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i

“Our time here is brief, our risk enormous.
Don’t waste the one or increase the other, if
you please.”

— Stephen King, The Dark Tower

“The best way to find out if you can trust
somebody is to trust them.”

— Ernest Hemingway





Abstract

In 1948, Claude Shannon laid the foundations of information theory, which
grew out of a study to find the ultimate limits of source compression, and of
reliable communication. Since then, information theory has proved itself not
only as a quest to find these limits but also as a toolbox which provides a new
machinery and new perspectives on problems in various fields. Shannon’s orig-
inal description of the communication problem omitted the semantic aspects.
However, modern communication systems necessitate the consideration of se-
mantics, such as fidelity and freshness of data. Shannon did study a problem
related to the fidelity of data — known as rate–distortion theory, which can
be seen as an attempt to incorporate semantics in a weak sense. Yet, fresh-
ness has not been widely studied until 2011, when Kaul, Yates and Grueteser
introduced a new metric for its assessment, called age of information (AoI).

Since 2011, AoI has become a widely studied notion as data freshness be-
comes increasingly important. But at the same time, not all data is equally
important. If, in an attempt to reduce staleness our system drops important
pieces of data, the remedy may be worse than the disease. Aligned with this
observation, in Part I, we study a discrete-time model where each packet has
a cost of not being sent — this cost might depend on the packet content. We
study the tradeoff between the age and the cost where the sender is confined
to packet-based strategies. We show that the optimal tradeoff can be attained
with finite-memory strategies and we devise an efficient policy iteration algo-
rithm to find these optimal strategies. We further study a related problem
where the transmitted packets are subject to erasures and show that the op-
timal policies for our problem are also optimal for this new setup. Allowing
coding across packets significantly extends the packet-based strategies and we
show that when the packet payloads are small, the performance can be im-
proved by coding. Furthermore, we study a related problem where some of
the equally important packets must be sent in order to control the output
rate. ‘Which packet to send, and when?’ is the relevant question of this prob-
lem and we show that if the packet arrival process is memoryless, a simple
class of strategies attain the optimal tradeoff. The same class of strategies
also solve the analogous continuous-time problem, where packets arrive as a
Poisson process.
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iv Abstract

In Part II, we study two distributed hypothesis testing problems: (i) with a
centralized architecture and (ii) with a fully decentralized architecture. In the
centralized problem, we consider peripheral nodes that send quantized data
to the fusion center in a memoryless fashion. The expected number of bits
sent by each node under the null hypothesis is kept limited. We character-
ize the optimal decay rate of the misdetection probability provided that false
alarms are rare, and study the tradeoff between the communication rate and
maximal decay rate of misdetection probability. We use the information the-
ory toolbox and resort to rate–distortion methods to provide upper bounds
to the tradeoff curve and we also show that at high rates lattice quantization
achieves near-optimal performance. We characterize the tradeoff for the case
where nodes are allowed to record and quantize a fixed number of samples as
well. Moreover, under sum-rate constraints, we show that an upper bound to
the tradeoff curve is obtained with a waterfilling solution. In the decentral-
ized problem, we study a locally-Bayesian scheme where at every time instant,
each node chooses to receive information from one of its neighbors at random.
We show that under this sparser communication scheme, the agents learn the
truth eventually and the asymptotic convergence rate remains the same as the
baseline algorithms. We also derive large deviation estimates of the log-belief
ratios for a special case where each agent replaces its belief with that of the
chosen neighbor.

Keywords: Age of information, average age, rate–distortion theory, age–
distortion tradeoff, causal policies, Markov decision process, distributed infer-
ence, hypothesis testing, social learning



Résumé

En 1948, Claude Shannon a posé les fondements de la théorie de l’information,
qui est née d’une étude de la recherche des limites ultimes de la compression
des sources et de la communication fiable. Dès lors, la théorie de l’information
s’est révélée non seulement comme une quête visant à trouver ces limites, mais
également comme une boîte à outils fournissant de nouvelles méthodes et per-
spectives pour résoudre des problèmes dans divers domaines. La description
originale de Shannon du problème de communication a omis les aspects sé-
mantiques. Cependant, les systèmes de communication modernes nécessitent
la prise en compte de la sémantique, telle que la fidélité et la fraîcheur des don-
nées. Shannon a étudié un problème lié à la fidélité des données, connu sous le
nom de théorie du débit–distorsion, qui peut être considéré comme une tenta-
tive d’intégrer la sémantique dans un sens faible. Cependant, la fraîcheur n’a
été largement étudiée que depuis 2011, lorsque Kaul, Yates et Grueteser ont in-
troduit une nouvelle mesure pour son évaluation, appelée l’âge de l’information
(AoI).

Depuis 2011, l’AoI est devenu un concept largement étudié, car la fraîcheur
des données devient de plus en plus importante. Mais toutes les données
ne sont pas également importantes. Si, dans le but de réduire le risque
d’obsolescence, notre système supprime des éléments importants de données,
le remède peut être pire que le mal. En accord avec cette observation, dans la
première partie, nous étudions un modèle en temps discret où chaque paquet a
un coût s’il n’est pas envoyé — ce coût peut dépendre du contenu du paquet.
Nous étudions le compromis entre l’âge et le coût lorsque l’émetteur est limité
à des stratégies basées sur les paquets. Nous montrons que le compromis op-
timal peut être atteint avec des stratégies à mémoire finie, et nous concevons
un algorithme d’itération de politique efficace pour trouver ces stratégies opti-
males. Nous étudions également un problème connexe où les paquets transmis
sont soumis à des effacements et montrons que les stratégies optimales pour
notre problème sont également optimales pour cette nouvelle configuration.
L’utilisation du codage sur les paquets étend considérablement les stratégies
basées sur les paquets. Nous montrons que lorsque les charges transportées des
paquets sont petites, les performances peuvent être améliorées par le codage.
De plus, nous étudions un problème connexe où certains paquets tout aussi
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vi Résumé

importants doivent être envoyés pour contrôler le débit de sortie. ‘Quel paquet
envoyer, et quand?’ est la question pertinente de ce problème, et nous mon-
trons que si le processus d’arrivée des paquets est sans mémoire, une classe
simple de stratégies atteint le compromis optimal. La même classe de straté-
gies résout également le problème en temps continu, où les paquets arrivent
selon un processus de Poisson.

Dans la deuxième partie, nous étudions deux problèmes d’inférence dis-
tribuée: (i) avec une architecture centralisée et (ii) avec une architecture en-
tièrement décentralisée. Dans le problème centralisé, nous considérons des
nœuds périphériques qui envoient des données quantifiées au centre de fusion
sans utilisation de mémoire. Le nombre esperé de bits envoyés par chaque
nœud sous l’hypothèse nulle est limité. Nous caractérisons le taux de décrois-
sance optimal de la probabilité de non-détection conditionné par le fait que les
fausses alarmes soient rares, et étudions le compromis entre le taux de commu-
nication et le taux maximal de décroissance de la probabilité de non-détection.
Nous utilisons la boîte à outils de la théorie de l’information et recourons aux
méthodes de débit–distorsion pour fournir des bornes supérieures à la courbe de
compromis. Nous montrons également qu’à des débits élevés, la quantification
en treillis atteint des performances proches de l’optimal. Nous caractérisons le
compromis dans le cas où les nœuds sont autorisés à enregistrer et à quantifier
un nombre fixe d’échantillons également. De plus, sous des contraintes de débit
total, nous montrons qu’une borne supérieure à la courbe de compromis est
obtenue avec une solution de waterfilling. Dans le problème décentralisé, nous
étudions un schéma localement bayésien où à chaque instant, chaque nœud
choisit de recevoir des informations d’un de ses voisins de manière aléatoire.
Nous montrons que dans ce schéma de communication limité, les agents finis-
sent par apprendre la vérité et le taux de convergence asymptotique reste le
même que pour les algorithmes standard. Nous obtenons également des esti-
mations de grande déviation des ratios de croyances logarithmiques pour un
cas particulier où chaque agent remplace sa croyance par celle du voisin choisi.

Mots-clés: Âge de l’information, âge moyen, théorie du debit–distorsion,
compromis âge–distorsion, politiques causales, processus de décision markovien,
inférence distribuée, tests d’hypothèse, apprentissage social.
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Introduction 1
This chapter is intended to provide a brief review of information theory, and
some of the main problems it addresses. For readers familiar with information-
theoretic concepts, it may serve as a quick reminder; and for those who are
unaccustomed to information theory, it could be a short introduction. We
will first introduce the canonical communication model. Then, we will adopt
an engineering perspective to study the related problems one by one, and
consequently encounter information-theoretic quantities as fundamental limits
related to these problems. The problems in this chapter are not treated with
full rigor and the proofs of relevant theorems/results are not included — except
Theorem 1.10 — in order to keep the chapter at an introductory level. For
more comprehensive treatments, the reader may refer to the classical reference
books in information theory, e.g. [1–4], which have been valuable sources for
the author to write this chapter. At the end of this chapter, the reader will
be equipped with (or reminded of) the necessary tools and concepts to follow
the main chapters of this thesis.

1.1 Shannon’s Communication Model
After successful developments in modulation techniques in communication,
such as PCM (Pulse Coded Modulation), a shift towards digital communica-
tion was inevitable. In 1948, Claude Shannon formulated a general theory
of communication on this basis in his seminal work, A Mathematical Theory
of Communication. In his words, the fundamental problem of communication
is that of reproducing at one point either exactly or approximately a message
selected at another point [5]. A general block diagram for a communication
scheme can be given as in Figure 11.

1



2 Introduction

Source Encoder Channel

Noise

Decoder Dest.

Figure 11 – Graphical representation of a canonical communication system.

We first focus on the source and channel components of Figure 11. The
information source in Figure 11 could be a bitstream, data generated from a
sensor, or even a sequence of moves in a chess game. It consequently emits a
message to send. Later, we will model the source as a stochastic process, and
the message to be reproduced at the destination will be a realization of this
process. For instance, if the source is a finite bitstream, ‘00110001’ might be
the message to be conveyed. The channel is a transmission medium that could
be subject to atmospheric noise, scattering, interference from another sources,
or in general any phenomenon that injects noise in the system. Although very
unlikely to encounter in real-life, one can also model the channel as a noiseless
medium, i.e., a simple passthrough.

Appropriate choice of the encoder-decoder pair is the key to designing
well-performing communication systems which battle the noise injected by
the channel. A significant portion of the communication and coding theo-
ries revolves around finding efficient and high fidelity encoder-decoder designs.
Simply put, the encoder might represent any kind of processing on the data
produced by the source such as compression or adding redundancy to data.
Even popular data reduction techniques as Principle Components Analysis
(PCA), and neural networks may serve as encoder examples. The decoder is
a device whose task is to match the channel output — a possibly corrupted
version of the encoder’s output — with an approximate representation of the
original message generated by the source.

Now that we have an understanding of how a generic communication scheme
is represented, it is natural to ask questions such as ‘How much information
does the source carry?’, or ‘How much information per second can we send
reliably over a channel?’. To answer these questions, we must have a standard
unit of information, similar to the other standard units as kilograms for mass,
or seconds for time. Aligned with the development of digital circuits back in
the time when Shannon was writing his work, a reasonable unit for measuring
information was the number of flip-flops in a circuit. Flip-flops are devices with
two stable positions, and hence if a circuit has N flip-flops, it can represent
2N possible configurations in its memory. Consequently, the configuration of
the circuit can be represented with a number i from 0 up to 2N − 1, where
the state of each flip-flop is a digit in the binary representation of i. Then, it
is convenient to say that this circuit contains N binary digits of information.
The term bit, coined by John Tukey, is an abbreviation of binary digit and is
still being used for a measure of information. Now, the questions in the begin-



1.2. Lossless Source Coding 3

ning of this paragraph can be restated as (i) ‘What is the number of bits per
symbol required to represent a particular information source?’, and (ii) ‘How
many bits per second can we send reliably over a given channel?’. We will refer
to these questions as question (i) and (ii) throughout this chapter. These ques-
tions are actually two of the main problems in information theory, and were
settled by Shannon in his 1948 work [5] for fairly general models. However
for many setups such as the broadcast channel model [1], these fundamental
questions still remain open.

1.2 Lossless Source Coding
In the previous section, we have presented a general communication scheme
and a unit for measure of information (bit). In an attempt to answer the
fundamental questions of information theory, we must assume mathematical
models for the source and the channel. In this section, we will study a simple
source model and find the required number of bits to represent the source. In
our setting, we assume that the source is a discrete-time stochastic process
X1, X2, . . . where each Xi is a random variable taking values in a finite set X .
We further assume that each Xi has the same distribution and independent
from all Xj, j 6= i. Such stochastic processes are called independent and
identically distributed (i.i.d.) processes and will often be encountered in this
thesis. We will also assume that one source symbol Xi is generated per time
unit — the reader may assume the time unit taken as one second if they feel
more comfortable, in this case the source generates one symbol per second.

As a thought experiment, we attempt to make a first estimate for the
number of bits required to represent the source. Assume that each Xi is a
coin flip with probability of heads being equal to p. If p = 0 or p = 1, there
is no randomness and the destination already knows what the source will say
beforehand. Thus we can represent this source with 0 bits per coin toss. On
the other extreme, if p = 1/2, the coin is purely random and we can guess
that we need to allocate 1 bit per coin toss — this guess turns out to be true
as we will see in the sequel. If p = 0.1, we may believe that most of the time
we will observe tails and hopefully we can improve upon 1 bits per coin toss.
It is easy to see that it is impossible to improve if we encode each coin toss
separately. However, if we encode the coin tosses in groups of two, we indeed
get an improvement with a smart encoder choice. Representing heads with H
and tails with T , consider the following encoding function c:

c(x1, x2) =


0, x1x2 = TT

10, x1x2 = HT

110, x1x2 = TH

111, x1x2 = HH

(1.1)

where x1 and x2 are the outcomes of the first and second coin tosses respec-
tively. Using this source code, let us examine the number of bits allocated per
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time unit. At the end of time 2t, the average number of bits that are output
by the encoder is given by

N̄2t =
∑t
i=1 c(X2i−1, X2i)

2t (1.2)

and is a random variable due to the source being random. By the law of
large numbers, N̄2t converges to E[c(X1, X2)]/2, where E[·] is the expectation
operator, thus approaches to 0.645 bits per unit time, which is an improvement
over 1 bit per unit time. One expects that the more random the source behaves,
the harder it becomes to represent and we need to allocate more bits per time
unit. In the next section, we will see that Shannon’s entropy H, a measure of
randomness and information, is the fundamental limit for the source coding
problem in the sense that the number of bits per unit time cannot be lower
than the entropy for a large class of source codes. Luckily, again as we shall
mention in the next section, there are sufficiently complex coding techniques
to approach this fundamental limit.

1.2.1 Fixed-to-Variable Length Coding
After the intuitive approach to the source coding problem given in the previ-
ous section, we now adopt a more formal approach. Let us first focus on the
representation of a single source symbol X. A source code c for X is a map-
ping from X to {0, 1}∗, where {0, 1}∗ denotes the set of all finite-length binary
sequences formed by 0’s and 1’s. Since the output length might depend on the
realization of X, these codes are also called fixed-to-variable length codes. Ob-
viously, if we want to have a lossless representation of the source, we shall not
map different letters in X to the same binary sequence. Hence, the following
class of source codes are of the highest interest.

Definition 1.1 (Injective code). A code is called injective (non-singular) if
for any x, x′ ∈ X , x 6= x′ implies c(x) 6= c(x′).

Now assume that we encode all source symbols with the same injective
code c. We will denote the resulting source code as c∗. More precisely, c∗ is a
mapping from X ∗ to {0, 1}∗ with

c∗(x1, x2, . . . , xn) = c(x1)c(x2) . . . c(xn) (1.3)

where the right-hand side is the concatenation of c(x1), c(x2), . . . , c(xn). With
the same reasoning as above, we may want c∗ to be injective. Note that c
being injective does not imply c∗ being injective, thus we need

Definition 1.2 (Uniquely-decodable code). A code c is called uniquely-decodable
if c∗ is injective.

Now is the time when Shannon’s entropy, as a fundamental limit in the
source coding problem, comes into play. The following theorem gives lower
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and upper bounds to the expected length of any uniquely-decodable code in
terms of the entropy. Recall that the source symbols take values in a finite
set X . Let p(x) := Pr(X = x) be the probability that X equals x for x ∈
X . Also for a source code c, let lc(x) be the number of bits output for the
representation of the realization x. The expected length of c is consequently
given by E[lc(X)] = ∑

x∈X p(x)lc(x).

Theorem 1.1. For any uniquely-decodable code c,

E[lc(X)] ≥ H(X) (1.4)

where H(X) := ∑
x∈X p(x) log2

1
p(x) is the discrete entropy of the random vari-

able X. Furthermore, there exists a uniquely-decodable code with an explicit
construction and such that

E[lc(X)] ≤ H(X) + 1. (1.5)

One may notice the 1-bit gap as a result of equations (1.4) and (1.5). Recall
the coin toss example at the end the previous section where we have improved
by grouping the source symbols. The same methodology will reduce the gap
here as well. With an aim to generalize Theorem 1.1 to multiple letters, it
may be useful to give definitions of joint entropy and conditional entropy for
an ensemble of random variables.

Definition 1.3 (Joint entropy and conditional entropy). Let X1, . . . , Xn be an
ensemble of discrete random variables taking values in sets X1, . . . ,Xn respec-
tively. Let p(x1, . . . , xn) := Pr(X1 = x1, . . . , Xn = xn) be the joint distribution
and p(x1|x2) := Pr(X1 = x1|X2 = x2) be the conditional distributions. Then,

• The joint entropy of X1, . . . , Xn is defined as

H(X1, . . . , Xn) :=
∑

x1,...,xn∈X1×...×Xn
p(x1, . . . , xn) log2

1
p(x1, . . . , xn) .

(1.6)

• The conditional entropy of X1 given X2 is defined as

H(X1|X2) :=
∑

x1∈X1,x2∈X2

p(x1, x2) log2
1

p(x1|x2) . (1.7)

The following properties also prove useful in the sequel.

Property 1.1. [Properties of H]

• H(X) ≥ 0.

• (Conditioning reduces entropy) H(X|Y ) ≤ H(X).
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• H(X1, . . . , Xn) = ∑n
i=1H(Xi|X1, . . . , Xi−1) ≤ ∑n

i=1H(Xi), with the right-
hand side being equality if and only if X1, . . . , Xn are independent.

• H(X) ≤ log2 |X | with the right-hand side being equality if and only if X
is uniformly distributed over X .

One can also view H(X) as a function of the distribution p(x) as it does
not depend on the values X takes. In line with this view, we can denote
the entropy as H(p). The following property is also important in information
theoretic problems:

Property 1.2 (Concavity of H). H(p) is concave in p.

In the coin toss example that we have previously discussed, for a biased coin
toss with probability of heads p = 0.1, we improved upon 1 bit per unit time
and obtained that in the long term, number of bits allocated per unit time
converges to 0.645. The improvement relied on grouping of multiple tosses
which was a purely intuitive method. We will know show that by grouping
a large number of symbols, one can design uniquely-decodable codes with
expected bits per source symbol approaching the entropy. From Theorem
1.1 we know that if we can simultaneously encode n symbols, there exists a
uniquely-decodable code c with an expected length

E[lc(X1, . . . , Xn)] ≤ H(X1, . . . , Xn) + 1. (1.8)

When Xi’s are i.i.d., Property 1.1 tells that H(X1, . . . , Xn) = ∑n
i=1H(Xi) =

nH(X1). Thus,

Theorem 1.2. For an i.i.d. sequence X1, . . . , Xn, there exists a uniquely-
decodable code c with

1
n
E[lc(X1, . . . , Xn)] ≤ H(X1) + 1

n
. (1.9)

Consequently, for sufficiently complex uniquely-decodable codes where n is large,
one can approach the entropy, which is a lower bound on the expected number
of bits per symbol (or unit time).

Observe that the above theorem is valid for uniquely-decodable codes. One
may ask how does the theorem change if the requirement that c being uniquely-
decodable is relaxed to c being injective. Since with uniquely-decodable c’s we
can approach the entropy arbitrarily close, one might guess that with injective
c’s, we can beat this fundamental limit. It turns out to be true, one can indeed
design injective codes with a lower number of expected bits per unit time, but
unfortunately not that much.

Theorem 1.3. [Source Coding Theorem for Injective Codes, [6, 7]] Let X be
a discrete random variable (here, X need not be finite). Then for any injective
code c, we have

H(X)− ln(H(X) + 1)− 1 ≤ E[lc(X)] (1.10)
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and there exists an injective code c such that

E[lc(X)] ≤ H(X). (1.11)

Consequently, if one encodes length-n blocks of i.i.d. Xi’s, there exists an
injective code c with

H(X)− 1
n

ln(nH(X) + 1)− 1
n
≤ 1
n
E[lc(X1, . . . Xn)] ≤ H(X). (1.12)

Theorem 1.3 indeed shows that one can beat the entropy limit with injective
codes. However, as the number of symbols to be encoded grows, the expected
number of bits per symbol will be sandwiched between the right and left-
hand sides, and hence will be close to H. Another important observation is
that the source symbol X in Theorem 1.3 need not take values in a finite
set. Such requirement will be important in Part II of this thesis, where we
study a distributed statistical inference problem subject to communication
constraints. In that problem, aligned with the observations of this section,
we will impose that the entropy of the statistics sent by a remote node shall
not exceed a prescribed limit R. This way, since there exists injective codes
satisfying (1.11), we will ensure that the average number of bits sent per unit
time cannot exceed R as well.

1.2.2 Variable-to-Fixed Length Coding
In the previous section, the main emphasis was on the fixed-to-variable length
codes. However, if the encoder’s output is strictly limited to N bits per use,
one has to come up with a different machinery. As opposed to the previous
section, now we must seek an efficient way to (i) choose the number of source
symbols to encode and (ii) find a code to represent the selected number of
source symbols. Such codes are called variable-to-fixed length codes.

For the design and implementation of variable-to-fixed codes, one may find
an additional device, called parser, particularly useful. The parser creates
segments from the input stream. Assume for simplicity that X = {0, 1}. The
following may serve as an example of a binary input parser.

0︸︷︷︸
w1

| 110︸︷︷︸
w2

| 10︸︷︷︸
w3

| 0︸︷︷︸
w4

| 1110︸ ︷︷ ︸
w5

|0|11110|0|0|11110|0|10|0|1 . . . (1.13)

As the above bits are fed into the parser, it decides when to form a word wi

according to a set of rules. Note that each wi is a concatenation of multiple
source symbols. In the above example, the parser ends a word whenever it
encounters a 0. More generally, the set of rules the parser obeys are determined
by a dictionary, which is a subset of X ∗ (in the above example, a subset of
{0, 1}∗).

Note that in the above example X1, X2, . . . = w1,w2, . . ., i.e., no source
symbols are skipped. Such dictionary choices will be of our interest, which we
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will call as valid dictionaries. More formally, a dictionary is valid if every input
sequence has a prefix in this dictionary. An example of an invalid dictionary
is {0}. If the parser employs this dictionary, it cannot parse the source stream
once a 1 is observed.

Another desired property of a parser could be that it must be able to decide
at time t whether it should or should not end the current word it is parsing.
In the language of probability theory, the time to end a parsing must be a
stopping time. Note that for such dictionaries, no word should be a prefix
of another. Hence, these dictionaries are called prefix-free dictionaries. The
dictionary of the parser in the example (1.13) is also prefix-free. Prefix-free
dictionaries can be represented with trees where each word is represented as a
leaf of the tree. For the above example, the constituent tree is given in Figure
12.

0

1

0

1

0

1

Figure 12 – The tree representing the prefix-free dictionary based on the rule
‘stop when a 0 is encountered’.

Recall that the encoder’s output was strictly limited to N bits per use.
Therefore, we must truncate the above tree to have exactly 2N leaves. This
way, we are able to encode a variable length of input symbols into exactly N
bits. So, for the task of variable-to-fixed length coding, one must choose an
appropriate tree with 2N leaves that meets the design criteria.

One design criteria could be to minimize the number of bits sent per unit
time over a long-term horizon. Observe that the time it takes to parse a word
has now become a random variable. Let Ti be the time taken to parse wi.
After the ith parsing is finished, the number of bits sent per unit time is given
by

iN

T1 + · · ·+ Ti
. (1.14)

If the dictionary is prefix-free, then Ti’s are i.i.d.. Therefore, as i tends to
infinity, the quantity in (1.14) converges to N/E[T ] by the law of large num-
bers. As a consequence, for long-term horizon, it is reasonable to minimize
N/E[T ] or equivalently for a given N , to maximize E[T ]. Luckily, this is an
easy task and can be solved iteratively with a simple greedy algorithm devised
by Tunstall.
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Theorem 1.4 (Tunstall Algorithm).

• Start with the root as intermediate node and all level 1 nodes as leaves.

• If number of leaves is equal to the desired dictionary size stop (if desired).

• Otherwise, pick the highest probability leaf, make it an intermediate node
and grow 2 leaves on it. Go to step 2.

In Part I of this thesis, we will use variable-to-fixed coding as a means
to improve the performance of uncoded strategies in a timely communication
setting. We will use the fact that maximizing a similar quantity to E[T ]
improves the performance of our scheme and we will consequently boost the
performance of our original strategies with Tunstall coding.

At this point, we have introduced some important concepts and results to
study one of the fundamental questions of information theory, namely question
(i): ‘What is the minimum number of required bits to represent a source?’. We
have seen that the entropy H, as a measure of randomness and information,
turns out to be a fundamental entity in numerous source coding problems.
The source coding concepts and tools introduced in this chapter, e.g., injective
codes and Tunstall coding, will be of use in the main parts of the thesis. For a
more comprehensive introduction to the lossless source coding, the reader may
refer to [1, 2], and [4] from a method-of-types perspective. We conclude our
introduction to source coding and will study question (ii) in the next chapter.

1.3 Channel Coding
Let us recall the two main questions we have touched upon: (i) ‘What is the
minimum number of required bits per unit time to represent a source?’ and
(ii) ‘What is the maximum number of bits we can send reliably over a channel
per use (or per unit time)?’. We have already studied the first question by
assuming a mathematical model for the source. Now, we shall do the same
for the channel. Simply put, a channel is a transmission medium that distorts
the input by injecting a noise disturbance. Therefore, given a particular input,
the output of the channel should be random. Based on this observation, more
precisely, a channel is a probability transition matrix (or probability kernel)
with given input and output alphabets. As we have done in the previous
section, we will mainly discuss discrete memoryless channels (DMC) with finite
input and output alphabets.

Definition 1.4 (DMC). Given an input alphabet X and an output alphabet
Y, a DMC is characterized with the conditional probabilities

p(y|x) := Pr(Y = y|X = x), x ∈ X , y ∈ Y , (1.15)

where X and Y are the input and the output of the DMC, respectively. Through
multiple uses, if there is no feedback to the sender, the nth output of a DMC
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will only depend on the nth input. Thus its conditional distribution for multiple
uses can be factorized as

p(y1, . . . , yn|x1, . . . , xn) =
n∏
i=1

p(yi|xi). (1.16)

A well-known example is the Binary Erasure Channel (BEC), whose input
X takes values in the binary alphabet {0, 1} and whose output Y takes values
in the alphabet {0, 1, ?}. The transition probabilities of a BEC is given by
p(? |0) = p(?|1) = ε and p(0|0) = p(1|1) = 1− ε. In words, the channel erases
the input with probability ε (which is also called the erasure probability).
The symbol ‘?’ denotes the erasures in the output. It is sometimes useful and
visually appealing to represent channels in a graphical form—more specifically
as a bipartite graph. The graphical representation of a BEC is given in Figure
13.

1

0

?

1

0

1− ε

ε

ε

1− ε

Figure 13 – The graphical representation of a BEC. Directed edges indicate
the possible transitions and the edge labels are the probabilities of the corre-
sponding transition.

In the channel coding task, we intend to design a coding scheme which
operates in an opposite manner to source codes, i.e., instead of compressing
the input, we intend to add redundancy to battle the noise. As an example,
again think of a bitstream. If the channel is a BEC, a possible input-output
pair could be as follows:

0010100010010101011010101
001?100?100????10??0?0101

. (1.17)

Therefore, the receiver cannot reproduce the exact input sequence. A simple
way to combat this noise is to repeat each input symbol twice. If the channel
erases approximately the same portion of the input as above, the repeated
input sequence and the constituent output might become

00|00|11|00|11|00|00|00|11|00|00|11|00|11|00|11|00|11|11|00|11|00|11|00|11
00|?0|1?|0?|11|0?|0?|00|1?|00|0?|??|00|?1|0?|1?|0?|11|?1|0?|1?|?0|1?|00|11

(1.18)

where the repeated bits are separated with vertical bars. Note that the re-
ceiver now can correctly infer every bit except one, the underlined one, as
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both repetitions are erased. Hence, one might think that if the transmitter
repeats every bit sufficiently large number of times, the input sequence may
be correctly transmitted over the erasure channel. However, in this case, the
number of input bits transmitted per channel use becomes small and this re-
sults in a very inefficient code. To measure this efficiency, we define the rate
of the code as

R := number of bits sent
number of channel uses . (1.19)

In the channel coding problem, we aim to find the possible values of R that
allow the reliable transmission of a message. To this end, we will now present
a formal setup.

We have previously stated that the main task in communication is to ap-
proximately reproduce a message at a remote point. For the channel coding
problem, we abstract the source and consider the problem of sending a mes-
sage among M = 2nR possible messages to a remote point through n uses of a
channel — the message can be a direct realization of the source, or its source-
coded version in bits (Section 1.2). Similar to source codes, we now define a
channel code.

Definition 1.5 (Channel code). A channel code C(n,R) is a mapping from
{1, . . . ,M},M = 2nR to X n. The image of C is called the codebook and each
element in the image is called a codeword.

The encoder then encodes the source based on the channel code. For in-
stance in (1.17) and (1.18), the encoder repeats each input bit twice according
to a C(50, 1/2) repetition code. If a message m is to be transmitted, for ease
of notation, we say that the encoded version of m is Encn(m), where Encn
stands for the encoder that bases its encoding to the code C(n,R). Since the
decoder’s task is to approximately construct the message at a remote point, it
must map the channel output to the original message set. Hence, it constitutes
a mapping Decn : Yn → {1, . . . ,M}. The decoding may be based on different
rules such as maximum likelihood decoding. Since the output of the decoder
is an estimate of the original message, we denote the output of the decoder as
m̂.

Given an encoder-decoder pair, a reasonable performance measure is the
probability of decoding a message incorrectly. More precisely, we consider the
probability of error averaged over all possible messages:

Pe,n := 1
M

M∑
m=1

Pr(m̂ 6= m|m). (1.20)

We would like Pe,n to vanish as n tends to infinity. Hence, we will obtain a
reliable communication system at large blocklengths. Considering once more
the repetition example in (1.17), we can see that the more we repeat, Pe,n is
more likely to decrease but R decreases as well. Thus it seems that not all
rates are achievable. We define the achievable rates as follows:
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Definition 1.6 (Achievable R). R is achievable if there exists a sequence of
(Encn,Decn) such that Pe,n → 0, and Encn bases its encoding to a C(n,R)
code and Mn = d2nRe.

If R is achievable, there is a channel code, and an encoder-decoder pair such
that the average error probability shall be arbitrarily small at sufficiently large
blocklengths. It turns out that another fundamental quantity, called the chan-
nel capacity and denoted by C, plays an important role in the characterization
of achievable R. The channel capacity is defined as

C = sup
p(x)

I(X;Y ), (1.21)

where

I(X;Y ) :=
∑

x∈X ,y∈Y
p(x)p(y|x) log2

p(y|x)
p(y) = E

[
log2

p(Y |X)
p(Y )

]
(1.22)

is the mutual information between the random variables X and Y and p(y) :=∑
x∈X p(y|x)p(x) is the marginal distribution of the channel output Y . Now,

we are in position to state Shannon’s celebrated channel coding theorem.

Theorem 1.5. R is achievable if R < C and not achievable if R > C.

In the above theorem, to show that any R < C is achievable, Shannon
considers a random ensemble of (Enc,Dec) pairs of rate R − ε for an arbi-
trarily small ε > 0 and shows that at least one of them must drive Pe,n to
0, consequently approaching the channel capacity. Hence, as opposed to the
source coding theorem, there is no recipe to find the capacity-achieving codes
and this has been a long-lasting quest in both information and coding theories.
Moreover, a channel code shall have low encoding and decoding complexities to
be applicable to real-life communication systems. Polar codes, introduced by
Arıkan [8], are the first class of channel codes with low encoding and decoding
complexities that provably achieve the capacity.

Another important result regarding the channel capacity is that it remains
the same even if the encoder has access to all past channel outputs, i.e., has
perfect feedback. More specifically, when the encoder has access to Y1, . . . , Yn−1
prior to sending Xn. Still, this additional information is not useful according
to the our achievability definition in Definition 1.6.

Theorem 1.6. Feedback does not increase the capacity.

As a consequence of Theorems 1.5 and 1.6, we have answered question (ii):
Given a discrete-memoryless channel (DMC) p(y|x), one can reliably send at
most C bits per channel use. Of course, a finer analysis reveals much more than
Theorem 1.5. For instance, one can study the tradeoff between (R,Pe,n, n),
which gives tighter bounds for finite-length analyses [9]; or one can study the
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exponential rate of decrease E(R) such that lim infn→∞− 1
n

logPe,n ≥ E(R),
also called as the error exponent or the reliability function of the channel [2].

For the BEC, the channel capacity turns out to be C = 1 − ε, and if
perfect feedback is available, a simple transmission scheme attains the capacity:
Send a bit repeatedly until it is received without erasures. Note that in this
scheme, the bits are not coded and hence this scheme is reminiscent of packet-
based transmission schemes of today’s computer networks, e.g., TCP uses
acknowledgment messages (ACK) as a feedback mechanism to ensure that
a packet is reliably received at the destination. Furthermore, according to
this scheme, the expected time it takes to send a packet is 1

1−ε time units.
Consequently, if the source generates packets with a rate more than 1 − ε
packets per time unit, then this scheme will require an infinite memory — as
the rate of successful transmissions is less than the packet generation rate and
the packets that are not yet transmitted will have to be stored somewhere.
The transmitter then has no choice but to drop some of the packets in order
to operate at finite memory. Which packets to drop is a highly non-trivial
question and might depend on the application. For instance if the receiver
values fresh (recently generated) packets more, the sender may only attempt
to send the freshest packet, such as a last-come-first-served (LCFS) queue.
However, if some packets contain more important information than others,
the sender might opt to send these important classes of packets. One of the
main tasks in Part I will be to study the optimal method to choose packets
in a resemblant scheme. How to measure the freshness will be explained in
Part I. A machinery to assess importance, however, is one of the main topics
in information theory and we shall now review this topic in the next section.

1.4 Lossy Source Coding — Rate–Distortion
Theory

In Section 1.2, we found that a discrete memoryless source cannot be repre-
sented with less than H number of bits per unit time for long-term horizon.
However, we may not have enough storage to store this source. An example
could be an 1024 × 1024 image, with each pixel taking 256 values (8 bits, or
1 byte). If all existing 1024× 1024 images are sampled from a uniform distri-
bution, storing a single image would require 1 gigabyte (GB) — the entropy
would be equal to 1 GB/image. Hence the images are encoded with some loss,
e.g., JPEG compression, and then stored in our devices; thus allocating less
memory than it would without compression. For the image compression task,
the loss is usually adjusted such that the compressed image remains appealing
to the eye. This example highlights a possible tradeoff. If a source is to be
represented with R bits/symbol, where R < H, we should sacrifice some of
the information provided by the source for the sake of saving memory. The
sacrifice should be done such that the reconstructed version of the source obeys
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a fidelity criterion.
Let us describe the problem formally. As usual, we assume a discrete

i.i.d. source X1, . . . , Xn. Similar to the channel coding problem, we consider
a fixed-to-fixed length code. But this time, the mapping will be in the reverse
direction: The encoder Enc obeys the codebook to map n source symbols into
{1, . . . , 2nR}. In a dual manner, the decoder Dec maps from {1, . . . , 2nR} to Yn,
where Y is the reconstruction alphabet. Consequently we obtain Y1, . . . , Yn at
the decoder’s output. We would like the reconstruction to satisfy the following
fidelity criterion:

1
n
E[d(Xn, Y n)] ≤ D, (1.23)

where d(xn, yn) = ∑n
i=1 d(xi, yi) is an additive distortion metric and D is a

prescribed threshold. An example when X = Y could be d(x, y) = 1{x 6= y}.
In this case, the system will equally penalize any misrepresentation of x. If
both X and Y take real values — the setting can be extended to more general
alphabets — one can set for instance d(x, y) = (x− y)2.

All (R,D) pairs are very unlikely to be achieved, and indeed this is the
case. When R is low, the reconstruction would be subject to more distortion
and conversely, at high R the reconstruction would be close to an exact replica.
Similar to the channel coding case, we can define the achievable (R,D) pairs.

Definition 1.7. An (R,D) pair is achievable if there exists a sequence of
(Encn,Decn) such that the output of Encn and the input of Decn take d2nRe
possible values, and lim supn→∞ 1

n
E[d(Xn, Y n)] ≤ D.

Now, we can state the rate–distortion theorem:

Theorem 1.7. Define the rate–distortion function

R(D) = inf
p(y|x)

I(X;Y ) s.t. E[d(X, Y )] ≤ D. (1.24)

All pairs strictly above the R(D) curve are achievable, i.e., any (R,D) with
R > R(D), whereas the pairs underneath are not.

To give a concrete example, assume X = Y = {0, 1}, Pr(X = 1) = Pr(X =
0) = 0.5 and d(x, y) = 1{x 6= y}. It can be shown that

R(D) = 1− hb(D), 0 ≤ D ≤ 1/2 (1.25)

where hb(p) := p log2
1
p

+ (1 − p) log2
1

(1−p) is the binary entropy function.
The curve is depicted below in Figure 14. The red shaded region depicts all
achievable pairs whereas the unshaded region underneath is not achievable.

Another example could be when X = {0, 1}, Y = {0, 1, ?} and

d(x, y) =


0, x = y

1, y = ?
∞, x 6= y 6= ?

. (1.26)
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Figure 14 – The rate–distortion curve R(D) = 1− hb(D) for d(x, y) = 1{x 6=
y}.

Note the similarity between the BEC and the above metric as no bit flips are
allowed to attain a finite distortion value. For this metric, the R(D) curve can
be shown to be equal to R(D) = 1 − D, 0 ≤ D ≤ 1. A very simple coding
scheme can attain the R(D) curve: erase an input bit with probability D.

