarnoja
et al. 2018a] addresses this problem by maximizing the randomness
of the action choice. This behavior generates a variety of different
good examples for the agent to train with. In comparison, older
methods such as Advantage Actor Critic (A2C) [Mnih et al. 2016]
explore randomly rather than focusing on promising leads. Shortly
after SAC was proposed, it was shown to be more efficient to keep
the randomness at which the action was performed at a target
value rather than simply maximizing it [Haarnoja et al. 2018b].

https://doi.org/10.1145/3623263.3623359

Reinforcement learning for scaffold-free construction of spanning structures SCF ’23, October 08–10, 2023, New York City, NY, USA

This method reaches state-of-the-art results when trained to play
Atari games [Christodoulou 2019]. In our experiments, we use the
SAC and the A2C algorithm as the underlying (MA)RL frameworks
for the task of scaffold-free construction of a spanning structure.

In construction, RL has previously been used to solve different
tasks, such as assembly [Belousov et al. 2022]. RL has also been
used with less constrained construction, where the agent is tasked
with putting together complex shapes in order to follow a line as
closely as possible [Wibranek et al. 2021]. In an experiment similar
to ours, [Bapst et al. 2019] showed that RL can be efficiently used
to design simulated structures by stacking rectangular blocks and
using a graph-based neural network [Battaglia et al. 2018; Bronstein
et al. 2021] as an internal model. Compared to [Bapst et al. 2019],
we use blocks with a more complex shape and consider the task
of linking two separate grounds at the same level. The resulting
structure, called spanning, needs to take an arch-like shape, which
is more complex than simply stacking blocks. Furthermore, to the
best of our knowledge, we are the first to explore using a MARL
framework in the robotic assembly of a spanning structure.

2.3 Multi-agent Reinforcement Learning
As discussed in the Introduction, since constructing a spanning
structure requires at least two robot arms, we investigate multi-
agent reinforcement learning (MARL) methods. Under the cen-
tralized training [Lowe et al. 2020], it was shown that common
reinforcement learning (RL) algorithms can be adapted to a multi-
agent setup. This method, however, considers that all agents share
information during training, allowing each agent to use a com-
monly trained model for action selection. In our work, we instead
try to see whether a fully decentralized framework still allows for
the collaboration of the different agents.

3 TRAINING SETUP FOR CONSTRUCTION OF
A SPANNING STRUCTURE

In this section, we consider two robot arms tasked with building
a self-supporting spanning structure. To this end, we develop a
simulator that models the environment in which the structure is
built and can assess whether the structure is stable. Furthermore,
we model the construction process of the spanning structure as a
Markov decision process (MDP) [Puterman 1994] when we consider
a centralized setup and as a Markov game [Shapley 1953] when we
consider a decentralized setup.

3.1 Simulation environment for construction of
a spanning structure

For ease of exposition we model the environment in which two
robot arms aim to build a self-supporting arch as a two-dimensional
grid. Since arch-shaped structures are hard to be built by merely
using rectangular blocks without adhesive materials, an isometric
grid composed of equilateral triangles is considered (see Figure 2).
In this environment, the robot arms can place hexagonal blocks,
hold the placed blocks, and apply force to them to maintain the
created structure. To speed-up the simulation and to check whether
the simulated structure is stable, only the static stability of the
structure is computed rather than taking into account the dynamics
of placing a new block. Computing the static stability follows the

Figure 2: From left to right in the grid: hexagon, hourglass
(only used in experiment 2) and ground

linear program formulation found in [Frick et al. 2015]. Under this
formulation, a structure is considered to be stable if there exists
a combination of compressive and friction forces which result in
no acceleration. The detailed formulation of the simulator can be
accessed in the supplementary material1

Concretely, we consider the task of linking two rows of triangles
separated by a gap ranging from one to seven triangle-widths in
the isometric grid (see Figure 3 for an example). The robot arms are
allowed to place the hexagonal blocks against any of the already
present elements in the grid which correspond to either the two
ground bases or the previously placed blocks. If the two robot arms
manage to build a stable spanning structure, a reward is obtained,
whereas if the structure collapses or both arms simultaneously place
a block at the same place, a cost is incurred. To further encourage
the robot arms to connect the two bases and thereby construct a
spanning structure, a reward is obtained whenever the distance in
free air between the two bases is reduced.

