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A B S T R A C T

Hydropower plants play a crucial role in the power system facing ambitious renewable energy targets. Due to
their inherent controllability, they are well suited to provide flexibility to the grid. However, an increased
flexibility provision leads to a prolonged operation in off-design conditions and more frequent hydraulic
transient, notoriously detrimental in terms of dynamic loads induced on the hydraulic machines.

The aim of this paper is to provide a methodology to estimate the damage on Pelton turbines due to the
accumulated mechanical stress during their start-up sequence. Transient sequences, as the back-to-back start-up
of centrifugal pumps in a pumped-storage power plant, requires the hydraulic machine to operate in conditions
featuring high mechanical torque values, leading to an increased structural damage with respect to the nominal
operating point. In view of the above, the paper proposes a polynomial optimization algorithm to decrease
the fatigue-related operational cost induced on the runner during a start-up sequence. The performance of the
algorithm is assessed on a real test case. The presented algorithm identifies the admissible injector opening
rate as the crucial parameter in the start-up computation, and shows the dependence of the optimal opening
law on the admissible rate with the bucket resonance characteristics.
1. Introduction

1.1. Research context

In the last decades, a substantial rearrangement of the electricity
industry in a market regulated structure has taken place in response
to the transition from a vertical integration supply to the current
unbundled system. Within this context, system operators have to simul-
taneously deal with the electricity negotiations occurring in dedicated
market places [1] at different time scales, but also with the intermittent
nature of the increasingly diffused non-dispatchable renewable energy
sources (RESs) to reach the energy transition targets. As a conse-
quence, the energy equilibrium of the power system must be ensured
by the re-allocation of parts of the power generation units included
in the day-ahead schedule agreed by the electricity market. The es-
tablishment of the constrained generation schedule requires therefore
crucial redispatching measures, and hydropower plants (HPPs) are
widely recognized to be key assets to provide the required generation
flexibility to power systems. The existing literature [2–6] extensively
discussed the sharp increase of flexibility demand of HPPs and their
consequent intensified exploitation in transient regimes. However, this
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inherent flexibility forces HPPs to undergo increasingly frequent tran-
sient operating conditions, such as start-up or shutdown sequences,
that are acknowledged to significantly contribute to the fatigue induced
structural damage experienced by the hydraulic machines in operation.
The structural damage caused by transient operating conditions on
hydraulic machines has been studied for different turbine types, but
an accurate damage quantification is hard to be performed. Such esti-
mations are generally accomplished by performing experimental tests
on full-scale machines. However, such tests require an interruption of
the HPP operation to perform dedicated experimental campaign. An
alternative approach relies on the transposition of results obtained from
reduced scale model tests [7]. As a consequence, the quantification
of the fatigue accumulated during a transient operation is today not
fully assessed and the modeling and the optimization of such tran-
sient trajectories are therefore rarely available for hydraulic machines
operations.

1.2. Literature survey

Since the increasing need of HPPs flexibility provision is a rela-
tively recent topic, the amount of studies about the transient induced
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Nomenclature

List of abbreviations

𝐶𝐹𝐷 Computational fluid dynamics
𝐹𝐸𝑀 Finite element method
𝐹𝑀𝐻𝐿 Forces Motrices Hongrin-Leman
𝐺𝑅𝐺 Generalized reduced gradient
𝐻𝑃𝑃 Hydropower plant
𝑀𝐴𝑅𝑆 Multivariate adaptive regression splines
𝑀𝐼𝑁𝐿𝑃 Mixed-integer non-linear programming
𝑁𝐿𝑃 Non-linear programming
𝑃𝑂𝑃 Polynomial optimization problem
𝑅𝐸𝑆 Renewable energy sources
𝑅𝑀𝑆𝐸 Root mean square error
𝑅𝑆𝑄 R-squared
𝑆𝐶𝐴𝐷𝐴 Supervisory Control And Data Acquisition
𝑆𝐷𝑃 Semidefinite program
𝑆𝑂𝑆 Sum of squares

List of symbols

𝛼0 Angle shift of the bucket at 𝑡 = 0 with
respect to 𝑦𝑠 (rad)

𝛽1 Outflow angle (rad)
𝛿 Bending displacement of the modeled

beam’s free end (m)
𝛾 Angle describing the jet charging cycle (rad)
nrHF Number of hinge functions in the MARS

formulation (–)
𝜔 Rotational speed of the runner ( rad

s )
𝜔𝑓 Fundamental angular frequency of 𝑓 (𝑡) ( rad

s )
𝜔𝑙𝑏 Lower bound on the rotational speed ( rad

s )
⃖⃗𝜃 Runner circumferential coordinate (rad)
�⃗� Runner radial coordinate (m)
𝜙𝑛 𝑛−th phase shift of the bucket bending

response (rad)
𝜓𝑛 𝑛−th phase shift of the bucket bending

response (rad)
𝜌 Water density ( kg

m3 )
𝜌𝑑 Minima of the relaxed SDP ( J

m3 )
𝜎𝑏 Normal stress related to the bending dis-

placement (Pa)
𝜎𝑐 Normal stress related to 𝐹𝑐𝑒𝑛𝑡𝑟 (Pa)
𝜎𝑒𝑞 Von Mises equivalent tensile stress (Pa)
𝜏𝑎𝑣 Average shear stress (Pa)
𝜏𝑏 Shear stress (Pa)
𝜏𝑙 Halved degree of the equality constraints

polynomials of the POP (–)
𝐌𝑑 Moment matrix of order 𝑑 (–)
𝐯𝑑 Vector of the monomials of order 𝑑 of the

POP (–)
𝐱𝜶 Variables of the POP (–)
𝐲 Variables of the relaxed SDP (–)
𝜃 Bucket angular position (rad)
𝜁 Relative damping of the bucket (–)

dynamic loads in Pelton turbines is rather restricted in the existing
literature. By contrast, in reason of their wider employment, the im-
pact of such transient operating conditions on the lifetime of Francis
2

𝐴𝑏𝑒𝑎𝑚 Section of the bucket modeled as a beam
(m2)

𝐴𝑗𝑒𝑡 Section of the jet impinging on the bucket
(m2)

𝐴𝑛 𝑛−th real part-related coefficient of the
Fourier Series (N)

𝐵𝑏 Axial-oriented side of the bucket section (m)
𝑏𝑗 𝑗−th binary variable in the MARS formula-

tion (–)
𝐵𝑛 𝑛−th imaginary part-related coefficient of

the Fourier Series (N)
𝐶 Threshold value of a hinge function (–)
𝑐 Bucket damping coefficient ( N s

m )
𝐶1 Flow velocity at the injector nozzle ( m

s )
𝐷 Nominal diameter of the runner (m)
𝑑 SDP relaxation order (–)
𝑑𝑐 Degree of the constraints of the POP (–)
𝑑𝑓 Degree of the objective function of the POP

(–)
𝑑𝑗𝑒𝑡 Diameter of the jet (m)
𝐷𝑟𝑜𝑜𝑡 Diameter of the runner at the bucket root

(m)
𝐷𝑠 Diameter of the runner at the splitter’s tip

(m)
𝐸 Young modulus (Pa)
𝑓 (𝐱) Objective function of the POP ( J

m3 )
𝑓 (𝑡) External bucket excitation (N)
𝑓 ∗ Minima of the POP ( J

m3 )
𝐹0 Static component of the Fourier Series (N)
𝑓𝜶 Coefficients of the objective function of the

POP (–)
𝐹𝑐𝑒𝑛𝑡𝑟 Centrifugal force (N)
𝐹𝑗𝑒𝑡 Jet force (N)
𝐺 Shear modulus (Pa)
𝑔 Gravitational acceleration ( m

s2 )
𝑔𝑘 Set of polynomials inequality constraints of

the POP (–)
𝐻 Available head (m)
𝐻𝑏 Circumferential-oriented side of the bucket

section (m)
𝐻𝐻𝑃𝑃 Average gross head (m)
ℎ𝑙 Set of polynomials equality constraints of

the POP (–)
𝐼 Area moment of inertia of the modeled

beam (m4)
𝐽 Rotational inertia ( kg m2

rad )
𝐾 Discrete time samples of the simulated

steady-state operation (–)
𝑘 Bucket stiffness ( N

m )
𝑘ℎ𝑦𝑑𝑟 Hydraulic system specific energy losses

coefficient ( s2
m5 )

𝑘𝑙𝑜𝑎𝑑 Coefficient representing the load carried by
the turbine ( kg m2

rad s )
𝑘𝑟𝑜𝑡 Rotating friction energy losses coefficient

( kg m2

rad s )

turbines has been more deeply explored. Several publications [8–12]
have discussed both experimental and numerical approaches assessing
how transient regimes affect the fatigue of Francis turbines. Concerning
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𝑘𝑣 Nozzle losses coefficient (–)
𝑘𝑦 Maximal admissible injector opening rate

(s−1)
𝐿 Length of the modeled beam (m)
𝐿𝐲 Riesz linear functional (–)
𝑀 Torque at the bucket root (Nm)
𝑚 Mass of the bucket (kg)
𝑚𝑏𝑒𝑎𝑚 Mass of the modeled beam (kg)
𝑛𝑐 Number of constraints in the POP (–)
𝑁𝑠𝑡𝑎𝑟𝑡 Discrete time samples of the start-up se-

quence (–)
𝑛𝑣 Number of decision variables in the POP (–)
𝑃 Concentrated force of the modeled beam

(N)
𝑝𝑆−𝑆 Strain power density dissipated at steady-

state operation ( W
m3 )

𝑄 Jet discharge ( m3

s )
𝑄𝐸𝐷 IEC discharge factor (–)
𝑅 Nominal radius of the runner (m)
𝑟𝑠 Radius of the runner at the splitter’s tip (m)
𝑇 Runner rotation period (s)
𝑇𝑐𝑦𝑐𝑙𝑒 Charging cycle period (s)
𝑇𝑑𝑜𝑤𝑛 Time duration of the decreasing jet force

phase (s)
𝑇𝑛𝑢𝑙𝑙 Time duration in a runner rotation during

which the bucket is not hit by the jet (s)
𝑡𝑛 𝑛−th time step of the start-up sequence (s)
𝑇𝑜𝑛𝑒 Time duration of the jet entirely impinging

the bucket in the jet charging cycle (s)
𝑡𝑆−𝑆 Time duration of the simulated steady-state

operation (s)
𝑡𝑠𝑡𝑎𝑟𝑡 Time duration of the start-up sequence (s)
𝑇𝑢𝑝 Time duration of the increasing jet force

phase (s)
𝑢 Strain energy density ( J

m3 )
𝑈1 Runner peripheral velocity ( m

s )
𝑢𝑠𝑡𝑎𝑟𝑡 Strain energy density dissipated during the

start-up sequence ( J
m3 )

𝑣𝑘 Halved degree of the inequality constraints
polynomials of the POP (–)

𝑥(𝑡) Bucket bending displacement (m)
𝑋𝑛 𝑛−th harmonic amplitude of the bucket

bending response (m)
𝑦𝐻 Beam section coordinate (m)
𝑦𝑖𝑛𝑗,𝑛 Final state of the injector opening (–)
𝑦𝑖𝑛𝑗 Opening fraction of the injector (–)
𝑦𝑠 Projection of the splitter’s tip perpendicu-

larly to the jet axis (m)
𝑧0 Number of injectors (–)
𝑧𝑏 Number of buckets (–)

Pelton turbines, their dynamic behavior during transient regimes has
been studied in [13], which analyzed the vibration measured by ac-
celerometers situated in different locations of the studied two-runners
Pelton unit bearings during start-up sequences. The analyzed signals
showed higher vibration levels during the start-up phase compared
to the ‘‘speed-no-load’’ regime as well as for different steady state
load cases. Despite the fact that these vibration levels have not been
3

detected on-board the runner, the preliminary analysis of the vibra-
tions transmissibility from the buckets to the bearings ensures that
the considered scenarios distinctly depict the moment characterized
by the most critical dynamic loads. Andolfatto et al. [14] employed
a coupling of computational fluid dynamics (CFD) simulations, used
to compute the jet pressure profiles inside the Pelton turbine bucket,
with a structural finite element method (FEM) analysis to estimate the
stress mean value and the peak-to-peak amplitude characterizing the
solicitation at the bucket root during a start-up sequence. A Pareto front
approach was subsequently applied to compute an optimal time of start-
up sequence, highlighting a trade-off between a low starting time and
a low Usage Factor.