However, in general, similar to the channel coding theorem, there is no
explicit recipe to find lossy source codes that approach R(D). As we have
stated in the beginning of this section, lossy source coding is crucial in many
real-life applications such as image and speech processing. Therefore, there
is a plethora of work revolving around finding efficient methods to represent
and store signals. A famous example is the Lloyd–Max method (very similar
to the Expectation–Maximization algorithm) to convert a continuous random
variable into a discrete random variable with an aim to minimize the mean-
square distortion, i.e., d(x, y) = (x−y)2. Such conversion methods are usually
called quantization, and the devices that perform this conversion are called
quantizers. In the next section, we review some prior work on quantizers and
show that with simple methods one can closely approach the rate-distortion
curve at high rates. The results will provide insight for Part II of this thesis,
as the analysis carried out there will guide us to a very similar setting to the
rate–distortion theory, and a study of high-rate quantizers will be inevitable.

1.4.1 Scalar Quantization
In this section we are concerned about quantization of a single real-valued
random variable X, i.e., X takes values in R (the set of real numbers). We
will view a quantization procedure as a simple function:

Definition 1.8 (Simple function, [10]). A function on R that takes finitely
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many values is called a simple function. More precisely, let α1, . . . , αn be the
distinct values of a simple function f , then any such f is represented as

f(l) =
n∑
k=1

αk1{l ∈ Bk} (1.27)

where 1{l ∈ Bk} denotes the indicator function of Bk and B1, . . . , Bk ∈ B(R)
form a partition of R.

Then, for a simple function f , f(X) is the quantized version of X. Since f
takes a single random variable as its argument, we call it as a scalar quantizer.
An example scalar quantizer is given in Figure 15:

−8 −4 4 8

−6

−4

−2

2

4

6

x

f(x)

Figure 15 – An example of a scalar quantizer f(x), defined as in (1.28).

Usually quantizers are non-decreasing, i.e., higher valued inputs are mapped
to higher valued outputs. This makes sense, though it is not necessary. The
quantizer in the Figure 15 is

f(x) = −61{x < −6+ 1
2}+

5∑
k=−5

k1{x ∈ [k− 1
2 , k+ 1

2)}+61{x ≥ 6− 1
2}. (1.28)

Since simple functions take finite values, they have to be ‘clipped’ after some
threshold. However, we are usually allowed to take limits over the set of simple
functions, and consequently we can also work with infinite-valued quantizers
such as the following uniform quantizer:

fr(x) =
∞∑

k=−∞
2rk1{x ∈ [2rk − r, 2rk + r)}. (1.29)

We shall refer to the above quantizer as a uniform quantizer of radius r. It can
be shown that if r is sufficiently small, which implies R (bits/symbol) should be
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high, then one can approach the boundary of the rate–distortion curve under
mild conditions. We now assume that X is a continuous random variable,
i.e., its probability density function p(x) exists. For simplicity, we take the
mean-square distortion d(x, y) = (x − y)2 although the results below can be
generalized to a class of loss functions, e.g., |x− y|α. Under such assumptions,
there exist well-known lower and upper bounds to the rate–distortion function
given by

h(X)− 1
2 log(2πeD) ≤ R(D) ≤ 1

2 log((Var(X)/D)+), (1.30)

where
h(X) := −

∫
x∈R

p(x) log p(x)dx (1.31)

is the differential entropy of X. Under mild conditions, e.g., the one given
in [11], one can show that there exists a sequence of uniform quantizers fr
where r → 0, such that

lim
r→0

H(fr(X)) + log(2r) = h(X). (1.32)

For a uniform quantizer, the squared error is smaller than r2 for an interval,
i.e., D ≤ r2. Hence, the above equation implies that

H(fr(X)) / h(X)− 1
2 log(4D) (1.33)

and
H(fr(X)) / R(D)− 1

2 log πe
2 . (1.34)

Consequently, with lossless encoding of fr(X), as we have seen in Section 1.2,
one can approach the rate–distortion bound up to 1

2 log πe
2 ≈ 0.725 nats — note

that we have taken the natural logarithm in the definition of h(X) instead of
a base-2 logarithm, thus the information is quantified in natural digits (nats)
instead of bits. If one imposes additional conditions on the regularity of p(x),
the bound can be improved to 1

2 log πe
6 ≈ 0.176 nats [12]. In Part II, when

studying a tradeoff between the communication rate and the learning rate in
a distributed inference setup, the above statements will be useful to show that
we can approach the optimal tradeoff within a small gap.

The 0.176-nat gap turns out to be a weakness of scalar quantization pro-
cedures. If one allows simultaneous quantization of multiple symbols, the gap
can be improved. In the next section, shortly, we will discuss such procedures.

1.4.2 Vector Quantization
Vector quantization is the quantization of d symbols X1, . . . , Xd. Again, as in
the scalar quantization case, we view the quantization procedures as simple
functions, but this time they form a partition of Rd. An example of a vector
quantizer for d = 2 is given in Figure 16 where the quantization regions are
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x1

x2

Figure 16 – A vector quantizer example. The red circles represent the quanti-
zation values while the blue lines set the boundaries between the quantization
regions. Note that any (x1, x2) is quantized to the nearest red circle according
to the Euclidian distance. The regions formed as such are also called Voronoi
regions.

separated with lines and the quantized values of the constituent regions are
shown with red circles.

Recall the 0.176-nat gap in the scalar quantization case. This turns out
to be a result of the covering inefficiency of the 1-dimensional lattice. If, for
example, one covers the 2-dimensional space with hexagons, the gap decreases.
However, it is a very difficult task to find optimal shapes tuned to the specific
distortion function, and whose tesselation entirely covers the d-dimensional
space.

1.5 Hypothesis Testing
At first sight, hypothesis testing does not appear to be a main topic in infor-
mation theory regarding the communication problem perspective. However,
some main problems such as channel coding can be viewed as instances of
hypothesis tests. In this section, we elaborate on binary hypothesis testing.
The setting can be described as follows: Suppose we have observed a random
variable X — usually real-valued but can also take values in more general
spaces, e.g., a complete and separable metric space. We would like to learn
about the true state-of-nature based on our observation. To this end, we have
the following assumptions:

• Under the null hypothesis, denoted by H0, X comes from a distribution
P .

• Under the alternative hypothesis, denoted by H1, X comes from a dis-
tribution Q.
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We assume that eitherH0 orH1 is the true state-of-nature. In fact, the null and
alternative hypotheses help us to understand the true state of a phenomenon.
Some examples could be

(i) H0: a communication signal is not present, H1: a communication signal
is present,

(ii) H0: No risk of fire, H1: Fire risk, etc.

If we work with the example (i), a high value of X2 may hint to a signal
being present. According to our real-valued observation X, we would like to
partition the real axis into two sets: D0 and D1. If X falls into D0, we decide
H0 and vice versa. Consequently, two possible types of errors can arise:

• Type-I error (also called false positive, or false alarm): H1 is decided
when the true hypothesis is H0.

• Type-II error (also called false negative, or misdetection): H0 is decided
when the true hypothesis is H1.

Consequently, to assess the performance of an hypothesis test, there are two
natural criteria:

• Type-I error probability: α := P (X ∈ D1).

• Type-II error probability: β := Q(X ∈ D0).

It seems that there exists a tradeoff between α and β. Consider the extreme
cases. If H0 is always chosen, α = 0 and β = 1. Similarly, if H1 is always
decided, then α = 1 and β = 0. In fact, there is a tradeoff between α and
β; and the optimal tradeoff is given by the famous Neyman–Pearson lemma.
For mathematical convenience we assume that P is absolutely continuous with
respect to Q. That is, if Q(B) = 0, then P (B) = 0 for any B chosen from
the Borel set of R, denoted as B(R). This ensures the existence of the Radon–
Nikodym derivative dP

dQ
as a random variable such that

EP [1{B}] = EQ

[
dP

dQ
1{B}

]
, B ∈ B(R) (1.35)

and where EP [·] and EQ[·] denote the expectations taken under P and Q
respectively.

Theorem 1.8 (Neyman–Pearson). Let dP
dQ

be the Radon–Nikodym derivative
of P with respect to Q. Then the optimal tradeoff is achieved with decision
regions in the following form:

D0 =
{
dP

dQ
≥ η

}
, η ≥ 0. (1.36)

In statistics dP
dQ

is also called as the likelihood ratio, and (1.36) is called a
likelihood ratio test.
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Since the Neyman–Pearson lemma states that likelihood ratio tests are
optimal, we will confine ourselves to this class of tests in the sequel.

1.5.1 Error Exponents in Hypothesis Testing
Now suppose that instead of a single observation X, we have a collection of
i.i.d. observations X1, . . . , Xn. To highlight the dependency of the errors to
n, we denote the type-I and type-II errors as αn and βn, respectively. One
would expect the performance of the test to improve thanks to having more
observations, and both αn and βn tend to 0 as n → ∞. This turns out to be
true for likelihood ratio tests. However, one might want to study the speed
at which α and β tend to 0. Here, as we will do in the Part II of the thesis,
we shall adopt the view that H1 is a high-risk event, e.g. a possible fire risk,
and thus needs to be detected with very low error probability. In fact, we
want βn to decrease exponentially, i.e., βn ≈ exp(−θn), and we seek the best θ
possible while ensuring that αn vanishes. Aligned with such criteria, we define
an achievable θ below:

Definition 1.9. θ is achievable if there exists a sequence of hypothesis tests
such that limn→∞ αn = 0 and lim infn→∞ 1

n
log 1

βn
≥ θ.

The best possible θ turns out to be an information-theoretic quantity, called
the Kullback–Leibler (KL) divergence between P and Q:

D(P ||Q) := EP

[
log

(
dP

dQ

)]
≥ 0, (1.37)

where EP [·] denotes the expectation taken under P . The KL divergence can
be viewed as a measure of discrepancy between P and Q. As suggested above,
it is non-negative and furthermore it is equal to zero if and only if P is equal
to Q. Hence, one expects that if D(P ||Q) is high, better performance may be
achieved as it becomes easier to discern Q from P . This turns out to be true:

Theorem 1.9 (Stein’s Lemma). sup{θ : θ achievable} = D(P ||Q).

The above theorem implies that if a statistician wants βn to decrease with
an exponent θ, the best possible θ is D(P ||Q). Hence, it is an ultimate limit
on the type-II error exponent. One can also aim to drive both αn and βn
to 0 exponentially fast. This is also possible and the best error exponent
tradeoffs are characterized by entities called Chernoff information. For details,
the reader can refer to [1], [4], and to [13] for Chernoff’s original work.

The KL divergence can also be written in its dual form, known as the
Donsker–Varadhan representation. Although this variational representation
can be derived from duality, it also has connections with hypothesis testing.
A special case concerned with the real space can be stated as follows:
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Theorem 1.10. [Donsker–Varadhan Representation] Let P and Q be distri-
butions on R and assume that P is absolutely continuous with respect to Q.
Then for all bounded and measurable f ,

D(P ||Q) ≥ EP [f ]− log
(
EQ[ef ]

)
, (1.38)

and the equality is attained when f = log dP
dQ

(and if not bounded, by taking a
limit), i.e., when f is the log-likelihood ratio.

Proof of Theorem 1.10. Let X1, . . . , Xn be the i.i.d. observations we possess.
We design the following hypothesis test:

D0 =
{

1
n

n∑
i=1

f(Xi) ≥ EP [f(X)]− ε
}

(1.39)

where f is measurable and bounded and ε > 0. Then, the type-I error

αn = P

(
1
n

n∑
i=1

f(Xi) < EP [f(X)]− ε
)
→ 0 (1.40)

by the law of large numbers. To find a lower bound to the type-II error
exponent, we upper bound βn using Markov inequality as

βn = Q

(
1
n

n∑
i=1

f(Xi) ≥ EP [f(X)]− ε
)

(1.41)

≤ EQ[exp(∑n
i=1 f(Xi))]

exp(n(EP [f(X)]− ε)) (1.42)

= exp(−n(EP [f(X)]− ε− log(EQ[ef(X)]))). (1.43)

Hence, lim infn→∞− 1
n

log 1
βn
≥ EP [f(X)] − ε − logEQ[ef(X)]. Stein’s lemma

(1.9) tells that

D(P ||Q) ≥ lim inf
n→∞

− 1
n

log 1
βn

≥ EP [f(X)]− ε− logEQ[ef(X)].
(1.44)

Finally, if one substitutes f = dP
dQ

(and if not bounded, takes a limit), it is not
difficult to see that the equality holds.

In light of the above results, one expects that if any test statistic other than
the likelihood ratio is used, the type-II error exponent is likely to decrease.
This is indeed observed in many schemes where the likelihood ratios need
to be digitally represented, i.e., need to be quantized, or if a remote node
has to compress the likelihood ratios to a prescribed rate, say R bits per
symbol. In Part II of this thesis, we will study a communication-constrained
hypothesis testing scheme where remote nodes send quantized versions of the
likelihood ratios. With similar definitions and techniques used in this section,
we will attempt to find the best achievable type-II error exponent subject to
an asymmetric communication constraint.
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1.6 Conclusion — Towards Application-Oriented
Communication

Hopefully, the reader is introduced to (or reminded of) some of the main
problems in information theory and now carries a toolbox of information-
theoretic methods. As we have mentioned multiple times, the information
theory toolbox will be of help when studying the problems encountered in this
thesis, especially in Part II. Although we have tried to give a brief overview
of the main topics in information theory, the reader should keep in mind that
this is only a partial introduction and does not capture the whole beauty of
information theory.

We end this section with a brief discussion on application oriented commu-
nication, also called semantic communication. Recall that in Section 1.1, we
have described the communication problem in Shannon’s own words. Those
words are followed by

...Frequently the messages have meaning; that is they refer to or are cor-
related according to some system with certain physical or conceptual entities.
These semantic aspects of communication are irrelevant to the engineering
problem.

One may therefore guess that the early information-theoretic works omit-
ted the application for which the communication system is designed. However,
for different tasks, different schemes and even different capacity notions are
needed. A good example is in control theory, where an unstable stochastic
process is to be tracked with finite error at all times. The classical notion
of capacity is unfortunately not suitable for this task — recall that a rate R
was achievable as long as the probability of error vanishes. Yet, even though
the block errors are very rare, they eventually accumulate and result in an
unbounded error for the task of tracking the unstable process. Thus, a suit-
able definition for what is achievable was needed and consequently anytime
capacity was introduced [14]. Another example can be found in the context
of timely communication. For timely communication tasks, channel delay is
a widely used metric to assess the performance and many works have sought
to minimize the channel delay. Although this is a perfectly reasonable engi-
neering approach, ensuring a low channel delay is not equivalent to keeping
the receiver as fresh as possible. For many tasks, the receiver may prefer to
receive the freshest data possible, instead of other data that it has not received
yet. For such scenarios, thus, a new metric was needed: Age of Information,
which we will study shortly in Part I.
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1.7 Outline of the Thesis and Main
Contributions

This thesis is composed of two parts: Part I, Age–Distortion Tradeoffs
and Part II, Strategies for Distributed Inference. In Part I, we study
the tradeoff between the freshness and importance of data; where the freshness
is quantified with age of information and the importance is quantified with a
distortion metric reminiscent of that in the rate–distortion theory. Part II
includes two studies on distributed inference; the first one featuring a central-
ized hierarchy and the second one featuring a fully-decentralized scheme. A
more detailed outline is as follows:

1.7.1 Part I: Age–Distortion Tradeoffs
Age of Information (AoI) is a receiver-centric metric to assess the freshness of
data. The fundamental entity in many AoI problems is the instantaneous age

∆t = t−Rt, (1.45)

where Rt is the timestamp of the freshest data that the receiver possesses.
Normally ∆t is a stochastic entity as the data arrives to the receiver at random
times. Therefore, we will take the expectation of the long-term average of ∆t,

∆ = E
[

lim sup
t→∞

1
t

t∑
τ=1

∆τ

]
, (1.46)

and call it the average age. In both main chapters of Part I, namely Chap-
ters 3 and 4, we study schemes where the data arrival rate is greater than
the allowed output rate. Therefore pieces of the data have to be dropped in
order to control the output rate. However, all data might not have the same
importance. Consequently, the system is penalized for dropping important
pieces of data and the distortion metric we propose will be equivalent to

D = E

[
lim sup
t→∞

1
t

t∑
τ=1

v(τ)1{τ th packet is not sent}
]
, (1.47)

where v(t) is the importance value of the tth packet and takes values in a finite
set V . If the maximum allowed output rate of the system is

R = E
[

lim sup
t→∞

1
t
{# of packets sent until t}

]
, (1.48)

one might want to study the attainable (∆, D,R) tuples, and this is indeed
what we will do in Chapters 3 and 4. Since it could be of formidable com-
plexity to study all three parameters at once, we study the (∆, D) tradeoff in
Chapter 3 and the (R,∆) tradeoff in Chapter 4.
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Chapter 3: Optimal Policies for Age and Distortion

We consider a discrete-time model where a device (the sender) observes
packets at each time instant t = 1, 2, . . . and stores them in its memory. The
sender is only allowed to speak at certain times determined by an external
scheduler — this restriction fixes the output rate R and leaves us with the
study of the (∆, D) pairs. At a speaking time, the sender is allowed to send a
single packet from its memory, and the order of the packets shall be preserved.
The main results regarding the packet-based strategies described above are as
follows:

• We show that among a broad class of strategies (square-integrable), the
optimal (∆, D) tradeoff is attained within finite memory, and we char-
acterize the necessary and sufficient buffer size K∗(v,R, η), where η is a
weight parameter.

• We devise an efficient policy iteration algorithm that relies on appro-
priate data structures and problem-specific simplifications. The modi-
fied algorithm has O(N logN) time complexity instead of O(N3), where
N = |V|K is the number of possible configurations based on packet im-
portance values in a size-K buffer.

• The optimal policies of the current formulation are also optimal for a
problem where packets are subject to erasures and perfect feedback is
available.

Later, we allow coding across packets and show that the uncoded strategies
can be significantly improved with coding. To this end, we study a simple class
of strategies called buffer ignorant where the sender bases its decisions on the
buffer length, and not on the content. We improve the performance of the
buffer ignorant strategies with a variable-to-fixed coding scheme, i.e., Tunstall
coding.

Chapter 4: Age-Optimal Causal Labeling of Memoryless Processes

In Chapter 4, we will study a similar scheme to that in Chapter 3 except
that equally important packets arrive intermittently and the arrival process is
memoryless. Note that such restriction eliminates D from our formulation
and lets us study the (R,∆) tradeoff. We do not require the packets to arrive
in-order, yet it turns out that optimal strategies will preserve the order. Fur-
thermore, a packet can be stored in the buffer indefinitely and can be discarded
or forwarded at any time. The main results of this chapter are as follows:

• Although the class of admissible strategies is broad according to the
aforementioned formulation, we show that the optimal strategies turn
out to be simple and described as ‘wait T , label next’.
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• The discrete-time setting can be extended to its continuous-time ver-
sion where packets arrive as a Poisson process, and ‘wait T , label next’
strategies remain optimal.

1.7.2 Part II: Strategies for Distributed Inference
In Part II, we study two different instances of distributed hypothesis testing.
In the first problem, studied in Chapter 7, peripheral nodes send their ob-
servation to a fusion center which makes the ultimate decision. In the second
problem, studied in Chapter 9, we consider a fully-flat architecture where
each node communicates with its neighbors via random selections.

Chapter 7: A Fundamental Limit of Distributed Hypothesis Testing
under Memoryless Quantization

We study a scheme where m peripheral nodes make observations and send
information to a fusion center at each time instant t. In practice, the nodes
may not have sophisticated hardware or sufficient memory, thus we assume
that the information sent at time t only depends on the observation made at
time t. Furthermore, the expected number of bits sent by node i can be at most
Rt. The fusion center aims to detect a high-risk event, which is associated with
the alternative hypothesis (H1) of a binary hypothesis testing problem. Hence,
we aim to find the best possible type-II error exponent θ∗(R1, . . . , Rm). First,
for the single-node case

• we characterize θ∗(R1),

• we obtain an upper bound to θ∗(R1) via rate–distortion methods and
consequently characterize an unachievable region,

• we show that with simple lattice-quantization, the upper bound can be
approached within 1

2 log2(πe2 ) ≈ 1.047 bits, and

• we provide the upper bound θk(kR1) for the k-dimensional vector quan-
tization case.

Then, we extend the single-node results to characterize θ∗(R1, . . . , Rm) when
data is independent across the nodes. If there is a sum-rate constraint, i.e.,

m∑
i=1

Ri ≤ R, (1.49)

we show that an upper bound can be obtained via a waterfilling solution.
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Chapter 8: Social Learning under Randomized Collaborations

In Chapter 8, we study a network of nodes/agents where each agent com-
municates with its neighbors. The agents collaboratively seek to find the true
state-of-nature (θ◦) by sending their beliefs over the possible states. We will
formulate the problem as a m-ary hypothesis testing problem in a Bayesian
framework. Because of the decentralized nature of the setup, however, fully
Bayesian updates are intractable. Hence, we will consider locally-Bayesian up-
dates at each agent — this approach is also called social learning as initial
works on locally-Bayesian updates studied opinion formations in social net-
works. We will study a sparser and randomized social learning scheme where
agents randomly poll a single neighbor for information exchange. The main
results of this chapter are as follows:

• We show that all agents learn the truth, i.e., the true hypothesis θ◦,
eventually and at the same asymptotic learning rate compared to the
baseline algorithm.

• Under a special case where agents replace their beliefs with a randomly
chosen neighbors’, we characterize the large deviation estimates which
only depend on the marginal distributions at agents.
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Introduction to Age of
Information 2
2.1 The Timely Communication Problem

Timeliness is a necessity for many modern communication systems. With
emerging Internet-of-Things (IoT) applications and Machine-to-Machine (M2M)
communication, stale data have highly undesirable effects; think, for example,
of sensor output for autonomous vehicles (this particular example will also
be elaborated on Part II), position of an airplane, coolant temperature in a
power plant, etc. Therefore, it is crucial to ensure that the destination is kept
aware of the status changes as soon as possible in such communication sys-
tems — imagine what would happen if data containing an alarming status is
backlogged in the network.

Recall Shannon’s ‘non-semantic’ communication problem, where the com-
munication system to be designed is application-independent. Clearly, such
formulation does not capture the timeliness aspect of a communication system
— the channel capacity being approached at very large blocklengths is a good
example that the timeliness is not taken into account since the message is de-
livered to the destination very late. Consequently, one might need to consider
other metrics than the block error probability, and even new channel models
that ‘distort’ time for an appropriate formulation of a timely communication
problem. This is the point where queueing-theory comes into play: The data
input to a channel is received at the destination with some random delay. In
the next section, we will explore a simple queueing model that captures the
timeliness aspect of communication and we will emphasize the necessity of
an appropriate metric to assess the timeliness or freshness. This metric will
turn out to be the age of information (AoI), introduced by Kaul, Yates, and
Grueteser [15].

29
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2.2 Age of Information: Moving from Delay to
Freshness

As a first attempt to formulate a timely communication problem, let us con-
sider a simple first-in-first-out (FIFO) queue; where packets arrive according
to a random arrival process, i.e., a point process. Once a packet arrives to the
queue, (i) if the queue is empty, it is served. The service time is a random
variable, and we assume that the service times are independent and identically
distributed for each packet. If (ii) the queue is not empty, the recently arrived
packet will wait until all previous packets are served. In the parlance of queue-
ing theory, such queues are called G/G/1 queues. The first entry denotes the
‘general’ arrival process of the packets, the second entry denotes the ‘general’
service time, and the third entry indicates the number of servers in the queue,
i.e., there is only one server. Note that in this scheme a packet will see (i)
a service delay due to the random service time and (ii) a queueing delay due
to packets present in the queue. Hence, as we desired, the queueing-theoretic
models capture the ‘distortion’ of time and could be suitable candidates for
an appropriate timely communication model.

Usually analyses of G/G/1 queues are difficult and do not yield closed-form
solutions. Therefore, we consider a widely used subset of single-server queues,
namelyM/M/1 queues. HereM denotes the memorylessness property of both
the arrival process and the service time. A random variable S is memoryless
if

Pr(S ≥ s+ t|S ≥ s) = Pr(S ≥ t), ∀t ≥ 0. (2.1)

In words, if S represents an occurence time of an event, the fact that ‘this event
has not occurred yet’ does not provide additional information about the future
occurence time; hence the random variable S does not have any memory. If S
is a continuous random variable, it can be shown that (by taking logarithms of
both sides and solving a functional equation) S has an exponential distribution,
i.e.,

Pr(S ≥ t) = e−λt, ∀t ≥ 0 (2.2)

for some λ > 0, and denoted as E(λ). As one may guess, if S is a discrete
random variable taking values in {1, 2, . . .}, S can only have a Geometric
distribution, i.e.,

Pr(S > t) = pt, t ∈ {1, 2, . . .} (2.3)

where p is called the failure probability, or the parameter of S. Such a distribu-
tion is denoted as Geom(p), which we will use extensively in the forthcoming
chapters.

If one considers the continuous-time communication model, an M/M/1
queue model has the property that both (i) interarrival times of packets and
(ii) service times are exponentially distributed. As a consequence, the packet
arrival process is a Poisson process. In a discrete-time model, the exponen-
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tial distributions are replaced with geometric distributions — also denoted as
Geo/Geo/· queues.

Let us continue our exploration with an M/M/1 queue. Let the rate of the
arrival Poisson process be λ, i.e., the interarrival times have E(λ) distribution,
and let the service rate be µ, i.e., the service times have E(µ) distribution.
Furthermore, denote the time elapsed between packet i − 1 and packet i (ith
interarrival time) as Zi and denote the service time of packet i as Si. As we
mentioned before, there are two sources of delay: (i) the service delay and
(ii) the queueing delay. Obviously, the service delay for packet i is Si. The
queueing delay, denoted as Di, is a more complex entity and can be found by
the following recursive equation [16]:

Di = (Di−1 + Si−1 − Zi)+ := max{Di−1 + Si−1 − Zi, 0}, i > 1 (2.4)

and D1 = 0. The above relation suggests that unless E[S] < E[Z], or equiv-
alently µ > λ, Di tends to infinity with probability one. Also, the queue will
be unbounded. Suppose as a system designer, we have control over the packet
arrival rate λ. A possible metric we consider could be the service (or channel)
delay. By the law of large numbers, the long-term average of the service delays

1
n

n∑
i=1

Si →
1
µ

(2.5)

almost surely, which we do not have any control over. Another possible met-
ric we can consider could be the long-term average of the queueing delays.
Equation (2.4) suggests that Di’s are correlated, hence we need another tool
than the law of large numbers. Luckily, Little’s law [16] comes to help. An
application of Little’s law will yield

1
n

n∑
i=1

(Di + Si)→
1

µ− λ
(2.6)

and therefore,
1
n

n∑
i=1

Di →
1

µ− λ
− 1
µ

= λ

µ(µ− λ) . (2.7)

We have control over the above quantity. To minimize the long-term average
delay, one sets a very small λ. One might notice that such choice of λ is not a
smart one. A very small λ tells that there is almost no packet arrival and hence
almost no communication takes place. It seems that a sight from individual
packets’ perspectives does not guide us towards a meaningful performance
assessment. We have to change our perspective to the receiver side.

Assume that the receiver values fresh packets more than the stale ones.
This implies that if at time t, the receiver obtains a packet generated at time
s < t, its penalty might be a non-increasing function of s. I.e., the receiver
penalizes the delay as in (2.7). Furthermore, the receiver may also want to
penalize the packet interarrival times, as longer interarrival times keep the
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receiver less updated. Note that this second penalty is not taken into account
in (2.7), and will guide us towards a meaningful entity. For now, we will
give an informal definition of this entity. The detailed definitions suitable for
our system model will be given in Chapter 3. Suppose the packets contain
timestamps, i.e., their arrival times to the sender. Let Rt be the timestamp
of the most recent packet that the receiver possesses. Assume R0 = 0. Now
consider the following process:

∆t = t−Rt. (2.8)

For simplicity, define the total waiting time

Wi := Di + Si. (2.9)

If we plot the evolution of (2.8), we will obtain a sawtooth-like graph as follows:

t

∆
t

Z1 Z2 Z3 Z4

W1 W2

W3 W4

Figure 21 – An example evolution of ∆t. The packet interarrival times Zi’s
and waiting times Wi’s are indicated.

∆t is called the instantaneous age of information (AoI). Since it is a random
entity, one can study its moments, e.g., E[∆t], E[∆2

t ], or their long term
behaviors, e.g., lim supt→∞E[∆t], lim supt→∞E[∆2

t ], e.g., [17]. Furthermore,

• Average Peak AoI: ∆P := lim supn→∞ 1
n

∑n
i=1E[Zi +Wi]

• Average AoI: ∆ := lim supn→∞ 1
t

∫ t
0 E[∆τ ]dτ

are well-studied metrics as well. In Chapters 3 and 4, we will optimize a
metric similar to the average AoI, which we will also denote as ∆.

We end this section with an important observation. First of all, theM/M/1
model is ergodic, hence time averages converge. More precisely,

lim
t→∞

1
t

∫ t

0
∆τdτ (2.10)
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exists with unit probability, and is equal to ∆; which turns out to be [15]

∆ = 1
µ

(
1 + 1

ρ
+ ρ2

1− ρ

)
, (2.11)

where ρ := λ
µ
< 1 is called the utilization rate. Hence, as we discussed in this

section, if the system designer has control over the packet generation rate λ
(or equivalently over ρ), the average age is minimized at ρ ≈ 0.53. Note that
this result tells that the age is not minimized when (i) λ → 0, as opposed to
minimizing the average queueing delay (2.7) or when (ii) λ → µ, as opposed
to maximizing the throughput. It penalizes both the interarrival times and
the latency.

2.3 Related Work
As previously mentioned, freshness of data is recently recognized as a semantic
aspect of communication. Initial work by Kaul et al. introduced the AoI as a
metric to quantify this aspect [15,18,19]. Following Kaul et al., there have been
many studies adopting AoI as a freshness metric. The first strand involved
calculation of AoI in simple schemes, e.g. M/M/1 queues [15]. Subsequent
extensions involve more general queues [20–24], multiple source streams [25–
30], various queue management techniques such as the Last-Come-First-Served
(LCFS) protocol [31], and models that allow packet discards [17, 32–35] and
deadlines [36]. A partial list of studies that seek to compute or to minimize
the age under energy or link constraints is [37–52]; and some studies on timely
lossless source coding are [53–55]. For a comprehensive survey over the AoI
literature, see [56]; and for a tutorial, see [57].

Although the works cited above mostly assume error-free transmissions,
some others take into account that packets get lost or erased while passing
through the network. In [58], the AoI is studied in a model where transmissions
are error-prone. One may notice that a simple method to combat erasures is
to send the packet repeatedly — recall the simple feedback example scheme
mentioned in Chapter 1. A more complicated method could send coded
packets, which are then to be conveyed through the erasure channel. A list of
works concerning coded transmissions with feedback is [59–66]. An example
of a study assuming no feedback is [67], where the authors find the optimal
coding strategy. In Section 3.5, we will discuss that the optimal strategy for
our discrete-time model is also optimal for a model where communications
take place over an erasure channel with feedback.

AoI has also found place in stochastic control literature. For instance, in
[68], a tradeoff between the information staleness and performance of a Linear
Quadratic Regulator (LQR) is illustrated. In [69], freshness is taken as basis for
an algorithm devised for distributed tracking of a linear system. These works
are aligned in the sense that using the fresh data to track and control a system
might improve the performance. This is because of the Markovian nature of the
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processes that are tracked — the next state depends only on the freshest data.
However, this may not always be the case as the freshest may not be the most
important. This observation is in line with some further studies. For instance
in [70], a problem of generating timely updates in a remote estimation setting
has been proposed. The authors have investigated the Mean-square-optimal
and AoI-optimal strategies for the estimation of a Wiener process through
a queue and concluded that they are different; consequently demonstrating a
tradeoff between freshness and importance. In [71], the authors generalized the
settings to include an Ornstein–Uhlenbeck process. In [49], a tradeoff between
timeliness and distortion is shown for the case of estimation through a Gaussian
channel in a power constrained setting. There also has been several works
on integrating the notion of different data importance and timeliness, e.g.,
by introducing non-linear cost to stale data [72, 73], by considering separate
data streams of different priorities [74, 75], or by modeling the distortion as a
decreasing function of the service time [76].

We will see in Chapter 3 that our setup contains flavors from the above
approaches, yet it features novel aspects. For instance, the resource constraint
is imposed by an external scheduler, giving the sender turns to speak. Hence,
as opposed to the works [70, 71], the sender cannot decide when to send; but
it rather decides what to send (In Chapter 4, we will also study a problem in
an attempt to answer both questions simultaneously). Furthermore, we adopt
the view that data is formed into packets of different importance levels, e.g.,
packets containing abnormal levels of coolant temperature in a nuclear plant
could be classified as important. Consequently, the distortion metric we pro-
pose depends on whether the packets are received or not, and the accumulated
importance levels of the missed data constitutes our distortion metric.



Optimal Policies for Age
and Distortion1 3
3.1 Motivation – Are All Packets of Same

Importance?
Consider the following scenario, where data from multiple sources are streamed
and multiplexed at a device:

Src1

Src2

Device

Rout < R1 +R2R1

R2

Figure 31 – A scenario where the device is throttled. Source i (Srci) streams
packets at rate Ri, i ∈ {1, 2}. The output rate Rout < R1 + R2, hence the
device should drop some packets. Rout is controlled by an external scheduler
which assigns time slots for the device to forward packets.

Further assume that the output rate is constrained such that not all packets
can be forwarded through the bottleneck. Consequently, some of the packets
have to be dropped. Suppose the device is assigned time slots to speak by
an external scheduler, which we will refer as speaking times. Between the
speaking times, the device collects packets in the buffer, and at a speaking
time it is allowed to send one packet from its buffer. This way, the output rate
is kept under control. If both sources contain almost identical information, the
device could discard the stale packets. However, if Source 2 streams valuable

1The content of this chapter is based on [77,78].
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information, such as our previous example of coolant temperature in a nuclear
plant, then the device might choose to send these important packets from
Source 2, as illustrated in the figure below.

Src1

Src2

Device

Rout < R1 +R2R1

R2

S6 S5 S4 S3

forward

S2 S1

drop

Figure 32 – Same scenario as in Figure 31 depicted at a speaking time. The
timestamps of the previously arrived packets are denoted as Si (not to be
confused with service times of the previous section) with Si ≤ Si+1. At this
speaking time, the device chooses to send the packet from Source 1 with cor-
responding timestamp S4.

In Figure 32, the device did not forward the freshest packet with timestamp
S6 but rather chose the packet with timestamp S4, generated by Source 2.
One may ask what could be the best strategy that the device can execute.
Moving towards our problem definition, we will make a simplification to the
above model. We will consider a single source by merging the different source
streams.

Src

Device (Sender)

Rout < Rin

S6 S5 S4 S3 S2 S1

Figure 33 – The single-source model subject to the studies in this chapter.

Note that the device is renamed as ‘Sender’ in the figure above. This is
to prepare for our main problem definition, which we will provide in the next
section. At this point, it may be useful to make an important remark. In our
example, there were two sources, and the second source streamed more valuable
packets. What if there were more than two sources? How would we assign
importances to multiple streams? To this end, as we mentioned in Chapter
1, we will assign fidelity criteria to strategies, according to which the unsent
packets will incur some penalty. Naturally, we will assign higher penalties to
the packets of higher importances. In the end, the long-term average of the
penalties incurred by the unsent packets will constitute our fidelity criterion.
Now, we can continue with the rigorous problem definition. But first, it may
be beneficial to clarify some notation that we will use in the sequel.
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3.2 Notation
Random variables are denoted with uppercase letters (e.g., X); and vectors
are denoted with boldface letters (e.g., b). Sets are denoted with script-style
letters (e.g., V). l(b) is the length of a vector b, and bi is its ith element. For
vectors b and b′, b‖b′ := [b1, b2, . . . , b

′
1, b
′
2, . . .] is the concatenation of the two

vectors. b≥i := [bi, . . . , bl] is segment of b from its ith element until the end;
and bji := [bi, . . . , bj] is the segment between its ith and jth elements, bi := bi1 .
b′ is a suffix of b if there exists an i > 1 such that b′ = b≥i. If b′ = b≥i is suffix
of b, then b\b′ = bi−1. For a, b ∈ R, a∧b := min{a, b}, and a∨b := max{a, b}.

3.3 Problem Definition
In this section, we provide a detailed description of our discrete-time model in
terms of the data to be conveyed, the sender-receiver pair with their respective
communication protocol, and the channel in between.

Similar to our previous explorations of Section 2.2 and 3.1, we assume that
the data is formed into packets, and at each time instant t, a new packet arrives
to the sender. The packet payloads originate from a set of finite elements X ,
and the probability of a payload taking a particular value is time-invariant
and independent of the past. Consequently, the data is an independent and
identically distributed (i.i.d.) process {Xt}t∈N. The sender observes Xt at time
t and keeps Xt in its buffer.

The communication protocol is as follows: The sender is allowed to speak
at times T1, T2, . . .. The process {Ti}i∈N is independent of the process {Xt}t∈N,
and has the property that the interspeaking times Zi := Ti − Ti−1 are i.i.d..
Moreover, we assume that Zi’s are strictly positive and square integrable, i.e.,
Pr(Zi > 0) = 1 and E[Z2

i ] ≤ ∞. An example of such a random variable could
be a geometric random variable with Pr(Zi = t) = p(1− p)t−1 for t ≥ 1. The
speaking process {Ti}i∈N is inspired by link layer multiple access protocols
where the sender is assigned time slots to speak by an external controller.
When the sender is given a turn to speak, i.e., at each Ti, it selects a packet from
its buffer with timestamp Si ≤ Ti and forwards XSi . Once XSi is forwarded,
we restrict the sender to not send a packet with timestamp less than Si at the
subsequent speaking times Ti+1, Ti+2, . . .. Note that such restriction results
in Si < Si+1, and preserves the order of the packets — which is desirable if
the receiver has small or no buffer. The increasing sequence {Si}i≥0 =: S is
henceforth referred as the ‘selection process’.

Transmissions between the sender and the receiver are noiseless and zero-
delay. Hence, by time t, the receiver has observedXSi for every i such that Ti <
t. We also suppose that the packets are formed to contain their timestamps in
the header, i.e., the packet containing XSi also contains the information that
it was generated at time Si in its header. Consequently, at time t, the receiver
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is able to reconstruct the data as Yj(t) = Xj if Xj is among its observation up
to time t; otherwise it sets Yj(t) = ?, i.e., represents with an erasure symbol.

