
Spatial symmetries in nonlocal multipolar
metasurfaces
Karim Achouri ,* Ville Tiukuvaara, and Olivier J. F. Martin
Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne, Nanophotonics and Metrology Laboratory, Lausanne,
Switzerland

Abstract. We propose a framework that connects the spatial symmetries of a metasurface to its material
parameter tensors and its scattering matrix. This provides a simple and universal way to effortlessly
determine the properties of a metasurface scattering response, such as chirality or asymmetric transmission,
and which of its effective material parameters should be taken into account in the prospect of a homogenization
procedure. In contrast to existing techniques, this approach does not require any a priori knowledge of group
theory or complicated numerical simulation schemes, hence making it fast, easy to use and accessible.
Its working principle consists in recursively solving symmetry-invariance conditions that apply to dipolar
and quadrupolar material parameters, which include nonlocal interactions, as well as the metasurface
scattering matrix. The overall process thus only requires listing the spatial symmetries of the metasurface.
Using the proposed framework, we demonstrate the existence of multipolar extrinsic chirality, which is
a form of chiral response that is achieved in geometrically achiral structures sensitive to field gradients,
even at normal incidence.

Keywords: spatial symmetries; metamaterials; bianisotropy; multipoles; chirality.

Received Feb. 14, 2023; revised manuscript received Apr. 17, 2023; accepted for publication May 12, 2023; published online
Jun. 13, 2023.

© The Authors. Published by SPIE and CLP under a Creative Commons Attribution 4.0 International License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

[DOI: 10.1117/1.AP.5.4.046001]

1 Introduction
Over the past few years, metasurfaces have gained increasing
attention due to their low form factor and incredible light-
control capabilities. As a consequence, we have seen a plethora
of promising applications emerge, such as light refraction,1

polarization control,2 and holography.3 Naturally, this has further
sparked an increasing interest towards ever more advanced
applications, such as optical analog processing using nonlocal
interactions4,5 or sensing, detection, and polarization multiplex-
ing using chirality.6–10

These advances have prompted the need for appropriate
modeling approaches able to predict the electromagnetic behav-
ior of a metasurface so as to leverage the adequate available de-
grees of freedom that they offer for an optimal implementation
of the desired specifications or simply to achieve higher perfor-
mance. Conveniently, several metasurface modeling techniques
have been proposed throughout the years,11–16 which essentially

all revolve around the same concept, i.e., replacing the metasur-
face by a homogeneous sheet of effective material parameters
such as impedances, polarizabilities, or susceptibilities. These
models are all based on a dipolar description of the metasurface
electromagnetic response, and they typically include bianiso-
tropic responses that are necessary to model chiral effects.17–19

However, despite being generally powerful, these techniques
have been shown to be limited when it comes to modeling the
angular scattering properties of a metasurface.20,21 This is par-
ticularly a problem for applications pertaining to optical analog
signal processing, where accurate angular scattering control
over a large range of incidence angles is crucial.4,5 One of the
main reasons for such a limitation is the fact that optical meta-
surfaces have unit cells that are relatively large compared to the
wavelength, especially those based on dielectric resonators, im-
plying that multipolar contributions beyond the dipolar regime
start contributing significantly to their scattering response.21

Since multipolar components, such as dipoles and quadrupoles,
have different angular scattering behaviors,22–27 it is clear that
metasurface modeling techniques solely based on dipolar*Address all correspondence to Karim Achouri, karim.achouri@epfl.ch
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components cannot properly model the response of a metasur-
face under an arbitrary illumination, such as an oblique plane
wave. Thankfully, extensions to the conventional dipolar meta-
surface modeling techniques have been recently proposed.21,28

They include higher-order multipolar contributions as well as
nonlocal spatially dispersive responses that are necessary to
adequately connect the multipolar components to the fields
exciting the metasurface.29–32

While multipolar metasurface modeling techniques exhibit
promising features in terms of improved modeling accuracy
and better physical insight into the scattering process, they also
pose a challenging problem. Compared to dipolar modeling, the
inclusion of the required nonlocal third and fourth rank effective
material tensors introduces a significant number of additional
degrees of freedom and makes the practical application of
the modeling significantly more difficult and cumbersome.
Nevertheless, this problem may be mitigated by considering that
many of these degrees of freedom do not play a role in most
conventional metasurfaces and can thus be neglected. For in-
stance, parameters that are related to polarization rotation should
not be taken into account for metasurfaces that do not induce
polarization rotation. Knowing which parameters should or
should not be included in the model may be decided, in the most
simple cases, just by intuitive reasoning, which has been a
common practice in the case of dipolar metasurfaces.16 For
slightly more complicated cases, for instance, those that require
bianisotropic responses, it is possible to determine which are the
dominant parameters that should be considered using a series of
numerical simulations with a complex scheme of illumination
conditions.33–35 While such approaches are powerful tools to
reduce the complexity of the modeling problem, they require
a complicated simulation setup and an important computational
cost. Finally, it is also possible to individually test the param-
eters within the homogenized model to determine their angular
scattering behavior and check whether this matches that which
corresponds to the system and therefore may be present.21

However, this is cumbersome, and furthermore, requires intu-
ition of the symmetries of the scattered fields. This therefore
begs the need for a simple, fast, rigorous, and effective method
to determine which multipolar parameters should be considered
and which ones should be excluded from the model.

On the other hand, the use of chiral responses in metasurfaces
for sensing, polarization control, or asymmetric transmission
applications has led to fascinating works investigating the ori-
gins of such responses. It was, for instance, shown that 3D geo-
metrically chiral structures are not necessary to achieve chiral
responses.36–50 This is possible because a chiral response may
be obtained either using 2D chiral scattering particles placed
on a substrate,36–41 which breaks the symmetry of the system in
the third dimension, or by illuminating asymmetric particles
along specific oblique directions: a phenomenon commonly re-
ferred to as extrinsic chirality (also called pseudo-chirality).42–46

Due to their dependence on the spatial symmetries of the meta-
surface or the direction of wave propagation of the illumination,
these types of exotic effects turn out to be particularly difficult to
grasp from intuition alone, which is deemed to be even more
arduous in the case of a multipolar metasurface. This therefore
suggests the need for a method to effortlessly predict the exist-
ence of a chiral response in a given metasurface structure and for
a specific illumination condition.

