
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Green Cryptography and Other Optimisations

Andrea Felice CAFORIO

Thèse n° 10 505

2023

Présentée le 29 septembre 2023

Prof. C. González Troncoso, présidente du jury
Prof. S. Vaudenay, directeur de thèse
Prof. C. Boura, rapporteuse
Prof. S. Lucks, rapporteur
Dr M. Stojilovic, rapporteuse

Faculté informatique et communications
Laboratoire de sécurité et de cryptographie
Programme doctoral en informatique et communications

À M 2, Bellegueule et Reims

Abstract

The spectral decomposition of cryptography into its life-giving components yields an in-

terlaced network of tangential and orthogonal disciplines that are nonetheless invariably

grounded by the same denominator: their implementation on commodity computing plat-

forms where efficiency is the overarching dogma. The term efficiency, however, only vaguely

captures the intricacies of the field of cryptographic optimisation and can be gauged only in

relation to the underlying architectures and their corresponding metrics. In software, these

criteria come in the form of memory or instruction cycles of minimisation. Whereas in hard-

ware environments, designers commonly target circuit area or latency reductions.

In this thesis, we blissfully ignore the software realm and fully concentrate our efforts on

cryptographic hardware implementations, i.e., application-specific integrated circuits, in an

undertaking that encompasses endeavours ranging from classic optimisation work of exist-

ing algorithms to the conception of novel constructions. This thesis unfolds over two books:

The first book is a treatise on the energy consumption of cryptographic circuits, an under-

represented metric in the canon of optimisation literature. We commence by devising an

energy model for authenticated encryption schemes by investigating the consumptive be-

haviour of lightweight schemes that are bootstrapped via block ciphers. We then turn our

gazes over to hardware-based stream ciphers and propose the first heuristic energy model for

this class of algorithms that enables us to design the currently most energy-efficient stream

cipher suited for the encryption of larger bulks of data. We conclude this section with the

proposal of an energy-efficient small-state stream cipher.

The second book gathers contributions in various other disciplines such as serialisation

of block cipher circuits through which we obtain the smallest known implementation of the

Advanced Encryption Standard. We then divert our attention toward encryption algorithms

for high-throughput networks, as found in the upcoming 6G telecommunication channels.

And we design an authenticated encryption scheme that is both secure in the post-quantum

setting and reaches unparalleled throughput rates in the Terabit range. Ultimately, the thesis

is concluded with an optimisation work on a side-channel-protected threshold implementa-

tion of a lightweight family of block ciphers.

i

Kurzbeschreibung

Ein grober Querschnitt durch die Gefilden der kryptographischen Wissenschaft offenbart ein

verqueres Netz von ineinander verwobenen Sparten und Disziplinen, deren gemeinsamer

Nenner in ihrer Verwirklichung auf gängigen Rechenplattformen zu finden ist. Das Haup-

taugenmerk in dieser Angelegenheit liegt dabei in der Effizienz der Implementationen, was

hinsichtlich der mannigfaltigen Welt der Computersysteme nur im Verhältnis zu konkreten

Optimierungsmetriken verstanden werden kann. So stehen die Minimierung des belegten

Arbeitsspeicher und des Befehlssatzes in Softwareprogrammen im Vordergrund während die

Reduzierung der Schaltkreisgrösse und der Latenz bei Hardwareprojekten angestrebt wer-

den.

In dieser vorliegenden Doktorarbeit widmen wir uns ausschliesslich dem Diskurs rund

um kryptographische Hardware-Algorithmen, mit anderen Worten anwendungsspezifische

integrierte Schaltkreise kurz ASIC. Dieses Vorhaben umfasst Bestrebungen in klassischer Op-

timierung von bestehenden Algorithmen aber auch die Entwicklung von gänzlich neuartigen

Konstruktionen. Organisatorisch teilt sich dieses Dokument in zwei Bücher auf.

Das erste Buch ist eine Abhandlung über den Energieverbrauch von kryptographischen

Schaltkreisen, das gegenwärtig noch ein eher unangetastetes Feld im Kanon der einschlägi-

gen Optimierungsliteratur ist. Wir beginnen mit einem Entwurf eines Energiemodells für

authentifizierte Verschlüsselungsmethoden durch die Untersuchung des Energieverhaltens

von Algorithmen, die auf Blockverschlüsselung basieren. Danach richten wir unseren Fokus

auf Stromverschlüsselungsmethoden und ersinnen das erste Energiemodell für diese Art von

kryptographischen Algorithmen, was wir dann verwenden um den bisher energiesparend-

sten Stromverschlüsselungsprogramm zu kreieren für die Verschlüsselung grösserer Daten-

mengen. Diese erste Buch wird beschlossen mit einem neuen energiesparenden Stromver-

schlüsselungsalgorithmus, der nur eine vergleichsweise kleine Anzahl an Speicherelementen

benötigt.

Das zweite Buch bündelt Projekte, die sich mit anderen Optimierungsmetriken befassen

unter anderem eine Arbeit über die Serialisierung von Blockverschlüsselungsmethoden in

der wir den zurzeit kleinsten AES Schaltkreis präsentieren. In einem zweitem Vorhaben un-

tersuchen wird das Feld der Algorithmen mit hohen Daten-Bandbreiten und gestalten eine

authentifizierte Verschlüsselungsmethode, die sicher ist in der Präsenz von Quantenrechn-

ern und über eine Bandbreite verfügt, die über den Terabit-Bereich hinaus reicht. Das Buch

wird beendet mit einer Arbeit über die Effizienz von side-channel-gesicherten Algorithmen.

iii

Retrospective

Doctoral studies are an exercise in introspection. Self-exploration propelled by the dilemmas

and hardships that make up scientific work. 2019, questionable competence, application,

hiring and a paraphrased dialogue.

M2: It’s a bonus?

A: So they say.

Work progressed smoothly in the early months. The implementation tasks imposed by

Chapter 3 occupied most hours, however a deadline was in sight. The very first paper submis-

sion as a doctoral student; exciting days cut short by the lukewarm reception of our research.

An early moody slump or cognitive dissonance as clinicians would call it, misalignment of

expectations with reality. No time to despair, preliminary work on Chapter 4 has already be-

gun. It looks promising, this could be a breakthrough result, an entirely new branch within

the discipline. Several co-authors were recruited that share the enthusiasm. Hopes were high

that these findings will land a respectable venue and make me pass the first-year exam con-

currently. Nonchalance set in, however, contrary to expectations, the exam committee was

adversarial. Casual humiliation in a dusty, windowless seminar room.

A: I won’t survive this hostility, if this exam serves as a pretext for the coming years.

M2: But you did pass in the end, didn’t you?

A: Pity and disinterest.

Perception of time accelerated after that and work settled in a hypnotising stupor. An

endless cycle of appeasing anonymous oracles with often orthogonal agendas. Nonetheless,

Chapter 5 and Chapter 6 found a publishing house alongside the aforementioned Chapter 4

which had bounced on numerous occasions. In the meantime, the permanent pressure in-

duced by the competitive nature of the conference circus slowly became detrimental to the

physical and mental well-being. Doubts began to permeate the daily research efforts, a me-

andering poison rushing through mind and body, disintegrating a prospective academic ca-

reer in slow motion.

M2: Why quit now?

A: There is no point to any of this.

M2: Bonuses are often inherently pointless.

v

Collaborations kept me afloat. Chapter 7 and Chapter 9 were written through a laboratory-

internal effort while Chapter 8 was an international endeavour. In the midsts of this phase,

a supervisor departed from the laboratory. With the principal catalyst of motivation and ar-

chitect of this doctoral project missing, apathy took over amplifying the uncertainties and

doubts. Incinerate this thesis and let its ashes be blown into the ether of history.

M2: If not for yourself, do it for your professor...

Serge, it will forever be shrouded in mystery as to what persuaded you to put trust in

myself and my abilities. The hiring occurred during a period of intense personal volatility and

helped me regain some stability. Your boundless knowledge of the cryptographic craft is both

mesmerising and frightening but ultimately always inspiring in our journey to become well-

equipped cryptographers. LASEC under your leadership is rock of sanity and studiousness

embedded in a faculty where capriciousness is the modus operandi.

M2: For your supervisor...

Subhadeep, this thesis would not have been possible without you. You stood at the in-

ception of every chapter that constitutes this manuscript. Your wit and and passion for the

discipline made each project we tackled a joyful adventure from the first vague ideas to the

writing of the eventual paper. Your expertise at the intersection of electrical engineering, op-

timisation and cryptanalysis is a truly rare skill among the guild of cryptographers and will

bless many more unassuming students akin to myself.

M2: For the lab members...

Betül, you introduced me to LASEC with your semester project which instilled an un-

wavering curiosity towards the field of cryptography. Martine, our laconic morning chats

always initiated the day in a light-hearted fashion. Khashayar, the most ingenious and laid-

back office mate one could hope for. Daniel, you are genuinely one of the good ones, never

let them deviate you from your path. Fatih, the overlapping content of our theses is proof

well-functioning collaboration that benefited greatly from your ceaseless aim for details and

elegance. Loïs and Bénédikt, you were an important island of Switzerland for me and this so

diverse laboratory. Abdullah, your kindness and ardour for the ins and outs of your research

illuminate the corridor and its offices. Laurane, your serenity upholds the humanity of this

laboratory. Aymeric and Novak, your stint in our team was brief but impactful and was a

daily reminder that other cryptography groups can co-exist peacefully with LASEC. Gwang-

bae, the server infrastructure that you passed along to me was marvelous feat of engineer and

demonstrated that theory-heads like us are able to masterfully maintain real-world systems.

Boris and Ritam, your presense is and will be solidifying the place of LASEC among the top-

tier research institutions on this planet. All the summer interns, semester and Master project

students that crossed paths with me, you are and will be the future faces of cryptographic

research whether it be as part of LASEC or other laboratories.

vi

M2: For the collaborators...

Takanori, Willi, Yosuke, Fukang, Ravi, Fukang, Kosei, Kazuhiko, Ognjen, Francesco and

many more. You manifest the pleasure that stands at the core of any research project; collab-

oration. Your inputs, criticisms, encouragements and contributions form a sizeable portion

of these doctoral studies and their scholastic value.

M2: For Zürich...

Nati, Damian, Flavia, Leana, Mascha, Kiki, you are the light of my existence, an unending

torrent of love and companionship. Bonfires whose glow pierce any mist no matter how thick

and treacherous it appears, guiding a forlorn soul towards calmer waters. There is no me

without you and no life without the embrace of your presence. My heart beats to rhythm of

our friendship.

M2: For Lausanne...

Pera, Rafael, Niro, Thierry, Francis, our friendship is cornerstone of my assimilation in

this town both professionally and on weekends. Michi, Roman, Iggy, may we remain close as

thanks to you I feel at home here.

M2: For me...

Your guidance and warmth reassemble the scattered parts of my humanness. You taught

me to feel and analyse, to cherish and relinquish, to love and be loved. Our campaign traces

the path of suffering, pain and redemption through the guise of empathy. My intimate growth

is interlocked with our relationship which has endured for so many years now transforming

survival into life. Thank you for everything. This thesis is for you.

vii

Contents

Abstract i

Retrospective v

1 Introduction 1

1.1 Cryptographic Optimisation . 2

1.2 Lightweight Cryptography . 4

1.3 Power/Energy Consumption . 6

1.4 Preview . 8

1.5 Repositories . 13

2 Preliminaries 15

2.1 Notation . 16

2.2 Application-Specific Integrated Circuits . 16

2.3 Hardware Metrics . 18

2.4 Electronic Design Automation . 20

2.5 Cipher-to-Circuit Mapping . 24

2.6 Ciphers . 25

2.6.1 Trivium . 26

2.6.2 GIFT . 27

2.6.3 SKINNY . 31

2.6.4 AES . 34

2.7 Threshold Implementations . 37

2.8 Swap-and-Rotate . 38

I Green Cryptography 41

3 AEAD Energy Analysis 43

3.1 Modus Operandi . 44

3.2 Implementations . 46

3.3 Effects of Design Choices . 47

3.4 Threshold Implementations . 51

3.5 Final Observations . 54

ix

Contents

4 Perfect Trees 61

4.1 Restricted Circuits . 64

4.2 Perfect Tree Energy Model . 66

4.2.1 Circuit to Tree . 69

4.2.2 Enumerating Perfect Trees . 71

4.3 Energy-Optimal Variants of Trivium . 74

4.3.1 Trivium-LE(F) . 77

4.3.2 Trivium-LE(S) . 79

4.3.3 Trivium-LE-MAC . 79

4.4 Generalisation to Other Stream Ciphers . 80

4.4.1 Applicability to Grain-128 . 82

4.4.2 Applicability to Subterranean-Deck . 84

4.5 Summary . 85

5 Atom 87

5.1 Specification . 88

5.2 Design Rationale . 91

5.2.1 Preventing Banik’s Key-Recovery Attack on Sprout 92

5.2.2 Preventing Banik-Barooti-Isobe Attacks on Plantlet 93

5.2.3 Preventing Todo-Meier-Aoki Attacks on Plantlet 94

5.2.4 Preventing Esgin-Kara Attacks on Sprout 95

5.3 Security Evaluation . 97

5.3.1 TMD Trade-Off Attacks . 97

5.3.2 Differential Cryptanalysis . 99

5.3.3 Conditional Differential Cryptanalysis 100

5.3.4 Integral/Cube Attacks . 102

5.3.5 Algebraic Attacks . 102

5.4 Hardware Implementation . 103

5.5 Conclusion . 105

II ...and Other Optimisations 107

6 Area: Serial Encryption Circuits 109

6.1 Generic Approach . 113

6.2 AES . 116

6.2.1 State Pipeline . 116

6.2.2 Key Pipeline . 120

6.2.3 8-Bit Datapath . 121

6.3 SKINNY . 122

6.3.1 State Pipeline . 122

6.3.2 Key Pipeline . 124

6.3.3 8-Bit Datapath . 124

x

Contents

6.4 GIFT . 124

6.4.1 State Pipeline . 125

6.4.2 Key Pipeline . 127

6.4.3 4-Bit Datapath . 128

6.5 AEAD . 129

6.5.1 SUNDAE-GIFT . 131

6.5.2 SAEAES . 133

6.5.3 Romulus . 135

6.5.4 SKINNY-AEAD . 137

6.6 Conclusion . 138

7 Area: A Small GIFT-COFB 139

7.1 GIFT-COFB-SER-S . 140

7.1.1 Implementing the Feedback Function 143

7.1.2 Multiplication by 2 and 3 . 144

7.1.3 GIFT-COFB-SER-S Total Latency . 147

7.2 GIFT-COFB-SER-F . 147

7.2.1 Tweaking the Feedback Function . 147

7.2.2 Reordering Data Bits . 149

7.2.3 Enhancing the Multiplier . 150

7.2.4 GIFT-COFB-SER-F Total Latency. 151

7.3 GIFT-COFB-SER-TI . 152

7.3.1 Leakage Evaluation . 152

7.4 Hardware Implementation . 153

7.5 Conclusion . 153

8 Throughput: Rocca-S 157

8.1 Specification . 159

8.1.1 Round Function . 159

8.1.2 Security Claims . 161

8.2 Design Rationale . 163

8.2.1 Differences to Rocca . 163

8.2.2 Performance-Security Trade-Off . 164

8.2.3 Loading Scheme and Output Function 165

8.3 Security Evaluation . 166

8.3.1 Differential Attack . 166

8.3.2 Forgery Attack . 167

8.3.3 State-Recovery Attack . 167

8.3.4 Key-Committing Security . 168

8.3.5 Quantum Security . 168

8.4 Hardware Implementation . 169

8.4.1 Round-Based Circuits . 170

8.4.2 Synthesis Results . 172

xi

Contents

8.4.3 Byte-Serial Circuit . 176

8.5 Software Implementation . 177

8.6 Conclusion . 177

9 Side-Channels: Partitioning SKINNY 181

9.1 Partitioning the S-Box . 182

9.1.1 Angle of Attack . 184

9.1.2 Exhaustive Partition Search . 186

9.1.3 A Deeper Dive . 186

9.1.4 Decomposition into Two Cubic S-boxes 189

9.2 Hardware Implementation . 192

9.3 Leakage Evaluation . 192

9.4 Conclusion . 196

10 Conclusion 197

Bibliography 201

Appendix 215

A AEAD Energy Analysis . 215

A.1 NanGate 45 nm and UMC 65 nm Synthesis Results 215

A.2 NanGate 45 nm and UMC 65 nm TI Synthesis Results 219

B Perfect Trees . 220

B.1 Proof of Lemma 1 . 220

B.2 Trivium-LE(S) Security Analysis . 222

B.3 Supplementary Grain-128 Plots . 224

C Atom . 226

C.1 Banik’s Distinguishing Attack on Sprout 226

D Rocca-S . 228

D.1 Finding the Round Function Parameters 228

D.2 Auxiliary Round-based and 2-Round Unrolled Synthesis Results 230

D.3 Partially Unrolled Synthesis Results . 233

D.4 Software Reference Implementation . 234

E A Small GIFT-COFB . 240

E.1 ANF Equations of the 3-Share GIFT-128 S-Box 240

Curriculum Vitae 241

xii

1 Introduction

Я человек, я посредине мира,
За мною – мириады инфузорий,
Передо мною мириады звёзд.

Я между ними лёг во весь свой рост –
Два берега связующее море,

Два космоса соединивший мост.
И – Боже мой! – какой-то мотылёк,
Как девочка, смеётся надо мною,
Как золотого шёлка лоскуток.

— Arseny Tarkovsky, 1958

Sealed in an ivory tower above the ephemeral ripples of the terrestrial ether, an endless

mirage levitates through the chamber where scholars congregate. Their gazes are directed

onto fleeting silhouettes that emerge in the disordered haze. These elusive apparitions hold

the decipherment of the riddle that locks the hatch that would grant them renewed freedom.

Infrequently, a hollow gasp, kindled by the manifestation of an apparent solution, echoes

through the room prompting agitated murmurs among the congregation. Per usual, its dis-

missal is announced by a diminishment of the commotion, and so, the silent sermon con-

tinues. An untold decree from a forgotten epoch once bound these humans to this plight.

Unperturbed from earthly matters and affairs they are to conduct their intangible research

in this secluded residence until an eventual enlightenment will set them free from their ob-

scure assignment. An adage from past Königsberg recounts that self-incurred immaturity is

an idiosyncratic property of an individual mind and thus enshrines a quintessential dark-

ness within the understanding of our surroundings. This Kantian interpretation of the ban-

ishment passes the blame onto the scholars themselves thus excluding any external inflic-

tion. Transitively, this further establishes that the hallowed spectre is birthed from a col-

lective fever dream that ceaselessly nurtures the devoted researchers. Such a metaphysical

perpetuum mobile has no defining beginning or end and thus exists for the sole purpose of

maintaining this eternal self-insemination of the immaterial scholastic animus. How can one

endure such a reality without succumbing to the permanence of this hopeless state. Absur-

dists would tell us that even Sisyphus extracted some enjoyment out of his task and hence

our scholars must sense a similar indulgence albeit their endeavour appears to revolve less

repetitively. Transposing this little Gedankenexperiment onto the faction of people that dab-

ble in cryptographic research, it is possible to notice a fair amount of congruence. That is to

1

Chapter 1. Introduction

say, at its fundament, large swats of the cryptographic undertaking are marked by their self-

propellant nature, in which problems exist as vehicles that spawn puzzles infinitely anew. In

this setting, being a cryptographer means to bar his professional countenance from worldly

issues by choosing to pursue a quest within the secretive mirage that itself came into exis-

tence through insistent castigation in the search for novel problems. Contemporary cryptog-

raphy thus proceeds for its own subsistence in an scientific ivory tower that, similarly to the

Tower of Babel, reaches into the stratosphere of an untethered imaginary void.

1.1 Cryptographic Optimisation

Almost defiantly, in this thesis we reject the purported notion of intellectual autarchy by call-

ing upon a different a parable, the Faustian undoing and subsequent incarnation of a replen-

ished scientific fabric. As a Goethean dramatis persona, we offer the purity of our academic

sector to a mischievous entity in an attempt to bridge the cleft between the perceived mun-

daneness of real-world problems and the astral body of modern cryptographic research. This

work, in its full breadth, spans a vertical bridge to the unspoiled floors of this discipline. Un-

like the aforementioned genius universalis, a holistic approach is not appropriate, hence it

is vital that our battles are chosen wisely. Thankfully, anchors to link the bridge are plenty.

It would be possible, for example, to imagine a discourse about the applicability of cryp-

tographic protocols in modern communication applications whose design space remains

largely uncharted. On another note, the encroaching reality of cloud-based data-processing

solutions requires a new kind of primitive that enables efficient yet nonetheless secure com-

putation on data sets that, more often than not, contain delicate personal information. Fi-

nally, the looming advent of quantum-powered computing units poses an existential threat

to many implemented cryptographic solutions. However, we believe that even these issues

reside in a rather hypothetical head space and are remarkably independent from more press-

ing questions. There is no doubt that the current waste of resources inexorably thrusts the

world onto a disaster from which escape seems only possible through an all-encompassing

consensus on all levels of politics, industry, and science. Naturally, this must not exclude the

field of cryptography that should strive for the generation and adoption of low-resource al-

gorithms that both fulfil the inherent need for security but also impose as little overhead as

possible in terms of their physical requirements. In and of itself, this is primarily an exercise

in optimizing both existing and novel algorithms and protocols and is not intrinsic to cryp-

tography alone. The cycle of invention, integration, and optimisation is a dictating force in

many research and engineering fields. However, given the relatively short gestation period of

the currently considered modern cryptography, much of the optimisation venture still lingers

in its infancy.1 In conclusion, permit us to restate the scope of this body of work, commenc-

ing from the desire to engage with topic of cryptography from a more grounded perspective,

we fully commit ourselves to the study of different optimisation strategies that optimize ex-

isting and newly proposed algorithms in such a way as to enable more resource-friendly op-

1Note that folkloric usage of cryptographic techniques can be traced back to ancient times throughout differ-
ent eras and continents, permeating the associated military and political history.

2

1.1 Cryptographic Optimisation

erations. This journey traverses and ultimately extends the pantheon of techniques carving

itself a niche in the canon of cryptographic optimisation work.

The bulk of efforts in this field exist in two separate realms, namely software and hard-

ware; both domains comprising several disciplines. In software, algorithms are optimized

for the number of instruction cycles that are reflected in the latency. Other targets include

code size and memory usage, as they are crucial for resource-constrained devices, such as

micro-controllers that often feature limited amounts of read-only and random-access mem-

ory. In hardware, we distinguish between enhancements aimed at application-specific in-

tegrated circuits (ASIC) or field-programmable gate arrays (FPGA). A design might strive for

conciseness, i.e., small logic gate count on integrated circuits, a low number of used slice

units on FPGA platforms, a reduced length of the critical path. Other metrics such as the

total number of clock cycles or the incurred power/energy consumption are also of consid-

erable interest. The often straightforward nature of algorithms in symmetric cryptography

(i.e., block ciphers, stream ciphers, and modes of operation) proves to be an exemplary play-

ing field for optimisation research. In comparison to a run-of-the-mill public-key scheme,

symmetric algorithms bear the lion’s share of encryption-related computation work hence,

by definition, should be as terse as possible. For instance, a public key algorithm can be used

once during a communication channel’s lifetime to establish shared key material but, subse-

quently, a corresponding block-cipher might need to encrypt data in the gigabyte size order.

Nevertheless, this perceived one-sidedness has been undergoing a subtle transformation in

the past years, due to the increased study of post-quantum resistant solutions that has re-

newed interest in efficient public-key implementations. Apart from a minor excursion into

the software performance of a presented construction, this thesis is exclusively centred on

the study of techniques bound to the symmetric domain that improves one or more of these

optimisation disciplines on ASIC platforms.

The emergence of the field of cryptographic optimisation is inextricably linked to the

establishment of the AES block cipher [60] as the standard symmetric encryption solution.

Even though various ciphers had been subject to implementation improvements before, it

was the wide adoption of AES, in both the academic and industrial settings that instigated a

deepened focus on a single algorithm that has become the most studied and dissected con-

struction in cryptography to this day. The relatively straightforward rationale of AES lends

itself well to concerted efforts on the circuit level on the individual component functions, pri-

marily the 8-bit non-linear substitution box [51, 103, 115], the matrix multiplication as part of

the diffusion layer [22, 94, 99, 101], and full-fledged implementations of the entire encryption

module [16, 17, 70].2 Note that the overall minimisation of an AES circuit in terms of gate area

is usually achieved by restricting the data path, thus effectively serializing the design [16, 17,

86, 107] in the hope of avoiding costly replications of individual computation modules over

the entire width of the data path. Advances in serialisation techniques have pushed con-

structions close to a specific point of optimality in which the combinatorial layers that make

2The activity of researching optimized AES software implementations on modern x86-64 processors calmed
noticeably after the corresponding instruction sets were extended with dedicated AES encryption procedures.
However, on low-end 32-bit architectures, the efforts remain animated, see for example [1, 118].

3

Chapter 1. Introduction

up cipher logic are minimized to such an extent that the resulting circuits consist of barely

more than the actual registers that hold the intermediate cipher state and encryption keys.3

Typically, a narrow data path incurs a hefty latency overhead. For instance, a round-based

AES circuit can compute one encryption in ten clock cycles, whereas a bit-serial equivalent

requires several hundred cycles [86].

Nonetheless, a stand-alone block cipher usually does not fulfil the security and perfor-

mance requirements of modern communication protocols hence has to be deployed as part

of a mode of operation. Although, the literature has proposed a plethora of such modes, only

a handful find an actual integration in existing systems. The most prominent, AES-equipped

Galois counter mode (AES-GCM), adhering to the authenticated encryption with associated

data (AEAD) paradigm, resides at the core of the TLS suite [104]. True to its name, the Galois

counter mode enriches the AES encryption core with a finite field multiplication module over

the full data path of 128 bits in order to produce the ciphertext blocks, with the authentication

tag. Although, over the course of more than two decades, research has produced remarkably

compact AES circuits, multiplication circuits remain an infamous bottleneck in hardware en-

vironments, so much so that the efficiency overhead imposed by AES-GCM is prohibitive for

many resource-constrained devices that already make up the majority of available comput-

ing machinery. This is effectively due to the rise of smart appliances that need to be equipped

with micro-controllers or integrated circuits that enable some kind of interconnection with

the Internet of Things. IoT gadgets require an equivalent level of security compared to con-

ventional computers. They offer, however, significantly fewer resources in terms of compu-

tational power for the implementation of such features. Consider the following illustrative

example. A battery-driven implanted pace maker is extended with a communication inter-

face that enables the associated physician in charge to monitor its status remotely. Naturally,

such a communication channel needs to be secured adequately, as any malicious tampering

could entail lethal consequences. Yet, replacing the battery is a strenuous and costly proce-

dure for the patient hence should be performed only infrequently. This requirement places

a burden on the involved cryptographic circuit to be as small and power-efficient as possi-

ble. Externally powered circuits found within smartcards and radio-frequency identification

(RFID) tags face a similar challenge, with respect to the overhead that is induced by the im-

plemented cryptographic modules, as they usually are constrained to extremely constrained

silicon areas. The skyrocketing demand for IoT gadgets and their increasing integration into

critical infrastructure thus exacerbates the demand for resource-friendly cryptographic im-

plementations hence poses a serious, nevertheless compelling, conundrum for the involved

research community.

1.2 Lightweight Cryptography

It is specifically this demand for efficient cryptography that, paired with the growing confi-

dence in optimizing symmetric algorithms and the obvious shortcomings of AES-GCM, grad-

3These serialized block cipher circuits are reminiscent of hardware-oriented stream ciphers whose state-
update function is equally marginal compared to the size of the storage elements.

4

1.2 Lightweight Cryptography

ually gave rise to a new research branch. Today, commonly termed lightweight cryptography,

tasked with directing research efforts on the study and design of new constructions, offer im-

proved implementation metrics compared to existing designs and operate at an equivalent

security level. For hardware, this normally corresponds to the reduction of an occupied sil-

icon area or the minimisation of the accumulated power/energy consumption of a circuit,

during its running time. The AES block cipher provides a fertile breeding ground for new

constructions due to the perceived complexities of its S-box and matrix multiplication. The

currently smallest circuit-level implementation of the 8-bit substitution box requires roughly

120 logic gates [103]. This module then needs to be replicated sixteen times to cover the en-

tire 128-bit intermediate state, thus yielding a full substitution layer of approximately 2000

logic gates. Similarly, the smallest known implementation of the matrix multiplication needs

92 exclusive-or gates [101], hence it requires four times the amount for the entire diffusion

layer. It is self-evident that replacing these two functions with more efficient alternatives

would significantly reduce the hardware footprint. In 2007, the first of its kind was the ultra-

lightweight design PRESENT [38] featuring a 64-bit state with key sizes of either 80 or 128 bits.

It replaced the heavy 8-bit AES S-box with a simple 4-bit substitution. On similar note, its dif-

fusion layer reduces to a bit-permutation that is realised with only wiring on ASIC platforms.

These design decisions led to a circuit that undercuts the AES silicon area up to one third,

however they come at a price. In order to sustain an adequate resistance against cryptana-

lytic attacks with component function as simple as in PRESENT, the round function needs

be repeated 31 times, compared to the ten rounds in AES, thus increasing its overall latency

considerably. This fact highlights a salient point within the lightweight cryptography world in

which research is an endeavour in elegantly manoeuvring various trade-offs, a study in find-

ing a sensible middle ground between security and the numerous aspects of efficiency while

seeking some form of grace within the proposed improvements. This dogmatic approach

is inherent to this branch and stands orthogonal to other domains within cryptography in

which proposed solutions have the tendency to become more sophisticated to adapt to in-

creasingly complex requirements. PRESENT was joined by related block ciphers by introduc-

ing different improvements. GIFT features both a 64-bit and 128-bit block size with a 128-bit

key; this hardens the security guarantees as set by PRESENT while improving the circuit area

requirement in the 64-bit block variant and relying on a 4-bit S-box and a bit-permutation

layer for diffusion. Instead of completely erasing the matrix multiplication found in AES, we

could imagine a more efficient alteration in conjunction with a more concise S-box. This path

was taken by the family of tweakable block ciphers SKINNY [30] that, in overall efficiency, is

comparable to GIFT. In a different line of work, instead of opting for a small silicon area, a

group of related ciphers optimizes the critical path in hardware, specifically the longest pe-

riod until all output signals of the block-cipher module reach stability upon toggling some

input signals. Constructions in this family include PRINCE, MANTIS and QARMA [8, 30, 40].

Recently, the SPEEDY design set a pronounced example by trading a significant area over-

head for a reduced latency that currently stands as the most latency-efficient cipher known

in the literature [97].

So far, this discussion has revolved entirely around lightweight block ciphers, however in

5

Chapter 1. Introduction

the stream cipher domain some similar developments have taken place. This is unsurprising,

as stream ciphers tend to be designed in an even more stringent simplistic manner, often

being composed of no more than a shift register and a Boolean function that injects new bits

into the state. Trivium [61] marks a prime example in this line of research, as its state update

function can be described in roughly a dozen logic gates. This perceived simplicity of the

Trivium algorithm remains unbroken to this day, as there are no cryptanalytic attacks that

recover the 80-bit encryption key with a time complexity better than an exhaustive search. A

similarly efficient design can be found in Grain-128a; it offers 128-bit security at a the expense

of a more complex state update function [2]. Trivium and, by extension Grain-128a, will play

an integral part of this thesis.

Again, these lightweight constructions are mostly incomplete without an accompanying

mode of operation that elevates their applicability to real-world protocols. For a counter-

measure, in 2018, the National Institute of Standards and Technology (NIST) launched the

Lightweight Cryptography Standardisation process (LWC) that became the main accelerator

for the vessel of lightweight cryptography research. The stated objective of the LWC competi-

tion is to identify lightweight AEAD modes of operations and lightweight hash functions, for

deployment in resource-constrained devices and solutions.4 Of the 56 submissions accepted

to the competition, ten remained as finalists in the ultimate round, after which Ascon [65]

was selected for standardisation. Among the ten finalists, seven are based on permutations

that were either specifically devised for the LWC or stem from earlier proposals. Two designs

are based on lightweight block ciphers. GIFT-COFB [21] is a straightforward wrapper around

the GIFT block cipher in its 128-bit variant and, similarly, Romulus that deploys SKINNY as

its encryption core [74]. Finally, the tenth submission, Grain-128AEAD [78], is the sole com-

petitor built around a stream cipher, in this case Grain-128a. It is noteworthy that in the

penultimate round of the process, which included 32 candidates, 15 of these were based on

block ciphers with a handful even bootstrapping AES in their respective modes of operations.

1.3 Power/Energy Consumption

In their initial call for submissions for the contest, NIST listed silicon area, latency, through-

put and power/energy consumptions as synonymous hardware optimisation criteria but ul-

timately left it to the designers as to which angle they would prioritize. The strategy behind

this decision is the facilitation of a diverse set of candidate constructions that would cover the

full spectrum of optimisation disciplines. Still, the resulting set of submissions trails behind

this goal. A quick glance at the roster of the final round reveals a clear inclination towards

circuit area and throughput optimisations, thus often leaving power and energy consump-

tion considerations as an afterthought in the hope that a lean design would somehow reflect

positively on power and energy. Instinctively, this not at all a surprising fact, given that the

logic gate-count and throughput are discrete metrics whose optimisations have enjoyed the

4In parallel to the LWC, NIST held a competition for the standardisation of post-quantum public key schemes
(PQC). The scope of this competition was broader in the sense that it aimed at the standardisation of public key
encryption schemes, key encapsulation mechanisms, and digital signature designs. As of the second half of 2022,
three signature algorithms and one key encapsulation mechanism have reached the standardisation stage.

6

1.3 Power/Energy Consumption

most attention in the literature hence are, to some extent, well-understood disciplines. Even

in the case of power, we could argue that there exists some degree of correlation to the over-

all silicon area, as larger circuits tend to draw more power than smaller ones. In contrast,

the study of the energy consumption of a circuit is a much more opaque exercise that sits

at the intersection of all previously mentioned metrics hence exerts a variety of trade-offs in

different directions. We could set out to reduce the gate count or increase the throughput,

independently in a narrow framework that only considers the metric at hand. Whereas, the

improvement of the energy aspects of a circuit can be achieved only through a meticulous

understanding of all other metrics in combination with micro-architectural facets imposed

by the underlying platforms hosting the cryptographic circuits.

As hinted before, encryption circuits on ASIC platforms that consume a low amount of

energy are a crucial backbone of battery-driven machines that can run on an exceedingly

small budgets such as medical implants and various kinds of sensory equipment of radio-

frequency identification tags. In the realm of semiconductors, power and energy are cor-

related parameters insofar as energy is the time integral of power, with power representing

the rate of energy consumption, i.e., a less energy-hungry cryptographic circuits drains the

battery less. For now, this superficial illustration of the intricacies of energy consumption

suffices. A more in-depth treatment of the energy thematic is detailed later in the text. The

perceived difficulty of dealing with this topic is mirrored in the deferred interest within the

community. It took more than a decade, after the standardisation of AES, for the first dedi-

cated study on the energy consumption of cryptographic circuits to surface in the literature.

In 2012, in the pioneering work by Kerckhof et al. [89], they implement and compare sev-

eral lightweight block ciphers on a standard cell library with a particular focal point on their

energy-consumption behaviour as a function of different architectural parameters, such as

the clock frequency and the voltage. The main insight of their work was the realisation that,

when adjusted for the inherent leakage of the underlying cells, the energy consumption of a

block cipher circuit is independent of the clock frequency. This observation was later con-

firmed in a similar paper [27]. The first attempt at designing a block cipher dedicated to low-

energy environment came in the form of Midori [13]. In a painstaking trial-and-error process,

the authors identified different functions, i.e., S-box and linear diffusion layers. This combi-

nation of layers yielded the most energy-efficient design while guaranteeing a resistance to

known cryptanalytic attacks. The resulting block cipher, with a key size of 128 bits, is vaguely

reminiscent in its structure to later algorithms such as GIFT and SKINNY. Although, the pro-

posal of Midori is a remarkable accomplishment in the lightweight cryptography canon, its

rather observational approach to the question of reducing the energy consumption lacked

generality in order for it to be applicable to a broader range of block ciphers. Nevertheless,

Midori further invigorated the low-energy endeavour by continuing with the proposal of a

general energy model for substitution-permutation network (SPN) block ciphers [18]. More

specifically, the project investigated a design strategy that is intrinsic to the implementation

of block ciphers on ASIC platforms that unrolls the round function. Unrolling determines

how many round function executions are executed in a single clock cycle. And the parametri-

sation of this factor, in conjunction with the particularities of utilized micro-architectural

7

Chapter 1. Introduction

implementation features, enables the deduction of a quasi-quadratic polynomial equation

that predicts, to remarkable precision, the energy consumption of the block-cipher circuit in

question. Unrolling is also a sensible strategy when it comes to stream ciphers; this means

that, to compute many of them, instead of generating a single update bit per clock cycle, it

is possible to replicate the corresponding Boolean functions. This was explored in [25] in

the context of the effects on the energy consumption, where the authors highlighted an in-

teresting phenomenon in the form of unexpected efficiency. For example, it is shown that

Trivium consumed the least amount of energy in an unrolled fashion for the encryption of

larger amounts of data, thus even outclassing block ciphers such as the supposedly energy-

efficient Midori design.

1.4 Preview

The first book of this thesis further illuminates the enigma of energy consumption in sym-

metric encryption circuits. That is to say, over the course of four papers we extended the

existing knowledge by investigating the implementation of lightweight AEAD modes of oper-

ations that are based on block ciphers and, ultimately, on stream ciphers.

Energy Analysis of Lightweight AEAD Circuits. The inaugurating paper of this document takes

the energy model for block-cipher circuits as proposed in [18] and extends its reach to ten li-

ghtweight AEAD schemes from the penultimate NIST LWC round that are bootstrapped with

block ciphers. The clear intention of this work was to supplement the lacking treatment

of energy aspects, within the competition, and to provide useful insights for designers who

seek to understand which particular choices incur significant energy consumption in AEAD

schemes. Today, our work is the most comprehensive analysis of the consumptive behaviour

of cryptographic circuits in the literature. It was presented at the 19th International Con-

ference on Cryptology and Network Security (CANS’2020) and was bestowed with the Best

Paper Award.

Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives. With the third

paper, we shift our focus onto stream ciphers. As mentioned in Section 1.3, a preliminary

investigation of the energy aspects in stream ciphers circuits was conducted in [25], a gen-

eral energy model for this class of ciphers remained at large. For a remedy to this state, we

devise the first heuristic energy model in the realm of stream ciphers, as it links the under-

lying algebraic properties of the state update function to the consumptive behaviour. The

model is then used to derive a metric that exhibits a heavy negative correlation with the en-

ergy consumption of a broad range of stream-cipher architectures, namely the families of

Trivium-like and Grain-like constructions. For this process, we propose several alternative

energy-optimal versions of Trivium. Two of these designs, TRIVIUM-LE(F) and TRIVIUM-

LE(S), consume approximately 15% and 25% less energy, respectively, hence they are to date

the most energy-efficient encryption primitives inheriting the same security as the original

Trivium. We also present TRIAD-SC as an energy-efficient variant that satisfies a higher secu-

rity level. The simplicity and wide applicability of our model has direct consequences for the

conception of future hardware-targeted stream ciphers because, for the first time, it is possi-

8

1.4 Preview

ble to optimize energy during the design phase. Moreover, we extend the reach of our model

beyond plain encryption primitives and propose a novel energy-efficient message authenti-

cation code TRIVIUM-LE-MAC. Our work was included the fourth issue of Transactions on

Symmetric Cryptology of the year 2021 (IACR-ToSC’2021-4).

Atom: A Stream Cipher with Double-Key Filter. Finally, we will conclude the first book of

this thesis with a new energy-efficient stream-cipher proposal designed from a starting point

different from the Trivium derivatives of before. It is a well-known fact that, in order to nullify

time-memory zrade-off attacks, the internal state of the cipher must be at least twice the size

of the secret key [37]. However, in recent years stream ciphers boasting smaller states have

begun to appear. These constructions circumvent the state size requirement by continuously

mixing the key in the state update function. Algorithms in this class include Sprout, Plantlet

and Lizard [6, 75, 105], all of which possess cryptanalytic weaknesses. We propose the stream

cipher Atom that offers 128-bit security and a state size of 159 bits; this is only 25% more than

the key size. Our design avoids falling into the same pitfalls that plagued the aforementioned

trio of short-state ciphers hence is proven secure in the context of all known attacks against

similar constructions. The resulting circuit is competitive in both area and power/energy to

other stream ciphers, thus making it a viable choice on resource-constrained ASIC platforms.

Atom was published in the first issue of Transactions on Symmetric Cryptology of the year

2021 (IACR-ToSC’2021-1).

In the second book of this thesis, we focus on other optimisation aspects that appear to be

left by the wayside in the NIST LWC. First, this involves serialisation techniques of block ci-

phers and of associated modes of operations. A serialized cryptographic circuit reduces the

data path width in order to avoid costly replication of modules. Recall the AES S-box that

needs to be integrated sixteen times in a straightforward round-based configuration; it com-

putes one round function in one clock cycle. For example, restricting the data path to eight

bits would thwart this silicon area overhead by incurring an increased latency. The first byte-

serial implementation appeared in 2005 and required more than 1000 clock cycles to com-

pute either one encryption or decryption [70]; it was subsequently improved to 226 cycles in

an encryption-only design [107]. This encryption-only limitation was then eliminated by the

Atomic-AES proposal that offered the same latency of 226 cycles but featured both encryp-

tion and decryption capabilities with an area overhead of roughly 10% [17]. Note that these

226 cycles are composed of sixteen cycles for loading the plaintext into the state register and

of 21 cycles for each round function computation. Both constructions possess only a single

S-box module that is shared between the round function and the key schedule algorithm. It

turned out that restricting the data path to one byte is not optimal in terms of circuit area.

This prompted the construction of block cipher circuits whose data paths were reduced to a

single bit. The bit-sliding technique is a generic strategy for converting a round-based block

cipher circuit into a serialized version with varying data path widths [86]. Through this tech-

nique, the authors achieve a bit-serial AES circuit with an encryption latency of 1776 cycles,

which improves the area footprint by 30% with respect to byte serial designs as proposed

9

Chapter 1. Introduction

in [17, 107]. It was similarly applied to SKINNY and PRESENT.5 Although serialized circuits

minimise the occupied silicon area and are thus, by extension, also beneficial in terms of the

power consumption, this design choice is sub-optimal for the energy aspect due to the ex-

ceedingly increased latency, i.e., in general, a serialized block cipher consumes several times

the amount of energy than its round-based counterpart. The bit-serial catalogue was recently

extended by the swap-and-rotate work that attempts to implement the bit-permutation lay-

ers of PRESENT and 64-bit GIFT, solely by the virtue of a small number of flip-flop pairs

swapping two bits in-place at specific points in time during the round function computation

while the state bits rotate through the register pipeline, one position per clock cycle [11]. In

this setting, the latency of an encryption is parametrised by the number of equipped swaps,

i.e., the more swaps the lower the number of clock cycles needed to compute a round func-

tion. Consequently, swap-and-rotate enable the construction of the smallest known bit-serial

circuits for both PRESENT and GIFT, thus undercutting the bit-slide variant from [86] in both

area and latency.

The initial frame of reference of the second book in this manuscript is thus circuit area,

which we explore in two papers on the topic of bit-serial implementations followed by a work

on throughput maximisation with a proposal of a novel AEAD mode of operation scheme

tailored for 5G-and-beyond network telecommunication networks and, ultimately, the thesis

is concluded with optimised side-channel implementations.

The Area-Latency Symbiosis: Towards Improved Serial Encryption Circuits. In this part, we

delve into the swap-and-rotate thematic by investigating the latency overhead that is induced

by such bit-serial circuits. More specifically, we devise implementations that compute one

round function in exactly as many cycles as there are state bits while keeping the number of

utilized swaps, hence the area overhead, moderate. We achieve this specificity for AES, SKI-

NNY, and the 128-bit version GIFT. We extend it to 4-bit and 8-bit serialized implementations

and, ultimately, to four AEAD schemes of the NIST LWC, namely SUNDAE-GIFT, SAEAES, Ro-

mulus and SKINNY-AEAD; of these, Romulus competes as a finalist. Our work was presented

in the first issue of Transactions on Cryptographic Hardware and Embedded Systems of the

year 2021 (IACR-TCHES’2021-1).

A Small GIFT-COFB: Lightweight Bit-Serial Architectures. The second effort applies the swap-

and-rotate technique to GIFT-COFB; it was not investigated in the previous chapter. Unlike

the aforementioned bit-serial AEAD implementations, GIFT-COFB involves finite field arith-

metic for which there is no straightforward mapping into a bit-serial setting that is both cir-

cuit area and latency efficient. We fill this gap by proposing three bit-serial circuits that to

date stand as the most area-efficient GIFT-COFB implementations known in the literature;

they exert various trade-offs in terms of latency and silicon area. Our work was presented at

the 13th International Conference on Cryptology in Africa (AFRICACRYPT’2022).

Rocca-S: An Ultra-high Throughput and Quantum-Secure Authenticated Encryption Scheme.

5The bit-sliding work is preceded by dedicated block ciphers KATAN and SIMON that are reminiscent of stream
ciphers with round functions based on shift registers [28, 62] hence can be efficiently implemented in a bit-serial
fashion.

10

1.4 Preview

We propose Rocca-S, an AES-based authenticated encryption scheme with a 256-bit key and

a 256-bit tag. The scheme is specifically concocted to meet the requirements of eventual

6G cellular communication networks, in terms of performance as well as security. Unlike

existing schemes for 5G and 6G, Rocca-S can guarantee 256-bit, as well as 128-bit, security

for not only key recovery attacks but also forgery attacks in both the classic and quantum

settings, respectively. Nevertheless, this security level Rocca-S achieves throughput rates of

more than two Terabits per second, without sacrificing other metrics such as occupied sili-

con area or power/energy consumption, thus making it a competitive choice that satisfies the

requirement of a wide spectrum of environments. Furthermore, in software, Rocca-S attains

encryption/decryption rates that cross the 200 Gigabits per second boundaries, when run

on recent processor architectures. Our work is included in the proceedings of the European

Symposium on Research in Computer Security (ESORICS) of the year 2023 and is concur-

rently submitted to the 6G standardisation committee hosted by the 3GPP consortium.

We close the principal body of this thesis with a foray into side-channel countermeasures.

It is evident that cryptographic research is currently undergoing a golden age of side-channel

analysis that permeates all disciplines, from hardware to software and from post-quantum

implementations to block cipher circuits. In contrast with cryptanalytic attacks that exploit

structural weaknesses of an algorithm, side-channel attacks analyse vulnerabilities and leak-

ages that arise in particular implementations. Most prominently and perhaps calamitous are

exploits that infer secret values from power traces of a device; these traces are usually readily

obtainable. The destructiveness of such power analysis exploits prompted the establishment

of an adjacent research branch tasked with devising countermeasures through which imple-

mentations can be hardened against such attacks. The core principle of a countermeasure is

the inclusion of randomness in the cipher state by splitting the state into multiple indepen-

dently masked shares that obscure sensitive values in the power trace. Masking, as an effec-

tive countermeasure, first appeared at the beginning of the millennium and has since then

gone through countless iterations supported by various security models that target different

security levels. In the context of this thesis, we are specifically interested in the optimisation

of masking schemes that adhere to the threshold implementation methodology. A threshold

circuit of a function randomises only the input shares and gives guarantees against an adver-

sary that is able to probe a certain number of wires within the circuits, even in the eventual

presence of glitches.

Improving First-Order Threshold Implementations of SKINNY. Finding efficient threshold cir-

cuits with a specific number of shares is an arduous tasks for all but the simplest non-linear

Boolean functions. One of these functions is the 8-bit S-box of the SKINNY block cipher. The

SKINNY white paper proposed a decomposition of this S-box into four sub-functions of alge-

braic degree two that could be implemented in a 3-share threshold circuit. This means that

the S-box is executed over four cycles, which is a significant latency overhead. In this sec-

tion, we demonstrate the feasibility of decomposing the SKINNY S-box into three quadratic

sub-functions that enable the performance of the substitution over the course of three cy-

cles. In a second step, we propose a decomposition into two cubic sub-functions that enable

11

Chapter 1. Introduction

an execution in two clock cycles. Our constructions significantly reduce latency and energy

consumption per encryption operation. Our work was presented at the 22nd International

Conference on Cryptology in India (Indocrypt’2021).

Personal Bibliography. In the following paragraph, we give a comprehensive list (in order of

appearance) of all the co-authored publications accomplished in the course of this PhD re-

search. This document aggregates, in an expanded format, the content of the articles marked

in bold font. The papers "A Study of Persistent Fault Analysis" and "Energy Analysis of Light-

weight AEAD Schemes" were each decorated with the Best Paper Awards at their respective

conference.

1. Andrea Caforio and Subhadeep Banik. A Study of Persistent Fault Analysis. In: Security,

Privacy, and Applied Cryptography Engineering - 9th International Conference, SPACE

2019, Gandhinagar, India, December 3-7, 2019, Proceedings. Ed. by Shivam Bhasin,

Avi Mendelson, and Mridul Nandi. Vol. 11947. Lecture Notes in Computer Science.

Springer, 2019, pp. 13–33 [46]

2. Andrea Caforio, Fatih Balli, and Subhadeep Banik. Energy Analysis of Lightweight

AEAD Circuits. In: Cryptology and Network Security - 19th International Conference,

CANS 2020, Vienna, Austria, December 14-16, 2020, Proceedings. Ed. by Stephan

Krenn, Haya Shulman, and Serge Vaudenay. Vol. 12579. Lecture Notes in Computer

Science. Springer, 2020, pp. 23–42 [43]

3. Fatih Balli, Andrea Caforio, and Subhadeep Banik. The Area-Latency Symbiosis: To-

wards Improved Serial Encryption Circuits. In: IACR Transactions on Cryptographic

Hardware and Embedded Systems 2021.1 (2021), pp. 239–278 [9]

4. Andrea Caforio, Fatih Balli, and Subhadeep Banik. Melting SNOW-V: improved light-

weight architectures. In: J. Cryptogr. Eng. 12.1 (2022), pp. 53–73 [44]

5. Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei

Sakamoto, and Santanu Sarkar. Atom: A Stream Cipher with Double Key Filter. In:

IACR Transactions on Symmetric Cryptology 2021.1 (2021), pp. 5–36 [20]

6. Andrea Caforio, F. Betül Durak, and Serge Vaudenay. Beyond Security and Efficiency:

On-Demand Ratcheting with Security Awareness. In: PKC 2021: 24th International

Conference on Theory and Practice of Public Key Cryptography, Part II. ed. by Juan Ga-

ray. Vol. 12711. Lecture Notes in Computer Science. Virtual Event: Springer, Heidel-

berg, Germany, May 2021, pp. 649–677 [50]

7. Andrea Caforio, Fatih Balli, Subhadeep Banik, and Francesco Regazzoni. A Deeper

Look at the Energy Consumption of Lightweight Block Ciphers. In: Design, Automa-

tion & Test in Europe Conference & Exhibition, DATE 2021, Grenoble, France, February

1-5, 2021. IEEE, 2021, pp. 170–175 [45]

12

1.5 Repositories

8. Andrea Caforio, Fatih Balli, and Subhadeep Banik. Complete Practical Side-Channel-

Assisted Reverse Engineering of AES-Like Ciphers. In: Smart Card Research and Ad-

vanced Applications - 20th International Conference, CARDIS 2021, Lübeck, Germany,

November 11-12, 2021, Revised Selected Papers. Ed. by Vincent Grosso and Thomas

Pöppelmann. Vol. 13173. Lecture Notes in Computer Science. Springer, 2021, pp. 97–

117 [42]

9. Andrea Caforio, Daniel Collins, Ognjen Glamocanin, and Subhadeep Banik. Improv-

ing First-Order Threshold Implementations of SKINNY. in: Progress in Cryptology -

INDOCRYPT 2021 - 22nd International Conference on Cryptology in India, Jaipur,

India, December 12-15, 2021, Proceedings. Ed. by Avishek Adhikari, Ralf Küsters,

and Bart Preneel. Vol. 13143. Lecture Notes in Computer Science. Springer, 2021,

pp. 246–267 [49]

10. Andrea Caforio, Subhadeep Banik, Yosuke Todo, Willi Meier, Takanori Isobe, Fukang

Liu, and Bin Zhang. Perfect Trees: Designing Energy-Optimal Symmetric Encryption

Primitives. In: IACR Trans. Symmetric Cryptol. 2021.4 (2021), pp. 36–73

[47]

11. Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni. A Sm-

all GIFT-COFB: Lightweight Bit-Serial Architectures. In: Progress in Cryptology -

AFRICACRYPT 2022 - 13th International Conference on Cryptology in Africa, Fes,

Morocco, July 18-20, 2022, Proceedings. Ed. by Abderrahmane Nitaj and Lhoussain

El Fadil. Vol. 13143. Lecture Notes in Computer Science. Springer, 2022, pp. 246–

267 [48]

12. Subhadeep Banik, Andrea Caforio, Kazuhide Fukushima, Takanori Isobe, Shisaku

Kiyomoto, Fukang Liu, Yuto Nakano, Kosei Sakamoto, Nobuyuki Takeuchi, and Ravi

Anand. Rocca-S: Ultra High-Throughput and Quantum-Secure Authenticated En-

cryption. 2023 [19]

1.5 Repositories

In a thesis, where most contributions are experimentally backed by implementations, repro-

ducibility reigns supreme. In order to abide by this unwritten rule, which is far too often

left by the wayside in the cryptographic literature, we list below the corresponding publicly

available repositories corresponding to each chapter in this thesis.

• Chapter 3. We provide the HDL code and test vectors for each of the nine investigated

NIST LWC AEAD candidates; they are based on lightweight block ciphers in all their

configurations (round-based, unrolled, clock-gated, threshold implementation).

http://bit.ly/3wYSdIU

13

http://bit.ly/3wYSdIU

Chapter 1. Introduction

• Chapter 4. In order to aid reproducibility of the results, we provide the HDL code used

for all the experiments and the implementation of all schemes, along with detailed

instructions and executions scripts, .

http://bit.ly/3DLwZ50

• Chapter 5. We make available the source code (in VHDL) for the novel and Atom short-

state stream cipher, with a software reference implementation for the generation of test

vectors.

http://bit.ly/3HXAaJk

• Chapter 6. Publicly available are the complete HDL source code suite for all the pro-

posed serial block ciphers, modes, and operations in all their configuration, as well

as a comprehensive collection of correction tests. This repository is hosted as a peer-

reviewed TCHES artefact.

http://bit.ly/3HZBhbi

• Chapter 7. We provide the serial HDL implementations for GIFT-COFB-SER-S, GIFT-

COFB-SER-F and GIFT-COFB-SER-TI, with a test suite to check their correctness.

http://bit.ly/40xptEr

• Chapter 8. This repository includes the hardware source code and test suite for all pro-

posed Rocca-S configurations (round, unrolled, partially unrolled, byte-serial), as well

as the source for AEGIS-256, AES-256-GCM and SNOW-V-GCM. This source constitute

the first publicly available hardware implementation for the latter three schemes in the

literature.

http://bit.ly/3YoZWvs

• Chapter 9 Lastly, we provide the HDL source code for all proposed threshold imple-

mentations of SKINNY, with test vectors and scripts that verify the soundness of the

security properties.

http://bit.ly/3RDFfd6

14

http://bit.ly/3DLwZ50
http://bit.ly/3HXAaJk
http://bit.ly/3HZBhbi
http://bit.ly/40xptEr
http://bit.ly/3YoZWvs
http://bit.ly/3RDFfd6

2 Preliminaries

The scientific papers whose amalgamation comprises the bulk of this document were written

over a span of multiple years and cover a diverse variety of topics. Although, an overarching

cohesive narrative is established in a candid fashion by coupling intersecting high-level do-

mains, it is the disjointness of preliminary material, necessary to grasp the contributions at

hand, that can induce an unpleasant cognitive overhead on the reader when presented in a

disadvantageous manner. This is especially the case when a chapter that covers a specific

article is preceded by its own particular preliminary section. Such a design choice dilutes the

cohesiveness of the document and ultimately hurts its readability. Consequently, theses in

cryptography have adopted the strategy of prefacing the main body of the text by a compre-

hensive preliminary chapter that covers key technical concepts succinctly and thus serves as

a sort of document-internal encyclopaedic database. The choice of what subjects are to be

covered in the preliminary chapter conclusively decides the composition of the readership.

An incomplete and superficial treatment results in an exigent text entailing a high expertise

among the readers to the point where even intimate familiarity is not sufficient enough to

comprehend the conferred material. At the other extreme, preliminaries that indulge in the

transcription of too many complexities have an overbearing effect to the point where the ac-

tual contributions later in the text appear trivialized and dulled. In our case, this preliminary

chapter attempts to find a sensible middle ground that conveys information in a digestible

fashion to both experts and the occasional layperson.

As mentioned before, this thesis unfolds over two books that each comprise the descrip-

tion of several scientific articles. Both of them revolve around optimisation aspects of cryp-

tographic implementations in hardware and thus it is only prudent to commence the prelim-

inaries with a concise introduction to Application-Specific Integrated Circuits. For presenta-

tion purposes we conduct this survey in a top-down approach starting from actual comput-

ing systems to the actual transistors that lie at the fundament of any chip. Naturally, this fur-

ther covers the relevant optimisation disciplines and metrics associated with cryptographic

hardware implementations and additionally the Electronic Design Automation tools used to

generate, investigate and measure all presented circuits. Secondly, since all selected papers

in this thesis are works that either optimize existing constructions or devise new algorithms

by bootstrapping older designs, it is crucial that some of these block ciphers, stream ciphers

and modes of operations are introduced properly. A short detour is then taken onto the expla-

15

Chapter 2. Preliminaries

nation of generic hardware implementation techniques, in particular the Swap-and-Rotate

methodology for reducing the circuit area in serial block cipher circuits and Threshold Im-

plementations for the mitigation of side-channel-based power analysis attacks. However, we

commence this preliminary chapter with a summary on common mathematical notation.

2.1 Notation

As we work in the field of hardware cryptography, the basic unit are bits which are desig-

nated by lowercase letters x. Bits can be grouped in ordered lists of arbitrary size in order to

compose bitstrings. Lists are denoted by uppercase characters; for example a byte is repre-

sented by X = (x0, x1, x2, x3, x4, x5, x6, x7) with x0 and x7 being the most and least significant

bit respectively. With one exception in Section 2.6.1, indexing of lists always starts with 0.

Enclosing a list variable in vertical bars evaluates its size, e.g., |X | = 8 for the byte from be-

fore. Furthermore, lists can be rotated to the left by a certain amount of positions k using the

X ≪ k operator and analogously to the right with the X ≫ k. Elements can be arranged in

matrices, also denoted by uppercase letter, such as, for instance, a 2×2 bit matrix

X =
[

x0 x1

x2 x3

]
,

whose element indices indicate a row-major ordering, i.e., x0 is the most significant bit fol-

lowed by x1. Depending on the application a matrix may also be ordered column-major fash-

ion. In term of operators, we distinguish between bitwise and arithmetic ones:

• Bitwise. ⊕ represents the XOR function while ∧ is used for the AND operator and ∨ for

the OR function. A bit is inverted using an overline such that x = x⊕1. These operators

can be applied to bitstrings as well where they are bit by bit. As an illustration, the XOR

of two 2-bit strings X = (x0, x1), Y = (y0, y1) is given by

X ⊕Y = (x0 ⊕ y0, x1 ⊕ y1).

• Arithmetic. Any other arithmetic operation that does not act on bits, whether it be

numbers inZ or any other algebraic structure, are represented by the schoolbook sym-

bols such as +, · and /.

2.2 Application-Specific Integrated Circuits

Abstraction of first principles lies at the very core of a computing system. In a reductionist

approach it is possible to crystallise the illustrious Turing machine, the hypothetical pro-

genitor of contemporary machinery, out of the assembly of any computer. In this case, the

first principles refer to the interpretation of binary data within the intersection of Theoretical

Computer Science and Boolean Algebra. The insight that simple Boolean functions acting

on one or more bits, given enough time and space, are sufficient to derive any statement

that is deemed computable is without any doubt the most transformative upheaval since the

16

2.2 Application-Specific Integrated Circuits

heydays of Renaissance Europe and it is going to shepherd to world into unprecedented ter-

ritories for decades to come. It is important to note that the defining trademark of modern

computer systems is the ability to parse and ultimately execute external, user-defined com-

mands. It is this programmability that unlocks the full unbounded potential of this type of

machinery and is conclusively the sole lifeline of the field of Computer Science. It is worth

mentioning that the notion of programmability is hardly a concept that came up during the

early days of contemporary Computer Science but had been stoking curious minds for much

longer. An illustrative example, is Charles Babbage’s mechanical Analytical Machine, a con-

coction that predates all subsequent general-purpose computers.6

Although, the perceived powers of a programmable computing machines are undeniable,

in an almost paradoxical twist they are often not needed. In a myriad of such occurrences it is

more sensible and especially more economical to regress to computers that fulfil a single pur-

pose and are thus application-specific. Any sort of analog-to-digital converter found in any

sensor-based installations or more crucially, in the context of this thesis, independent cryp-

tographic circuits are prime instances of application-specific computing. Naturally, any con-

temporary application-specific computing device is a semiconductor-based electrical circuit

whose collection of transistors implement the desired logic. From a high-level perspective,

a transistor is simply a contraption that switches an electrical signal composed of an input

source, a gate and a output sink where the gate modulates the flow of electricity between

source and sink. It is then relatively straightforward to see how individual transistors can be

linked in order to compute simple Boolean functions. Furthermore, transistors can be used

to create storage elements that retain the value of an input signal over the course of multi-

ple clock cycles. In the remainder, we will denote a single-bit storage unit as a flip-flop and

a multi-bit unit composed of multiple flip-flops as a register. In the remainder of this text,

we will refer to these units that implement a single Boolean function as logic gates as per

the terminology usually used in the literature. Early application-specific integrated circuits

were equipped a few thousand logic gates nowadays, depending on the complexity of the

application, circuits are composed of potentially billions of interlinked transistors. In sum-

mary, an ASIC designates an electronic circuit utilized in an highly individualized domain for

which a general computing unit is surplus to requirements. We remark that an application-

specific integrated circuit does not preclude a general-computing ability. In fact, the ubiq-

uitous and cheap manner of semiconductor manufacturing allows for the implementation

of a full-fledged CPU equipped with both volatile and non-volatile memory on exceedingly

small chips. A more precise denotion for such devices is Systems-on-Chip which is beyond

the scope of this thesis as it is exclusively concerned with the study and creation of individual

cryptographic circuits that each implement a single algorithm.

6The Difference Engine was an mechanical calculator and precursor to the Analytical Machine. The earliest
archaeological calculator is the Antikythera mechanism dated to approximately 100 BC.

17

Chapter 2. Preliminaries

2.3 Hardware Metrics

In the context of optimizing cryptographic hardware algorithms, researchers operate within

well-defined disciplines as typically, they do not depart from a generic intentions but attempt

to find a angle that allows them improve a specific metric of an algorithm whether the algo-

rithm in question is an existing construction or a new conception. In the following, a handful

of hardware metrics are detailed which are covered in all the showcased works. Furthermore,

in order to facilitate a minimum degree of comparability between the papers, the majority of

obtained measurement results are tabulated for the same set of metrics.

Circuit Area. Instinctively, with any newly devised circuit, the actual size of the network is

the figure that first jumps into a designer’s eye. It further is the simplest metric to evalu-

ate being the sum total of all logic gates that comprise the full implementation. Depending

on the utilized technology, transistors have a certain size and their composition as part of

various logic gates occupies a certain area on a chip usually denoted in µm2. Importantly,

this definition of circuit area blissfully ignores the overhead incurred after physically placing

and routing the gates, see Section 2.4 for more details. Different technologies vary widely in

the amount of area the resultant circuits occupy, as a result, comparing µm2 figures for the

same algorithm in different semiconductor manufacturing processes can yield inconclusive

verdicts. For the sake of a more reasonable juxtaposition between technologies, scientific pa-

pers usually list the occupied circuit area of investigated constructions in a manufacturing-

technology-independent unit. Gate equivalent (GE) denotes the ratio of the total circuit area

and the area of a single two-input NAND logic gate ultimately expressing the complexity of

the circuit in terms of a single logical unit.7

Example 1. A striking case of a cryptographic work that specifically set out to optimize the

logic area of an algorithm below a certain threshold is the eponymous Side-Channel Resistant

Crypto for Less than 2,300 GE [112] paper by Poschmann et al. published in 2011 that pro-

posed a bit-serial circuit that implements the PRESENT block cipher [38] in a power-analysis-

resistant fashion.

For the remainder, all tabulated data lists the circuit area metric in both physical units

(µm2) and in more conclusive Gate Equivalents (GE).

Critical Path. Digitalisation is a by-product of software abstraction that camouflages the

physical phenomenons inherent to semiconductor technology. Electrical signals, by default,

are not switched instantaneously but are subject to delays induced by the underlying com-

position of the transistors whose capacitors require a certain time frame for being charged or

discharged. As the depth of a circuit increases with its complexity so does the delay until a

change in an input signal is reflected in stable output signals. By definition, the critical path

denotes the longest delay path within a circuit. The reciprocal of the critical path specifies the

maximum clock frequency allowed to run the device without violating the correctness prop-

erties of the design, i.e., the smaller the critical path the faster can the circuit be clocked. For

7The two-input NAND logic gate is usually the simplest function to implement in any CMOS technology pro-
cess. Its functionality can be achieved with a total of only four transistors.