At this point, we have described our model. Now, we introduce the ap-
propriate distortion (or fidelity criterion) and freshness metrics to study their
tradeoff. Specifically, given d : X × X ∪ {?} → R≥0, with

d(x, x) = 0 and d(x, ?) =: v(x), (3.1)

and given a selection procedure S, define

D
(S)
t := 1

t

t∑
i=1

d(Xi, Yi(t)) and D(S) := E

[
lim sup
t→∞

D
(S)
t

]
. (3.2)

With an analogy to rate-distortion theory, observe that D(S)
t quantifies average

distortion between the source and its reconstruction. Similar to what we have
described in Section 1.4 , D(S) is the expected long-term average distortion.

Timeliness of information will be assessed using a metric similar to the av-
erage age ∆ introduced in the previous chapter. Namely, with i(t) := sup{i ≥
0 : Ti < t}, T0 = S0 = 0; define for all t > 0,

∆(S)
t := t− Si(t), and ∆(S) := E

[
lim sup
t→∞

1
t

t∑
τ=1

∆(S)
τ

]
. (3.3)

As mentioned before, ∆(S)
t is usually referred as the instantaneous age; and

similar to D(S), ∆(S) is the expectation of the long-term average age.
Note that Yi(t) can be either equal to Xi or to ‘?’. Therefore, specifying

d(x, x) and d(x, ?) — which is readily determined by v(x) — is sufficient to
evaluateD(S). As a consequence, the sender may base its selection Si on V Ti :=
[V1, . . . , VTi ], where Vt := v(Xt). Therefore, the selection Si is a mapping from
VTi to {Si−1+1, . . . , Ti} with V := {v(x) : x ∈ X}. Intuitively, Vi represents an
importance score for the packet i; high Vi is interpreted as the content having
high importance and not sending it incurs a high penalty — this interpretation
is also consistent with a model where some arrivals are prioritized. Observe
that the structure of the problem stays the same if all elements of V are
multiplied by a positive constant. If V does not contain 0, then without loss
of generality one can assume that the minimum element in V is 1 and it is an
ordered set as 1 = v1 < v2 < . . . < v|V| := vmax <∞; otherwise v1 = 0.

Now that we have the full description of the setting, we aim to characterize
the achievable region of (∆(S), D(S)) pairs. We attempt to characterize this
region in the sequel and conclude this section with a few remarks.

(i) The model we propose is reminiscent of a remote estimation problem of
a discrete-time stochastic process through a discrete-time queue. How-
ever, we require that the sender sends a packet exactly at speaking times,
which is equivalent to force the sender to send as soon as the queue is idle
in a discrete-time queueing setting. In [79] and [70], it is shown that the
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optimal policies need not be of this type. This makes our problem dif-
ferent and allows us to make the relaxation that Si need not be stopping
times (with respect to the natural filtration of the process {Xi}i∈N).

(ii) If 0 ∈ V , there are multiple interpretations. Vt = 0 can be interpreted
as either the data is totally trivial (need not be reconstructed), or inter-
preted as the source having not generated data at time t. The second
interpretation allows us to model a source which generates data sporad-
ically. Now there is the question of allowing Xt to be sent or not. Our
model allows sending of Xt, i.e., in the second interpretation, informs
the receiver that there has not been any data generated by the source,
and ∆t decreases accordingly. The reduction of ∆t can be avoided by
appropriate reformulation — to be discussed in Remark 3.1.

3.4 The Age-Distortion Tradeoff
3.4.1 Markov Decision Problem Formulation as a Lower

Bound
To study the age-distortion tradeoff, we study the family of weighted costs
η∆(S) + D(S) for η > 0. It is known that, e.g., [80], the boundary of the
achievable (∆(S), D(S)) region can be characterized by studying this family.
We seek to obtain a tractable lower bound for η∆(S) + D(S), and then we
further optimize this lower bound by choosing the best S. First, we derive a
simpler expression for ∆(S). Observe that

lim sup
t→∞

1
t

t∑
τ=1

∆(S)
τ = lim sup

i→∞

∑i
j=1Q

(S)
j∑i

j=1 Zj
(3.4)

where
Q

(S)
j := (Tj − Sj)Zj+1 + Zj+1(Zj+1 + 1)

2 . (3.5)

Since lim
i→∞

1
i

∑i
j=1

Zj+1(Zj+1+1)
2 = 1

2E[Z1(Z1 + 1)] =: νZ and limi→∞
1
i

∑i
j=1 Zj =

E[Z1] =: µZ with probability 1 by the law of large numbers, we obtain

∆(S) = E

[
1
µZ

lim sup
i→∞

1
i

i∑
j=1

(Tj − Sj)Zj+1 + νZ
µZ

]
. (3.6)

Note that ∆(S) cannot be smaller than νZ/µZ . We subtract νZ/µZ to obtain
the excess age, given by

∆(S)
e := E

[
1
µZ

lim sup
i→∞

1
i

i∑
j=1

(Tj − Sj)Zj+1

]
(3.7)

and determine the feasible (∆(S)
e , D(S)) pairs. With the same reasoning as

above, we study the family η∆(S)
e +D(S). When the selection process S satisfies
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a certain square-integrability condition given in the theorem below, we can find
alternative expressions for ∆(S)

e and D(S).

Theorem 3.1. Let S2 be the set of selection processes S with supiE[(Ti −
Si)2] <∞. Then for any S ∈ S2,

∆(S)
e = E

[
lim sup
i→∞

1
i

i∑
j=1

(Tj − Sj)
]
, (3.8)

D(S) = 1
µZ
E

[
lim sup
i→∞

1
i

i∑
j=1

D(V Tj , Sj−1, Sj)
]
, (3.9)

where

D(V Tj , Sj−1, Sj) :=
Sj−1∑

j′=Sj−1+1
Vj′ (3.10)

is the penalty incurred by skipping the portion [VSj−1+1, . . . , VSj−1] of V Tj .

Proof. See Appendix 3.8.1.

At this point, we would like to eliminate some of the non-optimal selection
processes. More specifically, we show that if a packet with importance value
vmin and with timestamp less than Ti is selected at time Ti, then one can find
another selection process which performs at least as well.

Lemma 3.1. Consider a selection process S with Si0 < Ti0 and VSi0 = vmin

for some i0. Then one can find another process S̃ with VS̃i0 > vmin and such
that ∆(S̃)

e ≤ ∆(S)
e and D(S̃) ≤ D(S).

Proof. See Appendix 3.8.2.

Lemma 3.1 helps restrict the search space for possibly optimal selection
processes. The processes we study in the sequel will not select a minimum-
importance packet if it has not arrived exactly at the speaking time. Let us
denote the class of such selection processes as S ′2.

A search for an optimal strategy based on the expressions in Theorem 3.1
seems to be a complex task. We aim to obtain a further lower bound for
η∆(S)

e + D(S) which turns out to be an entity that is amenable for analysis.
This lower bound is given in

Theorem 3.2. Define

Ji(η)(STi1 ) := E

[
i∑

j=1

1
µZ
D(V Tj , Sj−1, Sj) + η(Tj − Sj)

]
(3.11)

and
J(η)(S) := lim sup

i→∞

1
i
Ji(η)(STi1 ). (3.12)

Then, for any S ∈ S ′2, J(η)(S) ≤ D(S) + η∆(S)
e .
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Proof. See Appendix 3.8.1.

A straightforward implication is

J∗(η) := inf
S∈S′2

J(η)(S) ≤ inf
S∈S′2

(
D(S) + η∆(S)

e

)
. (3.13)

As we shall see later in Section 3.4.3, it turns out that the inequality (3.13) is
indeed an equality. The key reason to introduce J(η)(S) is that its infimization
can be formulated as a Markov Decision Process (MDP), which we do next.
This requires identifying the states and the actions of the MDP and verifying
that (i) the distribution of the next state and (ii) the one-step cost depend
only on the current state-action pair. We claim that the buffer content at the
ith speaking time

Bi := V Ti
Si−1+1, (3.14)

and the number of packets to be dropped Ai := Si − Si−1 constitutes this
state-action pair. To see this, note that given Bi and Ai, (i) the next buffer
content is independent of the past; and (ii) the one-step cost

1
µZ
D(V Ti , Si−1, Si) + η(Ti − Si) (3.15)

is a function only of Bi and Ai. This is because the above is equal to

1
µZ

s−1∑
k=1

bk + η(l(b)− s); (3.16)

with b = Bi and s = Ai. Since (i) and (ii) are satisfied, the problem is indeed
an MDP whose state at instant i is the buffer content Bi; and whose action
at instant i is Ai. The assumption S0 = 0 allows us to choose B0 as an empty
buffer.

The formulation above is an infinite-horizon average-cost MDP [81] with
states b ∈ V∗ := ∪∞k=1Vk; and the set of possible actions for a state b is given
by s ∈ {1, . . . , l(b)}, where l(b) is the length of the buffer b. Consequently,
the sender chooses the packet with timestamp Si = Ti + s − l(b) at time Ti.
Observe that setting s = l(b) corresponds to the selection of the freshest packet
whereas setting s = 1 corresponds to the selection of the oldest packet in the
buffer. Furthermore, since we are interested in the selection procedures in S ′2,
i.e., a minimum importance packet is only chosen if it has arrived exactly at
the speaking time, s 6= l(b) only if bs > vmin.

In general, the optimal policies of an MDP need not be stationary. A
policy is stationary if the current action is a function of the current state. We
will show in Section 3.4.3 that for our problem, the optimal policy is indeed
stationary and deterministic. When we consider a stationary and deterministic
selection process S, we explicitly write the argument (b). Let us recall

Definition 3.1 (Unichain policy, [81]). If a stationary policy s(b) induces a
Markov chain with a single recurrent class and a possibly empty set of transient
states, it is called unichain.
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In an average-cost dynamic programming setting, we evaluate a unichain
policy s(b), b ∈ V∗ by solving the linear system with unknowns h(b), b ∈ V∗
and λ; given by [81, Chapter 4]

h(b) + λ = 1
µZ

s(b)−1∑
k=1

bk + η(l(b)− s(b)) + E[h(b≥s(b)+1‖V Z)], (3.17)

where Z is the next interspeaking time, V Z is a vector of i.i.d. V ’s of length
Z, h(b) is called the relative value of state b, and λ is the average cost induced
by this policy. Note that the right-hand side of (3.17) is equal to the sum
of distortion cost of skipped packets, weighted age cost, and the expected
relative value of the next state. Since (3.17) determines h(b) up to an additive
constant, we take a reference state as one of the b ∈ V∗ and we set h(b) = 0.
We also note that for a unichain policy, the linear system given by (3.17) has
a unique solution [81].

Remark 3.1. To cover the case where v = 0 is interpreted as the source having
not generated any data and ∆t should not decrease upon the sending of v = 0;
one can proceed as follows: The set of possible actions for a state b is extended
to {0, 1, . . . , l(b)}, and s > 0 only if bs > 0. That is, the sender is allowed
to choose only the packets with v > 0. Also note that for the all-zero buffer,
the only possible action is to set s = 0, i.e., nothing has arrived since the last
selection and hence there is nothing to send. Observe that in this case ∆t does
not drop.

Although we have characterized a lower bound based on a MDP formu-
lation, the formulated problem has a countably infinite state space, V∗. It
is known that for this class of problems, analysis of optimal policies become
formidably complex in general. Moreover, it is not certain that a stationary
policy attains the infimum in (3.13). The complexity of this problem leads us
to consider a finite-state modification of the problem; and the next section is
devoted for this modified version.

3.4.2 Policy Iteration with a Truncated State Space
We now consider a finite-state version of the problem where the sender forgets
the packets that have arrived more than K time slots ago. That is, the current
buffer content at time Ti becomes

Bi := V Ti
(Si−1+1)∨(Ti−K+1). (3.18)

Consequently, the buffer length is limited to at most K, and the state space
becomes finite. Denote this finite state space by V≤K := ∪l≤KV l. One may
notice that by restricting the state space, we might not attain the infimal value
J∗(η). However, as we shall see later in 3.4.3, the optimal policy of the original
infinite state space problem will base its decisions only on a bounded buffer.
Thus, we do not lose optimality provided that K is large enough.
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A slight modification of (3.17) is enough to obtain the linear system whose
solution yields the relative values and the average cost. First, observe that if
the buffer state b has length more than K, i.e., if l(b) > K, then h(b) can be
replaced with

1
µZ

l(b)−K∑
k=1

bk + h(b≥l(b)−K+1) (3.19)

as the first l(b) − K terms will be forgotten in the truncated problem. Let
pi := Pr(Z = i) and qi := Pr(Z ≥ i). Then the linear system of equations to
evaluate a unichain stationary policy s(b), b ∈ V≤K becomes

h(b) + λ = 1
µZ

s(b)−1∑
k=1

bk + η(l(b)− s(b)) + 1
µZ

l∑
k=s(b)+1

bkqK+k−l + E[V ]
µZ

E[(Z −K)+]

+
K−l+s(b)∑

k=1
pkE[h(b≥s(b)+1‖V k)] +

K−1∑
k=K−l+s(b)+1

pkE[h(b≥k−(K−l)+1‖V k)]

+ qKE[h(V K)] (3.20)
=: Ch(b, s(b)), (3.21)

with h(vmin) = 0. This choice of the reference state also sets h(b) = 0 for
b ∈ V . Namely, for buffers that contain only one packet, the relative value will
be equal to zero.

At this point, we have obtained the policy evaluation method for our finite-
state problem. A first attempt could be to find the optimal policies numerically.
We consider the well-known policy iteration algorithm [81]. A brief description
is given in Algorithm 1.

Algorithm 1: Policy iteration
1 Start with the stationary policy s(0)(b) = l(b).
2 Evaluate s(i)(b) according to (3.20) to find h(i)(b), b ∈ V≤K and λ(i).
3 For all b ∈ V≤K , set

s(i+1)(b) = arg min
s∈{1,...,l(b)}

bs 6=vmin if s<l(b)

Ch(i)(b, s)

4 If s(i+1)(b) = s(i)(b) for all b ∈ V≤K , terminate. Else go to step 2.

Although the number of states is now finite, it is not clear that the policy
iteration algorithm yields a unichain policy. We shall show this in the following
lemma.

Lemma 3.2. If the buffer size is limited to K, the policy iteration terminates
with an optimal unichain policy in S ′2.
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Proof. Consider all truncated policies, e.g., non-stationary, history dependent
but can only choose the most recent K packets in the buffer. Since {Vi}i≥0
is an i.i.d. process, any policy eventually reaches a state consisting of only
vmin’s and must choose the most recent packet. Hence, the buffer must be
eventually renewed for any policy in S ′2 and as a result, there must be a single
recurrent class. Therefore, there exists an optimal stationary and deterministic
strategy that is unichain and this policy can be found with the policy iteration
algorithm [81].

Remark 3.2. Intuitively, step 3 of the above algorithm modifies s(i)(b) in
the following way: Consider two processes starting at the state b. The first
one is iterated with respect to s(i), whereas the second one is iterated with a
different action s̃(b) at the first step and with s(i) subsequently. Now consider
the expected accumulated costs of these two processes until they reach the same
state. If the second process has a smaller expected accumulated cost, changing
all s(i)(b) to s̃(b) = s(i+1)(b) results in a better policy; otherwise try another
s̃(b).

3.4.3 The Exact Buffer Size for an Optimal Policy
Truncating the state space restricts the actions that may be taken. Therefore,
in general, the infimum in (3.13) may not be attained with a truncated buffer.
As we have said in the previous section, it turns out that this is not the case
for our problem and the infimum is indeed attained with a finite buffer size.
In this section we quantify this buffer size.

First, consider the policy s(b) = l(b) for all b ∈ V≤K , i.e., always send the
most recent packet in the buffer. One can observe that this policy induces a
Markov chain with only |V| states regardless of K. We shall now show that
this policy is optimal for η above some threshold ηmax.

Lemma 3.3. For η ≥ ηmax := 1
µZ

(vmax−vmin) and for any M ≥ 1, the optimal
policy among V≤M is s(b) = l(b); which can be implemented with a buffer size
of 1. In words, if age-penalty weight η is large enough, the optimal strategy
always chooses the freshest packet.

Proof. We show that the policy s(b) = l(b) remains unchanged under policy
iteration. Start the policy iteration with s(0)(b) = l(b). Recalling Remark 3.2,
we will show that perturbing the policy at the initial step cannot decrease the
expected accumulated cost until the original and perturbed processes coincide.
Assume the perturbed action is s̃(b) = l(b)−k for a k > 0. Notice that the two
processes will coincide immediately at the next step and the difference of the
two accumulated costs will be kη − 1

µZ
(bl(b)−k − bl(b)) ≥ η − 1

µZ
(vmax − vmin) ≥

0. Hence the perturbed policy incurs a higher cost and the policy remains
unchanged.

Considering the truncated state space V≤K , we give some properties of
optimal policies.
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Property 3.1. For an optimal stationary policy s∗(b), and optimal relative
values h∗(b), the following hold: For any b, b′ ∈ V≤K,

(i) For any state b‖b′, either s∗(b‖b′) = l(b) + s∗(b′) or s∗(b‖b′) ≤ l(b).

(ii) h∗(b′) ≤ h∗(b‖b′) ≤ 1
µZ

(b1 + . . .+ bl(b)) + h∗(b′).

Proof. See Appendix 3.8.3.

To get a sense of how far can the optimal policy go back in time, i.e.,
to measure how large Ti − Si can be, it may be informative to consider the
following extreme case, which yields a lower bound on the maximal possible
value of Ti − Si (Recall that our ultimate aim is to show that Ti − Si shall be
bounded).

Lemma 3.4. For the state b = [vmax, vmin, . . . , vmin︸ ︷︷ ︸
L−1

],

s∗(b) =
1, η ≤ 1

µZ

(vmax−vmin)
L−1

L, η > 1
µZ

(vmax−vmin)
L−1

. (3.22)

Proof. Since we work with policies in S ′2, the two possible actions for this
state are either choosing the vmax at the beginning or choosing the vmin at
the end. Referring to Remark 3.2, suppose at iteration i we have s(i)(b) =
l(b) and s̃(b) = 1; and we aim to find the difference of accumulated costs
until the original and the perturbed processes coincide. Observe that these
processes coincide immediately after the first step and the difference will be
η(L− 1) + 1

µZ
(vmin − vmax). Then, s(i+1)(b) = 1 if η(L− 1) ≤ 1

µZ
(vmax − vmin);

otherwise s(i+1)(b) = l(b). Note that the difference does not depend on i and
hence the statement for s(i+1)(b) is also true for s∗(b).

The above lemma therefore gives a necessary buffer size for a possibly
optimal policy as it tells that at η = 1

µZ

(vmax−vmin)
L−1 , the first packet in the

buffer given in Lemma 3.4 is chosen by the optimal policy. Hence, attaining
the optimal policy requires a buffer size of at least d 1

µZ

(vmax−vmin)
η

e. Observe that
this does not imply that the optimal policy is reached within this particular
finite buffer size. Nevertheless, we can prove that this is indeed the case.

Theorem 3.3. For M ≥ K(η) := d 1
µZ

(vmax−vmin)
η

e, the optimal policy among
V≤M is attained by a policy with buffer size K(η). Furthermore, if bs∗(b) = vi,
then l(b)− s∗(b) < Ki(η) := d 1

µZ

(vi−vmin)
η
e for all 1 ≤ i ≤ |V|.

Proof. See Appendix 3.8.4.

Theorem 3.3 implies that when the policy iteration terminates, the pol-
icy it outputs not only solves the Bellman equation for the state space V≤M
for every M ≥ K(η), but it also solves the Bellman equation for the count-
able state space V∗. Since h∗(b) is finite and s∗(b) is attained for every b, a
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straightforward extension of Proposition 2.1 in [81, Chapter 4] concludes that
s∗(b) is indeed the optimal policy that attains J∗(η). Let S∗ = {s∗(Bi)}i≥0 be
the random sequence of the actions taken by the stationary and deterministic
policy s∗(b). Recall the inequality

J∗(η) ≤ D(S∗) + η∆(S∗)
e (3.23)

given in Theorem 3.2. Furthermore, observe that the buffer state process {Bi}
controlled by S∗ is a renewal process — this follows from Lemma 3.2. Hence,
by the renewal reward theorem [16, Theorem 3.6.1] we have

∆(S∗)
e = E

[
lim sup
i→∞

1
i

i∑
j=1

(Tj − Sj)
]

= E

[
lim
i→∞

1
i

i∑
j=1

(Tj − Sj)
]

= lim
i→∞

1
i

i∑
j=1

E
[
Tj − Sj

] (3.24)

and similarly

D(S∗) = 1
µZ

lim
i→∞

1
i

i∑
j=1

E
[
D(V Tj , Sj−1, Sj)

]
. (3.25)

The above shows that the inequality (3.23) is indeed an equality. Therefore,
the optimal policies for the MDP give the tangent lines to the exact boundary
curve of the achievable (∆e, D) region, where η is the slope of a tangent.
Consequently, by varying η, this curve can be found. We end this section with
the following corollary that summarizes the above results.

Corollary 3.1. The optimal policy among untruncated state space policies is
attained with a buffer size K(η) and can be found with the policy iteration
algorithm run over the state space V≤K(η), which returns J∗(η). Furthermore,
the least upper bound to the family of straight lines D + η∆e = J∗(η), η > 0
gives the boundary of the achievable (∆e, D) region.

3.4.4 An Efficient Algorithm to Find the (∆e, D) Region
Although one can run the generic policy iteration algorithm to find the tangent
lines to the achievable (∆e, D) region, this turns out to be highly inefficient.
In this section, we provide an efficient modification of the policy iteration
algorithm. The main idea is to exploit the following property. We omit its
proof as it is a straightforward extension of Property 1(i).

Property 3.2. Consider the policy iteration algorithm (Algorithm 1). For
any b, the policy s(i)(b) is either equal to s(i)(b≥2) + 1, or to 1. Furthermore,
if s(i)(b) = s(i)(b≥2) + 1, then h(i)(b) = b1/µZ + h(i)(b≥2).
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Property 3.2 implies that if s(i)(b) 6= 1, then there must exist a b′, which
is a suffix of b, and with s(i)(b′) = 1. Consequently,

h(i)(b) = h(i)(b′) +
∑
b∈b\b′

b/µZ . (3.26)

The above observation leads to an improvement in the policy evaluation stage
of the algorithm as we shall see shortly. Denote the set of states b′ with
s(i)(b′) = 1 as B1. In light of (3.26), we see that since the relative values
for the other states b /∈ B1 can be determined based on the states in B1, it is
sufficient for the linear system in the policy evaluation step to include the states
in B1. We observed empirically that |B1| is much smaller compared |V≤K |. As
solving a linear system with n variables has O(n3) complexity, reducing the
set of variables to B1 results in a significant improvement.

If the algorithm is modified as suggested above, the policy evaluation step
gives h(i)(b′), b′ ∈ B1, and the average cost λ(i). To find other h(i)(b)’s, we
refer to equation (3.26), which suggests that the appropriate data structure to
represent the states is a |V|-ary tree structure, denoted as T , where a state b
has children {b‖b}b∈V . That is, b≥2 is the parent of b, denoted by parent(b),
and every suffix of b is its ancestor. Then the final statement of Property 2
translates into the recursion h(i)(b) = b1/µZ + h(i)(parent(b)) for b /∈ B1.

Along with Property 3.2, Theorem 3.3 also provides simplifications for the
search of an optimal policy. Namely, for a state b, and for any iteration j,
s(j)(b) 6= s for an s < l(b) −Kbs(η), where Kbs(η) = Ki(η) if bs = vi. Using
the above facts, we are ready to provide a more efficient version of the policy
iteration algorithm, Algorithm 2, which is tuned for our problem. The for
loops over the tree T (lines 9 and 12) are in breadth-first manner. Recall that
h(i)(b) = 0 for b ∈ V and we set h(i)(δ) = 0 where δ denotes the empty string.

Although Algorithm 2 is much more efficient compared to the generic policy
iteration, one needs to evaluate Ch(i)(b, s)’s — defined in (3.21) — for both
policy evaluation and update stages. Observe that calculating one of these
quantities takes exactly |V≤K | = O(|VK |) iterations. We can allocate some
memory to store these quantities and reduce the time complexity. First, let
parentB1(b) be the longest ancestor of b that is in B1. Then, parentB1(b) =
parentB1(parent(b)) and parentB1(b′) = b′ for b′ ∈ B1. Moreover, let the cost
of an edge between b and its parent be b1/µZ and let cost(i)(b) denote the cost
of going from b to parentB1(b). Obviously, cost(i)(b′) = 0 for b′ ∈ B1 ∪ {δ}.

Now, observe that the linear system of equations in (3.20) can be written
as
h(i)(b′) + λ = η(l(b′)− 1) + E[h(i)(parent(b′)‖V Z)]

= η(l(b′)− 1) + E

[
cost(i)(parent(b′)‖V Z) + h(parentB1(parent(b′)‖V Z))

]
.

(3.27)

The policy iteration algorithm starts with s(0)(b) = l(b). Therefore, h(0)(b) =
cost(0)(b) = ∑

i<l(b) bi and one can also set parentB1(b) = vmin. We will ini-
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Algorithm 2: Efficient Policy Iteration v1(η)
Input: η
Output: J∗(η)

1 Initialize
2 K ← K(η);
3 s(0)(b)← l(b);
4 B1 ← {vmin};
5 Set δ as the root of T and add the children {b‖b}b∈V for every

buffer b ∈ T such that l(b) < K;
6 i← 0;
7 repeat

/* Policy evaluation */
8 Find λ(i), h(i)(b′), b′ ∈ B1 by solving (3.20);
9 for b ∈ T \ B1 with l(b) > 1 do

10 h(i)(b)← h(i)(parent(b)) + b1/µZ ;
/* Policy update */

11 B1 ← {vmin};
12 for b ∈ T with l(b) > 1 do
13 if l(b) < Kb1(η) and

Ch(i)(b, 1) < Ch(i)(parent(b), s(i+1)(parent(b))) + b1/µZ then
14 s(i+1)(b)← 1;
15 Add b to B1;
16 else
17 s(i+1)(b)← s(i+1)(parent(b)) + 1;

18 i← i+ 1.
19 until s(i+1) = s(i);
20 return λ(i)

tialize the procedure accordingly so that the policy evaluation step makes use
of these quantities at the first iteration. We aim to update cost(i)(b) and
parentB1(b) in the policy update step. To this end, we need the temporary
variable

temp(i)(b) = min
s≤l(b)

Ch(i)(b, s). (3.28)

Then the condition for the policy update becomes

Ch(i)(b, 1) < temp(i)(parent(b)) + b1/µZ (3.29)

and temp(i)(b) will be updated accordingly. Note that for b ∈ V , temp(i)(b) =
λ(i). The modified version is given in Algorithm 3.

Recall that the number of elements in tree T is O(|V|K). The complexity
of a single iteration in Algorithm 3 is found as follows:
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Algorithm 3: Efficient Policy Iteration v2(η)
Input: η
Output: J∗(η)

1 Initialize
2 K ← K(η);
3 s(0)(b)← l(b);
4 B1 ← {vmin};
5 Set δ as the root of T and add the children {b‖b}b∈V for every

buffer b ∈ T such that l(b) < K;
6 For all b, cost(b)← ∑

i<l(b) bi and parentB1
(0)(b)← vmin;

7 i← 0;
8 repeat

/* Policy evaluation */
9 Find λ(i), h(i)(b′), b′ ∈ B1 by solving (3.27);

10 for b ∈ T \ B1 with l(b) > 1 do
11 h(i)(b)← h(i)(parent(b)) + b1/µZ if b /∈ B1;

/* Policy update */
12 B1 ← {vmin};
13 for b ∈ {vmin, . . . , vmax} do
14 temp(i)(b)← λ(i).
15 for b ∈ T with l(b) > 1 do
16 if l(b) < Kb1(η) and Ch(i)(b, 1) < temp(i)(parent(b)) + b1/µZ

then
17 s(i+1)(b)← 1;
18 Add b to B1;
19 temp(i)(b)← Ch(i)(b, 1);
20 cost(i)(b)← 0;
21 parentB1

(i)(b)← b;
22 else
23 s(i+1)(b) = s(i+1)(parent(b)) + 1;
24 temp(i)(b(i))← temp(i)(parent(b)) + b1/µZ ;
25 cost(i)(b)← cost(i)(parent(b)) + b1/µZ ;
26 parentB1

(i)(b)← parentB1
(i)(parent(b));

27 i← i+ 1.
28 until s(i+1) = s(i);
29 return λ(i)



50 Optimal Policies for Age and Distortion

(i) In the policy evaluation, the equation system (3.27) is constructed in
O(|B1||V|K) time, and solved in O(|B1|3).

(ii) The policy update runs over all states. Furthermore, for each state b,
calculation of Ch(i)(b, 1) also requires iterations over all states. Hence, it
has O(|V|2K) time complexity.

As we stated before, |B1| is usually very small compared to |V|K . The bot-
tleneck then seems to be the policy update stage, which requires O(|V|2K)
steps. However, the policy update stage can be further improved such that
the complexity decreases to O(K|V|K). This modification is given in Appendix
3.8.5.

Now that we have an efficient algorithm yielding J∗(η), and with help
of Corollary 1, we should be able to find the boundary curve by varying η.
One may notice that initializing the trees and policies for every η can be
avoided with a minor modification. The idea is as follows: Choose a decreasing
sequence η1 > η2 > . . . > ηn with η1 = ηmax = 1

µZ
(vmax − vmin). Note that

K(η1) = 1. Run the algorithm in the order of ηm’s and when K(ηm+1) >
K(ηm), append new states to the tree T . At (m+ 1)th run, one can also start
with the optimal policy found for ηm, i.e., a warm start. If η1, . . . , ηn are chosen
densely, the boundary curve can be well-approximated.

However, finding the boundary region everywhere would be optimistic.
Theorem 3.3 implies that the necessary buffer size scales with 1

η
. This suggests

that even though the algorithm gives the almost exact curve, it is impractical
to do so. To overcome this difficulty, one may rely on approximate dynamic
programming algorithms; or resort to Monte Carlo estimations for the policy
evaluation [81].

Note that any straight line D+η∆e = J∗(η) in the (∆e, D) plane is a lower
bound to the feasible region. Hence, any family of straight lines obtained in
such manner gives a lower bound in general — and if we were able to run
the algorithm for every η > 0, this would give the exact boundary curve. As
before, let η1 > η2 > . . . > ηn be a densely chosen sequence for which the
algorithm is run. Let ∆(n−1,n)

e be the abscissa of the point where the last
two lines D + ηn−1∆e = J∗(ηn−1) and D + ηn∆e = J∗(ηn) intersect. Then,
one can see that the supremum of the straight lines obtained for η1, . . . , ηn
approximately gives the tradeoff curve for ∆e ≤ ∆(n−1,n)

e , while it gives a
lower bound for ∆e > ∆(n−1,n)

e . This is because all intersection points that
lie on the supremum, and the line segments connecting them are achievable.
This straight-line converse bound is referred as ‘PI converse’ in the numerical
examples, which we will provide shortly.

We end this section with some numerical examples. We have calculated
the optimal policies with Algorithm 3, and unfortunately we have not observed
any simple structure for optimal policies for |V| = 2. We also evaluated some
simple policies described below and compared their performances with the
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family of straight lines generated by Algorithm 3, referred as ‘PI’ in Figures
34 and 35. These simple policies are:

(S1) Send the oldest important data within a maximum buffer size K.

(S2) Send the newest important data within a maximum buffer size K.

(S3) Send the newest important data that has arrived more than K slots ago.
If there is no such data, send the oldest important one. Note that under
such strategies, the instantaneous age is kept above K most of the time.

Each strategy above induces a finite-state Markov chain. Moreover, when
Z is geometrically distributed, all the Markov chains induced by these strate-
gies have closed-form stationary distributions. ∆e and D pertaining to these
strategies will accordingly have closed-form expressions. We provide these
expressions in Appendix 3.8.6.

To compare these strategies, we also give a simple converse bound and
observe their approach towards this bound for large ∆e.

Lemma 3.5. Suppose V = vi with probability αi. Let j∗ be the maximum index
such that ∑|V|i=j∗ αi ≥ 1

µZ
. Then for any ∆(S)

e , D(S) ≥ Dmin = ∑j∗−1
i=1 αivi +(∑|V|

i=j∗ αi − 1
µZ

)
vj∗.

Proof Sketch. The sender can send at most 1
µZ

fraction of the data. We then
optimize over its selection of data in a greedy manner to obtain the result.

In the first numerical example, provided in Figure 34, Pr(Z = 1) = 0.2
and V = {1, 20} with Pr(V = 1) = 0.7. The blue family of straight lines
correspond to the lines D + η∆e = J∗(η), obtained for different η values. We
could calculate until η = vmax−vmin

17µZ , which indicates that we used a maximum
buffer size of 17. The region lying under this family of lines is unachievable,
and the supremum of this family gives the boundary of the feasible region until
the red solid line, which is the straight-line converse bound described above.
The curves corresponding to strategies S1, S2 and S3 are red dashed, green
dashed and cyan dotted curves, and plotted for K ≤ 20. The simple lower
bound Dmin = 2.7 is drawn as the solid black line. One can see that S2 nearly
coincides with PI. Note that we observe an asymptotic behavior as the sender
will never be able to allocate all of its resources to send all of the important
packets.

The second numerical example differs from the first one with Pr(Z = 1) =
0.3 and Pr(V = 1) = 0.8. The simple strategies calculated for K ≤ 40 together
with the policy iteration results obtained until a buffer size of 17 are plotted
in Figure 35. Here, Dmin = 0.7 could be achieved in finite-age as the sender
can send all the important packets while keeping supiE[(Si − Ti)2] <∞.
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Figure 34 – Comparison of the strategies for V = {1, 20} and Pr(V = 1) = 0.7.
Z is taken as a Geometric random variable with success probability 0.2. (S2
almost coincides with PI)
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Figure 35 – Comparison of the strategies for V = {1, 20} and Pr(V = 1) = 0.8.
Z is taken as a Geometric random variable with success probability 0.3.

3.5 Relation to an Erasure Channel with
Feedback

We have observed that the model discussed primarily in this work is similar
to transmitting a stream of packets over an erasure channel with feedback.
Recall that the setting for transmission over discrete memoryless channels with
feedback requires the feedback for the data transmitted at time t to be revealed
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just after time t. For an erasure channel, the knowledge of an erasure event
indicator at time t, i.e., 1{Xt is erased} is sufficient for a perfect feedback.

We note that the main difference between our model and a feedback erasure
channel stems from the restriction that the feedback for data t is revealed just
after time t. If we assume that the sender knows about a possible erasure
event just before time t; it may send the data t, or it may keep data t in
its buffer for a later transmission. This relaxation exactly gives the model
we described with interspeaking times distributed according to a geometric
distribution, i.e., Pr(Zi = z) = (1 − p)pz−1 where p is the erasure probability
for a discrete memoryless erasure channel. Also note that one can model some
erasure channels with memory by varying the distribution of Z.

Consider a modification of our model which requires that the constituent
feedback is revealed just after the transmission. Now, we formalize the mod-
ified setting. Just before time t, the sender commits to a packet with times-
tamp Ct ≤ t. Then, at time t, the committed packet XCt is transmitted
through the erasure channel. If the packet is erased, the sender commits to
packet with timestamp Ct+1 just before time t + 1 — which is not necessar-
ily equal to Ct — and the procedure is repeated until the committed data is
sent. If the committed data XCt is sent successfully, then Si(t)+1 = Ct where
i(t) = sup{i ≥ 0 : Ti < t}; and the past of Si(t)+1 contributes to the distor-
tion and cannot be modified later. The age and distortion metrics are defined
similar to the ones in Section 3.3.

Observe that for any sequence of commitments {Ct}t>0 =: C, there must
exist a selection procedure S in the original problem such that

D(C) + η∆(C) ≥ D(S) + η∆(S). (3.30)

This is because in the original problem, selections are made with more
information — the erasure event is known beforehand. Conversely, for any
stationary policy S in the original problem, there exists a C in the latter
problem where the sender commits to Ct = t + s(Bt) − l(Bt) where Bt :=
V t
Si(t)+1. As a consequence, the sender with no erasure information beforehand

can also attain the infimal value J∗(η), as we know from Corollary 3.1 that
the optimal policy for the original problem is stationary. Together with the
inequality (3.30), we conclude that for both problems the tradeoff curve is the
same. In brief, whether erasures are revealed just before or after transmissions
do not change the tradeoff between the age and distortion.

3.6 When Timestamps Become Significant
We have shown that the optimal value for an η > 0 is attained with a bounded
buffer policy, say of K. In the model so far, packets contain the timestamps
as part of their headers. Consequently, there was no need to send additional
information to the receiver to tell it which packet among the K packets in
the buffer is being sent. If the packets do not have headers, this additional
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information must be included. If K is much smaller compared to |X |, this
additional information is insignificant. In this section, we treat the case of
headerless packets when K is comparable to |X |. We take binary X = {0, 1}
and v(0) = 1, v(1) = v. We study the setting described in Section 3.3 but
with the difference that the sender is allowed to send N bits at each speaking
time. We assume that Z is distributed geometrically with success probability
p, i.e. Pr(Z = 1) = p.

Consider the optimal policy to attain J∗(η) in (3.13), which is of bounded
buffer size K(η). Recall that at each speaking time, the sender is able to send
one packet. If X is binary, then without any coding, the optimal policy is
feasible only if N ≥ 1 + dlog(K(η))e; otherwise it is not able to describe the
timestamps of selected data, e.g., for a state b with l(b) = K(η), the times-
tamps must be of length dlog(K(η))e and the remaining one bit corresponds
to the data. However, it seems unreasonable to use almost all of the N bits
for timestamp description. Can one come up with methods that do not re-
quire explicit timing information to be sent and allocate more bits to describe
the data itself? The rest of this section elaborates on some possible tradeoffs
aligned with this perspective.

3.6.1 Buffer-Ignorant Strategies
Think of the following strategy: Always send the most recent N = log(K(η))
bits. In this case, it is easy to see ∆e = 0 and

D = µV (1− p)N = µVK(η)log(1−p) ' µV
(v − 1

η

)log(1−p)
, (3.31)

where µV := E[V ] = (1 − q) + vq, and q = Pr(V = v). We know that for
the optimal policies described in Section 3.4, Dmin given in Lemma 3.5 yields
a lower bound for distortion. For a binary X, and thus V , one can obtain

Dmin =
1− p, p ≥ q

µV − pv p < q
. (3.32)

If η ≥ 1
v−1

(
µV
Dmin

) 1
log(1−p) then D ≤ Dmin, implying that the perfect timing

information strategies are beaten by the timing ignorant strategy described as
sending the most recent N bits. In other words, one does better by sending N
bits of most recent data instead of sending one bit together with its timestamp.