In this work, our goal is to address these two requirements,
namely, to devise a method to determine the existence of

multipolar components and that of chiral responses (or other pe-
culiar scattering effects) in the case of an arbitrary metasurface.
To this end, we propose to establish a connection between the
spatial symmetries of a metasurface and its effective material
parameters, as well as its scattering response.

Clearly, the idea of drawing such a connection is not new, as
many works have already proposed using spatial symmetries to
model metamaterials. For instance, concepts pertaining to group
theory have been leveraged to associate the point group of
a metasurface to its dipolar material parameters51,52 or to predict
the existence of certain responses based on the symmetries of
the metamaterial structure.53–56 Spatial symmetries have also
been used in several other contexts, such as the design of
photonic crystals,57,58 their relationships with reciprocity and
chirality and bianisotropy,59–66 the existence of bound states in
the continuum,67,68 or even the implementation of asymmetric
nonlinear responses.69 Finally, several works have also shown
a connection between the scattering response of a metasurface
and its spatial symmetries.70–77 These works typically consider
the symmetries associated with the superposition of the meta-
surface structure with the fields that interact with it, leading to
the formulation of corresponding Jones, Mueller, or scattering
matrices.

Based on the existing literature, we aim at providing a sim-
ple, straightforward, and coherent framework that connects the
symmetries, material tensors, and scattering response of a meta-
surface in a way that does not require an extensive knowledge
of group theory. Thus, the proposed approach only requires list-
ing the spatial symmetries of a metasurface, which makes it
accessible to the largest possible audience. It also does not re-
quire performing any complicated numerical simulation, which
makes it fast and simple to use. In addition, this framework
extends the existing methods by including the presence of quad-
rupolar and nonlocal responses, which is crucial for properly
modeling certain types of chiral responses, as we shall see.
Finally, we will not restrict ourselves to the study of chiral re-
sponses but instead investigate the complete scattering response
of a metasurface by computing its full scattering matrix. To
facilitate the use of the proposed framework, we also provide
a Python script, which is accessible on GitHub,78 and that simply
requires listing the spatial symmetries of the metasurface.
Finally, it should be noted that while we concentrate our atten-
tion on the topic of metasurfaces, the formalism developed
thereafter also applies to 3D metamaterials, providing that they
can be homogenized so that their electromagnetic response may
be model via effective material parameters.

This paper is organized as follows. In Sec. 2.1, we review
the general approach for transforming the dipolar material
parameters of a metasurface according to an arbitrary spatial
symmetry, which is a crucial step for ultimately obtaining
the material parameters corresponding to the metasurface. In
Sec. 2.2, we extend that approach to multipolar responses
and, in Sec. 2.3, finally show how to connect spatial symmetries
and multipolar material parameters. In Sec. 3, we connect the
spatial symmetries of a metasurface and the fields that interact
with it to its corresponding scattering matrix. Finally, in Sec. 4,
we provide three examples illustrating the application of the
proposed framework.

2 Material Tensors and Symmetries
The general approach for connecting the effective material
tensors of a metasurface to its spatial symmetries is based on
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Neumann’s principle.79–81 This principle states that if a system,
such as a crystal or an electromagnetic structure, is invariant
under certain symmetry operations, then its physical properties
should also be invariant under the same symmetry operations.
It follows that the relationships between spatial symmetries
and material tensors may be established by deriving symmetry
invariance conditions that apply to the multipolar tensors de-
scribing the effective electromagnetic response of a metasurface.

We shall next review the conventional method used to derive
such invariance conditions in the case of a medium described by
dipolar responses. Then, we will extend these conditions to the
case of multipolar responses.

It should be noted that throughout this work, we shall con-
sider that a metasurface is an electrically thin array consisting of
a subwavelength periodic arrangement of reciprocal scattering
particles. The period of the array is considered small enough
compared to the wavelength so that no diffraction orders exist
(besides the zeroth orders in reflection and transmission), irre-
spective of the direction of wave propagation and the refractive
index of the background media. Under these assumptions, it
follows that the electromagnetic response of such a metasurface
can be modeled as that of a homogeneous and uniform sheet of
effective material parameters.16,82

2.1 In the Case of Dipolar Responses

Let us consider a uniform and homogeneous bianisotropic meta-
surface whose constitutive relations are given as83

�
D
B

�
¼

�
ϵ ξ

ζ μ

�
·

�
E
H

�
; (1)

where ϵ is the permittivity matrix, μ is the permeability matrix,

and ξ and ζ are magnetoelectro-coupling matrices. In what
follows, we will consider that this metasurface is reciprocal,
implying that

ϵ ¼ ϵT; μ ¼ μT; ζ ¼ −ξT; (2)

where T is the transpose operation.83

To obtain the invariance conditions that apply to parameters

ϵ, μ, ξ, and ζ in Eq. (1), we must first understand how the electric
and magnetic fields, E and H, transform under a given sym-
metry operation. For this purpose, consider the transformation

matrix Λ, that corresponds to an arbitrary symmetry operation
such as those described in Appendix. It follows that E and H,
respectively, transform into E0 and H0 as51,52

E0 ¼ Λ · E; (3a)

H0 ¼ 1

jωϵ0
ðΛ · ∇Þ × ðΛ · EÞ ¼ detðΛÞΛ ·H; (3b)

where we have used the fact that the magnetic field H, being a
pseudo-vector, transforms as the curl of electric field E. Note
that all polar vectors would transform in the same way as E
in Eq. (3a), whereas all pseudo-vector vectors transform as
H in Eq. (3b). For the system in Eq. (1), we thus have

D0 ¼ Λ ·D; (4a)

B0 ¼ detðΛÞΛ · B: (4b)

We next use Eqs. (3) and (4) to obtain the transformation
relations that apply to the material parameters in Eq. (1). To
do so, we reverse Eqs. (3) and (4) to express E, H, D, and
B in terms of E0, H0, D0, and B0, respectively and then substitute
the resulting relations into Eq. (1). By association, this readily
yields51

ϵ0 ¼ Λ · ϵ · ΛT
; (5a)

μ0 ¼ Λ · μ · ΛT
; (5b)

ξ
0 ¼ detðΛÞΛ · ξ · ΛT

; (5c)

ζ
0 ¼ detðΛÞΛ · ζ · ΛT

; (5d)

where we have used the fact that Λ is an orthogonal matrix,

implying that Λ−1 ¼ ΛT
and that detðΛÞ ¼ detðΛÞ−1, since

detðΛÞ ¼ þ1 for rotation symmetries and detðΛÞ ¼ −1 for
reflection symmetries (refer to Appendix).

