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Abstract

The landscape of computing is changing, thanks to the advent of modern networking equip-

ment that allows machines to exchange information in as little as one microsecond. Such

advancement has enabled microsecond-scale distributed computing, where entire distributed

services (e.g., trading systems, key-value stores) execute within a few microseconds. As a result,

these services manage to operate in a timescale that was not possible before, thus becoming

the foundation for several other dependent services.

The high-level problem we study in this thesis is that of making microsecond-scale com-

puting reliable, while simultaneously minimizing the latency overhead of achieving reliability.

Reliability is essential, as it allows services to provide non-stop operation to their users in spite

of failures. The recipe to achieving reliability is the well known technique of replication, yet

replication can undesirably incur significant latency to microsecond-scale applications. We

approach this problem from two fronts, as follows.

First, we observe a weakness in the way of achieving reliability in existing microsecond-scale

applications. Such applications rely on replication but they only look at making replication

efficient in the absence of failures. However, when failures occur, their latency cost increases

by at least two orders of magnitude. This behavior results in latency spikes, making microsec-

ond applications operate at milliseconds during periods of active failures. We set out to create

uKharon, a membership service for the microsecond scale that aims at addressing these issues

by exposing a simple and reusable interface that forms the basis for all microsecond-scale

applications requiring high reliability. We additionally showcase how uKharon can be used to

replicate a microsecond-scale application with minimal latency overhead.

Second, we take a step back and look at how to provide reliability under different failure

models. uKharon assumes the standard failure model of crashes, yet in certain occasions

failures can go beyond crashes. As such, we also look at Byzantine (i.e., arbitrary) failures,

in an attempt to safeguard applications from spurious failures, such as data corruption and

malicious behavior. However, dealing with Byzantine faults has always been associated

with high cost, either due to the number of machines required for replication, or due to the

necessary—yet computationally expensive—cryptographic signatures. We begin by studying

the theoretical limitations of achieving frugality, i.e., using few replicas and minimizing signa-

tures, in shared-memory distributed computing. With this knowledge, we then create uBFT,

v



Abstract

a Byzantine-resilient replication engine that relies on disaggregated memory, a technology

enabled by modern networking adapters that realizes shared memory in practice. Due to

its frugality, uBFT becomes the first system to offer Byzantine-resilient microsecond-scale

replication.

Keywords: Byzantine-fault tolerance, crash-fault tolerance, consensus, consistent broad-

cast, failure detection, membership service, Remote Direct Memory Access (RDMA), non-

equivocation, replication, state machine replication.
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Résumé

L’informatique est en train de changer grâce au matériel réseau moderne qui permet aux ma-

chines d’échanger des informations en à peine une microseconde. Une telle avancée a permis

à l’informatique distribuée de passer à l’échelle de la microseconde, où des services distribués

entiers (par exemple, des systèmes de trading, des bases de données clé-valeur) s’exécutent

en quelques microsecondes. En conséquence, ces services parviennent à fonctionner dans un

délai qui n’était pas possible auparavant, devenant ainsi la base de plusieurs autres services

dépendants.

Le problème global que nous étudions dans cette thèse est celui de rendre le calcul à l’échelle

de la microseconde fiable, tout en minimisant simultanément le surcoût en latence engendré

par la fiabilité. La fiabilité est essentielle, car elle permet aux services de fournir un fonc-

tionnement continu à leurs utilisateurs malgré des pannes. La fiabilité est atteinte grâce à la

technique bien connue de réplication, mais la réplication peut entraîner de manière indé-

sirable une latence significative pour les applications à l’échelle de la microseconde. Nous

abordons ce problème sous deux angles.

Tout d’abord, nous observons un problème dans la manière d’atteindre la fiabilité dans les

applications existantes à l’échelle de la microseconde. De telles applications s’appuient sur la

réplication, mais elles ne cherchent qu’à rendre la réplication efficace en l’absence de pannes.

Cependant, lorsque des pannes surviennent, leur latence augmente d’au moins deux ordres

de grandeur. Ce comportement entraîne des pics de latence, ce qui fait que les applications

sensées fonctionner à l’échelle de la microseconde opèrent en réalité à l’ordre de la millise-

conde pendant les périodes où des pannes subsistent. Nous avons créé uKharon, un service

d’affiliation à l’échelle de la microseconde qui vise à résoudre ces problèmes en exposant une

interface simple et réutilisable constituant la base de toutes les applications à l’échelle de la

microseconde nécessitant une haute fiabilité. Nous montrons également comment uKharon

peut être utilisé pour répliquer une application à l’échelle de la microseconde avec un coût

minimal en latence.

Deuxièmement, nous examinons la fiabilité selon différents modèles de pannes. uKharon

suppose le modèle standard de pannes franches, mais les pannes peuvent aussi aller au-delà

des pannes franches. Nous examinons donc également les pannes Byzantines, dans le but de

protéger les applications contre des comportements arbitraires telles que la corruption des
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données et les comportements malveillants. Cependant, la gestion des pannes Byzantines a

toujours été associée à un coût élevé, soit en raison du nombre de machines nécessaires à la

réplication, soit en raison des signatures cryptographiques nécessaires qui impliquent des

calculs coûteux. Nous commençons par étudier les limites théoriques de la réalisation de la

frugalité, c’est-à-dire l’utilisation de peu de répliques et la minimisation de l’utilisation de

signatures, dans l’informatique distribuée à mémoire partagée. Nous créons ensuite uBFT,

un service de réplication résilient aux pannes Byzantines qui s’appuie sur une mémoire désa-

grégée, une technologie rendue possible grâce à du matériel réseau moderne qui réalise en

pratique une mémoire partagée. Grâce à sa frugalité, uBFT est le premier système à offrir une

réplication à l’échelle de la microseconde résistante aux pannes Byzantines.

Mots-clés : tolérance aux pannes Byzantines, tolérance aux pannes, consensus, diffusion

cohérente, détection de panne, service d’affiliation, Remote Direct Access Memory (RDMA),

non-équivoquation, réplication, réplication de machine d’état.
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Introduction

Distributed systems form the backbone of computer systems in modern society. They are so

pervasive, that we often tend to forget their existence and their importance in our lives. For

example, today’s online services, including social networks, search engines, video streaming, e-

commerce and banking platforms are all instances of large scale distributed systems. Perhaps

surprisingly, distributed systems also appear in many cyber-physical systems. The traffic lights

at an intersection, the electronics in our cars, the wireless thermostats in our homes are only a

few examples of distributed systems that go beyond the aforementioned large scale online

services.

A distributed system is, more formally, a collection of several independent processing compo-

nents that interact with each other via a networking substrate. The goal of such a system is to

orchestrate its processing components in order to reach a collective goal, that is, to provide

a certain service. Unfortunately, these comprising components are typically imperfect and

therefore prone to failures, which can lead to inability of offering the desired service.

Building distributed systems is hard, especially due to the unpredictability and hostility of

the environment where the system is operating in. Delays in the networking substrate deliv-

ering the messages, or in the processing components can lead to system failure, unless such

behaviors are considered and addressed during the design phase of the system. Additionally,

deliberate deviation of some processing components from their intended behavior can also

lead to failure of the distributed system’s offered service.

We address scenarios such as the ones mentioned above, by designing reliable distributed

systems. Briefly, reliability refers to the system’s ability in being available at the highest

degree possible, in ensuring that the orchestration of processing components does not lead to

data corruption or loss within the distributed system, and finally in tolerating failures of the

distributed system’s processing components.

Replication is the core technique that stands behind the reliability of distributed systems. In a

replicated design, both the processing components executing the service, as well as the data

comprising it, exist multiple times in replicated instances called replicas. The key insight is

that by equipping the system with enough redundancy, it is possible to both replace a failing

component with a redundant one, as well as use the redundant components to ensure that
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deviation from the intended behavior is harmless, thus ultimately achieving reliability. Repli-

cation is typically achieved by means of a replication protocol, which ensures that replicas are

kept synchronized regardless of failures, such as these of machines or networking equipment.

Replication, however is associated with additional overhead. More hardware is required

in order to provide redundancy of the data and the processing components. At the same

time, to build this redundancy, replication protocols involve additional processing steps, thus

increasing the execution time of the service compared to a centralized service.

The impact of the increase in execution time due to replication depends on the time scale

systems operate in. Modern hardware has enabled microsecond-scale computing, i.e., commu-

nication and processing time is now small enough that a centralized service can serve requests

within a few microseconds. As a result, to design and implement reliable distributed systems

that operate in microseconds requires rethinking replication. In such time-constrained envi-

ronments, every microsecond counts, thus replication protocols need to be careful with how

time is spent. For example, solutions that replicate slower than the microsecond scale are

not appealing enough, as it is undesirable to provide reliability to a microsecond-scale (cen-

tralized) service without staying as close as possible to its pre-replication microsecond-scale

characteristics.

Thesis Context

The data center presents a unique opportunity for innovation, as new hardware has led to

a leap in data center performance. Today, typical network interconnects provide latency

in the microseconds and throughput in the hundreds of Gbps, moving towards Tbps [140].

Simultaneously, computational power is greater than ever, thanks to the availability of CPUs

with hundreds of cores, GPUs with thousands of cores, as well as FPGAs [2, 39, 149]. These

advancements are making microsecond-scale computing a reality [5, 64, 90, 94, 148, 181].

However, a crucial consideration of microsecond-scale computing is its reliability. Several

areas, such as finance (e.g., trading systems), embedded computing (e.g., control systems), and

microservices (e.g., key-value stores) simultaneously strive for low-latency and reliability due

to their critical nature. For such applications, failures should not jeopardize the availability

and safety of the application. We approach reliability through replication. Our ultimate goal is

to achieve microsecond-scale replication, in an attempt to lower the user-perceived cost of

replication, considering two types of failures: simple (crash) failures, and arbitrary (Byzantine)

failures.

Thesis Statement

In this thesis, we focus on replicating microsecond-scale distributed applications with the

least amount of overhead. To accomplish this, we target—what we prove to be—the main
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culprits of high latency in replication protocols: (1) reacting slowly to crash-stop failures,

and (2) relying on many replicas or employing expensive cryptography when considering

Byzantine failures. Towards this goal, we are inspired by the particular characteristics of a

modern data center networking technology, namely Remote Direct Memory Access (RDMA),

and show how these characteristics can be leveraged to our advantage. The end result is that

we manage to improve over the state-of-the-art, while simultaneously keeping our solutions

generic and not bound by the RDMA technology.

Thesis Roadmap and Contributions

In broad terms, this thesis spans across four parts, and makes three high-level contributions

(pronounced through the use of vertical bars) as follows.

Part I—Preliminaries

In the first part of this thesis we cover essential concepts on distributed computing (Chap-

ter 1) that are relevant in the subsequent parts, as well as provide a detailed overview of the

subsequent parts (Chapter 2).

Part II—Microsecond-Scale Crash Fault-Tolerant Replication

In the second part of this thesis, we study replication for microsecond-scale applications

under the crash-fault tolerance model.

We present a generic and reusable membership service (Chapter 3), that (1) facilitates the

replication of microsecond-scale applications, and (2) lowers their fail-over time.

Part III—Microsecond-Scale Byzantine Fault-Tolerant Replication

In the third part of this thesis, we turn our attention to Byzantine Fault-Tolerant (BFT) replica-

tion, which is capable of capturing faults that go beyond crashes.

We identify and analyze the severity of cryptography bottlenecks of Byzantine consensus

(Chapter 4) in the context of microsecond-scale applications, and provide theoretical lower

bounds for this cost.

We improve the common-case latency of Byzantine state machine replication in the data

center (Chapter 5), thus bringing the cost of Byzantine-fault tolerance close to the cost of

crash-fault tolerance.
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Part IV—Epilogue

Concluding this thesis, we give a brief review of our contributions, discuss the limitations of

our techniques and sketch avenues for future work (Chapter 6). Subsequently, we provide

three appendices with supplementary details and proofs for the three respective contributions.
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1 Distributed Systems Background

The evolution of computer systems over the last 75 years has seen rapid growth. Since the

beginning of the modern computer era back in 1945, until the mid-80s, computers used to be

bulky, expensive, and lacked connectivity.

However, after 1985, the landscape started to change in two directions. First, was the rapid

development of more powerful microprocessors, reaching what we know today: multicore, 64-

bit CPUs, offering high degree of parallelism, being relatively inexpensive, and requiring new

software to exploit their power. Second, was the invention of high-speed computer networks.

It enabled the deployment of local-area networks (LANs), which allow thousands of machines

within a building or complex to be connected, as well as the deployment of wide-area networks

(WANs), which enable the connectivity of hundreds of millions of machines around the globe.

The combination of these advancements made it possible to organise these interconnected

computers into entire systems, called distributed systems. In fact, the possibility has now

become commonplace practice, with data centers—accounting for 4% of the global electricity

consumption as of today [101]—essentially hosting the world’s storage and processing needs.

1.1 Definition

A distributed system is a collection of independent entities, called processes or nodes, that

collaborate to solve a task, while appearing to its users as a single coherent system [171].

Typically, the processes collaborate by using communication links to exchange information

with each other.

There are several reasons for studying distributed systems [104]:

• Single-machine limit: In many occasions, a single machine simply cannot store the

data required for a computation, or the time it takes to execute the computation is

impractical.
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• Reliability: a distributed system is a perfect candidate to provide increased reliability,

because it can replicate resources. Reliability has several aspects:

1. availability, dictating that the resource is accessible at all times,

2. integrity, dictating that the state of the resource is always correct, regardless of

concurrent access to it by multiple processes,

3. fault-tolerance, which is the system’s ability to be impervious to certain failures

and/or be able to recover from them.

• Scalability: is the capability of a system to grow and manage increased demand. A

system may have to scale for various reasons, such as increased data volume or increased

work (e.g., number of transactions). A scalable system should achieve this scaling while

simultaneously addressing the problem of performance loss due to the increased cost

of coordination among the growing number of machines.

1.2 Failure Models

A failure model [136] specifies how the components of a distributed system may fail. We

separate failures in two categories, failures of processes and failures in the communication

links.

Process failures. Several failure models have been studied in the literature [78, 112, 113, 145,

157], yet in this thesis we focus on two: crash-stop [112] and Byzantine [113] failures.

• Crash-stop failure: where a properly functioning process may fail by stopping to function

from any instance henceforth. Importantly, when this happens the rest of the processes

do not learn of this crash.

• Byzantine failure: where a process may exhibit any arbitrary behavior. Byzantine failures

are much more severe than crash failures. Typically, distributed systems address them

by relying on protocols that are more sophisticated than the ones used for crash-stop

failures. This is because with Byzantine failures, a process cannot trust what individual

processes are saying, as Byzantine processes are allowed to equivocate. Instead, a

process can only trust a piece of information as long as it can confirm that enough

processes have said or approved that information. Additionally, when considering this

kind of failures, we typically rely on cryptography (e.g., unforgeable signatures [58],

message authentication codes [95], cryptographic hashes) to restrict the type of claims

a faulty processes can have. In this case, if a faulty process claims to have received a

specific message from a correct process, then that claim can be verified.

Communication link failures. For the purposes of this thesis, we focus on two types of

network failures, both of which may lead to network partitions [32, 72].
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• Benign failure: which can manifest as either message reordering, duplication and loss.

• Byzantine failure: in which a communication link can exhibit any arbitrary behavior,

including creating spurious messages and modifying the messages sent on it.

Depending on the failure model assumed, the algorithms used to solve any particular problem

can vary dramatically. Thus, it is crucial to specify the failure model clearly. In the context

of this thesis, Chapter 3 assumes crash-stop process failures and benign network failures.

This is typical for distributed systems in the data center, since processes are operated by the

same entity. Subsequently, Chapters 4 and 5 assume Byzantine failures for both processes and

communication links, in order to push the reliability level of microsecond-scale distributed

computing. The motivation behind the study of Byzantine failures is that distributed sys-

tems in the data center that aim at high reliability should also account for unplanned and

unpredictable failures.

1.3 Synchrony vs. Asynchrony

In distributed systems, processes as well as communication links can be either synchronous

or asynchronous.

In the synchronous case, processes execute in lock-step (i.e., they are synchronized) and the

clock drift rate between any two processes is bounded. Typically, the synchrony is achieved

with a form of distributed synchronization barrier. Thus, processes synchronize their execu-

tion by executing in steps, ensuring that no process begins the execution of the next step, until

all processes have completed the execution of the previous step.

In the asynchronous case, there is no synchrony guarantee among processes and there is no

bound on the drift rate of process clocks. Additionally, message delays on the communication

links are finite but unbounded, and there is no upper bound on the time taken by a process to

execute a step.

From a practical standpoint, systems tend to go both through periods of synchrony and

asynchrony during their lifetime, a behavior that is captured by the partial synchrony model.

Partial synchrony brings the best of both worlds, and famously makes consensus, a central

part of this thesis, solvable [70]. Indeed, a system designed for asynchronous environments is

inherently more robust than a system designed for synchrony, as it makes fewer assumptions

on the permitted behavior of the processes and the network. Yet, synchronous systems

usually exhibit better performance, as they enable process coordination with fewer exchanged

messages compared to asynchronous systems.
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1.4 Safety and Liveness

Distributed systems express the trade-off between synchrony and asynchrony using the

notions of safety and liveness [107]. Informally, safety guarantees that nothing bad happens,

i.e., it guarantees that our distributed protocol will never be broken. Liveness, on the other

hand, guarantees that something good will eventually happen, i.e., it guarantees that our

distributed protocol will not be stuck forever without making any progress.

In practice, as it is also the case throughout this thesis, we design distributed systems that are

(1) safe under asynchony, in order to make sure that network or process delays do not lead

to protocol violations, and (2) live under synchrony, in order to guarantee progress when the

processes and the network are timely. Protocols that satisfy these two properties combine

both robustness and performance.

1.5 Communication Models

So far, we have assumed processes in a distributed system communicate by exchanging

messages over communication links. Formally, this means that processes use the message-

passing model to communicate, thus they exchange information over a network, by sending

and receiving messages.

Another means of communication, usually found in multiprocessor systems, is having pro-

cesses communicate using shared memory. Essentially, with shared memory processes have

access to a (common) shared address space, and communicate by reading and writing to

shared variables, called registers [80, 106].

Conceptually, programmers find it easier to program using shared memory than message

passing, since it gives the impression of a single monolithic memory, as in the traditional von

Neumann architecture. This is why, in the context of distributed systems, we often emulate

shared memory using message passing, despite the additional cost. In fact, it is well known [12]

that communication via message-passing can be simulated by communication via shared

memory and vice-versa, making the two models equivalent.

1.6 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) [166] is a networking technology that fuses the message-

passing and shared-memory models together and alleviates the cost of emulation. Applica-

tions communicate over RDMA by relying on primitives called verbs. There exist one-sided

verbs that include READ, WRITE and Compare and Swap (CAS) verbs, and correspond to how

RDMA exposes the shared-memory model abstraction. These verbs allow processes to access

the memory of a remote machine without involving the CPU of the latter. Additionally, there

exist two-sided verbs, such as SEND and RECV verbs, that correspond to how RDMA exposes
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the message-passing model abstraction.

By implementing several layers of the networking stack in hardware and relying on kernel

bypass, RDMA achieves microsecond inter-machine communication. It allows applications

within the data center to communicate in as little as 0.9µs [92], and thus serves as first step

towards microsecond-scale computing. This technology is supported by different fabrics such

as Infiniband [166] and commodity Ethernet via RoCE [19].

1.7 State Machine Replication

A generic and popular approach to replication, which enables available and fault tolerant

distributed systems, is State Machine Replication (SMR) [108]. With SMR, a service (e.g., a

key-value store) is replicated across multiples machines (replicas), thus a failure of a replica

does not prevent the service from being accessible due to the remaining alive replicas. The

idea behind SMR is for the replicas to first agree on the order of incoming service requests,

and then to execute the requests in that order and reply to the clients that invoked the service.

Importantly, to reach agreement on the order of requests, the replicas in SMR employ a

consensus algorithm.

The literature is rich in consensus algorithms, but conceptually all of them achieve the same

goal: to decide on a single proposal (i.e., decide on which incoming client request to consider

next) among multiple concurrent proposals. Consensus protocols are often leader-based [15,

37, 77, 84, 127, 134]: a replica designated as the leader orders the client requests, and forwards

them to the other follower replicas to ensure agreement.

Though consensus and SMR are generally considered to be equivalent problems, in practice

they differ in their memory consumption. Consensus must ensure agreement among partici-

pants indefinitely, so decided requests must be retained forever if a participant is unresponsive,

thereby requiring unbounded memory. In contrast, SMR need not store all requests, as it cares

only about replicating the application state, which can be finite even if there are infinitely

many requests. Thus, SMR systems typically entail more complexity that consensus, as they

need to adapt the underlying consensus algorithm to use finite memory [159].

Consensus and SMR are central to this thesis. Chapter 3 devises a consensus algorithm for

the crash-stop model that leverages the shared-memory model exposed by RDMA, Chapter 4

focuses on Byzantine consensus and devises an algorithm that is economical in the number of

replicas, and Chapter 5 extends this Byzantine consensus algorithm to a full-fledged practical

SMR system.
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1.8 Performance

When evaluating a distributed system, we are interested on certain metrics to assess its

performance and quantify its efficiency. In this thesis we will focus on three metrics:

• Latency: the time required to transmit a message (e.g., a request) between two processes.

It expresses how fast a distributed system can process messages.

• Bandwidth: the amount of data that can be transferred per unit of time across processes,

• Throughput: the number of message (e.g., requests) processed per unit of time. This

metric expresses the system’s ability to handle high loads.
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The core content of this thesis is presented meticulously in Chapters 3 through 5. However,

before delving into the details, we give a high-level overview below.

A membership service for the microsecond scale. We begin by studying replication for

microsecond-scale applications under the crash fault tolerance model (Chapter 3). According

to this model, processes in the system may stop executing, after which they become unre-

sponsive. We approach replication through the lens of a membership service. A membership

service is a generic and reusable distributed abstraction that aims at providing distributed

applications with dynamic information regarding the processes that currently comprise the

distributed system. With this piece of information, a replication protocol is significantly sim-

plified, as it merely requires to focus on the distribution of data, rather on the complexities of

data consistency upon failures.

We observe that a replication protocol suitable for the microsecond scale should possess two

important properties. First, in the absence of failures, it has to incur minimal replication

overhead. Failure-free execution is the common-case operational mode of data center ap-

plications, thus retaining to the maximum degree possible the microsecond-scale latency

characteristics of the original (unreplicated) service is essential. Second, it is essential for a

replicated service to exhibit stability even during uncommon situations, such as reconfigura-

tions and failures. This is especially important as many microsecond-scale services running in

the data center form the backbone of numerous cloud-powered services, such as analytics

and trading systems, trying to meet ever-stringent tail latency requirements and maximum

availability.

Our answer to systematically building replication protocols with the aforementioned proper-

ties is uKharon, the first ever microsecond-scale membership service that detects changes in

the membership of applications and lets them failover in as little as 50µs. To achieve its goal,

uKharon consists of (1) a multi-level failure detector, (2) a new consensus engine that relies on

one-sided RDMA Compare&Swap, and (3) minimal-overhead membership leases, all tuned to
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operate at the microsecond scale. We further showcase the power of uKharon by building a

primary-backup replication protocol in the form of a replicated key-value cache.

The intrinsic limitations of microsecond-scale Byzantine-fault tolerance. We observe that

traditional techniques for handling Byzantine failures are unsuitable for the microsecond

scale: digital signatures are too costly, while the number of replicas used is uneconomical.

Indeed, Byzantine fault tolerance (BFT) typically requires 3 f +1 replicas to tolerate up to

f Byzantine process failures, which is considerably higher than the 2 f +1 replicas required

tolerate f crash-stop process failures. As such, achieving microsecond-scale BFT replication

becomes a challenging task which we approach methodically, initially from a theoretical

perspective.

We begin by devising Byzantine-resilient algorithms that exhibit frugality, i.e., they reduce the

number of replicas to 2 f +1 and minimize the number of signatures (Chapter 4). While the

first goal can be achieved with relative ease, accomplishing the second goal simultaneously is

challenging. We first address this challenge for the problem of broadcasting messages reliably,

by focusing in two broadcast variants, Consistent Broadcast and Reliable Broadcast.

We then turn to the problem of consensus—the basis of replication—and argue that Consistent

Broadcast is ideal for solving consensus with Byzantine failures. We present a consensus

algorithm that works for 2 f +1 replicas and avoids signatures in the common case—properties

that have not been simultaneously achieved previously.

Practical Byzantine fault-tolerant replication in microseconds. We leverage the aforemen-

tioned theoretical results to design uBFT, the first BFT SMR system to achieve microsecond-

scale latency in data centers, while using only 2 f +1 replicas (Chapter 5). The Byzantine-fault

tolerance provided by uBFT is essential in practice, as pure crashes are not the only type of

failure that real-life systems exhibit.

uBFT is an example of the discrepancy between theoretical and systems work, overcoming

the practical difficulties that are irrelevant to the theoretical analysis. To achieve 2 f +1 BFT,

uBFT relies on a small non-tailored trusted computing base—disaggregated memory. At

the same time, Consistent Broadcast turns out to be unimplementable in practice, as this

abstraction requires replicas to use infinite memory in order to store and deliver all broadcast

messages. uBFT overcomes this limitation by inventing a novel abstraction, called Consistent

Tail Broadcast. Importantly, this abstraction is weaker than Consistent Broadcast, yet it is

strong enough to implement SMR while bounding memory.

We implement uBFT using RDMA-based disaggregated memory and obtain an end-to-end

latency of as little as 10µs. This is at least 50× faster than existing state-of-the-art 2 f +1 BFT

SMR. As a result, uBFT makes for a viable solution to critical microsecond-scale applications

seeking efficient reliability. These application can now benefit from low latency, as well as
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tolerance of arbitrary failures.

Supplementary material. We provide supplementary details and proofs of correctness for

uKharon (Appendix A), uBFT (Appendix C), as well as for the theoretical work on which the

latter is based upon (Appendix B) towards the end of the thesis.
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3 uKharon: A Membership Service for
Microsecond Applications

In this chapter, we seek to minimize the replication latency for microsecond-scale applications

under crash failures. To do so, we avoid solely designing a replication protocol, but we

leverage replication to build a reliable membership service that can form the foundation

for building replicated microsecond-scale applications. Membership services are ideal for

everyone striving for genericity. They constitute a reusable distributed computing abstraction

for the entire data center, powering microsecond-scale applications trying to meet ever-

stringent tail latency requirements.

To this end, this chapter presents uKharon, a microsecond-scale membership service that

detects changes in the membership of applications and lets them failover in a few tens of

microseconds. uKharon consists of (1) a multi-level failure detector, (2) a consensus engine

that relies on one-sided RDMA Compare&Swap, and (3) minimal-overhead membership

leases, all tuned to operate at the microsecond scale. We showcase the power of uKharon

by building uKharon-KV, a replicated Key-Value cache based on HERD [91]. uKharon-KV

processes PUT requests as fast as the state-of-the-art and improves upon it by (1) removing

the need for replicating GET requests and (2) bringing the end-to-end failover down to 53µs,

a 10× improvement.

3.1 Introduction

Despite substantial efforts in both hardware (e.g., InfiniBand/RDMA [87], RoCE [19], FPGA [40],

Gen-Z [98], CXL [47]) and hardware-accelerated software [69, 86, 88, 90, 133, 175, 176, 180],

building microsecond-scale applications with robust latency is very challenging [54].

Existing systems, such as key-value stores like Hermes [94], state machine replication [158]

systems like Mu [5] and Hovercraft [99], and transactional systems like FaRM [64], process

requests in a few microseconds in failure-free scenarios, but miss the microsecond envelope

when handling failures. Mu and HoverCraft take 0.5ms and 10ms respectively to failover.

Aguilera et al. [5] reported that Hermes has a failover of 150ms, while FaRM mentioned
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ZooKeeper [84], a widely used distributed coordination service that offers at-best millisecond

failover, for its membership management.

In other words, existing microsecond-scale applications fail to exhibit stringent tail latency,

which is crucial in ensuring smooth and predictable operation. The tail refers to the latency of

the slowest requests, and thus provides a limit to the maximum latency experienced by the

consumer of such application.

We believe that a crucial step in making tail-tolerant microsecond applications is reacting fast

to failures. We thus propose uKharon1, a membership service tailored to the microsecond

scale. Apart from acting as a distributed membership storage for (distributed) applications,

uKharon monitors their nodes, detects their failures and changes their membership within

50µs. When uKharon itself experiences a failure, it recovers within 64µs. uKharon particularly

benefits applications with efficient state transfer which can swap a faulty replica with a hot

one in microseconds, for example via shadow replication. It targets cloud services that require

seamless reconfiguration for fault tolerance and scalability, such as indexes, datastores and

transactional systems.

The key to the performance of uKharon is the careful design of three fundamental components,

all of which are inspired by Remote Direct Memory Access (RDMA) to operate at the microsec-

ond scale. First, uKharon achieves microsecond failure detection by employing a multi-level

failure detector. It distinguishes the failures related to the application (e.g., segmentation

faults), from those related to the kernel (e.g., driver faults), and failures related to the hardware

(e.g., RDMA NIC faults), employing for each a different failure detector. Second, uKharon

decides on memberships using a consensus engine which solely relies on one-sided RDMA

verbs. This engine takes advantage of RDMA Compare-and-Swap (CAS) to handle leader

changes within 10µs. Third, uKharon provides membership leases that add minimal overhead

to the end application and last ∼20µs. As a result, our membership service combines typically

opposing forces: having applications with low-overhead dynamicity in failure-free scenarios

and very fast failover upon failures.

We showcase the benefits of our membership service by building uKharon-KV, a replicated

in-memory KV-cache based on HERD [91]. It uses uKharon to track the set of nodes and react

to node failures. We compare uKharon-KV against HERD+Mu [5] (i.e., HERD replicated by

Mu), a system which—to the best of our knowledge—achieved the lowest replication latency

to date. Our evaluation shows that uKharon-KV processes PUT requests as fast as HERD+Mu

in failure-free periods. Moreover, thanks to its leasing mechanism, uKharon-KV manages to

spare the replication of GET requests, an optimization that is algorithmically impossible in

HERD+Mu. As a result, uKharon-KV GETs are 31.8% faster than HERD+Mu’s. uKharon-KV,

though, shines in the event of failures, achieving an end-to-end failover of 53µs, improving on

HERD+Mu’s failover of 531µs by up to a factor of 10.

1“u” stands for microsecond, and Kharon is the carrier of the souls of the dead in Greek mythology. It is
pronounced ma · ka · ron.
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In a nutshell, we present uKharon, the first ever membership service suitable for the needs of

tail-tolerant microsecond applications. We make the following contributions:

• A multi-level failure detector for the microsecond scale.

• A consensus engine that relies on one-sided RDMA CAS to change leader within mi-

croseconds.

• Microsecond leases that have minimal impact on the performance of the end applica-

tion.

• uKharon-KV, a replicated KV-cache which outperforms the previous state of the art.

• The source code of uKharon is available at https://github.com/LPD-EPFL/ukharon.

3.2 Background

3.2.1 Membership Service

To achieve resilience, long-lived distributed systems must be dynamic. Many systems [103, 105,

144, 161, 162] achieve dynamicity by relying on a coordination substrate, such as ZooKeeper [84]

or etcd [146]. Among the various services (e.g., atomic locks, registers) these substrates offer,

dynamicity is fundamentally addressed via their membership service.

A membership services offers dynamicity both in graceful executions and upon failures. In the

former case, it serves join and leave requests issued by processes that want to become part of a

distributed application or exit it. In the latter, it detects process failures and reacts to them. All

these events are reflected through new configurations (called views or simply memberships).

Essentially, a membership service acts as a storage of configuration information, keeping track

of how the set of processes evolves, and exposes this information.

Typically, membership services rely on consensus [70] to establish a totally ordered sequence

of views. Such services, including Zookeeper and etcd, offer strong semantics as all processes

using the membership service transition through the same sequence of views.

