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ABSTRACT

The Dynamic Vision System (DVS) is a novel image ac-
quisition system that works only when there is a brightness
change in a pixel, resulting in a stream of events including
timestamps, spatial coordinates and the sign of the bright-
ness change (increase or decrease). Although DVS’s output
data size is much smaller than conventional image systems,
it still requires further compression, as the main applications
of DVS are embedded systems with limited transmission and
storage resources. In this paper, we propose a new method
for lossless compression of event data streams based on point
cloud representations. The event data stream is organized
into a 3D point cloud to which a compression algorithm is
applied. In addition, different generation strategies are de-
vised in order to compare the compression performance of the
proposed approach. Experimental results show an improved
compression ratio of about 22% under lossless conditions.

Index Terms— Event camera, data compression, point
cloud

1. INTRODUCTION

Event cameras, also known as Dynamic Vision Systems
(DVS), are among some of the most promising new image
sensors. Instead of recording entire pixels at a fixed frame
rate, DVS records changes in light intensity when they oc-
cur. This bio-inspired sensing approach enables DVS to
capture, more efficiently, contents with high dynamic range,
and rapidly moving objects, while saving energy and band-
width. Such features open up new possibilities in computer
vision[1, 2, 3].

The most fundamental novelty behind DVS resides in the
idea that information is represented as a succession of ’events’
rather than full two-dimensional images captured at a defined
frame rate. The events represent pixels with a change in their
light intensity and consist of their coordinates, a timestamp,
and a polarity indicating the increase or decrease in inten-
sity. To represent visual information as captured by DVS,
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formats, such as the Address Event Representation (AER)[4],
have been defined. In the AER protocol, events (x, y, t, p)
are usually represented in 96 or 64 bits, depending on the de-
sired temporal resolution. Event cameras can record events at
a frequency of 106/s and as the resolution of DVS increases
from the early implementation exhibiting 128 × 128 to more
recently 640 × 480 and soon much larger, the output volume
of information from DVS becomes a huge burden on the lim-
ited transmission and storage resources of embedded systems.
Therefore, it is important to find efficient event data stream
compression methods for DVS applications. In this paper, we
propose a straightforward and efficient approach to lossless
compression by using point cloud representation, exploiting
both spatial and temporal redundancies in event data streams.

2. RELATED WORK

2.1. General Purpose Methods

As continuous event data can be considered as a stream of
AER packets, generic data compression algorithms such as
arithmetic coding, dictionary coding, and fast integer com-
pression can be used to compress event stream data. Arith-
metic coding is quite a versatile lossless data compression ap-
proach and used to reduce the volume of any type of data
based on its statistics. It is widely used as entropy coding
methods in most compression systems, such as HEVC and
G-PCC. The dictionary encoding strategy maintains a dictio-
nary for the different symbols and the encoder attemps to find
a match between the existing items in a dictionary and the in-
put symbols. If successful, a shorter string can be produced
in place of the input symbol. Fast integer compression, such
as SIMDBP128 developed by Google[5], is used to compress
large arrays of integers in search engine and database appli-
cations. Fast integer compression is known for its excellent
encoding and decoding speed.

Constrained by hardware limitations and high require-
ments for real-time processing, the authors in[6] proposed a
compression algorithm for IoT devices, dubbed Sprintz, suit-
able for streaming data with high correlation, requiring very
low memory (less than 1KB) and offering very low latency.
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Fig. 1. The framework of the proposed method. The upper pipeline generates one event point cloud and regards the polarity as
an extra attribute; the lower pipeline splits input event data into two according to the polarity and positive event point cloud and
negative event point cloud are compressed separately.

2.2. DVS Specific Methods

In order to make full use of the characteristics of DVS data
streams, DVS-specific compression methods have been de-
veloped. A lossless compression method is proposed in [7],
where authors devise two different modes, address-first (AP)
and time-first (TP), to handle spatially dispersed and spatially
concentrated data streams, respectively. An context-adaptive
binary arithmetic coding (CABAC) is then cascaded to pro-
duce the final bit stream.

Among the specially designed methods, temporal aggre-
gation is a popular strategy where events at a fixed time inter-
val are aggregated into a 2D event frame (EF) and a conven-
tional image codec is applied to compress the EFs[8, 9]. The
main disadvantage of EFs is that their aggregation interval is
fixed, which does not meet the different requirements of the
various temporal resolutions in CV tasks. For example, for
motion estimation tasks in autonomous driving, the optimal
time interval for spikes is ≈ 50 ms. Whereas for object de-
tection, an interval of ≈ 10 ms seems to be a better choice, as
more detailed features are required[8]. In addition, the spar-
sity of DVS data makes traditional video codecs inefficient as
they are designed for dense pixels.