The relations in Eq. (5) represent how dipolar material
parameters change under a particular spatial transformation

defined by Λ. We shall see in Sec. 2.3 how such relations
may be transformed into symmetry invariance conditions but,
first, we shall investigate how these relations may be extended
to an arbitrary multipolar order, which is the topic of the next
section.

2.2 Extension to Multipolar Responses

As we shall see in Sec. 4, some electromagnetic effects cannot
be described solely using a purely dipolar model. This motivates
the need to extend the dipolar framework discussed in the pre-
vious section to include higher-order multipolar components
and their associated spatially dispersive responses. For this pur-
pose, we combine concepts from the multipolar theory typically
used for modeling metamaterials22–24,26,27 along with concepts
associated to spatial dispersion.29–31 For the sake of conciseness,
we shall next restrict ourselves to dipolar and quadrupolar re-
sponses, while higher-order multipolar responses may be con-
sidered in future works by following a procedure identical to
the one discussed thereafter.

It follows that the quadrupolar constitutive relations
read21,31,64

D ¼ ϵ0Eþ Pþ ∇ ·Q; (6a)

B ¼ μ0ðH þM þ ∇ · SÞ; (6b)

where P and M are electric and magnetic polarization densities,

and Q and S are irreducible (symmetric and traceless) electric
and magnetic quadrupolar density tensors, respectively. The
reason for considering irreducible tensors is that they provide a
physically consistent description of the metasurface response.25

These quantities may be related to the fields via the spatially
dispersive relations21,64
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2
66664
Pi

Mi

Qil

Sil

3
77775 ∝

2
66664

χijee χijem χ0ijkee χ0ijkem

χijme χijmm χ0ijkme χ0ijkmm

Qilj
ee Qilj

em Q0iljk
ee Q0iljk

em

Siljme Siljmm S0iljkme S0iljkmm

3
77775 ·

2
66664

Ej

Hj

∇kEj

∇kHj

3
77775; (7)

where χijee, χ
ij
em, χ

ij
me, and χijmm are related to the parameters in

Eq. (1), whereas all the other terms are there to fully model
the quadrupolar response of the metasurface. Note that reciproc-
ity imposes relationships between parameters in Eq. (7), with
the relevant reciprocity relations presented in Ref. 64.

As was done in Eq. (5), we may express the transformation
relations that apply to the parameters in Eq. (7). To do so, we
make use of tensor notation (in what follows, we omit the sum-
mations over repeated indices for convenience), since it applies
more conveniently to the third- and fourth-order tensorial
parameters in Eq. (7). It follows that an arbitrary tensor T, cor-
responding to any of the tensorial parameters of orders 1 to 4 in

Eq. (7), transforms under the transformation Λ as84

T 0
i ¼ aΛijTj; (8a)

T 0
ij ¼ aΛimΛjkTmk; (8b)

T 0
ijk ¼ aΛilΛjmΛknTlmn; (8c)

T 0
ijkl ¼ aΛimΛjnΛkoΛlpTmnop; (8d)

where a ¼ detðΛÞn with n ¼ 0 for the “ee” or “mm” tensors in
Eq. (7) and n ¼ 1 for the “em” or “me” tensors (in the case of
polar vectors, n ¼ 0, whereas n ¼ 1 for pseudo-vectors), re-
spectively. It is clear that Eqs. (8a) and (8b) are the tensor nota-
tion counterparts of Eqs. (3) and (5), respectively.

Extending this formalism to higher-order multipolar contri-
butions is rather trivial. To do so, one first needs to include these
additional contributions in Eq. (7) along with their correspond-
ing spatial derivatives, which increases the total number of spa-
tially dispersive material parameter tensors. For instance, taking
into account octupolar contributions would require adding 20
new material tensors of orders 4 to 6 in Eq. (7), since second-
order spatial derivatives must be included. Then, the relations in
Eq. (8) would also need to be extended to apply to the additional
material tensors of orders 5 and 6, which can be easily achieved
by logical extrapolation.

2.3 Invariance Conditions for Material Tensors

We have just established that under a given symmetry operation,
the material parameters in Eq. (7) transform according to the
relations in Eq. (8). We are now interested in connecting the
material parameters in Eq. (7) to the spatial symmetries of a
metasurface. This may be achieved by considering that, accord-
ing to Neumann’s principle, if a given structure is invariant
under a symmetry operation, then its material parameters should
also be invariant under the same operation.79–81 Such an invari-
ance condition may be mathematically expressed from Eq. (8)
as

Ti ¼ aΛijTj; (9a)

Tij ¼ aΛimΛjkTmk; (9b)

Tijk ¼ aΛilΛjmΛknTlmn; (9c)

Tijkl ¼ aΛimΛjnΛkoΛlpTmnop; (9d)

which implies that the tensor T remains equal to itself after
being transformed by Λ.

To obtain the material parameters that correspond to a given
metasurface structure, we shall now describe a technique directly
based on Eq. (9). This technique differs from those described
in the literature, such as those that consist in expressing the
material parameters for various symmetry groups51,52 or those
using the orthogonality theorem to find the irreducible represen-
tation of the structure.53–56 Instead, we propose an approach that
consists in recursively solving Eq. (9) for each symmetry oper-
ation for which the metasurface structure is invariant. By start-
ing with a full material parameter tensor T (one that contains all
parameters), each iteration of this procedure leads to a system of
equations formed by Eq. (9) that, when solved, reduces the com-
plexity of T by connecting some of its components or by setting
others to zero. At the end of this process, one is left with a tensor
that is precisely invariant under all symmetry operations that
define the metasurface structure and thus properly models its
effective response.