Consensus-based membership services also offer real-time semantics. Apart from knowing the

sequence of memberships, it is also important to know which is the (single) active membership.

To understand why this real-time property is useful, consider the following example that

incorrectly builds a cache storage solely relying on the sequence of memberships: The cache

serves READ and WRITE requests. Initially, membership M1 = {S1} designates server S1

as responsible for the cache (i.e., S1 stores it and serves requests). Eventually, a second

membership M2 = {S2} replaces S1 with S2. S2, being part of M2, proceeds with serving clients’

requests and updates the content of the cache. At the same time, S1 is unaware of M2 and

continues serving clients’ requests as well. As a result, a client that is also unaware of M2 and
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Figure 3.1: Overview of uKharon

reads from S1 will get stale data. This example demonstrates a violation of consistency. It

shows that total order of memberships does not provide any real-time guarantees by itself.

Membership services provide real-timeness by making outdated memberships nonopera-

tional. A commonly used mechanism to achieve this property is the use of a distributed

invalidation protocol. Another solution is to rely on leases. With leases, processes are forced to

periodically check the active membership, execute operations in this membership, and abort

operations that span over multiple memberships. uKharon provides real-timeness via leases.

3.2.2 Communication Model

uKharon is designed for data centers. It is safe under asynchrony and live under partial syn-

chrony [66]. That is, to make progress, uKharon assumes a Global Stabilization Time (GST),

unknown to the processes, such that from GST onwards there is a bound∆ on communication

and processing delays. This is is a realistic assumption, as data center fabrics are not asyn-

chronous in practice [6, 119, 177]. Additionally, our system relies on bounded clock drift for

safety, i.e., durations are approximately the same across all processes. uKharon also assumes

crash-stop failures. Finally, we assume that network partitions, which affect uKharon’s liveness,

are eventually resolved by the data center administrator.

3.3 Design Overview

3.3.1 Architecture

Figure 3.1 gives an overview of uKharon. Our system, as a membership service, runs on

application nodes as well as a set of dedicated nodes called coordinators.

Central to uKharon is uKharon Core, a single-threaded library that hosts monitoring function-

alities of the membership service. This includes detecting failures of member nodes (including

coordinators), listening for failures and new memberships, as well as renewing leases. The
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application receives these events via thread-safe accessors: a stream of failures, a stream of

memberships and a method Active(M)→ bool which checks whether a given membership M
is active.

The generation and storage of memberships is delegated to coordinators. Coordinators achieve

fault tolerance through consensus. One of them is the leader, which processes join/leave

requests from both application nodes and coordinators, proposes new memberships and

broadcasts decided memberships which are picked up by the uKharon Core instance running

on every node. The rest of coordinators help the leader decide and replicate the sequence of

memberships. Finally, coordinators assign each member a unique identifier.

Running uKharon Core on both application nodes and coordinators helps bootstrap the

membership service. uKharon Core learns about the new memberships from coordinators, but

coordinators require the membership service to learn about each other. Similarly, coordinators

rely on uKharon Core to detect failures of application nodes or themselves.

Part of uKharon’s failure detection logic resides in the kernel, outside of uKharon Core. It

consists of a kernel module hooked to Linux’s process cleanup routine. This module can be

enabled by the application logic and broadcasts a failure notification (called deadbeat) when

the application crashes.

New memberships are merely broadcast by coordinators, putting the burden of detecting

the active membership to the application nodes. uKharon Core is responsible for bringing

real-timeness to applications. It reads the RDMA-exposed memberships at a majority of

coordinators to determine whether a membership has been superseded by a new one or

whether it is still active. The active membership is leased for a limited amount of time, in our

case ∼20µs.

3.3.2 Communication

uKharon relies extensively on the performance of today’s RDMA-enabled fabrics to achieve

its microsecond latency target. It leverages one-sided RDMA verbs, two-sided ones (i.e.,

HERD-style RPC [91]), as well as RDMA Multicast. Coordinators run consensus using RDMA

Reliable Connections (RCs). In particular, coordinators establish all-to-all connections among

themselves and communicate using RDMA READ, WRITE and CAS. Additionally, coordinators

use RDMA Multicast, which is backed by RDMA Unreliable Datagrams (UDs), to notify all

nodes about new memberships. uKharon also uses RDMA Multicast to emit failure notifica-

tions. uKharon Core relies on RDMA READs over RCs to retrieve the active membership from

coordinators and to detect the failure of remote nodes. Finally, processes send join and leave

requests to the coordinator leader using RPC.
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3.3.3 Challenges

Our system is designed for applications that operate and failover at the microsecond scale. To

do so, uKharon meets two important design goals. First, it itself operates at the microsecond

scale, meaning that it is able of changing the active membership within as few as 50µs. Second,

we ensure that uKharon Core has minimal performance overhead on the end application it is

bundled with. To meet these goals, uKharon is structured around three major components:

Failure detection. Efficient failure detection is the first step towards fast failover. Conven-

tional wisdom suggests that there is a trade-off between the speed and accuracy of a failure

detector. We work around this limitation by building a hierarchy of RDMA-tailored failure

detectors suited for the microsecond scale. Our hierarchy detects failures within a few tens of

microseconds, as we explain in Section 3.4.

Consensus engine. The second step of failover is agreeing on the new membership. Existing

leader-based consensus engines, although optimized for the microsecond scale, struggle

to change their leader at this time scale. In Section 3.5, we explain how our microsecond

consensus engine changes leader in microseconds. This gives our design the unique property

that a coordinator failure—especially failure of the coordinator leader—has negligible effect

on the failover time.

Leases. As far as the membership service is concerned, the last step towards failover is

updating the active membership. However, the new membership cannot become active before

leases on previous memberships have expired. Thus, the longer the leases, the higher the

failover time. On the other hand, short leases can result in application overhead, as they have

to be checked in the application’s critical path and renewed in time before expiring. In section

3.6, we explain how uKharon manages to have ∼20µs leases with virtually no cost for the end

application and how leases can scale to hundreds of machines for an extra ∼20µs.

3.4 Microsecond Failure Detection

uKharon relies on microsecond failure detection to notify nodes about member failures and

to trigger the generation of new memberships. In this section, we describe uKharon’s failure

detection scheme.

3.4.1 Multi-Level Failure Detection

A practical failure detector aims at being as complete and as accurate as possible. A com-

plete and accurate failure detector is able to detect all failures and not have false positives,

respectively. Completeness without accuracy causes problems in practice, as false positives
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trigger new memberships which require distributed applications to take further action (e.g.,

rebalancing data among nodes).

Commonly, failure detectors rely on timeouts for their operation. However, timeouts are

hard to set correctly: if they are too low, the failure detector may experience instability (e.g.,

oscillating behaviors). That explains why most systems set the timeouts to a safe high-enough

value. In the microsecond scale this problem is magnified, as small execution delays (e.g.,

kernel jitter) can take several microseconds.

Our failure detector follows a pragmatic approach: it avoids timeouts when possible. To

achieve this, we are inspired by Falcon [119], and identify four levels of failures: (1) userspace

failures (e.g., segmentation faults, out of memory errors, uncaught exceptions) that cause the

application to abort, (2) kernel failures (e.g., cores hanging in the kernel, kernel oops caused

by driver crashes) that impede the application’s execution, (3) catastrophic failures (e.g., power

failures, RDMA NIC failures) that prevent communication with the application’s host, and (4)

byzantine failures (e.g., stack overflows, mercurial cores [82]) that affect the application state.

Each of the first three levels is handled by uKharon via a specialized failure detector. uKharon

does not address Byzantine failures, which is the topic of Chapters 4 and 5.

3.4.2 uKharon’s Failure Detectors

We now explain how uKharon’s specialized failure detectors work, depending on the type of

failure.

Userspace failures. They are handled by the Linux kernel. The application registers to the

kernel to enable a deadbeat, which is a failure notification broadcast by the kernel upon the

death of the process. This registration happens by means of the prctl system call that the

application calls early in its execution. The system call includes the node’s identifier and

modifies the process descriptor (Linux’s task_struct) with a flag that the kernel checks

during the cleaning routine of the process. In Linux, when a process crashes, control is

transferred to the kernel which starts executing the process cleaning routine. If the flag is set,

the kernel broadcasts a failure notification that includes the specified identifier. To achieve

this functionality, we extend the prctl system call and modify the process cleaning routine

that is part of the kernel’s exit system call. The task of broadcasting the crash notification is

delegated to a kernel module. This module uses the kernelspace RDMA driver to broadcast

crash notifications which are polled by all instances of uKharon Core. As this failure detector

does not use timeouts, it has no false positives.

Kernel failures. To detect application failures caused by the kernel, we rely on the way RDMA

is handled in userspace. An application registers memory to an RDMA device by issuing ioctl
system calls on a file descriptor. By design, the Linux kernel destroys that file descriptor and
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thus disables remote access to this memory at the end of the process’ cleaning routine. If this

cleaning routine runs, the failure is caught by the previous failure detector. Otherwise, the

memory will remain remotely accessible while the execution of the application is suspended

(and the kernel is dying).

For the operation of this failure detector, processes are arranged in a logical ring where every

process monitors its successor. Our system uses a local heartbeat counter in a similar fashion

to Mu’s detector [5]. uKharon Core increments this counter to indicate that the process is alive.

This counter is read by the predecessor process. If a process RDMA-reads the same value

twice, it reports its successor as having failed.

A process would be wrongly detected if it were unable to increment its counter between two

consecutive reads. Thus, we take special care to ensure that processes always increment their

counters faster than the time delay between two consecutive reads. Importantly, we deploy

(the single-threaded) uKharon Core in its own dedicated physical core. We resort to a custom

kernel compiled with the NO_HZ_FULL option, which disables regular timer interrupts [57]

on the dedicated core and thus reduces the kernel jitter towards uKharon Core. Additionally,

we boot this kernel with the isolcpus parameter, which prevents other userspace processes

from sharing the dedicated core with uKharon Core. In experiments, the interval we observed

between two counter increments under heavy load was 5µs most of the time and never more

than 15µs. To account for unexpected jitter (e.g., thermal throttling), we make processes wait

30µs after the completion of an RDMA READ before issuing the next one. As RDMA READs

are issued sequentially, network delays do not negatively impact the accuracy of this failure

detector.

Catastrophic failures. uKharon relies on a timeout-based scheme to detect failures that

prevent machines from communicating. We set the timeout to 1ms, which is 2−3 orders of

magnitude higher than the common case latency of modern data center fabrics. As reported

by Li et al. [121], 1ms is safe even in case of network congestion.

The detector works by having processes periodically broadcast a heartbeat and poll for heart-

beats from others. Processes keeps track of the set of processes they recently received a

heartbeat from. They compare this set with the current membership and report which pro-

cesses they consider failed to the coordinator leader. Then, the leader constructs a connectivity

graph based on the reported link states and changes the membership to approximately match

the maximum clique in which it is included. Thus, our membership service enforces all-to-all

connectivity among the members and does not expose any information regarding network

partitions. A systematic treatment of network partitions is out of our scope.

The first two detectors broadcast failure notifications over RDMA-multicast, which offers better

scalability than broadcasting using Reliable Connections. Nevertheless, RDMA-multicast is

backed by Unreliable Datagrams, thus failure notifications can be lost under high network

load. Dropping these notifications is safe, as uKharon-Core rebroadcasts a failure notification
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until a new membership excludes the failed node.

3.5 Microsecond Consensus

In this section, we present a state-of-the-art consensus engine that is tailored for the needs

of uKharon and powers its coordinators. Our engine is efficient regardless of failures: in the

absence of failures, it decides in one RDMA delay (by issuing an operation to a majority of

processes in parallel), while it decides in one additional RMDA delay in the event of a failure. It

uses a slightly modified version of Paxos based on the observation that the original algorithm

contains RPCs that can be emulated with RDMA CAS operations. In the rest of the section, we

intuitively describe our consensus algorithm and discuss implementation details. Appendix

A.1 provides its pseudocode and a proof of its correctness.

3.5.1 Consensus and Paxos

Consensus is a fundamental problem in distributed computing. Informally, each process

proposes a value and eventually all processes irrevocably agree on one of the proposed values.

Processes agree on a sequence of values and totally order them by running multiple instances

of consensus.

Several algorithms solve consensus in the partially synchronous model. Many are variants of

Paxos [110]. In Paxos, processes are divided in two groups: proposers and acceptors. Proposers

propose a value for decision and acceptors accept some proposed values. Once a value has

been accepted by a majority of acceptors, it is decided by its proposer.

Intuitively, Paxos is split in two phases: the Prepare phase and the Accept phase. During these

phases, messages from the proposer are identified by a unique proposal number. The Prepare

phase serves two purposes. First, the proposer gets a promise from a majority of acceptors

that another proposer with a lower proposal number will fail to decide. Second, the proposer

updates its proposed value using the accepted values stored in the acceptors. This way, if

a value has been decided, the proposer will adopt it. The prepare phase can also abort if

any acceptor in the majority previously made a promise to a higher proposal number. If

the proposer manages to complete the Prepare phase without aborting, it proceeds to the

Accept phase. In this phase, the proposer tries to store its value in a majority of acceptors. If it

succeeds (i.e., a majority accepted the value), it decides on that value.

3.5.2 One-Sided Paxos

Paxos uses RPC in a very specific form. The acceptors’ state consists of only three variables:

min_proposal, accepted_proposal and accepted_value. In both phases, acceptors atom-

ically update these values based on the proposer’s input and return some of them.
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1 # Paxos’s RPCs pattern
2 def rpc(x):
3 if compare(x, state):
4 state = f(state, x)
5 return proj(state)

1 def cas-rpc(x):
2 expected = fetch_state()
3 if not compare(x, expected):
4 return proj(expected)
5 move_to = f(expected, x)
6 old = state.cas(expected, move_to)
7 if old == expected:
8 return proj(move_to)
9 abort

Algorithm 3.1: Paxos’s RPCs turned into CAS-based RPCs.

Algorithm 3.1 proposes an obstruction-free transformation to turn Paxos’s RPCs into purely

one-sided conditional writes using RDMA CAS. Paxos’s RPCs follow the pattern seen in rpc.

The acceptor executing the RPC compares the received value x to its state (stored in state). If

the comparison is successful, the acceptor updates its state (shown with function f) using the

provided value x. Finally, the acceptor unconditionally returns part of its state (shown with

function proj).

The pattern presented in cas-rpc allows RDMA to emulate rpc while solely relying on one-

sided verbs. Opposite to rpc, which is executed on the acceptor’s side, cas-rpc is executed

on the proposer’s side. To execute the one-sided RPC, the proposer first needs to know the

state that is stored in the memory of the acceptor. This value can either be guessed (e.g.,

using a previous value of state) or fetched (e.g., using RDMA READ, as shown in line 2). Then,

the proposer executes the comparison locally (line 3) and decides whether to continue or

terminate. If the comparison succeeds, the proposer proceeds with updating the state of the

acceptor. It is this update that utilizes CAS 2. In line 7, if the CAS succeeds, the acceptor’s

state has been updated successfully with the value of move_to. Otherwise, state remains

unchanged.

When the RDMA CAS succeeds, i.e., in the absence of contention, both rpc and cas-rpc are

equivalent (see Appendix A.1.2). However, if the RDMA CAS fails, cas-rpc will abort while

rpc would not. In this case, rpc and cas-rpc are not equivalent, but this does not violate

the correctness of Paxos. The reason is that Paxos tolerates an arbitrary number of proposer

failures and that aborting the RPC and starting over is indistinguishable from such failure.

3.5.3 uKharon’s Consensus Engine

We now explain how to make the variant of Paxos described in Section 3.5.2 practical and

compare it with Mu [5], a state-of-the-art consensus engine.

2As a reminder, variable.cas(expected, new) atomically checks if variable equals expected and sets
variable to new if this is the case. The operation always returns the initial value of variable.
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Figure 3.2: uKharon’s Consensus Engine with its RDMA-exposed memory for multiple in-
stances of consensus (left) and a state machine for a single instance of consensus (right).

Practical Considerations

Leader election. To avoid the contention rising from multiple concurrent proposers, our

consensus engine adopts the same leader election scheme as Mu. The process with the

lowest identifier among the coordinators considered alive is elected as the leader. In the

event of a partial network partition, this scheme can elect multiple leaders. For example, if

coordinator C2 is the only one unable to reach C1, it will think of itself as the leader, while

other coordinators will consider C1 as their leader. Having multiple leaders cannot lead to

multiple values being decided, i.e. safety is always preserved. Leader contention can, however,

prevent the engine from being live. Thus, a leaders that fails to decide uses a randomized

backoff before proposing until the partition is resolved.

Pre-preparation. Coordinators decide on a sequence of values by running consensus on a

sequence of slots, as shown in Figure 3.2. It requires two RDMA delays for each slot: one for

the Prepare and another for the Accept phase (shown with horizontal arrows in the figure). A

stable leader can prepare slots in advance and only run the Accept phase to decide. In this

case, the leader decides in a single RDMA delay. The leader uses the time spent waiting for the

Accept phase to complete on a slot to run the Prepare phase for the next one. Thus, it always

maintains one pre-prepared slot (depicted in the second consensus slot of Figure 3.2), with

no latency overhead. Switching to the new leader requires re-preparing the next slot. As an

optimization, the new leader predicts that the last slot had been prepared by the previous

leader and uses this prediction as the expected value of the RDMA CAS. With this approach,

the new leader manages to re-prepare the next slot in a single RDMA delay instead of two.

CAS size limitation. Algorithm 3.1 assumes that the consensus state fits within a single

CAS. Current RDMA NICs only support CAS up to 8 bytes. We set both min_proposal
and accepted_proposal to be 2 bytes each. The remaining 4 bytes are dedicated to the

accepted_value.

Proposal fields will overflow after 216 attempts. In such an unlikely scenario, our consensus
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engine falls back to traditional RPC: Once the RDMA-exposed min_proposal of an acceptor

reaches 216 −|Π|, proposers switch to RPC to communicate with this specific acceptor. Accep-

tors check state and, if it is above the threshold, initiate the standard RPC version of Paxos

with the min_proposal, accepted_proposal and accepted_value variables initialized to

match state.

Our consensus engine uses indirection to overcome the limited size of the accepted_value
and store uKharon’s memberships. Instead of deciding on the membership itself, coordinators

decide on its location in memory. First, the proposer RDMA-writes the membership to a

part of acceptors’ memory dedicated to membership proposals (see Figure 3.2) to which it

has exclusive write access. Then, the proposer runs the Accept phase where it proposes its

own identifier (C1 in the figure). If the Accept phase succeeds at a majority of acceptors,

then the proposer decides. Thanks to the FIFO semantics of RDMA RCs, if the last RDMA

operation (i.e., the Accept phase CAS) succeeds, the previous RDMA operation (i.e., storing the

membership with an RDMA WRITE) also succeeded. The two RDMA operations combined do

not execute atomically, yet a coordinator cannot have accepted an identifier without knowing

its associated membership.

Comparison with the State-of-the-Art

Many systems, such as Mu[5], DARE [147] and APUS [173] study consensus over RDMA. They

primarily focus on improving the throughput and latency of common case executions, thus

achieving consensus in a few microseconds. However, these systems have failovers ranging

from 0.5 ms (in Mu) to 10s or 100s of ms (in DARE and APUS, respectively).

Mu has the best performance in failure-free executions among competition as it solves consen-

sus in ∼1.4µs. It relies extensively on RDMA permissions. During its Prepare phase, a proposer

asks acceptors for the exclusive write permission to their memory and waits for a majority

of replies. This step guarantees that only one proposer can write to an acceptor at a time.

In the Accept phase, the proposer decides by merely writing to a majority of acceptors. As

acceptors give write permissions to a single proposer at a time, no two concurrent proposers

can successfully write to a majority of acceptors and decide on different values. Since WRITE

is the most efficient RDMA verb and the Prepare phase runs only once per leader change, Mu

is optimal in failure-free executions.

The Accept phase of our algorithm relies on a WRITE followed by a CAS. Importantly, these

one-sided operations have lower tail latency compared with the two-sided verbs present

in DARE and APUS. The CAS increases the decision time from 1.4µs to 2.9µs compared

with Mu. When it comes to a leader change, Mu’s permission change mechanism requires

approximately 250µs, since it constitutes a control path operation that involves a system call

and a reconfiguration of the NIC. In our consensus engine, the additional CAS lets coordinators

change leader in under 10µs. Thus, our algorithm is designed for short tail latency and makes

the failure of the coordinators’ leader no more important (latency-wise) than the failure of any
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other node.

3.6 Microsecond Real-Timeness

In addition to reacting to failures and deciding on views, uKharon lets applications track the

active membership via the Active method. While this information is essential for consistency,

it must not burden the end application. In this section, we describe the challenge of making

Active’s overhead negligible while preserving microsecond view changes.

3.6.1 The Active Method

uKharon exposes real-timeness to end applications via the Active(Membership)→bool
method. If Active(M) returns true, we say that M is active at some point between the call

and return of the method. Active satisfies three important properties. First, there are no two

overlapping active memberships. Second, after a membership M is active, no memberships

older than M become active. Third, the active membership converges to the latest decided

membership.

Intuitively, processes use the Active method to determine the membership they should be

executing operations in. When coordinators decide on a new membership M ′, a process p

may stay in an older membership M due to a delay in receiving M ′. Calling Active(M) will

eventually return false at p, thus letting it realize that it misses the latest membership M ′. To

ensure consistency, an application typically calls Active once before starting an operation

and a second time before committing it, only committing if both calls return true.

3.6.2 Leases

uKharon uses leases for efficiency. We proceed incrementally, first describing an implementa-

tion of Active without leases, before moving to a more efficient lease-powered scheme.

The basic implementation of Active requires communication in every invocation. Let M be

the k-th membership decided by the coordinators and assume a process p invokes Active(M).

In essence, Active declares that M is active if it can conclude that no newer membership

M ′ has been decided. To this end, the process RDMA-reads the k +1-th consensus slots at

coordinators and waits for a majority of replies. If all replies are empty, then the k + 1-th

membership has not been decided, meaning that M is (still) active at some point between

the invocation and return of the method. If, on the other hand, at least one of the replies is

non-empty it is inconclusive whether M has been superseded by M ′. In case M ′ has been

decided before p issues the READs, then at least one of the replies must be non-empty, but

the opposite is not always true. For safety, Active returns false if at least one of the READs

on the next consensus slot is non-empty.
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1 leased_membership = ⊥; tst ar t = 0; tend = 0

3 def Active(M) → bool: # M is always a decided membership
4 t = hw_timestamp()
5 if leased_membership != M: # First-time lease on M
6 if majority_active(M):
7 leased_membership = M; tst ar t = t + δ; tend = tst ar t
8 else: # Check/extend lease on M
9 if t in [tst ar t , tend ): return True

10 if majority_active(M):
11 tend = t + δ

12 return t > tst ar t
13 return False

Algorithm 3.2: Leased active membership.

A lease refers to a membership and has a start and an expiration date. A lease guarantees its

holder that its associated membership will remain active until it expires. In our system, leases

are created by uKharon Core and last δ≈ 20µs.

Algorithm 3.2 provides an efficient alternative implementation of Active that relies on leases

to reduce communication. It starts by taking a hardware timestamp t (line 4) and then checks

if a lease on M already exists (line 5). If no lease exists (lines 6-7), the method checks for a

newly decided membership by contacting a majority of coordinators. If no membership newer

than M could have been decided (i.e., all replies are empty), it creates a lease on M (line 7) that

starts at t +δ and has no duration. This prevents overlapping active memberships since any

lease that processes could hold on a previous membership M ′ < M will have expired before

M becomes active. In case a lease on M already exists, the method tries to use it in order to

avoid reaching the coordinators (line 9). If it cannot use it, it tries to extend the lease (line

11) by checking the coordinators. It returns True only if leases on previous memberships

have expired (line 12), which takes—in the worst case—δ to happen. As a result, leases affect

the speed at which memberships can change, justifying the desire for a small lease duration.

Section 3.7 demonstrates that leases of δ≈ 20µs are feasible in practice.

This efficient implementation of Active renews its lease on demand. As long as its lease is

valid, the method merely takes a hardware timestamp—which takes a few tens of nanoseconds—

and returns immediately without reaching the coordinators. The latency overhead of Active
to the application that invokes it is thus very low. Communication with the coordinators is

only necessary when leases expire and have to be renewed, which results in a spike in Active’s

latency. In practice, uKharon Core renews leases in the background to ensure that—when the

membership remains unchanged—Active is not delayed by the calls to majority_active.

uKharon does not rely on operational leases for either liveness or safety. Timely renewal of

leases is only a way to reduce the latency of Active as Algorithm 3.2 would work even with

zero-duration leases. uKharon relies on bounded clock drifts for safety, as opposed to clock

synchronization. This ensures that durations are approximately the same across all processes,

thus preventing overlapping memberships. Appendix A.3 includes a microbenchmark evaluat-
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ing the clock drift of actual hardware and gives an overestimated drift that is no more than

0.001% of the lease duration. Thus, clock drift is accounted for by making leases last a few

nanoseconds less than their nominal value. As drift is reset on each lease renewal, it does not

accumulate over time. Therefore, no matter how long a system is up for, its operation remains

unaffected by the clock drift. A proof of correctness of uKharon’s leases is given in Appendix

A.2.

3.6.3 Extensions

Adaptive leases. So far, we have assumed a fixed lease duration δ. Network delays greater

than δ render leases useless as, every time the lease is extended (line 11), tend is always in the

past. In this case, Active always contacts the coordinators. In order to work under partial

synchrony and avoid this scenario, we extend the leasing mechanism as follows: Coordinators

store the lease duration for a given membership along with the membership itself. An appli-

cation node that wants to increase the lease duration contacts the coordinator leader. This

results in a new compatible membership that is identical to the previous one apart from the

lease duration. Compatible memberships receive special handling by uKharon Core in order

to ensure that—when going from one compatible membership to another—Active does not

wait for leases on the previous membership to expire. Also, if the latest membership M is not

compatible with the previous one, invocations to Active(M) return false until all possibly

ongoing leases on previous memberships have expired.

Lease caches. Active reaches a majority of coordinators to renew its lease, which scales

badly as the number of application nodes increases. uKharon solves this issue with an inter-

mediate lease renewal layer, the lease caches. These caches use the Active method to lease

memberships for ∆ (by reading from a majority of coordinators). In turn, application nodes

use leases that last for δ and a modified version of Active. This version differs from the one

presented in Algorithm 3.2 in the majority_check calls, which are replaced with RPCs to a

single lease cache. As a result, application nodes reduce the communication cost required to

renew their lease by a factor of—at least—3 (the typical number of coordinators). However,

lease caches increase the failover time of applications by at least∆. The reason is that when the

coordinators change the membership, the Active method of caches waits ∆ before making

the new membership active. At the same time, the Active method of application nodes that

is directed to some lease cache, waits δ before making the new membership active. Thus, the

overall time from the moment a new membership is decided until application nodes start

using it jumps from (at least) δ to (at least) ∆+δ.

3.7 Evaluation

We evaluate the various performance traits of uKharon and verify its suitability as a member-

ship service for microsecond applications. We aim to answer the following:
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• How much does uKharon increase the latency of end applications and what is its impact

on their throughput?

• How fast does uKharon respond to failures?

• How can uKharon be leveraged to build replication protocols and what performance

can they achieve?

CPU
2x Intel Xeon Gold 6244 CPU @ 3.60 GHz (8 cores/16 threads per
socket)

NIC Mellanox ConnectX-6 MT28908
Switch Mellanox MSB7700 EDR 100 Gbps

OS/Kernel Ubuntu 20.04.2 / 5.4.0-74-custom
RDMA Driver Mellanox OFED 5.3-1.0.0.1

Table 3.1: Hardware details of machines.

We evaluate uKharon in a 8-node cluster, the details of which are given in Table 3.1. The custom

kernel sets the NO_HZ_FULL option and uses the isocpus boot parameter, as explained in

Section 3.4.2. The dual-socket machines have an RDMA NIC attached to the first socket. Our

experiments execute on cores of the first socket using local NUMA memory.

Our implementation measures time durations using the clock_gettime function with the

CLOCK_MONOTONIC parameter. The function uses the TSC clocksource of the Linux kernel,

which offers efficient and accurate timestamping [151]. Appendix A.3 discusses details regard-

ing the drift and synchrony of TSC in symmetric multiprocessing (SMP) systems.

Finally, in all experiments we deploy 3 coordinators.

Applications. We integrate uKharon with HERD [91]. HERD is a non-replicated microsecond-

scale RDMA-based KV-cache. Clients send requests to a HERD server by RDMA-writing to a

dedicated buffer that the server has allocated for them. Requests contain an 8-byte key and

are either PUTs or GETs. PUTs additionally contain the value to be stored for the specified key.

The server discovers new client requests by polling its local memory, executes the requests

locally and then replies to the clients using RDMA UDs. We also leverage uKharon to build

uKharon-KV, an extended version of HERD which supports replication. We compare our

solution with HERD replicated by Mu (HERD+Mu) [5] which—as far as we know—offers the

lowest replication latency to date.

Implementation effort. We developed our own RDMA framework to implement uKharon.

uKharon Core and the consensus engine span 4 448 and 1 324 lines of C++, respectively. The

kernel module of the deadbeat failure detector is 404 lines of C. uKharon-KV extends HERD by

1 498 lines of C++. The only unimplemented features are clique-based memberships (Section

3.4.2) and adaptive leases (Section 3.6.3).
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Figure 3.3: Percentage of timely lease renewal depending on the lease duration, network load
and memory load.

3.7.1 Overhead Induced by uKharon

Latency overhead. Applications bundled with uKharon Core rely heavily on its Active
method. As long as (the background running) uKharon Core renews the lease on the active

membership in time, the Active method adds negligible latency overhead to the application.

We experimentally determine that the 99th percentile latency for invoking Active is 38 ns

when the lease is renewed in time, which is the time it takes to fetch the hardware timestamp

and compare it with the expiration date of the lease. Fluctuations in the network’s latency

or execution delays when uKharon Core renews the lease (e.g., due to cache misses) induces

additional latency to the application, as explained in Section 3.6.2.

Figure 3.3 shows how the duration of leases affects their timely renewal. We run 1-minute

experiments under a steady membership with 32 lease renewers contacting coordinators

directly and lease durations ranging from 18 to 30µs. Each machine has a maximum memory

bandwidth of 480 Gbps and a maximum network bandwidth of 100 Gbps. We apply variable

network and memory load by running stress-ng [97] and perftest [16] on the first socket

of our machines.

When the network load is maximum (bottom right figure), less than 12% of the calls to Active
return immediately, irrespective of the memory load. For network loads of 30–80% (other

figures), the memory load progressively affects lease renewal. Maximum memory load causes

expired leases when lease duration is shorter than 27µs. For most other configurations, a

duration greater than 23µs suffices. For example, with 80% network and 50% memory load,

lease renewal fails 0.0011% of the time, which corresponds to Active inducing latency every

300 out of 1.5 billion invocations. In other words, the 99.999th percentile of Active’s latency

is 2µs.

We get similar (omitted) results when an application renews its leases through lease caches.
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Figure 3.4: Impact of uKharon on HERD’s throughput for different batch sizes and numbers of
cores. Full bar shows the throughput w/o uKharon; labels show uKharon’s overhead.

In fact, RPC-based renewal requires at most 2µs longer leases (compared with reading from

coordinators) to achieve the same percentages of timely lease renewal. We attribute this

difference to RPC, which involves the CPU of both the application and the lease cache.

From this experiment we select the lease duration that we use for the rest of our evaluation.

We pick the lease duration when renewing from coordinators (δ) to be 23µs, and the lease

duration when renewing from lease caches (∆) to be 25µs.

Throughput reduction. We use uKharon to make HERD dynamic. The original HERD

assumes a static set of servers, each of which serves a shard of the key space. Clients are aware

of this sharding and use the key of a request to determine the appropriate server. The lack

of dynamicity affects HERD’s flexibility in two ways. First, if a server fails, its shard becomes

unavailable forever. Second, the system is unable to re-balance the load among the servers.

