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Abstract—In healthcare, data privacy of patients regulations
prohibits data from being moved outside the hospital, preventing
international medical datasets from being centralized for AI
training. Federated learning (FL) is a data privacy-focused
method that trains a global model by aggregating local models
from hospitals. Existing FL techniques adopt a central server-
based network topology, where the server assembles the local
models trained in each hospital to create a global model. However,
the server could be a point of failure, and models trained in
FL usually have worse performance than those trained in the
centralized learning manner when the patient’s data are not in-
dependent and identically distributed (Non-IID) in the hospitals.
This paper presents a decentralized FL framework, including
training with adaptive ensemble learning and a deployment phase
using knowledge distillation. The adaptive ensemble learning
step in the training phase leads to the acquisition of a specific
model for each hospital that is the optimal combination of local
models and models from other available hospitals. This step solves
the non-IID challenges in each hospital. The deployment phase
adjusts the model’s complexity to meet the resource constraints of
wearable systems. We evaluated the performance of our approach
on edge computing platforms using EPILEPSIAE and TUSZ
databases, which are public epilepsy datasets.

Index Terms—Federated Learning, Wearable systems, Deep
learning, Electrocardiogram, Epilepsy, Knowledge distillation,
Multi-biosignal processing, Seizure detection.

I. INTRODUCTION

Epilepsy is a widespread neurological condition that af-
fects approximately 65 million individuals in all age groups
globally [1]. This disorder presents itself in various forms,
ranging in severity from mild to severe. There are not only
different types of seizures associated with epilepsy, but the
consequences and effects of this condition also vary widely.
As such, individuals with epilepsy and their families often face
diverse challenges and experiences depending on the specifics
of the condition.
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Among the numerous challenges faced by those living with
epilepsy—such as access to quality healthcare, information
and coordination of services, and societal stigma—a poten-
tially fatal consequence known as SUDEP (Sudden Unex-
pected Death in Epilepsy) looms [2]. SUDEP, which generally
occurs during or after a seizure, accounts for unanticipated
deaths within the epilepsy community [3]. Although rare,
prevention of deaths caused by SUDEP is possible through
emergency alerts to caregivers and family [4]. Implementing
real-time seizure detection through continuous EEG or ECG
monitoring represents a promising avenue to mitigate the
impact of seizures and enhance the quality of life.

The current frontier in machine learning for seizure de-
tection is deep neural networks (DNNs) [5, 6, 7, 8]. DNNs
can automatically discern high-level features from biomedical
signals, distinguishing seizures without preliminary feature en-
gineering. To construct an efficient epileptic seizure detection
system, a large-scale dataset is required. However, transmitting
raw patient data to a central server could contravene privacy
laws such as the General Data Protection Regulation (GDPR)
and the California Consumer Privacy Act (CCPA).

Federated Learning (FL) has emerged as a robust method
for handling extensive distributed data without the need to
transfer raw data to a centralized location, which could raise
major privacy concerns [9, 10, 11]. Traditional FL involves a
centralized approach, with a central server aggregating trained
model parameters from various devices without transmitting
raw patient data. This centralization, however, introduces risks,
including server failures or delays due to server overload or
an increasing number of devices [12].

Delving deeper into FL algorithms, Federated Averaging
(FedAvg) stands out as one of the notable strategies. In
FedAvg, devices locally update a global model before the
updated parameters are transmitted to the central server [9,
13, 14, 15]. However, FedAvg has its own set of challenges. It
struggles with non-independent and not identically distributed
(non-IID) data distribution commonly found in different de-
vices, which has been shown to hinder the FL process’s
efficiency [16, 17, 18]. Centralized FL is further complicated
by varying computational resources across devices, leading to
unequal local training times.

In this paper, we address the crucial concern of failure points
in centralized Federated Learning (FL) systems, particularly in
the context of healthcare settings like hospitals, and propose a
novel decentralized FL framework that eliminates the need for
a central server. This decentralized approach is illustrated in
Figure 1, focusing on the scenario involving various hospitals,
each dealing with patients displaying diverse seizure types,©2023 IEEE
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ages, or genders.
The core of our work lies in the following main components:

• Real-time Decentralized FL Framework: We develop
a serverless, real-time decentralized Federated Learning
(FL) framework for seizure detection in an interconnected
network of hospitals. This innovative design facilitates a
cooperative and synergistic learning environment among
hospitals, where they can train complex teacher Deep
Neural Networks (DNNs) using both EEG and ECG
signals, and lighter student DNNs using only ECG sig-
nals. This approach ensures collaborative learning without
sharing sensitive patients’ data.

• Adaptive Ensembling for Non-Identical Data Distribu-
tion in Decentralized FL: In our study, we conducted
a comprehensive examination of non-identical patients’
data distributions across individual hospitals, highlight-
ing the significant challenges that the non-Independently
and Identically Distributed (non-IID) nature presents to
learning accuracy. We identify that the performance of
the decentralized FL system is deeply influenced by
the underlying distribution of patients’ data. To address
these challenges, our framework introduces an adaptive
ensembling phase. This phase allows for the learning of
a specific teacher DNN for each hospital, combining the
strength of local models with models from other hospitals.
This approach not only mitigates the challenges posed
by non-IID data distribution but also substantiates the
improvements in seizure detection. We demonstrate the
improvement in seizure detection on the EPILEPSIAE
and TUSZ public datasets.

• Wearable Device Implementation Study: Our research
extends to evaluating the feasibility of deploying the
seizure detection model on wearable IoT devices with
limited resources. We create a knowledge distillation-
based [19] (teacher-student) approach to design high-
precision, low-power devices capable of long-term patient
monitoring after hospital discharge, relying solely on
ECG signal input.

By weaving together these interconnected components,
we provide a comprehensive, decentralized solution to the
centralized FL’s shortcomings. The practical applications of
our work have profound implications in medical scenarios,
emphasizing collaboration among healthcare facilities while
ensuring patient privacy, dealing with inherent data disparities,
and adapting to emerging technological platforms. Our model,
grounded in real-world needs and validated through rigorous
experimentation, serves as a blueprint for future advances in
decentralized FL in healthcare.

The rest of this article is organized as follows. Section II
describes the problem of interest and discusses related work.
Section III presents the training of our proposed formulation
for a decentralized FL framework for epileptic seizure detec-
tion. Section IV describes seizure detection model deployment
to low-power wearable IoT systems for the patient monitor-
ing stage. In Section V, we discuss the experimental setup.
Section VI analyzes our decentralized FL’s computational and
energy consumption characteristics and studies the benefit of

Hospital 1

Model Patients (Data 1)
Hospital 2

Model Patients (Data 2)

Hospital 3 Model Patients (Data 3)

Hospital n

Model Patients (Data n)

Hospital 4Model Patients (Data 4)

Fig. 1: Structure of our proposed decentralized FL. Each hospital
is responsible for different patients with different types of seizures,
gender, and age. The hospitals collaborate with each other by ex-
changing model updates.

the proposed ensembling stage. Finally, in Section VII, we
summarize the main conclusions of this work.