3.2 Formulating the spanning structure
construction as a Markov decision process
and a Markov game

3.2.1 Markov decision process. If the two robot arms are controlled
by a central agent abbreviated by agent, the above setup can be
described as a Markov decision process (MDP) [Puterman 1994].
An MDP is a tuple

⟨S,A, 𝑃, 𝑅,𝛾⟩,
where S is a set of environmental states, A is the set of agent’s
possible actions, 𝑃 : S × A → S is the transition dynamics which
determines the next state given the current state and action, 𝑅 : S×
A → R is the reward function which specifies the reward obtained
by any state-action pair, and 𝛾 is a discount factor which represents
the value of time. In the above setup, the set of states corresponds to
all possible configurations of blocks on the isometric grid combined
with an indicator indicating which robot arm will take an action
next. The action set of the central agent consists of all possible ways
to connect a new block to the current structure and then hold the
block in place for one round2. Given the current block structure and
the action taken by one of the robot arms the structure transitions
to the next state, where the other robot arm will take an action
next. Furthermore, the next state corresponds to either the current
structure plus an added block or a collapsed structure if the chosen
1https://github.com/Fllask/RLSFCSS/blob/main/Physics_simulator.pdf
2The exact definitions of the elements of the MDP for the above setup were omitted
for ease of understanding.

https://github.com/Fllask/RLSFCSS/blob/main/Physics_simulator.pdf

SCF ’23, October 08–10, 2023, New York City, NY, USA Vallat, Wang, Maddux, Kamgarpour, Parascho

(a) Initial situation

(b) The yellow robot wants to place
a new block

(c) Result

(d) Initial situation

(e) The orange robot wants to place
a new block

(f) The action cannot be performed

Figure 3: On the top row, the yellow robot is able to leave
the block it is holding in 3a as the orange one is applying an
oblique force stabilizing the structure. On the bottom row,
the orange robot tries to leave. As the yellow one cannot
stabilize the structure alone, the action cannot be performed
and the simulation is ended. Note that on Figures 3e and
3f, one of the possible failure mode is highlighted with red
arrows, showing which additional forces would be required
to stabilize the structure.

action causes the structure to become unstable. The reward the
central agent obtains is defined as in Section 3.1. Namely, choosing
an action that completes a stable spanning structure or reduces the
distance between the two ground bases given the current structure
leads to a positive reward. Choosing an action that results in a
collapse of the current structure leads to a negative reward. Solving
the MDP corresponds to finding an optimal policy that maximizes
the reward over time. Assuming the reward function is specified
such that it is aligned with the construction task, then if the central
agent follows the optimal policy by taking a specific action given
the current state a stable spanning structure is obtained. More
formally, a policy 𝜋 : S → Δ(A) maps states to a distribution over
the action set. A policy 𝜋∗ is said to be optimal if it maximizes the
expected discounted cumulative reward or so-called value function

𝑉 (𝜋, 𝑠0) := E𝑠𝑡+1=𝑃 (· |𝑠𝑡 ,𝑎𝑡)
[∞∑︁
𝑡=0

𝛾𝑡𝑅𝑡 (𝑠𝑡 , 𝑎𝑡)
����𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡), 𝑠0

]
.

Hereafter, we refer to the setting where a central agent controls the
two robot arms as the centralized setup.

3.2.2 Markov game. If the two robot arms are controlled by two
independent agents, the setup can be described as a Markov game.
A Markov game is a tuple

⟨N ,S, {A𝑖 }𝑖∈N , 𝑃, {𝑅𝑖 }𝑖∈N , 𝛾⟩,

where N is a set of agents corresponding to the two independent
agents controlling each robot arm in our setup. The transition
dynamics remain the same as in the central setup, whereas the turn
indicator of the state set is removed. Each agent controlling a robot
arm then has its own action set consisting of the same actions as in
the central setup, namely to place a block, but with the additional
possibility to keep holding the current block. This modification
allows both robots to act simultaneously as in Figure 4

Furthermore, each agent controlling one of the two robot arms
has its own reward function which we assume to be identical for
each agent since the two agents have the same goal, namely building
a stable spanning structure. We define the reward function analo-
gously as in the central setup. Solving a Markov game, where the
rewards of the agents are identical corresponds to finding an optimal
policy for each agent which maximizes the reward over time. As-
suming the reward functions are specified such that they are aligned
with the construction task there exists a policy pair that when im-
plemented by the two agents, results in the construction of a stable
spanning structure. More formally, a policy 𝜋𝑖 : S → Δ(A𝑖) of the
agent controlling robot arm 𝑖 ∈ {1, 2} maps states to a distribution
over its action set. Hereafter, we refer to the setting where two
independent agents control each robot arm as the decentralized
setup.

3.3 Learning agent
Regardless of whether the construction of a spanning structure is
modeled as an MDP or a Markov game, the agent(s) aim to learn
a policy that results in the robot arms building a stable spanning
structure. A training phase consists of a number of construction
phases, each one denoted by an episode. During an episode, fol-
lowing an initial policy, the robot arms repeatedly place and hold

Reinforcement learning for scaffold-free construction of spanning structures SCF ’23, October 08–10, 2023, New York City, NY, USA

(a) Initial state (b) First actions

(c) Next state

(d) Second actions (e) Final state

Figure 4: Example of a successful episode using the decen-
tralized setup. The initial state (Figure 4a) consists of the two
grounds that need to be connected. In Figure 4b, each agent
instructs their robot arm to place a block. As these actions
create a stable structure, the two blocks are placed in the next
state (Figure 4c). Each agent instructs their robot arm to place
a second block (Figure 4d) and a stable spanning structure is
achieved (Figure 4e). All states and actions are stored in the
replay buffers of each agent used for further training. One
episode is completed.

blocks in the grid starting from the base triangle. The episode termi-
nates when either a stable spanning structure is built, the structure
collapses, or a certain number of blocks is placed. Based on the cu-
mulative reward obtained during the episode from the constructed
structure and the need to explore different policies, the policy of
the agent(s) is updated. Now following the updated policy, a new
episode begins and the construction process above is repeated for
the training phrase.