To illustrate this process, let us consider two different meta-
surfaces formed by periodically arranging in the x − y plane
either the unit cell shown in Fig. 1(a) or the one shown in
Fig. 1(b). These two unit cells are composed of the same scat-
tering particle and only differ in the geometry of their lattice.

Inspecting the symmetries of these two metasurfaces, it is
obvious that both are invariant under reflections through the
x, y, and z axes, which corresponds to the symmetry operations

Λ ¼ σx; σy; σz (see Appendix). However, although they are
composed of the same scattering particle, the metasurface unit
cell in Fig. 1(a) possesses a square lattice, whereas the one in
Fig. 1(b) possesses a rectangular lattice. It follows that these
two metasurfaces do not exhibit the same rotation symmetry
along the z axis. Indeed, a metasurface composed of a periodic

arrangement of the unit cell in Fig. 1(a) would have a Λ ¼ C4;z
rotation symmetry [corresponding to 90 deg rotation symmetry
along z; see Eq. (33)], whereas the one composed of the unit

cell in Fig. 1(b) would have a Λ ¼ C2;z rotation symmetry
(corresponding to 180 deg rotation symmetry along z).

(a) (b)

Fig. 1 Two different metasurface unit cells made of identical
scattering particles arranged within (a) a square lattice and
(b) a rectangular lattice.
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Now that we have found the symmetries corresponding to the
two metasurfaces in Fig. 1, we can apply the process described
above to find the permittivity matrix of these structures. Here,
we restrict ourselves to finding ϵ for simplicity but without loss
of generality, since the process to obtain the other material
parameters in Eq. (7) would be identical. We provide more com-
plete examples that include all material parameters in Sec. 4.

The process of finding the permittivity matrix corresponding
to the metasurfaces in Fig. 1 starts by considering the full per-
mittivity matrix given as

ϵ ¼
2
4 ϵxx ϵxy ϵxz
ϵxy ϵyy ϵyz
ϵxz ϵyz ϵzz

3
5; (10)

where the reciprocity conditions in Eq. (2) have been consid-

ered. Next, Eq. (9b) is solved using Eq. (10) and Λ ¼ σx with
σx given in Eq. (31a), which leads to the simplified permittivity
matrix,

ϵ ¼
2
4 ϵxx 0 0

0 ϵyy ϵyz
0 ϵyz ϵzz

3
5: (11)

This process is then repeated by solving Eq. (9b) again, but

this time with Eq. (11) and Λ ¼ σy, and then once again with

Λ ¼ σz to obtain

ϵ ¼
2
4 ϵxx 0 0

0 ϵyy 0

0 0 ϵzz

3
5: (12)

We are now left with the two rotation symmetries, C4;z and
C2;z. However, it turns out that the permittivity matrix in
Eq. (12) already corresponds to the structure in Fig. 1(b).
Indeed, we do not even need to apply a further iteration of

the process with Λ ¼ C2;z because a structure possessing reflec-
tion symmetries along the x and y axes necessarily and auto-
matically possesses a C2;z rotation symmetry. (However, the
opposite is not necessarily true. Indeed, a structure possessing
a C2;z symmetry, such as an S-shaped structure lying in the x − z
plane, would not possess a reflection symmetry along the
x axis.) This would therefore make a further application of

the process with Λ ¼ C2;z redundant. On the other hand, the
rotation symmetry C4;z is not redundant and applying Eq. (19)

with Λ ¼ C4;z and Eq. (9b) leads to

ϵ ¼
2
4 ϵxx 0 0

0 ϵxx 0

0 0 ϵzz

3
5; (13)

which is the permittivity matrix that corresponds to the metasur-
face in Fig. 1(a).

Obviously, for such simple structures as those in Fig. 1, the
results obtained in Eqs. (12) and (13) could have been guessed
simply based on intuition. However, for more complex struc-
tures, intuition alone is usually not sufficient to guess the correct
shape of the material parameter tensors, especially those related
to quadrupolar responses in Eq. (7). The usefulness of the

approach in such cases is emphasized using examples found
later in Sec. 4.

Note that the background medium is assumed to be identical
on both sides of the metasurfaces in Fig. 1. However, in practice,
the scattering particles are usually deposited on top of a sub-
strate instead of being embedded into a uniform background
medium. In this case, the presence of the substrate would
actually break the symmetry of the system in the z direction,
meaning that the metasurface response would not be invariant
under Λ ¼ σz. While this would not change the shape of the
permittivity matrices in Eqs. (12) and (13), it would have sig-
nificant influence on the other material parameters in Eq. (7).
For instance, it has been shown that the presence of a substrate
is sufficient to lead to 3D chiral responses for metasurfaces com-
posed of only 2D chiral scattering particles such as Gammadion
structures.41

3 Scattering Matrix from Symmetries
In the previous sections, we have seen how the effective material
tensors of a metasurface may be predicted by considering the
spatial symmetries of the metasurface unit cell. We shall now
investigate the relationships between the scattering properties of
a metasurface and its spatial symmetries.

It turns out that the spatial symmetries of the metasurface unit
cell are not the only parameters to consider when investigating
the metasurface scattering response. Indeed, one needs to also
take into account the influence of the waves interacting with the
metasurface. This is because the combined system composed of
the superposition of the metasurface and the incident and scat-
tered waves exhibits spatial symmetries that are not the same as
those of the metasurface alone.70–76 Such considerations have
already been well discussed in the literature, specifically in the
pioneering works by Dmitriev for the case of normally incident
waves72 and oblique propagation.73

In what follows, we shall review the general concepts dis-
cussed in Refs. 72 and 73 for the case of reciprocal metasurfaces
and develop a procedure to obtain the scattering matrix of a
metasurface for a given direction of propagation that is similar
to the procedure described in Sec. 2.3.