II. RELATED WORK

A. Seizure detection using EEG signal

The benchmark for non-invasive seizure detection is EEG
monitoring [20], which has been used for decades in highly
specialized and costly hospital environments. Several tech-
niques, such as wavelet transform [21, 22], entropies [23],
Hilbert marginal spectrum [24], Hilbert Huang Transform [25],
fusion features [26], and tunable Q-factor [27] are typically
used to extract information from the EEG signal. Deep learn-
ing has recently received considerable attention for specific
applications, such as epileptic seizure detection and prediction.
For instance, [28] proposed a method for the epileptic focus lo-
calization problem by merging an autoencoder and a K-means
algorithm. In [29], they presented a pseudo-prospective seizure
prediction method from an EEG signal. The authors in [30]
performed epileptic seizure detection using EEG signals with
an adaptive implementation of CNNs. In [31], the authors
presented a framework using DNN to capture brain abnormal-
ities based on multi-channel scalp EEG signals. In [32], the
authors proposed a hybrid bilinear DNN using surface EEG
for epilepsy classification diagnosis. However, these studies
demand patients to wear a cap to acquire EEG signals, creating
social stigma and discomfort [4]. Furthermore, EEG record-
ings are highly susceptible to artifacts created by patients’
movements.

B. Seizure detection using ECG signal

In addition to abnormal brain activities during epileptic
seizures, other biosignals can get affected. In [33, 34, 35,
36, 37], they show that epileptic seizures are associated with
increased heart rate and cardiovascular alterations. In [38], the
authors used ECG and PPG signals and reached a sensitivity
of 70% and a corresponding false-alarm rate of 2.11 per hour.
In [39], they proposed a technique that combines time and
frequency-domain features of heart-rate variability. It was lim-
ited to the specific case of newborns and reached a sensitivity
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Fig. 2: Training phase: The overall flow of the proposed decentralized FL system with n hospitals. Each hospital trains an identical teacher
model for epileptic seizure detection on its data locally and independently. The teacher model is composed of three DNNs to extract valuable
information from ECG, EEGF7T3 and EEGF8T4 signals that are acquired from a chest strap and two electrode pairs F7T3 and F8T4. Each
hospital transmits the current weights of the teacher model to other hospitals during the training process and after a specific number of
iterations. Then, each hospital learns the appropriate combination of local and global weights received from other hospitals.

of 60% and specificity of 60%. In [40, 41], they proposed a
multi-parametric machine-learning approach to detect epileptic
seizures by examining the cardiac and respiratory responses
to seizures in the ECG signal. However, these studies did
not attempt to find a personalized solution for each patient
to achieve satisfactory and comparable detection accuracy to
seizure detection by EEG signals.

C. Seizure detection using multi-biosignal combination

Associating other biosignals with EEG can better detect
different types of seizures. In [42], the authors introduced
a combination of electrodermal activity and accelerometer
signals. In [43], the authors have used EEG, Electromyography
(EMG), and ECG signals and have shown an improvement in
sensitivity compared to using each sensor separately. In [44],
the authors performed seizure detection using an SVM model
on multi-channel EEG and single-channel ECG individually
and then fused them into one final decision. In [32], the
authors employed CNN in a combination of EEG, ECG,
and respiration. However, it is impossible to execute these
techniques on IoT wearable devices due to computation and
memory constraints.

D. Model compression using knowledge distillation

In 2015, Hinton et al. [45] introduced the concept of knowl-
edge distillation in neural networks. This involves training a
single model (the student) using the continuous outputs of a
more complex model or ensemble (the teacher), rather than
relying solely on the discrete labels of the dataset. Works
such as [46, 47] have applied knowledge distillation to image

datasets, demonstrating its potential as a robust regularization
technique. These studies showed that a student DNN trained
using knowledge distillation often generalizes better than one
trained directly with dataset labels. Yet, these referenced
systems did not merge data from multiple types or sources.

It’s pertinent to differentiate between ”Multi-modal Data”
and ”Multi-biosignal Combination”. Multi-modal data merges
distinct modalities like text, images, and sound, whereas multi-
biosignal combination integrates various biological signals like
EEG and ECG. In our study, we employ a Multi-biosignal
Combination approach. Specifically, the teacher DNN is
trained by integrating both EEG and ECG signals, enhancing
its depth and precision, and distinguishing our work from
purely multi-modal systems.

E. Patient privacy preservation using federated learning
In the early days of deep learning, the procedure for model

training required distinct steps. It began with the assembly
of significant samples to form a comprehensive and balanced
dataset. This was followed by the creation of a singular,
centralized model that analyzed these samples and produced a
result in line with the ground truth. Post-analysis, adjustments
could be introduced, such as the procurement of extra samples,
dataset refinement, and hyperparameter tuning. However, the
accumulation of data for a specific task can be quite costly,
and raises privacy concerns, along with related legal issues,
particularly in the healthcare field.

Centralized Federated Learning (FL) offers a training pro-
cess for a global model by aggregating multiple local models.
In a centralized FL network, a server mediates model param-
eters between clients. The server consolidates the local model
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parameters through an averaging algorithm, resulting in global
model parameters, as outlined by FedAvg [9].

Researchers have implemented various approaches within
centralized FL. For instance, [48] personalized FedAvg for
specific ECG features for epileptic seizure detection. Similarly,
[49] designed an unsupervised gradient aggregation method to
tackle drift and convergence variability. Additionally, the work
presented in [50] introduced a privacy-preserving federated
learning framework, Fed-ESD, which employs fog nodes as
local aggregators and a spatiotemporal transformer network to
enable sharing of location-based EEG signals for comparable
IoMT applications. However, servers can be vulnerable and
face high bandwidth and energy costs [51, 52], or diminish
learning performance [12]. While centralized methods have
shown promising results, there are inherent challenges that
give rise to the consideration of alternative architectures, such
as Decentralized Federated Learning (DFL).

DFL provides a novel approach to training global models
by facilitating direct interaction between clients, eliminating
the need for a central server. This architecture enhances
privacy protection by minimizing the exposure of data and
model information to a central entity. By allowing clients to
interact directly, DFL also improves efficiency and robustness,
reducing overall network communication and computation
costs, and providing resilience against single-point failures.

Despite these advantages, DFL introduces unique chal-
lenges, such as coordination across a decentralized network,
maintaining consistency, and ensuring data integrity and trust.
Innovative solutions like merging local client models using
transfer learning have been suggested by [53], while [54]
proposed assigning weights to each model from other clients,
creating a weighted model combination.

DFL has also found applications in various fields, in-
cluding healthcare and edge computing, and its exploration
remains relatively uncharted, showing promising avenues for
innovations, particularly in environments where centralized
coordination is infeasible or undesirable.

Both centralized and decentralized Federated Learning (FL)
strategies tackle the essential problem of model learning in the
face of varied or non-Independently and Identically Distributed
(non-IID) client data distributions. While many studies, includ-
ing [55, 56, 57, 58, 59, 60], have harnessed DNN training
using FL across a multitude of applications, the intricate
challenge of model learning with inconsistent or non-IID client
data distributions still stands as a comparatively uncharted area
in both centralized and decentralized environments.

In our method, each client explores the layers from other
client models, identifying the optimal personalized layer com-
bination for their own model.

III. DECENTRALIZED FEDERATED LEARNING
FRAMEWORK

We divide our framework into two phases: decentralized
federated learning framework and seizure detection DNN
deployment to low-power wearable IoT systems. This section
describes the first phase, decentralized FL framework shown
in Figure 2, consisting of three parts:

F7

T3

F8

T4

T4 T3

F8 F7

EEG!!"" EEG!#"$

Fig. 3: Electrode locations of F7T3 and F8T4 for EEG monitoring
using the e-Glass wearable system for epileptic seizure detection [62].

