
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Multiparty Homomorphic Encryption:
from Theory to Practice

Christian Vincent MOUCHET

Thèse n° 8846

2023

Présentée le 29 septembre 2023

Prof. O. N. A. Svensson, président du jury
Prof. C. González Troncoso, Prof. J.-P. Hubaux, directeurs de thèse
Prof. F. Kerschbaum, rapporteur
Prof. C. Orlandi, rapporteur
Prof. B. Ford, rapporteur

Faculté informatique et communications
Laboratoire d’ingénierie de sécurité et privacy
Programme doctoral en informatique et communications

For there was a moment when anything was possible.
And there will be a moment when nothing is possible.

But in between we can create.
— Mohsin Hamid

i

Abstract

Multiparty homomorphic encryption (MHE) enables a group of parties to encrypt data in a way
that (i) enables the evaluation of functions directly over its ciphertexts and (ii) enforces a joint
cryptographic access-control over the underlying data. By extending traditional (single-party)
homomorphic encryption (HE), MHE schemes support the design and deployment of highly
efficient protocols for secure multiparty computation (MPC).

MPC protocols based on MHE have highly desirable properties: They generally require less
communication than traditional MPC techniques and have a fully public transcript. Hence,
most of their execution-related costs can be outsourced to an untrusted external party (such as
a cloud server). Although promising in theory, MHE-based MPC solutions have not yet been
implemented in any of the 30+ existing MPC frameworks, thus revealing a gap between theory
and practice. This dissertation summarizes our work toward closing this gap, by proposing
contributions to both sides.

On the theoretical side, we propose two MHE constructions that extend the new generation of
HE schemes to the multiparty setting. Our first construction is an N -out-of-N -threshold MHE
scheme that revisits the seminal lattice-based MHE construction by Asharov et al. (EURO-
CRYPT’12). Notably, we improve the efficiency of its setup phase, and we generalize its decryp-
tion procedure into a generalized key-switching operation that further enables re-encryption,
conversion to secret-shares, and the interactive bootstrapping of its ciphertexts. Our second
construction extends the first with fault-tolerance capabilities. This extension provides a T -out-
of-N -threshold MHE scheme that stands as a compact and efficient alternative to the threshold
scheme of Boneh et al. (CRYPTO‘18), when synchronous communication can be assumed.

On the practical side, we propose the Lattigo library and the Helium system. Lattigo is
an open-source Go package that implements the state-of-the-art HE schemes, along with their
multiparty extensions. It is also the first maintained library to implement the bootstrapping pro-
cedure for approximate homomorphic encryption. Helium builds on top of Lattigo and provides
the first end-to-end open-source implementation of an MHE-based MPC protocol. We exploit
the theoretical properties of this protocol to propose a helper-assisted setting, where the parties
delegate most of the protocol execution cost to an honest-but-curious third party (e.g., a cloud
service). As a result, Helium is also the first open-source system to support MPC with sub-linear
cost for the parties, without assuming non-collusion between the multiple delegate nodes.

iii

Résumé

Le chiffrement homomorphe multipartite (MHE) permet à un groupe composé de multiple parties
de chiffrer des données de manière à (i) permettre l’évaluation de fonctions directement sur les
données chiffrées et (ii) d’appliquer un contrôle d’accès cryptographique conjoint sur les données
sous-jacentes. En étendant le chiffrement homomorphe (HE) classique (à une seule partie), les
systèmes de cryptage MHE permettent d’élaborer des protocoles très efficaces pour le calcul
multipartite sécurisé (MPC) dans le modèle d’un adversaire passif contrôlant une majorité des
parties.

Les protocoles de calcul multipartite basés sur le MHE présentent des propriétés intéressantes :
ils nécessitent généralement moins de communication que les techniques de calcul multipartite
traditionnelles et ils reposent entièrement sur l’échange de messages pouvant être publiquement
divulgués. Par conséquent, la plupart des coûts liés à leur exécution peuvent délégués de façon
sécurisée à une tierce partie externe (telle qu’un serveur dans le cloud). Bien qu’en théorie
prometteuses, les solutions MPC basées sur le MHE n’ont encore été mises en œuvre dans aucune
des 30+ solution logicielles MPC existantes, ce qui révèle un fossé entre la théorie et la pratique.
Cette thèse résume notre travail visant à combler ce fossé, en proposant des contributions sur
ses deux fronts.

Du côté théorique, nous proposons deux nouvelles constructions MHE qui étendent la dernière
génération de systèmes de cryptage HE avec des fonctionnalités multipartites. Notre première
construction est un système de cryptage à seuil N -sur-N qui revisite la construction basée sur
les réseaux euclidiens introduite par Asharov et al. (EUROCRYPT’12). Nous améliorons no-
tamment l’efficacité de sa phase d’initialisation et nous généralisons sa procédure de décryptage
en une opération de key-switching généralisée qui permet en outre la re-encryption, la conversion
en parts secrètes et le rafraichissement des textes chiffrés. Notre deuxième construction étend la
première avec des capacités de tolérance aux pannes. Cette extension fournit un MHE à seuil
T -sur-N qui constitue, dés lors qu’il est possible de supposer une communication synchrone, une
alternative compacte et efficace à la proposition de Boneh et al. (CRYPTO‘18).

Du côté pratique, nous proposons la bibliothèque logicielle Lattigo et le système Helium.
Lattigo est un package Go open-source qui implémente les systèmes de cryptage HE de pointe
ainsi que leurs extensions multipartites MHE. C’est également la première bibliothèque logicielle
maintenue à mettre proposer une implémentation pour le bootstrapping du chiffrement homomor-
phe approximatif proposé par Cheon et al. (ASIACRYPT’17). Helium s’appuie sur Lattigo et
fournit la première implémentation open-source d’un protocole MPC générique basé sur MHE.
Nous nous appuyons sur les propriétés théoriques de ce protocole pour proposer un système
dans lequel les parties délèguent la majeure partie du coût d’exécution du protocole à une tierce
partie. Helium est ainsi le premier système open-source qui permet le MPC avec un coût pour
les parties en dessous de linéaire (asymptotiquement, dans le nombre de parties), sans avoir à
supposer la non-collusion entre de multiples tierces parties.

v

Acknowledgements

This dissertation concludes a chapter of my life, and there are so many people I want to thank.
It feels natural to start from the beginning. But when did this all begin ?

During high school, Jean-Marc Falcoz was the first teacher to explain mathematics to me
in a way that I could understand them. Around the same time, Boris Ischi taught me my first
programming lectures, starting the flame of a passion that I was, still today, not yet able to put
out. At the end of high school, Francois Lombard supervised my first ever research project on
computer security. My fate as a computer scientist was sealed for good.

Curiosity is good but you need the opportunity to enter a PhD program and the appropriate
guidance to complete it. I’m immensely grateful to Jean-Pierre Hubaux for providing both.
Jean-Pierre, you gave me the freedom to explore and define my own project, and supported me
in the most difficult moments. I wish you all the best for your retirement. I’m also immensely
grateful to Carmela Troncoso for welcoming me (along with my colleagues) in the Security and
Privacy Engineering Laboratory for my final year at EPFL. There are many bright academics,
but fewer that inspire from their leadership and mentorship qualities. Carmela, you are one of
them. Among many things, I learned from you that great supervisors do not only ask “how is it
going ? ”, but also “what can I do for you ? ”.

During my time at EPFL, I had the chance to collaborate with extremely bright and talented
people. Juan Troncoso Pastoriza was my first co-author and scientific mentor. Thank you Juan
for taking the time to answer all my questions about lattices and for the countless hours spent
brainstorming our cryptographic protocols. Later, I collaborated with Apostolos Pyrgelis, whose
wisdom, knowledge and critical thinking was of precious support and guidance. For accepting
to sit on my defense committee, I would like to thank Florian Kerschbaum, Claudio Orlandi,
Ola Svensson and Bryan Ford. Bryan, thank you for providing insights on my work on several
occasions throughout my PhD. I was extremely lucky to meet Henry Corrigan-Gibbs during his
stay as a post-doc at EPFL. What started as a heated discussion about why two non-colluding
cloud-servers is one cloud-server too many (I’m happy that we now agree. . .) evolved into a
friendship (and more heated discussion, usually around an equally heated piece of Bagne cheese).
Thank you Henry for all your advice and for greatly contributing to shape my view of research.
Thanks to my friend Charles Bédard, for being such an amazing human being and a model of
sane passion for research and science.

Sometimes, in a career or a life, some completely non-obvious decisions turn out to be pivotal
in said career or life. One such moment occurred when a law student who was following some
EPFL cryptography courses for fun wanted to work on my project of implementing a lattice-
based FHE library. This is how I met Jean-Philippe Bossuat, and this is how we now maintain
Lattigo, one of the most successful FHE libraries available today. Thank you Jean-Philippe, it
was and still is quite a ride!

To implement cryptographic systems is a lot of work, and many of our practical results would
never have seen the light of day without the great work of the many excellent Master and Bachelor

vi

students who completed their semester projects with me: Johan Lanzrein, Björn Guðmundsson,
Elliott Bertrand, Elia Anzuoni, Elie Daou, Clémence Altmeyerhenzien, Anas Ibrahim, Vincent
Parodi, Hedi Sassi, Walid Ben Naceur, Adrien Laydu, Manon Michel, Adrian Cucos and Giovanni
Torrisi. I also want to thank Linus Gasser and Christian Grigis from (respectively, formerly from)
the EPFL Center for Digital Trust. Linus, you taught me a lot about the Go language and you
were always available to chat about our prototypes.

I’m eternally grateful to Holly Cogliati-Bauereis for the time spent trying to improve my En-
glish writing. Holly, no AI can do what you do. I never had to worry much about administrative
tasks, and this is thanks to the always friendly support of Patricia Hjelt, Angela Devenoge and
Isabelle Coke.

I want to thank my colleagues in the PhD program; These extremely bright and kind people
who made the everyday life of this difficult undertaking actually enjoyable. Starting with my
friends and past members of the Laboratory for Data Security: David Froelicher, João Paul-
Thierry Sá Sousa Sousa and Mickaël Misbach. David, thanks for being my PhD Buddy and a
great Coulage companion. João, your stories are always worth listening to (at least the first few
times you tell them). Mickaël, I miss your tartiflette. After the covid pandemic, the number of
PhD students in the lab drastically went down to three. This is how I had the chance to get to
know Sylvain Chatel and Sinem Sav much better. Sylvain, thanks for our fruitful and enriching
collaborations, and all these great conference trips we had. I will definitely miss our coffee
discussions and even your somewhat critical (not to say, cynic) views on basically everything,
ranging from cafeteria logistics to the meaning of computer-science research. Sinem, thank you
for being, with David, among the first researchers to employ the constructions presented in
this thesis in concrete applications. I will remember the Italian “LDS on Tour” trip with you,
delivering talks but also absorbing a substantial amount of pasta along the way. I also want to
thank our friends from the DeDis Laboratory: Ceyhun Alp for the good laughs, Kirill Nikitin
for the deep discussions about academia and the purpose of scientific research (and for this
memorable time when you hosted me in NYC!) and Simone Colombo for the good times in
Japan. Lastly, I want to thank the members of the SPRING laboratory, for the warm welcome
they gave me during the final months of my PhD. I’m especially grateful to Bogdan Kulynych,
Theresa Stadler, Mathilde Raynald, and Vera Rimmer for the insightful and timely discussions
on research careers, to Kasra Edalatnejadkhamene for being always so positive and cheerful, to
Dario Pasquini and Maria Grazia for showing me around in Rome, and to Wouter Lueks for his
always spot-on inputs on my work and presentations.

Finalement, j’aimerais remercier ma famille. Leur amour et soutien inconditionnels ont été
la base sur laquelle il m’a été possible de construire tout le reste. Merci à mes grands-parents
de m’avoir laissé jouer avec leur ordinateur quand j’étais petit. Merci à ma mère Corinne, qui a
fait tant de sacrifices, sans jamais le mentionner, pour offrir à ma sœur et moi nos études et les
conditions idéales pour leur réussite. Merci à mon père Claude, dont j’admire la sagesse et qui
sera toujours un modèle pour moi.

Merci à Emilie, qui me remplit de joie chaque jour et, je l’espère, pour encore beaucoup de
jours.

Lausanne, August 5, 2023 C.M.

vii

Table of Contents

Abstract i

Résumé iii

Acknowledgements v

Introduction 1

1 Definitions and Constructions 7
1.1 Terminology . 9
1.2 Notation . 9
1.3 Definitions . 10
1.4 Constructions . 13
1.5 Related Work . 17

2 A Multiparty Homomorphic Encryption Scheme 19
2.1 Extended MHE Scheme Definition . 21
2.2 N -out-of-N -Threshold Scheme Construction . 22
2.3 MHE Scheme Analysis . 29
2.4 MHE-Based Secure Multiparty Computation . 31
2.5 Performance Analysis . 35
2.6 Chapter Summary . 41

3 A Fault-Tolerant Multiparty Homomorphic Encryption Scheme 43
3.1 Our Results . 45
3.2 Related Work . 46
3.3 Preliminaries . 47
3.4 T -out-of-N -Threshold Encryption for RLWE . 48
3.5 Evaluation . 53
3.6 Chapter Summary . 58

4 Lattigo: a Multiparty Homomorphic Encryption Library in Go 59
4.1 Building an (M)HE library in Go . 61
4.2 Library Overview . 63
4.3 Performance Comparison . 68
4.4 Applications . 68
4.5 Chapter Summary . 70

viii Table of Contents

5 Helium: an MHE-based MPC Framework 71
5.1 System Specification . 74
5.2 MHE-based Multiparty Computation . 75
5.3 Solution Design . 80
5.4 HElium . 88
5.5 Implementation and Evaluation . 93
5.6 Chapter Summary . 96

6 Conclusion and Future Work 97
Future of MHE . 98
Open Problems and Future Research Directions . 98
Final Remarks . 100

Bibliography 115

A Derivations and Proofs 117
A.1 Comparison between ΠRelinKeyGen and previous work 119
A.2 Derivations of the Noise Analysis Equations . 119
A.3 Proof of Theorem 1 . 120

Curriculum Vitae 125

1

Introduction

Historically, cryptography has played a crucial role in ensuring the confidentiality and authen-
ticity of information, during its transmission between entities. Already at the time of its early
military applications, cryptography wielded significant political and societal influence, with the
outcome of wars hinging on the acquisition of timely and accurate information. Today, as the
Internet connects two-thirds of the world population 1 and our digital footprint carries an almost
complete picture of our daily life, the stakes of implementing cryptographically secure systems
have never been higher. Indeed, the ability for individual members of a society to ensure the
confidentiality of their communications and information is an indisputable pre-condition to guar-
anteeing the fundamental rights to privacy and freedom of speech.

Global interconnections also provide an incredible opportunity: the ability, not only to com-
municate, but also to compute over the Internet. From the early Web 2.0, which enables users to
contribute content to websites, to cloud computing, the practice of delegating computations to
externally managed machines, computation has become a new paradigm for the Internet. In this
paradigm, users are no longer merely senders and recipients of messages, they are also actors in
computations.

The Internet provides a powerful logical computation platform. But, it requires its users
to trust the machine where the physical computations occur and, by extension, the entity that
owns and manages it. From this stems the question that initiated a significant extension of focus
in modern cryptographic research: Can cryptography protect the confidentiality and integrity of
computation performed within an untrusted infrastructure?

Modern Cryptographic Research

Over the last few decades, this question motivated the study of secure computation in untrusted
environments. From the correctness perspective, for example, the field of verifiable computing
[BFLS91; Mic00; GGP10; GKR15] introduced techniques for a computationally weak party to
be able to delegate a computation to an untrusted but computationally powerful party while
being able to verify that the returned result is computed correctly. From the confidentiality
perspective, which is the focus of this thesis, the field of homomorphic encryption (HE) provides
techniques for encrypting data in a way that still enables computation to be performed, without
requiring decryption. HE therefore enables computationally weak parties to delegate both the
storage and the processing of sensitive data to an untrusted third party, while ensuring the
confidentiality of these data.

Beyond delegated computation, the field of secure multiparty computation addresses the prob-
lem of securing distributed computations among multiple parties, when these parties’ inputs need
to be kept confidential. From data-driven research by large medical institutions to a group of

1https://www.internetworldstats.com/stats.htm

https://www.internetworldstats.com/stats.htm

2 Introduction

friends willing to privately synchronize their calendars, the setting of secure multiparty computa-
tion encompasses a large range of real-world problems. Interestingly, achieving secure multiparty
computation inherently requires computation to be performed in some untrusted environment:
be it an assisting third party or the parties themselves, as a distributed system. From a practical
standpoint, this requirement is much stronger than for simple (single-party) delegated compu-
tations, where clients might still choose not to delegate. For example, if the cost of the cryp-
tographically secure outsourced computation outweighs the cost of the local one (e.g., the cost
of acquiring and managing more powerful client-side hardware). In contrast, secure multiparty
computation cannot be achieved as a cost allocation trade-off. Hence, it is not surprising that
finding efficient protocols to perform secure multiparty computation was, and still is, a significant
focus of cryptographic research.

Multiparty Homomorphic Encryption

Multiparty homomorphic encryption (MHE) enables computation over encrypted data, while
enforcing joint cryptographic access-control over the underlying data (we will further define this
primitive in Chapter 1). By generalizing traditional single-party homomorphic encryption to
multiple data providers, MHE techniques constitute a promising family of solutions for perform-
ing secure multiparty computation (MPC).

More specifically, MHE techniques can be used to construct efficient MPC protocols, com-
monly referred to as two-round MPC : In the first round, the parties encrypt their sensitive input
data with the MHE scheme, and the function is homomorphically evaluated over the cipher-
texts, either by the parties themselves or by an assisting third-party. The output of this round
is the computation result, encrypted under the MHE scheme. In the second round, the parties
obtain the computation output by engaging in a multiparty decryption protocol. These MHE-
based MPC protocols are characterized by their low communication complexity, as well as their
amenability to the paradigms of cloud-computing [AJLT+12; MTBH21] such as service-based
infrastructures and light-client/powerful-server architectures.

Several generations of MHE schemes have been proposed over the years, generally following
the advances of single-party HE constructions. Among these multiparty schemes, threshold
schemes [Des93] have been demonstrated to be particularly efficient due to their compactness.
Threshold-HE techniques have also been long-known for reducing the communication complexity
of MPC protocols [FH96; CDN01; DPSZ12; CDES+18], yet these techniques were initially
constrained by the lack of an HE scheme that supports two arithmetic operations hence arbitrary
circuits. This changed with the introduction of the first fully homomorphic encryption scheme,
by Gentry in 2009 [Gen09], which was quickly followed by the proposition of concrete two-round
MPC protocol construction [AJLT+12] based on MHE by Asharov et al.

Made possible by advances in the cryptanalysis of lattice-based cryptography, these construc-
tions are based on the learning-with-error (LWE) assumption [Reg05]. Although promising in
theory, these constructions have so far remained theoretical. Despite the existence of more than
30 frameworks exploiting various other approaches to MPC [Rot17], there is no implementation
yet of an MHE-based MPC system. This has severely limited security researchers in using the
MHE techniques in practice and demonstrates a gap between theory and practice. In this disser-
tation, we close this gap, with contributions to both the theoretical and practical sides of MHE
research.

Introduction 3

Contributions

On the theoretical side, we propose two MHE constructions that extend the current generation
of HE schemes, based on the ring learning-with-error (RLWE) assumption [LPR10], to the
multiparty setting. On the practical side, we propose the Lattigo library, which implements our
MHE construction, and the Helium system, which implements the MHE-based MPC protocol.
We now provide a summary of these contributions, and relate them to the chapters of this
dissertation in which they are discussed.

Chapter 2: A Multiparty Homomorphic Encryption Scheme Our first construction
is an N -out-of-N -threshold HE scheme that revisits the LWE construction by Asharov et al.
[AJLT+12]. In addition to adapting their construction to RLWE, we propose several improve-
ments that make it more practical. Notably, we improve the efficiency of its setup phase and
propose new procedures that facilitate the instantiation of the scheme as an MPC protocol. We
achieve this by generalizing the scheme’s decryption operation into a key-switching operation
that enables the ciphertexts to be re-encrypted, converted to secret-shares (e.g., to be processed
by other MPC approaches), and to be refreshed without the need for a costly bootstrapping
operation. We implement our solution in the Lattigo library (presented in Chapter 4) and eval-
uate the instantiation of our MHE scheme into an MPC solution for several circuits and system
models.

This chapter is based on our work on [MTBH21]; it was presented at the 21st Privacy En-
hancing Technologies Symposium (PETS’21).

Chapter 3: A Fault-Tolerant Multiparty Homomorphic Encryption Scheme Our
second construction extends our N -out-of-N -threshold MHE scheme into a t-out-of-N -threshold
scheme that enables a fault-tolerant MPC instantiation. This scheme depends on synchronous
communication hence requires more assumptions than the state-of-the-art construction by Boneh
et al. [BGGJ+18]. Yet, we show that our construction has several practical advantages. No-
tably, our scheme requires only a constant size state per party and does not affect the size of
the ciphertexts, whereas [BGGJ+18] requires at least a Ω(N4) state or requires non-compact
ciphertexts. Moreover, our scheme does not require a trusted dealer and is considerably simpler,
which makes it easy to implement: Its implementation in Lattigo requires less than a hundred
lines of code on top of our N -out-of-N -threshold scheme implementation.

The chapter is based on our work on [MBH23]; It was published in issue number 36 of the
IACR Journal of Cryptology.

Chapter 4: Lattigo: a Multiparty Homomorphic Encryption Library in Go Our first
practical contribution is Lattigo, an open-source Go package that implements the state-of-the art
HE schemes, along with their MHE extensions proposed in Chapters 2 and 3. As such, Lattigo
is the first HE library to emphasize the multiparty setting for HE, and to implement all the
functionalities required by the MHE-based MPC protocol. Lattigo is also the first open-source
library to implement a bootstrapping procedure for the approximate homomorphic encryption
scheme of Cheon et al., CKKS [CKKS17], in its optimized variant based on residue number
system (RNS) [CHKK+19].

This chapter is based on our work on the Lattigo library that is a collaboration with Jean-
Philippe Bossuat and Juan Troncoso-Pastoriza. Most of the chapter content was written for the
present thesis, with some parts from [MBTH20].

4 Introduction

Chapter 5: Helium: an MHE-based MPC Framework Our second practical contri-
bution, Helium, builds on top of Lattigo and provides the first end-to-end open-source imple-
mentation of an MHE-based MPC protocol. In designing this system, we fill several gaps left
unaddressed in the theoretical literature on MHE (including our own), such as how to securely
implement the MHE-based MPC protocol with weak computing-resources and/or churning par-
ticipants. We utilize the properties of MHE-based MPC to propose a helper-assisted setting,
where the parties delegate most of the protocol execution costs to an honest-but-curious third
party. Therefore, Helium is also the first implemented MPC system to support, without as-
suming non-collusion between the multiple delegate nodes, sub-linear-cost MPC for the input
parties.

This chapter is based on our most recent work on the HElium system, for which a submission
based on this chapter is currently under preparation.

Other Contributions

In addition to the contributions presented in this thesis, we have made several contribution
related to homomorphic encryption in general. We now briefly describe these contributions.

Efficient Bootstrapping for Approximate Homomorphic Encryption with Non-sparse
Keys We propose an efficient bootstrapping approach for the approximate homomorphic-
encryption scheme of Cheon et al., CKKS [CKKS17].

The CKKS scheme is a leveled HE scheme that is capable of homomorphically evaluating
arbitrary polynomial functions over encrypted complex-number vectors. Although the family of
leveled cryptosystems enables only a finite multiplicative depth, with each multiplication con-
suming one level, the CKKS scheme enables the homomorphic re-encryption of an exhausted
ciphertext into an almost fresh one. This capability, commonly called bootstrapping, theoreti-
cally enables the evaluation of arbitrary-depth circuits. In practice, however, the bootstrapping
procedure for CKKS is approximate, and its precision and performance determine the actual
(practical) maximum depth of a circuit. Consequently, for practical reasons, all previous CKKS
bootstrapping approaches [CHKK+18; CCS19a; HK20] had to rely on a special secret-key struc-
ture known as sparse secret-keys, to reduce the depth of their circuit representation, and none of
them has proposed parameters with an equivalent security of at least 128 bits under the recent
attacks on sparse RLWE secrets [CHHS19; SC19].

To alleviate these issues, we propose several improvements to the CKKS bootstrapping in
[BMTH21]. Compared to the previously proposed procedures, our proposed bootstrapping pro-
cedure is more precise, more efficient (in terms of CPU cost and number of consumed levels),
and has a lower failure probability. As a result, and unlike the previous approaches, it does not
require the use of sparse secret-keys and can be instantiated with 128-bit-secure parameters.

We achieve this efficiency and precision by introducing four novel contributions: (i) We
propose a generic algorithm for homomorphic polynomial-evaluation that takes into account the
specific semantic of the CKKS scheme, such as its approximate rescaling and the fact that each
ciphertext-cihpertext multiplication consumes a level. Notably, we show that our homomorphic
polynomial evaluation has optimal level-consumption. (ii) We propose a novel approach to
computing homomorphic rotations over encrypted vector coefficients, and we propose a new
technique, which we call double hoisting, for computing linear transformations as matrix-vector
products. (iii) We propose a systematic approach to parameterize the bootstrapping, including
a precise way to assess its failure probability. (iv) We implemented our improvements and
bootstrapping procedure in the open-source Lattigo library. Note that (i) and (ii) are generic

Introduction 5

encrypted-arithmetic algorithms, hence are of independent interest in HE research (i.e., beyond
the bootstrapping procedure itself).

These results were presented at the 2021 Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT’21) [BMTH21].

PELTA–Shielding Multiparty-FHE against Malicious Adversaries Another contribu-
tion, more directly related to MHE, is the PELTA construction [CMSP+23]. The purpose of
PELTA is to extend MHE to the active adversary model, by requiring parties to provide (zero-
knowledge) proof of correct execution of the MHE local operations. Although such an extension
is proposed by Asharov et al., the authors did not specify the concrete construction of such
proofs. Our contribution to this result is a systematization of the current MHE schemes, un-
der which a generic method for proving their correct execution can be proposed. The actual
construction being the work of our collaborators is not discussed in this dissertation.

This result will be presented at the 2023 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS’23) [CMSP+23].

Impact

Contemporary literature has now successfully employed MHE schemes to build practical sys-
tems, for domain-specific tasks: for example, in distributed analytics [FTRC+21; CSSM+22;
YZWL+22], and federated machine-learning [CDKS19; SPTF+21; ATP21; SBTC+22; XHXZ+22;
SDPB+22; XLGZ+23; ISPB+23]. Most of these works employed schemes and/or implementa-
tions that are the results of this thesis.

In 2021, the MHE scheme and its implementation were used as the core technical building
block of a commercial product developed by the start-up Tune Insight SA2. Today, this EPFL
spin-off develops prototypes for early adopters of MHE-based MPC solutions in domains where
data-driven decision-making can be improved by secure collaborations on sensitive data. Notably,
the company is active in healthcare, in cyber-threat intelligence, and in insurance risk-analysis.

On the implementation side, Lattigo is now a well-established contribution to the HE-software
landscape. According to Google Scholar3, the library was mentioned in more than 160 scien-
tific works between 2020 and the summer of 2023, several of which have used its HE and MHE
implementations to build system research prototypes [BSA21; CPTH21; FTRC+21; KSJH21;
ICDÖ22; TMBM+22; PPV22; CP23a; ERLT23; KG23; FCES+23]. Moreover, the standalone
math layer of Lattigo was used by cryptography researchers to implement and evaluate new prim-
itives [CHKL+21; HKLL+22; KKLS+22; KLKS+22; LLKK+22; GHHJ22; ACYJ+23; CP23b;
KLSS23], such as multi-key and multi-group MHE schemes.In February 2022, the maintenance
of Lattigo was transferred to Tune Insight, and the library is still being actively developed.

Organization

This dissertation is organized as follows:
– In Chapter 1, we present the definitions and constructions relevant to MHE schemes. We

recall the necessary notions and introduce our systematization of (M)HE constructions.

– In Chapters 2 to 5, we present our main aforementioned contributions.

– In Chapter 6, we conclude this dissertation and discusses open problems, as well as future
research directions.
2https://tuneinsight.com
3https://scholar.google.com

https://tuneinsight.com
https://scholar.google.com

7

Chapter 1

Definitions and Constructions

Chapter Content

1.1 Terminology . 9
1.2 Notation . 9
1.3 Definitions . 10

1.3.1 Homomorphic Encryption . 10
1.3.2 Multiparty Homomorphic Encryption . 11
1.3.3 Real-Ideal Scheme Formulation . 12
1.3.4 MHE-based MPC . 12
1.3.5 Ring Learning With Error . 13

1.4 Constructions . 13
1.4.1 Core RLWE-based Homomorphic Encryption . 14
1.4.2 The BFV Front-End Scheme . 15
1.4.3 Notes on the Core & Front-End Paradigm . 15

1.5 Related Work . 17
1.5.1 MPC Applications . 17
1.5.2 LSSS-based MPC . 17
1.5.3 MHE and MHE-based MPC . 18

Chapter 1. Definitions and Constructions 9

In this chapter, we introduce the notation, definitions and constructions relevant to this dis-
sertation. The definition of MHE is taken from our work in [MTBH21]. We present the current
generation of arithmetic HE schemes constructions based on RLWE under a novel abstraction:
the core & front-end paradigm. This abstraction will enable the generalization of our construc-
tions proposed in Chapters 2 and 3 across all these schemes, and will provide the main rational
for the architecture of the Lattigo library.

1.1 Terminology

Our MHE constructions rely on both interactive and non-interactive cryptographic functional-
ities. For the sake of clarity, it is often useful to distinguish between the two cases in order to
provide the correct intuition about the constructions. Hence, we use the following terminology
to refer to cryptographic functions:
Operation refers to a cryptographic function that is performed as part of a larger process.

This term is used to describe simple actions for which it is unspecified whether they require
interaction with other parties or not.

Algorithm refers to a non-interactive operation, meaning that it does not involve any form
of communication between different parties. It can be executed locally without the need for
network connectivity or interaction with other devices.

Protocol refers to an interactive operation, meaning that, unlike an algorithm, it involves
communication between different parties. Protocols usually involve the execution of algorithms
composed with message exchanges.

Procedure describes processes that involve multiple operations to accomplish a specific task.
Hence, procedures can be either interactive or non-interactive, depending on their underlying
operations.
Using these terms, we describe multiparty cryptographic systems. For example, we refer to the

“key-generation operation” as a specific action or function that is part of a larger cryptographic
process. We also refer to the “key-generation algorithm” as a set of instructions that specify how
the key-generation operation should be performed, without any communication or interaction
between different parties. If the key-generation process involves communication between different
parties or devices, we refer to it as a “key-generation protocol”. Finally, if a process such as a
cryptographic setup involves several operations, such as multiple key generation protocols, we
refer to it as a “setup procedure”.

1.2 Notation

We use regular letters for integers and polynomials, and boldface letters for vectors of integers and
of polynomials. aT denotes the transpose of a vector a. We denote [·]q the reduction of an integer
modulo q, and ⌈·⌉, ⌊·⌋, ⌊·⌉ the rounding to the next, previous, and nearest integer, respectively.
When applied to polynomials, these operations are performed coefficient-wise. When considering
operations between elements of the same quotient ring, modular reductions are omitted. Given
a probability distribution α over a ring R, a ← α denotes the sampling of an element a ∈ R

according to χ, and a ← R implicitly denotes uniform sampling in R. We denote a ← χl the
sampling of an l-dimensional vector a according to a coefficient distribution χ (each coefficient
being independently sampled). For a polynomial a, we denote its infinity norm (i.e., its largest

10 Chapter 1. Definitions and Constructions

coefficient in absolute value) by ∥a∥. Finally, poly[x] denotes a polynomial function in x and
negl(x) a negligible function in x.

1.3 Definitions

We provide definitions for the primitives and notions relevant to this work. We consider an
abstract security parameter λ and require that an adversary’s advantage in attacking the schemes
be a negligible function in λ. HE schemes also require proper parameterization in order to support
the evaluation of the desired circuits. We model this dependency by introducing an abstract
homomorphic capacity parameter κ and require that the probability of incorrect decryption be
a negligible function in κ.

1.3.1 Homomorphic Encryption

LetM be a plaintext space with arithmetic structure, a homomorphic encryption scheme overM
is a tuple of algorithms HE= (Setup,SecKeyGen,EncKeyGen,EvalKeyGen,Encrypt,Eval,Decrypt)

with the following syntax:

• Setup pp← HE.Setup(λ, κ):
Given the security and the homomorphic-capacity parameters, HE.Setup outputs a pub-
lic parameterization (passed implicitly to the other procedures).

• Secret-key generation sk← HE.SecKeyGen():
HE.SecKeyGen generates and outputs a secret key sk.

• Public-keys generation pk← HE.EncKeyGen(sk) and evk← HE.EvalKeyGen(sk):
From the secret-key, HE.EncKeyGen outputs the public encryption key pk and HE.EvalKeyGen

outputs the evaluation-key evk.

• Encryption ct← HE.Encrypt(pk,m):
From a plaintext m ∈M, HE.Encrypt outputs a ciphertext ct encrypting m.

• Evaluation ctres ← HE.Eval(f, evk, ct1, ..., ctI):
From an arithmetic function f :MI →M, the public evaluation key evk and a I-tuple
of ciphertexts ct1, ..., ctI such that HE.Decrypt(cti) = mi, HE.Eval outputs a ciphertext
ctres such that HE.Decrypt(ctres) = mres = f(m1, ...,mI).

• Decryption m′ ← HE.Decrypt(sk, ct):
From a ciphertext ct encrypting m and the secret key sk, HE.Decrypt outputs m′.

Moreover, scheme HE satisfies the following properties:
1. Semantic Security: for pp a public parameterization, any two messages m0,m1 ∈ M,

sk ← HE.SecKeyGen and pk ← HE.EncKeyGen(sk), then, for every probabilistic polynomial-
time adversary A it holds that

Pr[A(HE.Encrypt(pk,mb)) = b] ≤ 1

2
+ negl(λ).

2. Correctness: for any arithmetic function f : MI → M and input messages m1, ...,mI ,
there exists a public parameterization pp such that, for sk ← HE.SecKeyGen, pk ←
HE.EncKeyGen(sk), evk← HE.EvalKeyGen(sk) and cti ← HE.Encrypt(pk,mi),

Pr[HE.Decrypt(sk,HE.Eval(f, evk, ct1, ..., ctI)) ̸= f(m1, ...,mI)] ≤ negl(κ).

Chapter 1. Definitions and Constructions 11

1.3.2 Multiparty Homomorphic Encryption

We now provide the definition of multiparty homomorphic encryption that we use in this work.
Note that we tailor this definition for the threshold family of MHE schemes, as our proposed
construction belongs to this family. The other family of MHE schemes, multi-key schemes
[LTV12; CCS19b], will only be briefly discussed in Chapter 2, where we compare our MHE
construction to those schemes. For consistency throughout this work, we use the more general
multiparty homomorphic encryption term for referring to threshold homomorphic encryption.

Multiparty schemes rely on distributed state among the parties, such as secret keys and
private plaintext inputs. In the definition below and throughout this work, we will use {xi}Pi∈P
to denote the set of all values xi held, respectively, by each party Pi in a given set of party P.

Let P = {P1, P2, . . . , PN} be a set of N parties, T ≤ N a threshold parameter, and M be
a plaintext space with arithmetic structure. A multiparty homomorphic encryption-scheme over
P and M is a tuple MHE = (Setup,ΠSecKeyGen,ΠEncKeyGen,ΠEvalKeyGen,Encrypt,Eval,ΠDecrypt) of
algorithms and multiparty protocols with the following syntax:

• Setup pp← MHE.Setup(λ, κ,P, T):
Takes the security and homomorphic capacity parameters and outputs a public param-
eterization. pp is an implicit argument to the other procedures.

• Secret-key generation ski ← MHE.ΠSecKeyGen():
All parties in P take part in the MHE.ΠSecKeyGen protocol that privately outputs to each
party its own secret-key.

• Public-keys generation pk← MHE.ΠEncKeyGen({ski}Pi∈P′), evk← MHE.ΠEvalKeyGen({ski}Pi∈P′):
Any sub-group P ′ ⊆ P with |P ′| ≥ T holding keys {ski}Pi∈P′ executes the public
encryption- and evaluation-key generation protocols and outputs (pk, evk).

• Encryption ct← MHE.Encrypt(m, pk):
Given the public-key pk, and a plaintext m ∈M, outputs a ciphertext encrypting m.

• Evaluation ctres ← MHE.Eval(f, evk, ct1, ..., ctI):
Given a function f :MI →M, the public key pk and a I-tuple of ciphertexts encrypting
(m1, ...,mI) ∈MI , outputs a result ciphertext encrypting mres = f(m1, ...,mI).

• Decryption m← MHE.ΠDecrypt(ct, {ski}Pi∈P′):
Given a ciphertext ct encrypting m, any sub-group of parties P ′ ⊆ P with |P ′| ≥ T

holding key {ski}Pi∈P′ executes the decryption protocol and outputs m.

12 Chapter 1. Definitions and Constructions

Moreover, scheme MHE satisfies the following properties:
1. Semantic Security: for a public parameterization pp, any two messages m0,m1 ∈ M, for

any setup subset Psetup ⊆ P with |Psetup| ≥ T , {ski}Pi∈P ← MHE.ΠSecKeyGen and pk ←
MHE.ΠEncKeyGen({ski}Pi∈Psetup), then, for every probabilistic polynomial-time adversary A,
any adversarial subset PA ⊆ P with |PA| < T , it holds that

Pr[A(MHE.Encrypt(pk,mb), {ski}Pi∈PA) = b] ≤ 1

2
+ negl(λ).

2. Correctness: for any arithmetic function f :MI →M and input messages m1, ...,mI , there
exists a public parameterization pp such that, for {ski}Pi∈P ← MHE.ΠSecKeyGen and any two
subsets of parties Psetup,Pdec ⊆ P of size at least T , pk ← MHE.ΠEncKeyGen({ski}Pi∈Psetup

),
evk← MHE.ΠEvalKeyGen({ski}Pi∈Psetup

) and cti = MHE.Encrypt(pk,mi),

Pr[MHE.ΠDecrypt(MHE.Eval(f, evk, ct1, ..., ctI), {ski}Pi∈Pdec
) ̸= f(m1, ...,mI)] ≤ negl(κ).

1.3.3 Real-Ideal Scheme Formulation

It is common to formulate multiparty functionalities as abstract functionalities in an ideal envi-
ronment in which a single party acts on behalf of the real-world parties. This applies to HE and
MHE schemes as previously defined: We can model the functionality of an MHE scheme as an
ideal environment that instantiates a single-party HE scheme. The semantic security property
of the MHE definition requires that no single party should be able to decrypt messages alone.
Hence, in the ideal world, the environment holds the secret-key to the HE scheme and responds
to key-generation and decryption queries by calling the EncKeyGen, EvalKeyGen and Decrypt

procedures of the single-party HE scheme. In the real world, the parties must emulate the ideal-
world secret key with their local secrets and emulate the secret-key dependent operations with
the ΠEncKeyGen, ΠEvalKeyGen and ΠDecrypt multiparty protocols.

This abstraction is particularly useful in our context, because single-party HE schemes have
many operations that do not require the secret-key, hence can be implemented as local operations
in the multiparty scheme. In our exposition, we refer to the ideal-world scheme as the ideal
scheme. By extension, we refer to the ideal scheme’s secret-key as the ideal secret key. As this
key concretely exists only through interactions between the parties, it is often convenient to
model it as a function of the parties’ individual secrets that we denote S(sk1, ..., skN), where ski
denotes the secret owned by party Pi.

1.3.4 MHE-based MPC

Multiparty homomorphic encryption techniques can be used to construct efficient secure multi-
party computation protocols, commonly referred to as two-round MPC [AJLT+12]. The con-
struction of such protocols for the passive adversary model is fairly natural from the MHE
definition. Hence we defer the detailed description to Section 2.4, where we instantiate it with
our MHE constructions and, in this section, we provide only a high-level description.

In the Setup phase, the parties execute the MHE.ΠSecKeyGen protocol to generate their shares
of an ideal secret-key. Then, they execute the MHE.ΠEncKeyGen and MHE.ΠEvalKeyGen protocols
to obtain the corresponding public encryption and evaluation keys. The input-dependent com-
putation phase consists of three steps: Input, Evaluation, and Output. During the Input step
(round one), the parties use the MHE.Encrypt algorithm to encrypt their inputs and disclose the
resulting ciphertexts to the other parties. Then, the desired computation is carried out by using

Chapter 1. Definitions and Constructions 13

the MHE.Eval algorithm. Finally, the parties execute the MHE.ΠDecrypt protocol to decrypt the
result ciphertext(s) in the Output step (round two).

