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Abstract
In this work, we introduce a new variant of on-
line gradient descent, which provably converges
to Nash Equilibria and simultaneously attains sub-
linear regret for the class of congestion games in
the semi-bandit feedback setting. Our proposed
method admits convergence rates depending only
polynomially on the number of players and the
number of facilities, but not on the size of the ac-
tion set, which can be exponentially large in terms
of the number of facilities. Moreover, the running
time of our method has polynomial-time depen-
dence on the implicit description of the game. As
a result, our work answers an open question from
(Cui et al., 2022).

1. Introduction
Congestion games is a class of multi-agent games at which
n selfish agents compete over a set of m resources. Each
agent selects a subset of the resources and her cost depends
on the load of each of the selected resources (number of
other agents using the resource). For example in Network
Congestion Games, given a graph, each agent i wants to
travel from a starting vertex si to a target position ti and thus
needs to select set of edges forming an (si, ti)-path. Due
to their numerous applications congestion games have been
extensively studied over the years (Koutsoupias & Papadim-
itriou, 1999; Roughgarden & Tardos, 2002; Christodoulou
& Koutsoupias, 2005; Fotakis et al., 2005; de Keijzer et al.,
2010; Roughgarden, 2009).

It is well-known that congestion games always admit a
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Nash Equilibrium (NE) which is a steady state at which
no agent can unilaterally deviate without increasing her
cost. At the same time, a long line of research studies the
convergence properties to NE of game dynamics (e.g. no-
regret, best response, fictitious play) at which the agents of a
congestion game iteratively update their strategies based on
the strategies of the other agents in their attempt to minimize
their individual cost.

In most real-world scenarios, agents do not have access to
the strategies of the other agents (full-information feedback)
and are only informed on the loads/cost of the resources
they selected at each round. For example a driver learns
only the congestion on the highways that she selected and
not the congestion of the alternatives that she did not select.
This type of feedback is called semi-bandit feedback and has
been extensively studied in the context of online learning.
Motivated by the above, (Cui et al., 2022) in their recent
work investigate the following question:

Question. (Cui et al., 2022) Are there update rules under
(semi)-bandit feedback, that once adopted by all agents of
a congestion game, the overall system converges to a Nash
Equilibrium with rate that is independent of the number of
possible strategies?

We note that in congestion games the number of possible
strategies can be exponentially large with respect to the
game description. For example the number of (s, t)-paths
can be of the order O

(
2Θ(m)

)
with respect to the number

of edges m. (Cui et al., 2022) provide an update rule (based
on the Frank-Wolfe method) that once adopted by all n
agents, the overall system requiresO(n12m9/ϵ6) time-steps
(samples) to reach an ϵ-approximate NE.

Despite its fast convergence properties, the update rule of
(Cui et al., 2022) is not aligned with the selfish nature of the
agents participating in a congestion game. This is because
their method does not provide any kind of guarantees on
the regret of the agents adopting it. As a result, (Cui et al.,
2022) posed the following open question.

Open Question. (Cui et al., 2022) Are there update rules
under (semi)-bandit feedback that

1. provide (adversarial) no-regret guarantees to any
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agent that adopts them and

2. once adopted by all agents, the overall system con-
verges to Nash Equilibrium with rate independent on
the number of strategies?

The term no-regret refers to the fact that the time-average
cost of any agent, adopting the update rule, is upper bounded
by the time-average cost of the best fixed path in hindsight
(no matter how the other agents select their strategies). Due
to their remarkable guarantees, no-regret algorithms have
been the standard choice for modeling selfish behavior in
non-cooperative environments (Even-Dar et al., 2009).

Our Contribution. In this work, we provide a positive
answer to the above open question, while we improve upon
the results of (Cui et al., 2022) in two important aspects.
Specifically, we propose a semi-bandit feedback online
learning algorithm, called Semi-Bandit Gradient Descent
with Caratheodory Exploration (SBGD− CE), with the
following properties:

• No-regret guarantees: Any agent adopting SBGD-
CE admits at most Õ(m2T 4/5) regret no matter how
the other agents select their strategies.

• Convergence to NE: If SBGD− CE is adopted by all
agents, the overall system reaches an ϵ-approximate
NE within O(n6.5m7/ϵ5) time steps improving the
O(n12m9/ϵ6) bound of (Cui et al., 2022).

• Polynomial Update Rule: The update rule of SBGD-
CE runs in polynomial-time with respect to the implicit
description of the strategy space (see Section 2.2). On
the other hand, the update rule of (Cui et al., 2022)
requires linear time and space complexity w.r.t the
number of strategies. Thus, in many interesting settings
such as network congestion games, the time and space
complexity of Frank-Wolfe with Exploration II (Cui
et al., 2022) is exponential w.r.t the number of edges.

Remark 1.1 (Notion of convergence). As in (Cui et al.,
2022; Leonardos et al., 2022; Ding et al., 2022; Anagnos-
tides et al., 2022),the notion of convergence that we use
the is so-called best-iterate convergence. Mathematically
speaking, the time-averaged exploitability (defined as the
sum of best deviation minus chosen strategy per agent) is
bounded by ϵ (see Theorem 3.8). From a game-theoretic
point of view, bset-iterate convergence implies that with
high probability almost all iterates are O(ϵ)-Mixed NE.
From a learning point of view, best-iterate convergence im-
plies that we can learn an approximate NE of an unknown
congestion game by considering the strategy profile at a
iterate t ∼ Unif(1, . . . , T ) (see Corollary 1). The term
”best-iterate convergence” might not be the most descriptive
for the above, however it is the one most commonly used in
the literature.

Our Techniques and Related Work The fundamental dif-
ficulty in designing no-regret online learning algorithms
under (semi)-bandit feedback is to guarantee that each strat-
egy is sufficiently explored. Unfortunately, standard bandit
algorithms such as EXP3 (Auer et al., 2002) result in expo-
nentially large in m regret bounds, e.g. O

(
2Ω(m)

√
T
)

, as
well as time and space complexity. A long line of research
in the context of combinatorial bandits provides no-regret
algorithms with polynomial dependence w.r.t to m on the
regret, while many of those algorithms can be efficiently im-
plemented (Awerbuch & Kleinberg, 2004; Dani et al., 2007;
György et al., 2007; Bubeck et al., 2012; Cesa-Bianchi &
Lugosi, 2012; Kalai & Vempala, 2005; Neu & Bartók, 2013;
Audibert et al., 2014). For example, (Bubeck et al., 2012)
provide an online learning algorithm with regret O(m

√
T ).

However, in order to overcome the exploration problem,
these algorithms use involved techniques (e.g. barycentric
spanners or entropic projections (Awerbuch & Kleinberg,
2004; Bubeck et al., 2012)) which introduce major techni-
cal difficulties in their multi-agent analysis. To the best of
our knowledge, none of these algorithms guarantees con-
vergence to NE in congestion games once adopted by all
agents.

Remark 1.2. We highly remark that the no-regret property
does not imply convergence to Nash Equilibrium in con-
gestion/potential games (Cohen et al., 2017; Babichenko &
Rubinstein, 2020). No-regret dynamics are guaranteed to
converge in Coarse Correlated Equilibrium that is a strict
superset of NE and that can even contain strictly dominated
strategies (Viossat & Zapechelnyuk, 2013).

On the somehow opposite front, recent works studying the
convergence properties of semi-bandit game dynamics in
potential games use explicit exploration schemes at which
each strategy is selected with a small probability (Leonardos
et al., 2022; Ding et al., 2022). However such exploration
schemes lead to convergence rates that scale polynomially
on the number of strategies (can be exponential w.r.t to m
in congestion games). (Cui et al., 2022) combine an ex-
plicit exploration scheme with the Frank-Wolfe method and
establish that the resulting convergence rate (number of sam-
ples) to NE depends only polynomially in m. As mentioned
above, the update rule of (Cui et al., 2022) does not guar-
antee the no-regret property in the adversarial case while
its update rule is of exponential time and space. Table 1
concisely present the above mentioned results.

In order to solve the exploration problem with schemes that
are simple enough to analyze in the multi-agent case, we in-
troduce the notion of Bounded-Away Description Polytope.
These polytopes are subsets of description polytopes, the ex-
treme points of which correspond to the available strategies
and additionally impose lower bounds on the fractional se-
lection of each resource. Our SBGD− CE method is based
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Table 1. Comparison with previous related works. ⋆See Remark 3.7 for regret bound O(m3/2T 3/4) under different step size and
exploration parameter choices. †By convergence to NE we mean best-iterate convergence as explained in Remark 1.1. We note that all the
known results that provide rates use the same notion of convergence (as presented in the table).

Method Adversarial Regret Convergence† to NE Running Time

IPPG (Leonardos et al., 2022) Not Established O
(
n2Θ(m)m/ϵ6

)
Exp. in Available Resources

IPGA (Ding et al., 2022) Not Established O
(
n32Θ(m)m5/ϵ5

)
Exp. in Available Resources

FW with Exploration II (Cui et al., 2022) Not Established O
(
n12m9/ϵ6

)
Exp. in Available Resources

SBGD− CE (this work) O(m2T 4/5)⋆ O
(
n6.5m7/ϵ5

)
Poly. in Implicit Description

into running Online Gradient Descent (Zinkevich, 2003)
while projecting into a time-expanding Bounded-Away De-
scription Polytope. At each round, SBGD− CE also uses
the Caratheodory Decomposition to (randomly) select a
valid set of resources. By extending the analysis of Online
Gradient Descent as well as of Stochastic Gradient Descent
constrained to time-varying feasibility sets, we establish
no-regret guarantees as well as fast converge to NE.

Further Related Work (Anagnostides et al., 2022) es-
tablish best-iterate convergence rates to NE in congestion
games, though full-information feedback is assumed and
the rates depends on the strategy space of each agent.
(Cominetti et al., 2010) and (Palaiopanos et al., 2017; Héliou
et al., 2017) prove asymptotic last-iterate convergence of
no-regret dynamics under full-information feedback and
bandit-feedback respectively in potential/congestion games.
To the best of our knowledge there do not exist last-iterate
convergence rates for congestion games (even with expo-
nential dependence on the number of resources) unless the
initial condition is close enough to an equilibrium. Even
the well-studied full-information better-response dynamics
is only known to converge in the best-iterate sense (Chien
& Sinclair, 2007). (Cui et al., 2022) also provide provide
convergence guarantees for congestion games under bandit
feedback with slightly worse rates that the one presented
in Table 1. (Vu et al., 2021) study accelerated methods
to converging to Wardrop Equilibrium in network conges-
tion games. Other works studying no-regret dynamics be-
yond congestion games include (Piliouras & Shamma, 2014;
Mertikopoulos & Staudigl, 2017; Cohen et al., 2017; Mer-
tikopoulos et al., 2018; Bravo et al., 2018; Mertikopoulos &
Zhou, 2019; Vlatakis-Gkaragkounis et al., 2020; Giannou
et al., 2021).

2. Preliminaries and Our Results
2.1. Congestion Games

A congestion game is composed by n selfish agents and
a set of resources E with |E| = m. The strategy of each
agent i ∈ [n] is a subset of resources pi ∈ Pi where Pi ⊆

2E is the strategy space of agent i. The set P denotes
all joint strategy profiles, P := P1 × . . . × Pn. Given a
strategy profile p ∈ P, we use the notation p := (pi, p−i)
where pi captures the strategy of agent i and p−i denotes
the strategies of all agents but i.