In [15], a detailed analysis of the modal characteristics of four Pel-
ton turbine prototypes is presented, with a focus on the identification
of dominant modes of vibration of the runners dynamic response. The
comparison between the performed experimental and numerical study
indicates that the bucket-dominated modes are predominant in terms of
vibration amplitude compared to the disk-dominated ones, especially
for circumferential vibrations. In relation to the vibration level, a
failure analysis of a Pelton turbine bucket [16] provides an insight
on the different phenomena which are responsible for the detected
vibrations during the unit operation, essentially induced by the bucket
passing excitation, centrifugal forces and the dynamic amplification
due to the runner modal behavior. As a result, the bucket may be
considered the most solicited part of the runner. This hypothesis is con-
firmed in [14,17], where the application of strain gauges at the bucket
root, i.e. the hotspot concerning mechanical stresses in Pelton turbines,
allowed measuring the impact of different operating conditions on the
turbine structural integrity.

1.3. Paper’s contribution

Previous research activities on the transient operation of Pelton
turbines and correlated damage have been mostly restricted to experi-
mental or computationally expensive (CFD and FEM) investigations to
relate Pelton turbines operations with the quantification of dynamic
loads. Furthermore, the limited amount of studies on hydraulic turbine
start-up optimization, along with the increasing interest due to the
evolving power system requirements, gives relevance to the topic. In
view of the current state of the art, the main objective of this paper is
twofold, as listed below:

• analytical prediction of the mechanical stresses induced at the
bucket root of a Pelton turbine during transient operating con-
ditions;

• formulation of an optimization problem aiming at computing
an optimized start-up sequence minimizing the strain energy
dissipated during the whole sequence.

As illustrated in [18–23], a dissipated strain energy quantification is
particularly suitable to evaluate the induced damage on the structure
in terms of lifetime reduction.

By leveraging this finding, the present research elucidates the root-
cause of structural damages in Pelton turbine during transient oper-
ations, and correlates the critical operating conditions by providing
a new approach to predict and minimize the fatigue-induced damage
during transients such as in a start-up sequence. In this regard, an ana-
lytical modeling of the dynamic loads is implemented and integrated in
an optimization algorithm involving fast-growing convexification meth-
ods which represents a leap for the monitoring and control strategies
of Pelton turbines operation in HPPs.

For this purposes, Section 2 describes the problem statements and
introduces the developed methodology. Section 3 presents the main
steps of the methodology, namely: the structural and hydraulic sim-
plified models and the optimization algorithm to extract the optimal
start-up sequence. In Section 4, the considered case study and the
outcomes of the work are shown, whereas a discussion about the
developed methodology and the obtained results are given in Section 5.
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2. Problem statement

To predict the structural damage experienced by Pelton turbines,
this study proposes a framework to model the turbine structure’s critical
location in terms of dynamic loads as an analytically tractable problem.
More specifically, the considered critical location is the root of the
bucket that links it to the turbine disk. To obtain a damage chart, the
strain energy [24] dissipated at the bucket root is mapped on a mesh
of steady-state operating conditions, defined by the rotational speed
and the injector opening ratio, covering the entire operational domain
of the turbine. The analysis of the transient-related damage associated
to the start-up sequence1 is carried out by employing a quasi-steady-
state approach. The transient sequence is discretized in time steps, and
at each time step the turbine is modeled as operating at a steady-
state condition. Therefore, the whole strain energy dissipated during a
transient sequence is calculated as the sum of the instantaneous damage
contributions related to each steady-state operating condition encoun-
tered throughout the sequence. The damage prediction is used by an
optimization algorithm to compute a start-up sequence adjusting the
turbine control variables to minimize the structural damage cumulated
between given initial and final operating conditions. Since the opti-
mization algorithm requires the analytical description of the objective
function, which is extracted from the dissipated strain energy chart, and
given the complexity of the latter, a surface fitting approach based on
the Multivariate Adaptive Regression Splines (MARS) [25] is adopted.
The treatment of the non-convex nature of this polynomial optimization
problem (POP), notoriously NP-hard in general [26], necessitates a
specific procedure. In this respect, a semidefinite relaxation is applied
to tackle the non-convexity of the problem and, therefore, to identify
the global optimal solution.

3. Methodology

3.1. Simplified bucket representation and excitation modeling

3.1.1. The bucket
The modeling of the mechanical stresses experienced by a solid

structure under a specific load case requires a reduced-order approach
to represent geometrical and structural properties. In the case of the
Pelton turbine, the buckets configuration may be approximated as a
series of cantilever beams, supported by the turbine disk at one end and
free at the opposite. This simplified representation is widely employed
in structural mechanics research concerning single-end-supported solid
bodies. Typical examples are investigations on the structural behavior
of aircraft wings, frequently reported in research papers and technical
reports [27–30].

Given the preminence of bucket-dominated modes compared to
the disk-dominated ones in terms of vibration amplitude [15], the
disk-bucket system shown in Fig. 1 is modeled as a cantilever beam sup-
ported by an infinitely rigid wall as in Fig. 2. The rectangular-shaped
constant section of the beam, 𝐴𝑏𝑒𝑎𝑚, is defined by the thickness of the
turbine disk, 𝐵𝑏 and by the circumferential segment corresponding to
one bucket 𝐻𝑏 = 𝜋 ⋅ 𝐷𝑟𝑜𝑜𝑡∕𝑧𝑏. Due to the non-uniform distribution of
the bucket mass 𝑚 in radial direction, the bucket is represented by a
concentrated mass at the radial coordinate 𝑟 = 𝐷∕2 and by a beam of
negligible mass 𝑚𝑏𝑒𝑎𝑚 ≪ 𝑚, similarly to what is proposed by Schmied
et al. [31].

1 This study does not investigate the whole start-up procedure ending
ith the turbine synchronized to the power system and running at nominal
perating condition, but it explores the acceleration phase of the runner, which
s the interval with the largest rooms of improvement in terms of mechanical
tresses optimization.
4

r

With this approach, it is possible to resolve the bucket dynamic
problem by considering the structure as a damped oscillator charac-
terized by the following linear differential equation:

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝑓 (𝑡) (1)

where 𝑥(𝑡) is the mass displacement along the considered coordinate
nd 𝑓 (𝑡) is the external excitation term. Such computation implies two
mportant limitations with respect to the physics of the problem: (i)
ith the given simplified representation of the bucket as a bending
eam, (ii) by considering only the first bending mode, we reduce
he complexity of the vibration assessment compared to the actual
esponse. Nevertheless, given the shape and the orientation of the water
et excitation, the dynamic response of the bucket can be reasonably
educed to this mode [32].

.1.2. Physical excitation
The excitation modeling is developed by considering the interaction

etween one bucket and a single injector. The excitation acting on the
unner during an entire rotation is then computed including the amount
nd the location of the injectors of the considered Pelton turbine. As
hown in Figs. 1 and 2, the excitation on the bucket can be divided in
wo components: the centrifugal force and the impinging jet force. In
he simplified model, both are considered to act on the concentrated
ass. In fact, although the location where the water jet impacts on

he bucket depends on the bucket angular position 𝜃(𝑡), the variation
f the impinging angle between the jet and the bucket root surface
auses a bending torque that can be approximated as a tangential force
onstantly applied at the radial coordinate 𝑟 = 𝐷∕2. The detailed
rocedure to compute the jet force 𝐹𝑗𝑒𝑡(𝑡) is provided in Appendix A.

.1.3. Fourier decomposition of the excitation
To compute the dynamic response of the bucket in a steady-state

perating condition, the different components of the external excitation
re treated separately. The response related to the centrifugal effect
f the excitation simply relies on the static structural behavior of the
ucket. Instead, the jet contribution of the excitation must be charac-
erized dynamically. Moreover, to compute the response of the bucket
n bending mode, the dynamic amplification given by the interaction
etween the jet force and the modal characteristics of the bucket must
e considered. Therefore, the jet force is decomposed in Fourier series
o enable the detection of the potential match between the natural
requencies of the bucket and the different sinusoidal components of
he excitation. Nevertheless, the periodicity of the Fourier series decom-
osition intrinsically weakens the influence of transient effects related
o the structural damping. The computed dynamic response, especially
uring the free oscillation of the bucket between two subsequent jet
mpacts, may therefore be less reliable for lower values of rotational
peed.

The Fourier analysis states that any periodic signal 𝑓 (𝑡) of period
= 2𝜋

𝜔𝑓
can be decomposed in Fourier series terms [33] as follows:

𝑓 (𝑡) = 1
2
𝐹0 +

∞
∑

𝑛=1
(𝐴𝑛 cos 𝑛𝜔𝑓 𝑡 + 𝐵𝑛 sin 𝑛𝜔𝑓 𝑡) (2)

with 1
2𝐹0 the static component corresponding to the mean value of the

signal. The Fourier coefficients 𝐴𝑛 and 𝐵𝑛 are extracted respectively
rom the real and the imaginary part of the Fourier transform of the
ignal. The discrete Fourier series of the steady-state periodic force
𝑗𝑒𝑡(𝑡) is numerically computed with a finite number 𝑛 of harmonics.
ince the position of the injectors may not be symmetric with respect
o the runner axis, the period 𝑇 of the excitation is defined by an entire
otation of the runner.
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Fig. 1. Schematic representation of a Pelton turbine: principal dimensions, coordinates and forces.
Fig. 2. Cantilever beam representation of the bucket.
3.2. Steady-state dynamic response in bending mode

The steady-state solution of the bucket displacement in bending
mode is computed by solving Eqs. (1) and (2). The linearity of Eq. (1)
allows summing the solutions corresponding to each term of Eq. (2),
leading to the following expression [33] of the displacement response:

𝑥(𝑡) =
1∕2𝐹0
𝑘

+
∞
∑

𝑛=1
𝑋𝑛 cos (𝑛𝜔𝑓 𝑡 − 𝜓𝑛 − 𝜙𝑛) (3)

where the sinus and cosinus terms are grouped to introduce the 𝑛−th
harmonic amplitude 𝑋𝑛 and the phase shifts 𝜓𝑛 and 𝜙𝑛:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑋𝑛 =
√

𝐴2
𝑛+𝐵2

𝑛
√

(𝑘−𝑛2𝜔2𝑓𝑚)
2+𝑛2𝜔2𝑓 𝑐

2

𝑡𝑔 𝜓𝑛 =
𝐵𝑛
𝐴𝑛

𝑡𝑔 𝜙𝑛 =
𝑛𝜔𝑓 𝑐

𝑘−𝑛2𝜔2𝑓𝑚

(4)

3.3. Strain power density chart

The damage associated to the steady-state dynamic response is
evaluated by computing the strain energy dissipation due to the stress
at the root of the bucket. At this location, the reference section is given
by 𝐵𝑏 and 𝐻𝑏. The details of the calculation of the equivalent stress 𝜎𝑒𝑞
are provided in Appendix B.

