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A B S T R A C T   

Recent research has investigated the importance of both walkable urban design and social cohesion. Social 
cohesion has been shown to have broad social and health benefits, and scholars have hypothesized that walkable 
urban design can influence cohesion, though evidence remains limited. In this work, we leveraged a data-driven 
approach that broke down design factors related to walkable design and investigated their impact on cohesion. 
We used a US-wide open urban form dataset to characterize walkable urban design, and we used an open survey 
dataset that measured cohesion and demographics with a total sample size of 9670 in six US cities. We leveraged 
partial least squared structural equation modeling for statistical analysis. We found, controlling for de
mographics, that land use diversity had a significant positive impact on social cohesion. We also found that 
physical density, social density, and transit connectedness had significant negative impacts on cohesion, though 
this association is largely driven by the very dense neighborhoods in cities. These findings shed light on different 
theories of the built environment, offering insights for designers, engineers, and policymakers interested in the 
social effects of the built environment.   

1. Introduction 

The intersection of environmental and social sustainability in the 
urban built environment has received growing attention in recent years. 
In the face of climate change and increased urbanization, sustainable 
mobility—and particularly, active mobility including walkability—has 
been increasingly recognized as an important goal for the design of cities 
(Jardim and de Castro Neto, 2022; Loo, 2021; Moreno et al., 2021; 
Sonta and Jain, 2020; Gao et al., 2022). Working toward walkability in 
cities involves the provision of mobility infrastructure and social infra
structure in a manner that encourages walking as a viable transportation 
option (Carr et al., 2010; Liao et al., 2020; Huang and Khalil, 2022). The 
environmental benefits of walking as a mode of transit are 
well-understood, but it is important to note that scholars have long 
postulated that there are social benefits to walkability in cities and 
neighborhoods as well (Loo et al., 2017; Jun and Hur, 2015; Koohsari 
et al., 2021; Leyden, 2011; Rogers et al., 2013; Lee and Tan, 2019). A key 
underlying social benefit commonly associated with walkability is social 
cohesion, which involves the strength of connections among people. 

However, due to the relative difficulty of measuring social outcomes at 
scale, data-driven evidence for the social impacts of walkable urban 
design is limited (Mazumdar et al., 2018). Nonetheless, it remains an 
important task to identify how urban mobility infrastructure and urban 
form impact social outcomes such as social cohesion, as this can help 
urban designers, city officials, and policymakers better understand how 
urban environments can be designed and managed for human-oriented 
goals. 

The importance of socially cohesive communities has received 
growing attention among scholars and practitioners of the built envi
ronment. Social cohesion has been argued to be a collective good in and 
of itself (Coleman, 1994), it has been connected to both physical and 
mental health (House et al., 1988; Kawachi and Berkman, 2001), it has 
been shown to improve the ability of communities to respond and adapt 
to external shocks such as natural disasters (Aldrich and Meyer, 2014; 
Kawachi and Berkman, 2015), and it is often considered as an important 
attribute of overall wellbeing (Delhey and Dragolov, 2016). There are 
many factors that could be expected to impact the cohesiveness of 
communities; one such factor is the design of the built environment. 
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The creation of infrastructure in the built environment involves 
many policy, design, and engineering decisions that influence the ways 
in which we experience our cities. One such experience is the social 
experience, broadly involving interactions and relationships that man
ifest in built spaces. Different theories have emerged on the best way to 
provide urban infrastructure vis-à-vis social factors. In recent years, 
there has been renewed interest in the design philosophy most often 
referred to as “new urbanism,” a framework for design that generally 
emphasizes dense, walkable, and mixed-use cities (Ellis, 2010). The 
“15-minute city” concept builds upon the new urbanism philosophy and 
argues for local neighborhoods and infrastructure that enable residents 
to reach their required destinations within a 15-mintute walk or bike 
ride from their homes (Moreno et al., 2021; Allam et al., 2022). Pro
ponents of new urbanism and the 15-minute city have argued that 
walkable design would encourage more social interaction among city 
dwellers, helping to improve social cohesion (Lund, 2003). Case-study 
based research has offered some limited evidence supporting this 
notion (e.g., that neighborhoods perceived as more walkable also have 
higher social capital, as reported in a survey) (Rogers et al., 2013). 
However, a systematic review focusing on the relationships between 
new urbanism design characteristics and social capital outcomes found 
general support for this link but also conflicting evidence (i.e., 155 total 
relationships, but only 66 that were significant and only 84 in the ex
pected direction) (Mazumdar et al., 2018). At the same time, a different 
design philosophy has argued against pure urbanization, suggesting that 
high density development would socially overwhelm city dwellers, 
increasing the feeling of anonymity in cities and making it difficult to 
form social connections (Nguyen, 2010). The evidence for this line of 
argument is also limited. 

These two philosophies of urban design are often viewed as 
competing: new urbanists call for dense, walkable cities, and their 
counterparts warn against it. But it is important to note that these are not 
diametrically opposed points of view; there are subtleties in each 
argument. A new urbanist neighborhood involves more than just den
sity—it also critically depends on the diversity of land uses, the physical 
design of streets and sidewalks, and many other factors. And the critique 
of pure urbanization does not comment on other aspects of urban design 
besides density of people. As a result, we need a more nuanced under
standing of how urban design factors influence social experiences in 
cities. 

In this work, we identified the outcome of interest to be social 
cohesion, which we defined through survey questions very commonly 
used in the social science literature, as originally introduced by Samp
son et al. (1997). We note that discussion of social factors in the built 
environment can use many different terms and can include varied con
cepts, as discussed in the Background section below. We also defined the 
independent variables of interest to be those design features of the built 
environment commonly associated with walkability. Limiting our 
analysis of the built environment in this way narrowed the scope of 
analysis for interpretability while reflecting important questions prev
alent in theory and in the literature, as we discuss in detail below. 

In this paper, we first discuss the relevant literature on human- 
centric neighborhood sustainability, social cohesion theory and mea
surement, the connections between social cohesion and the design of 
walkable urban infrastructure, and metrics used to measure walkability 
(Section 2: Background). Then, using a survey from six cities measuring 
social cohesion combined with open data on urban form, we present a 
nuanced statistical analysis of walkable urban design and social cohe
sion controlling for demographic factors using the Partial Least Squares 
Structural Equation Modeling (PLS-SEM) framework (Section 3: Data 
and Methodology). We present the results of our statistical analysis, 
which motivated us to look more closely at the interactions between 
land use diversity and physical density as well as multi-group effects 
across cities. We also discuss the implications of our findings for the 
urban planning, engineering, and policy disciplines (Section 4: Results 
and Discussion). The primary goal of this work is to leverage large open 

datasets to expand our knowledge on the empirical links between urban 
design and planning—specifically as it relates to walkable urban for
m—and social cohesion outcomes that are important to social health, 
wellbeing, and resilience. 