1.3.5 Ring Learning With Error

We recall the ring learning-with-error (RLWE) cryptographic assumption that we use throughout
this work. It is a variant over rings of the learning with error (LWE) assumption introduced
by Regev [Reg05]. The RLWE assumption is defined as two computational problems about a
distribution over polynomial rings [LPR10]. Note that we particularize these definitions for the
ring structure and parameters that we rely on in this work.

The RLWE Distribution Let Rq = Zq[X]/(Xn + 1) be the cyclotomic ring of degree-n−1
polynomials with coefficients modulo q and let Err(Rq) be an error distribution over Rq where
the coefficients are sampled from a bounded discrete Gaussian distribution of small variance σ2

and small bound B (w.r.t. q). For a given secret s ∈ Rq, the ring learning with error distribution
RLWEs,Err is sampled by sampling a← Rq and e← Err, and outputting (a, sa+ e).

The Search-RLWE Problem Given m = poly[n] independent samples (ai, bi) ← RLWEs,Err

from the RLWE distribution for secret s, find s.

The Decision-RLWE Problem Given m = poly[n] independent samples (ai, bi) where sam-
ples are either all sampled from RLWEs,Err or all sampled uniformly from R2

q , distinguish between
the two cases.

Hardness Assumption Informally, both problems are assumed to be computationally hard
enough to be used for cryptography. For the presented parameterization (in which Rq is a
cyclotomic ring), it has been demonstrated that the search-RLWE problem can be reduced to
the approximate shortest vector problem (a-SVP) on ideal lattices and to the decision-RLWE
problem [LPR10].

1.4 Constructions

We now recall the cryptographic constructions relevant to this work. We first present the con-
struction of HE schemes from the RLWE assumption [LPR10]. Although HE schemes are typ-
ically presented as single monolithic schemes, such as the BFV [FV12], BGV [BGV14], and
CKKS [CKKS17] schemes, they share common functionalities and sub-procedures. Therefore,
we proceed in two steps: We first introduce a core RLWE-based construction for which the cor-
rectness property is only approximate and on top of which the BFV, BGV, and CKKS schemes
can be constructed. As such, we see the current HE schemes as front-end schemes, each one
enabling a different kind of homomorphic arithmetic (i.e., a different plaintext space) on top of
the core, approximate scheme. For an example of such a front-end scheme, we introduce the
BFV [FV12] encryption scheme that enables exact integer arithmetic. Finally, we discuss how
this separation between the core and front-end schemes provides a useful systematization in both
theory and practice.

14 Chapter 1. Definitions and Constructions

1.4.1 Core RLWE-based Homomorphic Encryption

We detail the core RLWE construction as scheme HE (Scheme 1). Recall that this scheme
represents the common functionalities of the BFV [FV12], BGV [BGV14], and CKKS [CKKS17]
schemes. We introduce it directly in its more efficient variant based on a residue number system
(RNS). Due to its practicality, this variant is implemented in most of the current lattice-based
cryptographic libraries123.

Let the ciphertext space be the polynomial quotient ring Rq = Zq[X]/(Xn + 1), where the
polynomial degree n is a power of two and where the polynomial-coefficient modulus q is a
product of L different primes q1, ..., qL. Hence, we can use the isomorphism Rq

∼= Rq1×...×RqL

provided by the Chinese remainder theorem (CRT) to perform the operations in the residue rings,
without resorting to arbitrary-precision integer arithmetic. Moreover, we choose each qi such
that qi≡1 mod 2n, which enables the representation of elements of Rqi (i.e., polynomials) under
the number-theoretic transform domain (NTT) under which both ring operations are performed
coefficient-wise. We use [− q

2 ,
q
2) as the set of representatives for the congruence classes modulo q.

Unless otherwise stated, we consider the arithmetic in Rq and polynomial reductions are omitted
in the notation. Let Key(Rq) be a secret-key distribution over Rq for which the coefficients are
sampled uniformly in {−1, 0, 1} mod q, let Err(Rq) be an error distribution where the coefficients
are sampled from a bounded discrete Gaussian distribution of small variance σ2 and small bound
B (w.r.t. q).

Scheme 1 is an approximate HE scheme over the message space Rq: its ciphertexts contain an
error which increases during the homomorphic operations, and its decryption procedure outputs
approximations of the Rq messages. Some operations require multiplying ciphertexts with large
Rq elements (e.g., HE.Relinearize involves multiplying the ciphertexts elements by the elements
of rlk), which would result in the error blowing up. To mitigate such an effect on the error,
the scheme relies on a prior decomposition of Rq elements into an auxiliary basis to reduce their
norm. The decomposition basis is a parameter of the scheme that we denote w, and its dimension
is denoted by l. For an element a ∈ Rq, we denote a(i) its i-th coefficient (or coordinate) in the
decomposed basis. Hence, we have a =

∑l
i=0 w

(i)a(i). A common choice is to use a base-w power
basis for some integer w < q, i.e., w = (w0, w1, ..., wl−1)T and l = ⌈logw(q)⌉. Another option is
to use the natural linear decomposition basis provided by the RNS, or even a hybrid between
the two approaches.

Homomorphic Evaluation The HE.Eval procedure of the core scheme corresponds to the
tuple (HE.Add,HE.Mul,HE.Relinearize) and the target arithmetic function must be expressed in
terms of these operations. The HE.Mul operation outputs a ciphertext that consists of three
Rq elements that can be seen as a degree two ciphertext. This higher-degree ciphertext can be
further operated on and decrypted. Yet it is often desirable to reduce this degree back to one
by using the HE.Relinearize operation. This operation requires the generation of a specific public
key referred to as the relinearization key (rlk) that becomes part of HE.EvalKeyGen.

Likewise, a plaintext coefficient rotation by k can be operated as an homomorphic automor-
phism [GHS12] that requires rotation-specific rotation-keys (i.e., a key for each needed rotation
parameter k). Although generating a single key for k = 1 would suffice for operating any rotation
in theory, it is more efficient to generate keys for all (or most) of the rotations required by the
circuit, in order to operate all (or most) rotations in constant-time.

1https://github.com/Microsoft/SEAL
2https://palisade-crypto.org/
3https://github.com/tuneinsight/lattigo

https://github.com/Microsoft/SEAL
https://palisade-crypto.org/
https://github.com/tuneinsight/lattigo

Chapter 1. Definitions and Constructions 15

Plaintext Encoding Due to the inherent error of the encryption scheme, the HE.Decrypt pro-
cedure outputs an approximate message of the form c0+ c1s = m+ ect for an error term ect that
depends on the various error terms introduced in the encryption and evaluation steps. Although
noisy messages might be enough for some use cases, most applications typically require a fixed
precision or even exact arithmetic. This is usually done by relying on plaintext encoding and de-
coding techniques that can be then formulated as front-end schemes that provide plaintext-space
guarantees on top of the core RLWE scheme. Common strategies include scaling the plaintext up
by some factor ∆ and relying on quantization and rounding for the decoding [CKKS17; FV12].
Furthermore, it is common to apply FFT-like transforms to the plaintext polynomials in order
to enable coefficient-wise encrypted arithmetic. Such techniques, often referred to as packed
encoding, enable users to encode up to n messages in Zq into n independent ciphertext slots,
where n is the polynomial degree. The chosen encoding strategy often requires also defining
front-end homomorphic operations (i.e., a front-end-specific Eval algorithm), as these operations
must preserve the encoding. In the next section, we recall the BFV scheme as an example of a
front-end scheme.

1.4.2 The BFV Front-End Scheme

The BFV scheme [FV12] relies on message-space scaling for its encoding/decoding strategy, in
order to obtain an exact HE scheme over the integers from the core HE scheme (Scheme 1).
More specifically, its plaintext space is the ring Rt = Zt[X]/(Xn + 1) for t < q, and we denote
∆ = ⌊q/t⌋, the integer division of q by t rounded down. We detail the front-end operations (i.e.,
that are redefined from the core scheme) in Scheme 2.

The BFV decryption of a ciphertext (c0, c1) can be seen as a two-step process. The first step
runs the core HE.Decrypt operation to compute a noisy plaintext in Rq with

[c0 + sc1]q = ∆m+ ect, (1.1)

where ect is the ciphertext overall error, or ciphertext noise. In the second step, the message is
decoded from the noisy term in Rq to a plaintext in Rt, by rescaling and rounding

[⌊ t
q
(∆m+ ect)⌉]t = [⌊m+ at+ v⌉]t, (1.2)

where m ∈ Rt, a has integer coefficients, and v has rational coefficients. Provided that ∥v∥ < 1
2 ,

Eq. (1.2) outputs m. Hence, the correctness of the scheme is conditioned on the noise magnitude
∥ect∥ that must be kept below q

2t throughout the homomorphic computation, notably by choosing
a sufficiently large q.

1.4.3 Notes on the Core & Front-End Paradigm

The main advantage of the core/front-end paradigm is that it enables us to define a common
structure for RLWE-based HE schemes. Such a systematization is relevant from both a prac-
tical and theoretical perspective: On the practical side, it provides a meaningful structure for
implementations by highlighting common functionalities, thus avoiding code duplication. For
example, the BFV front-end scheme (Scheme 2) (as for all other front-ends to date) does not
redefine the key-generation operations of the core scheme. Hence, an implementation of the
core scheme can be used for generating keys of its front ends directly. From the theoretical
perspective, the systematization is also useful in that attacks, improvements, and extensions to

16 Chapter 1. Definitions and Constructions

Scheme 1: HE(n, q,w,Key,Err) ▷ The core RLWE-based HE scheme

HE.SecKeyGen:

1. Sample s← Key and output: sk = s

HE.EncKeyGen(sk = s):

1. Sample p1 ← Rq, and e← Err and output pk = (p0, p1) = (−sp1 + e, p1)

HE.RelinKeyGen(sk = s,w):

1. Sample r1 ← Rl
q, e← Errl and output: rlk = (r0, r1) = (s2w − sr1 + e, r1)

HE.Encrypt(pk = (p0, p1),m):

1. Sample u← Key and e0, e1 ← Err and output: ct = (m+ up0 + e0 , up1 + e1)

HE.Add(ct = (c0, c1), ct
′ = (c′0, c

′
1)):

1. Output: ctadd = (c0 + c′0, c1 + c′1)

HE.Mul(ct = (c0, c1), ct
′ = (c′0, c

′
1)):

1. Output: ctmul = (c0c
′
0 , c0c

′
1 + c′0c1 , c1c

′
1)

HE.Relinearize(rlk = (r0, r1), ctmul = (c0, c1, c2)):

1. Decompose c2 in base w as c2
2. Output ctlin = (c0 +

∑l
i=0 r

(i)
0 c

(i)
2 , c1 +

∑l
i=0 r

(i)
1 c

(i)
2)

HE.Decrypt(sk = s, ct = (c0, c1)):

1. Output: m′ = c0 + c1s

Scheme 2: BFV(t, n, q, w,Key,Err) ▷ The BFV front-end scheme

BFV.Encrypt(m ∈ Rt):

1. Scale the message up in Rq as menc = ∆m
2. Output ct = HE.Encrypt(menc)

BFV.Decrypt(sk, ct):

1. Set m′
enc = HE.Decrypt(sk, ct)

2. Output m′ = [⌊ tqm′
enc⌉]t in Rt

BFV.Mul(ct, ct′):

1. Set (c0, c1, c2) = HE.Mul(ct, ct′)
2. Output: ctmul = ([⌊ tc0q ⌉]q, [⌊ tc1q ⌉]q, [⌊ tc2q ⌉]q)

Chapter 1. Definitions and Constructions 17

the core scheme will also directly apply to its front ends. Indeed, although it might seem that
the core/front-end paradigm is purely functional, it highlights an important security considera-
tion: approximate HE schemes are not de-facto secure against adversaries that have access to a
decryption oracle [LM21] (referred to as the IND-CPAD security model in [LM21]). Informally,
this is because the approximation error after decryption is related to the error terms added to
the keys and ciphertexts, and this error terms must remain secret for the RLWE assumption to
hold. Although the first demonstrated attack specifically targeted the CKKS front-end scheme,
it in fact affects the core scheme. Another way to look at the question is therefore that, as of
today, IND-CPAD security has been provided by the front-end schemes. Fortunately, not only
attacks but also improvements to the core scheme are carried out to the front-end schemes. For
example, countermeasures to ensure IND-CPAD security at the core scheme level would trans-
fer to future approximate front-end schemes, without being specific to CKKS. Similarly, core
scheme extensions to new functionalities can transfer, hopefully with few adaptations, to the
front-ends schemes. This will be the case for our multiparty extension, which we present in the
next chapter.

1.5 Related Work

In this section, we provide a high-level discussion of MPC protocols in the dishonest majority
setting: We discusses the predominantly implemented approach based on linear secret-sharing
scheme (LSSS) and its several drawbacks, then we provide some historical context about the
MHE-based solutions. We will discuss the state-of-the-art methods in MHE in more detail in
the following chapters, when discussing our contributions.

1.5.1 MPC Applications

This last few decades have seen the established theoretical field of MPC evolve into an applied
one, notably due to its potential for securing data-sharing scenarios in the financial [BCDG+09;
BTW12], biomedical [JWBB+17; RTMS+18] and law-enforcement [BJSV15; KFB14] sectors, as
well as for protecting digital assets [ABLK+18]. In particular, the use of passively-secure MPC
techniques in such scenarios has been demonstrated to be effective and practical [JWBB+17;
CWB18; AMP18], notably in the medical sector, where data collaborations are mutually benefi-
cial and well-regulated yet legally require a certain level of data-protection [CWB18; RTMS+18].

1.5.2 LSSS-based MPC

According to a survey by Hastings et al. [HHNZ19], most of MPC frameworks available today
for the dishonest-majority setting are based on the secret-sharing [Sha79] of the input data, ac-
cording to a linear secret-sharing scheme (LSSS). In these systems, the evaluation of arithmetic
circuits is generally enabled by the homomorphism of the LSSS and by interactive protocols
such as Beaver’s triple-based protocol [Bea92]. Notable example of such implementations in-
clude the Sharemind [BLW08] framework and the MP-SPDZ library [Kel20] that implements the
SPDZ protocol [DPSZ12] and several of its subsequent improvements and derivatives [DKLP+13;
KOS16; KPR18].

The LSSS-based approaches have several practical limitations: (i) These approaches require
a per-party communication that is linear in the size of the circuit, which can be problematic
for parties with low-bandwidth. (ii) They require a number of communication rounds, that is
proportional to the circuit depth. This can be problematic for network with high-latency and

18 Chapter 1. Definitions and Constructions

requires the parties to be online and active for the computation to make progress. (iii) For
each circuit evaluation, these approaches require the prior distribution of a single-use correlated
randomness, the size of which is proportional to the circuit size times the number of parties.
When such a distribution cannot be performed by a trusted dealer (any collusion between the
dealer and a curious party breaks the security of the protocol), LSSS-based approaches take the
form of hybrids that generate the correlated randomness by relying on other techniques such
as oblivious transfer [KOS16], plain HE [KPR18] and multiparty-HE [DPSZ12] in an offline
phase. In practice, the cost of this offline phase quickly dominates the cost of the protocol, as
the numbers of parties grow.

As a result of the aforementioned constraints, many current applications of LSSS-based
MPC target the outsourced models where the actual computation is delegated to two parties
[NWIJ+13; JWBB+17; MZ17; CB17; AMP18; CWB18] that are assumed to not collude (e.g.,
the two-cloud model). Unfortunately, this assumption might not be realistic in some contexts
and the parties could require more guarantees such as those provided by running the MPC
protocol themselves (i.e., without delegating trust).

1.5.3 MHE and MHE-based MPC

The idea of reducing communication costs in MPC by using (early constructions of) threshold
homomorphic encryption can be traced back to a work by Franklin and Haber [FH96] and later
improved by Cramer et al. [CDN01]. However, the lack (at that time) of efficient homomor-
phic schemes that preserve two distinct algebraic operations ruled out complete non-interactivity
at the evaluation phase. More recent works have nonetheless demonstrated the practicality of
multiparty additive-homomorphic encryption for task-specific instances, such as distributed ma-
chine learning [ZPGS19; FTSH20], thus suggesting the high potential that a fully homomorphic
encryption solution could have. This is the idea behind the line of work by Asharov et al.
[AJLT+12] and López-Alt et al. [LTV11; LTV12]. Following the introduction of the first prac-
tical FHE scheme by Gentry [Gen09], these work propose the first generic MPC protocols based
on solely on MHE schemes.

Although of great interest, this line of work did not find much of an echo in applications as
LSSS-based approaches have. One possible reason is the lack (at the time) of efficient and usable
implementations of the contemporary HE schemes; these schemes are based on the Learning
with Errors (LWE) assumptions [Reg05]. Today, multiple ongoing efforts aim at standardizing
homomorphic encryption [ACCD+18] and at making its implementations available to a broader
public. This new generation of schemes, based mostly on the Ring Learning with Errors as-
sumptions [LPR10] (see Section 1.3.5), has brought HE-based techniques from being practical
to being efficient.

As a result, we argue that MHE-based approaches are now efficient and flexible enough
to support a broad range of MPC scenarios. In this dissertation, we therefore present our
contributions that bring these techniques from theory to practice.

19

Chapter 2

A Multiparty Homomorphic
Encryption Scheme

Chapter Content

2.1 Extended MHE Scheme Definition . 21
2.2 N-out-of-N-Threshold Scheme Construction . 22

2.2.1 Ideal-Secret-Key Generation . 22
2.2.2 Collective Encryption-Key Generation . 23
2.2.3 Relinearization-Key Generation . 23
2.2.4 Packed-Encoding and Rotation Keys . 25
2.2.5 Collective Key-Switching Protocols . 25
2.2.6 Bridging MPC Approaches . 28
2.2.7 Collective Bootstrapping . 28
2.2.8 Dynamic Access-Structure . 29

2.3 MHE Scheme Analysis . 29
2.3.1 Comparison with Multi-key-HE . 29
2.3.2 Noise Analysis . 30
2.3.3 Standalone MHE Security . 30

2.4 MHE-Based Secure Multiparty Computation . 31
2.4.1 The ΠMHE−MPC Protocol . 32
2.4.2 ΠMHE−MPC Protocol Security . 34
2.4.3 ΠMHE−MPC Protocol Features . 34

2.5 Performance Analysis . 35
2.5.1 Experimental Setup and Parameters . 36
2.5.2 Multiparty Input Selection . 36
2.5.3 Element-Wise Vector Product . 38
2.5.4 Multiplication Triples Generation . 40
2.5.5 Discussion . 41

2.6 Chapter Summary . 41

Chapter 2. A Multiparty Homomorphic Encryption Scheme 21

We propose our first construction, which is an RLWE-based MHE scheme with an N -out-
of-N -threshold access-structure, as per the definition of Section 1.3.2 (with T = N). We follow
the blueprint of Asharov et al. [AJLT+12], adapt it to the core RLWE scheme as presented in
Section 1.4.1, and introduce several improvements:
– We propose a novel protocol for the generation of relinearization keys. This protocol adds

significantly less noise in the resulting relinearization key, therefore enables a less noisy relin-
earization algorithm.

– We propose a generalization of the scheme’s output procedure, the decryption protocol, into
a re-encryption one.

– From this generalization, we derive novel protocols for enabling external computation-receivers,
for bridging between the MHE-based and LSSS-based MPC protocols, and for efficiently re-
freshing the ciphertext noise.
This chapter is organized as follows: We first propose an extended definition for MHE

schemes; it models the generalized output procedures (Section 2.1). Then, we propose our
construction (Section 2.2) and instantiate it into a generic, passively secure, MPC protocol
for dishonest-majority setting (Section 2.4). We discuss this MPC approach and show that it
has several advantages over its LSSS-based counterparts: Notably, its per-party communication
complexity is only linear in the circuit’s inputs and outputs, and its execution does not require
private party-to-party communication channels. Finally, we demonstrate the efficiency of the
latter instantiation for three examples of MPC circuits (Section 2.5).

2.1 Extended MHE Scheme Definition

We first extend the MHE scheme definition of Section 1.3.2 with the syntax and properties
of our generalized output procedure. These output procedures support re-encryption of MHE
ciphertexts to another secret-key. They are used as a part of the ΠMHE−MPC protocol in order
to re-encrypt a ciphertext from the input to the computation receiver party’s key. We further
elaborate on these procedures and their practical use, when introducing their constructions in
Section 2.2.5. For the sake of the exposition, we formulate the following definitions for the case of
T = N (i.e., P is the only qualifying set in the access-structure of the scheme). We also formulate
the following correctness properties for an exact scheme (i.e., assuming exact encoding/decoding
and evaluation procedures). The formulation for the core HE scheme (which is approximate) is
similar but requires that the output decryption deviates only from f(m1, ...,mI) by more than
a defined threshold with negligible probability.

Recall that, in MHE, N parties in a set P hold secret-keys sk1, ..., skN that can be seen as
shares of an ideal secret key S(sk1, ..., skN). The generalized output procedures are as follows:

• Key Switching ct′ ← ΠKeySwitch(ct, sk1, ..., skN , sk′1, ..., sk
′
N):

Given a ciphertext ct encrypted under secret-key sk = S(sk1, ..., skN) (the input ideal
secret key), the parties in P re-encrypt ct under secret-key sk′ = S ′(sk′1, ...sk′N) (the
output ideal secret key), where sk′i is a secret-key share known by party Pi.

• Public-Key Switching ct′ ← ΠPubKeySwitch(ct, sk1, ..., skN , pk′):
Given a ciphertext ct encrypted under sk = S(sk1, ..., skN) (the input ideal secret key)
and an output public-key pk′ (the output public key) for secret-key sk′ (the output secret
key), the parties in P re-encrypt ct under sk′.

22 Chapter 2. A Multiparty Homomorphic Encryption Scheme

Additionally, the generalized output procedures satisfy the following correctness properties:
1. (KeySwitch-Correctness): For all arithmetic functions f :MI →M over the parties’ inputs

m1, . . . ,mI , there exists pp = (n, q, w,Err,Key) such that, for sk′ = S ′(sk′1, ..., sk′N) an output
secret-key and

ski ← ΠSecKeyGen i ∈ 1...N,

cpk← ΠEncKeyGen(sk1, ..., skN),

rlk← ΠRelinKeyGen(sk1, ..., skN),

cti ← MHE.Encrypt(cpk,mi) i ∈ 1...I,

ctf ← MHE.Eval(f, rlk, ct1, ..., ctI),

ct′f ← ΠKeySwitch(ctf , sk1, ..., skN , sk′1, ..., sk
′
N),

it holds that Pr[HE.Decrypt(sk′, ct′f)̸=f(m1, ...,mI)]<2−κ.

2. (PubKeySwitch-correctness): For all arithmetic functions f : MI → M over the parties’
inputs m1, . . . ,mI , there exists pp = (n, q, w,Err,Key) such that, for sk′ an output secret-key
and pk′ = HE.EncKeyGen(sk′) and

ski ← ΠSecKeyGen i ∈ 1...N,

cpk← ΠEncKeyGen(sk1, ..., skN),

rlk← ΠRelinKeyGen(sk1, ..., skN),

cti ← MHE.Encrypt(cpk,mi) i ∈ 1...I,

ctf ← MHE.Eval(f, rlk, ct1, ..., ctI),

ct′f ← ΠPubKeySwitch(ctf , sk1, ..., skN , pk′),

it holds that Pr[HE.Decrypt(sk′, ct′f)̸=f(m1, ...,mI)]<2−κ.

2.2 N-out-of-N-Threshold Scheme Construction

Here, we present our MHE construction. In order to abstract the actual system model, we assume
an abstract channel over which the parties can disclose shares to their peers. In Section 2.4.3,
we present concrete system models and discuss their features. Let CRS(Rq) be the uniform
distribution in Rq, according to a common random string, i.e., elements sampled from this
distribution are uniformly distributed and the same for all parties.

2.2.1 Ideal-Secret-Key Generation

We propose to use an additive structure for the combined secret-key, denoted as s in the following.
We denote by si the secret key share of party Pi, thus

sk = s =
∑
Pi∈P

si. (2.1)

This enables a simple ideal-secret-key generation procedure ΠSecKeyGen in which each party sam-
ples independently its own share from the RLWE key-distribution.

Thus, the resulting ΠSecKeyGen procedure is non-interactive (which, actually, makes it an
algorithm in our terminology). Equation. (2.1) applies, but this does not result in a usual

Chapter 2. A Multiparty Homomorphic Encryption Scheme 23

sharing of s, in the sense that the distribution of the shares is not uniform in Rq. This is not
an issue because the security of our scheme (analyzed in Section 2.3.3) does not rely on this
property. However, the norm of the resulting ideal secret key grows with O(N), which has
an effect on the noise growth (analyzed in Section 2.3.2). By using techniques such as those
described in [RSTV+22], it might be possible to generate ideal secret keys in R3 as if they were
produced in a trusted setup (e.g., as an additive secret-sharing of a usual RLWE secret-key over
Rq). However, this would introduce the need for private channels between the parties.

2.2.2 Collective Encryption-Key Generation

The collective encryption-key generation, detailed in Protocol ΠEncKeyGen, emulates the ideal
scheme’s HE.EncKeyGen procedure. In addition to the public parameters of the cryptosystem
(which we will omit in the following), the procedure requires a public polynomial p1, uniformly
sampled in Rq and to be agreed upon by all the parties. For this purpose, they sample its coef-
ficients from the common random string (CRS). After the execution of the ΠEncKeyGen protocol,
the parties have access to the collective public encryption key

cpk =
([∑

Pi∈P
p0,i

]
q
, p1

)
=

([
− (

∑
Pi∈P

si)p1 +
∑
Pi∈P

ei
]
q
, p1

)
, (2.2)

that has the same form as the ideal public key pk in the BFV scheme, with larger worst-case
norms ∥s∥ and ∥e∥. The norm increases only linearly in N hence is not a concern (see Section
2.3.2), even for a large number of nodes. Another notable feature of the ΠEncKeyGen protocol is
that it applies to any kind of linear sharing of s, as long as the shares are valid RLWE secrets
and the norm of the reconstruction is small enough. This includes uniformly random sharing
over Rq of a traditional RLWE secret key in R3.

2.2.3 Relinearization-Key Generation

Protocol ΠRelinKeyGen emulates the centralized HE.RelinKeyGen. Informally, it produces pseudo-
encryptions of s2w(i) for each element i = 0, ..., l − 1 of the decomposition basis parameter w.
It requires a public element a to be uniformly sampled in Rl

q from the CRS. We use vector
notation to express that these pseudo-encryptions are generated in parallel for every element of
the decomposition base w.

Asharov et al. propose a method to generate relinearization keys for multiparty schemes based
on the learning-with-errors (LWE) problem [AJLT+12]. This method could be adapted to our
scheme but results in significantly increased noise in the rlk (hence, higher noise in relinearized
ciphertexts) with respect to the centralized scheme. One cause for this extra noise is the use of the
public encryption algorithm to produce the mentioned pseudo-encryptions. By observing that
the collective encryption key is not needed for this purpose (because the secret key is collectively
known), we propose Protocol ΠRelinKeyGen as an improvement over the method by Asharov et al.1

After completing the ΠRelinKeyGen protocol, the parties have access to a public relinearization
key of the form

rlk = (r0, r1) = (−sb+ s2w + se0 + ue1 + e2 + e3 , b), (2.3)

where b = sa+ e1 and ek =
∑

j ek,j for k = 0, 1, 2, 3.

1Park subsequently proposed another improvement on the relinearization-key generation protocol; it requires
a single round of communication [Par21].

24 Chapter 2. A Multiparty Homomorphic Encryption Scheme

Protocol 1. ΠSecKeyGen ▷ The secret-key generation protocol (non-interactive)

Private Output: ski = si (ideal secret-key share of party i)

Round 1:
Each party Pi:

1. samples si ← Key.

Output:
(For party Pi): ski = si.

Protocol 2. ΠEncKeyGen ▷ The collective public encryption-key generation protocol

Private Input for Pi: si = ski (secret key share)
Public Output: cpk = (p0, p1) (collective encryption key)

Round 1:
Each party Pi:

1. samples ei ← Err and p1 ← CRS,

2. discloses p0,i = −p1si + ei.

Output:
From p0 =

∑
Pj∈P p0,j , outputs cpk = (p0 , p1).

Protocol 3. ΠRelinKeyGen ▷ The relinearization-key generation protocol

Public Input: w the decomposition basis of size l
Private Input of Pi: si = ski
Output: rlk = (r0, r1)

Round 1:
Each party Pi:

1. samples ui ← Key, e0,i, e1,i ← Err and a← CRS,

2. discloses (h0,i , h1,i) = (−uia+ siw + e0,i , sia+ e1,i).

Round 2:
Each party Pi:

1. sets h0 =
∑

Pj∈P h0,j and h1 =
∑

Pj∈P h1,j ,

2. samples e2,i, e3,i ← Errl,

3. discloses (h′
0,i , h′

1,i) = (sih0 + e2,i , (ui − si)h1 + e3,i).

Output:
Set h′

0 =
∑

Pj∈P h′
0,j and h′

1 =
∑

Pj∈P h′
1,j , output rlk = (h′

0 + h′
1 , h1).

Chapter 2. A Multiparty Homomorphic Encryption Scheme 25

Hence, compared to the keys generated by adapting the approach of Asharov et al. (we
provide the corresponding protocol in Appendix A.1), our keys have a lower error in r0 and no
error at all in r1 (i.e., they have the same form as those of the centralized scheme, although with
larger noise terms). This significantly reduces the noise induced by relinearization.

A relevant feature of the proposed ΠRelinKeyGen protocol is its independence from the actual
decomposition basis w: It is compatible with other decomposition techniques, such as the one
used for Type II relinearization [FV12], those based on the Chinese Remainder Theorem (as
proposed by Bajard et al. [BEHZ16] and Cheon et al. [CHKK+18]), and the hybrid approach
of Bossuat et al. [BMTH21].

2.2.4 Packed-Encoding and Rotation Keys

One of the most powerful features of RLWE-based schemes is the ability to embed vectors of
plaintext values into a single ciphertext. Such techniques, commonly referred to as packing, en-
able arithmetic operations to be performed in a single-instruction multiple-data fashion, where
encrypted arithmetic results in element-wise plaintext arithmetic. Provided with public rotation
keys, arbitrary rotations over the vector components [CHKK+18] can be operated homomor-
phically. Generating these rotation keys (which, similarly to the relinearization key, can be
seen as pseudo-encryptions of rotations of the secret-key coefficients) can be done in the mul-
tiparty scheme, by means of an ΠRotKeyGen sub-protocol. We do not detail this protocol, as it
is a straightforward adaptation of ΠEncKeyGen. This enables a vast family of homomorphically
computable linear and non-linear transformations on ciphertexts. We will make use of rotations
in the input-selection example circuit in Section 2.5.2.

2.2.5 Collective Key-Switching Protocols

The key-switching functionality enables the oblivious re-encryption operation. Given a ciphertext
ct encrypted under an input key s, along with an output key s′, the key-switching procedure
outputs ct′ = Enc(s′,Dec(s, ct)). Because the single-party decryption (Eq. (1.1)) is equivalent
to switching from the ideal secret-key to an output key s′ = 0, this protocol generalizes the
decryption protocol.

Smudging We observe that the aforementioned decryption procedure, and the MHE key-
switching procedures in general, provide the output-key owner(s) with the ciphertext noise.
As this noise depends on intermediate values in the encryption, homomorphic computation, and
key-switching procedures, it could be exploited as a side-channel by curious receivers. 2 The
smudging technique, as introduced by Asharov et al. [AJLT+12], aims at making the ciphertext-
noise unexploitable by flooding it with some freshly sampled noise terms in a distribution of
larger-variance.

We achieve this by sampling the relevant error terms in the key-switching protocols from a
discrete Gaussian distribution of variance σ2

smg = 2λσ2
ct where σ2

ct is the key-switched ciphertext’s
noise variance (see Eq. (1.1)) and λ the desired security level (e.g., λ = 128, see Section 2.3.3).
Hence, this technique assumes that the system keeps track of the ciphertext noise-level and has
access to this property. For a ciphertext ct, we denote the variance of its noise term as var(ct),
and the smudging distribution with variance σ2 as Smudge(σ2).

2Subsequently to our work, concrete attacks on the decryption noise were more thoroughly analysed, e.g., by
Li and Micciancio in the context of CKKS [LM21]. Adapting these new results to MHE smudging would result
in a much more practical approach: By studying the noise leakage in a computational setting, the variance of the
smudging noise can be significantly reduced for the same security level [LMSS22; CHIV+22].

26 Chapter 2. A Multiparty Homomorphic Encryption Scheme

Receiver The protocol’s instantiation depends on whether the parties performing the re-
encryption have collective access to the output secret-key directly (e.g., in the case of internal
receivers) or whether they have only its corresponding public-key (e.g., in the case of external
receivers). Both these settings are relevant when instantiating the MHE scheme as an MPC
protocol, which we discuss in Section 2.4. Therefore, we develop protocols that perform key-
switching for these two settings: When s′ is collectively known, the ΠKeySwitch protocol is used.
When only a public key is known, the ΠPubKeySwitch protocol is used.

Collective Key-Switching

Protocol ΠKeySwitch details the steps for performing a key switching when the input parties col-
lectively know the output secret key s′. This protocol can be used as a decryption protocol
(s′ = 0) or for updating the access-structure (see Section 2.2.8), and it is the basis for bridging
MHE-based and LSSS-based approaches (see Section 2.2.6).

After the execution of the ΠKeySwitch protocol on input ct = (c0, c1) such that c0+sc1 = m+ect
where ect is the ciphertext’s error, the parties have access to ct′ such that

HE.Decrypt(s′, ct′) = c′0 + s′c1

= c0 +
∑
j

(
(sj − s′j)c1 + ej

)
+ s′c1

= c0 + (s− s′)c1 + eCKS + s′c1

= m+ ect + eCKS, (2.4)

where eCKS =
∑

j ej . Hence, as long as m+ ect+ eCKS remains below the threshold for successful
decoding by the concrete HE scheme in use, the KeySwitch-correctness property is satisfied. For
example, we require that ∥ect + eCKS∥ < q/(2t) for the correctness to hold when considering the
BFV front-end scheme.

The use of the ΠKeySwitch protocol is limited to the cases where parties have collective knowl-
edge of the output secret key s′. Yet, this might not be the case, for example, when considering
an external receiver R for the key-switched ciphertext (we elaborate on external receivers in
Section 2.4.1). This situation would require confidential channels between the receiver and each
party in P, in order either (i) to collect decryption shares from all parties, or (ii) to distribute
an additive sharing of its secret key to the system. However, (i) would become expensive for
a large number of parties, and (ii) would require R to trust at least one party in P. Further-
more, both approaches would require confidential channels between each of the parties and the
receiver, and this might not fit the system model. Instead, it would be more desirable that the
parties re-encrypt the target ciphertext under s′ given a public-key for s′, in such a way that
the ciphertext can be retrieved and decrypted with a single interaction from the receiver (and
possibly at a later stage).

Collective Public-Key Switching

Protocol ΠPubKeySwitch details the steps for performing a collective key-switching when the input
parties know only a public key for the output secret key s′. As it requires only public input
from the receiver, ΠPubKeySwitch enables an external party (i.e., that is not part of an input
access-structure) to obtain an output without the need for private channels with the parties.

Let ct = (c0, c1) be an input ciphertext such that c0 + sc1 = m+ ect and pk′ = (p′0, p
′
1) be a

public key such that p′0 = −(s′p′1 + epk′). After the execution of the ΠPubKeySwitch protocol on ct

Chapter 2. A Multiparty Homomorphic Encryption Scheme 27

Protocol 4. ΠKeySwitch ▷ The collective key-switching protocol

Public input: ct = (c0, c1) with var(ct) = σ2
ct

Private input for Pi: si, s′i
Public output: ct′ = (c′0, c1)

Round 1:
Each party Pi:

1. samples ei ← Smudge(σ2
ct),

2. discloses hi = (si − s′i)c1 + ei.

Output:
Set h =

∑
Pj∈P hj and output ct′ = (c′0, c1) = (c0 + h, c1).

Protocol 5. ΠPubKeySwitch ▷ The collective public-key switching protocol

Public input: pk′ = (p′0, p
′
1), ct = (c0, c1), var(ct) = σ2

ct

Private input for Pi: si
Public output: ct′ = (c′0, c

′
1)

Round 1:
Each party Pi

1. samples ui ← Key, e0,i ← Smudge(σ2
ct), e1,i ← Err,

2. discloses (h0,i , h1,i) = (sic1 + uip
′
0 + e0,i , uip

′
1 + e1,i).

Output:
Set h0 =

∑
j h0,j and h1 =

∑
Pj∈P h1,j , output ct′ = (c′0, c

′
1) = (c0 + h0, h1).

Protocol 6. ΠColBootstrap (BFV variant) ▷ The collective refresh protocol

Public input: ct = (c0, c1) var(ct) = σ2
ct

Private input for Pi: si
Public output: ct′ = (c′0, c

′
1) with noise variance Nσ2

Round 1:
Each party Pi

1. samples Mi ← Rt, e0,i ← Smudge(σ2
ct), e1,i ← Err and a← CRS,

2. discloses (h0,i , h1,i) = (sic1 −∆Mi + e0,i , −sia+∆Mi + e1,i).

Output:
Set h0 =

∑
j h0,j , h1 =

∑
j h1,j and output (c′0, c

′
1) = ([⌊ tq ([c0 + h0]q)⌉]t∆+ h1 , a).

28 Chapter 2. A Multiparty Homomorphic Encryption Scheme

with output public key pk′, the parties hold ct′ satisfying

HE.Decrypt(s′, ct′) = c′0 + s′c′1

= c0 +
∑
j

(
sjc1 + ujp

′
0 + e0,j

)
+ s′

∑
j

(
ujp

′
1 + e1,j

)
= c0 + sc1 + up′0 + s′up′1 + e0 + s′e1

= m+ ect + ePCKS, (2.5)

where ed =
∑

j ed,j for d = 0, 1, u =
∑

j uj , and the total added noise ePCKS = e0 + s′e1 + uepk
depends on both the protocol-induced and the target-public-key noises. Similarly as for the
ΠKeySwitch protocol, the PubKeySwitch-correctness property is satisfied if m+ ect + ePCKS can be
successfully decoded. In the case of BFV, this holds if ∥ect + ePubKeySwitch∥ < q/(2t).

2.2.6 Bridging MPC Approaches

The flexibility of the ΠKeySwitch protocol can be harnessed to bridge the MHE-based and LSSS-
based MPC approaches. More precisely, we consider the task of switching from an MHE en-
cryption to an additive sharing of the message among the parties in P, as well as the reverse
operation. For the sake of this exposition, we will consider the BFV front-end scheme with the
plaintext space M = Rt for t an NTT-friendly prime. Note that the procedure can be adapted
to non-integer plaintext space [FTPS+21].

Encryption-to-Shares Given an encryption (c0, c1) of a plaintext m ∈ Rt, the ΠEnc2Share

protocol outputs an additive sharing of m over Rt. Intuitively, this protocol corresponds to
the parties masking their share in the decryption (i.e., ΠKeySwitch with s′ = 0) protocol: Each
party Pi ∈ {P2, . . . , PN} samples its own additive share Mi ← Rt and adds a −∆Mi term to its
decryption share hi before disclosing it. Party P1 does not disclose its decryption share h1 and
derives its own additive share of m as

M1 = BFV.Decrypt(s1, (c0 +
N∑
i=2

hi, c1)) = m−
N∑
i=2

Mi.

Shares-to-Encryption Given a secret-shared value m ∈ Rt such that m =
∑N

i=1 Mi, the
ΠShare2Enc protocol outputs an encryption ct = (c0, c1) of m. This is, each party Pi samples a

from the CRS and produces a ΠKeySwitch share for the ciphertext (∆Mi, a) with input key 0 and
output key s. The ciphertext that encrypts m is then given by ct = (

∑N
i=1 c0,i, a).

2.2.7 Collective Bootstrapping

We combine the ΠShare2Enc and ΠEnc2Share protocols into a multiparty bootstrapping procedure
(Protocol ΠColBootstrap) that enables the reduction of a ciphertext noise to further compute on
it. This is a crucial functionality for RLWE schemes (such as the BFV scheme) for which the
centralized bootstrapping procedure is expensive. Intuitively, the ΠColBootstrap protocol consists of
a conversion from an encryption to secret-shares and back, implemented as a parallel execution of
the ΠEnc2Share and ΠShare2Enc protocols. It is an efficient single-round interactive protocol that the
parties can use during the evaluation phase, instead of a computationally heavy bootstrapping
procedure. In practice, a broad range of applications would not (or seldom) need to rely on this
primitive, as the circuit complexity enabled by the practical parameters of the scheme suffices.

