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Janus membranes, thin permeable structures with chemical and geometrical asymmetric
properties, show great potential in industrial separation processes. Yet the link between the
micro- and macro-scale behaviours of these membranes needs to be established rigorously.
Here, we develop interface conditions to describe the solvent–solute flow across Janus
membranes within a homogenization-based framework. Upstream and downstream spatial
averages are introduced to account for discontinuities induced by the microstructure. The
homogenized model quantifies the macroscopic jump, across the membrane, in the solvent
velocity and stresses, and in the solute concentration and fluxes through coefficients
obtained via closure problems at the micro-scale. The model paves the way towards a
better understanding of fundamental interface phenomena such as osmosis and phoresis
via homogenization.
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1. Introduction

Several biological phenomena and industrial applications rely on separation and filtration
processes such as the diffusion of water–glucose solutions through aquaporins (Jensen
et al. 2016) and water purification (see Mohanty & Purkait 2011 for a review). Separation
and filtration are often realized through the presence of thin permeable structures, i.e.
membranes, which act as a discontinuity interface for the solvent and solute fields,
and produce a thermodynamic imbalance between the two sides of the membrane
(Bocquet & Palacci 2021). The tendency to compensate for this imbalance produces
essential phenomena for biological processes (Bacchin, Glavatskiy & Gerbaud 2019).
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The imbalance is enhanced when Janus membranes are considered, i.e. functionalized thin
porous surfaces with ‘contradictory’ (de Gennes 1992; Zhao et al. 2017) or asymmetric
properties on the two opposite faces. These membranes show interesting opportunities
to tackle energy-related challenges such as unidirectional oil/water separation, switchable
ion transport, desalination and fog harvesting, to name a few (Yang et al. 2016). Janus
membranes have been investigated experimentally in the literature, and rely primarily
on a common mechanism, i.e. the juxtaposition of lyophobic and lyophilic layers whose
wettability contrast enables directional fluid transport from the first to the second layer,
preventing flow in the opposite direction (Wang et al. 2010; Wu et al. 2012). The
above-mentioned asymmetry can involve either geometrical and/or chemico-physical
properties of the membrane surface corresponding to a different fabrication strategy
(see Qian et al. 2023 for a review). Membrane-based wound dressings with asymmetric
properties are exploited to facilitate water evaporation, thus creating a dry environment,
and promote hair follicle regeneration in burnt skin (de Groot et al. 2021). Alternatively,
by flipping the layers, it is possible to supply hydrogels to the epidermis for fast removal
of necrotic tissues (An et al. 2017). Other specific biomedical applications are related to
the prevention of gastrointestinal retention (Lee et al. 2016) or the reparation of tympanic
membranes and other soft biological tissues (Liang et al. 2022; Zhang et al. 2022).

The specific modelling of Janus membranes is still in a germinal state and is
based essentially on single-pore numerical simulations of the non-continuum molecular
dynamics (Montes de Oca et al. 2022) or continuum models (Zhang et al. 2017). Effective
quantities such as the membrane permeability or conductivity, characterizing thick porous
structures, are then retrieved heuristically from these simulations. The modelling of thick
porous structures has been investigated deeply in the last century via formal multiscale
techniques such as volume averaging and homogenization (cf. Whitaker (1996), Hornung
(1997), Mei & Vernescu (2010) and Davit et al. (2013) for a comparative review on the
methods).

With regard to thin symmetric membranes, several simplified descriptions of the
pure hydrodynamic problem have been proposed in the past. Hasimoto (1958) and
Wang (1994) focused on the pressure jump produced by a two-dimensional membrane
formed by the repetition of slits or circular holes on a normal fluid flow. Tio & Sadhal
(1994), starting from previous works of Beavers & Joseph (1967) and Saffman (1971)
on the interface conditions between a free fluid region and a bulk porous medium,
quantified an averaged slip velocity in the vicinity of an infinitesimally thin porous
screen. Jensen, Vincente & Stone (2014) unified the previous works of Sampson (1891)
and Weissberg (1962) to describe flows through membranes of arbitrary thickness with
cylindrical holes. Bourgeat, Marusic & Marusic-Paloka (1997), Bourgeat, Gipouloux &
Marusic-Paloka (2001) and Bourgeat & Marusic-Paloka (1998) established a mathematical
relation between the microscopic geometry of a thin membrane and the macroscopic
permeability under strict macroscopic flow hypotheses. The above-mentioned works,
related to the hydrodynamics of thin membranes, assume the continuity of the velocity
field across the membrane. As concerns the flow of the solute–solvent couple through
thin porous structures, only a few attempts to provide a theoretical proof of the heuristic
Kedem–Katchalsky law, which describes the concentration jump across semipermeable
membranes (Kedem & Katchalsky 1958; Spiegler & Kedem 1966), have been made.
Typically, authors considered specific pore geometries or specific far-field conditions for
the unknown variables (Saffman 1960; Malone, Hutchinson & Prager 1974), thus showing
limited predictive power. Kedem–Katchalsky-like models could be able to account for
jumps in the unknown variables, but the general link between these jumps and the
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microscopic membrane properties is still missing (cf. Cardoso & Cartwright 2014, for
an attempt). Recently, a homogenization-based closed model to describe the flow of
a dilute solution through a membrane was developed in Zampogna & Gallaire (2020)
and Zampogna, Ledda & Gallaire (2022). While these works do not show some of
the limitations of the previous works on flows past thin membranes (e.g. in terms
of applicability to generic microscopic or macroscopic membrane geometries or flow
configuration) and establish a rigorous mathematical link between the microscopic and
macroscopic membrane properties, the variables defining the state of the membrane
system, i.e. the solvent velocity and solute concentration, are intrinsically continuous,
making them unsuitable to describe the flow through Janus membranes, which is instead
characterized by discontinuities in the concentration, pressure and velocity fields.