As event data has been proven to be spatially and tem-
porally correlated[7, 10], we propose to convert event data
sequences to event point clouds and use point cloud coding
to compress the data. The sparsity of event data sequences is
similar to that of point clouds, which lends itself well to point
cloud coding. A similar approach is presented in [11]. In this
paper, different parameters are proposed when generating the
event point clouds to reveal the effect of the parameters. Our
proposed strategy is described in detail in the following sec-
tions.

3. PROPOSED METHOD

The general idea behind our proposed method is to consider
the event timestamp t as a third axis and to compress events
during certain time intervals as a point cloud with coordinates
(x, y, t) using a point cloud coding approach. The framework
is shown in Fig.1. Although the idea is intuitive, several fac-
tors need to be investigated to achieve better compression ef-
ficiency. In this section, we first present related insights on
point cloud coding (PCC) and then describe the key steps of
our proposed approach.

3.1. Point Cloud Coding

A point cloud is a data structure containing various sepa-
rate points with coordinates, called geometry information,
and other characteristics such as color or reflectance, called
attributes. In order to improve storage and transmission per-
formance and to make more efficient use of the data, point
cloud coding methods are proposed to reduce redundancy in
3D space.

The Moving Picture Experts Group (MPEG) has been
working on the standardization of PCC since 2018, and two
methods have been developed for three different scenarios in
point cloud applications[12]. One is Video-based PCC (V-
PCC), which is based on 3D to 2D projection and utilisation
of 2D video coding . The other is G-PCC, which differs from
V-PCC in that it directly encodes the point cloud by using an
octree structure. G-PCC mainly focuses on the irregular point
clouds with more sparsity, which is similar to the sparsity of
event data, and the use of octree increases its applicability
to data with similar structures. Some improvements[13, 14]
have also been proposed for V-PCC and G-PCC recently.

Another popular PCC method is Draco, a software devel-
oped by Google, which can compress point clouds as meshes.
Draco can compress arbitrary attributes, making it perfect for
special point clouds such as the event point cloud with polar-



Fig. 2. Comparison of different cascaded PCC.

ity as an additional attribute.
Taking advantage of the development of deep learning

methods, neural networks are also introduced in PCC[15, 16,
17, 18]. Auto-encoder structure is commonly used, and the
residual block and attention mechanism are added to improve
the compression performance. In our experiments, a DNN-
based method called VoxelDNN [15] was selected for a more
complete comparison. The VoxelDNN encoder operates in an
octree and voxel hybrid mode, and geometry information is
extracted by convolutional layers. A learning-based context
model is used to perform entropy coding.

3.2. Coding Procedure

As shown in Fig.1, the first step of our proposed method is
to generate a point cloud representation of the event data in
3D space. The timestamp of the spike can be considered as a
third dimension. Since the time resolution of the event data is
inconsistent with the spatial coordinates in the order of mag-
nitude, the smallest time stamp is subtracted from others and
each time stamp is multiplied by a scaling coefficient. The
polarity can be stored as an attribute and compressed with the
geometry. The event data can also split into two parts with
positive and negative polarities and be compressed separately.
The effect of these two-generation strategies will be evaluated
by experiments.

The problem of how to control the size of the event point
cloud is also considered. Events can be accumulated by a
fixed number, resulting in an event point cloud with a fixed
number of points, or by a fixed time interval, resulting in an
event point cloud of fixed three-dimensional size. Experi-
ments have been carried out to also assess the influence of
each alternative.

The coding procedure of the proposed method is sum-
marised as follows. The input event data stream is aggregated
either by a fixed number of points or by a fixed time interval
to generate a three-dimensional point cloud with coordinates
(x, y, t). Scaling is then applied to make the range of coor-
dinates in the generated event point cloud reasonable. Once

generated, a point cloud coding is used to compress the event
point clouds, and the output is combined with overhead infor-
mation regarding scaling factor, etc.

4. EXPERIMENTS

4.1. Comparison of Cascaded PCC

Dynamic and Active-pixel Vision Sensor (DAVIS) dataset[19]
was used in the experiments. The spatial resolution of the
dataset is 180 × 240, while the temporal resolution is as
high as 1 × 106/s. Four indoor sequences and four out-
door sequences were selected. The complexity of selected
sequences, represented by the number of events per second
(kev/s), is listed in Table1. Without further explaination, in
the following experiments, the temporal scaling factor is set
to 1 × 106 to ensure lossless compression, and to keep the
consistence of the order of magnitude, (x, y) is multiplied by
a spatial scaling factor 1× 103.