2. Background 

2.1. Human-centric neighborhood sustainability 

In recent work on sustainable city development, researchers have 
noted the importance of explicitly studying the human experience as an 
integral component of overall sustainability. The quality of our experi
ences and well-being is an important goal in and of itself, but it also 
forms a nexus with multiple aspects of a sustainable urban environ
ment—urban form, urban energy, the urban heat island, air quality, and 
flooding, to name a few. 

In engineering and science-based research, the interaction between 
humans and the urban built environment has typically been studied by 
integrating the human perspective into analysis of the physical aspects 
of cities. For example, researchers have developed frameworks for 
analyzing how urban form influences pedestrian exposure to air quality 
(Miao et al., 2020), flood risk (Zhu et al., 2023), urban greenery (Hua 
et al., 2022), and the urban heat island (Yu and de Dear, 2022). In these 
works, which provide valuable insight on human-built interactions, the 
human perspective is explicitly considered in the context of the built 
environment, but it is typically not directly quantified. On the other 
hand, from the sociological perspective, research in this area often in
volves the collection of data on human factors considering the context of 
the urban environment, often through specific case studies (Mazumdar 
et al., 2018; Yang et al., 2023). In this research, we aim to integrate these 
two perspectives by investigating the links between two large open 
datasets: urban data theorized to impact social aspects and social data 
that can be explicitly linked to urban locations. 

2.2. Social cohesion theory and measurement 

In sociological theory, there has long been interest in characterizing 
the set of resources that come with the ability to connect with other 
people (Kawachi and Berkman, 2015). Often falling under the umbrella 
term social capital (capital because it can be viewed as a resource similar 
to economic forms of capital), this resource has been shown to be 
associated with positive outcomes in the areas of health and wellbeing 
(House et al., 1988). This resource is an interdisciplinary concept, with 
contributions coming from sociology, political science, population 
health, and other fields, and we continue to lack both a straightforward 
definition for it as well as an agreed-upon means for measuring it 
(Kawachi and Berkman, 2015). What is known is that 
social-network-based connections have been shown to have value for 
individuals and that there are many ways to conceptualize the pathways 
for these benefits. 

The broad notion of social capital is based on network structure and 
is typically measured when access to social network structure data is 
available (Moore et al., 2013). While this is often done when studying 
small groups or organizations, this data can be difficult to obtain as the 
scope of analysis expands. A related concept known as social cohesion is 
intended to represent many of the same ideas but is typically measured 
through surveys that inquire about the emergent properties of network 
connections (e.g., the trust that individuals put in their neighbors) 
(Kawachi and Berkman, 2015; Sampson et al., 1997). The key benefit of 
the social cohesion approach is that it can be measured through 
large-scale surveys when exact information on social network structure 
can be difficult to find. While the cohesion approach has been criticized 
for straying from the network-based definition of social capital (Car
piano, 2008), we note that it is commonly used in research practice and 
can often be the only feasible measurement item for large-scale analyses. 
In this work, we hereafter use the terms neighborhood social cohesion, social 
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cohesion, or simply cohesion to represent the primary outcome of interest 
throughout the study. 

2.3. Connections between walkable urban design and social cohesion 

Over the past few decades, theories have emerged around the ways in 
which the built environment impacts social cohesion and capital. These 
theories often discuss different aspects of design, including issues related 
to density, land use diversity, transit access, greenspace, and other fac
tors. Theories of the effect of density and urbanization on social factors 
are common, varied, and especially relevant to our present moment—in 
2014, the U.N. estimated that the share of people living in cities would 
increase from one-half then to two-thirds by 2050 (United Nations 
2014). Additionally, social cohesion in neighborhoods has been shown 
to have distinct advantages for many issues related to urban design and 
engineering, including recoveries from infrastructure shocks such as 
natural disasters (Aldrich and Meyer, 2014). 

Ultimately, theories of the relationship between urban form and 
social cohesion can reasonably be separated into two conceptual 
frameworks relevant to this study: the new urbanism design paradigm 
and the critique of urbanization. 

The new urbanism design paradigm focuses on the benefits of mixed- 
use, walkable environments, as opposed to the urban sprawl design 
phenomenon that emerged in the 1950s with the rise of the personal 
automobile in America. This theory posits that pedestrian-oriented en
vironments would encourage more interaction on sidewalks as opposed 
to automobile-oriented environments in which individuals are siloed in 
their personal vehicles (Leyden, 2011). Even spontaneous, passing in
teractions, when aggregated over time, could be expected to increase the 
amount of social cohesion that one identifies with one’s neighborhood. 
These sidewalk interactions have been theorized to foster a web of 
public respect and trust which forms a resource for the neighborhood 
(Jacobs, 1961), along the lines of the notions of social cohesion and 
capital that we have identified above. 

On the other hand, a relatively recent body of work has responded to 
the critical position that the new urbanism design philosophy takes on 
urban sprawl. These researchers usually identify density of the built 
environment as a culprit that could explain reductions in social cohesion 
variables (Koohsari et al., 2021; Nguyen, 2010; Freeman, 2007). One 
long-standing theory behind this observed phenomenon stems from the 
notion that a high level of density with many people and activities could 
overstimulate city dwellers (Simmel, 1903). If it is logical to think that if 
there are some social benefits to more dynamic neighborhoods that are 
mixed use and walkable, it is also logical to think that there could be 
diminishing returns (and even negative effects) if there are an over
whelming number of people in neighborhoods. 

A recent review paper (Mazumdar et al., 2018) sought to identify the 
relationship between social capital and neighborhoods that could be 
described by new urbanist design characteristics. The researchers 
reviewed the findings of 23 papers focusing on the built environment 
and social capital that included relevant case studies. The main take
away from their work was that while there was some support for the 
relationship between certain design characteristics and social capital, it 
was difficult to identify statistically significant findings. 

Studies that consider “urban form” in its relationship to social factors 
typically consider, either explicitly or implicitly, the notion of walk
ability. Because the concept of walkability is so prevalent in this area of 
research, we position the concept as central in our study. In this work, 
we focused our analysis of urban form on walkable urban design, which 
gives rise to the concept of walkability. We do this for a few key reasons. 
First, the notion of the connection between walkability and social 
cohesion has received much theoretical attention in the literature, 
though evidence remains lacking (Mazumdar et al., 2018). Second, 
many theories of the relationship between the built environment and 
social factors involve design features of the built environment that are 
typically components of aggregated walkability metrics (e.g., land use 

diversity, density). Lastly, focusing on walkability limits the scope of the 
study to a point such that the results remain interpretable. Urban form 
can be described in a large variety of ways and through a variety of 
lenses, meaning that an analysis of the general concept “urban form” 
vis-à-vis social cohesion would likely be too broad. Focusing on the 
different attributes of neighborhood walkability restricts the conceptual 
space while also providing multiple possibilities for interactions among 
constituent variables—helping us to potentially parse different 
sub-components of walkable design. 