Chapter 2. A Multiparty Homomorphic Encryption Scheme 29

Table 2.1: Comparison with multi-key schemes: dependency in the number of parties N
Size Time

Scheme Ciphertext Switching-key Mult.+Relin. Rotate
Multi-key MHE (Chen et al.[CDKS19]) O(N) O(N) O(N2) O(N)
Threshold MHE (this work) O(1) O(1) O(1) O(1)

But the ΠColBootstrap protocol offers a trade-off between computation and communication (we
demonstrate this in Section 2.5.3). As for the LSSS-bridge protocols, Froelicher et al. adapted
this procedure to the CKKS instantiation of the MHE scheme [FTPS+21].

2.2.8 Dynamic Access-Structure

The scenario of parties joining and leaving the system corresponds to a secret-key update and
is handled by the ΠKeySwitch and ΠPubKeySwitch protocols. More specifically, we consider the task
of transferring a ciphertext from an input set of parties P to an output set P ′. If P ′ ⊂ P, the
parties in P − P ′ can simply use the ΠKeySwitch protocol with output key s′ = 0. Otherwise, the
parties use the ΠPubKeySwitch protocol with pk′ set to the collective public-key of P ′.

2.3 MHE Scheme Analysis

We now analyze the complexity, noise growth and security aspects of our proposed MHE scheme
construction.

2.3.1 Comparison with Multi-key-HE

Multi-key HE schemes, as introduced by López-Alt et al. [LTV12], enable the evaluation of
homomorphic operations directly over ciphertexts encrypted under different secret-keys. The
access-structure of these schemes can be seen as dynamic; they include on-the-fly each new party
in the computation circuit. Hence, these schemes do not require the generation of a collective
public encryption-key. In their current instantiation, however, they require the generation of
public relinearization and rotation keys for which the size depends on the number of parties N .
Furthermore, their ciphertext size and homomorphic operation complexity also increase with N .
Chen et al. [CDKS19] propose multi-key extensions for the BFV and CKKS schemes for which
these dependencies are reported in Table 2.1.

We observe that, when on-the-fly computation is not required by the application (e.g., the
set of nodes is known in advance), threshold schemes result in a more efficient construction.
However, note that the multi-key and threshold approaches are not mutually exclusive. Hybrid
constructions, where the threshold scheme is used to emulate a single key within a multi-key
setting, are promising ways of tailoring the access structure to the sought security and function-
ality requirements3. For example, in an encrypted federated learning system, a fixed group of
parties could train a model under threshold encryption and enable the prediction to be evaluated
on-the-fly under multi-key encryption.

3A hybrid scheme was subsequently proposed by Kwak et al.[KLSW21].

30 Chapter 2. A Multiparty Homomorphic Encryption Scheme

2.3.2 Noise Analysis

We analyze the effect of distributing the BFV cryptosystem on the ciphertext noise. As the
distribution affects only the magnitude of the scheme’s secrets (key and noise), the original
cryptosystem analysis [FV12] directly applies, though with a larger worst-case error norm that
we express as a function of the number of parties N in the following. The derivations for the
equations presented in this section can be found in Appendix A.2.
Ideal Secret-Key and Encryption-Key As a result of the secret-key generation procedure,

where each additive share si is sampled from R3, we know that ∥s∥ ≤ N . As a result of the
ΠEncKeyGen protocol, the collective public key noise is ecpk =

∑N
i=1 ei (see Eq. (2.2)), which

implies that ∥ecpk∥ ≤ NB, where B is the worst-case norm for an error term from Err.

Fresh Encryption Let ct= (c0, c1) be a fresh encryption of a message m under a collective
public key. The first step of the decryption (Eq. (1.1)) under the ideal secret key outputs
c0 + sc1 = m+ efresh, where

∥efresh∥ ≤ B(2nN + 1). (2.6)

Thus, for a key generated by the ΠEncKeyGen protocol, the worst-case fresh ciphertext noise is
linear in the number N of parties.

Collective Key-Switching Let ct = (c0, c1) be an encryption of m under the collective secret
key s, and ct′ = (c′0, c1) be the output of the ΠKeySwitch protocol on ct with target key s′. Then,
c′0 + s′c1 = m+ efresh + eCKS with

∥eCKS∥ ≤ BsmgN, (2.7)

where Bsmg is the bound of the smudging distribution. We observe that the additional noise
does not depend on the destination key s′.

Public Collective Key-Switching Let ct = (c0, c1) be an encryption of m under the collective
secret key s, and ct′ = (c′0, c

′
1) be the output of the ΠPubKeySwitch protocol on ct and target

public key pk′ = (p′0, p
′
1), such that p′0 = −s′p′1 + epk′ . Then, c′0 + s′c′1 = m + efresh + ePCKS

with
∥ePCKS∥ ≤ N(nBpk′ + n∥s′∥B +Bsmg), (2.8)

where ∥epk′∥ ≤ Bpk′ , and Bsmg is the bound on the smudging noise. Note that in this case,
the smudging noise should dominate this term.

2.3.3 Standalone MHE Security

Here,we state the security theorem for the MHE scheme in the passive-adversary model. At
this stage, we consider the standalone security of the scheme, i.e., the security of each protocol
separately, and we defer the discussion about the composition of multiple MHE protocols to
Section 2.4, where we discuss the full MHE-based MPC protocol. We formulate the security in
the ideal/real simulation formalism [Lin17], as Theorem 1. We state that the adversary’s view
in the execution of the protocols can be simulated, in such a way that it is indistinguishable
from the real view, by an ideal world simulator that has access only to the adversary’s inputs.
For two distributions D and D̃, we denote computational indistinguishability as D

c≡ D̃ and
statistical indistinguishability as D

s≡ D̃. For a protocol Π, we denote Π({xi}Pi∈P) the output
of the protocol execution under the parties’ inputs (where xi is the private input of party Pi),
and we denote viewΠ

A the adversary’s view in the protocol execution.

Chapter 2. A Multiparty Homomorphic Encryption Scheme 31

Theorem 1 (MHE Security for semi-honest model). Let P = {P1, P2, . . . , PN} be a set of N

parties and let A ⊂ P be a set of corrupted parties (the adversary) where |A| ≤ N − 1. For each
possible set A of corrupted parties:

– There exists a simulator SSecKeyGen such that, for {si}Pi∈P ← ΠSecKeyGen,

SSecKeyGen({si}Pi∈A)
c≡ viewΠSecKeyGen

A .

– There exists the simulators SEncKeyGen, SRelinKeyGen such that, for {si}Pi∈P ← ΠSecKeyGen,
cpk← MHE.ΠEncKeyGen({si}Pi∈P) and rlk← MHE.ΠRelinKeyGen({si}Pi∈P),

SEncKeyGen({si}Pi∈A, cpk)
c≡ viewΠEncKeyGen

A ,

SRelinKeyGen({si}Pi∈A, rlk)
c≡ viewΠRelinKeyGen

A .

– There exists a simulator SKeySwitch such that, for {si}Pi∈P ← ΠSecKeyGen some input
secret-keys, {s′i}Pi∈P ← ΠSecKeyGen some target secret-keys, ct a ciphertext encrypting a
message m ←M under secret-key

∑N
i=1 si with ciphertext noise variance σ2

ct, smudging
noise terms {esmg

i }Pi∈P ← Smudge(σ2
ct) and (c′0, c

′
1) = ct′ ← ΠKeySwitch({si, s′i, esmg

i }Pi∈P , ct),
it holds that

SKeySwitch({si, s′i}Pi∈A, ct)
c≡ viewΠKeySwitch

A ,

m+

N∑
i=1

esmg
i

s≡ c′0 + c′1

N∑
i=1

s′i.

Proof (Intuition) We provide the actual construction for each simulator program in Ap-
pendix A.3, and we briefly discuss the intuition for the proof of Theorem 1 here. We begin by
observing that, as we assume that parties publicly disclose their share for each protocol round in
the MHE scheme, the task of each simulator is to output simulated round shares for all parties.
To simulate the shares of the honest parties (which it cannot compute), it generates all shares
but one by sampling elements from Rq, uniformly at random. The last share is generated by
subtracting the sum of all randomized shares to the protocol output (which is provided to the
simulator in the ideal world and generally corresponds to the sum of all shares in the real-world)
in order that the simulated transcript produces the correct output. As all protocol shares in the
MHE scheme have the form of an RLWE sample (or a vector thereof), these fake shares are com-
putationally indistinguishable from the real-world ones by the adversary, by the decision-RLWE
assumption [LPR10] (see Section 1.3.5). Note that in the worst case in which |A| = N − 1, the
simulator as described above generates the real-world transcript.

2.4 MHE-Based Secure Multiparty Computation

We discuss the instantiation of our MHE scheme construction in a generic secure-multiparty-
computation (MPC) protocol. Using MHE schemes to achieve MPC is not new [CDN01;
AJLT+12], but each new generation of HE schemes makes this approach more efficient and
flexible. However, to the best of our knowledge, no generic MPC solution has yet been imple-
mented to exploit these ideas. We discuss how MHE-based solutions can lead to a new generation
of MPC systems: not only in a traditional peer-to-peer setting but also in an outsourced setting
where parties are assisted by a semi-honest entity, without relying on non-collusion assumptions.

32 Chapter 2. A Multiparty Homomorphic Encryption Scheme

2.4.1 The ΠMHE−MPC Protocol

Let P = {P1, P2, . . . , PN} be a set of N input parties holding respective inputs (x1, . . . , xN), let
R be an external receiver and let C be a set of computing parties (which could have non-empty
intersection with P ∪ {R}). Given a public arithmetic function f over the parties’ inputs, the
ΠMHE−MPC protocol privately computes y = f(x1, . . . , xN) and outputs the result to R. Infor-
mally, this means that, for A ⊂ (P ∪ C ∪ {R}) a set of corrupted parties (the adversary) in the
ΠMHE−MPC protocol where |A∩P| ≤ N−1, we require that the adversary does not learn anything
about {xi}Pi /∈A more than that which can be learnt from its own inputs {xi}Pi∈A and, if R ∈ A,
from the output.

ΠMHE−MPC Protocol Overview The ΠMHE−MPCprotocol (Protocol 7) has two phases, Setup

and Compute, that are themselves decomposed into several steps. The Setup phase instantiates
the MHE scheme: Its goal is to generate the secret keys (in the SecKeyGen step, which is non-
interactive, see Section 2.2.1), and to generate the necessary public keys (in the PubKeyGen step)
for the rest of the protocol. In the PubKeyGen step, the parties generate the collective encryption
key cpk (to be used in the Input step), and the evaluation keys (to be used in the Eval step):
the relinearization key rlk, and one rotation key per rotation amount in the circuit (denoted
Rot(f)). For instance, if the circuit f performs (any number of) rotations by 1 and 2, then
Rot(f) = {1, 2}.

Note that the Setup phase is independent from the parties’ inputs to the circuit f . Hence,
it can be compared, to some extent, to the offline phase of the LSSS-based approaches (which
generates the correlated randomness for the input-dependent phase). However, Setup phase of
the MHE-based protocol is fundamentally different in that it produces public keys that can be
used for an unlimited number of circuit evaluations. It has to be run only once for a given set
of parties and for a given choice of public cryptographic parameters pp = (n, q,Key,Err). This
means that the cost of Setup phase does not directly depend on the number of multiplication
gates in the circuit but on the maximum circuit depth (which determines the HE parameters)
and on the number of rotations in Rot(f) (which determines the number of necessary ΠRotKeyGen

protocol execution).
In the Input step, the parties use the MHE.Encrypt algorithm to encrypt their inputs and to

provide them to C for evaluation. For our construction, this corresponds to using the single-party
HE.Encrypt procedure.

The Eval step consists of the evaluation of the circuit representation of f , using the MHE.Eval

set of homomorphic operations. Again, our construction relies on the unmodified HE.Eval set of
procedures. As this step requires no secret input from the parties, it can be performed by any
semi-honest entity C. In purely peer-to-peer settings, the parties themselves assume the role of
C, either by distributing the circuit computation, or by delegating it to one designated party.
In the cloud-assisted setting, a semi-honest cloud provider can assume this role. Although it is
frequent to define the role of computing party in current MPC applications [JWBB+17; AMP18;
ABLK+18], it is usually a part of the N -party to 2-party problem reduction that introduces
non-collusion assumptions. In the ΠMHE−MPC protocol, the computing parties are not required to
be part of the computation data access-structure, thus removing the need for such assumptions.

The Output step enables the receiver R to obtain its output. This requires collaboration
among the parties in P to re-encrypt the output under the key of R. This is achieved with the
ΠPubKeySwitch protocol, which does not require online interaction between the input parties and
the receiver.

Chapter 2. A Multiparty Homomorphic Encryption Scheme 33

Protocol 7. ΠMHE−MPC ▷ The MHE-Based MPC Protocol (for External Receivers)

Public input: f the ideal functionality, pkR the receiver’s public-key
Private input: xi for each Pi ∈ P, skR for R
Output for R: y = f(x1, x2, . . . , xN)

Setup:

The input parties in P:
1. (SecKeyGen) execute the secret-key generation protocol

ski ← MHE.ΠSecKeyGen,

2. (PubKeyGen) execute the required public-key generation protocols:

cpk← MHE.ΠEncKeyGen(sk1, . . . , skN),

rlk← MHE.ΠRelinKeyGen(sk1, . . . , skN),

rtkr ← MHE.ΠRotKeyGen(r, sk1, . . . , skN) ∀r ∈ Rot(f).

Compute:

1. (Input) each input party in P encrypts its input as

ci ← MHE.Encrypt(cpk, xi)

and send ci to C,
2. (Eval) the computing parties in C compute the encrypted output as

c′ ← MHE.Eval(f, rlk, c1, c2, . . . , cN)

and send the result c′ to the parties in P,

3. (Output) the parties in P re-encrypt the output under the receiver’s key:

c′R ← MHE.ΠPubKeySwitch(sk1, . . . , skN , pkR, c
′)

and send c′R to the receiver R.

34 Chapter 2. A Multiparty Homomorphic Encryption Scheme

2.4.2 ΠMHE−MPC Protocol Security

We now state the security theorem for the ΠMHE−MPC protocol in the passive adversary model,
as Theorem 2. To simplify the theorem, but without the loss of generality, we assume that the
output receiver R is corrupted by the adversary. As a result, the ΠMHE−MPC protocol output is
provided to the simulator in clear text. Indeed, the opposite case (where the adversary does
not know the receiver secret-key skR) is less relevant from a security point of view, because the
simulator can simply output a uniformly random R2

q tuple as ctR.

Theorem 2 (ΠMHE−MPC security for semi-honest model). Let P = {P1, P2, . . . , PN} be a set of
N parties holding private inputs {x1, x2, . . . , xN} where xi is held by party Pi, fMN →M be a
public arithmetic function. For each possible set A ⊂ P of corrupted parties (the adversary) where
|A| ≤ N − 1, there exists simulator program SMHE−MPC such that, for y ← ΠMHE−MPC({xi}Pi∈P),
it holds that

SMHE−MPC({xi}Pi∈A, f({xi}Pi∈P))
c≡ viewΠMHE−MPC

A ,

f({xi}Pi∈P)
s≡ y.

Proof (Intuition) Asharov et al. prove the security of MHE-based MPC protocol [AJLT+12]
given a semantically secure MHE scheme, hence we only briefly provide an intuition for it here.
We observe that the ΠMHE−MPC protocol is privately reducible to the ΠEncKeyGen, ΠRelinKeyGen and
ΠKeySwitch protocols. It privately computes its functionality f when provided with oracle access to
fEncKeyGen, fRelinKeyGen and fKeySwitch. In fact, this property directly follows from the fact that (a)
these functionalities have public outputs (i.e, all query-response to the corresponding oracle can
be simulated) and (b) the view of the resulting Π

fEncKeyGen,fRelinKeyGen,fKeySwitch
MHE−MPC protocol are valid keys

and ciphertexts for the single-party scheme, yet with higher-norm secret-key and error bounds
(which indeed preserves its semantic security). Then, the security of the ΠMHE−MPC protocol
follows from the standalone security of each protocol (Theorem 1) by applying the composition
theorem for semi-honest model [Gol09].

2.4.3 ΠMHE−MPC Protocol Features

In the following subsections, we discuss the properties of the ΠMHE−MPC protocol, as well as the
various system models these properties enable.

Public Non-interactive Circuit Evaluation

Although the homomorphic operations of HE schemes are computationally more expensive than
local operations of secret-shared arithmetic, the former do not require private inputs from the
parties. Hence, as long as no output or ciphertext refreshing is needed, the circuit evaluation
procedure is non-interactive and can be performed by any semi-honest entity. This not only
enables the evaluation to be efficiently distributed among the parties in the usual peer-to-peer
setting but also enables new computation models for MPC:

Cloud-Outsourced Model The homomorphic circuit evaluation can be outsourced to a
cloud-like service, by providing it with the inputs and necessary evaluation keys. The par-
ties can arbitrarily go offline during the evaluation and reconnect for the final output step. In
this model, the overhead for each input party is independent of the total number of parties.
This enables even resource-constrained parties to take part in large-scale MPC tasks, that would

Chapter 2. A Multiparty Homomorphic Encryption Scheme 35

involve tens and even hundreds of parties. We demonstrate two instances of the cloud-assisted
setting as a part of our evaluation (Sections 2.5.2 and 2.5.3).

Smart Contracts A special case of an outsourced MPC task is the execution of a smart
contract over private data; this is feasible by means of the MHE-based MPC solution. In this
scenario, the contract stakeholders (any party that has private input to the contract) are the
MHE secret-key owners, and the smart-contract platform acts as an oblivious contract evaluator.

Public-Transcript Protocols

All the protocols of our MHE scheme construction have public transcripts, which removes the
need for direct party-to-party communication. Hence, not only the Eval step, but the whole
ΠMHE−MPC protocol can be executed over any public authenticated channel. This also brings new
possibilities to designing MPC systems, which we describe below.

Efficient Network Communication Patterns The proposed protocols rely solely on the
ability of the parties to publicly disclose their shares and to aggregate them. This gives flexibility
for using efficient communication patterns: The parties can be organized in a topological way, as
nodes in a tree, where each node interacts solely with its parent and children nodes. We observe
that, for all the protocols, the shares are always combined by computing their sum. Hence, for
a given party in our protocols, a round consists in computing its own share in the protocol,
collecting and aggregating the share of each of its children and its own share, and sending the
result up the tree to its parent (or outputting if the party is the root). Such an execution enables
the parties to compute their shares in parallel and results in network traffic that is constant at
each node.

By trading off some latency, the inbound traffic can be kept low by ensuring that the branching
factor of the tree (i.e., the number of children per node) is manageable for each node. As the
share aggregation can also be computed by any semi-honest third-party, the tree can contain
nodes that are not part of P (i.e., nodes that would not have input in the MPC hence have no
need of being part of the secret-key access-structure) and simply aggregate and forward their
children’s shares. We demonstrate the efficiency of the tree topology in the multiplication triple
generation example benchmark, in Section 2.5.4.

Cloud-Assisted MPC Model The special case of a single root node that does not hold a
share of the key can be mapped to a cloud-assisted setting where parties run the protocols in-
teracting solely with a central node. This model complements the circuit-evaluation outsourcing
feature by removing the need for synchronous and private party-to-party communication and
the need for the input parties to be online and active for the protocol to progress. Hence, the
cloud-assisted ΠMHE−MPC protocol has a clear advantage in terms of tolerance to unreliable par-
ties, which is a significant step toward large-scale MPC. We use the cloud-assisted model for
the first two example circuits of Section 2.5 and demonstrate its practicality for computations
involving thousands of parties.

2.5 Performance Analysis

In order to analyze the performance of the ΠMHE−MPC protocol in both the cloud-assisted and
the peer-to-peer settings, we evaluate three generic circuits over prime fields. These circuits
represent common building blocks for more complex functionalities (which we briefly discuss)

36 Chapter 2. A Multiparty Homomorphic Encryption Scheme

Table 2.2: Experimental cryptographic parameters: Overview
Set log2 t log2 n log2 q log2 w σ sec. (bits)
I 32 13 218 26 3.2 128
II-A 32 14 438 110 3.2 128
II-B 16 14 438 110 3.2 128
II-C 16 15 880 180 3.2 128
III 32 13 218 55 3.2 128

and represent a comparison basis that requires no application-specific knowledge. Thus, these
circuits enable a compact and reproducible comparison with a baseline generic MPC system.

In the cloud-assisted setting, we consider two example circuits: (i) A multiparty input-
selection circuit and its application to multiparty private-information-retrieval (Section 2.5.2)
and (ii) the element-wise product of integer vectors and its application as a simple multiparty
private-set-intersection protocol (Section 2.5.3).

For both circuits, we compare the performance against a baseline system that uses an
LSSS-based approach: the MP-SPDZ library implementation [Kel20] of the Overdrive proto-
col [KPR18] for the semi-honest, dishonest majority setting. In the peer-to-peer setting, we
consider the task of generating Beaver multiplication triples (i.e., the “offline” phase of LSSS-
based approaches, Section 2.5.4). We compare the performance against the SPDZ2K [CDES+18]
oblivious-transfer-based and the Overdrive [KPR18] HE-based triple-generation protocols.

2.5.1 Experimental Setup and Parameters

We used our Lattigo implementation (see Chapter 4) of the multiparty BFV scheme. For the
cloud-assisted setting, the client-side timings were measured on a MacBook Pro with a 3.1 GHz
Intel i5 processor. The server-side timings were measured on a 2.5 GHz Intel Xeon E5-2680 v3
processor (2x12 cores). For the peer-to-peer setting, we ran all parties on the latter machine,
over the localhost interface.

We measured the network-related cost in terms of the number of communicated bytes (up-
stream + downstream), which does not account for network-introduced delays. However, we
observe that this would not advantage our solution with respect to the baseline. On the con-
trary, the constant and low number of rounds in the MHE-based approach makes it much less
sensitive to network delays than its LSSS-based counterparts.

Each experiment represents a different circuit hence uses a different set of parameters. There-
fore, we discuss the choice of parameters for each experiment. For convenience, we summarize
all the parameters in Table 2.2, along with their security levels, according to the Homomorphi-
cEncryption.org standardization document [ACCD+18].

2.5.2 Multiparty Input Selection

Setting We consider N input parties in the cloud-assisted setting. Party P1 (the Requester)
seeks to select one among N−1 bit-string inputs x2, . . . , xN held by other parties P2, . . . , PN (the
Providers), while keeping the selector index r private. This corresponds to the ideal functionality
f(r, x2, . . . , xN) = xr for an internal receiver P1.

This selection circuit can be seen as a generalization of an oblivious transfer functionality to
the N -party setting, and can directly implement an N -party PIR system where the requester
party retrieves a row in a database populated by the providers. We represent inputs as d-

Chapter 2. A Multiparty Homomorphic Encryption Scheme 37

Algorithm 1. InputSelection(rlk, rtk, ctr, ct2, ..., ctN)

1 : for i = 2...N do

2 : maski ← BFV.PlainMul(ctr,ui)

3 : for j = 1... log(d) do

4 : maski ← BFV.Sum(maski,BFV.Rotate(rtk,maski, 2j))

5 : ctout ← BFV.Sum(ctout,BFV.Mul(cti,maski))

6 : return BFV.Relinearize(rlk, ctout)

dimensional vectors in Zd
p for p a 32-bit prime and d a power of two. We denote ui the plaintext-

space encoding of a vector in ZN for which all components are equal to 0, except for the i-th
component that is equal to 1.

ΠMHE−MPC Protocol Instantiation To realize the input selection functionality, we instantiate
the ΠMHE−MPC as follows:

Setup: The parties run ΠEncKeyGen, ΠRelinKeyGen and ΠRotKeyGen to generate the en-
cryption (cpk), relinearization (rlk), and the rotation keys (rtk).

Input: Each Provider Pi embeds its input in the coefficients of a polynomial in Rt,
encrypts it using the cpk as cti and sends it to the cloud.
The Requester generates its selector as ur, encrypts it as ctr, and sends it
to the cloud.

Eval: The cloud computes ctout = InputSelection(ctr, ct2, ..., ctN) (Algorithm 1).

Output: The Providers execute the ΠKeySwitch protocol with target ciphertext ctout,
input key s and output key 0. By aggregating the decryption shares, the
cloud computes an encryption of xr under the Requester secret key. This
encryption can be retrieved and decrypted by the receiver.

Parameterization We use the parameter set I in Table 2.2 for all system sizes N . This set
uses a 32-bits modulus t (packing-compatible) to match the default computation domain of the
baseline system [Kel20], and a modulus q supporting the depth-one InputSelection circuit.

Results Table 2.3 shows a comparison with the baseline system. The generation of rotation
keys accounts for approximately 75% of the setup cost and is the main overhead of the protocol.
For two parties, this setup takes more time and communication than the baseline’s offline phase.
For four parties, the MHE setup is slightly faster than the triple generation but still requires 1.7
times more communication. For eight parties, the MHE setup is 5.2× faster and requires 2.4×
less communication. These results illustrate how the MHE-based solution, by having constant
cost for the parties, has a lower asymptotic cost and provides significantly better scalability in
practice. Moreover, comparing the MHE setup to the baseline’s offline phase is valid only when
considering a single, isolated circuit execution. This is because the MHE keys can be reused for
an unlimited number of circuit evaluations and the cost of generating them can be amortized.
When considering non-amortizable costs (Total and Compute in Tables 2.3), the MHE-based
solution has a lower response time and a lower communication cost per party than the baseline.
Moreover, the per-party communication cost of the MHE approach does not depend on N .

38 Chapter 2. A Multiparty Homomorphic Encryption Scheme

Table 2.3: Input selection: Baseline comparison (Set I)
Time [s] Com./party [MB]

#Parties 2 4 8 2 4 8

LSSS-based (MP-SPDZ [Kel20])
Offline 0.35 1.04 3.56 6.58 25.74 101.82
Online 0.02 0.04 0.07 1.31 4.72 17.83
Total 0.37 1.08 3.66 7.89 30.46 119.65

MHE-based (this work) Setup 0.59 0.58 0.69 42.93 42.93 42.93
Compute 0.27 0.28 0.31 1.31 1.31 1.31

Table 2.4: Input selection: Cost for each phase (Set I)
Party Cloud

Time [ms] Com. [MB] Wall time|CPU time [s]

#Parties indep. indep. 32 64 128
Setup 262.58 42.93 0.85 1.68 3.38
Input 6.22 0.52 0.01 0.01 0.02
Eval 0.00 0.00 0.4|8.1 0.8|23.4 1.6|62.1
Output 3.34 0.79 0.01 0.02 0.02

Table 2.4 shows the cost of the ΠMHE−MPC phases for a larger number of parties. We were
unable to instantiate the baseline system for such a large number of parties, as its cost was
larger than the amount our experimental setting could handle. The parallelization of the circuit
computation over multiple threads yields a very low response-time. Our choice for t enables
32.8 kilobytes of raw application data to be packed into each ciphertext (i.e., to be retrieved
at each request). For the eight-party setting, this yields a plaintext throughput of 105.7 kB/s
(baseline: 9.0 kB/s) and a bandwidth usage of only 40× the size of an insecure plaintext system
(baseline: 3650×). We ran the same experiment for N = 8000 parties; the response time was
61.7 seconds. These results show that the MHE approach can solve large MPC instances, even
for resource-constrained clients, by delegating the storage and the heavy computation to a cloud.

2.5.3 Element-Wise Vector Product

Setting. We consider N input parties (with ideal secret key s) in the cloud-assisted setting.
Each party holds a private integer vector xi of dimension d = 214 and they all seek to provide
an external receiver R (with secret key sR) with the element-wise product (which we denote ⊙)
between the N private vectors. Thus, the ideal functionality is f(x1,x2, . . . ,xN) = x1 ⊙ x2 ⊙
· · · ⊙ xN = y with external receiver R.

ΠMHE−MPC Protocol Instantiation We instantiated the ΠMHE−MPC protocol as follows:
Setup: The parties use the ΠEncKeyGen and ΠRelinKeyGen protocols to generate the

public encryption key cpk and the relinearization key rlk.

Input: Each input party Pi ∈ P encodes its input vector xi as a polynomial xi using
packed plaintext encoding. Then, it encrypts this vector under the collective
public key and sends Encs(xi) = BFV.Encrypt(cpk, xi) to the cloud.

Eval: The cloud computes the product by using the BFV.Mul operation (with
intermediary BFV.Relinearize operations). This results in Encs(y) where y

encrypts y under the collective secret-key s.

Output: The parties use the ΠPubKeySwitch protocol to re-encrypt Encs(y) into EncsR(y).

Chapter 2. A Multiparty Homomorphic Encryption Scheme 39

Parameterization This is a demanding circuit, as its multiplicative depth is equal to ⌈logN⌉.
Therefore, the choice of parameters depends on the number of parties. For up to 8 parties (Table
2.5), we use the parameter set II-A from Table 2.2 and compare the MHE solution against the
baseline system. This set uses a 32-bits t (packing-compatible) to match the default computation
domain of the baseline system [Kel20]. For up to 128 parties (Table 2.6), we use the parameter
set II-B that differs from II-A in its smaller plaintext-space, which enables the circuit to have a
depth of up to 9. For 1024 parties (Table 2.7), a circuit of depth 10 is required. We present two
approaches to this problem: (i) Increase the size of q; this forces us to increase n to preserve the
security level (parameter set II-C). (ii) Keep the same parameter set II-B and use the ΠColBootstrap

protocol to refresh the ciphertexts when reaching depth 9 in the circuit.

Results Table 2.5 shows the comparison with the baseline. We observe very similar results
between the MHE approach and the baseline for the two-party case and a clear advantage for
the former for larger numbers of parties. Table 2.6 shows the performance of the MHE approach
for large numbers of parties. This demonstrates how re-balancing the cost of MPC toward
computation time enables efficient multi-core processing and yields very low response times
(e.g., < 1 sec. of end-to-end computations for 32 parties). Finally, Table 2.7 illustrates how the
ΠColBootstrap protocol (used with the set II-B but not with the set II-C) introduces a trade-off
between network usage and CPU usage. In this case, for an additional 4.7 MB of communication
per party in the Compute phase, refreshing ciphertexts is more cost-effective (for bandwidth and
CPU, by a factor between 4× and 5×) than using larger parameters, even if it requires one more
communication round.

This circuit could be used, for example, as a multiparty private-set-intersection protocol for
a large number of parties. In its most simple instantiation, the parties could encode their sets
as binary vectors and use this functionality to compute the bit-wise AND between them. By
mapping the results to this application, we can compare our circuit with the special purpose mul-
tiparty PSI protocol by Kolesnikov et al. [KMPR+17]. For the standard semi-honest model with
a dishonest majority, the set size 212 and 15 parties (the largest evaluated value in [KMPR+17]),
the MHE solution is 1029× faster (in the LAN setting) and requires 15.3× less communication.
However, our set encoding limits the application to finite sets. More advanced encodings should
be investigated to match the flexibility of the approach by Kolesnikov et al.

Table 2.5: Element-wise product: Baseline comparison (Set II-A)
Time [s] Com./party [MB]

#Parties 2 4 8 2 4 8

LSSS-based (MP-SPDZ [Kel20])
Offline 0.21 1.19 5.33 3.42 29.13 156.06
Online 0.02 0.04 0.10 1.05 6.29 29.36
Total 0.24 1.24 5.52 4.47 35.42 185.42

MHE-based (this work) Setup 0.18 0.20 0.25 25.17 25.17 25.17
Compute 0.29 0.41 0.64 4.72 4.72 4.72

Table 2.6: Element-wise product: Phase costs (Set II-B)
Party Cloud

Time [ms] Com. [MB] Wall time|CPU time [s]

#Parties indep. indep. 32 64 128
Setup 96.41 25.17 0.49 0.85 1.99
Input 20.02 1.57 0.04 0.04 0.15
Eval 0.00 0.00 0.8|4.5 1.0|10.3 1.5|22.7
Output 25.38 3.15 0.05 0.10 0.21

40 Chapter 2. A Multiparty Homomorphic Encryption Scheme

Table 2.7: Element-wise product: N = 1024 parties, comparison between Set II-B (with use of
the ΠColBootstrap protocol during Eval) and Set II-C (non-interactive Eval)

Party Cloud
CPU Time [ms] Com. [MB] Wall|CPU Time [s|m]

II-B II-C II-B II-C II-B II-C
Setup 110.2 467.5 25.2 121.8 13s 57s
Input 21.6 78.4 1.6 6.3 1s 3s
Eval 202.4 0.0 18.9 0.0 6s|3.8m 29s|19.2m
Output 27.2 107.5 3.1 12.6 1.2s 4.3s

2.5.4 Multiplication Triples Generation

In a peer-to-peer setting, we apply the ΠMHE−MPC protocol to LSSS multiplication-triples gener-
ation. We compare the performance against the SPDZ2K [CDES+18] oblivious-transfer-based
and the Overdrive [KPR18] HE-based triple-generation protocols. We used the Multi-Protocol
SPDZ library [Kel20] implementation of SPDZ2K (in semi-honest mode) and implemented the
HE and MHE approaches with Lattigo.

Setting We consider N parties that seek to generate multiplication triples in a peer-to-peer
setting. They use the tree-based communication pattern described in Section 2.4.3. Let xi =

(ai,bi) ∈ Zn×2
p be the input of party Pi, where n is the number of generated triples and p is a

prime. The ideal functionality for each party Pi is fi(x1,x2, . . . ,xN) = ci such that
∑N

i=1 ci =

(
∑N

i=1 ai)⊙ (
∑N

i=1 bi) = a⊙ b.

ΠMHE−MPC protocol instantiation To realize the multiplication-triple-generation functional-
ity, we instantiate the ΠMHE−MPC as follows:

Setup The parties run the ΠRelinKeyGen protocol to generate a the rlk.

Input: The parties use the ΠShare2Enc protocol to obtain encryptions of a and b.
Hence, the root node holds cta=Enc(a) and ctb=Enc(b).

Eval: The root computes ctc = BFV.Relinearize(rlk,BFV.Mul(cta, ctb)) and sends
ctc down the tree.

Output: The parties use the ΠEnc2Share protocol to obtain an additive sharing of c

from Enc(c).

Parameterization We target the 32-bit integers as our LSSS-computation domain, hence
we set t as a 32-bit prime (parameter set III for the HE and MHE methods). The OT-based
generator produces Z232 triples4.

Results Figure 2.1 plots the results for the three techniques, with a varying number of parties.
To report on the steady regime of the systems, we do not include the Setup phase costs of all
methods in the measurements. After the MHE setup phase, the parties can loop over the Input-
Eval-Output steps to produce a stream of triples in batches of n = 213. Except for the two-party
throughput, the MHE approach outperforms the HE-based and OT-based approaches.

4At the time of writing, MP-SPDZ does not implement a benchmark for the OT-based triple-generation in a
prime field.

Chapter 2. A Multiparty Homomorphic Encryption Scheme 41

2 4 6 8 10 12 14 16
Number of parties

0

20

40

60

T
hr
ou
gh
pu
t
[1
03
×

tr
ip
le
s
/s
]

2 4 6 8 10 12 14 16
Number of parties

0

1

2

3

E
ffi
ci
en
cy

[1
03
×

tr
ip
le
s/
M
B
]

OT-based

HE-based

MHE-based

Figure 2.1: Number of generated triples per second (throughput, left) and per megabyte of
communication (efficiency, right).

2.5.5 Discussion

We observe that the main cost of MHE-based solutions is the network load of their setup phase,
primarily due to the generation of evaluation keys (e.g., relinearization, rotation). Hence, in
scenarios with a single evaluation of a circuit with few multiplication gates and a small number
of input parties, the MHE-based solution would not be as efficient as an LSSS-based approach
that generates triples on-the-fly. However, as the MHE setup is performed only once, it is
quickly amortized when considering circuits with a few thousand multiplication gates and with
more than two parties; in this scenario, the cost of the LSSS-based approach is dominated by
the generation of multiplication triples.

2.6 Chapter Summary

In this chapter, we introduced a N -out-of-N -threshold MHE scheme based on RLWE. The
construction improves on the previous work by Asharov et al. by porting it to RLWE, by reducing
the cost and increasing the precision of the relinearization key generation, by enabling external
computation receivers, and by proposing a protocol to refresh ciphertexts. The construction is
also generic and can be instantiated with most of the commonly implemented schemes: BFV,
BGV and CKKS. We observed that the ΠMHE−MPC protocol has a public-transcript, which permits
computation models for MPC beyond the traditional peer-to-peer model. Cloud-assisted models
are key to scaling MPC to large sets of parties, as they enable constant overhead for the parties
without relying on non-collusion assumptions.

One limitation of our proposed scheme, in the context of large-scale MPC, would be its N -
out-of-N -threshold access-structure. As the number of parties in a system increases, so does
the probability of temporary disconnections or crashes. It is common to adapt the security
requirements of such large systems by relaxing the access structure to a T -out-of-N -threshold
one for T < N . In the following chapter, we show how to extend our construction to this
corruption model.

43

Chapter 3

A Fault-Tolerant Multiparty
Homomorphic Encryption Scheme

Chapter Content

3.1 Our Results . 45
3.2 Related Work . 46
3.3 Preliminaries . 47

3.3.1 Adversary Model and System Goals . 47
3.3.2 Shamir Secret-Sharing . 48

3.4 T -out-of-N-Threshold Encryption for RLWE . 48
3.4.1 Overview . 48
3.4.2 Shamir Secret-Sharing in Rq . 49
3.4.3 The Share Re-sharing Scheme . 50
3.4.4 The T -out-of-N -Threshold MHE scheme . 51
3.4.5 Dealing with Faulty Oracles . 51
3.4.6 Accelerating Batched Multiparty Secret-Key Operations 53

3.5 Evaluation . 53
3.5.1 Theoretical Evaluation . 53
3.5.2 Basic Operations Benchmarks . 55
3.5.3 Case-study: Encrypted Federated Neural Network Training 55

3.6 Chapter Summary . 58

Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme 45

In this chapter, we address the shortcomings of the MHE-based MPC protocol, presented
in Chapter 2, in terms of fault tolerance. More specifically, we want to enable parties in this
protocol to pursue its execution even in the presence of failing or unresponsive parties, as long
as a threshold number T ≤ N of parties are online and responsive. This is generally achieved by
employing Shamir’s secret-sharing scheme [Sha79] on the parties’ secrets. Informally, the parties
represent their secrets as the constant element of a degree-T − 1 polynomial in some field, and
they distribute the shares of the secret as N evaluations of this polynomial at N different points.
Then, a secret is recovered by reconstructing the polynomial through the interpolation of at least
T shares. However, applying the Shamir secret-sharing to the RLWE-based MHE scheme and
its associated MPC protocol presents some unique challenges.

Existing constructions, which we review in Section 3.2, either leak the failing parties’ share
of the ideal secret-key (i.e., it permanently alters the scheme’s access structure) [AJLT+12], or
require that a choice be made between non-compact party-states or non-compact ciphertexts
[BGGJ+18], with both options resulting in a significant overhead in practice. The underlying
reason for these shortcomings is noise: Recall that MHE protocols compute values of the form
h = as + e ∈ Rq where s =

∑N
i=1 si is the sum of the parties’ secret-keys and e ≪ q is small

noise term by (i) having each party Pi disclose a public share of the form hi = asi + ei and (ii)
adding all the public shares together. To avoid reconstructing the failing parties’ secret shares
si, the parties have to perform the Shamir reconstruction within the MHE protocols. In the
literature, this is generally done by performing the interpolation directly over the non-failing
parties’ public share, by exploiting the linearity both of Shamir secret-sharing and the protocol
[Ped91]. Unfortunately, this is not possible for MHE public shares hi, for which the linear relation
to the desired term h is only approximate (i.e., noisy): their multiplication with the interpolation
coefficients (which may be large) would result in an error term e that is no longer small with
respect to q. Hence, applying Shamir secret-sharing in our setting requires other techniques.

3.1 Our Results

We propose an efficient MHE scheme that tolerates temporary disconnection and/or failures from
T −1 < N of the parties. We formulate this scheme as an extension to the N -out-of-N -threshold
scheme presented in Chapter 2 by relaxing its N -out-of-N -threshold access-structure to a T -out-
of-N -threshold one. We follow the approach of re-sharing the additive secret-key shares with
the Shamir secret-sharing scheme [Sha79], but with a specially adapted instance of the Shamir
secret-sharing that we define over the ciphertext-space ring. Then, due to the linearity of the N -
out-of-N -threshold MHE scheme’s secret-key operations (e.g., threshold decryption), we obtain
a compact and efficient scheme. Notably, we show that the re-shares can be pre-aggregated, thus
resulting in a constant-size party state, and that the T -out-of-N secret-key-reconstruction can
be performed efficiently within the secure MHE protocols themselves, i.e., without leaking any
of the failing party’s secret-key. We show that, in the synchronous setting, this requires a simple
non-interactive pre-computation to the corresponding operation in the N -out-of-N scheme, yet
performed among N = T parties. As for the MHE scheme, our construction applies to the core
RLWE encryption scheme and can therefore be used to instantiate T -out-of-N -threshold variants
of the BGV, BFV, and CKKS front-end schemes.