Let us first consider the case of a reciprocal metasurface
illuminated by obliquely propagating plane waves. Since the
metasurface is considered to be uniform and its lattice period
is deeply subwavelength, it scatters the incident waves accord-
ing to Snell’s law. Such a situation is depicted in Fig. 2, where
two input and output “ports” transmit and receive, respectively,
TE- and TM-polarized waves. Here, the plane of incidence is
arbitrarily chosen to be the x − z plane. The scattering matrix
associated with the interactions in Fig. 2 is given as72,73

S ¼

2
664
R11 R12 T13 T14

R21 R22 T23 T24

T31 T32 R33 R34

T41 T42 R43 R44

3
775; (14)

where Rab and Tab are reflection and transmission coefficients,
respectively, with a; b ¼ 1, 2; 3, 4 corresponding to the polari-
zation state of the different waves where even and odd numbers
are associated to TE and TM polarizations, respectively.

We are now looking for an invariance condition that would

apply to S in a similar way that the invariance conditions
in Eq. (9) applied to the material tensor T. For this purpose,
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we need to relate S to the symmetries of the combined system

(metasurface and direction of wave propagation) defined by Λ.
From that prospect, we start by defining a rotated version of Λ
that is aligned with the orientation of the plane of incidence,
since the latter is generally not restricted to the x − z plane.

This rotated version of Λ is given as

Λ0 ¼ RzðϕÞ · Λ · RzðϕÞT; (15)

where the rotation matrix Rz is defined in Eq. (32c) and ϕ rep-
resents the angle between the plane of incidence and the x − z
plane. Consequently, if the plane of incidence coincides with the
x − z plane, then ϕ ¼ 0 deg or ϕ ¼ 180 deg, whereas if it is
aligned with the y − z plane, then ϕ ¼ 90 deg or ϕ ¼ 270 deg.

Now, since we are considering a given plane of incidence,
it follows that only the spatial symmetries that map an input/
output port to another one are to be considered for obtaining
a symmetry-invariant scattering matrix.73 The other symmetry
operations, such as the C4;z rotation symmetry, should not be
considered, since they would be inconsistent with a fixed plane
of incidence. Therefore, the only spatial symmetries that make

sense to be taken into account are Λ ¼ σi and Λ ¼ C2;i, where
i ¼ x; y; z as well as the inversion symmetry operation defined

by Λ ¼ −I.
Among this set of relevant symmetry operations, we may fur-

ther classify them according to their effects on the polarization
and the direction of wave propagation of the incident and scat-
tered waves. For instance, applying the symmetry operation

Λ ¼ σx on the system in Fig. 2 would flip the sign of the
TM polarizations while leaving the TE polarizations unaffected,
and it would also flip the direction of the propagation vectors k.

On the other hand, the operation Λ ¼ σy would flip the sign of
the TE polarizations while leaving both the TM polarizations
and the k-vectors unchanged.

Finally, we need to define a transformation operation that

would apply to S in the same way that the tensor T was trans-

formed by the operation Λ in Eq. (8). This may be achieved by

defining the transformed scattering matrix, S
0
, as S

0 ¼ M · S,

where M is a transformation matrix that is related to Λ.73

Note that in Ref. 73 a specific transformation matrix M was
defined for each of the relevant symmetry operations specified
previously, based on the intuitive effects that these operations
have on the polarizations and propagation directions of the
waves. In what follows, we shall instead provide a technique

that directly connects M with Λ.
Noting that the invariance condition may be expressed as

S ¼ M · S ·M−1 for the symmetry operations that do not affect

the direction of the k vectors, whereas it is given by S ¼ M · S
T
·

M−1 for the symmetry operations that flip the k vectors,73

we define the general invariance condition as

S ¼ M · ½bSþ ð1 − bÞST � ·M−1; (16)

where b ¼ 1 − c
2
ð1 − Λ0

xxÞ, with Λ0
xx ¼ x · Λ0

· x and c ¼ c1c2
and c1 and c2 given as

c1 ¼
�
1; if Λ0

xz ¼ Λ0
yz ¼ 0;

0; otherwise;
(17a)

c2 ¼
�
1; if Λ0

· y ¼ �RzðϕÞT · RzðϕÞ · y;
0; otherwise:

(17b)

The transformation matrix M in Eq. (16) is now obtained by
generalizing the results provided in Ref. 73, which leads to

M ¼
�
aþ a−
a− aþ

�
; (18)

where the submatrices aþ and a− are defined as

aþ ¼ c
2
ð1þ Λ0

zzÞ
�
Λ0
yy 0

0 Λ0
xx

�
þ ð1 − cÞIt; (19a)

a− ¼ c
2
ð1 − Λ0

zzÞ
�
Λ0
yy 0

0 Λ0
xx

�
; (19b)

where It is a two-dimensional identity matrix.
The procedure to obtain the scattering matrix of a given

metasurface under oblique incidence is quite similar to the ap-
proach described in Sec. 2.3 for finding the metasurface material
parameter tensors. It consists in first defining the orientation of
the plane of incidence with ϕ, and then recursively solving
Eq. (16) for each of the relevant symmetry operations expressed
using Eq. (15).

For the special case of normally incident plane waves im-
pinging on the metasurface, it is required to slightly modify this
procedure.72 First, at normal incidence, the orientation of the
plane of incidence loses its meaning and Eq. (15) should be by-
passed by setting ϕ ¼ 0 deg. Then, the TE and TM polariza-
tions should now be associated with x and y polarizations,
respectively. Finally, it now actually makes sense to consider
the C4;z rotation symmetry as it correctly maps TE to TM polar-
izations together. For this specific symmetry operation, the

invariance condition Eq. (16) reduces to S ¼ M · S ·M−1 with

M given as72

Fig. 2 Cross-sectional view of a metasurface interacting with
TE- and TM-polarized plane waves.
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MC4;z
¼

2
64
0 −1 0 0

1 0 0 0

0 0 0 −1
0 0 1 0

3
75: (20)

For all the other symmetry operations, relations
Eqs. (16)–(19) should be used.

Before looking at examples illustrating the application of the
method described above, which will be presented in the next
section, we would like to comment on how to deduce the polari-
zation effects induced by a metasurface directly from its scatter-
ing matrix. Considering the general scattering matrix [Eq. (14)],
we see that it may be reduced to four internal submatrices com-
posed of two sets of reflection and transmission matrices. Each
one of these submatrices may be associated with a Jones matrix,
since they describe how different polarizations are scattered by
the metasurface.85 From a given Jones matrix, it is then possible
to deduce the general effect that the metasurface has on differ-
ent polarization states.75–77,86 For completeness, we provide in
Table 1 the relationships between some common Jones matrices
and their corresponding polarization effects.