2.4. Measuring walkability 

Different studies and tools have considered the connection between 
walkable urban form and social cohesion, walkable urban form and 
other sociological factors, or walkability in and of itself. In these works, 
different features of the built environment have been used to create 
different definitions of walkability. Prior to any dedicated walkability 
metrics scholars such as Talen (Talen, 2005) described walkable 
neighborhoods as places with high density, diversity of land use, small 
lots, and connected streets. An early dedicated metric that is common in 
both research and practice is Walk Score, a metric originally developed 
by a private company for real estate purposes (Carr et al., 2010). Walk 
Score is based on the idea that a residence is more walkable if amenities 
from 13 different categories (e.g., grocery, office) are within a specific 
walking distance from that residence. In this way, Walk Score is a 
generalization of many different design characteristics including land 
use diversity and density. The United States government also publishes a 
dedicated walkability metric, originally distributed in 2012 and updated 
more recently in 2021, known as the National Walkability Index 
(Chapman et al., 2021). Unlike Walk Score, which distills urban form 
directly into a single metric, the National Walkability Index is func
tionally an average of three different aspects of design: diversity of land 
uses, density of physical paths, and connectedness to transit. The ability 
to use transit is not always included in walkability metrics, but it does 
indicate the extent to which urban dwellers can access other areas 
outside of their immediate walking zone while still relying on walking as 
a key means of transportation. 

Based on these walkability metrics, we note that a few key ideas are 
consistently discussed in the context of walkable urban design. These are 
diversity of land use, some measure of density (whether describing 
streets, buildings, or people), as well as occasionally connectedness to 
transit. These concepts inform our approach to comparing the aspects of 
walkable urban form to neighborhood-level social cohesion. 

2.5. Key gaps 

In our review of the literature, we have identified key research gaps 
that we aim to address in this work. The most common limitation we 
have observed in previous studies relating walkable urban form to social 
cohesion is that most studies use relatively small case studies (sample 
size on the order of 1,000) and consider individual cities in isolation. In 
contrast, we leveraged open data sources to obtain a sample size on the 
order of 10,000 across six different cities across the United States, each 
with varying characteristics. In addition to—and perhaps as a result 
of—the limited sample sizes we have observed in the literature, there 
has been conflicting evidence as to the impact of walkable urban form on 
social cohesion (summarized well in Mazumdar et al. (2018)). We aimed 
to address this limitation not only by expanding our sample size by 
leveraging big open geospatially linked data, but also by breaking down 
the notion of walkability into its constituent components. Two of the 
more commonly used walkability metrics, Walk Score and the National 
Walkability Index, blend together multiple ideas such as land use di
versity and density, but we note that there are conflicting theories on 
how these attributed can affect social experiences, as discussed above. 
Furthermore, there is no physical reason that land use diversity should 
be correlated to density of street intersections, making it difficult to 
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interpret an overall metric that combines them. By taking a data-driven 
view of these theorized relationships, we aimed to gain a better under
standing of how walkable urban form impacts social cohesion. 

3. Data and methodology 

In this section, we describe our modeling approach and the data we 
used to investigate the relationships between walkable urban form and 
social cohesion, controlling for demographics (overview shown in 
Fig. 1). Our overarching hypothesis required a methodology for 
comparing physical design characteristics with social measurements. To 
make this possible, we identified both physical and social data sources 
that are geographically specified. We used the Census Block Group 
(CBG) as the geospatial unit for our analysis. At this geographic scale, we 
compiled data describing both physical characteristics of the built 
environment that have been previously related to walkability as well as 
survey data including responses to questions intended to measure social 
cohesion. We leveraged Partial Least Squares Structural Equation 
Modeling (PLS-SEM) to investigate the statistical relationships between 
the physical environment and social outcomes. 

3.1. Data sources 

For this modeling approach, we required each of our data sources to 
be available at the CBG level. The U.S. Census Bureau defines a CBG as a 
geographic boundary that has a population of 600 to 3,000 people. We 
used the CBG as our geographic scale for a few key reasons. Both geo
spatially and socially, it enables aggregation of statistics to what can 
reasonably be considered a “neighborhood” level, and it is in line with 
previous research (Freeman, 2007; Andris, 2016). It is also the smallest 
available geospatial unit for which survey responses and certain urban 
design characteristics are made public. A larger spatial unit would likely 
be too large to enable the observation of subtle differences within cities. 
We relied on two primary data sources:  

• The United States Environmental Protection Agency (EPA) publishes 
a Smart Location Database (SLD) that contains detailed data on 
physical aspects of the built environment, including their own 
walkability metric, the specific features used to build that walk
ability metric, and other related metrics.  

• The Baltimore Ecosystem Study (BES) is an ongoing study aimed at 
ecological understanding of urban areas. One component of the 
study includes a household telephone survey that includes questions 
aimed at measuring neighborhood-level social cohesion and is made 
publicly available. 

3.1.1. Smart location database 
The SLD is a data product produced by the US EPA that summarizes 

demographic, employment, and built environment variables for every 
CBG in the United States. It was originally released in 2012, and the 
current version of the SLD (version 3.0) was released in 2021 (Chapman 
et al., 2021). The SLD contains over 100 measures as well as an aggre
gated National Walkability Index built upon three specific concepts 
measured within the SLD: employment/housing mix, intersection den
sity, and proximity to transit stops. As discussed above, our aim in this 
research was to analyze the effect that each component of walkable 
urban design might have on social cohesion, rather than comparing 
aggregated walkability metrics with cohesion. As a result, we identified 
four concepts of walkable urban design than can be measured using 
statistics reported in the SLD: three metrics similar to those used in the 
National Walkability Index and an additional social density metric. 
Thus, our four metrics are land use diversity, physical density, social 
density, and transit connectedness. A summary of all data collected from 
the SLD for our study can be found in Table 1. 