We implemented our constructions in Lattigo [MBTH20], our open-source library for multi-
party homomorphic encryption, which we introduce in Chapter 4. We report on the benchmark
performance for our implementation and analyze the results in the context of MHE-based MPC.
Furthermore, we show how to harness the T -out-of-N -threshold access-structure to accelerate

46 Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme

the execution of batches of secret-key operations in both the offline (Setup) and online (Compute)
phases. We exemplify this through an application case-study: the end-to-end-encrypted feder-
ated neural network training of Sav et al. [SPTF+21].

This chapter is organized as follows: We review the existing works on threshold encryption
for lattice-based HE construction in Section 3.2, and we provide the system model and some
background on secret-sharing techniques in Section 3.3. Then, we develop the main technique,
in Section 3.4, and its implementation and evaluation, in Section 3.5.

3.2 Related Work

In this work, our main object of study is a threshold encryption-scheme, an important part
of which is the distributed key-generation (DKG) procedures. DKG techniques have been ex-
tensively studied for discrete-log-based (DL) constructions [Ped91; GJKR99; CKLS02; KG09;
KG21], but their lattice-based counterparts have received less attention. However, they present
their own set of challenges, especially when considering HE constructions: Notably, these chal-
lenges include the aforementioned issue of managing the noise and the fact that (M)HE construc-
tions are expressed over highly structured rings. Also, from the practical perspective, the fact
that (M)HE applications often require many public keys for their Eval algorithm calls for highly
efficient solutions. Our work takes inspiration from DL-based DKG techniques and addresses
these challenges.

Bendlin and Damgård considered the case where the parties obtain Shamir secret-shares of a
secret key by means of pseudo-random secret-sharing (PRSS) techniques [BD10]. This results in
a non-interactive secret-key-generation procedure, but it is non-compact as it requires one key
per possible subset of adversarial parties. Due to this factorial expansion, this scheme would not
be practical for a large number of parties.

Asharov et al. noticed that share-re-sharing could be used to achieve a T -out-of-N -threshold
access structure in (the extended version of) their seminal work on LWE-based multiparty ho-
momorphic encryption [AJLT+12]. However, they did not specify the concrete secret-sharing
scheme and assumed an extra round of interaction, prior to the decryption round, to reconstruct
a failing party’s share. This solution, however, has shortcomings. For example, reconstructing
the share of a party crashing during the Setup phase would require the input to be provided
under weaker security (a T − 1-out-of-N -threshold access-structure). Similarly, reconstructing a
share during the Compute phase would prevent further iteration of this phase (as enabled by the
ΠMHE−MPC protocol, see Section 2.4.3) under the same security assumptions. Instead, it would be
preferable to let parties disconnect and reconnect without compromising their shares. Our work
provides this capability, by performing the reconstruction within the secure decryption protocol
directly.

Boneh et al. propose a T -out-of-N -threshold HE scheme based on learning-with-errors that
also relies on re-sharing the secret-key shares, yet in a stronger asynchronous setting where
parties are unable to determine, at the time of generating their decryption shares, which other
parties are online [BGGJ+18]. This additional constraint is necessary for the composability of
their scheme that they use as a building-block for higher-level cryptographic primitives in their
work. However, it comes with a significant complexity and performance overhead, and their setup
phase requires a trusted dealer to perform the sharing. In their work, Boneh et al. observe that
enabling the parties to determine which other parties are online, before the decryption phase,
would lead to a simpler scheme. We confirm this observation by showing that, in the semi-honest
model with failures, there indeed exists a simpler, more compact and more efficient scheme that

Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme 47

does not require a trusted dealer. We elaborate on these differences in Section 3.5.1, where we
provide a comparison between their construction and our scheme.

Concurrently to our work, Urban and Rambaud propose an alternative MHE-based MPC
approach that provides guaranteed output delivery while minimizing the number of synchronous
rounds needed in the setup phase and requiring no synchronous communication during the eval-
uation phase. Their approach is also based on a linear secret-sharing scheme over RLWE rings
[UR22], but their construction targets generality rather than efficiency, as it enables the FHE
coefficient modulus to be a composite with factors that are smaller than the number of par-
ties. Our construction targets efficiency for the parameterization supported by the current FHE
implementations, for which the structure of the coefficient modulus is already constrained for
efficiency reasons.

3.3 Preliminaries

First, we present our system and adversary model, as well as the main system goals. Then, we
present the main building blocks of our solution.

3.3.1 Adversary Model and System Goals

We consider a set P of N parties {P1, ..., PN} (the system) in a secure-multiparty-computation
setting, where an adversaryA is able to corrupt up to T−1 parties. We assume that the adversary
is static and passive, yet we further allow the adversary to take the corrupted parties offline for an
arbitrary amount of time. The parties can communicate through private authenticated channels
and through a public, synchronous, authenticated channel. Finally, and as for the previous
construction in Chapter 2, we assume that the parties have access to a public common random
string (CRS).

System Goals Let xi be the private input of party Pi in some message spaceM, let f :MN →
M be a public arithmetic function over the message space, and let λ be a security parameter.
We formulate the following system goals:
• Functionality. The system must compute y = f(x1, ..., xN) through a multiparty protocol.

• Privacy. There must exist a simulator program SIMf that can simulate all the interactions
between the parties (the transcript), when provided only with the output y and the inputs
from the adversary. For an attacker to distinguish between the real and simulated interaction,
the success probability must be a negligible function in the security parameter λ.

• Fault Tolerance. After the inputs are received for all parties, the output y should be delivered
to the honest parties, as long as at least T parties are online and active.
Informally, the protocol execution should not reveal anything more about the inputs than

that which can be deduced from the output y alone. We also observe that the fault-tolerance
requirement, guaranteed output-delivery, is limited to the case where faulty parties eventually
provide their inputs. This is because not all functions can be successfully computed under partial
inputs.

The MHE-MPC (Section 2.4) protocol naturally provides some fault tolerance against parties
going offline for a finite amount of time. As opposed to its LSSS-based counterparts, a party that
goes offline after providing its inputs does not prevent the computation from making progress,
as the homomorphic evaluation can be performed non-interactively. The same is true for a party

48 Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme

that momentarily goes offline after the Setup phase, except that, similarly to the plaintext case,
the party’s input are not available to the computation (whereas parties in an LSSS protocol
based on multiplication hold shares of these triples, hence need to be online). In both cases, the
main drawback is that all parties need to connect eventually (to participate in the decryption
protocol of the output step) for the output to be delivered. This might be problematic in settings
where a group of parties seek to tolerate a fraction of them going offline for an undetermined
amount of time. In our construction, we use the Shamir secret-sharing scheme [Sha79] to solve
this problem.

3.3.2 Shamir Secret-Sharing

We recall the secret-sharing scheme of Shamir that implements a T -out-of-N -threshold access-
structure on its secrets, based on polynomial interpolation in a finite field [Sha79]. For the sake
of notation, but without the loss of generality, we consider the reconstruction from the first T

shares. Indeed, the procedure generalizes to any set of at least T shares.
• Shamir.Setup: The parties agree on a field K and each party Pi ∈ P is associated with a

non-zero element αi ∈ K such that if i ̸= j then αi ̸= αj .

• Shamir.Share(s, T , α1, ..., αN): To share a message s ∈ K among N parties such that T shares
are needed to reconstruct s, sample c1, ..., cT−1 ← K and send si = s +

∑T−1
k=1 ckα

k
i to party

Pi.

• Shamir.Combine(s1, ..., sT , α1, ..., αT): To reconstruct s from shares s1, ..., sT , compute

s =

T∑
i=1

si

T∏
j=1,j ̸=i

αj

αj − αi
. (3.1)

We observe that the Shamir.Share procedure samples a degree-(T −1) polynomial S(X) ∈
K[X] such that S(0) = s and distributes S(αi) to party Pi, and the Shamir.Combine procedure
computes the Lagrange interpolation at point X = 0 to reconstruct the secret. We refer to the
sequence of public points (α1, ..., αN) as the Shamir public-points.

3.4 T -out-of-N-Threshold Encryption for RLWE

Here, we present the main contribution of this chapter. We provide an overview of the main ideas
behind the scheme in Section 3.4.1. Then, we present the secret-sharing scheme that we use for
the share re-sharing in Section 3.4.2. Finally, we present our T -out-of-N -Threshold Encryption
for RLWE in Section 3.4.

3.4.1 Overview

We start from the well-known share re-sharing approach that is to apply the Shamir secret-
sharing scheme to the additive shares of the ideal secret-key s of the MHE scheme. Intuitively,
this technique enables any set of at least T parties to reconstruct the shares of the missing parties
and to take their place in the decryption procedure. However, a naive instantiation of this idea,
over an arbitrary secret-sharing space, would be inefficient: It would require the non-failing
parties to either reconstruct the shares of the failing parties (which would forever remove them
from the access structure and add a communication round) or to compute their shares by running

Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme 49

a secure computation over the secret-sharing space (which would require costly emulation of the
MHE scheme ciphertext space over the secret-sharing space). Also, it would require each party
to store all N re-shares throughout the entire protocol, resulting in a non-constant-size state.

Instead, we perform the Shamir re-sharing directly over the MHE cipephertext-space ring
Rq (See Section 1.4.1). In this way, we can exploit the linearity of both the ideal secret-key
and the re-sharing scheme to obtain a more compact and communication-efficient scheme. More
specifically, assuming Rq is our Shamir secret-sharing space, we denote Si ∈ Rq[X] the secret
degree-(T −1) polynomial sampled by party Pi during the Shamir.Share procedure, and λi =∏T

j=1,j ̸=i
αj

αj−αi
be the i-th Lagrange coefficient in the reconstruction using the Shamir public-

points α1, ..., αT . Then, we observe that the Shamir.Combine operation commutes with the
ideal-secret-key reconstruction:

s =

N∑
i=1

si =

N∑
i=1

T∑
j=1

Si(αj)λj =

T∑
j=1

λj

N∑
i=1

Si(αj) =

T∑
j=1

s′j . (3.2)

This presents several challenges and opportunities for our construction; we outline them below,
as Remarks 1 to 3.

Remark 1. The Shamir secret-sharing scheme is usually defined over an arbitrary field that
guarantees the correctness and security of the Lagrange interpolation for enforcing the access
structure. However, there are no such guarantees over arbitrary rings. For Equation (3.2) to
hold and the resulting scheme to be secure, we need to show that these properties hold in the
ring Rq.

Remark 2. From Equation (3.2), we observe that the new sharing over T parties has an additive
structure for which the j-th term can be locally (pre-)computed by each Pj ∈ Pt, if the set of
parties that are participating in the secret-key operation is known.

Remark 3. The right-hand side of Equation (3.2) can be seen as a new T -out-of-T additive
sharing of s and can simply be used by the parties instead of si (their N -out-of-N counterpart)
in the MHE key-generation and decryption protocols.

We present the concrete Shamir secret-sharing scheme in Section 3.4.2 and show that it
satisfies the requirements of a secret-sharing scheme (as per Remark 1). Then, we present our T -
out-of-N -threshold scheme; we can formulate it as a direct extension of the N -out-of-N -threshold
MHE scheme for RLWE, which only requires a constant-size additional state for each party (due
to Remarks 2 and 3).

3.4.2 Shamir Secret-Sharing in Rq

The usual Shamir secret-sharing scheme is instantiated over a field. This guarantees that all non-
zero elements are units, hence that Lagrange coefficients exist. Indeed, computing a Lagrange
coefficient requires inverting elements of the form αi − αj , where αi and αj are the Shamir
public-points. However, working in a field is not a requirement. In fact, it is a known result that
using a ring is possible, as long as the set of Shamir public-points forms an exceptional sequence
[ACDE+19; CDN15]. Here, we briefly present this result in our notation and terminology.

Definition 1. (From [ACDE+19]) For a ring R, the sequence α1, ..., αN of elements of R is an
exceptional sequence if αi − αj is a unit in R for all i ̸= j.

50 Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme

Theorem 3. (From [ACDE+19]) Let R be a commutative ring and α1, ..., αN be an exceptional
sequence in R. Then, a Shamir secret-sharing scheme instantiated in R with Shamir public-
points, α1, ..., αN , is correct and secure.

Let us assume that α1, ..., αN is an exceptional sequence for Rq. Then, by instantiating a
T -out-of-N Shamir secret-sharing scheme that uses the elements of this exceptional sequence
as the Shamir public-points, we obtain from Theorem 3 that our secret-sharing scheme for Rq

is correct and secure for a threshold access-structure. Hence, we now define how to choose our
Shamir public-points from Rq in such a way that guarantees an exceptional sequence and enables
a highly efficient implementation.

Choice of Shamir public-points We first observe that checking whether an arbitrary se-
quence of Rq elements forms an exceptional sequence is easy: For each non-zero pairwise dif-
ference, it suffices to check that all coefficients of the difference polynomial under the CRT and
NTT representation are non-zero. This holds because the inverse of each non-zero coefficient
can be computed individually by Fermat’s little theorem. However, computing these inverses
for arbitrary elements of Rq is a costly operation that would result in an inefficient Combine
operation.

Instead, we propose to restrict the choice of Shamir public-points to constant polynomials in
Rq = Zq[X]/(Xn +1) (i.e., a monomial of the form αX0 for α ∈ Z∗

q). On the one hand, it yields
a significant performance boost, as computing the Lagrange coefficient now only requires scalar
multiplications in Zq. On the other hand, this provides us with a simple procedure for choosing
Shamir public-points that guarantee an exceptional sequence: Let qmin = min(q1, ..., qL) with
q1, ..., qL the prime factors of q. We observe that for N < qmin, choosing N distinct values in
Zqmin

as the Shamir public-points will guarantee an exceptional sequence. Indeed, for any i ̸= j,
−qmin < αi − αj < qmin, αi − αj ̸= 0 and the residue mod qk is non-zero for any prime factor
qk of q. Then, a simple application of the CRT on Rq is enough to prove that αi − αj is a
unit in Rq. Therefore, any mapping from P onto Zqmin

can be used, including the textbook one
that commonly uses i for party Pi, if i is a positive integer. We observe that it is critical for
implementations to check that Shamir public-points are non-zero.

Choosing the Shamir public points from the restricted set has the side effect of limiting the
number of parties to qmin − 1. But this is not an issue in most cases, because the factors of q
are already constrained by the encryption scheme’s parameterization requirements: They have
to be primes congruent to 1 mod 2n where n is the degree of the ring (which is typically larger
than 211 in the FHE setting). However, this could be a limitation in a setting where parties
independently and randomly sample their own public points, as the probability of a collision
would be too high. For such use-cases it might be preferable to sample points in Zq where the
probability of collision is negligible, then check that the sequence forms an exceptional sequence,
which occurs with high probability.

3.4.3 The Share Re-sharing Scheme

For a set of parties P in the MHE scheme where Pi ∈ P holds secret-key share si, we define our
re-sharing scheme as the three-tuple of procedures T = (Setup,Thresholdize,GetAdditiveShare).
Intuitively, Scheme T applies the Shamir secret-sharing scheme over Rq introduced in Section
3.4.2 to the parties’ key, which relaxes the N -out-of-N access-structure of the MHE scheme of
Section 2.2 to a T -out-of-N -threshold one.

We observe that the output of the T.Thresholdize is only one ring element per party, due to
the re-share being aggregatable. This is because the summation in N on the right-hand side of

Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme 51

Equation (3.2) does not depend on which T of the N parties participate in the reconstruction
and can be pre-computed by each party Pi, after it receives all the Sj(αi) from its peers.

We also observe that only the T.Thresholdize procedure is interactive and that it requires
a single round of pairwise interactions between the parties over confidential channels. Once
performed, the parties have access to Shamir shares (s̃1, ..., s̃N), from which each party Pi can
locally compute its share s′i in an additive sharing (s′1, ...s

′
T) of s among any subgroup of at least

T parties in P (as per remark 2). Consequently, each party Pi can simply use its new share s′i
directly in the MHE procedures. This is the main idea for our next construction.

3.4.4 The T -out-of-N-Threshold MHE scheme

We propose our construction as the union tuple T∪MHE, that provides a T -out-of-N -threshold
encryption scheme. We detail this construction as the TMHE scheme (Scheme 4). For the sake
of conciseness, we omit the ΠRelinKeyGen and ΠRotKeyGen protocols, as they are straightforward
adaptations of the ΠEncKeyGen protocol. Similarly, we consider the ΠDecrypt special case of the
ΠKeySwitch protocol, but the construction and discussion also apply to the latter and to its public-
key variant ΠPubKeySwitch. As per Remark 2, the T.GetAdditiveShare procedure requires the parties
to obtain the set of participating parties from the environment. We formalize this requirement by
providing the parties with an oracle access to the set of online parties. We denote Ponline ← Env
such an oracle query where Ponline ⊆ P is the set of online parties at the time the environment
is queried. We assume that the oracle returns the same set to all parties for a given secret-key
operation. However, we do not assume this across different secret-key operations, and the set
of parties performing the setup could differ from the set performing decryption. Indeed, as per
Equation 3.2, any set of at least T parties can reconstruct s. In our (synchronous) model, this
oracle can be realized with a simple broadcast round of communication to gather the identities
of online parties, yet with the small caveat that, after this broadcast round, the parties might
fail. In Section 3.4.5, we discuss how to deal with faulty oracles that return an incorrect set of
online parties.

TMHE-based MPC protocol The instantiation of an MPC protocol from our scheme is the
same as for the MHE scheme, yet it satisfies the fault tolerance requirement of Section 3.3.1. It
tolerates up to N − T parties going offline for an undetermined amount of time, as long as the
failing parties completed the TMHE.ΠSecKeyGen procedure and provided their encrypted inputs to
the computation. We elaborate on the differences between the TMHE and MHE instantiations
in Section 3.5.1.

3.4.5 Dealing with Faulty Oracles

Our model does not exclude the possibility of a party crashing after the oracle response. In
such a case, step 4 of the TMHE.ΠDecrypt cannot be completed due to missing share(s) in the
disclosure step of the MHE.ΠDecrypt protocol. In practice, such a failure is generally detected
and resolved by setting a time limit (timeout) for the parties to provide their decryption shares,
and by defining the parties’ behaviour in the case of such timeouts. Whereas the exact values
for the timeout are indeed application dependent, we now discuss how parties can react to such
timeouts to guarantee the eventual decryption of a ciphertext in a secure way.

Let Ptimeout be the set of parties that did not provide their share in time during a secret-
key operation; a partial yet insecure solution is to repeat steps 3 and 4 of the operation, with
P ′

online ← Ponline \Ptimeout where \ denotes the set difference. As such, this solution is insecure,

52 Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme

Scheme 3: T ▷ The share re-sharing scheme

T.Setup:

1. Each party Pi ∈ P is associated with a public point αi ∈ Rq such that αi − αj

is a unit for all i, j, i ̸= j.

T.Thresholdize(T, s1, ..., sN , α1, ..., αN):

1. Each party Pi samples ci,1, ..., ci,T−1 ← Rq.
2. Each party Pi sends s̃i,j = si +

∑T−1
k=1 ci,kα

k
j to each party Pj .

3. Each party Pi receives s̃j,i from each party Pj and computes:

s̃i =

N∑
j=1

s̃j,i.

T.GetAdditiveShare(s̃1, ..., s̃T , α1, ..., αT):

1. For P ′⊆P, |P ′| ≥ T , each party Pi∈P ′ computes

s′i = s̃i

T∏
j=1,i̸=j

αj

αj − αi
.

Scheme 4: TMHE ▷ The T -out-of-N -threshold HE scheme

TMHE.Setup:

Run the T.Setup procedure.

TMHE.ΠSecKeyGen:

1. Run (s1, ..., sN)← MHE.ΠSecKeyGen.
2. Run T.Thresholdize(t, s1, ..., sN , α1, ..., αN).

TMHE.ΠEncKeyGen:

1. Otain Ponline ← Env and
2. if |Ponline| < T , return ⊥.
3. Choose T parties Ponline and run (s′1, ..., s

′
T)← T.GetAdditiveShare.

4. Execute the MHE.ΠEncKeyGen(s
′
1, ..., s

′
T) protocol.

TMHE.ΠDecrypt(ct):

1. Obtain Ponline ← Env and
2. if |Ponline| < T , return ⊥.
3. Choose T parties Ponline and run (s′1, ..., s

′
T)← T.GetAdditiveShare.

4. Execute the MHE.ΠDecrypt(ct, s
′
1, ..., s

′
T) protocol.

Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme 53

because the underlying MHE.ΠDecrypt procedure is not secure under the composition of several
decryptions of the same ciphertext ct = (c0, c1) (informally, (sc1+e1, sc1+e2) leaks information
about sc1 when e1 and e2 are sampled independently). However, the key observation is that
obtaining a new ciphertext ct′ such that Decrypt(ct) = Decrypt(ct′) is easy with any asymmetric
additive HE scheme. Hence, our solution is to operate a re-randomization step, by adding a fresh
encryption of zero to the target ciphertext before repeating the MHE.ΠDecrypt step.

3.4.6 Accelerating Batched Multiparty Secret-Key Operations

The T -out-of-N -Threshold access-structure also enables the group of key-share holders to effi-
ciently parallelize batches of secret-key operations, when more than T participants are online.
Performing batches of secret-key operations is common in MHE-based MPC protocols:
• at the Setup phase - when the parties have to generate a number of key-switching keys to

support non-linear operations such as ciphertext-ciphertext multiplication (the relinearization
key) and ciphertext-slot rotations (the rotation keys).

• at the Eval step - if the parties rely on interactive protocols to reduce the noise or to raise the
level of ciphertexts as a part of the circuit in order to avoid the overhead of using bootstrapping
[MTBH21; SPTF+21]. These protocols can be abstracted as performing a masked decryption
and a re-encryption, hence are secret-key operations.

• at the Output step - when the function’s output consists of multiple ciphertexts. This could
be by design (of the ideal functionality), or because the encryption parameters do not enable
packing enough values in one ciphertext.
Let k be the number of secret-key operations to be performed (e.g., the number of rotation

keys to be generated), and let Ponline be the set of online parties. The parties in Ponline can
be organized into k subgroups of T distinct parties, and the work can be distributed among
the subgroups. As observed in the previous chapter, the cost of running each MHE secret-
key operation protocol within each subgroup of size T can be made constant for each party,
by relying on one or multiple aggregators (e.g., in a tree-like topology) [MTBH21]. Hence,
the total overhead for each party in performing the k secret-key operations can be reduced to
(kT)/|Ponline|, which is T/|Ponline| times the overhead of performing these same k operations in
the N -out-of-N -threshold scheme. In Section 3.5.3, we evaluate the effect of using this technique
in the setup and in the evaluation phase of a concrete instance of the MHE-MPC protocol: the
federated neural network training algorithm of Sav et al. [SPTF+21].

3.5 Evaluation

Here, we discuss our proposed construction from the theoretical and practical standpoints.

3.5.1 Theoretical Evaluation

We first study the overhead and additional assumptions of the threshold scheme, with respect to
the original MHE scheme. Then, we discuss the main differences between the threshold scheme
of Boneh et al. and our proposed construction.

Comparison with the Base MHE Scheme From the system-model standpoint, the main
difference between the TMHE scheme, and the base MHE scheme is indeed that our construction
enables T -out-of-N access structures. Hence, instantiating the MHE-based MPC protocol with
our scheme satisfies the fault tolerance requirement of Section 3.3.1. Moreover, the TMHE-based

54 Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme

Table 3.1: Threshold extension costs, measured in the number of Rq elements per party for the
internal state and network communication, and in the asymptotic function of N and T for the
per-party computational cost. We distinguish between the costs associated with the generation
(SecKeyGen) operation and the usage (SecKeyOp ∈ {PubKeyGen,Decrypt}) of the secret-key.

Party’s state Network cost per party Comp. cost
SecKeyGen SecKeyOp SecKeyGen SecKeyOp SecKeyGen SecKeyOp

MHE 1 1 0 1 O(1) O(1)
TMHE T 1 2(N − 1) 1 O(T +NT +N) O(T)

instantiation retains most of the features from the MHE-based one: (a) Its offline phase is re-
usable and has to be performed only once for a given set of parties and encryption parameters.
(b) Its online phase has a fully public transcript and consists of only two rounds of interaction
among the parties. However, the TMHE.ΠSecKeyGen protocol relies on confidential communication
channels between the parties (to execute the T.Thresholdize re-sharing procedure), which is not
the case for the original MHE.ΠSecKeyGen procedure. As a result, the TMHE-based ΠMHE−MPC pro-
tocol does not have a fully public transcript in its offline phase, whereas the MHE-based one
does. However, private communication is required for only a single asynchronous round of com-
munication, hence is not a major obstacle in many peer-to-peer and cloud-assisted models.

From the computational-cost standpoint, the threshold extension requires an additional state
to be stored and exchanged by each party. We summarize the related costs in Table 3.1. The
TMHE.ΠSecKeyGen is the only operation where this overhead is not negligible: It requires each
party to store a degree-(T−1) polynomial in Rq[X], to evaluate this polynomial N times (for
X a degree-0 polynomial), and to send and receive N − 1 Shamir secret shares. Whereas, the
base scheme does not require any interaction to generate the secret key. The fact that the
Setup phase is only a one-time offline key-generation phase that is re-usable for any number
of circuit evaluations enables the amortization of this step in many applications. Regarding
secret-key operations (ΠEncKeyGen and ΠDecrypt), the only overhead is the local computation of
the GetAdditiveShare procedure that is O(T). This overhead, however, is close to negligible
in practice. This is because the computation of the Lagrange coefficient, which is done over
Zq due to the compact Shamir public-points selection of Section 3.4.2, is the only part of this
computation that depends on T . We demonstrate this empirically, in Section 3.5.2.

Comparison with the Scheme of Boneh et al. Boneh et al. propose a T -out-of-N -
threshold scheme as an essential building block to their universal thresholdizer for cryptographic
primitives [BGGJ+18]. However, they consider a stronger asynchronous setting, where parties
are unable to determine (or optimistically guess) the set of online other parties when performing
secret-key operations. Essentially, their solution is to perform the Lagrange interpolation ho-
momorphically, when aggregating the shares. But, such an aggregation can be performed only
when the Lagrange coefficients are small with respect to q. Therefore, their first solution is
using a {0, 1}-LSSS to share the secret key of the scheme. For a T -out-of-N -threshold access-
structure, this implies a per-party state in O

(
N4.2

)
to store the secret-key shares. Their second

solution is using Shamir secret-sharing, which requires only a O(1) storage for the secret-key
shares (assuming a trusted setup). However, this requires increasing the size of the modulus q

by a O
(
N !3

)
multiplicative factor, thus rendering the encryption scheme non-compact and more

difficult to parameterize (increasing the coefficient modulus while keeping the other parameters
fixed reduces the security of RLWE). In contrast, our scheme targets the synchronous setting,
yet is much simpler and more efficient; this enables its implementation and its integration into

Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme 55

Table 3.2: Benchmarked HE Parameters. The polynomial degree n and coefficient modulus q
size in bits are taken from the standardization document [ACCD+18]. L is the number of prime
factors of q.

Set Pol. deg. (n) Coeff. size (L) Coeff. size (log2 q)
I 213 4 218
II 214 8 438
III 215 15 881

the Lattigo library. Notably, it can be seen as an extension of an existing scheme, requires a
O(1) storage for the secret-key shares, and has a negligible online overhead. Moreover, it does
not require a trusted dealer of shares.

3.5.2 Basic Operations Benchmarks

We implemented the scheme extension T in our Lattigo open-source library [MBTH20] and
benchmarked its performance on an AMD Ryzen 9 5900X CPU (3.7GHz clock, 6M of L2-cache),
for several common choices of encryption parameters (summarized in Table 3.2) and several
values of the threshold T . Note that our implementation itself uses no parallelization, but its
interface enables a party to generate the shares for each other party separately in step 2 of the
Thresholdize operation. Hence, this step can be parallelized and the actual latency divided by
min(N,C), where C is the number of cores available. In the scope of this micro-benchmark, we
report the total CPU time to abstract this setting-dependent variable and to show the actual
cost of the computation (the latency being relatively low in the context of a networked system).
We report the results for the threshold extension T in Table 3.3 and for the relevant operations
of the TMHE scheme in Table 3.4.

We observe that the Thresholdize algorithm is the most expensive operation, with a consis-
tently higher network cost. We also observe that the cost of the procedure increases in O(NT) as
expected. Hence, for adversarial models admitting a fixed fraction (T−1)/N of dishonest parties,
the per-party CPU-cost of the setup will be quadratic in the number of participants. Due to
the compact Shamir public-point technique described in Section 3.4, the T.GetAdditiveShare step
is very efficient, and its cost is significantly lower than the operations of the MHE scheme to
which it is a pre-processing (in the TMHE scheme). For example, the cost of generating a party’s
decryption share in the TMHE scheme for parameter set III with N = 20, T = 7 is 12.0 ms,
only 0.4 ms of which are spent on the T.GetAdditiveShare operation. We conclude that, from a
CPU-time perspective, the threshold access-structure comes at an almost negligible cost with
respect to the non-threshold scheme. Consequently, the main overhead of the scheme remains
the pairwise exchange of Shamir secret-shares during the one-time key-generation phase.

3.5.3 Case-study: Encrypted Federated Neural Network Training

The main application of our TMHE scheme is the MHE-MPC protocol, which is a generic MPC
protocol. To further demonstrate the effects of using our construction in a concrete application
of this protocol, we now consider a federated learning scenario in which multiple parties seek to
train a neural network model on their joint datasets, under encryption.

Sav et al. used the MHE-MPC protocol to perform federated neural network training and
inference under N -out-of-N -threshold encryption [SPTF+21]. Their approach relies on the
CKKS variant of the MHE scheme and faces two important challenges: First, it relies heavily on
ciphertext-slot rotations for many different rotation values (mostly for the matrix operations)

56 Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme

Table 3.3: Threshold extension T benchmarks (with per-step breakdown for Thresholdize, see
Section 3.4.3) for N = 20 parties and threshold T = 7, 14, 19. These values represent the per-
party CPU time in milliseconds.

Param. I II III
T 7 14 19 7 14 19 7 14 19

Thresholdize

Step 1 6.0 13.0 17.9 26.2 56.8 78.7 91.7 198.2 275.6
Step 2 4.2 8.8 12.3 16.6 35.6 50.0 67.3 146.9 202.1
Step 3 0.2 0.9 3.4
Total 10.4 22.0 30.4 43.7 93.2 129.5 162.4 348.5 481.2

Combine <0.1 <0.1 <0.1 0.1 0.1 0.1 0.3 0.4 0.4

Table 3.4: Threshold scheme TMHE benchmarks in milliseconds for N = 20 parties and threshold
T = 7, 14, 19. These values represent the per-party CPU time in milliseconds.

Param. I II III
T 7 14 19 7 14 19 7 14 19

SecKeyGen
MHE.SecKeyGen 0.5 2.1 7.4
T.Thresholdize 10.4 22.0 30.4 43.7 93.2 129.5 162.4 348.5 481.2
Total 10.9 22.5 30.9 45.8 95.3 131.6 169.8 355.9 488.6

Decrypt
T.GetAdditiveShare <0.1 <0.1 <0.1 0.1 0.1 0.1 0.3 0.4 0.4
MHE.Decrypt 0.8 2.8 11.6
Total 0.8 0.8 0.9 2.9 2.9 2.9 11.9 12.0 12.0

hence requires many rotation-keys to be generated in the offline setup phase. Second, the high
multiplicative depth of the training algorithm requires the parties to refresh the ciphertexts dur-
ing the computation, by means of the ΠColBootstrap protocol (to circumvent the high cost of a local
bootstrapping). The use of secret-key operations in the training phase has two consequences: it
limits the system to synchronous learning scenarios (where all parties have to be online for the
whole training phase) and it introduces a significant communication overhead which constitutes
the system’s main bottleneck.

We now describe the effect of using our TMHE scheme (with a CKKS front-end) in Sav et al.’s
system, assuming a T -out-of-N -threshold setting. In the scope of this case-study, we focus on
their MNIST instantiation where N = 10 parties train a three-layer neural network to perform
handwritten digit recognition. This scenario uses a polynomial degree n = 214, a coefficient
modulus of log2 q = 438 bits with L = 9 primes, and requires 623 rotation keys to be generated1,
along with the public encryption- and relinearization-keys.

Setup Phase To generate the public encryption-, relinearization- and rotation-keys, we pro-
pose to equally distribute the set of keys to be generated among the online parties (up to a
difference of one key per party). Each party then picks a random set of T − 1 other parties per
key it is responsible for, queries these other parties for their shares, and aggregates them (as
defined in the TMHE scheme). Finally, each party retrieves the aggregated share of the keys it
is not responsible for (from the designated party for that key).

We implemented a proof of concept Go application for this setup procedure based on our open-
source TMHE scheme implementation in Lattigo. The protocol interactions were implemented
as a client-server application that enables the parties to query each other for their respective

1The work of Sav et al. actually abstracts the setup phase and their code is closed-source. This value was
obtained through communication with the authors.

Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme 57

Table 3.5: Threshold MHE Setup cost for N = 10 parties, T = 8, 6, 4, 623 rotation keys. The
values are the largest measured per-party costs among all parties, along with their ratio with
respect to the T = N case.

Scheme MHE TMHE
t 10 7 5 3

Time [s] CPU time 149.9 (100%) 120.1 (80.1%) 108.6 (72.4%) 88.7 (59.1%)

Wall time 67.1 (100%) 53.7 (80.0%) 48.6 (72.4%) 35.1 (52.3%)

Network [GB] Sent 5.3 (100%) 4.5 (84.9%) 3.9 (73.6%) 3.3 (62.2%)

Received 5.3 (100%) 4.4 (83.01%) 3.8 (71.7%) 3.2 (60.4%)

shares, as well as for the aggregated shares they are responsible for. To estimate the minimum
wall-time latency of the setup phase, the application performs all queries to the other parties
in parallel. We benchmarked this implementation on a network of 10 machines equipped with
an Intel Xeon E5-2680 v3 CPU (2.5 GHz, 30 MB cache) and 256 GB of RAM. To simulate a
realistic WAN-like network, we limited the network’s bitrate to 1 Gbits/sec and introduced a 10
ms latency. We instrumented our code to report the total amount of data sent and received for
each party, as well as the total wall time for the execution of the setup phase, and we extracted
the CPU time from the operating system’s metric. Our experiment assumes that all parties are
online to perform the setup.

The results for the MNIST setup are summarized in Table 3.5. Our experimental result
confirms that the use of our TMHE scheme reduces the per-party cost when more than T parties
are participating to the setup. We do not observe a factor T

N reduction with respect to the
T = N case (which uses the MHE scheme directly). This is because the final phase (query of the
aggregated shares) still depends on N when all parties are online. But the cost reduction remains
significant, hence motivating the use of the T -out-of-N -threshold scheme when the threat model
allows it. We also observe a larger gap between the CPU and wall times for T = 3, as the
parallelization of batched secret-key operation described in Section 3.4.6 starts being effective.
We note that this effect should be observed also for T = 5, but it is not. This suggests that more
engineering would be needed: for example, by partitioning the set of parties into two groups
operating individually for the share generation and aggregation phase.

Online phase The training algorithm used by Sav et al. is an iterative distributed gradient
descent with two phases per iteration. The first phase is a local gradient descent, where each
party computes its local gradients through forward-backward propagation. The second phase is
a global model update where a designated party aggregates all the gradients and updates the
model weights. The model weights and the gradients are encrypted throughout the whole process
and the number of iterations is a parameter of the system. As the source code of their system is
closed-source, we study its online phase from a theoretical perspective. More precisely, we focus
on its communication complexity because it constitutes the main bottleneck of the algorithm.

This bottleneck is caused by the use of the interactive refresh protocol for ciphertexts that
have reached a certain level Lref (the smallest level at which the refresh protocol is correct and
secure, see Section 5.F of [SPTF+21]). In phase 1, each party requires β refresh where β is a
function of model size and encryption parameters (also see Section 5.F of [SPTF+21]). In phase
2, the designated party requires l refreshes (one per non-input layer). A single instance of the
refresh protocol requires the initiator to broadcast the level-Lref ciphertext to be refreshed and
to collect one share per party. The ciphertext consists of two ring elements at level Lref and
each share consists of one ring element at level Lref and one ring element at the largest level L.

58 Chapter 3. A Fault-Tolerant Multiparty Homomorphic Encryption Scheme

Assuming 8-byte encoding for the coefficients, the transcript of a single refresh protocol is of size
E = 8n(3Lref + L) bytes per party assisting the initiator in the protocol. In the N -out-of-N -
threshold model, this represents a total communication of Nβ(N − 1)E bytes for the first phase
and of l(N − 1)E in the second. For the MNIST instance, this represents a communication of
644.1 MB per iteration (β = 4, l = 2, L = 7 and Lref).

We propose the following modification to the framework of Sav et al., which is again a
straightforward application of the TMHE scheme: In the local gradient descent phase (1), each
party picks a random subgroup of T − 1 other parties in the set of online parties and performs
all refresh protocols among this group. In the global-model update phase (2), the aggregator
randomly partitions the set of online parties into ⌊ |Ponline|

T ⌋ groups, and distributes the batch
of l refresh protocols among the groups. The proposed changes extend the framework to the
asynchronous learning scenario (with a tolerance of N − T offline parties). In the case where all
parties are online, it reduces the communication complexity for phases 1 and 2 to, respectively,
Nβ(T −1)E and l(T −1)E; this corresponds to a total of 286.3 MB per iteration for the MNIST
instance. Additionally, it divides the latency of step 2 by ⌊ |Ponline|

T ⌋. Hence, as for the setup
phase, the use of our fault-tolerant scheme also comes with a general reduction of the online
phase costs, especially when it relies on the refresh protocol.

3.6 Chapter Summary

In this chapter, we extended the MHE scheme of Chapter 2 to a T -out-of-N -threshold access-
structure. We demonstrated that the approach of re-sharing the secret-key shares composes
well with our initial approach, and that this yields an elegant and efficient solution. Notably,
the extension introduces additional interaction only at the key-generation phase and, due to
our technique for compact Shamir public-points, has only a negligible memory and CPU-time
overhead with respect to the base scheme. As a result, not only does our scheme provide fault-
tolerance to the MHE-based MPC protocol but, when the number of online parties is above the
threshold, it also reduces the per-party costs and overall latency. Moreover, our solution enables
parties that only temporarily go offline to re-integrate the ΠMHE−MPC protocol execution.

59

Chapter 4

Lattigo: a Multiparty Homomorphic
Encryption Library in Go

Chapter Content

4.1 Building an (M)HE library in Go . 61
4.1.1 Challenges . 61

4.2 Library Overview . 63
4.2.1 Internal Design . 63
4.2.2 Cryptographic Optimizations and Features . 64

4.3 Performance Comparison . 68
4.4 Applications . 68
4.5 Chapter Summary . 70

Chapter 4. Lattigo: a Multiparty Homomorphic Encryption Library in Go 61

In the previous chapters, we proposed several constructions for multiparty homomorphic
encryption (MHE) and their instantiation in a MHE-based MPC protocol (the ΠMHE−MPC proto-
col). We also discussed the features of this protocol, the way they make it highly relevant from
a system-design point of view, and we demonstrated its concrete efficiency. As a result, there
is a great interest in building concrete MPC systems that can employ MHE schemes. However,
prior to the work of this thesis, no open-source library implementing the MHE scheme for RLWE
existed. In this chapter, we report on one of the most renowned contributions of our work: the
Lattigo library for multiparty homomorphic encryption.

Multiparty computation systems, by nature, are highly interactive, concurrent and cross-
platform. They belong to the family of distributed systems that are notoriously difficult and
costly to implement. Fortunately, the new generation of programming languages, such as Go 1,
greatly reduces this effort, notably by featuring built-in concurrency primitives, extensive stan-
dard libraries, and comprehensive toolchains for building, testing, and analyzing code. Moreover,
Go features a minimal set of fundamental concepts and associated syntax, which makes learning
the language easy. This is especially relevant in the setting of academic research, as it generally
does not have the resources associated with large-scale software development and often relies on
students for the implementation work. However, at the time of starting our work on Lattigo,
most of the existing HE libraries were written in C++. To provide an alternative, we design and
develop a high-performance HE library in the Go language, and we make it open-source.