The load of a resource e ∈ E under the strategy profile
p := (p1, . . . , pn) ∈ P is denoted by ℓe(p) and equals the
number of agents using resource e ∈ E, i.e.,

ℓe(p1, . . . , pn) ≜
n∑

i=1

1 [e ∈ pi] . (1)

Each resource e admits a positive and non-decreasing cost
function ce : N 7→ R≥0 where ce(ℓ) denotes the congestion
cost of e ∈ E under load ℓ ∈ N. Additionally, we set
cmax := maxe∈E ce(n).

Given a strategy profile p := (p1, . . . , pn) ∈ P , the cost of
agent i is defined as

Ci(p) ≜
∑
e∈pi

ce (ℓe(p)) .

Definition 1 (Nash Equilibrium). A path selection p =
(p1, . . . , pn) ∈ P is an ϵ-approximate Pure Nash Equilib-
rium if and only if for each agent i ∈ [n],

Ci(pi, p−i) ≤ Ci(p
′
i, p−i) + ϵ for all p′i ∈ Pi.

A prob. distribution π⋆ := (π⋆
1 , . . . , π

⋆
n) ∈ ∆(P1)× · · · ×

∆(Pn) is an ϵ-approximate Mixed Nash Equilibrium (MNE)
if and only if for each agent i ∈ [n],

Eπ⋆
i ,π

⋆
−i

[Ci(pi, p−i)] ≤ Eπ′
i,π

⋆
−i

[Ci(pi, p−i)] + ϵ.

for all π′
i ∈ ∆(Pi). For convenience of notation, we will

use the shorthand ci(πi, π−i) := Eπi,π−i
[Ci(pi, p−i)].

Theorem 2.1 (Folkore). Congestion games always admit a
Pure NE equilibrium p⋆ ∈ P .

2.2. Implicit Description of the strategy Space

The strategy space Pi can be exponentially large w.r.t the
number of resources E (|Pi| ≤ 2Θ(m)). For example in
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network congestion games, Pi is the set of possible (si, ti)-
paths in a given directed graph G(V,E) where si ∈ V is
the starting node of agent i and ti ∈ V is her destination.
Typically the number of possible (si, ti) paths is exponential
in the number of edges.

Exponentially large strategy spaces can be described
through the following implicit polytopal description (Kleer
& Schäfer, 2021). Given a strategy pi ∈ Pi, consider its
equivalent description as {0, 1}m vector

xpi
≜ {x ∈ {0, 1}m : xe = 1 iff e ∈ pi}.

Consider the set P̂i := {xpi
∈ {0, 1}m : for pi ∈ Pi}

and the polytope Xi := conv(P̂i) denoting the convex hull
of P̂i. The polytope Xi admits the alternative description
Xi := {x ∈ [0, 1]m : Ai · x ≤ bi} where Ai ∈ Rr×m and
bi ∈ Rr. Thus Pi can be implictly described as the extreme
points of a set Xi := {x ∈ [0, 1]m : Ai · x ≤ bi} that can
be described with O(rm) fractional numbers.

In many classes of congestion games, the implicit polytopal
description of Pi is polynomial in the number of resources
(r := poly(m)) while |Pi| = 2Θ(m) (Kleer & Schäfer,
2021). For example in directed acyclic graphs (DAGs) the
number all possible (si, ti)-paths can be 2Θ(m) while the set
of (si, ti)-paths can be equivalently described as the extreme
points of the following path polytope (see Appendix B),

Xi ≜

{
x ∈ [0, 1]m :

∑
e∈Out(si)

xe = 1,
∑

e∈In(ti)

xe = 1,

∑
e∈In(v)

xe =
∑

e∈Out(v)

xe ∀v ∈ V \ {si, ti}
}

where In(v),Out(v) ⊆ E denote the incoming, outgoing
edges respectively of the node v ∈ V .

Remark 2.2. One can always compute an implicit poly-
topal description Xi given an explicit description of Pi. In
the remaining paper, we assume access to the implicit poly-
topal description Xi := {x ∈ [0, 1]m : Ai · x ≤ bi} where
Ai ∈ Rri×m and bi ∈ Rri . We note that the regret bounds
and the convergence rates to NE of our proposed algorithm
(Algorithm 2) only depend on the n and m and are totally
independent of maxi∈[n] ri. The exact same holds for the
convergence guarantees of the update rule proposed by (Cui
et al., 2022). On the other hand, the running time of Algo-
rithm 2 is polynomial in ri and m while the time and space
complexity of algorithm of (Cui et al., 2022) scales linearly
with maxi∈[n] |Pi| even if ri = poly(m).

2.3. Semi-Bandit Learning Dynamics

In game dynamics with semi-bandit feedback, each agent
iteratively updates her strategies based on the congestion
cost of the previously selected resources so as to minimize

her overall experienced cost. Semi-bandit dynamics in con-
gestion are described in Algorithm 1.

Protocol 1 Semi-Bandit Game Dynamics

1: for each round t = 1, . . . , T do
2: Each agent i ∈ [n] (randomly) selects a strategy

pti ∈ Pi and suffers cost

Ci(p
t
i, p

t
−i) :=

∑
e∈pt

i

cte(p
t
i, p

t
−i)

3: Each agent i ∈ [n] learns only the congestion costs
ce(p

t
i, p

t
−i) of her selected resources e ∈ pti.

4: end for

It is not clear how a selfish agent i should update her strategy
to minimize her overall congestion cost since the loads
depend on strategies of the other agents that can arbitrarily
change over time. As a result, agent i tries to minimize
her experienced cost under the worst-case assumption that
the cost of the resources cte are selected by a malicious
adversary. We refer to the latter online learning setting as
Online Resource Selection, described in Algorithm 2.

Protocol 2 Online Resource Selection
1: for each round t = 1, . . . , T do
2: Agent i selects a prob. distribution πt

i ∈ ∆(Pi).
3: An adversary selects a cost function ct : E 7→ R≥0.
4: Agent i samples a path pti ∼ πt

i and suffers cost

Ci(p
t
i, c

t) :=
∑
e∈pt

i

cte.

4: Agent i learns the costs cte for all resources e ∈ pti
and updates πt+1

i ∈ ∆(Pi).
5: end for

A semi-bandit online learning algorithm A for the Online
Resource Selection selects a strategy pti ∈ Pi based on the
observed costs of selected resources in rounds before t. The
quality of an algorithm A is measured through the notion of
regret capturing the overall cost of algorithmA with respect
to the overall cost of the best strategy in hindsight.

Definition 2.3. The regret of an online learning algorithm
A is defined asRA(T ) :=

max
c1,...,cT

[
T∑

t=1

Eπt
i

[
Ci(p

t
i, c

t)
]
− min

p⋆
i ∈P

T∑
t=1

Ci(p
⋆
i , c

t)

]

In case RA(T ) = o(T ), i.e., it is sublinear in T , the algo-
rithm A is called no-regret.
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In the context of congestion games, if agent i adopts a no-
regret algorithm A, her time-averaged cost approaches the
cost of the optimal path with rateRA(T )/T → 0 no matter
what the strategies of the other agents are.

We conclude the section with the main result of our work.

Main Result There exists a no-regret semi-bandit online
learning algorithm that admits RA(T ) = O(m2T 4/5) re-
gret for Online Resource Selection (Algorithm 2). Moreover
if Algorithm 2 is adopted by all agents, then the agents
converge to an ϵ-Mixed NE after O(n6.5m7/ϵ5) time-steps.

In Section 3 we present our proposed semi-bandit online
learning algorithm, called Semi-Bandit Gradient Descent
with Caratheodory Exploration (Algorithm 2). In Section 3
we also present its regret guarantees (Theorem 3.6) and its
convergence properties (Theorem 3.8 and Corollary 1). In
Section 4 we provide the main steps for establishing the
no-regret properties of Algorithm 2 while in Section 5 we
present the main ideas of the convergence proof. Finally
in Section 6 we experimentally evaluate our algorithm in
network congestion games.

3. Semi-Bandit Gradient Descent with
Caratheodory Exploration

In this section, we present our algorithm called Bandit Gra-
dient Descent with Caratheodory Exploration for the Online
Path Selection Problem.

3.1. Exploring via Caratheodory Decomposition

To avoid the exponentially large strategy space, we re-
parametrize the problem using a fractional selection xt

e of
the edges which represents the probability edge e is selected
at round t, i.e., xt

e = P [e ∈ pt]. The major challenge now
is to ensure that each resource is sufficiently explored. We
resolve the exploration problem by introducing the notion of
Bounded-Away Description Polytope (Definition 3.2) which
guarantees that the selection probability of each useful re-
source is greater than an exploration parameter µ > 0. The
only similar idea in the literature we are aware of comes
from (Chen et al., 2021) that used it in the context of online
predictions with experts advice.

We proceed with some necessary definitions and two impor-
tant characterization lemmas.

Definition 3.1. The set of active resources for agent i ∈ [n]
is the set Ei := {e ∈ E : e ∈ pi for some pi ∈ Pi}.

Lemma 1. Given the implicit description Xi of the strategy
space Pi, the set of active resources Ei can be computed in
polynomial-time.

Definition 3.2. The µ-Bounded-Away Description Polytope

for an exploration parameter µ > 0 is defined as,

X µ
i ≜

{
x ∈ Xi : xe ≥ µ ∀e ∈ Ei

}
Lemma 2. The set X µ

i is non-empty for all µ ≤ 1/|Ei|.

Notice that if a point xi ∈ X µ
i then xi ∈ Xi. Since Xi =

conv(P̂i) then any point xi ∈ X µ
i can be decomposed to a

probability distribution over strategies pi ∈ Pi.
Theorem 3.3 (Carathéodory Decomposition). For any point
x ∈ Xi there exists a probability distribution πx ∈ ∆(Pi)
with support at most m+ 1 strategies pi in Pi such that for
all edges e ∈ E,

xe =
∑

pi:e∈pi

Prπx
[pi is selected] .

Such a distribution (it may not be unique) πx is called a
Carathéodory decomposition of x.

A Carathéodory decomposition of a point x ∈ X µ
i can be

computed in polynomial-time through the decomposition
algorithm described in (Grötschel et al., 1988).
Theorem 3.4. (Grötschel et al., 1988) Let a polytope X :=
{x ∈ Rm : A · x ≤ b} with A ∈ Rr×m and b ∈ Rr. The
Carathéodory Decomposition of any point x ∈ X can be
computed in polynomial-time with respect to r and m.

For the important special case of path polytopes described
in Section 2, a point x ∈ X µ

i can be decomposed to a
probability distribution over (si, ti)-paths with a simple and
efficient algorithm outlined in Algorithm 1.

Algorithm 1 Efficient Computation of Charatheodory de-
composition for Path Polytopes

1: Input: A point x ∈ X µ
i

2: Res← ∅
3: while

∑
e∈Out(si)

xe > 0 do
4: Let A← E ∩ {e ∈ E : xe > 0}
5: Let emin ← argmine∈A xe and xmin ← xemin .
6: p̂i ← An (si, ti)-path of G(V,A) with emin ∈ p̂i.
7: xe ← xe − xmin for all e ∈ p̂i.
8: Res← Res ∪ {(p̂i, xmin)}.
9: end while

10: return Res

Lemma 3. Algorithm 1 requires O
(
|V ||E|+ |E|2

)
steps

to give a Caratheodory Decomposition for path polytopes.