The above arguments motivate the following question: What are the limits
of these timing ignorant strategies? Note that both the sender and receiver
know the speaking times Ti. Suppose for a moment that the receiver knows the
selection times Si as well. With this assumption, the receiver has the perfect
knowledge of the buffer length at time Ti, which is Ti − Si−1. Hence, if the
sender bases its strategies solely on its buffer size, ignoring the buffer content,
it does not have to include any timing information and is able to use all its
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N -bit budget for sending data. An example could be as follows: Suppose
N = 3. Then the sender could send 1, 3, 5th bits whenever the buffer size is 5.
Since the receiver knows the buffer size and the sender’s strategy, it will know
upon its reception of 3 bits that they correspond to 1, 3, 5th bits. Although we
have previously coined the term ‘timing-ignorant’ for such strategies, a more
suitable term could be ‘buffer-ignorant’; as the sender ignores what is in its
buffer.

Remark 3.3. One may notice that this procedure is a simple online compres-
sion algorithm for the binary source {Xi}, with the restriction that the sender
can only send N bits at each speaking time. Together with the unsophisticated
receiver that only constructs the N bits it receives at each speaking time, this
scheme operates at ∆e = 0 and D = µV (1− p)N .

Let us study the ‘buffer-ignorant’ strategies further. Since the transmitter
does not use the buffer content and has to choose N bits among them, a
simple choice could be to send size-N bit contiguous chunks. Adopting the
terminology from Section 3.4, such strategies correspond to sending XSi

Si−N+1
at time Ti from a buffer of size Li := Ti−Si−1. Nothing from the past XSi can
be sent after time Ti and therefore with similar arguments we have previously
done, one can formulate the problem of finding optimal selection times as
a MDP. The corresponding MDP will have the buffer lengths as its states,
which implies that we encounter another countable state-space problem with
its state-space being Z+. When the buffer length is l, and the selection index
is s, the one-step cost can be written as

g(l, s) = µV p(s−N)+ + η(l − s). (3.33)

The corresponding Bellman equation is given by

h(l) + λ = min
s≤l

{
µV p(s−N)+ + η(l − s) + E[h(l − s+ Z)]

}
(3.34)

for l > 1 and with h(1) = 0, where the buffer of length one is chosen as the
reference state. It is not difficult to see that this choice also implies h(l) = 0
for l ≤ N , as the sender can immediately empty the buffer for such states.

Similar to Property 3.2, we must have either s∗(l) = N or s∗(l) = s∗(l −
1) + 1 for the optimal policy. Therefore as l increases, the optimal policy
tends to leave more bits at the end. Although this observation suggests that
the optimal policy may be attained with an unbounded buffer, one can show
that this is not the case. Similar coupling arguments as we did in the proof
of Theorem 3.3 lead to the conclusion that the optimal policy cannot leave
more than NµV

η
bits at the end. Thus, a simple policy iteration algorithm

run for a sufficiently large state-space also solves the Bellman equation for the
infinite-state problem.



56 Optimal Policies for Age and Distortion

The optimal policies may not be simple-to-describe. However, when Z
is geometrically distributed, the numerical simulations indicate that single-
threshold policies are optimal. These policies are characterized as

s(l) = min{max{l − τ,N}, l} (3.35)

for some τ ≥ 0. In other words, the sender always keeps τ unsent bits in the
buffer if possible. We do not have an analytical proof for this result, but it
is not unreasonable to believe that these simple policies are optimal because
of the memorylessness property of Z. Recall that the states of Markov chains
incurred by such strategies are described with the buffer length l. Denote the
stationary probabilities as πl. In this special case, the stationary probabilities
(and consequently the average age and distortion) incurred by such strategies
have closed-form expressions.

Corollary 3.2. The (∆e, D) curve attained by single-threshold strategies has
a parametric description that is available in closed-form. Let p̄ := 1 − p,
S

(0)
j := (1+ jp) and S(n)

j := ∑j
k=0 S

(n−1)
k for n ≥ 1. Also let S(n)

j = 0 for j < 0.
For 0 ≤ j ≤ τ − 1, the stationary probabilities are given by

πτ−j = πτ+1
1 +∑dτ/Ne

k=0 (−1)k+1S
(k)
j−kNp

kp̄(k+1)(N−1)

p̄j+1 (3.36)

with

πτ+1 =
[
τ−1∑
j=0

1 +∑dτ/Ne
k=0 (−1)k+1S

(k)
j−kNp

kp̄(k+1)(N−1)

p̄j+1 + 1
p

]−1

. (3.37)

and πτ+1+j = p̄jπτ+1 for j > 0. The (∆e, D) curve therefore has a parametric
description (∆e(τ), D(τ)) given by

∆e(τ) =
τ−1∑
j=1

jπN+j + τπτ+1p̄
N−1

p
. (3.38)

and
D(τ) = µV πτ+1p̄

N

p2 . (3.39)

Remark 3.4. If the bits sent are equal in terms of their importance, i.e., v1 =
v2, then buffer-ignorant strategies are optimal among the strategies without
timestamp coding. This is because strategies as such already assume that 1
and 0 are of equal importance and there is no need to indicate which bit is
more important. Consequently, for the binary erasure channel, i.e., N = 1;
the only optimal buffer-ignorant strategy is to send the last bit if the bits are
equally important.
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Until now, we have only considered integer N . However, the erasure chan-
nel between the sender and receiver could admit K inputs, where K is not
necessarily a power of 2. This would imply a non-integer N = logK. Study-
ing such N requires strategies with some knowledge of the buffer content and
possibly requires some coding. We will elaborate on how to handle these cases
in the next section.

3.6.2 Revealing Partial Buffer Content
The previous section was devoted to buffer-ignorant strategies. Now, we allow
some knowledge of the buffer content to improve buffer-ignorant strategies and
also to cover the case of a non-integer N .

Let us first show the improvement by coding over the buffer-ignorant strate-
gies for an integerN . Take the single-threshold strategy s(l) described in (3.35)
together with the threshold τ . Consider the state l > τ + N , where the dic-
tated action is to keep τ bits for future and send N of the remaining bits.
Then l− τ −N bits will never be sent and hence the distortion penalty will be
µV (l − τ −N). We aim to show that the distortion penalty can be decreased
with some coding while preserving or decreasing the age penalty.

To that end, consider an alternative way of describing the buffer-ignorant
strategy above: send the first N bits of the sequence xl−τ , xl−τ−1, . . . , x1 re-
gardless of the content. It is therefore reasonable to think that a parser with
a dictionary of size 2N which sends the identity of the first parsed word in
the same sequence could result in an improvement. One could resort to some
variable-to-fixed length source coding techniques, such as Tunstall coding. As
we have already stated in Chapter 1, Tunstall coding is known to maximize
the expected number of bits parsed among prefix-free and variable-to-fixed
length dictionaries. Let E[LTun] be the expected number of bits parsed. With
Tunstall coding, the expected number of unsent bits will be l − τ − E[LTun]
and since E[LTun] ≥ N , i.e., the expected number of compressed bits is greater
than N , the distortion cost decreases. Thus, Tunstall algorithm improves the
buffer-ignorant strategies. Also note that for non-integer N , Tunstall algo-
rithm can be used to determine parsing methods.

We end this section by presenting some numerical results that illustrate
the improvement with buffer-ignorant strategies and Tunstall coding. We use
the same source and interspeaking time distribution as in Figure 36, i.e., V =
{1, 20} with Pr(V = 1) = 0.7 and Pr(Z = 1) = 0.2. Recall that we were able
to find the optimal policies with Algorithm 3 up to a buffer size of 17. This
suggests that the sender describes the timing information with dlog 17e = 5 bits
and with an additional bit to describe the content, which implies that the left
end of the PI converse line segment can be attained with sending N = 6 bits —
note that this converse bound is valid only for strategies of Section 3.4, and not
for buffer-ignorant strategies. As we suggested, the timing information can be
sacrificed to allocate the whole budget for the data description in an attempt to
improve the performance. This improvement is evident even for N = 3, where
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Figure 36 – For the same setting in Figure 34, the curves pertaining to optimal
buffer-ignorant strategies (BI, colored in red) together with their improved
versions with Tunstall coding (BIT, colored in cyan) are plotted for the same
source in Figure 34. The curves corresponding to N = 3 are dashed, and the
curves corresponding to N = 6 are dotted.

the optimal buffer-ignorant strategy (BI, N = 3) and its improved version
with Tunstall coding (BIT, N = 3) perform better than the optimal PI curve
as seen in Figure 36. For N = 6, there is drastical improvement and one can
approach zero distortion with finite age — see BI and BIT, N = 6 in Figure
36.

3.6.3 About Other Possible Coding Strategies
The buffer-ignorant strategies discussed in the previous section only depend on
the buffer size and we have shown that these strategies can be improved by re-
vealing some buffer content. One can argue that these coding strategies might
be far from optimal, as they use partial knowledge. The sender could base its
strategies on all past speaking times and the past buffer content. Calculating
the tightest (∆e, D) curve corresponding to this broad class of strategies seems
to be formidably complex. Even with the sole knowledge of the current buffer
content, the problem becomes difficult. We illustrate this with an example.
Suppose the current buffer content is b = [v, v, 1, 1, v, v, v, 1, 1, 1, v, v, v, 1] and
the sender could only send N = 3 bits. The single-threshold strategy with
τ = 4 will choose the index s(b) = 10 and send (1, 1, 1), which does not con-
tain any important data. If the index s = 13 is chosen, (v, v, v) will be sent
and this might be a better strategy; however, the description of s = 13 must
be somehow included in the N = 3 bits and all three important data might not
be sent. Encoding both the data and their indices into a fixed number of bits
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complicates the possible actions and thus the problem appears to be very hard.
We also observe an interesting tradeoff in this situation. In our MDP, sacri-
ficing perfect state information results in a smaller policy space with policies
of lower penalties, i.e., if k bits are allocated for timestamp description, N − k
information bits can be sent and when k decreases, the number of possible
actions also decreases but their one step costs can possibly be smaller.

3.7 Discussion
In this chapter, we have studied a discrete-time model where the sender is
only allowed to speak at time slots assigned by an external scheduler. In
the absence of a distortion measure, it is clear that the optimal strategy is
to send the freshest packet in the buffer at each speaking time as this will
minimize the age. However, if this freshest packet has low importance, it may
be beneficial to send a packet of higher importance instead, sacrificing freshness
for lowering distortion. Hence, it is immediate that a tradeoff between the age
and the distortion exists. It turns out that the optimal tradeoff can be attained
with bounded buffer policies, and these policies can be found with numerical
methods. Unfortunately, they turn out to be not simple-to-describe.

We observed that the usual policy iteration methods were inefficient for our
specific problem, and we devised an algorithm based on appropriate data struc-
tures and problem-specific simplifications. The new algorithm performs signif-
icantly better — the time complexity decreases from O(|V|3K) to O(K|V|K),
where K is the exact buffer size needed for attaining the optimal tradeoff.
However, at the high-age regime, K is large and in turn, the optimal tradeoff
cannot be computed. One could try to find simple-to-describe policies that
are not too far from the optimal tradeoff at this regime.

The main results of this chapter also apply when the process of importance
levels {Vi}i≥0 is an ergodic Markov chain — one can verify the conditions
(i) and (ii) with the same state and action spaces defined in Section 3.4.1.
Consequently, the necessary buffer size will be the same and one is able to find
the optimal curve as in the i.i.d. case.

The problem we formulated in the first place turns out to be closely related
to a problem of transmitting packets over an erasure channel with perfect
feedback. The difference is that in our setting, erasure events are revealed
before transmissions. Nevertheless, we have shown that for both problems,
the optimal tradeoff is the same.

Until Section 3.6, we assumed that the timing information is contained in
the header of a packet, which is much smaller in size compared to the payload.
In Section 3.6, we studied the case where the packets need not contain perfect
timing information, and consist of at most N bits. As a consequence, if one
decides to sacrifice age for lowering distortion, some additional information
must be included in the N bits in order to tell the receiver to which time
the information bits pertain. Therefore, if the sender decides not to send the
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freshest data, it not only sacrifices age but may also decrease the amount
of information bits to be sent. We have studied some simple policies, called
buffer-ignorant, where the sender ignores what is in the buffer and allocates
all its N -bit budget for the information bits. When the timing information
dominates the payload, buffer-ignorant policies improve drastically over the
optimal policies found in Section 3.4, which include the timing information.
Later, we have shown that buffer-ignorant policies can be further improved
by revealing some buffer content and using variable-to-fixed length coding.
However, it seems very challenging to find the optimal tradeoff when any
strategy that sends N bits at a time is allowed.

The reader may ask what if the sender is allowed to choose the speaking
times as well. As expected, this relaxation will result in a larger admissible
policy space. Moreover, an additional parameter should be introduced, the
packet rate R. Consequently, in the relaxed problem, one has to study the
(∆, D,R) tradeoff. This problem might be too complex to solve. However, if
the packets are of equal importance, the D component will be constant and
we will be left with the (∆, R) tradeoff. The study of this tradeoff is in fact
the topic of the next chapter.

3.8 Appendix
3.8.1 Proofs of Theorems 3.1 and 3.2
Define Wj := Tj − Sj for the rest of the proof and denote ‘almost surely’ by
a.s..

Proof of Theorem3.1

We first prove a convergence result in Lemma 3.6 below, from which the equa-
tion (3.8) follows as a corollary.

Lemma 3.6. 1
i

∑i
j=1Wj(Zj+1 − µZ)→ 0 a.s. if supj E[W 2

j ] <∞.

Proof. We use the result that if∑i bi/i converges, then 1
i

∑
j≤i bj → 0 — known

as Kronecker’s Lemma [82]. Therefore, it is sufficient to show ∑
iWi(Zi+1 −

µZ)/i converges a.s.. We now show that Mn := ∑n
i=2Wi−1(Zi − µZ)/(i− 1),

M1 := 0 is a martingale with respect to the filtration Fn := σ(Z1, . . . , Zn,X
Tn
1 ).

Observe that E[Mn|Fn−1] = Mn−1 + E[Wn−1(Zn − µZ)|Fn−1]/(n − 1) =
Mn−1 asWn−1 is Fn−1-measurable and Zn is independent of Fn−1 with E[Zn] =
µZ . Since Mn consists of uncorrelated increments, one can write

E[M2
n] =

n∑
i=2

E[W 2
i−1]Var(Z)

(i− 1)2 . (3.40)

Note that we assumed E[Z2] < ∞, hence Var(Z) < ∞. Moreover, since
supj E[W 2

j ] <∞, ∑i
E[W 2

i ]
i2

<∞. As a consequence, supnE[M2
n] <∞ and the

a.s. convergence of Mn follows from the martingale convergence theorem.
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Now we prove (3.9) and complete the proof of Theorem 3.1. Define

Yj =
Xj, j ∈ S

?, else.
(3.41)

Given t, define i = i(t) := sup{j ≥ 0 : Tj ≤ t}. Observe that for j ≤ i,
Yj(t) = Yj. Thus,

D
(S)
t = 1

t

∑
j≤Si

d(Xj, Yj) + 1
t

t∑
j=Si+1

d(Xj, Yj(t)). (3.42)

Upper bound D(S)
t as

D
(S)
t ≤ 1

t

∑
j≤Si

d(Xj, Yj) + 1
t
(Ti+1 − Si)vmax

≤ 1
Ti

∑
j≤Si

d(Xj, Yj) + 1
t
(Zi+1 +Wi)vmax.

(3.43)

Since supj E[W 2
j ] < ∞, Wi is a.s. finite for all i and hence Zi+1 + Wi is a.s.

finite. Thus 1
t
(Zi+1 +Wi)vmax → 0 a.s. Then, we obtain

lim sup
t→∞

D
(S)
t ≤ lim sup

i→∞

1
Ti

∑
j≤Si

d(Xj, Yj). (3.44)

Now, we lower bound D(S)
t as

D
(S)
t ≥ 1

t

∑
j≤Si

d(Xj, Yj) ≥
1
Ti+1

∑
j≤Si

d(Xj, Yj) = 1
Ti + Zi+1

∑
j≤Si

d(Xj, Yj)

(3.45)

and take lim sup on both sides to obtain

lim sup
t→∞

D
(S)
t ≥ lim sup

i→∞

1
Ti + Zi+1

∑
j≤Si

d(Xj, Yj). (3.46)

Finally, observe that Ti
i
→ µZ and Zi+1

i
→ 0 a.s. Hence,

lim sup
t→∞

D
(S)
t = 1

µZ
lim sup
i→∞

1
i

∑
j≤Si

d(Xj, Yj) = 1
µZ

lim sup
i→∞

1
i

i∑
j=1

D(V Tj , Sj, Sj−1),

(3.47)

which ends the proof of Theorem 3.1.
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Proof of Theorem 3.2

Since supj E[W 2
j ] < ∞, it follows that supiE[(1

i

∑i
j=1Wj)2] < ∞. Thus, the

family (1
i

∑i
j=1Wj)i∈N is uniformly integrable [82, Chapter 13]. One can then

use the reverse Fatou’s lemma for uniformly integrable families [83] to obtain

∆(S)
e = E

[
lim sup
i→∞

1
i

i∑
j=1

Wj

]
≥ lim sup

i→∞
E

[
1
i

i∑
j=1

Wj

]
. (3.48)

A similar reasoning for D(S) follows from the fact that each D(V Tj , Sj, Sj−1) is
smaller than vmax(Wj−1 +Zj). Therefore, {D(V Ti , Si, Si−1)}i≥0 is a uniformly
integrable family, and one proceeds in a similar way as above to obtain

D(S) ≥ lim sup
i→∞

1
µZ
E

[
1
i

i∑
j=1

D(V Tj , Sj, Sj−1)
]
. (3.49)

As lim supn an + lim supn bn ≥ lim supn(an + bn), the inequality J(η)(S) ≤
D(S) + η∆(S)

e holds. This completes the proof.

3.8.2 Proof of Lemma 3.1
We construct {S̃i} iteratively as follows:

S̃i =


Si, i < i0

min{s > Si0 : Vs > vmin} ∧ Ti0 , i = i0

S̃i−1 + 1, Si ≤ S̃i−1, i > i0

Si, Si > S̃i−1, i > i0

. (3.50)

Verbally, at time i0, S̃ takes the next packet whose importance value is more
than vmin (if no such packet, selects the freshest one) and then selects con-
secutive packets irrespective of their importance values while it cannot choose
anything that S chooses. If S̃ can choose the packet that S chooses at some
time instant after i0, it does so forever. Since S̃j ≥ Sj for all j, we have for all
i

1
i

i∑
j=1

(Tj − S̃j) ≤
1
i

i∑
j=1

(Tj − Sj), (3.51)

and consequently ∆(S̃)
e ≤ ∆(S)

e . For i > i0, if Si = S̃i, then

1
i

i∑
j=1

D(V Tj , S̃j−1, S̃j) ≤
1
i

i∑
j=1

D(V Tj , Sj−1, Sj). (3.52)

This is because Vs ≤ Vs̃ for every s ∈ {S1, . . . , Si} and s̃ ∈ {S̃1, . . . , S̃i}. If
Si < S̃i at i > i0, then S̃ must have skipped at most S̃i0 − Si0 packets with



3.8. Appendix 63

minimum importance. Then we have

1
i

i∑
j=1

D(V Tj , S̃j−1, S̃j) ≤
1
i

i∑
j=1

D(V Tj , Sj−1, Sj) + 1
i
vmin(S̃i0 − Si0)

≤ 1
i

i∑
j=1

D(V Tj , Sj−1, Sj) + 1
i
vmin(Ti0 − Si0).

(3.53)

Since Ti0 − Si0 is almost surely finite, 1
i
(Ti0 − Si0)→ 0. Therefore

lim sup
i→∞

1
i

i∑
j=1

D(V Tj , S̃j−1, S̃j) ≤ lim sup
i→∞

1
i

i∑
j=1

D(V Tj , Sj−1, Sj) (3.54)

and consequently D(S̃) ≤ D(S).

3.8.3 Proof of Property 3.1
In the following proofs, g(b, s) refers to the one step costs of the MDP and
Eb,s[h(B′)] refers to the expected relative value of the next state accessed
under the action s, i.e., g(b, s) = ∑s−1

k=1 bk + η(l(b) − s) and Eb,s[h(B′)] =
E[h(b≥s+1‖V Z)].

(i) Let q := b‖b′. Suppose s∗(q) 6= l(b) + s∗(b′) and s∗(q) > l(b). Then
by the optimality condition, s∗(q) = arg mins≤l(q) g(q, s) +Eq,s[h(B′)] =
l(b)+arg mins≤l(b′) g(b′, s)+Eb′,s[h(B′)] = l(b)+s∗(b′), which contradicts
the statement. Therefore, if s∗(q) > l(b), then s∗(q) = l(b) + s∗(b′).

(ii) We use u instead of b′ for notational convenience and let q := b‖u. The
second upper bound is easy to show as the policy is restricted to s > l(b).
To prove h∗(u) ≤ h∗(q), we will find a lower bound for h∗(q) − h∗(u)
and show that it is non-negative. Observe that

h∗(q)− h∗(u) = h∗(q)−min
s
Eu,s[g(s,u) + h∗(U ′)− λ∗]

≥ h∗(q)− Eu,s[g(s,u) + h∗(U ′)− λ∗]
= Eq,s∗(q)[g(s, q) + h∗(Q′)]− Eu,s[g(s,u) + h∗(U ′)]

(3.55)

for any s. Therefore, changing the actions that govern the Markov chain
{Ui} leads to further lower bounds. Now, we will use a similar coupling
idea as done in the proof of Lemma 3.1. Consider the two Markov chains
above where the first one starts from q and the other from u. Assume
the two processes are coupled with having the same future arrivals for
the consequent buffer states. Moreover, the former chain is controlled
with its respective optimal policy s∗, whereas the latter is controlled as
follows: If possible, choose the data chosen by the first process; otherwise
choose the oldest data possible. Denote this policy as s̃ and let {Qi}
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be the Markov chain pertaining to the former process. Then these two
processes will follow the paths

q = Q0
s∗(Q0)→ Q1

s∗(Q1)→ Q2 → . . .→ Qτ

u = U0
s̃(U0)→ U1

s̃(U1)→ U2 → . . .→ Uτ

(3.56)

and eventually end in the same state Qτ = Uτ after a random time τ .
This is because all possible policies induce the same recurrent class as
mentioned in Lemma 3.2. Replacing h∗(Q′), h∗(U ′) in (3.55) several
times, we obtain

h∗(q)− h∗(u) ≥ E

[
τ∑
i=0

g(Qi, s
∗(Qi))− g(Ui, s̃(Ui))

]
. (3.57)

Observe that the right-hand side is equal to the expectation of the dif-
ference of accumulated costs incurred by the two processes until they
reach the same state. Note that Ui is a suffix of Qi for all i. Therefore,
the age penalty of the former process will be greater. Furthermore, the
latter process chooses every data that can be chosen by the former one,
except the ones in the first portion b, whose miss do not contribute to
the distortion penalty of the latter process. Since both accumulated age
and distortion penalties of the former process {Qi} cannot be smaller
than those of {Ui}, the expectation in (3.57) is non-negative. Hence the
proof is complete.

3.8.4 Proof of Theorem 3.3
For simplicity, we prove the case with |V| = 3 and we set vmin = 1 without loss
of generality. The same proof technique may be extended to larger |V|, e.g.,
with induction.

Assume the policy iteration algorithm is executed with a sufficiently large
buffer size M . We first show that packets of importance v2 are never chosen
by the optimal policy if choosing them incurs an age penalty greater than
K2 := dv2−1

ηµZ
e, i.e., they must not be generated more than K2 time slots ago.

We use the same coupling idea of two controlled Markov chains with different
policies, as we have done in the proofs of Lemma 3.1 and Property 3.1(ii).

Take a state b ∈ V≤M with length greater than K2, with b1 = v2 (this
equality is without loss of generality) and suppose s∗(b) = 1. We will show that
there is a better strategy than s∗(b) = 1, which contradicts the optimality of
s∗. Consider now s̃(b) = min{k > 1 : bk > 1}, i.e, the index of first non-1 data
(whose importance is greater than 1) in the remaining buffer. Optimality of s∗
requires the following inequality to hold (the argument b of s̃(b) is omitted),
otherwise the policy iteration would not have converged.

E
[
η(s̃− 1) + h∗(bl2‖V Z)− h∗(bls̃+1‖V Z)

]
− 1
µZ
v2 ≤ 0 (3.58)
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Now, consider two coupled processes {Qi}, {Ui} with Q0 := (bl2‖V Z),
U0 := (bls̃+1‖V Z) where the actions of {Ui} are modified. The modification
will be the same as in the proof of Property 3.1(ii): Choose the packet chosen
by the first process if possible; otherwise choose the oldest possible. As shown
in the proof of Property 1(ii), altering the policy increases the expected relative
value. Consequently, we obtain a lower bound to the expectation in (3.58).
Again, as every policy has the same recurrent class, the two processes coincide
with probability one. When they coincide, one of the following occurs:

(i) {Qi} misses a non-1 data that is taken by {Ui}. Then the accumulated
cost is greater than 1

µZ
v2.

(ii) {Ui} takes a packet of importance 1 at the end. Then the accumulated
penalty incurred by age will be greater than ηl(b) (using the fact that
{Ui} remains a suffix of {Qi} for all i) and the accumulated cost from
distortion will be greater than 1

µZ
(since {Ui} takes an extra packet

of importance 1). The total cost will be greater than ηl(b) + 1
µZ
≥

ηK2(η) + 1
µZ
≥ 1

µZ
v2.

Therefore, we conclude that 1
µZ
v2 is a lower bound to the expectation in

(3.58). Hence the left-hand side of (3.58) can never be negative and s∗ cannot
be optimal — if it is equal to zero, then s∗ and s̃ are indifferent, so one can
drive the process with s̃.

Now we proceed in a similar fashion to prove the case for v3. Consider a
state b with l(b) > K3 := dv3−1

ηµZ
e, b1 = v3 and suppose s∗(b) = 1. Choose

s̃(b) = min{k > 1 : bk > 1, l(b)− k < K2 if bk = v2}, i.e., take the first non-1
data but with the constraint that if it has importance v2, it must be generated
within the most recent K2 time slots.

Define {Qi} and {Ui} in a similar fashion. The modification done to the
actions on {Ui} will have a minor difference compared to the previous case.
Again, if Ui cannot choose a data that is chosen by Qi, it chooses the first
non-1 data but with the following extra condition: If its importance is v2, take
it if has been generated less than K2 time slots ago; otherwise skip it and
do the same for the next non-1 data. This modification ensures that Ui will
choose every possible data that may be chosen by Qi. When the two processes
coincide, one of the following occurs:

(i) {Qi} misses v3 that is taken by {Ui}. Then the accumulated cost is
greater than 1

µZ
v3.

(ii) {Qi} misses v2 that is taken by {Ui}. Then the accumulated cost
incurred by age will be greater than η(l(b) − K2) (as {Ui} has re-
mained a suffix of {Qi} and has taken this v2, whose index must be
greater than l(b) − K2). The accumulated cost from distortion will be
greater than 1

µZ
v2. Consequently, the total cost will be greater than

η(l(b)−K2) + 1
µZ
v2 ≥ v3−1

µZ
− v2−1

µZ
+ 1

µZ
v2 = 1

µZ
v3.
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(iii) {Ui} takes a 1 at the end. Then the accumulated cost incurred by age
will be greater than ηl(b) (again, using the fact that {Ui} remains a
suffix of {Qi}) and the accumulated cost from distortion will be greater
than 1

µZ
(since {Ui} takes an extra 1). The total cost will be greater

than ηl(b) + 1
µZ
≥ 1

µZ
v3.

Similar to the case of v2, the expectation (3.58) can never be negative and
hence s∗ cannot be optimal.

All in all, we have shown that starting the policy iteration algorithm with
a buffer size M > K3, the algorithm terminates with an optimal policy that
does not use more than a buffer size of K3. This implies that the solution of
the Bellman equation lies within buffers of size at most K3.

3.8.5 Policy Update Improvement
As discussed before, the policy update stage of Algorithm 3 can be improved
to run in O(K|V|K) time. Our aim is to improve the calculation of Ch(i)(b, 1)
at step 16 of Algorithm 3. Recall that pz := Pr(Z = z), and qz := Pr(Z ≥ z).
We omit the argument of l(b) for brevity. Let us rewrite Ch(i)(b, 1) by first
conditioning on Z = z as

Ch(i)(b, 1) = η(l − 1) +
∞∑
z=1

pzE[h(i)(b≥2‖V z)]

= η(l − 1) +
K−l∑
z=1

pzE[h(i)(b≥2‖V z)]

+ pK−l+1E[h(i)(b≥2‖V K−l+1)] (3.59)

+
∞∑

z=K−l+2
pzE[h(i)(b≥2‖V z)] (3.60)

and note that for z > K− l+1, h(i)(b≥2‖V z) = b2/µZ +h(i)(b≥3‖V z) since the
length of b≥2‖V z exceedsK. In line with this result, we rewrite the summation
of (3.59) and (3.60) as

κ(i)(b≥2, K) := pK−l+1E[h(i)(b≥2‖V K−l+1)]

+ qK−l+2b2/µZ +
∞∑

z=K−l+2
pzE[h(i)(b≥3‖V z)]

= pK−l(b≥2)E[h(i)(b≥2‖V K−l(b≥2))]

+ qK−l(b≥2)+1b2/µZ +
∞∑

z=K−l(b≥2)+1
pzE[h(i)(b≥3‖V z)] (3.61)

The key observation here is that the last term is equal to κ(i)(b≥3, K) =
κ(i)(parent(b≥2), K). Therefore, we have the recursive relation

κ(i)(b, K) := pK−l(b)E[h(i)(b‖V K−l(b))] + qK−l(b)+1b1/µZ + κ(i)(parent(b), K)
(3.62)
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with the initial condition

κ(i)(δ,K) := qKE[h(i)(V K)] + E[V ]
µZ

E[(Z −K)+]. (3.63)

The recursive relation (3.62) can be implemented exactly the same as the other
updates that take place in lines 17-26 of Algorithm 3. Finally, we have

Ch(i)(b, 1) = η(l − 1) +
K−l∑
z=1

pzE[h(i)(b≥2‖V z)] + κ(i)(parent(b), K). (3.64)

Knowing κ(i)(parent(b), K), both Ch(i)(b, 1) and κ(i)(b, K) can be calculated
in O(|V|K−l) steps. Consequently, the total amount of calculations done for
all length-l states is O(|V|K), and consequently for the depth-K tree T , the
amount of calculations done is O(K|V|K).

3.8.6 Closed-Form Expressions for the Simple Strategies
S1 — Send the oldest important data among the most recent K

For a buffer b, let s be the index of the first important data among the K
most recently arrived packets. Let a = (K ∧ l(b)) − s + 1, i.e., the number
of fresher items plus 1; and if there is no important data among the K most
recent packets, set a = 0. Let Ai be the value of a at time instant i. It can be
verified that the process {Ai} is a Markov chain with state space {0, 1, . . . , K}.
Let pa,a′ denote the transition probability from state a to a′; and πa denote the
stationary probability of state a. Recall that Z is a geometric random variable
and denote p := Pr(Z = 1) and q := Pr(V = v2). Let x̄ := 1− x.

Now, let us calculate pa,a′ . Observe that when we are at state a, the
first element in the buffer is selected and the remaining a − 1 elements are
untouched and need not be known. Conditioned on the next speaking time
being a′− a < z ≤ K − a, the probability that the next state being a′ is equal
to q̄z−(a′−a)−1q. This is because the first z − (a′ − a)− 1 elements must be v1
and the next should be v2. For z > K−a, since we only check the most recent
K data in the buffer, the first K − a′ must be v1 and the next one should be
v2. Thus we obtain the probability as q̄K−a′q. Averaging over z, we have

pa,a′ =
∞∑

z=a′−a+1
p̄z−1pq̄(z−a′+a−1)∧(K−a′)q. (3.65)

With a similar reasoning, we calculate pa′,a as

pa′,a =
∞∑
z=1

p̄z−1pq̄(z+a′−a−1)∧(K−a)q

=
∞∑

z=a′−a+1
p̄z−a

′+a−1pq̄(z−1)∧(K−a)q =
(
q̄

p̄

)a′−a
pa,a′ .

(3.66)
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It is easy to see that p0,a = p1,a as the buffer is emptied in both cases; and
pa,0 = pa,1

q̄
q
as the only difference between the transition from state a to state

0, or to state 1 is the most recent element being v1 or v2.
We now claim that the chain is reversible. The claim is easily verified by

noting that the distribution (πa : a = 0, . . . , K) described by

π0 = (q̄/q)π1, πa = (q̄/p̄)K−aπK , a = 1, . . . , K − 1

with
πK =

(
1− q̄

p̄

)
/
(
1− p

q

(
q̄
p̄

)K)
(3.67)

satisfies the detailed balance equations πapa,a′ = πa′pa,a′ .
The average excess age is then calculated straightforwardly:

∆(S1)
e (K) =

K∑
k=1

(k − 1)πk = K − 1(
1− p

q

(
q̄
p̄

)K) −
q̄
p̄

(
1−

(
q̄
p̄

)K)
(
1− p

q

(
q̄
p̄

)K)(
1− q̄

p̄

) . (3.68)

For q = p, one takes q̄
p̄
→ 1 in (3.68) to obtain ∆(S1)

e = (K−1)K
2(K+ p̄

p
) .

The average distortion is calculated as follows: Unimportant packets are
sent π0 fraction of the speaking times, and the remaining time is allocated to
the transmission of important packets. Hence, unimportant packets are sent
pπ0 fraction of the time and important packets are sent p(1 − π0) fraction of
the time. Consequently,

D(S1)(K) = (q̄ − pπ0)v1 + (q − p(1− π0))v2. (3.69)

S2 — Send the newest important data among the most recent K

Compared to the other strategies, the analysis will be relatively simpler. For
a buffer b, let s be the index of the newest important data among the K
most recent and let the state be a = l − s + 1. If there is no important data
among the K most recent, set a = 0. Observe that regardless of the value of a,
the packets (if any) that remain the buffer after transmission are of minimum
importance and will be ignored at the next speaking time. Hence, at the next
speaking time, the next state a′ will not depend on the current state a, and
we have an i.i.d. process. Let πa be the probability of the next state being
equal to a. Conditioned on the next speaking time z, this probability is equal
to qq̄a−11{a ≤ z}. Hence, for 0 < a ≤ K

πa =
∞∑
z≥a

qq̄a−1p̄z−1p = q(p̄q̄)a−1, (3.70)

and π0 = 1−∑K
a=1 πa = q̄p+q(p̄q̄)K

1−p̄q̄ . The age and distortion are calculated similar
to (3.68) and (3.69).
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S3 — Send the newest important data that has arrived more than K
slots ago. If there is no such data, send the oldest important one

We set the state associated to a buffer b as follows: If b does not contain an
important data arrived more than K time slots ago, set a = (K ∧ l(b))− s+ 1
as the state; and if there is no important data in the buffer, set a = 0. Note
that this is exactly the same as in S1. If b does contain an important data
that has arrived more than K time slots ago, set a = K + 1. Hence the state
space will be {0, 1, . . . , K + 1}. Similar to the analysis of S1, {Ai} will be
a Markov chain. We want to calculate the transition probabilities pK+1,a for
0 < a < K + 1. Since at state K + 1, an important data has arrived more
than K slots ago, b is of the form b = [v2, v1, . . . , v1, . . .︸︷︷︸

K

], where the last K

data need not be known. Conditioned on the speaking time z, the probability
of ending up in state a is then should be q̄z+K−aq. Consequently,

pK+1,a =
∞∑
z=1

p̄z−1pq̄K−a+zq = pqq̄K−a+1

1− p̄q̄ . (3.71)

Now, we aim to find pa,K+1 for 0 < a < K + 1. Since b is of the form
b = [. . . , v2, . . .︸︷︷︸

a−1

], and the last a−1 data need not be known, the next speaking

time should be greater than K − a+ 1. Moreover, there must be at least one
important data among the first z − (K − a+ 1). Then, we obtain

pa,K+1 =
∑

z>K−a+1
p̄z−1p(1− q̄z−(K−a+1)) = qp̄K−a+1

1− p̄q̄ . (3.72)

Calculation of pa,a′ , 0 < a ≤ a′ < K + 1 is similar to the one in S1. Since
b = [. . . , v2, . . .︸︷︷︸

a−1

], the next speaking time should be greater than a′ − a, and

the first z − (a′ − a + 1) data must be unimportant while the z − (a′ − a)th

data must be important. Thus,

pa,a′ =
∑

z>a′−a
p̄z−1pq̄z−a

′+aq = pqp̄a
′−a

1− p̄q̄ . (3.73)

A similar analysis reveals that for 0 < a′ ≤ a < K + 1,

pa,a′ =
∞∑
z=1

p̄z−1pq̄z−a
′+a−1q = pqq̄a−a

′

1− p̄q̄ . (3.74)

Finally, as we discussed in the analysis of S1, p0,a = p1,a and pa,0 = pa,1
q̄
q
.

Hence, we have found all the transition probabilities. We will verify that {Ai}
is a reversible Markov chain. The detailed balance equations for the state pairs
(a,K + 1) with a > 0 require the stationary distribution π to satisfy

πK+1pK+1,a = πapa,K+1 (3.75)
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and thus we find πa = p
(
q̄
p̄

)K+1−a
πK+1 for a > 0. Detailed balance equations

for the state pair (0, 1) further yield π0 = (q̄/q)π1 = pq̄
q

(
q̄
p̄

)K
πK+1. One can

easily verify that this choice satisfies not only (3.75) but all the detailed balance
equations. Thus, we have verified the reversibility of the chain and found its
stationary distribution.

Let us start the chain with the stationary distribution and let ∆i := l(Bi)−
s(Bi) be the instantaneous excess age at the ith speaking time. If 0 ≤ Ai ≤ K,
then ∆i = (Ai−1)∨0. When Ai = K+1, however, ∆i is random. It turns out
that the distribution of ∆i−(K−1) conditioned on Ai = K+1 is geometrically
distributed. To see this, observe

Pr(∆i = K − 1 + z′|Ai = K + 1)

= Pr(∆i = K − 1 + z′, Ai = K + 1)
πK+1

= 1
πK+1

K+1∑
a=1

πa
∑

z≥K−a+1+z′
p̄z−1pqq̄z

′−1 + π0

πK+1

∑
z≥K+z′

p̄z−1pqq̄z
′−1

= 1
πK+1

K+1∑
a=1

πap̄
K−a+z′qq̄z

′−1 + π0

πK+1
p̄K+z′−1qq̄z

′−1

=
K+1∑
a=1

p1{a≤K}
(
q̄
p̄

)K+1−a
p̄K−a+z′qq̄z

′−1 + p q̄
q
( q̄
p̄

)K
p̄K+z′−1qq̄z

′−1

= (p̄q̄)z′−1(1− p̄q̄).

