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Abstract

This thesis presents work at the junction of statistics and climate science. We first

provide methodology for use by climate scientists when performing fast event attribu-

tion using extreme value theory, and then describe two interdisciplinary projects in

climate science that involve advanced statistical techniques.

The first chapter connects the climate literature on fast extreme event attribution

studies with the statistical literature on selection effects. It provides simulations in

the univariate and bivariate settings showing that not accounting for the stopping

rule can lead to misestimation of return levels, but that bias can be reduced by more

appropriate analysis. We discuss the spatial selection bias induced by the systematic

analysis of data from the location of the extreme event and show that the estimated

return period for the “trigger event” based on a dataset that contains this event can

be both biased and very uncertain. We illustrate the impact of timing and spatial

selection bias on return level estimation with analysis of environmental data inspired

by real use cases. The Appendix describes a Python package for likelihood inference

that was useful for the simulations and case studies in this chapter.

The rest of the thesis describes two applications of machine learning and statistics

in climate science. The first topic studied is downscaling of historical wind fields in

Switzerland. High-resolution wind maps are essential to climate scientists looking to

study past climate events such as wildfires and avalanches. The deep learning model

proposed in the second chapter provides realistic-looking high-resolution (1.1km)

historical maps of gridded hourly wind fields over Switzerland from ERA5 input on a

25km grid. The downscaled wind fields demonstrate physically plausible orographic

effects, such as ridge acceleration and sheltering, which are not resolved in the original

ERA5 fields. The prediction of the aggregated wind speed distribution is very good

and robust. Regionally averaged image-specific metrics measure generally better for

locations over the flatter Swiss Plateau than for Alpine regions.

The third chapter proposes a random line process for hail impact modelling. Hail
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Abstract

damage is crucial for insurance companies because big hailstones tend to produce

large economic losses. Appropriate modelling and uncertainty quantification for

hail impact could also be a good starting point for the study of the sensitivity of

our economy to a changing climate. A two-step Bayesian hierarchical framework

incorporating the random line process and extreme value theory is built to model the

counts and value of hail impacts for individual buildings in the canton of Zürich and

fitted using insurance data for buildings. The results are compared to the use of a

benchmark deterministic hail impact function. The random line model with extreme

marks proves better at capturing hail spatial patterns than the benchmark and allows

for localized and extreme damage, which is observed in the insurance data.
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Résumé

Cette thèse présente un travail à la jonction des statistiques et de la climatologie. Nous

proposons dans un premier temps une méthodologie claire et concise utilisable par

les climatologues pratiquant l’Attribution rapide d’événements extrêmes (AEE) lors

de la présence de biais temporel ou spatial dans les données étudiées. Sont ensuite

décrits deux projets interdisciplinaires importants pour la communauté scientifique

et impliquant des connaissances avancées en statistiques.

Le premier chapitre connecte la littérature en climatologie sur les études d’attribution

d’événements extrêmes (AEE) rapides avec la littérature statistique sur les biais de

sélection. Le premier article présente des simulations dans les cas univarié et bivarié

montrant que ne pas tenir compte du temps d’arrêt peut entraîner une estimation

erronée des évènements extrêmes futurs, mais que le biais peut être réduit par une

analyse plus appropriée. Nous discutons du biais de sélection spatiale induit par

l’étude systématique du lieu où l’événement extrême s’est produit, et montrons que

la durée de retour estimée pour l’“événement déclencheur” basée sur un jeu de

données contenant cet événement peut être à la fois biaisée et très incertaine. Nous

illustrons l’impact des biais de sélection temporels et spatiaux sur la prédiction de

futurs évènements extrêmes en analysant des données environnementales utilisées

dans des études récentes de climatologie. Un package Python facilitant l’inférence

basée sur la vraisemblance est décrit dans l’Appendix. Ce package a été très utile pour

réaliser les simulations et études de cas présentées dans ce chapitre.

Le reste de la thèse décrit deux applications de l’apprentissage automatique et des

statistiques en climatologie. Le premier sujet étudié est la réduction d’échelle des

champs éoliens historiques en Suisse. Les cartes de vents en haute résolution sont

essentielles pour les climatologues qui cherchent à étudier les événements climatiques

passés tels que les incendies de forêt et les avalanches. Le modèle de deep learning

proposé dans le premier chapitre de cette thèse produit des cartes des champs de

vent horaires historiques en Suisse en haute résolution (1,1 km) réalistes à partir de
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grilles de champs éoliens d’une résolution d’environ 25x25km2. Les champs de vent

prédits avec le modèle démontrent des effets orographiques physiquement plausibles

qui ne sont pas résolus par les champs éoliens ERA5 d’origine. La prédiction de la

distribution agrégée de la vitesse du vent est très bonne et robuste. Les métriques

spatiales évaluées sur les cartes de vent prédites mesurent généralement mieux sur le

Plateau Suisse que dans les régions Alpines.

Dans le troisième chapitre, un processus stochastique linéaire dans l’espace est pro-

posé pour la modélisation de l’impact de la grêle dans le canton de Zürich en Suisse.

Les dommages causés par la grêle sont cruciaux pour les compagnies d’assurance, car

les gros grêlons ont tendance à produire des pertes économiques conséquentes. Une

modélisation appropriée et une quantification de l’incertitude pour l’impact de la

grêle pourraient également être un bon point de départ pour l’étude de la sensibilité

de notre économie au changement climatique. Un modèle hiérarchique Bayésien en

deux étapes incorporant le processus linéaire dans l’espace et la théorie des valeurs

extrêmes est construit pour modéliser le nombre et la valeur des impacts individuels

liés à la grêle sur des immeubles dans le canton de Zürich calibré avec des données

d’assurance. Les résultats sont comparés à l’utilisation d’une fonction d’impact de

grêle déterministe de référence. Le modèle de lignes aléatoires avec des marques ex-

trêmes s’avère meilleur pour capturer les trajectoires des orages de grêle dans l’espace

que le modèle de référence et permet la prédiction de dommages localisés et extrêmes,

ce qui est également observé dans les données d’assurance.
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Introduction

This doctoral thesis is a contribution from the statistical side to links between statistics

and climate science. Both fields would benefit from more interactions, yet applied

statistics papers are rarely mentioned in IPCC reports. At the heart of the division

between statistics and climate science lies the question of the ground truth. While

statisticians usually think of observed data as being “true” realizations of a random

process, physicists and climate scientists tend to prefer to use reanalysis data, i.e.,

observed events post-processed to make more physical sense. One issue with re-

analysis is that extreme events can be considered outliers and removed during the

post-processing. This makes it hard to apply the statistics of extremes directly to

reanalysis data, despite its relevance to climate science as a source of tools for ac-

counting for and analyzing rare events. This thesis discusses applications of the

statistics of extremes in climate science, modelling environmental phenomena with

complex spatiotemporal features requiring the use of advanced statistical methods.

It consists of three main chapters, two of which have been published; the third is

submitted for publication.

The first part of this thesis contributes to the dialogue between statisticians from

the field of extreme value theory (EVT) and climate scientists practicing extreme

event attribution (EEA). Indeed, both fields have known very recent improvements,

but almost independently of each other. Chapter 1 makes the connection between

the literature on timing bias in fast EEA studies on the statistical side (Barlow et al.,

2020; Naveau et al., 2020) and climate science (Philip et al., 2020; van Oldenborgh

et al., 2021). Recent work has shown that the upward bias in return levels estimated

from an analysis performed immediately after an extreme event may stem from the

timing of the analysis, whereas excluding this “trigger event” will lead to a downward

bias in such levels (Philip et al., 2020; Barlow et al., 2020). Introducing a stopping

rule that appropriately reflects the timing of the analysis can account for such biases
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Introduction

without requiring the analyst to decide whether to exclude or include the trigger event.

This chapter sketches notions of inference using stopping rules, uses simulation to

compare different approaches to data analysis, and reanalyses examples from the

recent literature on climate event attribution. It also discusses the estimation of return

periods for specific events and the effects of spatial selection, when the trigger event

might have taken place in any of several related time series. The study of timing and

spatial selection biases in rapid EEA in this chapter appears to have no equivalent in

the recent literature on climate event attribution.

Environmental statistics has greatly evolved in recent years and can now deal with

spatiotemporal interactions for large datasets (Cressie and Wikle, 2015; Berrocal, 2017),

assimilation of several data sources (Berrocal, 2017), attribution of extreme events

(Hammerling et al., 2019), spatially or temporally correlated extremes (Kropp and

Schellnhuber, 2011), computational efficiency for multi-layer Bayesian models (Rue

et al., 2017), and the most recent machine learning and deep learning techniques

(Efron and Hastie, 2016). Nevertheless, many climate models do not incorporate

these recent techniques and might misestimate the future frequency or amplitude of

extreme environmental hazards. Furthermore, the coarse grids on which most climate

models are run do not allow for an accurate analysis of any specific local climate event.

Chapters 2 and 3 focus on these two issues, describing two interdisciplinary projects

in which both the topic of interest and problem to explore were decided by a climate

science practitioner and advanced statistical knowledge was required to solve it.

Chapter 2 concerns the downscaling of historical wind fields over Switzerland. High-

resolution wind maps are essential to climate scientists looking to study past climate

events such as wildfires and avalanches. However, climate models are run on very

coarse grids: wind field predictions for a specific location are unreliable, especially

on complex terrain, as airflow is strongly modified by underlying topography. The

resolution of such models is usually of the order of 0.5 to 1◦, which corresponds

to grids of resolution between 25 and 80 square kilometers and is too coarse for

detailed analysis of specific climate events. Higher-resolution climate models are very

computationally expensive to calibrate and run, but downscaling of coarse climate

model predictions allows faster and easier access to high-resolution wind field maps.

Grid-to-point probabilistic (Winstral et al., 2017; Nerini, 2020) and grid-to-grid deep

learning-based downscaling (Höhlein et al., 2020; Leinonen et al., 2021; Ramon et al.,

2021) have been studied in the recent literature. Nevertheless, the model presented in

2
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Chapter 2 is the first deep learning model that can efficiently perform such an extreme

(from 25 square km to 1.1 square km resolution) downscaling of wind fields from two

different data sources.

In Chapter 3, a random line process is proposed for hail impact modelling. Hail dam-

age is crucial for insurance companies, because big hailstones tend to produce large

economic losses. Furthermore, appropriate modelling and uncertainty quantifica-

tion for hail impact could be helpful in studying the sensitivity of our economy to a

changing climate. The literature on the statistical modelling of hailstorm impact on

buildings is very limited. Although stochastic models for hailstorm risk (Deepen, 2006;

Otto, 2009; Punge et al., 2014) or hailstone size (Liu et al., 2021; Perera et al., 2018) exist,

most open-source studies on hailstorm impact use deterministic impact functions

to link the intensity of a hail hazard to its local monetary damage. In Chapter 3 the

probability and intensity of a hail event are input to the model, and stochasticity

comes from the various ways a hail storm can impact different locations. The model

developed seems to be the first to combine a random line process and an extreme

value model to accurately represent hail damage tracks.

The thesis ends with a brief chapter with perspectives for future work and an appendix

describing a Python package for likelihood inference.
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Chapter 1. Timing and Spatial Selection Bias in Rapid Extreme Event Attribution

Abstract

Selection bias may arise when data have been chosen in a way that subsequent anal-

ysis does not account for. Such bias can arise in climate event attribution studies

that are performed rapidly after a devastating “trigger event”, whose occurrence corre-

sponds to a stopping rule. Intuition suggests that naïvely including the trigger event

in a standard fit in which it is the final observation will bias its importance down-

wards, and that excluding it will have the opposite effect. In either case the stopping

rule leads to bias recently discussed in the statistical literature (Barlow et al., 2020)

and whose implications for climate event attribution we investigate. Simulations in

a univariate setting show substantially lower relative bias and root mean squared

error for estimation of the 200-year return level when the timing bias is accounted

for. Simulations in a bivariate setting show that not accounting for the stopping rule

can lead to both over- and under-estimation of return levels, but that bias can be

reduced by more appropriate analysis. We also discuss biases arising when an extreme

event occurs in one of several related time series but this is not accounted for in data

analysis, and show that the estimated return period for the “trigger event” based on

a dataset that contains this event can be both biased and very uncertain. The ideas

are illustrated by analysis of rainfall data from Venezuela and temperature data from

India and Canada.
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1.1 Introduction

An important objective of extreme event attribution (EEA) studies is to quantify the

change in the probability of an extreme event due to external forcing, such as anthro-

pogenic climate change (Allen, 2003; Stott et al., 2016; Naveau et al., 2020). Most such

studies focus on the extent to which increased greenhouse gas (GHG) levels in the

atmosphere affect the risk ratio for a specified extreme event (Stott et al., 2004; Fischer

and Knutti, 2015, 2016; Jones et al., 2020). The risk ratio is commonly defined as the

ratio of the probability p1 of exceeding an extreme threshold u in the factual world,

and the corresponding probability p0 of doing so in a counterfactual world, often

taken to be the pre-industrial era (Naveau et al., 2020).

The National Academies of Sciences, Engineering, and Medicine (2016) report di-

vides EEA studies into two types: observation-based and climate-model-based. The

first type uses series of historical and recent data to capture temporal changes in

the probabilities and magnitudes of extreme events and thus to infer the effects of

anthropogenic climate change. The second type uses a data-generating process to

simulate two different worlds that are intended to be identical except for a “treatment”

variable, usually GHG levels (Stott et al., 2004; Fischer and Knutti, 2015), or fine partic-

ulate matter (Larsen et al., 2020), and thereby assesses how the “treatment” affects

phenomena such as temperature, precipitation or wildfires. In this framework causal

inference techniques are required to efficiently capture the causality while reducing

the signal-to-noise ratio in a complex and noisy climate system (Reich et al., 2021).

The literature on causal statistical analysis has greatly evolved in recent decades and

now has many applications (Hernan and Robins, 2023).

Observation-based EEA studies can be further divided into two groups: return-level-

based studies intended to assess temporal changes in the data distribution, and

meteorology-oriented studies that explore how long-term trends in large-scale circu-

lation patterns affect local extreme events sharing common meteorological character-

istics (National Academies of Sciences, Engineering, and Medicine, 2016).

The purpose of this paper is to bridge recent improvements in inference using extreme

value theory (EVT) and EEA studies that employ EVT. Thus it focuses on return-level-

based EEA studies such as those using the approach developed within the World

Weather Attribution (WWA) initiative (see worldweatherattribution.org/about), which

performs rapid return-level-based EEA.
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Rapid event attribution usually takes place immediately after an extreme event, es-

pecially one with high economic or societal impact (Lerch et al., 2017). In Risser and

Wehner (2017), changes in the likelihood of extreme rainfall near Houston, Texas, were

analysed in September 2017, a month after Hurricane Harvey struck. Flooding in the

United Kingdom (van Oldenborgh et al., 2015) and in Louisiana (van der Wiel et al.,

2017) triggered immediate forecast evaluation studies for both events. The climate

attribution study for the 2017 heatwave in India (van Oldenborgh et al., 2018) was

conducted within a year.

Protocols for the attribution of extreme climate events have recently been improved

(Philip et al., 2020; van Oldenborgh et al., 2021), but although the motivations for the

choices of a relevant area, timescale, trend and distribution are well-documented,

the question of whether or not to include the “trigger event” that led to the attribu-

tion study is rarely explored. Most recent studies include this event without further

comment (van der Wiel et al., 2017; Risser and Wehner, 2017; Philip et al., 2018), but

some exclude it because of a putative “positive bias” (van Oldenborgh et al., 2018).

Sometimes it is excluded because the analysis takes place so soon after its occurrence

that data are unavailable. An example of this is the study of the 2015 flooding in

Northern England and Southern Scotland (van Oldenborgh et al., 2015) from which

the extreme itself was initially excluded, but which was undertaken again after the

data became available (Otto et al., 2018).

Guidelines for avoiding pitfalls in climate event attribution studies are provided by

van Oldenborgh et al. (2021), who state:

“There has been discussion on whether to include the event under study

in the fit or not. We used not to do this to be conservative, but now realize

that the event can be included if the event definition does not depend on

the extreme event itself.”

Quote 1: Extract from van Oldenborgh et al. (2021) (our emphasis).

There can be confusion in the climate literature between events and realizations

(Quote 1). The “event definition” section of most rapid EEA papers (van der Wiel

et al., 2017; van Oldenborgh et al., 2018) relates to the random variable of concern,

whereas the “extreme event” refers to the specific realization under study. For instance,

in van der Wiel et al. (2017), “event definition” refers to the annual maximum 3-

day precipitation average (a random variable in statistical terms) and the extreme

8



1.1 Introduction

event under study is the 3-day precipitation average of 216.1 mm.day−1 observed in

Livingston, Louisiana, in August 2016 (a realization of the random variable). This raises

three issues: potential for linguistic and hence conceptual confusion, in particular

between random variables and events; the possibility that the random variables

themselves are defined in light of an observed event; and the inclusion or not of the

particular realisation in the data analysis. In this particular case, the event definition

does not depend on the Louisiana level, but the latter is included in the analysis and

thus influences the fitted generalized extreme value distribution. In this paper, we

differentiate between random variables, their realisations and events using standard

notation: realisations of a random variable X are designated by x and we refer to

events using the letter E .

We now focus on the third of the issues just mentioned, namely the inclusion or not

of the trigger event in analysis. Certain discussions of protocols for extreme event

attribution suggest that even if the extreme observation that stimulated the analysis

is excluded from the dataset, the corresponding information can be incorporated by

constraining the tail of the fitted distribution to be heavy enough to ensure that the

return period for that observation is finite:

“We do use the information that [the extreme event] occurred by

demanding that the distribution has a non-zero probability of the

observed event occurring [...]. This primarily affects the uncertainty

estimates [...], which usually have upper bounds.”

Quote 2: Extract from Philip et al. (2020).

We explain below how appropriate statistical methods can account directly for the

trigger event, thus removing any need for constraints of this sort.

Recent work has shown that the upward bias observed when an analysis is performed

immediately after an extreme event may stem from the timing of the analysis, whereas

excluding the trigger event will lead to a downward bias in estimated return levels

(Philip et al., 2020; Barlow et al., 2020). Introducing a stopping rule that appropriately

reflects the timing of the analysis can account for such biases without requiring a

decision to exclude or include the trigger event, though we shall see below that it is

best to exclude it if its return period is to be estimated.

Below we sketch notions of inference using stopping rules, use simulation to compare

9



Chapter 1. Timing and Spatial Selection Bias in Rapid Extreme Event Attribution

different approaches to data analysis and reanalyse examples from the recent litera-

ture on climate event attribution. We also discuss the estimation of return periods

for specific events and the effects of spatial selection, which can occur when the

trigger event might have taken place in any of several time series in related locations.

The extent to which some selection biases influence EEA is well-documented in the

recent literature. The selection of the “trigger event” itself produces a bias, since we

are mainly interested in extreme events that happened and for which an increased

probability due to climate change is expected (Philip et al., 2020; van Oldenborgh

et al., 2021). The bias introduced by reducing the spatial area of interest (Stott et al.,

2004; Hammerling et al., 2019) or the possible weather conditions (Philip et al., 2020;

van Oldenborgh et al., 2021) to those of a specific observed event is also documented

in recent EEA studies. However, to our knowledge, there is no comparable study of

such biases in the literature on climate event attribution.

Sections 1.2 and 1.3 introduce timing and spatial selection biases, and simulation

results are then provided to show how such biases affect return level estimation. Three

fast event attribution studies are then re-analysed, accounting for those selection

biases. The paper closes with some recommendations for future rapid return-level-

based attribution analyses.

1.2 Accounting for timing bias

1.2.1 Preliminaries

We precede our discussion of remedies for timing bias by recalling the cumulative

distribution functions of the generalized extreme value and generalized Pareto distri-

butions, and of the joint cumulative distribution function associated with a logistic

copula in S dimensions, viz

GEV(x) = exp

{
−

(
1+ξx −µ

σ

)−1/ξ

+

}
, −∞< x <∞, (1.1)

GPDu(x) = 1−
(
1+ξx −u

σu

)−1/ξ

+
, x ∈ [u,∞), (1.2)

C (w1, . . . , wS) = exp

[
−

{
S∑

s=1

(− log ws
)1/α

}α]
, 0 < w1, . . . , wS < 1, 0 <α≤ 1, (1.3)
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where a+ = max(a,0) for real numbers a. Expressions (1.1) and (1.2) respectively

provide standard models for block (e.g., annual or seasonal) maxima and for the

exceedances of a high threshold u. Both models depend on a shape parameter ξ that

determines the weight of the distribution tails; the first also depends on location and

scale parameters µ and σ, and the second depends on a scale parameter σu . The

logistic copula (1.3) is a one-parameter dependence model in which the variables

w1, . . . , wS are independent when α= 1 and become totally dependent when α→ 0.

Such a simple dependence model rarely fits real data well, but it is adequate for our

purposes. Below we denote the unknown parameters for each of these expressions

by θ. The development in the univariate case below is closely based on Barlow et al.

(2020). Belzile and Davison (2022) give an alternative derivation of the main results

and investigate improved inference based on them.