Importantly, the use of a static set of servers ensures consistency of clients’ requests: GETs
return the value of the most recent PUT.

In our implementation, each server dedicates up to 6 cores to the KV-cache and each core

is responsible for a part of the key space. Every core processes clients’ requests and invokes

the Active method before replying to avoid inconsistencies. If Active returns true, the core

executes the request (if the key belongs to its shard) and replies to the client. Otherwise, the

core rejects the request. Given that every core invokes Active in the critical path of serving

requests, the latency of requests increases (by ∼38 ns) and the throughput decreases.

Figure 3.4 shows the per-core throughput of a static deployment of HERD, along with the drop

in performance caused by the integration of the Active method. The workload is 80% GETs

and 20% PUTs with 32 B values. We vary the number of cores from 1 up to 6 as well as the batch

size (i.e., the number of clients’ requests processed at once). Typically, static HERD issues a
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reply every 350 ns. Without batching, having Active in the critical path raises the reply time

to 388 ns, an increase of 11%. Batching has a positive impact on Active’s overhead as a single

call to the method is used to serve all the requests in a batch. Thus, for batches of 6 replies,

Active effectively takes 38/6 = 6.3 ns per reply, an increase of just 1.8%. Finally, the overhead

of Active does not increase with the number of cores, even though they invoke the method

concurrently. This indicates good multicore scalability, which implies that a single uKharon

Core instance per server is sufficient to serve all applications running on it.

Bandwidth overhead. uKharon Core reduces the bandwidth available to applications. Lease

renewal requires 240 B when contacting 3 coordinators and 132 B when contacting a lease

cache, which translates to (assuming renewal every 10µs) 192 Mbps and 105 Mbps, respec-

tively. This bandwidth requirement accounts for 0.1–0.2% of a 100 Gbps link, thus the band-

width of application nodes is marginally impacted. Failure detection has similar bandwidth

requirement.

3.7.2 Failover Time

We study uKharon’s failover time considering userspace and kernel failures. We do not further

evaluate catastrophic failures, as 95% of the failover is for their 1 ms-long detection, making

microsecond-scale agreement and leases insignificant.

Table 3.2 summarizes the median failover (over 100 measurements) for various failure scenar-

ios. We consider the failure of a single application node optionally combined with the failure

of the coordinator leader or/and a lease cache. We emulate simultaneous failures by relying

on RDMA Multicast. An auxiliary program executes alongside the program which we emulate

the failure of. When the auxiliary program receives the multicast message, it uses SIGKILL
to kill the targeted program. We assume the worst scenario, i.e., the failure of the application

node results in global unavailability that is resolved only by a new (active) membership that

excludes it.

In every entry of Table 3.2, we present the failover time when detecting the failure using

the deadbeat mechanism (left) and the RDMA-based heartbeat mechanism (right). We now

discuss the failover time when using the deadbeat, first considering the case when the lease

caches are absent. For a single application failure, uKharon is able to failover in 50µs using the

deadbeat. If the coordinator leader crashes at the same time as the application, the failover

time increases by around 15µs. We attribute this increase to (1) the leader switch mechanism

of the consensus engine (∼10µs) and (2) the imperfect synchronization of SIGKILL among

the failed nodes (∼5µs). When lease caches are part of uKharon, the failover times for the

same failure scenarios increase (as expected) by 20–25µs, which is about the lease duration

of the cache. Failure of a cache has no impact on the failover time (bottom entries of the

first and third columns). This is because (1) the application node receives the broadcast

failure notification and switches lease cache before the membership changes and (2) the new
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L exists? A A + C A + L A + L + C
No 50\96 64\114 - -
Yes 74\108 96\138 75\113 101\139

Table 3.2: Failover time (in µs) for failures in App, Coordinator leader and Lease caches; using
the deadbeat\heartbeat.

membership is compatible with the previous one. The simultaneous failure of all three types

of nodes has a downtime of 101µs, instead of 96µs. Again, the failure of the cache does not

affect the failover time, but with three nodes the imperfect synchronization of failures adds up.

Finally, the same failures when using the RDMA-based heartbeat mechanism range from 96

to 139µs. This mechanism adds ∼45µs of failover compared to the deadbeat. The reason is

that reading the same value twice upon failure takes 1.5 delays on expectation and READs are

issued every 30µs.

3.7.3 uKharon-KV

Both uKharon-KV and HERD+Mu follow a primary-backup replication scheme. All requests

are served by the primary, which replicates them to backups. Backups are only used for fault

tolerance. All replicas (primary and backups) execute requests in the same order, but only the

primary replies to clients. In the event of a failure of the primary, one of the backups becomes

the new primary and continues serving clients’ requests. All replicas execute all requests in the

same total order, thus replicas are an exact copy of the failed primary. This means that when a

replica becomes the new primary, it can respond to clients without breaking consistency.

One problem these systems have to deal with is multiple nodes trying to replicate clients’

requests simultaneously. This happens when the primary fails and multiple nodes, believing

they are the new primary, try to handle clients’ requests. Mu avoids this problem by relying

on RDMA permissions (see §3.5.3). On the other hand, uKharon-KV relies exclusively on the

membership service to address it. Each membership determines a single primary. When the

primary fails, a new membership is emitted that determines the new primary. Since only one

membership is active at a time, no two replicas can believe to be the primary simultaneously.

The replication protocol of uKharon-KV works as follows: The primary P replicates all clients’

requests to a single backup B by RMDA-writing them to a dedicated buffer on the latter. In

parallel, P speculatively executes the requests. Upon completion of the RDMA WRITE, the

primary checks that the membership in which P is the primary is still active. If that is the case,

P replies to the client. Otherwise, P drops the request. Upon membership change, B waits for

the new membership—in which it is the primary—to become active. Then, B scans the local

buffer that was dedicated to P and applies all unprocessed requests in it. Only then B starts

processing clients’ requests. The client’s failover time is the time interval between the client’s

last successful request to P and its first successful request to B (as the new primary).
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If P ’s speculative execution turns out to be incorrect, its state may diverge from the one of the

new primary B . uKharon-KV, however, does not follow the common practice of rolling back

unsuccessful speculations, because our prototype adopts a simple design: when a node is

removed from the membership, it is not allowed to re-enter the system. Thus, the state of the

old primary P is no longer used when B takes over, hence skipping the rollback.

Replication latency. We compare the latency of HERD, HERD+Mu and uKharon-KV. For

HERD, we deploy a single node. For HERD+Mu, we deploy three nodes, a primary and two

backups, all of which execute an instance of HERD and Mu. For uKharon-KV, we deploy a

primary and a backup, both running uKharon-KV, as well as three coordinators. For these

experiments, a HERD client connects to the primary and issues PUT and GET requests. We

measure the time it takes for a client to complete a request and compute the median, the 95th

and the 99th percentiles over 10 million requests.

Figure 3.5 shows the end-to-end latency of vanilla HERD and of both replication approaches.

In vanilla HERD, PUTs are more efficient than GETs by 23%, due to the way HERD handles

the two types of requests. Briefly, PUTs rely mostly on RDMA WRITEs, which is the most

efficient RDMA verb [92], while GETs rely mostly on RDMA SENDs. For reference, we also show

the latency of Dynamic HERD, which uses uKharon’s Active method in the critical path of

executing clients’ requests, as explained in section 3.7.1. We verify, once again, the efficiency

of the Active method. At the 95th percentile, Dynamic HERD’s requests are delayed by 10 ns

(for GETs) and 50 ns (for PUTs), compared with vanilla HERD.

The two replicated solutions exhibit different costs. HERD+Mu replicates all requests, regard-

less of whether they are PUTs or GETs, while uKharon-KV replicates only PUTs. HERD+Mu
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does not distinguish between PUTs and GETs, because in Mu the primary uses the result of

replication (whether it is successful or not) to determine if it is still the primary or not. If Mu

were to skip the replication of GETs, inconsistency would occur (see §3.2.1). On the other

hand, uKharon-KV executes GETs locally, without replicating them, since the primary relies

on the Active method to determine if its data is stale or not. Also, observe that uKharon-KV

replicates PUTs approximately 300 ns faster than Mu. This improvement is merely attributed

to the speculative approach adopted by uKharon-KV. In HERD+Mu, the primary executes the

request after it has been replicated to a majority. On the other hand, the primary in uKharon-

KV executes the request in parallel to the replication to the backup. Thus, our solution hides

the cost of executing the request, which is approximately 300 ns, as shown by the difference

of the two rightmost bars in the middle plot of Figure 3.5. Regardless, uKharon-KV provides

the same fault tolerance as Mu, even with one less replica: if a single replica crashes in either

HERD+Mu or uKharon-KV, the system remains operational but cannot tolerate another failure.

Fundamentally, both HERD+Mu and uKharon-KV assume a majority of correct nodes, the

former among the replicas and the latter among the coordinators.

Failover. We compare the failover latency of uKharon-KV with HERD+Mu in the event of

userspace failures. We run uKharon-KV in two configurations. In the first one, clients directly

RDMA-read from coordinators to renew their lease. In the second one, clients go to lease

caches. The third graph of Figure 3.5 shows that HERD+Mu has a 95th-percentile failover time

of 531µs. This number is almost half of what Mu’s authors report since we fine-tuned their

failure detector for our own setup. At the same time, uKharon-KV without cache (resp. with)

achieves a 10× improvement (resp. 6.5×) at 53µs (resp. 80µs) of end-to-end failover time.

3.8 Related Work

Membership services in general. Membership services are widely used in the data cen-

ter. Distributed data processing applications (e.g., Kafka [103], MapReduce [55]), storage

systems (e.g., Cassandra [105], HDFS [161]) and orchestration tools (e.g., Mesos [81]) rely on

Zookeeper [84] for leader election, membership management, locks, watches, etc. uKharon

focuses on membership management, yet it can be extended to support Zookeeper’s features.

Indeed, uKharon-KV (excluding the lack of durability) offers similar guarantees to the strongly

consistent KV-store of Zookeeper, which comprises its basic building block. For instance, locks

can be implemented on top of uKharon-KV by extending its interface with CompareAndSwap.

Watches, being an unreplicated pub/sub system, only require modifying uKharon-KV’s pri-

mary. The important difference is that Zookeeper is not suitable for the microsecond scale

and does not exploit RDMA.

Failure detection in the data center. A common approach to detect failures is to use end-to-

end timeouts, which are hard to set. Falcon [119] proposes to use inside information in order
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to build faster and more accurate failure detectors by relying on hierarchies of specialized

detectors. It maximizes accuracy by killing suspected processes. Albatross [118] is slightly

more forgiving and isolates suspected processes so that they cannot affect the state of the

system. Pigeon [117] provides fine-grained reports that end applications use to act accordingly.

We embrace Falcon’s philosophy and use RDMA-tailored failure detectors to operate at the

microsecond scale.

Time-bound leases. Time-bound leases are widely used to implement consistent distributed

applications at the price of some synchrony assumptions. They are often provided by a

distributed coordination framework such as ZooKeeper [84] or etcd [146]. Leases are used for

leader election [164], as well as for guarding memberships (e.g., in FaRM [64] and Hermes [94]).

uKharon guards memberships with purely client-side leases. As a result, uKharon brings leases

down to a few tens of microseconds and only assumes bounded clock drift instead of loosely

synchronized clocks as in Hermes.
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4 Frugal Byzantine Computing

In Part III of this thesis, starting with this chapter, we turn our attention to Byzantine Fault-

Tolerant (BFT) replication of microsecond-scale applications. Yet, from early on we realize

that traditional techniques for handling Byzantine failures are expensive: digital signatures

are too costly, while using 3 f +1 replicas is uneconomical ( f denotes the maximum number

of Byzantine processes). We devise algorithms for the classical problems of broadcast and

consensus, which constitute the foundational components of replication protocols. The

algorithms reduce the number of replicas to 2 f +1 and minimize the number of signatures. To

achieve the first goal, we rely on the message-and-memory model [3], a theoretical model that

describes the RDMA technology. However, even in this model, accomplishing the second goal

simultaneously is challenging.

We first address this challenge for the problem of broadcasting messages reliably. We study two

variants of this problem, Consistent Broadcast and Reliable Broadcast, typically considered

very close. Perhaps surprisingly, we establish a separation between them in terms of signatures

required. In particular, we show that Consistent Broadcast requires at least 1 signature in some

execution, while Reliable Broadcast requires O(n) signatures in some execution. We present

matching upper bounds for both primitives within constant factors.

We then turn to the problem of consensus and argue that this separation matters for solving

consensus with Byzantine failures: we present a consensus algorithm that uses Consistent

Broadcast as its main communication primitive. This algorithm works for n = 2 f +1 and avoids

signatures in the common case—properties that have not been simultaneously achieved

previously and that pave the way towards microsecond-scale BFT replication.

4.1 Introduction

Byzantine fault-tolerant computing is typically associated with high cost. To tolerate f fail-

ures, we typically need n = 3 f +1 replica processes. Moreover, the agreement protocols for

synchronizing the replicas have a significant latency overhead. Part of the overhead comes
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Figure 4.1: Latency of writing 32 B over RDMA, replicating a request on Mu [5] (SMR), executing
a PUT on the HERD key-value cache [91], and signing or verifying a message using state-of-
the-art EdDSA signatures [89].

from network delays, but digital signatures—often used in Byzantine computing—are even

more costly than network delays. For instance, signing or verifying a message can be 17–32

times slower than sending it over a low-latency Infiniband fabric (Figure 4.1).

In this chapter, we study whether Byzantine computing can be frugal, meaning if it can use

few processes and few signatures. By Byzantine computing, we mean the classical problems of

broadcast and consensus. By frugality, we first mean systems with n = 2 f +1 processes, where

f is the maximum number of Byzantine processes. Such systems are clearly preferable to

systems with n = 3 f +1, as they require 33–50% less hardware. However, seminal impossibility

results imply that in the standard message-passing model with n = 2 f +1 processes, neither

consensus nor various forms of broadcast can be solved, even under partial synchrony or

randomization [66]. To circumvent the above impossibility results, we consider a message-

and-memory (M&M) model, which allows processes to both pass messages and share memory,

capturing the latest hardware capabilities of enterprise servers [3, 4]. In this model, it is

possible to solve consensus with n = 2 f +1 processes and partial synchrony [4].

Frugality for us also means the ability to achieve low latency, by minimizing the number of

digital signatures used. Mitigating the cost of digital signatures is commonly done by replacing

them with more computationally efficient schemes, such as message authentication codes

(MACs). For instance, with n = 3 f +1, the classic PBFT replaces some of its signatures with

MACs [38], while Bracha’s broadcast algorithm [29] relies exclusively on MACs. As we show,

when n = 2 f +1, the same signature-saving techniques are no longer applicable.

The two goals—achieving high failure resilience while minimizing the number of signatures—

prove challenging when combined. Intuitively, this is because with n = 2 f + 1 processes,

two quorums may intersect only at a Byzantine process; this is not the case with n = 3 f +1.

Thus, we cannot rely on quorum intersection alone to ensure correctness; we must instead

restrict the behavior of Byzantine processes to prevent them from providing inconsistent

information to different quorums. Signatures can restrict Byzantine processes from lying, but

only if there are enough correct processes to exchange messages and cross-check information.

The challenge is to make processes prove that they behave correctly, based on the information

they received so far, while using as few signatures as possible.
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4.1 Introduction

We focus initially on the problem of broadcasting a message reliably—one of the simplest and

most widely used primitives in distributed computing. Here, a designated sender process s

would like to send a message to other processes, such that all correct processes deliver the

same message. The difficulty is that a Byzantine sender may try to fool correct processes to

deliver different messages. Both broadcast variants, Consistent and Reliable Broadcast, ensure

that (1) if the sender is correct, then all correct processes deliver its message, and (2) any two

correct processes that deliver a message must deliver the same message. Reliable Broadcast

ensures an additional property: if any correct process delivers a message, then all correct

processes deliver that message.

Perhaps surprisingly, in the M&M model we show a large separation between the two broad-

casts in terms of the number of signatures (by correct processes) they require. We introduce

a special form of indistinguishability argument for n = 2 f +1 processes that uses signatures

and shared memory in an elaborate way. With it, we prove lower bounds for deterministic

algorithms. For Consistent Broadcast, we prove that any solution requires one correct process

to sign in some execution, and provide an algorithm that matches this bound. In contrast,

for Reliable Broadcast, we show that any solution requires at least n − f −2 correct processes

to sign in some execution. We provide an algorithm for Reliable Broadcast based on our

Consistent Broadcast algorithm which follows the well-known Init-Echo-Ready pattern [29]

and uses up to n +1 signatures, matching the lower bound within a factor of 2.

To lower the impact of signatures on the latency of our broadcast algorithms, we introduce the

technique of background signatures. Given the impossibility of completely eliminating signa-

tures, we design our protocols such that signatures are not used in well-behaved executions,

i.e., when processes are correct and participate within some timeout. In other words, both

broadcast algorithms generate signatures in the background and also incorporate a fast path

where signatures are not used.

We next show how to use our Consistent Broadcast algorithm to improve consensus algorithms.

The algorithm is based on PBFT [37], and maintains views in which one process is the primary.

Within a view, agreement can be reached by simply having the primary consistent-broadcast

a value, and each replicator respond with a consistent broadcast. When changing views, a

total of O(n2) calls to Consistent Broadcast may be issued. The construction within a view

is similar to our Reliable Broadcast algorithm. Interestingly, replacing this part with the

Reliable Broadcast abstraction does not yield a correct algorithm; the stronger abstraction

hides information that an implementation based on Consistent Broadcast can leverage. For

the correctness of our algorithm, we rely on a technique called history validation and on

cross-validating the view-change message. Our consensus algorithm has four features: (1) it

works for n = 2 f +1 processes, (2) it issues no signatures on the fast path, (3) it issues O(n2)

signatures on a view-change and (4) it issues O(n) background signatures within a view. As far

as we know, no other algorithm achieves all these features simultaneously. This result provides

a strong motivation for the use of Consistent Broadcast—rather than Reliable Broadcast—as a

first-class primitive in the design of agreement algorithms.
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To summarize, we quantify the impossibility of avoiding signatures by proving lower bounds

on the number of signatures required to solve the two variants of the broadcast problem—

Consistent and Reliable Broadcast—and provide algorithms that match our lower bounds.

Also, we construct a consensus algorithm using the Consistent Broadcast primitive. For our

analysis, we consider the message-and-memory model [3, 4], but our results also apply to

the pure shared memory model: our algorithms do not require messages so they work under

shared memory, while our lower bounds apply a fortiori to shared memory.

4.2 Related Work

Message-and-memory models. We adopt a message-and-memory (M&M) model, which

is a generalization of both message-passing and shared-memory. M&M is motivated by

enterprise servers with the latest hardware capabilities—such as RDMA, RoCE, Gen-Z, and

soon CXL—which allow machines to both pass messages and share memory. M&M was

introduced by Aguilera et al. in [3], and subsequently studied in several other works [4, 13,

79, 150]. Most of these works did not study Byzantine fault tolerance, but focused on crash-

tolerant constructions when memory is shared only by subsets of processes [3, 13, 79, 150].

In [4], Aguilera et al. consider crash- and Byzantine- fault tolerance, as well as bounds on

communication rounds on the fast path for a variant of the M&M model with dynamic access

permissions and memory failures. However, they did not study any complexity bounds off the

fast path, and in particular did not consider the number of signatures such algorithms require.

Byzantine fault tolerance. Lamport, Shostak and Pease [113, 143] show that Byzantine agree-

ment can be solved in synchronous message-passing systems iff n ≥ 3 f +1. In asynchronous

systems subject to failures, consensus cannot be solved [70]. However, this result is circum-

vented by making additional assumptions for liveness, such as randomization [23, 135] or

partial synchrony [42, 66]. Even with signatures, asynchronous Byzantine agreement can be

solved in message-passing systems only if n ≥ 3 f +1 [31]. Dolev and Reischuk [62] prove a

lower bound of n( f +1)/4 signatures for Byzantine agreement, assuming that every message

carries at least the signature of its sender.

Byzantine broadcast. In the message-passing model, both Consistent and Reliable Broad-

cast require n ≥ 3 f +1 processes, unless (1) the system is synchronous and (2) digital signatures

are available [31, 61, 163]. Consistent Broadcast is sometimes called Crusader Agreement [61].

The Consistent Broadcast abstraction was used implicitly in early papers on Byzantine broad-

cast [30, 169], but its name was coined later by Cachin et al. in [35]. The name “consistent

broadcast” may also refer to a similar primitive used in synchronous systems [124, 163]. Our

Reliable Broadcast algorithm shares Bracha’s Init-Echo-Ready structure [29] with other broad-

cast algorithms [31, 152, 163], but is the first algorithm to use this structure in shared memory

to achieve Reliable Broadcast with n = 2 f +1 processes.
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BFT with stronger communication primitives. Despite the known fault tolerance bounds

for asynchronous Byzantine Failure Tolerance (BFT), Byzantine consensus can be solved in

asynchronous systems with 2 f + 1 processes if stronger communication mechanisms are

assumed. Some prior work solves Byzantine consensus with 2 f +1 processes using specialized

trusted components that Byzantine processes cannot control [43, 44, 49, 50, 93, 172]. These

trusted components can be seen as providing a broadcast primitive for communication. In

contrast to us, these works assume the existence of such primitives as black boxes, and do

not study the cost of implementing them using weaker hardware guarantees. We achieve the

same Byzantine fault-tolerance by using the shared memory to prevent the adversary from

partitioning correct processes: once a correct process writes to a register, the adversary cannot

prevent another correct process from seeing the written value.

It has been shown that shared memory primitives can be useful in providing BFT if they have

access control lists or policies that dictate the allowable access patterns in an execution [4, 8, 26,

27, 126]. Alon et al. [8] provide tight bounds for the number of strong shared-memory objects

needed to solve consensus with optimal resilience. They do not, however, study the number

of signatures required.

Early termination. The idea of having a fast path that allows early termination in well-

behaved executions is not a new one, and has appeared in work on both message-passing [4,

5, 14, 60, 96, 102, 111] and shared-memory [18, 168] systems. Most of these works measure the

fast path in terms of the number of message delays (or network rounds trips) they require, but

some also consider the number of signatures [14]. In this chapter, we show that a signature-free

fast path does not prevent an algorithm from having an optimal number of overall signatures.

4.3 Model and Preliminaries

We consider an asynchronous message-and-memory model, which allows processes to use

both message-passing and shared-memory [3]. The system has n processes Π= {p1, . . . , pn}

and a shared memory M . Throughout this chapter, the term memory refers to M , not to the

local state of processes. We sometimes augment the system with eventual synchrony (§4.3.2).

Communication. The memory consists of single-writer multi-reader (SWMR) read/write

atomic registers. Each process can read all registers, and has access to an unlimited supply

of registers it can write. If a process p can write to a register r , we say that p owns r . This

model is a special case of access control lists (ACLs) [126], and of dynamically permissioned

memory [4]. Additionally, every pair of processes p and q can send messages to each other

over links that satisfy the integrity and no-loss properties. Integrity requires that a message

m from p be received by q at most once and only if m was previously sent by p to q . No-loss

requires that a message m sent from p to q be eventually received by q .

49



Chapter 4. Frugal Byzantine Computing

Signatures. Our algorithms assume digital signatures: each process can sign and verify

signatures. A process p may sign a value v , producing σp,v ; when unambiguous, we drop the

subscripts. Given v and σp,v , a process can verify whether σp,v is a valid signature of v by p.

Failures. Up to f processes may fail by becoming Byzantine, where n = 2 f +1. Such a process

can deviate arbitrarily from the algorithm, but cannot write on a register that is not its own,

and cannot forge the signature of a correct process. As usual, Byzantine processes can collude,

e.g., by using side-channels to communicate. The memory M does not fail; such a reliable

memory is implementable from a collection of fail-prone memories [4]. We assume that these

individual memories may only fail by crashing.

4.3.1 Broadcast

We consider two broadcast variants: Consistent Broadcast [34, 35] and Reliable Broadcast [28,

34]. In both variants, broadcast is defined in terms of two primitives: broadcast(m) and

deliver(m). A designated sender process s is the only one that can invoke broadcast. When s

invokes broadcast(m) we say that s broadcasts m. When a process p invokes deliver(m), we

say that p delivers m.

Definition 1. Consistent Broadcast has the following properties:

Validity If a correct process s broadcasts m, then every correct process eventually delivers m.

No duplication Every correct process delivers at most one message.

Consistency If p and p ′ are correct processes, p delivers m, and p ′ delivers m′, then m=m′.

Integrity If some correct process delivers m and s is correct, then s previously broadcast m.

Definition 2. Reliable Broadcast has the following properties:

Validity, No duplication, Consistency, Integrity Same properties as in Definition 1.

Totality If some correct process delivers m, then every correct process eventually delivers a

message.

We remark that both broadcast variants behave the same way when the sender is correct

and broadcasts m. However, when the sender is faulty Consistent Broadcast has no delivery

guarantees for correct processes, i.e., some correct processes may deliver m, others may not.

In contrast, Reliable Broadcast forces every correct process to eventually deliver m as soon as

one correct process delivers m.
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4.3.2 Consensus

Definition 3. Weak Byzantine agreement [109] has the following properties:

Agreement If correct processes i and j decide val and val ′, respectively, then val = val ′.

Weak validity If all processes are correct and some process decides val , then val is the input of

some process.

Integrity No correct process decides twice.

Termination Eventually every correct process decides.

Our consensus algorithm (§4.6) satisfies agreement, validity, and integrity under asynchrony,

but requires eventual synchrony for termination. That is, we assume that for each execution

there exists a Global Stabilization Time (GST), unknown to the processes, such that from GST

onwards there is a known bound ∆ on communication and processing delays.

4.4 Lower Bounds on Broadcast Algorithms

We show lower bounds on the number of signatures required to solve Consistent and Reliable

Broadcast with n = 2 f +1 processes in our model. We focus on signatures by correct processes

because Byzantine processes can behave arbitrarily (including signing in any execution).

4.4.1 High-Level Approach

Broadly, we use indistinguishability arguments that create executions Ev and Ew that deliver

different messages v and w ; then we create a composite execution E where a correct process

cannot distinguish E from Ev , while another correct process cannot distinguish E from Ew ,

so they deliver different values, a contradiction. Such arguments are common in message-

passing system, where the adversary can prevent communication by delaying messages

between correct processes. However, it is not obvious how to construct this argument in shared

memory, as the adversary cannot prevent communication via the shared memory, especially

when using single-writer registers that cannot be overwritten by the adversary. Specifically, if

correct processes write their values and read all registers, then for any two correct processes,

at least one sees the value written by the other [22]. So, when creating execution E in which,

say Ev occurs first, processes executing Ew will know that others executed Ev beforehand.

We handle this complication in two ways, depending on whether the sender signs its broadcast

message. If the sender does not sign, we argue that processes executing Ew cannot tell

whether Ev was executed by correct or Byzantine processes, and must therefore still output

their original value w . This is the approach in the lower bound proof for Consistent Broadcast

(Lemma 4.4.1).
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However, once a signature is produced, processes can save it in their memory to prove to

others that they observed a valid signature. Thus, if the sender signs its value, then processes

executing Ew cannot be easily fooled; if they see two different values signed by the sender, then

the sender is provably faulty, and correct processes can choose a different output. So, we need

another way to get indistinguishable executions. We rely on a correct bystander process. We

make a correct process b in E sleep until all other correct processes decide. Then b wakes up

and observes that E is a composition of Ev and Ew . While b can recognize that Ev or Ew was

executed by Byzantine processes, it cannot distinguish which one. So, b cannot reliably output

the same value as other correct processes. We use this construction for Reliable Broadcast, but

we believe it applies to other agreement problems in which all correct processes must decide.

The proof is still not immediate from here. In particular, since f <n/2, correct processes can

wait until at least f +1 processes participate in each of Ev and Ew . Of those, in our proof we

assume at most f −1 processes sign values. Since we need a bystander later, only 2 f processes

can participate. Thus, the sets executing Ev and Ew overlap at two processes; one must be the

sender, to force decisions in both executions. Let p be the other process and Sv and Sw be the

set that execute Ev and Ew respectively, without the sender and p. Thus, |Sv | = |Sw | = f −1.

The key complication is that if p signs its values in one of these two executions, we cannot

compose them into an execution E in which the bystander b cannot distinguish which value it

should decide. To see this, assume without loss of generality that p signs a value in execution

Ew . To create E , we need the sender s and the set Sw to be Byzantine. The sender will produce

signed versions of both v and w for the two sets to use, and Sw will pretend to execute Ew even

though they observed that Ev was executed first. Since |Sw |+|{s}| = f , all other processes must

be correct. In particular, p will be correct, and will not produce the signature that it produces

in Ew . Thus, the bystander b will know that Sv were correct. More generally, the problem is

that, while we know that at most f −1 processes sign, we do not know which processes sign. A

clever algorithm can choose signing processes to defeat the indistinguishability argument—in

our case, this happens if p is a process that signs.

Due to this issue, we take a slightly different approach for the Reliable Broadcast lower bound,

first using the bystander construction to show that any Reliable Broadcast algorithm must

produce a single non-sender signature. To strengthen this to our bound, we construct an

execution in which this signature needs to be repeatedly produced. To make this approach

work, we show not just that there exists an execution in which a non-sender signature is

produced, but that for all executions of a certain form, a non-sender signature is produced.

This change in quantifiers requires care in the indistinguishability proof, and allows us to

repeatedly apply the result to construct a single execution that produces many signatures.

4.4.2 Proofs

In all proofs in this section, we denote by s the designated sender process in the broadcast

protocols we consider. We first show that Consistent Broadcast requires at least one signature.
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Lemma 4.4.1. Any algorithm for Consistent Broadcast in the M&M model with n = 2 f +1 and

f ≥ 1 has an execution in which at least one correct process signs.

Proof. By contradiction, assume there is some algorithm A for Consistent Broadcast in the

M&M model with n = 2 f +1 and f ≥ 1 without any correct process signing. Partition Π into

3 subsets: S1, S2, and {p}, where S1 contains the sender, |S1| = f , |S2| = f , and p is a single

process. Let v, w be two distinct messages. Consider the following executions.

EXECUTION ECLEAN-V . Processes in S1 and p are correct (including the sender s), while pro-

cesses in S2 are faulty and never take a step. Initially, s broadcasts v . Since s is correct,

processes in S1 and p eventually deliver v . By our assumption that correct processes never

sign, processes in S1 and p do not sign in this execution; processes in S2 do not sign either,

because they do not take any steps.

EXECUTION EDIRTY-W . Processes in S1 and S2 are correct but p is Byzantine. Initially, p sends

all messages and writes to shared memory as it did in ECLEAN-V (it does so without following its

algorithm; p is able to do this since no process signed in ECLEAN-V). Then, the correct sender s

broadcasts w and processes in S1 and S2 execute normally, while p stops executing. Then, by

correctness of the algorithm, eventually all correct processes deliver w . By our assumption

that correct processes never sign, processes in S1 and S2 do not sign in this execution; p does

not sign either, because it acts as it did in ECLEAN-V.

EXECUTION EBAD . Processes in S1 are Byzantine, while processes in S2 and p are correct.

Initially, processes in S2 sleep, while processes in S1 and p execute, where processes in S1

send the same messages to p and write the same values to shared memory as in ECLEAN-V

(but they do not send any messages to S2), so that from p’s perspective the execution is

indistinguishable from ECLEAN-V. S1 are able to do this because no process signed in ECLEAN-V.

Therefore, p eventually delivers v . Next, processes in S1 write the initial values to their

registers1. Now, process p stops executing, while processes in S1 and S2 execute the same

steps as in EDIRTY-W—here, note that S2 just follows algorithm A while S1 is Byzantine and

pretends to be in an execution where s broadcasts w (S1 is able to do this because no process

signed in EDIRTY-W). Because this execution is indistinguishable from EDIRTY-W to processes in

S2, they eventually deliver w . At this point, correct process p has delivered v while processes

in S2 (which are correct) have delivered w , which contradicts the consistency property of

Consistent Broadcast.