(3.76)

Then, the average excess age is found as

∆(S3)
e (K) =

K∑
k=1

(k − 1)πk + πK+1
(

1
1−p̄q̄ +K − 1

)
. (3.77)

The average distortion is calculated the same as in (3.69).

3.8.7 Proof of Corollary 3.2

Denote the stationary probabilities of each state l as πl and pi := Pr(Z = i) =
pp̄i−1 with p̄ := 1 − p. Assume τ > N for the moment. The derivation for
τ ≤ N will easily follow.

Let sji := ∑j
l=i πl and si := s∞i . The stationary probabilities are the solution
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to the linear system

π1 = p1s
N
1

π2 = p2s
N
1 + p1πN+1

. . .

πτ = pτs
N
1 + pτ−1πN+1 + . . .+ p1πN+τ−1

πτ+1 = pτ+1s
N
1 + pτπN+1 + . . .+ p1sN+τ

. . .

πτ+j = pτ+js
N
1 + pτ+j−1πN+1 + . . .+ pjsN+τ

. . .

(3.78)

Observe that
πj+1 = p̄πj + pπN+j, 1 ≤ j ≤ τ − 1 (3.79)

and
πj+1 = p̄πj, j ≥ τ + 1. (3.80)

Summing up the equalities in (3.79), with indices up to j + 1, we obtain

sj+1
2 = p̄sj1 + psN+j

N+1 (3.81)

and hence
πj+1 + psj2 = p̄π1 + psN+j

N+1. (3.82)

Note that the first equation in (3.78) implies p̄π1 = psN2 and thus we get

πj+1 + psj2 = psN2 + psN+j
N+1 (3.83)

and
p̄πj+1 = psN+j

j+2 , 1 ≤ j ≤ τ − 1, (3.84)

which implies for j = τ − 1

πτ = p
N+τ−1∑
k=1

πτ+k = πτ+1(1− p̄N−1)
p̄

(3.85)

where the last equality follows from (3.80). Now repeated application of (3.79)
gives

πτ−j = πτ+1
1− (1 + jp)p̄N−1

p̄j+1 , 0 ≤ j ≤ N − 1. (3.86)

Our aim is now to find all stationary probabilities in terms of πτ+1. With the
above, we are able to find πτ−j, 0 ≤ j ≤ N−1 in terms of πτ+1. For j > N−1,
we try to observe a pattern. First, try to calculate πτ−N by (3.79), which gives

πτ−N = πτ+1
1− (1 +Np)p̄N−1 + pp̄2(N−1)

p̄N+1 . (3.87)
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Once more, repeated application of (3.79) gives

πτ−N−j = πτ+1
1− (1 + (N + j)p)p̄N−1

p̄N+j+1 + πτ+1
p(∑j

k=0(1 + kp))p̄2(N−1)

p̄N+j+1

(3.88)

for 0 ≤ j ≤ N − 1. Doing the same procedure, we observe the following
pattern: Let S(0)

j := (1 + jp) and S
(n)
j := ∑j

k=0 S
(n−1)
k for n ≥ 1. Also let

S
(n)
j = 0 for j < 0. Then,

πτ−j = πτ+1
1 +∑dτ/Ne

k=0 (−1)k+1S
(k)
j−kNp

kp̄(k+1)(N−1)

p̄j+1 . (3.89)

Finally, since the probabilities sum up to one, we have

1 = sτ1 + sτ+1 = sτ1 + πτ+1

p

= πτ+1

τ−1∑
j=0

1 +∑dτ/Ne
k=0 (−1)k+1S

(k)
j−kNp

kp̄(k+1)(N−1)

p̄j+1 + πτ+1

p

(3.90)

and therefore

πτ+1 =
[
τ−1∑
j=0

1 +∑dτ/Ne
k=0 (−1)k+1S

(k)
j−kNp

kp̄(k+1)(N−1)

p̄j+1 + 1
p

]−1

. (3.91)

After calculating all πjs, it is straightforward to obtain expressions for ∆e and
D as

∆e =
τ−1∑
j=1

jπN+j + τ
∞∑
j=τ

πN+j =
τ−1∑
j=1

jπN+j + τπτ+1p̄
N−1

p
. (3.92)

and
D = µV

∞∑
j=1

jπτ+N+j = µV πτ+1p̄
N

p2 . (3.93)



Age-Optimal Causal
Labeling of Memoryless
Processes1 4
As in the previous chapter, think of a component in the network, which receives
data at a higher rate than it is allowed to send. In this case, one may ask
(i) what and (ii) when to send with an aim to optimize AoI? Studying the
first question may need classification of data according to their importance,
which we have already done. The second question is addressed for example
in [50, 51, 79], and in [38–40, 84–86] when the throughput is limited due to
energy constraints. All of these studies assume a priori knowledge of the
network dynamics, e.g., the data is known to be conveyed through a single-
server queue [70, 71], or controlled by an external device as in the previous
chapter. In this chapter, we will assume that the sender is oblivious of the
network dynamics except the limit on the output data rate.

We focus on arrivals modeled as a memoryless point process with an arrival
rate greater than the limited output rate. The sender thus needs to filter out
some of the arrivals. We call this filtering operation a ‘labeling procedure’,
where an arrival is passed through the network as soon as it is labeled. We
consider causal labelings, i.e., a data can be labeled only after it has arrived.
These labeling procedures relate to both questions (i) and (ii) above. As the
sender is oblivious of the network dynamics, we study the tradeoff between the
rate and the age of the labeled process, which are to be defined in Section 4.1.
The reader should keep in mind that in this chapter the packets are treated
with equal priority, as opposed to Chapter 3.

The outline of this chapter is as follows: In Section 4.1, we provide the
problem definition in a discrete-time setting. The rate-age tradeoff is related
to an appropriate Markov Decision Problem (MDP) formulation. In Section
4.2, we study a finite-state approximation which allows to characterize the
optimal labeling procedures for the original one. The optimal procedures turn

1The content of this chapter is based on [52].
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out to be rather simple: Wait T time slots and label the next arrival, where T
is tuned to match the output rate. In Section 4.3, we extend the results to a
continuous-time model, where the arrivals are modeled as a Poisson process.

4.1 Problem Definition
The problem definition will be very similar to the one in Chapter 3, and the
notation will be the same. For convenience, we will still provide a self-contained
problem formulation for the causal labeling problem. Consider a discrete-
time memoryless point process, where the interarrival times Z1, Z2, . . . are
independent and identically distributed (i.i.d.) with Geometric distribution —
recall that as a result of our previous explorations in Section 2.2, we have stated
that in discrete-time, the memoryless arrival process should have Geometric
interarrival times. Suppose their success probability is p, which is also equal
to the rate of the arrival process. The arrivals can also be modeled as i.i.d.
Bernoulli random variables Xt with success probability p, with the natural
filtration {Ft} where Ft := σ(X1, . . . , Xt). For convenience assume X0 = 1.
We define a causal labeling on the point process as a sequence of (possibly
random) labeling functions adapted to the filtration {Ft} as St : {0, 1}t →
{1, . . . , t}∪{?}, with the following restriction that if St 6= ?, then (i) XSt must
be 1 and (ii) St 6= Sτ for all τ < t. Observe that as opposed to the previous
chapter, we do not impose order-preserving strategies. Arrival XSt is labeled
at time t, and multiple labelings of a single point are not allowed. We assume
S0 = 0.

Given a procedure {St} := S, we define the rate R as the expected long-
term average of the number of labelings. More precisely,

R(S) := E

[
lim sup
t→∞

1
t

t∑
τ=1

1{St 6= ?}
]
. (4.1)

Define the most recent labeling at time t asMt := max{Sτ : 0 ≤ τ < t, Sτ 6= ?}
with M0 = 0. The instantaneous age ∆(S)

t and average age ∆(S) are then
defined as

∆(S)
t := t−Mt, ∆(S) := E

[
lim sup
t→∞

1
t

t∑
τ=1

∆(S)
τ

]
. (4.2)

Sometimes we omit the superscript (S) from the above expressions for brevity.
At this point, it might be useful to give the following examples of different
labeling procedures to demonstrate what they resemble in practice.

Example 4.1. Label every point upon arrival with probability α. This labeling
procedure constitutes a renewal process whose interarrival times W are Geo-
metric random variables with parameter αp. Hence, the rate and age of this
renewal process are R = αp and ∆ = E[W (W+1)]

2E[W ] = 1
αp

= 1
R
.
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Example 4.2. Label every kth point upon arrival. Likewise, this procedure
yields a renewal process whose interarrival times are sum of k Geometric ran-
dom variables with success probability p. Hence, R = p

k
, and ∆ = k+1

2p =
1+1/k

2
1
R
, which is strictly smaller than the age resulting from the labeling pro-

cedure in Example 1 for k > 1. This labeling procedure can be extended to
cover the rates R = pr for rational r and the resulting age can be shown to be
smaller than the one in Example 1 as well. For the extension, see Appendix
4.5.1.

We are interested in finding the achievable region of possible (R,∆) pairs
with causal labeling procedures. More precisely, we are interested in finding
the boundary curve of such pairs. Given the large class of possible labelings,
this search seems difficult at first sight. However, we can eliminate some of
the labeling procedures to make the search tractable.

Definition 4.1 (Strictly Increasing Procedures). A labeling procedure S is
strictly increasing if its subsequence {St : St 6= ?} is strictly increasing.

Lemma 4.1. For any labeling procedure S, there exists a strictly increasing
modification S̃ such that R(S̃) ≤ R(S) and ∆(S̃) = ∆(S).

Proof. Recall thatMt is the most recent labeling at time t, withM0 = 0. Take
S̃t = St if St = Mt+1; otherwise S̃t = ?. Then, ∆(S̃)

t = ∆(S)
t and R(S̃)

t ≤ R
(S)
t ,

where R(S)
t = ∑t

τ=1 1{Sτ 6= ?}. Thus, R̃ ≤ R and ∆̃ = ∆.

Lemma 4.1 can be interpreted as follows: At time t, a strictly increasing
modification of S will consider arrivals after the most recent labeling Mt, and
the (R,∆) pair pertaining to this modification will be closer to the boundary
curve we are trying to find. Hence we may focus on strictly increasing labelings
that omit arrivals before and includingMt. Observe that the strictly increasing
labeling procedures ensure that packets arrive in-order, just as in chapter 3.

We further restrict the space of labeling procedures we are interested in by
introducing the lemma below.

Lemma 4.2. For any t1 < t2 ≤ τ such that Xt1 = Xt2 = 1, and for every
strictly increasing S with Sτ = t1, there exists a strictly increasing modification
S̃ with S̃τ = t2 and ∆(S̃)

t ≤ ∆(S)
t , R(S̃)

t ≤ R
(S)
t . Consequently, R(S̃) ≤ R(S) and

∆(S̃) ≤ ∆(S).

Proof. Define S̃ such that S̃t = St for t < τ , S̃τ = t2 and for all t > τ ,

S̃t =
St, St > t2

?, else
. (4.3)

In words, whenever an arrival later than t2 is labeled by S, it is also labeled by
S̃. Observe M̃t ≥Mt and R(S̃)

t ≤ R
(S)
t , thus ∆(S̃) ≤ ∆(S) and R(S̃) ≤ R(S).
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Set the index of the freshest arrival as It := max{τ ≤ t : Xτ = 1}. Observe
that Lemmas 4.1 and 4.2 imply

Corollary 4.1. For any S, there exists a strictly increasing modification S̃
such that S̃t = It or S̃t = ? and R(S̃) ≤ R(S), ∆(S̃) ≤ ∆(S).

Corollary 4.1 tells that one should examine the procedures that label only
the freshest arrival. Let SF be the space of such labeling procedures. The
following theorem gives a lower bound to CR + ∆, C > 0 for a specific class
(square-integrable, as in Chapter 3) of labeling functions and hence gives a
lower bound to the boundary curve of feasible (R,∆) region.

Theorem 4.1. For {St} ∈ SF such that suptE[∆2
t ] <∞,

CR + ∆ ≥ lim sup
t→∞

1
t

t∑
τ=1

E
[
C1{Sτ 6= ?}+ ∆τ

]
. (4.4)

Proof. The machinery is very similar to the proof of Theorem 3.2. Since
1
t

∑t
τ=1 1{St 6= ?} is bounded for all t, we directly apply Reverse Fatou’s lemma

to the first term on the left-hand side and obtain

R ≥ lim sup
t→∞

1
t

t∑
τ=1

Pr{St 6= ?}.

Since suptE[∆2
t ] is finite, suptE

[(
1
t

∑t
τ=1 ∆t

)2
]
is also finite and constitutes

a uniformly integrable family; allowing the use of Reverse Fatou’s lemma [83].
Thus, ∆ ≥ lim supt→∞ 1

t

∑t
τ=1E[∆τ ]. Lastly, we observe

CR + ∆ ≥ lim sup
t→∞

C

t

t∑
τ=1

Pr{St 6= ?}+ lim sup
t→∞

1
t

t∑
τ=1

E[∆τ ]

≥ lim sup
t→∞

1
t

t∑
τ=1

E
[
C1{Sτ 6= ?}+ ∆τ

]
.

The expression on the right-hand side of (4.4) contains a summation whose
τ th term is Fτ -measurable. This tells that for any {St}, this expression is the
average reward (cost, in our case) of a Markov Reward Process with state space
B := {0, 1}∗ and the problem of choosing an appropriate labeling procedure
{St} is a Markov Decision Problem (MDP), which is formulated as finding the
infimal limsup average cost

λ∗ := inf
{St}∈SF

J{St}(C), where

J{St}(C) := lim sup
t

1
t

t∑
τ=1

E
[
C1{Sτ 6= ?}+ ∆τ

]
.
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In the current problem formulation, and given the definition of the labeling
procedures at the beginning of this manuscript, the states and actions seem
to be complicated. However, Corollary 4.1 tells that it is sufficient to consider
only two actions: (i) label the freshest arrival or (ii) wait, which we denote by
l and w respectively. Since all arrivals before It are ignored at time t, we can
reduce the state space to binary strings Bt of length t−Mt, with its (It−Mt)th

element being 1 and its other elements being 0, e.g., [000100].

Remark 4.1. At this point, we have not imposed that the labeling strategies
depend only on the current state Bt. The procedures can depend on the whole
past (also called history-dependent). Thus, one may argue that by reducing the
state space, the history may not be recovered. However, this is not true as one
is able to construct X1, . . . , Xt from B1, . . . ,Bt.

Note that Bt’s are binary strings which contain at most a single 1. We can
represent such a string by a pair (m,n) of non-negative integers, where m is
the number of elements from the beginning of the string until and including
the 1, and n is the remaining number of zeros. For instance, the buffer content
[000100] becomes (4, 2); and [000] becomes (0, 3). One can also view n as the
instantaneous age of the freshest arrival, and m as the time difference between
the most recent labeling and the freshest arrival plus one.

Once more, as in Chapter 3, we encounter a countable-state average-cost
MDP [81]. In the next section, we give a finite-state approximation to the
problem with an aim to use the methods for finite-state problems; and as we
will see, the finite-state formulation fortunately allows us to characterize the
optimal strategies for the countable-state model as well.

4.2 Finite-State Approximation
Assume ‘phantom’ arrivals are generated wheneverm+n = L, with no sending
cost, i.e., do not contribute to R. With a similar proof as in Lemma 4.2, one
can show that if the length of the buffer reaches L, procedures that label the
phantom arrival will have a smaller ∆ compared to the procedures that wait
instead. Hence, the boundary curve of pairs pertaining to such procedures
will lie under the original (R,∆) curve. This truncated problem is finite state.
Furthermore, since the state (0,L) is recurrent under any policy — because the
Geometric distribution has infinite tail and thus the buffer length reaches L
infinitely often — the problem is unichain, i.e., every policy induces a Markov
Chain with a single recurrent class [81]. Define

λ∗L := inf
S∈SF,L

J (S)(C)

where SF,L is the set of labeling procedures that only label the freshest arrival
and always label the phantom arrival. Observe that λ∗L is non-decreasing with
L. Moreover, the sequence {λ∗L} has a limit. To see this, take the strategy
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‘label every point upon arrival’ in the untruncated problem. The average cost
corresponding to this strategy will be C

E[Z] + E[Z(Z+1)]
2E[Z] = Cp + 1/p. Then,

λ∗L ≤ Cp + 1/p for all L. Since {λ∗L} is bounded from above and is non-
decreasing, it has a limit which we denote by λ∗∞.

At this moment, the problem has become finite state and unichain; and
it is known that there exists an optimal stationary policy for such problems.
One may therefore focus on stationary policies and their evaluation methods.
A stationary policy s : N×N→ {l, w} in our problem is evaluated by solving
for λ, h in the system of linear equations below. [81]

h(m,n) + λ =



m+ n+ C

+ ph(n+ 1, 0)
+ qh(0, n+ 1)

, s(m,n) = l, m+ n < L, m ≥ 1

m+ n

+ ph(m+ n+ 1, 0)
+ qh(m,n+ 1)

, s(m,n) = w, m+ n < L

L+ ph(1, 0)
+qh(0, 1)

, m+ n = L

(4.5)

where q := 1 − p. We choose the state (1, 0), i.e., the buffer content [1],
as the reference state and set h(1, 0) = 0. λ gives the average cost of the
unichain stationary labeling policy and h(m,n) is called relative value of the
state (m,n) [81].

Remark 4.2. h(m,n)+λ is equal to the one-step cost plus the expected relative
value of the next state depending on the action. E.g., if s(m,n) = l, then the
one-step cost is m+n+C and the next state will be (n+ 1, 0) with probability
p and (0, n + 1) with probability q. Thus for any policy, the state transitions
are inferred from (4.5).

Let us recall the policy updates — given in Algorithm 1. Choose a station-
ary policy s(m,n), evaluate it by solving (4.5) and obtain the relative values
h(m,n), m+n ≤ L together with the average cost λ. Given the relative values,
take a state (m0, n0), m0 + n0 < L, m0 ≥ 1 and consider the policy

s′(m0, n0) =


l,

C + ph(n0 + 1, 0) + qh(0, n0 + 1)
≤ ph(m0 + n0 + 1, 0) + qh(m0, 1)

w, else
(4.6)

and s(m,n) = s′(m,n) for all other states. Now, solve (4.5) with respect to
s′(m,n) to obtain λ′. It is known that λ′ ≤ λ [81], i.e., the policy s is updated
to a better policy s′. In fact, if one does the above procedure not only for
(m0, n0), but also for every possible state, and then solves (4.5), the procedure
is the well-known policy iteration algorithm given in Algorithm 1 of chapter 3.
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We aim to characterize the optimal strategies by using policy updates as a
tool. Instead of direct application of the generic policy iteration algorithm, we
consider the procedure described above where at kth step we choose a single
state (mk, nk), update s(mk, nk) and solve (4.5). Denote the average cost at
the end of kth step as λ(k)

L , denote the updated policy and the relative values
as s(k) and h(k) respectively.

Start the procedure with the initial policy ‘label every point upon arrival’.
That is, s(0)(m,n) = l if m > 0 and n = 0; otherwise it is equal to w. Note
that s(0)(0, 0) = w and although the state (0, 0) will never be encountered
according to our formulation, it provides convenience in the description of the
procedure. The average cost corresponding to this policy is λ(0)

L ≤ Cp+ 1/p.
At kth step, choose (mk, nk) = (k, 0). Apply the update rule in (4.6) to

obtain

s(k)(k, 0) =
l, C ≤ d(k−1)(k, 0) or k = L

w, else
(4.7)

where

d(k−1)(k, 0) :=
(
ph(k−1)(k+1, 0)+qh(k−1)(k, 1)

)
−
(
ph(k−1)(1, 0)+qh(k−1)(0, 1)

)
.

(4.8)
In fact, without solving the linear system in (4.5), it is possible to calculate
d(k−1)(k, 0). Repeated application of (4.5) with h(k−1)(1, 0) = 0 yields

d(k−1)(k, 0) = E[G(k,0)]− λ(k−1)
L E[T (k,0)] (4.9)

where T (k,0) is the time until return to the reference state under policy s(k−1)

if we start from (k, 0) and opt not to label; and G(k,0) is the accumulated cost
until the return. T (k,0) has a truncated Geometric distribution, i.e., T (k,0) =
min{T, L−k} for a geometrically distributed T with parameter p. Observe that
given T (k,0) = t(k,0), the accumulated cost G(k,0) will be equal to ∑t(k,0)+k

τ=k+1 τ +
1{t(k,0) < L − k}C. Therefore, the expectations above can be calculated
straightforwardly and we obtain

d(k−1)(k, 0) = k

p
+ 1
p2 −

εk
p2 −

Lεk
p

+ (1− εk+1)C − λ
(k−1)
L

p
(1− εk) (4.10)

where εk := qL−k. The update rule (4.7) is then equivalent to

λ
(k−1)
L (1− εk)

l
≶
w
k + 1

p
− εk
p
− Lεk − Cpεk+1. (4.11)

Continue the procedure until s(KL)(KL, 0) 6= s(KL+1)(KL + 1, 0) for the first
time for some KL ≥ 0. We are interested in large L as we want to make the
‘phantom’ arrivals as rare as possible. Thus, the limiting behavior of KL is of
interest.
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Lemma 4.3. limL→∞KL =: K exists and is finite. Furthermore,

K =

−1 +

√
1 + 8C + 4q

p2

2 − 1
p

. (4.12)

Proof. See Appendix 4.5.2

Since KL’s are integral, Lemma 4.3 implies the existence of an L1 such that
for all L > L1, KL = K. From now on, assume L > L1 so that the termination
time of our procedure is K. The next step is to show that for m > K and
n = 0, the policy will not updated if L is large enough.

Lemma 4.4. There exists an L2 such that for all L > L2, one obtains a worse
policy by the modification s̃(K)(m,n) = w for any (m,n) such that m > K and
n = 0.

Proof. See Appendix 4.5.3

At this point, we have covered the states given in the region (a) of Figure
41. It only remains to find the optimal actions for states (m,n) with n > 0, i.e.,
regions (b) and (c) in Figure 41. Our procedure did not modify the actions of
these states. Hence, s(K)(m,n) = w for n > 0. Now we show that the actions
of region (b) should remain unchanged.

Figure 41 – States as (m,n) pairs covered until different steps of our analysis.
(a) corresponds to the darkest shaded region and includes the states n = 0
and m + n = L, which are covered with Lemma 4.4. (b) corresponds to the
slightly shaded region including the states n > 0, m ≤ K, m + n < L, which
are covered with Lemma 4.5. The moderately shaded region (c) corresponds
to the remaining states and these states turn out to be transient according to
the Markov Chain induced by s(K).

Lemma 4.5. There exists an L3 such that for all L > L3, one obtains a worse
policy by the modification s̃(K)(m,n) = l for any (m,n) such that m ≤ K and
n > 0.
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Proof. See Appendix 4.5.4

Lemma 4.5 points out an unintuitive result: If an arrival is not labeled upon
arrival, it will remain unlabeled. For instance, suppose an arrival occured at
K − 1. The optimal procedure skips it and waits for the next arrival even
though it occurs very late.

Together with Lemma 4.5 we have covered the regions (a) and (b). Now
observe that for the policy s(K), the states in region (c) are transient since these
states cannot be reached from any other state — check the state transitions
in light of Remark 4.2 to see that transitions from regions (a) and (b) are to
(a) and (b). Therefore, no matter what action is taken at a transient state in
region (c), the average cost remains the same. This completes the proof that
an optimal strategy is indeed s(K) as any of its modification results in a higher
cost.

Let us summarize what we have shown so far: There exists an L′ =
max{L1, L2, L3} such that for all L > L′, the optimal strategy is

s(K)(m,n) =
l, m > K, n = 0
w, else

(4.13)

to which we shall refer as ‘waitK, label next’ strategy. One can easily calculate
λ∗L for L > L′ as

λ∗L =
K(K+1)

2 + K
p
− (L

p
+ 1

p2 )εK + 1
p2 + C(1− εK+1)

K + 1
p
(1− εK)

and thus (recall εk = qL−k)

λ∗∞ = K2 + (2/p+ 1)K + 2/p2 + 2C
2(K + 1/p) .

Since λ∗L ≤ λ∗ for all L, λ∗∞ ≤ λ∗. Moreover, λ∗∞ can be achieved via ‘wait
K, label next’ strategy in the untruncated problem. Therefore λ∗∞ ≥ λ∗, and
thus λ∗∞ = λ∗.

The ‘wait K, label next’ strategy satisfies the square integrability condition
in Theorem 4.1, i.e., suptE[∆2

t ] <∞. To see this, observe that at time t, the
previous labeled arrival must have arrived at most K + Z time slots ago.
Hence, we obtain E[∆2

t ] ≤ E[(K + Z)2] = (K + 1
p
)2 + q

p2 < ∞ for all t.
Furthermore, this strategy is stationary and constitutes a renewal process,
which implies R = limt

1
t

∑t
τ=1E[C1{Sτ 6= ?}] and ∆ = limt

1
t

∑t
τ=1E[∆(τ)],

thus CR + ∆ = λ∗. This finally proves

Theorem 4.2. The boundary of the feasible region of (R,∆) pairs is charac-
terized as the interpolation of the set of pairs {(Rk,∆k)}k∈N where

∆k = k2 + (2/p+ 1)k + 2/p2

2(k + 1/p)

Rk = 1
k + 1/p.
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As a final remark, we point out that the pairs {(Rk,∆k)}k∈N are achievable
with ‘wait k, label next’ strategies, and the remaining pairs on the boundary
curve are achievable with time sharing between at most two of such strategies,
e.g., for 0 < ρ < 1, do ‘wait k, label next’ ρ fraction of the time and do ‘wait
k + 1, label next’ 1− ρ fraction of the time.

4.3 Extension To Poisson Processes
In this section, we extend the results obtained for the discrete-time problem
to a continuous-time problem: The arrivals are modeled as a Poisson process.
Let N (t) be the counting process associated with a stationary Poisson process
of intensity ν, with its natural filtration {Ft}t≥0. Similar to the discrete case,
the causal labelings for the continuous model are defined as the collection
of functions {St}t∈R+ , such that every St is Ft-measurable and St : P [0,t] →
[0, t] ∪ {?} where P [0,t] denotes the space of the sample paths of N (t) on the
interval [0, t]. Observe that the process that tracks the number of labelings
until t constitutes another counting process. Denote this process by R(t).
Note that R(t) ≤ N (t).

The rate and the average age are defined analogously to the discrete-time
case — see (4.1) and (4.2) — namely

R := E

[
lim sup
t→∞

1
t
R(t)

]
and

δ := E

[
lim sup
t→∞

1
t

∫ t

τ=0
∆τdτ

]
.

(4.14)

Recall that the proofs of Lemma 4.1 and Lemma 4.2 involve pathwise coupling
arguments and can be extended to continuous-time straightforwardly. There-
fore Lemma 4.1, Lemma 4.2 and thus Corollary 4.1 hold for the continuous-
time model as well. Once more, this restricts the class of labelings to the set
SF : The procedures that only label the freshest arrival. In the following theo-
rem, we extend the results of the discrete model and show that ‘wait T , label
next’ type of strategies are optimal for the continuous-time problem as well.

Theorem 4.3. For {St}t∈R+ ∈ SF such that supt∈R+ E[∆2
t ] <∞, the boundary

curve of achievable (R, δ) pairs lie on the curve

δ(R) = 1
2R + R

2ν2 , R ≤ ν (4.15)

which are achieved with ‘wait T , label next’ strategies with T = 1
R −

1
ν
.

Proof. We discretize the time axis by dividing it into small intervals of length h.
Then, for any strategy {St} ∈ SF , consider a modification that only makes de-
cisions at times that are multiples of h. Suppose the continuous-time strategy
{St} has made k labelings at times l1, . . . , lk on the interval ((n−1)h, nh]; and
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∆t drops down to values a1, . . . , ak respectively for each labeling. We can infer
that the labeled arrivals have occured at times t1 = l1−a1, . . . , tk = lk−ak. Ob-
serve that only the first labeled arrival can belong to a past interval; otherwise
it would not be the freshest arrival. This implies that li−ti ≤ h for i > 1. Sup-
pose the discrete-time modification labels only the kth arrival at time nh and
its instantaneous age ∆̃n drops down to bnh−(lk−ak)

h
ch. If k > 1, ∆̃n = 0, hence

smaller than ∆t. If k = 1, then ∆̃n = bnh−(l1−a1)
h

ch ≤ bh+a1
h
ch ≤ a1+h ≤ ∆t+h

for all t ∈ ((n−1)h, nh]. Hence, the discrete age can at most be h higher than
the continuous age for all t, yielding

1
t

∫ t

τ=0
∆τdτ ≥

1
(N + 1)

N∑
n=1

(∆̃n − h) (4.16)

where N = bt/hc. Then, taking limsup on both sides, we have

lim sup
t→∞

1
t

∫ t

τ=0
∆τdτ ≥ lim sup

N→∞

1
N

N∑
n=1

∆̃n − h. (4.17)

Also observe that the number of labelings made by the discrete-time modifica-
tion is always smaller than R(t) — as it only labels the kth arrival. Proceeding
similarly as above, we have

lim sup
t→∞

1
t
R(t) ≥ lim sup

N→∞

1
Nh

N∑
n=1

R(h)
n (4.18)

where R(h)
n := 1{∃t ∈ ((n− 1)h, nh] : St 6= ?}. Using Reverse Fatou’s lemma

once more as in Theorem 1, we obtain

CR+ δ ≥ lim sup
N→∞

1
Nh

N∑
n=1

E[∆̃nh+ CR(h)
n ]− h. (4.19)

The limsup expression above can be lower bounded by the average cost of a
very similar problem that we have considered in discrete-time. Recall that the
discrete-time modification is able to label from an interval as long as there
exists at least one arrival. This implies that the interarrival times of the
discrete model are Geometrically distributed with parameter p = 1 − e−νh,
which is equal to the probability that at least one arrival occurs on an interval
of length h. Furthermore, the discrete-time modification is able to label from
the same interval more than once. Hence, comparing with our discrete-time
formulation in Section 4.1, we see that R(h)

n ≥ 1{Sn 6= ?}, where Sn is defined
as in Section 4.1. The expression above is then lower bounded by h times the
optimal average cost of an MDP with

lim sup
N→∞

1
N

N∑
n=1

E[∆n+1 − 1 + C

h21{Sn 6= ?}]. (4.20)

where ∆n is defined as in our discrete-time formulation in Section 4.1. The
crucial difference is the first term, which is a time shifted version of the original



84 Age-Optimal Causal Labeling of Memoryless Processes

problem. With similar truncation arguments as in Section 4.2, we can analyze
the modified problem and study its optimal stationary policies. However,
observe that any stationary and unichain policy of the modified problem can
be simulated with our original problem — a time shift of instantaneous ages
does not change the long-term average. Hence, the optimal policy will exactly
be the optimal policy of the original problem. Now write down the optimal
average cost and do the appropriate scaling to obtain

δ + CR ≥ lim
h→0

h
K2 + (2/p+ 1)K + 2/p2 + 2C/h2

2(K + 1/p) − 2h

= lim
h→0

T 2 + 2T/ν + 2/ν2 + Th+ 2C
2(T + 1/ν) (4.21)

where T := hK(h). We have written K(h) to emphasize its dependence in
h. Substituting C/h2 and p = 1 − e−νh in (4.12), we see that T tends to√

2C + 1
ν2 − 1

ν
as h→ 0, which is a constant. Hence,

δ + CR ≥ T 2 + 2T/ν + 2/ν2 + 2C
2(T + 1/ν) . (4.22)

Similar to the end of the proof of Lemma 4.2, we argue that ‘wait T and label’
strategy is stationary, satisfies the square integrability condition and attains
the average cost above; concluding that the above is an equality.

4.4 Discussion

In this chapter, we have characterized the optimal labeling strategy to reduce
the output rate for memoryless processes: ‘Wait T , sample next’. The main
difficulty of the problem and also the main difference from energy harvesting
scenarios is that once a newly arrived packet is not labeled, it is not immedi-
ately discarded and kept in the buffer for a possible labeling in the future. E.g.,
if no new arrivals occur for a long time, the sender may opt to label the packet
in its buffer and forward it through the network. For memoryless processes,
it turned out that such buffering is unnecessary — an optimal strategy should
either label the packet or discard it upon its arrival. However, this may not be
true if the packet arrival process has some memory, i.e., the interarrival times
are not geometric (or Poisson). For generic interarrival times, the problem be-
comes complex and neither simple strategies nor closed-form expressions are
expected.
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4.5 Appendix
4.5.1 Extension of Example 2 to Rational r:
Let r = m

n
with m ≤ n. Write n = mα + β, where α ≥ 1 is the quotient and

β is the remainder. Note that β < m. Write r as

r = m

(α + 1)β + α(m− β) . (4.23)

Consider the following strategy: (i) Label every α + 1th arrival, do this β
times. Then (ii) label every αth arrival, do this m− β times. Then repeat (i)
and (ii) consecutively. By renewal theory, the average rate will be pr. Also
note that the interarrival times are sum of β Geometric random variables with
parameter p

α+1 plus sum of m−β Geometric random variables with parameter
p
α
. With some algebra, one can obtain

∆ = r(α + 1)
2R

(
1 + βr

m

)
. (4.24)

To check if this expression is smaller than 1/R, observe

r(α + 1)
2R

(
1 + βr

m

)
= 1

2R
m

n
(α + 1)(1 + β/n)

= 1
2R

n− β +m

n
(1 + β/n)

= 1
2R(1− β

n
+ m

n
)(1 + β

n
)

= 1
2R(1− β2

n2 + m

n
+ r

β

n
)

≤ 1
2R(1 + m+ rβ

n
)

≤ 1
2R(1 + 1)

= 1
R

(4.25)

as n = mα + β and α ≥ 1 and r ≤ 1.

4.5.2 Proof of Lemma 4.3
KL is defined as the minimum non-negative integer satisfying λL(k) < gL(k),
where

λL(k) =
k(k+1)

2 + k
p
− (L

p
+ 1

p2 )εk + 1
p2 + C(1− εk+1)

k + 1
p
(1− εk)

(4.26)

is the average cost pertaining to the ‘wait k, label next’ strategy and

gL(k) :=
k + 1 + 1

p
− εk+1

p
− Lεk+1 − Cpεk+2

(1− εk+1) . (4.27)
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Define gL(L−1) =∞ for convenience. This ensures that KL ≤ L−1. Observe
that for any finite k ≥ 0 and small ε, we can find large enough L such that a
sufficient condition for the inequality λL(k) < gL(k) can be obtained as

k2 + (2
p

+ 1)k + 2
p2 + 2C < 2(k + 1

p
)(k + 1 + 1

p
)− ε (4.28)

which is equivalent to

ε < (k + 1
p
)2 + (k + 1

p
)− 2C − 1

p2 + 1
p

=: fL(k). (4.29)

Since KL is the smallest integer satisfying the above, we must have λL(k−1) ≥
gL(k− 1). Again, for large enough L, an equivalent sufficient condition will be

fL(k − 1) ≤ −ε. (4.30)

f(k) is a quadratic function of k and it always has two distinct real roots. The
smaller root is always negative, hence take the larger root

k̃ =
−1 +

√
1 + 8C + 4q

p2

2 − 1
p

(4.31)

and note that for small enough ε both sufficient conditions are satisfied at
k = dk̃e. This shows that KL ≤

⌈
k̃
⌉
for large enough L, which implies

lim supLKL ≤
⌈
k̃
⌉
. Furthermore, for 0 < C ≤ 1

p
, −1 < k̃ ≤ 0 and thus⌈

k̃
⌉

= 0, so limLKL = 0 for such C. For C > 1
p
, with a similar argument,

obtain necessary conditions by choosing large enough L and small enough ε;
which are

f(k) > −ε and f(k − 1) ≤ ε. (4.32)
Observe that f(dk̃e − 1) is negative and bounded away from zero — as k̃ > 0
and the smaller root is always negative. Hence the necessary conditions will
not be satisfied for dk̃e − 1 and KL > dk̃e − 1 eventually. This concludes that
lim infLKL ≥

⌈
k̃
⌉
and therefore limLKL =

⌈
k̃
⌉

=: K.
We remark that K ≤ bCpc. This fact will be important when proving

Lemma 4.4 and Lemma 4.5.

4.5.3 Proof of Lemma 4.4
This is equivalent to showing that the update condition

λ
(K)
L (1− εm) ≥ m+ 1

p
− εm

p
− Lεm − Cp

q
εm (4.33)

is violated for all K < m < L. It is sufficient to check if the minimum of the
function

f(t) = L+ 1
p

+ log t
log 1

q

− λ(K)
L (1− t)− (L+ 1

p
+ Cp

q
)t (4.34)
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on t ∈ [qL−K−1, q] is greater than zero. f is concave, therefore the minimum
occurs at boundaries. Observe f(q) = Lp−Cp−pλ(K)

L ≥ Lp−Cp−p(Cp+ 1
p
)

therefore greater than zero for L ≥ L2 := C + (Cp + 1
p
). The other bound-

ary corresponds to m = K + 1, and from the definition of K as being the
termination time of the procedure — check the definition in the beginning of
Appendix 4.5.2 — we must have f(qL−K−1) ≥ 0. Thus, the condition above is
violated for all m > K.

4.5.4 Proof of Lemma 4.5
The condition in (4.6) implies that if we alter s(K)(m,n) to l, the policy does
not improve if

C + ph(n+ 1, 0) + qh(0, n+ 1) ≥ ph(m+ n+ 1, 0) + qh(m,n+ 1). (4.35)

Some calculation reveals that this condition is equivalent to

C +
K∑

τ=n+1
τ +

L−1∑
τ=K∨n

(τ + 1)qτ−K∨n + C(1− qL−K∨n)

− λ
(

K∑
τ=n+1

1 +
L−1∑

τ=K∨n
qτ−K∨n

)

≥
K∑

τ=m+n+1
τ +

L−1∑
τ=K∨(m+n)

(τ + 1)qτ−K∨(m+n) + C(1− qL−K∨(m+n))

− λ
(

K∑
τ=m+n+1

1 +
L−1∑

τ=K∨(m+n)
qτ−K∨(m+n)

)
(4.36)

Now, consider the three cases (for which m ≤ K according to the main
statement of the Lemma):

(i) n > K

Then (4.36) is equivalent to

Cp−m
qL−m−n − qL−n

+ L+ 1
p

+ Cp ≥ λ
(K)
L . (4.37)

Recall that Cp ≥ K — see the end of Appendix 4.5.2 — hence the first
term on the left-hand side is positive. We also know that λ(K)

L ≤ Cp+1/p
as the latter is the average cost of the untruncated problem with ‘label
every point upon its arrival’ policy. Hence the inequality always holds.