Once 𝜎𝑒𝑞 is estimated, the associated strain energy density can be
computed at any location of 𝐴 . In this paper, the damage prediction
5

𝑏𝑒𝑎𝑚
is performed by considering the strain energy density at 𝑦𝐻 = 𝐻𝑏
2 and

approximating the shear modulus value as 𝐺 ≈ 𝐸
3 . The strain energy

density can be computed [34] as:

𝑢 = 1
2𝐸

⋅ 𝜎2𝑒𝑞 (5)

For a steady-state operating conditions, the equivalent tensile stress
signal 𝜎𝑒𝑞(𝑡) computed over a time lapse 𝑡𝑆−𝑆 is used to derive the
amount of strain energy density transferred to the considered location
during this time lapse. The time average of the latter leads to the
definition of the strain power density 𝑝𝑆−𝑆 [W/m3], which is defined
as:

𝑝𝑆−𝑆 = 1
𝑡𝑆−𝑆

⋅ 𝑢||
|

𝑡=𝑡𝑆−𝑆
𝑡=0

= 1
2𝐸 ⋅ 𝑡𝑆−𝑆

⋅ ∫

𝑡𝑆−𝑆

0
|𝜎𝑒𝑞|

2 𝑑𝑡 (6)

The equivalent discretized formulation is the following:

𝑝𝑆−𝑆 = 1
2𝐸𝐾

⋅
∑

𝐾
|𝜎𝑒𝑞|

2 (7)

Since the period of the excitation 𝑇 depends on the rotational ve-
locity of the runner, the time lapse 𝑡𝑆−𝑆 is adjusted to have the
same integer number of runner rotations for every operating condition.
Given that the response sampling frequency is kept constant for each
operating condition, the amount of samples 𝐾 therefore varies between
conditions featuring different values of 𝜔.

To represent the structural damage as a function of the operating
condition, the operating range defined by the runner rotational speed
𝜔 and the injector opening 𝑦𝑖𝑛𝑗 is discretized between the turbine
standstill [𝜔 = 0 ; 𝑦 = 0] and a regime exceeding the nominal
𝑖𝑛𝑗
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Fig. 3. 3D map (a) and orthogonal projection (b) of the strain power density chart as
a function of 𝜔 and 𝑦𝑖𝑛𝑗 computed with the analytical methodology. The yellow mark
represents the nominal operating condition.

rotational speed of 25% and featuring the complete opening of the
injector, 𝑦𝑖𝑛𝑗 = 1. The strain power density computed for these discrete
time steps generates the damage chart shown in Fig. 3. Two main
aspects can be commented: first, the general trend of the mechanical
stress induced by the jet force and the centrifugal effect is clearly
recognizable. If considered separately (i.e. with one of the two effect
set at zero), each force induces a monotonous increase of the stress
and, therefore, of 𝑝𝑆−𝑆 . By contrast, the combination of non-zero 𝜔
and 𝑦𝑖𝑛𝑗 values produces a curved development of the stress, suggesting
the existence of an optimal trajectory of the turbine start-up sequence
that may minimize the cumulated stress between the standstill and the
nominal condition (yellow mark in Fig. 3). Second, the presence of
local spikes in the 𝑝𝑆−𝑆 magnitude is also remarkable. These spikes
are related to the resonance conditions of the bucket bending modes
and they are linked to specific values of 𝜔 which determines the
fundamental frequency of the bending excitation. Moreover, the spikes
are characterized by an oscillating behavior along 𝑦𝑖𝑛𝑗 . This trend is the
consequence of the variation in the excitation signal shape depending
on the 𝑦𝑖𝑛𝑗 value: in fact, the presence of specific terms in the Fourier
decomposition that match with the bucket resonance frequency results
from the shape of the decomposed signal.
6

Once the damage chart is defined, the structural damage induced
on the bucket during a transient sequence may be estimated. This
estimation is performed by considering the transient-induced damage
as a sum of the infinitesimal contributions given by the steady-state
operating conditions attained throughout the whole sequence. In the
case of a start-up sequence, the amount of strain energy cumulated
during the sequence time duration 𝑡𝑠𝑡𝑎𝑟𝑡 may be expressed as follows:

𝑢𝑠𝑡𝑎𝑟𝑡 = ∫

𝑡𝑠𝑡𝑎𝑟𝑡

0
𝑝𝑆−𝑆 𝑑𝑡 (8)

This quantity can be approximated as:

𝑢𝑠𝑡𝑎𝑟𝑡 =
∑

𝑁𝑠𝑡𝑎𝑟𝑡

𝑑𝑡 ⋅ 𝑝𝑆−𝑆 (9)

with 𝑁𝑠𝑡𝑎𝑟𝑡 =
𝑡𝑠𝑡𝑎𝑟𝑡
𝑑𝑡 .

3.4. Non-convex polynomial optimization problem

3.4.1. Multivariate regression model
The developed methodology seeks a quantification of the turbine

damage in steady-state and transient operating conditions. The accom-
plishment of this objective can be exploited by an optimization problem
aiming at computing a start-up sequence minimizing the dynamic loads
experienced by the runner. For this purpose, an analytical expression
of the strain power density chart and the optimization methods must
be determined. Given the complexity and the non-convex nature of
the strain power density chart on the operating range of the Pelton
turbine, an approach based on the Multivariate Adaptive Regression
Splines is selected to determine the analytical expression of the function
𝑝𝑆−𝑆 (𝜔, 𝑦𝑖𝑛𝑗 ). The amount of generated hinge functions combined with
the highest polynomial degree of the formulation defines the accuracy
of the fit.

3.4.2. Objective function
The objective function to be minimized must express the structural

damage, in terms of strain energy density, cumulated during the se-
quence. Using Eq. (9), the objective function is formulated as follows:

𝑓
(

𝜔, 𝑦𝑖𝑛𝑗
)

= 𝑢𝑠𝑡𝑎𝑟𝑡
(

𝜔 (𝑡) , 𝑦𝑖𝑛𝑗 (𝑡)
)

=
𝑁𝑠𝑡𝑎𝑟𝑡
∑

𝑛=1
𝑑𝑡 ⋅𝑝𝑆−𝑆

(

𝜔 (𝑡𝑛) , 𝑦𝑖𝑛𝑗 (𝑡𝑛)
)

(10)

with
(

𝜔 (𝑡𝑛) , 𝑦𝑖𝑛𝑗 (𝑡𝑛)
)

the operating condition of the turbine at the 𝑛−th
time step represented by the decision variables of the problem, 𝜔 and
𝑦𝑖𝑛𝑗 .

3.4.3. Mechanical system constraints
To represent the turbine start-up sequence, the problem must be

properly constrained. This implies the definition of initial and final
operating conditions, as well as the turbine motion law and the physical
limits of the system. Each constraint must be expressed as a function of
the decision variables. The time duration of the start-up sequence 𝑡𝑠𝑡𝑎𝑟𝑡
is set as an imposed parameter of the problem.

The initial and final conditions imposed on 𝜔 are defined by:

⎧

⎪

⎨

⎪

⎩

𝜔(0) = 𝜔(𝑡1) = 0
𝑑𝜔
𝑑𝑡
|

|

|𝑡𝑠𝑡𝑎𝑟𝑡
=

|𝜔(𝑡𝑁𝑠𝑡𝑎𝑟𝑡 )−𝜔(𝑡𝑁𝑠𝑡𝑎𝑟𝑡−1)|
𝑑𝑡 ≈ 0 and 𝜔(𝑡𝑁𝑠𝑡𝑎𝑟𝑡 ) ≥ 𝜔𝑙𝑏

(11)

whereas regarding 𝑦𝑖𝑛𝑗 , the following conditions apply:
{

𝑦𝑖𝑛𝑗 (0) = 𝑦𝑖𝑛𝑗 (𝑡1) = 0
𝑦𝑖𝑛𝑗 (𝑡𝑠𝑡𝑎𝑟𝑡) = 𝑦𝑖𝑛𝑗 (𝑡𝑁𝑠𝑡𝑎𝑟𝑡 ) = 𝑦𝑖𝑛𝑗,𝑛

(12)

The exact final state of the turbine rotational speed 𝜔(𝑡𝑁𝑠𝑡𝑎𝑟𝑡 ), being
determined by the motion law, is not set to a numerical value to bypass
the risk of an unfeasible solution. A nearly-constant final rotational
speed and a lower bound 𝜔 are set. Since this paper investigates the
𝑙𝑏
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acceleration phase of the turbine, without considering the synchroniza-
tion to the grid, it has been decided to constrain the injector final state
to its nominal value, 𝑦𝑖𝑛𝑗,𝑛, rather than the final rotational speed value
et by the grid frequency. However, with an accurate representation of
he motion law, 𝜔(𝑡𝑁𝑠𝑡𝑎𝑟𝑡 ) will obviously be very close to the nominal
otational speed.

The interdependence of the decision variables is revealed by the law
f rotating motion:

⋅
𝑑𝜔
𝑑𝑡

+ 𝑘𝑟𝑜𝑡 ⋅ 𝜔 + 𝑘𝑙𝑜𝑎𝑑 ⋅ 𝜔 = 𝐹𝑗𝑒𝑡 ⋅ 𝑅 (13)

with 𝐽 the rotational inertia of the system composed by the Pelton
turbine and the generator rotor [35] and the term 𝑘𝑙𝑜𝑎𝑑 ⋅𝜔 representing
a load transmitted by the turbine, e.g. in the back-to-back start-up
procedure of a multistage pump in a pumped-storage HPP. The term
𝐹𝑗𝑒𝑡 includes the total number of activated injectors. The differential
Eq. (13) must be expressed as a function of the decision variables
and discretized by a finite differential method in a series of algebraic
constraints applied to each time step. By expressing 𝐹𝑗𝑒𝑡 as a function
of the discharge (see Appendix A), and performing a second degree
polynomial fit 𝑄(𝑦𝑖𝑛𝑗 (𝑡)) on the characteristic curve of the turbine,
Eq. (13) may be entirely written as a function of 𝜔 and 𝑦𝑖𝑛𝑗 , as follows:

𝜔(𝑡𝑛−1) − 𝜔(𝑡𝑛)
𝑑𝑡

⋅ 𝐽 = 𝑘𝑟𝑜𝑡 ⋅ 𝜔(𝑡𝑛−1) + 𝑘𝑙𝑜𝑎𝑑 ⋅ 𝜔(𝑡𝑛−1) − 2 𝜌 𝑧0 ⋅𝑄(𝑦𝑖𝑛𝑗 (𝑡𝑛−1))

⋅(𝑘𝑣 ⋅
√

2 𝑔 ⋅ (𝐻𝐻𝑃𝑃 − 𝑘ℎ𝑦𝑑𝑟 ⋅𝑄2(𝑦𝑖𝑛𝑗 (𝑡𝑛−1))) − 𝜔(𝑡𝑛−1) ⋅ 𝑅) ⋅ 𝑅

(14)

The variation of the injector opening rate value 𝑦𝑖𝑛𝑗 with time is
determined by both the physical reactivity of the needle’s movement
and the safety limits imposed by the HPP operators to avoid detri-
mental consequences induced by hydraulic transient phenomena. This
constraint is formulated as follows:
𝑑 𝑦𝑖𝑛𝑗
𝑑𝑡

=
|𝑦𝑖𝑛𝑗 (𝑡𝑛) − 𝑦𝑖𝑛𝑗 (𝑡𝑛−1)|

𝑑𝑡
≤ 𝑘𝑦 (15)

ith 𝑘𝑦 a constant value.
Regarding the instantaneous mechanical stress produced on the

ucket root, a constraint on the equivalent tensile stress represented
y 𝜎𝑒𝑞 based on the yield strength of the considered material may be
uitable. However, during the earlier computation of the steady-state
amages, the highest peak values detected for 𝜎𝑒𝑞 attained about one
rder of magnitude lower than the yield strength of the considered
teel. For this reason, this constraint has been neglected.