4.1 Building an (M)HE library in Go

The development of Lattigo began in March 2019, as part of our research on multiparty ho-
momorphic encryption (MHE) and secure multiparty computation. In addition to seeing the
scientific interest in being able to quickly integrate our research results into a code-base for their
empirical evaluation, we saw an opportunity to cater to the needs of the community by bringing
HE to a new programming language: Go. Our group currently uses Go for the implementation of
several applied research projects. As these systems transitioned from proof-of-concept implemen-
tations to real-world prototypes deployed in operational settings, the need for a cryptographic
layer supporting MHE became pressing.

4.1.1 Challenges

Besides fulfilling the aforementioned needs for an (M)HE library, our work on Lattigo addresses
several technical challenges related to such an implementation.

Complexity of the Constructions Lattice-based HE constructions are comparatively more
complex than traditional (i.e., non-homomorphic) encryption schemes. From a high-level per-
spective, their interface is that of an (asymmetric) encryption scheme, augmented with evaluation
capabilities. At the very low-level, fast ring arithmetic requires multiple layers of algorithmic
optimization, notably
• The decomposition of Rq with composite q =

∏l
i=0 qi into a residue number system (RNS),

which enables the arithmetic to be performed in smaller sub-rings Rq1 ×Rq2 × · · · ×Rql .

• The number theoretic transform (NTT) [AB74] that enables fast polynomial multiplication.

• The Montgomery modular multiplication [Mon85] that enables fast modulo q multiplication
in the polynomial-coefficient domain.
1https://go.dev

https://go.dev

62 Chapter 4. Lattigo: a Multiparty Homomorphic Encryption Library in Go

These optimizations rely on special representations of the polynomials and their coefficients, and
they require specific parameterization of the ring. Moreover, not all operations can be performed
in all representations (e.g., sampling cannot be performed in the NTT domain). This requires to
sparingly apply the transforms during the computation. In the case of the NTT, the transform
is costly (and often constitutes the bottleneck of the operations that require it), hence we need
to avoid switching domains as much as possible. As a result, efficiently computing even a simple
term of the form ab + c could require different algorithms, depending on the domain of each
operand and on the expected domain for the output.

Multiplicity of Schemes This last decade has been a prolific one for HE research and has led
to a new generation of schemes based on RLWE. From the user perspective, these schemes differ
mostly in their plaintext space and in the way the noise is managed throughout the computation.
As the “right” scheme to use in a given context depends on the application, it is desirable for
an HE library to implement as many of them as possible. In this regard, the good news is that
these schemes share common functionalities (i.e., the core RLWE HE scheme, see Section 1.4.1),
which enables the implementer to re-use code between schemes (by expressing these schemes as
front-ends over the core scheme, see Section 1.4.1). However, the somewhat less good news is
that the theoretical literature in which these schemes are proposed, due to the rapidly evolving
set of techniques in use, do not present their contributions in such a modular way. Rather, they
present the proposed schemes in a monolithic way, which makes it hard for newcomers to the
field to extract such common functionality.

Our core + front-end formulation, from which the design of Lattigo arises, reflects this
systematization effort.

Flexibility and Future-Proofness In addition to supporting the existing schemes with as
little code as possible, our modular design is sound and flexible. This achieves a two-fold effect:
First, it ensures that the library is able to integrate future constructions and improvements on
RLWE-based FHE, hence remains relevant in the longer term. Second, and in conjunction with
open-source, it enables advanced users to implement proof-of-concept of their new constructions
at the right layer. This is indeed much faster than if they were starting from scratch, or if they
were modifying a monolithic piece of software.

In Lattigo, good examples of the benefits a sound design provides are the introduction of
our multiparty functionalities, as extensions of the single-party schemes, and the recently added
support of the scheme by Kim and Song for approximate real-number arithmetic [KS19], as a
specific parameterization of the CKKS scheme.

Performance and Parameterization For most applications, the cost of using HE dominates
the overall application cost. Therefore, minimizing the CPU cost of the library’s operation is
paramount to maximize the application performance. Although this is first and foremost a
matter of algorithmic optimization, such as the aforementioned ring-arithmetic optimizations,
software optimization techniques also play an important role. One of the main reasons for this
lies in the fact that HE schemes have application-specific parameterization. More precisely,
whereas traditional encryption schemes are mostly concerned with setting the parameters for
a fixed security level, HE schemes require to be parameterized according to a particular set of
functions to be evaluated. As a result, their implementations cannot simply hard-code these
parameters and their corresponding constants (e.g., as one would hard-code the constants of a
given elliptic curve). Instead, HE implementations need to pre-compute these values at run-time,

Chapter 4. Lattigo: a Multiparty Homomorphic Encryption Library in Go 63

and to ensure that their APIs enable a user to perform these pre-computation outside of the
critical path of an application.

Our software and API design principles, which we present in Section 4.2.1, account for
software-optimization techniques such as pre-computation caching and buffer pre-allocation. Ad-
ditionally, our work on the Lattigo library yields several novel algorithmic optimizations that are
relevant for HE research. We summarize these cryptographic optimizations in Section 4.2.2.

Interfaces Design and Usability It is essential for any library to have a well-designed ap-
plication programming interface (API). In designing such an API, library designers face the
challenge of providing a simple API (which is easy to use by novice users and reduces the prob-
ability of making errors) while supporting use-cases of advanced users.

One crucial aspect of Lattigo, in this regard, is that we choose to export each of its layers as
a standalone package (we discuss these layers in the library overview in Section 4.2). As a result,
more advanced users have the ability to implement new functionalities (such as new schemes)
by relying on these lower-level layers.

4.2 Library Overview

Lattigo is an open-source Go module2 available under Apache 2.0 license3. At the time of writing,
its current version is v4.1.0. Lattigo is now actively maintained by the start-up Tune Insight
SA4 that uses the library as a core component of its products and solutions.

4.2.1 Internal Design

We now describe the notable aspects of the library’s design; they address the challenges exposed
in the previous section.

Layered Architecture To address the challenges arising from the multiplicity of schemes,
and the need for maintainability, as well as flexibility, we use a four-layer architecture:
• The Ring layer is the lowest one; it implements the cyclotomic polynomial ring Rq, its opera-

tions, and sampling according to the various distributions required by RLWE.

• The Core RLWE layer implements the core functionalities that are common to all (or several)
HE and MHE schemes. This includes the core RLWE scheme of Section 1.4.1, as well as the
threshold schemes of Sections 2.2 and 3.4. Although this layer principally serves as a common
base for implementing the various front-end HE and MHE schemes, it is already user-facing.
This is because objects that are not redefined by the front-ends, such as cryptographic keys
and ciphertexts, are imported directly from this layer.

• The Scheme layer implements the front-end schemes, i.e., the BFV, BGV, and CKKS schemes.
Hence, this layer implements (i) the particular plaintext encoding(s) and decoding(s) of each
scheme, and (ii) the homomorphic operations.

• The Multiparty scheme layer implements the front-ends for the multiparty schemes, based on
both the Core RLWE layer (for the core MHE scheme constructions) and the Scheme layer
(mostly for the plaintext encoding of the relevant front-end scheme). Similarly to the Scheme
2https://go.dev/ref/mod
3http://www.apache.org/licenses/
4https://tuneinsight.com

https://go.dev/ref/mod
http://www.apache.org/licenses/
https://tuneinsight.com

64 Chapter 4. Lattigo: a Multiparty Homomorphic Encryption Library in Go

layer, this layer is mostly concerned with evaluation-time operations (i.e., the Compute phase
in the ΠMHE−MPC protocol, see Section 2.4). The Setup phase functionalities (the collective
generation of public encryption and evaluation keys) are common for all schemes and are
directly imported by the user from the Core RLWE layer.

Standalone Packages at Each Layer Each layer of the Lattigo design consists of multiple
Go packages5. By definition, packages in Go are standalone units and should provide a usable
API to users. Lattigo complies with this paradigm and exposes the packages listed in Table 4.1.
As a result, we provide a paradigmatic solution to the flexibility and usability challenges.

Pure Go Implementation All packages, including the low-level ring package, are imple-
mented exclusively in Go. Although it might be tempting to rely on existing number-theory
libraries such as NTL 6 or GMP 7, doing so would require using CGO, the C-Go linking interface.
Unfortunately, doing so would hinder the usability, because C wrappers break the portability of
the code to some architectures such as WebAssembly, which enables running Lattigo in a browser
environment 8.

API Principles The operations of the front-end schemes are defined as methods (e.g., Add)
over purpose-specific objects, struct types in Go, (e.g., Evaluator) that encapsulate the cryp-
tographic parameters, temporary buffers and pre-computations. These objects are initialized
from the cryptographic parameters, and all pre-computation and temporary-buffer allocations
occur at initialization (e.g., with a NewEvaluator(params) method). For performance reasons,
API functions (e.g., Evaluator.Add(a, b, res)) use these pre-allocated buffers and output
registers, and they do not allocate memory, unless if explicitly labeled as doing so (e.g., res :=
Evaluator.AddNew(a, b)).

As of version v4.1.0, Lattigo provides a single-threaded implementation of its API and all
types assume single-threaded use. Therefore, the API user controls the concurrency aspects of
its application.

4.2.2 Cryptographic Optimizations and Features

We now summarize the aspects of Lattigo that are relevant from a cryptographic-research stand-
point. These aspects are algorithmic improvements to critical operations in RLWE-based HE
schemes.

Generalized Key-Switch Procedure One of these critical operations is commonly referred
to as key-switch. It enables the evaluator to re-encrypt a ciphertext, which was encrypted under
some function f(s) of the secret-key, back to a ciphertext under the secret-key s. This operation
is used for all homomorphic operations (besides addition) to invert their effect on the decryption
structure, and requires a public-key (commonly referred to as an evaluation-key). For example,
the homomorphic multiplication yields a ciphertext that can be seen as being encrypted under s2

and requires a second step (commonly referred as the relinearization) to operate a key-switching
from s2 back to s.

5https://go.dev/ref/spec#Packages
6https://libntl.org
7https://gmplib.org/
8https://webassembly.org/

https://go.dev/ref/spec#Packages
https://libntl.org
https://gmplib.org/
https://webassembly.org/

Chapter 4. Lattigo: a Multiparty Homomorphic Encryption Library in Go 65

Table 4.1: The github.com/tuneinsight/lattigo/v4 v4.1.0 Go module

Ring layer

ring implements the RNS-accelerated modular arithmetic over the cyclo-
tomic ring ZQ[X]/(Xn+1). This includes: the RNS basis extension,
the RNS division (rescaling), the NTT, and the uniform, Gaussian,
and ternary sampling.

Core RLWE layer

rlwe implements the core RLWE scheme (see Section 1.4.1) i.e., generic
operations that are common to RLWE schemes.

drlwe implements the core N -out-of-N -threshold RLWE scheme (see Sec-
tion 2.2) and its T -out-of-N -threshold extension (see Section 3.4).

Scheme layer

bfv implements the RNS-accelerated Fan-Vercauteren version of Braker-
ski’s scale-invariant homomorphic encryption scheme (BFV) [FV12;
BEHZ16; HPS19], as a front-end of package rlwe.

bgv implements the RNS-accelerated variant of the levelled scheme of
Brakerski et al. (BGV) [BGV14], as a front-end of package rlwe.

ckks implements the RNS-accelerated version of Cheon et al.’s HE scheme
for arithmetic over approximate complex numbers (CKKS) [CKKS17;
CHKK+19] as-well-as its variant for real numbers [KS19].

ckks/advanced implements advanced homomorphic operations for the CKKS scheme,
such as the homomorphic CKKS encoding/decoding, the plaintext-
polynomial evaluation and the approximation of non-linear functions.

ckks/bootstrapping implements the bootstrapping for the CKKS scheme [BMTH21;
BTH22].

rgsw implements the subset of the HE scheme of Gentry, Sahai and Waters
(GSW) [GSW13] that is necessary for bridging between RLWE and
LWE-based schemes and for supporting look-up table evaluation.

rgsw/lut implements the generation and homomorphic evaluation of look-up
tables for RLWE schemes.

Multiparty scheme layer

dbfv implements the BFV front-end for the threshold RLWE scheme.

dbgv implements the BGV front-end for the threshold RLWE scheme.

dckks implements the CKKS front-end for the threshold RLWE scheme.

66 Chapter 4. Lattigo: a Multiparty Homomorphic Encryption Library in Go

In Lattigo, we employ a generalization of the key-switch procedure proposed by Han and
Ki [HK20], which enables the user to tune a trade-off between the homomorphic capacity, the
evaluation-key size, and the key-switch algorithmic complexity. Informally, this lets the user
specify a number α of the l prime factors of q to be specially reserved for the key-switching
operation. These specially reserved primes are commonly referred to as special primes, and
their product is denoted by p. Although these reserved primes cannot be exploited during other
operations, which reduces the ciphertext space modulus from q =

∏l
i=0 qi to q′ = qp−1 =

∏l−α
i=0 qi

hence reduces the homomorphic capacity, they result in an increased throughput for the key-
switching operation. Figure 4.1 shows that, by increasing α to 4, we achieve a 2× increase in
throughput and a 5× decrease in the key-size. This shows that, in terms of throughput, the loss
in homomorphic capacity is more than compensated by the run-time reduction.

We also further optimize the key-switch-key format and key-switch algorithm for the evalu-
ation of automorphisms such as rotations, as proposed by Bossuat et al. [BMTH21].

Novel BFV Quantization The BFV homomorphic multiplication (even in its RNS variant
[BEHZ16; HPS19]) is an expensive operation because it requires the use of a large secondary basis
[FV12] to temporarily represent intermediate values in the ciphertext tensor-product. Lattigo
follows a novel approach to handling this operation, by adapting the RNS-friendly quantization
techniques proposed in the original full-RNS variant of the CKKS scheme [CHKK+19]. At the
time of proposing this algorithm, this gives Lattigo a considerable performance advantage over
existing implementations (see Section 4.3 for the benchmark comparisons).

CKKS Bootstrapping The Lattigo library is the first library to implement the bootstrapping
operation for the RNS-variant of the CKKS scheme (the only previously implemented bootstrap-
ping for CKKS being specific to the non-RNS variant 9). At the time of writing, it is still the only
open-source implementation of this procedure. Moreover, our implementation effort resulted in
several theoretical improvements to various sub-procedures of the bootstrapping. Compared to
the contemporary state-of-the-art, our bootstrapping procedure is both more efficient and more
precise (as shown in Figure 4.2), and it does not require the use of sparse secret keys. These
results [BMTH21; BTH22] were accepted and presented in two highly ranked venues of the cryp-
tographic research. The results of [BMTH21] were presented in more detail in the introduction
of this dissertation.

Homomorphic Polynomial Evaluation Several of the aforementioned sub-procedures are
of independent relevance, i.e., outside the bootstrapping operation itself. One such procedure is
a scale-invariant and depth-optimal homomorphic polynomial evaluation algorithm that can be
applied to polynomials in both the standard and the Chebyshev basis. The procedure enables
the user to provide the clear-text polynomial coefficient and a desired output scale. Then, the
procedure starts by recursively computing the scale at which each monomial is computed in order
to ensure that all rescalings in the evaluation will be exact [BMTH21]. Another such procedure is
the homomorphic (plaintext) linear transform. The ckks/advanced package provides standalone
implementations of these functions, upon which the ckks/bootstrapping package builds to
provide the bootstrapping operation. Hence, in addition to being the first HE library to provide
a state-of-the-art bootstrapping for CKKS, Lattigo is also the first library to make its core
components available to the users.

9https://github.com/snucrypto/HEAAN

https://github.com/snucrypto/HEAAN

Chapter 4. Lattigo: a Multiparty Homomorphic Encryption Library in Go 67

Table 4.2: CKKS Bootstrapping Parameters. n is the ring degree, h is the number of non-zero
coefficients in the secret-key, log(q′) is the bit-size of the ciphertext modulus, log(p) is the bit-size
of the key-switching decomposition-basis (the security is based on log(pq′)), and C the ciphertext
modulus consumption by bootstrapping (in bits).

Parameter Set n h log(q′) log(p) C
Best of [CCS19a]

216
64

1240 1240 1057
Best of [HK20] 1270 182 900

Set II 192 1248 305 743
Set III 215 1416 366 956

1 2 3 4 5 6 7 8

212.5

213

213.5

α
Number of Special Primes

T
hr

ou
gh

pu
t

lo
g
(q

′)
/t

im
e

[s
ec

]

0

50

100

150

K
ey

-s
iz

e
[M

B
]

Throughput
Key-size

Figure 4.1: Comparison of the public key-switch operation throughput (in ciphertext-bits/sec.)
and public switching-key size for n = 215 and variable 1 ≤ α ≤ 8 and l = 16−α (Lattigo v2.1.0).

10 15 20

0

5 · 105

1 · 106

214 212
214

210

215

214

210

215

214

210

log(1/ϵ)
Precision

T
hr

ou
gh

pu
t

n
×
(l
og

(q
′)
−

C
)/
(C

P
U

ti
m

e)

Best of [CCS19a]
Best of [HK20]
Set II (ours)
Set III (ours)

Figure 4.2: (From [BMTH21]) Comparison of the bootstrapping utility. See Table 4.2 for the
parameters. We plot the results for our best-performing parameter set against the state of
the art. Nodes are labeled with n, the number of plaintext slots, log(q′) − C is the residual
homomorphic capacity (in bits) after the bootstrapping, and the precision log(1/ϵ) is defined as
the negative log of the mean error across all the slots.

68 Chapter 4. Lattigo: a Multiparty Homomorphic Encryption Library in Go

Multiparty Homomorphic Encryption One of the main purposes of the Lattigo library is
to support the development of MHE-based MPC protocols. Lattigo implements the MHE scheme
presented in Section 2.2 as well as its T -out-of-N -threshold extension presented in Section 3.4,
for the BFV, BGV, and CKKS front-ends. As such, it is the first library to implement the
complete set of local operations required to support the ΠMHE−MPC protocol.

4.3 Performance Comparison

A crucial issue in implementing HE is that of runtime performance. In this regard, the C and
C++ languages are often considered as the de-facto standard, as they enable their users to have
control over their programs, down to machine-level considerations. The Go language is somewhat
different and, like many recent languages, favors safety and simplicity over control. This raises
the question of whether we can write fast cryptographic code in Go or not.

To answer this question, we perform benchmarks for the HE primitives implemented in Lat-
tigo, against those of Microsoft’s SEAL C++ library10 as a baseline. We use Lattigo v2.1.0 and
SEAL v3.6, the latest version of both libraries at the time of performing these benchmarks.11

All experiments are conducted single-threaded on an i5-6600k at 3.5 GHz with 32 GB of RAM
running Windows 10. We use Go version 1.14.2 for building Lattigo and the MSVC++ compiler
version 14.28 to compile the SEAL library and its benchmarks.

Parameters We define the benchmarked parameters as the triplet {n, l′, α}, where n is the ring
degree, l′ is the number of ciphertext moduli (prime factors of q′) and α is the number of special
primes for the key-switching (prime factors of p). These factors are the most relevant when
comparing the library performance, as each individual modulus factor qi fits within exactly one
(64-bits) machine word. Both Lattigo and SEAL propose several default parameter sets for 128-
bit security (according to the standardization document [ACCD+18]) and varying homomorphic
capacity. However, at the time of writing, SEAL does not yet support the use of multiple moduli
in the extended-basis p (it enforces α ≤ 1), hence does not support the default parameters of
Lattigo. Consequently, we performed our benchmarks with the default parameters of SEAL.

Results Tables 4.3, 4.5, 4.4, and 4.6 summarize the timings of local operations for BFV and
CKKS in a single-key setting, along with the corresponding baseline-system timings. We conclude
from these benchmarks, that it is possible to produce, in Go, cryptographic code that matches
and even surpasses the performance of a C++ implementation12.

We believe that the good performance results of Lattigo can be attributed to the efficiency of
the package lattigo/ring that relies on low-level Go-friendly optimizations (e.g., Montgomery
and pointer arithmetic, lazy-reduction, loop unrolling), as well as scheme-specific high-level al-
gorithmic optimizations (e.g, a novel BFV quantization, operation-specific plaintext encoding).

4.4 Applications

Here, we briefly discuss several of Lattigo’s first applications, from our group’s line of research.
Lattigo has been successfully used in practical scenarios, for both its intended use-cases: in
single-party HE for client-server applications, and more complex workflows requiring MHE.

10https://github.com/Microsoft/SEAL
11At the time of performing these benchmarks, the BGV scheme was not implemented by either libraries.
12For more recent benchmarking work confirming this observation, see the wortk of Gouert et al.[GMT22]

https://github.com/Microsoft/SEAL

Chapter 4. Lattigo: a Multiparty Homomorphic Encryption Library in Go 69

Table 4.3: BFV Timings in µs for 210 ≤ d ≤ 213.

Op d = 211, L = 1 d = 212, L = 2 d = 213, L = 4
SEAL Lattigo SEAL Lattigo SEAL Lattigo

Encode 29 26 60 55 122 123
Decode 29 30 73 56 129 112
Encrypt 803 226 2085 936 5711 2935
Decrypt 110 64 358 284 1374 1251

Add 7 3 28 11 126 46
Mul-Pt 129 90 482 380 2084 1652
Mul-Ct 1146 476 3721 2065 14987 9123

KeySwitch - - 775 745 3933 3781

Table 4.4: BFV Timings in ms for 214 ≤ d ≤ 216

Op d = 214, L = 8 d = 215, L = 15 d = 216, L = 31
SEAL Lattigo SEAL Lattigo SEAL Lattigo

Encode 0.2 0.2 0.5 0.5 1.1 1.2
Decode 0.2 0.2 0.6 0.6 1.2 1.3
Encrypt 18.5 10.5 65.4 39.2 253.5 153.0
Decrypt 5.6 5.3 23.5 22.4 115.7 95.6

Add 0.4 0.2 1.7 1.0 7.1 4.5
Mul-Pt 8.8 7.4 34.1 32.1 149.5 133.2
Mul-Ct 65.7 44.9 400.3 205.7 2822.6 1186.3

KeySwitch 24.3 24.1 147.0 154.5 1183.8 1235.5

Table 4.5: CKKS Timings in µs for 210 ≤ d ≤ 213.

Op d = 211, L = 1 d = 212, L = 2 d = 213, L = 4
SEAL Lattigo SEAL Lattigo SEAL Lattigo

Encode 112 103 305 247 854 668
Decode 63 82 345 174 1385 382
Encrypt 548 392 1816 1115 5329 3680
Decrypt 18 6 71 27 272 108

Add 7 3 28 10 124 46
Mul-Pt 14 7 52 27 210 126
Mul-Ct 45 15 187 61 795 242
Rescale - - 203 222 861 857

KeySwitch - - 807 731 3927 3619

Table 4.6: CKKS Timings in ms for 214 ≤ d ≤ 216

Op d = 214, L = 8 d = 215, L = 15 d = 216, L = 31
SEAL Lattigo SEAL Lattigo SEAL Lattigo

Encode 3.2 1.9 14.3 6.3 58.0 22.9
Decode 6.4 0.8 31.7 3.1 230.7 6.5
Encrypt 19.0 13.0 71.6 50.0 295.7 211.4
Decrypt 1.1 0.4 4.7 2.3 19.2 9.1

Add 0.4 0.2 1.7 0.9 7.2 4.5
Mul-Pt 0.8 0.5 3.1 2.2 13.2 9.1
Mul-Ct 3.1 1.1 12.0 4.6 49.2 19.4
Rescale 3.6 3.4 14.6 13.8 64.2 65.7

KeySwitch 23.4 22.8 146.5 143.5 1178.5 1205.8

70 Chapter 4. Lattigo: a Multiparty Homomorphic Encryption Library in Go

Client-Server Applications A paradigmatic case of a secure service that operates on en-
crypted sensitive client data, performing private genotype imputation, was one of the proposed
tasks in the 2019 iDash challenge 13. Our group employed Lattigo for developing one of the three
winning solutions: a multinomial logistic regression inference with CKKS-encrypted data that
performs a batch prediction (1,000 patients with 80,000 to-be-imputed variants each) in seconds
and has memory requirements and prediction accuracy comparable to clear-text state-of-the-art
genotype imputation tools [KHBC+21].

Lattigo was also used for implementing a passively secure oblivious linear-function-evaluation
(OLE) protocol [BEPS+20], which is a common building block for generic MPC protocols. This
protocol generalizes oblivious transfer to linear functions, and its Lattigo implementation (on
top of the ring package) is able to evaluate more than 1 million OLEs per second over the ring
Zm, for a 120-bit m on standard hardware.

Large-Scale Multi-party Applications Lattigo has been used for implementing distributed
training and evaluation of several machine-learning models, including generalized linear mod-
els [FTPS+21] and feed-forward neural networks [SPTF+21]. The systems built with Lattigo
are capable of efficiently scaling up to thousands of parties and achieve a high training through-
put, and they close the accuracy gap with respect to centralized clear-text systems. Exam-
ples of the achieved performance include training a logistic regression model on a dataset of 1
million samples with 32 features distributed among 160 data providers in less than three min-
utes [FTPS+21], and training a 3-layer neural network on the MNIST dataset with 784 features
and 60,000 samples distributed among 10 parties in less than 2 hours [SPTF+21].

4.5 Chapter Summary

In this Chapter, we introduced the Lattigo library, a multiparty homomorphic encryption library
written in Go. Lattigo greatly facilitates the development of new HE- and MHE-applications
by enabling the use of these primitives in a modern language: Go. By considerably reducing
the development time of such applications, Lattigo can be a catalyst in both the cryptography
research and the adoption of HE and MHE in real systems.

At the time of writing, Lattigo is being used in many more projects than those presented in
this chapter. The library is being used both by applied-cryptography researchers for building
application prototypes [BSA21; CPTH21; FTRC+21; KSJH21; ICDÖ22; TMBM+22; PPV22;
SBTC+22; SDPB+22; CP23a; ERLT23; KG23; FCES+23] and by HE researchers for implement-
ing proof-of-concept of new constructions and optimization [CHKL+21; HKLL+22; KKLS+22;
KLKS+22; LLKK+22; GHHJ22; ACYJ+23; CP23b; KLSS23].

However, by design, the scope of Lattigo is limited to the implementation of local opera-
tions. In other words, it provides the local operations of the HE and MHE schemes but not an
end-to-end implementation of the ΠMHE−MPC protocol. Building such a system requires imple-
menting the network and application logic, but it is undesirable to implement this logic within
the cryptographic library itself. Indeed, this could not be done without restricting the generality
of cryptographic library and would considerably increase the cost of maintaining it. In general,
it is good practice to define and implement this logic in a separate code-base. Therefore, as
doing so is the last step separating the theory of MHE from its practical use, implementing the
ΠMHE−MPC protocol into a concrete end-to-end MPC system is the topic of the next chapter.

13http://www.humangenomeprivacy.org/2023/

http://www.humangenomeprivacy.org/2023/

71

Chapter 5

Helium: an MHE-based MPC
Framework

Chapter Content

5.1 System Specification . 74
5.1.1 System Workflow Overview . 75

5.2 MHE-based Multiparty Computation . 75
5.2.1 MHE Semantics . 76
5.2.2 The MHE-Based MPC Protocol . 78
5.2.3 Practical Challenges . 79

5.3 Solution Design . 80
5.3.1 Nodes . 80
5.3.2 Sessions . 81
5.3.3 Protocols . 82
5.3.4 Failure Handling and Randomness Initialization . 85

5.4 HElium . 88
5.4.1 Protocol Execution . 88
5.4.2 The Setup Service . 90
5.4.3 The Compute Service . 91

5.5 Implementation and Evaluation . 93
5.5.1 Experimental Evaluation . 93

5.6 Chapter Summary . 96

Chapter 5. Helium: an MHE-based MPC Framework 73

In this chapter, we propose a framework: HElium. It is an end-to-end implementation of the
MHE-based MPC protocol (ΠMHE−MPC, see Chapter 2) that supports lightweight and churning
parties. To support churn, HElium relies on the T -out-of-N -threshold MHE scheme of Chapter 3
and builds on top of its Lattigo implementation (Chapter 4).

Low-Requirements MPC Performing MPC tasks among computationally weak and unreli-
ably connected parties is a long-standing problem in MPC systems research [BHKL18; LYKG+19;
DGKN09; CHP13; CP15]. The currently implemented approaches for the N -party setting, which
are mostly based on linear secret-sharing schemes (LSSS) [HHNZ19], tend to impose stringent
requirements on the systems that seek to employ them: From an implementation perspective,
many MPC frameworks assume that they are in control of the network stack. Although this
design is acceptable for performing standalone benchmarks, it is unrealistic when integrating the
framework into larger systems that have their own transport layers. In addition, they require
the protocol participants to be online for the computation to make progress, and require a large
amount of bandwidth. However, this requirement cannot always be met (e.g., when the par-
ticipants run on low-end hardware and experience unreliable network connection), which forces
many frameworks and applications to introduce new assumptions in their security model. One
common such assumption is that of non-collusion between a set of third-party delegates among
which the parties secret-share their inputs and which run the MPC protocol on the parties’ behalf
(e.g., the two-clouds model in which N parties delegate the computation to two non-colluding
cloud servers). However, this assumption could be unsatisfactory, and the corresponding model
could be difficult to implement (e.g., it requires two or more cloud service providers to provide
some guarantees of non-collusion). Hence, there is a need for MPC solutions that can operate
with low requirements for the participants, yet that rely solely on cryptographic assumptions.

MHE-Based MPC Due to their low communication-complexity and small number of rounds,
the MHE-based MPC approaches are an ideal choice for low-requirements MPC [AJLT+12]. In
their theoretical formulation for the passive-adversary model, they have sub-linear communica-
tion cost [MTBH21] and require only two rounds: one to provide the inputs and another one to
reveal the computation output [AJLT+12]. More precisely, their public-transcript property en-
ables the parties to delegate most of the communication and computation cost to a single honest-
but-curious third-party (e.g., a cloud server) yet without relying on additional non-cryptographic
assumptions for this delegation.

Whereas more than thirty LSSS-based frameworks were built over the last two decades
[Rot17], there exists no open-source implementation of the MHE-based MPC protocol. One
of the reasons is that implementing the ΠMHE−MPC protocol requires addressing several practical
challenges that the typical computation- and communication-models of the theoretical works
(including the work of Chapters 2 and 3) abstract from. More specifically, the current the-
oretical works consider a monolithic execution of the protocol: each round of the protocol
(SecKeyGen,PubKeyGen, Input and Output in Protocol 7 of Chapter 2) is executed sequentially,
and the protocol terminates after the Output round. Unfortunately, as we show in this chap-
ter, such an ideal execution is undesirable in practice, and can even be impractical in scenarios
involving resource-constraint parties.

Our Contributions

In this chapter, we isolate the challenges related to a realistic, non-monolithic execution of the
ΠMHE−MPC protocol, we address these challenges, and we propose HElium: the first open-source

74 Chapter 5. Helium: an MHE-based MPC Framework

implementation of an MHE-based MPC protocol.
• Challenges We show that the monolithic execution can be impractical for resource-constrained

parties, and that it does not adequately capture the fact that the ΠMHE−MPC protocol can be
seen as a long-lived session that must only be established once for a given set of parties and
HE parameters. The latter brings the challenge of handling churning clients in a non-trivial
way, which requires securely instantiating the TMHE scheme of Chapter 3.

• Generic Solution We provide the design of a non-monolithic execution that addresses the
efficiency and security challenges. This design bridges the theory-to-practice gap that is left
open by theoretical work on MHE and is generic: it applies to both the peer-to-peer and
cloud-assisted settings of the MHE-based MPC protocol.

• The HElium Framework We propose HElium, an end-to-end framework for MHE-based
MPC in the cloud-assisted model. HEliumhas very low requirements for the parties: They can
run on several hundreds of megabytes of RAM, their communication cost is sub-linear in the
number of parties, and they do not need to be simultaneously online and reachable.

• Implementation We implement our generic solution and make it open-source. We provide
a solution that can be easily integrated into larger applications, by expressing its transport
layer as an abstract interface in the remote procedure call (RPC) paradigm (by default, our
implementation uses a gRPC-based service as a concrete transport).
As such, HElium is the first framework for MPC under churn that does not require non-

cryptographic assumptions besides the traditional passive-adversary setting.

5.1 System Specification

Here, we define the framework’s operational setting and functionality. These are, from a high
level, that of a generic MPC system. This definition sets the basic requirements for our desired
MHE-based MPC solution.

Setting Let P = {P1, ..., PN} be a set of N parties. We consider an asymmetric setting where
the parties in P are resource constrained, cannot listen for incoming connections, and could be
inconsistently online. Thus, they receive assistance from a helper H that is assumed to run on
high-end hardware, to have the ability to listen for incoming connections, and to be consistently
online. LetM be a ring (plaintext space), and let f :MN →M be an arithmetic function over
M. We assume that the parties and helper have access to an MHE scheme for which, given a
function f (target function) as above, they can derive an HE circuit Cf (target circuit) and a
set of public parameters pp such that Cf correctly and homomorphically computes f .

Functionality From an HE circuit Cf that computes f , the HE public parameters pp, and
(x1, ..., xN) where xi ∈M is a private input from party Pi, the system computes f(x1, ..., xN).

Adversarial Model We assume a passive adversary that can statically corrupt a subsetA ⊂ P
of T − 1 parties for a fixed threshold parameter T (i.e., T is the smallest subset size such that
any subset of size T is guaranteed to contain an honest node). The adversary can observe the
network traffic and the internal state of all parties in A ∪ {H}.

Chapter 5. Helium: an MHE-based MPC Framework 75

Churn Model We consider that the parties in P can be in either the connected state or the
disconnected state. To model the transitions between the states, we view the time before a
disconnection event (respectively, a re-connection event) as a random variable following some
distribution Dd (respectively, Dr). These events are independent among the parties.

5.1.1 System Workflow Overview

A generic MPC framework is generally a sub-component of a larger distributed system that we
refer to as the user application. We provide an overview of the HElium framework’s workflow
from the perspective of the user-application designer. The workflow consists of the conception
phase that is carried out by the user-application designer, after which the framework and user
application are autonomous.

0. Conception In the conception phase, the user application designer translates the setting
(P, T) and the target function f into a homomorphic circuit Cf , and a set of HE param-
eters pp. Cf and pp are passed, along with other configuration-related information (e.g.,
the parties’ identifiers and network addresses, if any), as input to the framework in the
next phases.

1. Setup. In the setup phase, the framework generates the private and public key material
required for the next phase. It is a preparation phase that requires only the parameters
pp and the circuit Cf , hence can be performed offline (i.e., possibly before the inputs are
available).

2. Compute In the computation phase, the framework performs the evaluation of the target
circuit Cf and outputs the result. Hence, this phase begins with the user application
providing the target function’s private inputs to the framework, and it ends with the
decryption of the final result.

Notes on the Conception Phase We observe that our functionality definition assumes that
the target function f is translated into an HE circuit by the application designer. We voluntarily
leave the aspects related to circuit design and HE parameterization outside the scope of this
work. Although these aspects are important for assisting non-experts during the conception
phase, they are orthogonal to the contributions of this work (which focus on the operational
phases) and are addressed by existing literature on HE compilers [CDS15; CPS18; CMGT+18;
DKSD+20; ACDM+19; VJHH23].

5.2 MHE-based Multiparty Computation

We recall the syntax and semantics of MHE schemes and the generic MHE-based MPC protocol
they enable. On account of their practical efficiency, we focus on the threshold family of MHE
schemes [AJLT+12; MTBH21]. For the sake of the exposition, we use a simplified MHE model
for which (i) the evaluation-key generation protocol is a single protocol that takes the operation
to be enabled as an argument (instead of the ΠRelinKeyGen and ΠRotKeyGen protocols) and (ii) for
which we consider only the decryption protocol (instead of the generalized output protocols
ΠKeySwitch and ΠPubKeySwitch).

We consider a security parameter λ and require that the advantage of the adversary A in
breaking input privacy is no more than 2−λ. We also consider a homomorphic capacity parameter
and require that the multiparty computation outputs the correct result with probability at least
1− 2−κ.

76 Chapter 5. Helium: an MHE-based MPC Framework

5.2.1 MHE Semantics

Let P be a set of N parties, and let the threshold T be the size of the smallest subset of P
that is guaranteed to contain at least one honest party. Given a plaintext space with arithmetic
structure M, an MHE scheme over P and M is a tuple of algorithms and multiparty protocols
MHE = (GenParam, ΠSecKeyGen, ΠEncKeyGen, ΠEvalKeyGen, Encrypt, Eval, ΠDecrypt) whose elements
have the following syntax and semantic:

• Public parameters gen. pp← GenParam(λ, κ,P, T,F):
Given the security parameter λ and the homomorphic capacity parameter κ, the iden-
tities of the set of parties in P, the threshold T , and a set F of arithmetic functions
f :MI →M, GenParam outputs a public parameterization pp. This parameterization
is an implicit argument to the following algorithms and protocols.

• Secret-key generation {ski}Pi∈P ← ΠSecKeyGen():
From the public parameters, ΠSecKeyGen outputs a secret-key ski to each party Pi ∈ P.

• Encryption-key gen. cpk← ΠEncKeyGen({ski}Pi∈P′):
From any subset of secret keys {ski}Pi∈P′ such that P ′ ⊆ P and |P ′| ≥ T , ΠEncKeyGen

outputs a collective public encryption key cpk.

• Eval.-key gen. evkop ← ΠEvalKeyGen(op, {ski}Pi∈P′):
Given a homomorphic operation op to be supported by the Eval algorithm and any
subset of secret keys {ski}Pi∈P′ such that P ′ ⊆ P and |P ′| ≥ T , ΠEvalKeyGen outputs a
public evaluation-key evkop for operation op.

• Encryption ct← Encrypt(m, pk):
Given the public encryption key pk, and a plaintext m ∈M, Encrypt outputs a cipher-
text ct that is the encryption of m.

• Evaluation ctres ← Eval(f, {evkop}op∈f , ct1, . . . ctI):
Given an arithmetic function f :MI → M, the evaluation key evkop for each homo-
morphic operation op used in f and an I-tuple of ciphertexts (ct1, ..., ctI) encrypt-
ing (m1, . . . ,mI) ∈ MI , Eval outputs a ciphertext ctres that is the encryption of
mres = f(m1, . . . ,mI).

• Decryption m← ΠDecrypt(ct, {ski}Pi∈P′):
Given ct an encryption of m, and any subset of secret keys {ski}Pi∈P′ such that P ′ ⊆ P
and |P ′| ≥ T , ΠDecrypt outputs m.

Current MHE scheme constructions [MTBH21] are based on the ring-learning with error
(RLWE) problem [LPR10]. The plaintext space of such schemes is a ring of polynomials of a
fixed (power-of-two) degree. Their Eval algorithm supports additions and multiplications in this
ring. They also support homomorphic rotations over the coefficients of the message. Each homo-
morphic operation (besides the addition) requires its own evaluation key to be provided to the
Eval algorithm, hence it requires the execution of a separate instance of the ΠEvalKeyGen protocol.
We note that the “rotation of k positions” operation is considered an individual operation for
each required value of k in the circuit, and it is common for applications to generate many such
evaluation keys. This is because rotations are costly and achieving a desired rotation by com-
position (e.g., of many rotations by k = 1) is often impractical. A notable aspect of the current
MHE schemes is that all their protocols can be executed in a single round of communication
[MTBH21; Par21]. We provide a unified model for these protocols in Section 5.3.3.

Chapter 5. Helium: an MHE-based MPC Framework 77

Protocol 8. ΠMHE−MPC ▷ MHE-based MPC (helper-assisted, for public output)

Private input: xi for each party Pi ∈ P, skR for receiver R
Public input: f the circuit, pkR the receiver’s public-key
Output for R: y = f(x1, x2, . . . , xN)

Setup:

1. (SecKeyGen) all parties in P execute the secret-key generation protocol

ski ← MHE.ΠSecKeyGen(),

2. (PubKeyGen) any subset of parties P ′ ⊆ P, with |P ′| ≥ T executes the required
public-key generation protocols:

cpk← MHE.ΠEncKeyGen(sk1, . . . , sk|P′|),

evkop ← MHE.ΠEvalKeyGen(op, sk1, . . . , sk|P′|), ∀op ∈ f.

Compute:

1. (Input) each party in P encrypts its input xi as

ci ← MHE.Encrypt(xi, cpk)

and sends ci to H.

2. (Eval) the helper H computes the encrypted output as

c′ ← MHE.Eval(f, {evkop}op∈f , c1, c2, . . . , cN),

and sends c′ to the parties in P.

3. (Output) any subset of parties P ′ ⊆ P with |P ′| ≥ T re-encrypts the output c′

under the receiver’s key as

c′R ← MHE.ΠDecrypt(sk1, . . . , sk|P′|, pkR, c
′).