An algorithm for Reliable Broadcast works for Consistent Broadcast, so Lemma 4.4.1 also

applies to Reliable Broadcast.

We now show a separation between Consistent Broadcast and Reliable Broadcast: any algo-

rithm for Reliable Broadcast has an execution where at least f −1 correct processes sign.

1Recall that registers are single-writer. By “their registers”, we mean the registers to which the processes can
write.
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The proof for the Reliable Broadcast lower bound has two parts. First, we show that intuitively

there are many executions in which some process produces a signature: if E is an execution

in which (1) two processes never take steps, (2) the sender is correct, and (3) processes fail

only by crashing, then some non-sender process signs. This is the heart of the proof, and

relies on the indistinguishability arguments discussed in Section 4.4.1. Here, we focus only on

algorithms in which at most f correct processes sign, otherwise the algorithm trivially satisfies

our final theorem.

Lemma 4.4.2. Let A be an algorithm for Reliable Broadcast in the M&M model with n = 2 f +1

and f ≥ 2 processes, such that in any execution at most f correct processes sign. In all executions

of A in which at least 2 processes crash initially, processes fail only by crashing, and the sender is

correct, at least one correct non-sender process signs.

Proof. By contradiction, assume some algorithm A satisfies the conditions of the lemma, but

there is some execution of A where the sender s is correct, processes fail only by crashing, and

at least 2 processes crash initially, but no correct non-sender process signs. Let ECLEAN-V be

such an execution, D be a set with two processes that crash initially in ECLEAN-V
2, C =Π \ D,

and v be the message broadcast by s in ECLEAN-V. Consider the following executions:

EXECUTION ECLEAN-W . The sender s broadcasts some message w ̸= v , D crashes initially, and

C is correct. Since s is correct, eventually all correct processes deliver w . By assumption, at

most f processes sign. Let S ⊂C contain all processes that sign, augmented with any other

processes so that |S| = f . Let T =C \ S. Note that (1) |T | = f −1 and (2) if s signed, then s ∈ S,

otherwise s ∈ T .

EXECUTION ECLEAN-V . This execution was defined above (where s broadcasts v). Since s is

correct, eventually all correct processes deliver v . At least one process in T is correct—call it

pt —since processes in D are faulty and there are at least f +1 correct processes. Note that pt

delivers v . We refer to pt in the next execution.

EXECUTION EMIXED-V . Processes in S are Byzantine and the rest are correct. Initially, the

execution is identical to ECLEAN-V, except that (1) processes in D are just sleeping not crashed,

and (2) processes in S do not send messages to processes in D (this is possible because

processes in S are Byzantine). The execution continues as in ECLEAN-V until pt delivers v .

Then, processes in S misbehave (they are Byzantine) and do three things: (1) they change

their states to what they were at the end of ECLEAN-W (this is possible because no process in T

signed in ECLEAN-W), (2) they write to their registers in shared memory the same last values that

they wrote in ECLEAN-W, and (3) they send the same messages they did in ECLEAN-W. Intuitively,

processes in S pretend that s broadcast w . Let t be the time at this point; we refer to time

t in the next execution. Now, we pause processes in S and let all other processes execute,

including D which had been sleeping. Since pt delivered v and processes in D are correct,

they eventually deliver v as well.

2If more than two processes crashed initially, pick any two arbitrarily.
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EXECUTION EBAD . Processes in T ∪ {s} are Byzantine and the rest are correct. Initially, the

execution is identical to ECLEAN-W, except that (1) processes in D are sleeping not crashed,

and (2) processes in T ∪ {s} do not send messages to processes in D. Execution continues

as in ECLEAN-W until processes in S (which are correct) deliver w . Then, processes in T ∪ {s}

misbehave and do three things: (1) they change their states to what they were in EMIXED-V at

time t—this is possible because in ECLEAN-V (and therefore in all values and messages they

had by time t in EMIXED-V), no non-sender process signed, and in particular, there were no

signatures by any process in S \ {s}; (2) they write to the registers in shared memory the

same values that they have in EMIXED-V at time t ; and (3) they send all messages they did

in EMIXED-V up to time t . Intuitively, processes in T ∪ {s} pretend that s broadcast v . Now,

processes in D start executing. In fact, execution continues as in EMIXED-V from time t onward,

where processes is S are paused and all other processes execute (including D). Because these

processes cannot distinguish the execution from EMIXED-V, eventually they deliver v . Note that

processes in D are correct and they deliver v , while processes in S are also correct and deliver

w—contradiction.

In the final stage of the proof, we leverage Lemma 4.4.2 to construct an execution in which

many processes sign. This is done by allowing some process to be poised to sign, and then

pausing it and letting a new process start executing. Thus, we apply Lemma 4.4.2 f −1 times

to incrementally build an execution in which f −1 correct processes sign.

Theorem 4.4.3. Any algorithm that solves Reliable Broadcast in the M&M model with n = 2 f +1,

f ≥ 1 has an execution in which at least f −1 correct non-sender processes sign.

Proof. If f = 1, the result is trivial; it requires f −1 = 0 processes to sign.

Now consider the case f ≥ 2. If A has an execution in which at least f +1 correct processes sign,

then we are done. Now suppose A has no execution in which at least f +1 correct processes

sign. Consider the following execution of A.

All processes and s are correct. Initially, s broadcasts v . Then processes s, p1 . . . p f participate,

and the rest are delayed. This execution is indistinguishable to s, p1 . . . p f from one in which the

rest of the processes crashed. Therefore, by Lemma 4.4.2, some process in p1 . . . p f eventually

signs. Call p1 the first process that signs. We continue the execution until p1’s next step is

to make its signature visible. Then, we pause p1, and let p f +1 begin executing. Again, this

execution is indistinguishable to s, p2 . . . p f +1 from one in which the rest of the processes

crashed, so by Lemma 4.4.2, eventually some process in p2 . . . p f +1 creates a signature and

makes it visible. We let the first process to do so reach the state in which it is about to make its

signature visible, and then pause it, and let p f +2 start executing.

We continue in this way, each time pausing pi as it is about to make its signature visible, and

letting p f +i begin executing. We can apply Lemma 4.4.2 as long as two processes have not

participated yet. At that point, f −1 processes are poised to make their signatures visible. We
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then let these f −1 processes each take one step. This yields an execution of A in which f −1

correct non-sender processes sign.

4.5 Broadcast Algorithms

In this section we present solutions for Consistent and Reliable Broadcast. We first implement

Consistent Broadcast in Section 4.5.1; then we use it as a building block to implement Reliable

Broadcast, in Section 4.5.2. We prove the correctness of our algorithms in Appendix B.1 and B.2.

For both algorithms, we first describe the general execution outside the common case, which

captures behavior in the worst executions; we then describe how delivery happens fast in the

common case (without signatures).

Process roles in broadcast. We distinguish between three process roles in our algorithms:

sender, receiver, and replicator. This is similar in spirit to the proposer-acceptor-learner

model used by Paxos [110]. Any process may play any number of roles; if all processes play all

three roles, then this becomes the standard model. The sender calls broadcast, the receivers

call deliver, and the replicators help guarantee the properties of broadcast. By separating

replicators (often servers) from senders and receivers (often clients or other servers), we

improve the practicality of the algorithms: clients, by not fulfilling the replicator role, need not

remain connected to disseminate information from other clients. Unless otherwise specified,

n and f refer only to replicators; independently, the sender and any number of receivers can

also be Byzantine. Receivers cannot send or write any values, as opposed to the sender and

replicators, but they can read the shared memory and receive messages.

Background signatures. Our broadcast algorithms produce signatures in the background.

We do so to allow the algorithms to be signature-free in the common case. Indeed, in the

common case, receivers can deliver a message without waiting for background signatures.

However, outside the common case, these signatures must still be produced by the broadcast

algorithms in case some replicators are faulty or delayed. Both algorithms require a number

of signatures that matches the bounds in Section 4.4 within constant factors.

4.5.1 Consistent Broadcast

We give an algorithm for Consistent Broadcast that issues no signatures in the common case,

when there is synchrony and no replicator is faulty. Outside this case, only the sender signs.

Algorithm 4.1 shows the pseudocode. The broadcast and deliver events are called cb-broadcast

and cb-deliver, to distinguish them from rb-broadcast and rb-deliver of Reliable Broadcast.

Processes communicate by sharing an array of slots: process i can write to slots[i ], and can

read from all slots. To refer to its own slot, a processes uses index me. The sender s uses its

slot to broadcast its message while replicators use their slot to replicate the message. Every
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slot has two sub-slots—each a SWMR atomic register—one for a message (msg) and one for a

signature (sgn).

To broadcast a message m, the sender s writes m to its msg sub-slot (line 6). Then, in the

background, s computes its signature for m and writes it to its sgn sub-slot (line 9). The

presence of msg and sgn sub-slots allow the sender to perform the signature computation in

the background. Sender s can return from the broadcast while this background task executes.

The role of a correct replicator is to copy the sender’s message m and signature σ, provided

σ is valid. The copying of m and σ (lines 12–19) are independent events, since a signature

may be appended in the background, i.e., later than the message. The fast way to perform a

delivery does not require the presence of signatures. Note that correct replicators can have

mismatching values only when s is Byzantine and overwrites its memory.

A receiver p scans the slots of the replicators. It delivers message m when the content of a

majority (n− f ) of replicator slots contains m and a valid signature by s for m, and no slot

contains a different message m′,m′ ̸= m with a valid sender signature (line 28). Slots with

sender signatures for m′ ̸= m result in a no-delivery. This scenario indicates that the sender is

Byzantine and is trying to equivocate. Slots with signatures not created by s are ignored so

that a Byzantine replicator does not obstruct p from delivering.

When there is synchrony and both the sender and replicators follow the protocol, a receiver

delivers without using signatures. Specifically, delivery in the fast path occurs when there is

unanimity, i.e., all n = 2 f +1 replicators replicated value m (line 25), regardless of whether a

signature is provided by s. A correct sender eventually appendsσ, and n− f correct replicators

eventually copy σ over, allowing another receiver to deliver m via the slow path, even if a

replicator misbehaves, e.g., removes or changes its value.

An important detail is the use of a snapshot to read replicators’ slots (line 23), as opposed

to a simple collect. The scan operation is necessary to ensure that concurrent reads of the

replicators’ slots do not return views that can cause correct receivers to deliver different

messages. To see why, imagine that the scan at line 23 is replaced by a simple collect. Then, an

execution is possible in which correct receiver p1 reads some (correctly signed) message m1

from n − f slots and finds the remaining slots empty, while another correct receiver p2 reads

m2 ̸= m1 from n − f slots and finds the remaining slots empty. In this execution, p1 would go

on to deliver m1 and p2 would go on to deliver m2, thus breaking the consistency property.

We present such an execution in detail in Appendix B.3.

To prevent scenarios where correct receivers see different values at a majority of replicator

slots, the scan operation works as follows (lines 30–40): first, it performs a collect of the slots.

If all the slots are non-empty, then we are done. Otherwise, we re-collect the empty slots until

no slot becomes non-empty between two consecutive collects. This suffices to avoid the

problematic scenario above and to guarantee liveness despite f Byzantine processes.
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Algorithm 4.1: Consistent Broadcast Algorithm with sender s

1 # Shared:
2 slots - n array of "slots"; each slot is a 2-tuple (msg, sgn) of SWMR atomic

,→ registers, initialized to (⊥,⊥).

4 # Sender code:
5 def cb-broadcast(m):
6 slots[me].msg.write(m)
7 In the background:
8 σ = compute signature for m
9 slots[me].sgn.write(σ)

11 # Replicator code:
12 while True:
13 m = slots[s].msg.read()
14 if m != ⊥:
15 slots[me].msg.write(m)
16 sign = slots[s].sgn.read()
17 val = slots[me].msg.read()
18 if val != ⊥ and sign != ⊥ and sign is a valid signature for val:
19 slots[me].sgn.write(sign)

21 # Receiver code:
22 while True:
23 others = scan()
24 if others[i].msg has the same value m for all i in Π: # Fast path
25 cb-deliver(m); break
26 if others contains at least n − f signed copies of the same value m
27 and (∄i: others[i].sgn is a valid signature for others[i].msg and others[i].msg

,→ != m):
28 cb-deliver(m); break

30 def scan():
31 others = [slots[i].(msg, sgn).read() for i in Π]
32 done = False
33 while not done:
34 done = True
35 for i in Π:
36 if others[i] == ⊥:
37 others[i] = slots[i].(msg, sgn).read()
38 if others[i] != ⊥:
39 done = False
40 return others

4.5.2 Reliable Broadcast

We now give an algorithm for Reliable Broadcast that issues no signatures in the common case,

and issues only n +1 signatures in the worst case. Algorithm 4.2 shows the pseudocode.

Processes communicate by sharing arrays Echo and Ready, which have the same structure of

sub-slots as slots in Section 4.5.1. Echo[i ] and Ready[i ] are writable only by replicator i , while

the sender s communicates with the replicators using an instance of Consistent Broadcast

(CB) and does not access Echo or Ready. In this CB instance, s invokes cb-broadcast, acting as
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sender for CB, and the replicators invoke cb-deliver, acting as receivers for CB.

To broadcast a message, s cb-broadcasts 〈INIT,m〉 (line 6). Upon delivering the sender’s

message 〈INIT,m〉, each replicator writes m to its Echo msg sub-slot (line 13). Then, in the

background, a replicator computes its signature for m and writes it to its Echo sgn sub-slot

(line 16). By the consistency property of Consistent Broadcast, if two correct replicators r

and r ′ deliver 〈INIT,m〉 and 〈INIT, m′〉 respectively, from s, then m = m′. Essentially, correct

replicators have the same value or ⊥ in their Echo msg sub-slot.

Next, replicators populate their Ready slots with a ReadySet. A replicator r constructs such

a ReadySet from the n − f signed copies of m read from the Echo slots (lines 19–28). In the

background, r reads the Ready slots of other replicators and copies over—if r has not written

one already—any valid ReadySet (line 36). Thus, totality is ensured (Definition 2), as the

ReadySet created by any correct replicator is visible to all correct receivers.

To deliver m, a receiver p reads n − f valid ReadySets for m (line 45).3 This is necessary to

allow a future receiver p ′ deliver a message as well. Suppose that p delivers m by reading a

single valid ReadySet R .4 Then, the following scenario prevents p ′ from delivering: let sender s

be Byzantine and let R be written by a Byzantine replicator r . Moreover, let a single correct

replicator have cb-delivered m, while the remaining correct replicators do not deliver at all,

which is allowed by the properties of Consistent Broadcast. So, the ReadySet contains values

from a single correct replicator and f other Byzantine replicators. If r removes R from its

Ready slot, it will block the delivery for p ′ since no valid ReadySet exists in memory.

A receiver p can also deliver the sender’s message m using a fast path. The signature-less fast

path occurs when p reads m from the Echo slots of all replicators (line 43), and the delivery of

the INIT message by the replicators is done via the fast path of Consistent Broadcast. This is

the common case, when replicators are not faulty and replicate messages timely. Note that p

delivering m via the fast path does not prevent another receiver p ′ from delivering. Process p ′

delivers m via the fast path if all the Echo slots are in the same state as for p. Otherwise, e.g.,

some Byzantine replicators overwrite their Echo slots, p ′ delivers m by relying on the n − f

correct replicators following the protocol (line 45).

4.6 Consensus

We now give an algorithm for consensus using Consistent Broadcast as its communication

primitive, rather than the commonly used primitive, Reliable Broadcast. Our algorithm is

based on the PBFT algorithm [37, 38] and proceeds in a sequence of (consecutive) views. It has

four features: (1) it works for n = 2 f +1 processes, (2) it issues no signatures in the common

3In contrast to Algorithm 4.1, receivers need not use the scan operation when gathering information from the
replicators’ Ready slots because there can only be a single value with a valid ReadySet (Invariant B.2.1).

4A similar argument that breaks totality applies if p were to deliver m by reading n − f signed values of m in the
replicators’ Echo slots.
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Algorithm 4.2: Reliable Broadcast Algorithm with sender s

1 # Shared:
2 Echo, Ready - n array of "slots"; each slot is a 2-tuple (msg, sgn) of SWMR atomic

,→ registers, initialized to (⊥,⊥).

4 # Sender code:
5 def rb-broadcast(m):
6 cb-broadcast(〈INIT,m〉)

8 # Replicator code:
9 state = WaitForSender # ∈{WaitForSender,WaitForEchos}

10 while True:
11 if state == WaitForSender:
12 if cb-delivered 〈INIT,m〉 from s:
13 Echo[me].msg.write(m)
14 In the background:
15 σ= compute signature for m
16 Echo[me].sgn.write(σ)
17 state = WaitForEchos

19 if state == WaitForEchos:
20 ReadySet = ;
21 for i ∈Π:
22 other = Echo[i].(msg,sgn).read()
23 if other.msg == m and other.sgn is m validly signed by i:
24 ReadySet.add((i,other))

26 if size(ReadySet) ≥ n − f :
27 ready = True
28 Ready[me].msg.write(ReadySet)

30 In the background:
31 while True
32 if not ready:
33 others = [Ready[i].msg.read() for i in Π]
34 if ∃i: others[i] is a valid ReadySet:
35 ready = True
36 Ready[me].msg.write(others[i])

38 # Receiver code:
39 while True:
40 others = [Echo[i].msg.read() for i in Π]
41 proofs = [Ready[i].msg.read() for i in Π]
42 if others contains n matching values m: # Fast path
43 rb-deliver(m); break
44 if proofs contains n − f valid ReadySet for the same value m:
45 rb-deliver(m); break

case, (3) it issues O(n2) signatures on a view-change and (4) it issues O(n) required background

signatures within a view.

Our algorithm uses a sequence of Consistent Broadcast instances indexed by a broadcast

sequence number k. When process p broadcasts its kth message m, we say that p broadcasts

(k,m). We assume the following ordering across instances, which can be trivially guaranteed:
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(FIFO delivery) For k ≥ 1, no correct process delivers (k,mk ) from p unless it has delivered

(i ,mi ) from p, for all i < k.

Algorithm 4.3 shows the pseudocode. Appendix B.3 has its correctness proof. The protocol

proceeds in a sequence of consecutive views. Each view has a primary process, defined as the

view number mod n (line 6). A view has two phases, PREPARE and COMMIT. There is also a

view-change procedure initiated by a VIEWCHANGE message.

When a process is the primary (line 9), it broadcasts a PREPARE message with its estimate

init (line 11), which is either its input value or a value acquired in the previous view (line 10).

Upon receiving a valid PREPARE message, a replica broadcasts a COMMIT message (line 20)

with the estimate it received in the PREPARE message. We define a PREPARE to be valid when it

originates from the primary and either (a) view = 0 (any estimate works), or (b) view > 0 and the

estimate in the PREPARE message has a proof from the previous view. Appendix B.3.1 details

the conditions for a message to be valid. When a replica receives an invalid PREPARE message

from the primary or times out, it broadcasts a COMMIT message with ⊥. If a replica accepts

a PREPARE message with val as estimate and n − f matching COMMIT messages (line 24), it

decides on val.

The view-change procedure ensures that all correct replicas eventually reach a view with a

correct primary and decide. It uses an acknowledgement phase similar to PBFT with MACs [38].

While in [38] the mechanism is used so that the primary can prove the authenticity of a

view-change message sent by a faulty replica, we use this scheme to ensure that (a) a faulty

participant cannot lie about a committed value in its VIEWCHANGE message and (b) valid

VIEWCHANGE messages can be received by all correct replicas.

A replica starts a view-change by broadcasting a signed VIEWCHANGE message with its view-

change tuple (line 28). The view-change tuple (view, val, proofval) is updated when a replica

receives a valid PREPARE message (line 15). It represents the last non-empty value a replica

accepted as a valid estimate and the view when this occurred. We use the value’s proof, proofval,

to prevent a Byzantine replica from lying about its value: suppose a correct replica decides

val in view v , but in view v +1, the primary p is silent, and so no correct replica hears from p;

without the proof, a Byzantine replica could claim to have accepted val′ in v +1 from p during

the view-change to v +1, thus overriding the decided value val.

When a replica receives a valid VIEWCHANGE message, it responds by broadcasting a signed

VIEWCHANGEACK containing the VIEWCHANGE message (line 37). A common practice is to

send a digest of this message instead of the entire message [37]. We define a VIEWCHANGE

message m from p to be valid when the estimate in the view-change tuple corresponds to the

value broadcast by p in its latest non-empty COMMIT and m’s proof is valid. We point out that,

as an optimization, this proof can be removed from the view-change tuple and be provided

upon request when required to validate VIEWCHANGE messages. For instance, in the scenario

described above, when a (correct) replica r did not accept val′ in view v +1, as claimed by the

Byzantine replica r ′, r can request r ′ to provide a proof for val′.
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Algorithm 4.3: Consensus protocol based on Consistent Broadcast (n = 2 f +1)

1 def propose(vi):
2 viewi = 0; esti = ⊥; auxi = ⊥
3 proofi = ;; vci= (0,⊥,;)
4 decidedi = False
5 while True:
6 pi = viewi % n

8 # Phase 1
9 if pi == i:

10 initi = esti if esti ̸= ⊥ else vi
11 cb-broadcast(〈PREPARE, viewi, initi, proofi〉)
12 wait until receive valid 〈PREPARE, viewi, val, proof〉 from pi or timeout on pi
13 if received valid 〈PREPARE, viewi, val, proof〉 from pi:
14 auxi = val
15 vci = (viewi,val,proof)
16 else:
17 auxi = ⊥

19 # Phase 2
20 cb-broadcast(〈COMMIT, viewi, auxi〉)
21 wait until receive valid 〈COMMIT, viewi, *〉 from n − f processes
22 and (∀j: receive valid 〈COMMIT, viewi, *〉 from j or timeout on j)
23 ∀j: Ri[j] = val if received valid 〈COMMIT, viewi, val〉 from j else ⊥
24 if ∃val ̸= ⊥ : #val(Ri)≥ n − f and auxi == val:
25 try_decide(val)

27 # Phase 3
28 cb-broadcast(〈VIEWCHANGE, viewi + 1, vci〉σi )
29 wait until receive n − f non-conflicting view-change certificates for viewi + 1
30 proofi = set of non-conflicting view-change certificates
31 esti = val in proofi associated with the highest view
32 viewi = viewi + 1

34 In the background:
35 when cb-deliver valid 〈VIEWCHANGE, view’, vc〉σ j from j:
36 # d is the view-change message being ACKed
37 cb-broadcast(〈VIEWCHANGEACK, d〉σi )

39 def try_decide(val):
40 if not decidedi:
41 decidedi = True
42 decide(val)

A view-change certificate consists of a VIEWCHANGE message and n − f −1 corresponding

VIEWCHANGEACK messages. This way, each view-change certificate has the contribution

of at least one correct replica, who either produces the VIEWCHANGE message or validates

a VIEWCHANGE message. Thus, when a correct replica r receives a view-change certificate

relayed by the primary, r can trust the contents of the certificate.

To move to the next view, a replica must gather a set of n − f non-conflicting view-change

certificates Ψ. This step is performed by the primary of the next view, who then includes
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this set with its PREPARE message for the new view. Two view-change certificates conflict if

their view-change messages carry a tuple with different estimates ( ̸= ⊥), valid proof, and same

view number. If the set Ψ consists of tuples with estimates from different views, we select the

estimate associated with the highest view. Whenever any correct replica decides on a value val

within a view, the protocol ensures a set of non-conflicting view-change certificates can be

constructed only for val and hence the value is carried over to the next view(s).

4.6.1 Discussion

We discuss how Algorithm 4.3 achieves the four features mentioned at the beginning of

Section 4.6. The first feature (the algorithm solves consensus with n = 2 f +1 processes) follows

directly from the correctness of the algorithm. The second feature (the algorithm issues no

signatures in the common case) holds because in the common case, processes will be able

to deliver the required PREPARE and COMMIT messages and decide in the first view, without

having to wait for any signatures to be produced or verified. The third feature (the algorithm

issues O(n2) signatures on view-change) holds because, in the worst case, during a view

change each process will sign and broadcast a VIEWCHANGE message, thus incurring O(n)

signatures in total, and, for each such message, each other process will sign and broadcast

a VIEWCHANGEACK message, thus incurring O(n2) signatures. The fourth feature states that

the algorithm issues O(n) required background signatures within a view. These signatures are

incurred by cb-broadcasting PREPARE and COMMIT messages. In every view, correct processes

broadcast a COMMIT message, thus incurring n − f =O(n) signatures in total.

To the best of our knowledge, no existing algorithm has achieved all these four features si-

multaneously. The only broadcast-based algorithm which solves consensus with n = 2 f +1

processes that we are aware of, that of Correia et al. [50], requires O(n) calls to Reliable Broad-

cast before any process can decide; this would incur O(n2) required background signatures

when using our Reliable Broadcast implementation—significantly more than our algorithm’s

O(n) required background signatures.

At this point, the attentive reader might have noticed that our consensus algorithm uses some

techniques that bear resemblance to our Reliable Broadcast algorithm in Section 4.5. Namely,

the primary of a view cb-broadcasts a PREPARE message which is then echoed by the replicas

in the form of COMMIT messages. Also, during view change, a replica’s VIEWCHANGE message

is echoed by other replicas in the form of VIEWCHANGEACK messages. This is reminiscent of

the Init-Echo technique used by our Reliable Broadcast algorithm.

Thus, the following question arises: Can we replace each instance of the witnessing technique

in our algorithm by a single Reliable Broadcast call and thus obtain a conceptually simpler

algorithm, which also satisfies the three above-mentioned properties? Perhaps surprisingly,

the resulting algorithm is incorrect. It allows an execution which breaks agreement in the

following way: a correct replica p1 rb-delivers some value v from the primary and decides v ;

sufficiently many other replicas time out waiting for the primary’s value and change views
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without “knowing about” v ; in the next view, the primary rb-broadcasts v ′, which is delivered

and decided by some correct replica p2.

Intuitively, by using a single Reliable Broadcast call instead of multiple Consistent Broadcast

calls, some information is not visible to the consensus protocol. Specifically: while it is true

that, in order for p1 to deliver v in the execution above, n− f processes must echo v (and thus

they “know about” v), this knowledge is however encapsulated inside the Reliable Broadcast

abstraction and not visible to the consensus protocol. Thus, the information cannot be carried

over to the view-change, even by correct processes. This intuition provides a strong motivation

to use Consistent Broadcast—rather than Reliable Broadcast—as a first-class primitive in the

design of Byzantine-resilient agreement algorithms.
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5 uBFT: Microsecond-Scale BFT using
Disaggregated Memory

Equipped with the knowledge of Chapter 4, namely that it is possible to implement 2 f +1

Byzantine-resilient consensus in the message-and-memory model [3] and avoid expensive

cryptography most of the time, we turn our attention to leveraging this knowledge by building

a full-fledged Byzantine fault-tolerant (BFT) system for state machine replication (SMR).

BFT is essential, as real-life systems occasionally fail in unplanned and unpredictable ways.

Apart from simple crashes, failures in distributed systems range from software/configuration

bugs [116, 142], to hardware failures [130, 131, 138], to hardly detectable hardware bugs [59, 76,

82, 83] and up to malicious activity [10, 160]. Traditionally, protecting against such different

failures required slow and expensive BFT protocols, which pose a prohibitive cost when it

comes to microsecond-scale computing.

To this end, this chapter presents uBFT, the first SMR system to achieve microsecond-scale

latency in data centers, while using only 2 f +1 replicas to tolerate f Byzantine failures. uBFT

relies on a small non-tailored trusted computing base—disaggregated memory—and con-

sumes a practically bounded amount of memory. uBFT is based on a novel abstraction called

Consistent Tail Broadcast, which we use to prevent equivocation while bounding memory.

We implement uBFT using RDMA-based disaggregated memory and obtain an end-to-end

latency of as little as 10µs. This is at least 50× faster than MinBFT, a state-of-the-art 2 f +1 BFT

SMR based on Intel’s SGX. We use uBFT to replicate two KV-stores (Memcached and Redis), as

well as a financial order matching engine (Liquibook). These applications have low latency

(up to 20µs) and become Byzantine-tolerant with as little as 10µs more. The price for uBFT is

a small amount of reliable disaggregated memory (less than 1 MiB), which in our prototype

consists of a small number of memory servers connected through RDMA and replicated for

fault tolerance.

5.1 Introduction

The standard way to achieve fault tolerance is state machine replication (SMR). Up until

now, a BFT protocol implementing SMR incurs milliseconds of latency [9, 25], requires a
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large number of replicas (3 f +1 to tolerate f failures) [37, 132, 179], consumes unbounded

memory [172], and/or relies on a large trusted computing base [20, 93, 172]. These reasons

might explain why BFT has had no adoption in data centers.

In this chapter, we propose uBFT, the first BFT SMR system that simultaneously offers four

key features: (1) microsecond-scale latency, (2) few replicas (2 f +1), (3) practically bounded

memory, and (4) a small non-tailored trusted computing base. In the common case, uBFT

leverages unanimity to replicate requests in as little as 10µs end-to-end without invoking

the trusted computing base or expensive cryptographic primitives. In the slow path—when

there are failures or slowness in the network—uBFT uses a novel protocol that combines

digital signatures with judicious use of a trusted computing base. The trusted computing base

in uBFT is non-tailored and small: rather than trusted enclaves with arbitrary logic such as

Intel’s SGX [51] or trusted hypervisors [182]—which have large attack surfaces due to their

complexity [52, 68]—uBFT relies solely on disaggregated memory, a technology increasingly

present in data centers due to the availability of RDMA [166] today and CXL [47] in a few years.

The key mechanism from disaggregated memory we leverage in uBFT are single-writer regions

(regions of memory that can be written by one designated host and can be read by others),

implemented in hardware through access permissions.

Providing the above four features is challenging for BFT protocols. To get microsecond-scale

latency, BFT protocols need to avoid expensive public-key cryptography and reduce communi-

cation rounds in the common path—and doing so has typically required increasing rather than

decreasing the number of replicas [1, 102, 128]. Meanwhile, decreasing the number of repli-

cas has usually required unbounded memory, sophisticated, or tailored trusted computing

bases such as append-only-memory [44], SGX [20], TrInc [120], or reliable hypervisors [182].

Limiting the amount of memory is a significant challenge in the design of uBFT. The standard

technique—used also in Chapter 4—to handle Byzantine behavior in systems with 2 f +1

replicas requires storing all messages received, leading to long message histories [172], which

consume unbounded memory. Finally, not tailoring the trusted computing base to our needs

requires designing around existing technologies—in our case disaggregated memory—rather

than custom hardware.

To respond to these challenges, uBFT introduces a new abstraction called Consistent Tail

Broadcast (CTBcast) that we use to prevent equivocation [125], while requiring a practically

bounded amount of memory.1 Equivocation—a major source of problems in a system with

Byzantine failures [44]—occurs when a faulty process incorrectly sends different information

to different processes, which may cause the state of replicas to diverge. CTBcast prevents

equivocation for all messages, but only ensures the delivery of the last t broadcast messages,

where t is a parameter that trades memory for latency (we explain how to set it in Section 5.7).

The price for uBFT is a small amount (less than 1 MiB) of reliable disaggregated memory.

1The required memory is logarithmic in the number of operations. Everywhere we use a bounded number of
bits except for sequence numbers.
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5.2 Background

uBFT is designed modularly to work with a generic such component; our current prototype

implements this component using RDMA and a set of memory nodes that themselves are

replicated for fault tolerance. These nodes add to the total number of replicas, but these

replicas are tiny and simple: they do not store the state of the application, just a few in-flight

coordination messages. Moreover, their functionality is application independent, so they can

be shared among many applications, amortizing their cost. The memory nodes that provide

the disaggregated memory constitute the trusted computing base in our prototype and are

assumed to fail only by crashing. This shrinks the vulnerability of the system compared to

currently deployed crash-tolerant SMR systems, in which all components can fail only by

crashing, effectively making the trusted computing base be the entire data center.