18

2.3 Hardware Metrics

cryptographic algorithms, the length of the critical path and by extension the clock frequen-

cies are echoed in the throughput metric which the literatures stipulates in different ways. As

part of this thesis, we opt for an asymptotic characterisation in the sense that our investigated

algorithms are described by the number of processed bits per second for asymptotically large

inputs when the device is run at the maximum clock frequency permitted by the critical path.

Definition 1 (Throughput). Let τ be the critical path of a circuit in seconds and denote by

B the number of processed bits per clock cycles for asymptotically large messages. Then the

throughput of a cryptographic circuit T is given by the following relation:

T = B/τ.

Remark that the parameter B not only depends on the given algorithm but also the prim-

itive family. For example, hardware-oriented stream ciphers produce a single keystream bit

per clock cycle for asymptotically large messages hence for these algorithm we set B = 1.

On the other hand, round-based block cipher implementations can only encrypt a message

length corresponding to their block size n every R rounds where R is equal to the number of

round function invocations, consequently for block ciphers, we have B = n/R. Similarly, for

modes of operation or authenticated encryption with associated data schemes, B depends

on the number of data bits processed for asymptotically large chunks of associated data and

message bits.

After the circuit area minimisations, the optimisation of throughput is a key aspect of li-

ghtweight cryptography especially when it comes to the adoption of lightweight algorithms

in commodity applications. Nevertheless, area and throughput are often orthogonal disci-

plines exemplified by implementations with constrained data paths. These serialised con-

structions often trade area with an significant decrease in throughput. Where a round-based

block cipher encrypted a message every R-th clock cycle a serialized variant of the same

algorithm may take several thousands of cycles for the same task. Recently, several high-

throughput encryption schemes meant for inclusion in cellular 5G communication networks

have appeared, for instance SNOW-V and Rocca [68, 116]. These algorithms make parallel use

of a single AES round function in order to process data blocks in a single clock cycle which

yields throughput rates in the range of several Gigabits per second in both hardware and soft-

ware.

Power. This physical unit denotes the time-averaged electrical work a circuit performs over

the course of its running time. In CMOS technology, the power consumption is rooted in two

dominant sources.

• Static Power. This source is due to leakage current and other current continuously

drawn from the power supply. For example, a capacitor naturally leaks its charge and

thus permanently requires current to balance the leakage. Importantly, static power is

generally not dependent on the frequency of the clock driving the circuit or user data.

• Dynamic Power. This type of power consumption originates from the repeated charg-

ing and discharging of load capacitances needed to drive the output signal of a gate.

19

Chapter 2. Preliminaries

Each 0 → 1 and 1 → 0 adds to the overall consumption and is effectively dependent on

the clock frequency, the input data as well as the switching probability of the gate. For

instance, on average, a logical AND gate switches fewer times than a XOR gate and thus

draws less dynamic power. Note that this description of dynamic power consumption

is a simplification. In reality, there further is a transient term that denotes the charging

and discharging of gate-internal capacitors based on the switching activity of the input

signals.

The majority of dynamic power consumption is not due to gates switching as part of the

intended functionality of the circuit but is caused by dynamic hazards, colloquially termed

glitches which denote unnecessary transitions produced by unequally delayed input signals.

Glitches exhibit a ripple effect throughout a network that is amplified by the complexity of

the circuit, consequently a gate’s output signal may switch several times before it attains a

desired stable value. The existence of glitches has further security implication in the context

of side-channel-based power analysis. Inadvertent signal switches may leak secret values

that normally are not recoverable in glitch-free circuits. In fact, the study and design of coun-

termeasures that offer protection against glitch-caused leakages has been at the forefront

among the side-channel researchers in recent years.

Energy. Power and energy consumption are correlated metrics. Energy is a measure of the to-

tal electrical work performed by the power source during the execution of a operation. Math-

ematically, energy is usually calculated through the time integral of the power consumption,

more specifically

E =
∫

P d t .

From this equation we can infer that the leakage energy of a circuit is proportional to the run-

ning time of an algorithm, i.e., the longer a circuit is run, for example by lowering the clock

frequency, the more leakage energy it consumes. By the same logic, if a circuit is operated

in a low-leakage environment, the dynamic energy consumption should be independent of

the clock frequency. It is of vital importance to remark that for lower clock frequencies, the

physical time taken to encrypt becomes larger and even small leakage power results in signif-

icant enough energy consumption of the order of the dynamic energy. Then the total energy

increases monotonously as the frequency decreases.

2.4 Electronic Design Automation

Having established the relevant hardware metrics covered in this thesis, it naturally begs the

question of how these measurements can be obtained. It stands to reason that physically

manufacturing circuits for the sole purpose of cryptographic research is arduous, uneconom-

ical and time-intensive, consequently experiments are solely conducted in a simulated vir-

tual environment with the help of industrial Electronic Design Automation (EDA) toolchains

that comprise the majority of the design process before a circuit is eventually printed and

shipped.

20

2.4 Electronic Design Automation

The lifecycle of a circuit begins at the drawing board with a high-level description that

is laid down as a Register-Transfer Level (RTL) design by means of a hardware description

language such as VHDL or Verilog. A RTL specification describes the circuit as a composi-

tion of storage elements, i.e., registers, and combinational logic that implements the desired

functionality. During one clock cycle, data stored in the registers is modified by the by combi-

natorial functions and subsequently written back. Consequently, computations proceed syn-

chronously with the driving clock such that the registers are only updated at the beginning

of each cycle. In a next step, the RTL design is processed by a synthesis tool that generates

a netlist of logic gates that implement the specification using a standard-cell library which

describes the physical properties of logic gates such as size and timing which allows for the

extraction of the first metrics name the total circuit area and the critical path. Furthermore, it

is now possible to simulate the resulting circuit under different inputs and clock frequencies.

This both serves as a way to verify correctness properties but also to determine other met-

rics, most importantly power and energy consumption. Note that, at this stage, the netlist

at hand does not describe the actual physical placement and routing of the individual gates

on a chip which is performed by different tools in ensuing steps and thus the evaluated met-

rics do not account for this induced overhead. Placing gates and wiring them appropriately

during the placement and routing phases adds to the total circuit area. Furthermore, closely

packed transistors exert parasitic capacitances between each other that are reflected in al-

tered critical paths and power consumption figures. Nevertheless, the measurements from a

simulated netlist are accurate enough to allow for a realistic characterisation of a circuit, still

after placing and routing, the design can again be simulated for a more accurate overview of

its properties. Lastly, once all the relevant information has been gathered, the chip is ready

to be handed over to a semiconductor manufacturer in order to be produced.

All the measurements as part of this thesis are solely collected on post-synthesis netlists

and thus exclude any costs in the wake of the placing and routing processes. This choice is

commonplace in the cryptographic optimisation literature as researchers operate on the al-

gorithm level where particular improvements are discernibly reflected in the post-synthesis

experiments. As for tools in this thesis, all netlists are generated with the Design Compiler®

logic synthesizer from Synopsys 8 supplied with RTL designs written in VHDL. The Design

Compiler® software is the industry-standard tool when it comes to the synthesis of netlists

and offers a complex interface in order to fine-tune parameters that guide the synthesis pro-

cess. Most of these are irrelevant for our purposes, however the choice of the main compila-

tion directive has tangible effects on the resulting netlist and its measurement metrics. For

this body of work, we rely on the following commands that depending on the optimisation

goal a particular directive is more appropriate than the others.9

• compile. This directive moderately attempts to optimize the resulting netlist. The syn-

8Version 2017.09
9Unfortunately, published research works in cryptographic optimisation often omit details corresponding to

the synthesis of their designs which is detrimental to the reproducibility of the result. In this thesis, the exact
synthesis routines alongside other occasional parameters are spelled out individually for each for the presented
contributions.

21

Chapter 2. Preliminaries

thesizer is free to choose the mapping and the corresponding optimisation but in any

case entity boundaries, as specified by the RTL specification, are respected meaning

that optimisation work between individual components is disabled. This synthesis

routine usually leads to larger circuits but can be beneficial when it comes to the critical

path or power and energy consumption figures.

• compile_ultra. A high-effort routine that optimises beyond entity boundaries in which

the RTL description is analysed as a single large component. It commonly yields the

most area-efficient netlists and is thus the default synthesis directive for many crypto-

graphic optimisation works in the literature. Note that this command generally brings

about circuits with an opaque and hard-to-understand netlists. Furthermore, the feed-

back loop is more involved than for other directive as its running time is repeatedly an

order of magnitude larger.

• compile_ultra -no_autoungroup. By means of this command individual RTL compo-

nents are synthesised with the highest-effort routine but optimisation ceases beyond

component boundaries. This synthesis directive is especially useful in the context of

side-channel-resistant implementations where succinct netlists is desirable but the ex-

act mapping of gates and their boundaries are of crucial importance as to fulfil the in-

tended security properties imposed by the countermeasures.

Once the netlist has been generated, experiments can be conducted in order to deter-

mine its power consumption. However, before this step it is mandatory to verify the func-

tional correctness of the design by simulating it with a set of test vectors. In our case, this

gate-level simulation is performed by Synopsys VCS® that utilizes Standard Delay Format

(SDF) files generated by Design Compiler® that specify the timing data of each signal in the

netlist. SDF files are back-annotated meaning that exact delays are only determined after

the netlist has been generated. VCS® further creates a Switching Activity Interchange Format

(SAIF) file during the simulation process that records the number of times a signal toggles its

value. As previously mentioned, the power consumption is a function of the total switching

activity of the combined set of all logic gates that comprise the design which in turn depends

on the data that is fed to the circuit as part of a user-specified testbench. Feeding the SAIF

file obtained after the gate-level simulation to the Synopsys Power Compiler®, this tool finally

calculates the exact power consumption of the design. Remark that for cryptographic algo-

rithms the testbench is usually composed of random data, e.g., a set of uniformly distributed

keys and plaintexts, this means that the larger the testbench the more accurate is the deter-

mined power consumption. Lastly, the energy consumption figure is gauged by multiplying

the power consumption with the total time required to process all the test vectors.

Naturally, any kind of synthesis and subsequent gate-level simulation is inexorably tied

to the choice of standard-cell library which comes in the form of a Liberty Timing file (LIB).

This format is a monolithic, usually large, collection of all supported logic gates as well as

flip-flops alongside their associated physical properties such as size timing and power con-

sumption data. In this thesis, we will make use of four of these libraries (two open-source,

22

2.4 Electronic Design Automation

two proprietary) that exhibit varying characteristics and features thus offering a broad panel

of insights over the resulting circuits.

NanGate 15 nm. This is the smallest library used in our experiments where the size in the

name refers to the width of a single transistor. It is a freely available and developed as an

open-source library by Silvaco meant for usage in research and teaching. Compared to more

industry-grade technologies it offers a rather basic set of logic gates and flip-flops with sim-

plified physical properties. For example, it does not feature any multi-input linear cells, i.e.,

XOR, XNOR gates with more than two inputs.

NanGate 45 nm. Silvaco further offers a larger open-source cell library with a similar set of

supported gates (again without any multi-input linear gates) compared to its smaller sibling.

Its defining feature is its prominent leakage power consumption that trumps even libraries

of larger sizes.

Example 2. At low clock frequencies, the total power consumption of a NanGate 45 nm circuit

is disproportionally composed of leakage power meaning that the resulting energy consump-

tion fluctuates strongly as a function of the clock frequency whereas for other libraries this

dependence is considerably weaker. In Table 2.1, we compare the power and energy consump-

tion of a fully unrolled Trivium circuit [47] that outputs 288 keystream bits per clock cycle for

differing clock frequencies and both the NanGate 15 nm and NanGate 45 nm libraries.

Table 2.1: Exemplification of the dynamic/leakage power consumption ratio in the NanGate
45 nm cell library compared to its smaller sibling NanGate 15 nm for a fully unrolled Trivium
circuit as investigated in more thoroughly in Chapter 4 and [47].

Cell Library Frequency Power (µW) Energy (nJ/1.28 Mbit)

Dynamic Leakage Total Dynamic Leakage Total

NanGate 15 nm 10 MHz 88.24 38.81 127.1 39.17 17.22 56.39
100 MHz 897.3 38.83 936.1 39.91 1.732 41.64

1 GHz 8987 38.83 9026 39.97 0.173 40.15

NanGate 45 nm 10 MHz 461.2 470.9 932.1 205.1 209.5 414.6
100 MHz 4005 472.1 4477 178.2 20.96 199.2

1 GHz 39508 472.1 39980 175.1 2.088 177.2

Apart from these two open-source cell libraries with further conducted our experiments

with two proprietary cell libraries of a larger sizes.

UMC 65 nm. This semiconductor technology first appeared in 2005 developed by United

Microelectronics Corporation and was the worldwide first 65 nm process to be integrated in

customer applications. It is a full-fledged library that features a large set of logic gates and

tabulates their physical properties in great detail. The complexity difference of UMC 65 nm

compared two the previous two libraries is reflected in the size of their LIB files wherein the

description of the NanGate 15 nm and NanGate 45 technologies fit within a few Kilobytes, the

UMC 65 nm specification requires several hundred Megabytes.

23

Chapter 2. Preliminaries

TSMC 90 nm. Similarly to the UMC 65 nm process this library was the first of its size when

it was announced in 2004 by the Taiwan Semiconductor Manufacturing Company. Again,

this is a large feature-rich technology tailored for the implementation of complex circuitry.

Importantly, the number of optimisation steps a synthesis tools is able to perform directly

depends on the complexity of the supplied cell library, i.e., more logic gates allow for more

equivalent mappings of a RTL description that exhibit different trade-offs. For example, the

fact that both NanGate libraries do not feature multi-input linear gates precludes potential

circuit area savings as 2 XOR gates usually occupy more area than a corresponding single

3-XOR gate. 10

All of the aforementioned four cell libraries come in different variants that prioritise dis-

tinct metrics including low power consumption or optimised timing. As the nature of our

results is comparative, measurement figures of optimised algorithms are not presented in-

dependently but always stand in juxtaposition to existing works, the choice of cell library

variant is of lesser importance in the sense that, usually, both the new optimisation and the

existing result are synthesised anew for each paper using the same variant of a cell library. In

Table 2.2, for the sake of completeness, we list the exact variant for each of the four libraries

alongside the size of their 2-input NAND gates used in the calculation of the Gate Equivalent

metric.

Table 2.2: Tabulation of the utilized cell library variants as part of this thesis and their re-
spective 2-input NAND gate sizes. Note that the difference between the smallest and largest
library is more than tenfold.

NanGate 15 nm NanGate 45 nm UMC 65 nm TSMC 90 nm

Variant Fast Fast umk65lscllmvbbr tcbn90lphp
Characteristic Fast Fast Low Leakage Low Power

NAND Area (µm2) 0.196608 0.798 1.44 2.8224

2.5 Cipher-to-Circuit Mapping

Let us briefly distil the acquired knowledge about the synthesis and measurements of circuits

from the previous sections and transpose it onto cryptographic circuits. Arguably, hardware

implementations of symmetric cryptography algorithms stand as a quintessentially pure ap-

plication of the RTL methodology in which storage and logic are separate instances. Virtually

all relevant contemporary block ciphers iterate the same round function, for a constant num-

ber of rounds, over a state that is initialised with the plaintext and use second iterative key

schedule function for the generation of keys for usage in each round departing from an initial

master key. It is straightforward to map such a configuration into a RTL design in which two

10Proprietary foundries of a certain age are often licensed to universities and research institutes under non-
disclosure agreements. At the time of writing, TSMC mass-produces chips with 5 nm technology and 3 nm pro-
cesses are within the foreseeable future.

24

2.6 Ciphers

register banks hold the intermediate cipher and key state alongside a combinatorial layer that

implements the round function and key update functions. At start of each clock cycle a newly

computed state and key is stored in the registers and then input to the subsequent round. A

high-level illustration of a generic block cipher circuit is depicted in Figure 2.1a. Modes of

operation designs based on block ciphers are then easily created by treating the block cipher

circuit as a black box and adding auxiliary states and logic around it. The same approach

also translates to hardware-based stream ciphers where the state is travelling one bit at the

time through a shift register. An update Boolean function that takes some state bits as inputs

generates a new state bit in each clock cycle, similarly one keystream bit is created through a

second Boolean function. A generic stream cipher configuration is shown in Figure 2.1b.

KS

RF

b
k

n

K

X

Y

b

(a) Block Cipher

b

K/IV

f

g

X

Y

1

(b) Stream Cipher

Figure 2.1: Basic circuit structure of a block cipher and a stream cipher. X denotes the
plaintext and Y the corresponding ciphertext. The encryption key is written as K . Boxes
in coloured yellow refer to registers and while the other boxes are combinatorial functions.
Both illustrations are simplifications of existing algorithms. As a matter of fact, block ciphers
are usually equipped with a third round constant state that is updated with each clock cycle.
On the other hand, hardware stream ciphers are commonly composed of more than just a
single shift register.

Most symmetric encryption circuits found in the literature can be reduced to the generic

blueprint from Figure 2.1, consequently, every investigated algorithm in this thesis is firmly

rooted in the same methodology independent of the ensuing optimisation.

2.6 Ciphers

In the following, we detail block and stream cipher algorithms that form the basis of our

optimisation endeavours. Each cipher’s description is self-contained and thus enables quick

forward-referencing to their corresponding papers.

25

Chapter 2. Preliminaries

2.6.1 Trivium

This hardware-based stream cipher first appeared in 2006 in a work by Christophe De Can-

nière [61] and was included as one option in the ECRYPT Stream Cipher Project (eSTREAM),

a cryptographic competition organised by the European Union in the search for new light-

weight stream ciphers for both software and hardware environments.11 The construction

was later standardised as ISO/IEC 29192-3.12.

Trivium features a state of 288 bits X = (x1, x2, . . . , x288) and key size of 80 bits alongside

an initialisation vector of the same length.13 At the beginning of the initialisation phase, the

secret key K = (k1,k2, . . . ,k80) and the public initialisation vector IV = (iv1, iv1, . . . , iv80) are

loaded into the state and subsequently the state update function is run for 4 · 288 = 1152

rounds which corresponds to four full state rotations. Note that the 288-bit state is actually

partitioned into three lanes of different sizes that, in a circular fashion, feed into each other.

Lastly, a total of n keystream bits Z = (z1, . . . , zn) are generated one bit at a time where n is

user-defined constant. Both the initialisation and keystream functions are detailed in Algo-

rithm 1.

Algorithm 1 Trivium Initialisation and Keystream Functions

1: function Initialisation(K , IV)
2: (x1, . . . , x93) ← (k1, . . . ,k80,0, . . . ,0)
3: (x94, . . . , x177) ← (iv1, . . . , iv80,0, . . . ,0)
4: (x178, . . . , x288) ← (0, . . . ,0,1,1,1)

5: for i = 1 to 4 ·288 do
6: t1 ← x66 ⊕ (x91 ∧x92)⊕x93 ⊕x171

7: t2 ← x162 ⊕ (x175 ∧x176)⊕x177 ⊕x264

8: t3 ← x243 ⊕ (x286 ∧x287)⊕x288 ⊕x69

9: (x1, . . . , x93) ← (t3, x1, . . . , x92)
10: (x94, . . . , x177) ← (t1, x94, . . . , x176)
11: (x178, . . . , x288) ← (t2, x178, . . . , x287)

1: function Keystream(X)
2: for i = 1 to n do
3: s1 ← x66 ⊕x93

4: s2 ← x162 ⊕x177

5: s3 ← x243 ⊕x288

6: zi ← s1 ⊕ s2 ⊕ s3

7: t1 ← s1 ⊕ (x91 ∧x92)⊕x171

8: t2 ← s2 ⊕ (x176 ∧x177)⊕x264

9: t3 ← s3 ⊕ (x286 ∧x287)⊕x69

10: (x1, . . . , x93) ← (t3, x1, . . . , x92)
11: (x94, . . . , x177) ← (t1, x94, . . . , x176)
12: (x178, . . . , x288) ← (t2, x178, . . . , x287)

The most striking characteristic of the Trivium stream cipher lies in the simplicity of its

state update function, that contributes to an overall unquestionably compact circuit area

footprint, composed of three strands of the same 5-bit Boolean function that each contain

only a single non-linear term, i.e.,

x66 ⊕ (x91 ∧x92)⊕x93 ⊕x171,

x162 ⊕ (x175 ∧x176)⊕x177 ⊕x264,

x243 ⊕ (x286 ∧x287)⊕x288 ⊕x69.

11https://www.ecrypt.eu.org/stream
12https://www.iso.org/standard/56426.html
13As we will see later in Chapter 4, list indexing starting from 1 proves more convenient for Trivium.

26

https://www.ecrypt.eu.org/stream
https://www.iso.org/standard/56426.html

2.6 Ciphers

With a feature-rich cell-library one such strand can be implemented with a single 2-AND gate

and one 4-XOR gate. Despite this succinctness, the algorithm has been resisting cryptanalytic

efforts since its conception with there being to-date no key-recovery attack with a complexity

below the exhaustive search bound and thus remains an attractive target for the symmetric

cryptography community.

2.6.2 GIFT

Although the PRESENT block cipher [38] invigorated research in lightweight hardware en-

cryption primitives its security guarantees were becoming increasingly volatile in the ensuing

years. GIFT by Banik et al. [26] spawned out of the reinterpretation of PRESENT’s core design

principles and culminated in a block cipher that is both more secure and more efficient to

implement as an ASIC.

GIFT uses a 128-bit key K = (K0,K1, . . . ,K7) where Ki is a 16-bit word but specifies two vari-

ants with either a 64-bit or a 128-bit block size. With regards to thesis only the 128-bit block

version is relevant and thus described in this section. It operates over 40 rounds processing a

128-bit state X = (x0, x1, . . . , x127) using a round function composed of three subroutines

(AddRoundKey◦PermBits◦SubCells)(X ,K).

SubCells. As is commonplace in block cipher constructions the substitution layer is the only

non-linear. In GIFT, it is a 4-bit invertible function GS that is applied 32 times in on each

nibble of full state, i.e.,

(x4i , x4i+1, x4i+2, x4i+3) ← GS(x4i , x4i+1, x4i+2, x4i+3) , ∀i ∈ {0, . . . ,31}.

The function GS has an especially succinct mapping in term of circuit area which can be

constructed with as few as ten 2-input logic gates. The complete substitution table is given

in Table 2.3.

Table 2.3: 4-bit substitution table of the GIFT block cipher.

w 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
GS(w) 1 10 4 12 6 15 3 9 2 13 11 7 5 0 8 14

PermBits. As with PRESENT, the diffusion layer of GIFT is a bit-wise permutation P . This

means that each bit of the intermediate is independently moved to a new position. In other

words,

xP (i) ← xi , ∀i ∈ {0, . . . ,127}.

From a hardware perspective, bit-wise permutations are an optimal choice as the computa-

tion is easily achieved by wiring and thus does not require any kind of additional logic. The

full permutation table is listed in Table 2.4.

AddRoundKey. Finally, in each round a 64-bit round key U ||V is added to the cipher state

27

Chapter 2. Preliminaries

Table 2.4: 128-bit permutation table of the GIFT block cipher.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 96 1 34 67 64 97 2 35 32 65 98 3 0 33 66 99

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 10 5 38 71 68 101 6 39 36 69 102 7 4 37 70 103

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 104 9 42 75 72 105 10 43 40 73 106 11 8 41 74 107

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 108 13 46 79 76 109 14 47 44 77 110 15 12 45 78 111

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
P (i) 112 17 50 83 80 113 18 51 48 81 114 19 16 49 82 115

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
P (i) 116 21 54 87 84 117 22 55 52 85 118 23 20 53 86 119

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
P (i) 120 25 58 91 88 121 26 59 56 89 122 27 24 57 90 123

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
P (i) 124 29 62 95 92 125 30 63 60 93 126 31 28 61 94 127

where U = (u0, . . . ,u31) = (K2,K3) and V = (v0, . . . , v31) = (K6,K7) are each 32-bit words ex-

tracted from the key state. These 64 bits of round key material are not added to in consec-

utive stretches but rather distributed evenly over the full intermediate state in the following

fashion:

x4i+2 ← x4i+2 ⊕ui , x4i+1 ← x4i+1 ⊕ vi , ∀i ∈ {0, . . . ,31}.

Key Schedule. The key state is updated in each round through two separate rotations that,

similarly to the PermBits operations, can be implemented in hardware with zero area over-

head.

(K0,K1,K2,K3,K4,K5,K6,K7) ← (K6 ≫ 2,K7 ≫ 12,K0,K1,K2,K3,K4,K5).

Lastly, in order to break symmetric between the round functions, GIFT utilises a 6-bit LFSR

for the generation of round constants C = (c0,c1,c2,c3,c4,c5) that are added to the cipher state

at specific positions such that

x0 ← x0 ⊕1, x104 ← x104 ⊕ c0, x108 ← x108 ⊕ c1,

x112 ← x112 ⊕ c2, x116 ← x116 ⊕ c3, x120 ← x120 ⊕ c4,

x124 ← x124 ⊕ c5.

C is initialised to the zero bit string then affinely update in each round in the following way:

(c0,c1,c2,c3,c4,c5) ← (c1,c2,c3,c4,c5,c0 ⊕ c1 ⊕1).

Bit-Sliced GIFT. An alternative ordering of the GIFT state bits in the form of a 2-dimensional

array exists in which the state bits are arranged in four 32-bit segments. This bit ordering

eases the implementation of the block cipher in software as it facilitates parallel computation

28

2.6 Ciphers

of the round function routines. More specifically, the state bits are ordered as follows:

X =

X0

X1

X2

X3

=

x3 x7 · · · x119 x123 x127

x2 x6 · · · x118 x122 x126

x1 x5 · · · x117 x120 x125

x0 x4 · · · x116 x119 x124

=

x0,0 x0,1 · · · x0,29 x0,30 x0,31

x1,0 x1,1 · · · x1,29 x1,30 x1,31

x2,0 x2,1 · · · x2,29 x2,30 x2,31

x3,0 x3,1 · · · x3,29 x3,30 x3,31

 .

In this representation, the substitution layer is now computed across the matrix rows, i.e.,

(x0, j , x1, j , x2, j , x3, j) ← GS
(
x0, j , x1, j , x2, j , x3, j

)
, ∀ j ∈ {0, . . . ,31}.

On the other hand, the bit-wise permutation is decomposable into four sub-permutations Pi

that act independently on each row of the state matrix; by abuse of notation we write

(X0, X1, X2, X3) ← (P0(X0),P1(X1),P2(X2),P3(X3)) .

The complete permutation table of the bit-sliced variant of GIFT is given in Table 2.5.

Table 2.5: The four 32-bit permutation tables of the bit-sliced GIFT block cipher.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P0(j) 16 8 0 24 17 9 1 25 18 10 2 26 19 11 3 27

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P0(j) 20 12 4 28 21 13 5 29 22 14 6 30 23 15 7 31

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P1(j) 8 0 24 16 9 1 25 17 10 2 26 18 11 3 27 19

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P1(j) 12 4 28 20 13 5 29 21 14 6 30 22 15 7 31 23

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P2(j) 0 24 16 8 1 25 17 9 2 26 18 10 3 27 19 11

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P2(j) 4 28 20 12 5 29 21 13 6 30 22 14 7 31 23 15

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P3(j) 24 16 8 0 25 17 9 1 26 18 10 2 27 19 11 3

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P3(j) 28 20 12 4 29 21 13 5 30 22 14 6 31 23 15 7

For our purposes, later on in this thesis, a different notation of the bit-sliced permuta-

tion table shown in Table 2.5 appears to be more practical, This representation is detailed in

Table 2.6.

Ultimately, the 64-bit round keys and round constants are now added to adjacent state

bits, in other words row, such that

(X0, X1, X2, X3) ← (X0, X1 ⊕V , X2 ⊕U , X3),

(X0, X1, X2, X3) ← (X0, X1, X2, X3 ⊕ (1,0,0, . . . ,c0,c1,c2,c3,c4,c5)).

Note that the key state and round constant do not need to be reordered and are thus equiva-

lent to the original GIFT specification.

On a side note, this technique of rearranging state bits into a more software-suitable or-

29

Chapter 2. Preliminaries

Table 2.6: Alternative representation of the bit-sliced GIFT permutation tables. Following the
notation by SUNDAE-GIFT proposal [15], the bit identified by j moves to the its new position
denoted in Xi after application of the permutation. For example, bit 31 of X1 is shift one
position to the right.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P0(X0) 2 6 10 14 18 22 26 30 1 5 9 13 17 21 25 29

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P0(X0) 0 4 8 12 16 20 24 28 3 7 11 15 19 23 27 31

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P1(X1) 1 5 9 13 17 21 25 29 0 4 8 12 16 20 24 28

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P1(X1) 3 7 11 15 19 23 27 31 2 6 10 14 18 22 26 30

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P2(X2) 0 4 8 12 16 20 24 28 3 7 11 15 19 23 27 31

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P2(X2) 2 6 10 14 18 22 26 30 1 5 9 13 17 21 25 29

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P3(X3) 3 7 11 15 19 23 27 31 2 6 10 14 18 22 26 30

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P3(X3) 1 5 9 13 17 21 25 29 0 4 8 12 16 20 24 28

dering is commonly termed bitslicing. In the case of bitsliced GIFT, it is straightforward to

see that when the four state rows are each loaded in a 32-bit register, it becomes possible to

calculate the 32 substitutions of SubCells in parallel by computing the function as a Boolean

circuit instead of using a lookup table. Bitslicing in cryptography first appeared in an optimi-

sation work on DES [33] but arguably had to biggest influence on AES implementations, e.g.,

see [1, 118].

GIFT-COFB. This Authenticated Encryption with Associated Data scheme based on the bit-

sliced GIFT block cipher is a NIST LWC finalist. The construction adheres to the COmbined

FeedBack mode of operation [57] which provides a processing rate of 1, meaning a single

block cipher invocation per input data block. The mode only adds an additional 64-bit state

L to the existing block cipher state. Let n = 128 and denote by EK a single bitsliced GIFT en-

cryption using a key K ∈ {0,1}n . Furthermore, N ∈ {0,1}n signifies a nonce and A represents

a associated data bitstring and M a message bitstring. GIFT-COFB intersperses EK calls with

that of several component functions. In particular, it uses a truncation procedure Truncr (X)

that retrieves the r most significant bits of and a padding function Pad(X) that pads inputs

that are not a multiple of n, in the following manner:

Pad(X) =
X if X ̸= ϵ and |X | mod n = 0

X ∥10(n−(|X | mod n)−1) otherwise.

Additionally, the internal state enters a feedback function between encryptions composed of

two rotations of an input X = (X0, X1) where Xi ∈ {0,1}n/2 such that

Feed(X) = (X1, X0 ≪ 1).

30

2.6 Ciphers

Alongside the execution of Feed, the auxiliary state L is updated through a multiplication over

the finite field GF(264) generated by the root of the polynomial p64(x) = x64 + x4 + x3 + x +1.

Consequently, the doubling of an element z = z0z1 · · ·z63 ∈ GF(264), i.e., the multiplication by

the primitive element α= x = 06210, is conveniently calculated as

α · z =
z ≪ 1 if z0 = 0

(z ≪ 1)⊕05911011 otherwise.

By leveraging this multiplication, we can similarly triple an element z by calculating (1+α)·z.

The encryption of the last block of both A and M is preceded by the multiplication of L by

(1+α)x and (1+α)y respectively, where

x =
1 if |A| mod n = 0 and A ̸= ϵ,

2 otherwise;
y =

1 if |M | mod n = 0 and M ̸= ϵ,

2 otherwise.

All other encryptions lead to a multiplication of L byα, excluding the initial encryption of the

nonce. Ultimately, the mode of operation produces a ciphertext C of size |C | = |M | and a tag

T ∈ {0,1}n . The complete GIFT-COFB encryption algorithm is given in Algorithm 2 and the

corresponding schematic depiction is shown in Figure 2.2.

Algorithm 2 GIFT-COFB Encryption Function

1: function Encrypt(K , N , A, M)
2: X0 ← EK (N), L ← Truncn/2(X0)
3: (A0, . . . , Aa−1)

n← Pad(A)
4: if M ̸= ϵ then
5: (M0, . . . , Mm−1)

n← Pad(M)

6: for i ← 0 to a −2 do
7: L ←α ·L
8: Yi ← Ai ⊕Feed(Xi−1)⊕L||0n/2

9: Xi ← EK (Yi)

10: if |A| mod n = 0 and A ̸= ϵ then
11: L ← (α+1) ·L
12: else L ← (α+1)2 ·L

13: if M = ϵ then L ← (α+1)2 ·L

14: Ya−1 ← Aa−1 ⊕Feed(Xa−2)⊕L||0n/2

15: Xa−1 ← EK (Ya−1)

15: for i ← 0 to m −2 do
16: L ←α ·L
17: Ci ← Mi ⊕Xi+a−1

18: Yi+a ← Mi ⊕Feed(Xi+a−1)⊕L||0n/2

19: Xi+a ← EK (Yi+a)

20: if M ̸= ϵ then
21: if |M | mod n = 0 then
22: L ← (1+α) ·L
23: else L ← (1+α)2 ·L

24: Cm−1 ← Mm−1 ⊕Xa+m−2

25: Ya+m−2 ← Mm−1⊕Feed(Xa+m−2)⊕L||0n/2

26: Xa+m−2 ← EK (Ya+m−2)
27: C ← Trunc|M |(C0, . . . ,Cm−1)
28: T ← Xa+m−2

29: else C ← ϵ, T ← Xa−1

2.6.3 SKINNY

Apart from GIFT there is a second lightweight block cipher that enjoyed the same popularity

in recent years. SKINNY [30] is a construction in the tweakey framework in which part of the

encryption key is designated as a tweak that may be replaced. It comes with a block size of

64 or 128 but as with GIFT only the 128-bit block size variant is relevant for our purposes. It

31

Chapter 2. Preliminaries

EKN b

Trunc64

L

Feed

A0 2L||0n/2

EK
b Feed

Aa−1

Pad 3x3y2a−1L||0n/2

EK Tb b

(a) A ̸= ϵ, M = ϵ

EK

N

b Trunc64

Feed

ǫ

3xL||0n/2

EK b
b
b

Feed Mm−1

Pad

3x3y2m−1L||0n/2

EK

T

Pad

Feed M0

3x2L||0n/2

EK

b C0
b Trunc64

L

Cm−1

(b) A = ϵ, M ̸= ϵ

EK

N

b Trunc64 L

Feed

Aa−1

3x2a−1L||0n/2

EK

b
b
b

Feed Mm−1

Pad

3x3y2a+m−2L||0n/2

EK

T

Pad

Feed M0

3x2L||0n/2

EK

b C0

b Cm−1Trunc64

A0

2L||0n/2

EK

b
b
b

(c) A ̸= ϵ, M ̸= ϵ

Figure 2.2: Schematic depiction of GIFT-COFB mode of operation for all associated data and
plaintext sizes. We remark that an empty associated data input will always be padded to a full
block, hence the minimum number of encryption calls is two.

further specifies tweakey sizes of t ∈ {128,256,384} bits with z = t/128. Both the cipher state

X and the key states Ki for i ∈ {1, . . . z} are arranged in 4×4 byte matrices of the form

X =

X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

X12 X13 X14 X15

 , Ki =

Ki ,0 Ki ,1 Ki ,2 Ki ,3

Ki ,4 Ki ,5 Ki ,6 Ki ,7

Ki ,8 Ki ,9 Ki ,10 Ki ,11

Ki ,12 Ki ,13 Ki ,14 Ki ,15

 .

As SKINNY is a substitution-permutation network its round function is built around a non-

linear substitution layer and linear diffusion layer. Depending on the tweakey size the cipher

iterates its round function for a different amount of times, namely a total of 40+ (z − 1) · 8

32

2.6 Ciphers

rounds. Below, we list the individual component sub-routines of the round function

(MixColumns◦ShiftRows◦AddRoundTweakey◦AddConstant◦SubCells)(X ,K).

SubCells. SKINNY deploys an efficient 8-bit substitution box that consists of a single Boolean

function in combination with a bit-wise permutation repeated over four rounds as shown in

Algorithm 3. Note that the permutation in the fourth round is different.

Algorithm 3 8-bit S-box of SKINNY

1: function S-Box(x0, x1, x2, x3, x4, x5, x6, x7)
2: for i ← 1 to 4 do
3: (x0, x1, x2, x3, x4, x5, x6, x7) ← (x0, x1, x2, x3 ⊕ (x0 ∨x1), x4, x5, x6, x7 ⊕ (x4 ∨x5))
4: if i < 4 then (x0, x1, x2, x3, x4, x5, x6, x7) ← (x5, x6, x0, x1, x3, x7, x4, x2)
5: else (x0, x1, x2, x3, x4, x5, x6, x7) ← (x0, x1, x2, x3, x4, x6, x5, x7)

AddConstants. After the substitution layer, a round constant generated by a 6-bit affine LFSR

(rc0, rc1, rc2, rc3, rc4, rc5) are added into the state at specific indices. For better readability, we

arrange the round constant bits in a 4×4 byte matrix of the form

X ← X ⊕

C0 0 0 0

C1 0 0 0

C2 0 0 0

0 0 0 0

 ,

where C0 = (0,0,0,0,rc2, rc3, rc4, rc5), C1 = (0,0,0,0,0,0,rc0, rc1) and C2 = (0,0,0,0,0,0,1,0).

The LFSR itself is updated in the same fashion as the GIFT round constant generator, i.e.,

(rc0, rc1, rc2, rc3, rc4, rc5) ← (rc1, rc2, rc3, rc4, rc5, rc0 ⊕ rc1 ⊕1).

AddRoundTweakey. Subsequently, a 64-bit round tweakeys are extracted and added to the

first two rows of the intermediate state. The exact extraction functions differs with regards to

z for i ∈ {0, . . . ,7} such that

X =

Xi ⊕K0,i if z = 1;

Xi ⊕K0,i ⊕K1,i if z = 2;

Xi ⊕K0,i ⊕K1,i ⊕K2,i if z = 3.

ShiftRows. After round key and round constants have been added into the cipher state, the

second, third and fourth rows are rotated by one, two and three to the right respectively. More

specifically

X =

X0 X1 X2 X3

X7 X4 X5 X6

X10 X11 X8 X9

X13 X14 X15 X12

 .

33

Chapter 2. Preliminaries

MixColumns. The last operation of the round function consists in applying a column-wise

function on the state described by a binary matrix multiplication of the form

X =

1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0

 ·

X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

X12 X13 X14 X15

 .

Key Schedule. The tweakeys are individually updated through a byte-wise permutation PT

that shuffles the matrix entries

Ki , j ← Ki ,PT (j), ∀i ∈ {0,1}, ∀ j ∈ {0,15},

where PT is described in Table 2.7.

Table 2.7: Byte-wise SKINNY tweakey schedule permutation.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PT (i) 9 15 8 13 10 14 12 11 0 1 2 3 4 5 6 7

In addition to the permutation, when z > 1, each byte of the first two rows of K2, K3 is further

updated by two other affine functions:

K2,i ←
F (K2,i) if i < 8,

K2,i otherwise
K3,i ←

G(K3,i) if i < 8,

K3,i otherwise
,

where F and G are given by the following relations:

F : (x0, x1, x2, x3, x4, x5, x6, x7) ← (x1, x2, x3, x4, x5, x6, x7, x0 ⊕x2),

G : (x0, x1, x2, x3, x4, x5, x6, x7) ← (x7 ⊕x1, x0, x1, x2, x3, x4, x5x6, x0).

2.6.4 AES

The progenitor of all modern block ciphers and still the most widely integrated encryption

solution is the Advanced Encryption Standard [60]. It operates with a block size of 128 bits

and offers key sizes of 128, 192 and 256 bits that entail 10, 12 or 14 round function repetitions

respectively, however in this body of work, only the 128-bit and 256-bit variants are relevant.

Similar to SKINNY, the cipher state is represented as column-major byte matrix

X =

X0 X4 X8 X12

X1 X5 X9 X13

X2 X6 X10 X14

X3 X7 X11 X15

 .

34

2.6 Ciphers

However, unlike SKINNY all algebraic operation on bytes in AES are conducted over the Ri-

jndael finite field GF(28) modulo the irreducible polynomial p(x) = x8 + x4 + x3 + x +1. De-

pending on the key size, its state is either represented by a 4×4 or 4×8 column-major byte

matrix of the form

K =

K0 K4 K8 K12

K1 K5 K9 K13

K2 K6 K10 K14

K3 K7 K11 K15

 , K =

K0 K4 K8 K12 K16 K20 K24 K28

K1 K5 K9 K13 K17 K21 K25 K29

K2 K6 K10 K14 K18 K22 K26 K30

K3 K7 K11 K15 K19 K23 K27 K31

 .

As before, we detail the individual routines of the round function

(AddRoundKey◦MixColumns◦ShiftRows◦SubBytes)(X ,K).

Note that the very first operation (often referred to the key whitening state), before commenc-

ing with the round function iterations, consists in adding the first 128-bits of the encryption

key into the state, i.e.,

X = X ⊕

K0 K4 K8 K12

K1 K5 K9 K13

K2 K6 K10 K14

K3 K7 K11 K15

 .

SubBytes. The first operation of each new round is the non-linear layer, represented by an

8-bit substitution box S that is applied on each byte of the state. Mathematically, the substi-

tution in an affine transformation of a multiplicative inverse of the form S(Xi) = A × X −1
i +

b, ∀i ∈ {0, . . .15} or more precisely

S(Xi) =

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

·

y0

y1

y2

y3

y4

y5

y6

y7

⊕

1

1

0

0

0

1

1

0

,

where (y0, y1, y2, y3, y4, y5, y6, y7) are the individual bits of the multiplicative inverse of the

input byte X −1
i = (y0, y1, y2, y3, y4, y5, y6, y7).

ShiftRows. The next function consists in rotating the second, third and fourth row of the state

matrix by one, two or three positions to the left as opposed to the rightward rotation found in

35

Chapter 2. Preliminaries

SKINNY. Schematically, this means

X =

X0 X4 X8 X12

X5 X9 X13 X4

X10 X14 X2 X6

X15 X3 X7 X11

 .

MixColumns. After rotating the state rows, each column of the matrix is multiplied over the

Rijndael finite field by a constant matrix such that

X =

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 ·X .

Importantly, the MixColumns operation is, for efficiency reasons, omitted in the ultimate

round.

AddRoundKey. Lastly, the first 128-bits of the current state are added into the cipher state

byte by byte as seen before during the initial key whitening phase.

Key Schedule. Conceptually, the generation of round keys is the most complex routine in

AES as it makes use of both the S-box and a word-based rotation. Furthermore, the routines

slightly differ from each other depending on the key size.

• 128-Bit. In this variant, the the least significant bytes (K12,K13,K14,K15) pass through

the S-box and are rotated by one position to the left before a round constant is added

and the updated 32-bit word is added back into the key state. In the following, denote

by W = [W0,W1,W2,W3]T a four-byte column vector, then we have

W =

K0 ⊕S(K13)⊕RC

K1 ⊕S(K14)

K2 ⊕S(K15)

K3 ⊕S(K12)

 , W ′ =

W0 ⊕K4

W1 ⊕K5

W2 ⊕K6

W3 ⊕K7

 , W ′′ =

W ′

0 ⊕K8

W ′
1 ⊕K9

W ′
2 ⊕K10

W ′
3 ⊕K11

 , W ′′′ =

W ′′

0 ⊕K12

W ′′
1 ⊕K13

W ′′
2 ⊕K14

W ′′
3 ⊕K15

 .

The updated key state is then given by K = [W,W ′,W ′′,W ′′′].

• 256-Bit. In this variant only half of the key state is updated per round. Denote by

Vi = [K16+4i ,K16+4i+1,K16+4i+2,K16+4i+3]T , ∀i ∈ {0, . . . ,3} the last for columns of the key

state, then the a newly generate state is of the form K = [V0,V1,V2,V3,W,W ′,W ′′,W ′′′].
The exact update function varies for even and odd rounds such that for even rounds

we have

W =

K0 ⊕S(K29)⊕RC

K1 ⊕S(K30)

K2 ⊕S(K31)

K3 ⊕S(K28)

 , W ′ =

W0 ⊕K4

W1 ⊕K5

W2 ⊕K6

W3 ⊕K7

 , W ′′ =

W ′

0 ⊕K8

W ′
1 ⊕K9

W ′
2 ⊕K10

W ′
3 ⊕K11

 , W ′′′ =

W ′′

0 ⊕K12

W ′′
1 ⊕K13

W ′′
2 ⊕K14

W ′′
3 ⊕K15

 ,

36

2.7 Threshold Implementations

while for odd rounds the word rotation as well as the round constant addition are omit-

ted which yields the following update function:

W =

K0 ⊕S(K28)

K1 ⊕S(K29)

K2 ⊕S(K30)

K3 ⊕S(K31)

 , W ′ =

W0 ⊕K4

W1 ⊕K5

W2 ⊕K6

W3 ⊕K7

 , W ′′ =

W ′

0 ⊕K8

W ′
1 ⊕K9

W ′
2 ⊕K10

W ′
3 ⊕K11

 , W ′′′ =

W ′′

0 ⊕K12

W ′′
1 ⊕K13

W ′′
2 ⊕K14

W ′′
3 ⊕K15

 .

Ultimately, the 8-bit round constants depart from an initial value of RC = 1 and are doubled

RC = 2 ·RC over the Rijndael finite field in each round. Note that while ten round constants

are needed for the 128-bit variant of AES only seven are required for the 256-bit version as it

is only added in even rounds.

2.7 Threshold Implementations

Unprotected implementations of cryptographic algorithms are susceptible to side-channel-

assisted attacks that exploit leakages of secret values in sources such as power consumption,

electromagnetic emissions or execution time. This means that even if an algorithm has been

proven cryptanalytically secure its implementation may not be. In order to disassociate se-

cret values from potential leakages, a common approach is to include random values into the

cipher state that mask critical values from being exposed in leakages. This approach is ad-

heres to the secret-sharing methodology [119]. More specifically, key-related, intermediate

bit values xi are split into s independent shares xi ,0, xi ,1, . . . , xi ,s−1 such that

s−1∑
j=0

xi , j = xi .

In practice, sharing variables implies that each function f (x0, . . . , xn−1) = z within an algo-

rithm needs to be decomposed into functions fi (·) = zi adhering to the same correctness

requirement
∑s−1

i=0 fi = f . In the following, we assume that an attacker is capable of probing

individual wires of a cryptographic circuit and can extract their intermediate values during

the computation [84]. More specifically, we consider d-th order security in the glitch-robust

model, where information of any d wires can be gathered and processed from a circuit that

exhibits glitches during its running time. We say that a masked implementation is d-probing

secure that any observation made on up to d wires is statistically independent of the secret. In

particular, d-probing security implies resistance against d-th order Differential Power Anal-

ysis (DPA) in the glitch-robust model.

The challenge of designing d-th order secure masking schemes has spawned various

approaches, of which Threshold Implementations have crystallized themselves as one of

the most adopted strategies. First introduced by Nikova et al. [35, 111] Threshold Imple-

mentations provide complete first-order security i.e., d = 1, against DPA in the presence of

glitches. 14 With regards to this thesis we will restrict ourselves uniquely to first-order imple-

14It has been shown that against higher-order for d > 1 attacks Threshold Implementations do not offer ade-

37

Chapter 2. Preliminaries

mentations.

The decomposition of an n-variable Boolean function f (x0, . . . , xn−1) = z into a set of s

functions f0, . . . , fs−1 such that
∑s−1

i=0 fi = f is a first-order Threshold Implementation if and

only if the following conditions are met:

• Non-Completeness. The functions f0, . . . , fs−1 are first-order non-complete, if any func-

tion is independent of at least one input share.

• Uniformity. For all x such that f (x) = z, the input masking is said to be uniform if each

set of valid input shares of x (i.e., those sum to x) have equal probability of occurring.

If this holds, the shared implementation of f is said to be uniform if each valid output

share also have equal probability of occurring.

The number of input shares sin respectively number of output shares sout necessary in

order to achieve a non-complete and uniform sharing of a function of algebraic degree t is

given by the below bounds [35]:

sin ≥ t +1, sout ≥
(

t +1

t

)
.

Example 3. Note that a first-order TI of a quadratic function can thus be obtained with sin =
sout = 3. In this work, we will bootstrap the sharing of an arbitrary quadratic function via the

canonical direct sharing of the function f (x2, x1, x0) = x0 +x1x2, i.e.,

f0 = x0,1 +x1,1x2,1 +x1,1x2,2 +x1,2x2,1

f1 = x0,2 +x1,0x2,0 +x1,2x2,0 +x1,0x2,2

f2 = x0,0 +x1,0x2,0 +x1,1x2,0 +x1,0x2,1.

We use an analogous direct sharing for cubic terms.

2.8 Swap-and-Rotate

This methodology, due to Banik et al. [11], describes a generic technique to serialise block ci-

pher circuits to a 1-bit data path by the means of a rotating shift register combined with pur-

poseful swapping of state bits during specific intervals. We denote a n-bit register pipeline

as FF0, . . . ,FFn−1 over which we define two basic algorithmic operations as shown in Algo-

rithm 4.

While the rotate function is inherent to all shift registers the swap operator is imple-

mented using regular d-flip-flops that are prefaced with a multiplexer that switches two or

more input signals. In order to illustrate the usage of these two function let us indulge in a

simple example.

Example 4. Given a 4-bit state (x0, x1, x2, x3) store in a register pipeline FF0FF1FF2FF3, a left-

ward rotation by two positions can achieved with a single Swap(1,3) over four cycles such that

quate protection [114] without additional security measures.

38

2.8 Swap-and-Rotate

Algorithm 4 Swap-and-Rotate Functions

1: function Rotate(FF, x)
2: FF′

n−1 ← x
3: FF′

i−1 ← FFi for i ∈ {1, . . . ,n −2}
4: y ← FF0

5: return (FF′, y)

1: function Swap(FF,u, v)
2: FF′

i ← FFi for i ∈ {0, . . . ,n −1} \ {u, v}
3: FF′

u ← FFv

4: FF′
v ← FFu

5: return FF′

at the beginning of the fourth cycle we have the state (x2, x3, x0, x1). A cycle-by-cycle example

of the state pipeline with its corresponding swaps is given in Table 2.8 and the corresponding

circuit in Figure 2.3.

Table 2.8: Cycle-by-cycle tabulation of the leftward rotation by two positions.

Cycle Pipeline Swap
0 FF0(x0)FF1(x1)FF2(x2)FF3(x3) Swap(1,3)
1 FF0(x1)FF1(x0)FF2(x3)FF3(x2) Swap(1,3)
2 FF0(x0)FF1(x1)FF2(x2)FF3(x3) No swap
3 FF0(x1)FF1(x2)FF2(x3)FF3(x0) No swap
4 FF0(x2)FF1(x3)FF2(x0)FF3(x1) No swap

Note that, of course the same transformation could have been performed by simple rotat-

ing the state for two cycles without any swap, however, as explained later, for bit-serial block

cipher circuits it is important that any operation is performed in exactly n cycles where n is

the block size of the underlying algorithm.

FF0 FF1 FF2 FF3b
b

0 1 2 3

Figure 2.3: Swap-and-Rotate circuit for 4-bit leftward rotation by two positions. In order to
ease notation we will use the simplified equivalent schematic on the right.

39

Book IGreen Cryptography

41

3 AEAD Energy Analysis

[...] Cut away, cut away [...]

We commence the first book in this thesis with survey-type analysis that performs a thor-

ough energy consumption analysis of nine hardware-oriented AEAD schemes of the second

NIST LWC round that are constructed around a lightweight block cipher which resulted in

the to-date most comprehensive energy study of cryptographic circuits. This chapter is com-

prised of material from a work in collaboration with Subhadeep Banik and Fatih Balli that was

presented at the 19th International Conference on Cryptology and Network Security (CANS-

2020) and was bestowed with a Best Paper Award [43].

As already alluded to earlier, energy is a drastically under-represented optimisation cri-

teria in cryptographic hardware research owing to the difficulty in quantifying its behaviour.

The most noteworthy entry is due to Banik et al. [18] in the authors presented a model that

captures the energy consumption of a block cipher in terms of r , where r denotes the number

of unrolling in an implementation. For many ciphers, including AES, their model verifiably

predicts that the energy-optimal choice is r = 1, where for some lighter block ciphers, such as

PRESENT, the optimal point shifts to r = 2. However, as stated before, block ciphers usually

are not ready-to-use primitives and must be wrapped within a mode of operation. Therefore,

the effects of additional circuitry to energy consumption remains unanswered.

Contributions. In this chapter, we claim the following contributions to the study of energy

consumption in cryptographic circuits:

1. We explore the effects of the clock-gating and r -round unrolling techniques to deduce

the architectural design choices that lead to the most energy efficient implementations.

We look at each candidate individually and identify optimal circuit configurations that

would reduce the energy consumption of AEAD circuit. The large number of imple-

mentations helps us make broader observations regarding energy efficiency in AEAD

modes instantiated with lightweight block ciphers.

2. In parallel to the first effort, we provide a fair evaluation of the aforementioned can-

didates from NIST LWC. The data we obtain shows how each candidate fares, when

implemented with a similar approach.

3. In partially unrolled circuits, we demonstrate that the optimal choice of r boils down

to three factors; the complexity of the core cipher, the complexity of the surrounding

43

Chapter 3. AEAD Energy Analysis

mode of operation circuitry and the amount of leakage energy for high-leakage cell

libraries. Whereas the optimal choice for block ciphers is typically r ∈ {1,2}, for full

AEAD circuits we experimentally demonstrate that this becomes r ∈ {2,3}.

4. In the last part of the paper we move to threshold implementations that provide secu-

rity against power analysis attacks. Although, there exists numerous works that opti-

mize the area of these circuits, actual projects that look at the energy consumption of

these circuits as an optimizable metric are comparably rare. We look at both 3-share

and 4-share threshold circuits, and look at factors like number of shares, decompos-

ability of s-boxes that affect the energy consumption of such circuits.

Outline. The chapter unfolds as follows. Section 3.1 reiterates known energy reduction tech-

niques and lays out a common interface and test bench for all implementations. In Sec-

tion 3.2, we briefly introduce the chosen schemes alongside their internal block ciphers and

detail their implementations. Section 3.3 investigates the effects of the individual design

choices on the schemes and extends the energy model of of Banik et al. [18] block ciphers

to modes of operations in the chosen authenticated encryption algorithms. We also elabo-

rate on the obtained energy measurements and chart the results. In Section 3.4, we turn our

attention to first-order threshold implementations of the AEAD schemes. We conclude our

paper with the takeaway claims for designers and engineers in Section 3.5.

3.1 Modus Operandi

To guarantee fair conditions in our evaluation we unified our implementations under a com-

mon interface. Our hardware API is designed to be simple, as it assumes that the associated

data and message bits are properly padded so that they only consists of multiple blocks. This

padding must be done according to the individual specification of the AEAD scheme, be-

fore the AEAD operation is initiated in the circuit. Then our AEAD implementations can be

used in all possible configurations (e.g., partial blocks, no authenticated data or no message

blocks) and comply with the exact specification. Our reasoning for favouring this simpler

API (with external-padding) is that it ensures that no significant energy is consumed to han-

dle the API itself. For instance, the CAESAR HW API [80] requires padding to be done by the

circuit, which brings a large array of multiplexers and amplifies the energy consumption for

each loaded associated data and message block. However, depending on the application, this

padding cost can be avoided, for instance, handling padding on a microprocessor that makes

the call can be less costly, or the application might not even need padding, if the transmit-

ted data always respects the block sizes. Nonetheless, a preprocessor circuit could be placed

before our AEAD schemes to ensure CAESAR HW API compatibility.15 The input and output

ports of our hardware API are defined in the following way:

• CLK, RST: System clock and active-low reset signal.

15The interaction between padding preprocessor and cipher module has not been investigated in the literature
and could be pose as a potential attack vector traditional and side-channel-assisted analysis.

44

3.1 Modus Operandi

• KEY, NONCE: Key and nonce vectors. These signals are stable once the circuit is reset

and are kept active during the entire computation.

• DATA: Single data vector from which both associated data and regular plaintext blocks

are loaded into the circuit. This choice saves an additional large multiplexer, since all

the schemes process associated data and plaintext blocks separately and not in parallel.

• EAD, EPT: Single bit signals that indicate whether there are no associated data blocks

(EAD) or no plaintext blocks (EPT). Both signals are supplied with the reset pulse and

remain stable throughout the computation.

• LBLK, LPRT: Single bit signals that indicate whether the currently processed block is

the last associated data block or the last plaintext block (LBLK), and also whether it is

partially filled (LPRT). Both signals are supplied alongside each data block and remain

stable during its computation.

• BRDY, ARDY: Single bit output indicators whether the circuit has finished processing

a data block and a new one can be supplied on the following rising clock edge (BRDY)

or the entire AEAD computation has been completed (ARDY).

• CRDY, TRDY: Single bit output indicators whether the CT and TAG ports will have

meaningful ciphertext and tag values starting from the following rising clock edge.

• CT, TAG: Separate ciphertext and tag vectors. This again saves an additional multi-

plexer in schemes where the ciphertext and tag are not ready at the same time, or they

appear at different wires.

Synthesis Options. All nine schemes were synthesised for all four cell libraries detailed in

Section 2.4. Partially unrolled circuits were simulated at a constant clock frequency of 10

MHz. Furthermore, we made use of different synthesis directives depending on the circuit at

hand as listed in Table 3.1.

Table 3.1: Synopsys Design Vision synthesis directives utilised for the investigated implemen-
tation strategies.

Circuit Design Compiler® Compilation Flag Reference

r -Round Unrolled compile_ultra Section 3.3
Threshold Implementations compile_ultra -no_autoungroup Section 3.4

Clock-Gating. This technique describes a general power-reduction technique that aims to

limit the switching activity of register banks. A classic, non-gated flip-flop is continuously

charged and discharged by the system clock which results in wasted activity during periods

when the flip-flop needs to preserve its content for multiple cycles. The clock signal in a

clock-gated register is artificially held constant through additional logic during these con-

stant phases. There exist many ways to implement clock-gated registers, for this work, we

45

Chapter 3. AEAD Energy Analysis

chose the simple approach of NANDing the clock signal with an active-low enable signal to

produce a gated clock. Note that clock-gated registers usually incur a reduction of the total

number of gates since the circuitry handling the enable signal is not needed any more. A

clock-gated register bank can fall prey to timing issues if a single gated clock signal is used

to drive many flip-flops, which can be circumvented by partitioning the register bank into

smaller segments such that each segment is driven by its own gated clock as shown in Fig-

ure 3.1.

b b bb bb

EN

CLK

b b bb bb

EN

CLK

Partition 1

Partition 2

Figure 3.1: Schematic of a partitioned clock-gated register. See [113] for a comprehensive
microarchitectural survey of different clock-gating implementation techniques. Note that
clock-gating is only applicable if the underlying design permits idle registers during its run-
ning time.

3.2 Implementations

Out of the 32 remaining candidates16 in the second round of the NIST lightweight com-

petition we singled out nine schemes that are bootstrapped either directly via lightweight

block ciphers or variants of them. Five out of the ten schemes are directly instantiated with

the GIFT block cipher [26] or through a slightly adapted tweakable alteration. Three other

schemes are based on the SKINNY tweakable block cipher [30] or a forked version of it [4].

Finally, the Pyjamask and Saturnin AEAD schemes deploy their own dedicated substitution-

permutation networks of the same names. Table 3.2 lists all investigated schemes alongside

their internal block cipher.

r -Round Unrolled. The sequential placement of multiple round function circuits allows the

computation of several rounds during a single clock cycle. This results in fewer required

cycles to complete one encryption, i.e., in an r -round partial unrolling setting a block ci-

16The majority of schemes in the second NIST LWC round are based on keyed permutations or use AES or
other block ciphers that are normally not considered part of the lightweight spectrum. Grain-128AEAD is the
only construction that is built around a stream cipher. The portfolio of ten finalist is composed of seven keyed
permutations, two constructions based on lightweight block ciphers and Grain-128AEAD.

46

3.3 Effects of Design Choices

Table 3.2: Investigated second-round NIST LWC AEAD schemes based on lightweight block
ciphers. Highlighted schemes have been chosen as LWC finalists. LOTUS-AEAD was submit-
ted together with another almost equivalent construction termed LOCUS-AEAD which, for
the sake of brevity, is omitted. Note that HyENA uses the original bit ordering of GIFT as op-
posed to the bitsliced variant.

Scheme Block Cipher Reference

GIFT-COFB GIFT*-128 [21]

SUNDAE-GIFT GIFT*-128 [15]

HyENA GIFT-128 [56]

LOTUS-AEAD TWE-GIFT-64 [55]

SKINNY-AEAD SKINNY-128-384 [29]

Romulus SKINNY-128-384 [74]

ForkAE ForkSkinny [5]

Pyjamask Pyjamask-128 [71]

Saturnin Saturnin [53]

pher composed of R rounds can be computed in ⌈R
r ⌉ cycles. The adverse effects of unrolling

include a larger overall circuit area and an increased signal delay across the circuit. Never-

theless, as shown by Banik et al. [18], partial unrolling can reduce the energy consumption

of certain (especially lightweight) block ciphers noticeably. In broad terms, it is possible to

quantify the total amount of consumed energy E as a quadratic polynomial function of the

unrolling factor r such that

E = (Ar 2 +Br +C)

(⌈
1+ R

r

⌉)
,

where A,B and C represent energy values depending on the internal switching activity of

the block cipher such as registers, multiplexers and arithmetic logic. Hence, if the block ci-

pher is on the lighter side, E can be minimized for r ≥ 2, on the other hand complex and

heavy circuits such as AES incur large constants A,B and C where E is only minimized for

r = 1. Using partial r -round unrolling the round function and key expansion circuits can be

replicated r times and connected through data paths where the output of the last replicated

circuit is stored in the state and key registers. Special care has to be taken when r ∤ R, here

the ciphertext will not be produced by the last replicated instance but it must come from an

intermediate computation as can be seen in Figure 3.2.

3.3 Effects of Design Choices

Let us now discuss the effects exerted on the nine investigated schemes by unrolling and

clock-gating circuits in order to obtain a comprehensive picture of the engendered energy

consumption landscape.

47

Chapter 3. AEAD Energy Analysis

KS

RF

b KS

RF

b|K|

|X| b Y

K

X

(a) 2-Round Unrolled

KS

RF

b KS

RF

b|K|

|X|

b KS

RF
b

Y

K

X

(b) 3-Round Unrolled

Figure 3.2: Basic circuit structure of 2-round and 3-round unrolled block ciphers. X denotes
the plaintext and Y the corresponding ciphertext. The encryption key is written as K . Boxes
in coloured yellow refer to registers and while the other boxes are combinatorial functions.

Clock Frequency. As indicated in Section 2.3 and independently shown in numerous pa-

pers [18, 25, 89] that in low leakage environments, at high enough frequencies, the total en-

ergy consumption of a circuit is independent of clock frequency since it is the measure of total

circuit glitch. Consequently, what should be the frequency of operation at which one should

benchmark energy figures for different AEAD schemes. If we opt for lower frequencies, the re-

sults will be heavily influenced by the leakage component, and then the energy optimisation

exercise effectively reduces to an area minimisation problem, since circuits with lower silicon

area also tend to have lower leakage. Although this problem is also important, it is less intel-

lectually stimulating from purely an energy engineering point of view. When we compare

different AEAD schemes for energy efficiency, ideally we should be comparing algorithmic/-

circuit level aspects of the scheme that allow for lesser glitching or lesser logic transitions in

the circuit nodes. In fact this is also the approach followed in energy optimisation of block

and stream ciphers [18, 25] . This is essentially the optimisation of the dynamic energy com-

ponent. Thus is why in our experiments we keep the clock frequency at 10 MHz so that the

leakage power is rendered insignificant, and the paper becomes an exercise in comparing the

switching characteristics of different AEAD schemes. Nonetheless, in order to not ignore the

leakage energy, the inclusion of the NanGate 45 nm library into our measurement portfolio

enables a glimpse into the consumption behaviour caused by high-leakage foundries.

Optimal Unrolling. In the previous section, we briefly mentioned that the energy consumed

by an r -round unrolled block cipher due to Banik et al. [18] is given as

E = (Ar 2 +Br +C)

(⌈
1+ R

r

⌉)
.

If two or more block cipher round functions are connected serially, each transient glitch pro-

duced in the first round results in further glitches in the subsequent rounds. Due to this

phenomenon, the energy consumption of the second round circuit is generally more than

the first. Similarly, if three rounds are connected serially, the third round function circuit is

likely to consume more than the second. It was shown in [18], that all other things remaining

equal, the power consumption in successive rounds is approximately given by an arithmetic

48

3.3 Effects of Design Choices

series. Since the sum of terms of an arithmetic series is a quadratic in number of terms, this

is where the quadratic term in the energy consumption comes from. We multiply it by ⌈1+ R
r ⌉

because that is the number of clock cycles required to encrypt. For heavyweight round func-

tions like AES, the compounding of glitches across one round to the other increases rapidly.

Such circuits would naturally have high values of coefficients for A, B to indicate that energy

consumption increases rapidly with increasing r . For lighter round functions like PRESENT,

SKINNY and SIMON, the compounding of glitches is not so significant, so it results in lower

values for the coefficients A,B . For these circuits, increase in power due to the quadratic term

is not higher than the leeway given by the decrease in latency due to the ⌈1+ R
r ⌉ term. And it

was shown in [18], that for almost all lightweight block ciphers, r = 2 is the optimum energy

configuration.