Two conventional and one DNN-based PCC approaches
were chosen to perform a comprehensive analysis of the im-
pact of the cascaded PCC. The VoxelDNN is retrained on a
training data set generated by DAVIS, with different contents
from the test sequences in experiments. The result of the com-
parison is shown in Fig.2. As presented, G-PCC achieves
the highest compression ratio and VoxelDNN also achieves
good compression results due to the powerful CNN in select-
ing suitable filters. However, it is observed that VoxelDNN
suffers from slow coding speed, while Draco is the fastest.
Since G-PCC achieves a good balance between compression
ratio and coding speed, G-PCC was selected as the cascaded
PCC in further experiments.

4.2. Comparison of Compression Efficiency

To demonstrate the superiority of the proposed method, our
method was compared to SPIKE coding, LZMA and Sprints
using the best PCC in 4.1. The results of the benchmark meth-
ods are from[20]. Table1 reports the compression efficiency



Table 1. The compression efficiency results (expressed in compression ratio) of different methods.

Sequence Scene Event Rate Compression Methods
Name Type (kev/s) Huffman LZMA SIMDBP128 Sprintz Delta Spike Coding Proposed
shapes indoor 242.01 1.79 3.04 1.31 2.26 3.78 5.6
boxes indoor 4288.65 1.96 4.92 1.38 2.83 4.95 6.155
poster indoor 4021.10 1.96 4.77 1.37 2.76 4.88 6.594
slider indoor 460.11 1.79 3.19 1.36 2.36 3.84 4.074

dynamic outdoor 867.24 1.89 3.34 1.28 2.33 3.85 4.699
walking outdoor 341.64 1.84 3.11 1.31 2.3 3.54 3.879
running outdoor 713.68 1.87 3.25 1.32 2.33 3.68 4.394
urban outdoor 478.14 1.83 3.13 1.35 2.31 3.45 3.72

Average 1426.57 1.87 3.59 1.34 2.44 4.00 4.889

results. The comparison is made under lossless conditions,
which distinguishes our approach from those based on EF
with a temporal aggregation step. The best average result is
highlighted.

In the comparison, one can distinguish that the proposed
method outperforms the others in terms of compression effi-
ciency for all tested sequences. It can also be observed that the
proposed method is more suitable for indoor sequences when
compared to outdoor sequences. The reason is that outdoor
scenes are more complex than indoor scenes, and the event
rate cannot fully reveal the complexity of the scene, because
fast-moving objects also generate a large number of events re-
gardless of the content of the scene. This phenomenon hints
into potential future improvements in outdoor scenarios.
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Fig. 3. Comparison of different aggregation strategies.

4.3. Comparison of Aggregation Strategy

As discussed in the previous section, two aggregation strate-
gies are considered, one according to a fixed number of event
points, and the other according to a fixed time interval. In

the experiments, the input event stream is split into a different
number of frames using different strategies prior to lossless
compression. The comparison results are shown in Fig.3(a),
where ”-t” means fixed time interval and ”-p” means fixed-
point.

In Fig.3(a), one can find that the ”-p” strategy achieves a
better performance. The size of the event point cloud gener-
ated by ”-t” strategy is largely influenced by the content of
the scene, while the ”-p” strategy leads to stable number of
points and similar spatial and temporal redundancy, benefi-
cial for point cloud compression.

The segmentation of the polarity also has an effect in
the performance as experiments in Fig.3(b) show. It can be
observed that the compression performance of event point
clouds without polarity segmentation is better with Draco,
probably because the increase in the number of points miti-
gates sparsity, leading to a better compression efficiency.

Finally, as shown in the figure, when the number of frames
increases, the number of points per frame decreases, and the
average compression ratio also decreases. This can be ex-
plained by the fact that more temporal redundancy is included
with more points, resulting in a higher overall compression
efficiency.

5. CONCLUSION

In this paper, a new approach for lossless coding of event data
streams is proposed without aggregating events into frames.
A point cloud structure is used to represent the event data
by relying on point cloud coding. Experiments show that
the approach outperforms benchmark values in terms of com-
pression efficiency. The influence of the choice of cascaded
point cloud coding, event point cloud generation criteria, and
event point cloud size, has been explored and reported, pro-
viding a more comprehensive understanding of the proposed
approach, and pointing to its potential to efficiently compress
event data streams in DVS.
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