In our experimental evaluations for network congestion
games, presented in Section 6, we use Algorithm 1 to
more efficiently implement Online Gradient Descent with
Caratheodory Exploration that we subsequently present.
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3.2. Our Algorithm and Formal Guarantees

In this section we present our semi-bandit online learning al-
gorithm called Online Gradient Descent with Caratheodory
Exploration (Algorithm 2) for Online Resource Selection.

Algorithm 2 Online Gradient Descent with Caratheodory
Exploration for Agent i

1: µ1 ← 1/|Ei|
2: Agent i selects an arbitrary x1

i ∈ X
µ1

i .
3: for each round t = 1, . . . , T do
4: Agent i computes a Caratheodory decomposition

πt
i ∈ ∆(Pi) for xt

i ∈ X
µt

i .
5: Agent i samples a strategy pti ∼ πt

i and suffers cost,

Ct
i (p

t
i, c

t) :=
∑
e∈pt

i

cte.

/* cte is the cost of edge e with load the number of
agents that chose e at time t. */

6: Agent i sets ĉte ← cte · 1 [e ∈ pti] /x
t
e for all e ∈ E.

7: Agent i updates xt+1
i ∈ X µ

i as,

xt+1
i = ΠX

µt+1
i

[
xt
i − γt · ĉt

]
,

where γt ← t−3/5 and µt ← min(1/mi, t
−1/5).

8: end for

At Step 4, OGD − CE performs a Caratheodory Decom-
position to convert the fractional point xt

i ∈ X
µt

i into a
probability distribution πt

i over pure strategies pi ∈ Pi.
The latter guarantees that the experienced cost equals the
fractional congestion cost, i.e.,

E

∑
e∈pt

cte | xt
i

 =
〈
ct, xt

i

〉
. (2)

At Step 7, OGD− CE runs a step of Online Gradient De-
scent to the time-expanding polytope X µt

i that approaches
Xi as t→∞. The latter is crucial as it gives the following:

Lemma 4. The estimator ĉte = cte · 1 [e ∈ pt] /xt
e satisfies

1. E [ĉte] = cte for e ∈ Ei (Unbiasness).

2. |ĉte| ≤ cmax/µt for e ∈ Ei (Boundness).

Remark 3.5. Projecting to the time-expanding polytope
X µt

i and not to Xi is crucial since in the latter case we
cannot control the variance of the estimator, as xt

e can go to
0 arbitrarily fast. On the other hand, it is crucial to compute
a Caratheodory Decomposition with respect to Xi and not
with respect to X µt

i since the extreme points of X µt

i do not
correspond to pure strategies pi ∈ Pi.

We conclude the section by presenting the formal guarantees
of Algorithm 2. In Theorem 3.6 we establish the no-regret
property of Algorithm 2. In Theorem 3.8 and Corollary 1
we present its convergence guarantees.

Theorem 3.6. Let p1i , . . . , p
T
i ∈ Pi the sequence of strate-

gies produced by Algorithm 2 given as input the costs
c1, . . . , cT with ∥ct∥∞ ≤ cmax. Then with probability 1−δ,

T∑
t=1

∑
e∈pt

i

cte − min
p⋆
i ∈Pi

∑
e∈p⋆

i

cte ≤ O
(
mc2maxT

4/5 log(1/δ)
)

Remark 3.7. Setting δ := O (1/mTcmax) directly im-
plies that Algorithm 2 admits regret Õ

(
m2c2maxT

4/5
)

re-
gret. The betterO(m3/2T 3/4) regret bound can be obtained
by selecting the parameters γt = c−1

maxm
−1/2t−3/4 and

µt = min(1/mi,m
−1/2t−1/4). However such a parameter

selection leads to O(T−1/8) convergence rate to NE.

In Theorem 3.8 we establish that the agents converge to a
NE if all agents adopt Algorithm 2.

Theorem 3.8. Let π1, . . . , πT the sequence of strategy pro-
files produced if all agents adopt Algorithm 2. Then for all
T ≥ Θ

(
m12.5n7.5/ϵ5

)
,

1

T
E

[
T∑

t=1

max
i∈[n]

[
ci(π

t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]]
≤ ϵ.

The same holds for T ≥ Θ(n6.5m7/ϵ5) in case the agents
know n,m and select γt := Θ(m−4/5n−8/5c−1

maxt
−3/5)

and µt := Θ(n−6/5m−11/10t−1/5).

We note that the exact same notion of best-iterate conver-
gence (as in Theorem 3.8) is considered in (Cui et al., 2022;
Leonardos et al., 2022; Ding et al., 2022; Anagnostides et al.,
2022). In Corollary 1 we present a more clear interpretation
of Theorem 3.8.

Corollary 1. In case all agents adopt Algorithm 2 for
T ≥ Θ(n6.5m7/ϵ5) (resp. Θ

(
m12.5n7.5/ϵ5

)
) then with

probability ≥ 1− δ,

• (1− δ)T of the strategy profiles π1, . . . , πT are ϵ/δ2-
approximate Mixed NE.

• πt is an ϵ/δ-approximate Mixed NE once t is sampled
uniformly at random in {1, . . . , T}.

4. Sketch of Proof of Theorem 3.6
In this section, we present the basic steps of the proof
of Theorem 3.6. Due to Equation 2 established by the
Caratheodory decomposition and the fact that |ĉte| ≤
cmax/µt we establish the following concentration result
for the quantity

∑T
t=1

[∑
e∈pt cte − ⟨ct, xt

i⟩
]
.

6
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Lemma 5. Let the sequences x1
i , . . . , x

T
i ∈ Xi and

p1i , . . . , p
T
i ∈ Pi produced by Algorithm 2. Then, with

probabilty 1− δ/2,

T∑
t=1

∑
e∈pt

i

cte =

T∑
t=1

〈
ct, xt

i

〉
+O

(√
cmax log(m/δ)

√
T
)
.

Let p∗i ∈ Pi denote the optimal strategy for the sequence
of costs c1, . . . , cT and x⋆

i ∈ Xi the corresponding {0, 1}m
extreme point of Xi. Then Lemma 5 implies that with
probability 1− δ/2,

T∑
t=1

∑
e∈pt

i

cte −
∑
e∈p⋆

i

cte

 =

T∑
t=1

〈
ct, xt

i − x⋆
i

〉
+Õ

(√
T
)
.

As a result, in the rest of the section we bound the term∑T
t=1 ⟨ct, xt

i − x⋆
i ⟩.

Unfortunately, this term can not be directly control because
at any step t the comparator point x⋆

i is not necessarly in
X µt . To overcome the issue we construct a sequence of
comparator points

{
x⋆
µt

}T
t=1

that are guaranteed to satisfy
x⋆
µt
∈ X µt .

Formally, we have the following definition.
Definition 4.1. Let p⋆i ∈ Pi the optimal strategy for the
sequence c1, . . . , cT and x⋆

i ∈ Xi its corresponding extreme
point in Xi . Moreover, consider constructing a collection of
strategies D = {p̃ℓ}mℓ=1 sampled as follows. For any active
resource e ∈ Ei, add to D a strategy p̃ ∈ Pi such that e ∈ p̃.
Considering the collected strategies in a vector form, i.e.
elements of {0, 1}m, we define

x⋆
µt

≜ (1−mµt)x
⋆
i + µt

m∑
ℓ=1

p̃ℓ.

Remark 4.2. To see that x⋆
µt
∈ X µt , denote as s the vector

s = 1
m

∑m
i=1 p̃

ℓ. Since by construction, for any e ∈ Ei

there exists ℓ ∈ [m] such that e ∈ p̃ℓ, we have that s ≥ 1/m.
Moreover, s ∈ X which implies s ∈ X 1/m. At this point,
we can write x⋆

µt
= (1−mµt)x

⋆
i +mµts. Then, it is evident

that s ≥ 1/m implies x⋆
µt
≥ µt and that x⋆

µt
is a convex

combination of x⋆
i and s because µt ≤ 1

m and therefore that
x⋆ ∈ X . These two facts allow to conclude that x⋆

µt
∈ X µt .

Up next, we decompose the right-hand term of Equation 4
and separately bound each of the (A− C) terms.

T∑
t=1

〈
ct, xt

i − x⋆
〉
=

T∑
t=1

〈
ĉt, xt

i − x⋆
µt

〉
︸ ︷︷ ︸

(A)

+

T∑
t=1

〈
ct, x⋆

µt
− x⋆

〉
︸ ︷︷ ︸

(B)

+

T∑
t=1

〈
ct − ĉt, xt

i − x⋆
µt

〉
︸ ︷︷ ︸

(C)

.

The bound on term (A) is established in Lemma 6.
Lemma 6. Let the sequences x1

i , . . . , x
T
i ∈ Xi and

ĉ1, . . . , ĉT produced by Algorithm 2. Then,

T∑
t=1

〈
ĉt, xt

i − x⋆
µt

〉
≤ 2m

γT
+mc2max

T∑
t=1

γt
µ2
t

.

The proof of Lemma 6 is based on extending the arguments
of (Zinkevich, 2003) for Online Projected Gradient Descent.
The basic technical difficulty comes from the fact that in
Step 7, Algorithm 2 projects in the time-changing feasibil-
ity set X µt

i while in the analysis of (Zinkevich, 2003) the
feasibility set is invariant.

The term (B) quantifies the suboptimality of the projections
of x⋆

i on the time expanding polytopes X µt

i . Notice that x⋆
i

is possibly outside the X µt

i where Algorithm 2 projects to.
Lemma 7. (Sub-optimality of Bounded Polytopes) Let a
sequence of costs c1, . . . , cT with ∥ct∥∞ ≤ cmax. Then,

T∑
t=1

〈
ct, x⋆

µt
− x⋆

i

〉
≤ m2cmax

T∑
t=1

µt.

where x⋆
i and x⋆

µt
are introduced in Definition 4.1.

Finally, we bound the term (C) that quantifies the concen-
tration of the cost estimators built at Step 7 of Algorithm 2
and the realized costs. The latter is established in Lemma 5
and its proof lies on the Unbiasness and Boundness property
of the estimator ĉt.
Lemma 8. Let ĉ1, . . . , ĉT the sequence produced by Al-
gorithm 2 given as input the sequence of costs c1, . . . , cT .
Then with probability 1− δ/2,

T∑
t=1

〈
ct − ĉt, xt

i − x⋆
µt

〉
≤ mcmax

µT

√
T log(2m/δ).

5. Sketch of Proof of Theorem 3.8
In this section, we provide the main steps and ideas for
proving Theorem 3.8, establishing that in case all agents
adopt Algorithm 1, the overall system converges to a Mixed
NE. We first introduce some important preliminary notions.
Definition 2 (Fractional Potential Function). Let the frac-
tional potential function Φ : X1 × . . .×Xn → R

Φ(x) ≜
∑
e∈E

∑
S⊂[n]

∏
j∈S

xj,e

∏
j /∈S

(1− xj,e)

|S|∑
i=0

ce(i).

The potential function of Definition 2 is crucial in our analy-
sis since we can recast the problem of converging to NE into
the problem of converging to a stationary point of Φ(x).
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Figure 1. Regret and Exploitability on network games with 2 agents.

Definition 3. A point x = (x1, . . . , xn) ∈ X1 × . . .× Xn

is called an (ϵ, µ)-stationary point Φ(x) if and only if∥∥∥∥x−ΠXµ

[
x− 1

2n2cmax
√
m
∇Φ(x)

]∥∥∥∥ ≤ ϵ

where X µ ≜ X µ
1 × · · · × X µ

n .