The (Ar 2 + Br +C) term is actually the average power consumed by the circuit and is

typically output by any standard power compiler engine after inspecting either the switch-

ing statistic of every node or the value change dump file that records all the signal tran-

sitions in the circuit in a given time period. The term is then multiplied with
(⌈1+ R

r ⌉
)

to

produce the energy consumed. Consider an example from [18]. The authors had estimated

that in the STM 90nm process, the energy consumption of an unrolled implementation of

PRESENT followed the expression (3.15+1.40r +0.795r 2)·(1+⌈32
r ⌉) pJ. It is elementary to see

that r = 2 is the minimum of this expression, as for r = 1, 2, 3 the expression evaluates to

176.85, 155.21, 174.06 pJ respectively. Now consider PRESENT used in a mode of operation

that employs, some other operations like doubling over a finite field, writing on a register,

or Boolean arithmetic, i.e., operations that increase the constant term in the quadratic ex-

pression. Suppose that to encrypt 8 blocks of plaintext using the mode requires 10 calls to

the block cipher and the extra energy per cycle consumed in the unrolling-independent op-

erations is α pJ per cycle. Let’s say the mode requires
(
1+⌈32

r ⌉) cycles for the computation

(10 block cipher calls). This makes the energy expression for the mode E(r) = [α+ (3.15+
1.40r +0.795r 2)] · (1+⌈32

r ⌉) ·10 pJ. If α ≈ 4 or more, it is now clearly visible that the minima

of this expression is r = 3, since it evaluates to 3.084,2.232,2.220,2.292 nJ, for r = 1,2,3,4.

Thus although, the block cipher itself may be energy-optimal at a particular degree of un-

rolling, it does not necessarily imply that the mode will also be energy-optimal at the same

degree. In fact, this is a phenomenon we have observed for two lightweight modes of opera-

tion SUNDAE-GIFT and LOTUS-AEAD. These modes of operation are all based on the GIFT

block cipher. Although the block cipher itself is energy-optimal at r = 2, the modes are op-

timal at r = 3. Note that this optimum is subject to other operating parameters like choice

of library, or the level of compile time optimisation of the circuit, however as all other things

remaining same, this observation stands.

To illustrate the point further, we experimented with three non-clock-gated lightweight

modes of operation; GIFT-COFB, SUNDAE-GIFT, and LOTUS-AEAD. Table 3.3 illustrates the

power consumption breakdown of individual components of the 1, 2 and 3-round unrolled

implementations of the modes17. Note that the 3-round unrolled implementation uses an

17To obtain these figures which illustrate the power consumption of individual circuit elements, we used a
different compile directive to the circuit compiler, hence the figures are slightly different from the optimal energy

49

Chapter 3. AEAD Energy Analysis

additional multiplexer to filter signals. Since the total number of rounds in both GIFT-64/128

are not multiples of 3, the signals used to update the state after the execution of 3 rounds

in each clock cycle, and the final output of the block cipher are to be tapped from different

circuit nodes and hence the need for an extra mux. Note that for this particular implementa-

tion, GIFT-COFB and SUNDAE attain optimal energy configuration at r = 2, whereas LOTUS-

AEAD optimizes at r = 3. Take the case of LOTUS-AEAD, in which as the degree of unrolling r

increases, the power consumption contribution of the terms depending on r , which are the

individual round functions and the incremental components of the state and key registers,

increase moderately. This is in contrast to the constant power consumption sources like con-

trol system, writing values to various registers and consumption of other gates, all of which

increase the constant term in the power consumption. Hence the energy consumed to pro-

cess eight blocks of plaintext and one block of associated data is around 10.88, 7.20, 6.15 nJ

for r = 1,2,3 respectively. This is not the case for both of these particular implementations of

GIFT-COFB or SUNDAE-GIFT, and hence the optimum point remains at r = 2.

Table 3.3: Breakdown of power consumptions of three lightweight AEAD schemes using the
TSMC 90 nm cell library with a clock frequency of 10 MHz. The designs were synthesised via
the compile_ultra -no_autoungroup directive.

µW

Candidate r Key Reg. State Reg. Other Regs. Multiplier Control RF1 RF2 RF3 Extra Mux. Total

GIFT-COFB 1 19.2 22.5 7.3 - 10.2 12.5 - - - 71.1
2 20.1 36.4 3.1 - 14.5 13.8 31.1 - - 119
3 20.8 34.3 8.1 - 12.4 17.8 33.9 48.7 13 189

SUNDAE-GIFT 1 19.3 28.7 - 3.0 10.8 13 - - - 74.8
2 20.1 36.4 - 3.1 14.5 13.8 31.1 - - 119
3 20.8 45.2 - 3.1 12.1 16.4 31.3 46.7 13.4 189

LOTUS-AEAD 1 22 12.3 44.4 - 17.3 9 - - - 105
2 22.1 13.9 52.4 - 23.9 8.8 17.9 - - 139
3 22.2 16.7 45.7 - 20.9 11.5 16.4 25.4 6.2 165

Note that in the presence of large leakage energy the effects of unrolling are delayed

meaning that the point of optimality occurs at larger unrolling factors for some schemes than

for more leakage-resilient libraries. This is due to the fact that the leakage overhead is only

offset when the total time for an encryption is sufficiently small. For instance, the GIFT-

COFB circuit attains its most energy-efficient configuration at r = 4 when implemented in

the leakage-heavy NanGate 45 nm library, which stands in contrast to other cell libraries for

which the optimal unrolling degree remains at r = 2.

Clock-Gating. We have applied the clock-gating technique only to those implementations

which contain idle registers. These are GIFT-COFB, HYENA, LOTUS-AEAD, LOCUS-AEAD,

SKINNY-AEAD, ForkAE, Pyjamask, Romulus and Saturnin. As already explained, clock-gating

saves energy by preventing unnecessary reloading of registers with the same value, there-

fore the total energy saving grows proportionally with the total number of clock cycles of an

AEAD operation. In other words, the effects of this technique becomes obvious for (1) candi-

figures tabulated later in this text.

50

3.4 Threshold Implementations

dates with more AEAD registers (2) r -round unrolled implementations with small r ∈ {1,2} as

they require more clock cycles. For instance, because 1-round unrolled LOTUS-AEAD imple-

mentation necessitates more cycles than other schemes, and the design contains a couple of

64-bit registers, this technique saves more than one third in energy. Therefore, as a rule of

thumb, clock-gating is a worthwhile effort if the particular design in question contains large

number of flip-flops, e.g., registers, that stay frozen over long periods.

Synthesis Results. Figure 3.3 charts the optimal energy value for the encryption of a small

message for each r and candidate. The category is dominated by GIFT-COFB and HYENA

which both are lightweight in terms of gate count but respond equally well to partial un-

rolling. A detailed tabulation of all the measurements including gate count, latency and

throughput for the NanGate 15 nm and TSMC 90 nm cell libraries can be found in Table 3.5

and Table 3.6. In addition, Appendix A.1 contains the results for the NanGate 45 nm and UMC

65 nm processes.

1 2 3 4
2

4

6

8

r-Round

n
J

GIFT-COFB

SUNDAE-GIFT

HyENA

LOTUS-AEAD

SKINNY-AEAD

Romulus

ForkAE

Pyjamask

Saturnin

(a) NanGate 15 nm

1 2 3 4

10

20

r-Round

n
J

GIFT-COFB

SUNDAE-GIFT

HyENA

LOTUS-AEAD

SKINNY-AEAD

Romulus

ForkAE

Pyjamask

Saturnin

(b) NanGate 45 nm

1 2 3 4

2

4

6

8

r-Round

n
J

GIFT-COFB

SUNDAE-GIFT

HyENA

LOTUS-AEAD

SKINNY-AEAD

Romulus

ForkAE

Pyjamask

Saturnin

(c) UMC 65 nm

1 2 3 4

5

10

15

r-Round

n
J

GIFT-COFB

SUNDAE-GIFT

HyENA

LOTUS-AEAD

SKINNY-AEAD

Romulus

ForkAE

Pyjamask

Saturnin

(d) TSMC 90 nm

Figure 3.3: Optimal energy consumption chart of the partially unrolled AEAD circuits mea-
sured for the encryption of 1024 bits of associated data and 1024 message bits.

3.4 Threshold Implementations

As elaborated in Section 2.7 that the minimum number of input shares required to implement

the first order TI of a function of algebraic degree t is t+1. This means that quadratic S-boxes

need at least three shares and cubic S-boxes at least four shares first-order TI. However, the

larger the number of shares, we proportionally need to scale up the number of registers and

51

Chapter 3. AEAD Energy Analysis

other constituent logic gates in the circuit. Needless to say this comes with proportional

scaling up of not only the circuit area but also power and energy consumption of the circuit.

Thus at first glance it might appear that, from an energy efficiency point of view, one should

rather aim to minimize the number of shares in the circuit. Most lightweight cryptographic

S-boxes are of algebraic degree three, e.g., those of PRESENT, GIFT and Midori, and hence

for a while it was inconceivable to construct a Threshold Implementation of less than four

shares. However, in [112], the authors demonstrated how to construct 3-share TI of a block

cipher cubic s-box. In the paper, the authors presented a compact 3-share TI of the PRESENT

block cipher. The idea is as follows: although the S-box S of PRESENT is cubic, it can be

written as S = F ◦G , where F and G are quadratic s-boxes. So a three-share implementation

of the PRESENT S-box can be done by implementing the TI of G and F separated by a register

bank in between, which suppresses the glitches produced by the TI of G . This approach is

schematically depicted in Figure 3.4a.

G0

G1

G2 F2

F1

F0
4 4

Intermediate
registers

(a) Cubic TI with Register

G0

G1

G2 F2

F1

F0
4 4

Demux

(b) Cubic TI without Register

Figure 3.4: Implementing a Threshold Implementation of a cubic s-box in three shares in
two separate ways. Both arrangements require two clock cycles to be computed and thus
effectively double the latency of the surrounding block cipher.

The above approach has an obvious disadvantage that additional registers are required

in between the G and F layers. However, we can think of an alternate arrangement as shown

in Figure 3.4b. The idea is to have a demultiplexer bank in front of the G layer, that switches

off the input to this layer in every alternate clock cycle. By doing so, the G-layer outputs once

computed are fed back to the register bank. In the next cycle the register feeds the G-layer

output through the demux on to the F-layer (shown by the red datapath). Although, this type

of a structure does not need an extra register layer, it is counterproductive as far as energy ef-

ficiency is concerned (unless there are special algebraic structures/relations between G and

F). First, the structure replaces a register with a demultiplexer bank and yet another multi-

plexer bank that filters the G-layer output back into the register, so as far as circuit area is

concerned it offers no real advantages. Secondly, the structure increases the physical length

of the datapath in the circuit, and so extra gate delay produced thereof results in additional

glitches, which further impacts the energy consumption negatively. Hence, we will not inves-

tigate a register-free cubic TI in our evaluation.

Note that the structure of Figure 3.4a has an additional disadvantage that it require two

52

3.4 Threshold Implementations

clock cycles to compute the shared s-box output, whereas a 4-share implementation would

require only one cycle. Since time efficiency is also an equally important component of en-

ergy efficiency, this implies that it is not immediately evident that a 3-share would beat a

4-share variant, as far as energy consumption of a TI is concerned. To make a fair evalua-

tion of the energy efficiency of the AEAD schemes we implemented first order TI with the

following characteristics:

1. We implemented first-order Threshold Implementations of 1-round unrolled circuits.

This is necessary because r -round unrolled circuits must necessarily have higher al-

gebraic degree, it will require more shares to construct a TI. For example a 2-round

unrolled scheme of a block cipher with a cubic S-box has algebraic degree six, if prop-

erly designed and then seven shares are required. The exact algebraic forms of each bit

of a 7-share of a first-order TI is likely to be very complicated, due to high degree, with

multiple terms in each expression, eventually leading to large costs in area and power.

2. Furthermore, we created TI circuits in which only the state path of the underlying en-

cryption primitive is shared, but not the key path. This design choice is common place

in cryptography, as it is adequate for first-order security and for simplicity we follow

the suit. If the key paths were also shared, we estimate that it would increase the power

consumption of the AEAD schemes by a similar factor, and energy consumption com-

parisons would probably lead to similar results. In short, we implement threshold cir-

cuits for all the AEAD schemes except Saturnin. The mode Saturnin was designed in an

unusual way that the output of block cipher is used as the key in the subsequent block

cipher call. And so a TI which only considers shares in the data path is not possible for

this mode.

S-Box Details. Most of the schemes benchmarked in this work have cubic s-boxes with 4-bit

inputs that are decomposable into quadratics of the form F ◦G , and so efficient three and

four-share implementations are feasible.

• GIFT. The S-box of GIFT belongs to the cubic class C172 which is decomposable into two

quadratics using a direct sharing approach. The algebraic expressions of the output

shares of both the three and four-share TI can be found in [85].

• SKINNY. The S-box of SKINNY takes eight input bits and has algebraic degree equal

to six. Therefore, a single cycle implementation would require 7 shares. Instead, we

implemented a 3-share TI of all SKINNY-based modes based on the recommendation

given by the designers in [30]. More specifically, the S-box can be decomposed into

I ◦ H ◦G ◦F where each of these functions is an 8-bit quadratic function. Hence, the

entire substitution layer is computed over four cycles.18

Synthesis Results. Table 3.4 lists the simulation results using the same measurement setup as

the unshared round-based implementations. It can be seen that the schemes using SKINNY

18We will see in Chapter 9 how to decompose the 8-bit SKINNY S-box more efficiently.

53

Chapter 3. AEAD Energy Analysis

exhibit the highest energy consumption, which is intuitive since the S-box needs four clock

cycles for evaluation. On the other hand, it is surprising to see that 4-share TI circuits have

similar energy efficiency when compared to the corresponding 3-share circuits. This means

that the circuit complexity of 4-share implementations are offset by the increased latency of

3-share circuits that take more cycles to complete an invocation.

Table 3.4: Synthesis figures the investigated threshold implementations for the NanGate 15
nm and TSMC 90 nm cell libraries. The energy consumption corresponds to the encryption
of 1024 bits of AD and 1024 plaintext bits. The measurements for the remaining libraries are
given in Appendix A.2.

Library Scheme Shares Area Latency Critical Path TP Power Energy

GE Cycles ns Mbits/s µW nJ

NanGate 15 nm GIFT-COFB 3 22903 1360 0.27 6037.7 142.8 19.42

GIFT-COFB 4 40034 680 0.33 9580.8 337.7 22.96

SUNDAE-GIFT 3 19267 2000 0.13 6250.0 133.6 26.72

SUNDAE-GIFT 4 35100 1000 0.20 8205.1 322.6 32.26

HyENA 3 21489 1360 0.15 11034.5 136.4 18.55

HyENA 4 38167 680 0.21 14953.3 334.8 22.77

LOTUS-AEAD 3 19923 2856 0.19 8602.2 101.6 29.02

LOTUS-AEAD 4 29215 1428 0.22 14545.5 267.1 38.14

SKINNY-AEAD 3 25167 3808 0.15 5228.8 169.2 64.43

Romulus 3 18982 3877 0.22 3636.4 150.0 58.16

ForkAE 3 24424 4576 0.18 4444.4 192.3 88.00

TSMC 90 nm GIFT-COFB 3 16893 1360 4.40 363.6 217.7 29.61

GIFT-COFB 4 27321 680 7.68 416.7 362.3 24.64

SUNDAE-GIFT 3 15021 2000 4.37 183.1 221.2 44.24

SUNDAE-GIFT 4 13294 1000 3.72 430.1 368.9 36.89

HyENA 3 15888 1360 4.13 387.4 215.5 29.31

HyENA 4 26137 680 6.22 514.5 346.6 23.57

LOTUS-AEAD 3 15481 2856 3.81 419.9 118.7 33.90

LOTUS-AEAD 4 21386 1428 4.83 662.5 298.6 42.64

SKINNY-AEAD 3 20132 3808 4.18 191.4 266.8 101.60

Romulus 3 14410 3877 4.60 173.9 213.2 82.66

ForkAE 3 18853 4576 5.87 136.3 316.4 144.78

3.5 Final Observations

We tried to give a comprehensive guide to designing energy-efficient authenticated encryp-

tion schemes by evaluating a selection of ten NIST LWC candidates that make use of a light-

weight or a semi-lightweight block cipher at their core. In the process we were able to look at

each candidate individually and identify optimal circuit configurations that would reduce the

energy consumption of the AEAD circuit as a whole. We were also able to make broader ob-

54

3.5 Final Observations

servations regarding energy efficiency in AEAD modes instantiated with lightweight block ci-

phers. In the second part of the paper, we turned our attention towards threshold implemen-

tations. We looked at both 3-share and 4-share threshold implementations of the schemes

and made energy measurements. For schemes based on SKINNY, the fact that four cycles are

required to evaluate the shared s-box, means that the AEAD scheme must sacrifice more of

its energy for the cipher itself. For the other candidates we note an up to twenty percent de-

crease in energy consumption for the 4-share implementation in comparison to the 3-share

designs. We conclude our paper with the following claims, which applies to block cipher

based AEAD paradigm, that can hopefully help achieve the ultimate goal of lightweightness

with respect to energy consumption:

1. The size of register banks play an important role, in energy and area of an r -round un-

rolled AEAD circuit. This is based on the fact that for 1-round unrolling of GIFT-COFB

and SUNDAE-GIFT, more than half of the energy is consumed by the registers, even

though these two have relatively fewer flip-flops. On the other hand, percentage of en-

ergy consumption by registers are much higher for LOTUS-AEAD, because the mode of

operation brings many intermediate variables into the circuit which need extra regis-

ters to store.

2. The r -round unrolled implementations strike a good balance between area, through-

put and the energy consumption. However, the optimal value for r depends both on

the block cipher and the surrounding mode of operation. Designers are recommended

to experiment with different choices of r for the full AEAD scheme, and keep in mind

that experiments based solely on block ciphers are not sufficient.

3. If a given AEAD scheme contains many storage elements, implementors are recom-

mended to employ techniques such as clock-gating as much as possible to reduce the

energy consumption. The efficiency of the clock-gating scales up with the number of

idle storage elements and the total number of clock cycles during which they remain

inactive.

4. From the energy perspective, there is almost a direct correlation between the light-

weight nature of non-threshold and threshold implementations of an AEAD scheme.

Hence the optimal design choices for TI align well with the aforementioned decisions.

Table 3.5: Synthesis measurements of the investigated AEAD schemes for the NanGate 15
nm cell library. The latency and energy consumption corresponds to the encryption of 1024
bits of AD and 1024 plaintext bits. Auxiliary results for the NanGate 45 nm and UMC 65 nm
libraries are given in Appendix A.1.

Cipher Circuit Area Latency Critical Path TP Power Energy

GE Cycles ns Mbits/s µW nJ

GIFT-COFB 1-Round 6643 680 0.32 10062.9 53.2 3.62

55

Chapter 3. AEAD Energy Analysis

1-Round-CG 6485 680 0.34 9552.2 51.3 3.49

2-Round 7395 340 0.40 16120.9 83.1 2.83

2-Round-CG 7238 340 0.42 15421.7 81.0 2.75

3-Round 8545 238 0.48 18890.2 140.3 3.34

3-Round-CG 8387 238 0.49 18812.5 138.1 3.29

4-Round 8901 170 0.55 23188.4 188.5 3.20

4-Round-CG 8743 170 0.55 23104.7 185.9 3.16

SUNDAE-GIFT 1-Round 5025 1000 0.17 9523.8 47.0 4.70

1-Round-CG - - - - - -

2-Round 5778 500 0.25 13008.1 76.5 3.82

2-Round-CG - - - - - -

3-Round 6933 350 0.33 13686.9 107.2 3.75

3-Round-CG - - - - - -

4-Round 7284 250 0.40 15880.9 177.5 4.44

4-Round-CG - - - - - -

HyENA 1-Round 5742 680 0.20 16410.3 46.4 3.16

1-Round-CG 5585 680 0.19 16842.1 44.7 3.04

2-Round 6495 340 0.27 23703.7 74.1 2.52

2-Round-CG 6337 340 0.28 22857.1 72.0 2.45

3-Round 7629 238 0.36 25682.2 129.7 3.09

3-Round-CG 7472 238 0.38 24060.2 127.5 3.03

4-Round 7996 170 0.43 29767.4 171.9 2.92

4-Round-CG 7843 170 0.44 29090.9 169.5 2.88

LOTUS-AEAD 1-Round 8901 1428 0.21 15037.6 59.9 8.55

1-Round-CG 8128 1428 0.20 15625.0 50.6 7.22

2-Round 9359 714 0.31 20874.8 81.0 5.78

2-Round-CG 8591 714 0.28 22859.6 71.5 5.10

3-Round 10015 485 0.37 24577.6 101.9 4.94

3-Round-CG 9974 485 0.38 23997.0 91.0 4.41

4-Round 10279 357 0.45 28507.8 147.9 5.28

4-Round-CG 9613 357 0.44 29357.8 138.1 4.93

SKINNY-AEAD 1-Round 10646 952 0.43 7447.1 77.9 7.42

1-Round-CG 10015 952 0.41 7767.0 51.3 4.88

2-Round 11785 476 0.53 12075.5 110.3 5.25

2-Round-CG 11154 476 0.51 12524.5 100.4 4.78

3-Round 12924 323 0.65 14175.0 171.5 5.54

3-Round-CG 12293 323 0.64 14219.1 165.4 5.34

4-Round 14064 238 0.70 18364.4 227.5 5.41

4-Round-CG 13438 238 0.69 18577.6 216.3 5.15

Romulus 1-Round 8174 970 0.20 16161.6 65.0 6.30

1-Round-CG - - - - - -

2-Round 9313 494 0.39 16410.3 95.6 4.72

2-Round-CG - - - - - -

3-Round 10854 324 0.50 18470.4 155.0 5.02

3-Round-CG - - - - - -

56

3.5 Final Observations

4-Round 11597 256 0.57 22575.0 203.1 5.20

4-Round-CG - - - - - -

ForkAE 1-Round 10066 1144 0.16 19753.1 82.8 9.47

1-Round-CG 9323 1144 0.17 19393.9 74.5 8.52

2-Round 11607 576 0.24 26666.7 118.2 6.81

2-Round-CG 10864 576 0.24 26556.0 110.0 6.34

3-Round 12741 384 0.35 25820.0 199.3 7.65

3-Round-CG 12004 384 0.36 25682.2 190.2 7.30

4-Round 13875 288 0.40 32080.2 256.6 7.39

4-Round-CG 13138 288 0.41 31372.5 246.3 7.09

Pyjamask 1-Round 21159 285 0.16 52032.5 177.9 5.07

1-Round-CG 20182 285 0.17 51097.8 168.4 4.80

2-Round 26840 152 0.25 64076.9 365.3 5.55

2-Round-CG 25945 152 0.24 66115.7 345.8 5.26

3-Round 32511 95 0.28 91454.7 601.8 5.72

3-Round-CG 31631 95 0.30 86195.3 581.5 5.52

4-Round 38249 76 0.36 88770.5 1001.3 7.61

4-Round-CG 37348 76 0.37 87193.5 957.6 7.28

Saturnin 1-Round 18829 285 0.56 15265.4 258.6 7.37

1-Round-CG 17807 285 0.61 13989.1 243.1 6.93

2-Round 26683 152 0.28 56939.5 318.5 4.84

2-Round-CG 25447 152 0.29 55172.4 301.6 4.58

3-Round - - - - - -

3-Round-CG - - - - - -

4-Round 28661 76 0.30 105960.3 559.5 4.25

4-Round-CG 27430 76 0.31 102893.9 530.6 4.03

Table 3.6: Synthesis measurements of the investigated AEAD schemes for the TSMC 90 nm
cell library. The latency and energy consumption corresponds to the encryption of 1024 bits
of AD and 1024 plaintext bits.

Cipher Circuit Area Latency Critical Path TP Power Energy

GE Cycles ns Mbits/s µW nJ

GIFT-COFB 1-Round 4710 680 4.68 683.8 69.3 4.71

1-Round-CG 4700 680 5.05 633.7 61.9 4.21

2-Round 5548 340 4.82 1327.8 106.8 3.63

2-Round-CG 5510 340 6.05 1057.9 95.5 3.25

3-Round 6372 238 6.78 1348.5 159.0 3.78

3-Round-CG 6311 238 7.02 1302.4 156.2 3.72

4-Round 7144 170 8.83 1449.6 237.0 4.03

4-Round-CG 7036 170 10.10 1267.3 232.4 3.95

SUNDAE-GIFT 1-Round 4710 1000 3.72 430.1 69.3 6.93

1-Round-CG - - - - - -

2-Round 5548 500 4.98 642.6 106.8 5.34

57

Chapter 3. AEAD Energy Analysis

2-Round-CG - - - - - -

3-Round 6372 350 5.94 769.6 159.0 5.57

3-Round-CG - - - - - -

4-Round 7144 250 7.41 863.7 237.0 5.93

4-Round-CG - - - - - -

HyENA 1-Round 3941 680 3.87 826.9 68.3 4.64

1-Round-CG 3850 680 4.34 737.3 59.8 4.07

2-Round 4746 340 5.42 1180.8 97.5 3.32

2-Round-CG 4787 340 5.39 1187.4 94.4 3.21

3-Round 5629 238 5.96 1534.0 151.7 3.61

3-Round-CG 5542 238 5.82 1570.9 149.2 3.55

4-Round 6327 170 8.08 1584.2 227.2 3.86

4-Round-CG 6238 170 7.68 1666.7 232.4 3.95

LOTUS-AEAD 1-Round 7362 1428 4.97 643.9 88.1 12.58

1-Round-CG 6841 1428 4.98 642.6 57.9 8.27

2-Round 8433 714 6.19 1033.9 108.3 7.73

2-Round-CG 7618 714 5.90 1084.9 88.1 6.29

3-Round 9863 485 7.42 1232.2 138.3 6.71

3-Round-CG 9125 485 7.24 1262.8 102.2 4.96

4-Round 12082 357 9.24 1385.3 181.5 6.48

4-Round-CG 11608 357 8.24 1553.4 171.9 6.14

SKINNY-AEAD 1-Round 8011 952 4.17 767.6 159.1 15.15

1-Round-CG 7451 952 5.14 622.6 136.3 12.98

2-Round 8701 476 6.37 1004.7 200.9 9.56

2-Round-CG 8205 476 6.02 1063.3 184.7 8.79

3-Round 11109 323 8.89 1028.4 320.5 10.35

3-Round-CG 10546 323 9.35 977.8 304.4 9.83

4-Round 12890 238 11.89 1076.5 528.4 12.58

4-Round-CG 12354 238 10.51 1217.9 513.8 12.23

Romulus 1-Round 5279 970 3.49 916.9 123.2 11.95

1-Round-CG - - - - - -

2-Round 6315 494 6.69 956.7 153.1 7.56

2-Round-CG - - - - - -

3-Round 8960 324 9.57 955.4 286.4 9.28

3-Round-CG - - - - - -

4-Round 10398 256 12.78 1001.6 472.9 12.11

4-Round-CG - - - - - -

ForkAE 1-Round 7362 1144 4.21 760.1 159.4 18.24

1-Round-CG 6841 1144 4.62 692.6 135.9 15.55

2-Round 8433 576 6.22 1028.9 198.7 11.45

2-Round-CG 7618 576 6.33 1011.1 173.3 9.98

3-Round 9863 384 6.89 1327.0 309.0 11.87

3-Round-CG 9125 384 7.81 1170.7 301.5 11.58

4-Round 12082 288 12.49 1024.8 548.7 15.80

4-Round-CG 11608 288 12.56 1019.1 528.0 15.21

58

3.5 Final Observations

Pyjamask 1-Round 15646 285 3.87 2205.0 221.3 6.31

1-Round-CG 15158 285 4.31 1979.9 193.3 5.51

2-Round 19552 152 6.13 2610.1 467.1 7.10

2-Round-CG 19184 152 6.14 2605.9 426.5 6.48

3-Round 26707 95 6.99 3662.4 897.4 8.53

3-Round-CG 26353 95 6.99 3662.4 859.0 8.16

4-Round 34363 76 8.53 3751.5 1354.9 10.30

4-Round-CG 34031 76 8.57 3734.0 1315.1 9.99

Saturnin 1-Round 15214 285 6.60 1292.9 413.8 11.79

1-Round-CG 14540 285 6.77 1260.5 382.6 10.90

2-Round 20530 152 4.23 3782.5 564.0 8.57

2-Round-CG 19184 152 4.29 3729.6 531.3 8.08

3-Round - - - - - -

3-Round-CG - - - - - -

4-Round 22895 76 7.16 4469.3 858.1 6.52

4-Round-CG 22160 76 7.67 4172.1 823.3 6.26

[...] ’Cause I walk onto the water buzzing with electrolytes and sacrilege [...]

59

4 Perfect Trees

[...] Banked on memory [...]

In this second work, we divert our attention away from modes of operation and onto

stream ciphers. As indicated in Chapter 1, no energy model similar to the quasi-quadratic

polynomial equation for block cipher circuits proposed by Banik et al. [18] is known in the

realm of stream ciphers. However, in a follow-up work, Banik et al. [25] make some broader

conclusions about the effects of unrolling stream cipher circuits were made. They show that

an unrolled stream cipher circuit that produces multiple keystream bits in one clock cycle

is more energy-efficient in an asymptotic sense, i.e., when the encryption of multiple data

blocks is considered instead of a single block. In fact, it was shown that for over 320 bits of

data, Trivium consumed the least amount of energy on STM 90 nm ASIC circuits and outper-

formed the Midori block cipher family. For asymptotically large amount of data, the regular

Trivium circuit reached its point of optimality relatively late at r = 160, and at this degree of

unrolling it was around 9 times more energy-efficient than 64-bit Midori. These findings are

reflected in Figure 4.1, indicating that the baseline Trivium design is a fitting starting point

from which new low-energy constructions can be derived. The findings presented in this

chapter were published in the fourth issue of Transactions on Symmetric Cryptology (IACR-

ToSC) in 2021.

The reasons why a heuristic energy model for stream ciphers appears to be harder to

conceive are manifold. For one, stream ciphers circuits are often not more than a single large

register bank whose outputs are fed into a thin combinatorial layer, e.g., in Trivium the state

update function only consists of 12 two-input logic gates. This means that for small r the

energy consumption of the algorithm is almost entirely determined by the storage elements,

i.e., the contribution of the round function circuit is insignificant. Further note that when r

is small the switching activity of the state update function heavily depends on the underlying

cell library process and can thus vary widely. Only for large r the energy consumption of

the round function layer renders itself decisive, however it becomes increasingly complex

to reason about the circuit as the algebraic complexity of the underlying equations grows

unmanageable, thus preventing any deeper analysis of the involved switching activity. This

stands in contrast to block ciphers where the unrolling factor r is usually small and thus the

complexity of the round function circuits remains bounded.

Analogously, the reasons why some hardware stream ciphers outperform block ciphers

61

Chapter 4. Perfect Trees

1 2 3 4 5 6 7 8 9 10

200

400

600

800

Number of Encrypted 64-bit Blocks

E
n
er
gy

(p
J
)

1 10 20 30 40 50 60 70 80 90 100

0

0.4

0.8

1.2

1.6

2

Number of Encrypted 64-bit Blocks

PRESENT (r = 2)

Midori-64 (r = 2)

Grain-v1 (r = 20)

Grain-128 (r = 48)

Trivium (r = 160)

Plantlet (r = 16)

Lizard (r = 16)

Kreyvium (r = 128)

Subterranean-Deck (r = 4)

Trivium-LE(F) (r = 288)

Trivium-LE(S) (r = 288)

Triad-LE (r = 256)

Figure 4.1: Energy consumption (pJ) chart from Banik et al. [25] using the STM 90 nm cell
library process at a clock frequency of 10 MHz. Added to the plot are figures for the energy
consumptions of Subterranean-Deck, and the designs Trivium-LE(F), Trivium-LE(S), Triad-
LE that we propose in this paper, for the same standard cell library and operating frequency.
Figures are reported for short messages (1 to 10 blocks of 64-bits) and longer messages (1-100
blocks). Legend entries highlighted in blue and green have a security level of 80 and 128 bits
respectively, whereas Triad-LE offers 112-bit security.

in energy efficiency are also many. Most hardware stream ciphers (like Trivium and the Grain

family) are designed with a few register locations at the beginning being untapped, i.e., not

used in register update. This allows for efficient hardware unrolling, so that, unlike block

ciphers, each individual round in these stream ciphers can be implemented in parallel and

hence does not increase the circuit depth. As such, the glitches produced in the circuit of

round i do not increase the glitches in round i + 1, at least when the circuit is unrolled for

small values of r . Perhaps the most important reason is that stream ciphers perform the key-

IV setup only once and then are able to encrypt multiple bits of data without having to do it

again. For example, an implementation of Trivium that is unrolled r = 128 times, would only

need 1152
128 = 9 clock cycles to complete key-IV setup and takes 100 more cycles to encrypt up

to 12800 bits of data. The most energy-efficient implementation of 64-bit Midori (at degree

of unrolling r = 2), needs eight cycles to encrypt every 64-bit block of data, and hence would

need 8∗12800
64 = 1600 cycles to encrypt the same length of data which is around fifteen times

more. Consequently, lightweight stream ciphers are preferable when factors like energy and

throughput are concerned.

Contribution. In this chapter, we investigate unrolled stream cipher constructions and make

some fundamental discoveries about their energy consumption behaviour. More specifically,

our contributions can be summarised as follows:

1. Perfect Tree Energy Model. Our first contribution in this paper is to re-implement r -

round unrolled stream cipher circuits in a generic more energy-efficient manner. We

shall define shortly the concept of a circuit strand, which basically comprises of the

logic functions involved in one register update. We demonstrate that rather than fol-

lowing the approach in [25], if we adopt a technique in which each strand is imple-

mented separately as a unit and the circuit synthesizer is prevented from performing

any inter-strand optimisation, then the power consumption increases in a slower man-

62

ner with the respect to the degree of unrolling r . Trivium is especially suited for this

restricted mode of compilation and reaches its point of optimality in the fully unrolled

setting at r = 288. This optimal energy is significantly lower than the 160-round circuit

reported in [25] under the same operating environment.

This tessellation enables us to partition the entire circuit into smaller units which are

obviously the strands. Since these are interconnected, it gives rise to a natural tree

structure among them in the following way: a strand j is a child node of strand i , if the

output of j is one of the inputs of i . Hereafter, by observing the variation of the power

consumption in these strands, it is possible to deduce a strong correlation between the

power consumed by each strand its position in the above tree, which leads to the def-

inition of a tree-based metric that correlates the energy consumption to a wide range

of stream ciphers, namely:

(a) Trivium-like constructions [61] in which the register output tap locations are cho-

sen randomly.

(b) Trivium-like constructions proposed in the literature that have some structural

differences in comparison to the original Trivium design. These include the mod-

ified Trivium proposed in [102], TriviA [54], Kreyvium [52] and Triad-SC [24].

(c) Algebraically more complex ciphers with large state update functions such as

Grain-128 [77].

(d) Subterranean-like constructions [59], which do not exhibit rotating state registers.

Thus this leads to the proposal of the fist formal energy model for stream cipher con-

structions akin to that for block ciphers in [18].

2. New Energy-Optimal Stream Ciphers. By leveraging the obtained energy model, we are

able to show that register tap positions significantly affect the energy efficiency. Hence,

our next attempt is to design new energy-optimal ciphers, where our approach is to

change the register tap positions of the original Trivium cipher. However, the change

of the register tap positions also affects the security, and we carefully chose these po-

sitions without decreasing the claimed security level, i.e., the 80-bit security of Triv-

ium. We present two candidates, which we call Trivium-LE(F) and Trivium-LE(S), that

consume around 10-15% and 25% less energy than Trivium, respectively. Note that

Trivium-LE(F) is conservative with enough security margin, and Trivium-LE(S) is chal-

lenging with a thin security margin. As shown in Figure 4.1, both constructions stand as

the currently most energy-efficient encryption primitives in the literature when at least

24 bytes are encrypted. The energy efficiency of Trivium-LE(F) outperforms known ci-

phers, and the structure is also useful to design an energy-efficient message authenti-

cation code. We present Trivium-LE-MAC whose update function inherits to Trivium-

LE(F) but the message is absorbed instead of key-stream generation.

It is important to note that our model makes it, for the first time, possible to design

stream ciphers for hardware environments that are specifically optimized in terms of

63

Chapter 4. Perfect Trees

energy consumption as the metric is both simple and widely applicable. We also ap-

plied the same strategy to Triad-SC, which supports 112-bit security, because it seems

to be the most promising for the energy efficiency due to the shorter state size of 256

bits. By altering tap locations, we present one candidate, which we call Triad-LE, that

lower the energy consumption than the original Triad-SC.

At this point, we remark that previous major works in the field of energy efficiency [13, 18,

25] were limited in their approach in the sense that their findings were restricted to a 90 nm

standard cell library and energy was computed at 10 MHz throughout. This was feasible as 90

nm standard cells have very low leakage and at a frequency of 10 MHz or higher the contribu-

tion of the leakage energy to the total energy consumption was minimal. Since the dynamic

component of the energy is constant with respect to frequency, as a result, at all frequencies

upwards of 1 MHz the energy consumption was more or less constant (see [18, Fig. 1]). How-

ever, we present our findings for four different standard cell libraries in which the underlying

transistors have sizes 90 nm (TSMC), 65 nm (UMC), 45 nm and 15 nm (NanGate) respectively

and therefore we do not ignore leakage energy. Although for presentability, we report results

at certain fixed frequencies for each library, primarily to bring out the dynamic part of it, the

energy trends that we present hold across libraries and a wide range of clock frequencies, and

we argue that convincingly in the paper. When this is not possible, for space constraints, the

results are reported at clock frequency 10 MHz for the TSMC 90 nm and UMC 65 nm libraries

and at 1 GHz for the NanGate libraries. This is done so that the dynamic energy component

is the dominant contributor of the total energy consumption (for better comparison with [13,

18, 25, 89]). All energy figures are reported for encryption of 1.28 Mbits of data and are gen-

erated after a timing simulation of several thousand test vectors on the corresponding netlist

post-synthesis.

Outline. In Section 4.1, we present the effects that different compiler directives used to syn-

thesize stream cipher circuits have on the energy consumption. Section 4.2 details the ob-

tained heuristic energy model. In Section 4.3, we propose energy-optimal Trivium variants

and an energy-efficient message authentication code. Subsequently, in Section 4.4 , we study

recent Trivium-like, Grain-like and Subterranean-like constructions proposed in the litera-

ture and show that our derived energy model works for these designs too. The paper is then

concluded in Section 4.5.

4.1 Restricted Circuits

Combinatorially heavy circuits, such as the increasingly complex algebraic representation of

state update equations in r -round unrolled stream ciphers, induce synthesis tools to produce

optimized architectures in terms of circuit area. They also introduce a gap when it comes

to reasoning about the overall energy consumption, which is significantly hindered as the

synthesized circuits have mutated into opaque, garbled constructions.

We find that imposing a regular structure which is exclusively composed of simple com-

binatorial logic gates in which the state update function is replicated unaltered across differ-

64

4.1 Restricted Circuits

ent r in an unrolled setting yields equivalent if not better power figures for basic as well as

more feature-rich standard cell libraries when compared to the highly optimized circuits of

the Synopsys Design Compiler synthesis tool. In the following, we define one such structure

as stated below:

Definition 2 (Strand). Recall the Trivium state update function that is composed of three in-

dependent logic blocks of the form whose inputs are tapped from the 288-bit state register

x0, x1, . . . , x287 such that

t0 ← x65 ⊕ (x90 ∧x91)⊕x92 ⊕x170 (x ′
0, . . . , x ′

92) ← (t2, x0, . . . , x91)

t1 ← x161 ⊕ (x174 ∧x175)⊕x176 ⊕x263 (x ′
93, . . . , x ′

176) ← (t0, x93, . . . , x175)

t2 ← x242 ⊕ (x285 ∧x286)⊕x287 ⊕x68 (x ′
177, . . . , x ′

287) ← (t1, x177, . . . , x286).

We define each individual logic block as a strand of the following form:

a ⊕b ⊕ (c ∧d)⊕e.

A feature-rich library with 3-pin linear cells can implement one strand with 3 gates (1 NAND2,

1 XNOR2, 1 XNOR3), hence the entire Trivium combinatorial layer then consists of 10 gates in

total (9 for the 3 strands and one 3-input XOR gate for the output function). A simpler library

that only consists of 2-pin linear logic elements such as the NanGate cell library family requires

14 gates for the combinatorial layer. A full description of Trivium is given in Section 2.6.1.

In this respect, we investigate several circuit and compilation directives supported by the

Synopsys Design Compiler:

• Regular. The entire circuit is compiled with the regular compile command which mod-

erately attempts to optimize the synthesis result. In this setup, the synthesizer is free to

choose the mapping and the corresponding optimisation. The compiler may choose to

not respect the boundaries between two strands and make any optimisation it deems

fit. This is actually equivalent to the implementation strategy of [25], i.e., in which the

compiler has the freedom to optimize given the logical representation of the update

function.

• Restricted. Same compilation directive as in the regular configuration, i.e., compile,

however the synthesis of the state update function is restricted to the logical mapping,

where the state update circuit for r = 1 is simply replicated for higher degrees of un-

rolling. Under this directive, the compiler puts together each strand separately and

is forced to respect the boundaries between 2 strands. Thus when used as such, the

compiled circuit consists of exactly 3r strands for an r -round unrolled construction.

• Ultra. The circuit is synthesized using compile_ultra directive which is a high-effort

routine that optimizes beyond the entity boundaries and often yields the most area-

and latency-efficient constructions. Here too, the compiler may choose not to respect

strand boundaries.

65

Chapter 4. Perfect Trees

One of our empirical findings is that for Trivium circuits compiled under the Restricted

directive, the increase in the power consumption (for encrypting a given number of data

blocks) is much slower (with respect to the degree of unrolling r) than circuits compiled un-

der the Regular or Ultra directives.19 Note that a more fundamental answer to the question

whether the energy figures increase or decrease when a cipher is further unrolled is directly

linked to its latency and power consumption.

Let L(r) be the total number of clock cycles required to encrypt a fixed-size plaintext block

in the r -round unrolled setting and denote by P (r) and E(r) the power and energy values

respectively. It is crucial to note that L(r) will decrease and consequently P (r) will increase

as r increases and thus the value of r which minimizes E(r) = P (r) ·L(r) (this is true for block

ciphers too) was exactly the problem studied for block ciphers in [18] and for stream ciphers

in [25]. In Figure 4.2 and Figure 4.3, we detail the energy and area simulation results for

four standard cell libraries (TSMC 90 nm, UMC 65 nm and NanGate 45 and 15 nm) over a

wide range of frequencies. The choice of frequencies was indeed library specific: so that the

critical path of the circuit was well below the clock period even when the circuit was fully

unrolled. This obviates the need for the compiler to use higher drive strength based cells just

to get a positive slack in order to ensure clock period larger than critical path, which alters the

basic character of the circuit for different values of r and prevents a fair evaluation. Hence

for the faster NanGate library based circuits we used the frequency range 1 MHz to 1 GHz,

and for the other libraries we used the range 0.2 MHz to 100 MHz. We find that the circuits

compiled in the restricted mode are by far the most energy-efficient of the three. Its energy

consumption more or less decreases monotonously for r ≥ 150, which suggests that if r is

allowed to vary up to 288, then the fully unrolled cipher, i.e., r = 288, is the best setup for

energy constrained environments (though not always). This empirical observation naturally

allows us to segue into the next round of results in Section 4.2 where we look more closely at

the circuits compiled under the restricted mode.

4.2 Perfect Tree Energy Model

For the remaining experiments, we look to investigate unrolled Trivium circuits with r = 288

since they achieve maximum throughput and deliver close to the best energy efficiency for

all libraries across a wide range of frequencies. Though it was theoretically possible to un-

roll more, it would require more silicon area and improve energy efficiency only fractionally

more. Since the circuits are compiled in restricted mode, it is possible to see how much power

each strand consumes. We commence by introducing some notations and definitions that

will help us formalise the write-up better.

Definition 3 (i -th Strand). Denote by ti (r) the strand for equation ti in the r -th unrolled round

19One reason for this is that with the other compiler directives, the main optimisation effort goes behind re-
ducing area of the circuit and meeting timing slack requirements. And the result it blurs the boundaries between
individual strands and is thus not necessarily power-optimal.

66

4.2 Perfect Tree Energy Model

50 100 150 200 250 300

200

300

400

500

600

r

n
J/
1.
28

M
b
it

1 MHz

Regular
Restricted

Ultra

50 100 150 200 250 300

60

80

100

120

140

r

10 MHz

50 100 150 200 250 300

40

60

80

100

r

n
J/
1.
28

M
b
it

100 MHz

50 100 150 200 250 300

40

60

80

100

r

1000 MHz

(a) NanGate 15 nm

50 100 150 200 250 300

4,000

6,000

8,000

r

n
J/
1.
28

M
b
it

1 MHz

Regular
Restricted

Ultra

50 100 150 200 250 300

400

600

800

1,000

r

10 MHz

50 100 150 200 250 300

200

300

400

r

n
J/
1.
28

M
b
it

100 MHz

50 100 150 200 250 300

150

200

250

300

350

r

1000 MHz

(b) NanGate 45 nm

50 100 150 200 250 300
100

150

200

250

300

350

r

n
J/
1.
28

M
b
it

0.2 MHz

Regular
Restricted

Ultra

50 100 150 200 250 300
50

100

150

r

1 MHz

50 100 150 200 250 300

40

60

80

100

120

140

r

n
J/
1.
28

M
b
it

10 MHz

50 100 150 200 250 300

40

60

80

100

120

140

r

100 MHz

(c) UMC 65 nm

50 100 150 200 250 300

200

300

400

500

r

n
J/
1.
28

M
b
it

0.2 MHz

Regular
Restricted

Ultra

50 100 150 200 250 300

100

200

300

r

1 MHz

50 100 150 200 250 300
50

100

150

200

250

300

r

n
J/
1.
28

M
b
it

10 MHz

50 100 150 200 250 300
50

100

150

200

250

300

r

100 MHz

(d) TSMC 90 nm

Figure 4.2: Trivium energy measurements for the three synthesis settings for different fre-
quencies and libraries. Note that energy graphs are noisier for the regular/ultra modes which
indicates that the synthesizer chooses different mapping strategies for varying r .

with i ∈ {0,1,2} and r ∈ {0, . . . ,287} such that each successive ti (r) can be recursively defined as:

t1(r) = t3(r −66)⊕ t3(r −93)⊕ [t3(r −91)∧ t2(r −92)]⊕ t0(r −78)

t2(r) = t1(r −69)⊕ t1(r −84)⊕ [t1(r −82)∧ t0(r −83)]⊕ t1(r −87)

t3(r) = t2(r −66)⊕ t1(r −111)⊕ [t1(r −109)∧ t1(r −110)]⊕ t2(r −69),

where t1(r) = x94−r , t2(r) = x178−r and t3(r) = x1−r whenever r ≤ 0.

Figure 4.4 shows the power consumed in each of the strands ti (r) for increasing values

of r for two of the libraries we experiment with in this paper. We had expected the power

67

Chapter 4. Perfect Trees

50 100 150 200 250 300
2,000

4,000

6,000

8,000

10,000

r

G
E

NanGate 15 nm

Regular
Restricted

Ultra

50 100 150 200 250 300
2,000

4,000

6,000

8,000

10,000

r

NanGate 45 nm

50 100 150 200 250 300

2,000

4,000

6,000

8,000

10,000

r

UMC 65 nm

50 100 150 200 250 300

2,000

4,000

6,000

8,000

10,000

r

TSMC 90 nm

Figure 4.3: Trivium area measurements (Gate Equivalent) for the three synthesis settings for
all unrolling factors r and cell libraries. Note that the number of clock cycles that are required
in order to encrypt x bits of data is given by ⌈1152

r ⌉+⌈ x
r ⌉, hence the encryption of 1.28 MBits

of data for r = 288 has a latency of 4449 cycles.

in the strands to increase monotonously with r as in block ciphers, but the figure clearly

suggests that the increase is far from monotonous. The red marks represent the strands

whose power consumption experiences a sudden dip. This observation seemed at first to

be counter-intuitive, and so we set about trying to understand this curious phenomenon.

We first observed that all t1(r)’s (for 1 ≤ r ≤ 66) consume the same power until t1(67) whose

power consumption is considerably larger (note the red to black jump in Figure 4.4 around

r = 66 for t1(r) for all the libraries). All inputs to t1(r) (for 1 ≤ r ≤ 66) come directly from

the register. Thus in some sense their input nodes are all at a distance zero from the regis-

ter. However, one of the inputs of t1(67) comes from the output of t3(1) and thus not all its

inputs are at distance zero from the register. This delay imbalance in the input wires gives

rise to more glitches in the internal circuitry of t1(67) and this hints at one of the reasons why

it consumes more. Further consider the boundary around r = 93. At r = 94, the power con-

sumption of t1(94) drops. It is easy to see that all the inputs of t1(94) are at distance two from

the register, whereas the inputs of t1(93) are still unbalanced with respect to the delay from

the register. This led us to believe that delay imbalance plays a major role in determining how

much power the strands consume.

Through the Looking Glass. In order to verify the above phenomenon, we looked at the inter-

nal timing diagrams of both the strand pairs (a) t1(66) and t1(67), and (b) t1(93) and t1(94),

presented in Figure 4.5 (the circuit was synthesized using NanGate 45 nm cell library and

clocked at 1 GHz). Let us examine t1(66). The first 2 input pins x1, x28, according to the cir-

cuit synthesizer, have an average delay of 0.09 ns from the clock edge at which the new inputs

are written on to the registers. As a result, the output of the first XOR gate in the strand i.e.,

x1 ⊕ x28 is only moderately glitchy. Over 4450 clock cycles this net switches logic only 2271

times, as found by a post-synthesis timing simulation on the netlist. On the other hand, in

t1(67), x27 is at a delay 0.09 ns whereas the other input t3(1) is at an average delay 0.25 ns.

The output of the corresponding XOR gate x27 ⊕ t3(1) is glitchier as compared to x1 ⊕ x28, it

switches 4512 times in the same interval. This clearly indicates that t1(67) consumes more

power. Conversely, consider t1(93). The first 2 input pins x1, t3(27) have delays 0.09 ns and

0.25 ns from the clock edge. Hence the net x1⊕t3(27) switches around 4665 times in the same

interval. However, in t1(94), the pins t3(1), t3(28) have delays 0.24 ns and 0.25 ns. Hence,

68

4.2 Perfect Tree Energy Model

0 50 100 150 200 250 300

0.6

0.7

0.8

0.9

1

m
W

t1(r)

0 50 100 150 200 250 300

0.6

0.7

0.8

0.9

1

t2(r)

0 50 100 150 200 250 300

0.6

0.7

0.8

0.9

1

t3(r)

(a) NanGate 45 nm

0 50 100 150 200 250 300
0.06

0.08

0.1

0.12

0.14

0.16

0.18

m
W

t1(r)

0 50 100 150 200 250 300
0.06

0.08

0.1

0.12

0.14

0.16

0.18

t2(r)

0 50 100 150 200 250 300

0.08

0.1

0.12

0.14

0.16

t3(r)

(b) TSMC 90 nm

Figure 4.4: Power measurements for all the perfect unrolled strand trees for two cell library
processes. The red data points indicate unrolled strand equations which correspond to per-
fect trees. The dashed blue line signifies the transition boundaries between perfect and im-
perfect trees, i.e., low points represent perfect unrolled strand trees while high points corre-
spond to imperfect trees.

many of the glitches produced by them cancel out and the XOR net t3(1)⊕ t3(28) switches

2551 times in this interval. This indicates that depth-balanced strands consume less power

than unbalanced ones.

t1(66)t1(66)t1(66)

x1 ⊕ x28x1 ⊕ x28x1 ⊕ x28

x1x1x1

x28x28x28

t1(67)t1(67)t1(67)

t3(1)⊕ x27t3(1)⊕ x27t3(1)⊕ x27

t3(1)t3(1)t3(1)

x27x27x27

#Switch

220522052205

227122712271

221622162216

219721972197

448444844484

451245124512

224122412241

227122712271

(a)

t1(93)t1(93)t1(93)

x1 ⊕ t3(27)x1 ⊕ t3(27)x1 ⊕ t3(27)

x1x1x1

t3(27)t3(27)t3(27)

t1(94)t1(94)t1(94)

t3(1)⊕ t3(28)t3(1)⊕ t3(28)t3(1)⊕ t3(28)

t3(1)t3(1)t3(1)

t3(28)t3(28)t3(28)

#Switch

466546654665

443144314431

221522152215

221622162216

251325132513

257825782578

221122112211

221422142214

(b)

Figure 4.5: Timing diagrams for internals in (a) t1(66), t1(67), and (b) t1(93), t1(94).

4.2.1 Circuit to Tree

In order to formalise the above phenomenon, we found that the circuit strands are connected

naturally in a well-defined graphical topology. Each unrolled strand can be translated into a

69

Chapter 4. Perfect Trees

5-ary tree with the root node as the output bit whose subtrees are other unrolled strand trees

or leaf nodes.

Definition 4 (Unrolled Strand Tree). Let Ti (r) be the 5-ary unrolled strand tree corresponding

to the unrolled strand equation ti (r). The child nodes of the strand Ti (r) are therefore all the

5 nodes T j (u) for which the corresponding terms t j (u) are present in its recursive definition as

per Definition 3.

Example 5. To make the link between unrolled strand equations, and their respective trees

clearer, we give 3 examples of varying complexity. The unrolled strand trees T3(1), T3(100)

alongside T3(200) are displayed in Figure 4.6. Note that terms that appear several times in an

unrolled strand equation result in duplicate nodes in the corresponding unrolled strand tree.

This is to ensure that the equations are a one-to-one representation of the actual circuit.

t3(1)

x243 x288 x286 x287 x171

t3(100)

t2(34)

x129 x144 x142 x143 x231

x189 x187 x188 t3(31)

x214 x259 x257 x258 x40

t3(200)

Figure 4.6: The strand trees T3(1), T3(100) and T3(200). T3(1), T3(200) are perfect.

We can further classify our unrolled strand trees as either perfect or imperfect according

to the following definitions.

Definition 5 (Perfect m-ary Tree). A perfect m-ary tree is a tree in which all non-leaf nodes

have m children and all leaf nodes are at the same depth.

Clearly, the unrolled strand trees in Trivium are 5-ary. Further, remark that in Figure 4.6,

T3(1) and T3(200) are perfect unrolled strand trees while T3(100) is imperfect due to having

leaf nodes at different depths. In the example from the previous section clearly, T1(66), T1(94)

were perfect trees whereas T1(67), T1(93) were not. This gives us a very good understanding

of the power consumption of strands vis-à-vis the position of the corresponding nodes in

the circuit tree graph. A strand evidently consumes less power if the node it occupies in the

circuit graph houses a perfect tree.

Let us try to argue this inductively. A tree is 5-ary perfect if and only if all of its five child

nodes are also perfect. Thus it is easy to see that in a perfect tree all its input nodes are at

70

4.2 Perfect Tree Energy Model

approximately the same average delay from the register. This being so all perfect trees tend

to consume less power. On the other hand a tree is imperfect if and only if one of its child

nodes is also imperfect, due to which the gate output corresponding to this imperfect child

node is considerably more glitchy. This excess glitch from the child node would naturally

be carried forward in the parent strand making its output glitchier and thus causing it to

consume more dynamic power. This observation naturally leads us to the next question: is

it possible to have a general Trivium-like stream cipher (with tap locations perhaps different

from the original Trivium specifications) that is more energy-efficient and also secure at the

same time? The translation of circuit to an equivalent algebraic topology may have given

us a quick way to check this. Since perfect trees consume less dynamic power, a variant of

Trivium (with different tap locations) is likely to consume less energy if its circuit tree graph

has a larger total number of perfect trees.

Let us provide more arguments as to why the above makes sense. Consider two config-

urations of Trivium: Trivium-A and Trivium-B with different tap locations (both synthesized

in restricted mode). At a degree of unrolling equal to 288, the circuits of both these vari-

ants consist of exactly the same amount of gates and flip-flops. Since the leakage power in

a circuit depends directly on the total silicon area, both these circuits are likely to consume

the same leakage power. Furthermore, the circuit graphs of both these variants have exactly

the same amount of nodes. If for example Trivium-A has more perfect trees in the graph

than Trivium-B, then it automatically implies that Trivium-A has fewer imperfect trees than

Trivium-B, which more or less implies that Trivium-A is likely to be the variant that consumes

less dynamic power. Since the leakage power is the same, this means that the Trivium-A con-

sumes less total power and hence less total energy. This of course should hold irrespective of

the standard cell library used to synthesize the circuit or the frequency of signal used to clock

the circuit.

We can estimate the total number of perfect trees in a generic Trivium configuration.

To ease notation we will denote the total number of perfect trees among all strands ti (r)

as S(Ti) such that the total number of perfect trees in the circuit is S(T) = ∑
i S(Ti). More

formally, let f be a function from the set of all trees to {0,1} such that f (Ti (r)) = 1 if and

only if Ti (r) is a perfect tree, and is 0 otherwise: then S(Ti) = ∑
r f (Ti (r)). Below, we report

the distribution of perfect unrolled strand trees in the original Trivium. In Trivium, we have

S(T1) = 105, S(T2) = 144, S(T3) = 93, and hence S(T) = 339. Note that there are no perfect

unrolled strand trees of depth four or larger.

4.2.2 Enumerating Perfect Trees

In the following, let us consider a generic Trivium layout in order to determine configurations

that yield a high number of perfect trees and consequently lower the power consumption.

Definition 6. Denote by Trivium(X ,n) a generic Trivium configuration composed of n chained

registers (X1, . . . , Xn) such that X ℓ
j is the j th register’s leftmost forward tap, X f

j is the feedback

tap and X op
j is the output tap. See Figure 4.7 for a schematic depiction. Note that X op

j is

essentially the final tap location of the j th register (this is required to ensure the one-to-one

71

Chapter 4. Perfect Trees

nature of the Trivium update). The figure does not explicitly show the taps for the AND gates,

as we will show that if both the AND taps are between X ℓ
j and X op

j then it does not affect the

total number of perfect trees in the circuit graph.

Xl
11 Xf

1 Xop
1

bbtn t1

Xl
21 Xf

2 Xop
2

bb t2t1

b

b

b

Xl
31 Xf

3 Xop
3

bbtn−1 tn

Figure 4.7: Generic Trivium(X ,n) configuration of n chained registers.

Note that this notation corresponds to n update function strands hence the unrolled

strand tree of t j (r) is T j (r).

Example 6. The original Trivium specification composed of three update function strands

is congruent to Trivium(X ,3) where X ℓ
1 = 66, X f

1 = 69, X op
1 = 93, X ℓ

2 = 69, X f
2 = 78, X op

2 =
84, X ℓ

3 = 66, X f
3 = 87, X op

3 = 111 with an additional non-linear gate between the leftmost and

output tap in each register.

Finding configurations that lead to an increased number of perfect trees seems non-

trivial as the search space is enormous. Additionally, a closed-form solution that evaluates

the exact number of perfect trees for a given circuit Trivium(X ,n) appears equally hard. A

brute-force solution consists of individually creating the unrolled strand tree for each equa-

tion and checking that all leaf nodes are at the same distance from the root. However, this

approach is expensive and hard to optimize apart from ordinary parallelisations. Neverthe-

less, transcribing the problem into a recurrence relation offers some remedy to this issue.

Lemma 1. Given an arbitrary, generic Trivium(X ,n) circuit composed of n registers, the total

number of perfect unrolled strand trees S(T) in the fully unrolled setting is given by S(T) =∑n
j=1 S(T j) = ∑n

j=1

∑n
l=1

(
gl (X j)− fl (X j)

)+ , where y+ = max{y,0} and fl (X j), gl (X j) are recur-

sively defined functions for 1 ≤ l ≤ n of the form

fl (X j) = max
{

fl−1(X j−1)+X op
j , fl−1(X j)+X f

j+1

}
gl (X j) = min

{
fl−1(X j−1)+X op

j +
[(

gl−1(X j−1)− fl−1(X j−1)
)− (X op

j −X ℓ
j)

]+
,

gl−1(X j)+X f
j+1

}
,

72

4.2 Perfect Tree Energy Model

such that f1(X j) = 0 and g1(X j) = min
{

X ℓ
j , X f

j+1

}
. The number of perfect trees of depth t

for the j -th strand is S(T j)|depth=t =
(
g t (X j)− ft (X j)

)+. Hence the total number of trees of all

depths is S(T j) =∑n
l=1

(
gl (X j)− fl (X j)

)+ and thus the lemma follows.

We remark that since there are n registers indexed 1 to n the value of j +1 (resp. j −1)

refers to addition (resp. subtraction) mod n in the set {1,2, · · · ,n}. Further note that a tree is

perfect if and only if all its subtrees are perfect.

Proof. (Intuition) From Figure 4.8, we can see that there are certain values of r for which

the circuit for t j (r) produces a perfect depth-1, depth-2 tree etc. We define two families of

functions ft , g t such that ft (X j)+1 is the minimum value of r for which t j (r) corresponds

to a perfect depth t tree, and similarly g t (X j) is the maximum such value of r . It stands to

reason that the total number of depth t trees produced in this range of r is g t (X j)− ft (X j).

Note that, obviously if g t (X j) ≤ ft (X j) for some t then there do not exist any depth t trees.

It remains to show that ft and g t can be recursively defined. The full proof is considerably

involved and is given in Appendix B.1.

To conclude let us argue why the number of perfect trees is independent of the AND gate

taps as long as they are to the right of the leftmost tap X ℓ
j . It is intuitively not difficult to

reason why and let us argue with the help of our previous example: t1(66) corresponds to a

perfect tree but t1(67) is imperfect. This is because in the process of unrolling X ℓ
1 +1 is the

first value of r at which t1(r) no longer takes inputs directly from the register. Thereafter,

it does not matter where exactly the AND taps are as long as they are to the right of X ℓ
1 : all

subsequent values of r until X op
1 continue to produce imperfect trees.

b b b b b b

f1(Xj) = 0

1 + f1(Xj) 1 + f2(Xj)

g1(Xj) f2(Xj) g2(Xj) gt(Xj) ≤ ft(Xj)

#Perfect Depth-1 Trees

g1(Xj)− f1(Xj)

#Perfect Depth-2 Trees

g2(Xj)− f2(Xj)

r

Figure 4.8: Illustration of finite depth trees in Trivium circuit.

Verification. In order to verify our hypothesis (at least empirically) that (a) the number of

perfect trees is actually a good indicator of the energy consumption of a generalized Trivium

circuit, and (b) that the above holds irrespective of the cell library used to construct the circuit

or frequency of the signal used to clock it, we performed an extensive simulation experiment.

We generated a large number of Trivium circuits with random taps and calculated the num-

ber of perfect trees with the help of the recursion formula given above. We synthesized each

circuit in restricted mode using the four cell libraries used in all of our experiments and com-

puted the total power consumed at a wide range of frequencies. The results are plotted in

73

Chapter 4. Perfect Trees

Figure 4.9. Not only is there a strong negative correlation between the power consumed (and

hence energy) and the number of perfect trees, the results hold across libraries and clock fre-

quencies as claimed in Section 4.2.1. For each cell library the same trend is visible across all

frequencies. Similarly, since the leakage power of each random Trivium instance is the same

and frequency independent (say it is equal to Pl), and since decreasing the frequency (alt.

increasing the clock period by ∆T) only increases the physical time required for encrypting a

fixed size plaintext block by an amount proportional to ∆T , hence it follows that the leakage

energy of each Trivium instance increases by an amount proportional to Pl ·∆T when the

frequency is decreased. Since the dynamic energy is frequency independent, hence all other

things remaining the same, when only the frequency is varied, it is equivalent to translating

each energy scatter plot by a constant amount along the Y(energy)-axis.

Note that even for configurations with same number of perfect trees, there may be a slight

variation in energy consumption, but this variation is negligible as the number of perfect

trees increase. This really depends on how badly the imperfect trees are configured in the

graph, i.e., configurations with large number of trees with wide variation of delays at their

input nodes tend to consume more energy. To model such situations when the number of

perfect trees is small, one can think of secondary metrics like the distribution D(x) of number

of trees where the absolute difference of the maximum and minimum depths of leaves in the

tree is equal to x (note D(0) is the number of perfect trees). It is easy to see that configurations

for which D(x) is lower for higher values of x (i.e. lesser number of highly imbalanced trees)

are better for energy. Also note that the graph tells us that to get any significant decrease in

energy consumption over the original specifications of Trivium (around 10-20%) one needs

at least 500 perfect trees.

4.3 Energy-Optimal Variants of Trivium

Before we start to look for more energy-efficient Trivium configurations with more perfect

trees, let us once again look at the recursion relationship we have just stated. Note that most

perfect trees are at depth 1. In order to increase the number of degree-1 perfect trees, it is

obvious that we need to have higher values of g1(X j) = min{X ℓ
j , X f

j+1}, i.e., each tap location

should be chosen towards the end of the register. Naturally, it is not possible to choose each

tap location only energy efficiency reasons as the new configuration must be as secure as the

original Trivium. Since the search space is large, we decided to follow the following criteria,

inherited from the original specification:

1. The linear tap locations X ℓ
i , X f

i and X op
i for all i , are chosen from the multiple of 3. In

other words, X ℓ
i , X f

i , and X op
i are divisible by 3 for all i .

2. The locations of AND gates are fixed such that these two inputs are not divisible by 3.

In Trivium, X op
i −1, X op

i −2 are chosen for all i . However, as discussed in the previous

section, the impact on the energy consumption is negligible as long as the number of

perfect trees is the same. Therefore, we change the AND location to X ℓ
i + 1, X ℓ

i + 2.