1.2.2 Stopping and estimation

When statistical analysis is performed immediately after the occurrence of a trigger

event, the joint probability density of the data should be modified. If for simplicity

we suppose that the successive observations are independent replicates of a random

variable with probability density and distribution functions f and F , and denote the

trigger event by E , at which time the available data are x1, . . . , xT , then the joint density

of the data, conditional on the occurrence of E , is

f (x1, . . . , xT | E ) = Pr(E | x1, . . . , xT ) f (x1, . . . , xT )

Pr(E )
= I (E ∩ {x1, . . . , xT }) f (x1) · · · f (xT )

Pr(E )
,

where the first equality follows from Bayes’ theorem and the second from the assump-

tion that x1, . . . , xT are independent. The indicator function appearing in the last

expression ensures that the joint density equals zero unless the configuration of the

data x1, . . . , xT has led to the the trigger event; it can be dropped below, because we

assume throughout that this is the case. If E occurs at time T , when the data series first

exceeds some pre-determined high level η, for example, then Pr(E ) = F (η)T−1{1−F (η)},

leading to

f (x1, . . . , xT | E ) =
T−1∏
t=1

f (xt )

F (η)
× f (xT )

1−F (η)
, x1, . . . , xT−1 ≤ η< xT . (1.4)

The first T −1 terms on the right-hand side of (1.4) correspond to those observations

that did not exceed η, and the last term to the value xT > η that caused the trigger event.
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The observations x1, . . . , xT−1 are right-truncated at η, whereas xT is left-truncated at

η.

The above formulation assumes that the trigger event is generated by the same physi-

cal mechanisms as earlier data. In some cases this may be untrue, because of changes

in the background climatology or novel conjunctions of circumstances, but in any

case one aspect of attribution analysis is to gauge the appropriate degree of surprise

at the trigger event, and this involves comparison with the past. Moreover if this event

is so unprecedented that relevant data are very limited or even unavailable, statistical

analysis is difficult to justify. We therefore maintain this assumption, though rather

gingerly.

For simplicity above we have suppressed the parameter vector θ on which an expres-

sion such as (1.4) depends, but in applications the conditional density is used to fit

the model, so we henceforth include θ in the notation. Estimation by maximising the

standard log-likelihood function

L STD (θ) =
T∑

t=1
log f (xt ;θ) (1.5)

does not account for the fact that T is determined by the data. A naïve correction

excludes the final observation from the data, giving the ‘exclusion’ log-likelihood

function

L EX (θ) =
T−1∑
t=1

log f (xt ;θ), (1.6)

but although xT itself does not appear here, it influences the fit because it helps to

determine T . Neither (1.5) nor (1.6) allows for the fact that T is random, and, as

mentioned above, fitting using them can be expected to lead to respective under- and

over-estimation of the return period for xT .

Two difficulties in the statistical formulation of the trigger event and its associated

stopping rule is that these are typically only known after this event has occurred

and that the event itself may be somewhat vaguely defined, so entirely watertight

inferences appear unattainable. However, sensitivity analysis based on plausible

stopping rules is certainly feasible, and below we shall see that it can provide useful

insights.

One natural formulation of the stopping rule is to define the trigger event so that the

preceding data are not regarded as particularly unusual. A simple way to do this is
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1.2 Accounting for timing bias

to set T = min{t : xt > ηt }, where η1,η2, . . . is a series of thresholds and xT is the first

observation to exceed the corresponding threshold. Thus xt < ηt for t = 1, . . . ,T −1,

and then xT > ηT . In many cases, ηt might be constant over time, but this is not

essential to the argument. The resulting full conditional log-likelihood function

(Barlow et al., 2020) is a generalisation of expression (1.4),

L COND (θ) =
T∑

t=1
log

{
f (xt ;θ)

F (ηt ;θ)

}
+ log

{
f (xT ;θ)

1−F (ηT ;θ)

}
, (1.7)

which incorporates this stopping rule and thus allows for the timing bias. We do not

consider the partial conditioning approach suggested by Barlow et al. (2020), but by

analogy to L EX (θ) we introduce

L CONDEX (θ) =
T−1∑
t=1

log

{
f (xt ;θ)

F (ηt ;θ)

}
, (1.8)

which excludes the trigger event from L COND. Equations (1.5), (1.6), (1.7) and (1.8)

easily adapt to the non-stationary case by replacing the parameter vector θ by a

time-varying parameter vector θt .

The use of varying thresholds would be natural in many applications, but allowing

them to depend on recent extremes raises computational issues; see the Supplemen-

tary Material.

Analyzing correlated time series to predict return levels in a specific area is common in

climate studies. For example, van der Wiel et al. (2017) selected 19 out of 324 stations in

the state of Louisiana (US), with at least 0.5◦ of spatial separation among those selected,

in order to reduce spatial dependence between time series of annual maximum 3-day

precipitation averages. In van Oldenborgh et al. (2018), maximum annual temperature

return levels for two correlated time series close to Phalodi (India) are derived from

separate event attribution studies. Thus it is useful to extend our discussion above

to the multivariate setting. A simple approach uses a copula to model dependence

among S-dimensional variables x1, . . . , xT , where xt = (xt ,1, . . . , xt ,S) now consists of

observations at S spatial locations that we denote collectively by S . Then the log-

likelihood functions (1.5), (1.6), (1.7) and (1.8) for independent x1, . . . , xT generalise
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to

L STD (θ) =
T∑

t=1
log

[
f (xt ;θ)c {F (xt ;θ);θ}

]
, (1.9)

L EX (θ) =
T−1∑
t=1

log
[

f (xt ;θ)c {F (xt ;θ);θ}
]

, (1.10)

L COND (θ) =
T−1∑
t=1

log

[
f (xt ;θ)c {F (xt ;θ);θ}

C
{
F (ηt ;θ);θ

} ]
+ log

[
f (xT ;θ)c {F (xT ;θ);θ})

1−C
{
F (ηT ;θ);θ

} ]
, (1.11)

L CONDEX (θ) =
T−1∑
t=1

log

[
f (xt ;θ)c {F (xt ;θ);θ}

C
{
F (ηt ;θ);θ

} ]
, (1.12)

where F (xt ;θ) = {
F1

(
xt ,1;θ

)
, . . . ,FS

(
xt ,S ;θ

)}
represents the vector of marginal cumu-

lative distribution functions, f (xt ) =∏S
s=1 fs(xt ,s ;θ) is the product of their marginal

density functions, and C is a copula with uniform margins defined by

P (X1 ≤ x1, . . . , XS ≤ xS ;θ) =C {F (x;θ);θ} (1.13)

with associated density function c(u;θ) = ∂SC (u;θ)/∂u1 · · ·∂uS , with u = (u1, . . . ,uS) ∈
[0,1]S .

1.2.3 Discussion of the stopping rule

In an ideal world the stopping rule would be clearly specified in advance of potential

trigger events by listing circumstances exceptional enough to warrant an attribution

study. In many practical situations, such a task is impossible, too time-consuming

or too restrictive, so attribution analysis is often performed without the clear prior

specification of a trigger event. In many cases contextual information about what

events can be treated as extreme in a specific geographical region can be used to

“guess” the stopping rule and thus to determine terms appearing in equations (1.7)

and (1.8). For example, the authors of the attribution study for the August 2016

Louisiana floods give the following quantitative definition of extreme flooding:

“In places, the 3-day precipitation totals in Louisiana exceeded [. . . ] 3

times the average annual 3-day precipitation maximum”

Quote 3: Extract from van der Wiel et al. (2017).
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1.3 Accounting for spatial selection

If this definition was not influenced by the level recorded in August 2016, then a

flooding event would be considered as extreme when, somewhere in the region, a

3-day average precipitation annual maximum three times bigger than its historical

average was recorded. The data analysed in van der Wiel et al. (2017) involve S = 19

different spatial locations. Assuming that there is no spatial selection, the stopping

rule could be defined as the first time at which one or more of these spatial locations

records a 3-day average precipitation X s
t that exceeds three times the historical annual

average 3-day maximum. If data for the years 1950–2000 are used to compute the

historical average X̄ s at each location s in the set S containing the locations and

stopping can only occur in subsequent years, we might take T to be the first time from

the year 2001 onwards that such an event occurs at one or more locations in S , i.e.,

T = min

{
t ≥ 2001 :

⋃
s∈S

(
X s

t ≥ 3X̄ s)} . (1.14)

In van Oldenborgh et al. (2018), an extreme heatwave is declared when TXx, the annual

maximum daily temperature between May and June, is at least 4 or 5 degrees above

its average for 1981–2010. Equation (1.15) transcribes this contextual vision of an

extreme temperature to a quantitative stopping rule for use in fitting the observed

series, i.e.,

T = min
{

t ≥ 2010 : TXxt −TXx[1981,2010] ≥ 4
}

. (1.15)

When the precise definition of the extreme event is unclear, various plausible stopping

rules could be formulated and used as the basis for sensitivity analyses.

1.3 Accounting for spatial selection

Thus far we have discussed how analysis immediately after a trigger event can influ-

ence the estimation of an underlying extremal probability model and thus affect the

probability and/or return period associated with that event. Bias can also arise when

the trigger event occurs in a single time series that is selected among several related

series, and no allowance is made for the selection. We now give a stylised discussion

of how this affects estimated return periods for the event in question.

Suppose that S independent time series are monitored and that extreme events occur

in the sth series with distribution GEVs(x), where the subscript indicates that the pa-

rameters that determine the distribution depend on the series. Suppose that analysis
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takes place when the largest of the corresponding variables X1, . . . , XS exceeds a given

return level, and that this selection is ignored. Without loss of generality we further

suppose that this largest value occurs in series s = 1, and that its value x1 is associated

with a return period of m years based on the distribution GEV1(x), i.e.,

GEV1(x1) = 1−1/m.

This calculation ignores the fact that corresponding values x2, . . . , xS in time series

2, . . . ,S, each such that GEVs(xs) = 1−1/m, would also have led to the same return

period estimate. Taking the selection into account, the true return period mS is

therefore given by

1−1/mS = Pr(X1 ≤ x1, . . . , XS ≤ xS) =
S∏

s=1
Pr(Xs ≤ xs) = (1−1/m)S ,

i.e.,

mS = {
1− (1−1/m)S}−1

. (1.16)

If S = 1, i.e., there is no selection, then mS = m, and if m is large then mS ≈ m/S:

m-year events will occur S times more frequently in S independent series.

At first sight, these calculations for independent series might appear irrelevant to the

analysis of dependent series. For so-called asymptotically dependent series, however,

and with the same notation, one can write

Pr(X1 ≤ x1, . . . , XS ≤ xS) = (1−1/m)χ = 1−1/mχ, (1.17)

where the so-called extremal coefficient χ satisfies 1 ≤χ≤ S and can be interpreted as

the “number of independent series” contributing to the overall maximum. If X1, . . . , XS

are totally dependent, then χ= 1, and if they are fully independent, then χ= S; see

expression (31.12) of Davison et al. (2019), for example. Asymptotically dependent

models for spatial extremes can be expected to provide reasonable approximations

to phenomena such as maxima of temperature time series at S sites in a relatively

small spatial region, and such models will then provide upper bounds on mS . An

alternative class of models, often found appropriate for phenomena such as rainfall at

spatially separated sites, has the property of asymptotic independence: increasingly

rare observations become closer to independence, i.e., χ. S for very rare events. The

corresponding mS given by (1.16) will then provide a lower bound on the true return

period.
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1.4 Simulation studies

Figure 1.1: Dependence of true return period mχ on naïve return period m when the selection of an
extreme event in one series among χ “equivalent independent” series is ignored. The figures at the right
of the black lines show χ. The red line corresponds to χ≈ 1.43 for the Phalodi analysis in Section 1.5.2.

Figure 1.1 shows how mχ is related to m for various values of χ. Each function is

roughly linear for m ≥ χ, so the approximation mχ ≈ m/χ seems adequate in most

cases.

1.4 Simulation studies

1.4.1 Setup

We now use stochastic simulation of extremal data to compare how fitting based on

the various log-likelihood functions described above affects the estimation of a p-year

return level, i.e., the level expected to be crossed by the variable of interest every p

years, taking p = 200 for illustration. We shall see that not accounting for timing bias

can lead to poor estimation in both univariate and bivariate settings. We also consider

the association of a return period with a specific observation.

Our Monte Carlo settings were chosen to resemble real uses of extreme event attribu-

tion. Many climate variables studied are positive, unbounded and somewhat heavy-

tailed, and their annual maxima are commonly fitted with a generalized extreme-value
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(GEV) distribution. As in Barlow et al. (2020), we defined quantitative stopping rules

using a simulated historical sample of nh = 10 maxima, then generated further inde-

pendent variables from the same GEV distribution, applied different stopping rules,

and used the resulting samples of maxima to estimate the three GEV parameters and

the p-year return level.

For each run, stopping rules in which the chosen thresholds were return levels ητ
for a GEV (see Equation (1.1)) with parameters µ= 0, σ= 1 and ξ=−0.2,0,0.2 with

different return periods τ were applied, giving stopping times

T τ = min
{

t > nh : X t ≥ ητ
}

. (1.18)

The goal was to evaluate the impact of increasing the unlikeliness of the trigger

event on the estimation of the 200-year return level based on the log-likelihood func-

tions (1.5)–(1.8). Fits from 1000 simulated datasets were compared to the true 200-year

return level in terms of the bias and relative root mean squared error (RRMSE). Confi-

dence interval coverage (CIC) and width (CIW) are derived from confidence bounds

for the 200-year return level estimator.

1.4.2 Timing bias with univariate extremes

We first discuss the effect of timing bias when estimating return levels based on a

univariate time series. The results from parameter estimation using the log-likelihood

functions (1.5), (1.6), (1.7), and (1.8) are respectively designated by “Standard”, “Ex-

cluding Extreme”, “Cond. Including Extreme” and “Cond. Excluding Extreme” in the

figures and the text.

Barlow et al. (2020) sampled GEV random variables until they first exceeded a thresh-

old ητ (see Equation (1.18)) or until the maximum sample size N was reached, es-

timated the parameters θ and then estimated the 200-year return level and its 95%

confidence bounds. Their simulation studies result in lower relative bias and root

mean squared error using the full conditional log-likelihood than using the standard

likelihood, whether or not the trigger event is included, with comparable confidence

interval coverage and width; see the Supplementary Material. The relative bias de-

creases when the full conditional log-likelihood includes the extreme event for return

periods of τ≥ 500, but this is due to the imposition of a maximum sample size. As τ

increases, exceedances of ητ become less likely, and when no realization exceeds ητ,
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1.4 Simulation studies

sampling stops when the maximum sample size is reached, and it is inappropriate to

condition the log-likelihood with regard to a stopping rule that has not been applied.

To avoid the aforementioned problem we performed simulations with the sample

size fixed to be nC = 200 and return periods τ exceeding nC −nh , so that the last

event observed is unlikely enough for the stopping rule to make sense. We first

generated a “historical sample” of nh GEV variables, and then, for each return period

τ considered (see Equation (1.18)), we generated nC −nh − 1 GEV variables right-

truncated at ητ, followed by a final GEV variable left-truncated at ητ; these correspond

to the conditional densities appearing in (1.7). We then concatenated the historical

sample, the data under the stopping threshold ητ and the last observation above

ητ to yield a sample of nC observations, of which the only observation to exceed

ητ was the last, provided η lies above all nh historical values. Figure 1.2 shows the

results of this experiment with GEV shape parameter ξ= 0.2. The standard fit shows

an upward relative bias that increases with the size of the trigger event, and the

resulting 200-year return level is less and less reliable (the confidence interval coverage

decreases with τ). The differences between results for the other three log-likelihoods

are smaller, especially for large ητ, partly because the conditioning term has little effect

on Equations (1.8) and (1.7) when F (ητ) ≈ 1. The coverage of two-sided confidence

intervals is most stable for the conditional fits, but this disguises a difference in the

one-tailed errors: the intervals tend to be too short in the upper tail and too long in

the lower tail. There is little to choose between the results using the conditional fits,

though that with all the available information, based on (1.7), seems slightly preferable

for smaller τ.

The corresponding results with ξ= 0 and −0.2 reported in the Supplementary Material

lead to similar conclusions: conditioning while either including (Equation (1.7)) or

excluding (Equation (1.8)) the “trigger” provides less biased 200-year return level

estimates than the standard fit, whether or not the trigger is included in the latter.

However, the coverage of the conditioned fit that includes the “trigger” deteriorates

when ξ=−0.2, and its upper coverage error also significantly increases, as the upper

bound for the 95% confidence interval is under-estimated for negative ξ. In this

case, excluding the trigger without conditioning leads to underestimation of the

upper confidence bound for τ< 1000 and of the lower confidence bound for any τ

considered.
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Figure 1.2: Summary results for the estimation of a 200-year return level based on simulated GEV
random variables with shape parameter 0.2, with stopping thresholds defined from the return periods
τ shown on the x-axis as in Equation (1.18). The relative bias and mean squared error are shown in
Panels a and b, and coverage of 95% confidence intervals and their average widths are shown in Panels c
and d. Panels e and f represent the upper and lower coverage errors. The time series are generated so
that the first exceedance of the stopping threshold occurs at a specified time.

1.4.3 Timing bias with correlated extremes

We now investigate the impact of timing bias in a bivariate setting. The univariate fit

for the variable of interest is labelled “Independent”, while fits using the log-likelihood

functions (1.9), (1.10), (1.11), and (1.12) are respectively labelled “Including Extreme”,

“Excluding Extreme”, “Cond. Including Extreme” and “Cond. Excluding Extreme”.

We suppose that the stopping rule is applied to one variable but the other is merely

part of the analysis. This situation can arise when, for instance, a location s1 is very

close to that of the trigger event, but its time series for the variable of interest lacks the

data for that event itself. Often a more complete time series is available, and though

its location s2 lies further from that of the trigger event, it can serve as a monitoring

reference for data at s1. If there is strong dependence between time series at the two

locations, then observation of an extreme event at s2 may aid in event attribution for

an extreme at s1.
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1.4 Simulation studies

To explore this setting we generated replicates of two GEV variables X and Y with

shape parameters 0.2 and dependence given by the logistic copula (1.3) with its

parameter α= 0.5 taken to be known. The maximum sample size was set to N , as in

Barlow et al. (2020), and the univariate stopping rule of Equation (1.18) was applied to

Y : sampling of both series stopped when Y ≥ ητ for some return period τ. Although

the stopping rule is applied only to Y , it influences the estimation of quantiles of X

because the series are dependent. For every return period considered, the marginal

distributions of X and Y were estimated from the time series stopped at T τ, say, using

the log-likelihood functions (1.9)–(1.12). The cumulative distribution function for

Y is denoted by FY . In Equations (1.11) and (1.12), the bivariate conditional terms

C
{
F (ηt ;θ)

}
for t ≤ T τ and 1−C

{
F (ηT τ)

}
are respectively replaced by FY (ητ;θ) and

1−FY (ητ;θ). Finally, the 200-year return level for X and its confidence bounds were

derived and the summaries used in the univariate case were computed. The standard

univariate fit for X from Equation (1.5) was used as a benchmark.

When α= 0.5, the probability that X is extreme given that Y is extreme can be shown

to equal 2−2α ' 0.59. This leads to the following two cases:

A . both X and Y are extreme when the trigger event occurs. In this case, we expect

the return levels of X to be overestimated when fitting the time series for X

assuming X and Y are independent, like in the standard univariate case. The

corresponding simulation results, displayed in Figure 1.3, suggest that for every

stopping threshold ητ the relative bias and root mean squared error from the

full conditional fit are much lower than for other fits, while confidence intervals

have similar coverages and widths. Upper and lower coverage errors are very

similar across methods accounting for the dependence between the series

(Figure 1.3e and f), though for high stopping thresholds, excluding the trigger

with the appropriate conditioning provides the closest upper coverage error to

the nominal rate, i.e., the most reliable upper confidence limit for the 200-year

return level, while other methods tend to underestimate the upper confidence

bound (Figure 1.3e);

B. X is not extreme when the trigger event occurs, and we then expect the uni-

variate fit for X to underestimate the return levels for X . Indeed, realizations of

X sampled until the trigger event will tend to be low because they are related

to those of Y , which lie below ητ until sampling stops. Figure 1.4 shows very

reduced relative bias and RRMSE with conditioned bivariate fits, both including
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Figure 1.3: Summary results for simulated bivariate extremes, case A : X is also extreme when Y is
stopped. Simulations of two correlated random variables X and Y following a logistic (α= 0.5) copula
with GEV (µ= 0,σ= 1,ξ= 0.2) margins. The stopping rule is defined for Y as the return level of period
τ as in Equation (1.18). The return periods τ are shown on the x-axis. The relative bias and relative
mean squared error from the theoretical 200-year return level for X are shown in Panels a and b, and
99% confidence interval coverage and width are shown in Panels c and d. Panels e and f represent the
upper and lower coverage errors.

and excluding the extreme at s2, compared with the independent fit for X , which

strongly underestimates the 200-year return level at s1, and with the standard

fit including the extreme event, which gives positively biased estimators of the

200-year return level. Excluding the extreme leads to slight downward bias of

the estimated return level for X for every stopping threshold τ considered. Of

all methods, excluding the trigger with the appropriate conditioning provides

the upper coverage error closest to the nominal error rate, especially for high

stopping thresholds (Figure 1.4e).

The figures show how both cases affect the return level estimates. The improvement

due to accounting for the timing bias is much clearer in case A , but case B better

illustrates the situation in which the data are incomplete at the location of interest s1

but the trigger event is seen only at s2.
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1.4 Simulation studies

Figure 1.4: Summary results for bivariate extremes, case B: X is not extreme when Y is stopped. The
simulation setup and stopping rule are the same as in Figure 1.3. The relative bias and relative mean
squared error from the theoretical 200-year return level for X are shown in Panels a and b, and the 99%
confidence interval coverage and width are shown in Panels c and d. Panels e and f represent the upper
and lower coverage errors.