Land use diversity. The metrics we used for land use diversity were 
based on entropy calculations built upon the mix of households and/or 
employment categories. The entropy calculation is as follows: 

H =
1
N

∑N

i=1

pi

P
ln
(pi

P

)

where N is the total number of job or household categories, pi is the 
number of entities within category i (e.g., households, jobs of a specific 
type), and P is the total number of entities across all N categories. We 
used two diversity entropy values from the SLD: mix of commercial uses 
and mix of all uses. Mix of commercial uses is calculated in the SLD using 
eight employment categories (retail, office, industrial, service, enter
tainment, education, healthcare, and public administration), and mix of 
all uses is calculated using five employment categories (retail, office, 

Fig. 1. Overview of methodology.  
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industrial, service, and entertainment) as well as a category for number 
of households. These two metrics indicate the level to which different 
types of land uses exist within a CBG, taking both a detailed look at non- 
residential uses as well as an overall look at total mix of use. As a result, 
we used these two entropy metrics as components in an overall diversity 
metric, as discussed below. 

Land use diversity within a relatively fine-grain geospatial area, such 
as a CBG, is a common component of walkability metrics. This is because 
it indicates the extent to which different types of activities (e.g., grocery 
shopping, eating out, going to work) can be carried out within walking 
distances. Overall, these entropy metrics describe the extent to which 
the CBG can be described as mixed-use. 

Physical density. We used two metrics from the SLD as indicators of 
physical density: intersection density and path density. While these two 
metrics are likely to be correlated, they are in fact measuring different 
things and are both relevant to the concept of physical density of the 
built environment. Intersection density is a common walkability metric 
and refers to the number of intersections per square mile, while path 
density refers to the number of miles of paths per square mile. The SLD 
includes both metrics for different types of paths: auto-oriented, multi- 
modal, and pedestrian-oriented. For our analysis, we used the metrics 
built for multi-model and pedestrian-oriented pathways, excluding auto- 
oriented pathways. 

Social density. We defined the social density metric separately from 
physical density, in which social density reflects the number of in
dividuals someone within a CBG might expect to be able to interact with 
as a result of the design of the built environment. We used two metrics to 
build our social density metric: population density and employment 
density. Population density is measured in the SLD as people per acre 
and is a direct result of the number of housing units—and number of 
people in each housing unit—within a CBG. Employment density is 
measured as jobs per acre and is a direct result of the number of 
buildings or spaces that support work within a CBG. These social density 
indicators can be viewed as both demographic data as well as built 
environment data, since the design of the neighborhood directly affects 
the number of residents and workers within a given neighborhood. 

When disaggregated spatially to the relatively fine-grain level of the 
CBG, we argue that these social density variables are indicative of 
walkable built environment design. The inclusion of the human-oriented 
variable of social density embeds within our walkability specification 
the explicit notion of human-built interaction. Walkability depends not 
just on the bare physical environment, but also the actors within the 
spaces. For example, physical density and land use diversity can indicate 
the number of buildings and their mix of use within a neighborhood. But 
if these buildings are not actually populated either as housing units or 
workplaces, then the walkability benefits of mixed-use development 
would be limited. Social density as a design variable can thus be 
important to walkability. 

Transit connectedness. Transit connectedness can be viewed as a 

walkability indicator because it enables individuals that need to travel 
across neighborhoods to be able to walk to transit stops within their 
neighborhoods. We used two SLD metrics as connectedness indicators: 
proximity to transit and frequency of transit. We measured proximity by 
taking the negative of the transit distance metric reported in the SLD. 
Distance is measured as the minimum walk distance (m) between the 
CBG centroid and the nearest transit stop of any route type. Transit 
frequency is measured as the frequency of service for each transit route 
within 0.25 miles during the weekday evening peak period (4:00 pm to 
7:00 pm local time), summed for all routes. 

A number of CBGs do not have realistic access to transit. These are 
coded with the values -99999 in the SLD. In an effort to retain these 
CBGs for analysis, we adjusted these values to the following: 1500m for 
minimum walking distance to transit (a value greater than the maximum 
reported value of 1205m and greater than is feasible for frequent transit 
use), and 0 for transit frequency. These values maintained the reported 
scales which allowed us to keep non-connected CBGs in the dataset for 
analysis. 

3.1.2. Baltimore ecosystem study 
The BES is an ongoing research project that started in 1998 with 

funding from the US National Science Foundation as a Long-term 
Ecological Research site. The project grant is administered by the Cary 
Institute of Ecosystem Studies, and the project is housed at the Univer
sity of Maryland, Baltimore County. The key goal of the BES is to 
advance the understanding of urban areas as newer types of ecosystems. 
Among the core activities of the BES is the BES Household Telephone 
Survey, which is intended to gather information on environmental 
knowledge, perceptions, values, and behaviors, as well as how changes 
in ecosystem structure impact various outcomes including social cohe
sion. The BES telephone survey covers 6 different cities, despite being 
originally Baltimore-centric: Baltimore, Boston, Miami, Minneapolis-St. 
Paul, Phoenix, and Los Angeles. Data and details for the BES telephone 
survey can be found on the EDI Data Portal.1 Importantly, each survey 
response was identified by the respondent’s home CBG, which enabled 
us to fuse the social cohesion survey responses with the SLD, thereby 
allowing us to attach built environment attributes to each survey 
response. Through this data fusion process, we ended up with 9,670 
total data points containing each attribute of interest, with 26.4% of the 
valid responses coming from 2006 and 73.6% from 2011. 

The BES telephone survey includes three specific questions designed 
to measure neighborhood social cohesion, each adapted from the sem
inal Project on Human Development in Chicago Neighborhoods 
(Sampson et al., 1997) and thereafter used in many studies on neigh
borhood social cohesion (Bateman et al., 2017; Stein and Griffith, 2015). 
These were in response to the following phrase: “On a five-point scale, 
how strongly would you agree or disagree with the following statements 
about your neighborhood with a score of one being strongly disagree up 
through five being strongly agree:”  

• “This is a close knit neighborhood”  
• “People in the neighborhood are willing to help one another”  
• “People in this neighborhood can be trusted” 

As the number of ties within each individual’s social network has 
also been shown to be an indicator of social cohesion (Kawachi and 
Berkman, 2015), the BES telephone survey included an additional 
cohesion-related survey question: “About how many neighbors do you 
know by name.... 1 (none), 2 (a few), 3 (about half), 4 (most of them), 5 
(all of them).” We used the three questions adapted from the Project on 
Human Development in Chicago Neighborhoods as well as this last 
question on self-reported and relative tie numbers as our four indicators 

Table 1 
Summary of built environment variables taken from EPA SLD.  

Variable name Minimum Maximum Mean Standard 
deviation 

Land use diversity     
Mix of commercial 
uses 

0.00 0.97 0.48 0.21 

Mix of all uses 0.00 1.00 0.56 0.20 
Physical density     

Intersection density 0.16 873.43 84.67 75.43 
Path density 0.00 48.74 13.47 7.82 

Social density     
Population density 0.01 399.91 8.44 10.04 
Employment density 0.00 268.60 2.05 6.83 

Transit connectedness     
Proximity to transit 0.00 1500.00 993.07 529.05 
Transit frequency 0.00 5444.91 46.17 162.52  

1 https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-bes 
.4000.180 
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for neighborhood-level social cohesion. 
In addition to the social cohesion questions, the telephone survey 

also included important self-reported demographic information, which 
we used as control variables for statistical analysis. The demographic 
data available for each survey response were as follows: education level, 
race, income, age, and sex. Each of the variables from the BES that we 
used in this study is summarized in Table 2. 