.4.4. Polynomial optimization problem
The polynomial optimization problem is defined by the minimiza-

ion of the objective function (10) and by the constraints presented in
q. (11)–(15), and it is expressed as follows:

𝑓 ∗ = min
𝜔, 𝑦𝑖𝑛𝑗

𝑢𝑠𝑡𝑎𝑟𝑡 = min
𝜔, 𝑦𝑖𝑛𝑗

𝑁𝑠𝑡𝑎𝑟𝑡
∑

𝑛=1
𝑑𝑡 ⋅ 𝑝𝑆−𝑆

(

𝜔 (𝑡𝑛) , 𝑦𝑖𝑛𝑗 (𝑡𝑛)
)

s.t. 𝑘𝑦 −
|𝑦𝑖𝑛𝑗 (𝑡𝑛)−𝑦𝑖𝑛𝑗 (𝑡𝑛−1)|

𝑑𝑡 ≥ 0 for 𝑛 = 2,… , 𝑁𝑠𝑡𝑎𝑟𝑡

𝜔(𝑡𝑛)−𝜔(𝑡𝑛−1)
𝑑𝑡 − 𝐹𝑗𝑒𝑡(𝑡𝑛−1)⋅𝑅− (𝑘𝑟𝑜𝑡+𝑘𝑙𝑜𝑎𝑑 )⋅𝜔(𝑡𝑛−1)

𝐽 = 0
for 𝑛 = 2,… , 𝑁𝑠𝑡𝑎𝑟𝑡

|𝜔(𝑡𝑁𝑠𝑡𝑎𝑟𝑡 )−𝜔(𝑡𝑁𝑠𝑡𝑎𝑟𝑡−1)|
𝑑𝑡 ≈ 0

𝜔(𝑡1) = 0

𝑦𝑖𝑛𝑗 (𝑡1) = 0

𝜔(𝑡𝑁𝑠𝑡𝑎𝑟𝑡 ) − 𝜔𝑙𝑏 ≥ 0

𝑦 (𝑡 ) − 𝑦 = 0

(16)
7

𝑖𝑛𝑗 𝑁𝑠𝑡𝑎𝑟𝑡 𝑖𝑛𝑗,𝑛 𝑛
3.4.5. Solution methods
The non-convex nature of the objective function, resulting from

the interaction between the dynamic response of the bucket and its
resonance conditions, prevents the computation of a global optimal
solution using first order iterative algorithms as the gradient descent
method. As a result of the 𝑝𝑆−𝑆 fit performed by the MARS technique,
the optimization problem (16) may be classified as a non-convex POP,
NP-hard to solve in general. To treat such non-linear optimization
problems described by polynomials several non-linear programming
(NLP) methods exist [36], considering also integer variables in the case
of mixed-integer non-linear programming (MINLP) methods [37] to be
implemented for use in a branch-and-bound framework, or based on
generalized reduced gradient (GRG) methods [38]. However, check-
ing the convergence of such algorithms to the global optimum for
non-convex problems remains a difficult task, and the quality of the
obtained solution can hardly be evaluated. By contrast, fast-growing
methods relying on semidefinite relaxations, i.e. introducing positive
semidefinite matrices in the constraints of the problem, allow for the
computation of the global optimal solution under specific conditions.
In this regard, Lasserre provides a methodology based on the definition
of a hierarchy of semidefinite relaxations whose optimal values form a
monotone sequence of lower bounds converging to the global optimum
also in non-convex problems [39]. Therefore, the use of this relaxation
technique on the optimization problem presented in this paper guar-
antees that the solution provided by the optimization algorithm has
converged to the global optimum.

The main idea is to reformulate the non-linear minimization prob-
lem as a linear program, hence convex, via semidefinite relaxations.
The initial problem is converted in a primal semidefinite program (SDP)
and in its dual problem. The primal problem is defined via the Riesz
linear functional 𝐿𝐲 ∶ R[𝐱] → R and it is constrained by moment
nd localizing matrices semidefinite positive. To implement the SDP
elaxations, few algorithms exist in the literature. One of them, called
loptiPoly and developed by Henrion and Lasserre [40], relies on this
pproach.

.4.6. MARS model constraints
The application of the SDP relaxation method to the initial min-

mization problem requires the reformulation of the latter in matrix
orm. However, the objective function 𝑢𝑠𝑡𝑎𝑟𝑡 does not have the form of a
tandard polynomial expression: in fact, the MARS formulation of 𝑝𝑆−𝑆

introduces the hinge functions form 𝚖𝚊𝚡 (0, 𝑥𝑖 − 𝐶) in the polynomial
terms, with 𝑥𝑖 the physical decision variable of interest and 𝐶 the
constant threshold of the considered hinge function. To explicit 𝑢𝑠𝑡𝑎𝑟𝑡
in matrix form, each hinge function must be reformulated. The use of
binary variables 𝑏𝑗 is introduced to rewrite the hinge functions form as
follows:

𝑏𝑗 ⋅ (𝑥𝑖 − 𝐶) s.t.
⎧

⎪

⎨

⎪

⎩

𝑏2𝑗 − 𝑏𝑗 = 0
𝑏𝑗 ⋅ h.v. ≥ (𝐶 − 𝑥𝑖)
(𝑏𝑗 − 1) ⋅ h.v. ≤ (𝐶 − 𝑥𝑖)

for 𝑗 = 1,… , nrHF

(17)

ith h.v. an arbitrary high value, at least greater than the upper bound
f (𝑥𝑖 − 𝐶), and nrHF the amount of hinge functions contained in the
ARS formulation.

.4.7. Relaxed SDP
Once the binary variables introduced by the MARS model are spec-

fied, the set of constraints of the POP is entirely defined. The number
f constraints included in (16) can be expressed as follows:

𝑐 = 5 + 2 ⋅ (𝑁𝑠𝑡𝑎𝑟𝑡 − 1) + 3 ⋅ nrHF ⋅𝑁𝑠𝑡𝑎𝑟𝑡 (18)

nd the number of variables of the problem reads as:
𝑣 = 𝑁𝑠𝑡𝑎𝑟𝑡 ⋅ (2 + nrHF) (19)
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)
)

o
N

𝑙).
The relaxation procedure illustrated by Lasserre [39] is employed to
relax (16). Let the polynomial objective function 𝑢𝑠𝑡𝑎𝑟𝑡

(

𝜔 (𝑡) , 𝑦𝑖𝑛𝑗 (𝑡) , 𝑏𝑗 (𝑡
f degree 𝑑𝑓 be defined by the monomials 𝐱𝜶 of R[𝐱], with 𝜶 ∈ N𝑛𝑣𝑑𝑓 and
𝑛𝑣
𝑑𝑓

∶= {𝜶 ∈ N𝑛𝑣 ∶ |𝜶| ≤ 𝑑𝑓 }, |𝜶| ∶=
∑𝑛𝑣
𝑖=1 𝛼𝑖.

The set of variables:

[𝜔 (𝑡1) , … , 𝜔 (𝑡𝑁𝑠𝑡𝑎𝑟𝑡 ) , 𝑦𝑖𝑛𝑗 (𝑡1) , … , 𝑦𝑖𝑛𝑗 (𝑡𝑁𝑠𝑡𝑎𝑟𝑡 ) , 𝑏1 (𝑡1) , … , 𝑏1 (𝑡𝑁𝑠𝑡𝑎𝑟𝑡 ),

... , 𝑏nrHF (𝑡1) , … , 𝑏nrHF (𝑡𝑁𝑠𝑡𝑎𝑟𝑡 ) ]

(20)

can be represented by the vector 𝐱 = [𝑥1,… , 𝑥𝑛𝑣 ], and the objective
function can be expressed as:

𝑢𝑠𝑡𝑎𝑟𝑡
(

𝜔 (𝑡) , 𝑦𝑖𝑛𝑗 (𝑡) , 𝑏𝑗 (𝑡)
)

= 𝑓 (𝐱) =
∑

𝛼
𝑓𝜶𝐱𝜶 =

∑

𝛼
𝑓𝜶𝑥

𝛼1
1 … 𝑥

𝛼𝑛𝑣
𝑛𝑣 (21)

for finitely many real non-zero coefficients 𝑓𝜶 which are, as well as the
degree 𝑑𝑓 of the objective function, dependent on the selection of the
MARS formulation employed to fit the 𝑝𝑆−𝑆 function.

To write (16) as a relaxed SDP relaxed, let us introduce the vector
𝐯𝑑 (𝐱) defined as:

𝐯𝑑 (𝐱) = (𝐱𝜶) = [1, 𝑥1,… , 𝑥𝑛𝑣 , 𝑥
2
1, 𝑥1𝑥2,… , 𝑥𝑛𝑣−1𝑥𝑛𝑣 , 𝑥

2
𝑛𝑣
,… , 𝑥𝑑1 ,… , 𝑥𝑑𝑛𝑣 ]

(22)

Let us group the inequality constraints in the set of real-valued
polynomials 𝑔𝑘(𝐱) ≥ 0 and the equality constraints in the set of real-
valued polynomials ℎ𝑙(𝐱) = 0, and introduce the sum of squares (SOS)
decomposition to rewrite them in terms of semidefinite matrices. The
SOS decomposition allows writing a generic polynomial 𝑝(𝐱) ∈ R[𝐱]2𝑑
by means of 𝐯𝑑 (𝐱) and a positive semidefinite matrix 𝐐 ∈ R𝑠(𝑑)×𝑠(𝑑) such
that:

𝑝(𝐱) = 𝐯𝑑 (𝐱)𝑇𝐐𝐯𝑑 (𝐱) ∀ 𝐱 ∈ R𝑛𝑣 (23)

with 𝑠(𝑑) ∶=
(𝑛𝑣+𝑑

𝑑

)

. Therefore, before deriving the relaxed SDP op-
timization problem, the POP (16) can be converted in an equivalent
polynomial SDP:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑓 ∗ = min
𝜔, 𝑦𝑖𝑛𝑗 , 𝑏𝑗

𝑢𝑠𝑡𝑎𝑟𝑡
(

𝜔 (𝑡) , 𝑦𝑖𝑛𝑗 (𝑡) , 𝑏𝑗 (𝑡)
)

= min
𝐱

∑

𝛼
𝑓𝜶𝑥

𝛼1
1 … 𝑥

𝛼𝑛𝑣
𝑛𝑣

s.t. 𝐯𝑑 (𝐱)𝑇 𝐯𝑑 (𝐱) ⪰ 0

𝐯𝑑−𝑣𝑘 (𝐱)
𝑇 𝐯𝑑−𝑣𝑘 (𝐱)𝑔𝑘(𝐱) ⪰ 0,

𝑘 = 1,… , 𝑁𝑠𝑡𝑎𝑟𝑡 ⋅ (1 + 2 ⋅ nrHF)