(ii) n ≤ K, m+ n > K

Observe that the (m,n) pairs lie on a bounded set that does not grow
with L. Hence, for large enough L, the condition will be equivalent to

C + (K − n)(K + n+ 1)/2− (m+ n−K)/p ≥ λ(K − n) (4.38)
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the left-hand side is minimized at m = K, which yields

C + (K − n)(K + n+ 1)/2− n/p ≥ λ(K − n). (4.39)

Since the left-hand side is a concave quadratic function of n, it is min-
imized at either n = 0, or n = K. For n = 0, the state corresponds
to (K, 0) and we know the inequality holds from definition of K. For
n = K, we have

C −K/p ≥ 0 (4.40)
which we know is true.

(iii) n ≤ K, m + n ≤ K. Again, the possible pairs lie in a bounded set that
does not grow with L. For large L, rewrite the condition as

C ≥ λm−m(m+ 2n+ 1)/2. (4.41)

The right-hand side is maximized at n = 0, and similar to (ii) the result
is immediate from the definition of K.

As K, m, n are integers, there also exists an L3 such that the conditions in
(ii), (iii) are exact for L > L3.
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In Part I, we explored two closely related problems concerned with data fresh-
ness and importance, and the results of Chapter 3 support the intuition that
‘the freshest data may not be the most important’. More specifically, we stud-
ied the tradeoff between the age and the distortion in a discrete-time setting
where the output rate was limited and we characterized the optimal tradeoffs
by resorting to the theory of Markov decision processes (MDP).

In the first problem (Chapter 3), the output rate was limited by an exter-
nal scheduler. As a consequence, we could study the tradeoff between the age
and the distortion by an appropriate MDP formulation of the problem. We
showed that we could efficiently find the optimal strategies to attain the trade-
off in low-age regime. However, at high-age regime, the necessary buffer size
to attain the tradeoff grows and the algorithm to find the optimal strategies
becomes time consuming. Also, if the number of importance levels increase,
the time complexity degrades significantly. Therefore, for applications that
include a multitude of importance classes and at high-age regime, one may
resort to approximation methods for MDPs, e.g., to Monte-Carlo simulations
or to various reinforcement learning techniques. We later explored a similar
problem where the packets were prone to erasures and showed that the optimal
strategies for this new problem are the same. Towards the end of the chapter,
we studied the case where the packet payloads were small and reformulated
the problem such that the sender was able to send N bits at a speaking time,
instead of a complete packet. The packet-based strategies can be significantly
outperformed by ad-hoc strategies (such as Buffer ignorant) and with (Tun-
stall) coding. However, the optimal tradeoff for all strategies that allow coding
remains as an important problem and could also be difficult to solve.

What if the sender is allowed to choose the speaking times as well? The sec-
ond problem (Chapter 4), was formulated based on this question. However,
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we assumed packets of equal importance, leaving us with the output rate-age,
i.e., (R,∆), tradeoff. The sender was allowed to send (i) any packet from its
past at (ii) any time instant. This implies that if a packet is not sent upon
its arrival, it can be sent at any later time, and this broad class of strategies
made the problem complex. Luckily, we showed that if the packets arrive ac-
cording to a memoryless process, simple threshold-based strategies are optimal
and a closed form representation of the optimal (R,∆) curve can be obtained.
Furthermore, the optimal strategies only choose a packet upon its arrival and
can be characterized as ‘wait T , label next’. We also extended the results
to a continuous-time setting where packets arrive as a Poisson process. If the
packet arrival process is not memoryless, however, lookback strategies could be
among the optimal ones, i.e., a packet could be stored in the buffer and sent at
a later time. In this case, the optimal strategies may not be simple-to-describe.

Note that in both problems we studied two parameters at once. Namely,
(∆, D) and (R,D). Finding the region of achievable (R,∆, D) triplets under
the discrete-time setting studied in this thesis seems challenging, and could be
a future study.



Part II

Strategies for Distributed
Inference
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Introduction to
Distributed Inference 6
6.1 Distributed Inference
Decision making is a common task, both for living and non-living entities. An
animal may decide whether to hunt or not, a human may decide whether to
buy a stock or not; and as an example for an inanimate decision maker consider
a router (though programmed by a human-being) that decides to forward a
packet through a particular subnet. Even though these examples are binary
decision rules, more complicated rules are also frequently encountered, e.g.,
to put a bid order for the stock at price P . Usually, the (rational) decision
makers seek to maximize their utility and take the action accordingly. To
this end, they exploit the information available to them through observations.
For instance, a stock broker might read some news, and/or make use of the
patterns of historical prices to obtain information; and choose the bid price P
according to the risk tolerance.

As part of the decision making process, the decision maker usually aims to
infer the true state-of-nature in order to take accurate actions. More specif-
ically, the decision maker faces a statistical inference problem, which usually
refers to the task of learning about a phenomenon of interest through obser-
vations whose statistics are governed by the unknown state-of-nature. The
statistical inference problem is generally studied under two domains depend-
ing on the properties of the unknown state. If the unknown state is assumed
to be continuous and real-valued entity, it is called an estimation problem; and
if the state takes values in a finite set, it is called a detection, or hypothesis
testing problem. Recall that we have already described a special case of a hy-
pothesis testing setting in Chapter 1, where the decision maker has to choose
either the null hypothesis H0 or the alternative hypothesis H1. In the sequel,
we will focus on the hypothesis testing problem rather than estimation.
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Hypothesis testing is a highly non-trivial problem even in the single-agent
case. In multi-agent decision making systems the problem gets even more com-
plex. Some challenges of multi-agent decision problems arise from (i) informa-
tion heterogeneity across agents, and (ii) dependence on the network structure,
e.g., connectivity, hierarchies. To elaborate on the first challenge, suppose we,
as a decision maker, have access to two different information sources, e.g.,
the news about a company and its stock price. The information from these
sources are highly heterogeneous and how to combine the two observations to
make a decision is a very complex task. For the second challenge, think of the
following architectures: Peripheral nodes may send information to a central
node (to be referred as the fusion center in the sequel), or the network can be
fully decentralized without any central controller that aggregates information.
For these two network settings, the hypothesis testing problem differs signifi-
cantly. In the forthcoming chapters, we will study hypothesis testing problems
for both settings.

In addition to the present complexity of the problem, the reader should
also keep in mind that the processing capabilities of agents could be limited in
reality. Moreover, the communication between agents must be limited as well
— obviously a communication link cannot use infinite bandwidth. To illustrate
this situation, consider a vehicle equipped with a collision avoidance system
that relies on vehicular communication. In such a communication scheme, in-
formation can be received from other vehicles (vehicle-to-vehicle, V2V) or from
other objects such as mobile phones, base stations etc. (vehicle-to-everything,
V2X). The collision avoidance system is activated upon detection of a possible
collision — this risky state might be associated with the alternative hypoth-
esis H1 in a binary hypothesis testing setting. V2V and V2X communication
protocols, e.g., IEEE 802.11p [87], limit the data rate. Hence, the devices in
proximity are required to compress or quantize the data they possess before
sending it to the vehicle. In this thesis we will focus on the communication
link constraints and we will study two related problems:

• In Chapter 7 , we will consider a centralized scheme where peripheral
nodes transmit information to a fusion center, and the expected number
of bits per unit time is limited under the null hypothesis H0.

• In Chapter 9, we will study a fully decentralized scheme where agents
are connected in a network topology; and we will study an algorithm
where agents randomly poll their neighbors with an attempt to both
decrease the communication rate and mitigate collisions that arise from
nodes trying to send data simultaneously.

Now, let us make a short excursion to see how communication constraints
affect the performance of a hypothesis test, and motivate the next chapter. In
accordance with the hypothesis testing setting given in Chapter 1, suppose
a remote node observes Xt at each time t, and further suppose that Xt’s are
independent and identically distributed (i.i.d.) over time. The node has to
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f(Lt)
Xt

FC

Figure 61 – A communication-constrained distributed hypothesis testing setup
where the information has to be compressed before being conveyed to the fusion
center.

convey information to a central node, which will make a decision after a fixed
time horizon T . A visual representation could be as in Figure 61, where the
node, and the fusion center is drawn blue and red respectively. Let the log-
likelihood ratio (LLR) pertaining to Xt be Lt. Note that the LLR is a real
number in general. Hence, due to the communication link in between having
finite bandwidth, the exact LLR cannot be sent. For this reason, the node has
to compress the LLR before passing it through the link. Observe that if there
were no communication constraints, the center would perform an optimal,
i.e. Neyman–Pearson, test by possessing the LLRs, and consequently employ
the same achievability scheme in the proof of Theorem 1.10, which yields the
optimal type-II error exponent D(P ||Q). Now, let us recall the data processing
inequality.

Theorem 6.1. [Data Processing Inequality] Let w(·|·) be a probability kernel
on R, i.e., (i) for every Borel-measurable set Y , w(Y |·) is Borel-measurable,
and (ii) for every x ∈ R, w(·|x) is a probability measure in R. Let P ◦ w,
and Q ◦ w denote the output distributions when P and Q are given as inputs
respectively. Then,

D(P ||Q) ≥ D(P ◦ w||Q ◦ w). (6.1)

Note that in the above theorem w can also be a determistic mapping.
Hence,

D(P ||Q) ≥ D(P ◦ f ||Q ◦ f). (6.2)

In accordance with (6.2), the center suffers from a performance loss due to not
possessing the exact LLRs. One expects that the more stringent the commu-
nication constraints are, the less the type-II error exponent will be. Hence, if
the communication constraint is limited to R (in some sense), one might want
to study a tradeoff function θ(R) that gives the best possible type-II error
exponent with vanishing type-I error probability as in Chapter 1. Indeed,
this is what we will do in Chapter 7.

Before studying the two aforementioned problems, let us proceed with pre-
senting some related work on communication-constrained hypothesis testing
from information theoretic and signal processing perspectives.
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6.2 Related Work
We will see that our problem formulation in Chapter 7 contains flavors from
both information theoretic and signal processing approaches. We review the
related work under these two approaches respectively.

6.2.1 Information Theoretic Approaches
Distributed hypothesis testing under communication constraints is a long-
standing problem studied by the information theory community. An early
work by Ahlswede and Csiszár [88] underlies most of the subsequent develop-
ments. It is therefore instructive to review their problem setup for a better
understanding of the subsequent work. Their setup — henceforth referred to
as the Ahlswede–Csiszár setup — is as follows. A remote node possesses a
sequence Xn, while the decision maker possesses a Y n. The pair (Xn, Y n) is
i.i.d. with distribution P under the null hypothesis (H0) and with distribution
Q under the alternative hypothesis (H1). The decision maker estimates the
true hypothesis by using both Y n and an nR-bit side information conveyed by
the remote node. The communication constraint is “hard” in the sense that
Xn is represented with exactly nR bits under both hypotheses. Their aim is to
find the fastest exponential decay rate of the type-II error given a prescribed
type-I error probability, say 0 < ε < 1. It turns out that the fastest decay
rate does not depend on ε, and it is fully characterized for the special case of
dependence testing, i.e., when QXY = PXPY where PX , PY are the marginals
of X and Y under H0. The characterization of the optimal decay rate for the
general case turns out to be more involved and it is still unknown although
some upper and lower bounds exist.

The Ahlswede–Csiszár setup motivated various subsequent works on dis-
tributed hypothesis testing. For instance, [89] presents tighter lower bounds
on the optimal decay rate for the Ahlswede–Csiszár setup and further ex-
tends the formulation to include zero-rate compression (see also [90]), as well
as to include the compression of Y n. The lower bound on the best possible
decay rate for the general case is improved in [91]. One may refer to [92]
for a comprehensive survey on the literature considering Ahlswede–Csiszár
setup and its variants. Subsequent works on communication-constrained hy-
pothesis testing include studies on tradeoffs between type-I and type-II error
exponents [93, 94], performance under finite-blocklength regime [95], and un-
der noisy communication [96–99]. Further extensions of this problem include
interactive protocols [100–102], privacy constraints [103–108], the additional
task of data reconstruction at the receiver [109]. For dependence testing, [110]
concludes that binning schemes are optimal; whereas the recent work [111]
shows that the performance can be improved with sequential methods for the
general case.

The works cited above elaborate on the “hard” communication constraints,
as Ahlswede and Csiszár did. A recent strand of works relax the “hard” com-
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munication constraints and study the dependence testing problem by limiting
the expected number of bits sent. A partial list of the studies adopting this
perspective is [112–117]. The next chapter’s study is also in line with this
perspective. We remark that for the special case of dependence testing, since
the X marginals are the same under both hypotheses, the expected number of
bits conveyed does not depend on the true hypothesis. We will, on the other
hand, focus on the general case. Hence, given a strategy, the expected number
of bits sent might differ under the null and alternative hypotheses; introducing
an inherent asymmetry to the problem. We will limit the expected rate under
the null hypothesis H0. This choice aligns with the view that H1 is a rare
high-risk event and necessary communication must take place to detect this
event with high probability. A more detailed discussion on such choice is given
in Section 7.2.

Information theoretic approaches could be criticized because they use high-
dimensional vector quantization, i.e., the entire block Xn should be observed
before being represented with nR bits. A system designed as such may not be
desirable for timing-crucial applications, as the decision maker is kept oblivious
of the side information until time n. Furthermore, for large n, such a system is
not memory-efficient as the remote node records the whole past and it might
also be computationally expensive to compressXn. These observations suggest
that low-dimensional quantization could be of interest for low-latency and
memory-efficient applications. Such quantization procedures for distributed
detection are often studied in the signal processing literature.

6.2.2 Signal Processing Approaches
As mentioned, signal processing approaches are usually centered around low-
dimensional quantizer designs. The scalar quantization procedures specialized
for the task of binary hypothesis testing aim to keep the dissimilarity between
the distributions of the quantizer output under H0 and H1 as large as possible
while representing the output only with R bits. Various methods for evaluating
the dissimilarity include calculation of the Kullback–Leibler divergence D(·||·)
— the optimal type-II error rate under vanishing type-I error [13] or vice
versa — or one may consider the more general Ali–Silvey distances [118] (or
equivalently f -divergences [119]) which prove useful for a variety of signal
detection problems [120]. Notable early studies on quantization for binary
hypothesis testing include [121–123].

Finding the optimal quantizer is in general a daunting task and there is no
standard machinery to obtain such quantizers. However, there exists iterative
methods to find suboptimal quantizers as in [123], or studies on the high-
rate quantization regime [124–126]. Some extremal properties of likelihood-
ratio quantizers is given in [127]. Quantizer designs based on privacy and
secrecy constraints are studied in [128,129]. Error resilient designs are studied
in [130–132], as well as Byzantine resilient designs in [133]. A recent work on
multilevel quantization is [134].
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A similar trend to that in the information theoretic studies is also ob-
served in the signal processing literature — the works cited above rely on
“hard” communication constraints. Different from the existing signal process-
ing literature, in the next chapter, we will study the fundamental limits under
memoryless (scalar) quantization with expected rate constraints under H0, and
provide impossibility results for the subject case. Namely, we will see that if
the expected rate under H0 is limited to R bits, then the type-II error rate
cannot be greater than θ∗(R) — which we will define in the next chapter —
under vanishing type-I error probability.



A Fundamental Limit of
Distributed Hypothesis Testing
Under Memoryless Quantization

1 7
In this chapter, we will study a canonical distributed hypothesis testing prob-
lem under communication constraints. Among many possible ways of restrict-
ing communication, we choose to limit the average number of bits sent under
riskless or ordinary state, which associates with the null hypothesis; and we
seek the fundamental limits of a distributed hypothesis testing problem un-
der such assumption. We focus on the case where nodes compress their data
with practically-appealing memoryless quantization procedures. More pre-
cisely, under such setting, we initially focus on the single-node case and when
the average number of bits sent is at most R under the null hypothesis:

• we characterize the optimal decay rate of the type-II error probability
under vanishing type-I error probability, given by θ∗(R), in Theorem 7.1
of Section 7.3.1;

• we obtain an upper bound to θ∗(R) via rate-distortion methods and con-
sequently characterize an unachievable region in Corollary 7.1 of Section
7.3.2;

• we show that with simple lattice-quantization, the upper bound can be
approached within 1

2 log2(πe2 ) ≈ 1.047 bits in Theorem 7.4 of Section
7.4.1;

• we provide the upper bound θk(R) for the k-dimensional vector quanti-
zation case in Section 7.4.2.

The results for the single-node case are then extended to multiple nodes in
Section 7.5, where the problem is formulated under individual communication
constraints at nodes, together with a sum-rate constrained formulation.

1The content of this chapter is based on [135,136].
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7.1 Notation
Random variables are denoted with uppercase letters whereas their realizations
are written lowercase, e.g., Xn and xn. B(R) denotes the Borel algebra of R.
For probability measures P and Q, D(P ||Q) denotes the Kullback–Leibler
(KL) divergence and EP [·], HP (·), IP (· ; ·) denote the expectation, entropy,
and mutual information under P respectively. All logarithms are taken with
natural base unless explicitly stated.

7.2 Problem Formulation
Consider m peripheral nodes that communicate with a fusion center (Figure
71). At each time instant t, the node i observes data arising from distribution
P (i) under the null hypothesis H0, and from distribution Q(i) under the alter-
native hypothesis H1. We assume that for all i, P (i) is absolutely continuous
with respect to Q(i), vice versa. That is, if Q(i)(B) = 0, then P (i)(B) = 0
for any B ∈ B(R); and the same holds when P is swapped with Q. In this
case P and Q are also called equivalent, and denoted as P ∼ Q. The data is
independent across nodes, and across time under both hypotheses. Moreover,
the data is identically distributed across time. Therefore, the joint distribution
of the network until time t and under H0 can be characterized on rectangles
in Rtm as follows:

P (Bt) =
t∏

τ=1

m∏
i=1

P (i)([a(i)
τ , b

(i)
τ ]) (7.1)

where Bτ := [a(1)
τ , b(1)

τ ]×· · ·× [a(m)
τ , b(m)

τ ] and Bt := B1×· · ·×Bt are rectangles
in Rm and Rtm respectively. By a standard extension theorem, [82, Theorem
1.7], P can be extended uniquely to B(Rtm). UnderH1, since the independence
assumptions are the same, the joint distribution of the network is given exactly
by (7.1), with P ’s replaced by Q’s.

A key assumption in our setup is that each node i is only aware of P (i) and
Q(i), and the fusion center does not have any knowledge about the statistics of
the data observed at the nodes. Such assumption distinguishes our study from
many information-theoretic approaches. For instance, in the Ahlswede–Csiszár
setup, both the remote observer and the decision maker are aware of the joint
distribution. By contrast, our oblivious fusion center trusts the nodes blindly
and sums the “scores" sent by them. Knowing this behavior of the center,
nodes prepare their scores accordingly. An example of a score might be the
log-likelihood ratio (LLR) of the data observed at time t, i.e., node i calculates
the LLR L

(i)
t based on its freshly observed data X(i)

t as

L
(i)
t := log dP

dQ
(X(i)

t ), (7.2)

sets the score S(i)
t = L

(i)
t , and passes it through the communication link. Note

that the above LLR is well-defined as a Radon–Nikodym derivative due to the



7.2. Problem Formulation 101

f
(1)
t (L

(1)
t )

f
(2)
t (L

(2)
t )

f
(m)
t (L

(m)
t )

f
(3)
t (L

(3)
t )

f
(4)
t (L

(4)
t )

X
(1)
t

X
(2)
t

X
(m)
t

X
(3)
t

X
(4)
t

FC

Figure 71 – A representation of the setup studied in this chapter. The pe-
ripheral nodes are drawn as blue circles, and the fusion center (FC) is drawn
as the red square. At each time instant t, node i sends its compressed score
f

(i)
t (L(i)

t ), which is solely based on the fresh observation X(i)
t .

absolute continuity of P (i) with respect to Q(i). Suppose each node behaves
similarly, i.e., calculates and sends its LLR. Since the data is independent
across nodes and across time, under such a strategy, the fusion center receives
the sufficient statistic ∑t

τ=1
∑m
i=1 L

(i)
τ and is able to perform an optimal test,

i.e., a Neyman–Pearson test. However, P (i) and Q(i) can be continuous in
general and it is impossible to (i) calculate the LLR with an arbitrarily high
precision and (ii) represent the score losslessly with a finite number of bits.
Due to these restrictions, the nodes are required to compress (quantize) the
data they receive, and send their scores with a finite number of bits at each
time instant. The finite-bit score sent by node i at time t is represented by
S

(i)
t and the fusion center performs a threshold test based on the average score

S̄t := 1
t

t∑
τ=1

m∑
i=1

S(i)
τ , (7.3)

with the estimate being the result of the following test:

Ĥ =
H0, S̄t ≥ ηt

H1, else
(7.4)

where ηt is a threshold that can depend on t. In addition to the finite-bit
constraint, the rate of communication between the nodes and the center may
be subject to limitations. As mentioned in the previous chapter, we will study
the distributed hypothesis testing problem under the following communication
constraint: The average number of bits per node sent under H0 must be kept
limited.

Remark 7.1. The communication constraint is not symmetric, i.e., there is
no constraint under H1. This aligns well with many real-world scenarios when
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H1 represents a high-risk situation in which the system is allowed to violate
communication constraints in order to identify the risk — responding to an
emergency takes priority over communication constraints — recall the colli-
sion avoidance example of the previous chapter. This view of H1 also implies
that the type-II error must be very rare. In fact, in many hypothesis testing
problems, it is desired that the type-II error decays exponentially. This is the
approach we follow for the rest of this chapter.

7.2.1 Memoryless Quantization and the Communication
Constraint

For simplicity, we focus on a single node i at the moment and omit the symbol
(i) from the superscripts. In this section, we formally define the memoryless
quantization procedures that map the LLR Lt to the score St, and the commu-
nication constraints for such quantization procedures. We recall the definition
of a simple function, which we have also seen in Section 1.5.

Definition 7.1 (Simple function, [10]). A function on R that takes finitely
many values is called a simple function. More precisely, let α1, . . . , αn be the
distinct values of a simple function f , then any such f is represented as

f(l) =
n∑
k=1

αk1{l ∈ Bk} (7.5)

where B1, . . . , Bk ∈ B(R) form a partition of R.

We let St = ft(Lt) with a simple function ft. Observe that such procedures
are memoryless — quantization at time t depends only on the data arriving
at time t, and does not depend on past. From Definition 7.1, it is clear that
St’s are discrete random variables. For example, if ft is set as in (7.5), then
for 1 ≤ k ≤ n:

P (St = αk) = P (Lt ∈ Bk) (7.6)
and the entropy of St under H0 is defined as

HP (St) := −
n∑
k=1

P (St = αk) logP (St = αk) (7.7)

with 0 log 0 := 0. Recall that in Chapter 1, we have seen that a discrete ran-
dom variable can be compressed losslessly with a binary code whose expected
length is `, which is bounded as

HP (St) log2 e− log2(HP (St) log2 e+ 1)− log2 e ≤ ` ≤ HP (St) log2 e. (7.8)

Therefore, the peripheral node can compress its LLR Lt with a simple function
ft, and can represent its score St = ft(Lt) with an average number of bits less
than HP (St) log2 e under H0. If we impose

1
t

t∑
τ=1

HP (Sτ ) ≤ R/ log2 e, (7.9)
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all scores until time t can be represented with an expected number of bits less
than Rt under H0; and the average number of bits sent over the communi-
cation link is kept limited to at most R bits. Constraints formed as in (7.9)
are then suitable candidates for being the communication constraint in our
distributed hypothesis testing setting.

Remark 7.2. The memoryless quantization procedures we consider are prac-
tically appealing since the peripheral devices can be designed in a memory-
efficient manner. Moreover, the assumption that each node only knows their
own P ’s and Q’s allows independent design of the peripheral nodes, as opposed
to the joint design of all sensors which may be impractical. Note that without
independence across the nodes, joint design might be necessary. We assume
that the network subject to this study is designed such that the peripheral nodes
have a spatial configuration that yields, or at least approximates, independence
across nodes.

7.2.2 Performance Criteria under Memoryless Quantization

As mentioned earlier, the fusion center decides over the hypotheses based on
the threshold test given in (7.4). Under this test, the type-I and type-II error
probabilities are defined respectively as

αt := P (S̄t < ηt)
βt := Q(S̄t ≥ ηt)

. (7.10)

For an ε > 0, we assume that the fusion center sets the threshold to

ηt = 1
t

t∑
τ=1

EP [St]− ε. (7.11)

Recalling that the fusion center is unaware of the statistics at the nodes, one
might argue that this choice of ηt is not valid. However, such adjustment is
without loss of generality: If the nodes send the centered version of the scores,
i.e., St − EP [St], and if the fusion center performs the test based on ηt = −ε,
the performance of the scheme will be equivalent to the scheme where the
threshold is chosen as in (7.11). Note that setting ηt = −ε does not require
any knowledge on P ’s and Q’s. Moreover, the discrete entropyHP (St) does not
change under any shift and the communication constraints are not violated. It
turns out that the choice in (7.11) achieves the optimal curve θ∗(R) — to be
defined in Theorem 7.1 — and we keep this choice for the rest of the chapter.
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7.3 Best Performance Under Memoryless
Quantization

7.3.1 Boundary of the Achievable Region
In view of Remark 7.1, and also of Section 1.5.1, our aim is to drive the type-
II error probability to zero as fast as possible while ensuring the type-I error
probability vanishes. In particular, the type-II error probability must decay
exponentially. A suitable definition of an achievable region in line with this
perspective is given as follows.

Definition 7.2. Given P and Q, (R, θ) is an achievable pair if there exists a
sequence {ft} of simple functions and thresholds {ηt} such that

(a) 1
t

∑t
τ=1HP (Sτ ) ≤ R, for all t

(b) limt→∞ αt = 0

(c) lim inft→∞ 1
t

log 1
βt
≥ θ

where St = ft(Lt) is the quantized LLR, and αt, βt are the type-I and type-II
errors defined in (7.10).

Note that the communication constraint imposed in Definition 7.2(a) is in
terms of nats for notational simplicity. The achievable region is then defined
as the set of the achievable pairs (R, θ). The theorem below characterizes the
boundary of this region in two parts.

Theorem 7.1. Let θ∗(R) := sup{θ : (R, θ) achievable} and define

θt(R) := sup
{f1,...,ft}∈Ft(R)

1
t

t∑
τ=1

(
EP [Sτ ]− logEP [eSτ−Lτ ]

)
(7.12)

where Ft(R) is the set of all simple real-valued functions f1, . . . , ft on (R,B(R))
such that 1

t

∑t
τ=1HP (Sτ ) ≤ R. Then, the following statements hold.

(i) Let
θ1(R) = sup

f1∈F1(R)
EP [S1]− logEP [eS1−L1 ]. (7.13)

Then limt→∞ θt(R) equals to the upper concave envelope θ̆1(R) of θ1(R).
(ii) θ∗(R) = lim

t→∞
θt(R) = θ̆1(R).

Proof. See Appendix 7.7.1.

Theorem 7.1 provides the boundary of the achievable region in a variational
form that is reminiscent of a single-letter characterization. However, the op-
timization problem (7.13) has a non-convex domain, which makes F1(R) a
non-convex set. We will therefore consider a relaxed version of the optimiza-
tion problem (7.13) in the next section.
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7.3.2 Upper Bound on the Boundary of the Achievable
Region

In order to relax the problem (7.13), we (i) allow randomized quantization, and
(ii) modify the communication constraint to IP (S1;L1) ≤ R, where IP (S1;L1)
is the mutual information between S1 and L1 under H0. Note that since
HP (S1) ≥ IP (S1;L1), HP (S1) ≤ R implies IP (S1;L1) ≤ R, hence the commu-
nication constraints indeed become less stringent. (These can be verified with
the Properties 1.1) Moreover, the randomized quantization procedures can be
represented as channels pV |U : U × R → R+ where for each u, pV |U(v, u) is a
probability mass function on the finite set U ⊂ R. We further relax the problem
by taking U = R, hence the possible channels become pV |U : B(R)×R→ R+,
where for each u, pV |U(v, u) is a probability measure on R. Adopting the
modifications we have just described, problem (7.13) then becomes

θU(R) := sup
pV |U

EP [V ]− logEP [exp(V − U)]

s.t. IP (U ;V ) ≤ R
(7.14)

where U has the same distribution as the LLR L1. Observe that as R in-
creases, the optimization domain is enlarged and thus θU(R) cannot decrease;
which shows that θU(R) is non-decreasing. Moreover, θU(R) also captures the
behavior at the extremes. Intuitively, if R → ∞, then V can be set equal to
U and θU becomes

EP [U ] = EP

[
log dP

dQ

]
= D(P ||Q) (7.15)

which is known from Stein’s lemma — which we have already seen as Theo-
rem 1.9 — as the optimal type-II error exponent under vanishing type-I error
probability. This intuitive argument will be made rigorous in Lemma 7.2. On
the other extreme, if R = 0, then the best possible choice is to set V equal to
a constant v and θU becomes

v − logEP
[(
dP

dQ

)−1]
− v = 0, (7.16)

which is consistent with the fact that the center is not able to infer the true
hypothesis when there is no communication.

Another useful characterization of θU is given by the following lemma.

Lemma 7.1. Let

θ̃U(R) := sup
pV |U

EP [V ]− EP [exp(V − U)] + 1

s.t. IP (U ;V ) ≤ R.
(7.17)

Then, θU(R) = θ̃U(R).
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Proof. See Appendix 7.7.2.

Observe that −θ̃U is given by
−θ̃U(R) = inf

pV |U
− EP [V ] + EP [exp(V − U)]− 1

s.t. IP (U ;V ) ≤ R.
(7.18)

We highlight the equivalence between −θ̃U(R) and the distortion-rate function
with the distortion function d(u, v) = −v+ev−u−1. Since it is known that this
curve is convex, −θ̃U(R) is also convex and consequently, θ̃U(R) is concave.
We then make use of the characterization in Lemma 7.1 and conclude that
θU(R) is concave as well.

We end this section with the following corollary, which states that θU is a
concave upper bound to the boundary of the achievable region given by θ∗(R).

Corollary 7.1. θU(R) ≥ θ̆1(R) = θ∗(R).

Proof. As (7.14) is a relaxation of (7.13), we know that θU(R) ≥ θ1(R). In
addition, θU(R) is concave; then it must also dominate the concave envelope
θ̆1(R) of θ1(R).

Remark 7.3. As stated before, we have shown the equivalence of θU and θ̃U
in Lemma 7.1. Although it might be tempting to work with θ̃U , as it is the
optimal value of an optimization problem with a linear objective, (7.17) takes
a smaller value than (7.14) if a generic pV |U is substituted; thus leading to
tighter bounds. This is due to the inequality log x ≤ x − 1. In view of this
observation, we work with the formulation (7.14) in the sequel.

7.3.3 Calculating the Upper Bound θU

In this section, and for the rest of the chapter, we assume all the expectations
(including the mutual information IP (· ; ·)) are taken under P , and we omit it
from the subscripts for brevity. Applying Jensen’s inequality to the objective
function in (7.14), we have

E[V ]− logE[exp(V − U)] ≤ E[V ]− E[V − U ]
= D(P ||Q).

(7.19)

Thus, it is also convenient to study the gap to D(P ||Q). The gap function
δU(R) := D(P ||Q)− θU(R) is then straightforwardly given by

δU(R) = inf
pV |U

logE[exp(V − U)]− E[V − U ]

s.t. I(U ;V ) ≤ R.
(7.20)

Note that since θU is concave and non-decreasing, δU(R) is convex and non-
increasing by definition, and the following lemma explains the limiting behavior
as R→∞.
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Lemma 7.2. limR→∞ δU(R) = 0. Consequently, limR→∞ θU(R) = D(P ||Q).

Proof. See Appendix 7.7.3.

We highlight that Lemma 7.2 holds even if P and Q do not admit densities.
Now, we intend to derive an upper bound for δU . Let Z := V −U . Then (7.20)
is equivalent to

δU(R) = inf
pZ|U

logE[exp(Z)]− E[Z]

s.t. I(U ;U + Z) ≤ R.
(7.21)

A simple upper bound to δU(R) can be obtained by choosing Z as a Gaussian
random variable independent of U . With such choice, we have

I(U ;U + Z) = h(U + Z)− h(U + Z|U)
= h(U + Z)− h(Z|U)
= h(U + Z)− h(Z)

≤ 1
2 log

(
1 + Var(U)

Var(Z)

) (7.22)

where h(·) denotes the differential entropy. Observe that U +Z always admits
a probability density; U need not be continuous. However we assume U is
square integrable such that Var(U) exists. Furthermore, for a Gaussian Z

logE[exp(Z)]− E[Z] = E[Z] + log(e 1
2 Var(Z))− E[Z]

= 1
2 Var(Z).

(7.23)

Denoting the variance of Z by σ2, observe that the parametric curve

R = 1
2 log

(
1 + Var(U)

σ2

)
, δ = 1

2σ
2 (7.24)

lies above δU(R), and equivalently

δU(R) ≤ Var(U)
e2R − 1 =: gU(R). (7.25)

The bound (7.25) is however not tight at low rates. Observe that as R→ 0, the
right-hand side of (7.25) tends to infinity although we know that the gap δ can
at most be D(P ||Q) — see (7.19). The bound can be strengthened as follows:
Since we know δU is convex with δU(0) = D(P ||Q), and δU(R) ≤ gU(R), any
line segment connecting (0, D(P ||Q)) with the curve gU(R) lies above δU(R).
Among such line segments, the one which is tangent to gU(R) gives the tightest
bound.

After obtaining this simple upper bound, we direct our attention to the
calculation of δU(R). Note that the objective function in (7.21) is concave.
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This is because logE[eZ ] is concave, and E[Z] is linear in pZ|U . Hence, it
is a concave minimization problem, and might a priori require examining all
extreme points of the feasible set. However, we now show that the problem
can be formulated as a convex minimization, circumventing the combinatorial
challenge. First, note that both the objective function and the constraint in
(7.21) remain unchanged if we add a constant to Z. Thus, centering Z does not
change the feasible region in (7.21). Consequently, we can add the constraint
E[Z] = 0 to our problem without changing its value, which yields an equivalent
formulation of (7.21):

δU(R) = inf
pZ|U

logE[exp(Z)]

s.t. I(U ;U + Z) ≤ R

E[Z] = 0
(7.26)

Any infimizer of the above problem also infimizes the optimization problem
with the objective function E[exp(Z)], and the optimal value of the former
problem is the logarithm of the optimal value of the latter. Further note that
the objective function becomes linear when changed to E[exp(Z)]. The latter
problem is formulated as the convex program

∆U(R) := inf
pZ|U

E[exp(Z)]

s.t. I(U ;U + Z) ≤ R

E[Z] = 0
(7.27)

with log ∆U(R) = δU(R). Observe that ∆U(R) is convex, non-decreasing, and
is finite at every R ≥ 0 — check the feasible choice Z = −U+E[U ] and observe
∆U(R) ≤ E[e−U ]eE[U ] = eD(P ||Q) since E[e−U ] = 1 and E[U ] = D(P ||Q).
Therefore, ∆U(R) can be expressed as

∆U(R) = sup
λ>0
L(λ)− λR (7.28)

where

L(λ) := inf
pZ|U

E[exp(Z)] + λI(U ;U + Z)

s.t. E[Z] = 0.
(7.29)

Each λ > 0 describes a straight line ∆ + λR = L(λ) in the (R,∆) plane.
∆U(R) is the supremum in the ∆ axis of these lines. The generalized inverse
of ∆U(R), RU(∆), is then the supremum of these lines in the R axis,

RU(∆) = sup
λ>0

1
λ
L(λ)− 1

λ
∆

= sup
η>0

ηL
(

1
η

)
− η∆

(7.30)
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which is identical to the following convex problem for ∆ > 1.

RU(∆) = inf
pZ|U

I(U ;U + Z)

s.t. E[exp(Z)] ≤ ∆
E[Z] = 0.

(7.31)

An important direction is to obtain a closed-form lower bound for RU ,
which consequently gives a lower bound for δU . Such a lower bound charac-
terizes an unachievable region as δU is a lower bound to the boundary curve
of the achievable region.

Assumption 7.1. For the rest of the chapter, we assume that U admits a
probability density pU . Hence the differential entropy h(U) is well-defined (but
not necessarily finite).

Note that (7.31) is exactly the same as the rate–distortion formulation
except the additional constraint E[Z] = 0. This special structure allows us
to derive a lower bound based on maximum-entropy principles, which also led
Shannon to derive the well-known lower bound for the rate–distortion problem
under mean-square distortion [137]. We shall use the same machinery as well.
Note that

I(U ;U + Z) = h(U)− h(U |U + Z)
= h(U)− h(Z|U + Z)
≥ h(U)− h(Z)

(7.32)

where the last inequality is due to Property 1.1, “conditioning reduces entropy”.
Hence, we obtain

RU(∆) ≥ inf
pZ|U

h(U)− h(Z)

s.t. E[exp(Z)] ≤ ∆
E[Z] = 0.

(7.33)

Since the new objective function depends only on the marginal of Z, the
problem above is equivalent to finding a maximum-entropy distribution pZ
that satisfies the constraints E[eZ ] ≤ ∆ and E[Z] = 0. The problem can now
be formulated as

sup
pZ

h(Z) s.t. E[eZ ] ≤ ∆, E[Z] = 0. (7.34)

The entropy maximizing distribution can be found with the methods in [1,
Chapter 12] and is given by

f(z) = βα

Γ(α) exp(αz − βez), α, β > 0. (7.35)
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Observe that f(z) is the distribution of the logarithm of a Gamma random
variable, i.e., Z = logG where G ∼ Gamma(α, β). The following entities have
closed form expressions:

E[eZ ] = α

β

E[Z] = ψ(α)− log β
h(Z) = log Γ(α)− αψ(α) + α

(7.36)

where Γ(.) and ψ(.) are gamma and digamma functions respectively. Note
that logE[eZ ]−E[Z] = logα−ψ(α) and does not depend on β. Substituting
(7.36) into (7.33), we have just proved

Lemma 7.3. Denote the gamma and digamma functions by Γ(.) and ψ(.)
respectively. Define the parametric curve

RU(α) = h(U)− log Γ(α) + αψ(α)− α,
δ(α) = logα− ψ(α), α > 0,

(7.37)

Then RU(δ) ≤ RU(δ).

In comparison, the parametric curve in (7.24) gives the upper bound

RU(δ) = 1
2 log

(
1 + Var(U)

2δ

)
. (7.38)

Both RU and RU are depicted in Figure 72 for a Gaussian U . As discussed
before, the upper bound RU(δ) is not tight at low rates since we know that
RU(δ) = 0 at δ = D(P ||Q), and the convexity of RU(δ) enables tightening the
upper bound by drawing the tangent line from the point (D(P ||Q), 0) to RU .
This straight line bound is denoted as SL in Figure 72.