Then, the number of perfect trees never changes, and the number of times that AND

74

4.3 Energy-Optimal Variants of Trivium

300 400 500 600 700 800

44

45

46

S(T)

µ
W

1 MHz

300 400 500 600 700 800
100

110

120

130

S(T)

10 MHz

300 400 500 600 700 800

0.7

0.8

0.9

1

S(T)

m
W

100 MHz

300 400 500 600 700 800

7

8

9

S(T)

1000 MHz

(a) NanGate 15 nm

300 400 500 600 700 800
0.56

0.57

0.57

S(T)

m
W

1 MHz

300 400 500 600 700 800

0.85

0.9

0.95

S(T)

10 MHz

300 400 500 600 700 800

3.5

4

4.5

S(T)

m
W

100 MHz

300 400 500 600 700 800

30

35

40

S(T)

1000 MHz

(b) NanGate 45 nm

300 400 500 600 700 800

5

5.2

5.4

5.6

Perfect Trees

µ
W

0.2 MHz

300 400 500 600 700 800
10

11

12

13

14

Perfect Trees

1 MHz

300 400 500 600 700 800

0.07

0.08

0.09

0.1

Perfect Trees

10 MHz

300 400 500 600 700 800

0.6

0.7

0.8

0.9

Perfect Trees

100 MHz

(c) UMC 65 nm

300 400 500 600 700 800
6.2

6.4

6.6

6.8

7

S(T)

µ
W

0.2 MHz

300 400 500 600 700 800

16

17

18

19

20

S(T)

1 MHz

300 400 500 600 700 800

0.13

0.14

0.15

0.16

0.17

S(T)

m
W

10 MHz

300 400 500 600 700 800
1.2

1.3

1.4

1.5

1.6

1.7

S(T)

100 MHz

(d) TSMC 90 nm

Figure 4.9: Power measurements of several Trivium(X ,3) circuits vs S(T) for different libraries
and frequencies. The red data points signify the power consumption of original Trivium.

gates are applied increases according to the increase of the number of rounds. Thus,

this choice is profitable for the security without increasing the energy consumption.

3. Each tap location for X ℓ
i and X f

i is larger than 64 such that a 64× parallel implementa-

tion is possible in the software.

4. Under the condition where the output of each AND gate is approximated to 0, we de-

note by ϵ the maximum correlation in a linear combination of keystream bits. In Triv-

ium, ϵ= 2−72, but it is quite robust against linear attacks because at least 2144 keystream

bits are required. For a cipher targeting 80-bit security, ϵ≤ 2−40 is necessary.

75

Chapter 4. Perfect Trees

In particular, 1. and 2. are two of the most important criteria in the design philosophy of

Trivium. Thanks to them, we can expect that ϵ in criterion 4. is the highest correlation even

when the condition where the output of each AND gate is approximated to 0 is removed. It is

primarily because of the following reason. Under parameters following 1. and 2., the whole

cipher is divided into three sub-ciphers, and each sub-cipher is only connected non-linearly.

In 4., we first evaluate the correlation under the restriction, where the output of AND gate is

always approximated to 0. In other words, only one sub-cipher is active, and the other two

are inactive. Of course, this restriction is not exhaustive. However, intuitively, we are unlikely

to find a better distinguisher beyond this restriction. Because, if at least one output of AND

gate x · y is approximated to x, y, or x + y instead of 0, it implies at least two sub ciphers are

active. It intuitively increases the number of active AND gates and makes constructing linear

distinguishers with high correlation much harder.

Table 4.1: List of configurations and associated security parameters. ϵ represents maximum
linear bias. T is the complexity of guess-and-determine attack. c represents an additional
cost required to do Gaussian elimination to solve a set of linear equations to recover the in-
ternal state. The first row represents the parameters for the original Trivium.

Parameters # Perfect Trees Max Bias G&D Complexity

X ℓ
1 X f

1 X op
1 X ℓ

2 X f
2 X op

2 X ℓ
3 X f

3 X op
3 − log2 ϵ log2 T

1 66 69 93 69 78 84 66 87 111 339 72 log2 c +83.5781

2 87 78 93 66 90 99 75 87 96 495 72 log2 c +81.3796

3 87 81 90 81 96 102 69 87 96 534 68 log2 c +80.0959

4 75 84 87 84 81 105 81 90 96 570 64 log2 c +79.0486

5 75 90 93 90 87 96 78 93 99 591 60 log2 c +78.8501

6 81 90 93 90 84 96 78 93 99 624 56 log2 c +77.8853

7 81 90 93 90 84 99 81 93 96 642 52 log2 c +77.2073

8 75 90 93 96 87 99 87 93 96 666 48 log2 c +77.0503

9 84 90 96 90 87 96 87 93 96 699 40 log2 c +75.8174

As a result, three criteria 1., 2., and 3. allow us to reduce the number of candidates to

28534800 ≈ 224.8, and exhaustive search is possible. We exhaustively searched for the best

candidates, i.e., the number of perfect trees is maximized, for correlation

ϵ ∈ {2−72,2−68,2−64,2−60,2−56,2−52,2−48,2−44,2−40}.

In Table 4.1, we list the best candidates for each ϵ. In addition, we also applied Maximov and

Biryukov’s Guess-and-Determine attack [102] on each of the candidates and list the result. In

this attack, the weakness of the multiple-of-3 choice is exploited, and this attack shows Triv-

ium has 80-bit security but it does not have 128-bit security even if the key length is simply

extended to 128 bits. Note that this attack has many parameters and scenarios. The com-

plexity listed in Table 4.1 is the so-called scenario T1, i.e., the time complexity is minimized

76

4.3 Energy-Optimal Variants of Trivium

under the condition that solving only a linear system is enough to recover the key.

It is clear from the table that an increase in the number of perfect trees is generally accom-

panied by an increased maximum linear bias and decrease in the complexity of the Guess-

and-Determine attack. Considering c ≈ 216, all parameters would have 80-bit security, but

the security margin is very marginal for parameters whose ϵ is close to 2−40. The parameter

in row 2 is the best one whose correlation is as low as the original Trivium, but the number of

perfect trees is not over 500.

4.3.1 Trivium-LE(F)

As a good alternative which is almost equivalently secure as the original Trivium, the second

row of Table 4.1 gives us the parameter set

(X ℓ
1 , X f

1 , X op
1 ; X ℓ

2 , X f
2 , X op

2 ; X ℓ
3 , X f

3 , X op
3) = (87,78,93 ; 66,90,99 ; 75,87,96).

A graphical depiction of those parameters is given in Figure 4.10.

781 87 93bbt3

661 90 99bbt1

751 87 96bbt2

b

b

b

t1

t2

t3

zi

Figure 4.10: Update function and key generation functions of Trivium-LE(F).

This choice gives us a decrease in energy of around 15% over the original Trivium and still

provides us with some headway over the margins of security. We therefore propose this pa-

rameter set as a more energy-efficient variant of Trivium and call it Trivium-LE(F). We keep

the key-IV setup and initialisation routines for Trivium-LE(F) same as Trivium. For complete-

ness, we round off this section with a preliminary security analysis. Since only the tap loca-

tions are modified, all types of attacks against Trivium can be applied against Trivium-LE(F).

Three important attacks against are discussed below:

Linear Distinguishing Attack. In order to achieve 80-bit security, there should not be linear

distinguishers whose correlation is higher than 2−40. As we already discussed in the section

before, the best correlation is 2−72 when outputs of AND gates are approximated to 0. While

it is unlikely to find better distinguishers due to the multiple-of-3 property, we heuristically

evaluated the case where these outputs are not approximated to 0. As we expected, we could

not find better linear distinguishers with correlation higher than 2−72.

77

Chapter 4. Perfect Trees

Maximov and Biryukov’s Guess-and-Determine Attack. This attack technique primarily ex-

ploits the multiple-of-3 property of Trivium, and it should be effective because Trivium-LE(F)

also inherits the multiple-of-3 property. This attack first divides the internal state into three

sub states and consists of two phases. In the first phase, we first guess one of three sub states

at some time. In the second phase, assuming that the sub state is guessed correctly, we next

recover the rest of the bits, in other words 288×2/3 = 192 bits. Then, we guess outputs of any

AND gates and collect keystream bits, which are linearly represented by the internal state. In

the so-called scenario T0, no output of any AND gates is guessed. When we use T0 to attack

Trivium-LE(F), the time complexity is c ·274.0, which is the same as the attack against Trivium

in the same scenario. However, only 96 linear equations are collected for the second phase

and it is not enough to recover the remaining 192 bits. Thus, we need to solve a nonlinear

system but an efficient algorithm is not known. In scenario T1, outputs of some AND gates

are guessed to collect enough linear equations to recover the remaining 192 bits. When we

use T1 to attack Trivium-LE(F), the time complexity is c · 281.3796, where 48, 45, and 44 out-

puts of AND gates are guessed for each register. Then, we can collect 192 linear equations for

the second phase, and an efficient algorithm such as the Gaussian elimination is available.

Considering c ≈ 216, Trivium-LE(F) is secure enough against this attack.

Cube Attack. Unlike the attacks above, the target of the cube attack is the initialisation phase

of the cipher. The cube attack was initially introduced in [64]. The original attack was exper-

imental and its aim was to find linear or quadratic superpolies. However, after the division-

property based cube attack was proposed [122], the theoretical security estimation is possi-

ble, and nowadays, the best cube attacks against Trivium are based on the division-property

based method [76, 125]. Cube attacks exploit low algebraic degree in the initialisation. The

first keystream bit is regarded as the output of the Boolean function fK (IV). To execute cube

attacks, the superpoly has to be recovered, and it becomes impossible several rounds af-

ter the degree of fK (IV) reaches 80. In practice, the best cube attack against Trivium is 842

rounds [76, 83], and the degree reaches 80 in 840 rounds. Therefore, we first investigated

the algebraic degree on fK (IV) by using the bit-based division property [121, 124] and the left

plot in Figure 4.11 shows the increase in the upper bound of the algebraic degree. Thanks

to changing the location of AND gates, the algebraic degree of Trivium-LE(F) increases faster

than Trivium, and the degree reach 80 in 780 rounds. Moreover, to conservatively evaluate

the degree of the superpoly to be high enough, we also investigated the upper bound of the

algebraic degree on f (K , IV) by using the bit-based division property. The right plot in Fig-

ure 4.11 shows the increase in the upper bound of the algebraic degree. About 900 rounds

show the upper bound is full, i.e., 160, and it implies that the degree of the superpoly is un-

likely to be lower even if we use the 80-dimensional cube. In both cases, fK (IV) and f (K , IV),

Trivium-LE(F) is more secure than Trivium against cube attacks. Thus, we conclude that

Trivium-LE(F) has a large security margin against cube attacks.

78

4.3 Energy-Optimal Variants of Trivium

700 720 740 760 780 800 820 840
30

40

50

60

70

80

47

52
56

58
62

67

72
75

78
80

53

59

66

75

80

Number of Rounds

D
eg
re
e

Trivium

Trivium-LE(F)

(a) Upper bound on the degree of fk (i v)

300 400 500 600 700 800 900 1,0001,100

40

80

120

160

5 7 9 1315
20

27
37

51
64

84

107

138

160

5 81313
21

3134

5561

89

115

160

Number of Rounds

D
eg
re
e

Trivium

Trivium-LE (F)

(b) Upper bound on the degree of f (k, i v)

Figure 4.11: Increase in the algebraic degree in Trivium-LE(F) with respect to the number of
initialisation rounds.

4.3.2 Trivium-LE(S)

We suggest another variant Trivium-LE(S) that results in around 25% lower energy when

compared with Trivium.20 This variant is based on the 8th row of Table 4.1, and uses the

parameter set

(X ℓ
1 , X f

1 , X op
1 ; X ℓ

2 , X f
2 , X op

2 ; X ℓ
3 , X f

3 , X op
3) = (96,87,99 ; 87,93,96 ; 75,90,93).

We have found that this cipher is algebraically weaker than Trivium, in as much as the alge-

braic degree of its output bit increases more slowly. It needs 1050 and 1200 rounds to reach

the upper bounds of the degree of fK (IV) and f (K , IV) be the full, respectively. Compared to

the original Trivium, the increase of the degree is about 25% slower. Therefore we suggest

that for a safe security margin, the number of initialisation rounds used with this variant is

288×5 = 1440. Note that in terms of an 288 times unrolled circuit, this variant only takes 1

extra clock cycle to initialize, and so asymptotically speaking the energy consumption does

not increase due to this extra cycle. For space constraints we defer the security analysis to

Appendix B.2.

4.3.3 Trivium-LE-MAC

In addition to the stream ciphers Trivium-LE(F) and Trivium-LE(S), we also propose a mes-

sage authentication code (MAC) scheme with the name Trivium-LE-MAC, which is designed

by slightly modifying the round function of Trivium-LE(F). In order to realise a MAC scheme

whose energy consumption is competitive with the stream cipher Trivium-LE(F), it should

absorb a 1-bit message into the internal state every round function. While the easiest method

is simply XORing the 1-bit message with any 1 bit in the internal state, it is not secure enough

20Note that the (F) and (S) stand for Fast and Slow respectively. This is because the (S) variant uses a larger
number of initialisation rounds.

79

Chapter 4. Perfect Trees

against forgery attacks. To guarantee forgery security, we evaluated the lower bound in the

number of active AND gates with an MILP-based method when two different messages are

absorbed. After exhaustive experimentation we found that a 1-bit message has to be XORed

to at least 3 positions of the internal to be secure against forgery attacks. For example, one

possible choice is to XOR the 1-bit message with three output bits of state update function,

i.e., t1, t2, t3.

From an energy perspective, it is advisable that these injections take place as close as pos-

sible to the registers inputs, i.e., to locations au1 ,bu2 ,cu3 for smaller values of u1,u2,u3. If we

model the message inputs as zero-depth nodes, then it makes each strand ti (r) correspond to

6-ary trees. It is, for example, easy to see that the first 1 ≤ r ≤ X ℓ
i −ui strand trees for ti (r) are

all depth 1 perfect 6-ary trees. Hence lower values of ui intuitively make sense. On the other

hand, we chose the injected positions by respecting the multiple-of-3 property to efficiently

evaluate the resistance against forgery attacks with an MILP-based method. Specifically, in

the constructed model, the message difference is only allowed to be injected at clock cycles

3 j1+ j0 (j1 ≥ 0) when the non-zero difference is first introduced at the clock j0. Moreover, the

output difference of the active AND gate is always assumed to be 0. The goal is to minimize

the number of active AND gates in a trail available for the forgery attack, i.e., the difference

of the whole internal state becomes zero after a certain number of clocks. We evaluated all

possible candidates of the three injected positions (a1+3i0 ,b1+3i1 ,c1+3i2) where 0 ≤ i0 ≤ 30,

0 ≤ i1 ≤ 32 and 0 ≤ i2 ≤ 31. When the total distance from the first bit of each register is smaller

than 69, among all the candidates, the maximal number of active AND gates is 72. Thus, we

choose the best candidate (a1,b7,c1) which reaches 72 active AND gates while achieving the

smallest total distance of 6.

Algorithm 5 shows the specifications. Note that Trivium-LE-MAC inherits the security

level of Trivium-LE(F) against any key-recovery attack, i.e., 80-bit security. However, the tag

length is at most 64 bits. In other words, the security level of the integrity is at most 64 bits.

4.4 Generalisation to Other Stream Ciphers

In this section, we study four Trivium-like ciphers. We will show that the circuit tree phe-

nomenon translates seamlessly onto these more complex Trivium variations.

Trivium-MB. This construction was proposed by Maximov and Biryukov [102] and adds an

additional noise term, i.e., a two-input AND gate, to each strand equation t1, t2, t3 which is

then backward connected to the register’s input. The keystream output function remains

unchanged. We denote it by Trivium-MB. Each register update function ti is of the type

xa +xb + (xc · xd)+ (xe · x f)+xg ,

implying that each Ti (r) has seven child nodes instead of five.

TriviA. The stream cipher by Chakraborti et al. [54] was used in the authenticated encryption

scheme of the same name. It also features a key size of 128-bit alongside a 96-bit initialisation

vector but exhibits an increased 384-bit internal state partitioned into three chunks of sizes

80

4.4 Generalisation to Other Stream Ciphers

Algorithm 5 Trivium-LE-MAC
1: function R(A,B ,C ,m)

2: z ← a87 ⊕a93 ⊕b66 ⊕b99 ⊕ c75 ⊕ c96

3: t1 ← a87 ⊕a93 ⊕a88 ·a89 ⊕b90

4: t2 ← b66 ⊕b99 ⊕b67 ·b68 ⊕ c87 ⊕m

5: t3 ← c75 ⊕ c96 ⊕ c76 · c77 ⊕a78 ⊕m

6: b6 ← b6 ⊕m

7: (a1, a2, . . . , a93) ← (t3, a1, . . . , a92)

8: (b1,b2, . . . ,b99) ← (t1,b1, . . . ,b98)

9: (c1,c2, . . . ,c96) ← (t2,c1, . . . ,c95)

10: return (A,B ,C , z)

11: function P(A,B ,C)

12: (A,B ,C , z) ← R(A,B ,C ,1)

13: for i = 2 to 1152 do

14: (A,B ,C , z) ← R(A,B ,C ,0)

15: return (A,B ,C)

1: function Load(N ,K)

2: A ← (k1, . . . ,k80,0,0, . . . ,0)

3: B ← (n1, . . . ,n80,0,0, . . . ,0)

4: C ← (0, . . . ,0,1,1,1)

5: return (A,B ,C)

6: function Trivium-LE-MAC(N ,K , M)

7: (A,B ,C) ← P(Load(N ,K))

8: l en ← the bit length of M .

9: for i = 1 to len do

10: (A,B ,C , z) ← R(A,B ,C ,mi)

11: (A,B ,C) ← P(A,B ,C)

12: for i = 1 to 64 do

13: (A,B ,C , ti) ← R(A,B ,C ,0)

14: return T

132, 105 and 147. Unlike Trivium and Maximov and Biryukov’s construction, it adds a non-

linear term to the keystream function in the form of a two-input AND gate. Each node in the

circuit graph of TriviA also has five child nodes as in Trivium.

Kreyvium. Kreyvium is a stream cipher designed by Canteaut et al. [52] explicitly for the use in

fully homomorphic encryption schemes. The cipher has the same structure and tap locations

as Trivium, however a 128-bit security is achieved by additionally XORing bits from the key

and IV to the update functions. It was shown in [25] that Kreyvium circuits are most energy-

efficient at degrees of unrolling that are multiples of 128. This is because the circuit does not

require additional shift registers to rotate the key and IV bits to produce the required bits in

the update function. In our experiments, the cipher is unrolled 256 times.

Triad-SC. This construction was proposed by Banik et al. [24] as a low-energy alternative to

Trivium. It has a much smaller state size (256 bits) and aims to provide 112-bit security. It

counters the guess-and-determine attacks by using one additional AND gate compared to

the original architecture of Trivium. The update functions in Triad-SC are asymmetric: t1 is

of the form xa +xb +(xc ·xd)+(xe ·x f)+xg whereas t2, t3 are of the form xa +xb +(xc ·xd)+xe .

Hence, T1(r)’s are 7-ary trees and T2, T3(r)’s are 5-ary trees.

We performed a similar experiment for all the above ciphers as for the original Trivium:

(a) We synthesized the circuit in restricted mode and record the power consumed in each

strand. Results presented in Figure 4.13 show that strands associated with perfect trees con-

sume much less power that the strands with imperfect trees. And (b) we generated numerous

random instances of these ciphers with different tap locations. For every instance we plot

power consumed vs number of perfect trees in the circuit tree graph. The results are plotted

in Figure 4.12. The results are indeed on expected lines: there is strong negative correlation

between energy consumed and number of perfect trees. For space constraints, in the fig-

81

Chapter 4. Perfect Trees

ure we plot results only for the TSMC 90 nm cell library (with power measured at 10 MHz),

however extrapolating the results from Section 4.2 we can make a similar argument that the

results are neither library nor frequency specific.

300 400 500 600 700

0.18

0.2

0.22

0.24

Perfect Trees

m
W

Trivium-MB

200 400 600 800 1,000

0.2

0.25

0.3

Perfect Trees

TriviA

300 400 500 600 700 800

0.14

0.15

0.16

0.17

Perfect Trees

Kreyvium

300 400 500 600

0.12

0.13

0.14

0.15

0.16

Perfect Trees

Triad-SC

Figure 4.12: Power consumption figures as a function of the number of perfect trees for
Trivum-like schemes. All data was obtained using the TSMC 90 nm process at a clock fre-
quency of 10 MHz. Red data points mark the original schemes.

4.4.1 Applicability to Grain-128

The concept of a circuit strand seamlessly translates over to Grain-128 [77] in which the

round function consists of two distinct strands that update two registers b1,b2, . . . ,b128 and

s1, s2, . . . , s128 such that

(x1, . . . , x128) ← (f , x1, . . . , x127)

(y1, . . . , y128) ← (g , y1, . . . , y127),

where f and g are linear and non-linear functions respectively defined as follows:

f = x128 +x121 +x90 +x58 +x47 +x32,

g = x128 + y128 + y102 + y72 + y37 + y32 + y44 y60 + y61 y125

+ y63 y67 + y69 y101 + y80 y88 + y110 y111 + y115 y117

Evidently, the complexity of the update function in this family is higher than in Trivium and

so finding a sensible restricted circuit configuration for these complex strands is a harder

task. Even if we define the strand as a sub-circuit for the f , g functions, it is not immedi-

ately clear which configuration of gates is the best way to construct each strand. We can

however delegate this responsibility to the circuit compiler, so that in the restricted mode

it still respects the boundary between the strands, but chooses the internal structure of the

strand independently. In Figure 4.14, we repeat the experiments from Section 4.1 by letting

the synthesizer choose the circuit for each individual strand of f and g in Restricted mode

instead of imposing a predefined set of logic gates. The results in Figure 4.14 show that for

Grain-128 suggests that restricted mode performs at least on par with other synthesis modes

indicating that further optimisations for the restricted mode are possible by finding better cir-

cuit configurations. Additionally, by repeating the experiments from Section 4.2, we observe

82

4.4 Generalisation to Other Stream Ciphers

0 50 100 150 200 250 300

0.1

0.15

0.2

0.25

µ
W

t1(r)

0 50 100 150 200 250 300

0.1

0.15

0.2

0.25

t2(r)

0 50 100 150 200 250 300

0.1

0.15

0.2

0.25

t3(r)

(a) Trivium-MB [102]

0 100 200 300 400
0.05

0.1

0.15

0.2

0.25

µ
W

t1(r)

0 100 200 300 400
0.05

0.1

0.15

0.2

0.25

t2(r)

0 100 200 300 400
0.05

0.1

0.15

0.2

0.25

t3(r)

(b) TriviA [54]

0 50 100 150 200 250

0.08

0.1

0.12

0.14

0.16

µ
W

t1(r)

0 50 100 150 200 250 300
0.08

0.1

0.12

0.14

0.16

0.18

0.2

t2(r)

0 50 100 150 200 250
0.08

0.1

0.12

0.14

0.16

t3(r)

(c) Kreyvium [52]

0 50 100 150 200 250 300

0.1

0.12

0.14

0.16

µ
W

t1(r)

0 50 100 150 200 250 300

0.08

0.1

0.12

0.14

0.16

t2(r)

0 50 100 150 200 250 300

0.08

0.1

0.12

0.14

0.16

t3(r)

(d) Triad-SC [24]

Figure 4.13: Power consumption measurements for all the unrolled strand trees for the 128-
bit key size variation of Trivium proposed by Maximov and Biryukov [102], the state update
function of the TriviA stream cipher [54], Kreyvium [52] and Triad-SC [24]. The Measurements
were obtained using the TSMC 90 nm process at a frequency of 10 MHz.

83

Chapter 4. Perfect Trees

50 100 150 200 250
50

100

150

200

r

n
J
/
1.
28

M
B
it

100 MHz

Regular
Restricted

Ultra

(a) NanGate 15 nm

50 100 150 200 250
200

400

600

800

1,000

1,200

r

100 MHz

(b) NanGate 45 nm

50 100 150 200 250

60

80

100

120

140

160

r

10 MHz

(c) UMC 65 nm

50 100 150 200 250
100

150

200

250

300

r

10 MHz

(d) TSMC 90 nm

Figure 4.14: Grain-128 energy measurements for three synthesis settings and cell libraries.
The complete set of plots for different frequencies is given in Appendix B.3.

that increasing the number of perfect unrolled strand trees also correlates with the power

consumption although in a weaker form, hence our results are also applicable to stream ci-

phers whose state update functions are significantly more complicated than in Trivium-like

ciphers.

4.4.2 Applicability to Subterranean-Deck

Unlike Trivium and Grain-128, the Subterranean-Deck [59] stream cipher does not feature a

rotating register but in each round each state bit x1, x2, . . . , x257 is replaced by the output of a

single strand that is replicated 257 times such that

(x1, . . . , x257) ← (Tπ(1),Tπ(2), . . . ,Tπ(257))

Ti ← (xi + (xi+1 +1)xi+2)+ (xi+3 + (xi+4 +1)xi+5)+ (xi+8 + (xi+9 +1)xi+10),

for some permutation π. This strand can be realized in 3 NOT, 3 NAND, 1 XNOR3 and 1 XOR4

gates for feature-rich cell libraries and with 3 NOT, 3 NAND and 4 XOR2 for the more basic

libraries. Denote ti = (xi + (xi+1 + 1)xi+2). Each Ti consists of 3 sub-strands ti , ti+3, th+8 of

exactly equal circuit complexity. In restricted mode, if each Ti is compiled separately, then

the sub-strand ti is replicated 3 times in the strands Ti , Ti−3, Ti−8. This increases the circuit

size three times, and also adds to unnecessary power consumption. Instead, if we choose

ti (in place of Ti) as the minimal unit whose compilation is restricted, then this replication

can be avoided, and this is precisely what we do here. This simplicity lends itself well to the

restricted mode of synthesis as shown in Table 4.2 and this mode is decidedly better energy-

wise.

A unique property of this structure is that all the sub-strands ti that constitute the round-

function at any level are perfect trees in the corresponding circuit graph. As a result, it is

expected that all the sub-strands at a given level consume similar energy. This is borne out

by simulations performed on 4-round unrolled Subterranean-Deck as shown in Figure 4.15.

84

4.5 Summary

Table 4.2: Subterranean-Deck energy measurements for r = 4 for four cell libraries.

nJ/1.28 MBit

Regular Ultra Restricted

NanGate 15 nm (100 MHz) 162.9 153.0 150.5
NanGate 45 nm (100 MHz) 341.2 389.1 326.6
UMC 65 nm (10 MHz) 129.9 156.1 107.7
TSMC 90 nm (10 MHz) 222.3 206.5 192.1

0 50 100 150 200 250

0.04

0.06

0.08

0.1

µ
W

Figure 4.15: Power plot for 4-round unrolled Subterranean-Deck (TSMC 90 nm at 10 MHz).
The points in red, black, blue and green represent the power consumed by the strands ti in
the first, second, third, and fourths levels of the round function.

4.5 Summary

In this chapter, we make some fundamental observations about the energy consumption of

hardware-targeted stream ciphers and propose the first heuristic energy model that is based

on the novel perfect tree metric. Our model is both simple and widely applicable to a wide

range of stream ciphers and thus enables designers of future algorithms to specifically opti-

mize for the energy consumption. The perfect tree energy model finds direct application in

Trivium-LE(F) and Trivium-LE(S) that stand as the most energy-efficient encryption primi-

tives known in the literature with a 10-15% (resp. around 25 %) margin to the next best cipher.

A complete summary of all measurements is given in Table 4.3. Finally, we extend the reach

of our model beyond stream ciphers and propose a novel, energy-efficient MAC Trivium-LE-

MAC that can then be used to bootstrap an energy-efficient AEAD mode.

[...] To be praised for my plastic lack of inspiration [...]

85

Chapter 4. Perfect Trees

Table 4.3: Measurements summary for all investigated stream ciphers.

Scheme Library Area (GE) Power (µW) Energy (nJ/1.28 Mbit)

0.2 MHz 1 MHz 10 MHz 100 MHz 1 GHz 0.2 MHz 1 MHz 10 MHz 100 MHz 1 GHz

Trivium NanGate 15 nm 10834 – 46.23 127.1 936.1 9026 – 205.7 56.39 41.64 40.15

(r = 288) NanGate 45 nm 9521 – 577.5 932.1 4477 39980 – 2569 414.6 199.2 177.2

UMC 65 nm 9911 5.579 13.15 98.36 905.1 – 124.1 58.51 43.75 42.83 –

TSMC 90 nm 9757 7.015 19.85 164.3 1609 – 155.8 88.29 73.08 71.57 –

Trivium-LE(F) NanGate 15 nm 10834 – 45.35 118.3 848.4 8147 – 201.7 52.62 37.73 36.24

(r = 288) NanGate 45 nm 9521 – 574.5 901.0 4166 36863 – 2555 400.8 185.3 163.9

UMC 65 nm 9911 5.391 12.21 88.97 856.5 – 119.3 54.34 39.57 38.10 –

TSMC 90 nm 9757 6.659 18.12 147.0 1436 – 148.1 80.60 65.39 63.89 –

Trivium-LE(S) NanGate 15 nm 10834 – 44.42 108.2 746.3 7127 – 197.6 48.13 32.68 31.70

(r = 288) NanGate 45 nm 9521 – 568.9 845.1 3608 31247 – 2531 376.1 160.5 138.9

UMC 65 nm 9911 5.238 11.30 80.51 767.2 – 115.9 50.23 35.81 34.13 –

TSMC 90 nm 9757 6.411 16.08 132.1 1311 – 142.58 71.53 58.76 58.33 –

Triad-SC NanGate 15 nm 10834 – 44.88 121.6 889.1 8564 – 224.6 60.84 44.49 42.85

(r = 256) NanGate 45 nm 9199 – 561.8 918.8 4488 40075 – 2811 459.7 224.6 201.5

UMC 65 nm 9487 5.035 11.79 87.79 847.5 – 126.0 59.01 43.39 42.42 –

TSMC 90 nm 9350 6.422 17.90 147.1 1438 – 160.7 89.61 73.62 72.02 –

Trivium-MB NanGate 15 nm 13635 – 57.93 185.5 1460 14218 – 257.7 82.51 64.99 63.25

(r = 288) NanGate 45 nm 12132 – 768.9 1470 8487 75790 – 3402 654.1 377.6 335.9

UMC 65 nm 12287 6.886 15.95 118.0 1138 – 153.2 70.99 52.49 50.66 –

TSMC 90 nm 12783 9.798 28.02 233.0 2283 – 217.9 124.6 103.6 101.6 –

TriviA NanGate 15 nm 15340 – 71.15 231.0 1829 17813 – 237.4 77.07 61.02 59.43

(r = 384) NanGate 45 nm 13440 – 839.1 1565 8835 59172 – 2799 522.5 294.7 196.1

UMC 65 nm 13892 8.869 23.24 184.9 1809 – 147.9 77.55 61.69 60.12 –

TSMC 90 nm 13867 11.94 37.59 326.1 3210 – 199.3 125.4 108.8 107.2 –

Kreyvium NanGate 15 nm 11043 – 50.69 143.5 1078 10425 – 250.5 71.81 53.95 52.16

(r = 288) NanGate 45 nm 9703 – 594.8 1015 5220 47308 – 2976 508.0 261.2 236.7

UMC 65 nm 10083 5.333 12.10 93.22 900.4 – 133.4 62.59 46.65 45.06 –

TSMC 90 nm 9927 7.128 20.06 165.5 1620 – 178.4 100.4 82.83 81.07 –

Subterranean-Deck NanGate 15 nm 12344 – 58.51 199.6 1505 15722 – 585.2 199.6 150.6 157.2

(r = 4) NanGate 45 nm 11170 – 706.6 940.1 3327 – – 7067 940.2 332.2 –

UMC 65 nm 11620 5.756 14.05 107.6 1003 – 575.7 140.1 107.7 103.1 –

TSMC 90 nm 11125 8.741 24.05 192.2 1930 – 874.2 240.6 192.3 193.0 –

Grain-128 NanGate 15 nm 8565 – 31.89 51.12 457.1 4401 – 645.1 103.5 92.65 89.71

(r = 64) NanGate 45 nm 7592 – 456.3 748.6 3671 – – 9238 1516 743.1 –

UMC 65 nm 7544 3.636 8.356 61.45 592.4 – 294.3 169.7 124.4 119.9 –

TSMC 90 nm 7512 5.411 15.30 126.6 1239 – 438.4 309.6 256.4 250.3 –

86

5 Atom

[...] Mummified circuitry [...]

We remain in the domain of stream ciphers, rather than exploring the feasibility of poten-

tial energy consumption optimisations through the lens of existing algorithms, we attempt to

conceive a novel energy-efficient by specifically reducing the internal state size and thus the

corresponding register footprint. In hardware-oriented stream ciphers that produce a sin-

gle keystream bit per clock cycle, the register that hosts the cipher state occupies the largest

chunk of circuit area and consumes the most energy of all components hence a small state

size is beneficial to both metrics.

Crucially, however, the state size cannot be arbitrarily small due to the existence of Time-

Memory trade-off attacks popularized Hellman [79] and subsequently applied to stream ci-

phers as Time-Memory-Data (TMD) trade-off attacks by Biryukov and Shamir [37] where it

was proven that for a stream cipher to be secure against generic TMD trade-off attacks, the

size of its internal state needed to be at least twice the size of its secret key in bits. The key

strategy lies in mounting a table based attack that stored functional iterates of a function that

mapped the internal state of the cipher to a keystream prefix of equal length.

In 2015, the stream cipher Sprout [6] was proposed that had a Grain-like architecture and

surprisingly an internal state and key both of 80 bits. Yet the cipher seemed to be immune to

any of the above TMD attacks. The reason for that is that although the internal state of Sprout

it of 80 bits, the state update algorithm required a key input. Consequently, it is impossible

to construct any function that maps the internal state to keystream without the secret key.

Nevertheless, Sprout fell under heavy cryptanalytic scrutiny [10, 69, 96, 128] with the attack

in [69] being the decisive from a design point of view. The function of the key that was used

to update the state in Sprout was non-linear and so the authors were able to construct a

table using some special states for which the key input was 0 for 40 consecutive cycles: hence

a function mapping state to a 40-bit keystream prefix was possible for these special states.

Using this the authors constructed a probabilistic attack that sampled random keystream

prefix until they found one that was present in the tables. After this key recovery was possible

in practical time. The attack underscored the fact that any key function that was used for state

update had to be linear. This was exactly the approach used in later Grain-like designs like

Lizard [75] and Plantlet [105]. Over the years there have been attacks reported against Lizard

and Plantlet as well. In [23], the authors reported various distinguishing attacks against the

87

Chapter 5. Atom

full round version cipher and a key recovery attack against 223 of the 256 initialisation rounds

of the cipher. Later, Banik et al. [12] proposed a differential attack against Plantlet that finds

the key in around 270 encryptions. Ultimately, Todo et al. [123] proposed a correlation attack

was proposed on Plantlet, albeit on a version that allowed more keystream bits to be extracted

from a single key-IV pair than mentioned in the specifications.

Contributions. Almost all stream ciphers with the Grain structure, including Grain-v1 and

Grain 128, have had some weaknesses or undesirable properties reported against them. Thus

from a design point of view it is an important question whether it is possible to design stream

ciphers securely in the long run. In this chapter, we take up this very challenge. Firstly, our

goal is to devise a circuit component that is able to prevent some of the attacks that have

been proposed in literature. Secondly, we aim to minimize the hardware footprint of the

cipher and thus its energy consumption, and keep it ideally less than other stream ciphers

proposed in literature that offer a similar security level. With respect to this, propose the

stream cipher Atom that offers 128-bit security and has an internal state of around 159 bits

which is less than 25% more than the secret key size. On the face of it, Atom has the same

Grain-like structure adopted by Plantlet, Sprout and Lizard. However, we do add a circuit-

level novelty to the cipher specification that costs only around 150 Gate-Equivalents (GE) in

hardware but guarantees immunity against all attacks proposed against small state ciphers

in the recent past. In fact, we prove its security in the context of specific attacks that have

been proposed against similar designs in literature and present implementation results that

establish its competitiveness among stream ciphers with Atom being both the most area and

energy-efficient21 construction among other contemporary design that also feature key size

of 128 bits. Atom was included in the fourth issue of Transactions on Symmetric Cryptology

(IACR-ToSC) in 2021 [20].

Outline. In Section 5.1, we present the algebraic specifications of the cipher. In Section 5.2,

we argue about some design choices and why they make sense for a short state cipher. Sec-

tion 5.3, presents a comprehensive security analysis. Section 5.4 details the implementation

results. Section 5.5 concludes this chapter.

5.1 Specification

Atom is a stream cipher inspired by the Grain family composed of a linear feedback shift

register (LFSR) and a non-linear feedback shift register (NFSR). An high-level overview of

Atom is depicted in Figure 1. The size of the secret key K of Atom is 128 bits. Similar to

most stream ciphers, the algorithm is divided into an initialisation phase and a keystream

generation phase. The LFSR and NFSR are connected through a XOR gate and have a length

of 90 and 69 bits respectively. At clock cycle t = 0,1, . . ., denote the contents in NFSR and LFSR

by B t = (bt
0, . . . ,bt

89) and Lt = (l t
0, . . . , l t

68), respectively. The definitions of the output function,

21Energy efficiency is taken in the context of single-bit circuits that produce a single keystream bit per clock
cycle. In Chapter 4, we exclusively worked with fully unrolled ciphers in the slipstream of the work by Banik et
al. [25] that demonstrated the competitiveness of unrolled stream ciphers in the encryption of larger amounts of
data.

88

5.1 Specification

LFSR and NFSR are detailed below:

Output Function. The output function O(B t ,Lt) of Atom is a sum of linear terms, a quadratic

bent function and another 9-variable function h such that

O(B t ,Lt) =bt
1 ⊕bt

5 ⊕bt
11 ⊕bt

22 ⊕bt
36 ⊕bt

53 ⊕bt
72 ⊕bt

80 ⊕bt
84

⊕ l t
5l t

16 ⊕ l t
13l t

15 ⊕ l t
30l t

42 ⊕ l t
22l t

67 ⊕h(l t
7, l t

33, l t
38, l t

50, l t
59, l t

62,bt
85,bt

41,bt
9),

where h(X) = h(x0, x1, x2, x3, x4, x5, x6, x7, x8) is defined as

h(X) =x0x1x2x7x8 ⊕x0x1x2x7 ⊕x0x1x2x8 ⊕x0x1x2 ⊕x0x1x3x7x8

⊕x0x1x3x7 ⊕x0x1x4x7x8 ⊕x0x1x4x7 ⊕x0x1x4x8 ⊕x0x1x4

⊕x0x1x5x7x8 ⊕x0x1x5x7 ⊕x0x1x6x7x8 ⊕x0x1x6x8

⊕x0x1x7x8 ⊕x0x1x8 ⊕x0x2x3x7x8 ⊕x0x2x3x7 ⊕x0x2x3x8

⊕x0x2x3 ⊕x0x2x4x7x8 ⊕x0x2x4x8 ⊕x0x2x5x7x8 ⊕x0x2x5x7

⊕x0x2x5x8 ⊕x0x2x5 ⊕x0x2x6x7x8 ⊕x0x2x6x8 ⊕x0x2x7x8

⊕x0x2x8 ⊕x0x3x4x7x8 ⊕x0x3x4x7 ⊕x0x3x5x7x8 ⊕x0x3x5x7

⊕x0x3x6x7x8 ⊕x0x3x6x7 ⊕x0x3x8 ⊕x0x3 ⊕x0x4x5x7x8

⊕x0x4x5x7 ⊕x0x4x6x7x8 ⊕x0x4x6x8 ⊕x0x4x7 ⊕x0x4

⊕x0x5x6x7x8 ⊕x0x5x6x7 ⊕x0x5x7x8 ⊕x0x5x7 ⊕x0x6x7

⊕x0x6x8 ⊕x0x7x8 ⊕x1x2x3x7x8 ⊕x1x2x4x7x8 ⊕x1x2x4x8

⊕x1x2x5x7x8 ⊕x1x2x6x7x8 ⊕x1x2x6x8 ⊕x1x2x7 ⊕x1x2x8

⊕x1x2 ⊕x1x3x4x7x8 ⊕x1x3x5x7x8 ⊕x1x3x6x7x8 ⊕x1x3x7

⊕x1x4x5x7x8 ⊕x1x4x5x8 ⊕x1x4x6x7x8 ⊕x1x4x7 ⊕x1x4

⊕x1x5x6x7x8 ⊕x1x5x6x7 ⊕x1x5x7x8 ⊕x1x5x7 ⊕x1x5x8

⊕x1x6x7 ⊕x1x8 ⊕x1 ⊕x2x3x4x7x8 ⊕x2x3x5x7x8 ⊕x2x3x6x7x8

⊕x2x4x5x7x8 ⊕x2x4x5x8 ⊕x2x4x6x7x8 ⊕x2x4x7x8 ⊕x2x4x8

⊕x2x5x6x7x8 ⊕x2x5x6x8 ⊕x2x5x8 ⊕x2x6x7x8 ⊕x2x6x8

⊕x2x7x8 ⊕x2 ⊕x3x4x5x7x8 ⊕x3x4x5x7 ⊕x3x4x6x7x8

⊕x3x4x6x7 ⊕x3x5x6x7x8 ⊕x3x5x7x8 ⊕x3x6x7x8 ⊕x3x6x7

⊕x3x7 ⊕x3 ⊕x4x5x6x7x8 ⊕x4x5x6x8 ⊕x4x6x7x8 ⊕x4x6x8

⊕x4x7 ⊕x5x7x8 ⊕x5 ⊕x6 ⊕x7x8 ⊕x7 ⊕x8 ⊕1

Note that h is a (9,5,3,240) function, i.e., it is of 9 variables, algebraic degree 5, its correlation

immunity is 3 and its non-linearity is 240. It has one of the highest non-linearities among

all 9 variable Boolean functions (the highest known non-linearity among 9 variable Boolean

functions is 242). Thus the output is a sum of linear terms, a quadratic bent function and h.

Since bent functions are known to have highest non-linearity for even variable functions, this

provides us adequate protection from correlation attacks.

89

Chapter 5. Atom

NFSR. The definition of the update function G(B t) used in NFSR is specified as follows:

G(B t) =bt
0 ⊕bt

24 ⊕bt
49 ⊕bt

79 ⊕bt
84 ⊕bt

3bt
59 ⊕bt

10bt
12 ⊕bt

15bt
16

⊕bt
25bt

53 ⊕bt
35bt

42 ⊕bt
55bt

58 ⊕bt
60bt

74 ⊕bt
20bt

22bt
23

⊕bt
62bt

68bt
72 ⊕bt

77bt
80bt

81bt
83.

LFSR. The update function F (Lt) used in LFSR is based on a primitive polynomial over GF (2)

and hence always ensures a period of 269 −1 such that

F (Lt) = l t
0 ⊕ l t

5 ⊕ l t
12 ⊕ l t

22 ⊕ l t
28 ⊕ l t

37 ⊕ l t
45 ⊕ l t

58.

Initialisation Phase. Denote the 128-bit secret key by K = (k0, . . . ,k127) and the 128-bit initial

value by IV = (iv0, . . . , iv127). In addition, there will be extra 22-bit padding denoted by PD =
(pd0, . . . ,pd21) = 122 (all one string). The NFSR and LFSR registers are initialised as follows:

b0
i = ivi for 0 ≤ i ≤ 89, l 0

i =

ivi+90 if 0 ≤ i ≤ 37;

pdi−38 if 38 ≤ i ≤ 59;

0 otherwise.

After the two registers are initialized, the state at clock t (0 ≤ t ≤ 510) is updated through the

routine specified below:

z t =O(B t ,Lt),

cnt = l t
62||l t

63||l t
64||l t

65||l t
66||l t

67||l t
68,

bt+1
89 =G(B t)⊕ l t

0 ⊕kcnt ⊕ z t ,

bt+1
i = bt

i+1 (0 ≤ i ≤ 88),

l t+1
59 = F (Lt)⊕ z t ,

l t+1
i = l t

i+1 (0 ≤ i ≤ 58),

l t+1
i+60 = ((t +1) >> (8− i))∧1 (0 ≤ i ≤ 8).

The corresponding illustration can be found in Figure. Thus in the initialisation phase

the LFSR is partitioned as two 60 and 9-bit registers. While the 60-bit part is updated using

the LFSR logic, the 9-bit part operates as a decimal up-counter. Since the last 7 bits of the

LFSR when interpreted as a decimal number (denoted by cnt) also forms the index of the

key bit used in the NFSR update, this ensures that all the key bits influence the initialisation

function. Note that l t+1
i+60 = ((t +1) >> (8− i)) for i ∈ [0,8] simply means that in the (t +1)th

cycle the LFSR bits 60 to 68 are updated with the 8 bits of the decimal up-counter t +1. The

60th LFSR location gets the most significant bits of the counter and 68th location gets the

least significant bits.

Keystream Generation. After 511 rounds of the initialisation phase, the state in NFSR becomes

B 511 = (b511
0 , . . . ,b511

89) and the state in LFSR is L511 = (l 511
0 , . . . , l 511

68). Note that since the last 9

90

5.2 Design Rationale

LFSR bits worked as a decimal up-counter during the initialisation phase, and since the ini-

tialisation phase had 511 rounds, the last 9 bits of the LFSR at the beginning of the keystream

generation phase will always be the all 1 vector. The first keystream used for plaintext encryp-

tion is z511. At the keystream phase, the state at clock t (t ≥ 511) is updated as follows and the

keystream bit z t will be output. Note that we limit the amount of keystream extractable from

a single key-IV pair to 264 bits, which should be sufficient for most applications. The exact

keystream generation routine is as follows:

z t =O(B t ,Lt),

cnt = l t
62||l t

63||l t
64||l t

65||l t
66||l t

67||l t
68,

bt+1
89 =G(B t)⊕ l t

0 ⊕kcnt ⊕kt%128,

bt+1
i = bt

i+1 (0 ≤ i ≤ 88),

l t+1
68 = F (Lt)

l t+1
i = l t

i+1 (0 ≤ i ≤ 67).

The corresponding illustration can be found in Figure. The circuit level novelty that we were

referring to the previous section is actually the additional key filter kcnt that we use. As we

have seen earlier, the cnt sequence is derived from interpreting the last 7 bits of the LFSR as

a decimal number. During the initialisation phase it is simply the i mod 128 sequence with

i ranging from 0 to 510. However during the keystream generation phase the cnt sequence

depends on the evolution of the LFSR. Since the LFSR has a period of 269 −1, so does the cnt

sequence. This effectively garbles the order of key bits that is used to update the NFSR. Along

with the kt mod 128 filter, this not only guarantees a high period of the keystream, but as we will

show in the following sections, it also provides immunity against many known cryptanalytic

techniques used to attack small state stream.

b0 b89 l0 l59 l60 l68

G F

Selector

k0 k127

Output

zt

(a) Initialisation Phase

b0 b89 l62 l68

G F

Selector

k0 k127

Output

zt

l0

kt mod 128

(b) Keystream Phase

Figure 5.1: High-level schematic of the Atom initialisation and keystream phase.

5.2 Design Rationale

Every design decision taken on a macro level has been predicated by the need to prevent

previous known attacks on short state stream ciphers. In this section we try to reason why

91

Chapter 5. Atom

we took some of the steps to adopt the current algebraic structure of the cipher. Our aim is

to clearly establish what the design challenges were and how we attempted to address them.

Note that most of the attacks against Lizard leveraged the fact that the Key/IV mixing function

was not injective. This is not the case for Atom as such we seek to prevent other attacks

reported in literature.

5.2.1 Preventing Banik’s Key-Recovery Attack on Sprout

In [10], it was first pointed out that there exist around 230 IVs for every key in Sprout such that

the LFSR becomes all 0 after the Key-IV mixing phase. In the keystream phase the LFSR does

not receive feedback from the output bit and hence remains in the zero state throughout the

evolution of the cipher, which made the algebraic structure of the cipher weak. The work

in [10] leveraged this fact to report the following:

• Key-IV pairs were found in practical time that produced keystream bits with period

equal to 80.

• A key recovery attack was reported in the multiple IV mode. The attacker queries

keystream for a fixed secret key and multiple secret IVs and waits till an IV is queried

such that the LFSR falls into the all 0 state after the key-IV mixing. Once this happens

key recovery was shown to be very efficient, since the algebraic structure of the cipher

weakened, simple equations on the key bits could be obtained which could be solved

to find the secret key.

The zero state problem was tackled quite elegantly in the design of Plantlet. In the key-IV

mixing phase Plantlet fixes the final LFSR bit to 1, so that when the cipher finally enters the

keystream generation mode the LFSR state is never all zero on the account of the fact that the

final bit is 1. Since the Plantlet LFSR connection polynomial is primitive and has length 61,

it has a period of 261 −1 and it never falls into an all zero state. This effectively prevents all

the above attacks. In Atom, the solution we adopt is indeed inspired by Plantlet. During the

key-IV mixing phase the last 9 bits of the LFSR effectively work as a decimal counter. Since

the number of rounds in the initialisation phase is 511, the last 9 bits of the LFSR are all 1

when we enter the keystream generation phase. The Atom LFSR connection polynomial is

also primitive guaranteeing a period of 269−1 and the fact that it never falls into the all 0 trap.

In the keystream generation phase the keybit-sum to update the NFSR is kcnt⊕kt mod 128.

cnt is basically the decimal number formed by interpreting the last 7 LFSR bits as a decimal

number. Since the LFSR has a period of 269−1, it is to be expected that the cnt sequence would

also have the same period. Therefore it is clear that both the cnt and t mod 128 sequence

taken together would repeat only after lcm(269 − 1,128) = 276 − 128 clock cycles. This also

guarantees that the Atom keystream, produced by most key-IV pairs, has a minimum period

of 276−128 bits (unless we have some degenerate cases like the all one/zero key for which the

minimum period is given by the period of the LFSR i.e., 269 −1).

92

5.2 Design Rationale

5.2.2 Preventing Banik-Barooti-Isobe Attacks on Plantlet

This attack on Plantlet demonstrated in [12] can be summarised as follows:

• The attackers observe that if two internal states of Plantlet differ by 040||042||1||018, i.e.,

the 43rd LFSR bit, then they produce keystream vectors whose difference is 0 with

probability 1 in 41 clock cycles. The difference is 1 also with probability 1 in 4 other

clock cycles.

• They try to obtain two internal states with single bit difference in the 43rd LFSR location

by querying some fixed key and random IVs. The keystream extractable with a single

key-IV pair is limited to 230 bits. It was calculated that the probability that such dif-

ference in states will occur during the course of a single key-IV query is around 2−54.6.

Hence to get the required difference at least once on average the attackers needed to

query around 254.6 different IVs.

• They inspect the keystream blocks extracted with the 254.6 IVs. They can with some

probability guess that when 2 segments of keystream blocks possess the 45 bit differ-

ence just mentioned, they have been produced by two internal states that differ only in

the 43rd LFSR location.

• Thereafter by solving a system of polynomial equations given by the keystream bits, the

attacker can find the secret key if his guess was indeed correct, or reach some kind of

contradiction if his guess was incorrect. In the latter event, they repeat the procedure

for other keystream blocks with the given difference. The process when repeated a

finite number of times, does indeed yield the value of the secret key.

For Atom, we experimented with differences of up to hamming weight 4. The best differ-

ential characteristic was obtained when two Atom states differ at the 55th LFSR location: they

are guaranteed to produce keystream that are either equal or unequal in only 18 clock cycles

with probability 1. This number is quite small, compared to Plantlet where 45 keystream bits

are guaranteed to be equal/unequal for a well chosen difference in the LFSR state. The reason

for this is that, in Atom because of the fact that the last 7 bits of the LFSR provide the index

of the key bit which is used to update the NFSR. Thus any LFSR difference will after a short

amount of time be fed back into the 68th LFSR location through the LFSR taps. When this

happens different key bits are used to update the NFSR and the so a difference is propagated

into the NFSR relatively quickly. In any case, when we generate N keystream bits, the prob-

ability that there exists two clock instances t1, t2 at which the internal states differs only in

the 55th LFSR bit is given by birthday bound considerations and is around p = N 2 ·2−160. For

N = 264, this probability is around 2−32. The attacker would therefore need to query around

V = p−1 = N−2 ·2160 IVs to get one difference state on average. The attacker then filters out all

internal state pairs for which the keystream segment does not produce the 18 bit difference

pattern. The number of such pairs is around U =V · N (N−1)
2 ·2−18 ≈ 2141. The attacker would

have to then solve polynomial systems arising from these 2141 state pairs. This is well above

93

Chapter 5. Atom

the complexity of exhaustive search. Note that the main reason that the attack is prevented

is that the use of kcnt term used in the state update depending on the last 7 LFSR bits. This

prevents us from getting a large enough differential pattern of equal/unequal bits that can

bring down the value of U to less than 2128.

5.2.3 Preventing Todo-Meier-Aoki Attacks on Plantlet

The attacks reported in [123] are against a variation of Plantlet that allows up to 254 keystream

bits per key-IV pair and are correlation attacks of a similar type reported against the Grain

family. The attack can be summarised in a few steps:

• The attackers try to formulate probabilistic equations of the following form:⊕
t∈TZ

zt ⊕ ⊕
t∈TK

kt ⊕ ⊕
t∈TL

l t
i = ϵ (5.1)

where TZ , TK , TL are linear masks that denote subsets of keystream, key and LFSR

state bits that add up to form the probabilistic equations. ϵ denotes a variable such

that Pr [ϵ= 0] = 1/2 ·(1+η), where η is the correlation term whose value determines the

complexity of the attack algorithm.

• The value of η depends on the linear biases of the NFSR update function and the output

function.

• In Plantlet, the keybit used in the state update function repeats every 80 clock cycles.

To apply the correlation attack to Plantlet, the attackers need
⊕

t∈TK
kt to be a constant.

Therefore the attackers build up a bank of equations at intervals of 80 cycles each. For

example if the original probabilistic equation was zt ⊕ zt+2 ⊕kt ⊕kt+45 ⊕kt+51 ⊕ l t
10 +

l t
14 ⊕ l t

31 = ϵ, the attackers build equation banks of the form:

z0 ⊕ z2 ⊕k0 ⊕k45 ⊕k51 ⊕ l 0
10 + l 0

14 ⊕ l 0
31 = ϵ1

z80 ⊕ z82 ⊕k0 ⊕k45 ⊕k51 ⊕ l 80
10 + l 80

14 ⊕ l 80
31 = ϵ2

z160 ⊕ z162 ⊕k0 ⊕k45 ⊕k51 ⊕ l 160
10 + l 160

14 ⊕ l 160
31 = ϵ3

...
...

Note that the value of
⊕

t∈TK
kt remains constant in these equations because in Plantlet

the keybits used in the state update repeat every 80 cycles.

• Once the attacker has around N such equations and the correlation of each ϵi is η,

then for the correct value of the LFSR internal state the difference between the num-

ber of correct and incorrect equations will be distributed according to N (Nη, Nη2) if⊕
t∈TK

kt = 0 or N (−Nη, Nη2) if
⊕

t∈TK
kt = 1. This distribution when the LFSR internal

state is incorrect is given by N (0, Nη2), where N (µ,σ) denotes the normal distribution

with mean µ and variance σ. Note that around N =O(η2) equations are needed to reli-

ably distinguish the distributions N (±Nη, Nη2) and N (0, Nη2) and mount the attack.

94

5.2 Design Rationale

• The authors use a maximum likelihood decoding algorithm such as the Fast Walsh

Hadamard transform (FHWT) to find the LFSR state efficiently. Thereafter the key and

NFSR state can be found by solving polynomial equations on the keystream bits.

The reason why this attack can not be used against Atom is as follows. In Atom, we can

also derive probabilistic equations as given in Equation (5.1). However, the key bits used in

the state update depend on both the LFSR and the time counter and as such is not known

completely to the attacker. Since the LFSR is guaranteed to begin the keystream phase with a

non zero state and that its connection polynomial is primitive over GF(2), it will only repeat

after 269 − 1 cycles. The mod 128 counter repeats only after 128 cycles. Hence the keybits

repeat only after τ= lcm(269 −1,128) = 276 −128 clock cycles. This greatly increases the data

complexity of any correlation attack on Atom. Since we limit the amount of keystream to 264

per key-IV pair, this type of attack seems infeasible. Nevertheless, we heuristically searched

different linear combinations to mount a linear attack. However, we did not find any efficient

linear combination of keystream bits that has a high enough correlation with the sum of LFSR

bits and keybits.

5.2.4 Preventing Esgin-Kara Attacks on Sprout

One of the reasons Sprout was immune to the TMD trade-off attacks, despite having state size

equal to the size of the key, was that the key was used to update the state update transitions,

and so it was impossible to construct a function that mapped state to any length of keystream

prefix, without using the key. Thus the effective size of the internal state was twice the size of

the key as required. The attack against Sprout proposed in [69] can be summarised below:

• The authors showed that in spite of all the above, there existed special states of Sprout

for which it is possible to map the state to keystream without requiring the secret key.

This is because the round key function used to update the state at time t was of the

form (k[t mod 80]) · (
∑

nt
i +

∑
l t

i), where k[i] is the i -th key bit. Now if the expression

(
∑

nt
i +

∑
l t

i) is 0 for 40 consecutive cycles then the contribution of the key to the state

update is 0, which in other words means that it is now possible for these special states

to produce keystream without requiring the key and so a function mapping state to

a 40-bit keystream segment is now possible, which does not additionally require the

secret key.

• The authors showed that it was possible to efficiently enumerate these special states

and tabulate these states along with the 40 bit keystream segment produced by them.

• In the online stage of the attack, the authors examined every available keystream seg-

ment and look for the segment in the precomputed tables and try to extract the state.

It was shown that if done sufficient number of times, Sprout will degenerate into a spe-

cial state and the attacker can extract the corresponding state from the table. After this

the attacker solves some algebraic equations to find the secret key.

95

Chapter 5. Atom

• The authors showed that both the online and offline stages of the attack had practical

time, memory and data complexities.

Ever since the publishing of [69], all subsequent stream cipher designs like Plantlet and

Lizard have been proposed with strictly linear key bit contributions to the state update func-

tion, i.e., of the form k[t mod keysize]. We too adopt linear key addition to the state update,

but the key bit to be used is not indexed by a counter but by the last seven bits of the LFSR.

This gives rise to some unique opportunities. To understand better, let us consider an altered

variant of Atom in which the state update function does not include the kt%128 term, in other

words

bt+1
89 =G(B t)⊕ l t

0 ⊕kcnt,

l t+1
68 = F (Lt).

Note that the LFSR runs autonomously during keystream generation, and since initialisation

lasts 511 cycles, the cipher always enters keystream phase with last 9 bits all 1. Since the

connection polynomial is primitive, it is well known, that the LFSR has a period of 269−1 and

never enters the all zero state. Now let us say that for some t , the last seven bits of the LFSR

is 000 0001 which occurs with probability 2−7. We want that for T consecutive cycles the last

seven bits of the LFSR take the following values 01,02,04,08,10,20,40,01. . . and so on.

This way the only keybits involved in the update of the NFSR state will be from the 7-element

set K = {k1,k2,k4,k8,k16,k32,k64}. For this to happen the following three equations need to

hold:

1. l t
62, l t

63, l t
64, l t

65, l t
66, l t

67, l t
68 = [000 0001]

2. l t+i
68 = F (Lt+i−1) = 0 for i = 1,2,3,4,5,6 mod 7 and 1 ≤ i < T

3. l t+i
68 = F (Lt+i−1) = 1 for i = 0 mod 7 and 1 ≤ i < T .

There are a total of T +6 conditions to fulfill and it is not difficult to see that the solution space

of the above linear system of equations has dimension 69− (T +6) = 63−T . Since the system

is linear it is easily possible to enumerate all such states. Note that for all such 263−T LFSR

states, we could easily define a function that maps the entire internal state + K to a T -bit

keystream segment. Our attack unfolds as specified below into phases:

Offline.

1. For all 290 NFSR states, 263−T LFSR states enumerated above and all 27 values of K (a

total of 2160−T iterations)

(a) Compute the T -bit keystream segment Z .

(b) Store in a table Tab(Z)= State||Q, where Q are the seven key bits that produced Z .

(c) Each table cell will store around 2160−2T entries (a total of 2160−T entries are di-

vided among 2T table cells).

96

5.3 Security Evaluation

The offline phase comes with a time complexity of 2160−T and a memory complexity of 160 ·
2160−T .

Online.

1. Take any keystream segment Z .

2. Extract all 2160−2T entries S from Tab(Z).

3. For all such S:

(a) Solve for the keybits not inK.

(b) If a solution exists then output key else try another value of S.

In terms of the time complexity of the online phase, note that we have stored a fraction

1/2T+6 of all internals states. Under standard randomness assumptions, the online stage will

extract the correct state in 2T+6 · 27 attempts when both the state and key are correctly ex-

tracted. Hence the complexity of the online phase is 2T+13+160−2T = 2173−T attempts to solve

for the remainder of keybits. Assuming that finding the rest of the key bits is efficient, taking

T ≈ 60, would put the complexity of both the online and offline phase below the complex-

ity of exhaustive search. Now when we include the kt mod 128 term in the update function it

ensures that we can never get a relation between the state and keystream segment that only

involves a few key bits. More precisely any function mapping into T ≤ 128 keystream bits

must involve at least 159+T input bits of the state and key. Thus this attack is prevented.

5.3 Security Evaluation

We start the security evaluation by showing the resistance of Atom against various TMD

trade-off attacks before shifting to differential strategies.

5.3.1 TMD Trade-Off Attacks

TMD trade-off attacks aim to invert a one way function f at a single point in the range of

function. The attack is probabilistic and the attacker may need access to multiple points in

the range of f . For stream ciphers, the one way function is typically the map between the

internal state and the prefix of the keystream bits produced by the internal state. We have

already seen in the previous section that any function mapping into T ≤ 128 keystream bits

must involve at least 159+T input bits of the state and key. In this context, let us look at some

of the common TMD trade-off attacks reported against stream ciphers:

Biryukov-Shamir Attack [37]. Given that N is the cardinality of the set of internal states, the

attacker chooses m, t ,D so that mt 2 = N and t ≥ D , where D will be the data complexity

required for the attack. The attacker builds t
D tables of size m × t in the following manner:

he randomly chooses m initial states. For each initial state, he forms a chain of length t by

iteratively applying the stream cipher function f and using the keystream as the state for the

next point. For each table some unique reordering of the bits after applying the function f

97

Chapter 5. Atom

is used so that the tables do not store the same set of states. For the attacker to be able to

do this he must be able to formulate the stream cipher function in such a manner that it

maps equal length input and output bit vectors. The only choice the attacker has is to choose

T = 159+128 = 287, which enables him to formulate the function f as mapping the key and

state to the first 287 keystream bits produced by the generator. In the process, mt · t
D = N

D

of the state space is covered by all the chains. This also happens to be the offline complexity

Toffline of this stage. Also only the start and endpoints of each chain are stored in tables, and so

M = m · t
D bits of memory is used. In the online phase, the attacker has access to D segments

of keystream. For each target keystream segment y , he applies f on y upto t times checks if y

is present as an endpoint in any table. If yes, he goes back to the starting point and retrieves

the state just before y in the chain. The total time complexity is thus Tonline = D · t · t
D = t 2.

This gives us the trade-off curve TonlineM 2D2 = N 2, with the limitation that Tonline ≥ D2. For

Atom, N = 2287 and there is no point in the trade-off curve for which Tonline and Toffline are

both less than 2128.

Sampling Resistance of Atom. The main idea of sampling is to find an efficient way to generate

and enumerate special cipher states, for which the first few keystream bits generated by the

cipher is a fixed string. If this happens for a run of x bits, the sampling resistance of the

cipher is defined to be R = 2−x . This leads to improved trade-off attacks when the value of x

is significant. For Atom, the taps are extremely densely packed. The sampling resistance is

quite large and around 2−5. Observe the following set of equations in the generator:

bt
22 = zt ⊕bt

1 ⊕bt
5 ⊕bt

11 ⊕bt
36 ⊕bt

53 ⊕bt
72 ⊕bt

80 ⊕bt
84

⊕ l t
5l t

16 ⊕ l t
13l t

15 ⊕ l t
30l t

42 ⊕ l t
22l t

67 ⊕h(l t
7, l t

33, l t
38, l t

50, l t
59, l t

62,bt
85,bt

41,bt
9)

bt
23 = zt+1 ⊕bt

2 ⊕bt
6 ⊕bt

12 ⊕bt
37 ⊕bt

54 ⊕bt
73 ⊕bt

81 ⊕bt
85

⊕ l t
6l t

17 ⊕ l t
14l t

16 ⊕ l t
31l t

43 ⊕ l t
23l t

68 ⊕h(l t
8, l t

34, l t
39, l t

51, l t
60, l t

63,bt
86,bt

42,bt
10)

...

bt
26 = zt+4 ⊕bt

5 ⊕bt
9 ⊕bt

15 ⊕bt
40 ⊕bt

57 ⊕bt
76 ⊕bt

84 ⊕bt
88

⊕ l t
9l t

20 ⊕ l t
17l t

19 ⊕ l t
34l t

46 ⊕ l t
26l t

71 ⊕h(l t
11, l t

37, l t
42, l t

54, l t
64, l t

66,bt
89,bt

45,bt
13)

This means that given the value of 282 particular state and key bits of Atom and the first 5

keystream bits produced from that state, another 5 internal state bits may be deduced effi-

ciently. The equation for bt
27 involves bt

90 which already contains the bt
25 term. This helps

us define a function f : {0,1}282 → {0,1}282. We fix a specific 5 bit string say 15. For any

282-bit string x we expand it to a 287-bit string by interpreting it as a partial state of Atom

and calculating the remaining 5 bits bt
22,bt

23, . . . ,bt
26 by assuming that zt , zt+1, . . . , zt+4 = 15.