We evaluate uBFT against two state-of-the-art systems. First, we compare it against Mu, the

fastest SMR system to our knowledge, but that tolerates only crash failures. Compared to

Mu, uBFT increases the end-to-end latency by only 2×, while tolerating Byzantine failures.

Second, we compare uBFT against MinBFT, a state-of-the-art 2 f +1 BFT SMR system, and

showcase that our system has more than 50× and 2× better latency when operating in its

fast and slow path, respectively. We also use uBFT to replicate two low-latency KV-stores

(Memcached [85] and Redis [156]), and a financial order matching engine (Liquibook [139]).

All these applications have request latencies of less than 20µs when unreplicated and become

Byzantine-resilient with as little as 10µs more.

In summary, our main contributions are the following:

• The design of uBFT, a BFT system for state machine replication with microsecond-scale

latency in the common case, using only 2 f +1 replicas, practically bounded memory,

and a small trusted computing base (disaggregated memory).

• A new abstraction against equivocation, Consistent Tail Broadcast (CTBcast), and a

protocol for CTBcast that uses a small amount of disaggregated memory and has a

signature-less fast path.

• An open-source implementation of uBFT, CTBcast, and reliable shared disaggregated

memory using RDMA, available at https://github.com/LPD-EPFL/ubft.

• A thorough evaluation of the performance of uBFT and its applications.

5.2 Background

5.2.1 Non-Equivocation

Byzantine processes can equivocate, i.e., they can maliciously say different things to different

processes. In SMR, specifically, a Byzantine leader may propose different values to try to cause

replicas to diverge, justifying why SMR protocols must ensure non-equivocation.
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Figure 5.1: Overview of uBFT’s architecture.

Under the Byzantine asynchronous model, 3 f +1 replicas are needed to prevent equivoca-

tion [113]. However, if equivocation is prevented and transferable authentication is available,

Byzantine SMR requires only 2 f +1 replicas [45], the same number as in the crash-stop case.

With transferable authentication, a process that verifies a proof about the origin of a message

can transfer the proof to other processes and be assured they can also verify it. For example,

digital signatures provide transferable authentication, while arrays of Message Authentication

Codes (MACs) do not [7].

Preventing equivocation using up to 2 f +1 replicas requires a compromise [45], i.e., a hybrid

model where part of the system—called the trusted computing base—fails only by crashing.

Ideally, this base is as small as possible, since a small and simple base is less likely to be

susceptible to failures (e.g., vulnerabilities, bugs).

5.2.2 Disaggregated Memory

Disaggregated memory is an emerging data center technology that separates compute from

memory, by providing a shared memory pool that compute nodes access over a network. The

memory pool has limited compute capabilities, which it uses for management tasks such as

connection handling. Disaggregated memory improves memory utilization, separates the

scaling of compute and memory, and achieves better availability due to the separation of fault

domains [174].

Disaggregated memory can be provided by different technologies. The emerging CXL standard

will support disaggregated memory in the future [74], while today disaggregated memory is

available via Remote Direct Memory Access (RDMA) [166] on InfiniBand [87] or RoCE [19].

RDMA is a networking technology that allows a process to read or write the memory of another

machine without involving the CPU of the latter. Combined with kernel-bypass, RDMA enables

sub-microsecond communication and stringent tail latency. Access rights to RDMA-exposed

memory can be set individually for each accessor.
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5.2.3 Model

We consider a system with 2 f +1 compute nodes and single-writer multiple-reader disag-

gregated memory. Up to f compute nodes are Byzantine and may thus fail arbitrarily. We

assume network connections are authenticated and tamper-proof (processes know who they

get messages from and messages cannot be altered) and eventually available (network par-

titions are intermittent). We also assume that the disaggregated memory is trusted: it may

fail only by crashing. The disaggregated memory is divided into chunks, where each chunk

is readable by all compute nodes and writable by a designated compute node. We assume

the existence of public-key cryptography: processes can sign messages using their private

key and verify unforgeable signatures using the pre-published public keys of all processes.

We further assume eventual synchrony: network and processing delays are unbounded until

an unknown Global Stabilization Time (GST) after which delays are bounded by a known δ.

Lastly, our system assumes bounded clock drift for safety, i.e., the clocks of correct processes

drift from each other with a bounded rate. These assumptions are common for distributed

systems in data centers [6, 37, 65, 119, 177].

In our prototype, we do not assume that we are given a reliable disaggregated memory [115,

181], but rather show how to implement a reliable disaggregated memory using RDMA.2 To

do so, we assume 2 fm+1 memory nodes out of which fm can fail. Memory nodes are part of

the trusted computing base: they are not Byzantine and may fail by crashing only. Memory

nodes are simple: they just provide read and write functionality with access control. Their size

and functionality do not depend on the application being replicated, and they can be shared

among many applications.

5.3 Design

5.3.1 Overview

uBFT follows the design of PBFT [37], a seminal paper that describes how to build practical

BFT SMR systems. Figure 5.1 depicts the architecture of uBFT. On the left, a client sends

requests to replicas on the right and waits for responses from a majority of them. The replicas

go through two stages. First, they totally order client requests using a leader-based BFT

consensus protocol. Second, they execute the ordered requests on their local instance of

the replicated application before forwarding the outcome of the execution to the client. To

achieve microsecond-scale latency, the consensus engine uses a fast/slow path approach. As

long as the system is synchronous and all replicas collaborate, the fast path orders requests

without signatures. If the fast path does not make progress, uBFT’s consensus switches to

the slow path, which makes progress with a mere majority of processes using signatures and

disaggregated memory.

2uBFT’s clean encapsulation of disaggregated memory allows future replacement of its RDMA implementation
with CXL-powered memory.
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Figure 5.2: Overview of uBFT’s consensus engine.

uBFT significantly differs from PBFT in the way it prevents equivocation. PBFT, being a 3 f +1

fault tolerant protocol, relies on intersecting quorums to ensure that malicious replicas do

not make the state of honest replicas diverge. By contrast, uBFT operates with 2 f +1 replicas,

and therefore cannot rely on the same mechanism as PBFT; instead, it relies on trusted

disaggregated memory, which is encapsulated within a new primitive called Consistent Tail

Broadcast (CTBcast).

CTBcast is a variant of Consistent Broadcast (Section 4.3.1). Consistent Broadcast prevents

equivocation by ordering all messages broadcast by a given process. With it, a Byzantine

leader is constrained from sending different request orderings to different followers. Our tail

variant is a relaxation that requires correct processes to deliver only the last t messages sent

by a correct broadcaster, while preserving non-equivocation for all messages. This relaxation

is essential to practically bound the memory use. Importantly, the implementation of CTBcast

has a signatureless fast-path to achieve the latency requirements of uBFT.

Figure 5.2 depicts uBFT’s consensus component with its fast/slow path design. After receiving

a request from RPC, the leader proposes its ordering via a round of CTBcast. The rest of

consensus tries to turn this ordering into a globally accepted one (i.e., stable across leaders).

Depending on the synchrony of the system and the number of faulty replicas, this round of

CTBcast might execute the fast or slow path. In the former case, consensus continues with its

fast path and executes two rounds of Tail Broadcast (TBcast), a form of best-effort broadcast

designed for finite memory (§5.4.1). Importantly, none of these three broadcasts involve

signatures nor disaggregated memory. If liveness is lost during the fast path of consensus,

uBFT activates the slow path, shown by the dashed arrows, which executes a certification

round and another round of CTBcast. The slow path is also executed if the fast path of the

initial CTBcast fails. Differently from the three rounds of the fast path, the three rounds of the

slow path all require signatures, and CTBcast invocations additionally require disaggregated

memory.

5.3.2 Challenges

uBFT addresses the following challenges:
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2f+1 replicas and finite memory. Previous theoretical work [4] proposed to prevent equiv-

ocation with fewer than 3 f +1 replicas by building Consistent Broadcast on top of shared

registers. However, this abstraction requires replicas to use infinite memory in order to store

and deliver all broadcast messages, which is not implementable in practice. We work around

this memory issue by designing CTBcast, a weaker form of Consistent Broadcast where replicas

are allowed to skip the delivery of old messages in order to favor the delivery of newer ones

(§5.4).

SMR with CTBcast. The reliance of uBFT on CTBcast brings additional complexity to its con-

sensus algorithm, notably on preventing equivocation across messages. Typically, protocols

rely on the entire history of messages to prevent equivocation. Yet, CTBcast only guarantees

the delivery of the tail, which may lead correct replicas to have gaps in their delivery history.

uBFT works around this limitation via CTBcast summaries, which allow a replica to make

progress in spite of gaps (§5.5).

Microsecond-scale operation. Systems that operate at the microsecond scale should avoid

signatures on their critical path. Yet, Chapter 4 shows, Consistent Broadcast cannot completely

remove signatures. Moreover, recycling memory requires the generation of proofs which also

involve signatures. uBFT addresses this challenge by avoiding expensive cryptography in

the fast path of CTBcast and relegating the few bookkeeping signatures to a background task

(§5.5.4).

Resilient disaggregated memory. uBFT relies on RDMA to implement disaggregated mem-

ory. However, raw memory exposed over RDMA is not enough to implement our SMR protocol.

Indeed, RDMA-exposed memory does not tolerate failures, and data accesses can be inconsis-

tent, since RDMA provides only 8-byte atomicity. uBFT addresses these limitations of RDMA

using efficient, yet Byzantine fault tolerant, algorithms (§5.6).

5.4 Consistent Tail Broadcast

Consistent Tail Broadcast (CTBcast) is a novel variant of Consistent Broadcast (CBcast) that

uBFT uses to prevent equivocation. Briefly, CTBcast resembles CBcast, except that it allows

processes not to deliver outdated messages. In this way, CTBcast avoids maintaining the full

history of messages, to bound memory use.

5.4.1 Definition

CTBcast is defined in terms of two primitives, broadcast(k,m) and deliver(k,m,p), where k is a

numeric identifier, m is a message, and p is a process. When p invokes broadcast(k,m), we say

that p broadcasts (k,m), i.e., it broadcasts message m with identifier k. A correct broadcaster
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increments k sequentially at every broadcast, starting with k = 1. Similarly, when a process q

invokes deliver(k,m,p), we say that q delivers (k,m) from p.

In simple terms, CTBcast is a multi-shot abstraction that prevents correct processes from

delivering different messages from a given broadcaster p for the same identifier k. CTBcast

is parameterized by a tail t , which specifies which messages are guaranteed to be delivered.

Informally, in CTBcast, a correct process q is only required to deliver the last t messages

broadcast by a correct process p, while the delivery of previous messages is best-effort.

CTBcast has the following properties:

Tail-validity If a correct process p broadcasts (k,m) and never broadcasts a message (k ′,m′)
with k ′ ≥ k + t , then all correct processes eventually deliver (k,m).

Agreement If p and q are correct processes, p delivers (k,m) from r , and q delivers (k,m′)
from r , then m = m′.

Integrity If a correct process delivers (k,m) from p and p is correct, p must have broadcast

(k,m).

No duplication No correct process delivers (k,∗) from p twice.

The difference between CTBcast and CBcast lies in their validity property. Tail-validity implies

that a correct process is only obliged to deliver a message m from p if m is among the last t

messages broadcast by p. When t=∞, tail-validity reduces to CBcast’s validity.

The infinite tail of CBcast is what prevents it from recycling memory. Indeed, given that

the broadcaster cannot distinguish between network asynchrony and receiver failures [56],

it is required to keep re-transmitting all messages until they are explicitly acknowledged.

Thus, in CBcast, the broadcaster can garbage collect messages only after they have been

acknowledged by all receivers. As a result, once a single process fails, memory cannot be

recycled and any correct implementation of CBcast must block after running out of memory.

By not enforcing the delivery of old messages, CTBcast’s tail-validity lets processes recycle

the memory dedicated to these messages. This is why CTBcast requires only finite memory

while CBcast does not. In Section 5.5, we show that despite its weaker semantics, CTBcast is

sufficient for solving consensus.

5.4.2 Algorithm

Algorithm 5.1 implements CTBcast using finite memory with a fast/slow path approach that

avoids signatures and disaggregated memory in the common case. For pedagogical reasons,

we assume that a designated process is the broadcaster while the others are receivers. Each

receiver owns an array of t Single-Writer Multiple-Reader (SWMR) regular registers. Each

register is only writable by its owner, but is readable by all processes. The regularity of the

72



5.4 Consistent Tail Broadcast

registers forces READs that execute concurrently to a WRITE to return either the value being

written or the previous one. Moreover, each process uses a Tail Broadcast (TBcast) primitive

which ensures the delivery by correct processes of the last 2t messages broadcast through

it, but does not prevent equivocation. Formally, TBcast has all properties of CTBcast except

agreement.

Implementing TBcast using finite memory is simple. The broadcaster buffers its last 2t

messages and retransmits them until it receives acknowledgements from all receivers. To

broadcast a new message when the buffer is full, the broadcaster makes room for it by evicting

the oldest buffered message.

As mentioned, Algorithm 5.1 has a low-latency fast path that avoids signatures and disag-

gregated memory. It also incorporates a fall-back slow path for liveness. For presentation

simplicity, it triggers the slow path in parallel to the fast path (lines 3 and 4), but in reality,

uBFT triggers it when replicas fail to decide on new client requests after some configurable

duration. In addition to the shared SWMR registers, receivers use three finite-size local arrays

for bookkeeping (lines 8-10).

In the fast path, the broadcaster first TBcast-broadcasts its message alongside its identifier

within a LOCK message (line 3). When receivers deliver this message (line 12), they commit

not to deliver any other message for the given identifier, and tell other receivers about their

commitment by broadcasting a LOCKED message (line 16). Receivers use locks (lines 13-15)

to avoid committing to different messages for the same identifier. Importantly, receivers store

only up to t commitments in this array, by evicting earlier commitments that alias to the same

index k%t (line 15). When receivers learn that everyone committed to the same message

(lines 18-22), they know that no correct replica will deliver a different message and thus deliver

it (line 23).

In the slow path, the broadcaster additionally TBcast-broadcasts a signed version of its mes-

sage (line 4). After TBcast-delivering a signed message (line 25), receivers verify its signature

(line 26). Then, they check that they have not committed to a different message for the same

k (line 28), and ensure that they will not do so in the future (line 29). Subsequently, they

copy the signed message to their SWMR register associated with the message identifier k

(line 30), before reading the associated SWMRs owned by other receivers (line 31). Receivers

ignore messages with invalid signatures (line 32) and abort delivery if they detect a different

message for the same identifier (line 33). In case receivers detect another message with a

higher identifier that is associated with the same SWMR registers (line 35), they drop their

own message as it no longer belongs to the tail. Otherwise, they deliver it (line 37).

The correctness of the slow path of Algorithm 5.1 hinges on that all correct processes will find

the message copied by the fastest correct replica when reading the registers. Thus, they can

deliver no message other than the first copied, hence preserving agreement. The fast and slow

paths are linked together via the locks array (lines 15 and 29), which ensures that whichever

path executes first forces the value of the message for the other path. Note that when the
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Algorithm 5.1: Consistent Tail Broadcast

1 # at the broadcaster
2 def broadcast(k, m):
3 TBcast-broadcast 〈LOCK, k, m〉
4 TBcast-broadcast 〈SIGNED, k, m, sign((k, m))〉

6 # at receivers :
7 SWMR[me] = [(−1, ⊥, ⊥), . . . ] # array of t slots
8 delivered = [−1, . . . ] # array of t slots
9 locks = [(−1, ⊥), . . . ] # array of t slots

10 locked = [[(−1, ⊥), . . . ], . . . ] # array of t*n slots

12 upon TBcast-deliver 〈LOCK, k, m〉 from p:
13 k’, _ = locks[k%t]
14 if k > k’:
15 locks[k%t] = (k, m)
16 TBcast-broadcast 〈LOCKED, k, m〉

18 upon TBcast-deliver 〈LOCKED, k, m〉 from q:
19 k’, _ = locked[q][k%t]
20 if k > k’:
21 locked[q][k%t] = (k, m)
22 if locked[r0][k%t] == ... == locked[rn−1][k%t]:
23 deliver_once(k, m)

25 upon TBcast-deliver 〈SIGNED, k, m, sig〉 from p:
26 if valid(sig, (k, m), p):
27 k’, m’ = locks[k%t]
28 if k > k’ or k == k’ and m == m’:
29 locks[k%t] = (k, m)
30 SWMR[me][k%t].write((k, sig, m))
31 for each (k’, s’, m’) in SWMR[*][k%t]:
32 if valid(s’, (k’, m’), p):
33 if k’ == k and m’ != m:
34 return # Byzantine broadcaster
35 if k’ > k and k’ ≡ k (mod t):
36 return # out of tail
37 deliver_once(k, m)

39 def deliver_once(k, m):
40 if k > delivered[k%t]:
41 delivered[k%t] = k
42 trigger deliver(k, m)

broadcaster is Byzantine, correct processes are allowed not to deliver. A more detailed proof of

correctness is given in Appendix C.1.

5.5 State Machine Replication

Like all leader-based BFT consensus protocols, uBFT’s protocol has the same high-level

layout as PBFT [37]: it shares naming conventions and splits the protocol in similar phases.

However, uBFT has different goals (2 f +1 fault tolerance, finite memory, microsecond latency),
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Figure 5.3: Communication pattern of uBFT’s slow path. Bold lines represent messages sent
over CTBcast. Thinner lines represent direct messages.

different assumptions (disaggregated memory), and a different non-equivocation mechanism

(Consistent Tail Broadcast (CTBcast)). As a result, uBFT’s protocol is structurally different from

PBFT, as we describe in this section.

We start by giving an overview of our consensus protocol. Then, we analyse its slow path and

explain how it deals with finite memory and view changes. Finally, we describe how its fast

path leverages unanimous and timely collaboration of replicas to achieve microsecond-scale

latency. For presentation clarity, this section gives only an informal description of our protocol.

Its pseudocode is given in Appendix C.2 alongside detailed arguments of its correctness.

5.5.1 Basic Protocol

From a high-level point of view, the slow path of our consensus protocol—shown in Figure 5.3—

has three phases: Prepare, Certify and Commit. After the leader receives a signed request from a

client, it proposes it by broadcasting a Prepare message via CTBcast. When replicas (including

the broadcaster) deliver this message, they proceed to its certification. Each replica signs the

proposal and TBcast-broadcasts its signature in a CERTIFY message. Then, it waits to aggregate

f +1 signatures on the proposal, which constitute an unforgeable proof that the proposal was

emitted by the leader. Moving on to the Commit phase, the replicas broadcast via CTBcast a

COMMIT message containing the aforementioned proof. Finally, after delivering f +1 COMMIT
messages, replicas apply the client’s request to their local state machine and reply to the client.

Note that we use TBcast instead of the more expensive CTBcast when broadcasting CERTIFY
messages: equivocation of CERTIFY messages does not harm correctness as all certificates

involve at least one correct replica, and all correct replicas certify the same proposal due to

the CTBcast in the Prepare phase.

So far, the described protocol replicates a single client request. Similarly to PBFT, uBFT uses

a sliding window to run its consensus protocol on a series of slots. As the leader receives

multiple requests, it proposes each one in a different slot, handling many slots in parallel.

uBFT also uses PBFT’s application checkpoints to throttle the number of concurrent request

proposals. This mechanism limits the impact of a Byzantine leader, and bounds the number

of relevant messages at any point in time. An application checkpoint is signed by f +1 replicas
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and includes (1) the state of the application after applying the first i replicated requests to it,

and (2) an implicit authorization to work on slots [i +1, i +window].

5.5.2 Non-Equivocation at the Consensus Level

An important aspect of uBFT’s consensus protocol is how it prevents the leader from sending

conflicting proposals. CTBcast only partially solves this issue: it prevents a Byzantine leader

from sending conflicting proposals in a single message, but it does not prevent it from sending

conflicting proposals across multiple messages. Conceptually, a process can ensure that

another process has not equivocated if the former knows the entire history of messages

broadcast by the latter. For this reason, processes in our protocol interpret messages of other

processes in FIFO order. However, CTBcast does not guarantee the delivery of all broadcast

messages due to its tail-validity property, which might prevent processes from delivering all

the messages from a correct one in FIFO order. We solve this issue by pairing CTBcast with

CTBcast summaries.

A CTBcast summary is an unforgeable synopsis of what has been broadcast by a process p via

CTBcast up to a given CTBcast identifier. Summaries constitute certificates that are signed

by f +1 replicas, which have witnessed the messages broadcast by p and assert that p has

not equivocated at the consensus level. When a process receives a summary about p up to a

certain CTBcast identifier i , it is able to continue handling p’s new messages above i in FIFO

order. Essentially, CTBcast summaries restore FIFO delivery that may have been broken by the

tail-validity of CTBcast.

CTBcast summaries are generated interactively. Every t consecutive CTBcast messages (t is

CTBcast’s tail parameter) that a replica r delivers from p, r participates in creating a summary

about the state of p. Replica p knows how many messages it has broadcast and blocks

waiting for a summary of its state every t messages. Using its previous summary, p can bring

correct processes that missed some of its messages up to speed, and help them deliver the

last t messages it broadcast so far. Even if f Byzantine replicas fail to help building p’s next

summary, all correct replicas would eventually collaborate to generate it, thus ensuring the

liveness of the summaries and allowing p to keep broadcasting.

It is important to ensure that CTBcast summaries have finite size. To this end, a process

keeps only a limited number of messages that it CTBcast-delivers from others, by maintaining

a window of consensus slots for every other broadcasting process. If a process p CTBcast-

delivers a message from another process q out of the window it maintains for q , p considers q

as being Byzantine. uBFT requires processes to CTBcast-broadcast application checkpoints

in order to slide their window on the receivers’ side. When a receiver slides a broadcaster’s

window forward, it drops messages referring to slots that fall out of it, since the consensus

slots they refer to have been checkpointed. This way, the entire relevant state of a broadcaster

is a combination of a consensus window range and the collection of CTBcast messages that

fall into it.
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Figure 5.4: Communication pattern of uBFT’s fast path. Bold lines represent messages sent
over CTBcast. Thinner lines represent direct messages.

5.5.3 View Change

To tolerate faulty leaders, uBFT follows PBFT’s view change approach. Briefly, every view

has a dedicated leader determined in a round-robin manner. If a replica does not make

progress or believes that the leader is censoring client requests, it moves to the next view by

CTBcast-broadcasting a SEAL_VIEW message. The leader of the new view first transfers any

potentially applied requests to the new view by CTBcast-broadcasting a NEW_VIEW message

before proposing new requests, as detailed below.

The NEW_VIEW message contains the latest application checkpoint, as well as all COMMIT
messages about the open slots following this checkpoint from f +1 replicas. More precisely,

when a replica p receives a SEAL_VIEW message from another replica q , p proceeds with

generating a certificate share about q’s state. In fact, this state includes q’s latest application

checkpoint, as well as the latest COMMIT messages sent by q for each one of q’s open slots.

The content of the NEW_VIEW message consists of f +1 matching certificate shares about f +1

different replicas. The broadcast NEW_VIEW message constrains the values that the new leader

can propose for open slots. That is, for every open consensus slot, the new leader is required

to propose the value of the COMMIT message with the highest view number (if any).

The view change mechanism prevents a leader from omitting requests that were decided in

previous views. Intuitively, if a correct replica decided on a request in some view, it must

have received f +1 matching COMMIT messages. As the leader collects certificates about f +1

replicas, it must necessarily include at least one certificate with a COMMIT message for all

decided requests.

5.5.4 Fast Path

To operate at the microsecond scale, uBFT incorporates a fast path—shown in Figure 5.4—that

moves signatures out of the critical path in times of synchrony and unanimous collaboration.

Similar to the slow path, the fast path has three phases: Prepare, which is common with the

slow path but executes the fast path of CTBcast, followed by WillCertify and WillCommit. The
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last two phases replace the Certify and Commit phases of the slow path with inexpensive

rounds of Tail Broadcast.

The operation of the fast path is simple. For a given consensus slot, after the end of the Prepare

phase, replicas broadcast a WILL_CERTIFY message and wait to receive the same message

from all others. Once received, they proceed with broadcasting a WILL_COMMIT message and

again wait for unanimity before deciding on the proposed value. Both messages contain solely

the view number and the consensus slot. These messages are essentially promises that their

broadcaster will run the slow path before CTBcast-broadcasting its next SEAL_VIEW message.

By broadcasting WILL_CERTIFY, a replica promises to participate in certifying the PREPARE
message. With WILL_COMMIT, it promises to CTBcast-broadcast the resulting certificate within

a COMMIT message.

The safety of this scheme is intuitive. If a replica receives 2 f +1 WILL_CERTIFY messages, it

knows that at least f +1 correct replicas will certify the PREPARE message in the Certify phase.

Similarly, receiving 2 f +1 WILL_COMMIT messages means that at least f +1 correct replicas will

send a COMMIT message in the Commit phase and thus no other value will be decided for this

slot.

The fast path also takes care of finite memory as it does not keep promises forever: it drops

the promises that refer to consensus slots included in an application checkpoint. These

checkpoints along with the CTBcast summaries make up the required background signatures

of uBFT’s fast path.

Lastly, the fast path eschews signatures between clients and replicas by having the clients send

unsigned requests to all replicas, instead of a signed request to the leader. A replica endorses a

PREPARE message on a client request only if it also received it from the client. Thus, the fast

path contains an additional communication round (denoted Echo Req) in which the leader

waits for the followers to echo the client request before proposing it. This way, a Byzantine

client cannot cause a leader to get stuck (and thus incur a view change) by not sending its

requests to all correct replicas.

5.6 Implementation

The design of uBFT relies on disaggregated memory to build the shared registers used by

CTBcast, and on a fast networking fabric to achieve its microsecond-level latency. This section

explains how we use RDMA [166] to achieve these goals.

5.6.1 Reliable SWMR Regular Registers

The CTBcast component of uBFT requires reliable SWMR regular registers. Reliable means that

the registers do not fail, i.e., READs and WRITEs always complete. SWMR means Single-Writer

Multiple-Reader: each register has an owner, which is a replica that is allowed to write to it,
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Figure 5.5: Reliable SWMR Regular registers using RDMA.

while all other replicas may only read the register. Regular means that, when a READ executes

concurrently to a WRITE, the former should return either the value that is being written or the

previous one. We explain below how to implement each property using RDMA.

SWMR register. We implement SWMR registers using RDMA permissions. RDMA splits

memory into regions, each with different access permissions based on a token. We create a

read-write and a read-only region for the same memory range, give the read-write token to the

writer of the register, and the read-only token to the other replicas.

Regular register. RDMA-exposed memory is atomic (hence regular), but only at an 8-byte

granularity. While RDMA WRITEs have left-to-right ordering, RDMA READs do not. Thus, an

RDMA READ concurrent with a WRITE may return partially written data, mixing old and new

values. To detect this problem, we use checksums, as in Pilaf [133]. A simple approach, where

a reader retries until the checksum is valid, violates liveness as a Byzantine writer can write

bogus checksums. To avoid such scenario, we follow an evolved double-buffering strategy,

which ensures that a reader is always able to find a complete WRITE or detect the owner of the

register as being Byzantine. As depicted in Figure 5.5, each register is made of two sub-registers.

Each WRITE to a given register is directed to one of the sub-registers in a round-robin manner.

To write a value, the writer prefixes it with a logical timestamp (denoted ts) and a checksum.

Importantly, the writer waits for δ (the known communication bound after GST) between two

WRITES to the same register. To perform a READ, the reader reads both sub-registers at once

and, out of the values with a valid checksum, returns the one with the highest timestamp. 3 If

both checksums are invalid and the READ took less than δ, the writer is Byzantine and a default

value is returned. Otherwise, the READ is retried. The writer is also deemed Byzantine if both

3The hardware is allowed to reorder RDMA READs following RDMA WRITEs when issued to different Queue Pairs
(QPs) [11]. To ensure regularity, i.e., that subsequent register READs see the RDMA-written value, a register WRITE
only returns after the PCIe WRITE transaction reaches the last-level cache (L3). We do so by issuing an RDMA READ
after the RDMA WRITE to the same QP—which acts as a PCIe fence [75]—and only considering that the register
WRITE completes when the RDMA READ completes.
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Figure 5.6: uBFT’s RDMA-powered message-passing primitive.

sub-registers have the same timestamp. This scheme works in an eventually synchronous

system with bounded-drift clocks [65]: when the writer and a reader are correct, a READ does

not overlap with two WRITEs, so one of the sub-registers will have a valid checksum, and

ordering based on timestamps ensures regular register semantics.

Reliable register. We replicate each register to 2 fm+1 memory nodes, where each memory

node exposes its memory over RDMA (Figure 5.5). Here, fm is the maximum number of

memory nodes that may crash. While memory nodes add to the total number of replicas in

the system, these nodes do not replicate the application, and they can be shared among many

replicated applications, as each application takes a small amount of space in the memory

nodes (§5.7.6). Our register replication scheme is straightforward. WRITEs are issued to all

memory nodes in parallel and return after having completed at fm+1 of them. READs are also

issued to all nodes in parallel, wait for fm+1 of them to complete, and return the value of the

regular register with the highest timestamp. This scheme tolerates Byzantines replicas, as

READs and WRITEs always complete at a majority, and preserves regular semantics. Indeed,

when a READ is not concurrent to any WRITE, intersecting quorums ensure that the last written

value is returned. In case of concurrency, the READ intersects with the concurrent WRITE in

some register and with the last completed WRITE in some other register. Thus, it will return a

value no older than the value of the last completed WRITE, ensuring regularity.

5.6.2 A Fast Message-Passing Primitive

To achieve microsecond-scale communication, uBFT implements a fast one-way messaging

primitive between a sender and a receiver, where the receiver is required to deliver only the

last t messages of the sender, similarly to CTBcast. This primitive allows an implementation

without receiver acknowledgements, which we found to be important for microsecond-scale

performance.
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Figure 5.6 depicts the implementation of this primitive over RDMA. The receiver has a circular

buffer exposed over RDMA; the buffer is divided into t slots of equal size large enough for

the largest message. Briefly, the sender RDMA-writes messages to the receiver’s buffer, while

the latter scans its local buffer for new messages. There are no acknowledgments: the sender

overwrites old messages with newer ones, even if they were not yet received.

We now explain this implementation in detail. The sender allocates a mirror image of the

receiver’s buffer in its local memory, and maintains locally a write pointer to the slot for its

next message. Each slot has a header composed of a checksum, an incarnation number (the

number of times it was written), and a message size. To send a new message, the sender

writes it to the slot pointed by the writer pointer and fills its header. Then, it issues an RDMA

WRITE to the corresponding slot in the receiver’s memory, and marks the slot as unavailable

until it is notified of the completion of the WRITE by the RDMA NIC. Finally, the sender

advances its write pointer. If the pointed slot is unavailable, the new message is queued

in a second (not depicted) circular buffer. This buffer acts as a staging area: it forwards its

messages for transmission when slots become available, and evicts the oldest queued message

to accommodate a newer one.

The receiver maintains a read pointer to the slot where it will read the next message. The

receiver polls this slot for a particular incarnation number, which identifies the next message

it expects to find. Once this incarnation number is seen, the receiver copies the entire message

to a private buffer in order to avoid interfering WRITEs on the same slot. Then, the receiver

checks the incarnation number again in the copied message. If the incarnation number has

not changed, the sender verifies the checksum before delivering the message (rescheduling

the polling if the checksum is invalid). If the receiver finds a higher incarnation number than

expected, it concludes that some older messages may exist in other slots of the buffer that will

have to be delivered first. So, the receiver aborts the delivery and advances its pointer to the

oldest undelivered message. With this strategy, the receiver guarantees FIFO delivery of the

last t messages.

This scheme has two benefits: it uses practically bounded memory and avoids acknowledge-

ments. The latter—even when batched—increase the application’s tail latency as scheduling

an acknowledgement alone takes ≈300 ns [91], which is time lost handling incoming events.