(A) Signal acquisition and pre-processing.
(B) Epileptic seizure detection DNN.
(C) Proposed decentralized federated learning by weighting

the contributions of each hospital to create a more accu-
rate DNN.

A. Signal Acquisition and Pre-Processing

In our proposed decentralized federated learning system,
each hospital includes a teacher and a student network. The
teacher network is formed using EEG and ECG data, whereas
the student network requires only ECG signal [61]. The EEG
signals for the teacher network are gathered from two channels
(F7T3 and F8T4) via four electrodes, as depicted in Figure 3.
These electrodes were specifically selected to capture EEG
signals via e-Glass, a wearable system designed for real-time
scenarios that relies on these four EEG electrodes [62]. e-Glass
is intended to be an unobtrusive system that helps patients
evade the social stigma tied to wearing traditional EEG head
caps. In section VI-B, we demonstrated the feasibility of
epileptic seizure detection in real-time using either the teacher
or student network with edge AI systems.

The decision to utilize the F7T3 and F8T4 EEG channels
for our teacher DNN-based epileptic seizure detection system
was influenced by multiple factors, which accommodate the
seizure type variability among different patients:

1) Seizure Detection: F7T3 and F8T4 channels are located
in the frontotemporal regions of the brain, known for
their involvement in seizure activity. They’re useful in
detecting various types of seizures.

2) Signal Quality: These channels offer cleaner signals with
less noise and interference from muscle activity or eye
movements, enhancing detection accuracy.

3) Computational Efficiency: Limiting to two EEG channels
reduces computational load, making real-time seizure
detection feasible, even on wearable devices with limited
power.

4) Social Acceptance: Using F7T3 and F8T4 channels in
wearables like e-Glass offers a discreet alternative to
traditional EEG caps, reducing associated social stigma.

5) Generalizability: Despite seizure type variability, the
choice of these channels and our DNN design ensure
reliable performance across a broad patient range.

The teacher DNN requires considerable data for the training
process. The data on actual epileptic seizures for a particular
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Fig. 4: Segmentation of ECG, EEGF7T3 and EEGF8T4 signals using
slots of 3-seconds with 100 samples overlap. In the decentralized FL
framework, ECG, EEGF7T3 and EEGF8T4 signals are synchronized
to train the teacher model for each hospital. In other words, ECG,
EEGF7T3 and EEGF8T4 signals are acquired and measured in paral-
lel.

patient is generally limited. Thus, data augmentation tech-
niques have been used in recent works [63, 64] to increase the
amount and diversity of epileptic data. This work exploits data
augmentation by segmenting and overlapping synchronized
ECG and EEG signals. Since interpreting the QRS complexes
and obtaining their characteristics is one of the essential parts
of ECG signal processing, we consider 3-second slots to
ensure a minimum of two QRS complexes. These slots are
obtained by sliding a fixed-length window, with 100 samples
overlapping, through the entire signal. Figure 4 shows how
ECG and EEG signals are segmented in our procedure.

Pre-processing techniques are required and have been uti-
lized in different applications to train DNN models effectively
and efficiently [65]. Thus, we propose a simple method for
pre-processing each segment after signal segmentation. Pre-
processing steps of an ECG and EEG segments are presented
in Algorithm 1 and 2.

The standardization is done on each 3-second segment sepa-
rately to reduce the number of false positives mostly related to
artifacts causing sudden amplitude variations. Consequently,
a potentially significant difference in the magnitude of one
segment does not cause a high degradation in other segments.

B. Epileptic Seizure Detection DNN

This section describes the teacher DNN used in this work for
each hospital for seizure detection. We considered our previous
work’s DNN named Res1DCNN [48] shown in Figure 5. As
shown in Figure 2, the teacher network takes synchronized
ECG and 2-channel EEG segments as inputs and trains three
analogous feature extractors of Res1DCNN models for every

Algorithm 1 Pre-processing of ECG Segment

Require: ECG segment x
Ensure: Standardized ECG segment xstandardized

1: Step 1: Apply 10th-order Low-pass Butterworth Filter
2: xfiltered ← ButterworthFilter(x, order = 10, cutoff = 50)

3: Step 2: Perform Linear Detrending
4: Fit a linear model y = ax+ b to xfiltered.
5: Subtract the fit from the initial data: xdetrended ← xfiltered−

(ax+ b).

6: Step 3: Standardize the Detrended ECG Segment
7: Compute the mean µ and standard deviation σ of xdetrended.
8: xstandardized ← xdetrended−µ

σ

Algorithm 2 Pre-processing of EEG Segment

Require: EEG segment x
Ensure: Standardized EEG segment xstandardized

1: Step 1: Apply 10th-order Low-pass Butterworth Filter
2: xfiltered ← ButterworthFilter(x, order = 10, cutoff = 50)

3: Step 2: Standardize the Filtered EEG Segment
4: Compute the mean µ and standard deviation σ of xfiltered.
5: xstandardized ← xfiltered−µ

σ

input. This process is an ensemble learning technique where
various DNN models are combined and trained to solve
the same problem [66]. We could use all EEG channels;
however, since we studied and experimented with a wearable
setup, we considered only two EEG channels where the
signals can be acquired from e-Glass [62] shown in Figure 3.
In this network, the inputs are EEG and ECG segments
{xECG

i , xEEG1
i , xEEG2

i }. We extract features from the inputs by
passing each of them through Res1DCNN’s feature extractor
to obtain {zECG

i , zEEG1
i , zEEG2

i }. We merge these feature maps
into a single zTi ∈ RL using a linear combination of the
features. More formally, zTi = f(zECG

i , zEEG1
i , zEEG2

i ; θ), where
θ is the trainable weight for the linear combination. When
zTi is obtained, we train a simple fully-connected layer that
predicts the output ŷi from zTi . Finally, a softmax layer outputs
the predicted value. We present the algorithm for the teacher
DNN in Algorithm 3.

C. Personalized Decentralized Federated Learning

A significant amount of data are required to train DNNs and
fit the parameters (often in the order of millions). Therefore,
transferring the raw data to a server consumes a significant
amount of energy [67, 37] and puts the patient’s privacy at risk.
A promising solution to address this problem is to distribute
the computation across several hospitals, which is known as
federated learning (FL), when a central hub coordinates the
learning process [56, 58]. A typical FL framework consists of
a central server and multiple hospitals. The server maintains
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Algorithm 3 Teacher DNN

Require: Synchronized pre-processed ECG signal xECG
i , EEG

signals xEEG1
i and xEEG2

i

Ensure: ŷi

1: Initialize the weights of the teacher model randomly.
2: for xfeature

i in {xECG
i , xEEG1

i , xEEG2
i } do

3: zfeature
i ← Res1DCNN(xfeature

i )

4: Merge these feature maps into a single zT
i using a linear

combination of the features.
5: Initialize the trainable weights θ randomly.
6: zT

i ← θ1z
ECG
i + θ2z

EEG1
i + θ3z

EEG2
i

7: Train a fully-connected layer that predicts the output ŷi
from zT

i .
8: ŷi ← FullyConnected(zT

i )
9: ŷi ← Softmax(ŷi)

Pre-processed 3-seconds signal (768, 1)

conv1D, filter size = 7, 1 → 64, /2 output: (381, 64)

max pooling, pool size = 3, /2 output: (190, 64)

conv1D, filter size = 3, 64 → 64, /2 output: (94, 64)

conv1D, filter size = 3, 64 → 64 output: (92, 64)

conv1D, filter size = 7, 64 → 64, /2
output: (92, 64)