3.2. Modeling approach: structural equation modeling with partial least 
squares 

We required a statistical tool that enabled us to relate our measured 
variables to the underlying concepts they represent and thereafter 
analyze the statistical relationships among these concepts. We used 
Partial Least Squares Structural Equation Modeling (PLS-SEM), a 
framework for statistical modeling that combines factor analysis with 
path analysis. In factor analysis, one relates an underlying concept, or 
latent variable (e.g., social cohesion), to a number of indicators that are 
theorized to represent aspects of the latent variable (e.g., responses to 
questions on a survey); this is known as the measurement model. In this 
research, many of the concepts we are interested in modeling can be 
readily thought of as latent variables expressed through indicators. 
Given a set of latent variables, path analysis enables multivariate 
regression in which some latent variables are affected by others (e.g., 
social cohesion affected by density of the built environment); this is 
known as the structural model. 

The standard SEM approach is also known as covariance-based SEM, 
which aims to minimize the distance between the model’s covariance 
matrix and the observed covariance matrix using maximum likelihood 
estimation. An alternative approach, PLS-SEM (also known as PLS Path 
Modeling), uses ordinary least squares regression to maximize the 
explained variance of the target endogenous latent variables. 
Covariance-based SEM involves strict data assumptions, including that 
the measured data follow normal distributions, which is a difficult 
assumption to meet with non-experimental data. Additionally, 
covariance-based SEM requires that the measurement model be in the 
reflective mode. Scholars have noted that PLS-SEM can be preferred to 
CB-SEM when the following conditions are met (Hair et al., 2019; 
Mehmetoglu and Venturini, 2021):  

• Distributions are nonnormal (while this is not a reason to choose PLS- 
SEM in and of itself, PLS-SEM has been shown to perform well when 
assumptions about data distributions are not met) 

• The research is exploring theory development, rather than confirm
ing an existing theory  

• One or more of the latent variables is formatively measured  
• When the research is based on secondary data rather than a 

controlled experiment 

As each of these points applies to our modeling approach, we elected 
to use PLS-SEM in this research. An additional strength of PLS-SEM is 
that it can create latent variable scores, which enables follow up anal
ysis. This is particularly helpful when exploring the implications of new 
theory development (Hair et al., 2019). One disadvantage of the 
PLS-SEM approach for statistical analysis is that since it is nonpara
metric, significant testing requires bootstrapping to create confidence 
intervals for certain model parameters, such as weights in the mea
surement model and coefficients in the structural model. 

3.3. Model definition 

The model definition for our PLS-SEM is shown graphically in Fig. 2. 
In the subsections below, we define explicitly our measurement model 
and structural model. 

3.3.1. Measurement model 
Based on our review of the literature and the urban form data 

available at the CBG, we defined four urban form latent concepts to be 
our primary independent variables: land use diversity, physical density, 
social density, and transit connectedness. These four concepts are typi
cally included in overall walkability metrics, such as the National 
Walkability Index and Walk Score. For these four concepts, we used 
formative measurement with indicators taken from the EPA SLD. We 
chose to use formative measurement because, for each exogenous latent 

Table 2 
Summary of social cohesion and demographic variables from BES household 
telephone survey (n=9670).  

Variable 
name 

Survey question Response range Mean Standard 
deviation 

Social 
cohesion     

Close knit How strongly 
would you agree or 
disagree with the 
following 
statements about 
your neighborhood: 
This is a close-knit 
neighborhood. 

1 (strongly 
disagree), 2, 3, 4, 5 
(strongly agree) 

3.55 1.26 

Trust How strongly 
would you agree or 
disagree with the 
following 
statements about 
your neighborhood: 
People in this 
neighborhood can 
be trusted. 

1 (strongly 
disagree), 2, 3, 4, 5 
(strongly agree) 

4.02 1.09 

Willingness to 
help 

How strongly 
would you agree or 
disagree with the 
following 
statements about 
your neighborhood: 
People in the 
neighborhood are 
willing to help one 
another. 

1 (strongly 
disagree), 2, 3, 4, 5 
(strongly agree) 

3.92 1.14 

Number of 
neighbors 
known 

About how many 
neighbors do you 
know by name? 

1 (None), 2 (A 
few), 3 (About 
half), 4 (Most of 
them), 5 (All of 
them). 

2.95 1.01 

Demographics     
Education What is the highest 

grade of school you 
have had the 
opportunity to 
complete? 

1 (less than high 
school), 2 (high 
school graduate), 3 
(some college), 4 
(college graduate), 
5 (postgraduate 
work) 

3.51 1.13 

Race Do you consider 
yourself to be… 

1 (White), 
0 (Asian, Black, 
Hispanic, Native 
American, Other) 

0.80 0.40 

Income What is your 
income? 

1 (under $15K), 
2 ($15K to $25K), 
3 ($25K to $35K), 
4 ($35K to $50K), 
5 ($50K to $75K), 
6 ($75K to $100K), 
7 ($100K to 
$150K), 
8 (over $150K) 

4.28 1.64 

Age Please stop me 
when I reach the 
category that 
includes your age. 

1 (under 35), 2 (35 
to 44), 3 (45 to 54), 
4 (55 to 64), 5 (65 
or over) 

3.21 1.27 

Sex (Respondents chose 
the response they 
most identified 
with.) 

0 (Female), 1 
(Male) 

0.59 0.49  
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variable, the measured indicators are more appropriately thought of as 
combining to form the latent concept, rather than reflecting subtle dif
ferences in the latent concept. For example, social density in our model 
is formed by population density and employment density. While it may 
be the case that these two indicators are correlated with one another, 
they are in fact separate concepts measuring different things. But, when 
taken together, they create an overall picture of the number of people 
expected to utilize a particular neighborhood, which we call social 
density in our analysis. The measurement model for the formatively 
measured exogenous variables is reflected in the overall proposed PLS- 
SEM model (Fig. 2). 

For our endogenous variable, social cohesion, we used reflective 
measurement with four indicators from the BES. Here, reflective mea
surement is more appropriate because the survey questions are all 
designed to reflect an overarching concept of social cohesion. These four 
indicators—close knit, trust in neighbors, willingness to help, and 
number of neighbors known—are responses to the survey questions 
described above. 