In Lemma 9, we establish that the potential function is
smooth and uniformly bounded over its domain.

Lemma 9. The potential function Φ(·) of Definition 2 is
smooth. More precisely,

∥∇Φ(x)−∇Φ(x′)∥2 ≤ 2n2cmax

√
m · ∥x− x′∥2

for all x, x′ ∈ X1 × . . . × Xn. Moreover, the potential
function Φ(x) is bounded by mncmax. We also denote λ ≜
(2n2cmax

√
m)−1

In Lemma 10 we formalize the link between approximate
NE and approximate stationary points of the Φ(x).

Lemma 10. Let π = (π1, . . . , πn) ∈ ∆(P1)× . . .×∆(Pn)
and x = (x1, . . . , xn) ∈ X1 × . . . × Xn such that for all
resources e ∈ E,

xi,e = P
pi∼πi

[e ∈ pi] .

In case x is an (ϵ, µ)-stationary point of Φ(x) then π is a
(4n2mcmaxϵ+ 2m2ncmaxµ)-approximate Mixed NE.

5.1. Convergence to stationary points

In this section, we show that in case all agents use Algo-
rithm 1 to (randomly) select their strategies, the produced
sequence xt = (xt

1, . . . , x
t
n) converges to a stationary point

of the potential function Φ(x).

We first show that the updates generated by each agent’s in-
dividual implementation of Algorithm 2 can be equivalently

described as the update performed by stochastic gradient de-
scent on the potential function projected on the time-varying
polytope X µt := X µt

1 × . . .×X µt
n .

Theorem 5.1. If each agent i (randomly) selects its strategy
according to Algorithm 1. Then the produced sequence of
vectors x1, . . . , xT can be equivalently described as

xt+1 = ΠXµt+1

[
xt − γt · ∇t

]
(3)

where the estimator ∇t ≜ [ĉt1, . . . , ĉ
t
n] (ĉti is the cost es-

timate generated by player i according to Step 7 in Algo-
rithm 2) satisfies

1. E[∇t] = ∇Φ(xt) and 2. E
[
∥∇t∥2

]
≤ nc2maxm

µt
.

The main technical contribution of this section, is to estab-
lish that the sequence x1, . . . , xT produced by Equation 3
converges to an (ϵ, µ)-stationary point of Definition 3. The
major challenge in proving the latter comes from the fact
that in Equation 3 the projection step is respect to the time-
changing polytopeX µt while the projection in the definition
of (ϵ, µ)-stationary point is with respect to the polytope X µ.

Theorem 5.2. Let G(x) = ΠXµT [x− λ∇Φ(x)] − x and
the sequence x1, . . . , xT produced by Equation 3. Then
1
T

∑T
t=1 E [∥G(xt)∥2] is upper bounded by

2

√√√√λ2nmcmax

2TγT
+

λc2maxnm
∑T

t=1
γ2
t

µt

2TγT
+

8
√
nm3

T

T∑
t=1

µt.

6. Experiments
We aim at verifying our theoretical statement by providing
experiments in network congestion games. We consider a
multigraph with chain topology composed by a set of nodes
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Figure 2. Experiments on network games with 20 nodes for 20 (Figure 2a and 2b) and 5 agents (Figure 2c and 2d). Curves averaged over
10 seeds for the 20 agents case and 50 seeds for 5 agents.

{vi}|V |
i (with |V | = 19) where every node vi is connected

only to vi+1 by 2 edges. Under this setting, Frank-Wolfe
with Exploration (Cui et al., 2022) can not be implemented
efficiently since there are 219 possible paths. The same
holds for (Leonardos et al., 2022; Ding et al., 2022). In
order to verify empirically verify the convergence to NE,
we monitor the exploitability of a strategy profile (πi, π−i)

defined as maxi∈[n]

ci(πi,π−i)−minπ′
i
ci(π

′
i,π−i)

ci(π′
i,π−i)

which is 0

for any NE. Figure 1b shows the exploitability of the average
path chosen by SBGD-CE. We notice it decreases at a rate
≈ t−1/2 which is better the theoretical bound provided
in Theorem 3.8. Furthermore, the red star in Figure 1b
represents the exploitability of the last iterate produced by
Algorithm 2, it can be seen that it also achieves a small
value of exploitability. We also verify the no-regret property
of the algorithm in Figure 1a. Experiments with 5 and 20
agents are provided in Figure 2. The code is available at
https://github.com/lviano/SBGD-CE.

7. Conclusion
This work introduces SBGD-CE which is the first no-regret
online learning algorithm with semi-bandit feedback that

once adopted by all agents in a congestion game converges
to NE in the best-iterate sense. As a result, our work answers
an open question of (Cui et al., 2022) and improves upon
their rates and complexity. The empirical evaluation inspires
different future directions, in particular establishing last
iterate convergence rates to NE as well as tightening the
rates for best-iterate convergence.
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A. Additional related work on congestion games
Congestion games, proposed in (Rosenthal, 1973) are amongst the most well known and extensively studied class of games
and have been successfully employed in myriad modeling problems. Congestion games have been proven to be isomorphic
to potential games (Monderer & Shapley, 1996), and as a result, they always admit a potential function and a pure Nash
equilibrium. Moreover, (typically) due to existence of multiple Nash equilibria, Price of Anarchy has been proposed in
(Koutsoupias & Papadimitriou, 1999) for the purpose of efficiency guarantees in congestion games and is arguably amongst
the most developed areas within algorithmic game theory, e.g., (Koutsoupias & Papadimitriou, 1999; Roughgarden &
Tardos, 2002; Christodoulou & Koutsoupias, 2005; Fotakis et al., 2005; de Keijzer et al., 2010; Roughgarden, 2009). It is
folklore knowledge that better-response dynamics in congestion games converge. In these dynamics, in every round, exactly
one agent deviates to a better strategy. Convergence is guaranteed as the potential function always decreases along better
response dynamics1. Notwithstanding better dynamics converges, it has been shown that computing a pure Nash equilibrium
is PLS-complete (Fabrikant et al., 2004) and computing a (possible mixed) Nash equilibrium is CLS-complete (Babichenko
& Rubinstein, 2021), i.e., it is unlikely to be able to provide an algorithm that computes (pure or mixed) Nash equilibrium in
congestion games and runs in polynomial time (in the description of the game).

B. Proof for Section 2
B.1. Path Polytope and Directed Acyclic Graphs

Definition B.1. A directed graph G(V,E) is called acyclic in case there are no cycles in G(V,E).

Definition B.2. Let a directed acyclic graph G(V,E) and the vertices si, ti ∈ V . The (s,ti)-path polytope is defined as
follows,

Xi ≜

{
x ∈ {0, 1}m :

∑
e∈Out(si)

xe = 1

∑
e∈In(v)

xe =
∑

e∈Out(v)

xe ∀v ∈ V \ {si, ti}

∑
e∈In(ti)

xe = 1

}

Lemma 11. The extreme points of the (si, ti)-path polytope Xi correspond to (si, ti)-paths of G(V,E) and vice versa.

Proof. We first show that an (si, ti)-path pi ∈ Pi corresponds to an extreme point of Xi. Given an (si, ti)-path p ∈ Pi

consider the point xpi
of the polytope with xpi

e = 1 for all e ∈ pi and xpi
e = 0 otherwise. Let assume that xpi

is not an
extreme point of Xi. Notice that xpi

satisfies all the constraints of Pi and since is a {0, 1}-vector it is an extreme point of Xi.

On the opposite direction we show that for any extreme point x ∈ Xi the set of edges {e ∈ E : xe = 1} is an (si, ti)-path
of G(V,E). We first show that x is necessarily integral (xe = 0 or xe = 1). Let assume that there exists an edge e ∈ E
with xe ∈ (0, 1) and consider xmin := mine:xe>0 xe. Consider an (si, ti)-path containing edge emin := argmine:xe>0 xe.
Notice that for the point x ∈ X i

0 the following holds,

x = xmin · pmin + (1− xmin) ·
x− pmin

1− xmin︸ ︷︷ ︸
y

Notice that y ∈ Xi and thus x can be written as convex combination of pmin and y, meaning that x cannot be an extreme
point of Xi. As a result, x is an {0, 1}m-vector. Now consider the set of edges px := {e ∈ E : xe = 1}. Notice that node
si admits exactly one edge e ∈ Out(si) belonging in px. Similarly there exists exactly one edge e ∈ In(ti) belonging in px.
Due to the fact that G(V,E) is acyclic, px is necessarily an (si, ti)-path.

1Note that If two or more agents move at the same time then convergence is not guaranteed.
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C. Proofs of Section 3
C.1. Proof of Lemma 1

Lemma 12. Given the implicit description Xi of the strategy space Pi, the set of active resources Ei can be computed in
polynomial-time.

Proof. For each resource e ∈ E, consider the polytope X e
i = {x ∈ Xi : xe = 1} and we check whether it is empty. Notice

that X e
i admits ri + 1 linear constraints and thus checking for its feasibility is done in polynomial time with respect to ri

and m.

The correctness of the above algorithm can be established with the following simple argument. Let an x ∈ X e
i then x ∈ Xi

and additionally xi
e = 1. The latter implies that x can be decomposed to m+ 1 pure strategies pi ∈ Pi. Since xi

e = 1 any
strategy pi participating in the convex combination of x must admit e ∈ pi. Thus e ∈ Ei. On the opposite direction, X e

i

cannot be empty in case e ∈ Ei. Notice that in the latter direction there exits pi ∈ Pi with e ∈ Pi and thus the corresponding
{0, 1}-vector xpi

∈ X e
i .

C.2. Proof of Lemma 2

Lemma 2. The set X µ
i is non-empty for all µ ≤ 1/|Ei|.

Proof. Initialize y = (0, . . . , 0) ∈ {0, 1}m. For each resource e ∈ Ei select a strategy pei ∈ Pi and update y as
y ← y + µ · xpe

i
. The consider x := y/|Ei|. Notice that y ∈ Xi as convex combination xpe

i
∈ Xi. At the same time,

ye ≥ 1/|Ei| for each e ∈ Ei. Thus, the set X µ
i is not empty for any µ ≤ 1/|Ei|.

Lemma 3. Algorithm 1 requires O
(
|V ||E|+ |E|2

)
steps to give a Caratheodory Decomposition for path polytopes.

Proof. First, we notice that the algorithm always successful in DAGs because, in virtue of Lemma 15, we can always find a
path in Step 6 of Algorithm 1. At this point, in order to study the complexity of each iteration, we notice that Step 5 requires
at most |E| read operations and Step 6 can be performed in O(|V | + |E|) operations. Therefore, every iteration of the
outermost loop requireO(|E|+ |V |) operations. Finally, the number iterations in bounded by |E| because Step 7 makes one
coordinate of the point x equal to 0 at every iteration and this ensures that after at most |E| iterations

∑
e∈Out(s) xe = 0.

This conclude the proof because the total operation complexity is O(|E| (|E|+ |V |)) as stated in the main text.