+

conv1D, filter size = 3, 64 → 128, /2 output: (45, 128)

conv1D, filter size = 3, 128 → 128 output: (43, 128)

conv1D, filter size = 7, 64 → 128, /2
output: (43, 128)

+

conv1D, filter size = 3, 128 → 256, /2 output: (21, 256)

conv1D, filter size = 3, 256 → 256 output: (19, 256)

conv1D, filter size = 7, 128 → 256, /2
output: (19, 256)

+

conv1D, filter size = 3, 256 → 512, /2 output: (9, 512)

conv1D, filter size = 3, 512 → 512 output: (7, 512)

conv1D, filter size = 7, 256 → 512, /2
output: (7, 512)

+
output: (7, 512)

Fig. 5: The architecture of the feature extractor of Res1DCNN [48].
It contains 13 convolutional layers with skip connections followed by
a dense layer. Here, ‘/2’ denotes the downsampling operator using a
strided convolution with a factor of 2. ‘→’ denotes the transition from
the input to output channels. The teacher model includes three feature
extractors for ECG, EEGF7T3 and EEGF8T4 signals. The student
model retains one feature extractor for the ECG signal.

a global model, and each hospital maintains a local model.
At the beginning of training, all local models are initialized
randomly. Each hospital performs Stochastic Gradient Descent
and computes the local gradient for a certain number of
iterations [13, 68]. After a certain number of iterations, a
synchronization stage happens where the hospitals send their
local weights to the server. The server performs the Federated
Averaging (FedAvg) algorithm [9] to form a global weight to
update the global model. These steps will be iterated until the

Pre-processed 3-seconds signal
(768, 1)

Hospital 1: conv1D1, filter size = 7
1 → 64, /2

Hospital 1: max pooling
pool size = 3, /2

Hospital 1: conv1D2, filter size = 3
64 → 64, /2
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Fig. 6: Example of ensemble learning process of the first and
second convolution layers of hospital 1. In the synchronization stage,
hospital 1 receives the local weights of other hospitals. Hospital 1
recreates the teacher layers, where each layer is a weighted (a1, b1,
c1, d1, e1, a2, b2, c2, ...) combination of that precise layer from
other hospitals. The weighted combination variables are optimized
to improve seizure detection accuracy on the validation set of the
hospital 1.

model accuracy meets the requirement.
The typical FL framework has drawbacks. Due to its dis-

ability to implement a serverless framework, it is vulnerable to
malfunctioning servers. In other words, the FL process stops
when the server is down. Another disadvantage is that the
common goal of FL is to obtain a global DNN model for all
hospitals by assuming the data from all hospitals come from a
similar distribution. However, when the hospitals’ data come
from different distributions and do not necessarily follow the
same profile, the global DNN is not adapted for each hospital.

To consider the profile of each hospital while still exploiting
the data from other hospitals, we propose a customized variant
of the decentralized FL framework. An additional feature
of the decentralized FL is the prevention of server failure.
Figure 2 illustrates our proposed customized decentralized
FL framework with n devices in the context of epileptic
seizure monitoring. Decentralized FL is a strategy where the
training is distributed among hospitals, and each hospital
communicates with other available hospitals. We explore a
clustering algorithm based on seizure type, by which model
transfer costs can be reduced by limiting the hospitals to
which teacher models are transferred. Thus the communication
bottleneck (server) is removed.

Due to the heterogeneous computation resources of differ-
ent hospitals, the local training time varies across hospitals.
Therefore, after the hospitals trained their local teacher model
for a fixed number of iterations, those who are online send
their current weights to other available hospitals (Wi,1, Wi,2,
..., Wi,n). We propose a model ensemble learning process
after the synchronization stage to improve the seizure detection
accuracy for each hospital separately. The purpose is to obtain
a model tailored to each hospital. As shown in Figure 6,
each hospital recreates the teacher model, where each layer is
obtained by a weighted combination of that precise layer from
all hospitals. Each hospital gets these combination weights by
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enhancing the seizure detection accuracy on its local validation
set. We observe in Section VI that by using our proposed
ensemble learning process, each hospital will take the highest
advantage of the information from the other hospitals’ models.
When the local distribution is highly correlated with a combi-
nation of global and local distribution, the latter is preferable;
therefore, the hospital continues the training with the combined
DNN; otherwise, the hospital keeps the local DNN. Our
proposed framework also contributes to preserving the privacy
of the hospitals’ patient data involved in the training process
by keeping sensitive medical data in the hospitals. We present
personalized decentralized federated learning framework in
Algorithm 4.

Algorithm 4 Personalized Decentralized Federated Learning
Framework for Hospitals

Require: Hospitals H = {H1, H2, . . . ,Hn} with local
teacher model weights W1,i,W2,i, . . . ,Wk,i for each hos-
pital Hi.

Ensure: Personalized teacher model weights
W ′

1,i,W
′
2,i, . . . ,W

′
k,i for each hospital Hi.

1: Step 1: Local Training
2: for each hospital Hi in H do
3: Train local teacher model using local weights

W1,i,W2,i, . . . ,Wk,i.

4: Step 2: Synchronization
5: for each online hospital Hi in H do
6: Send local weights W1,i,W2,i, . . . ,Wk,i to all other

online hospitals.

7: Step 3: Model Ensemble Learning
8: for each hospital Hi in H do
9: for each layer Lj in model of Hospital Hi do

10: Recreate weight Wj,i of the layer Lj as a weighted
combination of weight Wj,k from the corresponding layer
of the models of all other hospitals.

11: This weight W ′
j,i is obtained by: W ′

j,i = aj ·Wj,1+
bj ·Wj,2 + cj ·Wj,3 + . . ..

12: Optimize aj , bj , . . . for accuracy on Hi validation
set.

13: Step 4: Select Best Model
14: for each hospital Hi in H do
15: Compute the seizure detection accuracy of

the local DNN model with original weights
W1,i,W2,i, . . . ,Wk,i and the model with combined
weights W ′

1,i,W
′
2,i, . . . ,W

′
k,i on the local validation set.

16: if accuracy(Wj,i) < accuracy(W ′
j,i) then

17: W1,i,W2,i, . . . ,Wk,i ←W ′
1,i,W

′
2,i, . . . ,W

′
k,i

IV. SEIZURE DETECTION DNN DEPLOYMENT TO
LOW-POWER WEARABLE IOT SYSTEMS

This section describes the patient monitoring stage, where
a patient is discharged from a hospital. Running the teacher
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Fig. 7: Deployment phase: The stage where the hospital discharges
a patient. Each hospital performs the knowledge distillation process
from the enriched teacher model to the smaller student model. The
student model is a single DNN that requires only an ECG signal and
can be implemented on wearable devices with limited memory and
computational resource for long-term patient monitoring.

DNN on resource-limited devices is often not feasible due to
its demand for ECG, EEGF7T3 and EEGF8T4 signals. Using the
Many-to-One Knowledge Distillation method, we can compact
the knowledge from the teacher DNN, which requires these
multiple signals, into a student DNN that needs only the ECG
signal.

Knowledge distillation allows us to reduce the size of the
teacher DNN to make it compatible with devices having lim-
ited memory and power. As established in [69, 45, 70, 71], one
can successfully transfer knowledge from an ensemble model
(teacher model) to a singular student model. As depicted in
Figure 7, each hospital houses a student network that solely
relies on ECG signals. Every hospital carries out the Many-to-
One Knowledge Distillation, moving insights from the larger
teacher network to the more lightweight student network.