3.3.2. Structural model 
Our structural model simply states that social cohesion is affected by 

each of the four features of walkable urban form as well as demographic 
covariates, as shown in Fig. 2. Because the demographic covariates do 
not define a latent variable, either formatively or reflectively, we created 
a dummy latent variable for each covariate (e.g., “Latent Education” 
formed only by “Education”) and included a path directly from each 
dummy demographic latent variable to social cohesion. We omitted this 
technical detail from Fig. 2. To estimate the model, we used the “SEM
inR” package in the statistical programming language “R” (Ray et al., 
2021). Our code for analysis is publicly available on Github.2 

4. Results and discussion 

Evaluation of the PLS-SEM starts with validity of the measurement 
model, to ensure that the latent variables are indeed represented by the 
chosen indicators. Once the measurement model is deemed valid, the 
structural model can be analyzed for statistical relationships. 

4.1. Measurement model validity 

Table 3 shows the metrics used to assess validity of the measurement 
model. The metrics differ depending on whether the latent variable is 
defined reflectively or formatively, as informed by established guide
lines on PLS-SEM use (Hair et al., 2019; Mehmetoglu and Venturini, 
2021). For the four independent variables in the measurement model, 
which were measured formatively, we assessed measurement model 
validity by investigating collinearity of the formative indicators as well 
as statistical significance of the indicator weights. We used the Variance 
Inflation Factor (VIF) to evaluate collinearity of indicators, as is common 
in PLS-SEM. A VIF value above 5 indicates high collinearity among in
dicators, and guidelines state that ideally VIF values should be close to 3 
or below (Hair et al., 2019; Becker et al., 2015). This condition was met 
for diversity, social density, and connectedness, while physical density 
exhibited a VIF of 3.73. Because this value is below the recommended 
maximum threshold of 5, we elected to accept these modeling results for 

Fig. 2. PLS-SEM model definition. The exogenous latent variables in the structural model are measured formatively (arrow from indicator to latent variable), 
whereas social cohesion is measured reflexively (arrow from latent variable to indicator). 

Table 3 
Measurement model validity.  

Latent variable 
Indicator variable 

Weight 95% weight confidence interval VIF 

Independent variables 
(Built environment attributes)    

Diversity   1.19 
Mix of commercial uses 0.948* (0.811, 1.04)  
Mix of all uses 0.115 (-0.117, 0.345)  

Physical density   3.73 
Intersection density 0.853* (0.616, 1.07)  
Path density 0.168 (-0.085, 0.420)  

Social density   1.03 
Population density 0.966* (0.927, 0.997)  
Employment density 0.145* (0.014, 0.257)  

Connectedness   1.16 
Proximity to transit 0.678* (0.550, 0.785)  
Transit frequency 0.526* (0.400, 0.648)   

Latent variable 
Indicator variable 

Loading Cronbach’s alpha AVE 

Dependent variable    
Social cohesion  0.789 0.482 

Close knit 0.399   
Trust 0.990   
Willingness to help 0.670   
Number of neighbors known 0.583    2 https://github.com/asonta/rethinking-walkability 
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further analysis. Because PLS-SEM is a nonparametric method, statistical 
significance in general can be estimated through bootstrapping, as dis
cussed above. After bootstrapping the model with 1000 iterations, we 
were able to create a 95% confidence interval for the indicator weights 
used in the formative measurement model. We found that some of these 
confidence intervals did include 0, as indicated in the table. However, 
we note that a non-significant weight does not necessarily indicate that 
the indicator should be removed (Hair et al., 2019). Instead, for in
dicators with non-significant weights, the indicator’s outer loading 
should be considered (Cenfetelli and Bassellier, 2009). For the three 
indicators with nonsignificant weights, each had an outer loading higher 
than 0.5, as recommended (Mix of all uses: 0.50, Path density: 0.90). For 
these reasons, we accepted the validity of the formative components of 
the measurement model. 

To assess the validity of the reflectively measured dependent latent 
variable, social cohesion, we examined indicator loadings, consistency 
reliability using Cronbach’s alpha, and convergent reliability using the 
average variance extracted (AVE) metric. The standard criterion for 
indicator loadings is that each loading should be at 0.7 or above, which 
indicates that more than 50% of the indicator’s variance is captured by 
the latent construct. We found that only one of the indicators (trust) met 
this threshold. However, we note that indicator loadings between 0.4 
and 0.7 are often accepted, particularly in early-stage theory develop
ment, which we believe applies to this study (Hair et al., 2016). 
Furthermore, we note that the close knit, trust, and willingness to help 
variables are established indicators for social cohesion in the social 
science literature, which we believe provides convincing rationale for 
retaining each indicator in the model. For consistency reliability, 
Cronbach’s alpha should be greater than 0.7, which we found to be the 
case. And finally, the AVE metric should be 0.5 or above. While 0.482 is 
below the 0.5 threshold, it is quite close, and we deemed this result 
acceptable for continued analysis of the structural part of the model. 

4.2. Structural model path analysis 

Key results from the structural model path analysis are shown in 
Table 4. As a first step in assessing the structural model, it is important to 
ensure that there exists no collinearity among independent variables. 
Using the VIF metric, we found that no critical collinearity issues exist in 
the structural model (VIF below 5). 

The most important results from the structural model are the path 
coefficients, which allow us to examine the relationships between the 
independent and dependent variables, and the 95% confidence internal, 
which allows us to determine the significant relationships between 
urban form and cohesion. We found that eight of the nine independent 
latent variables had path coefficients significantly different from zero at 
the 95% confidence level. Each of the demographic covariates except 
education level had a significant impact on reported social cohesion. On 
average, as both income and age increased, respondents reported higher 
cohesion. We note that it is generally accepted that social isolation poses 
a major health risk for older adults (Nicholson, 2012; Cornwell et al., 

2008), though some recent work has found that older age is associated 
with divergent factors for different forms of social connectedness 
(Cornwell et al., 2008). While we found an average positive relationship 
between age and cohesion, which was an important effect to control for 
in the research, we note that this was an average effect, and this work 
did not focus on the demographic of older adults. For the other cova
riates, white respondents and female respondents reported higher 
cohesion than nonwhite and male respondents. 

The urban design features we included as independent variables 
were each found to be statistically significant, but they differ in the ef
fect they had on social cohesion. Land use diversity was shown to have a 
positive impact on social cohesion. On the other hand, both physical 
density and social density were shown to have significant negative ef
fects on social cohesion. The effect of connectedness to transit was also 
negative, with greater access to transit being associated with less social 
cohesion. While these coefficients are not large, it is important to note 
that they would likely not be expected to have high values. Social 
cohesion is a complex phenomenon influenced by many factors, one of 
which may be the design of the built environment. By showing that these 
relationships are statistically significant, we find evidence that these 
influences do in fact exist, which is an important finding irrespective of 
the raw coefficient values. 