4 Illustrative Examples
We shall now look at three examples that illustrate the applica-
tion of the techniques described in Sec. 2 and in Sec. 3. In these
examples, we will represent the material parameter tensors in
way that is reminiscent of how they are depicted in Ref. 34,
meaning that we will make use of the fact that the quadrupolar
tensors in Eq. (6) are assumed to be irreducible tensors (sym-
metric and traceless), which allows us to greatly reduce the
number of independent components in Eq. (7). This also means
that the derivative operators in Eq. (7) can be simplified such
that, for instance, the electric field gradient becomes34

⋄E ¼ fð∂xEy þ ∂yExÞ∕2; ð∂xEz þ ∂zExÞ∕2;
ð∂yEz þ ∂zEyÞ∕2; ∂xEx; ∂yEy; ∂zEzg; (21)

and similarly for the magnetic field gradient.

4.1 Extrinsic Chirality

Extrinsic chirality corresponds to an electromagnetic effect in
which a medium (in our case a metasurface) exhibits a chiral
response even though it is not composed of geometrically 3D
chiral scattering particles.43–46 This chiral response emerges only
when the metasurface is illuminated along a specific direction,
hence the reason why it is referred to as “extrinsic”: it depends
on the direction of wave propagation.

Consider the metasurface unit cell depicted in Fig. 3 com-
posed of a T-shaped metallic particle embedded in a uniform
background medium. The metasurface is illuminated by an
obliquely incident plane wave propagating either in the x − z
plane, as in Fig. 3(a), or in the y − z -plane, as in Fig. 3(b).

The spatial symmetries of the metasurface, assuming that
it has a square lattice, are directly found to be σx and σz.
Note that it also exhibits a C2;y rotation symmetry; however,
it is redundant, since we have already considered its σx reflec-
tion symmetry, as explained in Sec. 2.3. Applying the procedure
outlined in Sec. 2.3, we find the multipolar components of this
metasurface and present them in Fig. 4, using Eq. (21), in way
that is similar to the representations in Ref. 34.

In Fig. 4, the vertical and the horizontal axes, respectively,
correspond to the multipolar densities and the excitation vector,
on the left- and right-hand side of Eq. (7), where the term ⋄e

xy
corresponds to the first element in Eq. (21), and so on. The num-
bers and the colors in the figure are purely arbitrary and only
help visualize which components are allowed to exist due to
the symmetries of the structure and which components are
related to each other (components that have the same number
and color).

The information provided in Fig. 4 reveals the complexity of
the metasurface multipolar response, notably its bianisotropic
dipolar nature due to the existence of the components numbered
4 and 5 in the matrix. Comparing the results in Fig. 4 with those
of the dolmen structure provided in Ref. 34 reveals a perfect
match between the two methods. It should be noted that results
in Fig. 4 only correspond to the components that are allowed to
exist, and it does not provide any information about the
magnitude of these components. On the other hand, the results
presented in Ref. 34 provide the numerical value of the

(a) (b)

Fig. 3 (a) and (b) Metasurface unit cell composed of a T-shaped
particle being illuminated by an obliquely incident plane wave.
The metasurface lattice is a square.

Table 1 Jones matrices and their effects on the polarization state.75–77,86a

Jones matrix

�
a 0
0 a

� �
a 0
0 d

� �
a b
b d

� �
a b
−b a

� �
a b
−b d

� �
a b
c d

�

Polarization
effects

None LP biref. LP biref. polarization
conversion asymmetric

transmission

CP biref.
polarization
rotation

LP/CP biref.
polarization
conversion

LP/CP biref. polarization
conversion asymmetric

transmission
aThe terms “LP biref.” and “CP biref.” refer to linear and circular birefrigence, respectively, which also include the effects related to linear and circular

dichroism.
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multipolar components, since the method used to obtain them
consists in numerically simulating the structure with a complex
set of different illumination conditions, which results in an im-
portant computational cost.

Now, we use the approach described in Sec. 2 to compute the
scattering matrix for the obliquely propagating waves of Fig. 3.

Using Eqs. (15)–(19) with Λ ¼ σx, Λ ¼ σz, and ϕ ¼ 0 deg
yields the scattering matrix, for the case in Fig. 3(a), given as

S ¼

2
664

R11 R12 T13 T14

−R12 R22 −T14 T24

T13 T14 R11 R12

−T14 T24 −R12 R22

3
775: (22)

Similarly, using ϕ ¼ 90 deg, we obtain the scattering matrix
for the case in Fig. 3(b) as

S ¼

2
664
R11 0 T13 0

0 R22 0 T24

T13 0 R11 0

0 T24 0 R22

3
775: (23)

Comparing Eqs. (22) and (23), it is clear that illuminating
the metasurface along different directions of wave propagation
leads to quite different polarization effects. When the metasur-
face is illuminated in the x − z plane, as in Fig. 3(a), we see that
the internal Jones matrices in Eq. (22) exhibit circular birefrin-
gent properties typical of chiral responses (see Table 1). On the
other hand, illuminating the metasurface in the y − z plane, as in
Fig. 3(b), leads to a linear birefringent response, as evidenced by
the scattering matrix in Eq. (23). This analysis confirms that the
metasurface is extrinsically chiral, since its chiral response is
dependent on the direction of wave propagation.

One way to understand the emergence of a chiral response in
this structure is to consider its bianisotropic dipolar response.

For an illumination in the x − z plane, both TE and TM polar-
izations excite the components 4 and 5 in Fig. 4, which corre-
spond to the components χxzem and χzxem in Eq. (7), respectively, or
to their reciprocal counterparts χzxme and χxzme. Since these two
components have different values that thus cannot cancel each
other, they lead to a net chiral response.10 However, for an illu-
mination in the y − z plane, both TE and TM polarizations ex-
cite either the set of parameters χxzem and χzxme or the set χzxem and
χxzme, respectively. Since by reciprocity [see Eq. (2)], χxzem ¼ −χzxme

and χzxem ¼ −χxzme, these two contributions cancel each other,
leading to an absence of chiral response.