𝐯𝑑−𝜏𝑙 (𝐱)
𝑇 𝐯𝑑−𝜏𝑙 (𝐱)ℎ𝑙(𝐱) ⪰ 0,

𝑙 = 1,… , 𝑁𝑠𝑡𝑎𝑟𝑡 ⋅ (1 + nrHF) + 3

(24)

with 𝑣𝑘 = (deg 𝑔𝑘)∕2, respectively 𝜏𝑙 = (degℎ𝑙)∕2 and 𝑑 = max(𝑑𝑓∕2, 𝑣𝑘, 𝜏
To formulate the relaxed SDP, the introduction of the Riesz linear

functional 𝐿𝐲 ∶ R[𝐱] → R is required to rewrite a non linear
polynomial as a linear one. In the case of the objective function 𝑓 (𝐱),
each monomial 𝐱𝜶 is replaced by a single real variable 𝑦𝜶 as follows:

𝑓
(

=
∑

𝛼
𝑓𝜶𝐱𝜶

)

⟼ 𝐿𝐲(𝑓 ) =
∑

𝛼
𝑓𝜶𝑦𝜶 (25)

Hence, 𝐿𝐲(𝑓 ) is expressed as a function of the real sequence 𝐲 = (𝑦𝜶) ⊂
R and the same non-zero coefficients 𝑓𝜶 that define the POP objective
function. Furthermore, 𝐿𝐲 allows defining the real symmetric moment
matrix as:

𝐌𝑑 (𝐲) = 𝐿𝐲(𝐯𝑑 (𝐱)𝑇 𝐯𝑑 (𝐱)) (26)

meaning that 𝐿𝐲 is applied to each entry of the matrix 𝐯𝑑 (𝐱)𝑇 𝐯𝑑 (𝐱).
The equality and inequality constraints of (16), converted in to pos-
itive semidefinite matrices conditions in (24), are expressed in the
relaxed SDP defining the localizing matrices, i.e. the moment matrices
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associated to the set of polynomial inequality constraints, 𝐌𝑑−𝑣𝑘 (𝑔𝑘 𝐲),
respectively to the set of equality constraints, 𝐌𝑑−𝜏𝑙 (ℎ𝑙 𝐲).

The POP (16) can therefore be written in its relaxed form. The 𝑑th
Lasserre’s SDP relaxation is expressed as:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜌𝑑 = min
𝒚

𝐿𝐲(𝑓 ) =
∑

𝛼
𝑓𝜶𝑦𝜶

s.t. 𝐌𝑑 (𝐲) = 𝐿𝐲(𝐯𝑑 (𝐱)𝑇 𝐯𝑑 (𝐱)) ⪰ 0

𝐌𝑑−𝑣𝑘 (𝑔𝑘 𝐲) = 𝐿𝐲(𝐯𝑑 (𝐱)𝑇 𝐯𝑑 (𝐱)𝑔𝑘(𝐱)) ⪰ 0,

𝑘 = 1,… , 𝑁𝑠𝑡𝑎𝑟𝑡 ⋅ (1 + 2 ⋅ nrHF)

𝐌𝑑−𝜏𝑙 (ℎ𝑙 𝐲) = 𝐿𝐲(𝐯𝑑 (𝐱)𝑇 𝐯𝑑 (𝐱)ℎ𝑙(𝐱)) ⪰ 0,

𝑙 = 1,… , 𝑁𝑠𝑡𝑎𝑟𝑡 ⋅ (1 + nrHF) + 3

𝑦𝟎 = 1

(27)

with 𝑑 = max(𝑑𝑓∕2, 𝑣𝑘, 𝜏𝑙) the relaxation order of the polynomial SDP.
The sequence 𝐲 is a feasible solution of the relaxed SDP problem

(27), with the value of the relaxed objective function 𝐿𝐲(𝑓 ) = 𝑓 (𝐱). The
inequality 𝜌𝑑 ≤ 𝑓 ∗ holds for every 𝑑. Moreover, since an increasing
𝑑 leads to a more constrained SDP, the relation 𝜌𝑑+1 ≥ 𝜌𝑑 holds as
well. Hence, (27) defines a hierarchy of semidefinite relaxations of the
initial problem (16). For non-convex problems, the finite convergence
provided by the Putinar Positivstellensatz is generic, i.e. is ensured for a
relaxation order 𝑑 → ∞. Unfortunately, the size of the SDP relaxations
increases rapidly with the size of the original problem, for an increasing
relaxation order. This size explosion issue is due to the semidefinite
matrices introduced in the relaxed problem. To handle problems char-
acterized by a large size, the sparsity of matrices can be exploited.
In this regard, Waki et al. propose the algorithm SparsePOP [41], a
Matlab implementation of the sparse SDP relaxation method running
by default the primal–dual interior-point solver SeDuMi (Self-Dual-
Minimization) [42]. Since the methodology employed in this paper
requires an algorithm able to work with 𝑛𝑣 and 𝑛𝑐 values on the order of
103, this problem size can be handled uniquely by exploiting sparsity.
Therefore, the SparsePOP algorithm is selected.

4. Case study and results

4.1. HPP characteristics

The case study considered in this paper is one of the eight iden-
tical Pelton turbines installed in Veytaux I, powerhouse of the Forces
Motrices Hongrin-Léman (FMHL) pumped-storage power plant located
in the western region of Switzerland [43]. This HPP features two
powerhouses, for an overall installed power of 480 MW. In the selected
powerhouse Veytaux I covering half of the total installed power, there
are four horizontal axis ternary units, each one equipped with a cen-
trifugal pump and two Pelton runners. Every Pelton runner features a
rated power of 30 MW. In generating mode, an average gross head
of 853 mWC for a nominal discharge of approximately 4 m3s−1 per
runner are considered. The studied Pelton runner features two injectors
at 80 degree from each other, and operates at a nominal rotational
speed of 600 min−1. The losses throughout the hydraulic circuit up
to the injectors are represented by the coefficient 𝑘ℎ𝑦𝑑𝑟, estimated by
considering a 2.5% loss at the rated power.

To define the structural characteristics of the runner, some ap-
proximations are required. The physical properties of the steel are
considered. The available 2D and 3D geometries allow computing the
mass of a single bucket and of the entire runner. The damping ratio 𝑐 is
estimated assuming the value of the relative damping 𝜁 = 0.05% [31].

To model the rotational dynamic of the runner, the statistical anal-
ysis performed on the nominal transmitted torque as a function of the
generator mass illustrated in [35] is adopted to estimate the latter,
assumed as approximately 50 × 103 kg. The rotational friction coeffi-
cient 𝑘𝑟𝑜𝑡 is estimated through the real-time data extracted from the
Supervisory Control And Data Acquisition (SCADA) of the HPP. Finally,
the coefficient 𝑘𝑙𝑜𝑎𝑑 is determined by considering a load that increases
linearly with the rotational speed until the rated power at the nominal
operating condition is transmitted by the turbine.
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Tab. 1
SparsePOP algorithm initialization.

Physical parameters Simulation parameters

𝑡𝑠𝑡𝑎𝑟𝑡 = 45 s nr𝐻𝐹 = 31
𝜔𝑙𝑏 = 62.8 rad/s = 599.7 min−1 max (𝑑𝑓 , 𝑑𝑐 ) = 6
𝑦𝑖𝑛𝑗,𝑛 = 0.8 𝑑 = 6
𝑘𝑦 = 3.0 × 10−2 s−1 𝑑𝑡 = 1 s
𝑘𝑙𝑜𝑎𝑑 ⋅ 𝜔𝑙𝑏 = 28.2 MW 𝑁𝑠𝑡𝑎𝑟𝑡 = 46

4.2. Optimized start-up sequence

4.2.1. MARS fit reduction
The global optimal start-up trajectory is provided by the SDP re-

laxation solution computed on a MARS-fitted surface which should be
the closest possible to the strain power density chart shown in Fig. 3.
This solution is ensured to converge to the global optimum for 𝑑 → ∞.
However, to have a problem computationally treatable a trade-off must
be considered between (i) the refinement and accuracy of the MARS fit
and (ii) the relaxation order 𝑑 which must be limited. These parameters
should be fine-tuned to obtain a satisfying quality of the SDP relaxed
solution in a reasonable computational time. It is worth mentioning
that the relaxation order 𝑑 is strictly related to the degree 𝑑𝑓 and
𝑑𝑐 = 2 ⋅ [𝑣𝑘, 𝜏𝑙] of the polynomials describing respectively the objective
function 𝑓 and the constraints of the initial problem by the following
relation [39]:

max (𝑑𝑓 , 𝑑𝑐 ) ≤ 2𝑑 (28)

As a result, a decrease of the MARS fit refinement also requires a lower
relaxation order 𝑑. Moreover, the introduction of 𝑏𝑗 leads to double
the objective function degree 𝑑𝑓 compared to the MARS formulation
degree. This aspect, therefore, plays a role on the relaxation order
selection.

The solution computed via the SDP relaxation represents the global
optimum solution associated to a strain power density chart repro-
ducing only partially the original chart. This outcome is employed
to initialize a gradient descent algorithm which refines the solution.
Thereby, the dominant effects of the non-convex nature of the problem
can still be tackled, and the final solution being close to the global
optimum can be considered as a best-effort optimum.

4.2.2. Relaxed problem optimum
The MARS formulation selected to solve the SDP relaxed problem

features 31 hinge functions, combined together to generate a third-
degree objective function. The fit function features a RSQ value of
99.93% and a relative error of 16.7% measured at the maximal absolute
error location. The corresponding strain power density chart is shown
in Fig. 4. Since this accuracy is strongly affected by the non-convex
regions of the surface, the rotational speed operating range is restricted
to ignore the large peaks observed in Fig. 3 for 𝜔 > 65 rad/s. However,
the excluded operating range is never attained during the start-up
procedure of the Pelton turbine.

The crucial prerequisite that motivates the choice of this formu-
lation is represented by the presence of the most relevant resonance-
induced peak observed between 𝜔 = 30 rad/s and 𝜔 = 40 rad/s. For
lower accuracy formulations, the shape and the magnitude of the peak
are too far from the original surface illustrated in Fig. 3, by inducing an
erroneous weight of the non-convexity of the function. However, with
such fitting quality, the relative amplitude of the peak is independent
on 𝑦𝑖𝑛𝑗 , and its oscillating behavior is not reproduced: this feature
observed in the original database is tackled in a second phase of the
modeling through the gradient descent implementation.

For the sake of comprehensiveness, at first only one start-up tra-
jectory is presented. The SparsePOP algorithm is initialized with the
parameters illustrated in Table 1.
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Fig. 4. 3D map (a) and orthogonal projection (b) of the strain power density chart as
a function of 𝜔 and 𝑦𝑖𝑛𝑗 - MARS with 𝑛𝐻𝐹 = 31, 𝑑𝑓 = 3. The yellow mark represents
the nominal operating condition.