To impart the knowledge from the pre-trained teacher to
the student, we use an L2 distance between the output of the
teacher DNN (zTi ) and the output of the student DNN (zSi ) as
our loss function. Training the model with this loss function
steers the feature map of the student to mirror that of the
teacher. We select the feature map zTi of the teacher model due
to its enhanced signal intensity and spatial correlation informa-
tion. The student network’s reduced complexity renders it apt
for wearable devices running for prolonged periods. Notably,
despite using only the ECG signal, the student network reaches
a detection performance on par with the teacher network [61].
Acquiring the ECG signal consumes less energy, and the
devices for this are readily available. This makes long-term
patient monitoring more accessible.

The Many-to-One Knowledge Distillation process is out-
lined in Algorithm 5.
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Algorithm 5 Many-to-One Knowledge Distillation for Student
DNN

Require: H = {H1, H2, . . . ,Hn}, personalized teacher DNN
outputs zT

i

Ensure: Student DNN outputs zS
i

1: for Hi in H do
2: Train student DNN using only ECG signals.
3: Define loss function as L = ||zT

i − zS
i ||22.

4: Update student DNN by minimizing the loss function.

V. EXPERIMENTAL SETUP

This section presents the experimental setup to evaluate
our proposed decentralized FL framework regarding epileptic
seizure detection performance and energy consumption.

A. Epileptic Seizures Datasets

1) EPILEPSIAE dataset: We utilize the EPILEPSIAE
dataset [72], an extensive manually annotated epilepsy dataset
containing one-lead ECG and 19-channel EEG data from 30
patients. The dataset includes diverse seizure types: complex
partial (CP), simple partial (SP), secondarily generalized (SG),
and unclassified (UC) (Figure 9a). Due to synchronization
issues in ECG and EEG signals for one patient, we analyze
data from 29 patients, totaling 4603 hours of recordings with
266 seizures. The patient demographics consist of 19 males
and 10 females (Figure 8a), predominantly aged between 40
and 50 years (Figure 10a). The signals were recorded at a
256 Hz sampling rate with 16-bit resolution. While the teacher
network utilizes both EEG and ECG data, the student network
only employs ECG signals. The teacher network’s EEG data
is acquired from four electrodes (two channels): F7T3 and
F8T4 (Figure 3), selected for compatibility with the e-Glass
wearable device, which avoids social stigma associated with
traditional EEG equipment.

2) TUSZ dataset: We also use the TUH EEG Seizure
Corpus (TUSZ) dataset [73], the world’s most extensive corpus
of annotated data for seizure detection, which includes records
from 220 patients. As shown in Figure 8b, there are 117 female
and 103 male patients. The age distribution (Figure 10b)
reveals that most patients are between 40 and 70 years old.
The dataset contains EEG and ECG data, with the most
common number of EEG channels being 31. As described
in Sec. III-A, we only require four EEG channels to train the
teacher network. The majority of EEG signals are sampled at
250Hz (87%), with the remaining signals sampled at 256Hz
(8.3%), 400Hz (3.8%), and 512Hz (1%). TUSZ encompasses
various seizure morphologies, including Focal Non-Specific
Seizure (FNSZ), Generalized Non-Specific Seizure (GNSZ),
Complex Partial Seizure (CPSZ), Absence Seizure (ABSZ),
tonic seizure (TNSZ), simple partial seizure (SPSZ), tonic-
clonic seizure (TCSZ), and Myoclonic Seizure (MYSZ), as
shown in Figure 9b. The TUSZ dataset offers event-based
and term-based annotations, capturing seizure evolution and
duration. Event-based annotations provide seizure origin de-
tails per channel. Both multi-class and bi-class annotations
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are included for machine learning research, with multi-class
annotations detailing seizure types and bi-class annotations
indicating seizure presence.

B. Detection Performance Metrics

We considered three different metrics to evaluate the detec-
tion performance of our proposed framework. Sensitivity (Sen)
(Eq. (1)) represents the percentage of ictal samples that are
labeled correctly. Specificity (Spe) (Eq. (2)) shows the per-
centage of inter-ictal samples that are labeled correctly. These
metrics are defined as follows:

Sen =
TP

TP + FN
, (1)

Spe =
TN

FP + TN
, (2)

where TP, TN, FP and FN are true positive, true negative, false
positive and false negative, respectively.

Finally, we evaluate the geometric mean (Gmean) (Eq.
(3)) [74], which reflects both sensitivity and specificity and
measures the balance between classification performance in
both classes. A low geometric mean indicates poor perfor-
mance in classifying the seizure cases, even if the non-seizures
cases are correctly classified or vice versa.

Gmean =
√
Sensitivity × Specificity. (3)

C. Decentralized Training Setup

In our evaluation of the proposed decentralized Federated
Learning (FL) system, we paid special attention to aspects
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such as energy consumption and real-time performance. To
this end, we envisioned a scenario involving four hospitals,
each with their unique subset of patient data, randomly dis-
tributed among them. All the hospitals operated on the same
teacher and student Deep Neural Network (DNN) architecture.

The first phase saw each hospital conduct the proposed de-
centralized FL, where the local teacher model underwent train-
ing for 5000 iterations. Following this, the model’s weights
were transmitted to all other participating hospitals. Each
hospital then initiated the model ensemble learning strategy
detailed in Section III-C, comparing epileptic seizure detection
accuracy between local weights and a blend of global and
local weights on their respective local validation data. The
weights that yielded higher detection accuracy were accepted
for further use.

In order to assess the detection accuracy of our proposed
decentralized FL more effectively, we considered the division
of patient data across hospitals based on similarities in seizure
type and age range. Importantly, no two hospitals shared data
from the same patients. Moreover, as part of our data handling
strategy, each hospital’s data was split into a training set,
comprising 80% of the data, and a test set with the remaining
20%. This separation ensured an ample dataset for training our
DNN models, while also reserving a substantial amount for
an unbiased evaluation of the models’ performance. Further
refining our strategy, we carved out a validation set from
the initial training set. This validation set was used to guide
hyperparameter tuning and inform decisions regarding the
training process, such as implementing early stopping to
prevent overfitting.

D. Learning Parameters

We trained the teacher and student DNNs from scratch in
our proposed framework using pre-processed 3-second ECG
and EEG segments. The weights initialization of the layers
follows a normal distribution with zero mean and 0.01 as the
standard deviation. We initialize all the biases to zero. During
the training, the network adjusts the model’s parameters to
minimize the cross-entropy loss. We performed the binary
classification with two nodes where each class gets its output
neuron and can be easily extended to multi-class classification
in future work. Finally, we use the Adam optimizer [75] with
a base learning rate of 10−4 and implement the DNNs on
Tensorflow 1.14.0 [76].

USB Otii ARC USB
Kendryte K210

Raspberry PI Zero

or

Personal computer

Fig. 11: Hardware setup for the energy consumption measurement.
Otii Arc is connected to the computer using a USB cable. The main
output of the Otii Arc is connected to the voltage supply input of the
IoT wearable device. The computer’s USB port’s current is used to
power the Otii Arc and edge AI platforms. The Otii desktop appli-
cation enables us to measure and analyze the energy consumption of
the edge AI platform. In our evaluation, we considered a development
system that uses AI technologies embedded on a Kendryte K210 chip
in different IoT wearable systems [77] or Raspberry Pi Zero.