Generate the remaining 282 bits y = zt+5, zt+6, . . . , zt+286 by clocking the Atom generator with

the full state. We define f (x) = y . Using this technique, in the online stage we wait till we

observe the 15 vector in the keystream sequence. If so we try to invert f using the subse-

quent 282 bits of the keystream. It can be shown that the trade-off curve resulting thereof is

TonlineM 2(RD)2 = (RN)2, with the condition (RD)2 ≤ T . Again there is no point in the trade-

off curve for which Tonline and Toffline are both less than 2128.

98

5.3 Security Evaluation

Hong-Sarkar [81]. This attack is exactly same as the TMD technique by Biryukov and Shamir

[37], except that the definition of the underlying one-way function is different. In this attack,

f maps the string consisting of the Key and IV to an equal length keystream bits. Thus if K

and V refer to the size of the Key space and IV space respectively, then N = K V , and we will

have the new trade-off curve TonlineM 2D2 = K 2V 2 with the limitation that Tonline ≥ D2. This

strategy becomes applicable if V ≪ K , as in the case of the A5/3 cipher (in which the size of

the secret key in 64 bits, and the size of the IV is 22 bits). In our case K =V , and N = K V = 2256,

so there is no point in the trade-off curve for which Tonline and Toffline are both less than 2128.

Dunkelman-Keller [66]. This TMD attack, that is, a multiple IV routine, in which the attacker

obtains keystreams from multiple IVs and the same key in order to perform the attack. The

definition of the underlying one way function f is slightly different from the Hong-Sarkar

attack. Given a fixed IV, the function f maps the secret key to the keystream sequence of equal

length. The attacker chooses V
D random IVs. For each IV he constructs t tables as before, by

iterative application of the function f from m random starting points, with mt 2 = K . Again

only the start and end points are stored and so for each IV the storage required is Msingle = mt ,

and the total storage is therefore Msingle · V
D , and the total offline complexity is Toffline = K · V

D .

In the online phase, the attacker waits until he receives keystream for one of the V
D IVs he

had made tables for. This happens in roughly D IV resynchronisations. Once he gets such

keystream from such an IV, he retrieves the t tables he had constructed for the particular IV

and tries to find the inverse image of the keystream string in each of the tables. Therefore

the online complexity is given by Tonline = D + t 2 = D + K 2

M 2
single

= D + K 2V 2

M 2D2 with the constraints

Tonline ≥ D,V ≥ D . In the case of Atom, K V = 2256 and again this attack is not feasible.

5.3.2 Differential Cryptanalysis

Differential cryptanalysis was first introduced to analyse the block ciphers DES and Feal and

the hash function N-Hash by Biham and Shamir [34]. Since then, it has been applied to many

symmetric cryptographic primitives, not limited to block ciphers. To evaluate the resistance

against differential attacks for block ciphers, one way is to obtain the lower bound of the

number of active S-boxes, which is a nonlinear operation. For Atom, there are two nonlinear

components of NFSR and output function h, which include AND operations as nonlinear

operation. Therefore, instead of an active S-box, we search the lower bound of the number

of sum of active AND and h(X), which means having at least one active bit as input. In our

evaluation, since the maximum differential probability of AND is 2−1 and h(X) consists of

AND and XOR, we count the maximum differential probability of h(X) as 2−1. Hence, it is

sufficient to guarantee the security against the differential attack if there are 128 sum of active

AND and h(X). We present this security evaluation with a MILP-based method [108], which

is well known as the efficient search method to obtain the lower bound of the number of

sum of active AND and h(X) (active S-boxes). Our evaluation uses the Gurobi optimizer as

a MILP solver, and searches all bit-wise differential characteristics. Note that our evaluation

assumes that each active AND is independent in a differential characteristic. Thus, it might

include invalid differential characteristics. However, since our search can cover all valid ones

99

Chapter 5. Atom

at the same time, we believe that our evaluation is sufficient for obtaining lower bounds of

the number of active AND.

Table 5.1: Lower bounds of the sum of AND and h(X) in the related IV setting.

Number of Rounds 40 45 50 60
Number of Active AND & h(X) 18 24 30 43

Table 5.1 shows the minimum number of the sum of active AND and h(X) for 40, 45, 50,

60 clocks at the initialisation phase in the related IV setting. In our evaluation, we can search

it for up to 60 clocks with a computer equipped with 48 cores and 256 GB RAM. Form this

result, Atom achieves 128 sum of active AND and h(X) for more than 180 clocks. Thus, we

expect that the full rounds of Atom can resist differential cryptanalysis.

5.3.3 Conditional Differential Cryptanalysis

Conditional differential cryptanalysis was first introduced in [31]. The technique allows for

improved key recovery and distinguishing attacks against a group of ciphers such as Trivium,

Katan, Grain-v1 and Grain-128. For example, the authors of [91] demonstrated a 961-round

distinguisher for Trivium for a large class of weak keys. Attacks against reduced-round vari-

ants of the Grain family were reported in [90].

In its core, conditional differential cryptanalysis is a refinement of ordinary differential

attacks where the longevity of differential trails is extended by imposing some conditions

on public parameters such as initialisation vectors. Denote by x = (x1, . . . , xn) ∈ {0,1}n an

n-bit initialisation vector and let ∆x = (∆x1, . . . ,∆xn) ∈ {0,1}n be an IV difference such that

x +∆x = (x1 +∆x1, . . . , xn +∆xn). Furthermore, let ti (k, x) be the newly generated state bit

in round i based on some secret key k and the public parameters x. The IV difference ∆x

propagates to ti (k, x) whenever

∆ti (k, x)+ ti (k, x +∆x) = 1.

In order to attain a simple high-round differential trail the attacker can impose conditions on

the public parameters to prevent the propagation of the differential into the state in certain

rounds. More specifically, these conditions are categorized into two types:

• Type 1: Conditions that only involve IV variables, i.e., w1(x) ∈ {0,1}.

• Type 2: Conditions that involve both IV and key variables, i.e., w2(x,k) ∈ {0,1}. w2

should be of the form w(x,k) = f (x)+ g (k), where the function f (x) only depends on

the IV bits and and the function g (k) only depends on the key bits.

For correctly chosen conditions that prevent the propagation of the differential an adversary

hopes to find a biased keystream bit in some round. Then by leveraging this distinguisher

the attacker partitions the IV space into 2N subsets (where N is the total number of type 2

conditions) one for each type 2 condition. A bias should then occur for the one subset for

which g (k) is correctly guessed.

100

5.3 Security Evaluation

The derivation of these conditions can be achieved through computer algebra systems.

Evidently, the algebraic expressions of a large number of rounds can be explicitly evaluated

when the state update function of the cipher is simple. For example, in Trivium it is effort-

lessly possible to compute the algebraic equations for more than 200 rounds. This does not

hold true for Atom, in fact, due to the complex nature of its state update function, it is not

possible to compute the equations of than a dozen rounds, which naturally limits the appli-

cability of conditional differential attacks.

We searched for single-bit differentials heuristically. The best single-bit input differential

trail in Atom is found when a difference is introduced in bit IV67. We proceed by stopping its

propagation into subsequent rounds with the following conditions:

t = 5 : IV73 = 0

t = 6 : IV81 = 0

t = 7 : IV11 = 0

t = 8 : IV64 = 0

t = 11 : IV70 = 0

t = 13 : IV39 = 1

t = 14 : IV22 = 0, IV56 = 1, IV112 = 0,

f1(IV \ {IV0})+ IV0 +k0 = 1,

f2(IV \ {IV8})+ IV8 +k1 +k2 +k4 +k5 +k10 = 1.

Here f1, f2 are polynomials on both key and IV bits. At this point, the propagation of the dif-

ferential is prevented during the first 15 rounds. Two of the conditions are of type 2, however

the polynomials f1 and f2 are infeasible to enumerate unless more IV variables are set to zero,

i.e.,

IVi = 0, i ∈ [10,38]∪ [46,55]∪ [57,66]∪ [68,89]∪ [100,127]

This means that in total 98 IV bits have to bit set to either 0 or 1, which leaves 30 free variables.

After this f1, f2 become polynomials defined only on the IV bits. We note that IV0 only occurs

linearly in f1, the same is true for IV8 in f2. As we have two type 2 conditions we partition the

IV variables into 22 = 4 sets TU of the form

TU = {IV ∈ {0,1}128 | IVi = 0, i ∈ [10,38]∪ [46,55]∪ [57,66]∪ [68,89]∪ [100,127],

IV39 = 1, IV56 = 1,

IV0 = f1 +k0, IV8 = f2 +k1 +k4 +k5 +k10},

where U = [k0,k1+k2+k4+k5+k10]. These conditions then produce a detectable bias in the

keystream bit of round 36 for the IV set TU where U has been guessed correctly. We give the

full polynomials f1 and f2 in Appendix.

Note a bias may linger longer in the cipher state. For example a difference in IV bit IV18

101

Chapter 5. Atom

produces a difference in b6
12 under the conditions

IV17 = 0, IV19 = 0.

This conditional differential trail exhibits a bias in state bits b117
0 and l 117

0 , i.e., in round 117.

However, it is not clear how such a biased state bit can be exploited given the complicated

nature of the keystream function. Consequently, we believe that Atom resists conditional

differential attacks with a large security margin.

5.3.4 Integral/Cube Attacks

The integral attack was first proposed by Daemen et al. [58] as a dedicated attack against

the block cipher Square, and then it was formalized to the integral property by Knudsen and

Wagner [93] We define the four states for a set of 2n n-bit cell:

(A) If ∀i , j i ̸= j ⇔ xi ̸= x j .

(C) If ∀i , j i ̸= j ⇔ xi = x j .

(B)
⊕2n−1

i xi .

(U) Everything else.

In our evaluation, we search the integral distinguisher on clock-reduced Atom. To find the

integral distinguisher, we explore the propagation of the division property as proposed by

Todo [121], which can search the integral distinguisher in more detail than the integral prop-

erty, with an MILP-based search method proposed by Xiang et al. [127], which can efficiently

explore the propagation of the bit-based division property. When we search the integral dis-

tinguisher, we give IV having (A), which denotes that all bits in IV are active, as the division

property at the input and then we check whether the output of the keystream bit is balanced

after r clocks or not. As a result, we found the integral distinguisher after 67 clocks and we

could not find the integral distinguisher after 68 clocks. Thus, we expect that Atom can re-

sist against the integral attack. In addition, the division property was introduced to evaluate

cube attacks [64], i.e., it examines the set of key bits J involved in the superpoly given a cer-

tain cube I [122]. Therefore, this result shows that the full rounds of Atom has a sufficient

security level against cube attacks.

5.3.5 Algebraic Attacks

The output functions in Atom were chosen to be sufficiently complicated to prevent advances

due to algebraic attacks. In [32], an algebraic attack was proposed against Grain-like ciphers

in which the NFSR variables add only linearly to the expression for the keystream bit. For

example it was shown that if a modified version of the Grain v1 cipher was conceived in such

a way that it contained only the non-linear register from which the keystream was obtained

only by linearly adding specific bits of the inner state, then each updated NFSR bit would be

a linear function of initial state of NFSR bits. For example if v0, v1, v2, . . . , vn−1 is the initial

102

5.4 Hardware Implementation

state of the NFSR such that each updated bit is calculated as vn+t = G(vn+t−1, vn+t−2, . . . , vt)

and each keystream bit zt = L(vn+t−1, vn+t−2, . . . , vt), where G , L are non-linear and linear

boolean functions respectively on n bits, then updated bit vn+t can be written as

vn+t =G(vn+t−1, vn+t−2, . . . , vt) = Lin(v0, v1, . . . , vn−1, z0, z1, . . . , zt), ∀t (5.2)

Here, Lin is another linear function. The above is not difficult to show and requires simple

mathematical induction based arguments: if t0 is the smallest integer for which the expres-

sion for zt0 contains the term vn , then from the linearity of zt0 , we can see that vn can be

written as a linear expression in v0, v1, · · · , vn−1 and zt0 . The argument carries forward in a

similar manner for any subsequent value of t = t0 + 1, t0 + 2, . . . etc. Now we can multiply

Equation (5.2) on both sides by H which is the annihilator of G to get equations of lower

algebraic degree. The authors of [32] showed that for the modified of Grain v1, one could

generate degree 4 equations using the annihilator of the non-linear update function. The

system could then be linearized and solved using Gaussian elimination using 249 operations.

Consider what happens when we have a Grain-like structure in which the attacker somehow

gets to know the entire LFSR state. If the output equation for the keystream bit only contains

terms from the NFSR which are linearly added along with non-linear terms from the LFSR,

then due to the fact that the LFSR is completely known, the expression for the keystream bit

becomes a purely linear expression in the initial NFSR state variables and we arrive at a situ-

ation that is similar to the one described in the previous paragraph. For Atom, we made sure

that the expression for the kesytream bit contains higher degree terms with NFSR bits. Hence

the attack of [32] does not apply to Atom.

In [10, 12, 100] algebraic attacks via the method of SAT solvers are proposed against

Sprout and Plantlet. The idea is to formulate equations relating the key and the internal

state variables to the keystream bits and forward the resulting equation bank to a suitable

solver. This approach is in itself slightly problematic against Atom since a part of the LFSR

directly decides which key bit is used to update the NFSR. If the LFSR is variable or unknown,

the attacker would find it difficult to enumerate any equation bank as it is not known which

key bit was used in the state update. Hence to use this approach the attacker has to guess

correctly the entire LFSR state in order to proceed with the attack (this imposes a multiplica-

tive complexity 260 to begin with, since the attacker knows that the last 9 bits of the LFSR

at the beginning of the keystream phase is always 1). After this, we tried to follow a similar

approach as in the above papers and present an equation bank to the solver. On a machine

running with an Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz and 12 GB RAM, we could not

solve the equations in reasonable time unless we additionally guessed correctly the values of

NFSR bits too. A detailed analysis of the distinguishing attack presented in [10] is given in

Appendix.

5.4 Hardware Implementation

In Table 5.2, we compare our implementation results with current state of the art hardware-

oriented stream ciphers providing 80-bit security Grain-v1, Trivium, Sprout, Plantlet, Lizard

103

Chapter 5. Atom

and the 128-bit stream cipher Grain-128. For completeness, we also include AES-CTR in our

benchmarks. There are numerous hardware implementations of AES presented in literature:

from fully unrolled which performs encryption in one clock cycle, to round based which takes

10 clock cycles per encryption to various serialized circuits which although smaller in hard-

ware size, utilize much more clock cycles for the same purpose. We choose the byte-serial AES

implementation presented in which takes around 176 clock cycles to encrypt one plaintext

and so when used in counter mode, this circuit can encrypt 128 bits every 176 clock cycles.

This is close to the one bit/cycle implementations of the other stream ciphers. We remark

the strategy of reducing having a small state size is beneficial for both the circuit area foot-

print and the overall energy consumption effectively making Atom the most efficient choice

among stream ciphers with the same key length of 128 bits.

For a more detailed inspection of the Atom circuit components, we present a break-up of

the area shares taken by the various components of the circuit in the design of Atom using the

standard cell library of the STM 90nm logic process. As can be seen, a major part of the circuit

area (around 56%) is occupied just by the registers. The two key filters occupy 303 GE in total,

which means that the additional innovation cost us around 150 GE. As can be seen our design

is quite competitive in performance as compared with Grain 128. A high-level diagram of the

circuit is present in Figure 5.2. As can be seen, Init represents the signal which is high only

during the initialisation phase. The LFSR is indeed partitioned in to two sections of 60 and 9

bits each. We also have a dedicated decimal counter that updates the last 9 bits of the LFSR

during initialisation which is discontinued as soon as the initialisation phase is completed.

The key filters are arranged so that the kt mod 128 component is added to the NFSR update

only after the initialisation phase is completed.

G F

Init

b

Output

k1

k2
Init

Counter

LFSR (last 7 bits)K b

Key Filter Logic

Output Logic

NFSR (90)

Decimal Counter

LFSR (60 + 9)

zf

b

b

b

zf

k1 k2 zf

Init Init

Figure 5.2: High-level circuit diagram. Note that the logic required to load the IV and constant
pad on to the registers is not explicitly shown.

If any application requires higher throughput relative to hardware area, Table 5.2 shows

104

5.5 Conclusion

that this can be achieved with Grain or Trivium. Hence for some speeds, these ciphers offer

a much better area/performance trade-off. Also note that, for Grain/Trivium it is possible to

compute a lot of bits in parallel relatively easily, because these designs deliberately leave last

few bits in the registers untapped. While these designs can afford to do this, because their

register sizes are 2-3 times the key size, for small-state designs this is undesirable, for follow-

ing reasons: (1) It decreases the sampling resistance of the cipher and so a TMD trade-off

attack via BSW sampling may become feasible, (2) prevent situations like [10, Section 5.2] in

which if part of the LFSR with some probability is zero for few clock cycles, the keystream can

be expressed as a function of a much smaller part of the internal state, and (3) another rea-

son why parallelizing is counterproductive in Atom-like with key-filter, is that for any x-times

parallelized implementation, we will need 2x keybits to update the state, which requires 2x

key-filters. Since each filter is a 128-to-1 multiplexer, this increases the area of the design

multiple folds.

5.5 Conclusion

In this chapter, we proposed the Atom stream cipher with internal state only around 25%

larger than the secret key. Since all such attempts in the past had some cryptanalytic ad-

vances reported against them, our aim was to see if there were any high level architectural

modifications that could make such designs immune against common cryptanalytic meth-

ods. As a result we adopted a Grain-like structure with an additional key filter that seems to

protect against most cryptanalytic advances reported against small state ciphers. Atom cur-

rently stands as the most area and energy efficient construction among stream ciphers of the

same key size of 128 bits.

[...] I get that this is heinous [...]

105

Chapter 5. Atom

Table 5.2: Hardware measurements of Atom and other hardware-oriented stream cipher al-
gorithms. The power and energy figures were obtained at a clock frequency of 10 MHz. We
list the energy metric for the encryption of small message batch of 128 bits and a large one of
1.28 Mbits. All constructions were synthesized using the compile_ultra directive. Note that
the AES-CTR circuit a byte-serial construction.

Library Scheme State/Key Area Init. Latency Critical Path Max. TP Power Energy (nJ)

Bits µm2 GE Cycles ns MBits/s µW 128 Bits 1.28 Mbits

NanGate 15 nm Grain-v1 160/80 320.3 1629 160 0.28 3558.7 90.6 0.261 1159.9
Trivium 288/80 514.9 2619 1152 0.23 4386.0 144.8 1.853 1855.1
Sprout 80/80 209.9 1068 320 0.17 6044.9 58.9 0.264 753.7

Plantlet 101/80 245.4 1248 320 0.17 6002.0 69.2 0.310 886.1
Lizard 121/120 379.0 1927 256 0.17 5744.2 90.1 0.346 1153.4

Grain-128 256/128 482.2 2453 256 0.24 4130.0 141.9 0.545 1816.7
Kreyvium 288/128 989.7 5034 1152 0.21 4829.3 246.2 3.151 3154.2

Trivium-MB 288/128 537.4 2734 1152 0.21 4678.1 148.6 1.902 1903.8
Trivia 384/128 686.1 3489 1152 0.19 5270.6 191.5 2.451 2453.4

AES-CTR 128/128 648.8 3300 176 0.33 2184.6 283.2 0.997 4984.8
Atom 159/128 446.0 2268 511 0.21 4774.6 129.2 0.826 1654.4

NanGate 45 nm Grain-v1 160/80 1161.9 1456 160 0.63 1587.3 342.5 0.986 4384.5
Trivium 288/80 1857.6 2328 1152 0.51 1960.8 548.3 7.018 7024.6
Sprout 80/80 768.7 963 320 0.62 1612.9 227.0 1.017 2906.3

Plantlet 101/80 873.3 1094 320 0.76 1315.8 242.1 1.085 3099.7
Lizard 121/120 1326.0 1662 256 0.81 1234.6 386.9 1.486 4953.3

Grain-128 256/128 1685.6 2112 256 0.87 1149.4 453.5 1.741 5806.0
Kreyvium 288/128 3441.6 4313 1152 0.76 1315.8 824.9 10.559 10568.2

Trivium-MB 288/128 1947.9 2441 1152 0.51 1960.8 557.9 7.140 7146.9
Trivia 384/128 2482.6 3111 1152 0.73 1369.9 725.1 9.281 9289.6

AES-CTR 128/128 2340.3 2933 176 2.05 354.8 729.5 2.568 12840.5
Atom 159/128 1613.3 2022 511 1.25 800.0 431.8 2.759 5529.2

UMC 65 nm Grain-v1 160/80 1836.0 1275 160 2.73 366.3 112.5 0.324 1440.2
Trivium 288/80 2852.6 1981 1152 2.92 342.5 187.8 2.404 2406.0
Sprout 80/80 1265.8 879 320 3.12 320.5 73.9 0.331 945.5

Plantlet 101/80 1452.6 1009 320 3.19 313.5 84.9 0.380 1086.4
Lizard 121/120 2272.0 1578 256 3.90 256.4 104.1 0.400 1332.7

Grain-128 256/128 2824.2 1961 256 3.57 280.1 173.4 0.666 2220.0
Kreyvium 288/128 5613.5 3898 1152 3.68 271.7 314.1 4.020 4024.1

Trivium-MB 288/128 3031.6 2105 1152 2.83 353.4 194.2 2.486 2488.0
Trivia 384/128 3871.0 2688 1152 3.79 263.9 246.7 3.158 3160.6

AES-CTR 128/128 3960.7 2751 176 8.97 81.1 284.9 1.003 5014.7
Atom 159/128 2835.4 1969 511 6.22 160.8 145.0 0.927 1856.7

TSMC 90 nm Grain-v1 160/80 3512.5 1246 160 1.98 505.1 316.2 0.911 4047.9
Trivium 288/80 5508.6 1953 1152 1.92 520.8 535.0 6.848 6854.2
Sprout 80/80 2371.5 841 320 2.68 373.1 184.6 0.827 2363.5

Plantlet 101/80 2738.4 971 320 2.61 383.1 221.5 0.992 2835.9
Lizard 121/120 4125.6 1463 256 2.86 349.7 269.6 1.035 3451.6

Grain-128 256/128 5239.1 1858 256 1.56 641.0 486.2 1.867 6224.6
Kreyvium 288/128 10318.0 3659 1152 2.69 371.7 924.2 11.830 11840.4

Trivium-MB 288/128 5702.7 2022 1152 2.28 438.6 499.7 6.396 6401.9
Trivia 384/128 7353.1 2607 1152 2.25 444.4 709.7 9.084 9092.3

AES-CTR 128/128 7545.7 2676 176 5.71 127.4 723.4 2.546 12733.1
Atom 159/128 4790.3 1699 511 3.20 312.5 297.5 1.901 3809.5

106

Book II...and Other Optimisations

107

6 Area: Serial Encryption Circuits

[...] Skin graft machinery [...]

We inaugurate the first chapter of the second book with a treatise on serialised block ci-

pher circuits. In an allegorical interpretation of the matter, serialisation epitomises the zenith

of cryptographic optimisation in hardware, a sacrifice of Iphigenia as an exitus acta probat

for the supreme overarching goal of minimising the area footprint of a construction. More

specifically, a serialised block cipher trades a reduced data path and thus lighter combinato-

rial layers with an increase in latency. Algorithms that adhere to this methodology are aplenty.

Most notably, in the context of this chapter, the Atomic-AES circuits by Banik et al. [16, 17]

that are eponymous for AES designs with a data path width of 8 bits that compute a single

encryption in 226 and 246 clock cycles respectively. The Atomic-AES proposal was decisively

inspired by the seminal 8-bit serial AES Threshold Implementation by Moradi et al. [107] from

a few years prior. The striking feature of Atomic-AES lies in the particularity of only using a

single S-box circuit S-box circuit. Any AES circuit that deploys one S-box can not perform one

AES round in fewer than twenty cycles. i.e., sixteen in the Substitution layer and four in the

Key schedule. In this regard, the Atomic-AES circuit is close to the optimum when it comes to

the overall latency. A straightforward way to convert a byte-serial circuit to a bit-serial equiva-

lent is to chain the flip-flops in a byte register sequentially, so that it takes eight instead of one

cycle to transfer one byte of information. Consequently, a trivial conversion of the Atomic-

AES circuit into a bit-serial equivalent would require 21 · 8 = 168 cycles to execute one AES

round. This was subsequently improved to 160 cycles by Jean et al. [86] in their bit-sliding

work where 128 clock cycles are used to rotate bits across the state pipeline and perform

AddRoundKey and SubBytes operations simultaneously. Precisely eight cycles are used for

ShiftRows and 32 more for the MixColumns layer. The key insight elaborated throughout this

chapter lies in a novel way of enhancing the flexibility of scheduling operations, which is to

say neither is it necessary to wait for the AddRoundKey and SubBytes operation to be com-

pleted on the entire 128-bit state to begin ShiftRows, nor wait for the ShiftRows to complete

to begin MixColumns. When a group of bits in the state have undergone AddRoundKey and

SubBytes, we can trigger the ShiftRows calculation on those bits immediately and the same

holds for the scheduling of MixColumns vis-à-vis ShiftRows. In the process of developing

this technique, we find that not all operations of a round is finished in the time allocated for

the round, and so we improvise and try to get them done in the next round, while trying to

109

Chapter 6. Area: Serial Encryption Circuits

maintain functionality at all times. A preliminary version of the aforementioned technique

was applied by Banik et al. [11] to the permutation layers of GIFT-64 and PRESENT, but lacks

generalisation to other families of block ciphers or wider data paths.

Contributions. None of the implementations reported proposed in [86] and [11] achieved a

latency per round figure equal to the block size of the underlying block cipher. This leads

naturally to the question of the lowest possible number of cycles in which, for example, one

AES round can be computed in a bit-serial circuit. Needless to say that it is impossible to

execute a full round in fewer than 128 cycles which is the block size of AES, since each bit

in the state needs to be rotated around the state pipeline at least once, and this requires 128

cycles. In this chapter, we investigate strategies that allow us to devise bit-serial block cipher

circuits for AES, SKINNY and GIFT that compute one round function in exactly n cycles where

n is the block size of the algorithm at hand. We proceed in two parts. Firstly, we propose

{1,4,8}-bit serial architecture for the 128-bit block size variants of AES, SKINNY and GIFT.

The advantages of our designs are listed below:

• In terms of circuit area, each of our block cipher implementations is an evident con-

tender to be the smallest implementation. Each implementation fully utilizes both

the state and the key pipelines. With single-bit data paths, each round consisting of

128-bit is executed exactly in 128 clock cycles. This ensures that we get the maximum

throughput from 1-bit serial implementation leading to an approximately twenty per-

cent reduction in latency (in clock cycle units) over the circuits reported in [26, 86]. The

AES, SKINNY and GIFT circuits in these papers report a latency of 168, 168, 160 cycles

per round respectively. Our circuit design is novel in the sense that both pipelines are

continuously active. A preliminary comparison chart for our bit-serial constructions is

given in Table 6.1.

• For AES and SKINNY, we further provide byte-serial circuits that execute each round

in sixteen clock cycles and thus reduce that latency compared to existing construc-

tions [17, 86] by twenty percent that in the most cases have a smaller area footprint.

Ultimately, a 4-bit serial circuit is presented for GIFT in its bitsliced representation as

detailed in Section 2.6.2. A preliminary comparison chart for our {4,8}-serial construc-

tions is given in Table 6.2.

• Each implementation respects the standard ordering of input and output bits. We do

not make a non-standard assumption on the ordering of the bits to reduce the area and

latency. Namely, we ensure that an implementation from our paper is readily usable

from a NIST LWC candidates without having to modify and deal with the ordering the

bits.

The second part of this chapter, we devote to the implementation of serial lightweight

AEAD schemes as part of the NIST LWC. Using the serial block cipher circuits from the before,

we bootstrap SUNDAE-GIFT [15], SAEAES [109], Romulus [74] and SKINNY-AEAD[29]. To the

best of our knowledge, these are the smallest block-cipher-based authenticated encryption

110

schemes reported so far in the bit-serial and 4/8-bit-serial configurations. Note we utilise the

compile_ultra synthesis directive for all circuits as part of this chapter.

The content of this chapter was distilled in a research paper titled The Area-Latency Sym-

biosis: Towards Improved Serial Encryption Circuits published in the first volume of the IACR

Transactions on Cryptographic Hardware and Embedded Systems in 2021 (IACR-TCHES-

2021) [9].

Table 6.1: Bit-serial circuit comparison with the state of the art for the NanGate 45 nm cell
library process. More measurements for our designs using other libraries are provided in the
respective sections. The source code for the circuits proposed in [86] is not public and thus
the given area figures are not verifiable.

Cipher Area Latency (Cycles) Reference

GE Round Full

AES-12822 1982 168 1776 [86]
AES-128 2029 168 1776 [86]
AES-128 1974 128 1408 Section 6.2

SKINNY-128-128 1740 168 6976 [86]
SKINNY-128-128 1748 128 5248 Section 6.3

SKINNY-128-256 2501 168 8448 [86]
SKINNY-128-256 2502 128 6272 Section 6.3

SKINNY-128-384 3260 168 9920 [86]
SKINNY-128-384 3263 128 7296 Section 6.3

GIFT-128 1848 160 6528 [26]
GIFT-128 1791 128 5248 Section 6.4

A Note on the Power/Energy Consumption of Serial Circuits. Serialized implementations gen-

erally have poor energy efficiency as explained in [18]. There are two principal reasons for

this:

• These circuits generally require larger latency than round-based circuits. For example,

Atomic-AES [17], has a data path of eight bits, occupies of roughly 2000 GE, and re-

quires 226 clock cycles to execute one full encryption. The latency is twentyfold com-

pared to eleven clock cycles it takes for the round-based circuit to do the same, but it

occupies around four times less area than the round-based circuit, as the latter costs

approximately 8000 GE. Due to this, the byte-serial circuit takes around 7-8 times more

energy than a round-based circuit.

• Any serialized circuit is required to perform many more register write operations. A

round-based circuit overwrites its internal register eleven times, once per clock cycle,

22This serial AES implementation uses the non-standard row-major bit ordering instead of the usual column-
major fashion.

23See previous footnote.

111

Chapter 6. Area: Serial Encryption Circuits

Table 6.2: {4,8}-bit serial circuit comparison with the state of the art for the NanGate 45 nm
cell library process. More measurements for our designs using other libraries are provided in
the respective sections.

Cipher Area Width Latency (Cycles) Reference

GE Bits Round Full

AES-12823 2733 8 23 246 [16]
AES-128 2535 8 16 176 Section 6.2

SKINNY-128-128 2076 8 21 872 [30]
SKINNY-128-128 2022 8 16 656 Section 6.3

SKINNY-128-256 2944 8 21 1040 [30]
SKINNY-128-256 2923 8 16 784 Section 6.3

SKINNY-128-384 3831 8 21 1208 [30]
SKINNY-128-384 3825 8 16 912 Section 6.3

GIFT-128 2183 4 33 1352 [26]
GIFT-128 2130 4 32 1312 Section 6.4

with intermediate round output. Consider on the other hand any byte-serial circuit, or

more specifically the Atomic-AES circuit. A simple operation of the form

b0,b1, . . . ,b15 → b1,b2, . . . ,S(b0 ⊕k0),

which rotates the state by one byte, and substitutes the least significant byte with the

output of the AddRoundkey and S-box on the byte b0 , requires an entire register over-

write. As is obvious, this needs to be done at least fifteen more times for each byte bi

and then again four times for the MixColumns operation for each of the ten rounds.

Since each register write requires finite energy, it is obvious that the energy budget

shoots up in the process. The energy consumption proportionally increases the more

we try to reduce the length of the datapath. Therefore, a bit-serial datapath would by a

similar logic, be even more expensive energy-wise.

The logic mentioned above does not extend to power consumption, as power is the time

derivative of energy and essentially the rate of energy spent per unit of time. The fewer num-

ber of gates a circuit consists of, it is more often the case that its power footprint becomes

smaller. As a consequence, serialized circuits should not be used in situations where en-

ergy efficiency is a prime concern, but can still be favored in scenarios where power is the

target metric. For example, for battery-driven devices energy consumption is a top priority,

whereas for applications like medical implants and passive RFID tags that typically do not use

the latest CMOS technology, power consumption is very important. In implantable devices,

power is a more crucial metric, as the wearer certainly can not tolerate any rise in operating

temperature as a side effect of high power consumption over a number of cycles. Although

energy is an important metric, our research direction is directed towards these applications

112

6.1 Generic Approach

that cannot ignore area and power constraints.

6.1 Generic Approach

A block cipher based on the SPN methodology generally consists of three round function lay-

ers, namely key addition, substitution and a linear transformation for diffusion. The linear

layer is often a combination of a permutation function and a matrix multiplication. A case in

point is AES where the permutation function is the ShiftRows operation and matrix multipli-

cation is performed by the MixColumns operation. In the context of lightweight circuits, we

can further classify these operations into two broad classes: Firstly, swap-based operations

and secondly operations that are replacement-based. In AES, the SubBytes and MixColumns

operations can be seen as replacement-based operations, since they take a finite portion of

the AES state and replace them with a new data block of equal length. ShiftRows can be seen

as a swap-based operation because it essentially swaps some bits at two different locations of

the state vector. Our technique, for implementing an SPN-based block cipher, then consists

of finding a good and short sequence of swap operations that corresponds to the swap-based

operation, and interleave them with the replacement-based operations. In the case of AES,

the byte level, the ShiftRows is a permutation over the set [0,15] which can be formulated as

(1,13,9,5)◦ (2,10)◦ (6,14)◦ (3,7,11,15).

Assuming that the AES byte order is column-major, i.e., b0,b1, . . . ,b15, the above notation

means that after ShiftRows, b1 is moved to location 13, b13 is moved to location 9 and so

on. Note that each of the four permutations correspond to a particular row of the AES state

and they commute with each other, so the order of their execution is irrelevant. The above

expression can be decomposed further as

[(9,13)◦ (5,9)◦ (1,5)]◦ (2,10)◦ (6,14)◦ [(11,15)◦ (7,15)◦ (3,15)].

The swaps of the first 4-cycle which decomposes as (9,13)◦ (5,9)◦ (1,5) are not commutative

any more, however the operation can be implemented in sixteen clock cycles. For illustration

purposes, let us choose the (11,15) swap for this task by placing scan-flip-flop-based byte

registers in locations 10 and 14 as shown in Figure 6.1.

The first task lies in executing swap (1,5). We perform the rotate operation, denoted by

r , a total of six times on the circuit, and so that bits arrive to positions shown in Figure 6.1b.

We proceed by invoking the scan functionality so that in the next cycle bytes 1 and 5 arrive

in positions 10 and 14 as shown in Figure 6.1c. Note that in doing so we effectively execute

the permutation θ = r ◦ (11,15). The next swap to be executed is (5,9), which corresponds to

switching b1 and b9 in the current state. By rotating three more times, we reach to the state

in Figure 6.1d, where the bytes b1 and b9 are in place to be swapped in the next cycle. After

executing θ at this point, we reach to the state in Figure 6.1e. The final swap to be performed

is (9,13), which as per the previous logic is swapping bytes b1 and b13. Again it is easy to see

that performing θ◦r 3 over the next four cycles yields the position in Figure 6.1g, where all the

113

Chapter 6. Area: Serial Encryption Circuits

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

0

1

2

3

4

5

6

7

8

9

10

11 15

14

13

12

(a)

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10
0

1

2

3

4

5

6

7

8

9

10

11 15

14

13

12

(b)

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

0

1

2

3

4

5

610

11 15

14

13

12

7

8

9

(c)

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

10

11

12

13

14

15

0

5

2

3

4

1

6

7

8

9

(d)

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

11

12

13

14

15

0

5

2

3

4

9

6

7

8

1

10

(e)

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

14

15

0

5

2

3

4

9

6

7

8

1

10

11

12

13

(f)

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

15

0

5

2

3

4

9

6

7

8

1

10

11

12

13

14

(g)

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

0

2

3

4

6

7

8

10

11 15

14

12

5 9 13 1

(h)

Figure 6.1: The contents of pipeline (a) initially, (b) after r 6, (c) after θ ◦ r 6, (d) after r 3 ◦θ ◦ r 6,
(e) after θ ◦ r 3 ◦θ ◦ r 6, (f) after r 3 ◦θ ◦ r 3 ◦θ ◦ r 6, (g) after θ ◦ r 3 ◦θ ◦ r 3 ◦θ ◦ r 6, (h) finally after
r ◦θ ◦ r 3 ◦θ ◦ r 3 ◦θ ◦ r 6. Note the numbers in black denote the byte index, i.e., corresponds to
bi , and the subscripts in red denote the fixed register positions. The yellow boxes denote the
byte registers implemented with scan flip-flops. Blue and black arrows denote whether the
operation θ or r is executed respectively.

bytes have now been swapped as required. We perform the rotate operation once more to get

the position in Figure 6.1h, where all bytes are back to the original position and the ShiftRows

operation has been executed on the first row. Effectively, the permutation we performed is

akin to r ◦θ ◦ r3 ◦θ ◦ r3 ◦θ ◦ r6, which takes 16 cycles. Note that if we had chosen any other

swap location of the form (x, x + 4), it would still be possible to do the above sequence of

operations. For instance, if we had chosen the swap (9,13) instead of (11,15), we would need

to execute θ′◦r3◦θ′◦r3◦θ′◦r8, where θ′ = r ◦(9,13). This already takes 17 cycles and so all the

bytes will be indeed swapped correctly, but not return to their original positions as before.

Conceptually this means that if the AES round is executed in sixteen cycles, then a few of the

swap operations of the current round would take place in the next round, and we would have

to tailor the other operations in the pipeline accordingly.

Following the same logic, let us now try to do the swaps (2,10) ◦ (6,14) of the next row.

This time, let us choose two swap locations eight places apart, in particular (5,13). The above

swaps commute and so can be done in any order, so let us do (2,6) first. After r13, the bytes

b2 and b6 are in place for swapping, and in the next cycle we execute the scan functionality

to perform α = r ◦ (5,13). After three more cycles of r , the bytes b6 and b14 are in place,

and then we execute α again. Thus by executing α◦ r3 ◦α◦ r13, we have again already spent

eighteen cycles. As explained before, this indicates that at this point, the bytes have again

114

6.1 Generic Approach

been correctly swapped in terms of their relative order in the pipeline and that in terms of

data flow in the circuit, some of the swaps of the current AES round overflow into the next

round.

The third set of swaps for the final row is (11,15) ◦ (7,15) ◦ (3,15). We can construct this

sequence with three different swap locations also at distances four, eight and twelve apart.

Let us choose the swaps (11,15) and (5,13) as before and (2,14) as the additional swap loca-

tion. We have to execute (3,15) first, therefore we rotate once to bring the bytes b3 and b15

in place and then execute β= r ◦ (2,14). We use the swap locations (11,15) and (5,13) which

have already been used to perform the swaps in the previous two rows. At this point b7 and

after the previous swap b3 are already in place and so we execute α on the location (5,13) by

invoking its scan functionality. For the last remaining swap (11,15), we have to wait till b11

returns to location 11, which requires thirteen more rotations after which we can invoke θ.

We have just put together a set of swap sequences that enable the execution of the AES

ShiftRows operation. We looked at each row separately and so it is conceivable that the swap

sequences be performed one after the other, thereby requiring a little over 48 cycles. But in

the interest of latency, we wish to do them in sixteen and if required within a few cycles of the

next round. Since the k-cycles in each row that we executed commute with each other, the

swaps can actually be executed concurrently. That is,

1. Invoke the scan functionality on the swap location (2,14) at clock cycle 1 (cycle index-

ing starting with 0).

2. Invoke the scan functionality on the swap location (5,13) at clock cycles 2, 13 and 17.

3. Invoke the scan functionality on the swap location (11,15) at cycles 6, 10, 14 and 16.

The point is that since the k-cycles commute, we execute the swaps concurrently on the given

locations in 18 continuous cycles (numbered 0 to 17) and still achieve the ShiftRows function-

ality. Indeed it is a matter of a simple arithmetic exercise to see that the arrangement of bytes

obtained after executing the above sequence of swaps concurrently in 18 cycles results in

ShiftRows off by two extra rotations.

The engineering challenge now revolves around the incorporation of substitution-based

operations like SubBytes and MixColumns into a swap-and-rotate pipeline and execute them

preferably when the scan functionalities of the registers are not being invoked. Naturally, a

completely free placement is not achievable as, for example, the SubBytes and ShiftRows in

any round must precede MixColumns. Looking beyond AES can this technique also applied

on other constructions? For block ciphers that employ some kind of byte/nibble/word-based

swap operations in their permutation function, the answer is affirmative. SKINNY has a per-

mutation function given by

(4,5,6,7)◦ (9,11)◦ (8,10)◦ (12,15,14,13).

This permutation has a similar form with AES, so it takes modest effort to construct it using

swaps, in the same fashion explained above. For block ciphers such as GIFT that employ

bit-based permutation function, the technique becomes slightly more involved.

115

Chapter 6. Area: Serial Encryption Circuits

From Byte to Bit-Serial. When we reduce the datapath to one bit, we can no longer swap two

bytes in one cycle and it would take exactly eight cycles for every byte swap. At the bit level,

ShiftRows of AES is essentially the composition of the following permutations over the set

[0,127] for all k ∈ [0,7] such that

(8+k,104+k,72+k,40+k)◦ (16+k,80+k)◦ (48+k,112+k)◦ (24+k,56+k,88+k,120+k).

As it can be seen from this expansion, at the bit level, everything scales by a factor of eight.

6.2 AES

Recall the AES description from Section 2.6.4 in which the round function and key scheduling

algorithms are detailed. Further recall the flip-flop calling convention in a swap-and-rotate

pipeline specified in Section 2.8. Our circuit consists of the following circuits in the main

hierarchy: (1) a state pipeline, (2) a key pipeline, (3) controller and (4) a shared S-box.

6.2.1 State Pipeline

The state in our design uses the following components and techniques in a plug-and-play

manner:

• The nibble-level MixColumns circuit from bit-sliding project by Jean et al. [86].

• The smallest, in terms of circuit area, known AES S-box proposed by Maximov and

Ekdahl [103].24

Given that state and key bits are stored in a pipelined fashion, one can easily notice that

AddRoundKey can be performed without much hassle as long as each of the state and key

pipelines produces the correct bit per clock cycle. Hence, the main challenges on the state

pipeline part is to (1) execute all SubBytes, ShiftRows, MixColumns operations simultane-

ously, (2) complete the operations in 128 clock cycles, while (3) following the standard order-

ing of bits for the plaintext and the key. Below, we first describe each layer separately, and

show how we can fuse them into one operation that executes over the state pipeline contin-

uously.

ShiftRows with Swaps. Assume that the 128-bit pipeline is defined in the same fashion as

in Section 2.8, i.e., the bits are loaded into FF127 and they are flushed out by FF0. We use

three swap operations to execute the ShiftRows layer: (80,112), (56,120) and (25,121). The

timetable for scheduling these swaps is given in Table 6.3.

For simplicity, let us forget about the pipeline and shift operations for the moment, and

focus on the nature of ShiftRows in the 16-byte state. We try to express ShiftRows in terms

of byte swaps. Suppose that the values contained in the state are the hexadecimal charac-

ters 0, 1, ..., F. Considering the standard byte arrangement for loading the initial data, row 0

contains the values 0, 4, 8, C; row 1 contains the values 1, 5, 9, D and so on. We then devise

24We will encounter this S-box again in Chapter 8 in a different setting.

116

6.2 AES

Table 6.3: Timetable of operations for the swap-and-rotate bit-serial AES encryption circuit.

Pipeline Operation Active Cycles

State Swap (80, 112) [56,64)∪ [88,96)∪ [120,127]∪ [8,16)
Swap (56, 120) [88,96)∪ [120,127]∪ [0,8)
Swap (25, 121) {127}∪ [0,6]

Load S-box {8k +7 : k ∈ [0,15]}
Load MixColumns [32,40)∪ [64,72)∪ [96,104)∪ [0,8)

Key Swap (96, 128) [0,8)
Swap (40, 72) [56,64)
Load S-box {112}∪ {120}∪ {0}∪ {8}

Key XOR [0,96)
Add RC Lookup Table

a sequence of swap operations over the rows 1, 2, 3 to perform ShiftRows. Our three distinct

swaps are denoted with distinct colors in Figure 6.2. This figure shows the movement of the

bytes as they arrive to their final position implied by ShiftRows. We point out two important

observations: (1) each byte-swap operation can be executed by a bit-swap circuit through

eight consecutive calls interleaved by shift operations, (2) the swap operations denoted with

the same color can actually be executed by a single swap operation as long as it is enabled

in the correct clock cycle. Therefore, the choice of swaps and the timetable in Table 6.3 are

straightforward extensions of this example into the 128-bit state pipeline.

Row: 1 1 5 9 D 15 9 D 15 9 D 15 9 D

2 6 A E 26A E 2 6A E

3 7 B F 37 BF F 7B 3

Row: 2

Row: 3

Figure 6.2: The transition diagram for rows 1, 2, 3; where the coloured cells denote the re-
cently modified values. Note that there are three distinct swap operations, with distance 0, 1
and 2 cells in-between.

To help understand how the structure helps perform the ShiftRows operation, we note

that since the pipeline is always active, the shift operation is performed in every clock cycle.

To additionally perform the swap 80 ↔ 112, in any clock cycle, we need to place scan flip-

flops at locations 79 and 111 (and wire the output of 80 to the input of 111; wire the output of

112 to the input of 79). Assuming that the bits indexed 0 to 127 enter the pipelines through

the location 127, at clock cycle k ≤ 127, the pipeline stores exactly k bits. For instance, in the

56-th clock cycle, the bits indexed 8, 40 are at locations 80, 112 respectively. Enabling swaps

for cycles 56 to 63 therefore swaps bits 8, . . . ,15 with 40, . . . ,47, which are essentially bytes

indexed by 1 and 5. It can be verified without difficulty that performing the same swap in

117

Chapter 6. Area: Serial Encryption Circuits

cycles [88,96) actually swaps bytes 1 and 9. This exactly follows the explanation in Section 6.1

using (80,112) as swap locations instead of (88,120).

Nibble MixColumns. In the nibble MixColumns introduced by Jean et al. [86], a multiplica-

tion over a single column is completed over 8 clock cycles, updating each nibble at a time.

To simplify, we first represent a single column of bytes as 8 vertical nibble vectors as below.

Namely, from the pipeline given in Figure 6.3, the vectors Mi are defined for 0 ≤ i ≤ 7 as

below:

Mi :=

FFi

FFi+8

FFi+16

FFi+24

 R(M0) :=

FF8

FF16

FF24

FF0

The nibble MixColumns architecture employs an additional set of 4 flip-flops to help with the

serialized computation of this functionality. Define the vector M8 to denote this additional

internal 4-bit storage this architecture employs. During its eight clock cycle operation, these

flip-flops are used to keep the value of the leftmost bit of each one of the four bytes. We

define a function upward rotation R that rotates the elements in a given vertical matrix by one

position, as exemplified above. The circuit essentially performs the following sequence of

operations to derive the new value of Mi for each i = 0,1, . . . ,7, starting from i = 0 respectively:

• If i = 0, store M8 ← M0 before any of the following computation, update Mi ← R(Mi)⊕
R2(Mi)⊕R3(Mi)⊕Mi+1 ⊕R(Mi+1),

• If i ∈ {3,4,6}, also update Mi ← Mi ⊕M8 ⊕R(M8).

In other words, at each clock cycle, based on the internal 7-bit counter, we can execute a

single slice of the previous computation. In total, it takes 8 clock cycles for a single column,

and 32 clock cycles for the whole MixColumns layer. This serial circuit can be realized with 8

XOR, 8 NAND gates and 4 flip-flops.

Combined State Pipeline. In the controller, the circuit contains an 11-bit counter to keep both

the round (4-bit) and the phase (7-bit). We split this counter into two parts and refer to them

respectively by variables 0 ≤ round ≤ 10 for the upper 4-bit and 0 ≤ count ≤ 127 for the lower

7-bit.

In contrast to previous work [86], we follow the standard ordering of bits in our imple-

mentation. That is given a plaintext and a key, the bits are loaded into the circuit starting

from the leftmost bits, and following the natural order. This becomes a crucial aspect of a

block cipher implementation, if it is meant to be used in a mode of operation that needs to

comply with a fixed standard. At the beginning of its operation, the 11-bit counter is reset to

zero. During initialisation, i.e. round = 0, the white-colored MUXes in Figure 6.3 are config-

ured so that the next bit s of the state is received from the plaintext input port but after the

XOR is performed with the key, which is also being loaded at the same time. For round > 0,

we select the state bit to be loaded from the exit of the state pipeline.

118

6.2 AES

• SubBytes. Meanwhile, we proceed with executing the SubBytes layer, by enabling the

S-box at every eighth cycle. More precisely, the S-box is configured to take the flip-flop

outputs FF121,FF122, . . . ,FF127 and s as input, and the scan flip-flops FF120, . . . ,FF127 are

instructed to load the output from the S-box whenever count mod 8 = 7.

• ShiftRows. Starting from count = 56, the swap operations become active. Many of the

bits need to make a couple of jumps before they are located into their ultimate posi-

tions implied by ShiftRows, as demonstrated in Figure 6.2. Hence, position-wise, many

bits are incorrectly located and look garbled as they pass through the chain of flip-flops

FF24, . . . ,FF120. Nonetheless, as soon as they exit the last swap position FF24, they are

guaranteed to be in their final position. See Table 6.3 to notice that the last swap oper-

ation executed on a layer actually happens when count = 15 in the next round. In other

words, performing ShiftRows over the i -th state uses the last 72 cycles of the round i

and the first 16 cycles of the round i +1, and it is not aligned with the counter round.

• MixColumns. The input ports to the nibble MixColumns circuit are flip-flops FFi for

i ∈ {0,1,8,9,16,17,24,25}, and the output ports are input to the exit of the multiplexer of

the pipeline and FF7,FF15,FF23 respectively. The MixColumns of round i is performed

at round = i + 1 and it is active during 0 ≤ count mod 32 ≤ 7, except the last round

where MixColumns must be skipped.

• Overlaps. There are two clock cycles, i.e., count values, during which two operations

modify the same FF simultaneously in Table 6.3. First, at clock cycle 127 both S-box and

swap (25,121) attempts to overwrite FF120. Here, the operation precedence is given to

the S-box, meaning that the leftmost output bit of the S-box is fed to the swap operation

(instead of FF120). A second overlap occurs when count = 3, as MixColumns circuit

attempts to read FF25 before its value is updated correctly by the swap (25,121). Here,

the precedence is given to the swap operations, meaning that the output of the swap

operation is fed as input to MixColumns circuit instead of FF25. The AES state pipeline

is shown in Figure 6.3.

70

158

2316

3124

3932

4740

5548

6356

7164

7972

8780

9588

10396

111104

119112

120

S0 S1 S2 S3 S4 S5 S6 S7

127
s

MC

b

b

FF{0,1,8,9,17,24,25}

b

PT

s

k

Swaps MixColumns Ports S-Box Ports

Figure 6.3: The state pipeline of the swap-and-rotate bit-serial AES encryption circuit with
coloured scan flip-flops. S-box output ports are denoted with S0||S1|| · · · ||S7.

119

Chapter 6. Area: Serial Encryption Circuits

6.2.2 Key Pipeline

Recall the key schedule update function from Section 2.6.4 in the preliminaries chapter. In

other words, if K0,K1, . . . ,K15 represent the key bytes of a particular round. Then the next

round key sequence K16, . . . ,K31 is computed as
K16 K20 K24 K28

K17 K21 K25 K29

K18 K22 K26 K30

K19 K23 K27 K31

←

K0 K4 K8 K12

K1 K5 K9 K13

K2 K6 K10 K14

K3 K7 K11 K15

⊕

S(K13)⊕RC K16 K20 K24

S(K14) K17 K21 K25

S(K15) K18 K22 K26

S(K12) K19 K23 K27

The first column requires special treatment, because it involves S-box calls, and the remain-

ing three columns can be updated smoothly (by simply XORing with a neighboring bytes). In

particular, one can notice the disarrangement in the update of the first column, as it takes the

current last columns bytes with a downward rotation (by one byte). If we implement this in a

straightforward fashion by updating each byte when they arrive to position 0, we would have

to choose the input of the S-box either from the position 13 (for computing K16, K17, K18) or

9 (for computing K19). This means that we would have to put an extra 8-bit MUX to choose

which value needs to be fed to the S-box. Instead, we decided to temporarily move the byte

K12 to position 13 before it is fed to S-box, and then return back to its original position af-

ter the S-box operation is done. Therefore the pipeline performs the following operations in

sequence:

• In the first eight clock cycles, we activate the swap (96,128) so that the key byte K12 is

temporarily moved such that it comes after K15. Here, FF128 actually refers to the new

key bit that is about to be loaded into the key pipeline. With this operation, the key

pipeline contains K13,K14,K15,K12, in given order. Hence, it respects the order they are

being used to update the first key column.

• In clock cycles 112, 120 (of the current round) and 0, 8 (of the next round); the S-box

is used by the key pipeline. During these cycles, the S-box reads K13,K14,K15,K12 from

FF120, . . . ,FF127 in given order. The output from the S-box is XORed with FF16, . . . ,FF23

and the result is loaded into FF15, . . . ,FF22.

• The round constant is added as the bit FF24 is loaded into FF23. We use a lookup table

to decide when the round constant bit is enabled. In total, this bit is enabled 16 times

during the whole encryption.

• During the clock cycles [56,64), we activate the swap (40,72) to return K12 back to

its original relative position. Hence the internal ordering of the bytes becomes K12,

K13,K14,K15 again.

• For the rest of the key bits, we handle the key scheduling by activating FF31 ← FF0⊕FF32

during the clock cycles [0,96). The full key pipeline is shown in Figure 6.4.

120

6.2 AES

70

k

158

3932

4740

5548

6356

7164

7972

8780

111104

119112

k

3124

Swaps

PT

9588

10396

S-Box Ports

127120

S7S6S5S4S3S2S1

FF16

RC

S0
FF24

FF32

FF0

b

b

2316

Figure 6.4: The key pipeline of the swap-and-rotate bit-serial AES encryption circuit with
coloured scan flip-flops. S-box output ports are denoted with S0||S1|| · · · ||S7.

6.2.3 8-Bit Datapath

As already stated, there are several implementations of AES with a byte-serial datapath that

can execute one AES round in 21 cycles [17, 107]. Since it is not possible to implement the

circuit in less than twenty cycles in the presence of only a single S-box, this represents a

close-to-optimal latency for this datapath. However, note that these two circuits adopt a

non-standard, row first arrangement of bytes. One of our goals therefore was to design a cir-

cuit that uses standard byte ordering. Since there already exists a 21-cycles-per-round circuit

that achieves close to optimal latency, we did not attempt to design one that also achieves

20 cycles per round. Instead, we focus on an implementation that closely matches our bit-

serial circuit, and achieves one round in 16 cycles, by using two S-box circuits.25 This circuit

closely resembles the bit-serial circuit, all the calculations of swap locations and the time in-

tervals when the swap functionality is invoked basically scale by a factor of eight. It is best to

summarize it using the following salient points:

• The circuit has 32 byte-registers Reg0 to Reg15 and Key0 to Key15, and we use the fol-

lowing swap operations to implement the ShiftRows operation: (1) (9,13) in cycles 7,

11, 15, 0, (2) (6,14) in cycles 11, 15, 0, and (3) (2,14) in cycle 0.

• We use a {0,1}32 → {0,1}32 MixColumns circuit for this implementation. We selected the

smallest known implementation with 92 XOR gates from Maximov [101]. The operation

is performed in cycles 0, 4, 8, 12. The inputs are taken from the byte registers in the first

column and written in registers 1, 2, 3, 15 in the order from MSB to LSB. This closely

resembles the bit-serial circuit.

• The key addition and S-box are done in every cycle.

• The key pipeline uses the swaps (11,15) in cycle 0 and (4,8) in cycle 7. The column

addition in the key update is done by calculating Key3 ← Key0⊕ Key4, in cycles 0 to 11.

25In theory, it is possible to implement an AES round in 10 cycles with two S-boxes, but we found that it would
be difficult to design a pipeline for such a circuit with a low area footprint. Such implementation would require
many multiplexers to arrange the component operations in place and would increase the area significantly.

121

Chapter 6. Area: Serial Encryption Circuits

The synthesis results for our swap-and-rotate bit and byte-serial AES circuits are listed in

Table 6.4

Table 6.4: Synthesis figures for the proposed swap-and-rotate serial AES circuits. The power
and energy measurements were taken at a clock frequency of 10 MHz.

Library Area Latency (cycles) Throughput Power Energy

GE Round Total Mbit/s µW nJ/128-bit

1-bit
NanGate 15 nm 2247 128 1408 293.89 18.36 2.58
NanGate 45 nm 1974 128 1408 45.87 142.99 20.13
UMC 65 nm 1736 128 1408 8.71 20.35 2.87
TSMC 90 nm 1663 128 1408 14.50 56.14 7.90

8-bit
NanGate 15 nm 2870 16 176 2160.68 23.05 0.41
NanGate 45 nm 2535 16 176 376.94 192.39 3.38
UMC 65 nm 2235 16 176 77.67 26.99 0.47
TSMC 90 nm 2256 16 176 121.89 68.91 1.21

6.3 SKINNY

For our serial SKINNY circuits, we consider the three variants with a block size of 128-bits [30]

where the tweakey size is 128z bits with z ∈ {1,2,3}. For the remainder of this chapter, these

variants are referred to as SKINNY-128-128, SKINNY-128-256 and SKINNY-128-384 respec-

tively. From a high-level perspective SKINNY shares similarities with AES. However, it em-

ploys more lightweight operations as part of the round function. Prominently, S-box and

MixColumns can be realized with significantly smaller circuitry compared to AES. The round

function consists of SubCells, AddConstants, AddRoundTweakey, ShiftRows, MixColumns.

For the finer details of these layers the reader is referred to Section 2.6.3.

6.3.1 State Pipeline

In the controller, the circuit contains an 13-bit counter to keep both the round (6-bit) and

the phase (7-bit). We split this counter into two parts and refer to them respectively by vari-

ables 0 ≤ round ≤ 56 for the upper 4-bit and 0 ≤ count ≤ 127 for the lower 7-bit. Due to the

fact that SKINNY is already designed with hardware-friendliness in mind, we load the bits

into the circuit starting from the leftmost bits, by following the standard [30]. In our imple-

mentations the key blocks and the plaintext are loaded simultaneously and completed in 128

cycles. This applies to all three versions of different tweakey sizes. At the beginning of its

operation, the 13-bit counter is reset to zero. Then during initialisation, i.e., round = 0, the

plaintext is loaded through 1-bit input port, and the key is loaded through z-bit input port

into their respective pipelines without modification. We remark that each tweakey block has

122

6.3 SKINNY

its own dedicated input port. Below, we describe the layers of operations executed on the

state pipeline, in an order observed by the incoming bits.

• SubCells. This layer is executed by enabling the S-box at every 8-th cycle. More pre-

cisely, the S-box is configured to read FF120,FF121, . . . ,FF127 as input, and the scan flip-

flops FF119, . . . ,FF126 are instructed to be loaded with the S-box output if count mod 8 =
0.

• AddConstants. The round constants are added right after the S-box operation. An XOR

gate is placed between FF119 and FF120, and the round constant bit is added. We use a

7-bit LFSR circuit to produce the round constant bit.

• AddRoundTweakey. The key bits are added at the same position with the round con-

stant bit, i.e., between FF119 and FF120. To synchronize this with the key pipeline, the

key bits k0,k1,k2 are read from FF120 of the key pipeline. The key addition is active

during 8 ≤ count < 72. This corresponds to adding the first half of each tweakey.

• ShiftRows. This layer is executed with the swap operations, similar to AES, and the

timetable of swaps are given in Table 6.5. Position-wise, bits are incorrectly located

and look garbled as they pass through flip-flops FF95, . . . ,FF119, but as soon as they exit

the last swap position FF95, they are guaranteed to be in their final position.

• MixColumns. The input ports to the nibble MixColumns circuit are flip-flops FFi for

i ∈ {0,32,64,96}, and the output ports are input to the exit MUX of the pipeline and

FF31,FF63,FF95 respectively. The MixColumns is active during the first 32 clock cycles

of a round.

• Overlaps. During the clock cycles 64 ≤ count < 72 three swaps (112,120), (104,120),

(96,120) are active at the same time and overlap at the same flip-flop FF120. The order

of execution here is (96,120), (104,120) and (112,120) respectively. A diagram of the

SKINNY of the presented state pipeline is depicted in Figure 6.5.

70

PT

s

Swaps

s

3932

127120

158

4740

7972

111104

2316

5548

8780

3124

6356

9588

MixColumns Ports

RC

k2

112 11910396

7164

MC

b

b

k3k1

FF{0,32,64,96}S-Box Ports LFSR Port

Figure 6.5: The state pipeline of the swap-and-rotate bit-serial SKINNY encryption circuit.

123

Chapter 6. Area: Serial Encryption Circuits

Table 6.5: Timetable of operations for the swap-and-rotate bit-serial SKINNY encryption cir-
cuits.

Pipeline Operation Active Cycles

State Swap (112, 120) [112,120)∪ [120,127]∪ [0,8)∪ [64,72)
Swap (104, 120) [64,72)∪ [88,96)∪ [96,104)
Swap (96, 120) [64,72)

Load S-box {8k : k ∈ [0,15]}
RC Addition (Lookup Table + LFSR)

Load MixColumns [0,32)

Tweakey 1,2,3 Swap (56, 120) [72,127]∪ [0,8)
Swap (48, 56) [120,127]
Swap (24, 56) [112,120)∪ [120,127]∪ [0,8)
Swap (8, 24) [120,127]∪ [0,8)∪ [24,32)

Tweakey 2 Swap (0, 1) [8k,8k +6],k ∈ [0,7]
LFSR XOR {8k : k ∈ [0,7]}

Tweakey 3 LFSR (8-bit) {8k : k ∈ [0,7]}

6.3.2 Key Pipeline

Recall that in the SKINNY key schedule, if z = 1 the sixteen key bytes undergo a byte-wise

permutation as detailed in Section 2.6.3. Therefore, our key pipelines do the following op-

erations in sequence. First, we swap the first and the last eight bytes by using the swap (56,

120). Then we perform the local byte permutations on the upper half, i.e., the first eight bytes

of the key through swaps (48, 56), (24, 56), (8, 24). For z = 2 and z = 3, some bytes additional

enter two LFSR functions F and G . F is applied through another swap (0, 1) and ultimately

G is computed by a dedicated 8-bit LFSR circuit. A schematic depiction of the SKINNY key

pipelines is given Figure 6.6.

6.3.3 8-Bit Datapath

The 8-bit implementation is in fact simpler than the 1-bit equivalent, due to circuitry such as

the LFSR and the S-box are already compatible with the datapath size. We only need to add

extra gates for swaps, for instance, extend each single swap into byte swap, and duplicate

circuit for MixColumns. The timetable is also updated so that each consecutive activity in 8

clock cycles are squeezed into one. Table 6.6 tabulates the synthesis results for the 1/8-bit

circuits of SKINNY.

6.4 GIFT

The final block cipher we investigate is the bit-sliced variant of GIFT [26] as utilized in the

NIST LWC candidates GIFT-COFB [21] and SUNDAE-GIFT [15]. The bit-sliced representa-

124

6.4 GIFT

70

KEY1

tk1

Swaps

tk1

3932

127120

158

4740

7972

111104

16

48

8780

3124

6356

9588

10396

7164

b

55

23

119112

k1

(a) z = 1

70

KEY2

tk2

Swaps

tk2

3932

127120

158

4740

7972

111104

16

48

8780

3124

6356

9588

10396

7164

b

55

23

119112

k2

LFSR Port

(b) z = 2

70

KEY3

tk3

Swaps

tk3

3932

127120

158

4740

7972

111104

16

48

8780

3124

6356

9588

10396

7164

b

55

23

119112

k3

LFSR Port

(c) z = 3

Figure 6.6: The key pipelines of the swap-and-rotate bit-serial SKINNY encryption circuit.

tion of the internal cipher state is detailed in Section 2.6.2. The bit-wise nature of both the

algorithm’s permutation complicates matters in a swap-and-rotate setting, since each state

bit needs to be moved to its designated position individually. As a consequence, a simple

solution using few swaps as devised for AES and SKINNY is not achievable.

6.4.1 State Pipeline

Nonetheless, the regular structure of the four sub-permutations of the bit-sliced permutation

layer is helpful in finding a sequence of swaps that implement it. As an illustration, take per-

mutation P0 from Table 2.6 and note that the bits of each byte are moved to positions in which

the distance between each bit is 4. The same is true for the other three permutations. Using

this property we can devise a set of swaps that implements each permutation independently

125

Chapter 6. Area: Serial Encryption Circuits

Table 6.6: Synthesis figures for the proposed swap-and-rotate serial SKINNY circuits. The
power and energy measurements were taken at a clock frequency of 10 MHz.