A particularly striking finding is the opposite impacts of diversity and 
density, which simultaneously lends support to two arguments that are 
often seen as competing:  

• The positive impact of land use diversity lends partial support to the 
theories associated with the new urbanism design philosophy. As we 
move from purely residential communities (places where you often 
need a car for daily activities) toward more mixed-use, walkable 
places, it can be expected that more socially meaningful contact 
becomes possible. This effect could arise from a few different 
mechanisms. One is that higher diversity makes walking a more 
viable transportation option, because more destinations/amenities 
would be within walking distance. As more people utilize sidewalks 
through walking as opposed to streets through driving, there become 
more opportunities for interaction among city users, which in turn 
would be expected to increase cohesion. Another possible mecha
nism is that increased land use diversity simply creates more 
vibrancy within neighborhoods (more shops, more event spaces, 
etc.), and the uses of neighborhood parcels themselves create the 
opportunities for meaningful social contact. 

• At the same time, however, the negative impact of physical and so
cial diversity also lends partial support to the theories that have 
critiqued pure urbanization. As neighborhoods become denser, we 
may be seeing the hypothesized effect of increased anonymity. 
Highly dense neighborhoods, in terms of both the number of build
ings and the number of people within those buildings, could over
whelm our social experiences. If, for example, one is walking down a 
street, one might expect different outcomes depending on the num
ber of other individuals using that space. If no one else is on the 
street, interaction is not possible. If a very large number of in
dividuals are also using that space, interaction is possible, but 
meaningful interaction may not be feasible. If some moderate num
ber of other individuals is using that sidewalk, it may be easier to 
engage in socially meaningful interaction—one may start to recog
nize the same person over and over, and eventually engage in con
versation, for example. There may be socially diminishing returns 
from increased density, an idea that our findings would support. 

The theoretical behaviors embedded in these theories operate on two 
different key aspects of design—density and diversity. This analysis 
sheds empirical light on this density/diversity dichotomy, a light that 
helps us to understand the complexities of our urbanism theories, and 
one that invites further analysis of the effects of diversity and density. 

Table 4 
Structural model results.  

Latent variable VIF Cohesion path coefficient 95% confidence interval 

Diversity 1.05 0.051* (0.029, 0.072) 
Physical Density 2.01 -0.050* (-0.079, -0.019) 
Social Density 2.02 -0.085* (-0.125, -0.055) 
Connectedness 2.33 -0.038* (-0.071, -0.001) 
Education 1.22 0.011 (-0.013, 0.032) 
Race 1.14 0.066* (0.043, 0.088) 
Income 1.35 0.158* (0.134, 0.182) 
Age 1.07 0.166* (0.145, 0.187) 
Sex 1.01 0.041* (0.020, 0.063)  

* indicates that 0 is not contained within the 95% confidence interval R2 =

0.101 
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4.3. Investigating diversity and density 

The opposite effects of diversity and density on cohesion invited 
further investigation of the variable relationships. In Fig. 3, we show the 
data relationships between diversity, physical density, and social cohe
sion (we omit social density here for readability), along with a locally 
estimated scatterplot smoothing (LOESS) regression line to aid with 
visualization. The latent variables were calculated using the weight 
factors of their constituent indicators. We also applied a log transform to 
the physical density variable for visualization purposes. We found that 
the negative relationship between physical density and cohesion is much 
stronger for high-density neighborhoods than it is for lower-density 
neighborhoods (as indicated by the concave shape of the curve). This 
would suggest that our highest-density neighborhoods are driving the 
overall negative relationship between density and cohesion. We also see 
a surprising relationship between diversity and density. For lower- 
density neighborhoods (on the left-hand side of the plot), we see that 
increasing density is associated with increasing diversity. In other 
words, as we start to increase physical density, we generally increase the 
amount of diversity of buildings. However, for high-density neighbor
hoods, we see that increasing density is actually associated with a 
decrease in diversity. This would suggest that in areas with many 
buildings already, as we increase the density of the urban fabric, we 
generally reinforce the existing mix of land use (e.g., more office 
buildings in areas with many office buildings in place). One important 
takeaway from this analysis is that we have a large opportunity to 
improve the social experience of the densest parts of our cities. 

4.4. Exploring diversity and density interaction effects 

Based on the apparent relationship between physical density and 
diversity, we also conducted a post-hoc analysis using a PLS-SEM model 
that included an interaction term between physical density and diversity 
but was otherwise identical to our original analysis. Our hypothesis for 
this additional analysis was that any effects that density might have on 
cohesion would be mediated by diversity. For example, for a high- 
density region, we might expect different effects on cohesion, depend
ing on whether the region is low or high diversity—an expectation that 
stems from our exploratory analysis above. The model specification and 
model results can be seen in Fig. 4. 

We omit in this paper many of the details of measurement model 
validity for this alternate model, but we note that none of the metrics 
used to assess model validity above changed significantly with the 
addition of the interaction term. It is important to note that the addition 
of the interaction term also does not introduce multicollinearity into the 
structural model, with the VIF of the interaction term being 1.053. With 
the inclusion of the interaction term, the model fit as measured through 
variance explained increased by a small amount (R2 increase from 0.101 

to 0.102), which indicates that the interaction term slightly improves 
the model fit. We also found that the interaction term (diversity ×
physical density) was significant at 0.024 (95% confidence interval: 
0.004, 0.049), which supports our hypothesis that diversity mediates the 
effect that physical density has on social cohesion. In other words, as 
physical density increases, we see different effects on social cohesion 
depending on how the diversity of those neighborhoods changes 
alongside the increase in density. Neighborhoods with high diversity 
and high density would have higher social cohesion than neighborhoods 
with low diversity and high density. This finding lends support to the 
argument that the densest parts of our cities—which would likely 
include the central business districts of the cities analyzed—could be 
improved by making them more mixed use. Furthermore, this finding 
implies that in the densest parts of our cities, if we can implement design 
with more land use diversity, we may not necessarily be limiting social 
cohesion. While the interaction analysis demonstrates the opportunities 
that exist regarding highly dense areas, we would also like to emphasize 
the findings that relate to the more common areas of lower density. 
Here, the negative effects of density seem to be less pronounced 
(Fig. 3b), and when considering the direction and significance of the 
interaction term, we argue that the association between density and 
cohesion should continue to be investigated. One the other hand, the 
positive association between mix of uses and cohesion seems to persist 
across all neighborhood typologies, suggesting that adjusting mix of uses 
appears to be a design and policy lever with wide applicability. 