1.4.4 Bias in return period estimation

Fits of extreme-value models can be highly sensitive to the largest or smallest obser-

vations in a sample (Davison and Smith, 1990), so it is natural to wonder whether

estimated return periods for particular observations corresponding to rare events

might be biased. For concreteness, suppose that the generalized extreme-value dis-

tribution (1.1) has been fitted to a sample whose largest value is Xmax and that the

return period of Xmax is to be estimated from the fit. The fitted distribution is �GEV(x),

so the true return period M and its estimate M̂ may be written as

M = {1−GEV(Xmax)}−1 , M̂ = {
1−�GEV(Xmax)

}−1
.

The observation Xmax is often described as an “M-year event”, but this term applies

in relation to GEV(x). In practice the estimate �GEV(x) is often based on data that

include Xmax, and the latter may strongly influence the estimated distribution. It
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seems plausible that M̂ < M if Xmax is included in the fit, and that M̂ > M if not. The

situation here differs from those in previous sections, which concerned the estimation

of a return level, i.e., a parameter of the distribution, as the return period M depends

on Xmax and thus is itself random. To investigate the relation between M and M̂ we

performed a further simulation study, which we now describe.

We generated 1000 independent datasets using a simplification of the approach de-

scribed in Section 1.4.1, by simulating nC −1 observations from (1.1) right-truncated

at a fixed threshold η, supplemented by a final observation with return period m. In

order to measure the bias as accurately as possible, this final observation is deter-

mined by the equation GEV(x) = 1−1/m and thus is fixed. For each such dataset

we computed return period estimates m̂ using fitted distributions �GEV(x) found us-

ing the log-likelihood functions (1.5)–(1.8). This process was repeated for different

configurations of values of nC , η and m, with shape parameter ξ= 0.2 throughout.

Figure 1.5 shows boxplots of the resulting ratios m̂/m. The results are extremely

variable, with many simulated datasets in which m̂ À m, but some patterns emerge.

When GEV is based on the standard log-likelihood and the largest observation is

included, we tend to see m̂ < m, especially when the effect of not allowing for the right-

truncation is reinforced by increasing nC ; m̂ is systematically too large when the largest

observation is excluded. The situation is more variable with the conditional likelihood,

which gives the most consistent results when the largest observation is excluded. In

itself this is not surprising, as use of log-likelihood (1.8) is then appropriate and the

fitted distribution is independent of the largest observation; thus in this case we expect

that m̂/m → 1 as nC increases, but clearly such convergence is unlikely to be visible

for values of nC seen in applications. Perhaps the most striking feature of the results

is that m̂/m is very variable and/or systematically biased in all cases: an event with

m = 1000, say, might easily have m̂ anywhere in the range 250 to 4000. This suggests

that extreme caution is required when attributing return periods to particular events;

indeed, this should not be attempted without a statement of uncertainty.
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Figure 1.5: Ratios of estimated and true return periods m̂/m for various fits to samples of size nC ,
with threshold η and true return period m, with parameters estimated from standard and conditional
log-likelihoods including and excluding the largest value, labeled Std, Ex, Cond and CondEx. From top
in each block of boxes: (η,m,nC ) = (100,200,50), (100,200,80), (150,200,50), (150,200,80), (200,400,50),
(200,400,100), (200,1000,50), (200,1000,100).

1.5 Real data analyses

1.5.1 1999 flooding in Vargas state, Venezuela

We now consider an extreme flooding event in the Venezuelan state of Vargas in

December 1999. According to Méndez et al. (2015), the form of the San Julián basin

implies that major rainfall events are extremely rare in this area, but when they do

happen the consequences can be very serious. Indeed, these authors observe that

this basin has a very wide range of slopes, provoking increased erosion over time

and that its small area (20.68 km2) implies rapid concentration of surface runoff, so

water can very quickly arrive in residential zones. In December 1999, such flooding,

combined with a landslide, massive debris transportation and poor infrastructure,

caused disastrous damage in the Caraballeda area.

To predict the likelihood of such an event, we estimate return levels for daily maxi-

mum hourly precipitation (mm) in Vargas from 1961 to 1999. The San Julián basin

is not subject to much seasonality (Méndez et al., 2015), and no long-term trend is

perceptible in these data.

We use a generalized Pareto distribution (1.2) to model daily rainfall amounts over

u = 12 mm, a choice of threshold justified in the Supplementary Material using the

approaches of Northrop and Coleman (2014) and Varty et al. (2021). Let ηp be defined
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Figure 1.6: Vargas data analysis. Estimated p-year return level ηp (see Equation (1.19)) and its 95%
confidence interval (dashed lines) from a GPD fit. The x-axis shows the return period p (years). Panel a)
shows standard and conditioned fits when the trigger event is included (see equations (1.5) and (1.7)),
and Panel b) shows results from standard and conditioned fits when it is excluded (see equations (1.6)
and (1.8)). Vertical dotted lines show the estimated return periods for the event in Vargas in December
1999.

such that

P(X > ηp ) = 1

pλ
, (1.19)

where λ is the average number of exceedances per year, so pλ is the average number

in a p-year period. This allows us to interpret the GPD quantile ηp as the p-year return

level.

The stopping rule here is ill-defined, so for illustration we took the trigger event to be

the first crossing of the historical 100-year return level computed using the first two

decades of data. The standard and conditioned fits with and without the extremes

from December 1999 are displayed in Figure 1.6. When the trigger event is included,

the return time for the 1999 event is 464 (95% CI [352, 647]) years for the standard log-

likelihood fit but 882 [597, 1447] for the full conditional log-likelihood fit (Figure 1.6a).

The standard fit changes considerably when the trigger event is excluded, and the

return period for the Vargas 1999 event is multiplied by 2.6 to become 1207 [766, 2182]

years, but the full conditional results change little except for the upper confidence

bound, which increases faster with the return period (Figure 1.6b). The uncertainty

range for every return period computed is very wide.

An alternative analysis fits the GEV distribution to the annual maxima of daily pre-

cipitation values using the same stopping rule. There are fewer annual maxima than

exceedances of 12 mm, so each has a larger influence on the fitted model, as we see in

Figure 1.7, where the standard fit including the extreme event has a heavier upper tail
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Figure 1.7: Vargas data analysis. Estimated p-year event ηp using a GEV fit. The x-axis represents
the return period in years p. Marks represent the estimated p-year event, vertical bars denote 95%
likelihood-based confidence intervals. Different colors represent results from different fits.

than the other fits. The return level for the 1999 extreme event using a GEV fit is com-

parable to using a GPD fit when the likelihood is conditioned, but the unconditioned

GEV fit predicts a 250-year return level for the Vargas event, around 200 years shorter

than the prediction using a GPD; see Coles and Pericchi (2003), Coles et al. (2003) and

the Supplementary Material.

Return levels and return periods for a flood as extreme as the trigger estimated with a

conditioned likelihood that includes the trigger event are quite different from their un-

conditioned analog, especially using a block maxima approach. Return level estimates

based on the usual likelihood including and excluding the extreme event are very

different, whereas inferences based on the conditional likelihoods with or without the

trigger event are more stable.

1.5.2 2016 heatwave in Phalodi, India

The importance of accounting for timing bias can be seen by reconsidering the attri-

bution analysis for the 2016 heatwave in Phalodi, India, which had disastrous public

health consequences. Data sources and methods are detailed in van Oldenborgh et al.

(2018), though here we compute likelihood-based confidence intervals rather than use

a bootstrap. The Phalodi series is not available in the GHCN-D dataset, but sufficiently

complete annual maximum temperature time series are available at two nearby sta-

tions, Jodhpur and Bikaner, and we analyse these as a proxy for data at Phalodi. Our

findings for a standard fit of the Jodhpur series with a time-related trend, shown in

Figure 1.8, are similar to those in van Oldenborgh et al. (2018). The location parameter
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of the fitted GEV distribution slightly decreases over time (Figure 1.8a) and a risk ratio

(see Naveau et al., 2020, for a definition) of 0.511 is found for the occurrence of the trig-

ger event in 2016 relative to 1973 (Figure 1.8b). The heterogeneity in the Jodhpur time

series could make the slightly negative trend in the location parameter very sensitive

to the three observations between 1940 and 1960 (Figure 1.8a). However, our aim is to

reproduce as closely as possible the work of van Oldenborgh et al. (2018) in order to

compare findings when accounting or not for timing and spatial selection bias. When

fitting the Jodhpur time series with the fully conditioned log-likelihood (1.7) and a

trend in the location parameter, the estimated risk ratio decreases from 0.511 to 0.4.

Return periods for the heatwave as in 1973 and 2016 are given in Figure 1.8b for the

standard fit and in Figure 1.8c for the conditioned fit, although they are very uncertain.

The return period for a similar heatwave with the standard fit is 26 (95% CI [14, 150])

years in 1973 and 51 [26, 91] years in 2016. Conditioning slightly increases both return

periods and the width of the 95% confidence interval, to reach respectively 32 [15,

302] and 80 [31, 147] years in 1973 and 2016.

Our analysis was performed in two steps, using the fact that the temperature time

series at Jodhpur is more complete than that at Bikaner and contains the 2016 extreme

event (van Oldenborgh et al., 2018), whereas Bikaner is closer to Phalodi. The stopping

rule is defined as in Equation (1.15). The first step was an extremal analysis using only

the Jodhpur series of annual temperature maxima, TXx. The return levels estimated

from univariate fits based on (1.5)–(1.8) are shown in Figure 1.9. Those obtained using

the standard likelihood (1.5) and including the trigger event are higher than for the

other fits, with much higher upper confidence limits. To illustrate how allowing for

timing bias can stabilise estimation, we extend the Jodhpur time series with later

data and recompute return levels using standard and conditional likelihoods. The

latter involves conditioning up to the trigger event year, while standard likelihood

contributions are used for data after 2016. The full conditional fits before 2016 use

the log-likelihood function (1.8), since the stopping rule has not yet been applied.

Figure 1.10 shows that using the standard log likelihood (1.5) results in a jump in the

predicted return levels after the extreme 2016 heatwave, followed by a slow decrease,

whereas those from the conditional fits are more stable.

In a second step, we attempt to estimate the return level in Bikaner, where the extreme

is not directly observed, by using a logistic copula (1.3) to model the dependence

between the annual maximum temperatures there and at Jodhpur. Figure 1.18 of the

Supplementary Material compares contours of the fitted joint density and cumulative
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Figure 1.8: Phalodi heatwave analysis. Panel a) shows the estimated location parameter µ̂t of the GEV
fit (red line) for annual temperature maxima (blue points) at Jodhpur for 1944–2016. The vertical red
lines show 95% profile likelihood confidence bounds for µt in 1973 and 2016, and the thin red lines
denote µ̂t + σ̂ and µ̂t +2σ̂, where σ̂ is the estimated scale parameter. Panel b) displays return level
estimates for 1973 (solid blue) and 2016 (solid red) and their 95% confidence intervals (dotted). The
observations are shown twice, scaled with the time-related trend (blue and red points). The golden
horizontal line represents the extreme temperature observed in Jodhpur in 2016 (48.8◦C ), which which
return periods in 1973 (blue) and 2016 (red) are shown by vertical dotted lines. Panel c) reproduces
plots from Panel b using the COND log-likelihood (1.7).

Figure 1.9: Phalodi heatwave analysis. Estimated p-year event ηp using GEV fits. The x-axis represents
the return period in years. Marks represent the estimated p-year event, for p = 200,400, . . . ,2000, and
vertical bars denote 66% likelihood-based confidence intervals.

distribution functions with the maxima.

A stopping rule for the Jodhpur series is then defined using the principle described

in Section 1.4. The parameter α for the logistic copula (1.3), assumed constant, is

estimated. Figure 1.11 shows how the estimated return levels in Bikaner change over

time. Assuming independent data yields lower return level estimates, while using

the dependence with the Jodhpur series to incorporate the extreme event into the

prediction is stable over time only when the full conditional likelihood is used, as the

jump seen in 2016 in the Jodhpur series in Figure 1.10 is also visible in the Bikaner

return levels estimated with the standard likelihood; see Figure 1.11.

The analysis of the Jodhpur TXx series shows that not accounting for timing bias leads
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Figure 1.10: Phalodi heatwave analysis. Estimated return levels and their 66% confidence intervals
(vertical lines finishing with ticks) with the standard and conditioned univariate fits for three return
periods for 2011–2021 for TXx in Jodhpur. The horizontal black line indicates the extreme observed in
Jodhpur in 2016 (48.8◦C ).

Figure 1.11: Phalodi heatwave analysis. Estimated return levels with an independent standard fit
(golden line) and with the standard (navy) and conditioned (salmon) fit with a logistic correlation
structure for three return periods throughout the 2011-2021 period for TXx in Bikaner.

to a jump in return level estimates that dissipates slowly for several years after a trigger

event, whereas appropriate conditioning avoids this. For bivariate time series, using

even a very basic correlation model instead of assuming independence has a huge

impact on return level estimates, and accounting for timing bias prevents the bias

transfer in return level estimation from the stopped series to the nearby series.

We now discuss the impact of spatial selection (Section 1.3). The logistic copula (1.3)

has χ= Sα, and if we assume that we would have performed a similar analysis had

an equally extreme event been observed in 2016 at Bikaner rather than at Jodhpur,

then S = 2 and χ̂ = Sα̂ ≈ 1.43. This lies between χ = 1, which would correspond

to total dependence between extremes at Bikaner and Jodhpur, and χ = 2, which

would correspond to independence. Under this argument the return period of 51

years found in Figure 1.8 for the event at Jodhpur, with this location specified before
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Figure 1.12: Portland heatwave analysis. Panel a) shows the location parameter µ̂t of the GEV fit (red
line) to annual temperature maxima (blue points) at Portland for 1938–2021, with 95% profile likelihood
confidence bounds (vertical red lines). The thin red lines denote µ̂t + σ̂ and µ̂t + σ̂, where σ̂ is the
estimated scale parameter. Panel b) displays return level estimates for the years 1951 (solid blue) and
2021 (solid red) and their 95% profile likelihood confidence intervals (dotted). The observations are
shown twice, scaled with the time-related trend (blue and red points). The golden horizontal line
represents the extreme temperature observed in Portland in 2021 (46.7◦C). The return period estimate
for this event in 1951 (blue) is shown by a vertical dotted line.

the event occurred, reduces to around 36 years for such an event at one of the two

locations, using either the exact formula mχ = 1/
{
1− (1−1/m)χ

}
given by (1.17) or

the approximation mχ ≈ m/χ.

1.5.3 2021 heatwave in the Pacific Northwest

Our third re-analysis concerns the unprecedented “heat dome” event in the United

States and Canada in June 2021, which led to wildfires that resulted in the inhabitants

of the Canadian town of Lytton becoming climate refugees within a couple of days.

We use the Portland International Airport series of observed daily temperatures from

the GHCN-D dataset to reproduce part of the attribution study of Philip et al. (2022),

wherein data sources and methods are detailed, though we compute likelihood-based

confidence intervals rather than use a bootstrap. The chosen stopping rule is the same

as in the Phalodi case study; see (1.15). An increasing trend in the location parameter

as a function of the global temperature anomaly (data from NASA-GISS) found in

Philip et al. (2022) is shown in Figure 1.12a, and Figure 1.12b shows return levels using

the standard log-likelihood and their 95% confidence intervals. The return period for

the 2021 event is displayed in Figure 1.12b, though the prediction is very uncertain

(95% confidence bounds are available in Table 1.1).
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Table 1.1 shows how timing bias affects risk ratio estimation. The historical and current

probabilities of crossing the previous TXx record of 41.7◦C and its confidence interval

are computed by fixing the location parameter of the GEV to the historical/current

value for the linear trend in the global temperature anomaly, which is the approach of

the WWA (Hammerling et al., 2019). We then parametrize the GEV in terms of the prob-

ability of exceeding this level and fit using the different log-likelihoods. Confidence

intervals for the risk ratio were obtained using the delta method on its logarithm; see

the Supplementary Material. A similar computation applies to the return period for

the 2021 Portland event, with the GEV parametrized in terms of its return period and

confidence intervals obtained using the profile likelihood.

Including the extreme event without conditioning yields a much shorter return period

for the 2021 Portland temperature of 46.7◦ than when using conditioning, but the

latter somewhat increases the risk ratio (Table 1.1); note that the confidence intervals

for the risk ratio based on the standard and conditional fits do not overlap. Excluding

the trigger event makes it impossible to estimate its return period, and the estimated

risk ratio is less than half that computed by including this event; the same applies for

conditional analysis without the trigger event.

Table 1.1: Comparison of estimated risk ratios p1/p0 and current return periods for the extreme
2021 temperature P (TXx2021 > 46.7◦C) for different log-likelihoods used to fit the Portland TXx series.
The factual probability is defined as p1 = P (TXx2021 > u) and the counterfactual (or pre-industrial)
probability as p0 =P (TXx1951 > u) for an extreme threshold u, here taken to be the previous record of
41.7◦C. Also given are 95% confidence intervals for the risk ratio and the return period for the 2021
event.

Risk ratio Return period for Portland 2021 (years)
Standard 3.31 [3.20,3.44] 736 [147,5744]
Excluding 1.41 [0.94,2.10] ∞ [∞,∞]
Cond 3.77 [3.68,3.86] 1830 [183,16987]
CondEx 1.51 [1.06,2.14] ∞ [∞,∞]

1.6 Discussion

Our results in Sections 1.4.2 and 1.4.3 imply that in both univariate and bivariate

settings it is generally better to exclude the trigger event if a conditioned fit is not used.

In the univariate simulation framework with fixed sample size, the relative bias and

relative root mean squared error reduce for τ≥ 80 if the trigger is excluded (Figure 1.2).

Fitting using a conditional log-likelihood always gives less biased return level esti-
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mates, even if the trigger event is not very extreme: simulations for both univariate and

bivariate data show much lower bias using the conditioned log-likelihood function

for τ ≤ 200, and it is increasingly important to use an appropriate likelihood when

the trigger event becomes more extreme (see the results for τ> 500 in Section 1.4).

Table 1.1 suggests that although it depends heavily on the trigger event, the estimated

risk ratio is much more stable, presumably because it contrasts two probabilities that

are typically positively correlated; the same can be expected for functions of the risk

ratio, such as the fraction of attributable risk.

The results of Section 1.4.4 suggest that attributing a return period to a specific obser-

vation should if possible be avoided, but if this is essential then the observation itself

should be excluded from the fit, which should be performed using a conditional log-

likelihood; an uncertainty statement should be included. In any case, the ratio of the

estimated and true return periods for a single large observation is extremely uncertain.

When the estimated shape parameter ξ̂ of the extremal distribution is negative, as

often arises for temperature data (see Sections 1.5.2 and 1.5.3), the return periods for

certain future events may be infinite (see Table 1.1). This highlights another limitation

of the statistical method: when ξ̂< 0, excluding the trigger event may make this event

effectively impossible. Including the extreme event is then preferable to excluding

it, and applying appropriate conditioning will provide roughly unbiased (but very

variable) results.

We now summarise the issues that our work raises for the choice of the statistical

model for event attribution under an implicit stopping rule.

1. Potential timing bias may be suggested by time series in which the last value is

rather unusual.

2. The stopping rule may be difficult to formulate precisely: if obtaining a suitable

quantitative definition of an extreme event is impossible, it will be necessary

to assemble contextual evidence about what is seen as extreme in the given

context and to use that to guess a stopping rule for use in sensitivity analyses.

3. Accounting for timing bias by fitting the data with a conditional log-likelihood

is generally desirable, but if for some reason a standard log likelihood must be

used, then it is better to exclude the trigger event.

4. A multivariate extremal model allows the analyst to assess the potential effects

of spatial selection in the analysis of several related series.
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5. Return period estimation for the trigger event can be biased and very uncertain

and thus should be avoided, but if it is required then some indication of its

uncertainty is essential.

Further work could explore sensitivity analysis on a set of plausible stopping rules

with varying thresholds and historical sample sizes. This paper concerns EEA studies

that use observations in combination with possibly non-stationary extreme value

distributions to estimate return levels, and our simulation studies and examples are

specific to the timing bias problem using extreme value models. However, the general

framework described in Section 1.2 could be used for conditioning any type of event

with any distribution. Although conceptually straightforward, numerical aspects

may become problematic when the computing the probability of the stopping event

is complex; see the Supplementary Material. Further work could address selection

biases relevant to other EEA methodologies.

1.7 Conclusion

Existing work on overcoming timing or spatial selection bias in extreme-value statistics

has implications for return-level-based extreme event attribution analysis. Indeed,

when such a bias exists, not taking it into account in the event attribution can lead to

poor, unstable, return level estimates, seriously biased estimates of return periods for

extreme observations, and hence to potentially misleading conclusions. Conditioning

of the likelihood term uses contextual information more appropriately and hence

leads to more reliable findings.