Here, we introduce a formal and robust approach to model discontinuities, and link them
to the microscopic properties of Janus membranes, composed of the following essential
steps: (i) problem formulation across the membrane; (ii) formal expression of the velocity,
pressure and concentration fields as solutions of linear Stokes and Laplace microscopic
problems, via the introduction of auxiliary variables not depending on the macroscopic
outer flow (§ 2.1); (iii) upscaling of the microscopic solution to the macroscopic level
through an averaging procedure (§§ 2.2 and 2.3). The paper is organized as follows. Section
2 presents the equations governing the motion of the couple solute–solvent in the vicinity
of the membrane pores, and the development of the equivalent macroscopic model to
enable jumps in the – previously continuous – unknown variables. In § 3, we relate the
above-mentioned auxiliary variables to the physical properties of the membrane, such as
permeability, slip and solute diffusivity, and quantify them via the new model through
the solution of several microscopic problems. Section 4 compares the macroscopic model
with the solution of the full-scale equations where the microstructure, together with its
thermodynamic properties, is fully represented. Finally, in § 5, we discuss the perspectives
opened in the modelling of membrane flows.

2. Macroscopic model for mass transport through thin membranes

Let us consider a solute of molecular diffusivity D transported by the flow of an
incompressible Newtonian fluid, the solvent, of constant density ρ and viscosity μ. We
neglect variations of the solvent properties due to the concentration of the solute. The
solution flows through a microstructured membrane of characteristic size L, composed by
a periodic repetition of solid inclusions whose typical size is l (cf. figure 1). Owing to the
multiscale nature of the membrane, the relation between l and L defines the separation
of scales parameter ε such that ε = l/L � 1. The flow equations for the concentration,
velocity and pressure fields (c, ui, p) are non-dimensionalized with a characteristic far-field
velocity U, concentration difference �C, viscous stress μU/L, macroscopic membrane
size L, and characteristic time T = L/U:

∂iui = 0, Re
(
∂tui + uj ∂jui

) = ∂jΣij, Pe ∂tc = ∂jFj, (2.1a–c)

where i, j = 1, 2, 3 (cf. figure 1a), Σij = −pδij + (∂jui + ∂iuj) is the fluid stress tensor,
Fj = −Pe ujc + ∂jc is the solute flux, Pe = UL/D and Re = ρUL/μ are the Péclet and
Reynolds numbers, and δij is the Kronecker delta. Generic boundary conditions for ui and
c are imposed on the membrane solid walls ∂M (cf. figure 1):

αi(x)Σij α
′
j(x) = βi(x) ui − γi(x) U∂M

i , ζi(x) Fi = η(x) κc − λ(x) κC∂M. (2.2a,b)

The parameters αi, α
′
i, βi, γi, ζi, η, λ are defined on ∂M and allow us to describe several

membrane behaviours. Quantities U∂M

i and C∂M instead denote the values of velocity
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Figure 1. Sketches of a microstructured membrane. (a) Full-scale sketch of the membrane invested by a fluid
flow that carries a diluted solute. The membrane is asymmetric with respect to its central surface since it is
formed by a net of triangular prisms. (b) Periodic unitary elementary cell of the membrane. (c) Equivalent
homogenized macroscopic membrane where conditions (2.15) are imposed.

and concentration when a Dirichlet boundary condition is imposed at the membrane.
Among the several combinations of the space-dependent parameters αi, α

′
i, βi, γi, ζi, η, λ,

we mention those that are physically most natural. Introducing the tangential ti, si and
normal ni vectors associated with ∂M, when αi = ti, α′

i = βi = ni and γi = 0, zero-shear
and no-penetration are imposed on ∂M, which is likely to have a hydrophobic behaviour.
Inversely, the no-slip boundary condition, namely a hydrophilic solvent–membrane
interaction, is realized by choosing αi = α′

i = γi = 0 and βi = 1. The several types of
solute–membrane interactions that can be realized by varying the values of ζi, η and λ have
been analysed in Zampogna et al. (2022); the membrane has a chemostat-like behaviour
when ζi = 0 and η = λ = 1, an insulating behaviour when ζi = ni and η = λ = 0, and an
absorbing/desorbing behaviour for ζi = ni, η = ±1 and λ = 0.

In the case of Re and Pe up to O(ε−1), i.e. when the pore Reynolds and Péclet
numbers ReI = ρUIl/μ = ε2 Re and PeI = UIl/D = ε2 Pe, based on the typical pore
size and velocity, l and UI, are up to O(ε), the solution of (2.1a–c) and (2.2a,b) in the
whole full-scale domain converges, on average, to the solution of the problem where the
membrane is replaced by a smooth macroscopic interface C between two fluid regions
where (2.1a–c) still apply; see figure 1 (Zampogna & Gallaire 2020; Ledda et al. 2021;
Zampogna et al. 2022). The macroscopic interface conditions imposed on C stem from the
application of homogenization to (2.1a–c) and (2.2a,b). The main steps of the procedure
are recalled in the next section.