Library Area Latency (cycles) Throughput Power Energy

GE Round Total Mbit/s µW nJ/128-bit

1-Bit SKINNY-128
NanGate 15 nm 1992 128 5248 277.51 15.89 8.34
NanGate 45 nm 1744 128 5248 41.63 122.06 64.06
UMC 65 nm 1508 128 5248 8.61 15.89 8.34
TSMC 90 nm 1426 128 5248 15.42 47.12 24.73

8-bit SKINNY-128
NanGate 15 nm 2304 16 656 1051.60 18.62 1.22
NanGate 45 nm 2022 16 656 224.50 146.17 9.59
UMC 65 nm 1800 16 656 59.29 18.51 1.21
TSMC 90 nm 1706 16 656 78.05 51.67 3.38

1-bit SKINNY-256
NanGate 15 nm 2853 128 6272 208.98 22.99 14.42
NanGate 45 nm 2496 128 6272 34.26 175.28 109.94
UMC 65 nm 2144 128 6272 7.46 23.24 14.58
TSMC 90 nm 2023 128 6272 12.90 69.25 43.43

8-bit SKINNY-256
NanGate 15 nm 3350 16 784 928.80 27.19 2.13
NanGate 45 nm 2923 16 784 149.27 211.66 16.59
UMC 65 nm 2581 16 784 36.34 26.95 2.11
TSMC 90 nm 2434 16 784 54.28 75.21 5.89

1-bit SKINNY-384
NanGate 15 nm 3732 128 7296 163.32 30.22 22.04
NanGate 45 nm 3255 128 7296 29.94 229.10 167.15
UMC 65 nm 2791 128 7296 5.43 30.64 22.35
TSMC 90 nm 2647 128 7296 11.44 91.38 66.67

8-bit SKINNY-384
NanGate 15 nm 4372 16 912 574.88 35.72 3.25
NanGate 45 nm 3825 16 912 110.55 277.45 25.30
UMC 65 nm 3358 16 912 32.59 36.07 3.29
TSMC 90 nm 3155 16 912 52.84 99.29 9.05

in two steps:

1. Reorder each each 32-bit word in the same manner such that two-bit pairs are moved to

position where they have a distance of 4. More specifically, we execute the permutation

Q as shown below.

126

6.4 GIFT

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q(i) 0 4 1 5 2 6 3 7 8 12 9 13 10 14 11 15

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Q(i) 16 20 17 21 18 22 19 23 24 28 25 29 26 30 27 31

This reordering of the bits can be arrived at with three swaps activated in an interval of

32 cycles for all four permutations. In our implementation, we allocated the swaps (28,

31), (29, 31) and (30, 31) for this task.

2. Having executed the permutation Q, all that is left to do is transferring pairs of bits to

their correct position which differs depending for P0, P1, P2 and P3 but can be achieved

with some additional swaps.

• P0. (24, 28), (4, 22), (10, 22), (16, 22).

• P1. (26, 28), (4, 22), (10, 22), (16, 22).

• P2. (24, 28), (4, 22), (10, 22), (16, 22).

• P3. (22, 28), (4, 22), (10, 22), (16, 22).

All in all, nine individual swaps are necessary to compute the full bit-sliced permutation

layer of GIFT.26 Details concerning the activation cycles can be gathered from Table 6.7 and

a diagram of the corresponding state pipeline is shown in Figure 6.7.

70

PT

s

Swaps

s

158

2316

12712024

3932

4740

5548

6356

7164

7972

8780

9588

10396

111104

119112

31

S-Box Ports

RC

k

Figure 6.7: 128-cycle, bit-serial GIFT round function implementation using nine swaps. Due
to the column-wise application of the substitution layer in GIFT, the S-box ports in the state
pipeline are FF31, FF63, FF95 and FF127 which are active during the cycles 96 to 127.

6.4.2 Key Pipeline

The bit-sliced interpretation of GIFT significantly simplifies how the 64-bit round keys are

extracted in each round since they are now mixed into a continuous stretch of the cipher

state. For this we can assume, without loss of generality, that the master key K is loaded in

26We do not claim that the given sequence of swaps is the most optimal choice when it comes to implementing
the bit-sliced GIFT permutation layer but no better alternative has been found after considerable efforts.

127

Chapter 6. Area: Serial Encryption Circuits

the order specified in Section 2.6.2 such that

K =

K0 || K1

K6 || K7

K2 || K3

K4 || K5

 .

In this scenario, the 64-bit round keys K2||K3||K6||K7 are added to the block cipher states

during the cycles 32 to 96. The swap sequence for this key schedule is partitioned into four

sub-procedures or phases.

• Phase 1 (State Rotation). We rotate the entire key state by 64 positions to the left. This

operation can be achieved with a single swap during 64 active cycles. Preferably, the

transformation should occur concurrently with the addition of the round key into the

cipher state, i.e., we allocate (63, 127) to perform the rotation during the cycles 32 to

96.

• Phase 2 (Precedence Swap). To achieve a full emulation of the 96-bit rightward rotation

of the key schedule, it is further necessary to swap the precedence of the utilized round

key halves, i.e., K2||K3 and K6||K7. This again only requires a single swap during 32

cycles and can be performed subsequently to the first phase, hence we place a swap

(31, 127) for this second phase.

• Phase 3 (Rotating K6). This transformation can been seen as a 14-bit leftward rotation

that can be achieved by composing three leftward rotations of magnitude 8, 4, and 2.

The position and the interval of those three swaps can be chosen relatively freely, as

K6||K7 is not a part of the current round key, as long as they occur after the second

phase has terminated. To simplify the matter, we chose to perform them back-to-back

during the cycles 32 and 66. More concretely, the 4-bit rotation is done during the

cycles 32 to 44 using a swap at (96, 100). Subsequently, we perform the 8-bit rotation

during cycles 44 to 52 with the swap (84, 92), followed by the 2-bit rotation during cycles

52 to 66 using the swap (76, 78).

• Phase 4 (Rotating K7). Phase 3 is followed by a 4-bit leftward rotation of K7 that is con-

gruent to the 12-bit rightward rotation of the specification. This necessitates a single

swap of size 4 for which we can reuse the same swap as utilized in phase 3, in other

words, swap (96, 100) during – cycles 48 to 60. A graphical schema for the key schedule

pipeline is depicted in Figure 6.8.

6.4.3 4-Bit Datapath

Analogous to the bit-serial implementation presented in the previous section, we now de-

scribe the 4-bit-serial architecture that completes execution of a round in 32 clock cycles.

The 4-bit state pipeline is unlikely to be achieved by simple swaps and a concurrent rotation

128

6.5 AEAD

70

Key

Phase 4

k

158

127120

3932

4740

5548

6356

7164

7972

8780

9588

10396

111104

119112

0
k

2316

3124

Phase 1 Phase 2 Phase 3

Figure 6.8: 128-cycle, bit-serial GIFT key schedule implementation using five swaps.

as the substitution layer overwrites 4 non-adjacent bits FF31, FF63, FF95, FF127, see Figure 6.7.

Then it follows that the swaps performing the permutation must necessarily be placed in the

most significant quarter of the state pipeline and each 32-bit row of the state has to be per-

muted in only 8 cycles. Furthermore since we employed 9 swaps, i.e., 18 scan flip-flops, in

the bit-serial construct, we need at the least four times this amount in the 4-bit case. This re-

quires at least 72 MUXed flip-flops which significantly complicates the placement of swaps.

A second difficulty arises due to the fact that the pipeline rotates four positions at a time, thus

the S-box taps are not constant but move further down the pipeline with every clock cycle,

requiring a significant number of multiplexers to differentiate the different taps. In order to

circumvent those complexities, we chose to equip the entire 128-bit state with scan flip-flops

and execute the permutation in the last cycle of the round while using 4 S-boxes in parallel

to substitute 16 bits of the state during the cycles 24 to 31. Note that a single GIFT S-box can

be synthesized in fewer than 20 GE, thus the overhead of using four units is marginal and

possibly still smaller than using multiplexers for the moving S-box taps.

The 4-bit key pipeline can be seamlessly adapted from the 1-bit counterpart by simply

turning the single-bit swaps into nibble swaps, following the generic technique from Sec-

tion 6.1. As we had 5 swaps in the single-bit version we now have 4× 5 = 20 swaps, i.e., 40

scan flip-flops. In Table 6.8, we list the synthesis results for our 1-bit and 4-bit GIFT circuits.

6.5 AEAD

As standalone block ciphers are not ready-to-use primitives they are usually wrapped in a

mode of operation. In this section, we investigate four NIST LWC candidates which are

bootstrapped via the improved 1-bit (and 4/8-bit) implementations of AES, SKINNY and

GIFT presented in the previous sections. Namely, these candidates are SUNDAE-GIFT [15],

SAEAES [109], Romulus [74] and SKINNY-AEAD [29]. For all four schemes, we report the hith-

erto smallest block-cipher-based authenticated encryption circuits in the literature.

The choice of these four particular candidates in our work is influenced by the observa-

tion that the area of a block cipher is determined, to a large extent, by the amount of storage

elements, rather than how lightweight the round operations are. This is more evident when

one compares SKINNY-384, whose round function comprises lightweight operations, to AES,

whose S-box and MixColumns circuits are significantly larger. The former is much larger,

129

Chapter 6. Area: Serial Encryption Circuits

Table 6.7: Timetable of operations for the swap-and-rotate bit-serial GIFT encryption circuit.

Pipeline Function Operation Active Cycles

State Q(P0) Swap(28, 31) 101, 103, 109, 111, 117, 119, 125, 127
Q(P0) Swap(29, 31) 101, 109, 117, 125
Q(P0) Swap(30, 31) 103, 111, 119, 127

P0 Swap(24, 28) 104, 105, 112, 113, 120, 121
P0 Swap(4, 22) 98, 99, 2, 3
P0 Swap(10, 22) 100, 101, 122, 123, 4, 5
P0 Swap(16, 22) 102, 103, 114, 115, 124, 125, 6, 7

State Q(P1) Swap(28, 31) 5, 7, 13, 15, 21, 23, 29
Q(P1) Swap(29, 31) 5, 13, 21, 29
Q(P1) Swap(30, 31) 5, 7, 23, 31

P1 Swap(26, 28) 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35
P1 Swap(4, 22) 34, 35
P1 Swap(10, 22) 26, 27, 36, 37
P1 Swap(16, 22) 18, 19, 28, 29, 38, 39

State Q(P2) Swap(28, 31) 37, 39, 45, 47, 53, 55, 61, 63
Q(P2) Swap(29, 31) 37, 45, 53, 61
Q(P2) Swap(30, 31) 39, 47, 55, 63

P2 Swap(24, 28) 42, 43, 50, 51, 58, 59, 66, 67
P2 Swap(4, 22) 66, 67
P2 Swap(10, 22) 58, 59, 68, 69
P2 Swap(16, 22) 50, 51, 60, 61, 70, 71

State Q(P3) Swap(28, 31) 69, 71, 77, 79, 85, 87, 93, 95
Q(P3) Swap(29, 31) 69, 77, 85, 93
Q(P3) Swap(30, 31) 71, 79, 87, 95

P3 Swap(22, 28) 74, 75, 82, 83, 90, 91, 98, 99
P3 Swap(4, 22) 98, 99
P3 Swap(10, 22) 90, 91, 100, 101
P3 Swap(16, 22) 82, 83, 92, 93, 102, 103

State Key Addition - [32,96)
RC Addition - Lookup Table

S-Box - [96,128)

Key Phase 1 Swap(64, 128) [32,96)
Phase 2 Swap(32, 128) [96,128)
Phase 3 Swap(96, 100) [32,44)
Phase 3 Swap(84, 92) [44,52)
Phase 3 Swap(76, 78) [52,66)
Phase 4 Swap(96, 100) [48,60)

only because it requires large number of flip-flops to store the key. Because an authenticated

encryption scheme produces a tag besides the ciphertext blocks, it is natural to expect a par-

ticular value that is initialized at the beginning and updated repetitively after processing each

new block of data. We refer to this value as the running state. The running state is eventually

130

6.5 AEAD

Table 6.8: Synthesis figures for the proposed swap-and-rotate serial GIFT circuits. The power
and energy measurements were taken at a clock frequency of 10 MHz.

Library Area Latency (cycles) Throughput Power Energy

GE Round Total Mbit/s µW nJ/128-bit

1-Bit GIFT
NanGate 15 nm 2047 128 5248 192.12 15.36 8.06
NanGate 45 nm 1791 128 5248 32.02 122.29 64.17
UMC 65 nm 1555 128 5248 6.84 16.08 8.44
TSMC 90 nm 1480 128 5248 13.43 45.14 23.69

4-bit GIFT
NanGate 15 nm 2449 32 1312 886.58 17.11 2.24
NanGate 45 nm 2130 32 1312 153.24 152.96 20.07
UMC 65 nm 1919 32 1312 34.57 18.37 2.41
TSMC 90 nm 1819 32 1312 41.80 50.80 6.67

used to compute the tag, so that all blocks contribute to its value. From the area perspective,

an important question is whether storing the running state requires an extra register or not.

For the chosen candidates, the running state is actually not a separate value, but rather it is

passed between consecutive encryption calls. In other words, we can use the state register

inside the block cipher to keep this value temporarily until the next encryption starts. It is

precisely the reduction in the storage area that yields the impressive area results for the four

candidates. In the special case of Romulus, which actually defines six different variants, we

decided to implement two members, the primary member N1 and its sibling N3 that is likely

to cost the smallest area in ASIC circuit. Romulus-N1 is larger than Romulus-N3, because the

latter favors the smaller SKINNY-256, while its other nonce-based siblings all use SKINNY-

384.27

6.5.1 SUNDAE-GIFT

The SUNDAE-GIFT AEAD scheme was proposed by Banik et al. [15] and is based on the SUN-

DAE mode of operation [14], featuring the bit-sliced GIFT block cipher at its core. It is a

bare-bones construction that does not require any additional registers aside the ones used

within the block cipher. After the encryption of the init vector, each data block is mixed into

the AEAD state between the encryption calls. A field multiplication over GF(2128) is applied

after the last associated data has been added to the state. The same multiplication is also

performed for the last message block. The multiplication is either ×2 when the last AD or

message block has been padded or ×4 whenever the last blocks are complete without any

padding. More formally, the multiplication ×2 is encoded as a byte-wise shift and the ad-

dition of the most significant byte into other bytes of the state such that if B0||B1|| . . . ||B15

27In order to facilitate a fair evaluation ground between implementations we re-utilise the input/output inter-
face from Section 3.1 for our bit-serial swap-and-rotate AEAD circuits.

131

Chapter 6. Area: Serial Encryption Circuits

represents the 16 bytes of the intermediate AEAD state (with B0 being the most significant

byte), we have that

2× (B0,B1, . . . ,B15) = (B1,B2, . . .B10,B11 ⊕B0,B12,B13 ⊕B0,B14,B15 ⊕B0,B0),

4× (B0,B1, . . . ,B15) = 2× (2× (B0,B1, . . . ,B15)).

The tag is produced after processing all the AD and message blocks and the ciphertext blocks

are generated by reprocessing the message blocks afterwards. A high-level schematic of the

SUNDAE-GIFT construction is shown in Figure 6.9.

EK EK × EK EK ×

EK EK EK

T C0 Cm−1

M0 Mm−1

Mm−1||10∗M0Aa−1||10∗A0X||0124

b b bb b b

b b bb b

Figure 6.9: The high-level overview of SUNDAE-GIFT, which depicts the processing of m mes-
sage and a associated data blocks. X denotes a 4-bit parameter, whose value depends on the
length of the nonce and whether there are no AD or message blocks.

The simplicity of SUNDAE-GIFT can be exploited in a bit-serial implementation to attain

a circuit with very low overhead in terms of area. In fact, except for the slight area increase

for the control logic, the sole addition to the swap-and-rotate GIFT circuit presented in Sec-

tion 6.4 is the field multiplication. The multiplier can be achieved with two swaps (one for ×2,

another for ×4) and one XOR gate. More concretely, we allocate 128 rounds for the multipli-

cation ×2 and ×4 during which the block cipher round function and key swaps are disabled.

In other words, while the ciphertext bits exit the last round function computation, we place a

swap at (119, 127) and activate it during cycles 8 to 127 which rotates the state by 8 positions

to the left. Similarly, another swap (111, 127) is active during the cycles 16 to 127 in order

to execute the 16-bit rotation. Hence, in the worst case, we require 2×128 = 256 additional

cycles for multiplications. In terms of latency, each new encryption call is loaded with the

new plaintext, while the ciphertext bits of the previous computation exit the pipeline. As a

consequence the very first encryption operates over 41×128 = 5248 cycles, while the remain-

ing encryption each take 40×128 = 5120 cycles. Table 6.9 lists the synthesis measurements

for the serial SUNDAE-GIFT constructions.

132

6.5 AEAD

Table 6.9: Synthesis figures for the proposed swap-and-rotate serial SUNDAE-GIFT circuits.
The power and energy measurements were taken at a clock frequency of 10 MHz. Latency
and energy correspond to the encryption of one 128-bit AD block and eight 128-bit message
blocks.

Library Area Latency Throughput Power Energy
GE Cycles Mbit/s µW nJ

1-Bit SUNDAE-GIFT
NanGate 15 nm 2170 92544 91.05 15.90 147.14
NanGate 45 nm 1910 92544 15.17 130.31 1205.94
UMC 65 nm 1671 92544 3.35 15.99 147.98
TSMC 90 nm 1576 92544 5.77 45.98 425.52

4-Bit SUNDAE-GIFT
NanGate 15 nm 2754 23136 299.93 19.48 45.07
NanGate 45 nm 2339 23136 53.67 168.16 389.05
UMC 65 nm 2093 23136 10.56 18.93 43.79
TSMC 90 nm 2000 23136 13.67 52.12 120.58

6.5.2 SAEAES

The SAEAES AEAD scheme was proposed by Naito et al. [109] and uses the AES block ci-

pher as the underlying encryption core. The white paper proposes a number of parameters

according to which the mode can be operated, but the primary candidate among them is

SAEAES128-64-128, which implies a key size of 128 bits, message/AD blocks of 64 bits and a

tag size of 128 bits. This effectively makes the primary mode of rate 1/2, since 2 block cipher

calls are required per 128 bits of message/AD. However, the mode requires no additional state

other than those required in the calculation of the block cipher encryption and so a very com-

pact implementation is feasible. A diagram of the SAEAES mode of operations is depicted in

Figure 6.10.

EK

A0

064

064

A1

EK
b b b

Aa−1

EK
b b b

1 or 2

EK

3

N

EK
b

C0M0

b b b

b b b

EK
b

Cm−1Mm−1

1 or 2

T

Figure 6.10: The high-level overview of SAEAES, which depicts the processing of m message
and a associated data blocks.

From a circuit designer’s point of view, it is not difficult to implement the mode, as the

only real challenge lies in ensuring that at the beginning of a particular encryption operation

the circuit feeds the correct input vectors to the block cipher circuit, which are as follows:

• Xi = (Ai ,064 ⊕EK (Xi−1)) or A0 when i = 0 during the associated data processing stage,

133

Chapter 6. Area: Serial Encryption Circuits

where Xi is the i -th input to the block cipher.

• Xa−1 = (Xa−1,const64 ⊕EK (Xa−2)) for the last AD block, where const64 denotes a 64-bit

constant.

• IV = N ⊕012611⊕EK (Xa−1) before the processing of the plaintext begins, where 012611

corresponds to the number 3 encoded as 128-bit string and N denotes the nonce.

• Xi = Mi ⊕EK (Xi−1) during the plaintext processing stage, where Xi is the i -th input to

the block cipher during plaintext processing. It can also be seen that Xi is also inciden-

tally the i -th ciphertext block, and the tag is simply the outcome of the final encryption

call that the mode performs.

A bit-wise AES encryption core produces output 1 bit per clock cycle during the last 128

cycles of the encryption operation. Since we are using no additional storage blocks, the out-

put bits, once produced, need to be XORed with the appropriate input signal and concur-

rently fed back to the block cipher as the input of the following encryption call. Essentially

cycles 1281 to 1408 not only produce the output of the i -th encryption but also serve as the

input period for the (i+1)-th encryption. Thus one needs to exercise some more fine-grained

control over the circuit, to ensure that the block cipher circuit is able to perform the dual role

during cycles 1281 to 1408. This effectively means that all encryption calls except the first

requires 1280 cycles. Hence, in order to process a AD and m plaintext chunks of 64 bits each,

the circuit requires a+m+1 encryption calls which leads to 1408+1280×(a+m) cycles. The

synthesis figures for the proposes serial SAEAES circuits are tabulated in Table 6.10.

Table 6.10: Synthesis figures for the proposed swap-and-rotate serial SAEAES circuits. The
power and energy measurements were taken at a clock frequency of 10 MHz. Latency and en-
ergy correspond to the encryption of one 128-bit AD block and eight 128-bit message blocks.

Library Area Latency Throughput Power Energy
GE Cycles Mbit/s µW nJ

1-Bit SAEAES
NanGate 15 nm 2362 24448 142.21 18.88 46.01
NanGate 45 nm 2067 24448 21.20 148.82 363.84
UMC 65 nm 1834 24448 4.45 21.67 52.98
TSMC 90 nm 1751 24448 7.11 56.97 138.55

8-Bit SAEAES
NanGate 15 nm 3086 3056 1119.93 24.93 7.62
NanGate 45 nm 2745 3056 186.27 205.50 62.80
UMC 65 nm 2569 3056 37.60 28.11 8.59
TSMC 90 nm 2452 3056 61.88 70.22 21.46

134

6.5 AEAD

6.5.3 Romulus

Romulus is an AEAD scheme designed by Iwata et al. [74] making use of the SKINNY family

of block ciphers. We provide implementations for two members Romulus-N1 and Romulus-

N3. The former is the primary candidate of the family that employs SKINNY-384 whereas the

latter is the lightest among them as it uses SKINNY-256.

In order to reduce the number of block cipher calls, and make use of the large tweakey

space, that is 384 bits for the primary member, Romulus makes 1/2 block cipher call per as-

sociated data block, and 1 block cipher call per message block. Romulus-N1 member admits

128-bit key, 128-bit nonce, variable-length message chopped into 128-bit blocks, and pro-

duces 128-bit tag. In terms of input parameter sizes, the difference in Romulus-N3 lies in its

96-bit nonce. An interesting design choice regarding Romulus is that associated data blocks

can have alternating size based on which member is chosen. For example, with Romulus-N3,

for some integer i , A2i−1 blocks are 128-bit, and A2i blocks are 96-bit. In order to ease nota-

tion and the description, one can actually treat (A2i−1, A2i) as a single 224-bit block, assuming

that the original padding is preserved during this conversion. In Romulus-N1, all associated

data blocks are fixed to 128 bits. Figure 6.11 describes the three phases a full AEAD operation

passes through, namely processing of (1) associated data, (2) nonce and (3) message blocks.

0128 EL,d,·,K

A0

b b b

A1

A2a−2

EL,d,·,K

A2a−1

EL,d,·,K

N

ρ

M0

C0

EL,d,·,K

N

ρ

M1

C1

b b b ρ

Mm−1

Cm−1

EL,d,·,K

N

ρ

0128

T

Figure 6.11: The high-level view of Romulus-N1, which depicts the processing of 2a asso-
ciated data and m message blocks. L denotes the 56-bit LFSR that counts the number of
processed blocks, and d denotes a single byte domain separator followed by 064.

During associated data phase, each combined 224-bit (A2i−1, A2i) block is processed with

a single block cipher call EK . For each of these SKINNY-256 calls, the plaintext is A2i−1, and

the tweakey is concatenation of 24-bit counter L, 8-bit domain separator d , 96-bit A2i block

and the 128-bit key K . The output from the block cipher is treated as the running state, and

XORed with each new A2i−1 block. Once all (A2i−1, A2i) combined blocks are processed, the

running state is encrypted by using the nonce N itself as a part of the tweakey. We refer to

this as processing of the nonce. During the message phase, for each of the 128-bit message

blocks, the running state and the message block Mi are passed through ρ function defined

below. Essentially ρ acts as XOR in the lateral direction, hence the running state is XORed

with the message blocks as before. Once all message blocks are processed, the final block

cipher output is passed through ρ with 0128 to produce the tag. ρ(S, M) = (S′,C) is defined as

S′ ← S ⊕M and C ←G(S)⊕M . For each byte, G performs the operation

G(x7, x6, x5, x4, x3, x2, x1, x0) ← ((x0 ⊕x7), x7, x6, x5, x4, x3, x2, x1).

135

Chapter 6. Area: Serial Encryption Circuits

It is then straightforward how we can use 1-bit-serial SKINNY-256 pipeline to realise

Romulus-N3. Except for the computation of the ciphertext blocks through ρ, we can sim-

ply reuse the state pipeline of SKINNY-256 to store the running state. In order to compute G ,

we use two external 7-bit buffer pipelines, which keeps the copy of the last 7 bits that exit the

state pipeline and the last 7-bit of message block which is being fed to the circuit. This leads

to 7 clock cycle of delay in between the time a message block is fed and the time the cipher-

text bits become available. This similarly applies to the tag as well, hence the delay of 7 clock

cycles must be considered during latency calculation. As for 1-bit-serial implementation of

Romulus-N1, the steps taken by the state machine is precisely same. As for differences, how-

ever, (1) the invoked block cipher is SKINNY-384, (2) all associated data blocks are 128-bit,

hence loading for even and odd-numbered associated data blocks (as well as nonce) starts

and ends at the same clock cycles, (3) and the block counter is defined as 56-bit LFSR (in-

stead of 24-bit). Moving towards 8-bit implementation is also quite straightforward, with the

only difference being the removal of the 7 clock latency caused by ρ function. Since it oper-

ates on the byte level, it is realised as a fully combinatorial circuit.

All in all the 1-bit Romulus-N1 pipeline has latency of, processing 1 AD blocks and 8 mes-

sage blocks takes (a +m)× 56× 128+ 128+ 7 clock cycles. The additional 128 clock cycles

are incurred due to the delay of loading/flushing the pipelines, and the 7 clock cycle is due

to the execution delay of ρ. As for 8-bit implementation, the clock cycles are amended as

(a +m)×56×16+16. The corresponding synthesis measurements are listed in Table 6.11.

Table 6.11: Synthesis figures for the proposed swap-and-rotate serial Romulus circuits. The
power and energy measurements were taken at a clock frequency of 10 MHz. Latency and en-
ergy correspond to the encryption of one 128-bit AD block and eight 128-bit message blocks.

Library Area Latency Throughput Power Energy
GE Cycles Mbit/s µW nJ

1-Bit Romulus-N1
NanGate 15 nm 4488 64647 79.34 32.08 207.39
NanGate 45 nm 3879 64647 18.43 265.49 1716.31
UMC 65 nm 3415 64647 4.09 31.59 204.22
TSMC 90 nm 3198 64647 7.51 95.27 615.89

8-Bit Romulus-N1
NanGate 15 nm 5152 8080 608.32 36.77 29.71
NanGate 45 nm 4458 8080 106.57 311.85 251.97
UMC 65 nm 4069 8080 37.15 31.53 25.48
TSMC 90 nm 3742 8080 42.20 100.81 81.45

1-Bit Romulus-N3
NanGate 15 nm 3310 55431 163.70 25.01 138.63
NanGate 45 nm 2880 55431 21.28 198.99 1103.02
UMC 65 nm 2497 55431 5.62 24.54 136.03
TSMC 90 nm 2361 55431 9.99 73.95 409.91

136

6.5 AEAD

6.5.4 SKINNY-AEAD

SKINNY-AEAD as proposed by Beierle et al. [29] relies on the ΘCB3 mode of operation [95]

and uses the heaviest SKINNY variant, i.e., SKINNY-384, as the core block cipher. ΘCB3 re-

quires the addition of three auxiliary registers that store intermediate values during the com-

putation; a 128-bit register denoted by X that accumulates the encrypted AD block, a second

128-bit register Y that holds the summation of all message blocks and finally a 64-bit LFSR

block counter L as shown in Figure 6.12. Both the 1-bit and 8-bit version of SKINNY-AEAD

can be instantiated without any further modifications to the serial SKINNY-384 cores. Ta-

ble 6.12 tabulates the synthesis figures for the proposed serial SKINNY-AEAD circuits.

Table 6.12: Synthesis figures for the proposed swap-and-rotate serial SKINNY-AEAD circuits.
The power and energy measurements were taken at a clock frequency of 10 MHz. Latency
and energy correspond to the encryption of one 128-bit AD block and eight 128-bit message
blocks.

Library Area Latency Throughput Power Energy
GE Cycles Mbit/s µW nJ

1-Bit SKINNY-AEAD
NanGate 15 nm 6732 72960 75.29 46.10 336.35
NanGate 45 nm 5980 72960 15.21 408.43 2979.19
UMC 65 nm 5105 72960 4.89 45.72 333.57
TSMC 90 nm 4807 72960 6.84 122.55 894.12

8-Bit SKINNY-AEAD
NanGate 15 nm 7025 9856 569.94 31.99 31.53
NanGate 45 nm 5992 9856 101.43 410.75 404.83
UMC 65 nm 5258 9856 21.60 38.76 38.20
TSMC 90 nm 4944 9856 38.61 137.05 135.08

0128

EL,d,N,K b b b

A0

EL,d,N,K

b b b X

Aa−1

EL,d,N,K

M0

C0

EL,d,N,K

0128

Cm−1

b b b

Mm−1||10∗

EL,d,N,K

Y

T

X

Figure 6.12: The high-level view of the SKINNY-AEAD construction. The block counter L, a
domain separator d , the nonce N and the encryption key K together make up the 384-bit
tweakey. The encryption of the zero string is only performed when the last message block is
incomplete.

137

Chapter 6. Area: Serial Encryption Circuits

6.6 Conclusion

Let us reiterate the content of this chapter. The synthesis results of AES, SKINNY and GIFT are

summarized in Table 6.4, Table 6.6 and Table 6.8 respectively. For each of the three block ci-

phers, we observe that in the bit-serial mode, the area occupied by the circuits is exceedingly

close to the total area required by the storage elements. For AES, the area is only slightly larger

due its use of an 8-bit S-box and a reasonably heavyweight MixColumns circuit. Nonetheless,

for the other ciphers that have relatively lightweight S-box and linear layer, the purely com-

binatorial circuit elements occupy only around 10% of the total silicon area. Additionally, we

are able to reduce the round latency to match precisely the block size of the underlying block

cipher. Note that it is not possible to have an implementation that has lower round latency

in clock cycles than the block size of the cipher, because for a bit-serial circuit of SPN-based

ciphers, all the state bits must be rotated across the pipeline. Therefore, this represents the

optimal trade-off spot in the area-latency curve, as far as SPN-based block ciphers are con-

cerned. In the case of implementations with wider datapaths, the area grows only marginally,

mainly because the number of MUXes and XOR gates required in the circuit needs to be mul-

tiplied by the length of the datapath the circuit aims to achieve.

Table 6.9, Table 6.10, Table 6.11 and Table 6.12 list the synthesis results we obtained for

all the individual modes of operation. SUNDAE-GIFT and SAEAES are essentially rate 1/2

modes that need 2 block cipher calls for every 128-bit message block. Note that for these two,

the underlying block ciphers admits an 128-bit key, and they require exactly 256 flip-flops to

store the key and the state. Thus in a sense, minimalism of the core block cipher comes at

the cost of having to execute 2 block cipher calls per 128-bit message block. On the other

hand, the rate 1 modes, which require only 1 block cipher call per block of message, such as

Romulus and SKINNY-AEAD employ SKINNY-384. They take advantage of the large (384-bit)

tweakey space to accommodate nonce, domain separator, and counter for each block cipher

invocation. However, for SKINNY-384, this comes at the cost 512 flip-flops for both the state

and the tweakey. This results in an interesting latency and area trade-off, and gives further

insights on the nature of these designs.

[...] To burn up on re-entry and call the state a traitor [...]

138

7 Area: A Small GIFT-COFB

[...] Sputnik sickles found in the seats [...]

We remain in the dominion of bit-serial circuits and take on a challenge to had not been

solved at the time of publication of the findings in Chapter 6. More specifically, we will solve

the riddle of efficiently serialising the NIST LWC finalist GIFT-COFB [21] AEAD scheme to a

data path width of one bit. Unlike the bit-serial AEAD implementations proposed in Chap-

ter 6, GIFT-COFB involves finite field arithmetic for which there is no straightforward map-

ping into a bit-serial setting that is both circuit area and latency efficient.

Contributions. In this chapter, we fill this gap by proposing bit-serial circuits, based on the

swap-and-rotate GIFT* circuit that was presented earlier, which stand as the to-date most

area-efficient GIFT-COFB implementations known in the literature. More specifically, our

contributions are summarized as follows:

1. GIFT-COFB-SER-S: This circuit represents an effective transformation of the swap-and-

rotate GIFT* scheme into the GIFT-COFB mode of operation minimizing its area foot-

print.

2. GIFT-COFB-SER-F: Subsequently, we observed that the interspersing of block cipher

invocations with calls to the finite field module as found in the baseline GIFT-COFB

design can be reordered by leveraging its inherent mathematical structure in order to

further optimize the overall latency of GIFT-COFB-SER-S while only incurring a modest

area increase.

3. GIFT-COFB-SER-TI: In a natural progression, we design a bit-serial first-order thresh-

old implementation based on GIFT-COFB-SER-F whose security is experimentally ver-

ified through statistical tests on signal traces obtained by measuring the implemented

circuit on a SAKURA-G side-channel evaluation FPGA board.

4. We synthesise all of the proposed schemes on ASIC platforms and compare our results

to existing bit-serial implementations of NIST LWC candidate submissions, indicating

our designs are among the smallest currently in the competition. A brief overview of

the synthesis results is tabulated in Table 7.1.

139

Chapter 7. Area: A Small GIFT-COFB

Table 7.1: Synthesis results overview for lightweight block cipher based NIST LWC competi-
tors using the TSMC 90 nm cell library at a clock frequency of 10 MHz. Latency and energy
correspond to the encryption of 128 bits of AD and 1024 message bits. Highlighted schemes
are NIST LWC finalists. GIFT-COFB-SER-TI is based on GIFT-COFB-SER-F.

Datapath Area Latency Power Energy Reference

Bits GE Cycles µW nJ

SUNDAE-GIFT 1 1576 92544 45.9 424.7 Chapter 6

SAEAES 1 1751 24448 56.9 139.0 Chapter 6

Romulus-N3 1 2361 55431 74.0 409.9 Chapter 6

SKINNY-AEAD 1 4807 72960 122.5 893.8 Chapter 6

GIFT-COFB 128 4710 400 69.3 2.77 Chapter 3

GIFT-COFB-SER-S 1 1907 93312 42.8 399.3 Section

GIFT-COFB-SER-F 1 2075 87168 57.8 504.2 Section

GIFT-COFB-SER-TI 1 4422 87168 128.6 1121 Section

The content of this chapter was presented in 2022 at the thirteenth Internation Confer-

ence on Cryptology in Africa [48].

Outline. The chapter unfolds as follows: In Section 7.1 and Section 7.2, we present the circuits

for GIFT-COFB-SER-S and GIFT-COFB-SER-F respectively in which the finite field operations

are absorbed in the last encryption round of the GIFT block cipher. Section 7.3 details the

circuit for the first-order threshold implementation of GIFT-COFB and experimental results

for leakage detection in which we do not observe any first-order leakage. Section 7.4 analyses

the hardware synthesis measurements. Lastly, this chapter is concluded in Section 7.5.

7.1 GIFT-COFB-SER-S

Recall the description of the bitsliced GIFT block cipher from Section 2.6.2 and its swap-and-

rotate implementation detailed in Chapter 6 where the state bits X = (x0 · · ·x127) are parti-

tioned into four lanes such that

S0 = x0x1 · · ·x30x31, S1 = x32x33 · · ·x62x63,

S2 = x64x65 · · ·x94x95, S3 = x96x97 · · ·x126x127.

The bit permutationΠnow reduces to four independent sub-permutationsΠ0,Π1,Π2,Π3 that

act on each lane

Π(x0 · · ·x127) =Π0(x0 · · ·x31)Π1(x32 · · ·x63)Π2(x32 · · ·x63)Π3(x96 · · ·x127).

The plaintext is loaded into FF127 throughout cycles 0-127. In cycles 96-127, the S-box layer

of the first round and the swaps that calculate Π0 are active in cycles 96-159. Subsequently,

140

7.1 GIFT-COFB-SER-S

the swaps corresponding toΠ1,Π2,Π3 are active during the cycles 128-191, 160-223 and 192-

255 respectively, concluding the calculation of the first round function. This pattern repeats

for the remaining rounds until the 40-th and ultimate round which starts executing in cycle

5088. The first ciphertext bits are made available at FF0 from cycle 5120 until the last bit has

exited the pipeline in cycle 5248. Hence, a full encryption takes exactly (40+1) ·128 = 5248

cycles. For a more detailed breakdown of the swap activation cycles the reader is referred to

Section 6.4. A schematic timeline diagram is given in Figure 7.1.

Round 1

96 128 160 192

Round 2 Round 40

b b b

Load PT

224 256

Read CT

288 320 352 5088 5120 5152 5184 5216 524864320

Π0 Π1 Π2 Π3

SB SB SB

Π0 Π0Π1 Π1Π2 Π2Π3 Π3

Figure 7.1: Timeline diagram of the swap-and-rotate GIFT implementation; the numbers in
the x-axis denote clock cycles. Note that for better readability the permutation swaps inter-
vals are only indicated for the first 32 cycles in this and subsequent timeline figures.

Additionally, recall another peculiarity of the bit-sliced GIFT variant is that the 4-bit S-

box is not applied to adjacent bits of the state but to the first bits of each lane, in other words

x31, x63, x95, x127. Summa summarum, the circuit for the state pipeline is compact and simple

as shown in the high-level diagram of Figure 7.2.

RK

FF31

FF63

FF95

FF127FF96

FF64

FF32

FF0

PT
CT

FF64

FF96

S0

S1

S2

S3

CT

PT
CT

FF32

0RC0

S
-
B
o
x

Figure 7.2: The swap-and-rotate GIFT state pipeline circuit. There are in total nine swaps
over twelve flip-flops.

In this section, we lay the groundwork for our bit-serial GIFT-COFB circuits and describe

how to efficiently implement the field multiplication as well as the feedback function. In

the process, we integrate the obtained component circuits with the swap-and-rotate module

described in previously which yields the first lightweight bit-serial GIFT-COFB circuit. This

is straightforward in the sense that there is a clear separation between the execution of the

GIFT encryption, the calculation of the Feedback function and the addition of L to the inter-

nal state, alongside the loading of the plaintext as part of the next encryption. Meaning that,

after the ciphertext has completely exited the pipeline, these three operations are each per-

formed in 128 separate cycles during which the GIFT pipeline executes the identity function,

141

Chapter 7. Area: A Small GIFT-COFB

160 192 2242565088 5120 5152 5184 5216 5248 64

Π0 Π1 Π2 Π3

SB

2x, 3x

Π0 Π1 Π2 Π3

SB

Absorb AD/M

Output GIFT-128 CT

3x 3x

Feed

3x

96 128128

Round 1Round 40

Load L

Output CT Add L

Load Input Next Enc

GIFT-128 Core Idle for 384 Cycles

Cycles Operations

0-5087 The nonce is fed into the state pipeline bit by bit in cycles 0 to 127. There-
after, the first 39 rounds of GIFT are executed.

5088-5247 Round 40 executes during cycles 5088-5216. The resulting ciphertext bits
exit the pipeline during cycles 5120-5247. We read the first 64-bits of the
ciphertext into the L register during cycles 5120-5183 while executing the
first multiplication during the same period.

For each additional data block, the following cycles are executed sequentially:

0-127 After the ciphertext has fully exited the state pipeline, we start executing the
feedback function for 128 cycles. In parallel, we can absorb the input data
block and, if needed, produce the ciphertext bits. Subsequent multiplica-
tions of L are performed if required.

128-255 The state after the above is now XORed with the content of the L register and
the result is written back, bit by bit, into the state register.

0-5247 A new encryption starts after L has been added to the cipher state.

Figure 7.3: Timeline diagram and cycle-by-cycle description of GIFT-COFB-SER-S for two
successive encryptions. Note the interval of 3×128 idle cycles between encryptions.

i.e., the state bits rotate through the shift register without the activation of any swap or the S-

box. Hence, there is an overhead of 3×128 cycles between encryption invocations. We denote

this circuit by G I F T −COF B −SER−S which will be the basis for the latency-optimized vari-

ant, presented in the subsequent section, that circumvents those periodic 384 penalty cycles

with only a marginal increase in circuit area.28 The exact sequence of operations between

encryptions is described in Figure 7.3.

28The letters S and F in GIFT-COFB-SER-S and GIFT-COFB-SER-F stand for slow and fast respectively. Similarly
to the nomenclature used in Chapter 4.

142

7.1 GIFT-COFB-SER-S

7.1.1 Implementing the Feedback Function

Recall the feedback function as detailed in Section 2.6.2, in other words

Feed(X0, X1) = (X1, X0 ≪ 1).

It is a bit-permutation belonging to the symmetric group over a set of 128 elements and exe-

cutes two operations sequentially:

1. Swapping of the upper and lower halves of the word (X0, X1) → (X1, X0).

2. Leftward rotation of the lower half X0 by one position.

Proposition 1. Using two swaps over four flip-flops, it is possible to fully implement both sub-

routines of the subroutine Feed in exactly 128 clock cycles.

Proof. A schematic cycle-by-cycle diagram of the feedback function is depicted in Figure 7.4.

The first swap FF127 ↔ FF126 is active from cycles 2 to 64. As a result, the state at clock cycle 64

is given as x64x65 · · ·x126x127x1x2 · · ·x0x63. Note that this is already the output of the Feedback

function if the two least significant bits were swapped, which is then done in cycle 64. The

second swap FF0 ↔ FF64 is active from cycle 64 to 127 which effectively computes the identity

function over 64 cycles. One can thus see that after 128 cycles that the register contains the

intended output of the Feed function.

Absorbing Data Blocks and Outputting the Ciphertext. In order to avoid having to pass the

message block bits twice to the circuit, once to produce the AEAD ciphertext and once for

absorption into the state, i.e., Feed(X)⊕ M , this absorption is performed in parallel to the

execution of the feedback function. Note that if X = x0x1 · · ·x127 and M = m0m1 · · ·m127, then

the i -th bit ui of Feed(X)⊕M is given as:

ui =

m127−i ⊕x191−i if 64 ≤ i < 128,

m127−i ⊕x64−i if 0 < i ≤ 63,

m127−i ⊕x0 if i = 0

By inspection of Figure 7.4, one can see that in order to execute the above seamlessly, the

data bits must be added to FF64. This is because, for any i , the state bit x191−i (for 64 ≤ i <
128), x64−i (for 0 < i ≤ 63) and x0 (for i = 0) is always present at FF64 at clock cycle i . Thus,

to implement the above, we need one additional XOR gate before the 63rd flip-flop in the

state register. Additionally, FF0 always contains the most significant bit of X ≪ i at any cycle

i ∈ [0,127], thus the ciphertext, which is computed as M ⊕X , is extracted by adding the input

data bit with FF0. In Figure 7.5, we present the state pipeline circuit of GIFT-COFB-SER-S

that integrates the swaps of the feedback function, and the additional XOR gates for the data

absorption and ciphertext creation.

143

Chapter 7. Area: A Small GIFT-COFB

FF0

x0

FF1

x1
b b b

FF63

x63

FF64

x64
b b b

FF126

x126

FF127

x127Cycle 0

x2 x3
b b b x65 x66

b b b x0 x1Cycle 2

x64 x65
b b b x127 x1 x0 x63Cycle 64

x65 x66
b b b x64 x2

b b b x0 x1Cycle 65

FF0

x64

FF1

x65
b b b

FF63

x127

FF64

x1 b b b

FF126

x63

FF127

x0
Cycle 128

b

b

b

b

b

b

b

b

b

X0 <<< 1X1

X0 X1

FF0

x1

FF1

x2
b b b

FF63

x64

FF64

x65
b b bCycle 1

x127 x64
b b b x126 x0

b b b x62 x63Cycle 127

x3 x4 b b b x66 x67
b b b x0 x2Cycle 3

FF125

x125

FF126

x127

FF127

x0

FF125

x126

x127

x1

x62

x63

x61

FF125

x62

b b b

FF0 FF1 FF63 FF64 FF126 FF127FF125

FF0 FF1 FF63 FF64 FF126 FF127FF125

FF0 FF1 FF63 FF64 FF126 FF127FF125

FF0 FF1 FF63 FF64 FF126 FF127FF125

FF0 FF1 FF63 FF64 FF126 FF127FF125

Figure 7.4: Cycle-by-cycle execution diagram of the feedback function. Green marked regis-
ters denote active swaps that execute X0 ≪ 1 while yellow registers mark active swaps that
perform (X0, X1) → (X1, X0). Note that when a swap is active as shown by a coloured box on
FFx and FFy , then the operation performed in the pipeline is a) swap contents of FFx and FFy

and then b) rotate.

7.1.2 Multiplication by 2 and 3

GIFT-COFB multiplies the auxiliary state L between encryptions by either the factor 2 or 3x

for 1 ≤ x ≤ 4 depending on the associated data and message block sizes and padding. If it

were not for the period right after the initial encryption of the nonce N in which L has to be

loaded and updated in a short time interval, this would not be too much of an issue as there is

ample time to calculate the multiplication while the encryption core is busy. In the following,

we demonstrate how to efficiently multiply L by 2 or 3 in 64 cycles, yielding a maximum

latency of 256 clock cycles for any factor 34.

Let L = l0l1 · · · l62l63 be the individual bits of the register. On a 64-bit shift register, multi-

144

7.1 GIFT-COFB-SER-S

RK

FF31

PT

U

FF64

FF96

U

PT
U

FF32

0RC0

S
-
B
o
x

FF30FF0 FF29FF28FF27FF26FF25bbb

FF95FF94FF64 FF93FF92FF91

FF127FF126FF96 FF125FF124FF123FF122FF121bbb

L0

b

AD/M
0

M
0

b

CT

FF90FF89bbb

FF63FF62FF32 FF61FF60FF59FF58FF57bbb

X0 → X0 <<< 1
Cycles 2-64

(X0, X1) → (X1, X0)
Cycles 64-127

Figure 7.5: Fully integrated GIFT-COFB-SER-S state pipeline.

plication by 2 has the following form:

2× l0l1 · · · l63 = (L ≪ 1)⊕ (l0 ∗05911011),

which, in plain terms, is simply a leftward shift by one position and the addition of the most

significant bit l0 to four lower bits. On the other hand, the multiplication by three is more

involved as 3×L = (2×L)⊕L and is thus given as

3× l0l1 · · · l63 = (L ≪ 1)⊕ (l0 ∗05911011)⊕L.

A single-cycle implementation of this function necessitates 64 additional 2-input XOR gates

that would incur roughly 128 GE in most standard libraries, which is a considerable overhead

for a bit-serial circuit. Note that technically 3× can be implemented with zero additional

gates, if one is prepared to pay with latency. This is because p64(x) is a primitive polyno-

mial, and since the element 2 is the root of p64(x) it must generate the cyclic multiplica-

tive group of the finite field. With some arithmetic, it can be deduced that 3 = 2d where

d = 9686038906114705801 in this particular representation of the finite field. The discrete

logarithm d of 3 is an integer of the order of 263, hence executing the multiplication by 2 over

d would, in theory, compute the multiplication by the factor 3.

Disregarding this theoretical detour, our actual goal consists in implementing, with min-

imal circuitry, both the multiplication by 2 and 3 in such a way that after 64 clock cycles the

first bit of the updated state exits the pipeline and after the 128 cycles the entire multiplica-

tion has finished.

Proposition 2. By equipping the L shift register with a single auxiliary d-flip-flop, three 2-

input NAND gates, one 2-input XOR gate and one 2-input XNOR gate, it is possible to multiply

L by either 2 or 3, i.e., by the polynomials x or (x +1).

Proof. We begin by observing the following relation: if V = v0v1 · · ·v63 = 2× l0l1 · · · l63 and

145

Chapter 7. Area: A Small GIFT-COFB

W = w0w1 · · ·w63 = 3× l0l1 · · · l63, where vi , wi are given as

vi =

li+1 ⊕ l0 if i ∈ {59,60,62},

l0 if i = 63,

li+1 otherwise

wi =

li+1 ⊕ l0 ⊕ li if i ∈ {59,60,62},

l0 ⊕ li if i = 63,

li+1 ⊕ li otherwise.

It is immediately evident that for all three cases vi and wi differ only by the XOR of the term

li . In cycle 0, bit l63 is first stored in an auxiliary register, which we hereafter refer to as Aux.

Using this fact, we show how to update the register. Then we calculate each update bit as

follows, where α, β and γ are signals defined below:

u = (α ·Aux)⊕ (β ·FF0)⊕ (γ ·FF1). (7.1)

Identity Function. It is simply a rotation of the L register; α=β= γ= 0.

Multiplication by 2. Signal α is used to add l63, which is stored in register Aux in cycle 0, to

the output bit. β is always 0 for multiplication by 2. γ is 1 for all but cycle 63 in order to

implement a left shift (and not left rotate). Consequently, we have

α=
1 cycles 59,60,62,63,

0 otherwise;
β= 0; γ=

1 cycle ̸= 63,

0 otherwise.
(7.2)

If the update function u were to simply be γ · FF1, then after 64 cycles, the register would

store l0 · · · l63 ≪ 1. Now if we added l60 to the LFSR update in cycles 59, 60, 62, 63, then after

64 cycles, the LFSR state would be (l0 · · · l63 ≪ 1)⊕ (l0 ∗05911011) which is the output of the

doubling function.

Multiplication by 3. α, andγ as above and alwaysβ= 1. Addingβ·FF63 to the update function

enables the output to be (l0 · · · l63 ≪ 1)⊕(l60∗05911011)⊕(l0 · · · l63), which is the output of the

tripling function.

Using (7.1), we can implement both multiplications by factors 2 and 3 in 64 cycles using one

auxiliary d-flip-flop, three 2-input NAND gates and one 2-input XOR gates and one 2-input

XNOR gate. A diagram of the resulting circuit is shown in Figure 7.6.

FF0 FF1 FF2 FF62 FF63

Aux

b

b

b

βα

b

γ

b

b b b b

Input

Figure 7.6: Implementation of the bit-serial multiplication by 2 and 3.

146

7.2 GIFT-COFB-SER-F

7.1.3 GIFT-COFB-SER-S Total Latency

It can be seen that the encryption of the nonce takes 5248 cycles. Thereafter, every addi-

tional block takes 256+5248 = 5504 cycles to process. Thus if the padded associated data and

message consist of B blocks in total, then the time taken to produce the ciphertext and tag is

TS = 5248+5504 ·B clock cycles.

7.2 GIFT-COFB-SER-F

The proposed bit-serial circuit from the previous section already represents the to-date most

area-efficient GIFT-COFB implementation. However, as our bit-serial interpretation respects

the natural order of operations as given in the specification of the mode of operation, it has

a significantly elevated latency. This is mainly due to the encryption core being idle during

3×128 clock cycles between successive invocations which means that if we want to do away

with those penalty cycles, the calculation of the Feedback function, the update and addition

of L, the addition of incoming associated data and message bits and the loading of the next

encryption state all have to occur in parallel. This means that during 128 cycles while the

GIFT ciphertext bits c(j)
i for data block j leave the pipeline, the newly entering bits v (j+1)

i for

data block j +1 at FF127 are necessarily of the form

v (j+1)
i = c(j)

i ⊕ rki ⊕ rci ⊕ l (j+1)
i ⊕d (j+1)

i , (7.3)

where rki ⊕ rci denote the i -th bit of the last round key, l (j+1)
i denotes the i -th bit of the l

register to be added before the (j +1)-th data block and d (j+1)
i is the i -th bit of the (j +1)-th

data block. In this section, we describe three requisite tweaks to GIFT-COFB-SER-S that let

us achieve this goal.

1. Change the swaps of Feed described in Section 7.1.1 as to enable its execution in par-

allel to the ciphertext bits leaving the state pipeline.

2. Reorder the incoming data bits as well as L such that they can be seamlessly added to

the exiting ciphertext bits.

3. Enrich the L circuit from Section 7.1.2 with additional logic in order to compute the

multiplication by the factors 2,3,32,33 and 34 in 128 clock cycles concurrently with the

last encryption round. The updated time diagram alongside a cycle-by-cycle descrip-

tion is given in Figure 7.7.

7.2.1 Tweaking the Feedback Function

Note that, as explained in Section 7.1.1, the swap between FF0 and FF63 during the calcula-

tion of the Feed function preserves the state over 64 cycles in GIFT-COFB-SER-S. However,

the same can be achieved by swapping FFx and FFx+64 for any x. Since we execute Feed con-

currently with the last GIFT encryption round, we want the bit exiting the pipeline at FF0 to be

147

Chapter 7. Area: A Small GIFT-COFB

160 192 2244960 4992 5024 5056 5088 5120 64

Π0 Π1 Π2 Π3

SB

3x, 32x

Π0Π1 Π2 Π3

SB

Absorb AD/M

Output GIFT-128 CT

Feed

96 128

Round 1Round 40

Load L

Output CT

Add L

Load Input Next Enc

Π0

SB

32

Π1 Π2 Π3

Round 2

288 320 352

Π0

SB

256

Π1 Π2 Π3

Round 3

2x, 3x, 32x

160 192 2245088 5120 5152 5184 5216 5248 64 96 12832 288 320 352256

Initial Nonce Encryption

Cycles Operations

0-5087 The nonce is fed into the state pipeline bit by bit in cycles 0 to 127. There-
after, the first 39 rounds of GIFT are executed.

5088-5247 Round 40 executes during cycles 5088-5216. The resulting ciphertext bits
exit the pipeline during cycles 5120-5247. We read the first 64-bits of the
ciphertext into the L register during cycles 5120-5183 while executing the
first multiplication during the same period such that in the second 64 cycles
it is added back to the cipher state. In the same 128 cycles, we also execute
Feed and add the data bits.

For each additional data block, the following cycles are executed sequentially:

0-4959 We perform the first 39 rounds of the new encryption call.

4960-4991 The first 32 cycles of the last round of the encryption call.

4992-5119 We execute the following in parallel: we finish executing the encryption call,
we load the new cipher state, perform multiplication of L, execute Feed, ab-
sorb data bits and the (updated) L, output the ciphertext and start executing
round 1 of the next encryption call.

Figure 7.7: Timeline diagram of GIFT-COFB-SER-F. Note that the initial 128 cycles to load the
nonce cannot be parallelized with other functions, hence the initial encryption of the nonce
takes 5248 cycles.

148

7.2 GIFT-COFB-SER-F

the output of the G I F T encryption routine in the same order as in GIFT-COFB-SER-S. Swap-

ping out FF0 and FF63, however, disrupts that order. Thus, we replace the swap FF0 ↔ FF63

with the swap FF64 ↔ v (j)
i , where v (j)

i is the i -th bit of the j -th incoming block as defined

above.

A side effect of this choice affects the S-box inputs of just the first round of every new

encryption with an incoming data block. In GIFT-COFB-SER-F, in the first S-box invocation

of a new encryption, inputs are now of the form FF32, v (j)
i , FF96,FF64 instead of FF32, FF64,

FF96, v (j)
i due to the FF64 ↔ v (j)

i swap. As a result, we need two more multiplexers that swap

FF64 and v (j)
i before entering into the S-box during cycles 96 to 127. The resulting circuit for

GIFT-COFB-SER-F is depicted in Figure 7.8.

RK

FF31

PT

U

FF96

U

U

FF64

FF32

0RC0

S
-
B
o
x

FF30FF0 FF29FF28FF27FF26FF25bbb

FF95FF94FF64 FF93FF92FF91

FF127FF126FF32 FF125FF124FF123FF122FF121bbb

L0

b

M
0CT

FF90FF89bbb

V

0 AD/M
b

V

V
FF64

PT

FF64

(X0, X1) → (X1, X0)

Cycles 64-95

X0 → X0 <<< 1

Cycles 2-64

FF63FF62FF32 FF61FF60FF59FF58FF57bbb

Figure 7.8: GIFT-COFB-SER-F state pipeline. U denotes the input bit during intermediate
cipher rounds and V the input during the first round of a new encryption. Wires marked in
red enable the concurrent execution of Feed and the S-box.

7.2.2 Reordering Data Bits

The absorption of associated data/message bits and L normally occurs after the computation

of the feedback function. However, we have to do it with the last encryption round, which

involves some re-ordering of data bits and L. Consider the inverse transformation of Feed:

Feed−1(X0, X1) = ((X1 ≫ 1), X0).

Note that Feed is a linear function, we have since Feed−1(L,064) = 064||L:

Feed(X ⊕Feed−1(D)⊕Feed−1(L,064)) = Feed(X)⊕D ⊕L||064.

We need to re-order the incoming data bits and the output of the L function by the permu-

tation Feed−1 before adding it to the state, thereafter performing the Feed function over the

modified state X ⊕Feed−1(D)⊕ 064||L which thus correctly computes the input to the next

encryption call. This comes with a convenient side effect:

Proposition 3. Placing the addition of L before Feed yields 64 spare cycles that can be used to

149

Chapter 7. Area: A Small GIFT-COFB

perform the finite field multiplications.

Proof. When we add the string Feed−1(L,064) = 064||L, the first 64 cycles are spent adding the

zero string. These 64 cycles can be used to load L into its register and simultaneously multiply

it by either 2,3,32,33 or 34 such that in cycle 64 the first correctly updated bits exit L and the

entire register is updated in a total of 128 cycles.

7.2.3 Enhancing the Multiplier

We proceed to demonstrate that the assertion from the previous proposition, namely that

after 64 cycles the first correctly multiplied bit exits the L pipeline, can be integrated into the

existing multiplier from Section 7.1.2 with modest overhead.

Proposition 4. By equipping the L shift register with four auxiliary d-flip-flops, nine 2-input

NAND gates, eight 2-input XOR gates and one 2-input XNOR gate, it is possible to multiply L

by either 2, 3, 32, 33 or 34 in 128 cycles.

Proof. Again let L = l0l1 · · · l63 be the individual state, then the multiplication by 32 is written

as

32 × l0l1 · · · l63 = (L ≪ 2)⊕ (l0 ∗058110110)⊕L⊕ (l1 ∗05911011).

Recall the multiplication circuit for the factors 2 and 3 from Section 7.1.2. We re-introduce

signals α,β,γ as α0,β0 and γ0, and to capture multiplication by 32 we further add δ0 and α1.

Let Aux0 be the register that stores l0 in cycle 0, and analogously denote by Aux1 the auxiliary

register that stores l1 in the same cycle. Then, the circuit for the multiplication by the factors

2, 3, 32 can be written as

u = (α0 ·Aux0)⊕ (α1 ·Aux1)⊕ (β0 ·FF0)⊕ (γ0 ·FF1)⊕ (δ0 ·FF2).

In order to compute the multiplication by the higher factors 33 and 34, we equip the L pipeline

with a second 32 circuit at the beginning that continuously overwrites register FF2, which is

therefore a scan flip-flop, as the bits enter the pipeline. In cycle 2, the values FF61 and FF62

are l0 and l1 respectively, which are stored in this cycle in auxiliary flip-flops Aux2 and Aux3.

The updated bit for these cases can be written as:

u′ = (α2 ·Aux2)⊕ (α3 ·Aux3)⊕ (β1 ·FF61)⊕ (δ1 ·FF63).

The resulting circuit full multiplier is shown in Figure 7.9.

As before in Section 7.1.2, we give an exact list of activation cycles for each control signal

below.

Identity function: All signals are set to 0.

Multiplication by 2. We have α0 = α, β0 = β and γ0 = γ where α, β, γ are as in (7.2), addi-

tionally δ0 = α1 = 0. Since only the left half of the diagram is relevant, all other signals are

0.

150

7.2 GIFT-COFB-SER-F

FF0 FF1

U

FF62 FF63

Aux0

b

b

b

β0

b

γ0

b

b b b b

Aux1

b

δ0

bFF61

Aux3

Aux2

β1 δ1

α2

α3

b

bFF2

U

b

b

α0

α1

b

32 × L{2, 3, 32} × L

b b

b

b

Input

Figure 7.9: L state pipeline that performs the multiplication by the factors 2, 3, 32, 33 and 34.

Multiplication by 3. As in multiplication by 2 except for β0 = 1.

Multiplication by 32. As above, only the left portion of the diagram is used. δ0 steers the addi-

tion of l2, and is active except for the last two cycles. α0 enables the addition of l0, similarlyα1

enables the addition of l1. Furthermore, γ0 is always 0 as it is only used in the multiplication

by 3 and β0 is always 1. In summary, we have

α0 =
1 cycles 58,59,61,62,

0 otherwise;
α1 =

1 cycles 59,60,62,63,

0 otherwise;

δ0 =
1 cycle < 62,

0 otherwise;
β0 = 1; γ0 = 0.

Multiplication by 33. We first use the 32 multiplier on the right in the diagram that executes

on newly entered bits then finish with a multiplication by 3 by the left multiplier. As we al-

ways update FF61 for the factor 32, the activation cycles of the signals α2, α3, β1 and δ1 are

analogous to the signals α0, α1, β0 and δ0 in the left 32 multiplication module except they

occur 62 cycles before.

Multiplication by 34. The first phase is exactly as in the case of multiplication by 33, and the

second phase is exactly as in multiplication by 32.

7.2.4 GIFT-COFB-SER-F Total Latency.

It can be seen from Figure 7.7 that the encryption of the nonce takes 5248 cycles. Thereafter

every additional block takes 5120 cycles to process. Thus if the padded AD and message

consist of B blocks in total, then the time taken to produce the ciphertext and Tag is TF =
5248+5120 ·B clock cycles. We can see that for each block of data processed we save TS−TF

B =
384 clock cycles.

151

Chapter 7. Area: A Small GIFT-COFB

7.3 GIFT-COFB-SER-TI

The third circuit we propose re-utilises the GIFT-COFB-SER-F component from Section 7.2

and elevates it to a first-order Threshold Implementation. For a primer on the properties of

Threshold Implementations, see Section 2.7.

We commence by noting that the GIFT S-box S is cubic and can be decomposed into two

quadratic S-boxes SF and SG from {0,1}4 → {0,1}4 such that S = SF ◦SG . Since SF and SG are

quadratic, they can be masked using a direct sharing approach using three shares for a first-

order threshold implementation such that

SG = SG1 ⊕SG2 ⊕SG3 ; SF = SF1 ⊕SF2 ⊕SF3 ,

where SG1 ,SG2 ,SG3 and SF1 ,SF2 ,SF3 are the component function of SF and SG respectively. This

approach was used in [85] from which we take the proposed non-complete and uniform first-

order TI. We provide the algebraic expression of the component functions in Appendix E.

Consequently, our implementation uses three shares for the state and L registers while the

key and round constant pipeline remain unshared. The only challenge in constructing the

circuit is to place the SFi and SGi substitution boxes such that they correctly compute the

masked GIFT S-box in consonance with the other operations done in parallel. This can read-

ily be achieved by noting that we can replace the unmasked S and replace it with SGi , and

place SFi after the first flip-flop of each lane, i.e., FF0,FF95,FF63,FF31, which executes for 32

cycles starting in cycle 97 of each round. A schematic of one of the three shares of the state

pipeline is shown in Figure 7.10.

RK

FF31

PT

U

FF96

U

U

FF64

FF32

0RC0

FF30FF0 FF29FF28FF27FF26FF25bbb

FF95FF94FF64 FF93FF92FF91

FF127FF126FF96 FF125FF124FF123FF122FF121bbb

L0

b

M
0CT

FF90FF89bbb

V

0 AD/M
b

V

V
FF64

PT

FF64

FF63FF62FF32 FF61FF60FF59FF58FF57bbb

b

b

b

b

GF

Figure 7.10: One of the three state pipeline shares of the GIFT-COFB-SER-TI circuit.

7.3.1 Leakage Evaluation

We applied the TVLA methodology [117] and performed non-specific t-tests (using Welsh’s

t-test) to validate the first-order security of our threshold implementation GIFT-COFB-SER-

TI. Furthermore, we took a threshold of |t | > 4.5 for any value of t computed in order to reject

the null hypothesis that GIFT-COFB-SER-TI encryption operations admit indistinguishable

mean power consumption in the case that the input is either uniform or fixed.

152

7.4 Hardware Implementation

The SAKURA-G side-channel evaluation board29 was used that hosts two Spartan 6 FPGA

cores, one which performed GIFT-COFB-SER-TI operations clocked at a slow 1.5MHz and

the other that interfaces between the cryptographic core and a computer (which generates

pre-masked shares for the DUT). To prevent unintended optimisations that could lead to

leakage during synthesis, we added DONT_TOUCH, KEEP and KEEP_HIERARCHY constraints to

our code. Measurements were taken with a Tektronix MSO44 at 625MS/s taking 3000 data

points per trace, which corresponds to 7 cycles of S-box evaluation (the only non-linear com-

ponent of GIFT-COFB) in the second round of the first GIFT encryption call, i.e., while GIFT

is encrypting the nonce. During testing, we reset the cryptographic core between each GIFT-

COFB encryption and interleaved encryptions with random and fixed inputs. A sample trace

is shown in Figure 7.11a.

As a measure to ensure our setup was calibrated properly, we first performed a t-test in

the leaky masks off setting, which is as follows. Recall that GIFT-COFB-SER-TI is a three-

share TI. Then, in the masks off setting, one input value is set to the original input (fixed or

random) and the other two to constant values (the zero vector here). We present the results

in Figure 7.11b revealing that significant, potentially exploitable leakage was detected with

just 20 thousand traces. Then, with masks on (i.e., with uniform masking used), we found no

evidence of leakage with 10,000,000 traces, evident in Figure 7.11c.