1.8 Data statement

The simulations and real case studies in Vargas, Phalodi, and Portland are imple-

mented in Python code available on GitHub (https://github.com/OpheliaMiralles/timing–

bias–extremes). The open-source package pykelihood was used for implementation

of inference using stopping rule (https://github.com/OpheliaMiralles/pykelihood). A

pipeline for downloading and processing the Phalodi data can be found in the same

GitHub repository. Daily maximum temperatures were obtained from the NOAA pub-

licly accessible dataset. The Vargas precipitation data may be found in the R package

mev.
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1.9 Supplementary material

1.9.1 Data-dependent thresholds

Suppose that X1, . . . , XT are independent with common density and distribution func-

tions f and F , that a series of varying thresholds η1, . . . ,ηT is used, and let At de-

note the event X t ≤ ηt (t = 1, . . . ,T ). Then the stopping event E can be expressed as

A1 ∩·· ·∩AT−1 ∩A c
T , with A c

T the complement of AT , and thus

Pr(E ) = Pr(A1)×
T−1∏
t=2

Pr(At |A1 ∩·· ·∩At−1)×Pr(A c
T |A1 ∩·· ·∩AT−1). (1.20)

If the events A1, . . . ,AT are independent, then this expression reduces to

Pr(E ) =
T−1∏
t=1

Pr(At )×Pr(A c
T ),

and the conditional log-likelihood of x1, . . . , xT given E is then (1.7). This simplification

applies if the ηt do not depend on previous values x1, . . . , xt−1, but are estimated from

unrelated data, for instance if the ηt vary seasonally according to a time series model

fitted to the bulk of the available observations. If on the other hand the events At are

dependent, as would be the case if the ηt ≡ ηt (X1, . . . , X t−1) depend on recent extremes,

then the more general expression (1.20) should in principle be used. Consider Pr(A2 |
A1), for example, which equals∫ η1

−∞
Pr{X2 ≤ η2(x1) | X1 = x1}{ f (x1)/F (η1)}dx1 = F (η1)−1

∫ η1

−∞
F {η2(x1)} f (x1)dx1;

more complex expressions apply for further terms.

When the η depend on recent extremes it is tempting to replace the T -dimensional

integral in (1.20) by

Pr(A1)×
T−1∏
t=2

Pr(At | X1 = x1, . . . , X t−1 = xt−1)×Pr(A c
T | X1 = x1, . . . , XT−1 = xT−1),

and thus replace Pr(E ) by

F (η1)×
T−1∏
t=2

F {ηt (x1, . . . , xt−1)}× [
1−F {ηT (x1, . . . , xT−1)}

]
.

35



Chapter 1. Timing and Spatial Selection Bias in Rapid Extreme Event Attribution

The consequences for the estimation of the parameter vector θ from the resulting

approximate conditional log-likelihood are unknown.

1.9.2 Further simulation results

Figure 1.13 gives further simulation results that reproduce those in Barlow et al. (2020),

in which the sampling stops at random times, rather than at a fixed time as in the

present paper.

Figure 1.13: Summary results for the estimation of a 200-year return level based on simulated GEV
random variables with shape parameter 0.2, with stopping thresholds defined from the return periods
τ shown on the x-axis as in Equation (1.18). The relative bias and mean squared error are shown in
Panels a and b, and coverage of 95% confidence intervals and their average widths are shown in Panels c
and d. Panels e and f represent the upper and lower coverage errors. Here the time series stops at a
maximum sample size of N = 800.

As a complement to Figure 1.2 of the paper, Figures 1.14 and 1.15 give simulation

results for truncated sampling with shape parameters ξ= 0 and ξ=−0.2.
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Figure 1.14: Summary results for the estimation of a 200-year return level based on simulated GEV
random variables with shape parameter ξ= 0, with stopping thresholds defined from the return periods
τ shown on the x-axis as in Equation (1.18). The relative bias and mean squared error are shown in
Panels a and b, and coverage of 95% confidence intervals and their average widths are shown in Panels c
and d. Panels e and f represent the upper and lower coverage errors. In this situation, the time series is
generated so that the first exceedance of the stopping threshold occurs at a specified time.

1.9.3 Supplementary material related to case studies

Additional figures for the Vargas and Phalodi analyses

Figure 1.16 and Figure 1.17 supplement the study of the 1999 Vargas event (Sec-

tion 1.5.1), respectively by summarising methods used to select the threshold for

the GPD and by providing similar analysis results than in Figure 1.6 fitting a GEV

distribution to annual maxima. Figure 1.18 provides a visual representation of the

bivariate fit used in Section 1.5.2 for the study of the Indian heatwave.
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Figure 1.15: Summary results for the estimation of a 200-year return level based on simulated GEV
random variables with negative shape parameter −0.2. See the caption to Figure 1.14.

Figure 1.16: Vargas data analysis. Threshold selection: a) graphical threshold selection (Northrop and
Coleman, 2014) for daily precipitation maxima between 1961 and 1999, based on thresholds 5, 8, . . . ,
20, 23. b) Goodness-of-fit based threshold selection (Varty et al., 2021); the left-hand panel shows
the dQ distances for different thresholds, with the optimal threshold shown by a vertical bar and the
right-hand panel shows a QQ-plot comparing the data above the optimal threshold and the fitted
generalized Pareto distribution.
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Figure 1.17: Vargas data analysis. Estimated p-year event ηp (see Equation (1.19)) and its 95% con-
fidence interval (dashed lines) using a GEV fit. The x-axis represents the return period in years p.
Different colors are used to represent different conditioning methods: Panel a) shows standard and
conditioned fits for series that include the extreme event (see equations (1.5) and (1.7)), while Panel b)
shows standard and conditioned fits for series that exclude the extreme event (see equations (1.6)
and (1.8)). Vertical dotted lines show the return period for the extreme event in Vargas in December
1999.

Figure 1.18: Phalodi heatwave analysis. Panel a) shows the density contour for the fitted joint logistic
copula (α̂= 0.52) of the Jodhpur and Bikaner time series. Panel b) shows the joint cumulative distri-
bution function, comparing an independent fit (dashed lines) and the logistic copula fit (thick lines).
Data are represented by black marks.
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Delta method for the Pacific Northwest heat dome event

To compute the confidence intervals for the risk ratio given in Table 1.1, we write the

log risk ratio estimator as

log p̂1 − log p̂0,

where the circumflexes indicate maximum likelihood estimators. This difference has

variance

Var(log p̂1)+Var(log p̂0)−2Cov(log p̂1, log p̂0).

In general p̂1 = p1(θ̂), where θ denotes the parameters, so the chain rule and an

application of the delta method give

Var(log p̂1) = Var{log p1(θ̂)} = (∇p1)T C (∇p1)/p2
1,

where C denotes the covariance matrix of θ̂ and ∇p1 = ∂p1(θ)/∂θ is the gradient vector

for p1 with respect to θ. A similar expression holds for log p̂0, and in the same notation

we have

Cov(log p̂1, log p̂0) ≈ (∇p1)T C (∇p0)/(p0p1).

In this specific case an annual temperature maximum TXx series is fitted by a GEV with

a trend µ= a+bg in the location parameter, where g is the global annual temperature

anomaly. Estimates for p0 and p1 are derived from GEV distributions with location

parameter fixed to the fitted location parameters in 1951, â + b̂g0, and in 2021, â +
b̂g1. Hence θ = (a,b,σ,ξ), and the estimate θ̂ and covariance matrix C ≈ Cov(θ̂) are

provided by the maximum likelihood fit to the data, while ∇p1 contains the derivatives

of p1 = 1−{1+ξ(u−a−bg1)/σ}−1/ξ with respect to the components of θ, and similarly

for ∇p0.

The variance of log p̂1 − log p̂0 is obtained by putting the above terms together, all

evaluated at the maximum likelihood estimates. A confidence interval for log p1 −
log p0, obtained using a normal approximation, is then exponentiated to provide the

corresponding interval for p1/p0.
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Chapter 2. Downscaling of Historical Wind Fields over Switzerland using
Generative Adversarial Networks

Abstract

Near-surface wind is difficult to estimate using global numerical weather and climate

models, as airflow is strongly modified by underlying topography, especially that of

a country such as Switzerland. In this article, we use a statistical approach based on

deep learning and a high-resolution Digital Elevation Model to spatially downscale

hourly near-surface wind fields at coarse resolution from ERA5 reanalysis from their

original 25 km to a 1.1 km grid. A 1.1 km resolution wind dataset for 2016–2020 from the

operational numerical weather prediction model COSMO-1 of the national weather

service, MeteoSwiss, is used to train and validate our model, a generative adversarial

network (GAN) with gradient penalized Wasserstein loss aided by transfer learning.

The results are realistic-looking high-resolution historical maps of gridded hourly

wind fields over Switzerland and very good and robust predictions of the aggregated

wind speed distribution. Regionally averaged image-specific metrics show a clear

improvement in prediction compared to ERA5, with skill measures generally better for

locations over the flatter Swiss Plateau than for Alpine regions. The downscaled wind

fields demonstrate higher-resolution, physically plausible orographic effects, such as

ridge acceleration and sheltering, which are not resolved in the original ERA5 fields.

2.1 Statement of interest

Statistical downscaling, which increases the resolution of atmospheric fields, is widely

used to refine the outputs of global reanalysis and climate models, most commonly

for temperature and precipitation. Near-surface winds are strongly modified by the

underlying topography, generating local flow conditions that can be very difficult

to estimate. This study develops a deep learning model that uses local topographic

information to spatially downscale hourly near-surface winds from their original

25 km resolution to a 1.1 km grid over Switzerland. Our model produces realistic

high-resolution gridded wind fields with expected orographic effects but performs

better in flatter regions than in mountains. These downscaled fields are useful for

impact assessment and decision-making in regions where global reanalysis data at

coarse resolution may be the only products available.
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2.2 Introduction

Near-surface wind fields are of interest in applications such as wind energy projects

(Emeis, 2014; Staffell and Pfenninger, 2016; Dujardin et al., 2021), risk and damage

assessment for intense windstorms (Schwierz et al., 2010; Stucki et al., 2014; Welker

et al., 2016; Stucki et al., 2016), snow distribution and avalanche forecasting (Lehning

et al., 2008) and modeling the spread of wildfires (e.g., Sharples et al., 2012). Detailed

wind information at high spatial and temporal resolution and for long time periods is

needed to study wind-related impacts, space-time variability, and long-term trends,

but the accurate representation of surface winds in complex terrain is challenging

because winds fluctuate over a wide range of time and spatial scales. Surface weather

stations provide accurate and long-term local wind measurements, but are sparsely

distributed and the spatial interpolation of wind between them is difficult (Kruyt et al.,

2017; Harris et al., 2020). Climate and weather prediction models provide spatially

and temporally continuous gridded wind data that are physically consistent, but

the observed wind field varies at much smaller spatial scales than those in global

versions of such models (Koller and Humar, 2016; Molina et al., 2021), whose grid

resolutions range from tens to hundreds of kilometers and at best resolve only major

topographical features. Models at these resolutions do not capture local flow effects

such as wind speed-up over ridges, flow channeling in valleys, flow deflection around

and over mountain ranges, and thermally induced winds that alter the local flow field.

Reanalysis datasets produced by global weather prediction models, such as the state-

of-the-art ERA5 reanalysis from the European Centre for Medium-Range Weather

Forecasts (Hersbach et al., 2020), provide long-term gridded wind fields on a global

scale, but their coarse spatial resolution (∼25 km) limits their use for impact assess-

ment in complex terrain. Although large-scale atmospheric flow conditions associated

with surface winds are broadly well-represented in reanalysis datasets (Molina et al.,

2021), especially over flat regions (Ramon et al., 2019), such data are too coarse to ac-

curately represent local surface wind conditions in regions with complex terrain, such

as the Swiss mountains (Graf et al., 2019; Dörenkämper et al., 2020). The horizontal

grid resolution in global reanalyses is relatively coarse, in part due to their high com-

putational demands. On the other hand, high-resolution numerical model data are

available, but typically only for short time periods. The regional operational weather

prediction model COSMO-1 (MeteoSwiss, 2016) of the Swiss weather service has been

successfully run at a grid resolution of 1.1 km over Switzerland since 2016, producing

realistic representations of local wind conditions, but no long-term (>5 years) gridded
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climatology for wind exists (MeteoSwiss, 2018). Hence there is a trade-off between

geographic coverage and time span on the one hand and spatial detail on the other.

This data gap can be filled by applying downscaling methods to long-term historical

reanalysis and climate model outputs (Gutowski Jr. et al., 2016). This motivates the

development of a downscaling technique to produce a gridded near-surface wind

climatology at higher spatial and temporal resolution.

Statistical downscaling must address the question of what is considered to be the

ground truth. Most statisticians would agree that field observations are a noisy ver-

sion of the truth, whereas physicists tend to attribute value to re-analyzing such

data, correcting for measurement errors, and smoothing it to fit physical theory. A

consequence of these considerations for downscaling is that researchers favor either

point-by-point modeling and forecasting based on a limited number of observation

stations (Winstral et al., 2017; Nerini, 2020) or mapping of low-resolution grids directly

to high-resolution ones (Höhlein et al., 2020; Leinonen et al., 2021; Ramon et al., 2021).

Spatio-temporal regression models have been proposed for statistical downscaling

(Winstral et al., 2017; Ramon et al., 2021), though they generally assume linear depen-

dence and Gaussianity and often do not account for unobserved spatial phenomena.

More complex statistical models have been avoided in the past because of the com-

putational burden of dealing with very large datasets, which precludes applying the

simulation-based methods widely used in other contexts. Latent variable models

attempt to account for hidden or unobserved effects in high-dimensional data, and

Gaussian processes can flexibly capture local correlations and uncertainties. Latent

Gaussian models combine these concepts (Lawrence, 2003; Rue et al., 2009) and

provide a large class of statistical tools. The R-INLA package (Rue et al., 2017) can esti-

mate posterior distributions for latent Gaussian models, but the size of the latent field

affects the complexity of precision matrix computation. Rue et al. (2017) argue that as-

suming Markov properties for the target process can greatly reduce the computational

burden, and efficient solutions now exist for fitting multi-layer statistical models to

large numbers of data points and have been used for environmental applications.

For example, Castro-Camilo et al. (2019) use R-INLA to fit a hierarchical Bayesian

model involving a biphasic distribution for extreme and non-extreme wind speeds

at 260 stations across the United States. However, there is little to no literature on

downscaling climate time series using such models. In our study, we use grid-to-grid

downscaling to produce entire maps of wind fields. Although we considered using a

spatio-temporal Bayesian hierarchical model, the very large number of data points
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(∼ 10 billion in total) was impossible to handle using R-INLA.

Instead, we implement deep learning methods that deal with very large amounts of

data by introducing a network hierarchy that allows a computer to build complicated

structures from simple ones (Goodfellow et al., 2016). This hierarchy is commonly

described as a series of layers; the deeper the network, the more layers there are and

the more specific the role of each layer. Downscaling atmospheric fields using neural

networks is a very recent development (Vandal et al., 2018; Reichstein et al., 2019;

Baño Medina et al., 2020; Sha et al., 2020). Machine learning methods for downscaling

environmental variables can provide good results, avoid information loss, and require

reasonable computational effort if the structure has enough hidden layers (Höhlein

et al., 2020). However, neural networks are mainly used to produce deterministic

outcomes, which is an issue if one wants to know the distribution of the target process.

This can be overcome with a recurrent generative adversarial network (GAN) that adds

noise to the original input in order to make predictions more robust, as proposed

by Leinonen et al. (2021) for rainfall data. A more probabilistic approach is to use

neural networks to estimate the parameters of a given statistical model, for instance by

estimating the parameters of gamma distribution for wind speed data (Nerini, 2020).

As far as we know, no existing neural network can efficiently downscale wind fields

on complex terrain from different low- and high-resolution sources. In this paper, we

propose a stochastic deep learning approach using a GAN to downscale historical

maps of hourly near-surface wind fields over Switzerland from open-source ERA5

data and local topography. The target high-resolution maps are wind fields from the

COSMO-1 model, provided by MeteoSwiss, which represent the local surface winds

well. The resulting time series of downscaled wind fields can be used for detailed case

studies of past weather events or climatological analyses.

This study is structured as follows. The data used for the downscaling and associated

challenges are described in Section 2.3, and the specific deep learning model and its

training are explained in detail in Sections 2.4 and 2.5. Quantitative analysis of the

obtained predictions is performed in Section 2.6, and the main findings are given in

Section 2.7.
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2.3 Data

2.3.1 Geographical setting and typical wind systems in Switzerland

Switzerland has a complex and diverse topography with three main subregions (cf. Fig-

ure 2.1): the Alps in the central and southern part of the country with high mountain

ranges and deep valleys, covering ∼ 60% of Switzerland; the Jura in the north-western

part with lower and narrow mountain ranges, covering ∼ 10%; and, between them,

the hilly and densely-populated Plateau, covering ∼ 30%. The elevation ranges from

below 300 m to above 4,500 m. Figure 2.1 shows how this topography is represented

in the ERA5 reanalysis and in the COSMO-1 model, with respective horizontal grid

resolutions of 25 km and 1.1 km. The ERA5 grid cannot resolve the complex mountain

terrain, but the high mountain ranges and deep inner alpine valleys are well resolved

in COSMO-1. This terrain interacts with and modifies the synoptic-scale flow at dif-

ferent scales, generating region-specific surface winds (Barry, 2008). At the larger

(alpine) spatial scale, the frequent westerly winds are modified by the high mountains,

for example, by horizontal and vertical deflection creating mountain waves, and by

channeling of the flow (Jackson et al., 2013). A well-known example in Switzerland is

the north-south Foehn flow, which crosses the main Alpine ridge and leads to a warm

and dry downslope windstorm in the lee, affecting many Alpine valleys (Richner and

Hächler, 2013; Sprenger et al., 2016). Another example is the Bise, an easterly wind

that is enhanced in the Plateau region by channeling between the Jura and the Alps

(MeteoSwiss, 2015). At the more local scale, thermally-driven diurnal mountain-valley

winds are generated by temperature contrasts that form within the mountains and

valleys due to radiative heating during the day and cooling at night (Weissmann et al.,

2005; Zardi and Whiteman, 2013).

2.3.2 Low-resolution input fields: ERA5 reanalysis

We use the ERA5 reanalysis, the fifth generation of global reanalysis datasets from

the European Centre for Medium-Range Weather Forecasts (ECMWF), which has

a spatial resolution of 0.25◦ (' 25 km) and is available hourly from 1979 onwards.

Long-term climate data sets such as this are built by assimilating observations from

multiple data sources and solving the main atmospheric evolution equations, with
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Figure 2.1: Maps of Switzerland showing topography in meters above sea level for ERA5 with 25 km
resolution (left) and COSMO-1 with 1.1 km resolution (right). The three sub-regions of Switzerland are
indicated on the left map, and the location of validation sites (see Figure B1 in Appendix) is indicated
on the right map.

the aim of representing past or current climates on a regular grid (Hersbach et al.,

2020). Cycle 41r2 of the Integrated Forecast System (IFS), the global numerical forecast

model of the ECMWF, and 4D variational data assimilation of past observations were

used to produce the ERA5 reanalysis, which is freely available through the EU-funded

Copernicus Climate Change Service (C3S). It will eventually be extended back to 1950.

Low-resolution surface (10-meter) wind fields covering Switzerland are retrieved from

the ERA5 reanalysis as predictors. These consist of gridded u (east-west) and v (south-

north) hourly wind speed components on a horizontal grid of 0.25◦ ('25 km) from

2016 to 2020. We tested additional predictors from ERA5, also used by Höhlein et al.

(2020), in the hope of obtaining information about the local wind systems and driving

processes described in Section 2.3.1: boundary layer height, surface pressure, forecast

surface roughness and geopotential height at 500hPa. However, they did not improve

the performance of the GAN and were not included in the final model.

2.3.3 Topographic descriptors

The terrain of Switzerland is complex: local topographic features strongly modify

surface wind speeds, and to allow the GAN to learn this relationship we use the

topography from the freely-available 90-meter resolution SRTM3 digital elevation

model (DEM) constructed by NASA and NGA (Jarvis et al., 2008). We also tested a

comprehensive set of DEM-derived descriptors, calculated using the Python package

topo-descriptors (Nerini and Zanetta, 2021) provided by MeteoSwiss: directional
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(south-north and east-west) derivatives, slope and aspect, the ridge/valley norm and

direction, and the Topographic Position Index (TPI), which evaluates a gridpoint’s ele-

vation relative to its surroundings (Winstral et al., 2017). However, best performance

was reached with the raw DEM.

2.3.4 High-resolution target fields: COSMO-1

High-resolution 10-meter target fields are from the COSMO-1 (Consortium for Small-

Scale Modelling) model. COSMO-1 is a non-hydrostatic deterministic limited-area nu-

meric weather prediction model that is based on primitive, thermo-hydrodynamical

equations describing compressible flow in a moist atmosphere (COnsortium for Small-

scale MOdeling, 2017). MeteoSwiss has run COSMO-1 at a grid resolution of 1.1 km

with the domain centered over Switzerland operationally since March 2016 (Me-

teoSwiss, 2016), which provides a little more than four years of hourly (reanalysis)

data. Boundary conditions are provided by the ECMWF Integrated Forecasting Sys-

tem, which is also the global weather model underlying the ERA5 reanalysis. The

performance of COSMO-1 was assessed against weather stations in Kruyt et al. (2018)

and found to give good overall wind speed results. We use surface wind estimates

from the COSMO-1 analysis provided by MeteoSwiss at hourly resolution from March

2016 to October 2020. The ERA5 and COMSO-1 10-meter wind components u at 00

UTC on 13 January 2017 and at 00 UTC on 4 March 2017 are compared in Figure 2.2.

2.4 Generative Adversarial Network (GAN)

Below we use the term “tensor” to refer to data provided as input to a neural network,

data resulting from the transformation associated with a hidden layer of the network,

or predictions made by the network. The network is fed with square frames, or

“patches”, that are randomly selected from the input map. To ensure stability and

speed of training, we do not update the parameters for each observation, but process

a “batch” of observations at a time. In this study, all tensors are of dimension five:

the first dimension is the batch size, the second is the time coordinate, the third and

fourth are the spatial coordinates, and the last, the “channels”, refers to individual

scalar variables.
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Figure 2.2: Examples of ERA5 reanalysis input 10-meter u wind component with resolution 25 km (a
and c) and target 10-meter u wind component from COSMO-1 with resolution 1.1 km (b and d).