7.3.4 Asymptotic Behavior of RU(δ)
Although Figure 72 suggests that RU and RU match closely at high rates, it is
not evident if they tend to infinity at the same rate. Therefore, the asymptotic
behavior of the exact RU is still unknown. We will characterize this behavior
in this section. We first derive another upper bound than RU and show that
this new upper bound behaves the same as the lower bound RU asymptotically.
Once again, refer to (7.22) and observe for a Gaussian Z with variance v and
independent of U ,

I(U ;U + Z) = h(U +
√
vZ̃)− h(Z̃)− 1

2 log v, (7.39)

where Z̃ is a standard Gaussian random variable. We obtain an upper bound to
h(U+

√
vZ̃) with a different method. Suppose U has a differentiable probability

density pU . We use De Bruijn’s identity [1, Chapter 17], which states
∂

∂v
h(U +

√
vZ̃) = 1

2J(U +
√
vZ̃), (7.40)



7.3. Best Performance Under Memoryless Quantization 111

0 0.2 0.4 0.6 0.8 1
0

2

4

6

δ/D(P ||Q)

R
(b
it
s)

RU (δ)

RU (δ)
SL

h(U)− 1
2 log(4πeδ)

Figure 72 – Bounds for RU curve for the case where X ∼ N (0, 1) under H0
and X ∼ N (µ, 1) under H1 for µ =

√
20. U has the same distribution as

the LLR L ∼ N (10, 20). The lower bound RU is drawn with blue color and
the shaded region underneath is unachievable. The upper bound RU is drawn
with red color, and its tightened version is drawn with a dashed line, denoted
as SL. The true RU curve lies between RU and SL.

where
J(X) := E

[(
∂

∂x
log pX(x)

)2∣∣∣∣
x=X

]
(7.41)

is the Fisher information of a random variable X with differentiable density
pX . We then resort to Taylor’s theorem which implies

h(U +
√
vZ̃) ≤ h(U) + v

2 sup
s≥0

J(U +
√
sZ̃). (7.42)

A well-known convolution inequality for Fisher information states [1, Chapter
17] for random variables X and Y with differentiable densities

1
J(X + Y ) ≥

1
J(X) + 1

J(Y ) . (7.43)

Therefore,

h(U +
√
vZ̃) ≤ h(U) + v

2 sup
s≥0

J(U)J(
√
sZ̃)

J(U) + J(
√
sZ̃)

(a)= h(U) + v

2 sup
s≥0

J(U)
sJ(U) + 1

(b)= h(U) + v

2J(U)

(7.44)
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where (a) follows from J(
√
sZ̃) = 1

s
, and (b) follows from the fact that J(U)

is always non-negative. Substituting this upper bound into (7.39), we obtain

I(U ;U + Z) ≤ h(U) + v

2J(U)− h(Z̃)− 1
2 log v

= h(U) + v

2J(U)− 1
2 log(2πev).

(7.45)

Referring to (7.24), we have v = 2δ and obtain another upper bound to RU as

RU(δ) ≤ h(U) + δJ(U)− 1
2 log(4πeδ). (7.46)

We intend to obtain a matching lower bound using RU . To this end, we use
the following inequalities on gamma and digamma functions that are valid for
α > 0 [138, 5.11(ii)]:

log Γ(α) ≤ α logα− α− 1
2 logα + 1

2 log(2π) + 1
12α

logα− 1
2α −

1
12α2 ≤ ψ(α) ≤ logα− 1

2α.
(7.47)

Using (7.47) we obtain from (7.37)

RU(α) ≥ h(U)− 1
2 log(2πeα−1)− 1

6α, δ(α) ≥ 1
2α.

(7.48)

Thus,
RU(δ) ≥ RU(δ) ≥ h(U)− 1

2 log(4πeδ)− δ

3 . (7.49)

Comparing (7.49) with (7.46), one can characterize the high-rate behavior
of RU . We conclude this section with the following theorem that gives the
asymptotic behavior.

Theorem 7.2.
lim
δ→0

RU(δ)− h(U) + 1
2 log(4πeδ) = 0. (7.50)

7.4 High-Rate Regime and Performance under
Vector Quantization

7.4.1 High-Rate Lattice Quantization
Until this point, we have investigated the behavior of RU and characterized
its exact asymptotic behavior. However, we have not yet proposed a concrete
quantization scheme that attains (R, δ) pairs comparable with RU . In this
section, we will show that with simple quantization schemes, RU can be closely
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Figure 73 – A visualization of qr(·). The output is set to 2kr (drawn as
red dots) whenever the input falls into the bin (separated with vertical lines)
corresponding to k. Each bin is of radius r.
approached at high rates. More specifically, we study lattice quantization
procedures — a detailed reference is [139]. As we focus on scalar (memoryless)
quantization in one dimension, the quantization procedures we consider are
simply described as

qr(U) := 2r arg min
k∈Z
|U − 2kr| (7.51)

where r is the covering radius. Consequently, V = qr(U) is a quantized version
of U with |V − U | ≤ r. A visual representation is given in Figure 73.

At this point, we would like to relate the radius r to the gap δ. Referring
to (7.20), under lattice quantization qU(r), the gap is given by

δ = logE[eV−U ]− E[V − U ]
≤ E[eV−U ]− E[V − U ]− 1
= E[eZ − Z − 1]

(7.52)

and since |Z| ≤ r surely, eZ − Z − 1 ≤ er − r − 1. Consequently,

δ ≤ er − r − 1, (7.53)

which suggests that in the small-r regime, δ behaves quadratically. In fact, if
r ≤ D for a constant D, then

δ ≤ er − r − 1

=
∞∑
k=2

rk

k!

≤ r2

D2

∞∑
k=2

Dk

k!

= r2

D2 (eD −D − 1).

(7.54)

The next step is to relate r withH(V ), which is an upper bound to the expected
length of an optimal lossless code as discussed in (7.8). Under mild regularity
conditions on the distribution of U , the asymptotic behavior of H(V ) when
r → 0 can be characterized.

Theorem 7.3 ([11]). Suppose H(bUc) <∞. Then,

lim
r→0

H(V ) + log(2r) = h(U). (7.55)
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Using the above theorem, we have

H(V ) ≤ h(U)− 1
2 log(4πeδ) + 1

2 log(πe(eD −D − 1)D−2) + f(r) (7.56)

where f(r) is a function such that limr→0 f(r) = 0. Comparing the above with
the asymptotic behavior of RU given in Theorem 7.2, we conclude that with
high-rate lattice quantization, one can approach the boundary of the achievable
region with at most 1

2 log2(πe(eD −D − 1)D−2) bits of difference. As D → 0,
the difference term tends to 1

2 log2

(
πe
2

)
≈ 1.047 bits. Remembering that we

work in the high-rate regime, i.e., we are allowed to send a large number of
bits, a 1.047-bit gap from the optimal curve does not seem to be significant.
We summarize our results on the high-rate quantization as follows.

Theorem 7.4. Suppose H(bUc) is finite. Then with one-dimensional lattice
quantization of sufficiently small radius, the lower bound to the optimal curve
RU can be approached within 1

2 log2(πe2 ) ≈ 1.047 bits.

Although Theorem 7.4 quantifies the gap in the limit r → 0, one may also
be interested to find an upper bound on H(V ) for strictly positive values of r.
To this end, one might need more stringent regularity conditions than those
of Theorem 7.3 and work with nicely-behaved distributions. For the moment,
consider Ṽ = V +W , where W is independent of V and uniformly distributed
in [−r, r]. Observe that the probability density of Ṽ is a “quantized” version
of the probability density of U . If U has a nicely-behaved distribution and if
r is small, then the distribution of Ṽ will not be very different from that of U ;
which is desirable for the sake of analysis. The family of the aforementioned
nicely-behaved distributions are defined as follows.

Definition 7.3 (v-regular density, [140]). Given v : R→ R, a continuous and
differentiable density function p is called v-regular if

∣∣∣ d
du
p(u)

∣∣∣ ≤ v(u)p(u).

In [140, Theorem 8], it has been proved that if U has a v-regular density,
then

H(V ) ≤ h(U)− log 2r + 2rCU(r) (7.57)

where CU(r) is a function of r depending on the density of U and on the
function v. Furthermore, if v is Lipschitz-continuous almost everywhere and
if E[v(U)] is finite, then CU(r) can be shown to be bounded for finite r — see
Appendix 7.7.4. In particular, if v has Lipschitz constant L,

CU(r) ≤
√
J(U) + 2Lr. (7.58)

We then obtain the following parametric curve

R
(L)
U (r) := h(U)− log 2r + 2r

√
J(U) + 4Lr2

δ(r) := er − r − 1
(7.59)
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which is an upper bound to the (R, δ) pairs achievable with lattice quantiza-
tion. Figure 74 illustrates the comparison of the lattice upper bound R(L)

U and
the lower bound RU at high rates. The 1.047-bit gap in between is clearly
observed.

Remark 7.4. As discussed in [140], the gap 1
2 log2

(
πe
2

)
≈ 1.047 is due to the

covering inefficiency of the one-dimensional lattice. If we perform a similar
analysis under the mean-square distortion, the gap turns out to be exactly
the same [140]. This is expected as the gap δ = log(E[eV−U ]) − E[V − U ]
— despite not being a distortion function — behaves like r2/2 for small r.
Observe that for sufficiently smooth densities, the mean-square error under
lattice quantization behaves exactly the same for sufficiently small r.
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RU (δ)

R
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Figure 74 – High-rate behaviors of the lower bound RU , and the curve R(L)
U

achievable with one-dimensional lattice quantization. Same hypothesis testing
setup in Figure 72 is considered, where U has a Gaussian distribution. It is
not difficult to see that a Gaussian distribution is v-regular. The 1.047-bit
difference between R(L)

U and RU , mentioned in Theorem 7.4, is visible.

In light of our results in this section, the remote node’s strategy in the
high-rate regime is apparent. At time t, the node (i) calculates its LLR Lt,
(ii) obtains the lattice-quantized score St = qr(Lt), and (iii) sends St with an
optimal variable-length lossless code designed for P , i.e., for H0. This strategy
ensures the approach to the optimal curve within 1.047 bits.

One might ask what is the expected number of bits sent under H1 although
the code is designed for H0. It is known that if the true distribution of the
quantized score St is given by Q(St), then an optimal lossless code designed
for P (St) yields the expected number of bits at most
HQ(St) log2 e+D(Q(St)||P (St)) log2 e ≤ HQ(St) log2 e+D(Q||P ) log2 e,

(7.60)
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where the inequality is due to the data processing inequality. Hence, if Q is also
absolutely continuous with respect to P , D(Q||P ) is finite, and the expected
number of bits sent under H1 is finite as well.

We end this section by raising the following question: “Is it possible to
eliminate the 1

2 log2

(
πe
2

)
gap with more efficient lattice coverings?” For high-

dimensions, it is known that covering-efficient lattices exist [140]. Hence, an
obvious attempt would be to allow the quantization of multiple samples, i.e., at
time tk, the remote node records L(t−1)k+1, . . . , Ltk and sends the k-dimensional
lattice-quantized version. Although this approach might alleviate the covering
inefficiency problem, it is not certain that for such procedures the RU curve
remains the same. We shall study in the next section the behavior of RU when
vector quantization is allowed.

7.4.2 Best Performance under Vector Quantization
This section addresses the problem of quantizing multiple samples instead of
one. We continue to study memoryless schemes, that is, at time tk, the k-
tuple of LLRs (L(t−1)k+1, . . . , Ltk) is quantized and sent. We first highlight
a key observation in the proof of Theorem 7.1 — given in Appendix 7.7.1.
Observe that for a choice of quantization function f , the (optimal) Neyman–
Pearson test pertaining to the quantized St = f(Lt) yields the type-II error
rate D(P (S)||Q(S)) and the rate is optimized over possible f ’s to obtain θ(R).
Adapting this observation to the vector quantization case, we have the score
St,k = f(L(t−1)k+1, . . . , Ltk), where f : Rk → R is a simple function, and we
want to optimize D(P (S)||Q(S)) under the constraint I(L1, . . . , Lk;S) ≤ kR
to obtain an upper bound. Using the Donsker–Varadhan representation of
D(P (S)||Q(S)) as we did in the proof of Theorem 7.1, we therefore have the
upper bound to the best achievable type-II error exponent, analogous to (7.14):

θ̃L,k(R) := 1
k

(
sup

pS|L1,...,Lk

EP [S]− logEP
[

exp
(
S − L1,k

)])
s.t. IP (L1, . . . , Lk;S) ≤ kR.

(7.61)

Define L1,k := L1 + · · ·+ Lk and observe that IP (L1,k;S) ≤ IP (L1, . . . , Lk;S).
Hence,

θL,k(R) := 1
k

(
sup

pS|L1,...Lk

EP [S]− logEP
[

exp
(
S − L1,k

)])
s.t. IP (L1,k;S) ≤ kR

(7.62)

is an upper bound to θ̃L,k(R) as the optimization domain is enlarged (it is not
difficult to show that θL,k is in fact equal to θ̃L,k). Since both the objective
and constraint functions in (7.62) only depend on L1,k, the feasible set can be
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reduced to the set of channels from L1,k to S. Hence,

θL,k(R) = 1
k

(
sup
pS|L1,k

EP [S]− logEP
[

exp
(
S − L1,k

)])
s.t. IP (L1,k;S) ≤ kR.

(7.63)

Note the resemblance of (7.63) to (7.14). Consequently, all results for one-
dimensional quantization directly translate to the multi-dimensional case and
we obtain the following upper bound to the boundary of the achievable region:

θU,k(R) := 1
k

(
sup
pV |U

EP [V ]− logEP [exp(V − Uk)]
)

s.t. IP (Uk;V ) ≤ kR

= 1
k
θUk(kR)

(7.64)

where Uk is the random variable that has the same distribution as L1,k. Fol-
lowing the same steps we have taken for the one-dimensional case, we can also
obtain the gap function and the rate–gap curve for the k-dimensional case as

δU,k(R) = 1
k
δUk(kR), RU,k(δ) = 1

k
RUk(kδ). (7.65)

The previously obtained upper and lower bounds for the one-dimensional case
are therefore valid for k-dimensional case as well:

RU,k(δ) := 1
k
RUk(kδ) ≤ RU,k(δ) ≤

1
k
RUk(kδ) =: RU,k(δ). (7.66)

For various k values, the lower bounds RU,k(δ) and upper bounds RU,k(δ) are
drawn in Figure 75 for the same scenario in Figure 72.

Observe that RU,k’s obey the subadditive relation

(k + l)RU,k+l(δ) ≤ kRU,k(δ) + lRU,l(δ) (7.67)

as the admissible strategies for the quantization of k + l samples include the
strategies that quantize k samples and l samples separately. However, note
that this does not imply RU,k(δ) ≤ RU,l(δ) for k ≥ l. Nevertheless, from a
well-known result on subadditive sequences, e.g. [2], we know

lim
k→∞

RU,k(δ) = inf
k
RU,k(δ) (7.68)

and using the upper bound (7.38), we obtain for δ > 0,

lim
k→∞

RU,k(δ) ≤ lim
k→∞

1
2k log

(
1 + Var(Uk)

2kδ

)

= lim
k→∞

1
2k log

(
1 + Var(U1)

2δ

)
= 0.

(7.69)
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Figure 75 – Upper and lower bounds under k-dimensional vector quantization,
for k = 1, 2, 4. Again, the same setup in Figure 72 is considered. The lower
bounds RU,k are drawn as solid curves and the upper bounds RU,k are drawn as
dashed curves. Although all upper and lower bounds are pointwise decreasing
with k, it is not certain that the true RU,k curves exhibit the same behavior.

This is in contrast with the classical rate–distortion function as it is already
defined for k →∞.

Although (7.69) shows that the lower bound RU,k tends to zero, this is also
true for the true boundary curve. A simple achievability scheme at large k
is as follows: Since the remote node records the data until k, it can make its
own decision H0 or H1 and send the one-bit result to the fusion center. The
average number of bits sent is then kept arbitrarily small and since the node
makes the estimate of the true hypothesis based on an optimal test, the type-
II error rate will be close to D(P ||Q), which is the best possible decay rate.
Although such a design might seem appealing in terms of the performance of
type-II error rate, the peripheral node needs to have sufficient computational
power as a requirement of this design. Also recall that in the end of Section
7.4.1, we mentioned that the covering efficiency of lattices may improve at high
dimensions. However, (7.69) and the strategy we have just described suggest
that there is no need for lattice quantization for high dimensions — the node
only sends its one-bit decision.

7.5 Multiple-Node Case
All the previous results obtained for the single-node case can be extended to
the multiple-node case. This is due to the fact that the data is independent
across nodes. To make this extension, we provide a modified definition of
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achievable pairs. Recall that at time t, node i observes data coming from P (i)

under H0, and from Q(i) under H1; calculates the LLR L
(i)
t , and compresses it

with a simple function S(i)
t = f

(i)
t (L(i)

t ). Furthermore, as discussed before, if

1
t

t∑
τ=1

HP (S(i)
τ ) ≤ Ri/ log2 e, (7.70)

then the compressed scores can be sent losslessly with an average number of
bits less than Ri. After recalling the system dynamics, we provide the modified
version of Definition 7.2.

Definition 7.4. Given {P (i)}mi=1 and {Q(i)}mi=1, (R1, . . . , Rm, θ) is an achiev-
able pair if there exists m sequences {f (1)

t }, . . . , {f
(m)
t } of simple functions and

a sequence of thresholds {ηt} such that

(a) 1
t

∑t
τ=1HP (S(i)

τ ) ≤ Ri, for all t and for all i

(b) limt→∞ αt = 0

(c) lim inft→∞ 1
t

log 1
βt
≥ θ

where S(i)
t = f

(i)
t (L(i)

t ), and αt, βt are the type-I and type-II errors respectively,
defined in (7.10).

Let θt(R1, . . . , Rm) := ∑m
i=1 θ

(i)
t (Ri), where

θ
(i)
t (Ri) := sup

{f (i)
1 ,...,f

(i)
t }

∈Ft(Ri)

1
t

t∑
τ=1

(
EP [S(i)

τ ]− logEP [eS
(i)
τ −L

(i)
τ ]
)

(7.71)

is defined as in Theorem 7.1. Observe that

θt(R1, . . . , Rm) =
m∑
i=1

θ
(i)
t (Ri)

=
m∑
i=1

sup
{f (i)

1 ,...,f
(i)
t }

∈Ft(Ri)

1
t

t∑
τ=1

(
EP [S(i)

τ ]− logEP [eS
(i)
τ −L

(i)
τ ]
)

= sup
{f (i)

1 ,...,f
(i)
t }

∈Ft(Ri), i≤m

1
t

t∑
τ=1

m∑
i=1

(
EP [S(i)

τ ]− logEP [eS
(i)
τ −L

(i)
τ ]
) (7.72)

and
m∑
i=1

logEP [eS
(i)
τ −L

(i)
τ ] (a)= logEP [e

∑m

i=1(S(i)
τ −L

(i)
τ )]

(b)= logEQ[e
∑m

i=1 S
(i)
τ ]

(c)=
m∑
i=1

logEQ[eS
(i)
τ ]

(7.73)
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where (a), (c) are due to the independence assumption across nodes and (b) is
because e−

∑m

i=1 L
(i)
τ = ∏m

i=1
dP (i)

dQ(i) = dP
dQ

is the Radon–Nikodym derivative of P
with respect to Q. Therefore, we have

θt(R1, . . . , Rm) =
m∑
i=1

sup
{f (i)

1 ,...,f
(i)
t }

∈Ft(Ri)

1
t

t∑
τ=1

(
EP [S(i)

τ ]− logEQ[eS
(i)
τ ]
)
. (7.74)

Comparing (7.74) with (7.12) and following exactly the same steps in the proof
of Theorem 7.1, we obtain the analogous version of Theorem 7.1 (ii):

θ∗(R1, . . . , Rm) := sup{θ : (R1, . . . , Rm, θ) achievable}
= lim

t→∞
θt(R1, . . . , Rm)

=
m∑
i=1

lim
t→∞

θ
(i)
t (Ri)

=
m∑
i=1

θ̆
(i)
1 (Ri),

(7.75)

which characterizes the boundary of the optimal curve for rate constraints
(R1, . . . , Rm). We also know that θ̆1(R) is upper bounded by θU(R) = D(P ||Q)−
δU(R) from Corollary 7.1, hence

Corollary 7.2.

θ∗(R1, . . . , Rm) ≤
m∑
i=1

[
D(P (i)||Q(i))− δ(i)

Ui
(Ri)

]
(7.76)

where Ui has the same distribution as L(i)
1 , LLR of node i.

One might also consider an extension of the problem to sum-rate con-
straints. Namely, the communication constraint is redefined as R1+· · ·+Rm ≤
Rsum. The characterization in (7.75) is readily adapted to sum-rate constraint
as

θ∗(Rsum) := sup{θ : (R1, . . . , Rm, θ) achievable, R1 + · · ·+Rm = Rsum}

= max
R1+···+Rm=Rsum

m∑
i=1

θ̆
(i)
1 (Ri),

(7.77)
and

θ∗(Rsum) ≤ max
R1+···+Rm=Rsum

m∑
i=1

θUi(Ri). (7.78)

The (θ, R) pairs that lie above the curve on right-hand side are unachievable
under the sum-rate constraint. Hence, one may be interested in the optimal
rate sharing that maximizes the right-hand side with an aim to characterize an
unachievable region. We first provide a simple property of a possible optimal
allocation: Intuitively, the optimal rate sharing must not exclude the more
informative nodes.



7.5. Multiple-Node Case 121

Definition 7.5 ([141]). A node j is said to be more informative2 than node i,
and denoted as i ≺ j if there exists a probability transition kernel w : B(R)×
R→ R+ such that for all A ∈ B(R)∫

w(A, x)dP (j)(x) = P (i)(A) (7.79)

and ∫
w(A, x)dQ(j)(x) = Q(i)(A). (7.80)

With the above definition, we have

Theorem 7.5. Let R∗ ⊂ Rm be the set of optimal allocations in (7.78). If
i ≺ j for some j, then R∗ contains a (R∗1, . . . , R∗m) such that R∗i > 0 only if
R∗j > 0.

Proof. Recall the definition of θUi(Ri):

θUj(R) = sup
pV |Uj

s.t. I(Uj ;V )≤R

EP [V ]− logEP [exp(V − Uj)]

(a)= sup
pV |Uj

s.t. I(Uj ;V )≤R

EP [V ]− logEQ[exp(V )]

≥ sup
pV |Ui◦wUi|Uj

s.t. I(Uj ;V )≤R

EP [V ]− logEQ[exp(V )]

(b)
≥ sup

pV |Ui◦wUi|Uj
s.t. I(Ui;V )≤R

EP [V ]− logEQ[exp(V )]

= θUi(R)

(7.81)

where (a) is due to the measure change as Uj is distributed as the logarithm
of the Radon–Nikodym derivative dP (j)

dQ(j) and (b) is due to the data processing
inequality I(Uj;V ) ≤ I(Ui;V ) for the choice of pV |Uj = pV |Ui ◦wUi|Uj . Suppose
Ri > 0 and Rj = 0. Since θUj(R) pointwise dominates θUi(R), one cannot do
worse with the modification (Ri, 0)→ (0, Ri).

It might be tempting to think that the optimal allocation assigns R∗i = 0
if i ≺ j for some j, as θUj(R) dominates θUi(R) pointwise. This is not true in
general. Suppose P (i) and Q(i) are obtained by passing P (j) and Q(j) through
an additive Gaussian channel with almost zero noise and suppose Rsum is
very large. Allocating all the rate to node j will yield an exponent close
to D(P (i)||Q(i)) whereas an equal rate allocation gives an exponent close to

2Although the definition of more informativeness is different for m-ary hypothesis tests,
it is shown in [141] that for m = 2, the definition given here is equivalent.
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D(P (i)||Q(i)) + D(P (j)||Q(j)). Therefore, if the sum-rate constraint is large
enough, it is preferred to observe two (almost uncompressed) independent
samples instead of one, which surely increases the type-II decay rate.

Since θUi ’s (or equivalently δUi ’s) are difficult to calculate in general, one
may consider the optimal allocation based on the (R, δ) pairs that lie on the
RUi(δ) curves given by the parametric form (7.37). Observe that such pairs
depend on Ui only through shifts of a parametric curve by its differential
entropy hi := h(Ui). Denoting the inverse of RUi(δ) by δUi(R), we have thus
the property

δUi(R) = δ(R− hi) (7.82)
where δ(R) is given by the parametric form

R(α) = − log Γ(α) + αψ(α)− α,
δ(α) = logα− ψ(α), α > 0.

(7.83)

The sum-rate optimization is then formulated as

θ∗(Rsum) := max∑m

i=1Ri=Rsum

m∑
i=1

[
D(P (i)||Q(i))− δ(Ri − hi)

]
=

m∑
i=1

D(P (i)||Q(i))− min∑m

i=1Ri=Rsum

m∑
i=1

δ(Ri − hi),
(7.84)

which can be shown to admit a water-filling solution.

Lemma 7.4. The sum-rate constrained problem (7.84) has a solution given by

R∗i = (µ+ hi)+, (7.85)

where (x)+ denotes the positive part of x; and µ is a constant chosen to satisfy
the sum-rate constraint ∑m

i=1R
∗
i = Rsum.

Proof. First, observe that δ(R) is convex. This is a consequence of its formu-
lation in (7.34). As δ(R) is convex, the Karush–Kuhn–Tucker (KKT) condi-
tions are necessary and sufficient to characterize the solutions. For the sum-
constraint ∑m

i=1Ri = Rsum, it is known that the KKT conditions are given
by [2]

δ′(Ri − hi) = λ, Ri > 0
δ′(−hi) > λ, Ri = 0

(7.86)

for some constant λ. Since δ′(Ri − hi) is non-decreasing due to the convexity
of δ(R), the KKT conditions are also equivalent to

Ri − hi = µ, Ri > 0
−hi > µ, Ri = 0

(7.87)

with µ = R(α)|α=1/λ, and they characterize the claimed solution in (7.85).



7.6. Discussion 123

Although the sum-rate optimization in (7.84) does not give the exact
boundary of the achievable (R1, . . . , Rm, θ) pairs, θ∗(Rsum) is an upper bound
to the boundary. This implies that no (R1, . . . , Rm, θ) pair lying above θ∗(Rsum)
is achievable. A numerical example is illustrated in Figure 76.
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θU2
(R)

θU3
(R)

Figure 76 – A 3-node instance of the problem. Nodes observe zero-mean Gaus-
sian data under H0, and with a mean vector [

√
0.2,
√

0.4,
√

0.6] under H1. The
data has unit variance under both hypotheses. Then, the LLRs also have Gaus-
sian distributions with means [0.1, 0.2, 0.3] and variances [0.2, 0.4, 0.6] under
H0. The individual θUi(R) := D(P (i)||Q(i))− δUi(R) curves are drawn dashed,
whereas the optimal sum-rate curve θ∗(R) is drawn solid. The shaded region
is unachievable under sum-rate constraints.

We conclude this section by noting that when the data is not independent
across nodes, the question of how to combine the scores is highly non-trivial
even if there were no communication constraints. Under communication con-
straints, the problem for this general case could be of formidable complexity.

7.6 Discussion
In this chapter, we have studied a fundamental limit of a distributed hypoth-
esis testing problem when remote nodes compress their data in a memoryless
fashion and the expected number of bits sent under H0 should be kept limited
to a prescribed quantity R. This asymmetric communication constraint is in
line with the view that H1 is a rare high-risk event and must be detected with
high probability. Thus, nodes are allowed to send a large number of bits under
H1. With such a communication constraint, we characterized the maximum
attainable type-II error (i.e., mis-detection of H1) exponent (Theorem 7.1) for
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vanishing type-I error probability and derived a closed-form upper bound to
this error exponent (Lemma 7.3).

In the high-rate regime, we show that the upper bound is approached with
simple scalar lattice quantization within 1

2 log2(πe/2) ≈ 1.047 bits. This gap
is due to the covering inefficiency of the 1-dimensional lattice and due to the
fact that the gap to the optimal error rate D(P ||Q) behaves quadratically
at high rates. Therefore, it is expected that the results for the high-rate
regime coincide with the results on the rate–distortion problem for mean-
square distortion. This is the reason that the asymptotic behavior of the rate–
gap curve (Theorem 7.2) is reminiscent of the Shannon lower bound for the
rate–distortion curve under mean-square distortion. It is also because of this
quadratic behavior that one can approach the lower bound within 1

2 log2(πe/2)
bits under scalar lattice quantization.

We have also obtained a simple upper bound for the vector quantization
case that can be expressed in terms of its scalar quantization analog (7.64)–
(7.65). Hence, the same upper and lower bounds for the scalar case are also
valid for the vector quantization case. We have also shown in (7.69) that as
the dimension tends to infinity, the rate–gap curve is identically equal to zero
for δ > 0. This is consistent with the following simple achievability scheme:
The remote node performs its own Neyman–Pearson test and sends its decision
with one bit. Hence, the fusion center is informed of the optimal decision, and
the average number of bits sent is arbitrarily small.

With an independence assumption across nodes, the results for the single-
node problem can be easily extended to the multiple-node problem, and a
simple upper bound to the optimal type-II error exponent can be obtained
in terms of the sum of individual upper bounds for each remote node. We
formulated a sum-rate constrained problem and studied some of its properties
(Theorem 7.5 and Lemma 7.4).

As a final remark, we note that the results for the vector quantization
case are also applicable to the multiple-node case. This implies that when the
dimension tends to infinity, the rate–gap curve will be again equal to zero and
is attained with a simple scheme that is similar to the single-node case: Each
node performs its optimal test and sends the 1-bit result to the fusion center.
The center decides H1 if at least one node decides H1. This scheme ensures
vanishing type-I error probability and the type-II error exponent is equal to∑
iD(P (i)||Q(i)). Hence the center is able to attain the optimal rate with an

arbitrarily low amount of communication. However, this scheme allows each
node to dictate a H1 decision to the center. This results in a system that is
vulnerable to manipulation. By contrast, schemes with scalar quantization, or
with low-dimensional vector quantization, give the center the opportunity to
detect errors or manipulations and therefore these schemes could be of interest
when faulty or malicious nodes are present.

The reader may recall that we have mentioned two types of distributed
settings in Chapter 6: (i) a centralized one and (ii) decentralized one. Now
that we have completed our study of the centralized scheme, we shall proceed
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with a study of a decentralized inference setting in the next chapter, called
social learning.

7.7 Appendix
7.7.1 Proof of Theorem 1
Proof of (i)

Let θ̆1(R) be the concave envelope of θ1(R). Recall St = ft(Lt) and since all
the expectations are taken under P , we omit P from the subscripts. Also recall

θt(R) = sup
{f1,...,ft}∈Ft(R)

1
t

t∑
τ=1

(
E[Sτ ]− logE[eSτ−Lτ ]

)
.

We first show that θ̆1(R) ≥ θt(R) for all t. Let us modify the definition of
θ1(R) as

θ1(R) = sup
f simple

E[S1]

s.t. E[eS1−L1 ] = 1
H(S1) ≤ R

(7.88)

since shifting S1 does not change the entropy. The supremization is over simple
functions. Similarly, θt(R) can be defined as

θt(R) = sup
f1,...,ft
simple

1
t

t∑
i=1

E[Si]

s.t. E[eSi−Li ] = 1,∀i ≤ t

1
t

t∑
i=1

H(Si) ≤ R.

(7.89)

For any {fi} in the feasible set of (7.89), there exists {Ri} with 1
t

∑t
i=1Ri ≤ R

and H(Si) ≤ Ri for all i ≤ t; and consequently 1
t

∑
E[Si] ≤ 1

t

∑
θ1(Ri) ≤

θ̆1(R). Thus, θt(R) ≤ θ̆1(R).
It remains to prove the reversed inequality for t→∞, i.e., θt(R) ≥ θ̆1(R)−ε

for large enough t, given ε > 0. Suppose θ1(R) is attained in the limit of
the sequence of simple functions {f ∗t }. This implies for all ε1 > 0, there
exists a simple function f that maps L1 7→ S1 such that E[S1] ≥ θ1(R) − ε1,
E[eS1−L1 ] = 1 and H(S1) ≤ R. Carathéodory’s theorem [142, Section 17]
ensures that every point on the concave envelope θ̆1(R) is achieved by a convex
combination of at most two points on θ1(R). This implies the existence of
functions f , f̃ , and λ ∈ [0, 1], such that λE[S1] + (1−λ)E[S̃1] ≥ θ̆1(R)− ε2 for
all ε2 > 0, and λH(S1)+(1−λ)H(S̃1) ≤ R. Assume H(S̃1) ≤ R without loss of
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generality. Consider the sequence {ft} such that fi = f for i ≤ dλte and fi = f̃

otherwise. Observe 1
t

∑
H(Si) ≤ R and thus θt(R) ≥ 1

t

∑
E[Si] ≥ θ̆1(R)− 2ε2

for t large enough. The proof of part (i) is complete.
In the achievability proof of part (ii), we have to show that the supremizers

of θt(R) have to drive αt → 0. For completeness, we provide the proof here.
Take {ft} as above and use Chebyshev’s inequality to bound the type-I error
probability under the threshold test with the threshold ηt chosen as in (7.11):

αt = P

(
t∑
i=1

fi(Li) < EP [gi(Li)]− ε
)
≤
∑t
i=1 Var

(
fi(Li)

)
ε2t2

(7.90)

Recall that fi is defined to be equal either to f or f̃ . As f and f̃ take finitely
many values, the variances of f(U), f̃(U) are bounded for any U . Therefore,

αt ≤
max

{
Var

(
f(L1)

)
,Var

(
f̃(L1)

)}
ε2t

→ 0, (7.91)

which shows that any sequence in the achievability part of (i) indeed satisfies
the property (b) in Definition 1.

Proof of (ii)

We will follow an approach very similar to the one in the proof of Theorem
1.10.

(Achievability) As mentioned, choose ηt = 1
t

∑t
τ=1EP [St] − ε as in (7.11).

We upper bound the type-II error βt as

Q
(
S̄t ≥ ηt

)
= Q

(
exp(tS̄t) ≥ exp

(
tηt
))

(a)
≤ EQ

[
exp

( t∑
τ=1

(
Sτ − EP [Sτ ] + ε

))]
(b)=

t∏
τ=1

EQ[eSτ ] exp(−EP [Sτ ] + ε)

(7.92)

where (a) follows from Markov inequality and (b) follows from independent
processing of LLRs. Therefore,

1
t

log 1
βt
≥ 1
t

t∑
τ=1

(
EP [Sτ ]− logEQ[eSτ ]

)
− ε. (7.93)

Optimizing the right-hand side with respect to the choice of ft’s satisfying the
communication constraints we have

1
t

log 1
βt
≥ sup
{f1,...,ft}∈Ft(R)

1
t

t∑
τ=1

EP [Sτ ]− logEQ[eSτ ]− ε. (7.94)



7.7. Appendix 127

Consider the transformation S̃t = log P (St)
Q(St) , i.e., the LLR of St. Observe that

the mapping Lt 7→ S̃t is a simple function and since St is discrete, H(St) ≥
H(S̃t) as the mapping St 7→ S̃t is deterministic. Therefore, communication
constraints are still satisfied. Furthermore, S̃t is a sufficient statistic and the
fusion center is able to deploy a Neyman–Pearson test based on S̃t’s. It is
known from Donsker–Varadhan representation [143] of divergence that

D(P ||Q) = sup
g:R→R

EP [g(X)]− logEQ[eg(X)] (7.95)

where the supremum is over the set of bounded measurable functions on R, and
is attained at g(X) = log dP

dQ
, the logarithm of the Radon–Nikodym derivative

of P with respect to Q. We combine (7.95) with (7.94) to obtain

1
t

log 1
βt
≥ sup
{f1,...,ft}∈Ft(R)

1
t

t∑
τ=1

D(Pfτ ||Qfτ )− ε, (7.96)

where Pfτ := P ◦ fτ and Qfτ := Q ◦ fτ . It only remains to show that the
supremizers in (7.96) must drive αt → 0, which we have already proved at the
end of part (i).

(Converse) Now, following similar steps to Stein’s lemma, we apply data
processing inequality twice to see that for any sequence of ft’s:

tD(P ||Q) ≥
t∑

τ=1
D(Pfτ ||Qfτ ) ≥ d(αt||1− βt) (7.97)

where d(p||q) := p log p
q

+ p̄ log p̄
q̄
is the binary divergence. Hence,

t∑
τ=1

D(Pfτ ||Qfτ ) ≥ −he(αt)− αt log(1− βt)− (1− αt) log(βt), (7.98)

with he(p) := −p log p − (1 − p) log(1 − p). Suppose αt → 0 and βt bounded
away from 1. Then, it must be true that

lim inf
t→∞

sup
{f1,...,ft}∈Ft(R)

1
t

t∑
τ=1

D(Pfτ ||Qfτ ) ≥ lim inf
t→∞

1
t

log 1
βt
. (7.99)

Taking lim inf and ε→ 0 in (7.96), combining with (7.99); we therefore have

lim inf
t→∞

sup
{f1,...,ft}∈Ft(R)

1
t

t∑
τ=1

sup
fτ

D(Pfτ ||Qfτ ) = lim inf
t→∞

1
t

log 1
βt
. (7.100)

In other words, βt decays with an exponent at least

lim inf
t→∞

sup
{f1,...,ft}∈Ft(R)

1
t

t∑
τ=1

D(Pfτ ||Qfτ ). (7.101)
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Recall that the set Ft(R) also includes the supremal function gt’s in the
Donsker–Varadhan formulation (7.95), thus we have

lim inf
t→∞

1
t

log 1
βt

= lim inf
t→∞

sup
{f1,...,ft}∈Ft(R)

1
t

t∑
τ=1

EP [Sτ ]− logEQ[eSτ ]

(a)= lim inf
t→∞

sup
{f1,...,ft}∈Ft(R)

1
t

t∑
τ=1

EP [Sτ ]− logEP [eSτ−Lτ ]

= lim
t→∞

θt(R)

(7.102)

where (a) follows from the assumption that P ∼ Q; hence both dP
dQ

, dQ
dP

exist
and dQ

dP
=
(
dP
dQ

)−1
almost surely.

7.7.2 Proof of Lemma 7.1
We consider the inequality (7.94) and obtain a more relaxed lower bound for
it using log x ≤ x− 1 as

1
t

log 1
βt
≥ 1
t

t∑
τ=1

sup
fτ∈F

EP [Sτ ]− EQ[eSτ ] + 1− ε. (7.103)

It is known that D(P ||Q) can also be represented as

D(P ||Q) = sup
g:R→R

EP [g(X)]− EQ[eg(X)] + 1. (7.104)

Proceeding similarly to the proof of Theorem 7.1, we obtain θX(R) = θ̃X(R).