The physical parameters are set in order to both fulfill the operating
characteristics of the full-scale turbine and to reproduce a realistic
start-up procedure of the HPP. The value of 𝑘𝑦 is defined such that
the minimal time duration required to ensure a complete opening or
closing procedure of the injector in the range 𝑦𝑖𝑛𝑗 = [0, 1] would be
33 s. The value imposed to 𝑘𝑙𝑜𝑎𝑑 aims to include a load carried by the
turbine during the acceleration phase and that stabilizes at 28.2 MW
at the nominal operating condition. This scenario may correspond to a
back-to-back start-up sequence of a centrifugal pump in a ternary group
featuring a rated power of 30 MW. The a priori choice of the gross head
as being the average head of the HPP implies that the delivered power
at the imposed 𝑦𝑖𝑛𝑗 value and the nominal rotational speed is slightly
lower than the rated power.

The computed start-up sequence is presented in Fig. 5. The trend
of the decision variables 𝜔 and 𝑦𝑖𝑛𝑗 is plotted as a function of time in
Fig. 5(a), and the induced damage associated to each time step of the
start-up sequence is illustrated in Fig. 5(b).

The result highlights that by providing an a priori value for 𝑡𝑠𝑡𝑎𝑟𝑡, the
algorithm imposes an initial stall in the low-damaging operating range
and then set an acceleration regime featuring the maximal admissible
opening rate of the injector. The initial stall condition lasts up to the
instant the algorithm must enforce the turbine acceleration to satisfy
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Fig. 5. SDP relaxed solution. Start-up sequence trajectory of the reference case, as a function of time (a) and on the damage chart (b), computed with the parameters listed in
Table 1.
the constrained operating condition at the final instant 𝑡𝑁𝑠𝑡𝑎𝑟𝑡 , i.e. about
13 s in the simulated scenario.

During the acceleration, the operating range, characterized by the
resonance-induced peak, is crossed at the maximum injector opening
rate. The operating condition at the final instant fulfills the imposed
constraints: the injector opening is adjusted to ensure a nearly constant
rotational speed, that varies less than 0.2% at the last time step 𝑡𝑁𝑠𝑡𝑎𝑟𝑡 ,
and that is in agreement with the settled value of 𝜔𝑙𝑏.

The influence that the injector opening rate has on the optimal
start-up sequence is investigated by comparing the turbine acceleration
regimes under varying 𝑘𝑦 values. In Figs. 6 and 7, three start-up
sequences computed for injector opening rate in the range 𝑘𝑦 = [2 ×
10−2, 4×10−2] s−1 are presented, plotted against time and on the damage
chart. The same characteristics of the previously analyzed accelerating
behavior are clearly observed for each opening case. The time duration
of the initial stall is consistently related to the value of 𝑘𝑦. The higher
the admissible opening rate is, the shorter the required time for the
acceleration regime can be, decreasing the time spent by the runner on
the most relevant operating ranges in terms of structural damage. The
trend of the structural damage 𝑢𝑠𝑡𝑎𝑟𝑡 against the injector opening rate 𝑘𝑦
is shown in Fig. 8. It is interesting to notice how a shorter start-up leads
to a decrease of the damage, despite the fact that in sharper start-ups
the turbine explores regions of the 𝑝𝑆−𝑆 surface characterized by higher
instantaneous damage values.

In case higher 𝑦𝑖𝑛𝑗 values are considered, it is worth computing the
optimal start-up sequence for a shorter time duration of the transient
sequence. The investigated start-up regimes covers the range defined
by 𝑘𝑦 = [0.8 × 10−1, 1.6 × 10−1] s−1, i.e. increasing by a factor 4 the
previously studied opening rates, with a fixed time duration of 𝑡𝑠𝑡𝑎𝑟𝑡 =
15 s and a discretization set with 𝑑𝑡 = 0.3 s. It is important to remark
that such high 𝑘𝑦 values describe a set of acceleration regimes going
beyond the admissible scenarios for an HPP similar in size to the one
considered as case study. The time duration required to fully open or
close the injector associated to these 𝑘𝑦 are comprised between 12.50
and 6.25 s. However, relevant properties of the optimization algorithm
that is implemented in the framework of this investigation may be
distinctly highlighted for such shortened time ranges, from the point of
view of both the relaxed solution and the gradient descent refinement.
Figs. 9 and 10 illustrate how the opening law is adapted to fulfill the
final operating condition constraint in the imposed time duration. The
initial stall situation is visible similarly to the low 𝑘𝑦 regimes, and an
overshoot of 𝑦 above its nominal value during the last 3 s is needed
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𝑖𝑛𝑗
to provide the required final speed value. The longer the initial stall
lasts, the higher the overshoot amplitude must be. The influence of the
injector opening rate on the induced structural damage is presented in
Fig. 11.

4.2.3. Sensitivity analysis on the solution feasibility
The convergence of the SDP relaxed problem solution to a feasible

optimum strongly depends on the selected parameters. The scenario
described in Table 1 is selected as reference for this analysis. On
one hand, the tuning of the physical parameters allows fulfilling the
constraints that define the initial and final operating conditions of the
start-up sequence. This is the straightforward result of the runner’s
law of motion described in Eq. (13). By contrast, the simulation pa-
rameters have a relevant influence on the feasibility of the solution
with respect to the MARS model constraints, Eq. (17). The relaxation
order 𝑑 and the time discretization 𝑑𝑡 have a substantial impact on
the value of the binary variables introduced by the hinge functions.
Since 𝑑 must be bounded for computational cost reasons, the accuracy
in the computation of the binary variables 𝑏𝑗 is limited. This means that
when one of the decision variables 𝜔 or 𝑦𝑖𝑛𝑗 approaches the threshold
value 𝐶 of a specific hinge function, the associated binary variable 𝑏𝑗
deviates from its current value, reaching the opposite value solely once
the threshold value 𝐶 has been crossed. Therefore, this procedure lasts
more than a single time step. Fig. 12 illustrates this trend: the step from
0 to 1 and viceversa is not instantaneous. For the vast majority of the
time steps, this inaccuracy leads to a deviation in the corresponding
value of the computed objective function from its ideal value calculated
with the 𝑏𝑗 variables perfectly fulfilling their binary constraint. It has
been noticed that a decrease in the selected 𝑑𝑡 causes an increase in
the error computed on the quantity 𝑢𝑠𝑡𝑎𝑟𝑡. However, a too coarse time
discretization would lead to an unreliable calculation of 𝑢𝑠𝑡𝑎𝑟𝑡 as well:
a particularly delicate circumstance could be the insensitivity to the
resonance-induced peak, inducing a loss of information regarding the
non-convexity of the 𝑝𝑆−𝑆 surface. Therefore, a fine-tuning procedure
must be performed to choose the appropriate 𝑑𝑡.

The selection of the suitable relaxation order 𝑑 is performed ex-
ploring the root mean square error (RMSE) calculated between the 𝑏𝑗
variables fulfilling perfectly the binary constraint and the 𝑏𝑗 values
extracted by the SDP relaxed solution. Fig. 13 illustrates this analy-
sis. The RMSE is constant for orders 𝑑 ≤ 3. Crossed this threshold,
increasing the relaxation order leads to a decrease in the RMSE. This
trend is consistent with the property of the Lasserre SDP relaxation
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Fig. 6. SDP relaxed solution. Time evolution of the decision variables 𝑦𝑖𝑛𝑗 (a) and 𝜔 (b) for three regimes featuring different admissible injector opening rates 𝑘𝑦 and 𝑡𝑠𝑡𝑎𝑟𝑡 = 45 s.
Fig. 7. SDP relaxed solution. 𝜔 and 𝑦𝑖𝑛𝑗 start-up trajectory on the strain power density
chart for three admissible injector opening rates 𝑘𝑦.

Fig. 8. Cumulated damage as a function of 𝑘𝑦 for 𝑡𝑠𝑡𝑎𝑟𝑡 = 45 s and 𝑘𝑦 = [2×10−2 , 4×10−2]
s−1. For 𝑘𝑦 ≤ 0.019 s−1, 45 s are not enough to fulfill the final operating condition
constraints.
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order presented in Eq. (28). With a third degree MARS formulation,
converted in a sixth degree function by the introduction of the binary
variables, the threshold value for 𝑑 to improve the accuracy of the
relaxed solution is 𝑑 = 3. The curve’s slope decreases for higher 𝑑,
attaining RMSE = 7.5% for 𝑑 = 6, and a decreasing error rate lower
than 0.2% between 𝑑 = 6 and 𝑑 = 7. In view of a raise of approximately
a factor 5 in the computational time between 𝑑 = 6 and 𝑑 = 7, the
selected relaxation order is 𝑑 = 6.

4.2.4. Gradient descent refinement
The optimal solution obtained from the SDP relaxed problem is

used as input for a gradient descent refinement for two main reasons:
(i) the relaxed problem is computed on a MARS fit with bounded
nrHF and 𝑑𝑓 values, i.e. with a limited fitting quality, and (ii) this
solution involves the computation of binary variables 𝑏𝑗 which induce
an error on the calculation of the objective function 𝑢𝑠𝑡𝑎𝑟𝑡. Compared
to the SparsePOP algorithm, the function employed to implement the
gradient descent algorithm requires a significantly lower computational
cost. Therefore, the limits imposed on the nrHF and 𝑑𝑓 values are less
restrictive, and the MARS formulation used to compute the objective
function can reproduce more reliably the damage chart. Furthermore,
the error obtained in the SDP solution mainly concerns the convex
region of the 𝑝𝑆−𝑆 surface at low 𝜔 and 𝑦𝑖𝑛𝑗 values. These considerations
suggest that the use of a gradient descent method may improve the
obtained solution, by approaching more closely the global optimal
solution of the original problem. Since the gradient descent method
does not guarantee the identification of the global optimum, the final
solution can be considered as a best-effort optimal solution.

The gradient descent algorithm is initialized with the interior-point
method to converge towards the solution. The objective function is
computed on the 𝑝𝑆−𝑆 surface shown in Fig. 14, defined with a MARS
fit featuring the values nrHF = 68 and 𝑑𝑓 = 7. The fit function features
a RSQ value of 99.98% and a relative error of 12.9% measured at the
maximal absolute error location. With this formulation the oscillating
behavior of the resonance-induced peaks is recognizable. This advan-
tage is of major interest for the start-ups with the higher admissible 𝑘𝑦
values. In fact, a steeper 𝑑𝑦𝑖𝑛𝑗

𝑑𝑡 slope implies a greater flexibility of the
injector opening trajectory, which can be adjusted to take advantage
of the variable amplitude of the peaks to reduce the structural impact
throughout the whole sequence. To improve the significance of the
refinement, in particular regarding the sensitivity of the sequence to
the resonance peaks, the time discretization is enhanced compared to
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Fig. 9. SDP relaxed solution. Time evolution of the decision variables 𝑦𝑖𝑛𝑗 (a) and 𝜔 (b) for three regimes featuring different admissible injector opening rates 𝑘𝑦 and 𝑡𝑠𝑡𝑎𝑟𝑡 = 15 s.
Fig. 10. SDP relaxed solution. 𝜔 and 𝑦𝑖𝑛𝑗 start-up trajectory on the strain power density
chart for different admissible injector opening rates 𝑘𝑦.

Fig. 11. Cumulated damage as a function of 𝑘𝑦 for 𝑡𝑠𝑡𝑎𝑟𝑡 = 15 s and 𝑘𝑦 = [0.8×10−1 , 1.6×
10−1] s−1. For 𝑘𝑦 ≤ 0.065 s−1, 15 s are not enough to fulfill the final operating condition
constraints.
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Fig. 12. Time evolution of the 31 binary variables associated to the start-up sequence
of the reference case computed with the parameters listed in Table 1.