2.4.1 General architecture

The generative adversarial network we use has a standard Wasserstein GAN with

gradient penalty (WGAN-GP) architecture, comparable to that used for precipitation

data by Leinonen et al. (2021). Such a network comprises two different deep neural

networks with specific roles. The generator network, or “artist”, takes low-resolution

sequences of wind and other covariates as input, convolves and upsamples them

through sequential layers, and produces two output images that are fitted to the

high-resolution wind fields during training. The discriminator network, or “critic”,

attributes a score that measures the match between the low-resolution input data and

the high-resolution wind field prediction. Thus the purpose of the discriminator is

not so much that predicted winds look exactly like COSMO-1 winds, but to attribute

a score assessing the consistency of a pair of low/high-resolution winds. The score

function is obtained after compressing the information in the low- and high-resolution

wind fields into a scalar value through convolutional layers. The critic is optimized

throughout the training to make its output score as discriminating as possible. The

goal is to clearly distinguish between fake wind fields created by the generator and
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their real counterparts. Its optimal parameters are found by minimizing a gradient-

penalized version of the Wasserstein loss (Gulrajani et al., 2017),

LossD (x, y, z) = D
(
x, y

)−D {x,G (x, z)}+γ{‖∇ỹ D
(
x, ỹ

)‖2 −1
}2 , (2.1)

where x is the low-resolution input tensor, y is the true high-resolution wind field,

z is a noise field, D is the score given by the discriminator to a pair of low and high-

resolution fields, and G(x, z) is the prediction of the generator (the fake high-resolution

wind field). The score is obtained by minimizing the loss function. The final term of

equation (2.1) is the gradient penalty, whose influence is determined by the positive

scalar γ, and which attracts the norm of the gradient toward unity. This term contains

a random combination ỹ = εy + (1−ε)G (x, z) of true and predicted wind fields, with ε

a standard uniform random variable.

Scores attributed to both the true high-resolution and predicted winds should be

robust in order that the discriminative ability of the network is reliable. The gradient

term in equation (2.1) was introduced by Gulrajani et al. (2017) to enforce the 1-

Lipschitz constraint on the discriminator’s score relative to its inputs, but it also

prevents gradient explosion at the start of the training, which is otherwise common

when using deep structures (Huang et al., 2016). The artist’s loss is simply the score

given by the discriminator to the fake high-resolution output, i.e.,

LossG (x) = D {x,G (x, z)} .

On the one hand, the critic should score unrealistic predictions as highly as possible

so that the artist can improve, while reducing the score attributed to COSMO-1 high-

resolution wind fields as much as possible. On the other hand, the optimum of the

artist is reached when its loss is minimal, which means that the networks act on

D (x,G {x, z}) in opposite ways.

2.4.2 Modelling the wind time series

The wind time series of the two 10-meter wind components u and v from COSMO-1

present strong short-term autocorrelation (Figure 2.3a), which reduces to about 0.2

only after about 30 hours. To allow the artist to accurately reproduce this, we augment

the generator network with a long short-term memory (LSTM) layer (Hochreiter
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Figure 2.3: Mean autocorrelation as a function of lag in hours for COSMO-1 wind components u and v
(fig.a). The shaded area corresponds to 5% and 95% quantiles of the spatio-temporal distribution for u
and v . Spatial distribution of u (fig.b) and v (fig.c) autocorrelation for a 3-hour lag.

and Schmidhuber, 1997) that uses a hidden state to recall information about the

past. The critic is also given such a layer so that scores are computed and optimized

based on a wind sequence rather than on individual wind fields. As Figure 2.3 shows,

spatial autocorrelation depends on local topography: for both u (Figure 2.3b) and v

(Figure 2.3c) components, autocorrelation is stronger in the plains of the Swiss Plateau

and on top of the high mountain ridges than on steep slopes and in the valleys. Hence

it is crucial that the topography is fed to the network before the activation of the LSTM

layer in order to account for its effect on autocorrelation. The complete architecture

of the network is displayed in the Appendix (Figure 2.15).

2.4.3 Generator network

The entry layer of the generator is a concatenation of the input low-resolution wind

fields (of size NB ×NT ×S ×S ×NP , where NB is the batch size, NT is the number of

51



Chapter 2. Downscaling of Historical Wind Fields over Switzerland using
Generative Adversarial Networks

consecutive time steps used for building the sequences, S is the patch size and NP is

the number of predictors) and random Gaussian noise (of size NB ×NT ×S ×S ×NN ,

where NN is the number of noise channels), which is used to robustify learning by

making it less dependent on the precise data used. Introducing noise also allows for

stochasticity in the model by sampling from the latent field distribution. The noise

standard deviation of 0.1 m/s is chosen to represent small deviations from the input

wind field.

After concatenating the input data and noise, we progressively increase the resolution

of the input random vector to attain the desired resolution in the output. We decom-

pose this step into two simultaneous sub-steps. The number of channels, NP +NN ,

is first increased using padded convolutions to leave room for the information con-

tained in the spatial dimension of the tensor, and convolutional layers with strides

are simultaneously applied to the tensor to decrease the spatial dimension, triggering

the transfer of information to the channels. This sub-step is shown in Figure 2.15a: it

starts after the concatenation of input and noise channels and is terminated by an

LSTM layer and a first split connection. At the end of the sub-step, the image size has

been reduced by a factor of four. Layers in which the same operation is applied to

different time steps are referred to as “TimeDistributed” in Figure 2.15a. This sub-step

can be seen as an organized and efficient destructuring by the generator of the infor-

mation contained in the input layer in order to recreate a higher-resolution version of

the image. The second sub-step increases the resolution by transferring information

from the channels back to the spatial dimensions. The last upsampling layers of the

generator use spatial bilinear interpolation rather than transposed convolutions, as

this produces smoother outputs. All convolution layers from the upsampling step

are activated with the Leaky ReLU function x 7→ x+−0.2x−, where x+ and x− are the

positive and negative parts of x.

Finally, wind fields (of size NB ×NT ×S×S×2) are predicted using padded convolution

with linear activation (see the last convolution layer in Figure 2.15a). Using bounded

activation functions is known to increase the stability of training, especially on visual

feature recognition problems (Liew et al., 2016). The idea of constraining the generated

wind fields using a normalization constant and a tanh activation function for the last

layer was considered but not applied, primarily to avoid underestimating extreme

winds.

To assess the functioning of the generator network, we blur COSMO-1 high-resolution
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Figure 2.4: Prediction of the u component of 10-meter wind field by the generator model presented in
Section 2.4. The rows denote different 80 km patches at different times. The columns represent inputs
from the COSMO-1 model at resolution 1.1 km blurred with a Gaussian filter with standard deviation 2
(left), the original raw high-resolution wind fields (middle), and the model prediction using RMSE loss
(right).

fields using a Gaussian filter with a standard deviation of 2 and try to predict the

unblurred high-resolution fields by minimizing the root mean squared error between

generated and realized fields. No other predictor is added to this optimization prob-

lem, in order to check whether the generator alone can perform well on a very simple

task. Figure 2.4 shows that the network produces good results when trained on a small

number of steps, or “epochs”: The blurring pattern seems to be rapidly understood by

the generator. The training validation metrics detailed in Section 2.6 confirm that it

performs well.

2.4.4 Discriminator network

The discriminator network, or critic, is used to determine whether a pair of low and

high-resolution wind fields (both of size NB ×NT ×S ×S ×2) are a good match and

to decide if the high-resolution wind field is from COSMO-1 or predicted by the gen-

erator. Accordingly, the first layer of the discriminator inputs concatenated low and

high-resolution images in order to evaluate how well they match. In Figure 2.15b,
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Figure 2.5: Scores for 10-meter wind fields predicted by the discriminator network presented in
Section 2.4. The score is a unit-free relative quality measure internal to the GAN and thus has no
meaning in absolute terms.

this step is represented by the temporary creation of two branches, one in which

the match between low and high-resolution images is processed as a time-varying

tensor, and one in which only the high-resolution image goes through this process.

The two branches allow the generator to learn time series specificities for both the pair

of low/high-resolution winds and the high-resolution field. The tensors containing

information about the match and the high-resolution wind field alone are then con-

catenated and undergo a progressive information transfer from the spatial dimensions

to the channels, as described for the first step of the generator network (the successive

application of TimeDistributed convolution layers is shown in Figure 2.15b). Finally, a

dense layer with linear activation is averaged on the time dimension to produce the

final score with size NB ×1 for the two wind fields.

To check whether the critic can attribute different scores to realized and generated

inputs, we train it alone by minimizing the loss introduced in equation (2.1). Inputs

generated by the artist are not available when we train the critic alone, so we replace

them with more obvious fake images, Gaussian random fields with a standard variation

of 10. This task is similar to binary classification, although the scores here can take any

value in R. Figure 2.5 shows that the scores attributed by the trained critic to fake and

real wind fields are clearly separated, so the critic performs correctly. The scores vary

more for random wind fields, which could be interpreted as the network introducing

uncertainty regarding the reliability of the classification in the presence of potentially

fake winds.
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2.4.5 Input data

The ERA5 inputs are grids of 12×24 pixels (25 km resolution), COSMO-1 targets are

on 294×429 grids (1.1 km resolution) and topographic descriptors are constant on

grids of size 3312×6912 (90 m resolution). To better control information reduction

and expansion throughout the convolutional layers of the GAN, we created sequences

of square patches as input for the model using the same geographical areas to create

the inputs and the targets, while keeping the patch size constant. To do so we project

all the inputs and outputs onto the COSMO-1 target grid. In particular, ERA5 inputs,

topographical descriptors, and outputs are processed to reach 1.1 km grid resolution.

The resolution of the ERA5 fields is artificially increased by filling the gaps with the

nearest available value from the reanalysis dataset. Topographic predictors that have

a higher spatial resolution than COSMO-1 fields are slightly blurred to meet the

resolution standards.

Sequences of square patches of size S are created around random points in space and

time for low-resolution inputs and corresponding high-resolution fields and are then

randomly flipped or rotated before being input to the model. Data augmentation such

as this has been found to enhance network efficiency and out-of-sample performance

in other applications (Perez and Wang, 2017).

2.5 Training

2.5.1 Adversarial training

Fitting a GAN can be difficult because the generator and discriminator networks may

train at different speeds. For this study, the training was stabilized using spectral

normalization that enforces a Lipschitz constraint on parameters in the convolution

layers of both networks (Miyato et al., 2018), and different learning rates were chosen

(Heusel et al., 2017). Indeed, a generator training against a poor discriminator does not

generate better images because the discriminator cannot score them well. Typically,

the learning rate of the discriminator is set 4 to 5 times above that of the generator

to allow the scoring function to improve enough between successive updates of the

generator. We further aided discriminator training by updating its network three times

for each update of the generator to give the discriminator more time to process the

change in the generator network (Gulrajani et al., 2017, Algorithm 1). To avoid vanish-
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ing gradients the generator network includes not only split connections (Ronneberger

et al., 2015; Srivastava et al., 2015), i.e., shortcuts between deep layers, but also batch

normalization layers (Santurkar et al., 2018) to normalize data across samples of a

batch. For the same reason, the discriminator includes one split connection, and

layer normalization of data aggregated on channels (Ba et al., 2016) was applied to

the discriminator’s convolutional layers. Normalization here should be understood

as standardization, i.e., transforming the data to have zero mean and unit standard

deviation. The Adam optimizer, a stochastic gradient descent method based on adap-

tive estimation of first and second-order moments (Kingma and Ba, 2014), was used

with learning rates of 1×10−4 for the generator and 4×10−4 for the discriminator. The

values for the first and second moment estimates β1 = 0. and β2 = 0.9 were derived

from the calibration of the Adam optimizer for WGAN-GP by Gulrajani et al. (2017).

Reconstruction loss was considered in this study to improve the training stability, by

using an auto-encoder to extract features from wind maps, but the results were more

satisfactory with other techniques, such as layer normalization, split connections, and

adjusting the optimizer hyper-parameters. The small effect of inserting a reconstruc-

tion loss could be due to the very basic structure of the auto-encoder, which we built

ourselves for this study: efficiently extracting relevant features from the wind fields

is a research project on its own. Moreover, the implementation of the GAN with a

reconstruction loss had the undesired impact of keeping the prediction close to the

original ERA5 pixellated style. Lowering the weight of the reconstruction loss in the

overall loss turned out to be equivalent to doing without reconstruction loss entirely.

2.5.2 Transfer learning

The GAN is trained using transfer learning (Bozinovski and Fulgosi, 1976): after it

is trained for one task, the learning curve for a similar task should be less steep

and the training more efficient. Our downscaling problem is difficult for two main

reasons. First, the difference in resolution between inputs and targets is large, as

wind fields from ERA5 reanalysis data are available on 25 km grids, while COSMO-1

is on 1.1 km grids. Second, input and target winds come from two different sources,

and discrepancies in modeling techniques make it more difficult for a network to

understand how a high-resolution COSMO-1 field is linked to an ERA5 field than

to an artificially blurred version of itself. In our case, no known transform of the

high-resolution output data links it to the low-resolution predictors, so the network is

first trained to downscale winds from artificially blurred COSMO-1 data to the high-
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Algorithm 1 WGAN-GP with different update rates for the generator and discriminator
networks, as proposed by Gulrajani et al. (2017). θ and w represent respectively the
generator and discriminator’s parameters throughout training.

Require: For data processing: batch size NB , time steps NT , patch size S and number
of predictors NP . The number of noise channels NN is also required.

Require: Learning rates αG and αD for the generator and discriminator networks,
optimizer hyperparameters β1 = 0 and β2 = 0.9 and the number of consecutive
discriminator updates ncritic = 3 for one generator update.

Require: Initial discriminator parameters w0 and initial generator parameters θ0.
while θ has not converged do

for t = 1, . . . ,ncritic do
Create inputs batches x (of size NB × NT × S × S × NP ) and corresponding

target batches y (NB ×NT ×S ×S ×2)
Sample noise z ∼N (0,10−2) of size NB ×NT ×S ×S ×NN

Sample a random number ε∼U (0,1)
ŷ ←Gθ (x, z)
ỹ ← εy + (1−ε)ŷ
LossD ← D

(
x, y

)−D
(
x, ŷ

)+γ(‖∇ỹ D
{

x, ỹ
}‖2 −1

)2

w ← Adam
(∇w LossD ,αD ,β1,β2

)
end for
Sample noise z ∼N (0,10−2) of size NB ×NT ×S ×S ×NN

θ← Adam
(∇θD {x,Gθ (x, z)} ,αG ,β1,β2

)
end while
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resolution target wind fields, and then the training continues with low-resolution

winds from the ERA5 reanalysis data.

2.5.3 Technical challenges

The MeteoSwiss data cover a period from April 2016 to October 2020, yielding 1673

days of hourly observations on grids of resolution 429×324 pixels. Our interest is

in surface wind vectors with components u and v , so the number of individual data

points to be predicted is about 10 billion. To capture daily patterns, we chose to

train the GAN on 24-hour sequences (NT = 24) of square patches using two years of

data (about 4.8 billion individual points). In the end, the only predictors inputted

to the GAN are the low-resolution wind fields from COSMO-1 blurred data for the

first training phase and the wind fields from ERA5 for the second training phase,

mainly because the ratio of performance improvement to additional computational

burden was too low when other predictors from ERA5 (see Section 2.3.2) were added.

Using raw DEM as the only topographic predictor gave the best results. Small batches

(NB = 8) were chosen because we found that such micro-batches stabilize the training.

The generator contains 1.7 million parameters and the discriminator contains 3.3

million parameters, so the total number of parameters to be estimated is about 5

million. The training was done over about 200 epochs (training steps) on an Nvidia

GPU with Volta microarchitecture provided by the EPFL Scientific IT and Application

Support (SCITAS) system.

2.6 Metrics

The discriminator network scores the wind fields predicted by the generator according

to its discrimination criteria by generating a model internal score function that is

continuously improved during training. This function provides relative comparisons

of the model at different training stages and cannot be interpreted in absolute terms.

To gain a detailed understanding of the network’s performance, we also use other

metrics to monitor the training and the final results. The Fréchet inception distance

is the most commonly used metric to assess the performance of GANs (Heusel et al.,

2017), but its implementation relies on the use of another neural network trained to

recognize features that are friendly to human perception on static RGB images. This is

irrelevant in our case because the two-dimensional field we aim to predict has only
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one channel per variable. Hence we use standard metrics to assess the performance

of image prediction, such as modified versions of the root mean squared error (RMSE),

log spectral distance (LSD), angular cosine distance (ACD), and a spatially convolved

version of the Kolmogorov–Smirnov statistic, which are detailed below.

2.6.1 Root mean squared error (RMSE)

We use two versions of the original RMSE (Hyndman and Koehler, 2006). Although

weighting the metrics based on realized (COSMO-1) values rather than on predictions

could bias model selection and validation (Lerch et al., 2017), these metrics were

chosen to best meet the goal of the study, which is to provide accurate historical

covariates for analysis of past weather and climate in which extreme winds might play

a role as an aggravating factor. Although special attention was paid to extreme winds,

other metrics and visual methods were also used to assess prediction reliability and

thereby counterbalance any bias (Lerch et al., 2017).

The wind speed weighted RMSE (Dujardin, 2021) is defined as

WSRMSE =
√

1

NT ×P

∑
t≤NT ,i≤P

τ
{(

ui t −βûi t
)2 + (

vi t −βv̂i t
)2

}
,

where NT is the number of time steps, P the number of pixels in a single image, u and

v are the 10-meter high-resolution eastern and northern components of wind, û and

v̂ are their respective estimates and

β= ε+w

ε+ ŵ
, τ=

t , ŵ ≥ w,

1− t , otherwise,

where w is the 10-meter high-resolution wind speed and ŵ its estimate. The calibra-

tion of hyperparameters by Dujardin (2021) sets ε= 4 and t = 0.425.

Another RMSE variant developed for this specific problem,

ExtremeRMSE =
√√√√ 1

NT ×P

∑
t≤NT ,i≤P

u2
i t∑

j ,k u2
j k

(ui t − ûi t )2 + v2
i t∑

j ,k v2
j k

(vi t − v̂i t )2,

tries to condemn bad predictions of extreme components.
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Both of these metrics put more weight on extreme winds, which explains their similar

evolution during training (see Figure 2.6). However, WSRMSE penalizes extremes in

a relative sense (β becomes large when the wind speed is underestimated), whereas

ExtremeRMSE directly puts component-wise weights that increase with the realized

extremeness of each direction, whether or not the estimated component is also ex-

treme.

2.6.2 Angular cosine distance (ACD)

The angular cosine distance (Foreman, 2013) computes the average angle between

the target and generated vectors,

ACD = 1

NT ×NP

∑
t≤NT ,i≤NP

arccos

 ui t ûi t + vi t v̂i t√
u2

i t + v2
i t

√
û2

i t + v̂2
i t

 ,

and thus quantifies agreement between predicted and observed wind field directions.

The ACD and the RMSE metrics complement each other, as ACD measures the per-

formance of the network in terms of wind direction, whereas RMSE evaluates the

distance between realized and predicted wind speed, which is the wind vector’s norm.

Both are needed for an accurate performance assessment.

2.6.3 Spatially convolved Kolmogorov–Smirnov statistic (SKSS)

This new metric, developed in the scope of this research, represents the disagreement

between the distributions of the generated and observed wind fields. It is computed as

the maximum absolute difference of empirical cumulative distribution functions for

the generated and realized fields, summed over 10×10 patches of the image of interest.

The aim is to obtain a metric with properties close to those of the Fréchet inception

distance (Heusel et al., 2017) for RGB images by assessing the match between input

wind fields and images produced by the generator, as a human eye would. Indeed, a

GAN’s performance can be hard to assess and visual checks of the generator’s output

may be preferred by users. The SKSS assesses whether the output is visually pleasing

by checking whether the u and v fields on small spatial patches look similar to those

in the original image. First, M spatial patches of constant size are extracted from the
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target and predicted images. We then set

SKSS = ∑
t≤NT , j≤M

∑
c∈{u,v}

max
x∈R

|F c
j t (x)− F̂ c

j t (x)|,

where F c
j t represents the empirical cumulative distribution function for a single spatial

patch j , point in time t and channel c (u or v component of wind) and F̂ c
j t is its analog

for generated data. This metric is intended to evaluate the agreement between two

local distributions rather than focusing on individual pixels.

2.6.4 Log spectral distance (LSD)

The LSD metric (Rabiner and Juang, 1993) is expressed as the log-difference of power

spectra between the generated and realized samples,

LSD =
√√√√ 1

2NT ×P

∑
t≤NT ,i≤P

∑
c∈{u,v}

[
10log10

( | f (ci t )|2
| f (ĉi t )|2

)]2

,

where f is the Fourier transform, | f (·)|2 the power spectrum, c is the wind component

and ĉ its estimate. The LSD evaluates whether the generated images reproduce the

spatial structures noticeable in the target images.