C.3. Proof of Lemma 4

For proving that ĉte is unbiased, we have to recall that xt
e = E [1 [e ∈ pt]] from which it follows that

E
[
ĉte
]
= E

[
cte
xt
e

1
[
e ∈ pt

]]
=

cte
xt
e

E
[
1
[
e ∈ pt

]]
= cte

The second part of the proof concerns bounding the absolute value of the cost estimate. More precisely, we show that
|ĉte| ≤ cmax/µt for all e ∈ Ei. Indeed,

|ĉte| =
∣∣∣∣ ctext

e

1
[
e ∈ pt

]∣∣∣∣ ≤ cmax

µ

D. Proofs of Section 4
D.1. Proof of Lemma 5

Lemma 5. Let the sequences x1
i , . . . , x

T
i ∈ Xi and p1i , . . . , p

T
i ∈ Pi produced by Algorithm 2. Then, with probabilty

1− δ/2,
T∑

t=1

∑
e∈pt

i

cte =

T∑
t=1

〈
ct, xt

i

〉
+O

(√
cmax log(m/δ)

√
T
)
.
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Proof. Since the objective is a linear function minx∈X
∑T

t=1 ⟨ct, x⟩ = minp∈P
∑T

t=1

∑
e∈p c

t
e, then we have that

T∑
t=1

Xt =

T∑
t=1

∑
e∈E

cte ·
(
Et

[
1[e ∈ pt]

]
− 1[e ∈ pt]

)
where Et is an expectation over the choice of pt conditioned on the filtration adapted to the process (p1, c1, . . . , pt−1, ct−1).
As ct is conditionally independent on pt, we get that

T∑
t=1

Xt =
∑
e∈E

T∑
t=1

(
Et

[
cte1[e ∈ pt]

]
− cte1[e ∈ pt]

)
Hence, we recognize the martingale difference sequence ((Et [c

t
e1[e ∈ pt]]− cte1[e ∈ pt]))

T
t=0 that satisfies

|Et [c
t
e1[e ∈ pt]]− cte1[e ∈ pt]| ≤ cmax therefore by Azuma-Hoeffding inequality we can conclude that with probability

1− δ1 for every resource e ∈ E

T∑
t=1

(
Et

[
cte1[e ∈ pt]

]
− cte1[e ∈ pt]

)
≤
√

1

2
cmax log

m

δ1
T .

Lemma 6. Let the sequences x1
i , . . . , x

T
i ∈ Xi and ĉ1, . . . , ĉT produced by Algorithm 2. Then,

T∑
t=1

〈
ĉt, xt

i − x⋆
µt

〉
≤ 2m

γT
+mc2max

T∑
t=1

γt
µ2
t

.

Proof.

〈
ĉt, xt

i − x⋆
µt

〉
≤
〈
xt
i − xt+1

i , xt
i − x⋆

µt

〉
γt

=
1

2γt

(∥∥x⋆
µt
− xt

i

∥∥2 − ∥∥x⋆
µt
− xt+1

i

∥∥2 + ∥∥xt+1
i − xt

i

∥∥2)
≤ 1

2γt

(∥∥x⋆
µt
− xt

i

∥∥2 − ∥∥x⋆
µt
− xt+1

i

∥∥2)+ γt
2

∥∥ĉt∥∥2
≤ 1

2γt

(∥∥x⋆
µt
− xt

i

∥∥2 − ∥∥x⋆
µt
− xt+1

i

∥∥2)+ c2maxm

2

γt
µ2
t

.

where in the first and third equality we use the contraction property of the projection, in the second equality we developed
the square and in the last inequality we the bound on the norm of the estimator. Summing over t we obtain

T∑
t=1

〈
ct, xt

i − x⋆
µt

〉
≤

T∑
t=1

1

2γt

(∥∥x⋆
µt
− xt

i

∥∥2 − ∥∥x⋆
µt
− xt+1

i

∥∥2)+ c2maxm

2

T∑
t=1

γt
µ2
t

≤
T∑

t=1

(
1

2γt

∥∥x⋆
µt
− xt

i

∥∥2 − 1

2γt+1

∥∥∥x⋆
µt+1
− xt+1

i

∥∥∥2)

+

T∑
t=1


∥∥∥x⋆

µt+1
− xt+1

i

∥∥∥2
2γt+1

−
∥∥x⋆

µt
− xt+1

i

∥∥2
2γt

+
c2maxm

2

T∑
t=1

γt
µ2
t

≤
∥∥x⋆

µT
− xT

i

∥∥2
2γT

−
∥∥x⋆

µ0
− x1

i

∥∥2
2γ1

+
3m

2γT
+

c2maxm

2

T∑
t=1

γt
µ2
t

≤ 2m

γT
+

c2maxm

2

T∑
t=1

γt
µ2
t
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Where in the second last inequality we used

T∑
t=1


∥∥∥x⋆

µt+1
− xt+1

i

∥∥∥2
2γt+1

−
∥∥x⋆

µt
− xt+1

i

∥∥2
2γt

 =

T∑
t=1


∥∥∥x⋆

µt+1
− xt+1

i

∥∥∥2
2γt+1

−

∥∥∥x⋆
µt+1
− xt+1

i

∥∥∥2
2γt


+

T∑
t=1

∥∥∥x⋆
µt+1
− xt+1

i

∥∥∥2 − ∥∥x⋆
µt
− xt+1

i

∥∥2
2γt

=

T∑
t=1

(∥∥∥x⋆
µt+1
− xt+1

i

∥∥∥2( 1

2γt+1
− 1

2γt

))

+

T∑
t=1

〈
x⋆
µt

+ x⋆
µt+1
− 2xt+1

i , x⋆
µt+1
− x⋆

µt

〉
2γt

≤ m

T∑
t=1

(
1

2γt+1
− 1

2γt

)
+

T∑
t=1

∥∥∥x⋆
µt

+ x⋆
µt+1
− 2xt+1

i

∥∥∥∥∥∥x⋆
µt+1
− x⋆

µt

∥∥∥
2γt

≤ m

2γT
+
√
m

T∑
t=1

∥(1−mµt)x
⋆
i +mµts− (1−mµt+1)x

⋆
i −mµt+1s∥

γt

=
m

2γT
+m3/2

T∑
t=1

(µt − µt+1) ∥x⋆ − s∥
γt

≤ m

2γT
+m2

T∑
t=1

(µt − µt+1)

γt

≤ m

2γT
+

m2

γT

T∑
t=1

(µt − µt+1)

≤ m

2γT
+

m2µ1

γT

≤ m

2γT
+

m

γT
=

3m

2γT

Lemma 7. (Sub-optimality of Bounded Polytopes) Let a sequence of costs c1, . . . , cT with ∥ct∥∞ ≤ cmax. Then,

T∑
t=1

〈
ct, x⋆

µt
− x⋆

i

〉
≤ m2cmax

T∑
t=1

µt.

where x⋆
i and x⋆

µt
are introduced in Definition 4.1.

Proof.

T∑
t=1

〈
ct, x⋆

µt
− x⋆

i

〉
≤

T∑
t=1

∥∥ct∥∥∞ ∥∥x⋆
i − x⋆

µt

∥∥
1

≤ m2cmax

T∑
t=1

µt

where we used the following bound on
∥∥x⋆

i − x⋆
µt

∥∥
1
. Recall that s is the vector as constructed in Remark 4.2.∥∥x⋆

i − x⋆
µt

∥∥
1
= ∥x⋆

i − (1−mµt)x
⋆
i −mµts∥1
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= ∥mµt(x
⋆
i − s)∥1

≤ m2µt

Lemma 8. Let ĉ1, . . . , ĉT the sequence produced by Algorithm 2 given as input the sequence of costs c1, . . . , cT . Then with
probability 1− δ/2,

T∑
t=1

〈
ct − ĉt, xt

i − x⋆
µt

〉
≤ mcmax

µT

√
T log(2m/δ).

Proof. We denote F t a filtration adapted to the sigma algebra induced by the random variables
{
xl
i

}t
l=1

and let Et denote
expectation conditioned on F t. We recognize that

〈
ct − ĉt, xt

i − x⋆
µt

〉
is a bounded martingale difference sequence. Indeed,

Et

[〈
ct − ĉt, xt

i − x⋆
µt

〉]
= Et

[〈
Et

[
ĉt
]
− ĉt, xt

i − x⋆
µt

〉]
=
〈
Et

[
ĉt
]
− Et

[
ĉt
]
, xt

i − x⋆
µt

〉
= 0

where the last equality holds because xt
i is F t-measurable. In addition,

〈
ct − ĉt, xt

i − x⋆
µt

〉
can be bounded as∣∣〈ct − ĉt, xt

i − x⋆
µt

〉∣∣ ≤ ∥∥ct − ĉt
∥∥
∞

∥∥xt
i − x⋆

µt

∥∥
1
≤ 2mcmax(1 + 1/µt)

where we used
∥∥xt

i − x⋆
µt

∥∥
1
≤ 2m and ∥ct − ĉt∥∞ ≤ cmax(1 + 1/µt). Therefore, by Azuma-Hoeffding, with probability

1− δ,

T∑
t=1

〈
ct − ĉt, xt

i − x⋆
µt

〉
≤ 2mcmax

√√√√2

T∑
t=1

(1 + 1/µt)2 log(1/δ) ≤ 2mcmax(1 + 1/µT )
√
2T log(1/δ)

At this point, we have all the elements for the proof of Theorem 3.6

D.2. Proof of Theorem 3.6

Theorem 3.6. Let p1i , . . . , p
T
i ∈ Pi the sequence of strategies produced by Algorithm 2 given as input the costs c1, . . . , cT

with ∥ct∥∞ ≤ cmax. Then with probability 1− δ,

T∑
t=1

∑
e∈pt

i

cte − min
p⋆
i ∈Pi

∑
e∈p⋆

i

cte ≤ O
(
mc2maxT

4/5 log(1/δ)
)

Proof. Combining the previous theorems we can obtained the following bounds
T∑

t=1

∑
e∈pt

i

cte − min
p⋆
i ∈Pi

∑
e∈p⋆

i

cte ≤
√

1

2
cmax log

m

δ1
T +

m

γT
+

c2maxm

2

T∑
t=1

γt
µ2
t

+mcmax

T∑
t=1

µt

+ 2mcmax(1 + 1/µT )
√

2T log(1/δ)

Now, replacing γt = t−3/5 and µt = min
{
1/m, t−1/5

}
, we obtain

T∑
t=1

∑
e∈pt

i

cte − min
p⋆
i ∈Pi

∑
e∈p⋆

i

cte ≤
√

1

2
cmaxT log

m

δ1
+

m

T−3/5
+

c2maxm

2

T∑
t=1

t2/5

t3/5
+

c2maxm

2

m1/5∑
t=1

m2

t3/5
+mcmax

T∑
t=1

1

t1/5

+mcmax

m1/5∑
t=1

1

m
+ 2mcmax(1 + 1/µT )

√
2T log(1/δ)

=

√
1

2
cmaxT log

m

δ1
+m2T 3/5 +

6cmaxm

8
T 4/5 +

cmaxm

2
m11/5 +mcmax

5

4
T 4/5

+m1/5cmax + 2mcmax(1 + T 1/5)
√

2T log(1/δ)

which of the order stated in the main text.
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E. Proof for Section 5
Lemma 9. The potential function Φ(·) of Definition 2 is smooth. More precisely,

∥∇Φ(x)−∇Φ(x′)∥2 ≤ 2n2cmax

√
m · ∥x− x′∥2

for all x, x′ ∈ X1 × . . . × Xn. Moreover, the potential function Φ(x) is bounded by mncmax. We also denote λ ≜
(2n2cmax

√
m)−1

Proof. We start by taking a first partial derivative of the potential function for the fractional cost xīe, that is