In this work, we consider the actor critic framework to learn
a policy. The actor critic framework consists of a policy model,
the so-called actor, and a value estimator, the so-called critic. The
policy model is used to parameterize 𝜋 in the MDP, and the value
estimator, as the name suggests, is used to estimate the value of the
state 𝑉 (𝑠, 𝜋). At each time step of the simulation, the agent(s) use
its actor to select an action, and use a batch of past transitions to
optimize the policy model and the value estimator. Each transition
is composed of a state, the action taken by the agent, the next state,

and the reward obtained for this state-action-state tuple. These
transitions are stored in an agent-specific replay buffer. Figure 5
schematically shows the difference between the centralized and
the decentralized setup. Two different algorithms are used to train
the agent(s), namely the soft actor critic (SAC) and the advantage
actor critic (A2C) algorithm. The main difference between the two
algorithms is the method with which the actions are explored. The
SAC algorithms implement a so-called softmax normalization step
on the output of the actor. This encourages the agent to explore
the policy space in a way that prioritizes promising actions. A2C
uses a so-called 𝜖-greedy policy, where the most promising action
is chosen with probability 1 − 𝜖 and any other action is chosen
with equal probability. Thus, compared to SAC, A2C does not select
actions with a probability that is proportional to the likelihood of
that action being a good action.

Replay bufferAgent

Optimizer

Value
estimator

Policy
network

Simulator

(a) Centralized setup

Replay
buffer 1

Replay
buffer 2

Agent 1

Agent 2

Simulator

(b) Decentralized setup

Figure 5: Training architecture of the centralized and decen-
tralized setup.

3.3.1 Neural network architecture. In the SAC and A2C algorithm
the policy and value estimator are parameterized by differentiable
functions. In our work, we discuss how two different structures of
neural networks can be used to represent those functions, namely
convolutional neural network (CNN) and graph neural network
(GNN). These two structures are chosen for comparison because
they are a common choice in RL and have been shown to perform
well. In the CNN architecture, each network takes the isometric
grid as input, with the up and down triangles considered as separate
channels. After several convolutional layers, the encoded result is
passed through a stack of fully-connected layers. Since the output
layer does not use any factorization of actions, this leads to a large
number of possible actions at the output layer of the network.

SCF ’23, October 08–10, 2023, New York City, NY, USA Vallat, Wang, Maddux, Kamgarpour, Parascho

To mitigate this problem, the probability of infeasible actions, e.g.
placing a block that collides with an existing block, is set to zero.

In the GNN architecture, the robot arms and the current structure
are described as a graph. This representation is then passed through
a residual gated graph convolutional neural network [Bresson and
Laurent 2017] and, as in [Bapst et al. 2019], an action is chosen
according to the attribute of the edge of the processed graph. GNN
architecture was shown to achieve better results in the work of
[Bapst et al. 2019], and allows for an elegant and compact represen-
tation. Moreover, as they are learning the relations and interactions
between neighbouring blocks, [Bapst et al. 2019] have also shown
that this architecture could better generalize the learned model.
However, our setup differs from their work in the following two
aspects: The speed of our simulator and the complexity of the block
shapes used. Regarding speed, due to the simulator’s low level
of detail, the majority of time spent on computing a simulation
step is dedicated to updating the policy. The CNN architecture is
approximately five times faster than the GNN architecture, even
though it has ten times more parameters. Regarding the complexity
of shapes, the hourglass-shaped blocks are harder to learn with the
GNN than with the CNN architecture. Therefore, in the following
section, the results of our experiments are summarized only for the
CNN architecture.

4 EXPERIMENTS AND RESULTS
We performed two experiments on the task of scaffold-free con-
struction of a spanning structure. The first experiment evaluated
how well this task can be achieved in the decentralized setup com-
pared to the centralized setup. The second experiment analyzed
what level of task complexity in terms of the width of the spanning
structure can be learned in the centralized setup.

4.1 Experiment 1
In the first experiment, we compared both the central and the
decentralized setup on the task of building a spanning structure in
the simulation environment defined in Section 3.1. In both setups,
we used the SAC algorithm for training the central and the two
independent agents, respectively. In the decentralized setup, we
were particularly interested in whether the two robot arms learn to
avoid collisions even though they were independently controlled
and whether they learned to coordinate their actions. By collision
we mean that the robot arms do not simultaneously place blocks
on the same triangle in the grid and by coordination we mean that
while one robot arm is holding the last placed block to maintain
the structure, the other robot arm places a new block in a way that
allows the first one to move. Such coordination is essential for the
construction of scaffold-free spanning structures.