2.7 Results

The GAN described above is a stochastic model: predictions may vary with different

samples of the input noise. In the following analysis of the results, the average pre-

diction for the test set over 200 different noise samples is used to construct graphs

and maps. As explained in Section 2.5.2, the network is trained in two phases that are

evaluated separately below. Unless specified otherwise, the years 2016 to 2018 were

used for training, the year 2019 was used as the validation set, and the year 2020 was

used as the test set for all results and plots.
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2.7.1 Training phase 1: downscaling COSMO-1 blurred wind fields

Model selection

The first step of the quantitative analysis entails model selection, as the network

produces a different set of parameters for every training epoch, i.e., every complete

training round of the GAN on all wind fields. The best model must be selected to

perform predictive analyses and make diagnostic plots. Metrics are expected to be

non-monotonic throughout training, as the generator and discriminator improve in

an adversarial way. As the generator improves, it is more difficult for the discriminator

to determine whether a given image is observed or predicted data, and is, therefore,

more likely to attribute an incorrect score. As the discriminator’s loss decreases, the

classification becomes more accurate and the images produced by the generator are

more likely to receive very positive scores, increasing the generator’s loss. Figure 2.6

shows that the six metrics considered partially agree on the best-performing epoch,

i.e., the training step with the minimum value for a given metric. All three RMSE

metrics (Figure 2.6a, b, and c) and the LSD (Figure 2.6d) indicate a local minimum at

epoch 55, while the local minima for the KS-statistic (Figure 2.6e) occur at the very

beginning of the training. The angular cosine distance (Figure 2.6f) shows no clear

minima. Epoch 55 is used to produce the diagnostic plots and computations that

follow.

Quantitative analysis of wind time series

The network is built to capture time series features in the target data. To evaluate the

performance of the model, input, target and predicted autocorrelation are compared

for lags from 2 hours to 2 days in Figure 2.7. The artificial blurring of the COSMO-

1 wind fields (input) introduces additional autocorrelation that the network can

successfully remove, as seen in Figure 2.7. However, the predicted wind components

show lower autocorrelation for lags below 48 hours than do the COSMO-1 data (target),

with a marked increase for multiples of 24-hour lags, perhaps because we process

the wind field time series in 24-hour sequences. Wind exhibits very specific sub-daily

patterns that vary with the topography. To evaluate whether these are well captured

by the network, Figure 2.16 shows the sub-daily wind variability averaged over the

validation set for locations in valleys, plains, and on mountaintops. The GAN can
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Figure 2.6: Behaviour of the different verification metrics throughout the training of the GAN. The
x-axis represents the epochs, with one epoch sampling patches of wind fields for all available dates.
The three smallest values attained by each metric during training are denoted by triangle dots. Metrics
are evaluated every day over random square patches in Switzerland on a 2-months validation set going
from September 2019 to November 2019. Results are averaged over space and time.

Figure 2.7: Spatially and temporally averaged estimated autocorrelation for input, predicted, and target
u (fig.a) and v (fig.b) wind components.

accurately reproduce average daily patterns for both u and v components in relatively

flat zones, e.g., Fahy lies in the Jura and Aigle in a valley in the Alps (Figure 2.16a and

b), and Bischofszell and Fribourg are in the Swiss Plateau (Figure 2.16c and d). In

extremely complex terrain (Zermatt and Jungfraujoch are located on mountain passes),

the model does not capture the sub-daily pattern of the u component (Figure 2.16e

and f) well.
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Visualisation of historical wind maps

The GAN is trained on square patches of size S = 96 pixels, while COSMO-1 maps of

Switzerland have size 429×324 (Subsection 2.5.3 of the Section 2.5). We combine

the patches to predict entire wind fields. One possibility would be to crop the initial

COSMO-1 map into a 384×288 map focusing on Switzerland only, predict a grid of 4×3

patches of size S and accept that there will be a discontinuity at their borders, but as

our goal is to create realistic-looking historical wind fields we prefer to predict a grid of

overlapping 5×4 patches and average them to give smoother borders. Maps of target

and predicted u and v components of wind averaged over the 1-year test period are

displayed in Figure 2.8. Specific patterns, such as local acceleration at exposed sites

(ridges) and sheltering in valleys, are very well reproduced by the network for both u

and v components in all three sub-regions of Switzerland. Both COSMO-1 (Figure 2.8c)

and the predictions (Figure 2.8d) show strong regional patterns of the mean v wind

direction depending on the topography, with southerly winds on north-facing slopes

and northerly winds on south-facing slopes. This is probably the fingerprint of the

foehn, an intense, warm, and dry downslope windstorm that occurs frequently on

both the northern and southern sides of the Alps (Richner and Hächler, 2013). The

appendix contains examples of hourly maps produced from blurred COSMO-1 after

the first training phase (Figure 2.17) and from ERA5 low-resolution inputs after the

second training phase (Figure 2.18).

The spatial quality of the predicted wind fields is evaluated by plotting the median

values for WSRMSE and ACD, computed for the test year 2020 (Figure 2.9). The

former was made unitless by applying a hyperbolic tangent transform to facilitate

interpretation. Predictions for wind speed (Figure 2.9a) and direction (Figure 2.9b) are

good in the Swiss Plateau and Jura. Differences in wind direction occur in valleys and

at the feet of mountains, while wind direction is well predicted on upper slopes and

ridges (Figure 2.9b). In the Swiss Alps, where the terrain is more complex, the wind

speed is predicted less well at the high-wind exposed mountain sites (ridges) than at

the sheltered valley sites (Figure 2.9a).
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Figure 2.8: Target (left) and predicted (right) wind components u (top) and v (bottom) averaged over
the test period of 1 year in 2020.

Figure 2.9: Visualisation of GAN performance after the first phase of training. Median cosine similarity
is shown in fig.a (1 is perfect and −1 is bad) and median wind-speed weighted RMSE (WSRMSE) after a
bounded transform is shown in fig.b (right, 0 is perfect and 1 is bad).
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2.7.2 Training phase 2: downscaling ERA5 wind fields

In the second phase, the training continues and the parameters of the best model of

the first training phase are used as initial parameter values. When the second training

phase is completed, the steps of the first training phase are repeated to find the epoch

with the best performance. Maps of wind fields from target and predicted from ERA5

averaged over the 1-year test period are shown in Figure 2.10 and median values of

the metrics WSRMSE and ACD are shown in Figure 2.11. The prediction (Figure 2.10b

and d) reproduces the high-resolution mean wind pattern of the COSMO -1 target

(Figure 2.10a and c) with stronger westerly winds at the exposed mountain sites in the

Alps and Jura and weaker or easterly winds at the sheltered valley sites. Looking at

the mean wind direction, we see that more regions have northerly and easterly winds

compared to COSMO-1. These differences in wind direction between prediction and

COSMO-1 are also seen in the median cosine similarity in Figure 2.11b and occur

over the entire Alps. The wind speed is predicted less well at the high-wind exposed

mountain sites (ridges) than at the sheltered valley sites (Figure 2.11a). Results from

the first (Figure 2.9) and the second (Figure 2.11) training phase using ACD and

WSRMSE show better predictive performance when downscaling from COSMO-1

blurred inputs. Indeed, the Gaussian filter used to create low-resolution winds from

the COSMO-1 high-resolution target produces smoother maps than those created

with ERA5 winds, which may facilitate pattern detection.

The ultimate goal of this project is to build accurate historical wind fields for the

analysis of specific extreme events, such as windstorms and the role of foehn in forest

fires, so the main question addressed in the diagnostics for the second training phase

is whether the network accurately represents extreme wind speeds. Strong winds

during storms are known to cause damage in populated regions at lower altitudes

(Swiss Plateau and valleys) (Schwierz et al., 2010; Welker et al., 2016) and are important

in spreading forest fires (Sun et al., 2009; Sharples et al., 2012; Cruz et al., 2020), so we

desire them to be accurately downscaled from the low-resolution fields of ERA5.

Speed and direction distributions for predicted (from ERA5) and target winds are

displayed and compared in Figure 2.12. We consider the wind speed computed from
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Figure 2.10: Target (left) and predicted from ERA5 (right) u (top) and v (bottom) components of wind
fields averaged over the test

period (1 year).

Figure 2.11: Visualisation of the GAN performance after the second phase of training. Median cosine
similarity is represented in fig.a (1 is perfect and −1 is bad) and median wind-speed weighted RMSE
(WSRMSE) after a bounded transform is represented in fig.b (right, 0 is perfect and 1 is bad).

the mean predicted maps of u and v components rather than the mean wind speed

over the noise samples. The predictions of the average wind speed distribution are

very close to the target distribution, although the predicted wind speed is slightly less

long-tailed than that for COSMO-1 ( Figure 2.12a). The network underestimates very

high wind speeds and predicts more southwestern (0 to 90 degrees) and northeastern

67



Chapter 2. Downscaling of Historical Wind Fields over Switzerland using
Generative Adversarial Networks

(180 to 270 degrees) winds than are observed in COSMO-1 (Figure 2.12b). The wind

speed distribution of ERA5 winds shows a much thinner tail than the target and

predicted wind speed (Figure 2.12a), while the ERA5 wind direction seems completely

out of sync compared to the target and predicted distributions (Figure 2.12b).

Further analysis of wind speed predictions within 10 km around the largest Swiss cities

is encouraging. Figure 2.13 shows that the extremes of wind speed are well captured

by the model, especially for cities in the Swiss Plateau: Zürich (Figure 2.13a, ∼ 400K

inhabitants), Lausanne (Figure 2.13d, ∼ 135K inhabitants), Winterthur (Figure 2.13f,

∼ 108K inhabitants) and Luzern (Figure 2.13g, ∼ 81K inhabitants).

How much do the downscaled wind fields improve on the original ERA5 fields? We

compare the metrics WSRMSE, LSD, and SKSS, averaged over the test set, between

predicted winds and ERA5 winds in Figure 2.14b,c,d. Each point represents the average

at a specific grid cell and is colored according to the sub-region shown in Figure 2.14a

to highlight regional differences. The diagonal line (x = y) represents identical values

of the metric before and after prediction by the network. Average values of the metrics

for each geographical sub-region, given in Table 2.1, show that for all regions the

LSD is much smaller when comparing predicted winds to the target COSMO-1 than

for the ERA5 inputs. The SKSS is smaller for predicted winds than for ERA5 inputs

in the Alps but slightly higher at some points on the Swiss Plateau, maybe because

ERA5 predicts the winds sufficiently well on homogeneous and flat zones, while the

GAN could add artifacts, i.e., undesired signals with non-physical origins, at these

locations. There is no reduction in WSRMSE, which is essentially preserved by the

GAN. This is expected because pointwise comparisons do not need to detect the visual

improvements highlighted by LSD and SKSS. Table 2.1 shows clear improvements

using the GAN prediction instead of ERA5 winds in Alpine regions (Alpes Valaisannes,

Alpes Vaudoises, Alpi Lepontine, Alpi Retiche, Berner Alpen, Glarner Alpen, and Urner

Alpen), especially for LSD and SKSS. On the Swiss Plateau (Mittelland) and in the Jura,

a sharp decrease of the LSD can be noted, while the SKSS is preserved.
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Figure 2.12: Estimated distribution of input (ERA5), target (COSMO-1) and predicted wind speed (fig.a)
and wind direction (fig.b).

Table 2.1: Before-to-after comparison of the regional log spectral distance, the hyperbolic tangent of
WSRMSE and SKSS averaged over the time dimension of the test set.

Geographical region LSD Tanh WSRMSE SKSS
Input Predicted %Variation Input Predicted %Variation Input Predicted %Variation

Alpes Valaisannes 28.04 13.98 −50.2 0.69 0.68 −2.3 0.77 0.69 −10.5
Alpes Vaudoises 27.98 13.96 −50.1 0.69 0.68 −1.9 0.78 0.68 −13.1
Alpi Lepontine 26.86 14.97 −44.3 0.66 0.66 −0.9 0.77 0.69 −9.9
Alpi Retiche 26.60 13.12 −50.7 0.67 0.66 −1.5 0.77 0.71 −7.8
Berner Alpen 25.48 16.82 −34.0 0.69 0.67 −2.7 0.78 0.70 −10.6
Glarner Alpen 25.74 16.35 −36.5 0.66 0.65 −0.8 0.76 0.68 −11.0
Jura 27.06 14.21 −47.5 0.59 0.64 10.2 0.80 0.82 3.3
Mittelland 26.41 15.56 −41.1 0.56 0.60 6.8 0.80 0.83 3.0
Préalpes 25.78 16.42 −36.3 0.62 0.63 0.2 0.79 0.73 −7.4
Urner Alpen 24.77 17.76 −28.3 0.68 0.66 −2.6 0.76 0.68 −10.6

2.8 Conclusion

In this paper, we developed and applied a deep learning model for downscaling hourly

near-surface gridded wind fields in complex terrain using low-resolution (∼25 km)

inputs from ERA5 reanalysis and high-resolution (1.1 km) targets from the numerical

weather prediction model COSMO-1. Topographic information from high-resolution

(90 m) digital elevation data from the SRTM3 was used as a static input to incorpo-

rate local orographic effects that modify airflow. A Wasserstein recurrent generative

adversarial network (GAN) with a gradient penalty architecture was chosen with an

autoencoder-like structure for the upsampling part of the generator. Adapted normal-

ization of layer outputs was introduced in both networks, and weight normalization

was used to speed up and smooth the training. Careful attention was paid to coordi-

nating the networks so that neither became too strong for the other to train, and a

good balance was achieved by using different learning rates and updating the discrim-

inator more frequently than the generator. Due to the complexity of the problem, an
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Figure 2.13: QQ plots of predicted (using ERA5 as input) versus target (COSMO-1) quantiles of the wind
speed distribution within 10 km of the largest Swiss cities. From left to right: Zürich, Genève and Basel
(top row), Lausanne, Bern and Winterthur (middle row), and Luzern, St. Gallen and Lugano (bottom
row). Shaded areas are plotted between quantiles computed from the distribution of the minimum and
maximum wind speed across 200 different noise samples given as inputs to the GAN. The diagonal line
represents x = y .

approach based on transfer learning was chosen to train the GAN. Segmentation of

the learning curve greatly improved the performance of the network compared to a

more direct approach. This appears to be the first deep learning model trained using

transfer learning that can efficiently perform such an extreme (25x, from 25 km to

1.1 km) downscaling of wind fields from two different data sources. Its performance

was tested over the complex terrain of Switzerland for the period 2016–2020, but if the
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Figure 2.14: Before-to-after regional comparison between ERA5 inputs (y-axis) and predicted high-
resolution winds (x-axis) averaged over the test set. The WSRMSE (fig.b), LSD (fig.c), and SKSS (fig.d)
metrics were used for this plot.

local topography is available, our model could be applied to wind fields elsewhere in

order to generate long-term, high-resolution wind climatologies.

Historical maps, created for all of Switzerland using overlapping patches of predicted

wind fields, were visually appealing for both training phases, with maps predicted

from either blurred COSMO-1 or ERA5 inputs consistently resembling the COSMO-1

target. As our goal was to produce wind field predictions for the analysis of historical

extreme weather events and long-term climatology, the second phase of training diag-

nostics focused on the wind-speed distribution to verify how well extreme values were

captured. The findings indicate an excellent prediction of the aggregated wind speed

distribution around densely-populated areas. Quantitative analysis of time series

and spatial averages after the first training phase showed that the network missed

some autocorrelations and that there were differences in the predictive performance

between flat and mountainous regions. Wind speed and mean daily patterns were

less well predicted in high altitudes of the mountainous terrain than in the hilly plains

and valleys. While wind direction was well predicted on mountaintops, the network

71



Chapter 2. Downscaling of Historical Wind Fields over Switzerland using
Generative Adversarial Networks

struggled when predicting wind direction in valleys.

As most issues stem from differences in topography, the global architecture could be

improved by building different models for predicting patches that are mainly over

mountainous areas or over the Swiss Plateau, rather than using a single network for

the entire country. Another deep structure trained for image classification based on

topography could use an input sensor to select which of those two networks should

be applied. Different parameters would thus be used to predict winds in plains and in

complex terrain, perhaps leading to less topographic variation in model performance.

The training of such a structure would require more time and resources but might

overcome most remaining issues with our model.
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2.11 Appendix

2.11 Appendix

2.11.1 GAN structure

Figure 2.15: The GAN architecture of the generator (fig.a) and discriminator (fig.b) models for downscal-
ing winds from ERA5 reanalysis to COSMO-1 data. Both graphs were made using the publicly available
software Keras model plotting utility.
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2.11.2 Examples of wind mean daily patterns from COSMO-1 blurred

test sample

Figure 2.16: Mean daily pattern for u (left) and v (right) wind components in the Jura (fig.a and b), on
the Swiss Plateau (fig.c and d), and in mountainous areas (fig.e and f) averaged over time. The locations
of the validation sites are shown in Figure 2.1.
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2.11.3 Examples of GAN prediction from COSMO-1 blurred test sam-

ple

Figure 2.17: Prediction of the u and v components of 10-meter wind field by the GAN presented in
Section 2.4. The columns represent inputs (left) from COSMO-1 blurred, the outputs from the COSMO-
1 model at 1.1 km resolution (middle), and the model prediction (right).
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Figure 2.18: Prediction of the u and v components of 10-meter wind field by the GAN presented in
Section 2.4. The columns represent inputs (left) from ERA5 25 km resolution grids, the outputs from
the COSMO-1 model at 1.1 km resolution (middle), and the model prediction (right).

2.11.4 Examples of GAN prediction from ERA5 test sample
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Abstract

Despite its importance for insurance, there is almost no literature on statistical hail

damage modeling. Statistical models for hailstorms exist, though they are generally

not open-source, but no study appears to have developed a stochastic hail impact

function. In this paper, we use hail-related insurance claim data to build a Gaus-

sian line process with extreme marks to model both the geographical footprint of a

hailstorm and the damage to buildings that hailstones can cause. We build a model

for the claim counts and claim values, and compare it to the use of a benchmark

deterministic hail impact function. Our model proves to be better than the bench-

mark at capturing hail spatial patterns and allows for localized and extreme damage,

which is seen in the insurance data. The evaluation of both the claim counts and

value predictions shows that performance is improved compared to the benchmark,

especially for extreme damage. Our model appears to be the first to provide realistic

estimates for hail damage to individual buildings.
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3.1 Introduction

Global warming has already begun to affect the behaviour of insurers worldwide, both

by increasing premiums and by making companies unwilling to underwrite some risks;

a recent example is the May 2023 decision by the US company State Farm to cease

offering house insurance to new clients in California. Hail is of particular interest

to Swiss insurance companies because of large annual insured losses, averaging

several million Swiss francs (CHF) (Botzen et al., 2010), though there is substantial

year-to-year variability. Northern Switzerland experienced significant hail events

in 2021, leading to estimated insured losses of 2 billion CHF and placing a heavy

financial burden on insurers (Müller, 2021). The risk of large losses due to hailstorms

is increasing as a result of the construction of more new buildings each year, and

climate change may increase the frequency of damaging hailstorms in Europe more

broadly (Rädler et al., 2019). Destructive hailstorms are also an important risk for

agriculture, buildings, and vehicles elsewhere in the world (Changnon, 2008; Warren

et al., 2020), but despite their importance, such storms can be very localised and are

hard to model.

The literature on the statistical modeling of the impact of hailstorms on buildings

is very limited. Although stochastic models for hailstorm risk (Deepen, 2006; Otto,

2009; Punge et al., 2014; Púčik et al., 2017) or hailstone size (Perera et al., 2018; Liu

et al., 2021) exist, most open-source studies on hailstorm impact use deterministic

functions to link the intensity of a hail hazard to its monetary damage. The spatial

footprint of hail events has been discussed in a few recent modeling studies, in which

hailstorms are either represented as ellipses (Otto, 2009) or stretches of constant

width (Deepen, 2006). Punge et al. (2014) use a Poisson distribution to estimate the

frequency of hail in Europe on a 50×30km grid, using a bimodal normal distribution

in each grid cell to estimate the pointwise probability of hail based on hail reports and

observations of overshooting cloud tops, whose presence for over ten minutes can

indicate thunderstorm severity. Deepen (2006) generates a stochastic catalog of hail

events in Germany by simulating areas of fixed width, random location, and random

length. Hailstorms are also simulated by modeling random hailstones in Liu et al.

(2021), while Perera et al. (2018) propose a hailstone size distribution to aid in impact

estimation.

On the damage modeling side, Hohl et al. (2002) propose a logistic impact function

derived from hail kinetic energy, and Schuster et al. (2006) further explore the link
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between this energy and impacts. Claim data from insurance companies, though not

usually publicly accessible, is a valuable source of information on hail impacts and

has been used to complete the radar signal for hail in several recent studies. The hail

damage model developed in Schmidberger (2018), for example, derives hail tracks

in Germany from radar and insurance data, and Deepen (2006) uses simulated hail

footprints to model damage to cars through a Poisson distribution fitted with vehicle

insurance data. Brown et al. (2015) use insurance data to explore the link between

roof material and hail impact on buildings in Texas.

These studies all involve randomness from the hail event itself. Indeed, radar-based

proxies are used to derive the probability and/or the expected intensity of a hailstorm

on grids with resolution of several kilometers. Those proxies are often chosen over

direct hail measurements with automatic hail sensors (Kopp et al., 2023) because

they are more spatially consistent. However, the monetary impacts due to hailstorms

appear in very narrow and localized tracks that are usually poorly represented by

models with such grids.

The goal of the present study is to propose a spatially consistent model for insurance

claims related to hail damage at the building level. This model differs from previous

ones, as the probability and intensity of a hail event are supposed to be known, and

stochasticity comes from the possible spatial impacts of a hail storm. The model

we develop seems to be the first to combine a random line process and an extreme

value model in order to represent hail damage tracks accurately. We describe the data

available to us in Section 3.2, introduce a line model with extreme marks in Section 3.3,

and describe the results we obtain when applying this model in the Swiss canton of

Zürich, henceforth “the canton”, in Section 3.6.