Instead, by the End-to-End Principle [155], acknowledgements are piggybacked in SMR-level

messages.

5.7 Evaluation

We evaluate the various performance traits of uBFT and verify its suitability as a BFT SMR

system for microsecond applications. We aim to answer the following:

• How much latency does uBFT induce on the replicated applications (§5.7.1)?
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Table 5.1: Hardware details of machines.

CPU
2x Intel Xeon Gold 6244 CPU @ 3.60 GHz (8 cores/16 threads
per socket)

NIC Mellanox ConnectX-6 MT28908
Switch Mellanox MSB7700 EDR 100 Gbps

OS/Kernel Ubuntu 20.04.2 / 5.4.0-74-generic
RDMA Driver Mellanox OFED 5.3-1.0.0.1

• How does the replication latency of uBFT compare to other SMR systems (§5.7.2)?

• How do the internal components of uBFT contribute to its end-to-end latency (§5.7.3)?

• How does our implementation of CTBcast perform in comparison to SGX-based non-

equivocation mechanisms (§5.7.4)?

• How does the tail parameter of CTBcast impact uBFT’s tail-latency (§5.7.5)?

• What is the memory consumption of uBFT (§5.7.6)?

We evaluate uBFT in a 4-node cluster, the details of which are given in Table 5.1. The dual-

socket machines have an RDMA NIC attached to the first socket. Our experiments execute on

cores of the first socket using local NUMA memory.

Our implementation measures time using the clock_gettime function with the CLOCK_MONOTONIC
parameter. The function uses the TSC clock source of Linux for efficient and accurate times-

tamping [151].

In all experiments we deploy 1 client and 3 replicas, and take at least 10,000 measurements.

Additionally, we set the consensus window to 256 requests and—unless stated otherwise—the

tail parameter of CTBcast to 128 messages.

Applications. We integrate uBFT with MemCached [91], Redis [156] and Liquibook [139].

MemCached and Redis are non-replicated high-performance KV-stores. Liquibook is a data

structure that implements a financial order matching engine. We also integrate all the afore-

mentioned applications with Mu [5], the SMR system that has the lowest replication latency

(to our knowledge) but tolerates only crash faults. In all applications, the client sends mes-

sages using uBFT’s RPC mechanism. Additionally, using a no-op application, we compare

uBFT against MinBFT [172], a state-of-the-art 2 f +1 BFT SMR system with a publicly available

implementation which uses Intel’s SGX [51]. SGX provides a secure CPU enclave for executing

arbitrary code, thus offering a general-purpose trusted computing base.

Implementation Effort. We implemented uBFT by extending the framework we developed

for uKharon. Our prototype spans 11 750 lines of C++, out of which 2 966 are dedicated to
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Figure 5.7: End-to-end latency of different applications when either not replicated or replicated
via Mu and uBFT’s fast path. The printed values are the 90th %-iles. The whiskers show the
50th and 95th %-iles.

CTBcast. The prototype includes all features on the critical path of a complete implemen-

tation: the only major unimplemented features are application and replica state transfers.

We use Dalek’s implementation of EdDSA over Curve25519 [123] for public-key cryptography,

BLAKE3 [141] for HMACs and xxHash [46] for checksums.

5.7.1 End-to-End Application Latency

Figure 5.7 explores the replication overhead that uBFT induces to end applications. We

compare the latency of its fast path against the unreplicated latency, and the latency when

replicating with Mu. We study four applications: Flip, a toy application that reverses its input,

as well as Memcached, Redis, and Liquibook.

The KV-stores use 16 B keys and 32 B values. Our workload is 30% GETs, out of which 80%

succeed and return a non-empty value. Liquibook’s requests are 32 B. Its responses range from

32 B to 288 B, depending on how many orders match. 50% of the orders are BUY and 50% SELL.

Finally, Flip’s requests and responses are 32 B long.

From the figure, observe that uBFT is consistently slower than Mu by approximately 7.5µs

at the 90th percentile. uBFT’s additional induced end-to-end latency is most significant for

ultra fast applications, such as Flip, for which our system is 3 times slower than Mu. As

the application’s unreplicated latency increases, uBFT’s latency overhead diminishes. For

Liquibook, it is 2× slower than Mu and for the KV-stores, it is only 1.5× slower. At the same

time, uBFT’s replication increases the latency variance (i.e., the difference between the 50th

and 95th percentiles) compared to Mu, which is a consequence of the complexity of our

system. More precisely, uBFT’s RPC requires one more round of communication than Mu’s to

ensure that all correct replicas have received the client request. Additionally, uBFT’s replication

scheme requires 4 rounds of broadcast before replying to the client instead of a single majority
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Figure 5.8: Median end-to-end latency for different request sizes of an unreplicated no-op
application, as well as its latency when replicated with Mu, uBFT and MinBFT.

WRITE in Mu. Overall, uBFT’s fast path has 4 additional rounds of communication compared

to Mu, hence the higher tail latency. Nevertheless, uBFT does not worsen the variance by more

than 3µs.

In a nutshell, with uBFT, assuming a timely network and the absence of failures, an unrepli-

cated application that operates at the microsecond-scale envelope requires at most an extra

10µs to become Byzantine fault tolerant.

5.7.2 End-to-End Replication Latency

We now explore the impact of the size of requests on the end-to-end latency of uBFT. Figure 5.8

shows the median client-side latency for various request sizes to a no-op application with

different replication schemes. The service replies with responses matching the size of requests.

As expected, the lowest latency is achieved without any replication (denoted Unrepl.). Here,

the end-to-end latency ranges from 2.2µs to 20µs, which is attributed to communicating with

the server side using our RPC. The other lines show the service replicated with: Mu, our BFT

SMR solution, and MinBFT, a 2 f +1 BFT alternative.

Mu’s replication increases the end-to-end latency by up to 64% for small requests and by

at most 26% for 8 KiB ones. In the absence of failures, Mu’s leader replicates the requests it

receives by just RDMA-writing them to its followers. uBFT’s fast path exhibits higher latency

than Mu due to its 4 additional rounds of communication, yet it only increases the overhead

compared to the latter by at most 175%, even though it offers Byzantine fault tolerance.

One could expect that uBFT’s fast path would come at the cost of high latency in the slow path,

yet this is not the case. We compare our slow path against MinBFT, with the latter operating in

two configurations. In its vanilla configuration, MinBFT uses HMACs only between the replicas,
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Figure 5.9: Recursive decomposition of the end-to-end latency of uBFT’s fast and slow path
when replicating Flip with requests of 8 B.

however the clients sign the requests sent to the service using public-key cryptography, leading

to a minimum end-to-end latency of 566µs. We modify MinBFT to also use SGX in the clients,

thus replacing their expensive cryptography with HMACs. Since our setup does not offer SGX,

we stub it using the latency results of Section 5.7.4. Note that MinBFT is not an RDMA-tailored

application and it uses standard TCP in its implementation.

To increase the fairness of our comparison with MinBFT, we use Mellanox’s VMA library [167]

to replace MinBFT’s TCP stack with a kernel-bypass alternative that uses RDMA NICs for

increased performance. The end result is that uBFT’s slow path is faster than vanilla MinBFT

(up to 109%) and at most 24% slower than its purely HMAC-based variant, even though our

slow path uses public-key cryptography.

5.7.3 Latency Breakdown

To get a better understanding of uBFT’s end-to-end latency, we analyze the latency of its

internal components.

Figure 5.9 shows a recursive decomposition of the latency of an 8 B Flip request into its

constituents: remote-procedure call, Consistent Tail Broadcast and replication (denoted RPC,

CTB and SMR respectively). The rightmost columns of the figure show the client-perceived

latency (denoted E2E ). Each bar has two regions: the narrow left one shows the overall latency

of the component, while the wider right one shows its decomposition.

In our decomposition, we identify four primitive sources of latency. First is the time for

communication over our message-passing primitive (denoted P2P ). Next is the time for

producing and verifying signatures (denoted Crypto ), and the time for reading and writing

to the disaggregated memory registers (denoted SMWR ). Both of these are only relevant in

uBFT’slow path. The Crypto primitive goes beyond pure cryptographic computation, as it
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Figure 5.10: Median latency of multiple non-equivocation mechanisms for different message
sizes.

includes the synchronization cost of issuing the operation to a thread pool and getting back

the result. Lastly, there is the time spent in bridging these basic primitives and connecting the

components (denoted Other ). This last category includes copying buffers, delays between

the arrival and processing of asynchronous events, etc.

We can see that, in the fast path, most of the time is spent in communication. Given the

small size of the messages, the potential avenues for improving the overall latency is to either

reduce the number of communication steps or reduce the latency of the underlying network

fabric. In the slow path, public-key cryptography dominates. Given that signatures are

unavoidable in our setting, as we established in Chapter 4, achieving better latency requires

faster cryptographic primitives. Also, notice that the cost of accessing disaggregated memory—

which is part of CTB—is negligible, as it accounts for 14µs (3.5%) of the end-to-end latency.

5.7.4 Latency of Non-Equivocation

Figure 5.9 demonstrates that CTBcast accounts for a substantial portion of the end-to-end

latency of our system’s fast and slow paths. By using disaggregated memory, our implementa-

tion of CTBcast has an advantage over solutions that use CPU enclaves, since disaggregated

memory is a much smaller and simpler trusted computing base. Moreover, the fast/slow

path approach of our implementation allows it to operate fast in the common case by entirely

bypassing signatures and the trusted computing base. This section quantifies the performance

of our implementation of CTBcast against the de facto way of preventing equivocation in

modern systems [20, 122, 172], namely a trusted counter implemented on Intel’s SGX.

Non-equivocation mechanisms based on trusted counters work by securely binding a mono-

tonically increasing sequence number to each message broadcast by a process. All enclaves

store a local counter and share a common secr et . Before broadcasting a message, a pro-

cess feeds it to its local enclave and gets back a proof of non-equivocation of the form
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H M ACsecr et (msg ||counter ||pr ocess i d). The recipients of a message use their own local

enclave to verify the authenticity of the HMAC, and thus prevent equivocation. Note that,

as authentication takes place exclusively in the enclaves, this non-equivocation mechanism

avoids the use of expensive public-key cryptography.

Figure 5.10 shows the median latency of the two non-equivocation mechanisms between a

sender and two receivers. The lowest latency is achieved by the fast path of our implementation

of CTBcast and ranges from 2.2µs to 11µs depending on the message size. In this mode of

operation, CTBcast delivers on unanimous and timely participation of all processes to avoid

signatures and prevent equivocation using merely two rounds of Tail Broadcast. CTBcast’s

slow path (triggered under failures) relies on public-key cryptography, which dominates the

latency and raises it to approximately 86µs. The latency of preventing equivocation using SGX

includes accessing the enclave twice, once in the sender and once in the receiver, as well as

broadcasting the message.

Due to the lack of SGX in our RDMA experimental setup, we evaluate the cost of accessing the

SGX on different hardware to get a good approximation. The SGX hardware is provided by

a machine with an Intel i7-7700K CPU running at 4.2 GHz, which is 0.6 GHz higher than the

CPU frequency of our RDMA setup. Accessing the enclave (once) ranges from 7µs to 12.5µs,

which makes preventing equivocation using the SGX take at least 16µs. The resulting latency

is shown in the middle line of Figure 5.10.

Overall, for both non-equivocation approaches, larger message sizes lead to a linearly higher

latency, due to the hashing and communication latency. CTBcast’s fast path is up to 6.5× faster

than the SGX solution, by taking advantage of the ultra fast communication.

5.7.5 Impact of CTBcast’s Tail on Tail Latency

Figure 5.11 shows how the size of the tail in CTBcast (parameter t) affects the client’s tail

latency. We focus on uBFT’s fast path and execute Flip with small 64 B requests and larger

2 KiB ones. For both request sizes, we explore four tail parameters.

For smaller values of t , we see a latency spike indicative of thrashing as we move to higher

percentiles. This spike occurs because CTBcast uses a double buffering mechanism with

cryptographic summaries (§5.5.2) to switch between them; if both buffers fill before a summary

occurs (due to a small t ), CTBcast stalls. The smaller the t , the sooner the buffers fill, the more

often CTBcast stalls, and hence the lower the percentile of the spike. For small requests, a tail

t=128 avoids thrashing up to the 99th percentile. For larger requests, t=64 suffices, as filling

the buffers takes more time, giving more time for the summary to occur.
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Figure 5.11: uBFT’s tail latency for different CTBcast tails t for 2 KiB requests (top) and 64 B
requests (bottom).

5.7.6 Memory Consumption

Given the fundamental goal of uBFT to operate using finite memory, we monitor the consump-

tion of disaggregated memory and the local memory consumption at the leader replica, while

re-running the experiment of Section 5.7.5.

Table 5.2 summarizes the results for two different request sizes (64 B and 2 KiB) and four

different t ai l parameters of CTBcast (16, 32, 64 and 128). For the small 64 B requests, the local

memory consumption starts at 0.46 GiB. This is the entire memory that uBFT preallocates

at startup and uses during its lifetime. When CTBcast’s tail t increases, uBFT’s memory

consumption increases linearly by ≈1 MiB for each additional message in the tail. For the large

2 KiB requests, the memory consumption starts at 4.3 GiB (t=16) and increases at a rate of

≈11 MiB per message.

uBFT consumes little disaggregated memory. The last row of Table 5.2 shows the memory

used at a single memory node. This amount is independent of the size of requests and

depends only on CTBcast’s tail t : messages sent over CTBcast are transmitted using our fast

message-passing primitive; upon receiving a message, a receiver writes to disaggregated

memory only the message’s id and its fingerprint (a 32 B cryptographic hash); the register

implementation (§5.6.1) stores two copies, each with an 8 B checksum. To save space, registers

Table 5.2: uBFT replica (top) and disaggregated (bottom) memory usage for different CTBcast
tails t and request sizes.

Request size t = 16 t = 32 t = 64 t = 128
64 B 0.46 GiB 0.47 GiB 0.49 GiB 0.53 GiB
2 KiB 4.3 GiB 4.5 GiB 4.8 GiB 5.5 GiB

Disag. Mem. 20 KiB 40 KiB 81 KiB 162 KiB
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use the identifiers of messages as their timestamps.

5.8 Related Work

uBFT uses RDMA to instantiate disaggregated memory. Prior work identifies some benefits

and downsides of using RDMA in an adversarial environment. Aguilera et al. [4] propose new

RDMA-based techniques to enhance the resilience and performance of BFT algorithms. That

work is abstract and far from practical solutions: it requires infinite memory and solves only

single-shot consensus, stopping short of a solution for an SMR system. Rüsch et al. [154]

design a Byzantine fault tolerant system that uses RDMA to improve performance, but requires

3 f +1 processes.

Prior work identifies vulnerabilities in the current generation of RDMA hardware and proposes

ways to mitigate them [153, 165]. That work is orthogonal to uBFT and could be applied to it.

We expect that these problems will eventually be fixed with future NICs.

With a black-box mechanism to prevent equivocation, only 2 f +1 replicas are required for

BFT [21, 22, 45]. Several BFT systems achieve that using trusted hardware as the black box:

attested append-only memory (A2M) [44] uses a trusted log, TrInc [120] and MinBFT [172] use

a trusted counter, Hybster [20] uses Intel’s SGX, CheapBFT [93] uses FPGAs, and H-MFT [182]

uses trusted hypervisors to implement write-once tables. By separating execution from

agreement [178], one can reduce the number of execution replicas to 2 f +1, but 3 f +1 replicas

are still required for agreement. Avocado [17] implements a high-performance replicated

confidential KV-store using CPU enclaves as the trusted computing base.

Blockchain systems also tolerate Byzantine failures, but their latency is in the seconds or

minutes due to their heavy use of cryptography [71, 100], proof of work [67, 137], and/or

batching [33, 179]. The recent SplitBFT [129] uses SGX and 3 f +1 replicas to strengthen the

safety and confidentiality of blockchains in public clouds.

While most of the prior work is not focused on microsecond-scale latency (and hence came

up with different solutions from ours), some recent SMR systems aim for lower latency. Mu [5]

is highly optimized and provides microsecond-scale performance, but tolerates only crash

failures. SBFT [73] tolerates Byzantine failures and uses a fast path to improve latency, but does

not achieve microsecond-scale performance due to its use of cryptography. BFT SMR systems

with 3 f +1 replicas can avoid cryptographic signatures, for example, in PBFT’s optimized

implementations [37]. However, this is impossible in a system with 2 f +1 replicas [45]; the key

to uBFT’s performance is thus avoiding signatures on the fast path.

Carbink [181] and Hydra [115] build reliable disaggregated memory to improve memory

utilization in a cluster, albeit without support for concurrent shared access. MIND [114],

GAM [36] and Clover [170], on the other hand, provide reliable shared memory, but they do

not tolerate Byzantine writers.
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5.9 Discussion

Does microsecond 2f+1 BFT require disaggregated memory? To achieve microsecond-scale

BFT SMR, one must avoid the use of expensive signatures and trusted components in the

critical path. uBFT does so via a fast/slow path design that uses disaggregated memory in

the slow path. This leads to a small trusted computing base, but there may be other ways to

achieve non-equivocation in CTBcast’s slow path without affecting fast-path performance.

Can uBFT work with a Byzantine network? uBFT assumes network connections are authen-

ticated and tamper-proof, which is realistic in data centers, where widely deployed protocols

such as IPsec and SSL provide such guarantees at line rate. What if such protocols are not

available? We can implement simple authenticated channels within uBFT without signatures

in the critical path, by augmenting messages with an HMAC. With BLAKE3, creating or verify-

ing 256-bits HMACs takes ≈100 ns. As a result, we expect less than 2µs of additional overhead

on the fast path of uBFT.

What about uBFT’s throughput? Any system can provide a throughput that is inverse of its

latency. For uBFT, that amounts to ≈91 kops for small 32 B requests. uBFT doubles this figure,

by exploiting the slack between the processing of events in a consensus slot to interleave

two requests with minimal latency penalty. Throughput can be further optimized using well-

known techniques, such as batching [53] and running parallel consensus instances on multiple

cores [20], but we have not done so.
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6 Concluding Remarks

We conclude this thesis by summarizing its main findings and their implications, as well as by

outlining promising directions for future work.

6.1 Summary and Implications

At a high level, we believe that this thesis takes a step forward towards a better understanding

of reliable microsecond-scale distributed computing. The value of this endeavor is not just the

performance figures. It is showing that even though there is not enough leeway at this time

scale, it is still possible to achieve low latency without sacrificing reliability. To achieve this,

we had to move between theory and practice: come up with inventive ways of using modern

networking hardware, go back to theoretical analysis to assess the feasibility of our ideas, and

then adapt the theory to the practical setting by following a pragmatic, rather than a puristic,

approach. We hope that programmers and practitioners can use the insights and ideas in this

thesis to build systems that meet the needs of modern data center applications.

The thesis was structured around two antipodal types of failures, crash-stop and Byzantine,

which we approach systematically and methodically in Parts II and III, respectively. We

believe that fault-tolerance is a crucial property of any application that powers important

infrastructure, which is what many data center applications have become.

In Part II, we focused on crash-stop failures and put our efforts on devising a generic mecha-

nism for handling them. This mechanism is the membership service, and though such services

existed before (e.g., ZooKeeper), none of them was suitable for the microsecond scale. For this

reason, we built uKharon to allow microsecond-scale applications escape ad-hoc solutions

and attain dynamicity with minimal latency penalty. In fact, we exposed dynamicity through

a simple and reusable interface and showed how this interface can be used to easily build

fault-tolerant applications.

In Part III, we focused on Byzantine failures. Such shift in paradigm is motivated by empirical

evidence that data center operators observe spurious, unpredictable events that can lead to
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malfunction of their systems and potentially high financial loss. Once again, with genericity in

mind, we opted for state machine replication (SMR) in order to provide programmers with an

easy way towards Byzantine fault tolerance. Handling Byzantine failures, however, is tradition-

ally expensive due to the increased number of replicas (3 f +1 instead of 2 f +1) or the presence

of digital signatures. Thus, we set out to study the inherent cost of Byzantine failures when

using 2 f +1 replicas, and assess whether shared memory provided by modern networking

hardware could help avoid digital signatures. We theoretically proved that signatures are

necessary, yet we devised algorithms that avoided them most of the time, and assessed their

optimality. We then continued by building an entire system based on these ideas, only to

find another major obstacle: infinite memory consumption. Thankfully, we worked around it

by adding a few extra signatures. The end result is a system, called uBFT, that is the first to

achieve microsecond-scale Byzantine fault tolerant SMR. We believe that with it, data center

operators can be assured of resilience to various unforeseen events, thanks to the increased,

yet low-cost, reliability offered by uBFT.

6.2 Future Directions

Real-Time Execution. In Chapter 3, we show that fast failure detection is essential for mem-

bership services operating at the microsecond scale. The middle level of our multi-level failure

detector depends on its timely behavior and should be impervious to execution fluctuations,

such as kernel jitter. However, the Linux kernel does offer strong guarantees for real-time

execution. Patches that enhance the real-time behavior of the Linux kernel (e.g., tickless

scheduling of processes) already exist, but they reduce rather than eliminate unpredictability

of execution. We believe that as microsecond-scale computing becomes ubiquitous, the need

for strict real-timeness in the software stack supporting microsecond-scale applications will

become more relevant. This opens the question of whether it is possible to co-design new

hardware and software with strong real-time guarantees for microsecond-scale applications.

Broadcast Abstraction for Consensus. In Chapter 4, we designed a 2 f +1 Byzantine con-

sensus protocol that uses Consistent Broadcast instead of Reliable Broadcast. As a result,

the final protocol resulted in fewer signatures than existing consensus protocols based on

Reliable Broadcast. The intuitive explanation for this is that sometimes abstractions pack

more than what is exactly needed to solve the problem at hand. From a theoretical standpoint,

it is interesting to study whether we can define a weaker primitive than Consistent Broadcast

that is ideally fitted to this problem.

State Transfer. In Chapters 3 and 5, we looked at replication. A critical part of replication

is the ability to efficiently bring replicas up to speed, a procedure known as state transfer.

Typically, applications perform state transfer by incorporating specific support for it; effectively

the application can take a snapshot of itself. However, this approach increases application
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complexity, especially in the face of concurrency, and is application specific. We believe that

application-agnostic state transfer is an open problem. In principle, migration techniques

devised for virtual machines (VMs) could help in snapshotting an application, especially when

considering crash-stop failures. However, with Byzantine failures the situation is more difficult,

as VM-style snapshots contain a lot of internal state (e.g., threads, garbage collector state)

which one has to somehow validate before adopting the snapshot.

Faster Signatures. In Chapters 4 and 5, we identified signatures as the main reason for why

Byzantine fault tolerance is typically avoided in the microsecond scale. However, this obser-

vation is based on existing signature schemes, leaving the open question whether we could

devise schemes that could benefit from hardware acceleration (e.g., GPUs, or FPGAs), to make

signatures faster than ever. We believe that such accomplishment is not just wishful thinking,

as there exist signature schemes (e.g., SPHINCS [24]) that utilise exclusively cryptographic

hashes to become quantum resistant. Cryptographic hashes are easy to compute and can be

parallelized. The question is whether we could adapt such schemes to leverage the hardware

present in the data centers.
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A Appendix for uKharon

A.1 Correctness of One-Sided Paxos

A.1.1 Assumptions

In the next subsections, we consider the M&M model [3]. It allows processes to both pass mes-

sages and share memory. We assume that communication channels are lossless and have FIFO

semantics, which is ensured by InfiniBand’s Reliable Connections. The system has n processes

Π= {p1, . . . , pn} that can attain the roles of proposer or acceptor. There are p proposers and n

acceptors. Up to p−1 proposers and
⌊n−1

2

⌋
acceptors may fail by crashing. As long as a process

is alive, its memory is remotely accessible. When a process crashes, subsequent operations to

its memory hang forever. We assume partial synchrony for consensus’s liveness [70].

A.1.2 One-Sided RPC

In this section, we prove that the one-sided RPCs of Algorithm 3.1 are equivalent to two-sided

RPCs when not obstructed. Moreover, we prove that when equivalence is violated (due to

obstruction), one-sided RPCs have no side effects. We assume that both compare and f are

deterministic.

Lemma A.1.1. If cas-rpc does not abort, rpc and cas-rpc are equivalent.

Proof. An execution of rpc solely depends on the value of state and the input value x. We

denote such execution of rpc as 〈st ate, x〉r pc . If an execution of cas-rpc does not abort, it

solely depends on the value of expected fetched at line 2 and the input value x. We denote

such execution of cas-rpc as 〈expected , x〉cas−r pc .

We show that any execution 〈s, x〉r pc is equivalent to the execution 〈s, x〉cas−r pc in the sense

that both rpc and cas-rpc will have the same state value and return the same projection at

the end of their execution.
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If an execution 〈s1, x〉r pc makes the comparison at line 3 fail, then state is not modified and

proj(s1) is returned. In the execution 〈s1, x〉cas−r pc , the comparison at line 3 will also fail and

proj(s1) is also returned without modifying the remote state. In this case, both executions

are equivalent.

If an execution 〈s2, x〉r pc makes the comparison at line 3 succeed, then state is modified to

f(s2, x) and proj(f(s2, x)) is returned. In the execution 〈s2, x〉cas−r pc , the comparison at

line 3 will also succeed. As the execution is assumed not to abort, the CAS will succeed. Thus

the remote state will atomically be updated from s2 to f(s2, x) and proj(f(s2, x)) is also

returned. In this case, both executions are also equivalent.

Lemma A.1.2. If cas-rpc aborts, it has no side effects.

Proof. If cas-rpc aborts, the comparison at line 7 has failed. This implies that the CAS failed

and thus that state is unaffected by the execution.

From lemmas A.1.1 and A.1.2, cas-rpc exhibits all-or-nothing atomicity. We now prove that

such a transformation is obstruction-free.

Lemma A.1.3. If cas-rpc runs alone, it does not abort.

Proof. Let’s assume by contradiction that cas-rpc runs alone and aborts. For cas-rpc to

abort, the comparison at line 7 must have failed. This implies that the CAS at line 6 failed due

to state not matching expected. state must thus have been updated between lines 2 and 6.

This implies a concurrent execution, hence a contradiction.

A.1.3 Consensus and Abortable Consensus

In the consensus problem, processes propose individual values and eventually irrevocably

decide on one of them. Formally, consensus has the following properties:

Termination Every correct process eventually decides once.

Uniform agreement If v and v ′ are decided on, then v = v ′.

Validity If v is decided on, v is the input of some process.

We implement consensus by composing two abstractions:

• Abortable consensus [34], an abstraction weaker than consensus that is solvable in the

asynchronous model,

• Eventually perfect leader election [41], the weakest failure detector required to solve

consensus.
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Abortable consensus is identical to consensus except for:

Termination Every correct process eventually decides once or aborts.

Decision If a single process proposes infinitely many times, it eventually decides.

Algorithm A.1: Paxos’s Abortable Core

1 # At proposers:
2 decided = False
3 proposal = id
4 proposed_value = ⊥

6 def propose(value):
7 proposed_value = value
8 prepare()
9 accept()

11 def prepare():
12 proposal = proposal + |Π|
13 broadcast 〈Prepare | proposal〉
14 wait for a majority of 〈Prepared | ack, ap, av〉
15 adopt av with highest ap as proposed_value
16 if any not ack: abort

18 def accept():
19 broadcast 〈Accept | proposal, proposed_value〉
20 wait for a majority of 〈Accepted | mp〉
21 if any mp > proposal: abort
22 trigger once 〈Decide | proposed_value〉

24 # At acceptors:
25 min_proposal = 0
26 accepted_proposal = 0
27 accepted_value = ⊥

29 upon 〈Prepare | proposal〉:
30 if proposal > min_proposal: min_proposal = n
31 reply 〈Prepared | min_proposal == n, accepted_proposal, accepted_value〉

33 upon 〈Accept | proposal, value〉:
34 if proposal ≥ min_proposal:
35 accepted_proposal = min_proposal = n
36 accepted_value = value
37 reply 〈Accepted | min_proposal〉

A.1.4 One-Sided Abortable Consensus

Algorithm A.1 appears in [34] and implements abortable consensus Algorithm A.2 transforms

algorithm A.1 by replacing its RPCs with CAS-based RPCs. This transformation causes it to

abort strictly more than the original algorithm. To see why, consider the following execution:

Let proposers P1 and P2 concurrently initiate the Prepare phase with respective proposals 1
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Algorithm A.2: One-Sided Abortable Consensus

1 # At acceptors:
2 state = { min_proposal: 0, accepted_proposal: 0, accepted_value: ⊥}

4 # At proposers:
5 proposal = id
6 proposed_value = ⊥

8 def propose(value):
9 proposed_value = value

10 prepare()
11 accept()

13 def prepare():
14 proposal = proposal + |Π|
15 async cas_prepare(p) for p in Acceptors
16 wait for a majority to return 〈ack, ap, av〉
17 if any not ack: abort
18 adopt av with highest ap as proposed_value

20 def accept():
21 async cas_accept(p) for p in Acceptors
22 wait for a majority to return mp
23 if any mp > proposal: abort
24 trigger once 〈Decide | proposed_value〉

26 def cas_prepare(p):
27 expected = fetch_state(p)
28 if not proposal > expected.min_proposal:
29 return 〈False, expected.accepted_proposal, expected.accepted_value〉
30 move_to = expected
31 move_to.min_proposal = proposal
32 read = statep .cas(expected, move_to)
33 if read == expected:
34 return 〈True, expected.accepted_proposal, expected.accepted_value〉
35 abort

37 def cas_accept(p):
38 expected = fetch_state(p)
39 if not proposal ≥ expected.min_proposal:
40 return expected.min_proposal
41 move_to = expected
42 move_to.min_proposal = proposal
43 move_to.accepted_proposal = proposal
44 move_to.accepted_value = proposed_value
45 read = statep .cas(expected, move_to)
46 if read == expected:
47 return expected.min_proposal
48 abort

and 2. Both fetch the remote state and get 〈0,0,⊥〉. Then, P1 succeeds in writing its proposal

to acceptor A1. Later on, the CAS of P2 fails at A1 as the value is now 〈1,0,⊥〉 instead of the

expected 〈0,0,⊥〉. Thus, P2 aborts even if it had a larger proposal number than P1. The more

relaxed comparison in the original algorithm would not have caused P2 to abort.
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Lemma A.1.4. Algorithm A.2 preserves Decision.

Proof. If a single process proposes infinitely many times, it will eventually run the one-sided

RPCs obstruction-free. By Lemma A.1.3, this guarantees that the one-sided RPCs will eventu-

ally terminate without aborting. In such case, Lemma A.1.1 guarantees the execution to be

equivalent to one of the original algorithm. Thus, the transformation preserves the decision

property of Algorithm A.1.

Lemma A.1.5. Algorithm A.2 preserves Termination.

Proof. Assuming a majority of correct acceptors, CASes will eventually complete at a majority.

Due to the absence of loops or blocking operations inside prepare, accept, cas_prepare
and cas_accept in algorithm A.2 (apart from waiting for the completion of CASes at a major-

ity), a proposer that invokes propose will either abort or decide.

Algorithms A.1 and A.2 differ only in some executions where the transformed algorithm aborts

whereas the original does not. Nevertheless, aborting does not violate safety, as we show next.

Lemma A.1.6. Algorithm A.2 preserves the safety properties.

Proof. Assume, by contradiction, that adding superfluous abortions in Algorithm A.1 violates

safety. Consider an execution E1, where processes {P1, ..., Pn} deviate from the algorithm

and abort at times {t1, ..., tn} after which the global state is {S1, ..., Sn} and safety is violated.

Also, consider another execution E2, where processes {P1, ..., Pn} crash at times {t1, ..., tn}

after which the global state is {S1, ..., Sn}. In execution E1, safety is violated. On the other

hand, execution E2 preserves safety, since Algorithm A.1 tolerates arbitrarily many proposer

crashing. The two executions, however, are indistinguishable, hence a contradiction. Thus,

Algorithm A.2 preserves safety regardless of how often it aborts.