∂

∂xīe

[Φ(x)] =
∑

S⊂[n],̄i∈S

∏
j∈S,j ̸=ī

xje

∏
j /∈S

(1− xje)

|S|∑
i=0

ce(i)−
∑

S⊂[n],̄i/∈S

∏
j∈S

xje

∏
j /∈S,j ̸=ī

(1− xje)

|S|∑
i=0

ce(i)

Taking a second a partial derivative with respect to xj̄ē we obtain

∂2

∂xj̄ē∂xīe

[Φ(x)] =



0 if ē ̸= e

0 if ī = j̄∑
S⊂[N ],̄i∈S,j̄∈S

∏
j∈S,j ̸=ī,j ̸=j̄ xje

∏
j /∈S(1− xje)

∑|S|
i=0 ce(i)

−
∑

S⊂[N ],̄i/∈S,j̄∈S
∏

j∈S,j ̸=j̄ xje

∏
j /∈S,j ̸=ī(1− xje)

∑|S|
i=0 ce(i)

−
∑

S⊂[N ],̄i∈S,j̄ /∈S
∏

j∈S,j ̸=ī xje

∏
j /∈S,j ̸=j̄(1− xje)

∑|S|
i=0 ce(i)

+
∑

S⊂[N ],̄i/∈S,j̄ /∈S
∏

j∈S xje

∏
j /∈S,j ̸=ī,j ̸=j̄(1− xje)

∑|S|
i=0 ce(i) otherwise

Notice that the factor
∏

j∈S,j ̸=j̄ xje

∏
j /∈S,j ̸=ī(1−xje) is a multivariate probability distribution over the subsets of players in

which the ones with index j̄ and ī select the edge e therefore the sum
∑

S⊂[n],̄i∈S,j̄∈S
∏

j∈S,j ̸=ī,j ̸=j̄ xje

∏
j /∈S(1−xje) = 1.

Similar observations hold for the other three terms in the nonzero partial derivatives. Then it follows that −2ncmax ≤
∂2

∂xj̄ē∂xīe
[Φ(x)] ≤ 2ncmax where cmax is a uniform bound on ce(·).

Furthermore, we observe that there are at most mn(n − 1) nonzero elements of the Hessian and those satisfy∣∣∣ ∂2

∂xj̄ē∂xīe
[Φ(x)]

∣∣∣2 ≤ 4n2c2max. Therefore, we can bound the Hessian Frobenius norm as

∥∥∇2Φ(x)
∥∥
F
=

√√√√∑
e∈E

∑
ē∈E

N∑
j̄=1

N∑
ī=1

∣∣∣∣ ∂2

∂xj̄ē∂xīe

[Φ(x)]

∣∣∣∣2
≤
√

mn(n− 1)4n2c2max

≤ 2n2cmax

√
m

Finally, since we have that for any matrix the Frobenius norm upper bounds the spectral norm, we can conclude that the
maximum eigenvalue of∇2Φ(x) is at most 2n2cmax

√
m and therefore the potential function is 2n2cmax

√
m-smooth.

E.1. Proof of Lemma 10

Before proving Lemma 10 we need an auxiliary lemma (Lemma 13) for which we need to introduce the notion of
Caratheodory’s decomposition image.

Definition E.1. We define as Caratheodory’s decomposition image of the set X µ
i , denoted as ∆(Pµ

i ), the set all all
probability distributions πi ∈ Pi such that

P
pi∼πi

[e ∈ pi] ≥ µ for all e ∈ Ei.

Now, we can state and prove the auxiliary lemma which relates ϵ, µ stationary point to 4n2mcmaxϵ-Nash equilibrium for
strategies profile in the Caratheodory’s decomposition of the set X µ.
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Lemma 13. Let (πi, π−i) ∈ ∆(P1)× . . .×∆(Pn) be a Caratheodory decomposition of x ∈ X1 × . . .×Xn and let x be a
(ϵ, µ)-stationary point according to Definition 2. Then for each agent i ∈ [n],

ci(πi, π−i)− min
π̄i∈∆(Pµ

i )
ci(π̄i, π−i) ≤ 4n2mcmax

∥∥∥∥x−ΠXµ

[
x− 1

2n2cmax
√
m
∇Φ(x)

]∥∥∥∥
where ∆(Pµ

i ) ⊂ ∆(Pi) is the Caratheodory’s decomposition image of the set X µ
i .

Proof. Let a probability distribution π̄i ∈ ∆(Pµ
i ) and its marginalization x̄i i.e. x̄ie = P

pi∼π̄i

[e ∈ pi]. Then Definition E.1

implies that x̄i ∈ X µ
i . As a result, Lemma 16 implies

ci (πi, π−i)− ci (π̄i, π−i) = Φ(x̄i, x−i)− Φ(xi, x−i)

Let λ be the inverse of the smoothness parameter of Φ that is λ = 1
2n2cmax

√
m

. To simplify notation let ϵ :=

∥ΠXµ [x− λ∇Φ(x)]− x∥2 meaning that x is trivially an (ϵ, µ)-stationary point. Then, by the result (Agarwal et al.,
2019, Proposition B.1) and (Ghadimi & Lan, 2016, Lemma 3), we have that

max
δ∈∆
−δT∇xi

g(xi) ≤ 2
ϵ

λ
δmax ∀i ∈ [n]

with ∆ ≜ {δ such that xi + δ ∈ X µ
i , ∥δ∥ ≤ δmax} and g(xi) := Φ(xi, x−i) is equal to the potential function Φ(·)

when all the players (but the player i) keep their strategy profile fixed. Since ∥xi − x′
i∥ ≤

√
m for any x, y ∈ Xi we get that

δmax ≤
√
m. Now by plugging the value of λ, setting δ = xi − x̄i on the left hand side, we get that for any player i ∈ [n]:

(xi − x̄i)
T∇xi

g(xi) ≤ 4mn2cmaxϵ

The function g(xi) is a linear function (see Definition 2). By linearity of g(xi) it holds that

Φ(x)− Φ(x̄i, x−i) = g(xi)− g(x̄i)

= (xi − x̄i)
T∇xi

g(xi)

≤ 4mn2cmaxϵ

As a result for any π̄i ∈ ∆(Pµ
i ),

ci (πi, π−i)− ci (π̄i, π−i) ≤ 4mn2cmaxϵ

We conclude the section by presenting a slightly more general version of Lemma 10

Lemma 14. Let π = (π1, . . . , πn) ∈ ∆(P1) × . . . × ∆(Pn) and x = (x1, . . . , xn) ∈ X1 × . . . × Xn such that for all
resources e ∈ E,

xi,e = P
pi∼πi

[e ∈ pi] .

Then the following holds,

ci(πi, π−i)− min
π̄i∈∆(Pµ

i )
ci(π̄i, π−i) ≤ 4n2mcmax ·

∥∥∥∥x−ΠXµ

[
x− 1

2n2cmax
√
m
∇Φ(x)

]∥∥∥∥ + 2m2ncmaxµ

Proof. Lemma 13 implies that

ci(πi, π−i)− min
π̄i∈∆(Pµ

i )
ci(π̄i, π−i) ≤ 4n2mcmax ·

∥∥∥∥x−ΠXµ

[
x− 1

2n2cmax
√
m
∇Φ(x)

]∥∥∥∥
As a result, we just need to bound

min
π̄i∈∆(Pµ

i )
ci(π̄i, π−i)− min

π̄i∈∆(Pi)
ci(π̄i, π−i)
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Let π̄⋆
i ∈ argminπ̄i∈∆(Pi) ci(π̄i, π−i) and x̄⋆

i its marginalization. Let also x̄⋆
i,µ := (1−mµ)x̄⋆

i +mµs where the vector s
is defined as in the proof of Lemma 7 and π̄⋆

i,µ its corresponding Caratheodory decomposition.

min
π̄i∈∆(Pµ

i )
ci(π̄i, π−i)− min

π̄i∈∆(Pi)
ci(π̄i, π−i) = min

π̄i∈∆(Pi
µ)
ci(π̄i, π−i)− ci(π̄

⋆
i , π−i)

≤ ci(π̄
⋆
i,µ, π−i)− ci(π̄

⋆
i , π−i)

= Φ(x̄⋆
i,µ, x−i)− Φ(x̄⋆

i , x−i)

=
∑
e∈E

∑
S⊂[n],i∈S

(x̄⋆
ie − (1−mµ)x̄⋆

ie −mµs)
∏

j∈S,j ̸=i

xje

∏
j /∈S

(1− xje)

|S|∑
l=0

ce(l)

+
∑
e∈E

∑
S⊂[n],i/∈S

(−x̄⋆
ie + (1−mµ)x̄⋆

ie +mµs)
∏
j∈S

xje

∏
j /∈S,j ̸=i

(1− xje)

|S|∑
l=0

ce(l)

≤
∑
e∈E

(x̄⋆
ie − (1−mµ)x̄⋆

ie −mµs)ncmax

∑
S⊂[n],i∈S

∏
j∈S,j ̸=i

xje

∏
j /∈S

(1− xje)︸ ︷︷ ︸
=1

+
∑
e∈E

(−x̄⋆
ie + (1−mµ)x̄⋆

ie +mµs)ncmax

∑
S⊂[n],i/∈S

∏
j∈S

xje

∏
j /∈S,j ̸=i

(1− xje)︸ ︷︷ ︸
=1

= 2m2ncmaxµ

.

E.2. Proof of Theorem 5.1

Theorem 5.1. If each agent i (randomly) selects its strategy according to Algorithm 1. Then the produced sequence of
vectors x1, . . . , xT can be equivalently described as

xt+1 = ΠXµt+1

[
xt − γt · ∇t

]
(3)

where the estimator ∇t ≜ [ĉt1, . . . , ĉ
t
n] (ĉti is the cost estimate generated by player i according to Step 7 in Algorithm 2)

satisfies

1. E[∇t] = ∇Φ(xt) and 2. E
[
∥∇t∥2

]
≤ nc2maxm

µt
.