3.2 Data and initial analysis

3.2.1 Data

Two variables representing hail risk were provided by the meteorological service

MeteoSwiss in the scope of the scClim project, the purpose of which is to combine

knowledge from different fields to create a continuous model chain from simulating

thunderstorms to quantifying the monetary impacts of hail in Switzerland. Gridded

one-kilometer-resolution maps of the probability of hail (POH) and the maximum ex-
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pected severe hail size (MESHS), derived from volumetric radar reflectivity (Nisi et al.,

2016), are available for the canton during the convective season (April–September) for

the years 2002–2021. The MESHS offers more spatial granularity than the POH and

thus was preferred (Figure 3.1).

The output from a MESHS-based deterministic damage function developed during

the scClim project (Schmid et al., 2023) and calibrated with insurance data in the

canton is also available for the same period; the results in that paper use the same

function, calibrated over several Swiss cantons. The data made available to us contain

predictions for the numbers of affected assets and the monetary hail damage in each

cell of a 2km square grid. For conciseness below we shall use the terms “grid cell” or

sometimes just “cell” in reference to this grid. The PAA and damage functions were

developed following the hazard/exposure/vulnerability methodology of the CLIMADA

framework described by Aznar-Siguan and Bresch (2019) and will be simply referred to

as “CLIMADA” below. We use a per-building version of the CLIMADA output, referred

to as “downscaled CLIMADA” below, that will be used as input for our claim value

model. This per-building damage is a naive downscaling of the per-cell CLIMADA

damage, and attributes weights to each building as a function of its insured value.

In practice, this means that every building in the cell is impacted when CLIMADA

predicts a positive per-cell value, artificially inflating the number of buildings affected.

In addition to hail-related variables, we use wind direction from the state-of-the-art

ERA5 reanalysis from the European Centre for Medium-Range Weather Forecasting

(Hersbach et al., 2020), available from 1979 onwards on a 25km square grid over

Europe.

Insurance data for hail-related claim damage to buildings in the canton is also avail-

able from one of the stakeholders of scClim, the Zürich cantonal insurance com-

pany GVZ. These data consist of individual claim values for buildings for the period

2000–2022, during which there were 244 days with positive claims somewhere in the

canton and a total of 46254 claims. These are the amount finally paid by the insurance

company in Swiss francs (CHF) following hail damage to a building and not estimated

values of monetary damage. The construction year, volume, and actualized insured

value of every insured building in the canton are also available. We did not explore

potential issues linked with preferential sampling, since the owner of every build-

ing in the canton is legally obliged to take out natural hazards insurance with GVZ.

Consequently, data are very dense, though there are spatial disparities in exposure
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Figure 3.1: Hail risk covariates POH (left), MESHS (center), and wind direction (right) on 28 June 2021
in the canton (47.15–47.70◦N, 8.35–8.99◦E).

Figure 3.2: Insured monetary value for individual buildings (left) and the exposed monetary value per
m3 (right).

owing to variations in population density. As exposure equals the insured mone-

tary value of buildings, urban areas are much more exposed than suburban areas or

the countryside, but the distribution of buildings is spatially rather homogeneous

in terms of average exposed value per cubic meter; see Figure 3.2. Our claim value

model should be able to predict the difference between the true damage, i.e., the claim

values reported by GVZ, and downscaled CLIMADA damage when a positive claim

was recorded by GVZ. We call this target variable the “residual damage”.

82



3.2 Data and initial analysis

Figure 3.3: Example days with more than 50 recorded claims. Red-colored squares in the first row
correspond to the aggregated claim count per 2km grid cell. The red line has a slope corresponding to
the average wind direction on that day. The graphs on the second row represent the distance from the
centroid of a 2km grid cell to the red line.

3.2.2 Exploratory analysis

Hail footprints

Literature exploring hailstorm patterns agrees on an ellipsoidal shape (Otto, 2009;

Punge et al., 2014), or a sufficiently wide straight sketch (Deepen, 2006) for modeling

the spatial extent of a hail footprint. Two of those studies explore hail tracks in

Germany (Deepen, 2006; Otto, 2009) while the third treats hailstorm footprints in

Central Europe (Punge et al., 2014). Although modeling single hail events on a large

territory with locally bounded shapes seems reasonable, the canton of Zürich covers

a much smaller area than Germany or Central Europe, and individual hail-related

claims in our data suggest that hail storms progress along a line in space with a very

narrow lateral dispersion; see Figure 3.3. Exploratory analysis suggested that the line

direction is related to the average wind direction on the day of a hail storm.
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Figure 3.4: Number of buildings with positive predicted damage per grid cell per day using the down-
scaled CLIMADA impact function: (a) claim value per single building per day: (b) and total damage
recorded on a given day aggregated over the canton: (c) all with the line x = y .

Local and extreme damage

The deterministic damage function developed through CLIMADA provides good esti-

mates for the amount of monetary damage on a grid and adequately represents spatial

patterns over the canton. However, the naively downscaled CLIMADA compensates

mispredicted individual claim damage values with a very large number of claims (see

Figure 3.4) as damage is distributed over all exposed buildings within a cell. Indeed,

CLIMADA cannot distinguish between a few claims of high damage and many claims

with low damage in a cell. Furthermore, increases in the frequency or intensity of

hail would impact either the count or the value of hail-related damage, causing the

compensation mechanism described above to fail. There is thus a need for a model to

provide realistic values of the damage per building, which is highly relevant for insur-

ance. The objective of this study is to provide such a model for hail-related monetary

damage that respects the count/size ratio observed in the claim dat, by lowering the

frequency of positive claims while allowing their values to be locally extreme.

Figure 3.5 shows strong seasonal variation in claims: most damage occurs between

June and August, with a peak in June, and claims occurring in April or September

look less heavy-tailed than in May–August. Henceforth we only consider claims in

April–September, which represent 99.74% of the total data, and define the “hail season”

to be May–August.
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Figure 3.5: Exploratory analysis of claim values: (a) average total claim value over the canton per month:
(b) Spearman correlation ρ and extremal correlation π for pairwise time series of claim values per
cell as a function of the distance between cells. In (b) the solid lines represent the average pairwise
correlation over equally distant cells, and the shaded areas show the 90% confidence range.

3.2.3 Spatiotemporal correlation

Claims for damage from a hail event can be made on that day or with a lag of a few

days, so the damage function derived through CLIMADA pre-processes the original

insurance data to cluster claims received during a 4-day window around a big hail

event detected with the POH values. For any reported claim, POH values in a ±2-day

window are scanned. If a POH higher than 50% of that on the day of the reported claim

is observed, the claim date is changed to the day with the highest POH (Schmid et al.,

2023). This pre-processing step largely succeeds in removing short-term autocorre-

lation in the claim values, so here we focus on spatial correlation. For this purpose,

we introduce the extremal correlation πh(u) =P(Xs+h ≥ u | Xs ≥ u) of the variable Xs ,

where s denotes the spatial location of a cell, u is a high threshold and h a spatial lag.

The threshold u is chosen by applying the threshold selection method described in

Varty et al. (2021) to the log total sum of damage Xs (see Supplementary Material). We

also study the pairwise Spearman correlation ρ for the daily sum of claim values per

cell. Figure 3.5 shows that both π and ρ decrease as the distance between two spatial

locations increases.

3.3 Key model elements

In this section we describe the key elements of a model to reproduce the very localized

but large damage seen in the data. We first explain how the long and narrow hail

footprint (as observed in Section 3.2.2) can be modeled using a Gaussian line process,

and then recall the peaks-over-threshold approach from extreme value theory, which
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is used to account for large impacts on individual buildings (see Section 3.2.2). More

details of the modeling are given in Section 3.4.

3.3.1 Random line process

Claim values are usually represented as a spatiotemporal point process st = (t , x, y),

with t ≥ 0 and (x, y) the geographical coordinates. In the forthcoming discussion, a

sequence of distance-conserving transformations will be applied to map this onto a

coordinate system that is better suited for defining the random line model.

For t > 0 let Θt ∈ [−π,π] and αt respectively be the time-varying random angle and

vertical deviation of a line L from a chosen origin point s0 = (x0, y0), defined as the

set of points

L =
{

(s, t ) : sT

(
− tanΘt

1

)
=αt

}
, (3.1)

where s = (x, y) denotes geographical coordinates and t is the discrete time coordinate.

At time t the projection of any pair of spatial coordinates s = (x, y) in the coordinate

system in which L is the horizontal axis and the origin is s0 may be written as

sL
t =

(
cosΘt sinΘt

−sinΘt cosΘt

)(
x

y −αt

)
, (3.2)

and the orthogonal projection of s onto the line would thus be the point πL
t (s) =

(cosΘt x +sinΘt y,0) in the new coordinate system. The Euclidean distance between a

point in space and the line L can be computed in any coordinate system, and as sL
t

and πL
t (s) have the same x-coordinate in the new system, at time t this distance can

be expressed as

dt (s,L ) = |y ′| = |(y −αt )cosΘt −x sinΘt |. (3.3)

To allow the intensity of points at time t to be highest close to the random line L , we

define a spatiotemporal Gaussian field X µ(s, t ) whose mean is

mt (s) = σm

1+dt (s,L )
−1, (3.4)

where σm is a dispersion parameter that controls the concentration of points around

L . In accordance with the exploratory analysis, we chose a correlation function ρ

such that the correlation between X µ(s0, t ) and X µ(s1, t ) decreases when the distance
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w between s0 and s1 increases (see Figure 3.5). A common choice is the Matérn

correlation function

ρ(w) = {2ν−1Γ(ν)}−1(w/l )νKν(w/l ), w > 0, (3.5)

where ν> 0 is a shape parameter controlling the smoothness of the Gaussian process,

l > 0 is a scale parameter, Γ(·) is the Gamma function, and Kν(·) is the modified Bessel

function of the second kind. After some experimentation, we took ν= 1.5, which gives

fields of similar smoothness to the data, and estimate the parameter l as part of a

hierarchical Bayesian model. When ν= 1.5, Equation (3.5) simplifies to

ρ(w) =
(
1+p

3w/l
)

exp
(
−p3w/l

)
, w > 0. (3.6)

3.3.2 Marginal model for extreme claim values

The exploratory analysis suggests using extreme value theory to model the largest

claim values. The generalized Pareto distribution,

GPDu(x) = 1−
(
1+ξx −u

σu

)−1/ξ

+
, x ∈ [u,∞), (3.7)

where a+ = max(a,0) for real numbers a, provides a standard model for the ex-

ceedances of a high threshold u. The model depends on a shape parameter ξ that

determines the weight of the distribution tails and on a scale parameter σu ; both are

specified in Section 3.4.2. We select a constant threshold u by applying the method

described by Varty et al. (2021) to the log of the total sum of claim values over the

canton; see the Supplementary Material.

3.4 Modeling extreme hailstorms

Our model for hail damage uses a discrete zero-inflated count process for the number

of claims and a continuous two-part distribution for hail damage values. In the

following section, the spatiotemporal matrix of observed covariates will be designated

by the letter M . If a variable needs to be specified, it is written M NAME — for the

MESHS, for instance, we write M MESHS. Building exposure, MESHS, POH, CLIMADA

predicted claim count and downscaled CLIMADA value are respectively designated by

Exp, MESHS, POH, NC, and YC. The count of individual claims in a grid cell on a given
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day is denoted by N , while the value of an individual claim is designated by Y .

3.4.1 Hail damage count

The claim count is modeled on a 2km square grid. Hail can either strike very locally

and violently or can be spread out more smoothly, as observed in the data, in which the

maximum number of observed claims in a cell on a single day is 469, and the nonzero

minimum is 1. In view of this wide range of values, we model N as a negative binomial.

Positive counts are scarce, so we model them as realisations of a zero-inflated negative

binomial random variable, with probability mass function

NBψ,µ,α(x) =


(1−ψ)+ψ

(
α

α+µ
)α

, x = 0,

ψ
Γ(x +α)

x!Γ(α)

(
α

µ+α
)α (

µ

µ+α
)x

, x = 1,2,3, . . . ,
(3.8)

where ψ ∈ (0,1), µ> 0 and α> 0 is a shape parameter. We set N |ψ,µ,α∼ NBψ,µ,α.

The probability ψ of observing a non-zero claim in grid cell s on day t is modeled as

ψ(s, t ) = expit
{
ψ0 +ψ11M NC

s,t >0 +ψ2M NC
s,t mt (s)

}
, (3.9)

where expit(x) = {1+ exp(−x)}−1 and ψ0,ψ1, . . . are real parameters. We define the

mean µ of the negative binomial variable through the equation

logµ(s, t ) =µ0 +
3∑

i=1
µ1i

(
M NC

s,t

)i +µ2M NC
s,t mt (s)+X µ(s, t )+ε(t ), (3.10)

where X µ is a spatiotemporal Gaussian field whose mean mt and covariance function

ρ are given respectively in (3.4) and (3.6), and µ0, . . . are real parameters. The Gaussian

noise ε(t ) has mean zero and one variance for the months April and September and

another variance for the months May–August.

3.4.2 Hail damage values

The number of positive claims (46,254) is much smaller than the roughly 350,000

cell-date combinations in which hail events might have occurred, so it is reasonable

to model spatial patterns at a coarser resolution than the 2km grid used for the counts.

Spatial Gaussian random fields used to model unobserved covariates underlying the
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3.4 Modeling extreme hailstorms

hail damage values are thus defined over a grid of resolution roughly 10km in which

each cell has at least 100 positive claims over the years 2000–2015.

Downscaled CLIMADA under-predicts the values of 99.3% of reported claims, so we

model only positive errors, i.e., if the predicted count N is positive, we only allow a

shift upwards from the downscaled CLIMADA value M YC. The resulting residual hail

damage variable Z = Y −M YC is modelled using a beta model for non-extreme values

and a generalised Pareto model for extreme values.

We first introduce a binary variable R to model the event that a claim value exceeds

the threshold u (R = 1) or not (R = 0), with success probability

p(s, t ) = expit
{

p0 +p1M POH
s,t +p2M MESHS

s,t +p3M MESHS · POH
s,t +p4M Exp

s,t +χ(s)+εp (t )
}

,

(3.11)

where M MESHS · POH
s,t = M MESHS

s,t M POH
s,t and χ and εp normally-distributed random ef-

fects respectively per grid cell and season. The Beta and Pareto models for non-

extreme and extreme claim values are detailed below. In the following sections, f

denotes the function f : x 7→ log(1+x).

Non-extreme residual damage

Residual damage Z for which f (Z ) ≤ u is described by letting Z / f −1(u) have a beta

density with mean ν and variance ν(1−ν)/κ+1,

Betaν,κ(x) = xνκ−1(1−x)(1−ν)κ−1

B {νκ, (1−ν)κ}
, x ∈ (0,1), (3.12)

where B(α,β) = Γ(α)Γ(β)/Γ(α+β). We set

Z

f −1(u)
| {

f (Z ) ≤ u
}

,µB ,σB ∼ Betaν,κ, (3.13)

and model the mean of this variable via the expression

νt (s) = expit
{
ν0 +ν1M POH

s,t +ν2M MESHS
s,t +ν3M Exp

s +X β(s)
}

, (3.14)

where X β is a spatial Gaussian process with zero mean and covariance kernel function

ρα(w) =
(
1+ w

4l 2

)−2
. (3.15)
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Extreme residual damage

Damage arising when f (Z ) > u is modeled by letting f (Z )−u be a generalized Pareto

variable,

f (Z )−u | { f (Z ) > u},σu ,ξ∼ GPDσu ,ξ; (3.16)

the distribution function is given in (3.7). The extremal correlation observed in Fig-

ure 3.5 is accommodated by allowing σu to depend on POH, MESHS, exposure co-

variates and unobserved spatial discrepancies and time-related autocorrelation, re-

spectively modeled with a Gaussian process and an auto-regressive process, leading

to

logσu,t (s) =σ0 +σ1M MESHS
s,t +σ2M MESHS · POH

s,t +σ3M Exp
s +X σ(s) (3.17)

where X σ is a spatial Gaussian process with zero mean and a Matérn covariance

matrix (3.6), in which the Euclidean distance has been replaced by the chordal distance

because our Gaussian process occurs on the surface of a sphere, whose curvature

should be reflected by our model (Jeong et al., 2017). The chordal distance is the

length of a line passing through the three-dimensional Earth to connect two points

on its surface. For two locations s1 and s2 with respective geographical coordinates

(x1, y1), (x2, y2), the chordal distance between s1 and s2 is defined by

C(s1, s2) = 2r arcsin

[
1

2

{
1−cosp (y2 − y1)+cosp y1 cosp y2(1−cosp (x2 −x1)

}]1/2

,

where r = 6371km is the Earth’s radius and cosp (z) = cos(πz/180). In a small area such

as the canton, using the chordal distance instead of the Euclidean distance might not

make a huge difference, but it would matter if the model was used for larger regions.

In view of Figure 3.5 we allowed the shape parameter to vary as

ξ(t ) =
ξ1, t ∈ {May, June, July, August},

ξ2, otherwise.
(3.18)
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3.5 Model fitting and validation

3.5.1 Technical challenges

Fitting the Bayesian hierarchical model described in Section 3.4 is challenging due to

its complexity, the size of the parameter space and the large number of data points.

Recent advances in spatial statistics allow better computational efficiency for Bayesian

models with latent variables (Rue et al., 2017). In our case, it would be desirable to use

R-INLA, which has been widely and successfully used for environmental data (e.g.,

Castro-Camilo et al., 2019; Koh et al., 2023). As our work is part of a collaboration

involving several subprojects mostly written in the programming language Python,

the model described in Sections 3.3 and 3.4 was also coded in Python so that our

collaborators would find it accessible. There is no equivalent of R-INLA in Python, and

reproducing it for Python users would have taken far too long, so despite the resulting

drop in computational efficiency we resorted to Markov chain Monte Carlo (MCMC)

methods.

In contrast to Metropolis–Hastings steps, which make trajectory proposals within a

possibly skewed ball (Hastings, 1970; Metropolis et al., 2004), or to Gibbs sampling,

which generally only moves in a few dimensions at a time (Gelfand, 2000), Hamilto-

nian Monte Carlo (HMC) generates proposals based on the shape of the posterior by

using its gradient (Betancourt, 2017). In MCMC algorithms, the termination criterion

identifies when a trajectory is long enough for adequate exploration of the neigh-

borhood around the current state, but in HMC, this criterion should be chosen to

compromise between taking full advantage of the Hamiltonian trajectories and wise

use of computational resources (Betancourt, 2017). The No-U-Turn Sampler (NUTS) is

a HMC algorithm that proves particularly efficient in converging for high-dimensional

posterior distributions (Homan and Gelman, 2014). Indeed, NUTS uses a dynamic

termination criterion that considers only the position and momentum of a trajectory’s

boundaries: when it is met, further sampling typically leads to neighborhoods that

have already been explored. In addition to this specific termination criterion, NUTS

implements a multiplicative expansion of the trajectory that allows fast exploration

of the parameter space within limited computer memory (Betancourt, 2017). We

used NUTS for the count model described in Section 3.4.1 and for the extremal model

described in Section 3.4.2.

For the non-extreme claims model detailed in Section 3.4.2, a differential evolution
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Metropolis (DE-MC) sampling step with a snooker updater was used, as it is more

efficient and faster than the classical random walk Metropolis step. DE-MC combines

a differential evolution genetic algorithm and MCMC simulation (Ter Braak, 2006).

The snooker updater makes it less computationally expensive than classical DE-MC,

as it updates different chains in parallel with information from past states (Ter Braak

and Vrugt, 2008), and is faster than NUTS for this model, with no significant impact

on the results.

We systematically exclude the initial 500 samples drawn, which are reserved for a

tuning phase during which the sampler dynamically adjusts the step sizes and scalings

to optimize its subsequent performance. We monitor the convergence of the model

parameters using informal diagnostic plots; see the Supplementary Material. We check

that autocorrelation has decreased to approximately zero during the sampling, and

examine trace plots of the sampled parameters for the absence of patterns. Running

the claim counts model took about five hours for about a thousand parameters. For

the claim values, fitting the model took two hours for the GPD model (38 parameters)

and less than an hour for the Beta model (36 parameters). Non-informative priors

were found to perform significantly better than weakly informative priors in our case

and thus were attributed to all of the model parameters. To make sure the posterior is

proper, we check that its distribution percentiles and mean are finite and reasonable.

3.5.2 Metrics

To assess the model’s performance in improving spatial patterns we use diagnostic

quantities that include the following two specific metrics.

The spatially convolved Kolmogorov–Smirnov statistic (Miralles et al., 2022) represents

the disagreement between the spatial distributions of the generated and observed

images and is computed as the maximum absolute difference of empirical cumulative

distribution functions for the generated and true damage, summed over 10 × 10

patches of the image of interest. The aim is to obtain a metric with properties close to

those of the Fréchet inception distance (Heusel et al., 2017) for images by assessing

the match between predictions and targets, as a human eye would. After extracting M

spatial patches of constant size from the target and predicted images, we set

SKSS = ∑
t≤NT , j≤M

max
x∈R

|F j t (x)− F̂ j t (x)|,
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where F j t represents the empirical cumulative distribution function of the hail damage

for a single spatial patch j and time t and F̂ j t is its analog for predicted damage. This

metric evaluates the local agreement between two distributions rather than focusing

on individual pixels.

The log-spectral distance (Rabiner and Juang, 1993) is expressed as the log-difference

of power spectra between the generated and realized samples,

LSD =
{

1

2NT ×P

∑
t≤NT ,i≤P

[
10log10

( |g (ci t )|2
|g (ĉi t )|2

)]2}1/2

,

where g is the Fourier transform, |g (·)|2 the power spectrum, c is the target map of

damage and ĉ its estimate. This evaluates whether the generated images reproduce

the spatial structures noticeable in the target images.