4.2 Asymmetric Angular Transmittance

We are now interested in designing a metasurface that exhibits
an asymmetric angular transmittance when illuminated in the
x − z plane. While it has been shown that asymmetric angular
transmittance may be achieved using spatially varying metasur-
faces with phase-gradient modulations,87 we are instead inter-
ested in designing a uniform metasurface whose asymmetric
scattering response stems from the asymmetry of its structure.

Let us consider the two metasurfaces depicted in Fig. 5,
composed of a periodic array of L-shaped scattering particles.
In Fig. 5(a), the structures lie flat on the plane of the surface,
whereas they stand vertically in Fig. 5(b).

Since both structures are asymmetric in the x direction, one
may a priori expect that they would both lead to an asymmetric
scattering response for waves propagating in the x − z plane in
opposite directions, like the waves Ψ1 and Ψ2 in Fig. 5.
However, that is not the case, as we shall next demonstrate.

The spatial symmetries of the structure in Fig. 5(a) are σz and
σxy, whereas those of the structure in Fig. 5(b) are σy and σxz,
where σxy and σxz refer to symmetries with respect to the
45 deg diagonal between the x and y axes or between the
x and z axes, respectively. These symmetries may be defined
by combining those provided in the Appendix so that
σxy ¼ Rzð−45 degÞ · σx · Rzð45 degÞ and σxz ¼ Ryð−45 degÞ·
σx · Ryð45 degÞ. Applying the approach discussed in Sec. 2.3 to
these two sets of symmetries yields their corresponding material
parameter tensors, which are provided in Fig. 6. As can be seen,
both structures are bianisotropic and, if one only considers
their permittivity matrix, we see that ϵxx ¼ ϵyy and ϵxy ≠ 0 for
the flat L-shaped structures of Fig. 5(a), whereas ϵxx ¼ ϵzz and
ϵxz ≠ 0 for the vertical L-shaped structures of Fig. 5(b), as may
be expected intuitively.

(a) (b)

Fig. 5 Two metasurfaces composed of (a) planar L-shaped
structures and (b) vertical L-shaped structures. In both cases,
the structures have arms of equal length.

Fig. 4 Representation of the symmetry-allowed multipolar com-
ponents corresponding to the metasurface in Fig. 3.
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We next compute their respective scattering matrices. For
the case in Fig. 5(a), and the waves Ψ1 and Ψ2 that propagate
in the x − z plane (ϕ ¼ 0 deg), we have

S ¼

2
664

R11 R12 T13 T14

−R12 R22 −T14 T24

T13 T14 R11 R12

−T14 T24 −R12 R22

3
775: (24)

Interestingly, we see that this structure exhibits a form of ex-
trinsic chirality similar to the one in Fig. 3(a). However, this
metasurface does not possess an asymmetric angular transmit-
tance, since the two transmission submatrices in Eq. (24) are
equal to each other, implying that Ψ1 and Ψ2 transmit through
the metasurface identically.

Note that if the plane of incidence coincides with the in-plane
axis of symmetry along which σxy is satisfied, as it is the case for
the wave Ψ3 in Fig. 5(a), the extrinsic chiral response disap-
pears, as evidenced by the scattering matrix (ϕ ¼ 45 deg),

S ¼

2
664
R11 0 T13 0

0 R22 0 T24

T13 0 R11 0

0 T24 0 R22

3
775: (25)

For the metasurface in Fig. 5(b), and the waves Ψ1 and Ψ2

that propagate in the x − z plane (ϕ ¼ 0 deg), we have

S ¼

2
664
R11 0 T13 0

0 R22 0 T24

T31 0 R33 0

0 T42 0 R44

3
775: (26)

This time, not only is there no cross-polarized scattering, but
the two transmission submatrices are different from each other
(T13 ≠ T31 and T24 ≠ T42), implying that the waves Ψ1 and Ψ2

interact differently with the metasurface. This indicates that
asymmetric angular transmittance is possible in this situation.
For the incident wave Ψ3 that propagates in the y − z plane,
there is, however, no co-polarized angular transmittance asym-
metry, as evidenced by its scattering matrix (ϕ ¼ 90 deg),

S ¼

2
664

R11 R12 T13 T14

−R12 R22 T23 T24

T13 −T23 R33 R34

−T14 T24 −R34 R44

3
775: (27)

Nevertheless, illuminating the metasurface under this direc-
tion of propagation should induce a form of asymmetric trans-
mittance when illuminated in the þz or the −z directions. This
therefore does not correspond to the sought-after asymmetric
angular transmittance effect.

4.3 Multipolar Extrinsic Chirality

The last example investigates the scattering response of the two
metasurfaces depicted in Fig. 7 under normal illumination. The
metasurface in Fig. 7(a) consists of a simple periodic array of
square-shaped scattering particles, whereas the one in Fig. 7(b)
is made of Gammadion structures. In both cases, the metasur-
face is embedded within a uniform medium.

While it is intuitive to guess that a normally incident plane
wave impinging on the metasurface in Fig. 7(a) would not
undergo polarization conversion, it is less trivial to intuitively
predict the response of the metasurface in Fig. 7(b). Referring to
the literature, it was for instance suggested in Ref. 41 that such
an ideal Gammadion array should not exhibit a chiral response

(a) (b)

Fig. 6 Symmetry-allowed material parameter tensors corresponding to the metasurface in
(a) Fig. 5(a) and in (b) Fig. 5(b).
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unless the scattering particles are asymmetric in the z direction
(or the metasurface lies on a substrate). In what follows, we shall
see that the problem is in fact more complex than it appears.

Let us first compute the material parameter tensors of these
two metasurfaces. The symmetries associated with the metasur-
face in Fig. 7(a) are σx, σy, σz, and C4;z, whereas those for the
metasurface in Fig. 7(b) are only σz and C4;z. The corresponding
material parameter tensors are given in Fig. 7. Inspecting the
differences between Figs. 8(a) and 8(b) reveals a striking fea-
ture: they both exhibit identical purely dipolar responses, i.e.,
the four 9 × 9 submatrices relating p and m to E and H are
the same for both metasurfaces. This means that a modeling ap-
proach solely based on Eq. (1) would fail to predict a difference
in the scattering response of these metasurfaces. It is only by
considering quadrupolar responses and higher-order spatially
dispersive effects that the differences between these metasurfa-
ces become evident.