Fig. 13. RMSE computed on the whole set of binary variables associated to the start-up
sequence of the reference case set with the parameters listed in Table 1, plotted against
the relaxation order 𝑑. The threshold at 𝑑 = 3 is visible.
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Fig. 14. 3D map (a) and orthogonal projection (b) of the strain power density chart
as a function of 𝜔 and 𝑦𝑖𝑛𝑗 - MARS with 𝑛𝐻𝐹 = 68, 𝑑𝑓 = 7. The yellow mark represents
the nominal operating condition.

the time step used to extract the SDP relaxed solution. The lower com-
putational cost required by the refinement procedure allow adjusting
the time step keeping the numerical effort reasonable. The employed
time steps are halved: 𝑑𝑡 = 0.5 s for the low 𝑘𝑦 scenarios, respectively
𝑑𝑡 = 0.15 s for the higher 𝑘𝑦 values. For this purpose, the SDP solution
is simply interpolated on the finer time steps mesh and implemented
as input for the gradient descent approach.

The refinement is firstly applied to the set of sequences illustrated
in Figs. 6 and 7. The sequence obtained from the SDP relaxed problem
is used as initial point for the gradient descent. Figs. 15 and 16 illus-
trate how the algorithm improves the SDP relaxed solutions previously
computed. The most remarkable improvements are related to the initial
stall. This is consistent with the expectations, since the greatest error on
𝑏𝑗 which affects the objective function in the SDP relaxed solution oc-
curs at this operating range. The constraints applied to the mechanical
system prevent any adjustment to the initial condition and the last 5 s of
the sequence. With such admissible injector opening rates, the turbine
does not have the required flexibility to bypass the high-stress operating
conditions related to the resonance-induced peak. The influence of the
gradient descent refinement on the variation of 𝑢𝑠𝑡𝑎𝑟𝑡 with 𝑘𝑦 is shown
in Fig. 17, and Table 2 summarizes the induced relative change in the
damage value 𝑢 for the illustrated start-up scenarios. Given the short
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𝑠𝑡𝑎𝑟𝑡
Tab. 2
Relative improvement of the gradient descent refinement on the cumulated
damage for 𝑘𝑦 = [2 × 10−2 , 4 × 10−2]s-1. The variation induced by the gradient
descent refinement is lower for the regime featuring a short-lasting initial stall,
i.e. at the lowest 𝑘𝑦 value.

𝑘𝑦 [s−1] 𝑢𝑠𝑡𝑎𝑟𝑡, 𝑆𝐷𝑃 −𝑢𝑠𝑡𝑎𝑟𝑡, 𝑔𝑑
𝑢𝑠𝑡𝑎𝑟𝑡, 𝑆𝐷𝑃

2.0 × 10−2 0.53%
3.0 × 10−2 1.96%
4.0 × 10−2 1.73%

Tab. 3
Relative improvement of the gradient descent refinement on the cumulated
damage for 𝑘𝑦 = [0.8× 10−1 , 1.6× 10−1] s−1. The variation induced by the gradient
descent refinement is lower for higher 𝑘𝑦 values in reason of the moderate
acceleration that characterizes the initial phase of the sequence.
𝑘𝑦 [s−1] 𝑢𝑠𝑡𝑎𝑟𝑡, 𝑆𝐷𝑃 −𝑢𝑠𝑡𝑎𝑟𝑡, 𝑔𝑑

𝑢𝑠𝑡𝑎𝑟𝑡, 𝑆𝐷𝑃

0.8 × 10−1 0.81%
1.2 × 10−1 0.68%
1.6 × 10−1 0.27%

time duration of the initial stall in the sequence with 𝑘𝑦 = 2 × 10−2

s−1, the improvement provided to this regime is lower compared to the
two others simulated sequences. Nevertheless, the solution provided
by the SDP relaxed problem reaches the global optimum for all the
investigated scenarios.

The refinement procedure is also implemented on the shorter start-
ups with higher injector opening rate. Figs. 18 and 19 present the
improvement provided by the gradient descent method on the start-up
sequences shown in Figs. 9 and 10.

Compared to the sequences featuring lower admissible 𝑑𝑦𝑖𝑛𝑗
𝑑𝑡 values,

the deployment of the maximal opening rate throughout the entire
acceleration phase is not necessarily the optimal operating procedure.
Being highly responsive, the needle governor is able to adjust the
injector opening sequence bypassing the extremely damaging operating
range, still fulfilling the final condition constraints. This is notably
visible in Fig. 19, where the first stage of the acceleration is the result
of two main elements: i) avoid working at conditions characterized by
a high 𝑦𝑖𝑛𝑗 value and a low rotational speed, that would be encountered
with a sharp initial acceleration phase, and (ii) to later bypass the im-
pact of the resonance peak, exploiting the drop in the peak’s amplitude
in the range 𝜔 = [35, 39] rad/s and 𝑦𝑖𝑛𝑗 = [0.45, 0.60].

Fig. 20 and Table 3 show the variation of the damage value 𝑢𝑠𝑡𝑎𝑟𝑡
induced by the refinement parameter. In reason of the moderate accel-
eration that characterizes the initial phase of the sequence for higher 𝑘𝑦
values, the refined solution is rather close to the SDP relaxed solution.
This leads to a lower damage variation provided by the gradient descent
refinement solutions for increasing admissible injector opening rates.
Improvements lower than 1% confirm that the SDP relaxed optimal
solutions match rather accurately the damage values considered as the
best-effort optimum computed by the refinement.

In view of the simulated regimes, the existence of a threshold
value in the admissible opening rate 𝑘𝑦 can be deduced: for 𝑘𝑦 values
higher than this threshold, the use of the maximal acceleration does
not represent the optimal strategy. Considering the presented results,
it is reasonable to consider that this threshold value is in the range
𝑘𝑦 = [0.8 × 10−1, 1.2 × 10−1] s−1. For start-up sequences characterized
by 𝑘𝑦 values higher than this threshold, the choice of 𝑡𝑠𝑡𝑎𝑟𝑡 also has
an impact. A smooth reduction of 𝑡𝑠𝑡𝑎𝑟𝑡 from its optimal value implies
an increase of the structural damage, until 𝑡𝑠𝑡𝑎𝑟𝑡 reaches the lowest
possible value which allow the turbine attaining the nominal operating
condition. A further reduction would lead to an infeasible solution.
This trend is illustrated in Table 4: the increase in the damage 𝑢𝑠𝑡𝑎𝑟𝑡
with respect to the case 𝑡𝑠𝑡𝑎𝑟𝑡 = 15 s is illustrated. The parameter 𝑘𝑦 l.b.
indicates the lower bound for the admissible opening rate to compute
a feasible solution for the imposed 𝑡 .
𝑠𝑡𝑎𝑟𝑡
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Fig. 15. SDP relaxed solution vs gradient descent (gd) refinement. Time evolution of the decision variables 𝑦𝑖𝑛𝑗 (a) and 𝜔 (b) for three regimes featuring different admissible
injector opening rates 𝑘𝑦 and 𝑡𝑠𝑡𝑎𝑟𝑡 = 45 s.
Fig. 16. SDP relaxed solution vs gradient descent (gd) refinement. 𝜔 and 𝑦𝑖𝑛𝑗 start-up
trajectory on the strain power density chart for different admissible injector opening
rate 𝑘𝑦.

Tab. 4
Impact of 𝑡𝑠𝑡𝑎𝑟𝑡 on the cumulated damage w.r.t the 𝑢𝑠𝑡𝑎𝑟𝑡 values calculated for 𝑡𝑠𝑡𝑎𝑟𝑡 = 15
s. The lower bound on the injector opening rate, 𝑘𝑦 l.b., defines the feasible region for
each 𝑡𝑠𝑡𝑎𝑟𝑡.
𝐮𝐬𝐭𝐚𝐫𝐭 [J/m𝟑]

𝑘𝑦 [s−1] 𝑘𝑦 [s−1] l.b.

0.080 0.120 0.160

𝑡𝑠𝑡𝑎𝑟𝑡 = 13 s – + 0.09% + 0.10% 0.081
𝑡𝑠𝑡𝑎𝑟𝑡 = 11 s – + 0.23% + 0.24% 0.105
𝑡𝑠𝑡𝑎𝑟𝑡 = 9 s – – + 0.91% 0.151

5. Conclusions

The paper presented a method to model and minimize the me-
chanical stresses induced at the bucket root of a Pelton turbine during
transient operating conditions. The strain power density dissipated at
this hotspot is computed on the turbine operating range by considering
a mesh of steady-state operating conditions and decomposing the ex-
ternal excitation in Fourier series. Taking into account the limitations
14
Fig. 17. Comparison of the cumulated damage against 𝑘𝑦 for 𝑡𝑠𝑡𝑎𝑟𝑡 = 45 s and 𝑘𝑦 =
[2 × 10−2 , 4 × 10−2] s−1 between the SDP relaxed solution and the gradient descent (gd)
refinement.

mentioned in Section 3.1 this approach allows for the extraction of
the dynamic response in bending mode of the bucket and to map the
structural damage on the entire operating range.

The damage chart is used to feed an optimization algorithm to
minimize the cumulated structural damage on Pelton turbines during
the start-up sequence. The non-convexity of the problem, introduced by
the modal behavior of the turbine, requires the problem formulation to
be relaxed to be tractable. The MARS regression analysis, applied to the
strain power density mapping, and the Lasserre approach, based on a
hierarchy of semidefinite relaxations, have been suitably integrated to
formulate and solve the proposed non-convex problem.

The optimal start-up sequence is firstly computed with an objective
function of bounded degree to be computationally tractable. This so-
lution provides the estimation of the relaxed problem global optimum
which is used as the initialization of the non-relaxed problem, solved
via a gradient descent approach, to reliably reproduce the full modal
properties of the turbine. Despite the fact that the gradient descent
method does not ensure the convergence to the global optimum, this
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Fig. 18. SDP relaxed solution vs gradient descent (gd) refinement. Time evolution of the decision variables 𝑦𝑖𝑛𝑗 (a) and 𝜔 (b) for three regimes featuring different admissible
injector opening rates 𝑘𝑦 and 𝑡𝑠𝑡𝑎𝑟𝑡 = 15 s.
Fig. 19. SDP relaxed solution vs gradient descent (gd) refinement. 𝜔 and 𝑦𝑖𝑛𝑗 start-up
trajectory on the strain power density chart for different admissible injector opening
rate 𝑘𝑦.

limitation has been accepted to maintain a reasonable computational
cost for the relaxed problem resolution. In case of availability of an
important computing power, the full-degree objective function can be
considered to calculate the global optimum of the relaxed problem,
eliminating the need of the gradient descent refinement.