7.4 Hardware Implementation

All hardware figures were obtained through the compile_ultra directive was used to gener-

ate the netlists for all constructions except GIFT-COFB-SER-TI whose hierarchy is conserved

via the no_autoungroup flag which ensures that entity boundaries are preserved preventing

any security-degrading optimisation that may violate the threshold implementation prop-

erties. The obtained measurements are listed in Table 7.2. Naturally, due to the increased

complexity of both Feed and the multiplier, GIFT-COFB-SER-F incurs a slightly larger circuit

area than GIFT-COFB-SER-S which is offset by the latency savings as part of the parallelisa-

tion of all component functions. We note that both GIFT-COFB-SER-S and GIFT-COFB-SER-F

significantly undercut Romulus, the only other lightweight block cipher scheme among the

NIST LWC finalists, in both area and power/energy.

7.5 Conclusion

In this chapter, we investigated bit-serial architectures for the AEAD mode GIFT-COFB, a fi-

nalist in the NIST lightweight cryptography competition. In the process, we fill the gap left

open by the omission of this scheme in Chapter 6 and propose two architectures: the first

follows a natural order of operations in which the finite field operations and other state up-

dates are performed in the time period between 2 successive calls to the encryption module.

The second absorbs all these operations in the last 128 cycles of the encryption operation,

and saves 384 clock cycles in the processing of every block of associated data or message. We

29https://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

153

https://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

Chapter 7. Area: A Small GIFT-COFB
V
o
lt
a
g
e

Number	of	Samples
0 500 1000 1500 2000 2500 3000

(a) A sample trace taken over 7 cycles.

|t
|	
va
lu
e

0

10

20

30

40

50

60

70

80

90

100

110

Number	of	Samples
0 500 1000 1500 2000 2500 3000

(b) 20 thousand traces and masks off.

|t
|	
va
lu
e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number	of	Samples
0 500 1000 1500 2000 2500 3000

(c) 10 million traces and masks off.

Figure 7.11: Sample trace (top) and t-test results for the GIFT-COFB-SER-TI circuit (bottom).
The red lines correspond to a threshold of |t | = 4.5.

then extended the second architecture to construct a first order threshold implementation of

GIFT-COFB. We verify the first-order security claims by performing statistical tests on power

traces resulting from an implementation of the circuit on the SAKURA-G FPGA platform.

[...] But I guess that’s only half the accusation [...]

154

7.5 Conclusion

Table 7.2: Comprehensive synthesis figures for bit-serial AEAD schemes. Latency and energy
correspond to the encryption of 128 bits of associated data and 1024 message bits. High-
lighted schemes are NIST LWC finalists.

Scheme Library Area Latency Critical Path Power (µW) Energy (nJ)

(GE) (Cycles) (ns) 10 MHz 100 MHz 10 MHz 100 MHz

SUNDAE-GIFT NanGate 15 2169 92544 0.12 15.9 108.4 147.2 100.3

NanGate 45 1913 92544 1.28 52.4 271.7 485.1 251.5

UMC 65 1670 92544 3.80 15.6 153.3 144.6 141.9

TSMC 90 1574 92544 2.21 45.9 453.7 424.3 419.9

SAEAES NanGate 15 nm 2360 24448 0.32 18.8 130.1 46.0 31.8

NanGate 45 nm 2073 24448 3.05 61.2 329.7 149.5 80.6

UMC 65 nm 1834 24448 10.08 21.6 212.6 52.9 52.0

TSMC 90 nm 1752 24448 6.32 57.1 565.9 139.7 138.4

Romulus-N3 NanGate 15 nm 3311 55431 0.12 22.4 144.5 123.9 80.1

NanGate 45 nm 2877 55431 1.25 43.0 387.8 238.3 215.0

UMC 65 nm 2497 55431 3.79 24.7 242.3 136.9 134.3

TSMC 90 nm 2361 55431 2.08 73.9 731.1 409.4 405.3

SKINNY-AEAD NanGate 15 nm 6729 72960 0.19 43.9 278.3 320.6 203.0

NanGate 45 nm 5975 72960 1.31 167.4 861.2 1221.4 628.3

UMC 65 nm 5105 72960 4.67 45.1 452.2 329.2 329.9

TSMC 90 nm 4806 72960 2.17 128.7 1272.6 939.0 928.5

GIFT-COFB-SER-S NanGate 15 nm 2741 54784 0.13 14.2 85.9 77.7 47.0

NanGate 45 nm 2307 54784 1.40 55.3 245.5 302.7 134.5

UMC 65 nm 2020 54784 4.23 13.9 134.7 75.9 73.8

TSMC 90 nm 1907 54784 2.18 42.8 422.1 234.4 231.2

GIFT-COFB-SER-F NanGate 15 nm 2940 51328 0.21 20.2 138.4 103.7 71.0

NanGate 45 nm 2365 51328 2.22 66.6 343.6 341.9 176.3

UMC 65 nm 2067 51328 7.32 19.5 190.7 99.9 97.9

TSMC 90 nm 2075 51328 4.14 57.8 571.7 296.9 293.4

GIFT-COFB-SER-TI NanGate 15 nm 6114 51328 0.24 46.7 322.9 239.4 165.7

NanGate 45 nm 5317 51328 2.22 149.0 777.4 764.8 399.0

UMC 65 nm 4649 51328 8.20 44.1 432.6 226.5 222.0

TSMC 90 nm 4423 51328 4.39 128.6 1272.1 660.1 652.9

155

8 Throughput: Rocca-S

[...] Self-destruct sequence [...]

The imminent global standardisation of 5G telecommunication networks marks an im-

portant turning point for the involved research community whose gaze should hereafter be

directed beyond the 5G era. The 6Genesis project kickstarted this endeavour with a white pa-

per in which 6G channels are projected to provide throughput rates upwards of 100 Gbps in

software eclipsing their 5G counterparts by more than an order of magnitude30 Concerning

peak throughput, the paper further illuminates potential avenues that would allow for rates

in the Terabit range and states:

“6G research should look at the problem of transmitting up to 1 Tbps per user.”

Naturally, performance only covers half of the requirements for a prospective 6G stan-

dard with the other one being security as discussed by the 3GPP standardisation organisation

which examined the possible impacts of quantum computing in the coming years especially

due to Grover’s algorithm. The motivation is to design a cipher that provides 256-bit classi-

cal security and 128-bit quantum security. Thus apart from the 256-bit key and the 256-bit

classical security, which in most cases would provide 128-bit quantum security especially

with respect to Grover’s algorithm, proposing an algorithm with a suitable tag length is also

important. For a tag of size t , a quantum adversary could use Grover’s algorithm with the

verifier as an oracle to make the verifier accept a random tag with probability 2t/2. Meaning

a tag of size less than 256 bits would not serve the purpose of providing 128-bit quantum

security. Consequently, a 256-bit tag is essential to guarantee 128-bit quantum security for

forgery attacks.

In 2021, the first algorithm that took on these design challenges was proposed under the

name Rocca [116]. Rocca achieves an encryption/decryption speeds of more than 100 Gbps

in both raw encryption scheme and AEAD scheme. It supports 256-bit keys and provides 256-

bit and 128-bit security against key recovery and distinguishing attacks, respectively mak-

ing it the first cipher dedicated for 6G environments. However, shortly after its publication

Hosoyamada et al. [82] found a key-recovery attack with a complexity of 2128 thus invalidat-

ing the original security guarantees. Additionally, a quantum adversary can easily modify

30The 6G flagship project by the University of Oulu created a preliminary list of requirements: http://
jultika.oulu.fi/913files/isbn9789526223544.pdf

157

http://jultika.oulu.fi/913files/isbn9789526223544.pdf
http://jultika.oulu.fi/913files/isbn9789526223544.pdf

Chapter 8. Throughput: Rocca-S

this attack to a quantum attack with the application of Grover’s algorithm, which reduces the

complexity of a forgery attack in quantum settings to 264.

Contributions. In this chapter, our goal lies in the endeavour of designing an ideal cipher

that offers both classical and quantum security. Thus apart from the 256-bit key and 256-

bit classical security, which in most cases would provide 128-bit quantum security especially

with respect to Grover’s algorithm, proposing an algorithm with a suitable tag length is also

important. To the best of our knowledge, none of the existing algorithms dedicated to 5G and

beyond provide throughput rates of more than 1 Tbps, more than 100 Gbps in software, and

support 256-bit tags, including AEGIS [126], Tiaoxin-346 [110] and Rocca [116] as well as 5G-

oriented constructions such as ZUC-256 [120] and SNOW-V [68]. This fact motivates a search

for new algorithms which meets all three of these requirements for 6G applications.

We propose Rocca-S, which is an AES-based encryption scheme with a 256-bit key and a

256-bit tag, can provide 256-bit and 128-bit security against classical and quantum adversary,

respectively. Rocca-S is the first cryptographic algorithm that reaches beyond throughput

rates of 2 Tbps which we establish in a meticulous simulation environment. Furthermore, in

the latest software environments our design achieves encryption and decryption speeds of

more than 200 Gbps. The general design of Rocca-S follows the key features of the AEGIS-

family, Tiaoxin-346, and Rocca. The most challenging task lies in designing round functions

that achieve 256-bit security for forgery attacks (supporting 256-bit tag) without sacrificing

hardware and software performance. More specifically, the lower bounds of the number of

active S-boxes should be more than twice than in AEGIS, Tiaoxin-346 and all of Jean and

Nikolić structures [87], Obtaining this trade-off between security and performance is obvi-

ously a non-trivial design problem.

We take advantage of an interesting insight that while increasing the number of AESENC

from 4 which was the case for Rocca to 6 in the round function, the overhead in software

performance can be made negligible by reducing state size, where AESENC is a single round

function of AES realized by the AES-NI instructions. This allows us to add more nonlinear op-

erations into each round and increase the security against forgery attacks while keeping the

software performance. From hardware point of view, as AESENC can be executed in parallel,

increasing the number of AESENC module in round function does not cause any overhead

regarding throughput. The ASIC design space is explored by proposing several constructions

ranging from round-based circuits to unrolled variants and ultimately a low-area byte-serial

implementation. In particular, the round-based and unrolled circuits achieve throughput

rates that exceed 1 Terabit per second (even crossing the 2 Tbps barrier for some instances)

and thus eclipse related AEAD circuits known in the literature by at least 50% without sacrific-

ing other metrics such as occupied silicon area or power/energy consumption making Rocca-

S a competitive choice satisfying the requirements of a wide spectrum of environments.

The contents of this chapter appear at the 28th European Symposium on Research in

Computer Security (ESORICS) held in The Hague in the year 2023.

Outline. In Section 8.1, the specification of Rocca-S is introduced which is subsequently dis-

cussed in Section 8.2. Afterwards, we investigate the security guarantees of our construction

158

8.1 Specification

against existing attacks in Section 8.3 and highlight the implementation aspects in Section 8.4

for hardware and in Section 8.5 for software. The chapter is terminated in Section 8.6.

8.1 Specification

For the remainder of this chapter, a block denotes a 16-byte value. The constants Z0 and Z1

are are taken unaltered from Tiaoxin-346 and are thus of the form

Z0 = 0x428a2f98d728ae227137449123ef65cd,

Z1 = 0xb5c0fbcfec4d3b2fe9b5dba58189dbbc.

S is the state of Rocca-S, which is composed of 7 blocks, i.e., S = (S[0],S[1], . . . ,S[6]), where

S[i] (0 ≤ i ≤ 6) are blocks and S[0] is the first block. AES(X ,Y) is one AES round applied to the

block X , where the round constant is Y , as defined below:

AES(X ,Y) = (MixColumns◦ShiftRows◦SubBytes(X))⊕Y ,

where MixColumns, ShiftRows and SubBytes are the routines of of the AES round function.

A(X) is the AES round function without the constant addition operation as:

A(X) = MixColumns◦ShiftRows◦SubBytes(X),

8.1.1 Round Function

The input of the round function R(S, X0, X1) of Rocca-S consists of the state S and two blocks

(X0, X1) such that

S[0] = S[6]⊕S[1], S[1] = AES(S[0], X0),

S[2] = AES(S[1],S[0]), S[3] = AES(S[2],S[6]),

S[4] = AES(S[3], X1), S[5] = AES(S[4],S[3]),

S[6] = AES(S[5],S[4]).

A schematic depiction of the Rocca-S round function is shown in Figure 8.1.

Semantically, Rocca-S is an authenticated-encryption with associated-data scheme com-

posed of four phases: initialisation, processing the associated data, encryption and finalisa-

tion. The input consists of a 256-bit key K0||K1 ∈ F128
2 ×F128

2 , a 128-bit nonce N , the associated

data AD and the message M , where X ||Y : The concatenation of X and Y . The output is the

corresponding ciphertext C and a 256-bit tag T . |X | is the length of X in bits. Define X = X ||0l

where 0l is a zero string of length l bits, and l is the minimal non-negative integer such that

|X | is a multiple of 256. In addition, write X as X = X0||X1|| . . . ||X |X |
256−1 with |Xi | = 256. Further,

Xi is written as Xi = X 0
i ||X 1

i with |X 0
i | = |X 1

i | = 128.

159

Chapter 8. Throughput: Rocca-S

S[0] S[1] S[2] S[3] S[4] S[5] S[6]

A A A AAA

S[0] S[1] S[2] S[3] S[4] S[5] S[6]

X0 X1

Figure 8.1: Schematic of the Rocca-S round function.

Initialisation. First, (N ,K0,K1) is loaded into the state S in the following way:

S[0] = K1, S[1] = N , S[2] = Z0,

S[3] = K0, S[4] = Z1, S[5] = N ⊕K1,

S[6] = 0

Here, two 128-bit constants Z0 and Z1 are encoded as 16-byte little endian words and loaded

into S[2] and S[3] respectively. Then, 16 iterations of the round function R(S, Z0, Z1) is applied

to the state S. After 16 iterations of the round function, two 128-bit keys are XORed with the

state S such that

S[0] = S[0]⊕K0, S[1] = S[1]⊕K0, S[2] = S[2]⊕K1,

S[3] = S[3]⊕K0, S[4] = S[4]⊕K0, S[5] = S[5]⊕K1,

S[6] = S[6]⊕K1.

Processing the Associated Data. If AD is empty, this phase will be skipped. Otherwise, AD is

padded to AD and the state is updated as R(S, AD
0
i , AD

1
i) for i ∈ {0, . . . ,d −1}, where d = |AD|

256 .

Encryption. The encryption phase is similar to the phase to process the associated data. If

M is empty, the encryption phase will be skipped. Otherwise, M is first padded to M and

then M will be absorbed with the round function. During this procedure, the ciphertext C is

generated. If the last block of M is incomplete and its length is b bits, i.e. 0 < b < 256, the last

block of C will be truncated to the first b bits. A detailed description is shown below:

C 0
i = AES(S[3]⊕S[5],S[0])⊕M

0
i ,

C 1
i = AES(S[4]⊕S[6],S[2])⊕M

1
i ,

S = R(S, M
0
i , M

1
i),

where i ∈ {0, . . . ,m −1} and m = |M |
256 .

160

8.1 Specification

Finalisation. After the above three phases, two 128-bit keys K0 and K1 are first XORed with

the state S

S[1] = S[1]⊕K0,

S[2] = S[2]⊕K1.

Then, the state S will again pass through 16 iterations of the round function R(S, |AD|, |M |)
and then the 256-bit tag is computed

T =
3⊕

i=0
S[i]||

6⊕
i=4

S[i].

The length of associated data and message is encoded as 16-byte little endian word and

stored into |AD| and |M |, respectively. A formal description of Rocca-S is described in Al-

gorithm 6 and the corresponding illustration is shown in Figure 8.2.

R16 R b b b

b

R R R R

M0
0AD0

d−1AD0
1AD0

0Z0

b b b R R16

AD1
1AD1

0Z1 AD1
d−1 M1

0

C0
0

C1
0

M1
1

C1
1

M0
1

C0
1 C0

m−1

M0
m−1

M1
m−1

C1
m−1

|AD|

|M|

T

N

K0||K1

b

Figure 8.2: Schematic overview of the Rocca-S authenticated encryption with associated data
scheme.

A Raw Encryption Scheme. If the phases of processing the associated data and finalisation are

removed, a raw encryption scheme is obtained.

A Keystream Generation Scheme. If the phases of processing the associated data and finalisa-

tion are removed and there is no message injection into round function such that R(S,0,0), a

keystream generation scheme is obtained.

8.1.2 Security Claims

Rocca-S is designed to provide 256-bit security against key-recovery and forgery attacks in

the nonce-respecting setting. We do not claim its security in the related-key and known-key

settings. The message length for a fixed key is limited to at most 2128 and we also limit the

number of different messages that are produced for a fixed key to be at most 2128. The length

of associated data of a fixed key is up to 264. Secondly, Rocca-S provides 128-bit security

161

Chapter 8. Throughput: Rocca-S

Algorithm 6 Encryption and Decryption Functions of Rocca-S.

1: function Rocca-S(K0,K1, N , AD, M)
2: S ← Initialise(N ,K0,K1)
3: if |AD| > 0 then
4: S ←ProcessAD(S, AD)

5: if |M | > 0 then
6: S,C ←Encrypt(S, M)
7: Truncate(C)

8: T ← Finalise(S, |AD|, |M |)
9: return (C ,T)

10: function Rocca-S−1(K0,K1, N , AD,C ,T)
11: S ← Initialise(N ,K0,K1)
12: if |AD| > 0 then
13: S ←ProcessAD(S, AD)

14: if |C | > 0 then
15: S, M ←Encrypt(S,C)
16: Truncate(M)

17: if T = Finalise(S, |AD|, |M |) then
18: return M
19: else
20: return ⊥
21: function Initialise(N ,K0,K1)
22: S[0],S[1],S[2],S[3] ← K1, N , Z0, Z1

23: S[4],S[5],S[6] ← Z1, N ⊕K1,0
24: for i = 0 to 15 do
25: S ← R(S, Z0, Z1)

26: S[0],S[1] ← S[0]⊕K0,S[1]⊕K0

27: S[2],S[3] ← S[2]⊕K1,S[3]⊕K0

28: S[4],S[5] ← S[4]⊕K0,S[1]⊕K1

29: S[6] ← S[6]⊕K1

30: return S

1: function ProcesssAD(S, AD)
2: d ←|AD|/256
3: for i = 0 to d −1 do
4: S ← R(S, AD0

i , AD1
i)

5: return S
6: function Encrypt(S, M)
7: m ←|M |/256
8: for i = 0 to m −1 do
9: C 0

i ←AES(S[3]⊕S[5],S[0])
10: C 1

i ←AES(S[4]⊕S[6],S[2])
11: S ← R(S, M 0

i , M 1
i)

12: return (S,C)

13: function Decrypt(S,C)
14: c ←|C |/256
15: for i = 0 to c −1 do
16: M 0

i ←AES(S[3]⊕S[5],S[0])
17: M 1

i ←AES(S[4]⊕S[6],S[2])
18: S ← R(S, M 0

i , M 1
i)

19: return (S, M)

20: function Finalise(S, |AD|, |M |,K0,K1)
21: S[1],S[2] ← (S[1]⊕K0,S[2]⊕K1)
22: for i = 0 to 15 do
23: S ← R(S, |AD|, |M |)
24: T0,T1 ← 0,0
25: for i = 0 to 3 do
26: T0 ← T0 ⊕S[i]

27: for i = 4 to 6 do
28: T1 ← T1 ⊕S[i]

29: return T0||T1

against quantum adversary with respect to key-recovery and forgery attacks in the Q1 and Q2

settings. Rocca-S does not provide security against related-key and known-key superposition

attacks as is the case of all known symmetric ciphers.

We remark that the probability that an adversary will be able to recover a 256-bit key or

forge a 256-bit tag in time q (with very little data) is generally q
2256 in the classical framework

and q2

2256 in the quantum framework. However, these bounds do not consider some additional

constant/logarithmic factors, so it would be wise to claim a slightly lower security bound. We

would like to point here that in consideration of these reasons the authors of Saturnin [53]

had claimed a slightly lower security level − 224/112-bit security in classical/quantum set-

tings. Following it, we believe that if full round Rocca-S is used, the security will be at least

2224 and 2112 in classical and quantum settings respectively, even if taking all these additional

constant/logarithmic factors into account.

162

8.2 Design Rationale

8.2 Design Rationale

The general design of Rocca-S follows the key features of Rocca [116], i.e., SIMD-friendly

round function and efficient permutation-based structure to achieve the high throughput

in software and hardware.

Permutation-Based Structure. Rocca-S is based on permutation-based authenticated encryp-

tion schemes using AES round functions such as the AEGIS family [126], Tiaoxin-346 [110]

and Rocca [116]. To further increase the resistance against attacks on AEGIS and Tiaoxin-

346 [106] while maintaining a high level of performance, we carefully design the nonce and

the key loading scheme of the initial state and the output function.

High-Throughput Round Function. To achieve more than 100 Gbps in software, we leverage

the power of SIMD instructions, e.g., XOR and AND and the AES-NI (AES New Instructions),

equipped on general modern CPUs. In our design, we utilize only AESENC as one of the AES-

NI instructions, which executes one round of AES with an input state S and a 128-bit round

key K :

AESENC(S,K) = (MixColumns◦ShiftRows◦SubBytes(S))⊕K .

In order to maximise the performance in software and minimize critical path of round func-

tions in hardware, we lay our focus on a class of round functions with following features as

with Rocca [116].

• Applying only either AESENC or XOR to each block in one round.

• Applying a state-wise permutation before operations of AESENC or XOR.

In hardware, as there is no delay in a state-wise permutation in hardware, the critical path

of this round function is a single AESENC module. This delay is smallest one for AES-based

round functions.

8.2.1 Differences to Rocca

Rocca [116] is an AES-based high-throughput authenticated encryption scheme with a 256-

bit key and 128-bit tag whose security claims were invalidated soon after its appearance in a

key-recovery attack by Hosoyamada et al. [82] that could be mounted with a time and data

complexity of 2128 by leveraging both an encryption and decryption oracle. The attack is

based on the premise of obtaining a nonce-repeated valid plaintext-ciphertext pair by ex-

haustively querying the decryption oracle. Once such a pair is obtained, the procedure con-

tinues in the nonce-misuse setting with an ordinary differential attack to recover the cipher

state which is akin to a key-recovery attack as the initialisation function of Rocca is invertible.

More precisely, the procedure is initiated with an encryption of some nonce and message of

specific length (N , M) yielding a ciphertext and a corresponding tag (C ,T). The attacker then

iteratively queries the decryption oracle with the tuple (N ,C ⊕∆,T ′) for all possible tags T ′

and an injected ciphertext difference. A nonce-repeated valid plaintext (N , M ′) is returned

with probability 2−128. In the design of Rocca-S, we follow a two-pronged approach in order

to counter this pitfall:

163

Chapter 8. Throughput: Rocca-S

1. Key Feed-Forward. A simple strategy of avoiding a key-recovery after a potential state

exposure consists in adding back the encryption key into the state after the initiali-

sation rounds which prevents any inversion attempts of the initialisation function. A

similar strategy is utilised in AEGIS. When compared to the otherwise heavy functions

in Rocca-S, this is a low-overhead countermeasure in both software and hardware as

shown in Section 8.1.1.

2. 256-bit Tag. The attack in [82] owes its complexity of 2128 to the size of the tag. Hence,

a 256-bit tag would require 2256 decryption queries until nonce-repeated a plaintext-

ciphertext pair is found. However, the authors also remarked that the increase of the

tag size is a more nuanced affair due to the existence of forgery attacks in which a col-

lision in the internal state is induced through injected associated data or plaintext dif-

ferentials. Such differentials occur with probability 2−150 in Rocca thus a 256-bit tag

would not suffice for 256-bit forgery security. In Rocca-S, we design an entirely new

round function whose differential properties guarantee 256-bit state-recovery security

(in combination with the key feed-forward operation) and forgery security. A detailed

analysis of the Rocca-S security properties are given in Section 8.3. Note that having a

256-bit tag has the added property of offering 128-bit forgery security against quantum

computers as explained in Section 8.3.5.

8.2.2 Performance-Security Trade-Off

As in hardware the multiple AESENC modules can be deployed in parallel without sacrific-

ing the critical path of the design, the design problem of finding a sensible round function

reduces to explore efficient configurations in software. In other words, we need to find op-

timal parameters of our round function candidates such as the state size and the number of

inserted messages as well as the number of AES-NI invocations.

The performance of AES-NI can be evaluated through latency and throughput, where

latency and throughput are the number of clock cycles required to execute one AES-NI in-

struction and call the same instructions consecutively in the parallel execution, respectively.

To keep things simple, we focus on the latest architectures beyond the Intel Ice-Lake series

CPU where the latency and throughput figures of AES-NI are 3 and 0.5, respectively. This

means that a single AES-NI call is completed in 3 clock cycles and a new invocation can be

scheduled 0.5 cycles after the previous one. Jean and Nikolić introduced the Rate metric to

estimate the approximate speed of the round function [87], and smaller Rate leads to a more

efficient round function.

Definition 7 (Rate [87]). Rate is the required number of AESENC calls to encrypt a 128-bit

message, which is defined as

Rate = #AESENC / #Message.

They further discussed the number of AESENC calls in each round to fully take advantage

164

8.2 Design Rationale

of parallel execution, which is expressed by the following equation:

#AESENC ≥ Latency / Throughput.

If #AESENC is less than Latency/throughput, there exist empty cycles in a parallel process. To

fully take advantage of the parallel processing, which should be avoided. In the case of our

target architectures, we have

#AESENC ≥ Latency/Throughtput = 3/0.5 = 6.

Note that since our output function utilizes two AESENC modules to be secure against linear

attacks [106], #AESENC calls in the round function should be at least 4. Furthermore, for se-

curity against forgery attacks, we estimate the lower bound for the number of differentially

active S-boxes by a Mixed Integer Linear Programming (MILP) solver [108]. Since the maxi-

mum differential probability of the AES S-box is 2−6, the lower bound for the number of active

S-boxes should be larger than 44, as it gives 2−6×43 < 2−256 as an estimate of the differential

probability.

Taking these issues into consideration, we clarify requirements for the round function of

Rocca-S as follows:

1. Rate = #AESENC/#Message) is as small as possible.

2. #AESENC is at least 4 in the round function.

3. The state size is as small as possible.

4. 256-bit security against forgery attacks, i.e., the lower bound for the number of active

S-boxes is ≥ 43.

We automatised the search for the optimal round function and ultimately settled on the vari-

ation specified in Section 8.1 with attributes tabulated in Table 8.1. A detailed explanation of

the work that went into finding the round function of Rocca-S is given in Appendix D.1.

Table 8.1: Rocca-S round function attributes. Note that in comparison to Rocca our design
has a smaller state and more #AESENC calls but as we will see later with similar performance.

#State #AESENC #Message Rate #Active S-Boxes Full Diffusion Rounds
7 6 2 3.0 46 5

8.2.3 Loading Scheme and Output Function

For the loading scheme of the nonce and key, we mainly want to avoid the case occurring in

Tiaoxin-346. Specifically, we expect that after some number of rounds, the whole state words

cannot be expressed only in terms of A(N) and (K0,K1). If this happens, there will be a useless

round and it may open a door for more powerful attacks. By setting S[5] = N⊕K1, this pitfall is

avoided easily. For the output functions, to resist the linear attack that has been successfully

165

Chapter 8. Throughput: Rocca-S

applied to AEGIS [106], we use the MILP model described in [67] to search for secure ones.

For both efficiency and security, we choose the output functions of the following form:

C 0
i = AES(S[j0]⊕S[j1],S[j2])⊕M

0
i ,

C 1
i = AES(S[j3]⊕S[j4],S[j5])⊕M

1
i ,

where ju1 ̸= ju2 for u1 ̸= u2 and 0 ≤ j0, j1, j2, j3, j4, j5 ≤ 6. Then, with the truncated MILP

model [67], for each choice of (j0, j1, j2, j3, j4, j5), we can compute the lower bound of the

number of active S-boxes for a exploitable linear trail that can be used for attacks. For our

choice, the lower bound of the number of active S-boxes is 45. Hence, the time complexity

of the linear attack will be higher than 245×6 = 2270. Note that there is a big gap between

the truncated model and the bit-wise model and the actual linear trail that can be used for

attacks may be of much lower bias and the time complexity may be much higher than 2270.

8.3 Security Evaluation

Having reiterated the rationale that went into the design of Rocca-S, let us explore the se-

curity implications in this section by exploring its resistance against known attacks from the

literature.

8.3.1 Differential Attack

To evaluate the security against differential attacks, we compute the lower bound for the

number of active S-boxes in the initialisation phase by a MILP-aided method [108]. We evalu-

ate it in both the single-key setting where differences can only be injected into the nonce and

the related-key setting where differences can be injected into the key and nonce. Table 8.2

lists the lower bounds for the number of active S-boxes in the single-key setting and related-

key setting in the initialisation phase, respectively. Since the maximal differential probability

of the S-box of AES is 2−6, it is sufficient to guarantee the security against differential attacks

if there are 43 active S-boxes, as it gives 2(−6×43) < 2−256 as an estimate of the differential prob-

ability. In Table 8.2, there are 68 active S-boxes over 5 rounds in the single-key setting and 53

active S-boxes over 8 rounds in the related-key setting in the initialisation phase.

Table 8.2: The lower bound for the number of active S-boxes in the initialisation phase where
ASsk and ASr k mean an active S-box in the single-key setting and in the related-key setting,
respectively.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12

#ASsk 2 7 22 40 68 94 113 122 134 152 159 159
#ASr k 1 6 13 13 30 36 36 53 63 79 99 109

166

8.3 Security Evaluation

8.3.2 Forgery Attack

It has been shown in [110] that the forgery attack is a main threat to the constructions like

Tiaoxin-346 and AEGIS as only a single round update is used to absorb each block of asso-

ciated data and message. Such a concern has been taken into account in our design phase,

as reported in Sect 8.2. Specifically, in the forgery attack, the aim is to find a differential trail

where the attackers can arbitrarily choose differences at the associated data and expect that

such a choice of difference can lead to a collision in the internal state after several number

of rounds. The resistance against this attack vector can be efficiently evaluated with an auto-

matic method [108]. As Rocca-S is based on the AES round function, it suffices to prove that

the number of active S-boxes in such a trail is larger than 43 as the length of the tag is 256 bits.

With the MILP-based method, it is found that the lower bound is 46. Consequently, Rocca-S

can provide 256-bit security against the forgery attack.

8.3.3 State-Recovery Attack

At the keystream phase, with the knowledge of plaintexts and ciphertexts, it is possible to

recover the internal state with some guess-and-determine (GnD) strategies. In this part, we

discuss the resistance against this attack. To recover the whole internal state, we at least need

to consider 4 consecutive rounds at the keystream phase. Specifically, we need to solve the

following nonlinear equation system in terms of S[i] (0 ≤ i ≤ 6) where α j (0 ≤ j ≤ 7) are

known values:

α0 = A(S[3]⊕S[5])⊕S[0],

α1 = A(S[4]⊕S[6])⊕S[2],

α2 = A(A(S[2])⊕S[6]⊕ A(S[4])⊕S[3])⊕S[1]⊕S[6],

α3 = A(A(S[3])⊕ A(S[5])⊕S[4])⊕ A(S[1])⊕S[0],

α4 = A(A(A(S[1])⊕S[0])⊕ A(S[5])⊕S[4]⊕ A(A(S[3]))⊕ A(S[2])⊕S[6])

⊕ A(S[0])⊕ A(S[5])⊕S[4],

α5 = A(A(A(S[2])⊕S[6])⊕ A(A(S[4])⊕S[2])⊕ A(S[3]))⊕ A(A(S[0]))⊕S[1]⊕S[6],

α6 = A(A(A(A(S[0]))⊕S[1]⊕S[6])⊕ A(A(S[4])⊕S[3])⊕ A(S[3])

⊕ A(A(A(S[2])⊕S[6]))⊕ A(A(S[1])⊕S[0])⊕ A(S[5])⊕S[4])

⊕ A(s[1]⊕S[6])⊕ A(A(S[4])⊕S[3])⊕ A(S[3]),

α7 = A(A(A(A(S[1])⊕S[0])⊕ A(S[5])⊕S[4])

⊕ A(A(A(S[3]))⊕ A(S[1])⊕S[0])⊕ A(A(S[2])⊕S[6]))

⊕ A(A(S[1]⊕S[6]))⊕ A(S[0])⊕ A(S[5])⊕S[4].

It can be found that for (α2,α3), 2 rounds of AES are involved. For (α4,α5), 3 rounds of AES

are involved. While for (α6,α7), 4 rounds of AES are involved. Indeed, for the state-recovery

attack on Rocca discussed in [116], the attacker also needs to consider 4 consecutive rounds

and similar 8 equations in 8 variables. However, for all those 8 equations, at most 2 rounds

167

Chapter 8. Throughput: Rocca-S

of AES are involved and Rocca still has a strong resistance against this attack. This implies

that recovering the state of Rocca-S becomes much more difficult. As 2 rounds of AES can

achieve the full diffusion, it soon implies the GnD attack is not a threat and Rocca-S has a

strong resistance against this type of state-recovery attack.

8.3.4 Key-Committing Security

Key-committing security guarantees that a ciphertext C can only be decrypted under the

same key used to produce C from some plaintext [3]. It is important for applications such

as key rotation in key management services and envelope encryption solutions as they be-

comes more resistant to partitioning oracle attacks [98]. A key-committing AEAD scheme

makes it far more difficult to find multiple keys that are valid for a particular authentication

tag. Our MILP-aided method demonstrates that there are at least 147 active S-boxes in the

initialisation phase when only key has a difference. Even in the worst case where the ad-

versary fully exploits the degree of freedom of the whole state (896 bits), there are still more

than 35 (= 147 - 112) uncontrollable active S-boxes remaining. Besides, the adversary has to

control these in the finalisation round. Thus, we believe that it is computationally difficult to

find key collision with less than 2128 time complexity, which is equivalent to that of generic

collision attacks for 256-bit output.

8.3.5 Quantum Security

A quantum adversary can perform an exhaustive key search using Grover’s algorithm [73],

given a few plaintext-ciphertext pairs. This requires 2256/2 = 2128 iterations, where each it-

eration requires some basic quantum operations and an evaluation of the quantum imple-

mentation of the Rocca-S. Without going into too much detail, we can safely assume that the

quantum implementation of Rocca-S would require more quantum gates than that required

for AES and in this sense implementing Grover’s attack to retrieve the secret key would cost

more than the cost for retrieving the secret key of AES-256.

There are two models which are most generally considered for a quantum adversary to

analyse the quantum (in)security of a symmetric key algorithm. These models are defined

e.g., in [72, 88] as the Q1 model and the Q2 model:

• Q1. A symmetric cipher is considered secure in the Q1 model if there exists no quantum

algorithm which can distinguish the cipher from a random permutation (or function)

when the algorithm is allowed only classical online queries.

• Q2. A symmetric cipher is considered secure in the Q2 model if there exists no quantum

algorithm which can distinguish the cipher from a random permutation (or function)

when the algorithm is allowed quantum online queries.

The Q1 model is considered to be more realistic and are more relevant to the present com-

munication technology, as it only requires classical online queries. The Grover’s exhaustive

search algorithm [73] runs in this model as it requires only few classical online plaintext-

ciphertext pairs. The quantum collision search algorithms also run in this model, since hash

168

8.4 Hardware Implementation

functions are key-less and the construction is public, so a quantum adversary can imple-

ment a hash function on an offline quantum computer. The Q2 model is a powerful model

yet it is simple and easy to define. The quantum adversary in this model is allowed quantum

superposition queries to the secret key oracle. This model also ensures security in all other

reasonable intermediate scenarios, in which Q1 model cannot be employed, such as classical

machines with quantum modules. Our quantum security claims for Rocca-S are all in the Q2

model.

Although the round function of Rocca-S makes use of the AES round function the quan-

tum attacks proposed on reduced round AES do not apply to Rocca-S. Thus, to the best of

our understanding, the quantum DS-MITM and quantum Square attacks on reduced-round

AES described in [39] will not be applicable. Following [88], if there existed a classical dis-

tinguisher, differential or linear, with probability 2−p , a quantum adversary could use this to

mount a distinguishing attack in the Q2 model with time and data complexity 2p/2. It has

been shown in the previous sections that the differential and linear distinguishers for Rocca-

S have a probability p > 256, thus a quantum distinguishing attack would have a time and

data complexity of at least 2128. We could not find an attack using Simon’s algorithm. Con-

sequently, we claim that with respect to all known quantum attacks on symmetric ciphers,

Rocca-S as an encryption scheme offers at least 128-bit security.

Furthermore, if t is the tag length in bits, t = 256 for Rocca-S, a classical adversary suc-

ceeds in making the verifier accept a random tag in time 2t . A quantum adversary can how-

ever use Grover’s algorithm with the verifier as the oracle and make the verifier accept a ran-

dom tag in time 2t/2. Thus for Rocca-S as an AEAD Scheme, a quantum adversary can forge

a tag in time 2128. A quantum adversary could also try to break the scheme as a PRF by out-

puting a collision but this would be very costly. The optimal quantum collision algorithm

proposed in [41] has a time complexity of O (2n/3), would thus not be effective against Rocca-

S since the state size is 896 and the effective complexity would be > 2298.

8.4 Hardware Implementation

The design of Rocca-S lends itself well to hardware implementations as, apart from the state

registers and the AES modules of the round and encryption functions, little additional cir-

cuitry is required. In this section, we commence by investigating three separate round-based

implementations of the Rocca-S specification, each of them aiming for a different hardware

metric trade-off, and compare them to related AES-based AEAD constructions that also fea-

ture a key size of 256 bits. As is usually the case with hardware implementations of crypto-

graphic primitives the focus lies in the exploration of the circuit area, throughput, latency

and power/energy consumption; for all of which we demonstrate the competitiveness of

Rocca-S within all those disciplines. Our approach follows a similar structure to what was

established in [44] in which the authors performed an extensive analysis of different aspects

when it comes to implementing SNOW-V stream cipher as a hardware circuit. In particular,

the authors investigated several micro-architectural directions to implement the AES round

function components.

169

Chapter 8. Throughput: Rocca-S

• S-Box. The substitution table can be synthesized in a straightforward fashion by pro-

viding the look-up table specification LUT to the circuit compiler and letting the tool

choose the actual implementation in terms of logic gates. This choice usually leads to

an inefficient circuit in both area, latency and power. The Decode-Switch-Encode DSE

architecture mitigates the power overhead of the S-box look-up table by encoding and

decoding the inputs and outputs to the look-up table in order to reduce the switching

activity of each wire. It was shown in [18] that the DSE design choice leads to the most

power and thus energy-efficient implementation of the AES S-box. The combinatorial

optimisation space of the S-box was explored in a work by Maximov and Ekdahl [103]

in which the currently smallest description of the S-box in terms of logic gates was pro-

posed alongside a low-depth variant and a trade-off alternative between the former

two. In the remainder, we will denote these three implementations by S, F and T.

• MixColumns. We can similarly distinguish several ways to implement the linear layer.

The currently smallest circuit comprised of 92 two-input XOR gates is due to Maxi-

mov [101]. In a separate work, Li et al. [99] demonstrated a low-depth implementation

consisting of 103 XOR gates. In practice, the choice of the MixColumns has inconse-

quential effects on the overall metrics of the surrounding design, a fact already investi-

gated in [44], hence for the sake of conciseness we will limit ourselves to the low-depth

circuit of [99].

• T-Table. A popular way of combining the S-box, ShiftRows and MixColumns into a

single procedure is the T-table approach which encodes these functions into four look-

up tables which then allows to compute the an entire round function in only sixteen

look-ups and a some auxiliary XOR operations. This is particularly efficient in software

implementations but can also be emulated in hardware similarly to the approach of

synthesizing the S-box look-up table mentioned beforehand. Henceforth, the T-table

configuration will be denoted by the abbreviation TT.

8.4.1 Round-Based Circuits

A round-based implementation of Rocca-S computes one invocation of the round update

function R in one clock cycle, hence sixteen cycles are required to execute both the ini-

tialisation and finalisation routines and in the same vein, the circuit absorbs 256-bit data

blocks and outputs 256-bit ciphertext blocks per clock cycle. The approach we follow for the

round-based implementation is relatively elementary and can be deduced from the original

schematic in Figure 8.1. Six AES modules, whose plaintext inputs are directly fed from the

state registers, are placed in parallel. Their computed outputs are wired back to the corre-

sponding register inputs thus taking care of the permutation without additional circuitry. A

diagram of the round-based Rocca-S architecture is depicted in Figure 8.3.

Unrolled Round Function. The round update function of Rocca-S can easily be replicated and

chained together in order to compute multiple invocation in a single clock cycle. Although

the area increase quickly reaches prohibitive regions the length of the critical usually rises

170

8.4 Hardware Implementation

Figure 8.3: Round-based Rocca-S circuit. All wires without exception have a width of 128
bits. For the sake of simplicity, the control unit, the ciphertext generation component and
the tag generation module have been omitted from the figure. Note that feature-rich cell-
libraries often provide a dedicated flip-flop type, called a scan-flip-flop, that integrates a 2-
way multiplexed input signal into the gate thus saving some gate area compared to externally
multiplexing the input signal before it enters the flip-flop.

S[0]

D0 L0Z0

A

S[3]

D1 L1Z1

S[1]

X0N

X0 K0

S[0]
S[2]

X1Z0

X1 K1

S[6]

AAA

S[4]

A

S[3]
S[5]

X4

X4 K1

S[4]

A

NK1

S[6]

X50

X5

X0 X1 X2 X3 X4 X5 X6

S[1]

K1

X6K1

X6 K0

X2K0

X2 K0

X3Z0

X3 K0

at slower pace thus yielding designs that admit the highest throughput. Note that this was

already observed in [43] and by the authors of [44] where the 2-round unrolled variant of

their round-based SNOW-V stream cipher circuit demonstrated the highest throughput.

Partial Round Function. As the six AES modules of the round update function significantly

inflate the required circuit area, it is appropriate to investigate alternative, more area-efficient

designs. One potential angle consists in computing the round function in two steps, i.e., over

two clock cycles, by only using three instead of six AES components, effectively reusing the

same module for two computations. In the first clock cycle the cipher state is updated as

follows:

S′[0] = S[6]⊕S[1], S′[1] = AES(S[0], X0),

S′[2] = AES(S[1],S[0]), S′[3] = AES(S[2],S[6]),

S′[4] = S[3], S′[5] = S[4],

S′[6] = S[5].

Subsequently, the remaining three executions are performed in a similar fashion. Note that

the permutation of the state has already been performed in the first step.

S′′[0] = S′[0], S′′[1] = S′[1],

S′′[2] = S′[2], S′′[3] = S′[3],

S′′[4] = AES(S′[4], X1), S′′[5] = AES(S′[5],S′[4]),

S′′[6] = AES(S′[6],S′[5]).

A schematic diagram of both the unrolled and partial round functions is shown in Fig-

171

Chapter 8. Throughput: Rocca-S

ure 8.4. For the sake of brevity, the synthesis results for the partial round functions are tabu-

lated in Appendix D.3.

S[0] S[4]S[3] S[1] S[2] S[5] S[6]

A A A A A A

A A A A A A

X0 X1 X2 X3 X4 X5 X6

(a) Twice Unrolled Round Function

S[0]

A

S[4]S[3] S[1] S[2] S[5] S[6]

X0

A A
X6

X3 X1 X4 X2 X5

b b b

(b) Partial Round Function

Figure 8.4: Illustration of the unrolled (a) and partial round function (b) of Rocca-S. Note only
the plaintext data path of the round function is shown without control logic and encryption
function.

8.4.2 Synthesis Results

Our round-based Rocca-S hardware implementations are juxtaposed against other AEAD

schemes with a key size of 256 bits, namely AEGIS-256, AES-256-GCM and SNOW-V-GCM [68,

104, 126]. Note that actual published ASIC implementations of said algorithms are hard to

come by, hence we chose to devise them for this comparison section. AEGIS-256 is remi-

niscent of Rocca-S in design and thus can be adapted accordingly, on the other hand, AES-

256-GCM and SNOW-V-GCM require a Galois field multiplication module over 128 bits for

which we opted for a straightforward Karatsuba architecture which is then attached to a AES-

256 module extracted and extended from the Rocca-S round function and a SNOW-V stream

cipher core whose implementation is available in [44].

Circuit Area. The lion’s share of gate area in Rocca-S is due to the eight AES round function

cores that compose its round function and ciphertext generation function. This induces a sig-

nificant overhead in comparison to the other schemes. AEGIS requires only six cores whereas

AES-256-GCM and SNOW-V-GCM are equipped with only and two core respectively. Note

that the Galois field multiplication module, a notoriously difficult function to map to hard-

ware, found in the latter two has an area footprint of roughly 30000 GE across cell libraries

and thus constitutes a sizeable percentage of their overall silicon area. Across all implemen-

tation choices the silicon area of our round-based Rocca-S circuit remains competitive. A

detailed circuit area comparison chart is given in Table 8.3.

Throughput. The premise of Rocca-S is a high-speed construction that improves on other

known schemes in terms of throughput i.e., how many bits per second can be processed. In

hardware, this figure is inextricably tied to the length of the critical path which specifies the

maximum clock frequency at which a design can be run. In both Rocca-S and AEGIS-256

the critical path is due to the AES modules, thus it is highly variable regarding the choice of

172

8.4 Hardware Implementation

Table 8.3: Circuit area comparison of the investigated AEAD scheme for two cell libraries and
several round function implementations. Measurements for the NanGate 45 nm and UMC
65 nm cell libraries are given in Appendix D.2.

(a) Rocca-S

LUT DSE S F T TT

Round-Based

NanGate 15 nm

µm2 22901 22999 11254 12241 11222 28648

GE 116481 116979 57241 62261 57078 145711

TSMC 90 nm

µm2 265446 297684 153001 169439 151556 365124

GE 94050 105472 54210 60034 53698 129366

2-Round Unrolled

NanGate 15 nm

µm2 43048 43402 19884 21847 19671 54660

GE 218953 220754 101135 111120 100052 278015

TSMC 90 nm

µm2 496511 561725 272354 305220 269455 696585

GE 175918 199024 96497 108142 95470 246806

(b) AEGIS

LUT DSE S F T TT

Round-Based

NanGate 15 nm

µm2 17404 17521 8703 9439 8622 21743

GE 88521 89116 44266 48009 43854 110591

TSMC 90 nm

µm2 199018 223580 115069 127397 113985 274184

GE 70514 79216 40770 45138 40386 97146

2-Round Unrolled

NanGate 15 nm

µm2 32899 33158 15520 16992 15360 41602

GE 167333 168650 78939 86426 78125 211599

TSMC 90 nm

µm2 377208 426252 209225 233842 207057 527453

GE 133648 151025 74130 82852 73362 186881

(c) AES-256-GCM

LUT DSE S F T TT

Round-Based

NanGate 15 nm

µm2 10023 10102 8265 8418 8248 12599

GE 50980 51381 42038 42816 41951 64082

TSMC 90 nm

µm2 131801 136861 114254 116822 114028 163112

GE 46698 48491 40481 41391 40401 57792

2-Round Unrolled

NanGate 15 nm

µm2 19279 19328 15653 15960 15620 24328

GE 98058 98307 79615 81177 79447 123739

TSMC 90 nm

µm2 254830 265005 219790 224927 219339 317100

GE 90288 93893 77873 79694 77714 112351

(d) SNOW-V-GCM

LUT DSE S F T TT

Round-Based

NanGate 15 nm

µm2 14889 14925 11986 12230 11959 16333

GE 75729 75912 60964 62205 60827 83074

TSMC 90 nm

µm2 184937 193517 157345 161454 156984 210355

GE 65525 68565 55749 57205 55621 74531

2-Round Unrolled

NanGate 15 nm

µm2 26766 26861 20981 21472 20928 29675

GE 136139 136622 106715 109212 106445 150935

TSMC 90 nm

µm2 340672 357719 285375 293594 284653 391396

GE 120703 126743 101111 104023 100855 138675

round function implementation, whereas in AES-256-GCM and SNOW-V-GCM it is imposed

by the field multiplication thus constant across implementation choices. This means that for

both AES-256-GCM and SNOW-V-GCM unrolling the round function exerts only marginal ef-

fects on the overall throughput. Excluding the initialisation and finalisation phases, Rocca-S

processes 256 bits of data with each clock cycle. Similarly AEGIS-256 and SNOW-V-GCM are

able to process one 128-bit data block in one clock cycle wheres AES-256-GCM requires a

full AES-256 encryption for each 128-bit plaintext block hence asymptotically for large plain-

texts AES-256-GCM only processes 8 bits per clock cycle as one encryption necessitates 15

clock cycles for the round functions and an additional cycle to load the new plaintext of a

subsequently encryption. Consequently, the ability to accept larger data blocks paired with

a competitive critical path allows Rocca-S to reach a throughput well beyond 1 Terabit per

second for the NanGate 15 nm cell library regardless of the choice of round function imple-

mentation, outperforming the other schemes by at least 50%. Furthermore, a throughput

173

Chapter 8. Throughput: Rocca-S

rate beyond 2 Terabits per second is reached for some 2-round unrolled circuits, marking

Rocca-S as first cryptographic algorithm that crosses this barrier. A throughput comparison

chart is tabulated in Table 8.4.

Table 8.4: Throughput comparison of the investigated AEAD scheme for two cell libraries
and several round function implementations. Note that the T-table approach of implement-
ing the round function offers the overall best choice for both Rocca-S and AEGIS. This phe-
nomenon was already observed in [44]. Measurements for the NanGate 45 nm and UMC 65
nm cell libraries are given in Appendix D.2

(a) Rocca-S

LUT DSE S F T TT

Round-Based

NanGate 15 nm

Critical Path (ns) 0.179 0.177 0.232 0.207 0.207 0.168

Max TP (Tbps) 1.430 1.446 1.103 1.237 1.237 1.524

TSMC 90 nm

Critical Path (ns) 2.87 2.81 3.76 3.40 3.62 2.81

Max TP (Tbps) 0.089 0.091 0.068 0.075 0.071 0.091

2-Round Unrolled

NanGate 15 nm

Critical Path (ns) 0.322 0.322 0.413 0.384 0.389 0.254

Max TP (Tbps) 1.591 1.59 1.240 1.333 1.316 2.016

TSMC 90 nm

Critical Path (ns) 5.21 4.72 7.05 6.26 6.79 3.95

Max TP (Tbps) 0.098 0.108 0.073 0.082 0.075 0.130

(b) AEGIS

LUT DSE S F T TT

Round-Based

NanGate 15 nm

Critical Path (ns) 0.167 0.165 0.21 0.196 0.198 0.132

Max TP (Tbps) 0.766 0.776 0.610 0.653 0.646 0.970

TSMC 90 nm

Critical Path (ns) 2.66 2.48 3.50 3.12 3.36 2.48

Max TP (Tbps) 0.048 0.052 0.037 0.041 0.038 0.052

2-Round Unrolled

NanGate 15 nm

Critical Path (ns) 0.321 0.318 0.409 0.381 0.384 0.249

Max TP (Tbps) 0.798 0.805 0.626 0.672 0.667 1.028

TSMC 90 nm

Critical Path (ns) 5.15 4.60 6.93 6.15 6.67 3.95

Max TP (Tbps) 0.050 0.056 0.037 0.042 0.038 0.065

(c) AES-256-GCM

LUT DSE S F T TT

Round-Based

NanGate 15 nm

Critical Path (ns) 0.349 0.349 0.349 0.349 0.349 0.349

Max TP (Tbps) 0.023 0.023 0.023 0.023 0.023 0.023

TSMC 90 nm

Critical Path (ns) 4.89 4.89 4.89 4.89 4.89 4.89

Max TP (Tbps) 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016

2-Round Unrolled

NanGate 15 nm

Critical Path (ns) 0.673 0.673 0.674 0.674 0.674 0.674

Max TP (Tbps) 0.024 0.024 0.024 0.024 0.024 0.024

TSMC 90 nm

Critical Path (ns) 9.96 9.96 9.96 9.96 9.96 9.96

Max TP (Tbps) 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016

(d) SNOW-V-GCM

LUT DSE S F T TT

Round-Based

NanGate 15 nm

Critical Path (ns) 0.351 0.351 0.351 0.351 0.351 0.351

Max TP (Tbps) 0.365 0.365 0.365 0.365 0.365 0.365

TSMC 90 nm

Critical Path (ns) 6.22 6.22 6.22 6.22 6.22 6.22

Max TP (Tbps) 0.021 0.021 0.021 0.021 0.021 0.021

2-Round Unrolled

NanGate 15 nm

Critical Path (ns) 0.579 0.577 0.579 0.577 0.579 0.579

Max TP (Tbps) 0.442 0.444 0.442 0.444 0.442 0.442

TSMC 90 nm

Critical Path (ns) 10.15 10.15 10.15 10.15 10.15 10.15

Max TP (Tbps) 0.025 0.025 0.025 0.025 0.025 0.025

Power/Energy Consumption. Capturing the consumptive behaviour of a cryptographic circuit

is a more intricate endeavor. The energy consumption describes the sum total of electrical

work performed by the circuit in a given time interval with the power consumption being

its rate. To allow for a more complete picture of the energy consumption, our experiments

were conducted on two workloads. A short workload describes the processing of 1024 bits

of associated data and 2048 bits of plaintext whereas a long workload consists of 1024 bits of

associated data and 1.28 Megabits of plaintext. Again, the round-based Rocca-S circuit stands

174

8.4 Hardware Implementation

as competitive choice regarding its power and energy consumption. A list of all obtained

power/energy measurements is given in Table 8.5.

Table 8.5: Power/energy consumption comparison of the investigated AEAD scheme for two
cell libraries and several round function implementations. All figures were obtained by clock-
ing the designs at constant frequency of 10 MHz. Measurements for the NanGate 45 nm and
UMC 65 nm cell libraries are given in Appendix D.2

(a) Rocca-S

LUT DSE S F T TT

Round-Based

Lat. Short (Cycles) 44 44 44 44 44 44

Lat. Long (Cycles) 5036 5036 5036 5036 5036 5036

NanGate 15 nm

Power (mW) 1.404 0.767 1.259 1.314 1.135 0.882

Energy Short (nJ) 6.180 3.374 5.548 5.781 4.990 3.881

Energy Long (nJ) 707.1 386.3 634.01 661.7 571.6 444.2

TSMC 90 nm

Power (mW) 1.948 0.874 1.906 1.833 1.751 0.761

Energy Short (nJ) 8.571 3.846 8.386 8.065 7.704 3.348

Energy Long (nJ) 981.0 440.1 959.9 923.1 881.8 383.2

2-Round Unrolled

Lat. Short (Cycles) 22 22 22 22 22 22

Lat. Long (Cycles) 2518 2518 2518 2518 2518 2518

NanGate 15 nm

Power (mW) 6.307 2.183 5.701 5.894 5.310 2.221

Energy Short (nJ) 13.88 4.80 12.54 12.97 11.68 4.89

Energy Long (nJ) 1588 549.7 1435 1484 1337 559.2

TSMC 90 nm

Power (mW) 9.518 2.997 8.865 7.956 7.956 2.298

Energy Short (nJ) 20.94 6.593 19.50 17.50 17.50 5.056

Energy Long (nJ) 2396 754.6 2232 2003 2003 578.6

(b) AEGIS

LUT DSE S F T TT

Round-Based

Lat. Short (Cycles) 48 48 48 48 48 48

Lat. Long (Cycles) 10032 10032 10032 10032 10032 10032

NanGate 15 nm

Power (mW) 1.106 0.613 1.014 1.081 0.954 0.691

Energy Short (nJ) 5.309 2.945 4.868 5.184 4.579 3.317

Energy Long (nJ) 1109 615.6 1017 1083 956.9 693.3

TSMC 90 nm

Power (mW) 0.600 0.388 0.451 0.477 0.442 0.406

Energy Short (nJ) 2.880 1.862 2.165 2.290 2.122 1.949

Energy Long (nJ) 601.9 389.2 452.4 478.5 443.4 407.3

2-Round Unrolled

Lat. Short (Cycles) 24 24 24 24 24 24

Lat. Long (Cycles) 5016 5016 5016 5016 5016 5016

NanGate 15 nm

Power (mW) 4.147 1.674 3.779 3.887 3.539 1.670

Energy Short (nJ) 9.953 4.018 9.069 9.328 8.494 4.008

Energy Long (nJ) 2080 839.7 1895 1949 1775 837.8

TSMC 90 nm

Power (mW) 6.047 2.094 5.576 5.413 5.046 1.634

Energy Short (nJ) 14.51 5.026 13.38 12.99 12.11 3.922

Energy Long (nJ) 3033 1050 2796 2715 2531 819.6

(c) AES-256-GCM

LUT DSE S F T TT

Round-Based

Lat. Short (Cycles) 266 266 266 266 266 266

Lat. Long (Cycles) 160010 160010 160010 160010 160010 160010

NanGate 15 nm

Power (mW) 0.521 0.417 0.502 0.515 0.490 0.577

Energy Short (nJ) 13.85 11.09 13.36 13.69 13.04 15.33

Energy Long (nJ) 8328 6674 8035 8235 7843 9224

TSMC 90 nm

Power (mW) 0.765 0.589 0.761 0.741 0.738 0.754

Energy Short (nJ) 20.35 15.67 20.24 19.71 19.63 20.06

Energy Long (nJ) 12240 9424 12176 11856 11808 12064

2-Round Unrolled

Lat. Short (Cycles) 133 133 133 133 133 133

Lat. Long (Cycles) 80005 80005 80005 80005 80005 80005

NanGate 15 nm

Power (mW) 1.356 1.145 1.313 1.339 1.287 1.461

Energy Short (nJ) 18.03 15.23 17.46 17.80 17.11 19.43

Energy Long (nJ) 10845 9159 10505 10710 10293 11689

TSMC 90 nm

Power (mW) 1.948 1.592 1.936 1.895 1.891 1.922

Energy Short (nJ) 25.91 21.17 25.75 25.20 25.15 25.56

Energy Long (nJ) 15585 12736 15489 15160 15128 15377

(d) SNOW-V-GCM

LUT DSE S F T TT

Round-Based

Lat. Short (Cycles) 42 42 42 42 42 42

Lat. Long (Cycles) 10026 10026 10026 10026 10026 10026

NanGate 15 nm

Power (mW) 0.726 0.602 0.689 0.704 0.676 0.634

Energy Short (nJ) 3.047 2.528 2.895 2.958 2.840 2.662

Energy Long (nJ) 727.4 603.5 691.2 706.0 678.1 635.3

TSMC 90 nm

Power (mW) 0.968 0.766 0.949 0.937 0.923 0.750

Energy Short (nJ) 4.066 3.217 3.986 3.935 3.877 3.150

Energy Long (nJ) 970.5 767.9 951.5 939.4 925.4 751.9

2-Round Unrolled

Lat. Short (Cycles) 21 21 21 21 21 21

Lat. Long (Cycles) 5013 5013 5013 5013 5013 5013

NanGate 15 nm

Power (mW) 1.947 1.520 1.862 1.902 1.820 1.551

Energy Short (nJ) 4.089 3.192 3.910 3.994 3.822 3.257

Energy Long (nJ) 976.1 761.7 933.6 953.6 912.6 777.6

TSMC 90 nm

Power (mW) 2.632 1.948 2.584 2.550 2.490 1.854

Energy Short (nJ) 5.527 4.091 5.426 5.355 5.229 3.893

Energy Long (nJ) 1319 976.5 1295 1278 1248 929.4

175

Chapter 8. Throughput: Rocca-S

8.4.3 Byte-Serial Circuit

Round-based circuits of Rocca-S excel in terms of throughput at the expense of occupied

silicon area. A generic technique in reducing this overhead lies in restricting the data path to

smaller widths which effectively serializes the design by trading gate area for latency. In [44],

the authors proposed a byte-serial architecture for the SNOW-V stream cipher based on a

modified byte Atomic-AES round function [17] which is the currently smallest known byte-

serial AES implementation. The modification allows the computation of one round function

in sixteen clock cycles meaning that at the beginning of the sixteenth cycle the first correctly

computed byte exits the state pipeline.

Naturally, this Atomic-AES design also finds use in our byte-serial Rocca-S construction in

which there are six Atomic-AES pipelines for the six AES invocations of the round function.

Note that due to the structure of the Rocca-S round function it is not possible to activate

each pipeline in parallel, thus computing each round in sixteen cycles, due to the usage of

some states as keys. In fact, our circuit will execute each round in 3 · 16 = 48 cycles where

the pipelines are activated in pairs during three batches. Another complication comes in the

form of the encryption function that requires an additional two AES invocations. In order

to save circuit area, we aim to reuse two existing AES pipelines of the round function for

this task which in turn induces the need for two decryption pipelines that inverse the result

before the computation of the round function. More precisely, in sixteen cycles we compute

the following two equations

C 0
i = AES(S[3]⊕S[5],S[0])⊕Mi

0

C 1
i = AES(S[4]⊕S[6],S[2])⊕Mi

1
,

which is then inversed in the subsequent sixteen cycles to reestablish the original state, more

specifically

S[3] = AES−1(C 0
i ⊕Mi

0
,S[0])⊕S[5],

S[4] = AES−1(C 1
i ⊕Mi

1
,S[2])⊕S[6|.

Consequently, to process one 256-bit message blocks requires 2 ·16+3 ·16 = 80 clock cycles.

A diagrammatic depiction of the byte-serial timeline is shown in Figure 8.5.

Putting all the pieces together we obtain a compact byte-serial Rocca-S circuit that uti-

lizes six Atomic-AES pipelines in order compute both the round and encryption function but

remains relatively closed in nature to the initial round-based constructions detailed in Sec-

tion 8.4.1. A schematic depiction of the byte-serial architecture is given in Figure 8.6.

After synthesis, the byte-serial Rocca-S circuit achieves a gate area reduction of between

75% and 90% compared to the round-based variant described in 8.4.1 and Table 8.3. A break-

down of the various evaluation metrics of the byte-serial architecture is detailed in Table 8.6.

176

8.5 Software Implementation

A(S[1],S[0])

A(S[4],S[3])

A(S[2],S[6])

A(S[5],S[4])

A(S[4],S[3])

A(S[1],S[0])

A(S[3],X1)

A(S[0],X0)

A(S[3],X1)

A(S[0],X0)

A(S[2],S[6])

A(S[5],S[4])

A(S[2],S[6])

A(S[5],S[4])

A(S[1],S[0])

A(S[4],S[3])

A(S[2],S[6])

A(S[5],S[4])

0 16 32 48

0 16 32Cycles

New Round

(a) Round function without encryption

A(S[2],S[6])

A(S[5],S[4])

48 64 80 96

Cycles

A(S[3] ⊕ S[5],S[0])⊕M0

A(S[4] ⊕ S[6],S[2])⊕M1

A−1(C0 ⊕M0, S[0])⊕ S[5]

0 16

A(S[3] ⊕ S[5],S[0])⊕M0

A(S[4] ⊕ S[6],S[2])⊕M1

A−1(C0 ⊕M0, S[0])⊕ S[5]

A−1(C1 ⊕M1, S[2])⊕ S[6] A−1(C1 ⊕M1, S[2])⊕ S[6]

New Round

(b) Round function with encryption

Figure 8.5: Timeline of the Rocca-S byte-serial round function for both with (a) and without
(b) encryption phase. A round function in the initialisation, associated data and finalisa-
tion stages is computed in 48 clock cycles whereas it takes 80 cycles to process one message
blocks, hence the total latency is (32+α) ·48+β ·80 clock cycles where α and β denote the
number of associated data and message blocks respectively.

Table 8.6: Synthesis measurements for the byte-serial Rocca-S circuit for two cell libraries
and a clock frequency of 10 MHz. The S-box was implemented using low-area circuit S.

Area Critical Path Latency (cycles) Throughput Power Energy (nJ)

µm2 GE ns Short Long Mbps µW Short Long

NanGate 15 nm 2851 14501 0.46 2368 401728 6.941 0.157 37.18 6307.13
NanGate 45 nm 10038 12580 4.88 2368 401728 0.656 0.543 128.58 21813.83
UMC 65 nm 17660 12264 12.57 2368 401728 0.255 0.134 31.61 5363.07
TSMC 90 nm 33147 11744 8.11 2368 401728 0.395 0.305 72.11 12232.62

8.5 Software Implementation

Ultimately, we also evaluated the performance of Rocca-S and show that modifications only

incur small overhead to the performance, despite the increase of number of AES round func-

tions in one round of state update. For the comparison to existing algorithms, we included

Rocca-S as well as AEGIS, SNOW-V, and Tiaoxin-346 to OpenSSL 3.1.0-dev and measured

their performances with the speed command.31 The evaluation is performed on a PC with

Intel(R) Core(TM) i9 12900K @ 2.40 GHz with 32GB RAM. As shown in Table 8.7, Rocca-S can

achieve 230 Gbps in the encryption only mode, which is the fastest in our comparison even

compared to 128-bit algorithms. In the AEAD mode, Rocca-S also shows the highest perfor-

mance and achieves 205 Gbps. The reference implementation for our scheme can be found

in Appendix D.4.