In our experiment, the two ground bases that the robot arms
aimed to connect were randomly set with a distance of one to seven
triangles at the beginning of each episode. The central and the
two independent agents were each trained on 40’000 episodes to
learn a policy. During the training the network parameters of the
SAC algorithm were optimized 136’000 approximately times. Each
time the parameters were optimized we denote as an optimization
step. An illustrative example of an episode in which a successful
spanning structure is built is depicted in Figure 4.

4.1.1 Results. We divide the task of connecting two ground bases
into two categories based on the distance between the ground
bases, where a task is classified as easy and hard, depending on
whether the distance between the bases is one to two or three to
five, respectively. Hard tasks require that the robot arms coordinate,
namely that they alternate between one robot arm placing a new
block against the block held by the other robot arm, and then the
roles are swapped. Easy tasks do not require such cooperation
between the robot arms. The results are shown on Figure 6

Figure 6: Success rate of the centralized and decentralized
setup for easy and hard tasks.

Figure 7 illustrates episodes in which a spanning structure was
successfully built both for the central and decentralized setup,
whereas Figure 8 and 9 show the last episode of training, where,
both in the centralized and decentralized setup, the robot arms did
not manage to complete a spanning structure.

4.1.2 Discussion. In the centralized setup, the central agent learns
a policy that results in the robot arms successfully building a span-
ning structure, both for easy and hard tasks. This is also the case
for easy tasks in the decentralized setup. For hard tasks, however,
the two robot arms do not learn to build a stable spanning structure.
This can be seen from the success rate shown in Figure 6. The suc-
cess rate 𝑠 (𝑡) is an exponential moving average over the number
of successful episodes in relation to the total number of episodes,
where episodes further in the past have an exponentially decaying
impact on the success rate. The detailed formula used to describe
the success rate is

𝑠 (𝑡) =
{
0.99𝑠 (𝑡 − 1) + 0.01 in case of success
0.99𝑠 (𝑡 − 1) otherwise

.

Reinforcement learning for scaffold-free construction of spanning structures SCF ’23, October 08–10, 2023, New York City, NY, USA

Figure 7: Successful construction of spanning structures
achieved in the central setup. Similar spanning structures
are also achieved in the decentralized setup.

Figure 8: Failed attempts to build a stable spanning structure
shown for the last episode of training in the centralized setup.

Figure 9: Failed attempts to build a stable spanning structure
shown for the last episode of training in the decentralized
setup.

Such a success measure gives insight into the probability of the
current policy being successful, rather than taking into account
less optimized previous ones. Note that for hard tasks in the decen-
tralized setup, the success rate is zero. The reason why learning in
the decentralized setup is successful for easy tasks but not for hard
tasks is that easy tasks do not require any coordination between
the agents. In our experiments, for hard tasks in the decentralized
setup we notice that the agents are unable to coordinate sufficiently.
However, we note that the independent agents do learn a policy that
results in the robot arms avoiding collision during the construction
phase. Namely, the agents do not simultaneously place blocks on
the same triangle in the grid, and each specializes in placing blocks
where the other agent does not do so.

In conclusion, our experiment shows that although at least two
robot arms are necessary to build a scaffold-free spanning structure,
having a central policy model that control both robot arms outper-
forms the case where two agents independently learn a policy to
each control one simulated robot arm.

4.2 Experiment 2
The purpose of this experiment is to illustrate what level of task
complexity can be learned in the central setup when the two ro-
bot arms are tasked with building a large spanning structure. We
consider only the centralized setup due to its success shown in
experiment 1 in Section 4.1. To be able to build larger spanning
structures, we modify the simulation environment specified in Sec-
tion 3.1. Firstly, in addition to hexagonal blocks we also consider
hourglass-shape blocks (see Figure 2) for the construction of a span-
ning structure. This increases the number and variety of feasible
spanning structures. Secondly, we require that new blocks must be
placed adjacent to the last placed block rather than against any al-
ready placed block. This drastically reduces the number of possible
actions that can be explored by the two robot arms at each stage
of the construction process. We are interested in whether under
these modifications the two robot arms can learn to build wider
spanning structures. Concretely, we compare the performance of
the SAC algorithm which encourages exploration to the A2C al-
gorithm which serves as a baseline method in achieving this task.
Note that the training process of 600’000 optimization steps takes
around one and a half day using either algorithm, by using a cluster
of 36 CPUs and a Nvidia Tesla V100-SXM2-32GB GPU.