Theorem A.1.7. Algorithm A.2 implements abortable consensus.

Proof. The result follows directly by composing lemmas A.1.4, A.1.5 and A.1.6.

A.1.5 Streamlined One-Sided Algorithm

In this section, we make Algorithm A.2 efficient in order to increase its practicality.

First, it is not required to fetch the remote state at the start of each RPC. As it is safe to have stale

expected states, it is safe to use states deduced from previous CASes. Predicted states can thus

be initialized to 〈0,0,⊥〉 and updated each time a CAS completes (either succeeding or not).

Moreover, wrongly predicting states can only result in superfluous aborts which have been

proven to be safe by Lemma A.1.6. Thus, it is safe to optimistically assume that onflight CASes
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will succeed. Second, in the Prepare phase, the proposal variable can be increased upfront to

value higher than any predicted remote min_proposal to reduce predictable abortions.

Algorithm A.3: Streamlined One-Sided Abortable Consensus

1 # At acceptors:
2 state = { min_proposal: 0, accepted_proposal: 0, accepted_value: ⊥}

4 # At proposers:
5 predicted[] = { 0, 0, ⊥}
6 proposal = id
7 proposed_value = ⊥

9 def propose(value):
10 proposed_value = value
11 prepare()
12 accept()

14 def prepare():
15 while any predicted[.].min_proposal ≥ proposal:
16 proposal = proposal + |Π|
17 for p in Acceptors:
18 move_to[p] = {min_proposal: proposal, ..predicted[p]}
19 reads[p] = async statep .cas(predicted[p], move_to[p])
20 wait until majority of states are read
21 for p in Acceptors:
22 if reads[p] ∈ {predicted[p], ⊥}:
23 predicted[p] = move_to[p]
24 else:
25 predicted[p] = reads[p]
26 if any CAS failed: abort
27 adopt proposed_value from predicted accepted_values with highest accepted_proposal

,→ if any

29 def accept():
30 reads = ⊥|Acceptor s|
31 move_to = (proposal, proposal, proposed_value)
32 for p in Acceptors:
33 reads[p] = async statep .cas(predicted[p], move_to)
34 wait until majority of states are read
35 if any CAS failed:
36 for p in Acceptors:
37 if reads[p] ∈ {predicted[p], ⊥}:
38 predicted[p] = move_to
39 else:
40 predicted[p] = reads[p]
41 abort
42 trigger once 〈Decide | proposed_value〉

With the aforementioned optimisations, Algorithm A.2 is transformed into Algorithm A.3. No-

tably, the liveness of the resulting algorithm is preserved: Let’s assume that a single proposer

runs infinitely many times. Eventually, it will run obstruction-free. In the worst case, each

time it will abort at line 26 or 41 because of a single wrong guess and update its prediction.

The optimistic update of expected states at lines 23 and 38 and the FIFO semantics of commu-
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nication links provide that, once a remote state is correctly guessed, any later CAS will succeed.

Thus, after at most n runs, all CASes will succeed and the proposer will decide.

A.2 Correctness of the Active Method

In this section, we provide a formal definition and a proof of correctness of the Active method

described in Section 3.6.

A.2.1 Formal Definition

Active(Membership)→bool has the following properties:

Monotonicity If Active(M’) returns true at any process, future calls Active(M) with M <
M ′ will return false.

Convergence If M is the last membership to be decided (if any), invoking Active(M) will

eventually return true at all correct processes.

Definition 4. If Active(M) returns true, then M is considered active at the linearization point

of the call.

Definition 5. If M is active at times t and t ′, then it is considered active in the interval [t , t ′].

From these simple properties and definitions, it follows that no two active memberships can

overlap.

Theorem A.2.1. Only one membership can be active at a time.

Proof. Assume by contradiction that M and M ′ (M < M ′) are simultaneously active. By

definition, Active(M) must have returned true after Active(M’) returned true. This breaks

Monotonicity, hence a contradiction.

A.2.2 Non-Leased Active Membership

We prove the correctness of uKharon’s implementation of Active. We assume no gaps in the

sequence of decided memberships. This is enforced by coordinators by not proposing the

(k +1)-th membership until the k-th is decided.

Lemma A.2.2. Algorithm A.4 ensures Monotonicity.

Proof. Active can only be called on decided memberships. Let M and M ′ be two decided

memberships with M < M ′. If Active(M’) returned true, by the no-gap assumption, all
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Algorithm A.4: Active built on top of the consensus engine

1 def Active(M) → bool:
2 reads = ⊥|Acceptor s|
3 for p in Acceptors:
4 reads[p] = async paxos[M.id + 1].slotp .read()
5 wait until majority of slots are read
6 if all slots are not accepted:
7 return true
8 propose_membership(M.id + 1, first accepted value)
9 return false

memberships between M and M ′ have been decided. Because M ’s successor has been decided,

a majority of acceptors’ slots M.id + 1 have been written. Thus, Active(M) will read at least

one non-empty slot and return false.

Lemma A.2.3. Algorithm A.4 ensures Convergence.

Proof. Assume by contradiction that M is the last decided membership and Active(M) never

returns true at some correct process. Thus, this process executes line 8, which means that

it proposes a new membership. Given that the process is correct, some membership with

id M.id + 1 will eventually be decided. Therefore, M is not the last membership, hence a

contradiction.

Theorem A.2.4. Algorithm A.4 implements Active.

Proof. Follows directly from Lemmas A.2.2 and A.2.3.

A.2.3 Leased Active Membership

Algorithm 3.2 reduces communication by leasing the output of Algorithm A.4. We prove that it

preserves Active’s properties.

Lemma A.2.5. Algorithm 3.2 preserves Monotonicity.

Proof. Let e be an execution of Active(M) that returned true. e either returned at line 9 or at

line 12 with t > tst ar t . We denote the former case leased(M) and the latter checked(M). As-

sume by contradiction that Active(M’) returned true in an execution e1 and then Active(M)
returned true in an execution e2 with M < M ′. Either:

• leased(M): In e2, majority_active(M) returned true at most δ before Active(M)
returned true. In e1, lines 5−7 ensure that M ′ was decided at least δ before Active(M’)
returned true. Thus, majority_active(M) returned true after M ′ was decided. How-

ever, because M ′ has been decided, a majority of acceptors’ slots M’.id = M.id + 1
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must have been written. Thus, majority_active(M) should have read at least one

non-empty slot and returned false. Hence, a contradiction.

• checked(M): majority_active(M) returned true after majority_active(M’) re-

turned true. This breaks majority_active’s Monotonicity, hence a contradiction.

Lemma A.2.6. Algorithm 3.2 preserves Convergence.

Proof. Assume that M is the last membership to be decided. Thus, majority_active(M)
will eventually always return true. At most δ after Active(M) returns for the first time, tst ar t

will be in the past and leased_membership set to M . Thus, eventually, the else branch at

line 8 will always be visited and either return tr ue via line 9 or 12.

Theorem A.2.7. Algorithm 3.2 implements Active.

Proof. Follows directly from Lemmas A.2.5 and A.2.6.

A.3 Clocks

uKharon relies on hardware timestamps to check if a membership is Active. When using

modern Intel processors, Linux has three available clocksources: tsc, hpet and acpi_pm. The

tsc clocksource is the most efficient and requires 20-25ns to take a timestamp [63].

Architectural considerations. The tsc clocksource uses Intel’s TSC hardware to measure

time accurately. TSC stores the number of cycles executed by the CPU after the latest reset.

Traditionally, TSC is considered an unreliable way to take timestamps. The reason is that

Intel processors have variable clock speed, thus the number of cycles does not correspond

to wallclock time. However, modern Intel processors have three features [48]: Constant TSC,

Nonstop TSC and Invariant TSC which solve this problem. The combination of these features

results in a TSC that is incremented at a constant rate regardless of the power state of the

processor. As a result, it is safe to use this counter for efficient timestamping.

TSC synchrony. In Intel processors, every core has its own TSC. All processors in the same

socket start the TSC hardware using the same RESET signal, thus the absolute values of the

TSC across cores of the same socket match. This means that one can compare safely the values

of TSC across different cores, assuming that all TSCs run at the same frequency. Because this

assumption does not always hold, Linux determines the base frequency of every core during

boot and uses this frequency to convert clock cycles to wallclock time. To accomplish it, Linux

uses the more accurate (and more expensive) hpet.
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uKharon takes further care to deal with TSC synchrony. More precisely, it checks for the

synchronization of TSC between cores using a ping-pong test. In this test, core A takes a

timestamp t1 and signals core B to do the same. Core A signals core B by writing to a lock-free

Single-Producer Single-Consumer (SPSC) queue that is polled by B. When B receives the

signal it also takes a timestamp t2 and sends it back to A (using another SPSC queue). Upon

reception of the timestamp from B, core A takes the last timestamp t3. In our test we confirm

that always t1 < t2 < t3. Additionally, in our hardware, the minimum difference between t1

and t2 is ϵ = min(t2 − t1) is 64ns. uKharon takes ϵ into consideration by incorporating into

the leases as follows: Suppose a lease is valid for a duration of δ starting at time t . uKharon

considers that the lease starts at time t +ϵ and has a duration of t +d −2ϵ.

Inter-machine clock drift. In order to ensure that active memberships do not overlap,

uKharon assumes that clock drift is bounded, i.e., that time passes approximately at the

same speed on different machines. This assumption is necessary to enable client-side leases.

It guarantees that after a lease duration period, leases across all clients will have to be renewed.

Our system is built to tolerate clock drift, as long as this drift is bounded. We experimentally

determine an upper bound for the clock drift with a simple test. In this test, machine A takes a

timestamp t1 and pings machine B to wait for 1 minute before replying back to it. Upon recep-

tion of B’s response, A takes another timestamp t2. It then computes t2 − t1 and compares it to

the expected 1 minute measured by B (after removing the communication delay). We repeat

this test several times and determine that the clock drift between machines differs by at most

0.001%. uKharon incorporates inter-machine clock drift by waiting 1.01×δ upon membership

discovery, ensuring that when leases become active on a new membership, everyone’s leases

on the previous membership will have expired.

108



B Appendix for Frugal Byzantine Com-
puting

B.1 Correctness of Consistent Broadcast

We start with a simple observation:

Observation 1. If p is a correct process, then no sub-slot that belongs to p is written to more

than once.

Proof. Since p is correct, p never writes to any sub-slot more than once. Furthermore, since

all sub-slots are single-writer registers, no other process can write to these sub-slots.

Before proving that our implementation, Algorithm 4.1, satisfies the properties of Consistent

Broadcast, we show two intermediary results with respect to the liveness and safety of the scan

operation.

Lemma B.1.1 (Termination of scan.). Each scan operation returns.

Proof. We observe the following:

1. If some slot S goes from empty to non-empty between consecutive iterations of the

while loop, then some process (the writer of slot S) wrote a value to S. This causes the

while loop to continue (line 39).

2. Termination condition: the while loop exits (and thus the scan() operation returns)

once either (a) others has no empty slots, or (b) no slot goes from empty to non-empty

between two consecutive iterations of the while loop (line 39 is never executed).

3. Once a slot S is read and has non-empty value, others gets updated (lines 31 or 37) and

the slot S is never read again.

4. the size of others is equal to the number of processes, n.
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By contradiction, assume the scan function never terminates. This implies the scan function

did not return after executing n +1 iterations of the while loop. This means, each iteration

at least one slot went from being empty to containing a value. This value is added to the

others array (line 37) and the slot is not read again in future iterations. Since the array others

is bounded by n, after n iterations others contains only non-empty values. At the n + 1th

execution of the loop, no slot is empty, done stays true, and hence the operation returns.

Contradiction.

Given every scan operation returns after executing at most n+1 times the while loop and each

loop invokes at most n reads of the base registers, the complexity of the scan() operation is

within O(n2).

Lemma B.1.2 (Non-inversion of scan). Let p1 and p2 be correct processes who invoke scan. Let

V1 and V2 be the return values of those scans, respectively. If V1 contains some value m1 in at

least n − f slots and V2 contains some value m2 in at least n − f slots, then V1 contains m2 in at

least one slot, or V2 contains m1 in at least one slot.

Proof. Assume by contradiction that V1 does not contain m2 and V2 does not contain m1.

Since V1 contains m1 in at least n − f slots, it must be that m1 was written by at least one

correct process; call this process r1. Similarly, m2 must have been written by at least one

correct process; call this process r2. Then the following must be true:

1. p1 must have read the slot of r2 at least twice and found it empty. Let tp1←r2 be the

linearization point of p1’s last read of r2’s slot before p1 returns from the scan.

2. p2 must have read the slot of r1 at least twice and found it empty. Let tp2←r1 be the

linearization point of p2’s last read of r1’s slot before p2 returns from the scan.

3. p1 must have read the slot of r1 and found it to contain m1. Let tp1←r1 be the linearization

point of p1’s last read of r1’s slot.

4. p2 must have read the slot of r2 and found it to contain m2. Let tp2←r2 be the linearization

point of p2’s last read of r2’s slot.

We now reason about the ordering of tp1←r1 , tp1←r2 , tp2←r1 , and tp2←r2 :

1. tp1←r1 < tp1←r2 . Process p1’s last read of r2’s slot must have occurred during the last

iteration of the while loop before returning from the scan. Furthermore, p1’s last read

of r1’s slot cannot have occurred on the same last iteration of the loop, otherwise the

non-empty read would have triggered another iteration; thus, p1’s last read of r1’s slot

must have occurred either in a previous iteration at line 37, or initially at line 31.

2. Similarly, tp2←r2 < tp2←r1 .
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3. tp1←r2 < tp2←r2 . Process p1’s last read of r2 returns an empty value, while p2’s last read of

r2 returns m2. Since r2 is correct, its slot cannot go from non-empty to empty, thus the

empty read must precede the non-empty read.

4. Similarly, tp2←r1 < tp1←r1 .

By transitivity, from (1)-(3), it must be that tp1←r1 < tp2←r1 . This contradicts (4). No valid

linearization order exists for the four reads.

We are now ready to prove that Algorithm 4.1 satisfies the properties of Consistent Broadcast.

Lemma B.1.3 (Validity). If a correct process s broadcasts m, then every correct process eventually

delivers m.

Proof. Let s be a correct sender that broadcasts m and consider a correct receiver p that tries

to deliver s’s message.

Since s is correct, it writes m to its message sub-slot. Therefore, all replicators read m and no

other message from s, by Observation 1.

If all replicators are correct and they copy m in a timely manner, then p is able to deliver m via

the fast path (at line 25).

Otherwise s, being correct, will eventually write its (valid) signature of m to its signature

sub-slot. Since we consider at most f Byzantine processes that replicate m, the n − f correct

replicators are guaranteed to copy the signature of m to their slot. Moreover, since s is correct,

and we assume Byzantine processes cannot forge the digital signatures of correct processes,

no replicator can produce a different message m′ ̸= m with s’s signature. This enables receiver

p to deliver m via the slow path (at line 28).

Lemma B.1.4 (No duplication). Every correct process delivers at most one message.

Proof. Correct processes only deliver at lines 25 or 28. Immediately after a correct p process

delivers a message, p exits the while loop and thus will not deliver again.

Lemma B.1.5 (Consistency). If p and p ′ are correct processes, p delivers m and p ′ delivers m′,
then m=m′.

Proof. Assume by contradiction that consistency does not hold; assume correct process p

delivers m, while correct process p ′ delivers m′ ̸= m.

Assume first wlog that p delivers m using the fast path. Then p must have seen m in n

replicator slots. Assume now that p ′ also delivers m′ using the fast path; then, p ′ must have

seen m′ in n replicator slots. This means that all n replicators must have changed their written
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value, either from m to m′, or vice-versa; this is impossible since at least n− f of the replicators

are correct and never change their written value (Observation 1). Process p ′ must have then

delivered m′ using the slow path instead; then, p ′ must have seen signed copies of m′ in n − f

replicator slots. This means that n − f replicators, including at least one correct replicator,

must have changed their value from m to m′, or vice-versa; this is impossible by Observation 1.

So it must be that p and p ′ deliver m and m′, respectively, using the slow path. In this case,

p sees signed copies of m in n − f slots, while p ′ sees signed copies of m′ in n − f slots.

Lemma B.1.2 therefore applies: p must also see a signed copy of m′ or p ′ must also see a

signed copy of m. Given there exists another validly signed value, the check at line 27 fails for

p or p ′. We have reached a contradiction: p does not deliver m or p ′ does not deliver m′.

Lemma B.1.6 (Integrity). If some correct process delivers m and s is correct, then s previously

broadcast m.

Proof. Let a correct receiver p deliver a value, say m ̸= ⊥. To deliver, m must either be (a) the

value p reads from the slots of all replicators (line 25) or (b) the signed value p reads from

the slots of at least n − f replicators (line 28). In both cases, for the delivery of m to occur, at

least one correct replicator r contributes by writing value m (unsigned in case (a) or signed in

case (b)) to its slot. Given r is a correct process, it must have copied the value it read from the

sender’s slot. Furthermore, a correct sender never writes any value unless it cb-broadcasts it.

Therefore, m must have been broadcast by the sender s.

Execution. We provide an example of an execution breaking consistency when the collect

operation is used instead of the scan operation in Algorithm 4.1. Let there be a Byzantine

sender s and n = 3 replicators. Let p1, p2 be two correct receivers, r1,r2 two correct replicators

and let replicator r3 be Byzantine. Initially, let s write m1 signed in its slot. Let receiver p2 start

its collect. It reads the slot of r1 which it finds empty, and sleeps. Let r1,r3 copy m1 signed in

their slot, while r2 sleeps. Let p1 perform its collect, find two signed copies of m1 and deliver

m1 via the check at line 28. Let s change its value to m2 signed, while r3, being Byzantine,

changes its value to m2 signed. We resume r2 and let it copy m2 signed. We resume p2’s collect,

continuing to read r2,r3 slots, seeing two values of m2 signed (recall it previously read r1’s slot

while it was empty) and delivering m2 via the check at line 28.

B.2 Correctness of Reliable Broadcast

Invariant B.2.1. Let S and S′ be two valid ReadySets for m and m′, respectively. Then, m = m′.

Proof. By contradiction. Assume there exist valid ReadySets S and S′ for different values

m ̸= m′. Set S (resp. S′) consists of at least n − f signed m (resp. signed m′) messages. Then

there exist correct replicators r and r ′ such that r writes m and its signature to its Echo slot
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and r ′ writes m′ and its signature to its Echo slot. This is impossible since correct replicators

only write ∗ in their Echo slots once they have cb-delivered 〈INIT,∗〉 from the sender. By the

consistency property of Consistent Broadcast, m must be equal to m′.

Lemma B.2.2 (Validity). If a correct process s broadcasts m, then every correct process eventually

delivers m.

Proof. Assume the sender s is correct and broadcasts m. Let p be a correct receiver that tries

to deliver s’s message.

Since the sender is correct, it cb-broadcasts 〈INIT,∗〉. By the validity property of Consistent

Broadcast, all correct replicators will eventually deliver 〈INIT,∗〉 from s. Then, all correct

replicators will write m to their Echo message sub-slots, compute a signature for m and write

it to their Echo signature sub-slots. If all replicators are correct and they copy m in a timely

manner, then p is able to deliver m via the fast path (at line 43).

All correct replicators will eventually read each other’s signed messages m; thus every correct

replicator will be able to either (a) create a valid ReadySet and write it to its Ready slot or (b)

copy a valid ReadySet to its Ready slot. Thus, p will eventually be able to read at least n − f

valid ReadySets for m and deliver m via the slow path (at line 45).

Lemma B.2.3 (No duplication). Every correct process delivers at most one message.

Proof. Correct processes only deliver at lines 43 or 45. Immediately after a correct p process

delivers a message, p exits the while loop and thus will not deliver again.

Lemma B.2.4 (Consistency). If p and p ′ are correct processes, p delivers m and p ′ delivers m′,
then m=m′.

Proof. By contradiction. Let p, p ′ be two correct receivers. Let p deliver m and p ′ deliver

m′ ̸= m. We consider 3 cases: (1) p and p ′ deliver their messages via the fast path, (2) p and

p ′ deliver their messages via the slow path, and (3) (wlog) p delivers via the fast path and p ′

delivers via the slow path.

(1) p and p ′ must have delivered m and m′ respectively, by reading m (resp. m′) from the

Echo slots of n replicators. Thus, there exists at least one replicator r such that p read

m from r ’s Echo slot and p ′ read m′ from r ’s Echo slot. This is impossible since correct

replicators never overwrite their Echo slots.

(2) p and p ′ must have each read n − f valid ReadySets for m and m′, respectively. This is

impossible by Invariant B.2.1.

(3) p ′ read at least one valid ReadySet for m′. To construct a valid ReadySet, one requires a

signed set of n− f values for m′. Thus, at least one correct replicator r must have written
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m′ to its Echo slot and appended a valid signature for m′. Process p delivered m by

reading m from the Echo slots of all n replicators, which includes r . This is impossible

since correct replicators never overwrite their Echo slots.

Lemma B.2.5 (Integrity). If some correct process delivers m and s is correct, then s previously

broadcast m.

Proof. Let p be a correct receiver that delivers m and let the sender s be correct. We consider

2 cases: (1) p delivers m via the fast path and (2) p delivers m via the slow path.

(1) Fast Path. p must have read m from the Echo slot of at least one correct replicator r .

Replicator r writes m to its slot only upon cb-delivering 〈INIT,m〉 from s. By the integrity

property of Consistent Broadcast, s must have broadcast m. Moreover, a correct sender

only invokes cb-broadcast(〈INIT,m〉) upon a rb-broadcast event for m.

(2) Slow Path. p must have read at least one valid ReadySet for m. A ReadySet consists of a

signed set of n− f values for m. Thus, at least one correct replicator r must have written

m signed to its Echo slot. The same argument as in case (1) applies.

Lemma B.2.6 (Totality). If some correct process delivers m, then every correct process eventually

delivers a message.

Proof. Let p be a correct receiver that delivers m. We consider 2 cases: (1) p delivers m via the

fast path and (2) p delivers m via the slow path.

(1) Fast Path. p must have read m from the Echo slots of all n replicators, which include

n − f correct replicators. These n − f correct replicators must eventually append their

signature for m. Every correct replicator looks for signed copies of m in other replicators’

Echo slots. Upon reading n − f such values, each correct replicator is able to construct

and write a valid ReadySet to its Ready slot (or copy a valid ReadySet to its Ready slot

from another replicator). Thus, every correct receiver will eventually read n − f valid

ReadySets for m and deliver m via the slow path.

(2) Slow Path. p must have read valid ReadySets for m from the slots of n − f replicators,

which must include at least one correct replicator r . Since r is correct, r will never

remove its ReadySet for m. Thus, every correct replicator will eventually either (a) copy

r ’s ReadySet to their own Ready slots or (b) construct and write a ReadySet to their Ready

slots. Note that by Invariant B.2.1, all valid ReadySets must be for the same value m.

Thus, every correct receiver will eventually read n − f valid ReadySets for m and deliver

m via the slow path.
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B.3 Correctness of Consensus and Additional Details

B.3.1 Valid messages

A 〈PREPARE, view, val, proof 〉 message is considered valid by a (correct) process if:

• the process is part of view,

• the broadcaster of the PREPARE is the coordinator of view, i.e., view % n,

• when view = 0, proof =; and val can be any value ̸= ⊥

• when view > 0, the estimate matches the highest view tuple in proof and the proof set

is valid, i.e., it contains a set of n − f non-conflicting view-change certificates for view

view; in case all tuples in proof are still the init value (0,⊥,;), any estimate is a valid

estimate,

• the process did not previously accept a different PREPARE in view.

A 〈COMMIT, view, val〉 message is considered valid by a (correct) process if:

• the process is part of view,

• val can be any estimate,

• the broadcaster did not previously send a view change message for view′ > view,

• the broadcaster did not previously send another COMMIT message for val′ ̸= val in the

same view.

A 〈VIEWCHANGE, view+1, (viewval, val, proofval)〉 message from process j is considered valid

by a (correct) process if:

• val ∈ (viewval, val, proofval) corresponds to the latest non-empty value broadcast in a

〈COMMIT, viewc, valc〉, val = valc and viewval = viewc (≤ view) and proofval is a valid

proof for val (either consists of non-conflicting certificates that support val as highest

view-tuple or all tuples are with their init value; all VIEWCHANGE and VIEWCHANGEACK

messages must be for viewval),

• val ∈ (0, val, proofval), proofval is ;,

• if for each view view′ ≤ view, 〈COMMIT, view′, ⊥〉 from j are empty; then (viewval, val,

proofval) must be equal to (0,⊥,;),
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• j must have sent a single COMMIT message each view view′ ≤ view,

• j did not send another VIEWCHANGE message this view, view+1.

B.3.2 Agreement

Lemma B.3.1. In any view v, no two correct processes accept PREPARE messages for different

values val ̸= val′.

Proof. Let i , j be two correct processes. Any correct process accepts a PREPARE messages only

from the current view’s primary (line 12).

A correct primary p never broadcasts conflicting PREPARE messages (i.e., same view v, but

different estimates val, val′, val ̸= val′). This means, i , j must receive the same PREPARE

message. By Lemma B.3.9, both i and j consider the PREPARE message from p valid.

A faulty primary p ′ may broadcast conflicting PREPARE messages. Assume the primary broad-

casts (k, 〈PREPARE, v, val, proof 〉) and (k ′,〈PREPARE, v, val′, proof′〉) where k,k ′ are the broad-

cast sequence numbers used. We distinguish between the following cases:

1. k < k ′: By the FIFO property, any correct replica must process message k of p ′ before

processing message k ′. If process i accepts the kth message of p ′, following the con-

sensus protocol, i will not accept a second PREPARE message in the same view v, i.e.

message k ′. Similarly for correct replica j .

2. k > k ′: The argument is similar to (1).

3. k = k ′: In this case, p ′ equivocates. If a message gets delivered by both i and j , then

the message is guaranteed to be the same by the consistency property of Consistent

Broadcast.

We conclude correct replicas agree on the PREPARE message accepted within the same view.

Lemma B.3.2. In any view v, no two correct processes call try_decide with different values val

and val′.

Proof. By contradiction. Let i , j be two correct processes. Assume in view v, processes i , j call

try_decide with value val, respectively val′. To call try_decide, the condition at line 24 must be

true for both i and j . This means i , (resp. j ) accepts a valid PREPARE message supporting val

(resp. val′) and a set of n − f COMMIT messages supporting val (resp. val′). By Lemma B.3.1,

correct processes cannot accept different PREPARE messages and consequently cannot call

try_decide with different values since auxi = aux j .
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Lemma B.3.3. Let a correct process i decide val in view v. For view v+1, no valid proof can be

constructed for a different estimate val′ ̸= val.

Proof. By contradiction. Let i decide val in view v. Assume the contrary and let there be a

valid proof such that (v+1, val′, proof).

Given v+1 > 0, proof cannot be ;. It must be the case that the proof supporting val′ con-

sists of a set of n − f non-conflicting view-change certificates. Each view-change certificate

consists of a VIEWCHANGE message with format 〈VIEWCHANGE, v+1, (view, value, proofval)〉
and f corresponding VIEWCHANGEACK messages. Any view-change certificate requires the

involvement of at least one correct replica, namely, either a correct replica is the broadcaster

of a VIEWCHANGE message or a correct replica validates a VIEWCHANGE message, by sending

a corresponding VIEWCHANGEACK.

For val′ to be consistent with proof, proof must contain either (a) at least one view-change

certificate with tuple (v, val′, proofval′) and no other view-change certificate s.t. its tuple has a

different value for the same view, v, i.e., ̸ ∃ (v, val, proofval), with v the highest view among the

n − f tuples or (b) only view-change certificates with tuples having the initial value (0,⊥,;)

so that any value is a valid value. Let R1 denote the set of processes that contributed with a

VIEWCHANGE message, which is then part of a view-change certificate in proof.

Given i decided val in view v, i received n − f COMMIT messages for val (line 24). Such

processes must have received a valid PREPARE message and updated their view-change tuple

together with their auxiliary in lines 14 and 15, before sending a COMMIT message. Let R2

denote the set of processes that contributed with a COMMIT message for val.

These two sets, R1 and R2, must intersect in at least one replica j . Replica j must have

used Consistent Broadcast for its view-change message: (kvc , 〈VIEWCHANGE, v+1, (v, val′,
proofval′)〉); the argument is similar for the case (kvc , 〈VIEWCHANGE, v+1, (0,⊥,;))〉, where

kvc is the broadcast sequence number used; otherwise it could have not gathered enough

VIEWCHANGEACKs, since correct replicas do not accept messages not delivered via the broad-

cast primitive. Similarly, j must have used Consistent Broadcast for its COMMIT message: (kc ,

〈COMMIT, v, val〉), where kc is the broadcast sequence number used; otherwise i would not

have accepted the COMMIT message.

If j is correct, and sends a COMMIT message for val, it broadcasts a VIEWCHANGE message

with its true estimate, val. Hence, the R1 set of non-conflicting view-change messages must

contain a tuple (v, val, proofval). This yields either a set of conflicting view-change certificates

if ∃ another view-change certificate for (v, val′, proofval′), or a conflict between proof and val′

as matching estimate (since v is the highest-view and the value associated with this tuple

corresponds to estimate val and not val′).

If j is Byzantine, we distinguish between the following cases:
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1. kc < kvc ( j broadcasts its COMMIT message before it broadcasts its VIEWCHANGE mes-

sage). In this case, no correct process sends a VIEWCHANGEACK for j ’s VIEWCHANGE

message. By the FIFO property, a correct process first delivers the kc message and then

kvc message. In order to validate a VIEWCHANGE message, the last non-empty value

broadcast in a COMMIT must correspond to the value broadcast in the VIEWCHANGE.

Since these do not match, no correct process sends a VIEWCHANGEACK for j ’s VIEWCHANGE.

Hence, the VIEWCHANGE message of j does not gather sufficient ACKs to form a view-

change certificate and be included in proof.

Note: If j were to broadcast two COMMIT messages in view v, one supporting val and an-

other supporting val′ before broadcasting its VIEWCHANGE message supporting val′, no

correct process ACKs its VIEWCHANGE message since j behaves in a Byzantine manner,

i.e., no correct process broadcasts two (different) COMMIT messages within the same

view.

2. kvc < kc ( j broadcasts its VIEWCHANGE message before it broadcasts its COMMIT mes-

sage). In this case, process i must have first delivered the VIEWCHANGE message from

j . Consequently, i does not accept j ’s COMMIT message as valid. This contradicts our

assumption that i used this COMMIT message to decide val.

3. kvc = kc ( j equivocates). By the properties of Consistent Broadcast, correct processes

either deliver j ’s COMMIT message, case in which the VIEWCHANGE message does

not get delivered by any correct replica, and consequently does not gather sufficient

VIEWCHANGEACK to form a view-change certificate (for neither val′ nor ⊥); or correct

processes deliver j ’s VIEWCHANGE message, case in which the COMMIT message does

not belong to R2, i does not decide.

We conclude, if i decided val in view v, no valid proof can be constructed for view v+1 and val′

̸= val.

Lemma B.3.4. Let a correct process i decide val in view v. For any subsequent view v′ > v, no

valid proof can be constructed for a different estimate val′ ̸= val.

Proof. We distinguish between the following two cases: (1) v′ = v+1 and (2) v′ > v.

Case 1: Follows from Lemma B.3.3.

Case 2: By contradiction. Let process i decide val in view v. Assume the contrary and let v′ > v

be the lowest view in which there exists a valid proof for val′ ̸= val, i.e., (v′,val′, proof).

A valid proof supporting val′ must contain n − f non-conflicting view-change certificates out

of which (a) one view-change certificate supports val′ or (b) all view-change certificates claim

⊥. A view-change certificate consists of a VIEWCHANGE message and f VIEWCHANGEACK

messages. This means, at least one correct process must validate a VIEWCHANGE message by

broadcasting a VIEWCHANGEACK message, or be the producer of a VIEWCHANGE message.
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(a) For val′ to be the representative value of the n − f view-change certificates in proof, one

of the view-change messages must contain a tuple with the highest view among all n − f

tuples. Let this tuple be (v′−1, val′, proofval′) such that v′−1 is the highest view possible before

entering v′. This tuple must then come from view v′−1 with a valid proof, proofval′ supporting

the fact that val′ is a valid value.