2.1. Homogenization of the governing equations
To develop the macroscopic interface conditions valid on C, the procedure initially
developed in Zampogna & Gallaire (2020) focuses on the solution of the problem within
the microscopic domain sketched in figure 1(b). The full-scale spatial variable xi is
decomposed as xi → x′

i + xi, with x′
i = xi/ε, so that xi → 0± when x′

i → ±∞, and vice
versa. We denote as x′

i the microscopic variable defined within the microscopic elementary
cell, also called the inner domain, while xi is the macroscopic variable defined outside
the microscopic elementary cell, the outer domain. We employ a local reference frame
(t, s, n), where (t, s) and n are the local tangential and normal directions to the membrane,
respectively. To close (2.1a–c) and (2.2a,b) on the microscopic domain, flow periodicity
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Homogenization of flows across Janus membranes

is imposed along x′
t and x′

s, while the continuity of velocities, concentration, solvent
tractions and solute normal fluxes are exploited over U and D. We decompose the unknown
variables in (2.1a–c) with the multiple scale expansions (c, p) = ∑N

n=0 εn(c(n), p(n)) and
ui = ∑N

n=0 εn+1u(n)
i . After substituting these expansions in (2.1a–c) and (2.2a,b), and

collecting the leading-order terms in the separation of scales parameter ε (Hornung 1997),
we obtain

0 = −∂ip(0) + ∂2
iiu

(0)
i , 0 = ∂iu(0), 0 = ∂2

iic
(0). (2.3a–c)

Following Zampogna & Gallaire (2020) and Zampogna et al. (2022), the microscopic
solution of (2.3a–c) can be written as a linear combination of the outer fluid stresses and
solute fluxes that enter the microscopic problems in the boundary conditions on the sides
U and D of the microscopic elementary cell (cf. figure 1b), i.e.

ui = ε
(
MijkΣjk|C− + NijkΣjk|C+

)
, (2.4)

p = QjkΣjk|C− + RjkΣjk|C+, (2.5)

c = C0 + ε (TiFi|C− + YiFi|C+) , (2.6)

where the superscript (0) has been omitted for ease of notation, and the notations |C±
denote solvent stresses Σjk and solute fluxes Fi calculated on the upward and downward
sides of the macroscopic membrane C, as depicted in figure 1(c). The quantity indicated
with C0 in (2.6) represents a mean base value for c, which can be retrieved by an integral
balance of the solute governing equations on a control volume equal to the microscopic
elementary cell identified in figure 1(b). (cf. Zampogna et al. 2022). We refer to Appendix
A for further insights on how to calculate C0.

Quantities Mijk, Nijk, Qjk, Rjk, Ti and Yi are defined over the microscopic domain
sketched in figure 1(b). Substituting (2.10)–(2.12) into (2.3a–c), the partial differential
equations satisfied by these coefficients in the fluid part F of the microscopic elementary
cell are found:

− ∂iQjk + ∂2
llMijk = 0, in F,

∂iMijk = 0, in F,

α ∂nMijk = βMijk, on ∂M,

Σpq(M·jk, Qjk) nq = δjpδkqnq, on U,

Σpq(M·jk, Qjk) nq = 0, on D,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

−∂iRjk + ∂2
llNijk = 0, in F,

∂iNijk = 0, in F,

α ∂nNijk = βNijk, on ∂M,

Σpq(N·jk, Rjk) nq = 0, on U,

Σpq(N·jk, Rjk) nq = δjpδkqnq, on D,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(2.7)

∂2
iiTj = 0, in F,

ζ ∂iTjni = λTj, on ∂M,

∂iTjni = nj, on U,

ζTj = λ ∂iTjni, on D,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∂2
iiYj = 0, in F,

ζ ∂iYjni = λYj, on ∂M,

ζYj = λ ∂iYjni, on U,

∂iYjni = nj, on D,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.8)

where i, j, k, l = t, s, n. Periodicity along the tangent to the membrane directions x′
s and

x′
t is imposed. The Stokes and Laplace problems (2.7) and (2.8) represent the solvability

conditions of solutions (2.4)–(2.6). From a mathematical point of view, the components of
the tensors and vectors in (2.4)–(2.6) are the coefficients of the linear combination relating
the velocity and pressure fields to the fluid stresses and the concentration field to the solute
fluxes. We will clarify their physical meaning after the upscaling of conditions (2.4)–(2.6).
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2.2. Upscaling the microscopic solution with central average
To upscale (2.4)–(2.6), Zampogna & Gallaire (2020) and Zampogna et al. (2022)
introduced the central average within the microscopic elementary cell, defined as