4.2.1 Results. We divide the task of connecting two ground bases
into four categories based on the distance between the ground
bases: easy, intermediate, hard and extreme. In the easy, intermedi-
ate, hard and extreme categories, the two ground bases are one to
four, five to seven, eight to ten, and eleven to nineteens triangles
apart, respectively. In Figure 10, we report the mean, minimum
and maximum success rate of the central agent in constructing a
spanning structure for each category. Using the A2C algorithm the
central agent requires approximately 400’000 optimization steps
before being able to successfully complete a spanning structure in
the easy category (see Figure 10a). In the three other more chal-
lenging categories a central agent trained with A2C does not learn
to build a stable spanning structure even after 600’000 optimization
steps. On the other hand, when the central agent is trained with
the SAC algorithm, the central agent learns to complete a spanning

SCF ’23, October 08–10, 2023, New York City, NY, USA Vallat, Wang, Maddux, Kamgarpour, Parascho

structure in all four categories. As to be expected, the number of
optimization steps needed for the central agent to learn to build a
spanning structure increases as the task complexity increases. This
can be seen in Figure 10a-10d, where the success rate is plotted as
a function of the number of training steps for easy, intermediate,
hard, and extreme tasks.

4.2.2 Discussion. As seen in the results above, the A2C algorithm
only succeeded in constructing a spanning structure on easy tasks.
The central agent learned to connect the two ground bases by
building a straight line, shown in Figure 11a. However, following
this policy in harder tasks resulted in an unstable structure and the
structure collapsed. The drawback of the A2C algorithm is that it
uses an 𝜖-greedy policy which does not explore the policy space
sufficiently and can get stuck in local optima. For example, in 90
percent of the episodes the central agent trained with A2C built
the exact same structure.

The SAC algorithm, on the other hand, succeeded in constructing
a spanning structure on tasks of all difficulty levels. This could be
seen from the success rates shown in Figure 10. Since the SAC algo-
rithm has an exploration budget (fixed level of entropy) the central
agent learned a nearly deterministic policy in harder tasks, where
in certain states only a single action would lead to the successful
completion of a spanning structure. To compensate for such nearly
deterministic policies in most of the states of the hard tasks and
to meet the exploration budget, in easier tasks the central agents
learned a more random policy since in many states several actions
could lead to the successful completion of a spanning structure.

After training, a greedy policy was obtained for each task by
selecting the action with the highest probability at each state in the
episode given the policy learned by SAC. Successful implementa-
tions of such a greedy policy are demonstrated in Figure 13. Even
when the central agent was forced to take a sub-optimal action
with respect to the greedy policy at the initial state of the episode,
the robot arms were still able to build a stable spanning structures.
This is shown in Figure 14.

In conclusion, using easier tasks to help learn to successfully
complete harder tasks is a major advantage in training the central
agent with the SAC algorithm. Furthermore, the exploration budget
of the SAC algorithm ensures the construction of more diverse
structures which in turn results in more robust policies. Thus, the
SAC algorithm seems suitable to bridge the gap between simulations
and reality. If an action is infeasible in real life for reasons such
as the robot kinematics or the friction dynamics, the agent could
adapt and change its plan mid-way.

(a) Widths of size 1, 2, 3 and 4 triangles.

(b) Widths of size 5, 6 and 7 triangles.

(c) Widths of size 8, 9 and 10 triangles.

(d) Widths of size 11 to 19 triangles.

Figure 10: Success rate for easy, intermediate, hard and ex-
treme tasks for the SAC and A2C algorithm. The solid line
represents the mean success rate and the shaded area shows
the spread from its minimum to its maximum.

Reinforcement learning for scaffold-free construction of spanning structures SCF ’23, October 08–10, 2023, New York City, NY, USA

(a) Success for gaps of width up to 4 triangle wide

(b) Failure for larger gaps: The friction force with the ground is too
small to sustain the structure.

Figure 11: Structures produced by the A2C algorithm after
450’000 optimization steps.

(a) Example, where the SAC algorithm produced the same structure as
the A2C algorithm.

(b) Example, where the SAC algorithm produced a different structure
than the A2C algorithm.

Figure 12: Different structures produced by the SAC algo-
rithm after 20’000 optimization steps.

Figure 13: Structures produced when using a greedy policy
on a central agent trained with the SAC algorithm.

Figure 14: Structures produced when using a greedy policy
on a central agent trained with the SAC algorithm, when the
rightmost block is forced to be a hourglass with different
orientation.

5 VALIDATION
We validated our learned models with physical robotic assembly
tests. The robots used for the fabrication are two ABB GoFa CRB
15000 robot arms with suction grippers (as shown in Fig. 15). We 3D
printed two types of blocks and attached sandpaper to the blocks
to ensure that the friction between blocks matched the one used
during the simulation. The bricks are placed at the pick station
so the robot can pick them from the table and place them at the
desired locations.