Proof. In the first part of the proof we show that the projection operator is separable. That is, for a generic set X
ΠX (z) = [ΠX1

[z1], . . . ,ΠXn
[zn]]

⊺ for any z ∈ Rnm in the form z = [z1, . . . , zn] with zj ∈ Rm for all j ∈ [n]. To prove
this, we proceed as follows

ΠX [z] = argmin
z′∈X

∥z − z′∥2 = argmin
z′∈X

n∑
i=1

∥zi − z′i∥
2
=

n∑
i=1

argmin
z′
i∈Xi

∥zi − z′i∥
2
= [ΠX1

[z1], . . . ,ΠXn
[zn]]

Let (πt
i , π

t
−i) denote a Caratheodory Decomposition for xt := (xt

i, x
t
−i). Then,

E [[∇t]ie] = Prπt
i
[agent i selects resource e at round t] · E

[
cte/x

t
ie | agent i selects resource e at round t

]
= xt

ie · E
[
cte/x

t
ie | agent i selects resource e at round t

]
= E

[
cte | agent i selects resource e at round t

]
=

∑
S−i⊆[n−1]

( ∏
j∈S−i

Prπt
j
[agent j selects e at round t]

·
∏

j /∈S−i

Prπt
j
[agent j does not select e at round t] ce(|S−i|+ 1)

)
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=
∑

S−i⊆[n−1]

∏
j∈S−i

xt
je

∏
j /∈S−i

(1− xt
je)ce (|S−i|+ 1)

At the same time,

∂Φ(x)

∂xie
=

∑
S−i⊆[n−1]

∏
j∈S−i

xje

∏
j /∈S−i

(1− xje)

|S−i|+1∑
ℓ=0

ce(ℓ)−
∑

S−i⊆[n−1]

∏
j∈S−i

xje

∏
j /∈S−i

(1− xje)

|S−i|∑
ℓ=0

ce(ℓ)

=
∑

S−i⊆[n−1]

∏
j∈S−i

xt
je

∏
j /∈S−i

(1− xt
je)ce (|S−i|+ 1)

= E [[∇t]ie]

The second part of the proof concerns bounding the norm of the stochastic gradients of the potential function. More precisely,
we show that E

[
∥∇t∥2

]
≤ nc2maxm

µt

E
[
∥∇t∥2

]
=

N∑
i=1

∑
e∈Ei

Prπt
i
[agent i selects resource e at round t] · E

[
(cte/x

t
ie)

2 | agent i selects resource e at round t
]

=

n∑
i=1

∑
e∈Ei

xt
ie · E

[
(cte/x

t
ie)

2 | agent i selects resource e
]

=

n∑
i=1

∑
e∈Ei

E
[
(cte)

2/xt
ie | agent i selects resource e

]
≤

n∑
i=1

∑
e∈Ei

cmax/µt

=

∑n
i=1 |Ei| c2max

µt
≤ nmc2max

µt

E.3. Proof of Theorem 5.2

Theorem 5.2. Let G(x) = ΠXµT [x− λ∇Φ(x)] − x and the sequence x1, . . . , xT produced by Equation 3. Then
1
T

∑T
t=1 E [∥G(xt)∥2] is upper bounded by

2

√√√√λ2nmcmax

2TγT
+

λc2maxnm
∑T

t=1
γ2
t

µt

2TγT
+

8
√
nm3

T

T∑
t=1

µt.

Proof. We make use of the Moreau envelope function defined as follows,

ϕλXµt+1 (x) := min
y∈Xµt+1

(
Φ(y) +

1

λ
∥x− y∥2

)
Let also yt+1 := argminy∈Xµt+1

(
Φ(y) + 1

λ ∥x
t − y∥2

)
. It holds that

ϕλXµt+1 (xt+1) ≤ Φ(yt+1) +
1

λ

∥∥xt+1 − yt+1
∥∥2

≤ Φ(yt+1) +
1

λ

∥∥xt − γt∇t − yt+1
∥∥2

= Φ(yt+1) +
1

λ

∥∥xt − yt+1
∥∥2 + γ2

t

λ
∥∇t∥2 −

2γt
λ

(xt − yt+1)T∇t
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= ϕλXµt+1 (xt) +
γ2
t

λ
∥∇t∥2 −

2γt
λ

(xt − yt+1)T∇t.

where the first inequality comes from the definition of Moreau envelope, the second inequality comes from projection
property on convex sets and last by the definition yt+1 = argminy∈Xµt+1

(
Φ(y) + 1

λ ∥x
t − y∥2

)
.

Then, taking total expectation on both sides and using the monotonicity property of expectation, we have

E
[
ϕλXµt+1 (xt+1)

]
≤ E

[
ϕλXµt+1 (xt)

]
+

γ2
t

λ
E
[
∥∇t∥2

]
− 2γt

λ
E
[
(xt − yt+1)TE

[
∇t|xt

]]
.

At this point using the bound on the expected squared norm (see Theorem 5.1) of the cost estimator and using that the cost
estimator is unbiased we obtain

E
[
ϕλXµt+1 (xt+1)

]
≤ E

[
ϕλXµt+1 (xt)

]
+

γ2
t

λ

c2maxE

µt
− 2γt

λ
E
[
(xt − yt+1)T∇Φ(xt)

]
At this point, using the fact that Φ(·) is 1

λ -smooth we get that

(yt+1 − xt)T∇Φ(xt) ≤ Φ(yt+1)− Φ(xt) +
1

2λ

∥∥yt+1 − xt
∥∥2

which implies that

E
[
ϕλXµt+1 (xt+1)

]
≤ E

[
ϕλXµt+1 (xt)

]
+

γ2
t

λ

c2maxnm

µt
+

2γt
λ

E
[
Φ(yt+1)− Φ(xt) +

1

2λ

∥∥yt+1 − xt
∥∥2] .

Due to the fact that X µt ⊆ X µt+1 we get that ϕλXµt+1 (xt) ≤ ϕλXµt (xt) and thus

E
[
ϕλXµt+1 (xt+1)

]
≤ E

[
ϕλXµt (xt)

]
+

γ2
t

λ

c2maxnm

µt
+

2γt
λ

E
[
Φ(yt+1)− Φ(xt) +

1

2λ

∥∥yt+1 − xt
∥∥2] .

By reordering the terms and summing from t = 1 to T we get that

− 2

λT

T∑
t=1

γtE
[
Φ(yt+1)− Φ(xt) +

1

2λ

∥∥yt+1 − xt
∥∥2] ≤ E [ϕλXµ1 (x1)]− E [ϕλXµT (xT )]

T
+

c2maxnm

λT

T∑
t=1

γ2
t

µt

≤ Φmax

T
+

c2maxnm

λT

T∑
t=1

γ2
t

µt
. (4)

since ϕλXµ1 (x1) ≤ Φ(x1) ≤ nmcmax.

Since Φ(x) is 1
λ -smooth the function H(x) = Φ(x) + 1

λ ∥x− xt∥2 is convex. Now the definition yt+1 =
argminy∈Xµt+1 H(y) that implies

〈
∇H(yt+1), x− yt+1

〉
≥ 0 for all x ∈ X µt+1 . The latter holds also for all x ∈ X µt

since X µt ⊆ X µt+1 . At this point we get that,

Φ(xt)− Φ(yt+1)− 1

2λ

∥∥yt+1 − xt
∥∥2 = H(xt)−H(yt+1) +

1

2λ

∥∥yt+1 − xt
∥∥2

≥ ∇H(yt+1)T (xt − yt+1) +
1

2λ

∥∥yt+1 − xt
∥∥2

≥ 1

2λ

∥∥yt+1 − xt
∥∥2

Therefore, plugging into (4), it holds that

1

Tλ2

T∑
t=1

γtE
∥∥yt+1 − xt

∥∥2 ≤ nmcmax

T
+

c2maxnm

λT

T∑
t=1

γ2
t

µt
.
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Then, using the lower bound 1
Tλ2

∑T
t=1 γtE

∥∥yt+1 − xt
∥∥2 ≥ γT

Tλ2

∑T
t=1 E

∥∥yt+1 − xt
∥∥2 on the left hand side, using

Jensen’s inequality and taking square root on both sides we obtain

1

T

T∑
t=1

E
∥∥yt+1 − xt

∥∥ ≤
√√√√λ2nmcmax

TγT
+

λc2maxnm

TγT

T∑
t=1

γ2
t

µt
. (5)

Before concluding the proof we need to bound the difference between the elements in the sequence yt and the iterates of prox-
imal point projected always on the final set X µt . To this end, we introduce the sequence ỹt+1 = ΠXµT

[
xt − λ

2∇Φ(ỹ
t+1)

]
and we notice that ∥∥yt+1 − ỹt+1

∥∥ =

∥∥∥∥ΠXµt+1

[
xt − λ

2
∇Φ(yt+1)

]
−ΠXµT

[
xt − λ

2
∇Φ(ỹt+1)

]∥∥∥∥
At this point by defining wt := xt − λ

2∇Φ(y
t+1) and w̃t := xt − λ

2∇Φ(ỹ
t+1) we get that∥∥yt+1 − ỹt+1

∥∥ ≤ ∥∥ΠX [wt]−ΠXµt+1 [wt]
∥∥+ ∥∥ΠX [w̃t]−ΠXµT [w̃t]

∥∥+ ∥∥ΠX [wt]−ΠX [w̃t]
∥∥

≤
√
nm3µt+1 +

√
nm3µT +

∥∥wt − w̃t
∥∥

=
√
nm3µt+1 +

√
nm3µT +

λ

2

∥∥∇Φ(yt+1)−∇Φ(ỹt+1)
∥∥

≤
√
nm3µt+1 +

√
nm3µT +

1

2

∥∥yt+1 − ỹt+1
∥∥

where in the first inequality, we used the bound distance between a point in X and its projection in X µ used in the proof of
Lemma 7 and in the last inequality we used the Lipschitz continuity of the gradients of the potential function. The above
estimation implies ∥∥yt+1 − ỹt+1

∥∥ ≤ 2
√
nm3(µt+1 + µT ). (6)

Moreover, by a simple application of triangular inequality and the bounds in Equation (5) and in Equation (6), we obtain

1

T

T∑
t=1

E
∥∥xt − ỹt+1

∥∥ ≤ 1

T

T∑
t=1

E
∥∥yt+1 − ỹt+1

∥∥+ 1

T

T∑
t=1

E
∥∥yt+1 − xt

∥∥
≤ 1

T

T∑
t=1

2
√
nm3(µt+1 + µT ) +

√√√√λ2nmcmax

2TγT
+

λc2maxnm

2TγT

T∑
t=1

γ2
t

µt

≤ 4
√
nm3

T

T∑
t=1

µt +

√√√√λ2nmcmax

2TγT
+

λc2maxnm

2TγT

T∑
t=1

γ2
t

µt

Finally, we conclude the proof with the following steps

1

T

T∑
t=1

E
∥∥G(xt)

∥∥
2
=

1

T

T∑
t=1

E
∥∥∥∥ΠXµt

[
xt − λ

2
∇Φ(xt)

]
− xt

∥∥∥∥
2

≤ 1

T

T∑
t=1

E
∥∥∥∥ΠXµt

[
xt − λ

2
∇Φ(xt)

]
− ỹt+1

∥∥∥∥
2

+
1

T

T∑
t=1

E
∥∥ỹt+1 − xt

∥∥
2

≤ 1

T

T∑
t=1

E
∥∥∥∥ΠXµt

[
xt − λ

2
∇Φ(xt)

]
−ΠXµt

[
xt − λ

2
∇Φ(ỹt+1)

]∥∥∥∥
2

+

√√√√λ2nmcmax

2TγT
+

λc2maxnm

2TγT

T∑
t=1

γ2
t

µt
+

4
√
nm3

T

T∑
t=1

µt

≤ λ

2T

T∑
t=1

E
∥∥∇Φ(xt)−∇Φ(ỹt+1)

∥∥
2
+

√√√√λ2nmcmax

2TγT
+

λc2maxnm

2TγT

T∑
t=1

γ2
t

µt
+

4
√
nm3

T

T∑
t=1

µt
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≤ λ

2T

1

λ

T∑
t=1

E
∥∥xt − ỹt+1

∥∥
2
+

√√√√λ2nmcmax

2TγT
+

λc2maxnm

2TγT

T∑
t=1

γ2
t

µt
+

4
√
nm3

T

T∑
t=1

µt

≤ 2

√√√√λ2nmcmax

2TγT
+

λc2maxnm

2TγT

T∑
t=1

γ2
t

µt
+

8
√
nm3

T

T∑
t=1

µt

that concludes the proof.

E.4. Proof of Theorem 3.8

Theorem 3.8. Let π1, . . . , πT the sequence of strategy profiles produced if all agents adopt Algorithm 2. Then for all
T ≥ Θ

(
m12.5n7.5/ϵ5

)
,

1

T
E

[
T∑

t=1

max
i∈[n]

[
ci(π

t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]]
≤ ϵ.