We note that we also explored the possibility of interaction between 
social density and diversity, but we found that the inclusion of this 
interaction did not improve overall model fit, and the interaction term 
coefficient was insignificant at the 95% confidence level. 

4.5. Multigroup effects for different cities 

Our unique dataset includes data for six different cities, which offers 
the opportunity to further investigate whether different relationships 
appear in different cities. Therefore, we also conducted a post-hoc 
analysis to understand if different cities have different relationships 
when compared to the overall trends for the other cities in the dataset. 
To do this, we used multi-group analysis in PLS-SEM (Cheah et al., 
2023). We ran six tests, where in each test we separated the data into 
two groups: one group containing data from only one of the cities, and 
the other group containing the data from all other five cities. We 
repeated this, isolating each of the cities in turn. In each test, the group 
with the individual cities still contained a large amount of data (Balti
more: 3779, Boston: 1227, Los Angeles: 1079, Orlando: 1033, Phoenix: 
1254, Twin Cities: 1298). We used this procedure to attempt to identify 
the differences between average effects and individual cities’ effects. In 
Fig. 5, we report how the coefficients for the structural model change 
when each city is placed in a group separate from the rest of the dataset. 

Fig. 3. Data relationships between (a.) cohesion and both land use diversity and physical density, and (b.) land use diversity and physical density. Relationships are 
plotted as pairwise scatterplots with LOESS regressions (span of 0.80 and confidence intervals of 0.95). 
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Here again, each model was bootstrapped, enabling estimation of 95% 
confidence intervals and estimations of the statistical significance of 
differences between groups. We found through bootstrapping that the 
only significant difference occurred between groups when analyzing Los 
Angeles separately, and only for physical density. Here, the coefficient 
for the Los Angeles data was 0.080, while it was -0.068 for the rest of the 
data. We found none of the other group differences to be significant, and 
importantly, the signs for the other differences did not change as well. 
We believe that this finding demonstrates that our data has a reasonable 
amount of consistency across cities and that the findings seem generally 
applicable across the different cities. At the same time, the finding 
related to physical density in Los Angeles raises questions about the 
effect of physical density on cohesion both within Los Angeles and in the 
other cities. The specific reasons for this difference related to physical 

density is outside the scope of this study, but we note that if we only had 
the data from Los Angeles in our study, we may have drawn different 
conclusions. This could be one reason that a previous systematic review 
of studies that investigated social cohesion and urban form found in
consistencies in the literature (Mazumdar et al., 2018), as discussed 
above. While acknowledging the limitations of our work and the need 
for future studies, we note that our findings offer new evidence at a large 
scale and demonstrate the benefits of using large, open datasets for such 
analysis. 

4.6. Limitations and future work 

The work presented here demonstrates that the notion of walkability 
is best decomposed into its constituent parts when its effects on social 

Fig. 4. PLS-SEM model with diversity and physical density interaction term with structural model path analysis results. A (*) beside the regression coefficient in
dicates that zero is not within the 95% confidence interval after bootstrapping. R2 = 0.102. 

Fig. 5. Results of PLS-SEM multi-group analysis. Each pairwise plot in the matrix shows the differences between the PLS-SEM structural model coefficients (by 
column) for different cities (by row). The colored dot is for the individual city, and the black dot is for the other five cities combined. 
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outcomes are considered. While the findings are significant and have 
important implications for planning, engineering, and policy decisions, 
we do note that there are certain limitations to this work that should be 
clearly stated. 

One inherent limitation is that only six metropolitan areas in the 
United States were considered. While these cities vary by geographic 
region, climate, and many other factors, it is important to note that any 
analysis of urban form would benefit from the inclusion of data from 
more cities around the globe. Furthermore, while the six cities and 
roughly 10,000 data points means that this study, to the best of our 
knowledge, is the largest analysis of urban form vis-à-vis social cohe
sion, any study would benefit from the inclusion of more data. For this 
reason, we believe that this broad area of research would benefit from 
the ability to extract social cohesion data from data sources associated 
with the big-data revolution, such as GPS traces from smartphones, in- 
situ sensors, and other sources. 

Furthermore, our PLS-SEM model exhibited weak explanatory power 
(R2 = 0.102). We note that while this value is low, caution should be 
taken when interpreting R2 values in social research, particularly when 
the analysis is focused on the effects of variables rather than predictive 
power. Researchers have noted that small values of this magnitude are 
acceptable in such contexts, particularly when modeling effects emer
gent from human behavior (Hair et al., 2019; Abelson, 1985; Lew
is-Beck and Skalaban, 1990). One reference on PLS-SEM modeling states 
that high R2 values “in a model that predicts human attitudes, percep
tions, and intentions likely indicate an overfit” (Hair et al., 2019). While 
we argue this is acceptable in exploratory-stage research, it does indicate 
that much of the variance in social cohesion cannot be described by the 
features we captured—built environment characteristics and de
mographic covariates. This limitation is to be expected, as social cohe
sion is a complex social outcome, but we note that it does mean there is 
significant room for model development as well as new theories that 
could better explain the pathways linking the experience of the built 
environment to social outcomes. 

5. Conclusion 

In this research, we leveraged open data sources on both 
neighborhood-level social cohesion and walkable urban design charac
teristics to explore the relationship between the provision of urban 
infrastructure via urban form and the social outcome of cohesion. 
Through a statistical analysis, we found that different aspects of walk
able urban design have opposite effects on cohesion, controlling for 
demographics. We found land use diversity to be positively associated 
with cohesion, lending support to the theories of new urbanism that 
emphasize mixed-use development. At the same time, however, we 
found that physical density, social density, and transit connectedness 
were each negatively associated with cohesion, providing evidence that 
density inhibits cohesion. Through additional analysis, we found that 
the highly dense parts of the cities analyzed were driving negative as
sociations with cohesion. This particular finding demonstrates that 
reevaluating our infrastructure and urban form in highly dense areas has 
the potential to improve the social outcomes associated with cities. We 
also found that the effect of density is mediated by diversity, indicating 
that if our dense neighborhoods are also diverse, the negative effects are 
significantly reduced. Ultimately, the findings from this analysis 
demonstrate the value in rethinking the way we discuss “walkability” in 
the context of social cohesion. Because walkable urban form and 
mobility infrastructure is comprised of a complex set of attributes that 
do not necessarily align, we benefit when taking a nuanced look at the 
individual attributes. When considering urban form and the provision of 
infrastructure—including active mobility infrastructure, urban ame
nities, and land uses—findings from this research suggest the impor
tance of the mix of uses when it comes to the social experience of 
cohesion, particularly in dense areas. These findings can aid the realms 
of urban planning, engineering, and policy when it comes to striving 

toward more cohesive and resilient communities. 
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