78 Chapter 5. Helium: an MHE-based MPC Framework

5.2.2 The MHE-Based MPC Protocol

As discussed in Chapter 2, an MHE scheme can be used to construct a generic MPC protocol,
over the scheme’s plaintext space. We recall such a protocol as ΠMHE−MPC (for the helper-assisted
setting and public output) as Protocol 8. The ΠMHE−MPC protocol has two phases, Setup and
Compute, each of which consists in running several MHE protocols, i.e., as sub-protocols. During
the Setup phase, the parties collectively run the MHE key-generation sub-protocols in order
to generate the private and public key material required for the next phase. They generate a
collective encryption-key cpk (with ΠEncKeyGen) for encrypting the inputs and all the evaluation
keys (with multiple calls to ΠEvalKeyGen) required to evaluate the target function. During the
Compute phase, the parties encrypt their inputs under the cpk, evaluate the target function
under homomorphic encryption (with Eval), and collectively decrypt the result (with ΠDecrypt).

Cloud-Assisted ΠMHE−MPC In this work, we consider the ΠMHE−MPC protocol in the cloud-
assisted setting [MTBH21]. In this setting, a helper node H assists the parties in the protocol
execution. The role of the helper is two-fold: (i) It computes the homomorphic circuit on the
parties’ encrypted inputs during the Eval step (i.e., it acts as an evaluator), and (ii) it assists
the parties with the execution of the sub-protocols, by collecting their shares, aggregating them,
and broadcasting the result (i.e., it acts as an aggregator).

Ideally, the Eval step of the ΠMHE−MPC protocol is non-interactive (i.e., the evaluator alone
performs the HE operations on the parties’ inputs). In practice, however, interacting with the
helper enables the parties to improve performance by replacing the traditional FHE bootstrapping
that is costly and requires a large number of rotation keys to be generated in the Setup phase,
with a single-round multiparty sub-protocol that refreshes the ciphertexts. This sub-protocol
functions as a simultaneous (single-round) decryption and re-encryption. In order to execute
successfully, it requires at least T parties to be online.

Monolithic Execution Typically, theoretical works [AJLT+12; MTBH21; MBH23] assume
that ΠMHE−MPC-like protocols are composed by four broadcast rounds: SecKeyGen, PubKeyGen,
Input, and Output (one for each interactive step of Protocol 8) which are executed as a monolith.
This means that (i) the parties execute these rounds in a predefined order, (ii) for any round that
involves multiple sub-protocols, the parties compute a single round-share as the concatenation of
the involved sub-protocols’ shares, and (iii) that the protocol terminates after the Output round.

Such a monolithic execution ensures that, by design, parties are synchronized. This makes it
trivial to realize assumptions such as the access to a common random string (CRS) by, among
others, the public-key generation sub-protocols (ΠEncKeyGen, ΠEvalKeyGen). This common string
ensures that randomness (i) is the same for each party, (ii) is fresh for each sub-protocol exe-
cution, and (iii) is uniformly distributed in the ciphertext-space ring. Such a CRS is typically
implemented by assuming that each party has access to a fixed-length random string that can be
expanded into an arbitrary length string by using it as a seed to a keyed-PRF (e.g., BLAKE2b
[ANWW13]). Synchronization ensures that all parties’ keyed-PRFs are in the same state and
thus they read the same (pseudo)random values when executing protocols.

However, although the monolithic execution is convenient in theory, it is hard to realize it in
practice, as it leads to practical challenges and does not fulfill the requirements of Section 5.1 in
terms of workflow. In contrast, a non-monolithic execution depicts more practical and realistic
settings but requires addressing a number of challenges that we detail in Section 5.2.3.

Chapter 5. Helium: an MHE-based MPC Framework 79

5.2.3 Practical Challenges

Several challenges arise when we concretely implement the ΠMHE−MPC solution in practice. Here,
we provide an overview of these challenges and outline our solutions.

Although Chapters 2 and 3 formulate the ΠMHE−MPC protocol in terms of independent sub-
protocols, our security and correctness analysis for these chapters still consider a monolithic
execution (and, for the security analysis, only the T = N case without retries).

Challenge 1. Resource-Constrained Clients: The first challenge is that some parties
might have constrained hardware resources, e.g., low-power CPU and small RAM. As such,
the monolithic execution of MHE sub-protocols in the PubKeyGen step (see step 2. in the
Setup phase of Protocol 8), for which the round share per party is the concatenation of many
ΠEvalKeyGen shares (i.e., one per homomorphic operation op to be supported by the Eval algorithm),
can easily overflow the available memory of weak parties (e.g., when a circuit requires a large
number of distinct rotation values). For a reference example, recall that the monolithic share
size of a single party in the Poseidon [SPTF+21] encrypted neural network training circuit
when executed for the MNIST dataset is 5.3 GB (see Section 3.5.3). The solution to this
challenge is intuitive: Instead of computing a single monolithic share, we propose to run the
sub-protocols independently and asynchronously. This enables the parties to limit the number
of concurrently running protocols and to execute them in a streamlined way. However, this
also creates new challenges in preserving the correctness and security properties of the MHE
sub-protocols (we will expand on these challenges when further defining the structure of MHE
protocols, as Challenge 5).

Challenge 2. Session-Like Execution: Another shortcoming of a monolithic execution flow
is that it is overly restrictive in practice: A crucial aspect of the ΠMHE−MPC protocol is that,
after the execution of the input-independent Setup phase, the parties can execute an arbitrary
number of Compute phase iterations. The monolithic execution does not capture this aspect,
as it is assumed to terminate after the output is received. In practice, the ΠMHE−MPC protocol
could be long-lived and, we argue, is better framed in terms of a session: a logical computation
context for which the data access-control is cryptographically enforced (through a collective
secret-key). This change of paradigm is not only a matter of terminology: To implement such a
long-lived execution, we need to account for parties that temporarily disconnect from the system,
and we require that the re-connection of such churning parties must be safe and efficient (see
Challenge 3).

Challenge 3. Churning Clients: Asharov et al. propose to handle party failures by having
each party re-share its share of the secret key with a T -out-of-N -threshold sharing scheme during
the Setup phase. This approach enables the online parties to publicly reconstruct the shares of
the failing parties in order to simulate them for the rest of the protocol execution [AJLT+12].
However, doing so permanently alters the security provided by the encryption under the cpk

(which then provides T−1-out-of-N -threshold encryption) and does not enable the failing parties
to reconnect to the session at a later point (Challenge 2). As a result, securely re-integrating the
returning party would require interaction from all parties, to either renew the parties’ secret-key
shares (in a proactive fashion [HJKY95]) or to re-create a session from scratch.

Instead, we use the T -out-of-N -threshold scheme introduced in Chapter 3: It enables each
MHE sub-protocol to be run with any T -subset of parties, yet without reconstructing the failing
parties’ share in plaintext. Our scheme is highly efficient, but it introduces two constraints on
the system: (i) The sub-protocols require a list of at least T online parties as input to their

80 Chapter 5. Helium: an MHE-based MPC Framework

GenShare operation, and (ii) a given sub-protocol could fail in the event of a party from the list
crashing before it provides its share. This introduces the challenge of synchronising the parties
on the protocol outcomes and of securely implementing protocol retries (Challenge 4).

Challenge 4. Secure Sub-Protocols Retries: Failure and retries of sub-protocols are not
captured by the existing security analysis of MHE-based MPC that assumes either the T = N

case [MTBH21] or the single monolithic execution case (in which fault-tolerance can be achieved
by simply reconstructing the failing parties’ share in plaintext [AJLT+12]). In our case, the
use of a more complex scheme creates the additional challenge of securely instantiating the sub-
protocols and their potential retries. Intuitively, these challenges arise because a system that
does not emulate a monolithic execution is at risk of generating correlated shares; and this
could enable cryptanalytic attacks. We elaborate on such attacks and propose a secure way of
executing protocol retries in Section 5.3.

5.3 Solution Design

Here, we present our general solution for a practical execution of the ΠMHE−MPC protocol. We
begin by observing that the end goal of this solution is to instantiate an environment for the
execution of the MHE sub-protocols in both the Setup and Compute phases. To achieve this,
the environment must implement the following functionalities: (i) to securely initialize and
orchestrate the execution of MHE sub-protocols, (ii) to transport the parties’ shares in these
sub-protocols, and (iii) to make the protocols’ output available to the parties. Moreover, this
environment must address the practical challenges discussed in Section 5.2.3: It must implement
a non-monolithic execution to address Challenges 1 and 2, and it must handle churning parties
and protocol retries to address Challenges 3 and 4.

The remainder of this section is organized as follows: In Section 5.3.1, we map the entities in
our system definition (of Section 5.1) to nodes in our concrete solution. Then, in Section 5.3.2,
we define the notion of a session in MHE-based MPC as a logical secure-computing context. In
Section 5.3.3, we describe our proposed mechanism for executing, in a non-monolithic fashion,
the MHE sub-protocols, and we extend this mechanism with a failure-handling mechanism in
Section 5.3.4. Overall, this section describes a generic environment for executing MHE sub-
protocols that we will, in Section 5.4, instantiate as the core part of a generic MPC system
called HElium.

5.3.1 Nodes

We refer to all actors in our system as nodes. We assume that all nodes are associated with an
identifier, which is a unique string of characters provided by the high-level user application. We
also assume that the nodes hold certificates for these identifiers, hence they can authenticate
themselves within a PKI model. As per our system model (Section 5.1), there are two types of
nodes: Session nodes are the parties in P, i.e., they have inputs to the computation hence hold
a share of the collective secret-key (to enforce their inputs’ access-control). Helper nodes are
nodes that do not have inputs to the computation hence do not hold a share of the secret key
yet assist the parties in the computation. Note that in our system model, there is only one such
helper node (denoted by H).

Chapter 5. Helium: an MHE-based MPC Framework 81

5.3.2 Sessions

As highlighted in Challenge 2, the ΠMHE−MPC protocol is most efficiently instantiated as a long-
lived logical secure computing context. This is because the keys generated during the Setup phase
can be reused for an unlimited number of iterations of the Compute phase that can amortize the
potentially high cost of the key generation. Such a long-lived context is usually captured by the
notion of a session in secure communications1, and we extend this notion to secure computations.

The purpose of a session in the environment is two-fold. The first purpose is functional: it
provides a logical context for the encrypted computation to take place: the ΠMHE−MPC protocol.
This context comprises all the cryptographic objects related to a single execution of the ΠMHE−MPC

protocol, such as the cryptographic parameters, the secret and public key-material generated in
the Setup phase, as well as the data encrypted under these keys that are the input to the
Compute phase. The second purpose is security-critical: it provides context-separation between
multiple ΠMHE−MPC executions. Context separation is crucial for safe crash-recovery, even when
considering the execution of a single protocol instance (see Section 5.3.4).

A session is initialized (or re-loaded after a restart) by each node, from the session parameters:

SessParams := {SessionID, Nodes, HEParameters, PublicSeed, PrivateSeed},

where SessionID is a unique system-wide identifier for the session, Nodes the identities of the
N session nodes in P, HEParameters the MHE scheme parameters, including the threshold
T , PublicSeed a public bit-string seed for the public randomness source initialization, and
PrivateSeed a private bit-string seed for the private randomness source initialization. The
SessionID, Nodes, and HEParameters are the result of the conception phase (Phase 0 in §5.1.1)
of the higher-level application. The PublicSeed requires synchronization among the nodes on
a unique random bit-string. One node could be entrusted to generate it. Alternatively, the
higher-level application could use existing decentralized randomness beacons2 [SJKG+17]. The
PrivateSeed represents the master secret-key of the node and must be sampled from a secure
randomness source.

The session parameters constitute the immutable part of the session and must be stored
reliably at each node, and we require that they suffice for re-loading a session in a correct and
secure way (e.g., after a node crash). Therefore, by minimizing the size of the critical information
to be persisted by the clients (typically, to a few kilobytes), we significantly reduce the risk related
to its storage (e.g., by reducing the cost of redundancy and enabling the possibility of secure
storage solutions such as hardware wallets). The mutable part of the session consists of the
cryptographic material generated during the Setup and Compute phases (i.e., the encryption key,
the evaluation keys, and the ciphertexts). Importantly, this cryptographic material does not need
to be reliably stored by the session nodes and can be re-derived from the session’s immutable
parameters and some interaction with the helper node. However, this cryptographic material
can be stored by the session nodes for efficiency purposes.

From this point onward, our discussion will focus on a single session hence on a single instance
of a long-lived ΠMHE−MPC protocol. For the sake of conciseness, we will refer to the ΠMHE−MPC

protocol as the session and to its sub-protocols simply as protocols.

1https://www.rfc-editor.org/rfc/rfc8446
2https://drand.love/

https://www.rfc-editor.org/rfc/rfc8446
https://drand.love/

82 Chapter 5. Helium: an MHE-based MPC Framework

5.3.3 Protocols

We now discuss how to execute the protocols in a non-monolithic way within the session. We
proceed in three steps: First, in Section 5.3.3, we define an abstraction for the MHE protocols.
Then, in Section 5.3.3, we discuss our execution mechanism. Finally, in Section 5.3.4, we extend
this execution mechanism with failure handling.

MHE Protocol Abstraction

We now define an abstraction that captures the core functionality of the MHE protocols. This
enables us to define our execution mechanism in a generic way.

Preliminaries We consider a ring R as the ciphertext space of the MHE scheme (i.e., R is a
polynomial ring parameterized such that the RLWE problem is hard [LPR10]). Informally, for a a
publicly known element, and for s and e two secret values sampled from low-norm distributions
over R, (i.e., the coefficients of these values are small w.r.t. those of a), the distribution of
(as+ e, a) is computationally indistinguishable from the uniform distribution over R2.

The MHE.ΠSecKeyGen protocol privately outputs, to each party Pi ∈ P, a T -out-of-N -threshold
secret-share si ∈ R of the collective secret key s (see Chapter 3). More precisely, MHE.ΠSecKeyGen

outputs to each party Pi a point (αi, S(αi)) of some secret degree-T − 1 polynomial S ∈ R[X]

for which S(0) = s. Hence, any subset P ′ of P with |P ′| ≥ T could reconstruct s from their
shares {si}Pi∈P′ as

s = S(0) =
∑

Pi∈P′

∏
Pj∈P′

Pj ̸=Pi

αj

αj − αi
si =

∑
Pi∈P′

λ
(P′)
i si, (5.1)

where λ
(P′)
i denotes the Lagrange interpolation coefficient for the share of party Pi in the recon-

struction among set P ′. Indeed, the secret key s is never reconstructed in practice.

The PAT Protocol Abstraction Although MHE schemes consist of many sub-protocols, the
core functionality of these protocols is the same: to compute a noisy linear function of the
collective secret key s of the form as + e, where a is a public polynomial and e is some small
error term [MTBH21]. For example, the MHE.ΠEncKeyGen protocol generates a collective public
encryption key of the form (p0, p1) = (sp1 + epk, p1) by setting a to be a uniform value sampled
from the common random string. Similarly, the MHE.ΠDecrypt protocol performs the decryption
of a ciphertext (c0, c1) in two steps: It first computes a term h = sc1 + edec (i.e., a = c1 in the
core functionality); then it computes a noisy message as mnoisy ≈ c0 + h which can be decoded
into m (provided that the noise is not too large).

To compute this core functionality, the MHE scheme exploits the linearity of the Shamir
secret-sharing scheme. It lets the participating parties compute their respective linear terms as
shares, then let the parties obtain the result by summing up these shares. As these shares have
the form of an RLWE sample, they can be publicly disclosed and aggregated without compro-
mising the parties’ secret-keys. Hence, we say that the MHE protocols have public aggregatable
transcripts, and we refer to them as PAT protocols. More formally, MHE protocols have a com-
mon structure that can be expressed as a tuple PAT = (GenShare,AggShare) of algorithms with
the following syntax and semantic:

Chapter 5. Helium: an MHE-based MPC Framework 83

• Share generation vi ← PAT.GenShare(si, a,P ′;χ):
From the secret-key share si, a publicly known polynomial a and a set of participating
parties P ′, GenShare outputs a share

vi = λ
(P′)
i sia+ ei, with ei ← χ

• Share aggregation vagg ← PAT.AggShare({vi}Pi∈P′):
From the shares {vi}Pi∈P′ of the participating parties P ′, AggShare outputs a single
aggregated share

vagg =
∑

Pi∈P′

vi = sa+
∑

Pi∈P′

ei

• Finalization out← PAT.Finalize(vagg, in):
From the aggregation of all shares of the parties in P ′ and some public auxiliary input
polynomial in, Finalize outputs the result out of the protocol.

For the key-generation protocols (ΠEncKeyGen and ΠEvalKeyGen), the PAT.Finalize algorithm takes
the publicly known polynomial a (sampled from the CRS) as input in, and outputs the resulting
key as out = (vagg, a). For the decryption operation, it takes the element c0 of the ciphertext as
auxiliary input in and outputs the noisy message out = mnoisy = c0 + vagg.

Execution Mechanism

Under the PAT abstraction, we design a generic execution mechanism for PAT protocols. Here,
we describe this execution mechanism in a form that addresses Challenges 1 and 2, and partially
addresses Challenge 3. In Section 5.3.4, we augment the execution mechanism with failure
handling, which fully addresses Challenges 3 and 4. Our mechanism relies on several roles
assumed by the nodes, as well as several objects that correspond to synchronization messages
between the nodes.

Role: Protocol Participants Each node that provides a share in a PAT protocol is a protocol
participant. Observe that the PAT.GenShare algorithm requires a set of T protocol participants
to generate the share (as a consequence of using the T -out-of-N scheme of Chapter 3 [MBH23]).
Thus, for each protocol execution, the set of protocol participants is a fixed subset P ′ of the
session nodes P.

Role: Protocol Aggregator To avoid broadcast communications and to enable a sublinear
communication for the session nodes, we exploit the public and aggregatable properties of the
PAT protocol shares. We designate an aggregator that collects the T shares from all parties
(generated with the PAT.GenShare method), and it aggregates them (with the PAT.AggShare

method). Then, all nodes requiring the output of the protocol can query the aggregator for the
aggregated share.

Role: Coordinator The coordinator ensures that the session (i.e., the ΠMHE−MPC protocol)
progresses, by coordinating the execution of the required protocols. To this end, the coordinator
keeps track of the network view, i.e., which session nodes are online/offline, and assigns the
different roles to the available nodes (both session and helper nodes). Moreover, the coordinator

84 Chapter 5. Helium: an MHE-based MPC Framework

retains the execution status of the various protocols and we specify further details after defining
the two message objects on which the coordinated execution relies.

Object: Protocol Signature We observe that, from a functional perspective, each PAT

protocol can be associated with a tuple

PSig := {PType, PArgs}

where PType ∈ (ΠSecKeyGen, ΠEncKeyGen,ΠEvalKeyGen, ΠDecrypt) designates the type of protocol and
PArgs denotes the public inputs (i.e., the arguments) of the protocol. For example, the operation
op for which the ΠEvalKeyGen must generate an evaluation key and the ciphertext that ΠDecrypt

must decrypt, are protocol public inputs. For the sake of the exposition, we also consider the
public polynomial a to be part of PArgs for now, but we will propose a more efficient way of
providing it. We refer to the tuple {PType, PArgs} as the protocol’s signature.

Object: Protocol Descriptors By composing a protocol signature with the identities of the
parties that assume the roles of the T participants and the aggregator, we obtain a complete,
unequivocal description of a given PAT protocol execution. We refer to this description as a
protocol descriptor and it is defined as a tuple

PDesc := {PSig, PParticipants, PAggregator}

with PSig the protocol signature, PParticipants the set of session nodes that provide a share
in the protocol, and PAggregator the identity of the aggregator for this protocol. The protocol
descriptor can be viewed as the runtime version of the protocol signature, because the role
attribution to the nodes needs to take into account the current state of the system. Whereas,
signatures correspond to the functional aspect of the PAT protocol. As a result of this distinction,
we can define the notion of equivalent protocols, i.e., protocols whose descriptors have equal
signatures. This will be useful when designing our fault-tolerance mechanism in Section 5.3.4.

Process: Protocol Execution The first step of both the Setup (resp. Compute) phase of
ΠMHE−MPC (see Protocol 8) is to decompose the high-level description of the desired setup (resp.
circuit) into a list of protocol signatures to be executed by the system. This is done by all the
nodes. The second step is the actual execution of the list of protocol signatures, as independent
PAT protocols. Doing so involves (i) generating protocol descriptors for each protocol signature,
(ii) emitting them to the parties, and (iii) keeping track of which protocols have completed:
these are the tasks of the coordinator. This requires deciding on the set of protocol participants
P ′ ⊂ P and on the aggregator (which can be any reachable node over the Internet) for each
protocol; the coordinator can do this, based on its view of the network at runtime. Note that
different strategies for choosing parties have various effects on the performance and cost figures of
the environment. For example, a coordinator could favor performance by relying more on parties
with high bandwidth, or it could favor fairness by distributing the load. On the participants’ side,
the parties receive the protocol descriptor and execute the corresponding protocol. Party Pi ∈ P ′

computes its respective share as vi = ΠPSig.GenShare(si, a,P ′;χ), where the actual protocol is
determined by PSig, where si is provided by the session, and where a and P ′ as provided by the
PArgs and PParticipants fields of the protocol descriptor, respectively. Note that this requires
the party to initialize the secret error distribution χ. Then each party Pi sends its share vi to
the aggregator identified by the PAggregator field of the protocol descriptor. Upon receiving all

Chapter 5. Helium: an MHE-based MPC Framework 85

the shares for a participant set P ′, the aggregator reports to the coordinator that the protocol
has been completed successfully.

In an ideal case with no participant failure, the protocol execution process, as described
above, would simply emulate a monolithic execution by running each protocol once. However,
the coordinator also needs to account for failures (Section 5.3.4).

Public Polynomial We observe that providing the full public polynomial a as a part of the
protocol signature is unnecessary for the key-generation protocols, in which it is sampled from a
CRS. Instead, the parties can sample it themselves, which divides the communication overhead
of these protocols by a factor of 2. As this approach requires considering the case of protocol
retries, we also discuss it along with our solution to failure handling.

5.3.4 Failure Handling and Randomness Initialization

Recall that the participant set is defined before the participants provide their shares. Hence,
the failure of any participant in this set to provide its share would prevent the PAT protocol
from completing. The rationale of our approach (and that of the TMHE scheme of Chapter 3) is
that the probability of such a failure event can be minimized by having the coordinator decide
on the set of participants at runtime, i.e., with knowledge of the current view of the network.
For example, the coordinator could choose the participant set that is likely to be responsive,
by selecting the nodes that are currently online. This is indeed insufficient, as failures could
still occur if a participant disconnects between this decision and providing its share, with a
probability that is determined by our failure model (see Section 5.1). This failure case requires
a failure-handling mechanism.

To construct such a mechanism, we start from the observation that PAT protocols are single-
round and do not require the participants to keep any state (only the aggregator does). As
a result, a protocol retry is equivalent to running a fresh, equivalent protocol (i.e., a protocol
corresponding to the same signature) with a different participant set. As the execution of multiple
protocols is already provided by our previous mechanism, this reduces the problem of failure
handling to that of defining the criteria and semantics of protocol termination, and to ensuring
that protocol retries do not break the security of the ΠMHE−MPC protocol.

Protocol Termination Consistently with our described mechanism, protocols are either run-
ning or completed, and the transition from the former to the latter corresponds to the event
that the aggregator has received a share from each protocol participant. As a result, it is the
responsibility of the aggregator to report a successful termination to the coordinator, and the
coordinator’s responsibility (i) to decide which completed protocol output for a given signature
should be used for the rest of the session, and (ii) to report the protocol completion to the other
nodes. Note that we do not consider a failed status, because this would require defining the
corresponding event and, ultimately, only a single party would rely on it (i.e., the aggregator, in
order to clear its state).

Secure Protocol Retries This failure-handling mechanism preserves the semantics of PAT

protocols and, from a functionality perspective, it only requires synchronization between the
coordinator and the aggregator. From the security perspective, however, we observe that failure
handling introduces a fundamental divergence between the non-monolithic execution and the
monolithic one: A single protocol in the monolithic execution could require the execution of
several related protocols in our approach. This leads to the challenge of ensuring that the extra

86 Chapter 5. Helium: an MHE-based MPC Framework

shares do not break the simulatability of the ΠMHE−MPC protocol, which we present as Challenge 5.
This challenge underlies Challenges 2, 3 and 4, and we now formulate it for the PAT abstraction.

Challenge 5. PAT Protocols Simulatability with Retries: Recall that the parties’ shares
in PAT protocols (§5.3.3) have the form sia + ei, where a is a publicly known polynomial, si
is the secret-key of the party Pi ∈ P, and ei is a fresh polynomial from the noise distribution.
These shares are safe to disclose publicly under the RLWE assumption (which provides the
public-transcript property), as long as the parties can be simulated as an RLWE challenger: an
oracle that outputs either a tuple of form (as + e, a) or a uniformly random tuple in R2

q , in
a distinguishing game. The challenge resides in the fact that the ΠMHE−MPC protocol requires
the environment to control the public polynomial a. More specifically, the public polynomials
are freshly sampled from a common random string (CRS) during the Setup phase, and they are
ciphertext elements in the Compute phase. This can lead to security issues if the initialization
of the public polynomial and of the private randomness sources are not carefully performed. For
example,
• Failure case A: Consider the case of a party generating two shares for the same protocol, for

which the public polynomial is a. The disclosure of both λ
(P′)
i sia+ei and λ

(P′)
i sia+e′i cannot

be simulated by the RLWE challenger and directly leads to an attack, where an adversary can
gain information on sia, by averaging the two shares.

• Failure case B : Consider an (insecure) environment that executes two protocols but uses the
same public polynomial over two different sets of parties P ′ and P ′′. This would trigger the
disclosure of two related shares λ(P′)

i sia+ei and λ
(P′′)
i sia+e′i, whose RLWE secrets are linearly

related (by the ratio of their Lagrange coefficients).

We observe that the two failure cases described in Challenge 5 are not restricted to our non-
monolithic execution, but they could occur by naively composing multiple monolithic executions
(e.g., that use the same CRS but different seeds for the secret distributions). Failure case A could
occur if the coordinator issues two identical protocol descriptors (as forbidding this would require
stronger assumptions), or if a node crashes after providing its share and reboots (as we require
nodes to be able to initialize from the session parameters only, and to re-join an existing session).
Failure case B could occur even in non-malicious scenarios, e.g., in the case of naively retrying
protocols, as we discuss below. We now describe how our solution addresses this challenge.

Protocol Public Randomness Initialization To generate the CRS without having to store
it (which would be very inefficient), we use the common approach of expanding it from a shorter
seed (e.g., a 256-bit string) to a keyed PRF. This seed can be public and used by all the
nodes to initialize their PRF; reading from it will yield the same pseudo-random sequence of
bits. Although all common random polynomials required by the session could be read, sequen-
tially, from a single CRS in the monolithic execution (as suggested in [AJLT+12; MTBH21]),
this is not suitable for our environment. Indeed, this would require the parties to synchronize
their reads to the CRS, which is not possible in our model where parties might be offline and
where the number of protocols depends on runtime parameters (to support re-tries). More-
over, as discussed above, we need to ensure that common random polynomials are fresh for
each protocol. To achieve this, we use one keyed PRF per protocol that we seed with the key
PublicSeed||PSig||h(PParticipants), with PublicSeed the session-wide seed from the session
parameters, and PSig and PParticipants the protocol signature and the list of participants from
the protocol descriptor. h : Powerset(P)→ {1, 0}∗ is an injective function that maps participant
lists to bit-strings. Through this initialization, the environment ensures that each protocol within

Chapter 5. Helium: an MHE-based MPC Framework 87

the session uses a fresh public polynomial. This is also valid for retries of equivalent protocols
over a different participant set; these retries are consistently treated as new protocols and no
longer produce correlated shares. Moreover, we observe that running twice the same protocol
produces the same common random polynomial.

Ciphertext Re-randomization As for the key-generation protocols in the setup phase, the
secret-key operations should be secure when multiple aggregation phases are performed in par-
allel. Informally, these protocols operate on an input ciphertext (c0, c1) by producing one or
multiple shares of the form sc1 + e for some secret polynomials s and e (i.e., samples from the
RLWE distribution). Hence, we cannot simply sample a different c1 element for each parallel
aggregation because c1 is set by the ciphertext. Instead, we propose to re-randomize the ci-
phertext for each parallel aggregation; this can be done by homomorphically by adding a fresh
encryption of zero to the input ciphertext. This is easily achieved from the collective public
key (hence does not require interaction), by using the MHE.Encrypt algorithm. In our helper-
assisted model, a solution could be to let H produce the re-randomizations when initiating each
parallel aggregation. However, this is unsatisfactory for several reasons: (i) for l parallel ag-
gregations, the helper would need to send l re-randomizations to the participants, and (ii) this
would make H a single point of failure (which is fine in the strictly applied honest-but-curious
model, but would be difficult to extend to more restrictive assumptions). HElium employs a
more efficient and elegant solution: it lets the parties re-randomize the ciphertext by themselves,
by running the MHE.Encrypt over common random coins. More specifically, for a participant list
PParticipants, the parties sample the required secret polynomials from a keyed PRF with key

PublicReRandSeed|CircuitID|ProtocolID|H(PParticipants),

where PublicReRandSeed is the public session wide re-randomization seed. The security of
using a publicly re-randomized ciphertext for generating RLWE samples follows from Lemma 4
in [BV11].

Protocol Private Randomness Initialization To generate the secret polynomials in a se-
cure way and to prevent the attacks mentioned above, we also rely on a keyed PRF, yet this
time it is seeded with a private seed from each session node (e.g., a 256-bit string). Simi-
larly as for the public randomness (CRS), we use one PRF stream per protocol keyed with the
seed PrivateSeed||PSig||dist||h(PParticipants), where PrivateSeed is the session-wide pri-
vate seed, and dist is an identifier of the ring element to be sampled (some protocols require
sampling multiple terms). Through this initialization, our environment ensures that the partici-
pants use fresh secret values when generating their shares for each protocol and that they never
output two different shares for the same protocol in the same session (which breaks security as
mentioned above).

Note on randomness initialization We note that the issue of secure randomness initializa-
tion does not appear in the current theoretical works on MHE schemes, due to the assumption
of a monolithic execution. A notable symptom of this is that current libraries implementing
MHE do not provide the user with control over the error distribution initialization (instead, they
initialize them from the OS secure randomness source directly). As a result of this work, we
added in Lattigo the possibility of initializing the secret distribution.

88 Chapter 5. Helium: an MHE-based MPC Framework

5.4 HElium

Here, we describe HElium our end-to-end implementation of the MHE-based MPC protocol.
HElium instantiates the generic solution of Section 5.3 for running the MHE protocols in a
non-monolithic way and in the helper-assisted setting described in Section 5.1.

Helper-Assisted Execution Recall that, in our helper-assisted model, the parties receive as-
sistance from a high-end and reliably connected third party H (e.g., a server in the cloud). We,
therefore, attribute the roles of aggregator and coordinator to the helper H. For the aggregator
role, this ensures (1) that the aggregator is reachable, and (2) that the resource-constrained
session nodes have optimal (constant) overhead. Moreover, this also means that protocol par-
ticipants do not have to be simultaneously online during the protocol execution, only the helper
does. For the coordinator role, this greatly simplifies HElium’s design: It delegates all the
complex synchronization mechanisms needed to drive the protocol execution, such as making
decisions on the status of a protocol (which would otherwise require some form of consensus)
and obtaining a consistent view over the network, to a single honest-but-curious node.

Two-Service Design The ΠMHE−MPC protocol consists of two phases, Setup and Compute, that
can be executed in parallel and without terminating (as discussed in Challenge 2). To address
this requirement, HElium relies on a two-services design:

The Setup service implements the Setup phase. This service consumes setup descriptors that
are high-level descriptions of the setup phase. Intuitively, a setup descriptor is the list of keys
required in the setup phase, along with the intended recipients of these keys (we further discuss
setup descriptors in Section 5.4.2).

The Compute service implements the Compute phase. This service consumes circuit descrip-
tors that define the function to be evaluated. Intuitively, the compute descriptor is a homo-
morphic circuit with its input gates labelled with the identities of the session nodes that must
provide them, and with special gates for the MHE protocols (e.g., the MHE.ΠDecrypt gate for
output gates). We further discuss circuit descriptors in Section 5.4.3.

5.4.1 Protocol Execution

Our implementation of the solution of Section 5.4 relies on the helper (as coordinator) send-
ing synchronization messages to the nodes and three concurrent routines (+ one initialization
routine) running at each node. The synchronization messages are tuples of the form:

SynMsg := {PDesc, PStatus}
PStatus ∈ {Started, Completed}

and serve the purpose of synchronizing the nodes that a protocol with descriptor PDesc has been
started (Started) or has successfully completed (Completed). The routines are as follows:

1. (initialization) All nodes derive the list of protocol signatures to be executed, from either
the setup description (in the Setup service) or from the circuit description (in the Compute
service). The helper H puts all the protocol signatures to be executed in a queue.

2. (registration) Upon startup, each session node connects to the helper node and waits for
protocol update messages. An incoming message with PStatus = Started is passed to
the node’s execution routine, whereas a message with PStatus = Completed is passed to

Chapter 5. Helium: an MHE-based MPC Framework 89

the node’s finalization route. Upon connection of a session node, the helper node sends
the list of currently started and completed protocols, and it leaves the connection open
for sending new synchronization messages. Upon reaching the end of the signature queue,
the helper closes the connection.

3. (execution) The helper node starts sub-protocols (i) by popping the head of the signature
queue, (ii) by creating a protocol descriptor from the signature, and (iii) by sending a
protocol synchronization message with the created protocol descriptor and PStatus =

Completed to the connected session nodes. To create the protocol descriptor, the helper,
according to its view of the network, chooses the participant list and sets itself as the
aggregator. Upon reception of protocol aggregation messages, the session nodes that are
in the participant set send their shares to the helper node. Upon reception of all the
expected shares for an aggregation, the helper node sends a synchronization message with
PStatus = Completed to the connected nodes.

4. (finalization) Upon receiving a synchronization message with status Completed, the ses-
sion nodes that are the intended recipients of the protocol’s output (as determined by
the setup or circuit description) query the helper for the aggregation and compute the
protocol’s output with its PAT.Finalize algorithm.

From this design, we obtain a streamlined execution flow where nodes control the workload
by setting a limit on the number of concurrently executing protocols. This execution flow ad-
dresses Challenge 1. Similarly, our implementation directly provides a natural congestion control
mechanism on the helper side (as an aggregator); this mechanism can control its inbound traf-
fic by limiting the number of parallel protocol executions. Finally, this three-routine solution
already accounts for session nodes that connect at any time (including after all protocols have
completed) and enables them to simply retrieve (if needed) the result of a protocol as a part of
their finalization routine. Note also that, although the helper could send the result of a protocol
directly with the completion message, it is preferable to let the nodes fetch the required protocol
results themselves. Doing so keeps the synchronization messages light and lets the weaker node
control the amount of incoming data.

Failure Handling Centralizing the coordination also greatly simplifies the implementation of
a failure-handling mechanism, by removing the need for consensus on the protocol outcomes.
Instead, the coordinator can rely on local timeouts to decide whether to retry a protocol. As
per our solution to failure handling described in Section 5.3.4, retrying a protocol corresponds
to starting a new equivalent one (i.e., that has the same protocol signature). We implement
this mechanism by having the coordinator put signatures of timed-out protocols back into the
signature queue (see the initialization routine above).

We use the following strategy for retries: Instead of considering timed-out protocols as failed,
the helper simply considers them as running and keeps the related state, i.e., the partial aggrega-
tion of the participant’s shares, in memory (which follows our general failure handling approach
of Section 5.3.4). Then, instead of a simple signature queue, the helper uses a priority queue and
executes the retries with higher priority. This is because the successful completion of a protocol
retry enables the helper to unload the resources not only for that protocol, but for the timed-out
protocols as well.

90 Chapter 5. Helium: an MHE-based MPC Framework

5.4.2 The Setup Service

This service implements the Setup phase of the ΠMHE−MPC protocol: It generates the public
encryption and evaluation keys as required for the Input and Eval phases (Section 5.2). On the
user-facing side, it provides an interface for specifying which keys must be generated. Internally,
it runs the required PAT protocols, as described in Section 5.4.1.

Setup Descriptors The setup service takes as input a high-level description of the Setup

phase, that we refer to as setup descriptors. Such a description corresponds to the desired
outcome of this phase: a mapping from each possible public-key (i.e., the encryption key cpk and
all the evaluation keys evkop for each operation op in the homomorphic circuit) to the set of nodes
that require this key in the Compute phase. HElium assumes that this mapping is passed to each
node by the user application and is agreed upon by the parties. This is a realistic assumption,
because the setup descriptor can be derived unambiguously from the circuit description that,
in turn, must also be agreed upon in any secure multiparty computation scenario (as parties
must accept the leakage of the output). For this same reason, HElium also accepts circuit
descriptions (which we further define in Section 5.4.3) as a setup description. It then relies on
symbolic execution of the target circuit to infer the set of required operations and produces a
corresponding setup description.

Persistence In our session-like execution, nodes need to be able to re-join the session after a
reboot or a crash (Challenge 3). Although we require that a node can do so from the session
parameters only (for security reasons, see Section 5.3.2), such a stateless startup requires in-
teracting with the helper, to retrieve the necessary setup protocols’ outputs (e.g., the collective
encryption key cpk). This is prevented by enabling session nodes to store the required keys in a
persistent storage.

Implementation Our helper-assisted protocol execution mechanism as described in Section 5.4.1
constitutes the essential part of the Setup service implementation. In the initialization routine,
the nodes parse the setup descriptor and derive the list of corresponding protocol signatures to
be executed for generating the corresponding keys. In addition to this, each node derives a list
of protocol signatures for which it requires the output and passes this list to the finalization
routine.

The only difference with the general execution mechanism is that nodes need to take into
account the state in their persistent storage. We implement this behavior in the following way:
In its initialization routine, the helper node checks its persistent storage for signatures that have
already been successfully computed. For such signatures, the helper loads their corresponding
protocol descriptor and output from the storage, marks the protocol as completed, and does not
queue the corresponding signature for execution. In their finalization routine, the session nodes
first attempt to use their persistent storage to load the outputs of the relevant protocols instead
of querying them. In case the required result is not present in the storage, they query the helper
for that result (upon receiving the completion message) and update their storage. Regardless of
the source from which they retrieve the protocol output, the parties call the PAT.Finalize method
to obtain the required key.

Observe that, for a node that connects to the network after the whole setup has completed,
i.e., with an empty key-store, the execution of the setup corresponds to downloading the result
of each required protocol (i.e., as all protocols have completed states, no action is performed
during the execution routine).

Chapter 5. Helium: an MHE-based MPC Framework 91

Long-Running Setup Phase Consistent with the view of the ΠMHE−MPC protocol as a session,
the Setup phase can continue running after the Compute one has begun to further populate the
session with new evaluation-keys (i.e., that are required at a later stage, for new circuits). In
fact, HElium runs the two phases in parallel; the compute service’s routine waits for the required
public keys to be provided by the setup service. As in the helper-assisted model, the session
nodes only require the public encryption key, this enables them to start the Compute phase (i.e.,
to encrypt and provide their inputs) while the evaluation keys are being generated, potentially
reducing the latency of the overall computation.

5.4.3 The Compute Service

This service implements the Compute phase of the ΠMHE−MPC protocol. This phase corresponds
to the homomorphic evaluation of the target circuit followed by a collective decryption (see
Section 5.2). We start by observing that this phase can be modeled as two consecutive PAT

protocols: In the first one, PAT.GenShare corresponds to the MHE.Encrypt operation (the Input

step) and the PAT.AggShare corresponds to the homomorphic evaluation with MHE.Eval (the Eval
step). The second one is the MHE.ΠDecrypt protocol applied to the evaluation result ciphertext.
More complex circuits might require refreshing the ciphertexts during the Compute phase, which
can be done with the MHE.ΠColBootstrap (see Section 2.2.7) that is single-round PAT protocol. In
such cases, the online phase is modelled as a 2 +R round PAT protocol, where R is the number
of refresh rounds.

Role: Evaluator The aggregator of the first PAT protocol is commonly referred to as the
evaluator, as it carries out the homomorphic evaluation of the circuit. In HElium, this task,
along with the coordination of the overall evaluation process, is assumed by the helper node H.

Three-Plane Service-Design The compute service operates over three logical planes: the
circuit, data, and protocol planes, which we detail below. The circuit plane is the top-level plane:
it is responsible for handling the evaluation of the circuit from the circuit descriptor. To do so,
the circuit plane makes calls to the data and protocol planes, to resolve the session nodes’ inputs
and the decryption/refresh protocols’ results. We now describe each of these planes.