Following the approach described in Sec. 3 for normally
incident waves, the scattering matrix of the metasurface in
Fig. 7(a) is given as

S ¼

2
664
R11 0 T13 0

0 R11 0 T13

T13 0 R11 0

0 T13 0 R11

3
775; (28)

whereas the one for the metasurface in Fig. 7(b) reads

S ¼

2
664

R11 R12 T13 T14−R12 R11 −T14 T13

T13 T14 R11 R12

−T14 T13 −R12 R11

3
775: (29)

As may be expected, the metasurface in Fig. 7(a) is isotropic
and does not induce any polarization rotation or conversion at
normal incidence. On the other hand, the shape of the scattering
matrix of Eq. (29) reveals that the metasurface in Fig. 7(b)
should exhibit a chiral response. This may come as a surprise,
considering that the metasurface is not made of geometrically
3D chiral structures and that it is illuminated at normal inci-
dence. However, a detailed inspection of the material parameter
tensors in Fig. 8(b) helps us understand why such a chiral re-
sponse exists.

Consider an x-polarized normally incident plane wave im-
pinging on the metasurface in Fig. 7(b) with an electric field
defined by E ¼ x̂eiðωt−kzÞ and a magnetic field given by
H ¼ ŷeiðωt−kzÞ∕η, with k and η being the wavenumber and
impedance of the background medium. This wave excites the
components 5 and 19 in Fig. 8(b) via the field derivatives
⋄e
xz and ⋄h

yz, which, in this case, correspond to ∂zEx and
∂zHy, respectively. Since these spatial derivatives are not zero
for the considered excitation, it follows that these two material
components, which do not exist for the metasurface in Fig. 7(a),
respectively induce an x-polarized magnetization of the

(a) (b)

Fig. 7 Two metasurfaces composed of a periodic array of
(a) square particles and (b) Gammadion particles.

(a) (b)

Fig. 8 Symmetry-allowed material parameter tensors corresponding to the metasurface in
(a) Fig. 7(a) and in (b) Fig. 7(b).
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metasurface, mx, and a y-polarized polarization, py, suggesting
rotation of polarization. By reciprocity,64 the components 5 and
19 also induce the quadrupolar responses Qyz and Sxz that are
excited via the field components Hy and Ex, respectively, and
that also contribute to rotation of polarization.

In order to verify that the multipolar components py,mx,Qyz,
and Sxz are indeed excited when illuminating such a structure
with an x-polarized normally propagating plane wave, we have
numerically simulated an isolated Gammadion particle. From
its scattered fields, we have extracted its spherical multipolar
components following the approach provided in Ref. 88. The
resulting simulations are plotted in Fig. 9, where the solid
and dashed lines correspond to the co- and cross-polarized
multipolar components, respectively. It is thus clear that a
cross-polarized response is achieved, although it is small com-
pared to the co-polarized one. This confirms that the metasur-
face in Fig. 7(b) exhibits a chiral response, as suggested by its
scattering matrix, Eq. (29).

This type of chiral response slightly differs from the one dis-
cussed in Sec. 4.1, where the chirality was due to an obliquely
propagating wave interacting with the bianisotropic effective
material parameters of the structure. In the case of the metasur-
face in Fig. 7(b), the chiral response is due to multipolar and
spatially dispersive components excited by a normally propagat-
ing plane, thus indicating the presence of multipolar extrinsic
chirality. The extrinsic nature of this chiral response is here not
directly related to the direction of wave propagation, as it was
the case in Sec. 4.1, but rather to the gradient of the fields.

5 Conclusions
We have established a relationship between the spatial sym-
metries of a metasurface and its corresponding material param-
eter tensors and scattering matrix. This relationship has been
obtained based on a simple approach that consists in the recur-
sive application of invariance conditions, instead of relying on
complicated concepts pertaining to group theory. This makes
this approach versatile and accessible to a large audience.
Moreover, to facilitate the application of the proposed approach,
we have implemented a Python script that conveniently com-
putes the form of the material parameter tensors and the scatter-
ing matrix directly from a list of specified symmetries. This
Python script is freely accessible on GitHub.78

Based on this approach, we have shown how easy it is to
investigate responses such as extrinsic chirality or asymmetric

angular transmittance. We have also demonstrated the possibility
of multipolar extrinsic chirality, where chiral responses may
be achieved in achiral structures even for normally incident
waves due to the excitation of multipolar components; this
was shown to result from the sensitivity of certain structures to
field gradients. These examples demonstrate that intuition alone
is insufficient to predict the effective material tensors and rich
scattering behavior that can be achieved, and thus highlight the
usefulness of our method.

6 Appendix: Symmetry Operations
Reflection symmetries may be expressed using the Householder
equation89

Λ ¼ I − 2nn; (30)

where n corresponds to the reflection axis. It follows that the
symmetry operations σx, σy, and σz are defined as

σx ¼
"−1 0 0

0 1 0

0 0 1

#
; (31a)

σy ¼
"
1 0 0

0 −1 0

0 0 1

#
; (31b)

σz ¼
"
1 0 0

0 1 0

0 0 −1

#
: (31c)

On the other hand, the 3D rotation matrices are defined as

RxðθÞ ¼
"
1 0 0

0 cos θ − sin θ
0 sin θ cos θ

#
; (32a)

RyðθÞ ¼
"

cos θ 0 sin θ
0 0 0

− sin θ 0 cos θ

#
; (32b)

Fig. 9 Simulated spherical dipolar and quadrupolar components of an isolated gold Gammadion
structure illuminated by an x -polarized z-propagating plane wave. The arms of the Gammadion
structure have a cross section of 30 nm × 30 nm, while the footprint of the structure is
150 nm × 150 nm. The background medium is vacuum.
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RzðθÞ ¼
"
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

#
: (32c)

These matrices may be used to define the symmetry opera-
tion CN;i as

CN;i ¼ Ri

�
2π

N

�
: (33)
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