E. Edge AI Evaluation Platforms

Wearable devices have small batteries and low-power pro-
cessors compared to desktop processors. After a hospital dis-
charges a patient and in the patient monitoring stage, this work
uses two platforms, the Kendryte K210 [77] and Raspberry Pi
Zero [78] with different features such as computing power and
memory size to analyze and compare the energy consumption
and timing requirements for the continuous execution of the
proposed DNNs. Note that the proposed process must be ex-
ecuted repeatedly in real-time and have a satisfying detection
performance.

The Raspberry Pi Zero includes an ARM11 CPU running
at 1 GHz, has 512MB RAM, and performs the inference
process of a given DNN with power supplied via a micro
USB connector. The Kendryte K210 is a chip system with
specific circuits/components for machine vision and ML. This
chip system employs advanced ultra-low processing with the
help of a 64-bit dual-core processor equipped with a high-
performance hardware accelerator of the CNN. It supports
convolution kernels, various type of activation function, and
neural network parameter size up to 6 MB for real-time
application.

We used Otii Arc [79] as a power analyzer and power supply
for the inference process of our proposed DNNs. Otii Arc
is a measurement tool for designing highly energy-efficient
algorithms. It is powered via USB from the laptop and records
both current and voltage, and it displays them in real-time for
analysis and comparison. It provides up to 5 V output voltage
and runs high-resolution current measurements with a sample
rate of up to 4 kHz for the range of 1 µA-5 A. Figure 11 shows
the hardware setup of our energy consumption measurement.
We considered the Kendryte K210 chip and Raspberry Pi Zero
as they have comparable processing capabilities to modern
wearable architectures [80].

F. Baselines Description

• Federated Averaging (FedAvg) [9]: FedAvg is tradition-
ally known for its approach to Federated Learning where
devices train models locally on their data and send model
updates to a central server for aggregation. However, in
our experimental setup, we’ve adapted FedAvg to fit a
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decentralized federated learning framework. In this con-
text, hospitals still compute local models, but instead of
communicating with a central server, they share updates
directly with other hospitals. This decentralized approach
facilitates iterative averaging of model updates without
the need for a centralized authority.

• Decentralized Federated Learning via Mutual Knowledge
Transfer (Def-KT) [53]: In the context of IoT systems,
[53] explores decentralized federated learning (DFL)
where multiple IoT clients collaboratively train models
for a shared task without disseminating their private
training data and devoid of a central server. A prominent
challenge that arises in such a setting is client-drift,
especially when data is diverse across clients, resulting
in slower convergence and diminished learning efficacy.
To address this, the ”Decentralized Federated Learning
via Mutual Knowledge Transfer (Def-KT)” algorithm is
introduced. Unlike conventional methods that directly
average model parameters, Def-KT facilitates clients to
merge models by transferring their individual learned
knowledge to one another, effectively tackling the client-
drift concern.

• Learning to Collaborate (L2C) [54]: This baseline tackles
the challenge of crafting personalized models for distinct
tasks given constraints of limited data and computa-
tional resources on edge devices. Traditional decentral-
ized learning (DL), while suitable for creating a universal
model using distributed data, isn’t adept at personalizing
models for varied tasks or optimizing network topologies.
In DL, the fixed mixing weights can’t easily adjust to
different nodes, tasks, or stages of learning, making per-
sonalization difficult. To overcome these limitations, [54]
offers ”Learning to Collaborate (L2C)”, which refines
the models to minimize local validation loss for specific
tasks.

VI. EVALUATION

This section presents an evaluation of the accuracy, runtime,
and energy consumption of seizure detection of our proposed
decentralized FL with the knowledge distillation approach on
the Kendryte K210 and the Raspberry Pi Zero unit.

A. Detection Performance Analysis

In an effort to assess the proposed ensemble learning
framework for decentralized FL, we conducted a simulation
using a realistic scenario involving four hospitals with a
random distribution of patients. The detection accuracy using
TUSZ and EPILEPSIAE datasets is compared in Table I and
Table II. Here, we contrasted the results from our proposed
ensemble learning approach, which uses a combination of local
and other models, with conventional methods like FedAvg,
which averages local and other models, and other techniques
as proposed in [53] and [54]. Upon analysis of the TUSZ
dataset, we noticed that the Gmean average rose to 85.83%
with our proposed ensemble learning, from 77.58% with
FedAvg, 81.08% with [53], and 84.84% with [54]. Similar
improvements were observed with the EPILEPSIAE dataset,
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Fig. 12: Proposed ensemble learning versus FedAvg in decentralized
FL on the TUSZ dataset with different number of hospitals.

where the Gmean average increased to 88.72% from 80.77%
with FedAvg, 85.41% with [53], and 87.79% with [54]. In
our ensemble learning methodology, each hospital generates
a ’teacher model’, with each layer representing a weighted
combination of the corresponding layer from all other hos-
pitals. This allows each hospital to maximally leverage the
information available from the models of the other hospitals.
We also present results from the student model, derived using
the Many-to-One Knowledge Distillation technique from the
teacher model. Notably, the student model exclusively utilizes
the ECG signal, eliminating the need for both ECG and EEG
signals, which is a distinct advantage in practical applications.

We deployed the detection algorithm with more hospitals
to validate the practicality of the proposed ensemble learning
in decentralized FL in large-scale settings. Figure 12, shows
and compares the average Gmean of our proposed ensemble
learning with FedAvg in FL, where we have 4, 8, 12, and 16
hospitals. We observe that the detection accuracy of FedAvg
tends to degrade in large-scale FL settings. In these cases,
increasing the number of hospitals makes the data distribution
of patients between hospitals more dissimilar. As a result,
solely averaging the weights does not create a more accurate
model. That is where implementing the proposed ensemble
learning demonstrates its importance in large-scale FL settings.
When scaling the number of hospitals, each hospital contains
fewer patients. As a result, the proposed ensemble learning
aids hospitals in obtaining a more personalized DNN for their
patients.

To assess how similarities between patients in the same
hospital can help to improve the models obtained, we studied
different arrangements in which we placed patients manually
among hospitals. In the first plan, we divide patients according
to their ages. Therefore, patients within an age range are
assigned to a hospital. Table III shows the results of our
proposed framework for each hospital in the TUSZ database.
We note that, once again, our proposed ensemble learning
outperforms FedAvg by 15%.

In our second plan, our goal is to group patients experienc-
ing similar seizures and assign them to clusters. Put simply,
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TABLE I: Comparative performance analysis of epileptic seizure detection models on the TUSZ dataset distributed across four hospitals.
This analysis involves the decentralized Federated Learning (FL) model trained using FedAvg, models presented in Li et al., 2021 [53] and
Li et al., 2022 [54], and our newly proposed ensemble learning model (the teacher model). All these models require both ECG and EEG
signals for their operation. In addition to these, we present results from our student model, obtained through the Many-to-One Knowledge
Distillation technique from the teacher model. Notably, the student model requires only the ECG signal. For the purpose of this experiment,
patients were randomly assigned to each hospital.