·̄ = lim
x′

n→0±
1

|CF ∪ CM|
∫

CF

dx′
s dx′

t, (2.9)

where CF and CM denote the fluid and solid regions on C. The average defined in (2.9), i.e.
the integral on the projection of C within the microscopic elementary cell (blue plane in
figure 1b), renders the unknown solvent velocity and solute concentration fields continuous
across the macroscopic interface C. The macroscopic interface conditions valid on the
homogeneous, macroscopic domain C (cf. figure 1c) are retrieved by applying average
(2.9) to (2.4)–(2.6):

ui|C = ui|C− = ui|C+ = ui = ε
(
M̄ijkΣjk|C− + N̄ijkΣjk|C+

)
, (2.10)

p|C = p̄ = Q̄jkΣjk|C− + R̄jkΣjk|C+, (2.11)

c|C = c|C− = c|C+ = c̄ = C0 + ε
(
T̄iFi|C− + ȲiFi|C+

)
. (2.12)

Equations (2.10)–(2.12) quantify the values of the unknown fields at the membrane global
size and transfer the global effects of the presence of the inclusions from a microscopic to
a macroscopic scale. Tensors Mijk and Nijk are labelled as upward and downward Navier
tensors, which provide information about the mobility of the fluid in the vicinity of the
macroscopic membrane C. In local curvilinear coordinates, on the plane (x′

n, x′
t), M̄nnn

and M̄ntn represent the ability of the fluid to flow along the normal direction, while M̄tnn

and M̄ttn represent the ability of the fluid to flow along the tangential direction. Here,
N̄ijk has the same physical meaning of M̄ijk when the downward side of the membrane is
considered, instead of the upward one. In the frame of reference of the membrane, only
tensor components whose third index is equal to n are different from zero, since the source
terms in the linear microscopic problems come from the continuity of fluid tractions Σ+

ij nj

on U and D. As shown in Ledda et al. (2021), one could define two second-order tensors,
M′

ij = M̄ijn and N′
ij = N̄ijn, which contain the same information about the corresponding

third-order tensors, and can be linked to the classical second-order permeability tensor
that characterizes traditional bulk porous structures. The reader is referred to Zampogna
& Gallaire (2020) for a comparison between the homogenized solution and the analytical
pressure drop across a porous screen made of circular holes (Jensen et al. 2014).

The quantities Q̄jk and R̄jk are auxiliary variables introduced to relate formally the
leading-order pressure to the outer fluid stresses. As noticed in Zampogna & Gallaire
(2020), (2.11) does not contribute to the determination of the leading-order solution since
a macroscopic pressure jump is produced across the membrane, and the value of the jump
is set by the normal component of (2.10) that contains p|C± .

As will be shown in § 4.2, (2.11) allows one to a posteriori retrieve the value of pressure
at the centre of the membrane C, and then has little physical utility. Vectors T̄i and Ȳi can
be defined as upward and downward effective diffusivities, and quantify the variations of
the solute diffusivity due to the presence of the solid microstructure.

The macroscopic model (2.10)–(2.12) is obtained by applying the central average (2.9)
to the solution (2.4)–(2.6) of the leading-order governing equations (2.3a–c). The central
average approach provides a good estimation of the full-scale flow fields when the
membrane properties exhibit slow and small variations in the filtration direction along
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Homogenization of flows across Janus membranes

each single pore (Zampogna & Gallaire 2020). When the variations are fast and large,
the central average approach may oversimplify the far-field effects produced by the strong
gradients across the pores. When an imbalance between the upward and downward sides
of such a porous screen is considered, e.g. with free-slip on one side and no-slip on the
other, exotic effects may occur, with different tangential velocities on each side, which are
not properly described by a central average model. Since the velocity and concentration
fields are continuous across the membrane, macroscopic boundary conditions symmetric
with respect to C can produce only symmetric flow fields. As suggested previously, in the
case of Janus membranes, while full-scale flow fields are continuous, discontinuities may
emerge in the macroscopic, averaged fields, from imbalance effects due to asymmetric
properties of the microscopic membrane geometry. In the next subsection, we will present
a modified average (2.9) that accounts for discontinuities in the upscaled fields.

2.3. Introducing macroscopic flow field discontinuities
The spatial average (2.9) plays a crucial role in the continuity of the flow fields.
A different spatial average is introduced to allow discontinuous quantities on each side of
the membrane. In Zampogna & Gallaire (2020) and Zampogna et al. (2022), the matching
between the microscopic and macroscopic generic field f is expressed via the limit

lim
x′

n→±∞
f (x′

n) = lim
xn→0±

f (xn). (2.13)

We define two different averages computed in the positive and negative microscopic far
field:

·̄− = lim
x′

n→+∞
1

|U|
∫

U

dx′
s dx′

t and ·̄+ = lim
x′

n→−∞
1

|D|
∫

D

dx′
s dx′

t, (2.14a,b)

called respectively upward and downward averages. Applying the new averages to the
solution of the leading-order governing equations (2.3a–c) in the microscopic elementary
cell, the following conditions for the velocity, concentration and pressure fields on the
sides of the membrane C± are obtained:

ui
− = ε

(
M−

ijkΣjk|C− + N−
ijkΣjk|C+

)
,

ui
+ = ε

(
M+

ijkΣjk|C− + N+
ijkΣjk|C+

)
,

⎫⎪⎬
⎪⎭

c̄
− = C0 + ε

(
T −

i Fi|C− + Y−
i Fi|C+

)
,

c̄
+ = C0 + ε

(
T +

i Fi|C− + Y+
i Fi|C+

)
,

⎫⎬
⎭

(2.15)