By assumption, the only valid proof that can be constructed in views prior to v′ but succeeding

v is for estimate val. Hence, there is no valid proof, proofval′ for val′ in view v′−1. In the case

in which the producer of the VIEWCHANGE is correct, it will not construct a VIEWCHANGE

message with an invalid proof. The vci variable is only updated if the PREPARE message is valid.

In the case in which the producer of the VIEWCHANGE is faulty, it will not gather the necessary

VIEWCHANGEACK to form a view-change certificate given correct replicas do not validate a

VIEWCHANGE message with an invalid proof or in which the estimate value contradicts the

proof. This contradicts our initial assumption that there exists a valid view-change certificate

supporting val′.

(b) All VIEWCHANGE messages in proof have tuples (0,⊥,;) so that any estimate value is

valid value. Let this set be denoted by R1. Since i decided val in view v, a set of R2 replicas

contributed with a COMMIT value for val. Sets R1 and R2 must intersect in one replica, say j . If

j sends COMMIT messages in subsequent views for a value ⊥, j must send a VIEWCHANGE

message matching its latest non-empty COMMIT message, i.e., 〈VIEWCHANGE, v′, (v, val,

proofval)〉, in order to gather sufficient VIEWCHANGEACK and hence form a view-change

certificate. If j sends a COMMIT message in any subsequent view for a value val′ ̸= ⊥, the

only possible valid proof is for value val, see case (a). Whichever the case, at least one view-

change certificate in proof must contain a view-change message with a non-empty tuple

which contradicts our assumption that all view-change certificates are for ⊥.

Theorem B.3.5 (Agreement). If correct processes i and j decide val and val′, respectively, then

val = val′.

Proof. We distinguish two cases: (1) decision in the same view (2) decision in different views.

Case 1: decision in the same view. Follows from Lemma B.3.2.

Case 2: decision in different views. By contradiction. Let i , j be two correct processes. Assume

processes i and j decide two different values, val, respectively val′, in views v, respectively v′.
Let v < v′ wlog.

To decide, a correct process must receive a valid PREPARE message and n− f COMMIT messages

for the same estimate, line 24. When i decides val in view v, by Lemma B.3.4, from view v+1

onward, the only valid proof supports estimate val. Hence, a valid PREPARE message can only

contain an estimate for val and at any view-change procedure, no VIEWCHANGE supporting

val′ is able to form a view-change certificate. Given process j only accepts valid PREPARE

messages, j cannot adopt val′ as its auxiliary, aux j . This means j cannot decide val′. Given
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process j only collects a set of (non-conflicting) view-change certificates, j cannot adopt val′

as its estimate est j .

B.3.3 Integrity

Theorem B.3.6 (Integrity). No correct process decides twice.

Proof. A correct process may call try_decide (line 25) multiple times. Yet, once a correct

process calls decide (line 42), the decided variable is set to true and hence the if statement is

never entered again.

B.3.4 Validity

Theorem B.3.7 (Weak validity). If all processes are correct and some process decides val, then

val is the input of some process.

Proof. Assume a correct process decides val. Following the steps in the algorithm, a correct

process only decides a value for which it receives a valid PREPARE message and n − f COMMIT

messages, in the same view (line 24). It is either the case the value in the PREPARE message

comes from the previous view or it is the input value of the current view’s primary (line 10). For

the latter, validity is satisfied. For the former, the value in the previous view must come from

one of the VIEWCHANGE messages. Which is either an input value of a prior view’s primary or

the value of a previous view message. We continue by applying the same argument inductively,

backward in the sequence of views, until we reach a view in which the value was the input

value of a primary. This shows that val was proposed by the primary in some view.

B.3.5 Termination

Lemma B.3.8. Two correct processes cannot send conflicting VIEWCHANGE messages.

Proof. Assume the contrary and let v be the earliest view in which correct processes i and j

send conflicting VIEWCHANGE messages m1 and m2, respectively. Let vci = (viewi , vali , proofi )

and vc j = (view j , val j , proof j ) be the view-change tuples in m1 and m2, respectively. Since

m1 and m2 conflict, it must be the case that viewi = view j and ⊥ ̸= vali ̸= val j ̸= ⊥. Thus, in

view viewi = view j , i and j must have received and accepted PREPARE messages for different

values vali and val j . This contradicts Lemma B.3.1.

Lemma B.3.9. A PREPARE, COMMIT or VIEWCHANGE message from a correct process is consid-

ered valid by any correct process.

Proof. A correct process i only sends a PREPARE message if it is the coordinator of that view
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(line 9). When view = 0, esti is initialized to ⊥ which leads i to set initi to vi (line 10). The

PREPARE message has the following format: 〈PREPARE, 0, vi , ;〉 which matches the required

specification for a valid PREPARE. When view > 0, any correct process updates its proof i and

esti before increasing its viewi variable, i.e. moving to the next view. A correct process would

update these two vars according to the protocol, lines 30 and 31. As before, in case esti =⊥,

i to set initi to vi , otherwise it carries esti (line 10). The PREPARE message has the following

format: 〈PREPARE, viewi , initi , proofi 〉 which matches the required specification for a valid

PREPARE.

A correct process i broadcasts exactly one COMMIT message in view (line 20) after it either (a)

hears from the coordinator of the current view or (b) starts suspecting the coordinator. In case

(a) i ’s message contains the estimate of the coordinator (line 14), while in case (b) it contains

⊥ (line 17). In any of the two cases, i ’s VIEWCHANGE message strictly follows the COMMIT

message (lines 28 and 20). The behaviour is in-line with the specification.

A correct process i broadcasts exactly a single VIEWCHANGE message in one view (line 28)

with its vci . Process i update its view-change tuple, vci , only when it receives a valid PREPARE

message. Such message is ensured to be in accordance with the prior specifications for a valid

PREPARE message. Notice that a valid PREPARE message cannot be ⊥, and hence vci is either its

initial value, (0,⊥,;) or a valid tuple (view, val, proof). The data in vci is updated at the same

time auxi is updated, upon receiving a valid PREPARE, and these two variables indicate the

same estimate (lines 14 and 15). The auxi is then send via a COMMIT message within the same

view (line 20). This ensures that the broadcast of i ’s latest non-empty COMMIT corresponds to

the data in its vci variable.

Let i be a correct process. For a given execution E , we denote by V (i ) the set of views in which

i enters. We denote vmax (i ) = maxV (i ); by convention vmax (i ) =∞ if V (i ) is unbounded from

above.

Lemma B.3.10. For every correct process i , vmax (i ) =∞

Proof. Assume the contrary and let wlog i be the process with the lowest vmax . Since i never

progresses past view vmax (i ), i must be blocked forever in one of the wait until statements at

lines 12, 22, or 29. We now examine each such case:

1. Line 12. If the primary p of view vmax (i ) is faulty and does not broadcast a valid PREPARE

message, then eventually i times out on the primary and progresses past the wait until

statement. If p is correct, then p eventually reaches view vmax (i ) and broadcasts a

PREPARE message m. By the validity property of Consistent Broadcast, i eventually

delivers m from p. By Lemma B.3.9, i considers m valid and thus progresses past the

wait until statement.

2. Line 22. By our choice of i , every correct process must eventually reach view vmax (i ).

Given the argument at item (1) above, no correct process can remain blocked forever
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at the wait until statement in line 12, thus every correct process eventually broadcasts

a COMMIT message in view vmax (i ). By the validity property of Consistent Broadcast

and by Lemma B.3.9, i eventually delivers all such messages and considers them valid.

Therefore, i must eventually deliver valid PREPARE messages from n − f processes and

progress past the wait until statement.

3. Line 29. By our choice of i , every correct process must eventually reach view vmax (i ).

Given the argument at items (1) and (2) above, no correct process can remain blocked

forever at the wait until statements in lines 12 and 22, thus every correct process even-

tually broadcasts a VIEWCHANGE message in view vmax (i ). By the validity property of

Consistent Broadcast and by Lemma B.3.9, every correct process eventually delivers all

such VIEWCHANGE messages and considers them valid. Thus, for every VIEWCHANGE

message m sent by a correct process in view vmax (i ), every correct process eventually

broadcasts a VIEWCHANGEACK message m Ack with m’s digest; furthermore, i receives

and considers valid each such m Ack. Thus, i eventually gathers a set of n − f view-

change certificates in view vmax (i ), which are non-conflicting by Lemma B.3.8. This

means that i is eventually able to progress past the wait until statement.

We have shown that i cannot remain blocked forever in view vmax (i ) in any of the wait until

statements. Thus, i must eventually reach line 32 and increase viewi to vmax (i )+1. We have

reached a contradiction.

We define a view v to be stable if in v: (1) the coordinator is correct and (2) no correct process

times out on another correct process.

Theorem B.3.11 (Termination). Eventually every correct process decides.

Proof. We will show that every correct process eventually calls try_decide, which is sufficient

to prove the result. By our assumption of eventual synchrony, there is a time T after which

the system is synchronous. We can also assume that after T , no correct process times out on

another process. Let i be a correct process. Let v∗ be the earliest view such that: (1) i enters v∗

after time T and (2) the primary of v∗ is correct. Recall that by Lemma B.3.10, i and all other

correct processes are guaranteed to eventually reach view v∗. Let p be the (correct) primary

of v∗. By our choice of v∗, p broadcasts a PREPARE message m in v∗, which is received and

considered valid by all correct processes (by the validity property of Consistent Broadcast and

Lemma B.3.9). Thus all correct processes will set their aux variable to the value val contained

in m, and broadcast a COMMIT message with val. Process i must eventually deliver these

COMMIT messages and consider them valid, thus setting at least n − f entries of Ri to val in

line 23. Therefore, the check at line 24 will succeed for i and i will call try_decide at line 25.

122



C Appendix for uBFT

C.1 Correctness of Consistent Tail Broadcast

In this section, we provide a correctness argument for the implementation of CTBcast given in

Algorithm 5.1.

Observation 2. A correct broadcaster p TBcast-broadcasts at most one LOCK message and at

most one SIGNED message per sequence number k. Moreover, both of these broadcasts hold the

same message m.

Observation 3. A correct process p TBcast-broadcasts at most one LOCKED message per sequence

number k.

Proof. Correct processes only broadcast LOCKED messages at line 16. Moreover, locks[k%t ],

which is only modified at lines 15 and 29, is updated strictly monotonically. Thus, once the

branch is entered at line 14 (and thus locks[k%t ] updated at line 15), it cannot be entered for

the same k, which ensures that line 16 is executed at most once per k at correct processes.

Lemma C.1.1 (Tail-Validity). If a correct process p broadcasts (k,m) and never broadcasts a

message (k ′,m′) with k ′ ≥ k + t , then all correct processes eventually deliver (k,m).

Proof. Let p,k,m be as in the statement of the lemma and let q be a correct receiver. We will

show that q eventually delivers (k,m), which is sufficient to prove the lemma.

Since p is correct, p TBcast-broadcasts 〈SIGNED,k,m, si g 〉 with a valid signature. Since both

p and q are correct, q eventually TBcast-delivers it.

The 〈SIGNED,k,m, si g 〉 message of p will trigger at q the event at line 25. Given that p’s

signature is valid, the check at line 26 succeeds. By the premise, p does not broadcast any

message with sequence number k ′ ≥ k + t , so locks[k%t ], which is only modified at lines 15

and 29, cannot contain a value greater than k. Moreover, since no other message m is broadcast

for k (Observation 2), if locks[k%t ] already contains k, it must also contain the message m.
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Thus, q enters the if branch at line 28. Since p is correct and no process can forge p’s signature,

no validly signed entry (k,m′) with m ̸= m′ can exist in any process’s SWMR slot, so q does

not return by triggering the check at line 33. Finally, since p does not broadcast any message

with sequence number k ′ ≥ k + t , no process’s SWMR slot can contain a validly signed entry

(k ′, ·) with k ′ > k and k ′ ≡ k (mod t), so q does not return by triggering the check at line 35.

Therefore, q must call deliver_once(k,m) at line 37. If this call does not deliver (k,m), it

must have been delivered before. Thus, q eventually delivers (k,m).

Lemma C.1.2 (Agreement). If p and q are correct processes, p delivers (k,m) from r , and q

delivers (k,m′) from r , then m = m′.

Proof. Assume towards a contradiction that m ̸= m′. We consider two cases: (1) at least one

process delivers via the fast path, and (2) both processes deliver via the slow path.

In case (1), assume wlog that p delivers via the fast path. Then p must have TBcast-delivered

a LOCKED message from q for (k,m). So q must have TBcast-broadcast a LOCKED message at

line 16. By Observation 3, q cannot have broadcast a LOCKED message for (k,m′). Thus, it

cannot have delivered m′ via the fast path. Moreover, q must have put m in locks[k%t ] at

line 15. Thus q cannot enter the if branch at line 28 and cannot deliver (k,m′) via the slow

path either, hence a contradiction.

In case (2), assume wlog that p writes (k, si g ,m) to SWMR[p][k%t ] (line 30) before q writes

(k, si g ′,m′) to SWMR[q][k%t ]. Thus, when q reads p’s k%t slot at line 31, q sees either (i)

(k, si g ,m) or (ii) (k ′′, ·, ·) with k ′′ > k, and k ′′ ≡ k (mod t ). In case (i), q will return by triggering

the check at line 33, and thus not deliver (k,m′), a contradiction. In case (ii), q will return by

triggering the check at line 35, and thus not deliver, a contradiction.

Lemma C.1.3 (Integrity). If a correct process delivers (k,m) from p and p is correct, p must

have broadcast (k,m).

Proof. Let p and q be correct processes and assume q delivers (k,m) from p. There are two

possible cases: (1) q delivers using the fast path at line 23, or (2) q delivers using the slow path

at line 37.

In case (1), q must have TBcast-delivered LOCKED messages for (k,m) from all processes,

including itself. Therefore q must have TBcast-broadcast a LOCKED message for (k,m) at

line 16 after TBcast-delivering a LOCK message for (k,m) from p. Thus, p must have TBcast-

broadcast a LOCK message, which p can only do as part of the CTBcast-broadcast call. So p

must have broadcast (k,m).

In case (2), q must have TBcast-delivered a valid SIGNED message from p for (k,m). Since p is

correct and no process can forge its signature, p must have broadcast a SIGNED message for

(k,m). So p must have broadcast (k,m).
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Lemma C.1.4 (No duplication). No correct process delivers (k,∗) from p twice.

Proof. Correct processes only deliver through deliver_once. Lines 40 and 41 ensure that a

correct process only triggers del i ver at most once per sequence number k.

Theorem C.1.5. From Lemmas C.1.1, C.1.2, C.1.3 and C.1.4, Algorithm 5.1 implements all the

properties of Consistent Tail Broadcast.

C.2 Correctness of Consensus

Algorithm C.1: Common Case (stable leader)

1 CTBcasts FIFO-deliver and block upon a Byzantine message

3 upon Init:
4 view = 0
5 next_slot = 0
6 checkpoint = (app_state: Initial, open_slots: [0, 99])Σ
7 for each replica:
8 state[replica] = {
9 view = 0, seal_view = ⊥, new_view = ⊥,

10 prepares: Map〈slot, PREPARE〉 = {},
11 commits: Map〈slot, COMMIT〉 = {},
12 checkpoint = (Initial, [0, 99])Σ }

14 def Propose(req):
15 wait (leader(view) == me and next_slot in checkpoint.open_slots and NEW_VIEW

,→ broadcast if view > 0)
16 CTBcast-bcast 〈PREPARE, view, next_slot++, req〉

18 upon CTBcast-deliver 〈PREPARE, v, s, r〉 from p as P:
19 state[p].prepares[s] = P
20 if v != view or s ∉ checkpoint.open_slots: return
21 TBcast-bcast 〈WILL_CERTIFY, v, s〉 # Fast path
22 TBcast-bcast 〈CERTIFY, sign(P)〉 # Slow path

24 # Fast path
25 upon TBcast-deliver 〈WILL_CERTIFY, v, s〉 from 2f+1:
26 if v != view or s ∉ checkpoint.open_slots: return
27 TBcast-bcast 〈WILL_COMMIT, v, s〉

29 upon TBcast-deliver 〈WILL_COMMIT, v, s〉 from 2f+1:
30 if v != view or s ∉ checkpoint.open_slots: return
31 trigger once Decide(s, state[leader(v)].prepares[s].req)

33 # Slow path
34 upon TBcast-deliver 〈CERTIFY, 〈P., v, s, _〉σ〉 from f+1 as PΣ:
35 if v != view or s ∉ checkpoint.open_slots: return
36 CTBcast-bcast 〈COMMIT, PΣ〉
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38 upon CTBcast-deliver 〈COMMIT, PΣ〉 from p as C:
39 state[p].commits[PΣ.slot] = C
40 if delivered f+1 COMMIT with a matching PREPARE:
41 trigger once Decide(PΣ.slot, PΣ.req)

43 # Checkpoints
44 after having decided on all checkpoint.open_slots:
45 wait for all decided requests to be applied to the App
46 next_cp = (App.Snapshot(), checkpoint.open_slots + 100)
47 TBcast-bcast 〈CERTIFY_CHECKPOINT, sign(next_cp)〉

49 upon TBcast-deliver 〈CERTIFY_CHECKPOINT, cσ〉 from f+1 as CΣ:
50 MaybeCheckpoint(CΣ)

52 upon CTBcast-deliver 〈CHECKPOINT, CΣ〉 from p as CP:
53 state[p].checkpoint = CP
54 forget state[p].commits and prepares ∉ CΣ.open_slots
55 MaybeCheckpoint(CΣ)

57 def MaybeCheckpoint(CΣ):
58 if CΣ supersedes checkpoint:
59 checkpoint = CΣ
60 App.BringUpToSpeed(checkpoint)
61 TBcast-bcast 〈CHECKPOINT, checkpoint〉

Algorithm C.2: View Change

1 upon suspicion of leader(view): ChangeView()

3 def ChangeView():
4 for each 〈WILL_COMMIT, v|v==vi ew , s〉 bcast via TBcast:
5 wait to have broadcast a matching COMMIT or CHECKPOINT
6 CTBcast-bcast 〈SEAL_VIEW, ++view〉

8 upon CTBcast-deliver 〈SEAL_VIEW, v〉 from p as SV:
9 state[p].seal_view = SV

10 state[p].view = v
11 sendleader (v) 〈CRTFY_VC, v, sign((p, state[p]\new_view))〉

13 upon deliver f+1 matching 〈CRTFY_VC, v|v==vi ew , sσ〉 about f+1 replicas as C:
14 if me != leader(view): return
15 CTBcast-bcast 〈NEW_VIEW, C〉
16 MaybeCheckpoint(highest checkpoint in C)
17 for s in checkpoint.open_slots:
18 CTB-bcast 〈PREPARE, v, s, MustPropose(s, C)〉
19 next_slot = checkpoint.open_slots.last + 1

21 upon CTBcast-deliver 〈NEW_VIEW, certificates〉 from p as NV:
22 state[p].new_view = NV
23 while view != NV.view + 1: ChangeView()

25 def MustPropose(slot, certificates):
26 if slot > max open slot in certificates: return Any
27 return latest committed req for slot in certificates or ⊥
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Algorithm C.3: CTBcast Summaries

1 after CTBcast-deliver the message with id % tail == 0 from p:
2 sendp 〈CERTIFY_SUMMARY, sign((p, id, state[p]))〉

4 every tail invocations of CTBcast-bcast:
5 block calls to CTBcast-bcast

7 upon deliver 〈CERTIFY_SUMMARY, (me, id, _)σ〉 from f+1 as SΣ:
8 TBcast-bcast 〈SUMMARY, SΣ〉
9 unblock calls to CTBcast-bcast

11 upon TBcast-deliver 〈SUMMARY, (p, id, history)Σ〉:
12 when a gap is detected in the delivery of CTBcast from p:
13 if the latest message delivered from p is lower than id:
14 deliver in order p’s missed CTBcast messages in history without running the

,→ Byzantine checks (Alg. C.4)
15 continue delivering p’s CTBcast messages after id

Algorithm C.4: CTBcast’s Byzantine Checks

1 def valid 〈PREPARE, v, s, r〉 from p:
2 state[p].view == v and leader(v) == p and
3 s in state[p].checkpoint.open_slots and
4 p never prepared slot s before in v and
5 (v == 0 or (state[p].new_view != ⊥ and
6 r == MustPropose(s, state[p].new_view)))

8 def valid 〈COMMIT, PΣ〉 from p as C:
9 PΣ.slot in state[p].checkpoint.open_slots and

10 PΣ.view == state[p].view and
11 state[p].commits[PΣ.slot] != C

13 def valid 〈CHECKPOINT, CΣ〉 from p:
14 CΣ supersedes state[p].checkpoint

16 def valid 〈SEAL_VIEW, v〉 from p:
17 state[p].view < v

19 def valid 〈NEW_VIEW, certificates〉 from p:
20 leader(state[p].view) == p and
21 it is p’s first non-CHECKPOINT message in this view and
22 each certificate is about a different replica and
23 each certificate is signed by f+1 different replicas and
24 each certificate is about view state[p].view

This section gives the pseudocode of uBFT’s consensus alongside a correctness argument.

Algorithm C.1 describes uBFT’s operation under a stable leader. Algorithm C.2 describes

view changes. Algorithm C.3 describes how summaries let uBFT handle the gaps caused by

CTBcast’s tail-validity. Finally, Algorithm C.4 gives the explicit requirements for messages to

pass CTBcast’s Byzantine checks.
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C.2.1 Validity

Lemma C.2.1. For a fixed slot s, with no faulty processes, if some process p delivers and accepts

〈PREPARE, v, s,r 〉 in Algorithm C.1 at line 18, then r must have been proposed by some correct

process.

Proof Sketch. We will prove the lemma by induction on the view v in which p accepts the

PREPARE message. The base case is v = 0. Process p must have delivered a PREPARE message

for r from the leader ℓ0 of view 0. Since ℓ0 is correct, it only sends PREPARE messages for

values that are in its input, or for values that are part of a valid view change certificate from the

previous view. Since there is no previous view in view 0, it must be that r was ℓ0’s input.

Now, for the induction step, assume that the lemma is true up to view v , and examine the

case in which p accepts 〈PREPARE, v + 1, s,r 〉 in view v + 1. All processes are assumed to

be correct, so the PREPARE message must have been sent by ℓv+1, the leader of view v +1.

Correct processes only send one PREPARE message per slot per view, so ℓv+1 must have sent

〈PREPARE, v +1, s,r 〉 either as a new proposal, or during the view change from v to v +1, in

Algorithm C.2 at line 18. In the first case, r is by definition proposed by a correct process as part

of ℓv+1’s input. In the second case, r must be a valid value (i.e., be returned by MustPropose),

given the view change certificates for view v . There are two cases in which r is such a valid

value: (1) one of the certificates contains a COMMIT messages for r in v ′ with v ′ ≤ v , or (2) none

of the certificates contain a COMMIT message for r , and r is the input of ℓv+1. In case (1), a

quorum of processes must have delivered and accepted 〈PREPARE, v ′, s,r 〉 messages in view v ′

with v ′ ≤ v and thus, by induction, r must have been proposed by some correct process. In

case (2), r is also proposed by a correct process. This concludes the induction step and the

proof.

Theorem C.2.2 (Weak Validity). For a fixed slot s, with no faulty processes, if some process p

decides value r in s, then r must have been proposed by some correct process.

Proof Sketch. Process p may decide r either at (1) line 31 (fast path), or (2) at line 41 (slow path)

of Algorithm C.1. Let v be the view in which p decides r . In case (1), p must have delivered

and accepted a 〈PREPARE, v, s,r 〉 in view v , so by Lemma C.2.1, r must have been proposed by

some correct process. In case (2), p must have received valid COMMIT messages for r from a

quorum. Thus, a quorum of processes must have delivered and accepted a PREPARE message

for r , so by Lemma C.2.1, r must have been proposed by some correct process.

C.2.2 Agreement

Observation 4. For a fixed slot s and view v, two correct processes never deliver and accept

conflicting PREPARE messages.
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Proof Sketch. Correct processes deliver and accept PREPARE messages only when coming

from the leader. Furthermore, they deliver and accept at most one PREPARE message per view

per slot. Thus, by the Agreement property of CTBcast, if two correct processes deliver and

accept PREPARE messages in the same view, then those messages are for the same value and

thus do not conflict.

Corollary C.2.3. For a fixed slot s and view v, two processes never broadcast conflicting valid

COMMIT messages.

Proof Sketch. Assume towards a contradiction that two processes q and p broadcast conflict-

ing valid COMMIT messages. Given that each valid COMMIT message is made of a quorum of

valid CERTIFY messages, p and q must have delivered two quorums of valid CERTIFY mes-

sages about different PREPARE messages. By definition, each quorum must contain one correct

process. Moreover, a correct process only broadcasts a CERTIFY message about the PREPARE
message it delivered. Thus, two correct processes delivered different PREPARE messages for

the same slot in the same view. This contradicts Observation 4.

Corollary C.2.4. For a fixed slot s, the view change certificates corresponding to two processes

cannot have conflicting COMMIT messages from the same view.

Proof Sketch. Assume not. Then there exist processes p1 and p2 such that their view change

certificates at the end of view v are conflicting: they contain different COMMIT messages for

values r1 and r2, respectively, from the same view. Since each certificate contains an approval

from a quorum, each certificate must have been approved by at least one correct process.

Thus, a correct process must have received a COMMIT from p1 for r1 and, in the same view, a

correct process (not necessarily the same) must have received a COMMIT from p2 for r2. By the

Integrity property of CTBcast, this implies that p1 and p2 must have sent conflicting commits

for the same slot and view, which is impossible by Corollary C.2.3.

Lemma C.2.5. For a fixed slot s and view v, if a quorum broadcasts COMMIT messages for the

same value r , then no correct process accepts a PREPARE message for any other value r ′ ̸= r in

any view v ′ ≥ v.

Proof Sketch. We proceed by induction on v ′. The base case is v ′ = v . Since a quorum broad-

casts COMMIT messages for r in view v , at least one correct process p must have broadcast

a COMMIT for r . Thus, some correct process must have delivered and accepted a PREPARE
message for r . Thus, by Observation 4, no correct process may accept a PREPARE for a different

value r ′ ̸= r in the same view.

Now, for the induction step, assume the lemma is true up to view v ′, and assume that in view

v ′+1, some correct process p accepts a PREPARE message for some other value r ′ ̸= r . For

this to happen, r ′ must be a valid value according to the view change certificates provided by

the leader ℓv ′+1 of view v ′+1. Thus, at least one process q must have sent a COMMIT message
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C for r ′ in a view v ′′ ≤ v ′. Furthermore, C must have been accepted by at least one correct

process w , in order for q ’s state to have been certified by a quorum. In order for w to accept C ,

C ’s corresponding PREPARE message must have been certified, and thus accepted, by at least

one correct process in view v ′′. This contradicts our induction hypothesis. So it is impossible

for any correct process to accept a PREPARE message for r ′ in view v ′+1. This completes the

induction step and the proof.

Theorem C.2.6 (Agreement). For a given slot s, correct processes cannot decide different values.

Proof Sketch. Assume by contradiction that there exist two correct processes p1 and p2, such

that p1 decides r1 in view v1 and p2 decides r2 ̸= r1 in view v2. Assume further wlog that

v1 ≤ v2. We consider four cases, based on whether p1 and p2 decide on the fast path or the

slow path.

Case 1: Fast-fast. Both p1 and p2 decide their respective values on the fast path. If v1 = v2,

then p1 and p2 must have accepted conflicting PREPAREs in the same view, which is impossible

by Observation 4. Otherwise, if v1 < v2, then at least f +1 correct processes (a quorum) must

have broadcast COMMIT messages for r1 before sealing view v1. Thus, by Lemma C.2.5, no

correct process can accept a PREPARE for r2 in v2, so p2 cannot decide r2 on the fast path in

v2.

Case 2: Fast-slow. p1 decides on the fast path and p2 decides on the slow path. Then, p1

must have accepted a PREPARE for r1 in view v1 (call this Fact 1). Moreover, p2 must have

accepted COMMIT messages for r2 from a quorum. This implies that a quorum broadcast

COMMIT messages for r2 in some view v ′
2 ≤ v2 (call this Fact 2). If v ′

2 ≤ v1, then we reach a

contradiction with Fact 1 by Lemma C.2.5. If v ′
2 > v1, then a quorum of correct processes must

have broadcast COMMIT messages for r1 before sealing v1; thus, by Lemma C.2.5, we reach a

contradiction with Fact 2, since no correct process could have accepted a PREPARE for r2 in v2.

Case 3: Slow-fast. This case is symmetric with Case 2 above.

Case 4: Slow-slow. If both p1 and p2 decide on the slow path, then both processes must have

accepted COMMIT messages from a quorum. Let v ′
1 and v ′

2 be the views in which the COMMIT
messages accepted by p1 and p2, respectively, were sent. Assume wlog that v ′

1 ≤ v ′
2. Then, by

Lemma C.2.5, no correct process could have accepted a PREPARE for r2 in view v2. Thus, no

correct process could have sent a COMMIT message for r2 in v2, and thus it is impossible for a

quorum to have sent COMMIT messages for for r2 in v2.

We have reached a contradiction in all four cases. This completes the proof of the theorem.
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C.2.3 Liveness

In this section, we provide informal arguments for the liveness of our protocol. We assume

that the system is eventually synchronous and that correct processes propose values infinitely

often. Intuitively, liveness is ensured by three mechanisms: (1) the view change mechanism,

(2) checkpoints and (3) CTBcast summaries. First, we assume that CTBcast messages are not

dropped and explain why liveness is ensured by the first two mechanisms. Then, we complete

our explanation with the way CTBcast summaries help overcome the problem of dropped

messages.

The view change mechanism ensures that at least one correct process is able to decide forever.

Assume towards a contradiction that all correct processes stop deciding. Then, as long as they

do not make progress, correct processes will change view thanks to the view change protocol

in Algorithm C.2. Eventually, after the global stabilization time (GST), all correct processes

are guaranteed to (1) reach a view v in which the leader is correct, and (2) communicate with

each other in a timely manner. Thus, given that the timely collaboration of f +1 processes is

enough for the common path described in Algorithm C.1 to be live, the correct replicas decide,

hence a contradiction.

However, having a single correct process deciding infinitely often is not enough for the overall

system to make progress as clients need to obtain a response from f +1 processes. The

checkpoint mechanism guarantees that, if a correct process p decides on slots infinitely

often, then all correct processes also make progress. This is because, in order to keep on

making progress (and thus maintain correct processes under its control), the leader of a

view is mandated to broadcast a CHECKPOINT message periodically. This message is then

re-broadcast by the potentially single correct process in the view and, after GST, delivered by

all correct processes. Because checkpoints are transferable, when another correct process

receives a checkpoint, it is able to decide on the slots contained in the checkpoint and bring

its application state up to speed with the latest decided requests.

Lastly, CTBcast summaries ensure that, if the system were to be reduced to only f +1 correct

processes, they would be able to continue making progress in spite of CTBcast’s delivery gaps.

The worst scenario is arguably the one in which a correct process p used to make progress

with f faulty processes before being let down by them, and the other f correct processes

ending up with a gap in their CTBcast delivery of p’s messages due to asynchrony. In this case,

Algorithm C.3 ensures that p will not risk creating a gap before having obtained a summary

to help overcoming it. Using this summary, p can let correct processes continue delivering

its messages by convincing them that they will not violate the safety of the protocol due to

missed messages. Moreover, p will always obtain a new summary: either it will be helped by

Byzantine processes, or, after GST, it will get help from correct processes by combining the

previous summary with the last t messages it broadcast.
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