The same holds for T ≥ Θ(n6.5m7/ϵ5) in case the agents know n,m and select γt := Θ(m−4/5n−8/5c−1
maxt

−3/5) and
µt := Θ(n−6/5m−11/10t−1/5).

Proof. Let xt denote the marginalization of πt then by applying Lemma 14 for µ := µT we get that

max
i∈[n]

[
ci(π

t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]
≤4n2mcmax

∥∥G(xt)
∥∥+ 2m2ncmaxµT

As a result,

1

T
E

[
T∑

t=1

max
i∈[n]

[
ci(π

t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]]
≤4n2mcmaxE

[
1

T

T∑
t=1

∥∥G(xt)
∥∥]+ 2m2ncmaxµT

where G(x) = ΠXµT [x− λ∇Φ(x)]− x. Then by Theorem 5.2 and the fact that λ = (2n2cmax
√
m)−1 we get

1

T
E

[
T∑

t=1

max
i∈[n]

[
ci(π

t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]]
≤4
√
m

√√√√nmcmax

2TγT
+

c2maxnm

2TγTλ

T∑
t=1

γ2
t

µt
+

16
√
nm2

Tλ

T∑
t=1

µt

+ 2m2ncmaxµT

To simplify notation let

(A) :=
1

T
E

[
T∑

t=1

max
i∈[n]

[
ci(π

t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]]

At this point by choosing the sequence γt = Cγt
−3/5 and µt = Cµ min

{
1/m, t−1/5

}
we have that

(A) ≤ 4
√
m

√√√√ nmcmax

2T 2/5Cγ
+

c2maxnmCγ

2T 2/5λCµ

m1/5∑
t=1

1

mt6/5
+

c2maxnmCγ

2T 2/5λCµ

T∑
t=1

t1/5

t6/5

+
20
√
nm2Cµ

λT 1/5
+

2m2ncmaxCµ

T 1/5

≤ 4
√
m

√
nmcmax

2T 2/5Cγ
+

c2maxnmCγ

2T 2/5λCµ
(log T + 1) +

20
√
nm2Cµ

λT 1/5
+

2m2ncmaxCµ

T 1/5

=

(
4
√
m

√
nmcmax

2Cγ
+

c2maxnmCγ

2λCµ
(log T + 1) +

20
√
nm2Cµ

λ
+ 2m2ncmaxCµ

)
T−1/5
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By replacing the values of λ = (2n2cmax
√
m)−1, we obtain

(A) ≤

(
4
√
m

√
mncmax

2Cγ
+

c3maxn
3m3/2Cγ(log T + 1)

Cµ
+ 80m5/2n5/2cmaxCµ

)
T−1/5

By neglecting non-dominant terms and choosing Cγ = (m4/5n8/5cmax)
−1 and Cµ = (n6/5m11/10)−1, we obtain:

(A) ≤

(
4
√
m

√
c2maxn

13/5m9/5

2
+ c2maxn

13/5m9/5(log T + 1) + 80m14/10n13/10cmax

)
T−1/5

≤ 88m14/10n13/10cmax(log T + 1)

T 1/5

The latter implies that if T = O
(
m7n6.5/ϵ5

)
then (A) ≤ ϵ.

By the choosing Cγ = Cµ = 1 we obtain

(A) ≤ O

(√
m5n3c3max(log T + 1)

T 1/5

)
which implies that if T = O

(
m12.5n7.5/ϵ5

)
then (A) ≤ ϵ.

Corollary 1. In case all agents adopt Algorithm 2 for T ≥ Θ(n6.5m7/ϵ5) (resp. Θ
(
m12.5n7.5/ϵ5

)
) then with probability

≥ 1− δ,

• (1− δ)T of the strategy profiles π1, . . . , πT are ϵ/δ2-approximate Mixed NE.

• πt is an ϵ/δ-approximate Mixed NE once t is sampled uniformly at random in {1, . . . , T}.

Proof. Let the random variable Et := maxi∈[n]

[
ci(π

t
i , π

t
−i)−minπi∈∆(Pi) ci(πi, π

t
−i)
]
. Consider the random variable E

taking the value of the random variable Et with t being sampled uniformly at random. Notice that

E[E] =
1

T
E

[
T∑

t=1

max
i∈[n]

[
ci(π

t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]]
≤ ϵ.

which by Markov inequality implies that with probability ≥ 1 − δ, E ≤ ϵ/δ. Thus with probability ≥ 1 − δ,
maxi∈[n]

[
ci(π

t
i , π

t
−i)−minπi∈∆(Pi) ci(πi, π

t
−i)
]
≤ ϵ/δ meaning that πt is an ϵ/δ-Mixed NE. This establishes the second

item of Corollary 1. Now consider the set of time steps B := {t ∈ {1, t} : Et > ϵ/δ2}. With probability 1 − δ,∑T
t=1 Et ≤ ϵT

δ we directly get that we probability 1− δ, |B| ≤ δT . As a result, with probability ≥ 1− δ, (1− δ) fraction
of the profiles π1, . . . .πT are ϵ/δ2-Mixed NE.

F. Auxiliary Lemmas
Lemma 15. Let the set A be defined as in Algorithm 1, then ∀e ∈ A, given x ∈ X µ such that xe > 0, there exists a simple
path p̂ such that

• (i) e ∈ p̂,

• (ii) xe > 0 ∀e ∈ p̂.

Therefore, Step 6 in Algorithm 1 can always be implemented.

Proof. By the Caratheodory’s theorem, there exists a collection of simple paths {p̂1, . . . , p̂m+1} and scalars λ1, . . . , λm+1

such that λi ≥ 0 ∀i ∈ {1,m + 1} and
∑m+1

i=1 λi = 1 that allows to write x =
∑m+1

j=1 λj p̂j . At this point, assume by
contradiction that p̂je = 0 for all j ∈ {1,m+ 1}. This implies that xe = 0 which is a clear contradiction. That means that
there exist j⋆ ∈ {1,m + 1} such that e ∈ p̂j⋆ proving part (i). In addition it must be true that the weight in the convex
combination is positive, i.e. λj⋆ > 0. This implies that xe ≥ λj⋆ p̂j⋆e. Therefore, for the edges e s.t. p̂j⋆e = 1, it holds that
xe ≥ λj⋆ > 0.
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Lemma 16. Let x, x̄ ∈ X and π, π̄ be their respective Caratheodory decompositions. Then,

ci (π̄i, π−i)− ci (πi, π−i) = Φ(x̄i, x−i)− Φ(xi, x−i)

Proof. We start by manipulating the cost difference

ci (π̄i, π−i)− ci (πi, π−i) =
∑

pi∈Pi

∑
p−i∈P−i

P
π−i

[p−i]

(
P̄
πi

[pi]Ci(pi, p−i)− P
πi

[pi]Ci(pi, p−i)

)
=
∑

pi∈Pi

∑
p′
i∈Pi

∑
p−i∈P−i

P
π−i

[p−i] P̄
πi

[p′i] P
πi

[pi] (Ci(p
′
i, p−i)− Ci(pi, p−i))

=
∑

pi∈Pi

∑
p′
i∈Pi

∑
p−i∈P−i

P
π−i

[p−i] P̄
πi

[p′i] P
πi

[pi] (Φ(p
′
i, p−i)− Φ(pi, p−i))

=
∑
e∈E

∑
pi∈Pi

∑
p′
i∈Pi

∑
p−i∈P−i

P
π−i

[p−i] P̄
πi

[p′i] P
πi

[pi]

le(p
′
i,p−i)∑
i=0

ce(i)−
le(pi,p−i)∑

i=0

ce(i)


=
∑
e∈E

∑
p′
i∈Pi

∑
p−i∈P−i

P
π−i

[p−i] P̄
πi

[p′i]

le(p
′
i,p−i)∑
i=0

ce(i)

−
∑
e∈E

∑
pi∈Pi

∑
p−i∈P−i

P
π−i

[p−i] P
πi

[pi]

le(pi,p−i)∑
i=0

ce(i)

At this point we can consider the two terms of the last expression can be written as the potential function in Definition 2.

∑
e∈E

∑
pi∈Pi

∑
p−i∈P−i

P
π−i

[p−i] P̄
πi

[pi]

le(pi,p−i)∑
i=0

ce(i) =

N∑
s=1

∑
e∈E

∑
pi∈Pi

∑
p−i∈P−i

P
π−i

[p−i] P̄
πi

[pi]1 {le(pi, p−i) = s}
s∑

i=0

ce(i)

=
∑
e∈E

N∑
s=1

P
πi,π̄i

[Exactly s agents select edge e]

s∑
i=0

ce(i)

=
∑
e∈E

N∑
s=1

∑
S⊂([n]

s )

∏
j∈S

xje

∏
j /∈S

(1− xje)

s∑
i=0

ce(i)

=
∑
e∈E

∑
S⊂[n]

∏
j∈S

xje

∏
j /∈S

(1− xje)

|S|∑
i=0

ce(i)

G. On the difference with ϵ-greedy exploration
We present two examples to highlight the difference between ϵ-greedy and Exploration with Bounded-Away Polytopes for
the special case of simplex. Exploration with Bounded-Away Polytopes takes a mixed strategy x ∈ ∆n and transforms it to
the strategy

x′ := Π∆µ
n
(x)

where ∆µ
n = ∆n ∩ {x : xi ≥ µ}. On the other hand ϵ-greedy exploration transforms x to x′ as follows,

x′ := (1− ϵ)x+
ϵ

n
(1, . . . , 1)

These are two different transformation that do not coincide. We will provide two specific examples : one example for
x ∈ ∆µ

n and one for x /∈ ∆µ
n.
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Example for x ∈ ∆µ
n : Consider ϵ = µ and x = (2/3, 1/3). In this case ϵ-greedy exploration selects the strategy

x′ = ((1 − µ)2/3 + µ/2, (1 − µ)1/3 + µ/2) while Exploration with Bounded-Away Polytopes selects the strategy
x′ = (2/3, 1/3) because x ∈ ∆µ

n implies that x = x′.

Example for x /∈ ∆µ
n : Consider ϵ = µ and x = (8/10, 2/10, 0). In this case ϵ-greedy exploration selects the strategy

x′ = ((1− µ)8/10 + µ/3, (1− µ)2/10 + µ/3, µ/3). For Exploration with Bounded-Away Polytopes with µ ≤ 0.4
3 we can

use the KKT conditions of the problem to derive that x′ = (x′
1, x

′
2, x

′
3) must satisfy the following system

2(x′
1 − 0.8) + λ = 0

2(x′
2 − 0.2) + λ = 0

2(x′
3 − 0.0) + λ ≥ 0

−x′
1 + µ < 0

−x′
2 + µ < 0

−x′
3 + µ = 0

(7)

which admits the solution x′ = (0.8− µ/2, 0.2− µ/2, µ) which is a different transformation than the one obtained with
ϵ-greedy. To see this, take for example ϵ = µ = 0.12. ϵ greedy exploration gives (((1 − µ)8/10 + µ/3, (1 − µ)2/10 +
µ/3, µ/3)) = (0.744, 0.216, 0.04) while Exploration with Bounded-Away Polytopes gives (0.8 − µ/2, 0.2 − µ/2, µ) =
(0.74, 0.14, 0.12).
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