With the developed methodology, the influence of the HPP char-
acteristics and of the runner structural properties can be identified
and related to the control parameters employed to define the start-up
sequence trajectory. In particular, it has been shown that the optimal
injector opening procedure strongly relies on the admissible opening
rate allowed on the HPP and on the resonance properties of the bucket.
For low admissible opening rates, the optimal strategy aims at reducing
the time duration of the sequence at most, by decreasing the turbine
exposition to the transient-induced mechanical stresses. By contrast,
with admissible injector opening rates higher than a threshold value,
the deployment of the maximal acceleration cannot be considered
as the optimal solution. This distinction is justified by the highly-
damaging regimes that could be attained by a sharp acceleration with
such opening rates and by the flexibility that the injector can exploit
15
Fig. 20. Comparison of the cumulated damage against 𝑘𝑦 for 𝑡𝑠𝑡𝑎𝑟𝑡 = 15 s and 𝑘𝑦 =
[0.8 × 10−1 , 1.6 × 10−1] s−1 between the SDP relaxed solution and the gradient descent
(gd) refinement.

to prevent the runner to cross operating conditions causing important
resonance-induced stresses. It is interesting to notice that this behavior,
observed for opening rates higher than the threshold, shows an inverse
correlation between the start-up time duration and the cumulated
damage as retrieved by Andolfatto et al. [14], who applied a Pareto
front optimization to resolve the a-priori formulated trade-off between
a shorter start-up time 𝑡𝑠𝑡𝑎𝑟𝑡 and a lower structural damage. In this
regard, it is important to remark that the threshold value of the injector
opening rate is strongly related to the considered rotational inertia of
the system 𝐽 , which is essentially due the generator size, as shown
in Eq. (13). In fact, a higher rotational inertia lowers the threshold
value of 𝑘𝑦 because of a lower angular acceleration of the runner,
leading to the appearance of a threshold for 𝑡𝑠𝑡𝑎𝑟𝑡 values higher than
15 s. In this paper, the size of the generator has been estimated
considering the rated power of the turbine, i.e. 30 MW. However, this
equivalence may not be always justified. For instance, in the Veytaux
I HPP considered as case study, every generating unit features two
runners sharing a generator of a rated power of 60 MW. The load
carried by a single runner may therefore vary in case of an unequal
power balance between the two runners.
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Furthermore, a sensitivity analysis carried out on the parameters
of the SDP relaxation algorithm shows that the largest impact on the
objective function error is due to the initial stall condition of the
turbine, caused by the a priori selection of the time duration 𝑡𝑠𝑡𝑎𝑟𝑡 of the
start-up sequence. This implies that an a posteriori adjustment of 𝑡𝑠𝑡𝑎𝑟𝑡
can additionally decrease the produced error, improving the accuracy
of the SDP relaxed solution.

Future works aim to perform an experimental campaign on the
reduced scale model of the considered Pelton turbine featuring an
on-board instrumentation to measure how transient operating con-
ditions affect the runner structural integrity. Such instrumentation
includes strain gauges located on the structure’s hotspots to measure
the mechanical stresses induced on the runner in operation. This exper-
imental campaign will cover the entire range of steady-state conditions
of the turbine, aiming at performing a validation of the presented
methodology, as well as transient regimes such start-ups with different
injector opening laws, improving the comprehension of the impact of
the currently-implemented or the theoretically-optimized sequences.
Furthermore, the collected data will be implemented as inputs to
develop a predictive model to estimate the operational costs induced
by such transients on the runner, and to carry out an evaluation of their
influence on the turbine lifetime.
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Appendix A. Physical excitation

By neglecting the radial component induced by the jet force, the
centrifugal force imposed to the bucket is computed as follows:

𝐹𝑐𝑒𝑛𝑡𝑟 = 𝑚 ⋅ 𝜔2 ⋅
𝐷
2

(A.1)

By contrast, the computation of the jet force requires a detailed
representation of the variation of the water discharge fraction that
impinges on the bucket depending on its angular position 𝜃(𝑡). In
fact, modeling the increase of the discharge fraction impinging on the
bucket with an instantaneous step from 0 to 100% would generate an
unrealistic dynamic response of the bucket.

Setting 𝑡 = 0 as the instant the jet starts impinging on the bucket
splitter’s tip, and defining the radial position of the latter as 𝑟𝑠 = 𝐷𝑠

2
and its initial angular position 𝜃(0) = 0, it is possible to simply derive
the splitter’s tip motion projected perpendicularly to the jet axis, 𝑦𝑠, as
follows:

𝑦 (𝑡) =
𝐷𝑠 ⋅

(

cos (𝛼 − 𝜃(𝑡)) − cos (𝛼 )
)

|

| 𝑦 ∈ [0 , 𝑑 ] (A.2)
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𝑠 2 0 0
|

𝑠 𝑗𝑒𝑡
Fig. A.21. Charging cycle of the jet. Normalized section.

with 𝛼0 > 0 the angle shift at 𝑡 = 0 between the bucket and its
projection perpendicular to the jet axis, see Fig. 1. Further geometrical
developments introduce the quantity 𝛾(𝑡) expressed as:

𝛾(𝑡) = cos−1
(

1 −
2 ⋅ 𝑦𝑠(𝑡)
𝑑𝑗𝑒𝑡

)

|

|

|

𝛾 ∈ [0 , 𝜋] (A.3)

This leads to the definition of the jet surface impinging on the bucket
as a function of time:

𝐴𝑗𝑒𝑡(𝑡) =
𝑑2𝑗𝑒𝑡 ⋅ 𝜋

4
⋅
( 𝛾(𝑡) − sin (𝛾(𝑡)) ⋅ cos (𝛾(𝑡))

𝜋

)

|

|

|

𝐴𝑗𝑒𝑡 ∈
[

0 ,
𝑑2𝑗𝑒𝑡 ⋅ 𝜋

4

]

(A.4)

The jet impinges entirely on the bucket when the angular coordinate
𝜃 allows satisfying the condition 𝑦𝑠 = 𝑑𝑗𝑒𝑡. The impact lasts until
the subsequent bucket splitter tip starts being impacted by the jet,
namely for 𝜃 = 2𝜋∕𝑧𝑏. The charging cycle of the jet normalized section
𝐴𝑗𝑒𝑡∕

𝑑2𝑗𝑒𝑡⋅𝜋

4 on the bucket is shown in Fig. A.21.
The time duration of one charging cycle, i.e. the period of the

signal 𝑄(𝑡), can be derived from Eq. (A.2). Let the period of a complete
rotation 𝑇 be such as:

𝑇 = 𝑧0 ⋅ 𝑇𝑐𝑦𝑐𝑙𝑒 + 𝑇𝑛𝑢𝑙𝑙 =
2𝜋
𝜔

(A.5)

𝑇𝑐𝑦𝑐𝑙𝑒 is defined as the sum of the time duration of the three phases of
the charging cycle shown in Fig. A.21:

𝑇𝑐𝑦𝑐𝑙𝑒 = 𝑇𝑢𝑝 + 𝑇𝑜𝑛𝑒 + 𝑇𝑑𝑜𝑤𝑛 (A.6)

with 𝑇𝑢𝑝 = 𝑇𝑑𝑜𝑤𝑛 and 𝑇𝑜𝑛𝑒 = 2𝜋
𝜔⋅𝑧𝑏

− 𝑇𝑢𝑝. From Eq. (A.2), 𝑇𝑢𝑝 can be
computed for 𝑦𝑠 = 𝑑𝑗𝑒𝑡 as follows:

𝑇𝑢𝑝 =
1
𝜔

⋅
(

𝛼0 − cos−1
( 2 ⋅ 𝑑𝑗𝑒𝑡

𝐷𝑠
+ cos (𝛼0)

))

(A.7)

leading to the expression of 𝑇𝑐𝑦𝑐𝑙𝑒:

𝑇𝑐𝑦𝑐𝑙𝑒 =
2𝜋
𝜔 ⋅ 𝑧𝑏

+ 1
𝜔

⋅
(

𝛼0 − cos−1
( 2 ⋅ 𝑑𝑗𝑒𝑡

𝐷𝑠
+ cos (𝛼0)

))

(A.8)

To estimate the effective jet force on the bucket, the discharge value
delivered by the injector is computed by an iterative approach relying
on the average gross head of the HPP, 𝐻𝐻𝑃𝑃 , and on the characteristic
curve of the turbine. The estimation of the available head 𝐻 at the
injector, along with the discharge 𝑄, is carried out by solving the
following two equations:

𝐻 = 𝐻𝐻𝑃𝑃 − 𝑘ℎ𝑦𝑑𝑟 ⋅𝑄2 and 𝑄𝐸𝐷 = 𝑄
√

(A.9)

𝐷2 ⋅ 𝑔𝐻



Renewable Energy 218 (2023) 119341A.L. Alerci et al.
with 𝑘ℎ𝑦𝑑𝑟 the approximated energy losses coefficient of the hydraulic
system up to the injector. The force exerted by the jet on the bucket
takes into account the runner peripheral velocity 𝑈1 = 𝜔 ⋅𝐷∕2 and the
flow velocity 𝐶1 at the injector nozzle defined as:

𝐶1 = 𝑘𝑣 ⋅
√

2𝑔𝐻 𝑘𝑣 ≈ 0.96 … 0.98 (A.10)

with 𝑘𝑣 representing the injector nozzle energy losses [44]. The jet force
is computed as:

𝐹𝑗𝑒𝑡(𝑡) = 2 𝜌𝑄(𝑡) ⋅ (𝐶1 − 𝑈1) (A.11)

with 𝑄(𝑡) = 𝐶1 ⋅ 𝐴𝑗𝑒𝑡(𝑡) the time-dependent discharge. This equation
assumes negligible friction losses in the bucket inner surface and an
outflow angle 𝛽1 = 180◦ [44].

Appendix B. Equivalent stress formulation

The centrifugal effect induces uniquely a normal stress, uniformly
distributed on the section, calculated as follows:

𝜎𝑐 =
𝐹𝑐𝑒𝑛𝑡𝑟
𝐵𝑏 ⋅𝐻𝑏

=
𝐹𝑐𝑒𝑛𝑡𝑟
𝐴𝑏𝑒𝑎𝑚

(B.1)

The bending vibration mode generates both a normal stress and a
shear stress component [34]. The magnitude of these components is
not uniform along the section side 𝐻𝑏, whereas it can be considered
uniform along 𝐵𝑏 by assuming a bucket displacement limited to the
plane defined by the coordinates �⃗� and ⃖⃗𝜃. Therefore, the definition of
the coordinate 𝑦𝐻 is required. To compute the normal component of
the bending stress, the static behavior of the beam under a concentrated
force 𝑃 must be introduced:
𝑃
𝛿

= 3𝐸𝐼
𝐿3

(B.2)

with 𝐿 = (𝐷−𝐷𝑟𝑜𝑜𝑡)∕2 the length of the beam. Setting 𝑀 the torque at
the bucket root and with the steady-state dynamic response computed
in Eq. (3), the bending induced normal stress reads:

𝜎𝑏 =
𝑀 ⋅ 𝑦𝐻
𝐼

=
3𝐸 ⋅ 𝑥(𝑡) ⋅ 𝑦𝐻

𝐿2
(B.3)

The shear stress has a parabolic shape along 𝑦𝐻 :

𝜏𝑏 =
3
2
⋅ 𝜏𝑎𝑣 ⋅

(

1 −
( 𝑦𝐻
𝐻𝑏∕2

)2
)

(B.4)

with 𝜏𝑎𝑣 the average shear stress defined as:

𝜏𝑎𝑣 =
3𝐸𝐼 ⋅ 𝑥(𝑡)
𝐿3 ⋅ 𝐴𝑏𝑒𝑎𝑚

(B.5)

Fig. B.22. Stress profiles in a cantilever beam under bending and normal forces.
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Fig. B.22 provides a schematic representation of the stress profiles.
To estimate the strain energy, the resulting stress, to be compared

to the material’s yield strength or rupture conditions, is computed by
the von Mises criterion, which allows for the definition of an equivalent
tensile stress 𝜎𝑒𝑞 as follows:

𝜎𝑒𝑞 =
√

(𝜎𝑐 + 𝜎𝑏)2 + 3𝜏2𝑏 (B.6)
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