We planned the robotic path with Rapidly-exploring Random
Tree (RRT) [LaValle and Kuffner 2001] algorithm, which accounts
for both robotic feasibility and collision avoidance, including con-
siderations for self-collisions, collisions between robots, collisions
with the environment and existing structures. The RRT algorithm
is implemented in compas_fab [Rust et al. 2018] with Open Motion
Planning Library [Şucan et al. 2012] and MoveIt![Coleman et al.
2014]. Note that in our RL training simulation environment, we
focused solely on collisions between the blocks and the robot arm’s

SCF ’23, October 08–10, 2023, New York City, NY, USA Vallat, Wang, Maddux, Kamgarpour, Parascho

Figure 15: Robotic fabrication setup

Figure 16: Picked structures for fabrication

functionality (holding or placing). We did not incorporate the com-
plete pick-and-place path or consider potential collisions along that
path. In this way, we could save the simulation time and reduce
the complexity of the RL training. That is the reason we need to
conduct additional path planning.

As shown in Figure 16, we tested two successful spanning struc-
tures generated from the SAC-trained model in Experiment 2 (the
last structure in Figure 13 and Figure 14). Both structures are suc-
cessfully built in the physical world. This validates the feasibility
of our algorithm.

Here we pick the first structure to demonstrate the simulation
(Figure 17) and fabrication process (Figure 18). The entire process of
fabrication and simulation can be viewed in the video we submitted
together with the paper.

6 CONTRIBUTION, LIMITATION AND
FUTUREWORK

Our paper showcases the successful implementation of an RL al-
gorithm for designing spanning structures that can be constructed
by two robotic arm without scaffolding. Through experiments, we
found that the centralized setup using the soft actor critic algorithm
proved to be an effective approach. Importantly, we validated the
practicality and effectiveness of our algorithm by successfully con-
structing structures learned by the RL algorithm in the real world
using two robotic arms.

Our contributions can be summarized in the following points:

Figure 17: Simulation of robotic fabrication process

Figure 18: Robotic fabrication of the structure

• We demonstrated that by working with design goals instead
of specific design, the RL algorithm can break free from the
current linear, top-down approach (design, geometry dis-
cretization, construction sequencing, robotic path planning,
and final structure fabrication) and bring construction con-
siderations into the design creation. Through its sequential
decision-making process, the algorithm can generate span-
ning structures that can be constructed without scaffolding.
This saves considerable time associated with design-related
processes and minimizes the risk of rework. By adopting this
approach, we aim to foster a novel, efficient, cost-effective
robotic fabrication process.

• We showed that a decentralized MARL framework was un-
suitable for the task with our current set-up, and single agent
RL vastly outperforms it.

The code for our environment, algorithm, and trained model
is available on GitHub3, making it accessible to researchers and
practitioners interested in exploring and utilizing our approach for
their own projects.

Our results so far have some limitations:
• The reason why the MARL framework could not compete
with the single agent one is not yet fully formalized. It is
important to advance this understanding since the MARL
framework could have potential specifically if more robotic

3https://github.com/Fllask/RLSFCSS

Reinforcement learning for scaffold-free construction of spanning structures SCF ’23, October 08–10, 2023, New York City, NY, USA

arms are needed during construction. A rigorous analysis of
the convergence rate and exploring alternative algorithms
for MARL can provide more valuable insights into this prob-
lem.

• The shapes of our blocks, hexagonal and hourglass-like
blocks, are very specific, while the construction industry
mostly works with more common and uniform shapes. In
future work, we aim to enhance our algorithm to accom-
modate more general geometries commonly encountered in
construction applications. By expanding the capabilities of
our algorithm, we can address a broader range of construc-
tion scenarios and contribute to the industry’s needs beyond
the specific shapes we have focused on.

• Our current training simulator is fast but has limitations as
it operates within a discrete, two-dimensional design space.
Enhancing it to support continuous design would enable
variations in block shapes and sizes, allowing agents to be
trained with specific tolerances. This upgrade is crucial for
future scalability and applying the algorithm in real-world
scenarios. Additionally, expanding the simulator to accom-
modate 3D structures is a potential avenue, enabling agents
to construct not just linear spans but also domes and other
architectural forms. We intend to upgrade the simulator in
these two ways.

• Although our algorithm manages to create interesting span-
ning structures and their construction sequence, it does not
consider robotic kinematics and path planning. As a result,
additional planning is required to ensure the robotic fabrica-
tion process can effectively execute the generated structure.
While it is possible to include those factors in the stage of
training, that also significantly increases the training time.
An even further step would be to allow the robots to move
parts of the structure composed of several blocks after they
are placed. This would allow them to create some wiggle
room and would be highly beneficial when finishing the
structure. We would like to explore this problem in our fu-
ture work.

• Our generated spanning structures are only evaluated for
their stability under their self-weight. The spanning struc-
tures in the architectural context also need to sustain external
loads, such as live loads (people walking on the bridge), wind
loads, and earthquake loads. One of our future goals is to
address those structural design requirements with the RL
algorithm.