The Circuit Plane

From a high level, and as for any MPC system, the circuit plane takes as input the representation
of the target circuit in some language and acts as an interpreter for this language. Unfortunately,
there exists no well-established language that is specially designed to represent HE circuits
(and although it would be an interesting extension to HElium, designing such language and
its interpreter is outside the scope of this work). Therefore, we opt for a simpler solution in
HElium: to provide the user application with a Go interface for building MHE circuits. This
interface (named helium.EvaluationContext) exposes the usual HE operations (by including
the Lattigo Evaluator interface, see Chapter 4) as well as IO primitives (i.e., labelled input and
output gates) and the special gates for the MHE protocols used in the Compute phase (i.e., the
ΠDecrypt and ΠColBootstrap protocols). HElium programs are therefore Go functions that take as
input a helium.EvaluationContext interface type, and their execution is directly handled by
the Go language. Listing 5.1 provides an example of a simple HElium program for computing a
component-wise vector product between two parties.

92 Chapter 5. Helium: an MHE-based MPC Framework

1 func(ec helium.EvaluationContext) {
2 op1 := ec.Input("//node -a/in") // read node -a’s inputs
3 op2 := ec.Input("//node -b/in") // read node -b’s inputs
4 res := ec.MulNew(op1 , op2) // multiply the inputs
5 ec.Relinearize(res , res) // do relinearization
6 resDec := ec.Decrypt(res) // decrypt the result
7 ec.Output("/out", resDec) // output the result
8 }

Listing 5.1: The HElium program for two-party component-wise vector multiplication.

This Go-interface-based approach has several benefits: First, we do not need to define a
specific interpreter. Instead, we exploit Go’s execution directly. Second, we enable the user
application to fully control the circuit execution flow, which includes exploiting Go’s built-in
parallelism primitives and hardware accelerators. Finally, our approach includes the possibility
for the user to use or design its own language and interpreter, as long as this can be initialized
and run from a Go function.3

The circuit plane executes the homomorphic operation methods of the EvaluationContext
by making calls to the Lattigo library, and it relies on the data and protocol planes for the IO and
protocol methods, respectively. Note that the circuit planes of all nodes (i.e., including the ses-
sion) execute the HElium program, but the internal implementation of the EvaluationContext
differs: Upon calling the Input function at a session node, the node encrypts its plaintext input
and registers it in its data plane. Upon calling the Input function at the evaluator, the evaluator
queries the corresponding ciphertext operands from its own data plane. We further specify the
registration and queries of ciphertext operands when we discuss the data plane. Upon calling
an FHE arithmetic function, the evaluator calls the corresponding method of the Lattigo library
while the session nodes do nothing (i.e., they simply perform a symbolic execution). Upon calling
a protocol function, the session nodes wait for the corresponding protocol descriptor from the
evaluator; and the evaluator creates the corresponding protocol signature, passes it to its protocol
plane, and waits for its completion. We further specify the protocol plane in the following.

The Data Plane

The data plane handles the transport and provisioning of data to the circuit plane. Its principal
functionality is to coordinate the transport of ciphertext data. In this regard, we begin by ob-
serving that data transport in the ΠMHE−MPC protocol, due to the public nature of the transported
objects (i.e., the ciphertexts), follows the same principles as an ordinary (plaintext) computing
system: The data can be safely sent, made available, and queried between nodes (although we
generally avoid moving data, as much as possible). As a result, we can reuse the paradigms and
techniques of plaintext computing and data-retrieval systems directly in MHE-based MPC.

One such paradigm is that of a resource that can be identified and/or within a system from a
universal resource identifier/locator, i.e., a URI/L. To support this paradigm, HElium employs
a natural URI scheme for identifying ciphertexts within the session, where each ciphertext can
be identified by its holder node identifier, circuit identifier, and ciphertext identifier:

helium://<NodeID>/<SessionID>/<CircuitID>/<CiphertextID>

Depending on the context, parts of the identifiers can be omitted by the user application
3One limitation of this approach is that runtime-defined functions loading requires the Go plugin mechanism

that is not currently supported by all platforms.

Chapter 5. Helium: an MHE-based MPC Framework 93

designer (as in Listing 5.1), and expanded by the framework at execution time. This enables the
application designer to define HElium programs in a generic way and to execute them several
times (see Challenge 2). For instance, the SessionID and CircuitID fields can be expanded
to the session identifier in which the circuit was executed and the circuit identifier that was
attributed to it. Similarly, the NodeID field (the host part) can be omitted for intermediate
values and the output, as it can be assumed to be the circuit’s evaluator.

Note that when all three fields are present, the URI enables a ciphertext to be located
unambiguously within the system, hence is also a URL. This URL, along with a traditional
transport protocol that supports get- and post-types of queries (e.g., HTTP, FTP, or more
advanced RPC protocols), constitute a sufficient solution for our data plane.

The Protocol Plane

Our helper-assisted protocol-execution mechanism, as described in Section 5.4.1, constitutes the
essential part of the protocol plane implementation. The protocol plane maintains a queue of PAT
protocol signatures to be executed at the helper side (as a coordinator), and runs the routines
that issue/execute protocol descriptors at the helper (as aggregator)/session nodes (as protocol
participants), respectively.

5.5 Implementation and Evaluation

We implemented HElium in Go. We rely on the Lattigo library (see Chapter 4) for the local
cryptographic operations, such as the homomorphic operations and the GenShare methods of
each MHE sub-protocol. For the transport layer, we use the gRPC framework4. This framework
provides a service abstraction in the remote procedure calls (RPC) paradigm and enables the
generation of client and server stubs from a high-level API definition language. The gRPC
framework also supports message streaming that we employ to support streams of shares and
protocol descriptors (as required by the protocol execution mechanism described in Section 5.4.1),
as well as mutual TLS authentication.

5.5.1 Experimental Evaluation

To evaluate HElium as an MPC solution, we instantiate the framework for two MPC scenarios:
the component-wise vector product (named Experiment I) and multiparty input-selection circuits
(named Experiment II) scenarios of Chapter 2. Recall that, due to the lack (at the time) of an
ΠMHE−MPC protocol implementation, Section 2.5 simulated the MHE solution in a single program,
executed by a single machine. Hence, the present section revisits these experiments, by presenting
a realistic execution between machines connected over a LAN network.

Parameters For consistency with the setting of Section 2.5, we consider the helper-assisted
setting and the strictest threshold parameter T = N . We also consider the BFV scheme and
employ the parameters of Table 5.1. Note that, due to several improvements of the Lattigo
library that are posterior to the results presented in Section 2.5 (such as our improved key-
switching procedure, see Section 4.2.2), we use a slightly different parameterization in the present
experiments. This is, we reserve a special modulus, denoted p, for the key-switching operations.

4https://grpc.io

https://grpc.io

94 Chapter 5. Helium: an MHE-based MPC Framework

Table 5.1: BFV scheme parameters
Set log2 t log2 n log2 q log2 p σ sec. (bits)
I 32 14 328 110 3.2 128
II 32 13 162 55 3.2 128

Experimental Setup We run all nodes on two machines with Intel Xeon E5-2680 v3 processors
(2.5 GHz, 2×12 cores) and 256 GB of RAM, i.e., the same machines as for the experiments of
Section 2.5. To simulate a realistic setting, we run the helper in one of the machines and all
the clients in the other one (recall that the clients only communicate with the helper in the
helper-assisted model). The machines are connected using a LAN network of 30 Gbits/sec. with
a 0.1ms latency. We take the MP-SPDZ values directly from Section 2.5 (note that these values
might not reflect improvements brought to the MP-SPDZ library after January 2020). For each
MPC solution, we report:
- Setup-phase latency and communication costs: These are the costs that are independent of

how many circuit evaluations are performed.
- Offline-phase latency and communication costs: These are the costs that are related to a single

circuit evaluation and that can be performed before the inputs are available.
- Online-phase latency and communication cost : These are the costs related to a single circuit

evaluation after all the previous phases have been completed.
Note that, as the MHE-based solution has no offline phase, its latency for that phase is zero.
Similarly, the LSSS-based solution has a negligible latency for the setup phase.

Results Figures 5.1 and 5.2 present the results for the component-wise vector product scenario
(Experiment I). Recall that, in this scenario, each party holds a private vector xi of dimension 214

with 32-bit coefficients and the multiparty circuit computes the element-wise product between all
the parties’ vectors. For more details on the circuit and on the ΠMHE−MPC protocol instantiation,
see Section 2.5.3.

We observe that, consistently with the previously observed results of Chapter 2, HElium
provides a clear advantage over the LSSS-based system for N > 2. This is even true (although
with a smaller gap) when considering the MHE setup as part of the circuit evaluation cost (e.g., in
a scenario where a single circuit execution is performed for the whole session). When considering
the per-circuit-evaluation costs only (e.g., when performing multiple circuit evaluations within
the session and amortizing the setup cost), the cost of HElium is comparable to the LSSS-based
system for N = 2 and has a 4.2× and 13.5× smaller latency for N = 4 and N = 8, respectively.
In Figure 5.2, we observe that HElium’s communication costs are independent of the number
of parties and result in a 1×, 7.5×, and 39.3× smaller communication size than MP-SPDZ for
N = 2, N = 4, and N = 8 parties respectively.

Figures 5.3 and 5.4 present the results for the multiparty input selection scenario (Experiment
II). Recall that this scenario lets party P1 (the requester) select one input among N other parties’
inputs (the providers), hence it corresponds to a generalized oblivious transfer functionality. Note
that N stands for the number of providers in this scenario (hence this scenario is an N +1-party
computation). The providers’ inputs are vectors in Zd

p for d = 213 for a 32-bit prime number p,
and the requester’s input is a unit vector for which all coefficients are 0 except the i-th one, to
encode a query for the input of provider Pi (see Section 2.5.2 for more details on the circuit and
the ΠMHE−MPC protocol instantiation).

We observe that HElium has latency lower than the LSSS-based solution for all numbers
of parties, even when considering the MHE setup as part of this latency. Interestingly, it is

Chapter 5. Helium: an MHE-based MPC Framework 95

Figure 5.1: Experiment I (component-wise vector product) phase latency in milliseconds.

Figure 5.2: Experiment I phase communication cost (upload+download) in megabytes.

Figure 5.3: Experiment II (multiparty input selection) phase latency in milliseconds.

Figure 5.4: Experiment II phase communication cost (upload+download) in megabytes.

96 Chapter 5. Helium: an MHE-based MPC Framework

also significantly faster than the previous results obtained in Chapter 2, to a point where the
previous observation now also applies to the N = 2 case (which was not the case for the previous
results). This is mostly due to improvements to the key-switching algorithm and to the related
evaluation-keys in Lattigo. When considering the per-circuit-evaluation latency, HElium is 2.3×,
6.7× and 21.1× faster than the LSSS-based system for N = 2, 4, 8, respectively. We also observe
again that HElium’s communication costs are increasingly more efficient than MP-SPDZ with
the number of parties; HElium has 6.7×, 25.8×, and 101.4× less communication than MP-SPDZ
for N = 2, N = 4, and N = 8 respectively.

5.6 Chapter Summary

We proposed HElium an end-to-end implementation of the MHE-based MPC protocol of Chap-
ter 2. To propose a practical solution, we isolated the challenges related to executing this protocol
in realistic environments, in which the parties might have limited hardware resources and/or un-
reliable network connection. We pointed out that a monolithic execution is not realistic in this
setting, and that it is also undesirable when viewing the ΠMHE−MPC protocol as a long-lived ses-
sion. To address these challenges, we proposed a non-monolithic execution of this protocol, as
well as solutions to the security and correctness challenges further introduced by this execution.
We implemented our generic solution and evaluated it by revisiting the experiments presented
in Chapter 2. We showed that HElium provides a highly efficient solution even in the churn-free
setting already supported by existing tools. The short-term next steps in this regard are to
evaluate our system for MPC under churn.

We will also make our implementation open-source, for the community to use. As such,
HElium is the first implemented MPC framework based on MHE, which enables the use of
these techniques in practice. Moreover, due to properties of the ΠMHE−MPC protocol and our
non-monolithic execution, HElium is also the first framework to provide a solution to MPC
under churn that does not require non-cryptographic assumptions (e.g., non-collusion) besides
the traditional passive-adversary setting.

97

Chapter 6

Conclusion and Future Work

In this dissertation, we have addressed the problem of bringing MHE, and the MPC protocol it
enables, from theory to practice. To do so, we have proposed several contributions to both the
theoretical and practical sides.

We have introduced a N -out-of-N -threshold MHE scheme based on RLWE and have instan-
tiated this scheme in an efficient and versatile MPC solution, the ΠMHE−MPC protocol. In doing
so, we have re-visited the theoretical LWE-based construction by Asharov et al. [AJLT+12] by
adapting it to RLWE, and by proposing several improvements to its sub-procedures. This in-
cludes a more efficient protocol for generating the relinearization key and a generalized decryption
protocol that enables the interactive bootstrapping of a ciphertext and the conversion from/to
LSSS shares. We have implemented and evaluated the resulting scheme, as an MPC solution,
and we have demonstrated that it provides a concretely efficient solution that can outperform
the implemented LSSS-based state-of-the-art solutions.

We have also extended our MHE scheme to T -out-of-N -threshold access-structures, in order
to achieve fault tolerance at the ΠMHE−MPC protocol level. Our extended scheme presents sev-
eral advantages compared to the state-of-the-art construction by Boneh et al. [BGGJ+18]: Our
solution is compact (i.e., requires a constant-size state at each party) and does not require a
trusted dealer. Although our solution requires synchronous communication and the introduction
of a failure-handling mechanism, we have shown that this is not an issue in the context of the
ΠMHE−MPC protocol. We have also implemented this scheme in the Lattigo library and demon-
strated the scheme’s concrete efficiency through micro-benchmarks. Notably, we observe that the
T -out-of-N -threshold access-structures only introduce a negligible computation overhead with
respect to the underlying (N -out-of-N -threshold) MHE scheme’s operations.

On the practical side, we have proposed Lattigo, a multiparty homomorphic encryption li-
brary in Go. In addition to the implementation of our MHE scheme and its T -out-of-N -threshold
extension, Lattigo provides implementations for the state-of-the-art single-party HE schemes:
BFV, BGV, and CKKS. The library has a modular, multi-layer design, and exposes primitives
at all layers. As a result, it can be (and has been) used by HE researchers to implement new
schemes and primitives.

Our second practical contribution, HElium, builds on top of Lattigo and provides the first end-
to-end open-source implementation of an MHE-based MPC protocol. We have filled several gaps
left unaddressed in the theoretical literature on MHE (including our own). In particular, we have
shown how to securely implement the MHE-based MPC protocol with weak computing-resources
and/or churning participants, by defining and proving secure a non-monolithic execution of this
protocol. We have also proposed a concrete solution for the failure-handling mechanism required

98 Chapter 6. Conclusion and Future Work

by our T -out-of-N -threshold scheme. Finally, by exploiting the properties of the MHE-based
MPC protocol, we have proposed a helper-assisted setting, where the parties delegate most of
the protocol execution cost to an honest-but-curious third party (e.g., a cloud service). As
a result, HElium is also the first implemented MPC system to support sub-linear-cost MPC,
without assuming non-collusion between the multiple delegate nodes.

Future of MHE

In the current state of the art, it is no longer pertinent to consider HE as impractical. Therefore,
and in the light of the results presented in this dissertation, we argue that it is time to start
using MHE-based MPC techniques in MPC research and in practice.

We envision that two factors will further increase the efficiency and adoption of MHE-based
techniques: First, the efficiency of HE evaluation is still an active and fruitful area of research,
and we expect many improvements to further reduce the cost of critical operations such as
bootstrapping. The next big step in this direction is that of hardware accelerators, for which
prototypes have already demonstrated acceleration by three orders of magnitude [GVPH+22].
Second, although HE compilers are not yet as advanced as those available for other MPC ap-
proaches (see the corresponding open problem in the next session), they will continue to improve,
as will the accessibility of MHE-based solution.

However, perhaps the most important transformative aspect of MHE-based techniques is that
they will enable shifting the paradigms of MPC toward more centralized techniques. Although
decentralization is often perceived as the holy grail when it comes to secure computing systems,
decentralized systems are, in practice, incredibly difficult to build and operate. The MHE-based
MPC protocol provides many opportunities for centralizing its functional components (e.g., the
output of the offline phase, the circuit inputs and the circuit evaluation) while keeping the
trust (i.e., the secret-keys) decentralized. As a result, applications relying on MHE could be
considerably simpler to integrate and to operate. Moreover, they might give rise to a financially
viable business model: providing MPC-as-a-service in a standalone model (i.e., without relying
on several non-colluding servers). Whereas, such models are not yet viable in single-party HE
scenarios (for which the cost of using HE generally out-weights the benefits of outsourcing), they
provide a real added value in the multiparty case (for which the computation simply cannot
occur otherwise).

Therefore, MHE-based MPC might well be among the first successful commercial application
of HE research.

Open Problems and Future Research Directions

We have discussed the current limitations of the ΠMHE−MPC protocol, as instantiated in this
dissertation, and we have outlined potential solutions, as well as future research directions.

Circuit Privacy and Smudging Noise Our MHE construction relies on a somewhat crude
approach to smudging: hiding the noise distribution by flooding it with fresh noise from a
distribution of exponentially larger variance. This poses two challenges: First, it is not trivial
to correctly and efficiently sample Gaussian noise of large variance. Second, it requires the
ciphertext modulus to be large enough to accommodate for this extra noise. For these two
aforementioned reasons, it is often impractical to obtain 128-bit of (statistical) security for the

Chapter 6. Conclusion and Future Work 99

smudging noise, and applications need to settle for smaller values. In fine, setting the smudging-
noise power requires one to bound the computational advantage that leaking some information
on the decryption noise gives to a malicious receiver. This observation led to gentle smudging
approaches [CHIV+22; LMSS22] that could be adapted to the MHE setting. To achieve this
adaptation, a crucial stepping stone is the derivation of accurate models for tracking the HE
noise distribution for a given circuit and for a set of HE parameters [CLP20; CCHM+22; MP19].

Compilation to HE circuits and Parameterization In this dissertation, we have focused
on the protocol-related aspects of MHE-based MPC. In doing so, we have assumed that the
function to be computed was provided as an arithmetic circuit over the MHE scheme’s plaintext
space. However, expressing higher-level functionalities into MHE-friendly arithmetic circuits
and parameterizing the MHE scheme for their evaluation is not an easy task. Consequently,
application developers still require the assistance of HE experts in the design of their solutions.
In particular, non-arithmetic functions, such as comparisons and branching programs, constitute
a fundamental limitation that also applies to LSSS-based MPC (indeed, any branching in the
flow of execution would leak information about the program state). However, the compilers of
these solutions already propose workarounds, either by mapping them back to an arithmetic
representation or by accepting the conditional variable leakage.

Compilers for HE are an active area of research [CDS15; CPS18; CMGT+18; DKSD+20;
ACDM+19; VJHH23] that directly applies to MHE circuits. However, a significant limitation of
the state of the art is that it does not address the parameterization of the HE scheme (beyond
trivial cases) [VJH21]. Unfortunately, parameterization and circuit design are two intertwined
tasks in practice, and it is unlikely that they can be addressed separately. Hence, a currently
open problem is finding methods for generating a circuit and the encryption parameters from a
high-level representation. In this regard, we observe that partial solutions might already be of
high interest. Indeed, designing HE circuits is a tedious task even for HE experts who currently
lack the basic tools to accomplish it efficiently. For example, the lack of a common representation
for HE circuits forces HE users and tool-designers to target a specific library or a specific set
of tools. This unfortunately fragments the design space into a multitude of point solutions that
are difficult to compose. Hence, the most interesting aspect of the HE compiler research, in the
short- to medium-term, is not their long-term goal of achieving generic compilation, without
expertise, but the development of intermediate representations of HE circuits [VJHH23].

Another missing set of tools for HE circuit designers is noise/precision estimators that would
provide debugging and correctness verification capabilities. The current work on models for
tracking the noise distribution [CLP20; CCHM+22; MP19], once again, is a crucial step toward
building these tools.

Active Adversary Model The constructions presented in this dissertation provide security
in the passive adversary model. This might be sufficient in some settings, for example, in the
medical sector where data collaborations are mutually beneficial and well-regulated, yet they
legally require a certain level of data protection [RTMS+18]. Currently, honest-but-curious is
the de-facto threat model to date for cloud services, and passively-secure MPC provides a way
of protecting sensitive client-data in these scenarios. But, many applications might require more
security guarantees when active adversaries are present among the computation participants.
Asharov et al. show that the passively-secure MHE-based MPC protocol can be compiled into
a maliciously secure one, by harnessing generic non-interactive zero-knowledge (NIZK) proofs
techniques. However, they leave the concrete construction undefined, and the concrete cost of
the resulting protocol is, therefore, unknown.

100 Chapter 6. Conclusion and Future Work

Zero-knowledge-proof systems for lattice-based schemes are another active research topic
[BLS19; YAZX+19]. In [CMSP+23], we instantiated the NIZK-based solution of Asharov et al.,
implemented the first prototype, and obtained concrete performance results. We observe that as
the local operations of the MHE scheme are of relatively low depth, proving their correct execution
in zero-knowledge is efficient. However, lattice-based schemes rely on low-norm distributions that
require costly range proofs. Although the creation and verification of these proofs are practical
[CMSP+23], they are not yet efficient enough for general use, for example, when considering
memory-limited parties. Reducing the overhead of these proofs is a crucial next step toward
maliciously secure MHE.

Proving the correct execution of the homomorphic circuit evaluation is also necessary for
a maliciously secure ΠMHE−MPC protocol, which we leave unaddressed in [CMSP+23]. As the
ΠMHE−MPC has a public transcript, a trivial solution is to publish this transcript as a proof.
But this solution requires linear communication for the parties, which might be unsatisfactory
in some applications. Another approach is to embed the verification mechanisms in the HE
plaintext-space [CKPH22], in a MAC-then-encrypt fashion. It is plausible that this approach
(proposed for the single-party setting) can be transposed to MHE in such a way that enables
sub-linear communication for the parties. Another potential, yet non-cryptographic, solution
could be to perform the evaluation in secure hardware enclaves such as Intel’s SGX1. Although
these platforms have been shown to be vulnerable to a number of attacks, these attacks have
been mostly successful at breaking the confidentiality of the data (which is protected by HE), and
no attack has yet been demonstrated, that could alter the computation itself in an exploitable
way. Instead, current active attacks have been, to the best of our knowledge, limited to injecting
faults that would make the enclave output an incorrect HE ciphertext and make decryption fail.

Final Remarks

It is a frequent observation that a vast amount of the state-of-the-art cryptographic research is
not used in practice. In light of my work on bringing a cryptographic technique from theory
to practice, this observation sounds rather unsurprising to me. Currently, there are very low
incentives for researchers to implement their constructions (e.g., implementation work is often
perceived as non-scientific), or to emphasize simple solutions (as simple solutions might be per-
ceived as non-novel). There are some very valid reasons for detaching academic research from
the constraints and costs related to concretely applying the results to the real world. But it also
sounds a bit naive to expect that practitioners (or standardization bodies) will simply do the job
when a concrete real-world problem requires a cryptographic solution. Indeed, the cryptographic
research literature is far from being a structured catalogue of solutions. Consequently, the cost of
implementing a state-of-the-art cryptographic solution, without access to a research prototype,
might simply be too high for many practitioners. My view on this tension around practical work
is not that researchers should implement their work, but that those who are interested in doing
so should be able to find a venue for their results.

Implementation is, in fact, a great avenue for scientific research. First, it produces results
that can be used by other researchers (to implement higher-level constructions, or to serve as
a comparison baseline) and by practitioners (as a prototype demonstrating the construction’s
capability and operation). But it also fundamentally requires an in-depth exploration of the
implemented primitive, which often highlights limitations that were hidden in the theoretical
setting. The contributions of our work on the CKKS bootstrapping [BMTH21] and of our work

1https://intel.com/sgx

https://intel.com/sgx

Chapter 6. Conclusion and Future Work 101

on the non-monolithic execution of the MHE-based MPC protocol (the HElium system) are
examples of meaningful theoretical contributions arising from an implementation effort.

The ideas and constructions proposed in this thesis are all simple enough to be implemented,
hence they have been. This considerable effort on the practical side of my research was, at the
same time, the most frustrating and the most rewarding contribution of my work on this thesis.
The frustrating part came from the difficulty in fulfilling the more traditional measurements
of academic success: typically, scientific publications (or a number thereof) in highly selective
venues that do not always value implementation as a decisive criteria. The rewarding part came
from the impact of my work on Lattigo, as it has now become a well-established contribution
to the HE-software landscape and is being used both by applied-cryptography researchers for
building application prototypes [BSA21; CPTH21; FTRC+21; KSJH21; ICDÖ22; TMBM+22;
PPV22; CP23a; ERLT23; KG23; FCES+23] and by HE researchers for implementing proof-of-
concept of new constructions and optimization [CHKL+21; HKLL+22; KKLS+22; KLKS+22;
LLKK+22; GHHJ22; ACYJ+23; CP23b; KLSS23].

In February 2022, the maintenance of Lattigo was transferred to the EPFL start-up Tune
Insight SA2, for which the work presented in this dissertation constitutes the core technical build-
ing block of their commercial product. As a result, the library is still being actively developed3

and, at least in this regard, MHE techniques have made their way into practice.

2https://tuneinsight.com
3https://github.com/tuneinsight/lattigo

https://tuneinsight.com
https://github.com/tuneinsight/lattigo

103

Bibliography

[AB74] RC Agarwal and C Burrus. “Fast convolution using Fermat number transforms
with applications to digital filtering”. In: IEEE Transactions on Acoustics, Speech,
and Signal Processing 22.2 (1974), pp. 87–97.

[ABLK+18] David W Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt Nielsen,
Jakob Illeborg Pagter, Nigel P Smart, and Rebecca N Wright. “From Keys to
Databases—Real-World Applications of Secure Multi-Party Computation”. In:
The Computer Journal 61.12 (2018), pp. 1749–1771.

[ACCD+18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. Homomorphic Encryption Security Standard. Tech. rep. Toronto,
Canada: HomomorphicEncryption.org, 2018.

[ACDE+19] Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero, and Chen Yuan.
“Efficient Information-Theoretic Secure Multiparty Computation over via Galois
Rings”. In: Theory of Cryptography: 17th International Conference, TCC 2019,
Nuremberg, Germany, December 1–5, 2019, Proceedings, Part I. Springer. 2019,
pp. 471–501.

[ACDM+19] David W Archer, José Manuel Calderón Trilla, Jason Dagit, Alex Malozemoff,
Yuriy Polyakov, Kurt Rohloff, and Gerard Ryan. “Ramparts: A programmer-
friendly system for building homomorphic encryption applications”. In: Proceed-
ings of the 7th acm workshop on encrypted computing & applied homomorphic
cryptography. 2019, pp. 57–68.

[ACYJ+23] Rashmi Agrawal, Leo de Castro, Guowei Yang, Chiraag Juvekar, Rabia Yazi-
cigil, Anantha Chandrakasan, Vinod Vaikuntanathan, and Ajay Joshi. “FAB: An
FPGA-based accelerator for bootstrappable fully homomorphic encryption”. In:
2023 IEEE International Symposium on High-Performance Computer Architec-
ture (HPCA). IEEE. 2023, pp. 882–895.

[AJLT+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. “Multiparty computation with low communication,
computation and interaction via threshold FHE”. In: Advances in Cryptology–
EUROCRYPT 2012: 31st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings 31. Springer. 2012, pp. 483–501.

[AMP18] Andreea B Alexandru, Manfred Morari, and George J Pappas. “Cloud-based MPC
with encrypted data”. In: 2018 IEEE Conference on Decision and Control (CDC).
IEEE. 2018, pp. 5014–5019.

104 Bibliography

[ANWW13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian
Winnerlein. “BLAKE2: simpler, smaller, fast as MD5”. In: International Confer-
ence on Applied Cryptography and Network Security. Springer. 2013, pp. 119–
135.

[ATP21] Andreea B Alexandru, Anastasios Tsiamis, and George J Pappas. “Encrypted
distributed Lasso for sparse data predictive control”. In: IEEE Conference on
Decision and Control (CDC). 2021.

[BCDG+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, et al. “Secure multiparty computation goes live”. In: In-
ternational Conference on Financial Cryptography and Data Security. Springer.
2009, pp. 325–343.

[BD10] Rikke Bendlin and Ivan Damgård. “Threshold decryption and zero-knowledge
proofs for lattice-based cryptosystems”. In: Theory of Cryptography: 7th Theory of
Cryptography Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010.
Proceedings 7. Springer. 2010, pp. 201–218.

[Bea92] Donald Beaver. “Efficient multiparty protocols using circuit randomization”. In:
Advances in Cryptology—CRYPTO’91: Proceedings 11. Springer. 1992, pp. 420–
432.

[BEHZ16] Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and Vincent Zucca. “A full
RNS variant of FV like somewhat homomorphic encryption schemes”. In: Inter-
national Conference on Selected Areas in Cryptography. Springer. 2016, pp. 423–
442.

[BEPS+20] Carsten Baum, Daniel Escudero, Alberto Pedrouzo-Ulloa, Peter Scholl, and Juan
Ramón Troncoso-Pastoriza. “Efficient Protocols for Oblivious Linear Function
Evaluation from Ring-LWE”. In: Security and Cryptography for Networks: 12th
International Conference, SCN 2020, Amalfi, Italy, September 14–16, 2020, Pro-
ceedings. 2020, pp. 130–149.

[BFLS91] László Babai, Lance Fortnow, Leonid A Levin, and Mario Szegedy. “Checking
computations in polylogarithmic time”. In: Proceedings of the twenty-third annual
ACM symposium on Theory of computing. 1991, pp. 21–32.

[BGGJ+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Pe-
ter MR Rasmussen, and Amit Sahai. “Threshold cryptosystems from threshold
fully homomorphic encryption”. In: Advances in Cryptology–CRYPTO 2018: 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19–23, 2018, Proceedings, Part I 38. Springer. 2018, pp. 565–596.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully ho-
momorphic encryption without bootstrapping”. In: ACM Transactions on Com-
putation Theory (TOCT) 6.3 (2014), pp. 1–36.

[BHKL18] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. “An end-to-end system
for large scale P2P MPC-as-a-service and low-bandwidth MPC for weak partici-
pants”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 2018, pp. 695–712.

Bibliography 105

[BJSV15] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. “How the estonian
tax and customs board evaluated a tax fraud detection system based on secure
multi-party computation”. In: International Conference on Financial Cryptogra-
phy and Data Security. Springer. 2015, pp. 227–234.

[BLS19] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. “Algebraic techniques
for short(er) exact lattice-based zero-knowledge proofs”. In: Advances in Cryptology–
CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 18–22, 2019, Proceedings, Part I. Springer. 2019, pp. 176–
202.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. “Sharemind: A framework for
fast privacy-preserving computations”. In: European Symposium on Research in
Computer Security. Springer. 2008, pp. 192–206.

[BMTH21] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-
Pierre Hubaux. “Efficient bootstrapping for approximate homomorphic encryp-
tion with non-sparse keys”. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. [Paper]. Springer. 2021, pp. 587–
617.

[BSA21] Liudmila Babenko, Alexander Shumilin, and Dmitry Alekseev. “Development of
the algorithm to ensure the protection of confidential data in cloud medical in-
formation system”. In: 2021 14th International Conference on Security of Infor-
mation and Networks (SIN). Vol. 1. IEEE. 2021, pp. 1–4.

[BTH22] Jean-Philippe Bossuat, Juan Troncoso-Pastoriza, and Jean-Pierre Hubaux. “Boot-
strapping for approximate homomorphic encryption with negligible failure-probability
by using sparse-secret encapsulation”. In: Applied Cryptography and Network Se-
curity: 20th International Conference, ACNS 2022, Rome, Italy, June 20–23,
2022, Proceedings. Springer. 2022, pp. 521–541.

[BTW12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. “Deploying secure multi-party
computation for financial data analysis”. In: International Conference on Finan-
cial Cryptography and Data Security. Springer. 2012, pp. 57–64.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. “Fully homomorphic encryption from
ring-LWE and security for key dependent messages”. In: Advances in Cryptology–
CRYPTO 2011: 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings 31. Springer. 2011, pp. 505–524.

[CB17] Henry Corrigan-Gibbs and Dan Boneh. “Prio: Private, robust, and scalable com-
putation of aggregate statistics”. In: 14th Symposium on Networked Systems De-
sign and Implementation (NSDI 17). 2017, pp. 259–282.

[CCHM+22] Anamaria Costache, Benjamin R Curtis, Erin Hales, Sean Murphy, Tabitha Ogilvie,
and Rachel Player. “On the precision loss in approximate homomorphic encryp-
tion”. In: Cryptology ePrint Archive (2022).

[CCS19a] Hao Chen, Ilaria Chillotti, and Yongsoo Song. “Improved bootstrapping for ap-
proximate homomorphic encryption”. In: Advances in Cryptology–EUROCRYPT
2019: 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings,
Part II. Springer. 2019, pp. 34–54.

https://eprint.iacr.org/2020/1203

106 Bibliography

[CCS19b] Hao Chen, Ilaria Chillotti, and Yongsoo Song. “Multi-key homomorphic encryp-
tion from TFHE”. In: Advances in Cryptology–ASIACRYPT 2019: 25th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8–12, 2019, Proceedings, Part II 25. Springer.
2019, pp. 446–472.

[CDES+18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping
Xing. “SPDZ2k : Efficient MPC mod 2k for Dishonest Majority”. In: Advances in
Cryptology–CRYPTO 2018: 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part II. Springer.
2018, pp. 769–798.

[CDKS19] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. “Efficient multi-key homo-
morphic encryption with packed ciphertexts with application to oblivious neu-
ral network inference”. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. ACM New York, NY, USA. 2019,
pp. 395–412.

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper B Nielsen. “Multiparty computation
from threshold homomorphic encryption”. In: Advances in Cryptology–EUROCRYPT
2001: International Conference on the Theory and Application of Cryptographic
Techniques Innsbruck, Austria, May 6–10, 2001 Proceedings 20. Springer. 2001,
pp. 280–300.

[CDN15] Ronald Cramer, Ivan Bjerre Damgård, and Jesper Buus Nielsen. “Secure Multi-
party Computation and Secret Sharing”. In: Secure Multiparty Computation and
Secret Sharing. Cambridge University Press, 2015, pp. 236–298. doi: 10.1017/
CBO9781107337756.012.

[CDS15] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. “Armadillo: a compilation
chain for privacy preserving applications”. In: Proceedings of the 3rd International
Workshop on Security in Cloud Computing. 2015, pp. 13–19.

[CHHS19] Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. “A hybrid of
dual and meet-in-the-middle attack on sparse and ternary secret LWE”. In: IEEE
Access 7 (2019), pp. 89497–89506.

[CHIV+22] Leo de Castro, Carmit Hazay, Yuval Ishai, Vinod Vaikuntanathan, and Muthu
Venkitasubramaniam. “Asymptotically Quasi-Optimal Cryptography”. In: Ad-
vances in Cryptology–EUROCRYPT 2022: 41st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Trondheim, Nor-
way, May 30–June 3, 2022, Proceedings, Part I. Springer. 2022, pp. 303–334.

[CHKK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
“Bootstrapping for approximate homomorphic encryption”. In: Advances in Cryptology–
EUROCRYPT 2018: 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May 3, 2018
Proceedings, Part I 37. Springer. 2018, pp. 360–384.

[CHKK+19] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
“A full RNS variant of approximate homomorphic encryption”. In: Selected Ar-
eas in Cryptography–SAC 2018: 25th International Conference, Calgary, AB,
Canada, August 15–17, 2018, Revised Selected Papers 25. Springer. 2019, pp. 347–
368.

https://doi.org/10.1017/CBO9781107337756.012
https://doi.org/10.1017/CBO9781107337756.012

Bibliography 107

[CHKL+21] Jihoon Cho, Jincheol Ha, Seongkwang Kim, Byeonghak Lee, Joohee Lee, Jooy-
oung Lee, Dukjae Moon, and Hyojin Yoon. “Transciphering framework for ap-
proximate homomorphic encryption”. In: Advances in Cryptology–ASIACRYPT
2021: 27th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 6–10, 2021, Proceedings, Part III.
Springer. 2021, pp. 640–669.

[CHP13] Ashish Choudhury, Martin Hirt, and Arpita Patra. “Asynchronous multiparty
computation with linear communication complexity”. In: Distributed Comput-
ing: 27th International Symposium, DISC 2013, Jerusalem, Israel, October 14-18,
2013. Proceedings 27. Springer. 2013, pp. 388–402.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. “Homomorphic
encryption for arithmetic of approximate numbers”. In: Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applica-
tions of Cryptology and Information Security, Hong Kong, China, December 3-7,
2017, Proceedings, Part I 23. Springer. 2017, pp. 409–437.

[CKLS02] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. “Asyn-
chronous verifiable secret sharing and proactive cryptosystems”. In: Proceedings
of the 9th ACM Conference on Computer and Communications Security. 2002,
pp. 88–97.

[CKPH22] Sylvain Chatel, Christian Knabenhans, Apostolos Pyrgelis, and Jean-Pierre Hubaux.
“Verifiable Encodings for Secure Homomorphic Analytics”. In: arXiv preprint
arXiv:2207.14071 (2022).

[CLP20] Anamaria Costache, Kim Laine, and Rachel Player. “Evaluating the Effective-
ness of Heuristic Worst-Case Noise Analysis in FHE”. In: Computer Security–
ESORICS 2020: 25th European Symposium on Research in Computer Security,
ESORICS 2020, Guildford, UK, September 14–18, 2020, Proceedings, Part II.
2020, pp. 546–565.

[CMGT+18] Eduardo Chielle, Oleg Mazonka, Homer Gamil, Nektarios Georgios Tsoutsos, and
Michail Maniatakos. “E3: A framework for compiling C++ programs with en-
crypted operands”. In: Cryptology ePrint Archive (2018).

[CMSP+23] Sylvain Chatel, Christian Mouchet, Ali Utkan Sahin, Apostolos Pyrgelis, Carmela
Troncoso, and Jean-Pierre Hubaux. “PELTA–Shielding Multiparty-FHE against
Malicious Adversaries”. In: Cryptology ePrint Archive (2023). To appear in: Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS’23).

[CP15] Ashish Choudhury and Arpita Patra. “Optimally resilient asynchronous MPC
with linear communication complexity”. In: Proceedings of the 16th International
Conference on Distributed Computing and Networking (ICDCN). 2015, pp. 1–10.

[CP23a] José Cabrero-Holgueras and Sergio Pastrana. “HEFactory: A symbolic execution
compiler for privacy-preserving Deep Learning with Homomorphic Encryption”.
In: SoftwareX 22 (2023), p. 101396.

[CP23b] José Cabrero-Holgueras and Sergio Pastrana. “Towards automated homomorphic
encryption parameter selection with fuzzy logic and linear programming”. In:
Expert Systems with Applications (2023), p. 120460.

108 Bibliography

[CPS18] Eric Crockett, Chris Peikert, and Chad Sharp. “Alchemy: A language and com-
piler for homomorphic encryption made easy”. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 2018, pp. 1020–
1037.

[CPTH21] Sylvain Chatel, Apostolos Pyrgelis, Juan Ramón Troncoso-Pastoriza, and Jean-
Pierre Hubaux. “Privacy and Integrity Preserving Computations with CRISP.”
In: USENIX Security Symposium. 2021, pp. 2111–2128.

[CSSM+22] Siddhartha Chowdhury, Sayani Sinha, Animesh Singh, Shubham Mishra, Chan-
dan Chaudhary, Sikhar Patranabis, Pratyay Mukherjee, Ayantika Chatterjee, and
Debdeep Mukhopadhyay. Efficient Threshold FHE with Application to Real-Time
Systems. Cryptology ePrint Archive, Paper 2022/1625. 2022.

[CWB18] Hyunghoon Cho, David J Wu, and Bonnie Berger. “Secure genome-wide associa-
tion analysis using multiparty computation”. In: Nature biotechnology 36.6 (2018),
p. 547.

[Des93] Yvo Desmedt. “Threshold cryptosystems”. In: Advances in Cryptology—AUSCRYPT’92:
Workshop on the Theory and Application of Cryptographic Techniques Gold Coast,
Queensland, Australia, December 13–16, 1992 Proceedings 3. Springer. 1993, pp. 1–
14.

[DGKN09] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. “Asyn-
chronous multiparty computation: Theory and implementation”. In: Public Key
Cryptography–PKC 2009: 12th International Conference on Practice and Theory
in Public Key Cryptography, Irvine, CA, USA, March 18-20, 2009. Proceedings
12. Springer. 2009, pp. 160–179.