Hospital 1 Hospital 2 Hospital 3 Hospital 4

Number of patients 55 55 55 55 Average

Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean

T
U

SZ

FedAvg
ECG + EEG

75.51% 78.89% 77.18% 71.26% 76.71% 73.93% 79.52% 78.20% 78.85% 80.85% 79.91% 80.37% 76.78% 78.42% 77.58%

Results of [53]
ECG + EEG

80.92% 79.61% 80.26% 79.12% 80.33% 79.72% 81.99% 82.78% 82.38% 81.33% 82.67% 81.99% 80.84% 81.34% 81.08%

Results of [54]
ECG + EEG

86.77% 82.51% 84.61% 89.02% 84.20% 86.57% 84.55% 83.07% 83.80% 85.00% 83.84% 84.41% 86.33% 83.40% 84.84%

Proposed
ensemble learning
(Teacher model)

ECG + EEG

87.81% 82.06% 84.88% 91.45% 84.36% 87.83% 85.88% 83.77% 84.81% 86.63% 85.05% 85.83% 87.94% 83.81% 85.83%

Many-to-One
Knowledge distillation

(Student model)
ECG

80.11% 79.23% 79.66% 82.04% 83.15% 82.59% 79.09% 80.43% 79.75% 78.85% 80.63% 79.73% 80.02% 80.86% 80.43%

TABLE II: Comparative performance analysis of epileptic seizure detection models on the EPILEPSIAE dataset distributed across four
hospitals. This analysis includes the decentralized Federated Learning (FL) model trained using FedAvg, models presented in Li et al.,
2021 [53] and Li et al., 2022 [54], and our newly proposed ensemble learning model (the teacher model). Each of these models necessitate
the usage of both ECG and EEG signals. Additionally, we include results from our student model, which was obtained via the Many-to-One
Knowledge Distillation technique from the teacher model. Remarkably, the student model operates using only the ECG signal. For this
experiment, patients were randomly assigned to each hospital.

Hospital 1 Hospital 2 Hospital 3 Hospital 4

Number of patients 7 7 8 7 Average

Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean

E
PI

L
E

PS
IA

E

FedAvg
ECG + EEG

84.22% 86.19% 85.19% 77.97% 79.78% 78.86% 80.49% 82.01% 81.24% 77.33% 78.29% 77.80% 80.00% 81.56% 80.77%

Results of [53]
ECG + EEG

89.27% 90.71% 89.98% 83.42% 84.89% 84.15% 86.63% 86.17% 86.39% 80.51% 81.75% 81.12% 84.95% 85.88% 85.41%

Results of [54]
ECG + EEG

93.38% 90.26% 91.80% 84.73% 88.57% 86.62% 90.47% 89.67% 90.06% 83.58% 81.82% 82.69% 88.04% 87.58% 87.79%

Proposed
ensemble learning
(Teacher model)

ECG + EEG

94.34% 91.79% 93.05% 85.71% 88.43% 87.05% 91.14% 91.64% 91.38% 84.91% 81.97% 83.42% 89.02% 88.45% 88.72%

Many-to-One
Knowledge distillation

(Student model)
ECG

89.09% 89.86% 89.47% 83.39% 86.75% 85.05% 86.48% 86.91% 86.69% 82.60% 78.59% 80.57% 85.39% 85.52% 85.44%

we segregate patients across multiple hospitals using the k-
means clustering method. The intent here is to ensure that
seizure types within a given hospital are more similar to each
other than to those in other hospitals. The outcomes of our
proposed decentralized federated learning for each hospital,

utilizing the TUSZ and EPILEPSIAE databases, are illustrated
in Tables IV and V. Comparing our proposed ensemble
learning to FedAvg, we noted that the average Gmean rises
from 83.92% to 89.52% on the TUSZ dataset, and from
88.69% to 94.64% on the EPILEPSIAE dataset. We deduced
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TABLE III: Performance comparison between a decentralized Federated Learning (FL) model trained using FedAvg and our novel ensemble
learning model for epileptic seizure detection. The analysis uses the TUSZ dataset distributed across four hospitals, with patient assignment
to each hospital based on a specific age range.

Hospital 1 Hospital 2 Hospital 3 Hospital 4

Number of patients 32 39 116 33

Age intervals 2-25 26-48 49-71 72-93 Average

Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean

T
U

SZ

FedAvg 69.91% 74.71% 72.27% 78.18% 62.51% 69.90% 78.77% 75.82% 77.28% 63.71% 65.78% 64.73% 72.64% 69.70% 71.04%

Proposed
ensemble learning 86.37% 84.00% 85.17% 86.02% 84.41% 85.21% 84.88% 83.69% 84.28% 83.52% 84.18% 83.84% 85.19% 84.07% 85.85%

that clustering patients based on their seizure type results in
superior detection performance from each hospital’s DNN.
However, the sharing of cluster identities amongst hospitals
is necessary, leading to potential privacy issues. Nevertheless,
our proposed ensemble learning technique offers a better
means of safeguarding patient privacy within a decentralized
federated learning system, while simultaneously providing a
more tailored DNN that leads to improved seizure detection
for each hospital.

Federated learning, although advantageous, faces chal-
lenges. In particular, when the number of hospitals grows,
the communication cost can escalate significantly. These chal-
lenges can broadly be categorized into three areas: hetero-
geneous data, asynchronous updates, and client participation.
Heterogeneity in data distribution, particularly non-IID data
among clients, can affect model convergence and accuracy.
Similarly, with a larger number of clients, the time it takes for
each client to compute and send their model updates can vary,
thus necessitating asynchronous updates. Client participation,
referring to the involvement of each client in the collaborative
training process, is also crucial for the success of the federated
learning system due to variations in availability, resources,
and data distributions. Our research is dedicated to addressing
these challenges.

To mitigate the impact of data heterogeneity on model
convergence and accuracy, we introduce an adaptive ensemble
learning approach. This technique is formulated to effectively
manage the variability in data across different clients. Addi-
tionally, we have devised a strategy, as displayed in Tables IV
and V, to cluster patients based on their seizure type, enhanc-
ing the DNN’s detection performance for each hospital. This
method is analogous to client sampling in federated learning,
where a subset of clients with similar seizure types is selected
for each training round. This strategy not only helps reduce
communication overhead but also accommodates clients with
limited resources or availability. Through these solutions, we
effectively address the challenge of high communication costs
while enhancing the performance and efficiency of federated
learning in our healthcare context.

Further supplementing our evaluation, we have incorporated
Table VI, showcasing the potency of our proposed ensem-

ble learning methodology on various other medical datasets,
including the MIT-BIH Arrhythmia Dataset [81]. This addi-
tion solidifies the robustness and versatility of our approach,
highlighting its potential value not just within the confines of
the datasets initially considered, but also extending its utility
across the broader healthcare domain and patient monitoring
scenarios. These results, thereby, emphasize the importance
and wide ranging applicability of our proposed ensemble
learning approach in the landscape of decentralized Federated
Learning within healthcare.

B. Energy Consumption Analysis

In this work, we also want to perform long-term patient
monitoring to perform the epileptic seizure detection algorithm
on a low-energy embedded medical platform with limited com-
putational resources that operates on a battery. For instance,
the e-Glass wearable system [62] shown in Figure 3 contains
a 570 mAh battery and features an ultra-low-power 32-bit
microcontroller STM32L151 [82] with an ARM® Cortex®-
M3 with 48 KB RAM and 384 KB Flash. Therefore, e-
Glass communicates with a smartphone or smartwatch using
Bluetooth low energy (nRF8001) [83].