p̄
− = Q−

jkΣjk|C− + R−
jkΣjk|C+,

p̄
+ = Q+

jkΣjk|C− + R+
jkΣjk|C+,

⎫⎬
⎭ (2.16)

with

M−
ijk = M̄

−
ijk − xn|U(δitδjt + δisδjs)δkn, M+

ijk = M̄
+
ijk, Q±

ij = Q̄±
ij ,

T −
i = T̄

−
i − xn|Uδin, T +

i = T̄
+
i ,

N−
ijk = N̄

−
ijk, N+

ijk = N̄
+
ijk − xn|D(δitδjt + δisδjs)δkn, R±

ij = R̄±
ij ,

Y−
i = Ȳ

−
i , Y+

i = Ȳ
+
i − xn|Dδin.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.17)

Equations (2.15) and (2.16) are the set of interface conditions that quantify the
solute–solvent flow at the Janus membranes. The interface conditions (2.15) transfer the
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asymmetry of the membrane from the microscopic level to the macroscopic one, inducing
asymmetric flow fields even when the macroscopic flow configuration is symmetric with
respect to C. The jump in the macroscopic velocity and concentration fields between
the upward and downward sides of the membrane is given by the difference between
the upward and downward averages of the microscopic tensors Mijk and Nijk for the
velocity, and the vectors Ti and Yi for the concentration. These microscopic quantities
stem from the nature of the Janus membrane, which produces asymmetric interactions
between the membrane and the surrounding fluid, at a microscopic level. The upward (resp.
downward) averaged tensors M−

ijk (resp. M+
ijk) and N−

ijk (resp. N+
ijk) estimate the effect of

the membrane on the upward (resp. downward) flow due to an upward and downward
stress. Similarly, the upward (resp. downward) averaged vectors T −

i (resp. T +
i ) and Y−

i
(resp. Y+

i ) measure variations of the upward (resp. downward) solute concentration from
C0 due to the effects of the upward and downward diffusive fluxes. The new model
(2.15) remains a leading-order approximation of the full-scale solution but provides an
enriched flow description with respect to its continuous counterpart (2.10)–(2.12), and
better suits an extended set of thin porous membranes, whose properties along the filtration
direction may exhibit important variations. The number of effective parameters describing
the macroscopic flow, doubled with respect to the previous case, reflects this richness.

As concerns Q±
ij and R±

ij , Zampogna & Gallaire (2020) showed in the central average
case that only the fields Qnn and Rnn can play a role in the macroscopic solution since
the other components are antisymmetric with respect to the planes x′

t = 0 and x′
s = 0, or

identically zero as solutions of homogeneous problems. The far-field boundary conditions
on U and D in the microscopic problems (2.7) read

Qnn = 1, on U,

Qnn = 0, on D,

}
Rnn = 0, on U,

Rnn = 1, on D,

}
(2.18)

since the viscous contribution of the stress is negligible far from the solid inclusion on U

and D. After substituting these values in (2.16), one retrieves the trivial identities p̄± =
p|C± . As for the central average case, (2.16) does not contribute to the leading-order flow
approximation. The interface conditions (2.15) rely on the knowledge of the microscopic
fields Mijk, Nijk, Ti and Yi, which will be analysed in the next section.

3. Effects of the new averages on the microscopic problems

In the previous section, we have shown that Q±
ij and R±

ij do not contribute to the
determination of the macroscopic flow at the membrane C, and do not deserve any further
microscopic analysis. Conversely, the quantities Mijk, Nijk, Ti and Yi have been analysed
thoroughly in Zampogna & Gallaire (2020) and Zampogna et al. (2022). Here, we show the
modifications of the effective, macroscopic values induced by the upward and downward
averages. Equations (2.7) and (2.8) are solved numerically within the microscopic domains
sketched in figure 2 using their weak form implementation in the finite-element solver
COMSOL Multiphysics. The spatial discretization is based on the Taylor–Hood (P2-P1)
triangular elements for the solvent tensors, and P3 triangular elements for the solute
vectors. We use mesh spacing �l1 = 0.01 at the boundaries of the microscopic cell, and
we guarantee at least 25 grid points on each side of the solid inclusions when the spacing
�l1 produces less than 25 points on that side. Other simulations have been carried out on
coarser meshes with spacing �l2 = 0.02 and �l3 = 0.04, and numerical convergence of
the average value of Tn up to 0.1 % has been verified between �l1 and �l2.
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ui = 0

uini = 0, tiΣijnj = 0

ni∂ic = 0

uini = 0, tiΣijnj = 0

ni∂ic = 0

c = 0
ui = 0

c = 0
ui = 0
c = 0

G1 F1 GF1x′n
x′t

(b)(a) (c)

Figure 2. Considered microscopic inclusions and boundary conditions for the solvent and solute fields.
Inclusions G1 and GF1 are equilateral triangles with height 0.5l, equal to the side of the square inclusion
considered in F1.