[DKLP+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P Smart. “Practical covertly secure MPC for dishonest majority–or: break-
ing the SPDZ limits”. In: Computer Security–ESORICS 2013: 18th European
Symposium on Research in Computer Security, Egham, UK, September 9-13,
2013. Proceedings 18. Springer. 2013, pp. 1–18.

[DKSD+20] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and
Madan Musuvathi. “EVA: An encrypted vector arithmetic language and compiler
for efficient homomorphic computation”. In: Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design and Implementation. 2020,
pp. 546–561.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. “Multiparty com-
putation from somewhat homomorphic encryption”. In: Advances in Cryptology–
CRYPTO 2012: 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings. Springer. 2012, pp. 643–662.

[ERLT23] Kasra EdalatNejad, Mathilde Raynal, Wouter Lueks, and Carmela Troncoso.
“Private Collection Matching Protocols”. In: Proceedings on Privacy Enhancing
Technologies 3 (2023), pp. 446–468.

[FCES+23] D. Froelicher, H. Cho, M. Edupalli, J. Sa Sousa, J. Bossuat, A. Pyrgelis, J. R.
Troncoso-Pastoriza, B. Berger, and J. Hubaux. “Scalable and Privacy-Preserving
Federated Principal Component Analysis”. In: 2023 2023 IEEE Symposium on
Security and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer Society,
2023, pp. 888–905.

Bibliography 109

[FH96] Matthew Franklin and Stuart Haber. “Joint encryption and message-efficient se-
cure computation”. In: Journal of Cryptology 9.4 (1996), pp. 217–232.

[FTPS+21] David Froelicher, Juan R Troncoso-Pastoriza, Apostolos Pyrgelis, Sinem Sav,
Joao Sa Sousa, Jean-Philippe Bossuat, and Jean-Pierre Hubaux. “Scalable Privacy-
Preserving Distributed Learning”. In: vol. 2. 2021, pp. 323–347.

[FTRC+21] David Froelicher, Juan R Troncoso-Pastoriza, Jean Louis Raisaro, Michel A Cuen-
det, Joao Sa Sousa, Hyunghoon Cho, Bonnie Berger, Jacques Fellay, and Jean-
Pierre Hubaux. “Truly privacy-preserving federated analytics for precision medicine
with multiparty homomorphic encryption”. In: Nature communications (2021).

[FTSH20] David Froelicher, Juan Ramón Troncoso-Pastoriza, Joao Sa Sousa, and Jean-
Pierre Hubaux. “Drynx: Decentralized, secure, verifiable system for statistical
queries and machine learning on distributed datasets”. In: IEEE Transactions on
Information Forensics and Security 15 (2020), pp. 3035–3050.

[FV12] Junfeng Fan and Frederik Vercauteren. “Somewhat practical fully homomorphic
encryption”. In: Cryptology ePrint Archive (2012).

[Gen09] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceed-
ings of the forty-first annual ACM symposium on Theory of computing. ACM
New York, NY, USA. 2009, pp. 169–178.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers”. In: Advances in
Cryptology–CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 15-19, 2010. Proceedings 30. Springer. 2010, pp. 465–482.

[GHHJ22] Aarushi Goel, Mathias Hall-Andersen, Aditya Hegde, and Abhishek Jain. “Se-
cure Multiparty Computation with Free Branching”. In: Advances in Cryptology–
EUROCRYPT 2022: 41st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Trondheim, Norway, May 30–June 3,
2022, Proceedings, Part I. Springer. 2022, pp. 397–426.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P Smart. “Fully Homomorphic Encryp-
tion with Polylog Overhead”. In: Advances in Cryptology–EUROCRYPT 2012:
31st Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cambridge, UK, April 15-19, 2012, Proceedings. Springer
Berlin Heidelberg, 2012, pp. 465–482.

[GJKR99] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. “Secure
distributed key generation for discrete-log based cryptosystems”. In: Advances
in Cryptology—EUROCRYPT’99: International Conference on the Theory and
Application of Cryptographic Techniques Prague, Czech Republic, May 2–6, 1999
Proceedings 18. Springer. 1999, pp. 295–310.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. “Delegating com-
putation: interactive proofs for muggles”. In: Journal of the ACM (JACM) 62.4
(2015), pp. 1–64.

[GMT22] Charles Gouert, Dimitris Mouris, and Nektarios Georgios Tsoutsos. “New insights
into fully homomorphic encryption libraries via standardized benchmarks”. In:
Cryptology ePrint Archive (2022). To appear in the Proceedings on Privacy En-
hancing Technologies (PoPETs) 2023.

110 Bibliography

[Gol09] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, 2009, pp. 636–638.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based”.
In: Advances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I. Springer.
2013, pp. 75–92.

[GVPH+22] Robin Geelen, Michiel Van Beirendonck, Hilder VL Pereira, Brian Huffman,
Tynan McAuley, Ben Selfridge, Daniel Wagner, Georgios Dimou, Ingrid Ver-
bauwhede, Frederik Vercauteren, et al. “BASALISC: Programmable Asynchronous
Hardware Accelerator for BGV Fully Homomorphic Encryption”. In: Cryptology
ePrint Archive (2022).

[HHNZ19] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. “SoK:
General purpose compilers for secure multi-party computation”. In: 2019 IEEE
symposium on security and privacy (SP). IEEE. 2019, pp. 1220–1237.

[HJKY95] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. “Proactive
secret sharing or: How to cope with perpetual leakage”. In: Advances in Cryptol-
ogy—CRYPT0’95: 15th Annual International Cryptology Conference Santa Bar-
bara, California, USA, August 27–31, 1995 Proceedings 15. Springer. 1995, pp. 339–
352.

[HK20] Kyoohyung Han and Dohyeong Ki. “Better bootstrapping for approximate ho-
momorphic encryption”. In: Topics in Cryptology–CT-RSA 2020: The Cryptog-
raphers’ Track at the RSA Conference 2020, San Francisco, CA, USA, February
24–28, 2020, Proceedings. Springer. 2020, pp. 364–390.

[HKLL+22] Jincheol Ha, Seongkwang Kim, Byeonghak Lee, Jooyoung Lee, and Mincheol
Son. “Rubato: Noisy Ciphers for Approximate Homomorphic Encryption”. In:
Advances in Cryptology–EUROCRYPT 2022: 41st Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Trondheim,
Norway, May 30–June 3, 2022, Proceedings, Part I. Springer. 2022, pp. 581–610.

[HPS19] Shai Halevi, Yuriy Polyakov, and Victor Shoup. “An improved RNS variant of
the BFV homomorphic encryption scheme”. In: Topics in Cryptology–CT-RSA
2019: The Cryptographers’ Track at the RSA Conference 2019, San Francisco,
CA, USA, March 4–8, 2019, Proceedings. Springer. 2019, pp. 83–105.

[ICDÖ22] Alberto Ibarrondo, Hervé Chabanne, Vincent Despiegel, and Melek Önen. “Col-
made: Collaborative Masking in Auditable Decryption for BFV-based Homomor-
phic Encryption”. In: Proceedings of the 2022 ACM Workshop on Information
Hiding and Multimedia Security. 2022, pp. 129–139.

[ISPB+23] Francesco Intoci, Sinem Sav, Apostolos Pyrgelis, Jean-Philippe Bossuat, Juan Ra-
mon Troncoso-Pastoriza, and Jean-Pierre Hubaux. “slytHErin: An Agile Frame-
work for Encrypted Deep Neural Network Inference”. In: arXiv preprint arXiv:2305.00690
(2023).

[JWBB+17] Karthik A Jagadeesh, David J Wu, Johannes A Birgmeier, Dan Boneh, and Gill
Bejerano. “Deriving genomic diagnoses without revealing patient genomes”. In:
Science 357.6352 (2017), pp. 692–695.

Bibliography 111

[Kel20] Marcel Keller. “MP-SPDZ: A versatile framework for multi-party computation”.
In: Proceedings of the 2020 ACM SIGSAC conference on computer and commu-
nications security. 2020, pp. 1575–1590.

[KFB14] Joshua Kroll, Edward Felten, and Dan Boneh. “Secure protocols for accountable
warrant execution”. In: (2014).

[KG09] Aniket Kate and Ian Goldberg. “Distributed key generation for the internet”.
In: 2009 29th IEEE International Conference on Distributed Computing Systems.
IEEE. 2009, pp. 119–128.

[KG21] Chelsea Komlo and Ian Goldberg. “FROST: flexible round-optimized Schnorr
threshold signatures”. In: Selected Areas in Cryptography: 27th International Con-
ference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020. Springer.
2021, pp. 34–65.

[KG23] Dongwoo Kim and Cyril Guyot. “Optimized Privacy-Preserving CNN Inference
With Fully Homomorphic Encryption”. In: IEEE Transactions on Information
Forensics and Security 18 (2023), pp. 2175–2187.

[KHBC+21] Miran Kim, Arif Ozgun Harmanci, Jean-Philippe Bossuat, Sergiu Carpov, Jung
Hee Cheon, Ilaria Chillotti, Wonhee Cho, David Froelicher, Nicolas Gama, Mariya
Georgieva, et al. “Ultrafast homomorphic encryption models enable secure out-
sourcing of genotype imputation”. In: Cell systems 12.11 (2021), pp. 1108–1120.

[KKLS+22] Taechan Kim, Hyesun Kwak, Dongwon Lee, Jinyeong Seo, and Yongsoo Song.
“Asymptotically faster multi-key homomorphic encryption from homomorphic
gadget decomposition”. In: Cryptology ePrint Archive (2022).

[KLKS+22] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, Minsoo Rhu, John Kim,
and Jung Ho Ahn. “Ark: Fully homomorphic encryption accelerator with run-
time data generation and inter-operation key reuse”. In: 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE. 2022, pp. 1237–
1254.

[KLSS23] Miran Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. “Accelerating HE
Operations from Key Decomposition Technique”. In: Cryptology ePrint Archive
(2023).

[KLSW21] Hyesun Kwak, Dongwon Lee, Yongsoo Song, and Sameer Wagh. “A unified frame-
work of homomorphic encryption for multiple parties with non-interactive setup”.
In: Cryptology ePrint Archive (2021).

[KMPR+17] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.
“Practical Multi-party Private Set Intersection from Symmetric-Key Techniques”.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security. ACM New York, NY, USA. 2017, pp. 1257–1272.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. “MASCOT: faster malicious
arithmetic secure computation with oblivious transfer”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. ACM
New York, NY, USA. 2016, pp. 830–842.

112 Bibliography

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. “Overdrive: making SPDZ
great again”. In: Advances in Cryptology–EUROCRYPT 2018: 37th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part III. Springer.
2018, pp. 158–189.

[KS19] Duhyeong Kim and Yongsoo Song. “Approximate homomorphic encryption over
the conjugate-invariant ring”. In: Information Security and Cryptology–ICISC
2018: 21st International Conference, Seoul, South Korea, November 28–30, 2018,
Revised Selected Papers 21. Springer. 2019, pp. 85–102.

[KSJH21] Miran Kim, Yongsoo Song, Xiaoqian Jiang, and Arif Harmanci. “SHiMMer: Privacy-
Aware Alignment of Genomic Sequences with Secure and Efficient Hidden Markov
Model Evaluation”. In: (2021).

[Lin17] Yehuda Lindell. “How to simulate it–a tutorial on the simulation proof technique”.
In: Tutorials on the Foundations of Cryptography. Springer, 2017, pp. 277–346.

[LLKK+22] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No,
and HyungChul Kang. “High-precision bootstrapping for approximate homomor-
phic encryption by error variance minimization”. In: Advances in Cryptology–
EUROCRYPT 2022: 41st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Trondheim, Norway, May 30–June 3,
2022, Proceedings, Part I. Springer. 2022, pp. 551–580.

[LM21] Baiyu Li and Daniele Micciancio. “On the security of homomorphic encryp-
tion on approximate numbers”. In: Advances in Cryptology–EUROCRYPT 2021:
40th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part I
40. Springer. 2021, pp. 648–677.

[LMSS22] Baiyu Li, Daniele Micciancio, Mark Schultz, and Jessica Sorrell. “Securing ap-
proximate homomorphic encryption using differential privacy”. In: Advances in
Cryptology–CRYPTO 2022: 42nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part
I. Springer. 2022, pp. 560–589.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices and
Learning with Errors over Rings”. In: Advances in Cryptology–EUROCRYPT
2010: 29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May 30-June 3, 2010, Proceedings.
Vol. 6110. Springer. 2010, p. 1.

[LTV11] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. “Cloud-assisted
multiparty computation from fully homomorphic encryption”. In: Cryptology ePrint
Archive (2011).

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. “On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption”. In:
Proceedings of the forty-fourth annual ACM symposium on Theory of computing.
ACM New York, NY, USA. 2012, pp. 1219–1234.

Bibliography 113

[LYKG+19] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket
Kate, and Andrew Miller. “HoneyBadgerMPC and AsynchroMix: Practical asyn-
chronous MPC and its application to anonymous communication”. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Secu-
rity. 2019, pp. 887–903.

[MBH23] Christian Mouchet, Elliott Bertrand, and Jean-Pierre Hubaux. “An Efficient Thresh-
old Access-Structure for RLWE-Based Multiparty Homomorphic Encryption”. In:
Journal of Cryptology 36 (2023). [Paper].

[MBTH20] Christian Mouchet, Jean-Philippe Bossuat, Juan Troncoso-Pastoriza, and Jean-
Pierre Hubaux. “Lattigo: A multiparty homomorphic encryption library in Go”.
In: WAHC 2020–8th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography. [Paper], [Library]. 2020.

[Mic00] Silvio Micali. “Computationally sound proofs”. In: SIAM Journal on Computing
30.4 (2000), pp. 1253–1298.

[Mon85] Peter L Montgomery. “Modular multiplication without trial division”. In: Mathe-
matics of computation 44.170 (1985), pp. 519–521.

[MP19] Sean Murphy and Rachel Player. “A central limit framework for ring-lwe decryp-
tion”. In: Cryptology ePrint Archive (2019).

[MTBH21] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-
Pierre Hubaux. “Multiparty Homomorphic Encryption from Ring-Learning-with-
Errors”. In: Proceedings on Privacy Enhancing Technologies 4 (2021). [Paper],
pp. 291–311.

[MZ17] Payman Mohassel and Yupeng Zhang. “SecureML: A system for scalable privacy-
preserving machine learning”. In: 2017 38th IEEE Symposium on Security and
Privacy (SP). IEEE. 2017, pp. 19–38.

[NWIJ+13] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh,
and Nina Taft. “Privacy-preserving ridge regression on hundreds of millions of
records”. In: 2013 IEEE symposium on security and privacy. IEEE. 2013, pp. 334–
348.

[Par21] Jeongeun Park. “Homomorphic encryption for multiple users with less communi-
cations”. In: IEEE Access 9 (2021), pp. 135915–135926.

[Ped91] Torben Pryds Pedersen. “A threshold cryptosystem without a trusted party”. In:
Advances in Cryptology—EUROCRYPT’91: Workshop on the Theory and Appli-
cation of Cryptographic Techniques Brighton, UK, April 8–11, 1991 Proceedings
10. Springer. 1991, pp. 522–526.

[PPV22] Alberto Pedrouzo-Ulloa, Fernando Pérez-González, and David Vázquez-Padín.
“Secure Collaborative Camera Attribution”. In: Proceedings of the 2022 European
Interdisciplinary Cybersecurity Conference. 2022, pp. 97–98.

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptog-
raphy”. In: Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing. 2005, pp. 84–93.

[Rot17] Dragos, Rotaru. awesome-mpc. https://github.com/rdragos/awesome-mpc.
2017.

https://eprint.iacr.org/2022/780
https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20_demo_christian.pdf
https://github.com/tuneinsight/lattigo
https://eprint.iacr.org/2020/304
https://github.com/rdragos/awesome-mpc

114 Bibliography

[RSTV+22] Dragos Rotaru, Nigel P Smart, Titouan Tanguy, Frederik Vercauteren, and Tim
Wood. “Actively secure setup for SPDZ”. In: Journal of Cryptology 35.1 (2022),
p. 5.

[RTMS+18] Jean Louis Raisaro, Juan Troncoso-Pastoriza, Mickaël Misbach, João Sá Sousa,
Sylvain Pradervand, Edoardo Missiaglia, Olivier Michielin, Bryan Ford, and Jean-
Pierre Hubaux. “MedCo: Enabling Secure and Privacy-Preserving Exploration of
Distributed Clinical and Genomic Data”. In: IEEE/ACM transactions on compu-
tational biology and bioinformatics 16.4 (2018), pp. 1328–1341.

[SBTC+22] Sinem Sav, Jean-Philippe Bossuat, Juan R Troncoso-Pastoriza, Manfred Claassen,
and Jean-Pierre Hubaux. “Privacy-preserving federated neural network learning
for disease-associated cell classification”. In: Patterns 3.5 (2022), p. 100487.

[SC19] Yongha Son and Jung Hee Cheon. “Revisiting the Hybrid Attack on Sparse Secret
LWE and Application to HE Parameters”. In: Proceedings of the 7th ACM Work-
shop on Encrypted Computing & Applied Homomorphic Cryptography (2019).

[SDPB+22] Sinem Sav, Abdulrahman Diaa, Apostolos Pyrgelis, Jean-Philippe Bossuat, and
Jean-Pierre Hubaux. “Privacy-Preserving Federated Recurrent Neural Networks”.
In: arXiv preprint arXiv:2207.13947 (2022).

[Sha79] Adi Shamir. “How to share a secret”. In: Communications of the ACM 22.11
(1979), pp. 612–613.

[SJKG+17] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus
Gasser, Ismail Khoffi, Michael J Fischer, and Bryan Ford. “Scalable bias-resistant
distributed randomness”. In: 2017 IEEE Symposium on Security and Privacy
(SP). Ieee. 2017, pp. 444–460.

[SPTF+21] Sinem Sav, Apostolos Pyrgelis, Juan R Troncoso-Pastoriza, David Froelicher,
Jean-Philippe Bossuat, Joao Sa Sousa, and Jean-Pierre Hubaux. “POSEIDON:
Privacy-preserving federated neural network learning”. In: 28th Annual Network
and Distributed System Security Symposium (2021).

[TMBM+22] Juan R Trocoso-Pastoriza, Alain Mermoud, Romain Bouyé, Francesco Marino,
Jean-Philippe Bossuat, Vincent Lenders, and Jean-Pierre Hubaux. “Orchestrat-
ing Collaborative Cybersecurity: A Secure Framework for Distributed Privacy-
Preserving Threat Intelligence Sharing”. In: arXiv preprint arXiv:2209.02676 (2022).

[UR22] Antoine Urban and Matthieu Rambaud. Share and Shrink: Ad-Hoc Threshold
FHE with Short Ciphertexts and its Application to Almost-Asynchronous MPC.
Cryptology ePrint Archive, Paper 2022/378. https://eprint.iacr.org/2022/
378. 2022. url: https://eprint.iacr.org/2022/378.

[VJH21] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. “SoK: Fully homomorphic
encryption compilers”. In: 2021 IEEE Symposium on Security and Privacy (SP).
IEEE. 2021, pp. 1092–1108.

[VJHH23] Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi. “HECO:
Fully Homomorphic Encryption Compiler”. In: USENIX Security Symposium 2023.
2023, (Pre–publication).

[XHXZ+22] Guowen Xu, Xingshuo Han, Shengmin Xu, Tianwei Zhang, Hongwei Li, Xinyi
Huang, and Robert H Deng. “Hercules: Boosting the Performance of Privacy-
preserving Federated Learning”. In: IEEE Transactions on Dependable and Secure
Computing (2022).

https://eprint.iacr.org/2022/378
https://eprint.iacr.org/2022/378
https://eprint.iacr.org/2022/378

Bibliography 115

[XLGZ+23] Guowen Xu, Guanlin Li, Shangwei Guo, Tianwei Zhang, and Hongwei Li. “Secure
Decentralized Image Classification with Multiparty Homomorphic Encryption”.
In: IEEE Transactions on Circuits and Systems for Video Technology (2023).

[YAZX+19] Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and William
Whyte. “Efficient lattice-based zero-knowledge arguments with standard sound-
ness: construction and applications”. In: Advances in Cryptology–CRYPTO 2019:
39th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18–22, 2019, Proceedings, Part I 39. Springer. 2019, pp. 147–175.

[YZWL+22] Meng Yang, Chuwen Zhang, Xiaoji Wang, Xingmin Liu, Shisen Li, Jianye Huang,
Zhimin Feng, Xiaohui Sun, Fang Chen, Shuang Yang, et al. “TrustGWAS: A full-
process workflow for encrypted GWAS using multi-key homomorphic encryption
and pseudorandom number perturbation”. In: Cell Systems (2022).

[ZPGS19] Wenting Zheng, Raluca Ada Popa, Joseph E Gonzalez, and Ion Stoica. “Helen:
Maliciously secure coopetitive learning for linear models”. In: 2019 IEEE Sympo-
sium on Security and Privacy (SP). IEEE. 2019, pp. 724–738.

117

Appendix A

Derivations and Proofs

Appendix Content

A.1 Comparison between ΠRelinKeyGen and previous work . 119
A.2 Derivations of the Noise Analysis Equations . 119
A.3 Proof of Theorem 1 . 120

Appendix A. Derivations and Proofs 119

A.1 Comparison between ΠRelinKeyGen and previous work

We show here how to adapt the classic method of Asharov et al. [AJLT+12] to our scheme,
resulting in the Protocol 9.

Protocol 9. ΠRelinKeyGencpk ▷ The cpk-based relinearization-key generation protocol

Public Input: cpk=(p0, p1), w
Private Input of Pi: sk = si
Output: rlk = (r0, r1)

Round 1:
Each party Pi:

1. samples e0,i ← χl and a ∈ Rl
q from the CRS,

2. discloses hi = −sia+ siw + e0,i.

Round 2:
Each party Pi:

1. sets h =
∑

Pj∈P hj ,

2. samples ui ← Rl
3, e1,i, e2,i ← χl and,

3. discloses h′
0,i = sih+ uip0 + e1,i and h′

1,i = sia+ uip1 + e2,i.

Output:
Set h′

0 =
∑

Pj∈P h′
0,j and h′

1 =
∑

Pj∈P h′
1,j , outputs rlk = (h′

0,h
′
1).

The relinearization key resulting from the ΠRelinKeyGencpk protocol is of the form

rlk = (r0, r1) = (−(sb+ (su+ v)ecpk − se0 − e2) + s2w , b+ se1 + e3),

= (−sa+up0+s2w+uecpk+se0+e1 , sa+u1p1+e2).

Hence, rlk holds a significantly increased noise with respect to the key produced by the (ideal)
MHE.RelinKeyGen, not only in r0, but also in r1, which is not noisy when generated in a cen-
tralized way. Our ΠRelinKeyGen solution (see Section 2.2.3) significantly improves on the simple
method, by producing a noise-free r1 term and a less noisy r0 term.

A.2 Derivations of the Noise Analysis Equations

This appendix details the derivations of the noise growth equations presented in Section 2.3.2.
The infinity norm of a polynomial p (i.e., its largest coefficient in absolute value) is denoted ∥p∥
(∥p∥ ≤ q/2 for p ∈ Rq). We also recall that, since the polynomial modulus in Rq is a degree-n
power of 2 cyclotomic, we have ∥ab∥ ≤ n∥a∥∥b∥. We consider an instantiation of our distributed
BFV scheme with N parties.

120 Appendix A. Derivations and Proofs

Derivation of Eq. (2.6)

From the ideal decryption of a fresh encryption of m under the collective public key cpk = (p0, p1):

c0 + sc1 = ∆m+ p0u+ e0 + sp1u+ se1

= ∆m− uecpk + e0 + se1,

where we substituted the expression of BFV.Encrypt. As ∥u∥ = 1 and ∥ei∥ ≤ B for i = 0, 1,
Eq. (2.6) follows.

Derivation of Eq. (2.7)

From the decryption expression of ct′,

c′0 + s′c1 = c0 +
∑
j

((−s′j + sj)c1 + eCKS,j) + s′c1

= c0 + sc1 +
∑
j

eCKS,j

= ∆m+ efresh +
∑
j

eCKS,j .

As eCKS,j ≤ Bsmg, Eq. (2.7) follows.

Derivation of Eq. (2.8)

From the decryption expression of ct′,

c′0 + s′c′1 = c0 +
∑
j

(sjc1 + ujp
′
0 + e0,j) + s′

∑
j

(ujp
′
1 + e1,j)

= c0 + sc1 + up′0 + s′up′1 +
∑
j

e0,j + se1,j

= ∆m+ efresh +
∑
j

ujepk′ + e0,j + s′e1,j ,

and Eq. (2.8) follows.

A.3 Proof of Theorem 1

First, we observe that Theorem 1 states that there is at least one honest player that we denote
Ph. The choice for Ph, among multiple honest parties, does not reduce generality. We denote
H the set P \ (A ∪ {Ph}) of all other honest parties. Hence, the tuple (A,H) can represent any
partition of P \ {Ph}. In particular, both A and H can be empty in the following arguments.
To simplify the notation, we consider the various error terms sampled as a part of the protocols
as private inputs to these protocols (as if they were sampled before the protocol starts). We
proceed by constructing simulators for each sub-protocol. For a given value x, we denote x̃ its
simulated equivalent.

We observe that the ΠPubKeySwitch, ΠEnc2Share, ΠShare2Enc and ΠColBootstrap protocols can all be
derived from the ΠKeySwitch protocol and their associated simulators can be straightforwardly
adapted from SKeySwitch.

Appendix A. Derivations and Proofs 121

Construction of SEncKeyGen The output of the ΠEncKeyGen({si, ei}Pi∈P) protocol is cpk =

(p0, p1) as defined in Equation (2.2) and its transcript is the tuple (p0,1, p0,2, . . . , p0,N) of all
the players’ shares; this tuple corresponds to an additive sharing of p0. SEncKeyGen can simulate
these shares by randomizing them under two constraints: (1) The simulated shares must sum
up to p0, and (2) the adversary shares must be equal to the real ones (otherwise, it could easily
distinguish them). Hence, SEncKeyGen generates the share p̃0,i of party Pi as

p̃0,i =

[−sip1 + ei]q if Pi ∈ A
← Rq if Pi ∈ H
[p0 −

∑
Pj∈A∪H

p̃0,j]q if Pi = Ph .

Lemma 1. For the adversary as defined in Theorem 1, it holds that (p̃0,1, p̃0,2, . . . , p̃0,N)
c≡

(p0,1, p0,2, . . . , p0,N).

Proof (informal). We first observe that, when H = ∅, SEncKeyGen outputs the real view and
the statement trivially holds. When H ≠ ∅, all p̃0,i, Pi ∈ H are uniformly random in Rq and
p̃0,h is pseudo-random (because [

∑
Pj∈H p̃0,j]q is pseudo-random). Indeed, any polynomial-time

adversary distinguishing (p̃0,i, p1) from (p0,i, p1) with non-negligible probability would directly
yield a distinguisher for the decision-RLWE problem.

Construction of SRelinKeyGen The output of the ΠRelinKeyGen({si, ui, e0,i, e1,i, e2,i, e3,i}Pi∈P) pro-
tocol is rlk = (r0, r1), the relinearization key defined in Eq. (2.3). Its transcript consists of two
rounds for which each party discloses a share in R2×l

q : (h1, ...,hN ,h′
1, ...,h

′
N). These shares rep-

resent an additive sharing of values h = (h(0),h(1)) and h′ = (h′(0),h′(1)), with the constraints
that r0 = h′(0) +h′(1) and r1 = h(1). Hence, similar to SEncKeyGen, they can be generated for the
honest parties by randomizing them under these constraints. Specifically, SRelinKeyGen outputs
(h̃1, ..., h̃N , h̃′

1, ..., h̃
′
N) where

h̃i =

([−uia+ siw + e0,i]q , [sia+ e1,i]q) if Pi ∈ A
← R2×l

q if Pi ∈ H
(← Rl

q , [r1 −
∑

Pj∈A∪H
h̃
(1)
j]q) if Pi = Ph

,

h̃′
i =

([sih̃

(0) + e2,i]q , [(ui − si)h̃
(1) + e3,i]q) if Pi ∈ A

← R2×l
q if Pi ∈ H

(b← Rl
q , [r0 − b− ∑

Pj∈A∪H
h̃
′(1)
j]q) if Pi = Ph

,

Lemma 2. For the adversary as defined in Theorem 1, it holds that

(h̃1, ..., h̃N , h̃′
1, ..., h̃

′
N)

c≡ (h1, ...,hN ,h′
1, ...,h

′
N)

Proof (sketch). We first observe that, for the first round, (−uia+e0,i,a) and (−sia+e1,i,a) are
two l-tuples of RLWE samples (with secrets si and ui) and the same argument as for Lemma 1
applies (l times). Therefore, they can be considered pseudo-random and can be generated by the
simulator. Next, we observe that h, their sum in R2×l

q , is also pseudo-random. Hence, the shares
of the second round can be considered as two sets of l fresh RLWE challenges (sih(0)+e2,i,h

(0))

and ((ui − si)h
(1) + e3,i,h

(1)). This corresponds to recursively applying the RLWE assumption

122 Appendix A. Derivations and Proofs

to prove that, for s, u ← R3, e0, e1 ← χ, a ← Rq, the distribution (usa + ue0 + e1, sa + e0, a)

is indistinguishable from the uniform distribution in R3
q . For example, the core RLWE scheme

encryption relies on this assumption for encrypting ciphertexts with an RLWE public-key.

Output of ΠKeySwitch The security argument for the ΠKeySwitch protocol is inherently more
complex than the previous ones, as the real protocol output only approximates the ideal one.
This enables us to formally express and characterize the need for smudging in (R)LWE-based
MHE schemes. Given a ciphertext ct = (c0, c1) decrypting under s, the ideal functionality of the
ΠKeySwitch protocol is to compute ct′ = (c′0, c1) such that c′0 + s′c1 = Decrypt(s, ct) + esmg, where
esmg is a fresh noise term sampled from an error distribution χsmg. Indeed, this noise must be
fresh in order to not leak the error terms in ct to the output-key holder. Hence, the ideal output
of the ΠKeySwitch protocol is fKeySwitch({si, s′i, e′i}Pi∈P , ct) = ĥ such that ct′ = (c0 + ĥ, c1) satisfies
the above equation. However, the real output of the protocol ΠKeySwitch({si, s′i, e′i}Pi∈P , ct) = h

differs from the ideal one in that it contains the error of ct. Simulation-based proofs permit this
difference, as long as it can be proven that the ideal and real outputs are indistinguishable for
the adversary. We formulate the property as Lemma 3. Then, we show that, even when the
adversary has access to the real output, the adversary cannot distinguish the simulated view
from the real one. This is enunciated as Lemma 4.

Lemma 3. Let ĥ = fKeySwitch({si, s′i, ei}Pi∈P , ct) be the ideal output of the ΠKeySwitch protocol and
h = ΠKeySwitch({si, s′i, ei}Pi∈P , ct) be its real output. For any adversary as defined in Theorem 1
provided with s′ =

∑
Pi∈P s′i, it holds that ĥ

c≡ h.

Proof (sketch). The adversary’s knowledge of s′ enables the extraction of the noise of ct′ as
ect′ = c′0 + h+ s′c1 −∆m. This noise component has the form ect = ect + esmg where ect is the
noise after a usual decryption of ct with s and esmg =

∑
Pi∈P ei is the sum of all the fresh noise

terms added as a part of the ΠKeySwitch protocol. Hence, for Lemma 3 to hold, the distribution
of ect + esmg must be indistinguishable from that of esmg.

We observe that both ect and esmg follow centered Gaussian distributions of different variances
that we denote σ2

ct and σ2
smg, respectively. From the protocol definition, we know that each ei

is sampled from a χKeySwitch of variance 2λσ2
ct. Hence, the ratio σ2

ct/σ
2
KeySwitch is negligible, and

ect + esmg is statistically indistinguishable from esmg by the Smudging lemma [AJLT+12].

Construction of SKeySwitch The transcript of the ΠKeySwitch protocol is a tuple of the parties’
shares (h1, h2, ..., hN) that constitute an additive sharing of h in Rq. This transcript is simulated
by SKeySwitch as (h̃1, h̃2, ..., h̃N) where

h̃i =

[(−si + s′i)c1 + e′i]q if Pi ∈ A
ai ← Rq if Pi ∈ H
[h− ∑

Pi∈A∪H
h̃i]q if Pi = PH .

Lemma 4. For the adversary as defined in Theorem 1, it holds that (h̃1, h̃2, ..., h̃N)
c≡ (h1, h2, ..., hN).

Proof (sketch). When considering the distribution of the simulated and real views alone, the usual
decision-RLWE assumption suffices: (−sic1+e′i, c1) is indistinguishable from (a← Rq, c1) for an
adversary that does not know si and e′i. However, we need to jointly consider this distribution
and the real output. We recall that an adversary who has access to s′ can extract e + e′ from
the output and might be able to estimate e′i for i /∈ A. Consequently, we need to make sure that

Appendix A. Derivations and Proofs 123

the uncertainty the adversary has in estimating e′i is sufficiently large to protect each share hi

in the ΠKeySwitch protocol. We formalize this requirement as

Condition 1. An input ciphertext (c0, c1) to the ΠKeySwitch protocol is such that c0+sc1 = m+ect
where ect = eA+eh includes a term eh that is unknown to, and independent from, the adversary.
Furthermore, eh follows a distribution according to the RLWE hardness assumptions.

If Condition 1 holds, we know that A can only approximate the term eh up to an error ect,h;
this is enough to make (hh, c1) indistinguishable from (a← Rq, c1). In the scope of the ΠMHE−MPC

protocol, as long as all parties provide at least one input (for which the noise will be fresh), the
requirement of Condition 1 is satisfied.

CHRISTIAN MOUCHET
christian.mouchet@bluewin.ch – https://cmct.ch

EDUCATION

École polytechnique fédérale de Lausanne (EPFL) Lausanne, Switzerland
– Ph.D. in Computer Science 2023

Advisor: Carmela Troncoso, Co-Advisor: Jean-Pierre Hubaux
Dissertation: Multiparty Homomorphic Encryption: from Theory to Practice

– M.Sc. in Computer Science 2017
Minor: Information Security
Master thesis: Homomorphic Lattice-based Cryptography for Secure Distributed Computation

– B.Sc. in Computer Science 2014

Collège Calvin Geneva, Switzerland
– Swiss federal high school diploma 2010

WORK EXPERIENCE

Kudelski Security, Kudelski Group Chesaux, Switzerland
– Security Engineer Extern Feb 2016 - Jul 2017

In the Managed Security Services department during the early stages of it’s new Threat Mon-
itoring Service, I developed a model and associated software solution to help them abstract
the complexity and diversity of their customer’s infrastructure and requirements.

– Security Engineer Intern Jul. 2016 - Feb 2017
In the Cyber Fusion Center, I evaluated the service-critical data-source monitoring solutions
and demonstrated that they were, at the time, insufficient.

Swiss Armed Forces Switzerland
– Mechanized Infantry Group Leader, Sergeant 2011

ACTIVITIES

Lattigo: A Multiparty Homomorphic Encryption Library in Go 2018-Present
I am co-authoring and maintaining the Lattigo open-source library, an advanced cryptographic
library implementing the main fully homomorphic encryption schemes and their multiparty
variants. The library is now well established in the community and is now a collaboration
between EPFL and Tune Insight SA.

Research Projects Supervision (EPFL)
- Helium: Implementation of an end-to-end encrypted MPC framework Spring 2023

Semester project by Giovanni Torrisi

- Design and implementation of a multiparty homomorphic encryption circuit evaluator Fall 2022
Semester project by Adrian Cucos

- Implementation of a network layer for multiparty homomorphic encryption Fall 2021
Semester project by Manon Michel

- Implementation of a threshold homomorphic encryption scheme Spring 2021
Semester project by Adrien Laydu

- Implementation of a multikey homomorphic encryption scheme Spring 2021
Semester project by Hedi Sassi and Walid Ben Naceur

- Cloud-based secure multiparty computation using homomorphic encryption Fall 2020
Semester project by Anas Ibrahim and Vincent Parodi

125

- Implementation of multiparty homomorphic encryption schemes Fall 2020
Semester Project by Clémence Altmeyerhenzien

- Profiling and optimization of an homomorphic encryption library Spring 2020
Semester project by Elie Daou

- Implementation of secure multiparty computation using homomorphic encryption Spring 2020
Semester project by Elia Anzuoni

- Practicality analysis of a threshold cryptosystem based on RLWE Spring 2020
Master thesis by Elliott Bertrand

- Lattice-based signature and key-exchange protocols for the Onet library Fall 2019
Semester project by Björn Guðmundsson

- Network layer for lattice-based secure multiparty computation protocols Fall 2019
Semester project by Johan Lanzrein

TEACHING EXPERIENCE

École polytechnique fédérale de Lausanne (EPFL) Lausanne, Switzerland
– COM-402: Information security and privacy, Teaching assistant Fall 2019, 2020, 2021
– COM-405: Mobile networks, Teaching assistant Spring 2019, 2020, 2021, 2022
– CS-523: Advanced topics on privacy enhancing technologies, Teaching assistant Fall 2018
– MATH-111: Linear Algebra, Teaching assistant Fall 2017

Swiss Academy of Engineering Sciences (SATW) Switzerland
– TecDays module: “AI: Contrôle une colonie de fourmis artificielle”, Lecturer 2019, 2020

Swiss Armed Forces Switzerland
– Milice Instructor 2010-2020

ACADEMIC PUBLICATIONS

PELTA – Shielding Multiparty-FHE against Malicious Adversaries
S Chatel, C Mouchet, AU Sahin", A Pyrgelis, C Troncoso, JP Hubaux
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security
(CCS 2023, to appear)

An Efficient Threshold Access-Structure for RLWE-Based Multiparty Homomorphic Encryption
C Mouchet, E Bertrand, JP Hubaux
IACR Journal of Cryptology 2023 (JOC 2023)

Multiparty Homomorphic Encryption from Ring-Learning-with-Errors
C Mouchet, J Troncoso-Pastoriza, JP Bossuat, JP Hubaux
Proceedings on Privacy Enhancing Technologies 2021 (PETS 2021)

Efficient bootstrapping for Approximate Homomorphic Encryption with Non-sparse Keys
JP Bossuat, C Mouchet, J Troncoso-Pastoriza, JP Hubaux
International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT 2021)

Lattigo: A Multiparty Homomorphic Encryption Library in Go
C Mouchet, JP Bossuat, J Troncoso-Pastoriza, J Hubaux
Workshop on Encrypted Computing & Applied Homomorphic Cryptography (WAHC 2020)

UnLynx: A Decentralized System for Privacy-Conscious Data Sharing
D Froelicher, P Egger, J Sá Sousa, JL Raisaro, Z Huang, C Mouchet, B Ford, JP Hubaux
Proceedings on Privacy Enhancing Technologies 2017 (PETS 2017)

126

SKILLS

Languages English (fluent), French (mother tongue), German (high-school level)
Programming Go, Python, Scala, C/C++, Java, JavaScript
Software Tools Git, LATEX, Docker, Matlab, SageMath

AWARDS

– Teaching Assistant Award, Faculty of Computer and Communication Science, EPFL 2021
– Deloitte Zurich Hackaton, Winning team of the forensic track 2017
– Audiance Choice Award for the “Event-stream detection project”, Big Data Course, EPFL 2015

127

	Abstract
	Résumé
	Acknowledgements
	Introduction
	Definitions and Constructions
	Terminology
	Notation
	Definitions
	Constructions
	Related Work

	A Multiparty Homomorphic Encryption Scheme
	Extended MHE Scheme Definition
	N-out-of-N-Threshold HE Scheme Construction
	MHE Scheme Analysis
	MHE-Based Secure Multiparty Computation
	Performance Analysis
	Chapter Summary

	A Fault-Tolerant Multiparty Homomorphic Encryption Scheme
	Our Results
	Related Work
	Preliminaries
	T-out-of-N-Threshold Encryption for RLWE
	Evaluation
	Chapter Summary

	Lattigo: a Multiparty Homomorphic Encryption Library in Go
	Building an (M)HE library in Go
	Library Overview
	Performance Comparison
	Applications
	Chapter Summary

	Helium: an MHE-based MPC Framework
	System Specification
	MHE-based Multiparty Computation
	Solution Design
	HElium
	Implementation and Evaluation
	Chapter Summary

	Conclusion and Future Work
	Future of MHE
	Open Problems and Future Research Directions
	Final Remarks

	Bibliography
	Derivations and Proofs
	Comparison between Pi_RelinKeyGen and previous work
	Derivations of the Noise Analysis Equations
	Proof of Theorem 1

	Curriculum Vitae