We study the Kendryte K210 and Raspberry Pi Zero
platforms to examine the complexity, lifetime, and energy
efficiency of our approach. In the implementation code, all
the computations and storage are in a 16-bit fixed point. We
chose 13 bits for the fractional part using the results of the
validation set. We observed that dedicating more bits to the
fractional part causes overflows in the computations. On the
other hand, reducing the number of fraction bits gives rise
to a considerable accuracy drop. Since we use the fixed-point
representation of numbers, we save the amount of storage by a
factor of 4 compared to 64-bit floating-point operations. This
compression is crucial because it enables our student network
to be applicable on various memory-limited embedded devices.

Table VII shows the seizure detection execution time per
3-second segment for teacher and student DNNs. We obtain
the represented numbers by running the experiments for the
whole test set. We observe that we can continuously monitor
the patients in real time using teacher and student DNNs in
the proposed decentralized FL. One of the benefits of the
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TABLE IV: Performance comparison of epileptic seizure detection models on the TUSZ dataset across four hospitals. The models under
comparison are a decentralized Federated Learning (FL) model trained using FedAvg and our proposed ensemble learning model. For the
purpose of this study, patients exhibiting similar seizure types were grouped and assigned to the same hospital.

Hospital 1 Hospital 2 Hospital 3 Hospital 4

Number of patients 63 67 41 49

Type and FNSZ:139 GNSZ:93 FNSZ:487 GNSZ:489 FNSZ:379 GNSZ:0 FNSZ:645 GNSZ:0

number CPSZ:367 ABSZ:87 CPSZ:0 ABSZ:0 CPSZ:0 ABSZ:0 CPSZ:0 ABSZ:0

of seizure TNSZ:62 SPSZ:52 TNSZ:0 SPSZ:0 TNSZ:0 SPSZ:0 TNSZ:0 SPSZ:0

TCSZ:48 MYSZ:3 TCSZ:0 MYSZ:0 TCSZ:0 MYSZ:0 TCSZ:0 MYSZ:0 Average

Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean

T
U

SZ

FedAvg 85.31% 77.60% 81.36% 79.59% 77.98% 78.78% 90.22% 93.97% 92.07% 85.40% 81.65% 83.50% 85.13% 82.80% 83.92%

Proposed
ensemble learning 87.94% 84.90% 86.40% 86.58% 85.94% 86.25% 98.57% 96.79% 97.67% 91.92% 83.84% 87.78% 91.25% 87.86% 89.52%

TABLE V: Comparative analysis of epileptic seizure detection performance between a decentralized Federated Learning (FL) model trained
with FedAvg and our proposed ensemble learning model. The evaluation is conducted on the EPILEPSIAE dataset distributed across four
hospitals. In this study, patients experiencing similar types of seizures were assigned to the same hospital.

Hospital 1 Hospital 2 Hospital 3 Hospital 4

Number of patients 6 2 2 19

Type and number UC:4 CP:3 UC:4 CP:29 UC:26 CP:103 UC:28 CP:0

of seizure SG:6 SP:33 SG:0 SP:3 SG:14 SP:9 SG:2 SP:2 Average

Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean

E
PI

L
E

PS
IA

E FedAvg 86.72% 89.41% 88.05% 88.75% 88.00% 88.37% 95.01% 96.63% 95.81% 80.50% 84.64% 82.54% 87.74% 89.67% 88.69%

Proposed
ensemble learning 89.70% 96.99% 93.27% 94.33% 96.58% 95.44% 100% 100% 100% 83.89% 96.27% 89.86% 91.98% 97.46% 94.64%

TABLE VI: Performance comparison in terms of sensitivity, specificity, and geometric mean between a decentralized Federated Learning
(FL) model trained using FedAvg and our proposed ensemble learning model. The models are evaluated on the MIT-BIH Arrhythmia Database
distributed across four hospitals, with patients being randomly assigned to each hospital.

Hospital 1 Hospital 2 Hospital 3 Hospital 4

Number of patients 12 12 12 12

Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean Sen Spe Gmean

M
IT

-B
IH

FedAvg 100% 96.00% 97.97% 97.10% 95.97% 96.53% 97.00% 96.53% 96.76% 96.22% 96.87% 96.54% 97.58% 96.34% 96.95%

Proposed
ensemble learning 100% 98.66% 99.33% 100% 100% 100% 100% 98.00% 98.99% 99.33% 100% 99.66% 99.83% 99.16% 99.49%
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Fig. 13: Energy consumption monitoring on the Raspberry Pi Zero
and Kendryte K210 during the inference of student DNN and Idle
state. Both platforms accomplish seizure detection in real-time. The
Raspberry Pi Zero executes the inference quicker than the Kendryte
K210 but consumes more energy. The energy consumption of the
Idle state of Kendryte K210 is significantly less than the Raspberry
Pi Zero.

student DNN is that it runs faster than the teacher DNN while
achieving detection accuracy comparable to the teacher DNN.
It avoids EEG signal acquisition and, as a result, provides
more comfort to patients. This distillation (compression) from
the teacher to student DNN is crucial because it enables
our network to be applicable on various memory-limited
embedded devices without affecting detection accuracy.

TABLE VII: Results of the quantitative evaluation of the run time
for every 3-second segment in the student and teacher network
architectures in the Raspberry Pi Zero and Kendryte K210.

Network Platform Run time (millisec.)

Teacher DNN

(EEG + ECG)
Raspberry Pi Zero 2,080.56 ± 12.56

Distilled Student DNN

(ECG)
Raspberry Pi Zero 720.15 ± 32.46

Teacher DNN

(EEG + ECG)
Kendryte K210 2,998.08 ± 4.09

Distilled Student DNN

(ECG)
Kendryte K210 1,040.64 ± 5.67

Epilepsy is an unpredictable disorder that can produce
another health complication; therefore, patients must be con-
tinuously monitored. Figure 13 shows the inference energy
consumption of a 3-second segment utilizing the student DNN.
We realize that Raspberry Pi Zero and Kendryte K210 achieve
the inference rapidly and often remain in an idle state, resulting
in longer battery life and longer patient monitoring. Table VIII
evaluates the battery lifetime of the student network in our
desensitized FL using the 570 mAh battery of the e-Glass [62].
We understand that the proposed framework can monitor a
patient in real-time for 7.86 hours on the Raspberry Pi Zero
and 16.29 hours on the Kendryte K210 on a single charge.

TABLE VIII: Battery life of an edge device using the e-Glass [62]
battery to run a student network to monitor patients and detect
epileptic seizures.

Method Platform Battery life (hours)

Distilled Student DNN

(ECG)
Raspberry Pi Zero 7.86 ± 0.09

Distilled Student DNN

(ECG)
Kendryte K210 16.29 ± 0.06

VII. CONCLUSION

In this paper, we have proposed a serverless FL framework
consisting of a training phase with an adaptive ensembling
stage and a deployment phase using a knowledge distillation
technique. The adaptive ensembling stage leads to learning
a specific DNN for each medical center by discovering the
optimal combination of local models and models from other
available hospitals. It demonstrates its benefit in an actual
scenario when we scale up the number of hospitals and
where the patients’ data distribution in different hospitals is
usually non-IID. We adjusted the DNN complexity by using
a knowledge distillation technique to reduce the computa-
tion requirements of the model (memory usage and energy
consumption) to meet the resource constraints of wearable
systems. Thanks to this solution, we can leave the training
phase as complex as we need to obtain a high detection
accuracy. We conducted extensive experiments with the TUSZ
and EPILEPSIAE datasets to verify our analysis.
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