Three different types of asymmetries are considered, denoted in figure 2 as G1 (purely
geometrical), F1 (purely functional) and GF1 (functional and geometrical). In G1, the
no-slip condition for ui and a chemostat-like condition c = 0 are imposed everywhere
on ∂M. In F1 and GF1, instead, the upstream region (highlighted in yellow) is a
hydrophilic-like surface, ui = 0, while the downstream region (highlighted in purple) is an
idealized hydrophobic surface with zero wall-normal solvent stress. For the concentration
field, a chemostat-like condition c = 0 is imposed on the upstream region, while the
downstream region is made by an insulating material, ∂ic ni = 0.

3.1. Effect of the asymmetry on the averaged microscopic quantities
Before proceeding with a thorough analysis of the microscopic solution associated with
the different types of solid inclusions mentioned in the previous section, we provide some
intuition about the effects of asymmetry on the new averaged microscopic quantities. The
upward and downward averages should produce different values of the effective tensors
only when membrane properties are not symmetric with respect to the centreline of the
membrane C. To confirm this feature and show the continuous transition from symmetric
to asymmetric membrane properties, we report in figure 3 the values of M−

ttn, N+
ttn, T −

n
and Y+

n . We consider a square inclusion of perimeter σ = 1 with no-slip and zero solute
concentration imposed on ∂M. We then introduce a microscopic functional asymmetry
by imposing zero-shear, no-penetration and insulating conditions on the green portion of
∂M whose length �σ is increased smoothly from 0 to σ . When the functional asymmetry
on the membrane is not present, i.e. for �σ = 0 or �σ = 1, the upward and downward
averages of M−

ttn, N+
ttn, T −

n and Y+
n have same values. For the other values of �σ ,

differences between these values are noticed. We thus deduce that (i) symmetric velocity
and concentration profiles are retrieved by the Janus model in case of symmetric solid
inclusions, and (ii) the upward and downward averages of the microscopic quantities are
modified progressively by the asymmetry. Focusing on the variations of the Navier tensors,
modifications in the upward (resp. downward) half of the solid inclusions produce effects
on M−

ttn (resp. N+
ttn) larger than modifications on the downward (resp. upward) half of

the inclusion, thus showing that M−
ttn (resp. N+

ttn) measures the effects on the flow in the
upward (resp. downward) far field. A complete analysis of tensor components associated
with configurations G1, F1 and GF1 is proposed in the next subsection.
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uini = 0, tiΣijnj = 0

ni∂ic = 0

c = 0

�σ

�σ �σ

ui = 0

0.090 1.5

1.0

0.5

0

0.085

0.080

0.075

0.070
0 σ/4 σ/2 3σ/4

M+
ttn

T +
n

–N –
ttn

–Y+n

σ σ/4 σ/2 3σ/4 σ

x′n

x′t

(b)(a)

Figure 3. (a) Microscopic inclusion and boundary conditions for the solvent and solute fields. A square
solid inclusion is considered, of perimeter σ = 1. On the green region, whose length is denoted by �σ , the
hydrophobic-like boundary condition introduced in section 2 is imposed, and we progressively increase �σ

clockwise starting from the green point of the left-hand square side. (b) Variations of the averaged tensors and
vectors components with increasing �σ .

M−
ttn M+

ttn = −N−
ttn M±

nnn = −N±
nnn N+

ttn

G1 1.44 × 10−2 1.20 × 10−3 1.66 × 10−2 8.03 × 10−2

F1 1.80 × 10−2 −1.43 × 10−3 1.42 × 10−2 1.25 × 10−1

GF1 1.63 × 10−1 −6.38 × 10−3 1.93 × 10−2 −8.09 × 10−2

Table 1. Values of the Navier tensors for the microscopic geometries G1, F1 and GF1.

3.2. Microscopic solvent flow tensors
In the local frame of reference of the surface (x′

s, x′
t, x′

n), introduced in figure 1, only a few
components of the microscopic tensors and vectors are non-zero (Zampogna & Gallaire
2020; Ledda et al. 2021; Zampogna et al. 2022), some of them shown in figure 4. In
opposition to the case of symmetric inclusions treated in Zampogna & Gallaire (2020),
the isocontours show that any reciprocal symmetry between Mijk and Nijk is not a priori
identified easily. The averages (2.14a,b) of these components are shown in table 1 for
the geometries introduced previously. As noticed previously, the functional or geometric
asymmetry produces an imbalance on the tangential components of the Navier tensors,
i.e. M−

ttn /=N+
ttn. These quantities express the ability of the fluid to slip tangentially to the

membrane on the upward and downward sides. A value of N+
ttn larger than M−

ttn implies
that viscous dissipation on the downward side is smaller than on the upward one. This is
due to either a smaller exposed surface on the downward side (inclusion G1 of figure 2)
or a surface with larger dissipative properties on the upward side of the solid skeleton
(inclusion F1 of figure 2). As mentioned in the previous subsection, the upward and
downward averages of the triple normal components of the Navier tensors M−

nnn and N+
nnn

represent the ability of the flow to pass through the membrane, i.e. the permeability. The
values of these tensors are identical since the microscopic flow rate through the periodic
unit cell is conserved, as can be evinced from a simple integral mass balance within the
microscopic elementary cell. Therefore, we identify a unique value of permeability, which
enables the physically meaningful requirement of total mass conservation between the two
sides of the membrane. As a consequence, the jump in the velocity field is related purely
to tangential stresses.
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Figure 4. Isocontours of sample microscopic quantities for the (a) G1, (b) F1 and (c) GF1 inclusions. Colour
maps are saturated for visualization purposes.