• During fabrication, many factors can introduce inaccuracies,
such as robot calibration, table flatness, and precise block
picking. Simulating these factors accurately is challenging.
To ensure successful structure construction in the physical
world, two approaches can be taken. The first approach is
to enhance structure robustness by designing it to accom-
modate potential inaccuracies. This involves incorporating
resilience into the structure’s design, enabling it to tolerate
and adapt to variations during fabrication. The second ap-
proach involves augmenting the fabrication process with
increased intelligence. This can be achieved by integrating
force sensors and cameras, which provide real-time feedback
and enable more precise and informed fabrication. We would

like to investigate these approaches to mitigate the impact
of inaccuracies during fabrication.

• During the training, a structure is considered as a success
as soon as it is stable. However, we did not investigate what
would make a structure optimal. An optimal structure would
not only use the least amount of blocks possible but also be
stable and robust to unexpected forces during all steps of the
construction. The balance between these two factors makes
it hard to formally discuss this question, as it mostly relies
on human expertise and regulations. A final next step would
be to determine what an optimal structure is and to use this
definition to train our algorithm in a more directed fashion.

While our work has certain limitations, it underscores the poten-
tial of using RL algorithms in architectural construction. By doing
so, we pave the way for innovative designs, pushing the frontiers
of architectural creativity and design methodologies. Therefore,
pursuing the aforementioned future directions is both relevant and
promising.

REFERENCES
Victor Bapst, Alvaro Sanchez-Gonzalez, Carl Doersch, Kimberly L. Stachenfeld, Push-

meet Kohli, Peter W. Battaglia, and Jessica B. Hamrick. 2019. Structured agents for
physical construction. In ICML.

PeterW. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro,
Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer,
George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris
Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals,
Yujia Li, and Razvan Pascanu. 2018. Relational inductive biases, deep learning, and
graph networks. https://doi.org/10.48550/ARXIV.1806.01261

Boris Belousov, Bastian Wibranek, Jan Schneider, Tim Schneider, Georgia Chalvatzaki,
Jan Peters, and Oliver Tessmann. 2022. Robotic architectural assembly with tactile
skills: Simulation and optimization. Automation in Construction 133 (2022), 104006.
https://doi.org/10.1016/j.autcon.2021.104006

Xavier Bresson and Thomas Laurent. 2017. Residual Gated Graph ConvNets. https:
//doi.org/10.48550/ARXIV.1711.07553

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. 2021. Geometric
Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. https://doi.org/10.
48550/ARXIV.2104.13478

Edvard P.G. Bruun, Sigrid Adriaenssens, and Stefana Parascho. 2022. Structural rigidity
theory applied to the scaffold-free (dis)assembly of space frames using cooperative
robotics. Automation in Construction 141 (2022), 104405. https://doi.org/10.1016/j.
autcon.2022.104405

Petros Christodoulou. 2019. Soft Actor-Critic for Discrete Action Settings. https:
//doi.org/10.48550/ARXIV.1910.07207

David Coleman, Ioan Alexandru Sucan, Sachin Chitta, and Nikolaus Correll. 2014.
Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study.
CoRR abs/1404.3785 (2014). http://arxiv.org/abs/1404.3785

Ursula Frick, Tom Mele, and Philippe Block. 2015. Decomposing Three-Dimensional
Shapes into Self-supporting, Discrete-Element Assemblies. https://doi.org/10.1007/
978-3-319-24208-8_16

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018a. Soft Actor-
Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochas-
tic Actor. https://doi.org/10.48550/ARXIV.1801.01290

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie
Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine.
2018b. Soft Actor-Critic Algorithms and Applications. https://doi.org/10.48550/
ARXIV.1812.05905

Yijiang Huang, Caelan Reed Garrett, Ian Ting, Stefana Parascho, and Caitlin Mueller.
2021. Robotic additive construction of bar structures: Unified sequence and motion
planning. CoRR abs/2105.11438 (2021). arXiv:2105.11438 https://arxiv.org/abs/2105.
11438

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko,
Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew
Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler,
Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin
Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David
Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and

https://doi.org/10.48550/ARXIV.1806.01261
https://doi.org/10.1016/j.autcon.2021.104006
https://doi.org/10.48550/ARXIV.1711.07553
https://doi.org/10.48550/ARXIV.1711.07553
https://doi.org/10.48550/ARXIV.2104.13478
https://doi.org/10.48550/ARXIV.2104.13478
https://doi.org/10.1016/j.autcon.2022.104405
https://doi.org/10.1016/j.autcon.2022.104405
https://doi.org/10.48550/ARXIV.1910.07207
https://doi.org/10.48550/ARXIV.1910.07207
http://arxiv.org/abs/1404.3785
https://doi.org/10.1007/978-3-319-24208-8_16
https://doi.org/10.1007/978-3-319-24208-8_16
https://doi.org/10.48550/ARXIV.1801.01290
https://doi.org/10.48550/ARXIV.1812.05905
https://doi.org/10.48550/ARXIV.1812.05905
https://arxiv.org/abs/2105.11438
https://arxiv.org/abs/2105.11438
https://arxiv.org/abs/2105.11438