7.7.3 Proof of Lemma 7.2
Consider the following quantization of U . Let In := [−n, n] and vn,k := −n+
k2−n for 1 ≤ k ≤ 2n+1n. If U ∈ In, then set V as the closest vn,k to U .
Otherwise, set V = 0. Then,

E[eV−U ] ≤ e2−nP (U ∈ In) + E[e−U1{U /∈ In}] (7.105)

and
E[V − U ] ≥ −2−nP (U ∈ In)− E[U1{U /∈ In}]. (7.106)

Since E[e−U ] = 1, E[|U |] <∞ and P (U ∈ In)→ 1, the rightmost terms above
tend to zero and for large n,

logE[eV−U ]− E[V − U ] (7.107)

is close to zero. The proof will be complete if I(U ;V ) < ∞ for finite n. But
since V has finite cardinality, this is indeed the case.
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7.7.4 Boundedness of CU(r)
We give the definition of CU(r) suitable for our setting, adopted from [140].
Recall that the output of the lattice quantization takes values in {2kr}k∈Z.
Let Ik := [(2k − 1)r, (2k + 1)r]. Then CU(r) := ∑

k P (Ik) maxIk v(u).
Now, observe

E[v(U)] =
∑
k

∫
Ik

p(u)v(u)du. (7.108)

Since both p and v are continuous, by the mean value theorem, for each k
there exists a ck such that∫

Ik

p(u)v(u)du = v(ck)
∫
Ik

p(u)du. (7.109)

Suppose v(u) is Lipschitz with constant L. Since ak := arg maxu∈Ik v(u) has
distance at most 2r to ck, we have |ak − ck| ≤ 2r and v(ak) ≤ 2Lr + v(ck).
Then,

CU(r) ≤
∑
k

(2Lr + v(ck))P (Ik) = 2Lr + E[v(U)]. (7.110)

Therefore, finiteness of E[v(U)] guarantees the finiteness of CU . Also observe
that if v(u) = | d

du
log p(u)| is Lipschitz, and if J(U) <∞, then CU(r) is upper

bounded as
CU(r) ≤

√
J(U) + 2Lr (7.111)

and is guaranteed to be finite.
For the case when v is not Lipschitz, but is differentiable and its derivative

is Lipschitz with constant L, CU(r) can be upper bounded as

CU(r) ≤ E[v(U)] + 2rE[|v′(U)|] + 4Lr2 (7.112)

and if E[v(U)], E[|v′(U)|] are finite, CU(r) can be bounded from above. Note
that similar arguments generalize to higher order derivatives of v.

As an example, suppose U has a density given by p(u) = K exp(−|u|3), with
K being the appropriate normalization constant. Then since d

du
log p(u) = 3u2,

one cannot find a Lipschitz v. Nevertheless, if one sets v(u) = 3u2, |v′(u)| =
6|u| is Lipschitz with constant L = 6 and since E[U2], E[|U |] are finite, CU(r)
is bounded according to (7.112).





Introduction to Social
Learning 8
As mentioned in the previous chapter, we will now introduce a decentralized
inference framework. As opposed to the hierarchical fusion-center based setup,
we will now consider a fully-flat architecture and there will be no center to ag-
gregate information. Our architecture consists of nodes (or agents) that share
their beliefs with a subset of nodes at certain times. An example could be a
social network, e.g., Twitter, where a user shares their belief about a certain
phenomenon with their followers — in graph-theory parlance, neighbors —
formed by the private information they possess. For instance a finance ex-
pert might have an insider information that the CEO of ABC company runs a
Ponzi scheme and might share his updated belief about the ABC stock price
(most probably the experts would advise to sell in this situation if they are
trustworthy). Although he has valuable information, this particular expert is
not the only person who has private information about ABC, or other com-
panies. Hence, agents might have an incentive to share their honest beliefs so
as to receive honest beliefs from their companions as well. With the aggre-
gated information (we will see how), agents in the social network might be able
to make accurate guesses about more general phenomena — in this example
agents’ ultimate aim could be to detect the market direction.

The above example is indeed a social learning instance, where social be-
ings collaboratively seek to learn more about the true state-of-nature. Social
learning is a paradigm that investigates how opinions are formed over social
networks by modeling the interactions between networked agents to learn the
true state of a phenomenon. We will describe and study a social network model
as a m-ary hypothesis testing problem; where agents will seek to find the true
hypothesis among the m possible. At this point, it might be informative to
see the Bayesian framework as opposed to the Neyman–Pearson framework we
have studied so far. Later, we will emphasize how a Bayesian approach would
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be intractable in a social learning problem and locally Bayesian learning be-
comes necessary and helpful.

8.1 Notation
In this and subsequent chapter, we will extensively deal with vectors, matrices
and scalars which can be random or not. Hence, for convenience we will use
a different notation than used in the previous chapters of this thesis. Ran-
dom variables are denoted with boldface letters whereas their realizations are
denoted with plain letters (e.g., zi and xi). For a collection of random vari-
ables, σ(.) denotes the smallest σ-algebra pertaining to the collection. Sets
and events are denoted with script-style letters (e.g., A). |A| denotes the car-
dinality of set A. For vectors u and v, 〈u, v〉 denotes the inner product between
u and v; and ‖u‖1, ‖u‖ denote the `1 and `2 norms of u respectively. All the
logarithms are assumed to be natural logarithms. For a graph G = (V,E), Nk
denotes the neighbor of vertex k and deg(k) , |Nk| is the degree of vertex k.

8.2 Bayesian Framework in m-ary Hypothesis
Testing

Similar to the hypothesis testing problem described in Section 1.5, the statisti-
cian aims to learn about a phenomenon based on their observation. This time,
there are m possible states of nature, θ1, . . . , θm, among which there is a true
state denoted by θ◦. Prior to having any observation, i.e., at time i = 0, the
statistician has a belief vector µ0, which is a distribution on Θ := {θ1, . . . , θm},
where µ0(θ) quantifies the statistician’s confidence in the proposition ‘θ = θ◦’.

We assume that at each time instant i, the statistician observes data ξi.
We assume ξi’s are i.i.d., and under hypothesis θ, ξi is sampled from the
distribution/likelihood L(·|θ). After making their observation at time i, the
statistician updates their belief vector according to the Bayes rule:

µi(θ) = P (θ|ξ1, . . . , ξi) = µi−1(θ)L(ξi|θ)∑
θ µi−1(θ)L(ξi|θ)

. (8.1)

One should expect that the belief vector should eventually assign unit belief
to the true hypothesis, i.e., µi(θ) → δ(θ◦), where δ(·) is the Kronecker delta
function. This is indeed true if the initial belief µ0(θ◦) > 0; otherwise it is easy
to see that µi(θ◦) is stuck at zero for all i. Assume µ0(θ◦) > 0, and observe
that the log-belief ratios

λi(θ) := log µi(θ
◦)

µi(θ)
(8.2)

evolve as a random walk

λi(θ) = λi−1(θ) + log L(ξi|θ◦)
L(ξi|θ)

. (8.3)
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Since the true hypothesis is θ◦, the expectation of each random increment is

Eθ◦

[
log L(ξ1|θ◦)

L(ξ1|θ)

]
= D(L(·|θ◦)||L(·|θ)). (8.4)

Therefore if D(L(·|θ◦)||L(·|θ)) > 0, which is true if L(·|θ◦) 6= L(·|θ), we con-
clude from standard results on random walks that λi(θ) → ∞ and hence
µi(θ) → 0 for all θ 6= θ◦. This consequently shows that µi(θ) → 1. We will
refer to this property as truth learning.

Now suppose that there are K statisticians. Consequently, at each time
instant i, a random vector ξi of length K is observed. Note that for a fully-
Bayesian update as in (8.1), (i) the data ξi has to be aggregated at a center (or
at least must be known by each agent). Moreover, (ii) the joint distribution
across agents must be known. Both conditions (i) and (ii) suggest that in a
decentralized framework as in the previous section, fully-blown Bayesian up-
dates are intractable. The situation could worsen even more when the number
of agents is large. To circumvent the technical difficulties, social learning, as
a decentralized inference framework, uses locally Bayesian updates. Simply
put, in a local Bayesian update, agents first (i) update their belief vectors
according to their local data and local likelihood function, e.g., for agent k,
ξk,i and L(ξk,i|θ◦) (a.k.a. the marginal distribution at kth coordinate). This
updated vector is also called the intermediate belief. Then, (ii) agents share
their updated (intermediate) beliefs with their peers/neighbors. Note that
agents might receive multiple belief vectors from their neighbors; therefore
they have to aggregate these distinct belief vectors (as well as their own). The
two widely-studied methods consist of arithmetic and geometric averaging of
beliefs. In both methods, it can be shown that all agents learn the truth al-
most surely under mild assumptions on network connectivity. However, the
speed of learning is an important criterion and there is no certain answer that
tells geometric is superior compared to arithmetic or vice versa — although
we have some hint that geometric averaging performs better [144–146]. The
randomized social learning model proposed in the next chapter will use a ge-
ometric averaging method, where each agent randomly polls a neighbor and
aggregates the two belief vectors. Before studying this model, let us mention
some of the related studies on social learning.

8.3 Related Work
As we have discussed in the previous section, a desirable property of social
learning algorithms is that all agents eventually learn the truth, i.e., their
beliefs will assign unit probability to the true hypothesis θ◦, e.g., [146–149].
Social learning is also studied to understand how opinions are formed over
social networks [150–153]. For instance, fully Bayesian strategies to find the
global posterior belief is studied in [151]. However, as we have discussed in
the previous section, this approach may not be tractable in large networks and
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consequently local Bayes updates — sometimes called non-Bayesian learning
— are studied extensively. Some references along this strand are [146–148,
154–160].

Agents usually incorporate their beliefs with their neighbors’ beliefs with
consensus [148, 161], diffusion [160, 162–174], or gossip [175, 176] updates. In
consensus, agents share their belief vectors with their neighbors whereas in
diffusion updates they share their intermediate beliefs. In the next chapter, we
will study a diffusion-based randomized social learning algorithm — the reader
might have noticed that the method we described in the previous section is
also diffusion. These two methods are very similar but they require different
conditions to ensure truth learning. For instance, in consensus, all agents
must have positive self-reliance, i.e., must not discard their own belief during
the fusion of neighbors’ beliefs, to ensure truth learning. In diffusion, it is
enough for one agent to have positive self-reliance. We will also study in the
next chapter a special case where agents replace their beliefs with a randomly
chosen neighbor, hence no agents will have positive self-reliance with unit
probability. Still, we will see that truth learning is ensured in this case under
mild conditions.

In the social learning literature, the closest work to what we will study
in the next chapter appears to be [176], where the authors have considered
symmetric gossip schemes and shown that the agents learn the truth eventually
with high probability. Unlike [176], we will consider diffusion [162] algorithms
and the communication is not necessarily symmetric. For instance, we assume
full-duplex communication at nodes such that at time i agent 1 can receive
data from agent 2 while agent 2 receives from agent 3. Furthermore, we will
show that truth learning takes place almost surely as opposed to ‘with high
probability’. Diffusion algorithms with random neighbor selections are included
in [177,178], for optimization purposes rather than social learning framework.



Social Learning Under
Randomized
Collaborations1 9
9.1 Motivation
A common assumption in social learning is that agents communicate with all
of their neighbors at each time instant. While this assumption helps modeling
microblogging social media such as Twitter, it falls short when modeling pri-
vate and personal communication social media platforms such as WhatsApp.
In many situations, people exchange beliefs with a subset of their contacts.
This might happen because, for example, data may arrive at high rates such
that agents might not be able to communicate with all their neighbors between
two consecutive arrivals. Furthermore, for designing communication-efficient
networked systems, sparse interactions between the devices can be preferred.
For instance, consider an agent that attempts to receive data from multiple
neighbors. These transmissions are likely to collide and to avoid such issues,
each neighbor can be given turns to communicate by the receiver agent, sim-
ilar to a MAC layer protocol. The above observations motivate us to study
the social learning problem when agents update their beliefs based on only
one randomly chosen neighbor at each time instant. The main results of this
chapter are listed below.

(i) The agents learn the truth eventually with probability one.

(ii) Despite the decreased amount of communication, the asymptotic rate of
learning is the same as the standard social learning algorithms where
agents interact with all their neighbors.

(iii) For a special case where the agents replace their beliefs with the neigh-
bor’s belief, we will provide a large deviations analysis of log-belief ratios

1The content of this chapter is based on [179].
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that only uses the marginal distributions of the data across the agents,
i.e., the result does not depend on any coupling between the agents.

9.2 Problem Formulation
In accordance with the multiple statistician scenario of Section 8.2, consider
K agents with peer-to-peer communication on a graph topology. These agents
aim to infer the true hypothesis θ◦ among a finite set of hypotheses Θ. The
belief µk,i(θ) quantifies the confidence that agent k has at time i in the propo-
sition “θ = θ◦". The vector µk,i lives in a |Θ|-dimensional probability sim-
plex. The agents observe partially informative and private observations, i.e.,
agent k observes ξk,i at time i, which is distributed according to the likeli-
hood/distribution Lk(ξk,i|θ◦). Agent k knows its likelihood functions Lk(·|θ)
for all θ ∈ Θ. We assume data is identically and independently distributed
(i.i.d.) across time; but is not necessarily independent across agents, unlike
Chapter 7. As opposed to prior work where agent k receives beliefs from
all its neighbors at each time instant i, in the study of this chapter, it ran-
domly selects one neighbor at each time instant, independent from the past
and receives information from that neighbor.

9.2.1 A Randomized Diffusion Algorithm
In our algorithm, agents update their beliefs with a local Bayesian rule to
obtain intermediate beliefs as in standard social learning algorithms [146,148,
149,160]:

ψk,i(θ) = Lk(ξk,i|θ)µk,i−1(θ)∑
θ′ Lk(ξk,i|θ′)µk,i−1(θ′) . (Adapt) (9.1)

Then, each agent chooses one of their neighbors and updates its intermediate
belief by taking a weighted geometric average with the chosen neighbor’s belief.
Specifically, for agent k and ` ∈ Nk,

µk,i(θ) = ψk,i(θ)αψ`,i(θ)ᾱ∑
θ′ ψk,i(θ′)αψ`,i(θ′)ᾱ

, with prob. a`k (Combine) (9.2)

where α ∈ [0, 1) is a confidence weight and ᾱ := 1−α. We assume µk,0(θ) > 0
for all k and θ. Observe that α = 0 corresponds to the case where the agent
replaces its intermediate belief with the chosen neighbor’s belief. If we allow
α = 1, it would correspond to the non-cooperative mode of operation; hence
this case is of no interest to our work.

Observe that the matrix A := [a`k], called as the combination matrix in
social learning, is left-stochastic as a`k’s represent probabilities. We have the
following assumption regarding the communication topology and A.
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Assumption 9.1. The network is strongly-connected, which means there is
a path with positive probability between every agent pair (k, `) and there is at
least one agent k with akk > 0 — analogous to self-reliance property of an
agent.

In contrast to prior work where a`k represents the weight agent k assigns to
the belief obtained from agent ` during convex combination of all neighbors,
in this work, this weight represents the probability that agent k chooses and
receives information from agent `. This procedure decreases the number of
transmissions made at each time slot, i.e., the number of transmissions de-
creases 1

K

∑K
k=1 deg(k) times on average compared to the standard algorithm.

9.3 Analysis of the Algorithm
Recall that θ◦ is the true hypothesis and let θ ∈ Θ \ {θ◦} denote an arbitrary
hypothesis. We study the evolution of the log-belief ratios:

λk,i := log µk,i(θ
◦)

µk,i(θ)
, (9.3)

which can be verified to evolve according to

λk,i = α(xk,i + λk,i−1) + ᾱ(x`,i + λ`,i−1), with prob. a`k (9.4)

where
xk,i := log Lk(ξk,i|θ

◦)
Lk(ξk,i|θ)

(9.5)

is the log-likelihood ratio (LLR) of the data calculated by agent k at time i.
An equivalent way to express (9.4) is

λk,i = 〈λi,w(k)
0 〉

= 〈xi + λi−1, (αI + ᾱAi)w(k)
0 〉

= 〈xi, (αI + ᾱAi)w(k)
0 〉+ 〈λi−1, (αI + ᾱAi)w(k)

0 〉

(9.6)

where xi :=
[
x1,i . . .xK,i

]T
, λi :=

[
λ1,i . . .λK,i

]T
, w(k)

0 :=
[
0 . . . 1 . . . 0

]T
is

an all-zero vector with a single 1 at its kth element; and Ai := [a`k,i] is a
random matrix such that a`k,i = 1 if node k chooses to communicate with
node ` at time i. Note that ∑` a`k,i = 1 surely, i.e., is a left-stochastic matrix,
and E[Ai] = A for all i. Furthermore, since each node selects its neighbor
identically and independently across time, A1, . . . ,Ai are i.i.d.

Now, define

w(k)
n :=

i∏
j=i−n+1

(αI + ᾱAj)w(k)
0 (9.7)
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for 1 ≤ n ≤ i. Note that w(k)
n is a random probability vector. We iterate (9.6)

to obtain
λk,i =

i∑
n=1
〈w(k)

n ,xi−n+1〉. (9.8)

Our aim is to show that (with a.s. denoting almost sure convergence)
1
i
λk,i

a.s.−→〈π, d〉, (9.9)

where d is the divergence vector with its kth element being the KL divergence
D(Lk(.|θ◦)||Lk(.|θ)); and π is the Perron vector of A. Recall that 〈π, d〉, the
asymptotic rate of convergence, is the same as the standard algorithm where
agents benefit from all neighbors at each time instant [146,149]. As an initial
step to prove (9.9), we first establish the following result.

Lemma 9.1. For all k,
1
i

i∑
n=1
w(k)
n

a.s.−→ π. (9.10)

Proof. The statement does not depend on k, so without loss of generality we
take k = 1 and omit all the superscripts (k). We first show convergence in
probability. From Markov’s inequality, we have

P

∥∥∥∥∥1
i

i∑
n=1
wn − π

∥∥∥∥∥
2

> ε

 ≤ E

[∥∥∥∥∑i
n=1(wn − π)

∥∥∥∥2
]

εi2
. (9.11)

The expected norm on the right-hand side of (9.11) is equal to

E

[
i∑

n=1
‖wn − π‖2

]
+ 2E

[ ∑
m<n

〈wm − π,wn − π〉
]
. (9.12)

Define for m ≤ i, Fm,i := σ
(
{Aj}i−m+1≤j≤i

)
and observe

E[〈wm − π,wn − π〉] = E
[
E[〈wm − π,wn − π〉|Fm,i]

]
= E

[
〈wm − π,E[wn − π|Fm,i]〉]

(9.13)

Furthermore, wn = (αI + ᾱAi−n+1) . . . (αI + ᾱAi−m)wm and since An’s are
i.i.d.,

E[wn|Fm,i] = (αI + ᾱA)n−mwm. (9.14)

Substituting (9.14) into (9.13), we obtain

E[〈wm − π,wn − π〉]
= E

[
〈wm − π, (αI + ᾱA)n−m(wm − π)〉

]
(a)
≤ E

[
‖wm − π‖‖(αI + ᾱA)n−m(wm − π)‖

] (9.15)
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where (a) follows from Cauchy-Schwarz inequality. For a strongly-connected
A and for any α ∈ [0, 1), it is known that there exists a ρ < 1 such that

‖(αI + ᾱA)n−m(wm − π)‖ ≤ C(ρ)ρn−m, (9.16)

where C(ρ) is a constant that only depends on ρ [180, Chapter 4]. Hence,
(9.15) is further upper bounded by

E[‖wm − π‖]Cρn−m. (9.17)

Also note that
E
[
‖wm − π‖

]
≤ E

[
‖wm‖

]
+ ‖π‖ ≤ 2 (9.18)

and
E
[
‖wm − π‖2

]
≤ 2(E

[
‖wm‖2

]
+ ‖π‖2) ≤ 4. (9.19)

Using (9.18), (9.19) we upper bound (9.12), and consequently upper bound
(9.11) as

P

∥∥∥∥∥1
i

i∑
n=1
wn − π

∥∥∥∥∥
2

> ε

 ≤ 4 + 4Cρ/(1− ρ)
εi

. (9.20)

This shows that 1
i

∑i
n=1w

(k)
n → π in probability. Also note that for a K-

dimensional vector u, ‖u‖1 ≤ ‖u‖
√
K. Therefore

P

∥∥∥∥∥1
i

i∑
n=1
wn − π

∥∥∥∥∥
1
> ε

 ≤ 4
√
K + 2

√
Kρ/(1− ρ)
εi

. (9.21)

The last step of the proof follows by a standard trick to obtain the strong
law of large numbers [181, Chapter 7]. Let ui :=

∥∥∥∑i
n=1(wn − π)

∥∥∥
1
. From

Borel–Cantelli lemma [82, Chapter 2], the subsequence ui2/i2 a.s.−→ 0 — replace
i with i2 in (9.21) and observe that the right-hand side is summable. Moreover,
observe for all i2 ≤ m ≤ (i+ 1)2:

um
m

(a)
≤ ui2 +∑m

n=i2 ‖wn − π‖1

i2

(b)
≤
ui2 + 2

(
(i+ 1)2 − i2

)
i2

. (9.22)

To obtain (a) we upper bounded the numerator with triangle inequality and
lower bounded the denominator by usingm ≥ i2. (b) holds because ‖w−π‖1 ≤
2 for any w, and m ≤ (i+ 1)2. Since ui2

i2
a.s.−→ 0 so does um

m
.

Taking the inner product of both sides in (9.10) with d, we obtain

Corollary 9.1. 1
i

∑i
n=1

〈
w(k)
n , d

〉 a.s.−→〈π, d 〉 for all k.

Lemma 1 suggests that the convergence results will not depend on k. Hence,
we assume k = 1 and omit all the superscripts (k) if not needed. The next
step is to show that (9.9) holds under a square-integrability assumption on
divergences. More precisely,
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Lemma 9.2. Suppose E[(xk,i)2] <∞ for all k. Then (9.9) holds.

Proof. It is sufficient to show that

1
i

i∑
n=1
〈wn,xi−n+1 − d〉

a.s.−→ 0. (9.23)

Note that xi is independent of wj for all j; and of all xj except itself. The
same holds for the Ai’s as well. Therefore, for convenience, let us perform an
index change i− n+ 1 7→ n on (xi,Ai) to have the equivalent statement

1
i

i∑
n=1
〈w̃n,xn − d〉

a.s.−→ 0 (9.24)

where w̃n := (αI + ᾱAn)w̃n−1 and w̃0 = [1, . . . , 0]T according to the index
change described above. Kronecker’s lemma [82, Chapter 12] implies that it is
sufficient to check if

zi :=
i∑

n=1

1
n
〈w̃n,xn − d〉 converges a.s. (9.25)

Observe that zi is a martingale with respect to the filtration {F̃i}, where
F̃i := σ

(
(An,xn)n≤i

)
. This is because

E[zi+1|F̃i] = zi + 1
i+1E[〈w̃i+1,xi+1 − d〉 |F̃i]

(a)= zi + 1
i+1

〈
E[w̃i+1|F̃i], E[xi+1 − d|F̃i]

〉
(b)= zi

(9.26)

where (a) from conditional independence of xi+1 and w̃i+1 and (b) follows
from E[xi+1 − d|F̃i] being equal to the all-zero vector. Furthermore, zi is a
square-integrable martingale as

sup
i
E[z2

i ] =
∞∑
n=1

E[〈w̃n,xn−d〉2]
n2

(a)
≤

∞∑
n=1

E[‖w̃n‖2‖xn−d‖2]
n2 <∞

(9.27)

where (a) follows from Cauchy-Schwarz inequality. The final expression is
bounded since ‖w̃n‖2 ≤ 1 and E[‖xn‖2] < ∞ by our assumption. The above
allows the use of the martingale convergence theorem [82, Chapter 11] and
therefore zi a.s. converges. The proof is complete since we have shown (9.25).

Our final aim is to relax the square-integrability condition E[(xk,i)2] <∞
to E[|xk,i|] <∞. We show a sufficient condition for the latter. Note that there
exists a C ′ > 0 such that |x| ≤ C ′e−x + x for all x. Hence

E[|xk,i|] ≤ C ′E[e−xk,i ] + E[xk,i] = C ′ +D(Lk(.|θ◦)||Lk(.|θ)). (9.28)
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Therefore, if all the elements of d are finite, this implies E[|xk,i|] < ∞ for all
k.

To extend the result (9.9) under absolute integrability, we use the following
lemma.

Lemma 9.3 (Kolmogorov’s Truncation Lemma [82, Chapter 12]). Consider
i.i.d. x1,x2, . . . where E[|x1|] < ∞. Let µ := E[x1] be the common mean.
Define

yi :=
xi, |xi| ≤ i

0, |xi| > i
. (9.29)

Then (i) µi := E[yi]→ µ; (ii) (yi − xi) a.s.−→ 0; (iii) ∑ i−2E[y2
i ] <∞.

We truncate the vector xi elementwise and obtain yi, i.e., we relate xk,i
to yk,i as in (9.29). Let di := E[yi] and repeat the same steps in the proof
of Lemma 9.2 with (yi, di) instead of (xi, d). Observe that the martingale zi
is square-integrable because the sum in (9.27) is finite according to (iii) of
Lemma 9.3. Then we have

1
i

i∑
n=1
〈w̃n,yn − d〉

a.s.−→ 0. (9.30)

Finally, (i) and (ii) in Lemma 9.3 together imply

1
i

i∑
n=1
〈w̃n,xn − d〉

a.s.−→ 0, (9.31)

which yields the following conclusion.

Theorem 9.1 (Asymptotic Convergence Rate). Suppose all elements of d are
finite. Then for all k,

1
i
λk,i

a.s.−→〈π, d〉. (9.32)

From Theorem 9.1, it is immediate that all agents learn the truth eventually
if 〈π, d〉 > 0. Since all elements of π are positive, this condition — also called
global identifiability — holds if at least one element of d is strictly positive.

Corollary 9.2 (Truth Learning). Suppose all elements of d are finite and at
least one element of d is strictly positive. Then for all k,

µk,i(θ◦) a.s.−→ 1. (9.33)

We conclude this section by noting a straightforward extension of our result.
Allow each agent to have a different confidence weight αk. Extensions of
Theorem 9.1 and Corollary 9.2 can be obtained as follows: Define the diagonal
matrix J := [j`k] where jkk = αk; and 0 otherwise. Replace (αI + ᾱAn) with
(J+An(I−J)) and π with π̃, the Perron vector of (J+A(I−J)). By following
the same steps as above, the extension will be immediate.
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9.4 A Special Case: Replacement
In this section we study the special case α = 0, where agents replace their
beliefs with their neighbors’. At first sight, it is not intuitive whether all
agents would learn the truth eventually. This is because the truthful beliefs
might be lost upon replacement. However, all the results of Section 9.3 hold
for this case as well. Furthermore, when agents replace their beliefs, Theorem
9.1 has a much shorter proof, which we provide below.

Short Proof of Theorem 9.1 for α = 0. Again assume k = 1. Observe in this
case w̃n’s — recall the index change i− n+ 1 7→ n in Lemma 2 — are vectors
with their `th

n element being one for some `n and the others being zero. Now
consider a Markov chain governed by the transition kernel A, with the state
space {1, . . . , K} and observe that the random variable `n is the state at time
n with the initial state being 1. Now, write down 1

i
λi as

1
i
λi = 1

i

i∑
n=1
〈w̃n,xn〉 =

K∑
k=1

1
i

∑
n:`n=k

xk,n

=
K∑
k=1

m
(k)
i

i

1
m

(k)
i

∑
n:`n=k

xk,n

(9.34)

wherem(k)
i is the number of visits to state k in i transitions. Since the Markov

chain governed by A is communicating and aperiodic, it is known from a
standard result in Renewal theory [182, Chapter 3] that m

(k)
i

i

a.s.−→ πk. This also
impliesm(k)

i
a.s.−→∞ and therefore 1

m
(k)
i

∑
n:`n=k xk,n

a.s.−→ dk by the strong law of
large numbers. Combining these with (9.34), we see (9.9) holds.

Suppose the truth learning terminates at step i for a large i. We now
shift our attention to the event that a node makes an error upon termination.
More precisely, we are interested in evaluating the probability of this event.
To this end, we emphasize an important observation from the proof above: w̃i

evolves according to a finite-state Markov chain. Moreover, 1
i
λi can be viewed

as the average reward of a Markov reward process. Knowing the underlying
dependence structure of w̃i’s allows us to invoke the known results in large
deviations theory. We have a special case of Gärtner–Ellis theorem that implies
— see also [183,184]:

Theorem 9.2 (Theorem 3.1.2 in [185]). Set A(t) :=
[
a`kE[etx` ]

]
and let Λ(t)

be the Perron–Frobenius eigenvalue of A(t). Then for any Γ ⊆ R,

− inf
s∈Γ◦

I(s) ≤ lim inf
i→∞

1
i

logP
(1
i
λi ∈ Γ

)
(9.35)

≤ lim sup
i→∞

1
i

logP
(1
i
λi ∈ Γ

)
≤ − inf

s∈Γ
I(s) (9.36)
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where I(s) := supt∈R st−log Λ(t) is the Legendre–Fenchel transform of log Λ(t)
and Γ◦, Γ denote interior and closure of Γ respectively.

Note that Theorem 9.2 only requires the marginals to be known, i.e.,
Lk(.|θ); and E[etx` ] to be finite. Therefore, without any knowledge of the
joint distribution of the data, the rate function I(s) can be calculated. This
allows to approximate the error probabilities of agents given their respective
decision rules. For instance, suppose node k decides based on a maximum-
aposteriori rule, i.e., believes arg maxθ µk,i(θ). Let Ek,i denote the event that
the node k makes an error at time i, whose probability at i→∞ can be lower
and upper bounded as

−max
θ 6=θ◦

inf
s<0

Iθ(s) ≤ lim inf
i→∞

1
i

logP (Ek,i) (9.37)

≤ lim sup
i→∞

1
i

logP (Ek,i) ≤ −max
θ 6=θ◦

inf
s≤0

Iθ(s) (9.38)

where Iθ(s) is the rate function corresponding to λk,i(θ). The bounds above
do not depend on k.
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Figure 91 – (a) The network with K = 10 nodes and 12 edges. (b) Sample
paths of 1

i
λ1,i and 1

i
λ6,i, shown by blue and red curves respectively. The

asymptotical convergence rate 〈π, d〉 is drawn as a straight horizontal line at
4.55.

9.5 Numerical Results
In this section we present numerical results based on the simulations performed
over the network ofK = 10 nodes in Figure 91a. We set α = 0, i.e., we simulate
the replacement algorithm of Section 9.4, and aim to solve a binary hypothesis
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testing problem between θ◦ and θ. For simplicity, we assume that the data is
independent across agents — note that the rate function Iθ(s) is unaffected by
such assumption. Moreover, node k observes a Gaussian random variable with
unit variance under each hypothesis; with zero mean under θ◦, and with mean
νk under θ. We have set ν := [3, 8, 0, 0, 3, 0, 3, 0, 0, 0], so for instance ν5 = 3.
Observe that θ◦ can only be identified by nodes 1,2,5 and 7. The combination
matrix A is chosen according to a lazy Metropolis rule [186], namely we set
B := [b`k] with b`k = max{deg(`), deg(k)}−1 for ` 6= k and b`` = 1−∑k 6=` b`k.
Then we set A = 1

2I + 1
2B.

A is symmetric, hence doubly stochastic; which implies πk = 1
K

for all
k. Furthermore, we can straightforwardly calculate dk = E

[
Lk(ξk|θ◦)
Lk(ξk|θ)

]
= 1

2ν
2
k ;

which gives the asymptotic convergence rate as 〈π, d〉 = 4.55. Figure 91b
shows two sample paths corresponding to 1

i
λ1,i and 1

i
λ6,i for i ≤ 2500; and is

consistent with our theoretical results from Section 9.3 as the paths seem to
converge to 4.55.

0 10 20 30
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0.6

Iθ(s)

− 1
i log p̂2,i(s)

− 1
i log p̂6,i(s)

〈π, d〉

Figure 92 – Large deviation estimates. Iθ is found numerically and drawn
as the black curve; which touches zero exactly at 〈π, d〉. The Monte-Carlo
estimates for p̂2,i(s) and p̂6,i(s) are drawn as blue and red curves respectively.

In Figure 92, we have drawn the rate function Iθ(s) as a black solid line.
Note that Iθ(s) touches zero exactly at s = 4.55, indicated with the solid
diamond. We have also obtained Monte Carlo estimates of deviations pk,i(s) :=
P (1

i
λk,i > s) for s > 4.55 and P (1

i
λk,i < s) for s < 4.55; k = 2, 6, i =

2500 to check if they fit in with Iθ(s). However, the rate function suggests
that one should expect pk,i(s) to become exponentially small with i. Hence,
standard Monte Carlo method requires that the number of experiments should
be exponentially large with i, which is impractical. We therefore resort to
an importance sampling method by using a tilted Markov chain and tilted
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Gaussians, where the tiltings depend on s. We omit the details of the tilting
procedure, and refer the reader to [187, 188] for details. Denote the tilted
measure as Qs. Then our Monte Carlo estimate (for s < 4.55) is

p̂k,i(s) := 1
N

N∑
n=1

dP (n)

dQ
(n)
s

1{λ(n)
k,i < s} (9.39)

where the superscript (n) denotes the nth realization under the tilted measure
Qs. dP (n)

dQ
(n)
s

is a measure change variable, i.e., Radon–Nikodym derivative, which
turns out to be expressed as a product ∏i

j=1 f(x(n)
j , w

(n)
j ) for some f . Note

that EQs [p̂k,i(s)] = pk,i(s). For s > 4.55, we replace the indicator function
with 1{λ(n)

k,i > s}. We performed N = 60 experiments to obtain each marker
in Figure 92.

9.6 Discussion
Under randomized collaborations, agents still learn the truth, and at the same
rate compared to the standard algorithms. Although the asymptotic rate
limi→∞

1
i
λk,i does not depend on α, the statistics of λk,i depend on α for

finite i. For α = 0, we provided a finite-time analysis based on large deviation
estimates for finite-state Markov chains. However, for α > 0, the corresponding
Markov chain has a continuous state space — the states take values in the k-
dimensional probability simplex — and a finite-time analysis requires more
advanced machinery.

Furthermore, one needs to know the joint distribution across agents in
general to make a large deviation analysis of a social learning scheme. This may
not be a realistic assumption, if agents only know their marginal likelihoods,
who else could know the global likelihood function? Consider the conventional
deterministic social learning setting, where α = 0 and A is deterministic. In
this case, it is easy to see that w(k)

i ’s become deterministic and w(k)
i → π for

any agent k. One then faces a standard large-deviation analysis where the rate
function is given by the Legendre–Fenchel transform Iθ of

Λ(t) = logE[et〈π,x〉], (9.40)

which obviously depends on the joint distribution across agents. If agents
perform maximum aposteriori rule, i.e., s = 0, the optimal decay rate for
rejection of θ 6= θ◦ turns out to be (under some mild conditions on continuity)

Iθ(0) = − inf
t≥0

logE[e−t〈π,x〉]. (9.41)

One may want to study the worst-case scenario, i.e, assume the worst possible
coupling across agents by solving the problem

I
(worst)
θ (0) = − sup

L(·|θ◦)
inf
t≥0

logE[e−t〈π,x〉] (9.42)
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where L(·|θ◦) is a K-dimensional probability distribution with the constraint
that the kth marginal of L(·|θ◦) should be equal to Lk(·|θ◦). This seems a
challenging problem and we do not know if I(worst)

θ (0) is strictly positive. If
the nodes, however, are also allowed to randomize their strategies another
dimension is added to the problem in (9.42); and it turns out that the worst
case exponent can be made positive. In case the reader wonders how this is
possible, we have already given the answer in Section 9.4: Agents randomly
replace their beliefs.
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In Part II, we have reviewed two strands of works in distributed inference,
adopting information-theoretic and signal processing perspectives. We then
studied two distributed inference problems which contain flavors from both
perspectives.

The first problem (Chapter 7) was formulated under a centralized archi-
tecture. At each time instant t, n peripheral nodes were sending quantized
data f (i)(Xt), i ≤ n to a fusion center and the expected number of bits was
kept limited to at most Ri bits per second for each node. For a binary hy-
pothesis testing problem under this setup, and for the single-node case, we
found the best possible type-II error exponent θ∗(R); and obtained a closed
form upper bound to θ∗(R). We later showed that the upper bound can be
approached via lattice quantization within a 1.047-bit gap, which is due to
the inefficiency of 1-dimensional lattice quantization. We then extended the
results to the vector quantization case and also to the multiple-node case when
data is independent across nodes. In the multiple-node case, we studied the
best type-II error exponent when the sum rate across nodes is kept limited to
R and showed that an analogous upper bound can be obtained by waterfilling
algorithms.

A possible future work could be to study a slightly reformulated version of
the problem. Instead of the expected rate constraint, one may restrict

pt := P
(

len(f(X1)) + · · ·+ len(f(Xt)) > Rt
)

(10.1)

where len(f(Xτ )) is the length of the codeword obtained by compressingXτ (or
equivalently Lτ ). A modified achievability scheme might impose pt to vanish
as t→∞. For this case, we have some evidence that the optimal curve stays
the same. However, if one imposes the stronger condition

pt ≤ e−γt, (10.2)
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a new dimension is added to the problem and it might be worth studying.
The second problem (Chapter 9) was formulated under a decentralized

scheme where nodes/agents were only allowed to communicate with their
neighbors. The agents sought to learn the true-state of nature among m pos-
sible states and we formulated the problem in a Bayesian framework. Since it
was intractable to carry out fully Bayesian updates, we have studied a scheme
where nodes update their beliefs locally. More specifically, we studied a social
learning scheme where nodes collaborate randomly and we showed that nodes
learn the truth eventually with unit probability and at the same rate as the
baseline algorithms. For a special case where nodes replaced their beliefs we
were able to study the large deviations without knowing the joint distribution
across nodes. However, for general communication schemes between the nodes,
large deviation analyses seem to require the knowledge of the joint distribu-
tion. Thus, for a general scheme, a worst-case problem as in equation 9.42
could be formulated, and if the random replacement strategy belongs to the
set of admissible strategies, the worst-case error rate can be shown to be pos-
itive. If, however, randomized strategies — and in particular the replacement
strategies — are not admissible, the problem given in equation 9.42 could be
formidably difficult.
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