T −
n Y+

n T +
n Y−

n

G1 2.12 × 10−1 −7.89 × 10−2 −7.22 × 10−3 7.22 × 10−3

F1 2.07 × 10−1 −5.96 × 10−1 −2.55 × 10−2 2.55 × 10−2

GF1 −9.76 × 10−1 1.99 × 10−1 1.36 × 10−1 −1.36 × 10−1

Table 2. Values of the diffusion vectors for the microscopic geometries G1, F1 and GF1.

3.3. Microscopic solute transport vectors
The isocontours of the non-zero components of the microscopic diffusion vectors T , Y
are shown in figures 4(b,c) for cases F1 and GF1. Their upward and downward averages
are reported in table 2. As for the Navier tensors, the asymmetry type does not affect
the reciprocal relations between the non-zero components of each vector. The differences
between T −

n and Y+
n indicate that the membrane is asymmetric. If |Y+

n | > |T −
n |, then the

deviation of the downward macroscopic concentration from C0 is larger than the deviation
exhibited by the upward macroscopic concentration. Also in this case, the concurrence
of geometrical (inclusion G1 of figure 2) and chemical effects (inclusion F1 of figure 2)
determines the modifications in the upward and downward diffusivity of the solute. In
all cases, the averages of the normal vector component, calculated on the side opposite
to the forcing, have equal intensity but opposite signs, i.e. |Y−

n | = |T +
n |. This relation is

independent of the pore geometry and can be obtained through the integral balance of the
diffusion problems for T and Y .
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Configuration C1 Configuration C2
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Hydrophobic
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ni∂ic = 0 c = 0

Hydrophobic Hydrophilic

uini = 0, tiΣijnj = 0 ui = 0
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L
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Figure 5. Macroscopic configurations analysed in § 4 to test the Janus model.

4. Macroscopic solution

Through the macroscopic configurations C1 and C2 sketched in figure 5, we (i) quantify
the effects of microscopic asymmetry on the macroscopic flow, and (ii) verify the
existence of a macroscopic jump in the concentration and velocity field across the Janus
membrane. The macroscopic equations are implemented numerically with a domain
decomposition method in the finite-element solver COMSOL Multiphysics, with (P2-P1)
and P3 triangular elements for (ui, p) and c, respectively (cf. Zampogna & Gallaire 2020).
The convergence analysis is performed by comparing the velocity and concentration over
C, with observed differences of about 0.1 % between grid spacings �L1 = 0.01L and
�L2 = 0.02L, with a refinement of 10 prismatic layers at the interface, in both cases.

4.1. Configuration C1: effects of the microscopic asymmetry on the macroscopic flow
fields

We first present the effect of asymmetry on the solvent flow field. A membrane is
invested by a uniform Stokes flow (see figure 5a). Configuration F1 is considered, with
ε = 0.01. The lower viscous dissipation in the downward part of the inclusion breaks
the flow symmetry. While at a first sight the flow streamlines may appear symmetric, a
closer look reveals relevant differences. As shown in figure 6(a), the pressure gradient
within the cavity is larger in the lower part than in the upper part. As a consequence,
a large recirculation region whose core is located in the lower part occupies almost the
whole cavity, and two smaller recirculation zones are localized in the upper part of the
cavity. A quantification of the macroscopic modifications of the flow field is reported in
figures 6(b–e). The upward (stars), central (squares), and downward (circles) averages
of the full-scale solution agree well with the homogenized models (solid lines). The
central average model (maroon), produces velocity profiles that are symmetric with respect
to C (figures 6b,c), in opposition to the full-scale solution, which instead, presents a
jump in the streamwise velocity, reproduced faithfully by the Janus model. The vertical
velocity u3 at the membrane (figure 6c), slightly antisymmetric near the membrane
boundaries, is well captured by the new model and approaches negligible values at the
centre of the membrane. This behaviour is in agreement with the averaged pressure
profile, continuous across the membrane far from its boundaries. The relative errors e|C±
on the two sides of the membrane at the location shown in figure 6(e) between the
averaged full-scale and macroscopic discontinuous streamwise velocities are e|C+ = 0.002
and e|C− = 0.020, while between the averaged full-scale and macroscopic continuous
horizontal velocities, the errors are e|C+ = 0.53 and e|C− = 0.95. The asymmetry index
α(x1, x3) = |u1(x1, x3) − u1(x1, −x3)|, plotted in figure 6( f ), provides a measurement of
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Figure 6. Macroscopic configuration C1. (a) Isocontours of full-scale pressure and solvent flow streamlines
(black) at the membrane centreline, together with the lines for the upward (yellow), central (maroon)
and downward (purple) averages. (b–d) Plots of u1, u3 and p sampled on C for the full-scale (symbols)
and homogenized (solid lines) simulations, respectively. (e) Horizontal velocity u1 sampled on x1 = 0.
( f ) Isocontours of the asymmetry index α(x1, x3) = |u1(x1, x3) − u1(x1, −x3)| computed from the full-scale
and macroscopic solutions (solid and dashed lines, respectively).

the imbalance of the streamwise velocity component between the upper and lower regions.
The isocontours of α from the full-scale solution (colours) and the macroscopic model
(dashed lines) are in very good agreement, thus capturing the disequilibrium induced by
the microscopic properties of the membrane. This macroscopic result can be rationalized
through analysis of the microscopic quantities M−

ttn and N+
ttn (§ 3). A weaker dissipation

in the lower side of the membrane implies a downward slip velocity larger than its upward
counterpart.