SCF ’23, October 08–10, 2023, New York City, NY, USA Vallat, Wang, Maddux, Kamgarpour, Parascho

Demis Hassabis. 2021. Highly accurate protein structure prediction with AlphaFold.
Nature 596, 7873 (July 2021), 583–589. https://doi.org/10.1038/s41586-021-03819-2

Steven M LaValle and Jr. James J. Kuffner. 2001. Randomized Kinodynamic Planning.
The International Journal of Robotics Research 20 (2001), 378–400. Issue 5. https:
//doi.org/10.1177/02783640122067453

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Ré mi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen,
Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,
Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-level code generation
with AlphaCode. Science 378, 6624 (dec 2022), 1092–1097. https://doi.org/10.1126/
science.abq1158

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
2020. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.
arXiv:1706.02275 [cs.LG]

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchronous
Methods for Deep Reinforcement Learning. (2016). https://doi.org/10.48550/ARXIV.
1602.01783

Stefana Parascho, Isla Xi Han, Samantha Walker, Alessandro Beghini, Edvard P. G.
Bruun, and Sigrid Adriaenssens. 2020. Robotic vault: a cooperative robotic assembly
method for brick vault construction. Construction Robotics 4, 3-4 (Nov. 2020), 117–
126. https://doi.org/10.1007/s41693-020-00041-w

Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming (1st ed.). John Wiley and Sons, Inc., USA.

Matthias Rippmann. 2016. Funicular Shell Design: Geometric Approaches to Form
Finding and Fabrication of Discrete Funicular Structures. https://doi.org/10.3929/
ethz-a-010656780

Romana Rust, Gonzalo Casas, Stefana Parascho, David Jenny, Kathrin Dörfler, Matthias
Helmreich, Augusto Gandia, Zhao Ma, Ines Ariza, Matteo Pacher, Beverly Lytle,
Yijiang Huang, and Chen Kasirer. 2018. COMPAS-FAB: Robotic fabrication package
for the COMPAS Framework. https://github.com/compas-dev/compas_fab/

L. S. Shapley. 1953. Stochastic Games*. Proceedings of the National Academy
of Sciences 39, 10 (1953), 1095–1100. https://doi.org/10.1073/pnas.39.10.1095
arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.39.10.1095

Jingwen Wang, Wenjun Liu, Gene Ting-Chun Kao, Ioanna Mitropoulou, Francesco
Ranaudo, Philippe Block, and Benjamin Dillenburger. 2023. Multi-robotic Assembly
of Discrete Shell Structures. Advances in Architectural Geometry. https://doi.org/
10.1515/9783111162683-020

Bastian Wibranek, Yuxi Liu, Niklas Funk, Boris Belousov, Jan Peters, and Oliver Tess-
mann. 2021. Reinforcement Learning for Sequential Assembly of SL-Blocks.

Kaicong Wu and Axel Kilian. 2020. Designing Compression-Only Arch Structures
Using Robotic EquilibriumAssembly. Impact: DesignWith All Senses (2020), 608–622.
https://doi.org/10.1007/978-3-030-29829-6_47

Ioan A Şucan, Mark Moll, and Lydia E Kavraki. 2012. The Open Motion Planning
Library. IEEE Robotics and Automation Magazine 19 (12 2012), 72–82. Issue 4.
https://doi.org/10.1109/MRA.2012.2205651 https://ompl.kavrakilab.org.

https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://arxiv.org/abs/1706.02275
https://doi.org/10.48550/ARXIV.1602.01783
https://doi.org/10.48550/ARXIV.1602.01783
https://doi.org/10.1007/s41693-020-00041-w
https://doi.org/10.3929/ethz-a-010656780
https://doi.org/10.3929/ethz-a-010656780
https://github.com/compas-dev/compas_fab/
https://doi.org/10.1073/pnas.39.10.1095
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.39.10.1095
https://doi.org/10.1515/9783111162683-020
https://doi.org/10.1515/9783111162683-020
https://doi.org/10.1007/978-3-030-29829-6_47
https://doi.org/10.1109/MRA.2012.2205651

	Abstract
	1 Introduction
	2 Related Work
	2.1 Robotic Assembly of Spanning Structures
	2.2 Reinforcement Learning in Assembly Tasks
	2.3 Multi-agent Reinforcement Learning

	3 Training setup for construction of a spanning structure
	3.1 Simulation environment for construction of a spanning structure
	3.2 Formulating the spanning structure construction as a Markov decision process and a Markov game
	3.3 Learning agent

	4 Experiments and Results
	4.1 Experiment 1
	4.2 Experiment 2

	5 Validation
	6 Contribution, limitation and future work
	References