3.6 Results

There is no visible long-term trend in either the claim count or value in the insurance

data; we can thus split data into sets of consecutive years. The training set is built

from years up to 2015, the validation data comprises the years 2016–2017, and later

years are used as the test set. In the following analysis of the results, unless specified

otherwise, the average prediction for the test set over 1000 different sets of parameters

sampled from the posterior distribution is used to construct graphs and maps. We

recall that our objectives are to accurately capture spatial patterns for hail damage,

to be able to predict localized and extreme damage and to match the distribution of

the target data provided by GVZ. We shall see that the fitted random line process with

extreme marks achieves this. We start by evaluating the performance of the Gaussian

line process, then explain the procedure for combining counts and claim values, and

finally discuss predicted claims.

3.6.1 Claim counts

Our benchmark for evaluating the performance of the random line model presented

in Section 3.3.1 is the percentage of affected assets (PAA)-based gridded claim count

predicted with CLIMADA (Schmid et al., 2023). The PAA, defined as the per-cell

proportion of damaged buildings, is expected to increase with the value of MESHS,
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Table 3.1: Comparison of the false alarm rate, sensitivity, specificity and positive predictive value (%)
averaged over the time dimension for CLIMADA’s hail damage model and the random line model. If a,
b, c and d denote the true positive, false positive, false negative and true negative numbers, the false
alarm rate is computed as b/(b +d), the sensitivity as a/(a + c), the specificity as d/(b +d) and the
positive predictive value as a/(a +b).

False Alarm Sensitivity Specificity Positive Predictive Value
CLIMADA 72.1 64.8 27.9 62.9
Model 29.7 52.1 70.3 77.0

since hailstorms with larger hailstones should cause more damage. Figure 3.6(a)

shows that the observed PAA does not increase linearly and is very variable, but

that the predicted and observed values are quite similar, while the 95% prediction

range captures the observed variation well. The impact function computed through

CLIMADA tends to over-predict the percentage of affected assets for any observed

MESHS value.

Figure 3.6(b) suggests that small claim counts are over-predicted by our model. For

days with more than 1000 recorded claims, the distribution of predicted counts is very

close to the observed claim counts; the line process captures days with very many

claims particularly well.

Table 3.1 assesses how much our model improves on CLIMADA in terms of predicting

the daily claim count. The random line model reduces the false alarm rate by about

40% and increases the positive predictive value by 15% and the specificity by 42%,

so it makes fewer mistakes on average in predicting both positive and zero counts.

Compared to CLIMADA total predicted counts per day, Table 3.1 shows that the

sensitivity has dropped by 12%, i.e., our model might miss days with a positive claim

count, but inspection of the data reveals that it only misses days with fewer than ten

claims and less than CHF 10K overall damage.

Examples of predicted counts plotted in Figure 3.7 show that the line model helps

to concentrate the predicted damage on straight lines, giving results that resemble

observed claim counts which are usually concentrated in hail streaks of width just

a few km in the Alpine region (Nisi et al., 2018). In contrast, the predictions from

CLIMADA are broadly distributed according to the MESHS footprint, which typically

covers a whole storm cell core (Nisi et al., 2016). The average predicted count over the

canton is also closer to the realized value using the line model than with CLIMADA.
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Figure 3.6: Comparison of CLIMADA and model: (a) predicted and observed percentages of affected
assets; (b) QQ-plots of realized versus predicted quantiles for the number of claims per grid cell per day.

3.6.2 Combination of claim counts and values

One way to combine counts and values would be to compute a per-cell impact coeffi-

cient corresponding to the predicted number of buildings impacted by a hailstorm

divided by the total number of buildings in the grid cell. This would then be multiplied

by the total possible hail damage in the cell, i.e., the sum of predicted values of claims

for all buildings, to obtain the per-cell effective damage. This possibility was consid-

ered but not pursued, since our aim is to predict claim values for single buildings

and not the aggregated damage in a cell. Our combination of counts and values thus

involves choosing which buildings are impacted by hail given the predicted count

in a cell. In each cell, buildings are first sorted by their exposure (i.e., insured value),

and the first N are selected to compute the total damage. To predict damage and its

confidence range, we sample the counts for the cell n times and the claim value for

every building m times, apply the procedure described in the previous sentence to

the mn samples, and finally compute the average total damage and its 95% prediction

range.

3.6.3 Claim values

Evaluation of the full hail damage prediction involves the combination of counts

and claim values, as described in Section 3.6.2. We use the two metrics described in

Section 3.5.2 to compare the spatial patterns of hail damage predicted with CLIMADA

and our model. Figure 3.8(a) shows that both take higher values for CLIMADA than for

our model, so the latter better captures the observed hail damage footprints. Figure 3.8

also shows that the distribution of hail damage predicted with our model is close to

the observed distribution both on a single building scale (b) and on a 2km square grid
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(c), though non-extreme damage is slightly over-predicted, which suggests further

research on the distribution of non-extreme claim values might be needed. CLIMADA

systematically under-predicts the aggregated damage per grid cell, and there is a clear

improvement using the random line process. Figure 3.8(b) compares the model’s

input, downscaled CLIMADA, to the prediction. As expected, downscaled CLIMADA

under-predicts damage per building (see Section 3.2.2), while the random line model

predicts realistic values, particularly so for claims above CHF 5000.

Figure 3.9 shows some daily hail damage maps for days on which there was over one

million Swiss francs of realized hail impacts in the canton (some of these claim dates

belong to the train or validation set). The predicted claim values appear to be locally

large, matching the spatial pattern of realized damage, whereas CLIMADA damage is

more dispersed. The average total predicted damage over the canton for days with

extreme realized hail damage is close to the observed value, which the confidence

interval usually captures. The line model is thus able to predict well-located extremes

while providing reliable estimates of the total damage. The lowest panel in Figure 3.9

shows the most extreme hail event in the two decades of our data, on 28 June 2021,

which involved roof-penetrating hail damage with 177 claims above CHF 100,000. Our

model manages to capture extreme damage on this day, with average predicted values

up to CHF 180,000. The spatial pattern using both CLIMADA and, to a lesser extent,

our model, is wider than the observed data, which might be related to overestimation

of the MESHS intensity that day in the northern half of the canton (Figure 3.1).

3.7 Conclusion

The model developed in this paper seems to be the first to combine a Gaussian random

line process with extreme-value modeling in order to predict the spatial footprint

of hail damage. It improves on the use of a benchmark deterministic hail damage

function: in particular, it captures extreme damage values for individual buildings

well, reproduces the spatial pattern of hail in the insurance data, and its stochasticity

enables uncertainty quantification. With appropriate changes, such as for instance

the possibility of modeling multiple random lines at the same time, our approach

could be generalized to larger areas and would be useful in studying the insurance

impacts of climate change. It would be interesting to use thunderstorm cell direction
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instead of large-scale wind direction as the covariate for the slope of the random line

process.
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Figure 3.7: Comparison of locations of observed claim counts (left), CLIMADA predicted counts
(center), and our predicted counts (right) for three dates selected over all dates with more than 10
observed claims over the canton on the 2000–2021 period. The titles give the observed number of
claims, CLIMADA predicted count, and the average count and its 95% predicted range from the random
line model (right).
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Figure 3.8: Comparison of metrics of predicted damage. (a) values of scaled LSD and SKSS for our
model, with those from CLIMADA subtracted. (b) QQ-plots of realized versus predicted quantiles for
the damage per building and (c) per 2km grid cell, with dashed blue lines showing the 95% prediction
range.

99



Chapter 3. Bayesian Modelling of Insurance Claims for Hail Damage

Figure 3.9: Example daily hail impact maps. The columns represent the observed claims (left),
CLIMADA-predicted claims (center), and the hail damage prediction using the random line model
(right). The left color bar relates to the prediction at the scale of the cell (i.e. relevant for CLIMADA
predicted damage), while the right color bar displays a log scale for the per-building claim values (i.e.
relevant for realized and predicted damage). The observed monetary cantonal damage (left), CLIMADA
predicted total (middle), and average damage from the random line model with its 95% predicted range
(right) are displayed in the titles for each selected date.
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3.12 Supplementary material

Here we provide additional information and figures about model selection, including

material about the choice of fixed hyperparameters such as the threshold for the

GPD model, and also MC diagnostics related to the validation of the Bayesian model

parameters.

Figure 3.10: Threshold selection method described in Varty et al. (2021) applied to the log total damage
per cell. The left panel shows a minimum qq-`1-distance for a threshold of 8.06. The QQ-plot for the
GPD fit of the log total sum of damage above this threshold is displayed in the right panel, in which the
profile likelihood-based 95% confidence interval is shown by the blue shaded area.
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Figure 3.11: Evolution of the autocorrelation through sampling for parameters of the Negative Binomial
model presented in Section 3.4.1. The grey area designates the acceptable range for the autocorrelation
at the end of sampling to assume convergence of the model. The bounds of the confidence range are
computed from the central limit theorem.

Figure 3.12: Autocorrelation plot (left) and trace plot (right) for the posterior distribution of the shape
parameterα in the Negative Binomial model presented in Section 3.4.1. A close-to-zero autocorrelation
through sampling and no specific trend or pattern in the trace plot is usually a good sign of model
convergence.
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Figure 3.13: Kernel density estimate plot: (left) and trace plot: (right) for parameters of the Beta model
presented in Section 3.4.2. No specific trend or pattern in the trace plot is usually a good sign of model
convergence.
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Figure 3.14: Evolution of the autocorrelation through sampling for parameters of the GPD model
presented in Section 3.4.2. The grey area designates the acceptable range for the autocorrelation at
the end of sampling to assume convergence of the model. The bounds of the confidence range are
computed from the central limit theorem.
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Figure 3.15: Autocorrelation plot (left) and trace plot (right) for the posterior distribution of the shape
parameter ξ in the GPD model presented in Section 3.4.2. A close-to-zero autocorrelation through
sampling and no specific trend or pattern in the trace plot is usually a good sign of model convergence.
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4 Perspectives

This chapter closes the thesis with ideas about further improvements in each specific

topic considered during these (almost) three years. Of course, a lot more needs to be

done to favor the collaboration between statisticians and climate scientists.

The work on timing and spatial bias in extreme event attribution in Chapter 1 proposes

a general framework to study selection bias of any kind. A logical extension to this

work would be to consider other selection biases relevant to EEA (National Academies

of Sciences, Engineering, and Medicine, 2016), and not only to the method used by

the World Weather Attribution group. In the paper, we explain and try to account

for spatial selection bias as defined in National Academies of Sciences, Engineering,

and Medicine (2016) and Hammerling et al. (2019), i.e., the bias induced by choosing

to study the specific location where the extreme happened by considering a spatial

area embedding several locations S = {s1, . . . , sn} and condition the likelihood on the

fact that the extreme happened in location sm . The simulation framework and case

studies only considered bivariate data, but further research could look at larger spatial

areas around the observed event with more different locations and see how the results

generalize. The bias of mainly performing EEA on events that happened and which we

expect to be positively correlated with climate change (Hammerling et al., 2019; van

Oldenborgh et al., 2021) might be trickier to study since we would need to generate a

catalog of counterfactual scenarios. Another potential area of improvement on the

topic is related to the fact that the choice of the stopping rule greatly influences how

timing bias can impact the return level estimation. Further work on the topic could

perform sensitivity analysis on a set of stopping rules or could study random stopping

rules and their effect on the extremal distribution.
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Chapter 4. Perspectives

In the wind downscaling work in Chapter 2, most issues stem from differences in

topography. The global architecture could thus be improved by building different

models for predicting patches that are mainly over mountainous areas or over the

Swiss Plateau, rather than using a single network for the entire country. Another

deep structure trained for image classification based on topography could select

which of those two networks should be applied. Different parameters would thus

be used to predict winds in plains and in complex terrain, perhaps leading to less

topographic variation in model performance. The training of such a structure would

require more time and resources but might overcome most of the remaining issues

with our model. An alternative is the use of spatial attention mechanisms, such as

in transformer networks (Jaderberg et al., 2015), to better capture the topographical

context of a specific patch during the training. Indeed, networks containing spatial

transformers can select regions of an image that are most relevant (attention), and

also encode those regions into a spatiotemporal vector invariant to the input image

formatting (cropping, rotating, scaling, . . . ) to simplify inference in the subsequent

layers. The use of transformer networks is widespread in natural language processing

and computer vision, and it has started to generalize to the analysis of time series

(Ahmed et al., 2023). In our case, the insertion of temporal attention layers instead

of LSTM layers in the GAN could help focus on the parts of the day when the wind is

strongest, and also reduce the computational cost.

The hail impact model proposed in Chapter 3 could in principle be generalized to all

Swiss cantons, given access to cantonal insurance data and CLIMADA’s hail impact

model output. For larger areas, modelling multiple random lines might be necessary.

Another use of the model would be to study how variation in the MESHS prediction

(for instance, under the influence of climate change) would impact the total average

economic loss. That information would not only be relevant to cantonal insurance

companies but could also be used in building climate change mitigation strategies on

the cantonal level, helping to highlight the economic and social impacts of climate

change. The is a growing interest in statistical modelling of storm tracks in large

areas using various geometrical shapes. Statistical models exploring the extremal

dependence of several locations on multiple straight lines of pre-defined orientation

have been proposed for severe ocean storms (Shooter et al., 2019, 2021). The modelling

of a windstorm’s spatial extent has been studied in Sharkey et al. (2019) using an

ellipse to capture the area impacted by the storm in Europe. Further research could

for instance develop a multi-line random process based on the work from Chapter 3
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to explore the change in frequency and amplitude of tornadoes in the United States.

Indeed, the frequency of tornado hazards in the U.S. has been rising over the last

decades (Bryan J. Boruff et al., 2003) with average annual losses of almost $1 billion

over the period 1949-2006 (Changnon Stanley A., 2009).

Papers aiming at connecting both fields like the first presented in this thesis are essen-

tial to make advances in statistics applicable to climate scientists. Interdisciplinary

projects such as those in Chapters 2 and 3 are a direct way of inserting statistical

knowledge into scientific projects. The Python package pykelihood developed dur-

ing this Ph.D. (see Appendix) has also made accessible some statistical techniques

only available in R before to the Python-coding community, which includes many

climate scientists, physicists, and engineers. There are certainly many more ways of

bridging the gap between statistics and climate science, and I hope that further ideas

will be provided by future researchers.
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A Appendix: pykelihood

An important outcome of this thesis is the development of the Python package

pykelihood, which reproduces features from different R packages regarding likelihood-

based inference. The development of pykelihood represents a non-negligible pro-

portion of my Ph.D. years and is relevant for the overall purpose of my thesis as it

facilitates the use of statistical models among the Python-coding community which

includes many climate scientists and physicists. This Appendix thus describes the

objective and functioning of the package pykelihood.

pykelihood is a Python package for statistical analysis designed to give more flexibil-

ity to likelihood-based inference than is currently possible in Python. Distributions

are designed from an Object Oriented Programming (OOP) point of view. In particular,

this package allows the fitting of complex distributions to a dataset, add trends of dif-

ferent forms in the parameters of the target distribution, condition the log-likelihood

with any form of penalty, and profile parameters of the model based on the chosen

likelihood’s sensitivity. Installation of the package can be done by following the steps

described on the GitHub README file for the package.

The distribution class

The most basic use of pykelihood is creating and manipulating distributions as

objects. The distribution parameters can be accessed like standard Python attributes.

Sampling from the distribution or computing the quantiles can be done using the

same semantics as with the Python package scipy.stats. To fit the distribution to

data, the syntax is simply distribution.fit(data), where fixed parameters can be
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added as additional arguments to the fit, as in the package scipy.stats (for instance,

distribution.fit(data, loc=0) will fit the distribution to the data while keeping

the loc parameter null).

Trend fitting

One of the most powerful features of pykelihood is the ability to fit arbitrary distri-

butions. For instance, suppose our data has a linear trend in time with very little

Gaussian noise we would like to capture.

1 import numpy as np
2 data = np. linspace (-1, 1, 365) + np. random . normal (0, 0.001 , 365)

Fitting a Normal distribution with a trend in the loc parameter can be done using the

following piece of code:

1 from pykelihood import kernels
2 Normal .fit(data ,loc= kernels . linear (np. arange (365)))

and would output the following distribution object.

1 Normal (loc= linear (a=-1. 0000458359290572 , b=0. 005494714384381866 ),
scale =0. 0010055323717468906 )

The kernels module is flexible and can be adapted by users to support any kind of

trend. For instance, kernels.linear(X) builds a linear model in the form a +bX

where a and b are parameters to be optimized for, and X is a covariate used to fit the

data. If we assume the data were daily observations, then we find all the values we

expected: −1 was the value on the first day, 0.05 was the daily increment (2/365 = 0.05),

and there was a noise with a standard deviation 0.001.

Fitting with penalties

Another useful feature of pykelihood is the ability to customize the log-likelihood

function with penalties, conditioning methods, stability conditions, etc. Most statistics-

related packages offer to fit data using the standard negative log-likelihood function,

or in the best case, preselected models. To our knowledge, pykelihood is the only

Python package allowing easy customization of the log-likelihood function.
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For example, say we want to penalize the target distribution parameters which `1-

norm is too large: we would then apply a Lasso penalty.

1 def lassolike_score ( distribution , data):
2 return -np.sum( distribution . logpdf (data)) + np.abs(

distribution .loc ())

We then compare a fit using the standard negative log-likelihood function to the use

of the Lasso-penalized likelihood.

1 data = np. random . normal (0, 1, 1000)
2 std_fit = Normal .fit(data)
3 cond_fit = Normal .fit(data , score = lassolike_score )

The outcomes show that the penalty has been taken into account; the loc parameter

of the distribution applying the penalty is smaller than with the standard opposite

log-likelihood function.

1 »> std_fit .loc.value
2 -0. 010891307380632494
3 »> cond_fit .loc.value
4 -0. 006210406541824357

Parameter profiling

Likelihood-based inference requires parameter estimation, so it is important to quan-

tify the sensitivity of a chosen model to each of those parameters. The profiler
module in pykelihood includes the Profiler class that allows the linking of a model

to a set of observations by providing some goodness of fit metrics and “profiles” for all

parameters. Profiles are provided under the form of a dictionary of pandas DataFrame

objects. Each key is a parameter to profile, i.e. to fix and vary while the other distribu-

tion parameters are optimized, and each associated data frame contains the values of

all of the distribution parameters as well as this of the “score” function (usually the op-

posite log-likelihood) throughout the partial optimization. If the distribution includes

a trend in one of the parameters, the parameters of the trend will be profiled. If some

parameters were fixed in the distribution provided to the Profiler, the associated

profiles are not computed. Computing the profile likelihood can be done as follows.

1 from pykelihood . profiler import Profiler
2 from pykelihood . distributions import GEV
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3 fitted_gev = GEV.fit(data , loc= kernels . linear (np. linspace (-1, 1,
len(data))))

4 profiler = Profiler (fitted_gev , data , inference_confidence =0.95) #
level of confidence for the

likelihood -ratio test

1 »> profiler .AIC
2 AIC MLE
3 -359. 73533182968777
4 AIC Standard MLE # a comparison with the standard fit without

trend is provided
5 623. 9896838880583
6 »> profiler . profiles .keys ()
7 [loc_a , loc_b , scale , shape ]
8 »> profiler . profiles [" shape "].head(5)
9 loc_a loc_b scale shape score

10 0 -0. 000122 1. 000812 0. 002495 -0. 866884 1815. 022132
11 1 -0. 000196 1. 000795 0. 001964 -0. 662803 1882. 043541
12 2 -0. 000283 1. 000477 0. 001469 -0. 458721 1954. 283256
13 3 -0. 000439 1. 000012 0. 000987 -0. 254640 2009. 740282
14 4 -0. 000555 1. 000016 0. 000948 -0. 050558 1992. 812843

A binary search algorithm implemented to compute the parameter confidence inter-

vals allows for very efficient exploration of the parameter space. It can be provided

with a “precision” argument, defaulted to 10−5. For example, if the parameter of in-

terest is the location of the GEV distribution, the profile likelihood-based associated

confidence interval is computed using the following syntax

1 profiler . confidence_interval_bs ("loc", precision =1e-3)

from which the output would be an array containing the lower and upper bound for

the corresponding confidence interval (using the level defined as a parameter of the

Profiler object).

1 [-4. 160287666875364 , 4. 7039931595123825 ]

Statement of interest

The toy examples presented above might not seem very useful, but both the trend

fitting and the ability to condition a log-likelihood using any type of penalty function
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have been very useful during this Ph.D. Indeed, the work on the selection bias in

extreme event attribution studies involved both the need for a distribution able to

accommodate for a trend in one of the covariates in the Phalodi example, and for all of

the distributions and datasets considered to be fitted and profiled using conditioned

log-likelihoods. A reparametrization of the GEV distribution in terms of the return level

also implied the need for flexibility in the parameter definition, which is fortunately

provided by the package pykelihood. It was also fairly easy to build profile likelihood-

based confidence intervals for this study as well with the module profiling: this

feature was essential for the paper on selection bias in extreme event attribution

studies presented in Chapter 1.

Using functionalities already present in some R-packages would have been far easier

than writing a Python package to replicate them. Unfortunately, R is a statistician’s

programming language and as such, it is not widely used in the climate science

community. Writing pykelihood seemed crucial because it enables researchers from

diverse fields outside of statistics to access advanced techniques in extreme value

theory, thus facilitating their understanding and application.
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