4.2. Configuration C2: capturing solute concentration jumps across membranes
In figure 5(b), a permeable Janus membrane is invested by a uniform Stokes flow
orthogonal to the membrane itself, which transports a solute of concentration c at Pe =
100. The membrane is formed by the repetition of the microscopic structure GF1. At the
inlet, a constant concentration c = 1 is imposed, while the upper and lower boundaries
of the fluid domain absorb the solute at a given flow rate κ = ε. The macroscopic
flow is symmetric with respect to the axis x3 = 0 (figure 5b). The vertical velocity
and concentration fields (figures 7a,b) show noticeable variations through the pores.
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Figure 7. Flow configuration C2. (a,b) Isocontours of full-scale solvent pressure and solute concentration
field across two solid inclusions, together with the solvent flow streamlines (black lines). (c–e,g) Horizontal
velocity, vertical velocity, concentration and pressure fields sampled on C. ( f,h) Concentration and pressure
fields sampled over the line x3 = 0 orthogonal to C.

These microscopic fast variations along the normal to the membrane direction find their
macroscopic counterpart in the jumps experienced by the tangential velocity u3, the
solute concentration c and the pressure p (figures 7d,e,g). The upward half of each solid
inclusion produces larger viscous dissipation, implying a slip velocity smaller than its
downward counterpart since |M−

ttn| < |N+
ttn| in this case. The values of concentration at

the membrane in figures 7(e, f ) are deviations from C0 (see (2.15)), which in the present
case is identically zero. Contrary to the continuous interface condition (2.12) (maroon), the
Janus model quantifies perfectly the jump in the concentration field (yellow and purple).
In particular, the continuous interface condition underestimates (resp. overestimates)
the concentration value in the upward (resp. downward) far-field region, producing
non-negligible local errors between the macroscopic model and the fully resolved solution.
The upward exposed surface of the solid inclusion is larger than its downward counterpart,
thus producing larger macroscopic, averaged deviations of the upward concentration from
C0. The benefit given by the Janus model in the evaluation of the concentration jump is
instead negligible at the scale of the pressure jump (order ε0) since only modifications
of order ε are produced by the asymmetry of the microstructure. We also notice that the
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maroon profile in figure 7(h) is calculated a posteriori using (2.11), and it is not needed
to find the pressure field in the macroscopic domain, which is set by the velocity interface
conditions (2.10). We finally conclude our analysis by observing that the streamwise
velocity u1 sampled on C± (figure 7c) is continuous since, as observed already in § 3,
|M±

nnn| = |N±
nnn|.

5. Conclusions and perspectives

The introduction of upward and downward averages within the homogenization framework
to describe the flow across a microstructured Janus membrane revealed a discontinuous
nature of the macroscopic flow field. In particular, the solute–solvent flow behaviour is led
back to the solution of simple microscopic problems resulting from different forcings and
averages on the two sides of the membrane. The model developed extends the initial model
introduced in Zampogna & Gallaire (2020) and Zampogna et al. (2022) to a larger class of
thin porous membranes, whose properties may exhibit fast variations along the filtration
direction within a single pore. We developed a rigorous framework identifying the
essential features of Janus membranes, which represent a key finding in current membrane
technology. In a design perspective, a possible development is the maximization of the
differences between the upward and downward averages of the microscopic quantities.
These quantities can be employed as control parameters of the flow; see e.g. Ledda et al.
(2021) for the case of symmetric membranes. This model is a first but crucial step in the
macroscopic description of phenomena based on (electro-)phoresis (Michelin & Lauga
2014; Aubret, Ramananarivo & Palacci 2017). In this chemico-physical framework, the
jump in the concentration field constitutes the main drive for the fluid flow, therefore
calling for the extension of the model to the case of bidirectional solvent–solute coupling,
where the solute flow induces a solute flux, and vice versa. In conclusion, the employment
of downward and upward averages for Janus membranes within the homogenization
framework gives a rigorous foundation to quantify the effective properties of real, partially
permeable membranes that at present are determined mainly from heuristic considerations
(Kedem & Katchalsky 1958), opening for a predictive analysis of the transport through
real membranes.
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Appendix A. Determination of the base value of the concentration C0 at the
membrane

The use of the interface conditions (2.12) and (2.15) relies on the knowledge of the
quantity C0. Zampogna et al. (2022) have shown that this quantity is equal to C∂M if
λ /= 0 in (2.2a,b). Conversely, when λ = 0, C0 can be found by solving a macroscopic
flow configuration where the advective velocity at the membrane is calculated via (2.10),
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while the conditions imposed on C are

ζi(Fi|C− − Fi|C+) = κeff ηc|C, c|C− = c|C+, (A1)

where κeff = κ |∂M|, and |∂M| is the total surface of the microstructured membrane. We
refer to Zampogna et al. (2022) for further mathematical details about the development of
condition (A1).
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