8.6 Conclusion

In this chapter, we propose the AES-based authenticated encryption scheme Rocca-S with a

256-bit key and a 256-bit tag. Unlike existing schemes for 5G and 6G, Rocca-S can guarantee

31The implementation of SNOW-V was published in [68], and implementations of Tiaoxin-346 and AEGIS are
available at https://github.com/floodyberry/supercop

177

https://github.com/floodyberry/supercop

Chapter 8. Throughput: Rocca-S

15 11 7 3

14 10 6 2

13 9 5 1

12 8 4 0

15 11 7 3

14 10 6 2

13 9 5 1

12 8 4 0

15 11 7 3

14 10 6 2

13 9 5 1

12 8 4 0

15 11 7 3

14 10 6 2

13 9 5 1

12 8 4 0

15 11 7 3

14 10 6 2

13 9 5 1

12 8 4 0

15 11 7 3

14 10 6 2

13 9 5 1

12 8 4 0

15 11 7 3

14 10 6 2

13 9 5 1

12 8 4 0

b

A2

b

A0A1

b

A0

Z0 D0 L0

X0

b

A3 Z0 D0 L0

X3

CT0

b

b

A4 A3

CT1X1 X2

A0

X4
A2

A6

b

A5

X5

A4

b

A6

X6

A1

N X0 A1

X0 K0

Z0 X1 A2

X1 K1

K0 X2 A3

A3 A5

Z1 X3 A4

A4 A5

X4 A5

X4 K1
K1 N

0 X5 A6

X5 K1

K0 X6 A0

X6 K0

Figure 8.6: Byte-serial Rocca-S circuit. Blue pipelines denote the modified Atomic-AES cir-
cuits from [44] and pipelines marked in red are equipped with both encryption and decryp-
tion capabilities. Finally, the seventh white state is an empty rotating shift register. For the
sake of simplicity, control logic has been omitted from the figure.

256/128-bit security for not only key recovery attacks but also forgery attacks in the clas-

sic and quantum settings, respectively. In spite of higher security levels, Rocca-S achieves a

speed of more than 200 Gbps in software. In hardware implementation, Rocca-S is the first

cryptographic algorithm to achieve speeds consistently between 1 and 2 Terabits per second

without sacrificing other metrics such area or power/energy consumption.

[...] In hindsight, I was lost and didn’t have a map to recreate it [...]

178

8.6 Conclusion

Table 8.7: Software throughput (GBps) evaluation of Rocca-S and related schemes in both the
encryption-only and AEAD settings.

Scheme Key Length Tag Length Input Size (Bytes)

16384 8192 1024 256 64

Encryption-only

AEGIS-128 128 128 47.10 47.47 46.77 42.93 32.90
AEGIS-128L 128 128 166.26 163.50 146.39 104.35 30.00
Tiaoxin-346-v2 128 128 195.87 191.92 163.50 92.18 34.70
AEGIS-256 256 128 48.24 48.72 48.44 45.33 36.86
AES-256-CBC 256 128 13.74 13.58 13.41 13.56 13.43
AES-256-CTR 256 128 79.78 80.58 75.49 61.33 31.39
ChaCha20 256 128 32.29 31.91 31.56 15.38 7.80
SNOW-V 256 128 68.27 67.54 65.15 56.99 39.67
Rocca 256 128 226.15 223.92 197.19 132.22 52.80
Rocca-S 256 256 230.08 225.84 201.77 136.24 54.83

AEGIS-128 128 128 46.76 45.42 32.42 16.32 5.38
AEGIS-128L 128 128 151.53 137.49 60.37 20.68 5.40
Tiaoxin-346-v2 128 128 176.94 159.51 68.13 22.90 5.92
AEGIS-256 256 128 47.96 46.50 33.29 16.72 5.52
AES-256-GCM 256 128 60.29 57.67 36.23 15.86 5.06
ChaCha20-Poly1305 256 128 22.40 21.71 15.25 6.15 2.150
SNOW-V-GCM 256 128 37.87 36.60 25.15 12.15 3.97
Rocca 256 128 199.88 177.41 68.98 22.33 6.01
Rocca-S 256 256 205.65 183.22 74.33 24.78 6.65

179

9 Side-Channels: Partitioning SKINNY

[...] This station is non-operational [...]

The final contribution of this thesis revolves around the investigation and optimisation

of first-order Threshold Implementations concerning the SKINNY block cipher. Recall from

Section 2.6.3 that SKINNY designates a lightweight family of tweakable block ciphers de-

signed by Beierle et al. [30]. The cipher performs extremely well on both software and hard-

ware platforms, and is the core encryption primitive used in the authenticated encryption

scheme Romulus [74] which is a finalist in the NIST lightweight cryptography competition.

Moreover, a criterion for the competition is the efficiency of protected circuit implementa-

tions. In the 64-bit block size versions of SKINNY, the underlying S-box defined over four

bits. Designing Threshold Implementations for 4-bit S-boxes is a well-studied problem [36],

and so in this work we focus on the 128-bit block size versions of SKINNY which use an 8-bit

S-box, hereafter denoted by S.

S is exceedingly compact and uses only sixteen cross-connected two-input logic gates.

Using the fact that S can be decomposed in the form I ◦H◦G◦F (hereafter denoted by S2222)32

where each sub-function is quadratic, the designers of SKINNY proposed a first-order TI of

SKINNY using a byte-serial circuit. However, when this decomposition is used to construct a

TI of a round-based circuit, a single S-box layer takes four cycles to execute. This increases

the latency and hence energy consumption per encryption operation in the circuit, as was

shown in Chapter 3.

Contributions. In the remainder of this chapter, we take a closer look at first-order Threshold

Implementations of the 8-bit substitution box of round-based SKINNY instantiations. As pre-

viously mentioned, the only in-depth analysis and indeed proposal of such a masked circuit

is that of S2222 which appeared in the design paper [30] for the byte-serial variant of SKI-

NNY. This 3-share scheme is likely the optimal choice for a first-order secure realisation in

the byte-serial setting when it comes to area, latency and power/energy consumption. How-

ever, for round-based circuits, this assertion does not hold true any more. In fact, we propose

two novel decompositions that eclipse the existing variant in both latency, power and energy

consumption without significantly increasing the circuit area. More specifically, our contri-

butions are summarized as follows:

32Note that throughout this chapter we use the notation Si1...ik
to denote decompositions of the same S-box S

into k component S-boxes of algebraic degrees i1 . . . ik .

181

Chapter 9. Side-Channels: Partitioning SKINNY

1. We devise an approach that exploits the simple 4×4 cross-connected structure of S and

automatizes the search for decompositions and thus Threshold Implementations.

2. The proposed technique is then used as a gateway to efficiently decompose S into three

quadratic functions S222 = H ◦G ◦F that is computed over three cycles. The resulting

3-share masked circuit exhibits a similar area footprint to S2222 but cuts the number of

required cycles for an encryption by one quarter and consumes around 30% less energy

across different clock frequencies and cell libraries.

3. In a second step, by extending the previous technique, we propose a decomposition of

S into two cubic functions S33 = G ◦F that is thus computed in two cycles. The cor-

responding 4-share TI halves the number of encryption cycles and consumes 30% less

energy while moderately increasing the circuit area relative to S2222. We emphasise that

neither of the above circuits require additional randomness beyond the initial plaintext

masking.

4. We provide an extensive suite of synthesis measurements on both ASIC and FPGA tar-

gets for all investigated schemes showcasing the advantages of both S222 and S33.

5. The proposed schemes are proven sound via the SILVER verification framework [92]

that performs its analysis on ASIC netlists, which in our case are generated by the Nan-

Gate 45 nm standard cell library. In addition, we perform practical leakage assessments

using the TVLA methodology [117] by taking power traces on FPGA targets.

The contents of this chapter were presented in 2021 at the 22nd International Conference

on Cryptology in India (Indocrypt-2021).

Outline. The chapter unfolds as follows: Section 2 reiterates some preliminaries regarding

masking and Threshold Implementations. Subsequently in Section 3, we detail the derivation

of S222 and S33 . Synthesis results are given in Section 4 and leakage assessment is performed

in Section 5. Finally, we conclude in Section 6.

9.1 Partitioning the S-Box

Algorithm 3 portrayed the 8-bit S-box of SKINNY as a procedure, more formally it is given by

the iterative mapping

Π′ ◦T ◦ [Π◦T]3 (x0, x1, x2, x3, x4, x5, x6, x7) = (z0, z1, z2, z3, z4, z5, z6, z7),

composed of a transformation T and two bitwise permutationsΠ,Π′ such that

T (x0, . . . , x6, x7) = (x0, x1, x2, x3 ⊕ (x0
−∨x1), x4, x5, x6, x7 ⊕ (x4

−∨x5))

Π(x0, . . . , x6, x7) = (x5, x6, x0, x1, x3, x7, x4, x2)

Π′(x1, . . . , x6, x7) = (x0, x1, x2, x3, x4, x6, x5, x7).

182

9.1 Partitioning the S-Box

Here, −∨ denotes the logical NOR gate, i.e., x −∨ y = x y ⊕ x ⊕ y ⊕1. A graphical depiction of the

8-bit S-box circuit is given in Figure 9.1a and the quadratic decomposition S2222 proposed in

the white paper [30] is depicted in Figure 9.1b. Note that the highest algebraic degree of six is

reached in output term z0. The full expression of each term is given below. Note that in order

to ease notation the multiplication operator is omitted.

z0 = x0x1x4x5 ⊕x0x1x4 ⊕x0x1x5 ⊕x0x1x7 ⊕x0x4x5 ⊕x0x4 ⊕x0x5⊕
x0x7 ⊕x1x4x5 ⊕x1x4 ⊕x1x5 ⊕x1x7 ⊕x2 ⊕x3x4x5 ⊕x3x4⊕
x3x5 ⊕x3x7

z1 = x0x1 ⊕x0 ⊕x1 ⊕x3 ⊕1, z2 = x4x5 ⊕x4 ⊕x5 ⊕x7 ⊕1,

z3 = x0x1x2 ⊕x0x1x4x5 ⊕x0x1x4 ⊕x0x1x5 ⊕x0x1x7 ⊕x0x1 ⊕x0x2⊕
x0x4x5 ⊕x0x4 ⊕x0x5 ⊕x0x7 ⊕x0 ⊕x1x2 ⊕x1x4x5 ⊕x1x4 ⊕x1x5⊕
x1x7 ⊕x1 ⊕x2x3 ⊕x3x4x5 ⊕x3x4 ⊕x3x5 ⊕x3x7 ⊕x3 ⊕x4

z4 = x4x5 ⊕x4x7 ⊕x5 ⊕x6 ⊕x7, z5 = x1 ⊕x5x6 ⊕x5 ⊕x6 ⊕1,

z6 = x0x1x4x5x6 ⊕x0x1x4x6 ⊕x0x1x5x6x7 ⊕x0x1x5x7 ⊕x0x1x5⊕
x0x1x6x7 ⊕x0x4x5x6 ⊕x0x4x6 ⊕x0x5x6x7 ⊕x0x5x7 ⊕x0x5⊕
x0x6x7 ⊕x0 ⊕x1x2 ⊕x1x3x4x5 ⊕x1x3x4 ⊕x1x3x5 ⊕x1x3x7⊕
x1x4x5x6 ⊕x1x4x5 ⊕x1x4x6 ⊕x1x4 ⊕x1x5x6x7 ⊕x1x5x7⊕
x1x6x7 ⊕x1x7 ⊕x1 ⊕x2x5x6 ⊕x2x5 ⊕x2x6 ⊕x3x4x5x6 ⊕x3x4x6⊕
x3x5x6x7 ⊕x3x5x7 ⊕x3x5 ⊕x3x6x7 ⊕x5x6 ⊕x5 ⊕x6

z7 = x0x1x4x5x6x7 ⊕x0x1x4x5x7 ⊕x0x1x4x5 ⊕x0x1x4x6x7 ⊕x0x1x5x6⊕
x0x1x6x7 ⊕x0x4x5x6x7 ⊕x0x4x5x7 ⊕x0x4x6x7 ⊕x0x4x7 ⊕x0x5x6⊕
x0x5 ⊕x0x6x7 ⊕x0x6 ⊕x0x7 ⊕x0 ⊕x1x2x4x5 ⊕x1x2x4x7 ⊕x1x2x5⊕
x1x2x6 ⊕x1x2x7 ⊕x1x2 ⊕x1x3x4x5x6 ⊕x1x3x4x6 ⊕x1x3x4x7⊕
x1x3x4 ⊕x1x3x5x6 ⊕x1x3x6x7 ⊕x1x4x5x6x7 ⊕x1x4x5x6 ⊕x1x4x5x7⊕
x1x4x6x7 ⊕x1x4x6 ⊕x1x4 ⊕x1x5 ⊕x1x6 ⊕x1x7 ⊕x1 ⊕x2x4x5x6x7⊕
x2x4x5x7 ⊕x2x4x5 ⊕x2x4x6x7 ⊕x2x5x6x7 ⊕x2x5x6 ⊕x2x5x7⊕
x2x6x7 ⊕x3x4x5x6x7 ⊕x3x4x5x7 ⊕x3x4x5 ⊕x3x4x6x7 ⊕x3x5x6⊕
x3x6x7 ⊕x4x5x6x7 ⊕x4x5x7 ⊕x4x6x7 ⊕x4x7 ⊕x5x6x7 ⊕x5x6⊕
x5x7 ⊕x6x7 ⊕x6 ⊕x7 ⊕1

In [112], the authors demonstrated how to decompose the S-box SP of the PRESENT block

cipher into two quadratic S-boxes F ,and G such that SP =G ◦F . This enabled the authors to

construct a 3-share TI of PRESENT by constructing Threshold Implementations of F and G

separately with a register bank in between which suppresses and thus prevents the glitches

produced by the F layer from propagating to the G layer. This means that every evaluation of

the shared S-box requires two cycles to complete. However, this is compensated by the fact

183

Chapter 9. Side-Channels: Partitioning SKINNY

x7x6 x5x4 x3x2 x1x0

z7 z6 z5 z4 z3 z2 z1 z0

T

Π

T

Π

T

Π

T

Π′

(a)

x0x1 x2x3 x4x5 x6x7

z0 z1 z2 z3 z4 z5 z6 z7

F

G

H

I

(b)

Figure 9.1: (a) Definition of the 8-bit SKINNY substitution box given the transformation T
and two permutations Π, Π′. (b) TI decomposition proposed in [30] using four quadratic
functions F , G , H and I .

that the construction requires only three shares and thus the total silicon area required for

the circuit is minimal. The approach used by the authors to obtain the decomposition can be

summarised as follows:

1. Evaluate all quartets of 4-bit vectorial Boolean functions f0, f1, f2, f3 such that all the

fi ’s are quadratic. There are 211 quadratic functions in 4 bits and so a total of 244 such

quartets are possible.

2. Of the above list only filter for the quartets such that the function F : {0,1}4 → {0,1}4

with F (x0, x1, x2, x3) = (f0, f1, f2, f3) is a bijective S-box.

3. For all such F check if G = SP ◦F−1 is also a quadratic S-box. If so, output the pair of

S-boxes (G ,F).

It was later shown in [36] that SP belongs to the affine equivalence class C266 of 4-bit S-boxes.

All S-boxes in this class allows decomposition into two quadratic S-boxes. The above ap-

proach can not be extended to 8-bit S-boxes even considering the authors’ suggested optimi-

sations. To begin with there are 237 quadratic functions over 8 bits, and therefore the number

of octets of the form f0, f1, . . . , f7 will be 237×8 = 2296.

9.1.1 Angle of Attack

As done with PRESENT our goal lies in finding decompositions of the 8-bit SKINNY S-box S

that allow for efficient Threshold Implementations in terms of circuit area, latency and en-

184

9.1 Partitioning the S-Box

x0x1 x2x3 x4x5 x6x7

z0 z1 z2 z3 z4 z5 z6 z7

F

G

H

(a)

x0x1 x2x3 x4x5 x6x7

z0 z1 z2 z3 z4 z5 z6 z7

u2u0

u1

u4

u7

u3

u5

u6

u0

F

G

(b)

Figure 9.2: (a) S232 = H ◦G ◦F decomposition with deg(F) = deg(H) = 2 and deg(G) = 3. (b)
S24 =G◦F decomposition with deg(F) = 2 and deg(G) = 4. We later introduce the terminology
SBlue and SRed to denote F, G respectively in (b).

ergy consumption. In turn, this implies finding an appropriate balance between the number

of shares, coordinate functions, and their degrees and gate complexity. To obtain a similar

decomposition of S let us first state the following definitions:

Definition 8 (i -representable). A Boolean function B has AND-complexity n, if its circuit can

be constructed with a total of n 2-input AND gates or fewer. Its AND-depth is i (or equivalently

it is i -representable) if there exists a circuit in which the AND gates can be arranged in i dis-

tinct levels in the following sense: All quadratic functions are 1-representable of some order,

and a function Bi is i -representable if it can be expressed as Bi =Q(t0, t1, . . . , tm−1) where Q is

quadratic and the functions t0, t1, . . . , tm−1 are each k-representable of some order for k ≤ (i−1).

B is i -representable of order n if there exists a circuit which constructs it with AND-depth i and

AND-complexity n.

Thus a function which is i -representable of order n can be necessarily implemented by

n or a smaller number of 2-input AND gates (connected such that the total AND-depth is

at most i) along with other linear gates. Thus all four coordinate functions of SP are 2-

representable of some fixed order, which allows a 3-share TI over two clock cycles.

Regarding S, the eight output functions z0, z1, . . . , z7 are of different algebraic degrees.

z5, z4, z2, z1 are themselves quadratic and their algebraic expressions contain only a single

quadratic term and hence are 1-representable of order one. z3, z0 have algebraic degree four:

the fact that z0 is 2-representable of order three can be easily deduced from Figure 9.3a: the

paths from the input bits to the z0 node go through exactly three NOR gates arranged so that

185

Chapter 9. Side-Channels: Partitioning SKINNY

the depth is two. We have z3 = z0
−∨z1+x4. Hence z3 is at most 3-representable (in fact we will

later prove that it is 2-representable too). z7 and z6 have algebraic degree six and five respec-

tively: they can not be 2-representable since the set of all 2-representable functions contains

members of degree four or less.

9.1.2 Exhaustive Partition Search

As mentioned, the byte-serial scheme presented in the SKINNY design paper [30], and later

adapted to round-based setting presented in Chapter 3, considers a three-share decompo-

sition into four functions of degree two which we denote by S2222. As a consequence, the

S-box operation is performed in a pipelined fashion over four clock cycles which incurs a

large latency thus energy penalty, i.e., a single encryption of a plaintext takes four times the

number of rounds when implemented as a round-based circuit. Since z7 and z6 are not 2-

representable, the decomposition of S into quadratic S-boxes Fi ◦Fi−1 ◦· · ·◦F1 is not possible

for i ≤ 2. Consequently, we aim to decompose every coordinate Boolean function of S into 3-

representable functions of low order. Given that S can be realized in only 16 logical two-input

gates, a natural approach to obtain efficient decompositions is by partitioning the circuit into

connected sub-circuits. For example, the S2222 decomposition corresponds to making three

horizontal cuts after each row of gates. The number of possible partitions of 16 gates into

n sets is n16, however among those, only a small fraction of those partitions respect func-

tional correctness. Hence, if n = 3, it is feasible to enumerate all correct partitions. Although

this procedure does not admit a 3-representable decomposition of each coordinate function,

we found many decompositions of the form S = H ◦G ◦F where deg(F) = deg(H) = 2 and

deg(G) = 3. One such example denoted by S232 is shown in Figure 9.2a.

9.1.3 A Deeper Dive

As noted above, all coordinate functions of S except z7 and z6 are 3-representable. If we can

argue that z7 and z6 are also 3-representable, then it becomes straightforward to decompose

S into three quadratic S-boxes. z6 is clearly 3-representable of order five as can be deduced

from Figure 9.3b. The set of all paths from the input bits to z6 traverses exactly five NOR gates

arranged in three levels and so the result follows (they are marked in red in Figure 9.3b).

z7 is of algebraic degree 6 and from Figure 9.1 it is at least 4-representable of order 7. This

is because all but one of the 8 NOR gates are used to produce the z0 bit and they are clearly

arranged in 4 levels. However the question is: Is z7 also 3-representable of a suitable low order?

If yes, a 3-share first-order TI which evaluates the S-box in only three cycles is possible.

In this part we will show that z7 is indeed 3-representable of order 8. Note that since

the algebraic expression for z7 is very complex, we avoid directly working with it to prove

3-representability: it would be very difficult to keep the AND-complexity down to a suitable

value. Instead, consider the function π(x, y, z) = (x −∨ y)+ z, whose algebraic expression is

given by x y + x + y + z +1. Note that π is completely linear in the last input z. In Figure 9.4,

π is represented by a green circular node, and the figure represents the circuit graph for z7.

The figure itself is redrawn by isolating the circuit path for z7 as in Figure 9.1, and will help

186

9.1 Partitioning the S-Box

x0x1 x2x3 x4x5 x6x7

z0 z1 z2 z3 z4 z5 z6 z7

1 1

2

(a)

x0x1 x2x3 x4x5 x6x7

z0 z1 z2 z3 z4 z5 z6 z7

1 1

21

3

(b)

Figure 9.3: (a) The path up to z0 is marked in blue. There are 3 NOR gates, whose levels are
marked inside. There is a single NOR gate at level 2, which takes inputs from the 2 other level
1 NOR gates in the first row. (b) The path up to z6 is marked in red. There are 5 NOR gates,
whose levels are marked inside. There is a single NOR gate at level 3, which takes inputs from
the level 2 NOR gate and another level 1 NOR gate in the second row.

us prove the 3-representability of z7. Note that Figure 9.4 also makes it clear that z7 is 4-

representable of order 7.

Lemma 2. It is possible to transform the circuit graph for z7 according to the transformation

(a) → (b) shown in Figure 9.5.

Proof. This transformation is easy to prove: consider the nodes labeled in darker green in

Figure 9.5a. The output bit e =π(b, x4, x6) is given by the following algebraic expression:

e = π(b, x4, x6) =π(π(x5, x4, x7), x4, x6)

= π(x5x4 +x5 +x4 +x7 +1, x4, x6)

= x3(x5x4 +x5 +x4 +x7 +1)+x4 + (x5x4 +x5 +x4 +x7 +1)+x6 +1

= x7x4 +x5x4 +x5 +x7 +x6

= x4(x7 +x5)+ (x7 +x5)+x4 + (x6 +x4 +1)+1

= π(x7 +x5, x4, x6 +x4 +1)

Lemma 3. It is possible to transform the circuit graph for z7 according to the transformation

(a) → (b) shown in Figure 9.6. Thus, z7 is 3-representable of order eight.

187

Chapter 9. Side-Channels: Partitioning SKINNY

x1 x0 x5 x4

x3 x7

x6 x5 x5 x4
a b

x2 x1 x7

d c b
x4

x6x0

f e

x5

z7

x y

z =
x

y z

Depth 1

Depth 2

Depth 3

Depth 4

Figure 9.4: Circuit graph for z7. Its AND-complexity is 7 (note the gate π(x5, x4, x7) is shown
twice for a clearer representation).

Proof. The proof for this transformation is slightly more involved. Consider again the gates

labeled in dark green in Figure 9.6a. They lie entirely in levels 3 and 4 of the circuit graph, and

takes as input the signals d ,c,e, x0, x5 and produces z7 as output such that

z7 = π(f ,e, x5) =π(π(d ,c, x0),e, x5)

= π(dc +d + c +x0 +1,e, x5)

= e(dc +d + c +x0 +1)+e + (dc +d + c +x0 +1)+x5 +1

= edc +ed +ec +ex0 +dc +d + c +x0 +x5

= d(ec +e + c +1)+ec +ex0 + c +x0 +x5

= d(π(e,c,0))+ (ec +e + c +1)+d + (d +e +1+ex0 +x0 +x5)

= d(π(e,c,0))+π(e,c,0)+d + (ex0 +e +x0 +x5 +1+d)

= π

(
π(e,c,0),d ,d +π(e, x0, x5)

)
This completes the proof of the transformation. Figure 9.6 also proves that z7 can be con-

structed with a AND-depth of 3 and so it is 3-representable.

This allows us to decompose the S-box into H ◦G ◦F = S222, where F : {0,1}8 → {0,1}8, G :

{0,1}8 → {0,1}9 and H : {0,1}9 → {0,1}8 are each quadratic S-boxes. The algebraic expressions

are as follows:

F (x0, x1, x2, x3, x4, x5, x6, x7) = (u0,u1,u2,u3,u4,u5,u6,u7)

u7 = x3 +x1x0 +x1 +x0 +1, u6 = x7 +x5x4 +x5 +x4 +1

u5 = x7x4 +x7 +x6 +x5x4 +x5, u4 = x6x5 +x6 +x5 +x1 +1

188

9.1 Partitioning the S-Box

u3 = x5, u2 = x4, u1 = x2, u0 = x0

G(u0,u1,u2,u3,u4,u5,u6,u7) = (v0, v1, v2, v3, v4, v5, v6, v7, v8)

v8 = u1 +u7u6 +u7 +u6 +1, v7 = u2 +u1u7 +u1 +u7u6 +u6

v6 = u5u4, v5 = u7, v4 = u6, v3 = u5, v2 = u4,

v1 = u3, v0 = u0

H(v0, v1, v2, v3, v4, v5, v6, v7, v8) = (z0, z1, z2, z3, z4, z5, z6, z7)

z7 = v6v8 + v6 + v3v8 + v0v3 + v2v8 + v2 + v8 + v0 + v1,

z6 = v0 + v8v2 + v8 + v2 +1,

z5 = v2, z4 = v3, z3 = v7, z2 = v4, z1 = v5, z0 = v8

x1 x0 x5 x4

x3 x7

x6 x5 x5 x4
a b

x2 x1 x7

d c b
x4

x6x0

f e

x5

z7

(a)

x1 x0 x5 x4 x4 x7 + x5

x6 + x4 + 1x3 x7

x6 x5
a b

x2 x1

d c

x0

f

x5

z7

e

(b)

Figure 9.5: Transformation (a)→(b) of the circuit graph of z7 for Lemma 2.

9.1.4 Decomposition into Two Cubic S-boxes

It is straightforward to decompose S into two S-boxes of degree 4 each. For example from

S2222 = I ◦H ◦G ◦F , both G ◦F and I ◦H are degree 4 S-boxes. A first order TI of degree 4 S-

box requires 5 shares. So by using the above decomposition we can implement a circuit that

evaluates the shared S-box in only 2 clock cycles but requires 5 shares. Suppose we were able

to decompose S into two cubic S-boxes: if this were so then a first order TI would need only

4 shares. Such a circuit would require smaller circuit area and hence consume less power on

account of the reduced number of shares and also consume less energy to encrypt a plaintext

on account of the reduced power consumption. So in principle it is an interesting exercise to

see if this decomposition is at all possible.

189

Chapter 9. Side-Channels: Partitioning SKINNY

x1 x0 x5 x4 x4 x7 + x5

x6 + x4 + 1x3 x7

x6 x5
a b

x2 x1

d c

x0

f

x5

z7

e

(a)

x1 x0 x5 x4 x4 x7 + x5

x6 + x4 + 1

x6 x5

x3 x7 x1

x0
a b c e e

x2 x50

d

z7

(b)

Figure 9.6: Transformation (a)→(b) of the circuit graph of z7 for Lemma 3, proving that z7 is
3-representable of order 8 (right).

In order to decompose S into two cubic S-boxes, we can again mount an exhaustive

search on all partitions of two sets as done in Section 9.1.3. This procedure does not yield

such a decomposition but many of the form S = G ◦F where deg(F) = 2 and deg(G) = 4 or

vice-versa as shown in Figure 9.2b. However, we can follow a similar strategy as in detailed in

the previous section. We begin with the following definition:

Definition 9. A Boolean function B is said to have cubic depth 2, if it can be expressed as

B = C (c1,c2, . . . ,cn) where C ,c1,c2, . . . ,cn are each either cubic Boolean functions or functions

of algebraic degree strictly less than 3. The cubic order of such a function is said to be i , if the

total number cubic terms in the algebraic expressions of C ,c1,c2, . . . ,cn combined is i .

A lower cubic depth allows us to construct a TI of the given function lower number of

cycles using only 4 shares. Since every cubic term w x y in the algebraic expression has to be

opened up as (w1 +w2 +w3 +w4)(x1 + x2 + x3 + x4)(y1 + y2 + y3 + y4) to construct a 4 share

TI, a low cubic order will obviously help make the circuit more lightweight and efficient. It is

straightforward to see that z6, z5, . . . , z0 all have cubic depth 2: z5, z4, z2, z1 are quadratic. z0

has algebraic degree 4 and we have already seen that it is 2-representable, and so it automat-

ically follows that its cubic depth is 2 and cubic order is 0. The fact that z6, z3 also have cubic

depth equal to two can be seen in Figure 9.2b of the SKINNY S-box circuit. The part shaded in

blue is an 8×8 quadratic S-box, call it SBlue and the part in red is another 8×8 S-box of degree

4 (call it SRed). We obviously have S = SRed ◦SBlue. The corresponding algebraic expressions

are given below:

SBlue(x0, x1, x2, x3, x4, x5, x6, x7) = (u0,u1,u2,u3,u4,u5,u6,u7)

u0 = x5, u1 = x4, u2 = x4x5 +x4x7 +x5 +x6 +x7, u3 = x0,

u4 = x1 +x5x6 +x5 +x6 +1, u5 = x2,

190

9.1 Partitioning the S-Box

u6 = x4x5 +x4 +x5 +x7 +1, u7 = x0x1 +x0 +x1 +x3 +1

SRed(u0,u1,u2,u3,u4,u5,u6,u7) = (z0, z1, z2, z3, z4, z5, z6, z7)

z0 = u5 +u6u7 +u6 +u7 +1, z1 = u7, z2 = u6

z3 = u1 +u5u7 +u5 +u6u7 +u6, z4 = u2, z5 = u4,

z6 = u3 +u4u5 +u4u6u7 +u4u6 +u4u7 +u5 +u6u7 +u6 +u7,

z7 = u0 +u2u3 +u2u4u5 +u2u4u6u7 +u2u4u6 +u2u4u7 +u2u5

+u2u6u7 +u2u6 +u2u7 +u2 +u3 +u4u5 +u4u6u7

+u4u6 +u4u7 +u5 +u6u7 +u6 +u7 +1

From the expression we can see that z6 as the output of SRed is a cubic function with only a

single cubic term. And since the ui ’s are at most quadratic this follows that the cubic depth of

z1 is 2 and its cubic order is 1. Also the expression for z3 is quadratic in SRed, which proves that

not only is its cubic depth 2 and cubic order 0, but it is also 2-representable. It is elementary

to verify that its AND-complexity is 3. The only problematic part is proving that z7 also has

cubic depth 2 of some suitably low order, since it is not clear from this decomposition. Note

that there is only one degree 4 term u2u4u6u7 in the expression of z7. Also u2u6 = x4x5x6 +
x4x6 +x6 +x6x5 +x7x6 is a cubic expression in the xi ’s. Therefore, we construct the following

S-box S′
Blue : {0,1}8 → {0,1}9 where

S′
Blue(x0, x1, x2, x3, x4, x5, x6, x7) = (u0,u1,u2,u3,u4,u5,u6,u7,u8)

such that u0 = x4x5x6 + x4x6 + x6 + x6x5 + x7x6 and the other ui ’s are as defined for SBlue.

Correspondingly we define S′
Red : {0,1}9 → {0,1}8 where

S′
Red(u0,u1,u2,u3,u4,u5,u6,u7,u8) = (z0, z1, z2, z3, z4, z5, z6, z7)

such that

z7 = u1 +u3u4 +u3u5u6 +u0u5u8 +u3u5u7 +u3u5u8 +u3u6

+u3u7u8 +u3u7 +u3u8 +u3 +u4 +u5u6 +u5u7u8 +u5u7

+u5u8 +u6 +u7u8 +u7 +u8 +1

and the other zi ’s are as defined for SRed. Since both S′
Blue and S′

Red are cubic S-boxes this

proves that the cubic depth of z7 is also 2. It is easy to count that there are 5 cubic terms

in the modified expression of z7 and one cubic term in the expression for u0, which implies

that the cubic order of z7 is 6. Since we also have that S = S′
Red ◦S′

Blue, this also gives us the

cubic decomposition required to construct a first order TI using 4 input/output shares that

can evaluate the shared S-box in just 2 cycles.

191

Chapter 9. Side-Channels: Partitioning SKINNY

9.2 Hardware Implementation

After decomposing the S-box into quadratic and cubic component functions, we use the di-

rect sharing approach to obtain the algebraic expressions for each of the individual shares

of the masked S-box. In all cases, except for S2222, correction terms were required to en-

sure uniform sharing. All investigated schemes were synthesised using the no_autoungroup

compilation directive that respects entity boundaries and thus prevents the optimizer from

potentially interfering with the threshold properties of the circuit.

In Table 9.1, we detail the measurements for the investigated S-box circuits and note that

both in latency and power, S222 as well as S33 eclipse the other variants. This trend is am-

plified when the entire SKINNY circuit is implemented as shown in Table 9.2. We denote by

SKINNYi1...ik the full SKINNY circuit using the S-box Si1...ik .

Table 9.1: ASIC synthesis measurements for the investigated substitution boxes.

Scheme Library Latency Area Timing Power (µW)

(Cycles) (GE) (ns) 10 MHz 100 MHz

S2222 NanGate 15 nm 4 769.0 0.04 7.52 51.41

NanGate 45 nm 4 584.3 0.24 43.81 157.1

UMC 65 nm 4 597.9 1.15 5.74 56.14

TSMC 90 nm 4 501.3 0.69 14.06 139.1

S232 NanGate 15 nm 3 1027.4 0.09 9.96 71.87

NanGate 45 nm 3 915.3 1.11 86.15 166.2

UMC 65 nm 3 941.3 3.82 7.99 77.86

TSMC 90 nm 3 865.1 1.74 17.23 169.8

S222 NanGate 15 nm 3 676.5 0.05 5.65 38.44

NanGate 45 nm 3 600.6 0.31 46.77 154.4

UMC 65 nm 3 616.5 1.73 5.40 52.63

TSMC 90 nm 3 541.8 0.87 12.23 120.8

S33 NanGate 15 nm 2 1185 0.11 9.55 61.73

NanGate 45 nm 2 1906 1.21 159.7 553.7

UMC 65 nm 2 1924 4.79 14.35 139.1

TSMC 90 nm 2 1049 1.71 14.82 145.5

9.3 Leakage Evaluation

SILVER [92] is a formal verification tool for masking countermeasures. For a given security

property [63], the tool exhaustive evaluates the input netlist using reduced-ordered binary

decision diagrams. We compile the netlist for the S222 and S33 S-boxes using the NanGate 45

nm standard cell library and verified that both netlists satisfied first-order probing security

192

9.3 Leakage Evaluation

Table 9.2: ASIC synthesis figures for all investigated schemes for three cell libraries.

Scheme Library Latency Area Critical Path Power (µW) Energy (nJ/128 bits)

(Cycles) (GE) (ns) 10 MHz 100 MHz 10 MHz 100 MHz

SKINNY-1282222 NanGate 15 nm 872 4461 0.31 21.91 186.2 1.911 1.623

Byte-Serial NanGate 45 nm 872 5039 0.51 100.6 343.5 8.772 2.995

UMC 65 nm 872 4989 1.59 25.82 244.5 2.251 2.132

TSMC 90 nm 872 4989 1.59 25.82 244.5 2.251 2.132

SKINNY-2562222 NanGate 15 nm 1040 5280 0.33 25.90 219.6 2.694 2.284

Byte-Serial NanGate 45 nm 1040 5993 0.52 120.7 420.8 12.55 4.376

UMC 65 nm 1040 5876 1.64 30.33 287.3 3.154 2.988

TSMC 90 nm 1040 5876 1.64 30.33 287.3 3.154 2.988

SKINNY-3842222 NanGate 15 nm 1208 6122 0.35 26.97 222.5 3.258 2.688

Byte-Serial NanGate 45 nm 1208 6949 0.57 140.3 496.4 16.94 5.993

UMC 65 nm 1208 6782 1.69 34.98 333.1 4.226 4.024

TSMC 90 nm 1208 6782 1.69 34.98 333.1 4.226 4.024

SKINNY-1282222 NanGate 15 nm 160 16952 0.07 103.0 707.1 1.28 1.13

NanGate 45 nm 160 14637 0.47 917.3 2199 14.68 3.518

UMC 65 nm 160 15116 2.03 93.57 898.7 1.497 1.438

TSMC 90 nm 160 12594 1.23 239.3 2353.3 3.83 3.77

SKINNY-2562222 NanGate 15 nm 192 18742 0.07 114.7 665.3 2.20 1.28

NanGate 45 nm 192 16315 0.47 1041 2490 19.98 4.781

UMC 65 nm 192 16735 2.12 103.1 990.3 1.979 1.901

TSMC 90 nm 192 14074 1.23 263.5 2591.0 5.06 4.97

SKINNY-3842222 NanGate 15 nm 224 20558 0.07 126.5 733.2 2.83 1.64

NanGate 45 nm 224 17991 0.47 1166 2774 26.12 6.213

UMC 65 nm 224 18357 2.12 113.4 1088 2.538 2.437

TSMC 90 nm 224 15528 1.23 287.4 2825.2 6.44 6.33

SKINNY-128222 NanGate 15 nm 120 17155 0.92 110.5 647.2 1.33 0.78

NanGate 45 nm 120 14899 0.66 474.9 1890 5.699 2.268

UMC 65 nm 120 15413 3.40 93.05 892.7 1.156 1.071

TSMC 90 nm 120 13233 1.64 217.6 2136.8 2.61 2.56

SKINNY-256222 NanGate 15 nm 144 18946 0.09 123.1 724.1 1.77 1.04

NanGate 45 nm 144 16576 0.66 501.5 2010 7.222 2.894

UMC 65 nm 144 17031 3.51 104.0 997.1 1.497 1.436

TSMC 90 nm 144 14711 1.64 244.0 2396.0 3.51 3.45

SKINNY-384222 NanGate 15 nm 168 20757 0.09 136.3 803.4 2.28 1.35

NanGate 45 nm 168 18253 0.66 632.1 2298 10.62 3.861

UMC 65 nm 168 18654 3.51 115.6 1109 1.942 1.863

TSMC 90 nm 168 16165 1.65 270.7 2658.3 4.55 4.47

SKINNY-12833 NanGate 15 nm 80 27092 0.14 206.5 1310.7 1.65 1.05

NanGate 45 nm 80 23954 0.88 980.1 3200 7.84 2.56

UMC 65 nm 80 24923 4.13 139.1 1391 1.11 1.11

TSMC 90 nm 80 22724 2.26 286.4 2800.7 2.29 2.24

SKINNY-25633 NanGate 15 nm 96 29169 0.14 221.8 1406.9 2.13 1.35

NanGate 45 nm 96 25888 0.87 1109 3678 10.64 3.53

UMC 65 nm 96 26767 4.23 159.3 1542 1.53 1.48

TSMC 90 nm 96 24433 2.26 318.5 3116.8 3.06 2.99

SKINNY-38433 NanGate 15 nm 112 27964 0.66 137.5 1190 1.54 1.33

NanGate 45 nm 112 27820 0.87 1382 4001 15.48 4.48

UMC 65 nm 112 28621 4.24 147.7 1636 1.65 1.83

TSMC 90 nm 112 26171 2.27 351.7 3442 3.94 3.85

193

Chapter 9. Side-Channels: Partitioning SKINNY

in the standard and robust probing models as well as uniformity.

Secondly, similarly to the leakage assessment in Chapter 8, we verified our masked SKI-

NNY circuits using the TVLA methodology [117] using Welch’s t-test and the min-p strategy

for null hypothesis rejection. In particular, we perform non-specific fixed versus random t-

tests, where we aim to determine the validity of the null hypothesis that encryptions with a

fixed and uniformly sampled plaintext admit the same mean power consumption (i.e., are in-

distinguishable under first-order statistical analysis). Following the state of the art [7, 117],

we set a threshold |t | > 4.5 for any t-value to reject the null hypothesis. To perform t-tests,

power traces of SKINNY222 and SKINNY33 were measured using the Sakura-X and Sasebo-GII

power side-channel leakage evaluation boards. These boards contain a core FPGA target on

which a cryptographic circuit can be programmed, allowing the evaluation of custom hard-

ware implementations of cryptographic primitives. To reduce noise, the boards contain an

additional FPGA for communication with the host PC, which is used to send keys and plain-

texts and read ciphertexts. Moreover, these boards contain direct connectors for oscilloscope

probes, facilitating the acquisition of the power supply voltage traces for the side-channel

evaluation. The encryption FPGA has direct connections to header pins on the board, allow-

ing easy synchronisation using a dedicated trigger signal.

The Sakura-X board hosts a more recent FPGA as part of the Xilinx 7-Series (Kintex-7,

XC7K160T), while the Sasebo-GII board contains an older FPGA from the 5-Series (Virtex-

5, XC5VLX30) architecture. To prevent unwanted optimisations during the FPGA toolchain

synthesis and implementation, DONT_TOUCH, KEEP_HIERARCHY, and KEEP constraints

are added. The clock frequency of our designs is constrained to a low 3 MHz on both boards.

All power measurements are performed using a Tektronix MDO3104 oscilloscope with a sam-

pling rate of 1 GS/s and AC coupling; we take 10000 sample points per trace with 1 microsec-

ond horizontal graduations. To perform non-specific t-tests, all encryptions were performed

with a fixed key. The cryptographic primitive was reset before every encryption to ensure

identical initial conditions for both the fixed and random traces. Consequently, this allowed

us to record traces for t-tests in a deterministic interleaving fashion, where a random plain-

text preceded a fixed plaintext and vice-versa, reducing bias in any one dataset from po-

tential variation in noise and environmental conditions over time. To avoid leakage arising

from generating random masks on the DUT itself, we sent pre-masked plaintext shares to the

FPGA.

In order to verify the soundness of our experimental setup, we first ran t-tests in the

masks off setting by setting all but one share of the plaintext to the zero vector. We per-

form the masks off t-tests on 10000 traces for each design. Figures 9.10a and 9.10b plot a

sample trace for the two designs. Note that we take traces corresponding to 10 rounds of an

encryption operation in each experiment. Recall that executing a round of SKINNY with S33

uses two cycles, rather than three like with S222. The encryption operation for the SKINNY33

experiments only begins after a few thousand data points, whereas we record from the be-

ginning of an encryption for the SKINNY222 experiments.

The results in Figures 9.7a and 9.8a indicate that there is potentially exploitable leakage

with just 10000 traces, even with measurements with low SNR taken on the Sakura-X board.

194

9.3 Leakage Evaluation

t-
V
a
lu
e

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

Number	of	Samples
0 2000 4000 6000 8000 10000

(a)

t-
V
a
lu
e

−5
−4.5
−4

−3.5
−3

−2.5
−2

−1.5
−1

0

1
1.5
2

2.5
3

3.5
4

4.5
5

Number	of	Samples
0 2000 4000 6000 8000 10000

(b)

Figure 9.7: t-test results for SKINNY222 on the Sakura-X with (a) 10000 traces and masks off
and (b) one million traces and masks on.

t-
V
a
lu
e

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

20

25

30

35

40
45

Number	of	Samples
0 2000 4000 6000 8000 10000

(a)

t-
V
a
lu
e

−5
−4.5
−4

−3.5
−3

−2.5
−2

−1.5
−1

0

1
1.5
2

2.5
3

3.5
4

4.5
5

Number	of	Samples
0 2000 4000 6000 8000 10000

(b)

Figure 9.8: t-test results for SKINNY33 on the Sakura-X with (a) 10000 traces and masks off
and (b) one million traces and masks on.

We then record 1 million traces with randomly generated masks to assess the first-order se-

curity of our designs (Figures 9.7b and 9.8b). Our results indicate that the threshold of 4.5

is not crossed in any of the trace samples, and that no leakage is detected with this num-

ber of traces. Since Threshold Implementations are well-studied, we expect these results to

hold with a larger number of traces also. To demonstrate that our Threshold Implementa-

tion of SKINNY222 is secure even on a smaller FPGA with a higher SNR (lower noise), we

also performed t-tests with both randomly generated and zero masks using the Sasebo-II

side-channel evaluation board. Figure 9.10c shows a sample trace taken during the experi-

ments, where the power consumption from the encryption operation in each clock cycle is

clearly visible. Figure 9.9 shows the t-values obtained for the power traces. As before, with

10000 traces in the masks off setting, we note substantial leakage. With one million traces

and masks on, we find no evidence of leakage.

195

Chapter 9. Side-Channels: Partitioning SKINNY
t-
V
a
lu
e

−27.5
−25

−22.5
−20

−17.5
−15

−12.5
−10
−7.5
−5

0

5
7.5
10

12.5
15

17.5
20

22.5
25

Number	of	Samples
0 2000 4000 6000 8000 10000

(a)

t-
V
a
lu
e

−5
−4.5
−4

−3.5
−3

−2.5
−2

−1.5
−1

0

1
1.5
2

2.5
3

3.5
4

4.5
5

Number	of	Samples
0 2000 4000 6000 8000 10000

(b)

Figure 9.9: t-test results for SKINNY222 on the Sasebo-II with (a) 10000 traces and masks off
and (b) one million traces and masks on.

Number	of	Samples
0 2000 4000 6000 8000 10000

(a)

Number	of	Samples
0 2000 4000 6000 8000 10000

(b)

Number	of	Samples
0 2000 4000 6000 8000 10000

(c)

Figure 9.10: Sample power traces of encryption operations for (a) SKINNY222 on the Sakura-
X, (b) SKINNY33 on the Sakura-X and (c) SKINNY222 on the Sasebo-II.

9.4 Conclusion

In this chapter, we re-envision first-order TI for the SKINNY family of tweakable block ciphers

in the round-based setting. More specifically, we propose different decompositions of the 8-

bit S-box which enable significantly more efficient implementations of a protected SKINNY

circuit in terms of latency and energy consumption, which we demonstrate through an ex-

tensive suite of synthesis benchmarks. We conclude by assessing the security of our designs

via leveraging existing leakage detection and formal verification techniques.

[...] The home you said you came with, a moment of weakness labeled revelation [...]

196

10 Conclusion

Es wird mir ganz angst um die Welt, wenn ich an die

Ewigkeit denke. Beschäftigung, Woyzeck, Beschäftigung!

ewig das ist ewig, das ist ewig, das siehst du ein; nun ist

es aber wieder nicht ewig und das ist ein Augenblick, ja,

ein Augenblick – Woyzeck, es schaudert mich, wenn ich

denk, dass sich die Welt in einem Tag herumdreht, was

eine Zeitverschwendung, wo soll das hinaus? Woyzeck,

ich kann kein Mühlrad mehr sehn, oder ich werd’ melan-

cholisch.

— Woyzeck, Georg Büchner, 1878

In this thesis, we chronicle a perennial scientific journey through an ever-evolving but

insular domain. It is the progeny of an opaque dendritic mesh of roots whose conglomera-

tive assembly bears the conferred fruits of knowledge that encapsulates both the past and an

eternal presence hence manifests itself as a snapshot of a microcosm whose ethereal struc-

ture is painted in the colours of progress that precludes the subjective futility inherent to

frontier-expanding endeavours. This manuscript is a metaphorical Solanaceae, a delirious

frenzy that delivers the cryptographic congregation from their self-imposed lopsidedness. In

this cathartic haze, let us, for one last time, summon the cornerstones of this voyage and in

the process illuminate prospective diversions.

We have commenced with a survey-type chapter in which we examined the energy con-

sumption landscape of nine NIST LWC second-round candidate designs bootstrapped from

lightweight block-ciphers. The methodology enabled us to extend the energy model from [18]

to modes of operation thus paved the way for a better understanding of the effects of imple-

mentation choices. Our work stands today as the most meticulous energy study in the field of

cryptography. Nonetheless, there is ample scope for extensions. For example, the non-trivial

affair of padding incomplete blocks is vital in real-world applications but remains unexplored

in Chapter 3. Consequently, the effects that dedicated padding modules exert on energy con-

sumption are unclear. Similarly, due to the choice of investigating only schemes built around

block ciphers the applicability of the energy to other paradigms, such as permutation-based

designs or more complex constructions (see Chapter 8), is opaque. Finally, we ask, Can the

acquired information in the course of this study be put to use in the form of a dedicated

energy-optimal AEAD scheme for hardware environments?

In the subsequent chapter, we have directed our gaze onto the realm of stream ciphers,

197

Chapter 10. Conclusion

in particular the class of Trivium-like constructions. By exploring the implementation space

of round-unrolled variants, we discovered a natural algebraic circuit structure that, for the

first time, made it possible to formulate a heuristic energy model for a class of stream ci-

phers. This model is also versatile enough to be used in the design of novel energy-optimal

ciphers, which we demonstrated with the proposal of Trivium-LE(F) and Trivium-LE(S). Both

of which stand as the most energy-efficient encryption solutions known in the cryptography

literature. We are optimistic that this work will echo in the design of future hardware-oriented

lightweight stream ciphers. However for a general adoption of the proposed energy model,

some unilluminated avenues still need to be explored, such as the question regarding gener-

alisation of the model to arbitrary Boolean functions that differ from the exceedingly simple

strands in the case of Trivium. A general model would enable the composition of improved

new schemes that are not based on previous designs. In the meantime, it is worth investigat-

ing whether the strand-based energy model is applicable to other stream ciphers, apart from

the families that have been covered in the chapter.

In the first section of this thesis, we have concluded with the proposal of Atom, a small-

state stream cipher in the Grain family. Atom guarantees a 128-bit security with a state size

of only 128 bits. The design ranks as both the most area and energy-efficient choice among

other stream cipher constructions that produce one keystream bit per clock cycle and as a

feature of a key size of 128 bits. The automatised approach for finding the Atom-state up-

date routine, which would resist known attacks, resulted in a complex component functions

that exhibit comparably large circuit areas. In this sense, it is worth investigating whether

this complexity can be broken down in order to facilitate an even better performing cipher.

Similarly, as Atom adheres to the methodology that gave rise to the Grain family of stream

ciphers, a potential research project could involve the investigation of designs that offer the

same security guarantees, without compromising the performance aspects but that are based

on different structural paradigms.

Book number two began with a treatise on serialised block ciphers and modes of opera-

tions. In particular, we have revisit the swap-and-rotate technique, as proposed in [11], and

we have extended its applicability. More specifically, we design bit-serial circuits for AES,

SKINNY, and GIFT; they compute one round function in exactly 128 cycles, which corre-

sponds to their state sizes in bits. This results in bit-serial constructions that stand as both the

most area-efficient and latency-efficient compared to existing designs. In the second part of

this chapter, we have repurposed the proposed circuits as building blocks for four NIST LWC

second-round candidates and have demonstrate that these modes can be implemented in a

serial fashion, with only a small increase in circuit complexity. In its current state, to find effi-

cient mappings that implement a given function, the swap-and-rotate methodology heavily

relies on the ingenuity of the researcher. This ad-hoc approach neither scales nor guarantees

that a devised sequence of swaps is optimal. Hence, a potential research direction lies in lift-

ing the technique to a higher-level representation that could ease the automatisation of the

process; in the sense that, for a given function and cycle budget, this technique could find

the most optimal sequence of swaps that implement it. On a lower level, the control logic

required for a swap-and-rotate circuit is rather involved, which means that a lower number

198

of swaps might not directly result in a saved circuit area if the corresponding control logic

comes with overhead.

One AEAD construction that was omitted in Chapter 6 is a bit-serial implementation of

GIFT-COFB that competes as a NIST LWC finalist. This is due to the complex nature of its aux-

iliary modules as part of the combined-feedback mode of operation, specifically the finite-

field multiplication executed between encryptions. Chapter 7 was dedicated to the construc-

tion of efficient bit-serial circuits by using the swap-and-rotate construction of GIFT, as de-

tailed in Section 6.4. We propose two designs that feature different area-latency trade-offs

and, ultimately, a first-order threshold implementation. All three proposals currently stand

as the most area-efficient circuits in their respective category and sensibly extend the canon

of the GIFT-COFB design space. Still, the work on hardware metrics of cryptographic imple-

mentations can never be considered truly completed, which also holds true for GIFT-COFB

for which other trade-offs such as area/throughput for bit-serial circuits are worthy of a fu-

ture investigation. The combined efforts that revolved around GIFT and GIFT-COFB (along

with SKINNY) make it the most thoroughly examined candidate of the final NIST-LWC round,

in terms of its hardware properties.

Rocca-S is the name of the ultra-high throughput AEAD scheme that we have put forward

in Chapter 8; it exhibits its prowess both in the hardware and software realms. In its design

philosophy of existing schemes, Rocca-S is reminiscent of AEGIS [126] and Tiaoxin [110], as

its round function is also put together by a parallel chain of multiple AES round function

modules. The cipher features both a key and tag size of 256 bits, which makes it key-recovery

and, for the first time in the known literature, forgery secure in the post-quantum setting.

Rocca-S achieves a maximum throughput of over two Terabits per second on hardware and

over 200 Gigabits per second, as a software algorithm that eclipses related constructions by

more than 50%. In this sense, this mode operation is adequately primed as component for

the upcoming standardisation process of 6G telecommunication networks that will presum-

ably support unprecedented throughput rates and guarantees against quantum adversaries.

In terms of research, Rocca-S should serve as a beacon for future cryptographic work that

concerns 6G. This means that efforts should be guided towards the optimisation of the round

function in order to lower the number of AES modules and to keep security and performance

competitive. This naturally includes the search for a round function composition or even

entirely new designs that admit even higher throughput rates in both hardware and software.

Lastly, for the main body of work in this thesis, we have concluded with a chapter on first-

order threshold implementations of the SKINNY block-cipher. The starting point of the en-

deavour was the fact that the decomposition of its S-box into efficient component functions,

more than specified in the SKINNY white paper [30], remained an open problem. We have

tackled this challenge by taking a mathematical approach to the task and, in the process, have

uncovered both a decomposition into three functions of algebraic degree two and a related

variant that corresponds to a decomposition into two functions of degree three. Together,

this pair of circuits exhibits a area-latency trade-off that elevates the side-channel-resistant

implementations of SKINNY to an astute level but does not answer questions regarding high-

order threshold implementations or different probing models.

199

Chapter 10. Conclusion

This is the end, the end of four years of research combined into a single document. In

science, the quest for the unknown is an exitus acta probat, where discovery, comprehen-

sion and achievement are misnomers for hardship, failure, and desperation in a circus that

shrouds humanity in favour of often purposeless drudgery. Unfortunately, this thesis is no

counterexample. With these words I say, to those who were, those who are, and those who

will be; farewell.

Andrea Caforio

Lausanne, 2023

200

Bibliography

[1] Alexandre Adomnicai and Thomas Peyrin. Fixslicing AES-like Ciphers. In: IACR Trans-

actions on Cryptographic Hardware and Embedded Systems 2021.1 (2021), pp. 402–

425.

[2] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: a new

version of Grain-128 with optional authentication. In: Int. J. Wirel. Mob. Comput. 5.1

(2011), pp. 48–59.

[3] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie

Schmieg. How to Abuse and Fix Authenticated Encryption Without Key Commit-

ment. In: 31st USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA,

August 10-12, 2022. Ed. by Kevin R. B. Butler and Kurt Thomas. USENIX Association,

2022, pp. 3291–3308.

[4] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab Roy,

and Damian Vizár. Forkcipher: A New Primitive for Authenticated Encryption of Very

Short Messages. In: Advances in Cryptology – ASIACRYPT 2019, Part II. Ed. by Steven

D. Galbraith and Shiho Moriai. Vol. 11922. Lecture Notes in Computer Science. Kobe,

Japan: Springer, Heidelberg, Germany, Dec. 2019, pp. 153–182.

[5] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, and Arnab

Roy Damian Vizár. ForkAE v.1. In: NIST Lightweight Cryptography Project (2019).

[6] Frederik Armknecht and Vasily Mikhalev. On Lightweight Stream Ciphers with

Shorter Internal States. In: Fast Software Encryption – FSE 2015. Ed. by Gregor Le-

ander. Vol. 9054. Lecture Notes in Computer Science. Istanbul, Turkey: Springer,

Heidelberg, Germany, Mar. 2015, pp. 451–470.

[7] Victor Arribas, Begül Bilgin, George Petrides, Svetla Nikova, and Vincent Rijmen.

Rhythmic Keccak: SCA Security and Low Latency in HW. In: IACR Transactions on

Cryptographic Hardware and Embedded Systems 2018.1 (2018), pp. 269–290.

[8] Roberto Avanzi. The QARMA Block Cipher Family. In: IACR Transactions on Symmetric

Cryptology 2017.1 (2017), pp. 4–44.

[9] Fatih Balli, Andrea Caforio, and Subhadeep Banik. The Area-Latency Symbiosis: To-

wards Improved Serial Encryption Circuits. In: IACR Transactions on Cryptographic

Hardware and Embedded Systems 2021.1 (2021), pp. 239–278.

201

Bibliography

[10] Subhadeep Banik. Some Results on Sprout. In: Progress in Cryptology - INDOCRYPT

2015 - 16th International Conference on Cryptology in India, Bangalore, India, Decem-

ber 6-9, 2015, Proceedings. Ed. by Alex Biryukov and Vipul Goyal. Vol. 9462. Lecture

Notes in Computer Science. Springer, 2015, pp. 124–139.

[11] Subhadeep Banik, Fatih Balli, Francesco Regazzoni, and Serge Vaudenay. Swap and

Rotate: Lightweight Linear Layers for SPN-based Blockciphers. In: IACR Transactions

on Symmetric Cryptology 2020.1 (2020), pp. 185–232.

[12] Subhadeep Banik, Khashayar Barooti, and Takanori Isobe. Cryptanalysis of Plantlet.

In: IACR Transactions on Symmetric Cryptology 2019.3 (2019), pp. 103–120.

[13] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hi-

watari, Toru Akishita, and Francesco Regazzoni. Midori: A Block Cipher for Low En-

ergy. In: Advances in Cryptology – ASIACRYPT 2015, Part II. Ed. by Tetsu Iwata and Jung

Hee Cheon. Vol. 9453. Lecture Notes in Computer Science. Auckland, New Zealand:

Springer, Heidelberg, Germany, Nov. 2015, pp. 411–436.

[14] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser. SUNDAE:

Small Universal Deterministic Authenticated Encryption for the Internet of Things.

In: IACR Transactions on Symmetric Cryptology 2018.3 (2018), pp. 1–35.

[15] Subhadeep Banik, Andrey Bogdanov, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, El-

mar Tischhauser, and Yosuke Todo. SUNDAE-GIFT v1.0. In: NIST Lightweight Cryp-

tography Project (2019).

[16] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-AES v2.0. Cry-

ptology ePrint Archive, Report 2016/1005. 2016.

[17] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-AES: A Com-

pact Implementation of the AES Encryption/Decryption Core. In: Progress in Crypto-

logy - INDOCRYPT 2016: 17th International Conference in Cryptology in India. Ed. by

Orr Dunkelman and Somitra Kumar Sanadhya. Vol. 10095. Lecture Notes in Computer

Science. Kolkata, India: Springer, Heidelberg, Germany, Dec. 2016, pp. 173–190.

[18] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Exploring Energy Ef-

ficiency of Lightweight Block Ciphers. In: SAC 2015: 22nd Annual International Work-

shop on Selected Areas in Cryptography. Ed. by Orr Dunkelman and Liam Keliher.

Vol. 9566. Lecture Notes in Computer Science. Sackville, NB, Canada: Springer, Hei-

delberg, Germany, Aug. 2016, pp. 178–194.

[19] Subhadeep Banik, Andrea Caforio, Kazuhide Fukushima, Takanori Isobe, Shisaku

Kiyomoto, Fukang Liu, Yuto Nakano, Kosei Sakamoto, Nobuyuki Takeuchi, and

Ravi Anand. Rocca-S: Ultra High-Throughput and Quantum-Secure Authenticated

Encryption. 2023.

[20] Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei

Sakamoto, and Santanu Sarkar. Atom: A Stream Cipher with Double Key Filter. In:

IACR Transactions on Symmetric Cryptology 2021.1 (2021), pp. 5–36.

202

Bibliography

[21] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, Mridul

Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. GIFT-COFB

v1.1. In: NIST Lightweight Cryptography Project (2022).

[22] Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. More Results on Shortest Lin-

ear Programs. In: IWSEC 19: 14th International Workshop on Security, Advances in In-

formation and Computer Security. Ed. by Nuttapong Attrapadung and Takeshi Yagi.

Vol. 11689. Lecture Notes in Computer Science. Tokyo, Japan: Springer, Heidelberg,

Germany, Aug. 2019, pp. 109–128.

[23] Subhadeep Banik, Takanori Isobe, Tingting Cui, and Jian Guo. Some cryptanalytic re-

sults on Lizard. In: IACR Transactions on Symmetric Cryptology 2017.4 (2017), pp. 82–

98.

[24] Subhadeep Banik, Takanori Isobe, Willi Meier, Yosuke Todo, and Bin Zhang. TRIAD

v1: A Lightweight AEAD and Hash Function Based on Stream Cipher. In: NIST Light-

weight Cryptography Project (2019).

[25] Subhadeep Banik, Vasily Mikhalev, Frederik Armknecht, Takanori Isobe, Willi Meier,

Andrey Bogdanov, Yuhei Watanabe, and Francesco Regazzoni. Towards Low Energy

Stream Ciphers. In: IACR Transactions on Symmetric Cryptology 2018.2 (2018), pp. 1–

19.

[26] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim,

and Yosuke Todo. GIFT: A Small Present - Towards Reaching the Limit of Lightweight

Encryption. In: Cryptographic Hardware and Embedded Systems – CHES 2017. Ed. by

Wieland Fischer and Naofumi Homma. Vol. 10529. Lecture Notes in Computer Sci-

ence. Taipei, Taiwan: Springer, Heidelberg, Germany, Sept. 2017, pp. 321–345.

[27] Lejla Batina, Amitabh Das, Baris Ege, Elif Bilge Kavun, Nele Mentens, Christof Paar, In-

grid Verbauwhede, and Tolga Yalçin. Dietary Recommendations for Lightweight Block

Ciphers: Power, Energy and Area Analysis of Recently Developed Architectures. In: Ra-

dio Frequency Identification - Security and Privacy Issues 9th International Workshop,

RFIDsec 2013, Graz, Austria, July 9-11, 2013, Revised Selected Papers. Ed. by Michael

Hutter and Jörn-Marc Schmidt. Vol. 8262. Lecture Notes in Computer Science. Spri-

nger, 2013, pp. 103–112.

[28] Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason Smith,

and Louis Wingers. The SIMON and SPECK lightweight block ciphers. In: 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC). 2015, pp. 1–6.

[29] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas

Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-AEAD and SKINNY-

HASH. In: NIST Lightweight Cryptography Project (2019).

[30] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas

Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY Family of

Block Ciphers and Its Low-Latency Variant MANTIS. In: Advances in Cryptology –

CRYPTO 2016, Part II. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9815. Lecture

203

Bibliography

Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,

Aug. 2016, pp. 123–153.

[31] Ishai Ben-Aroya and Eli Biham. Differtial Cryptanalysis of Lucifer. In: Advances in Cry-

ptology – CRYPTO’93. Ed. by Douglas R. Stinson. Vol. 773. Lecture Notes in Computer

Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 1994, pp. 187–

199.

[32] Côme Berbain, Henri Gilbert, and Antoine Joux. Algebraic and Correlation Attacks

against Linearly Filtered Non Linear Feedback Shift Registers. In: SAC 2008: 15th An-

nual International Workshop on Selected Areas in Cryptography. Ed. by Roberto Maria

Avanzi, Liam Keliher, and Francesco Sica. Vol. 5381. Lecture Notes in Computer Sci-

ence. Sackville, New Brunswick, Canada: Springer, Heidelberg, Germany, Aug. 2009,

pp. 184–198.

[33] Eli Biham. A Fast New DES Implementation in Software. In: Fast Software Encryption

– FSE’97. Ed. by Eli Biham. Vol. 1267. Lecture Notes in Computer Science. Haifa, Israel:

Springer, Heidelberg, Germany, Jan. 1997, pp. 260–272.

[34] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In:

Advances in Cryptology – CRYPTO’90. Ed. by Alfred J. Menezes and Scott A. Vanstone.

Vol. 537. Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Hei-

delberg, Germany, Aug. 1991, pp. 2–21.

[35] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rij-

men. Higher-Order Threshold Implementations. In: Advances in Cryptology – ASI-

ACRYPT 2014, Part II. Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8874. Lecture Notes in

Computer Science. Kaoshiung, Taiwan, R.O.C.: Springer, Heidelberg, Germany, Dec.

2014, pp. 326–343.

[36] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg Stütz.

Threshold Implementations of All 3×3 and 4×4 S-Boxes. In: Cryptographic Hardware

and Embedded Systems – CHES 2012. Ed. by Emmanuel Prouff and Patrick Schau-

mont. Vol. 7428. Lecture Notes in Computer Science. Leuven, Belgium: Springer,

Heidelberg, Germany, Sept. 2012, pp. 76–91.

[37] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs for

Stream Ciphers. In: Advances in Cryptology – ASIACRYPT 2000. Ed. by Tatsuaki

Okamoto. Vol. 1976. Lecture Notes in Computer Science. Kyoto, Japan: Springer,

Heidelberg, Germany, Dec. 2000, pp. 1–13.

[38] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,

Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-

Lightweight Block Cipher. In: Cryptographic Hardware and Embedded Systems –

CHES 2007. Ed. by Pascal Paillier and Ingrid Verbauwhede. Vol. 4727. Lecture Notes

in Computer Science. Vienna, Austria: Springer, Heidelberg, Germany, Sept. 2007,

pp. 450–466.

204

Bibliography

[39] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. Quantum Secu-

rity Analysis of AES. In: IACR Transactions on Symmetric Cryptology 2019.2 (2019),

pp. 55–93.

[40] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knežević, Lars

R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger,

Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A Low-Latency Block

Cipher for Pervasive Computing Applications - Extended Abstract. In: Advances in

Cryptology – ASIACRYPT 2012. Ed. by Xiaoyun Wang and Kazue Sako. Vol. 7658. Lec-

ture Notes in Computer Science. Beijing, China: Springer, Heidelberg, Germany, Dec.

2012, pp. 208–225.

[41] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum Cryptanalysis of Hash and

Claw-Free Functions. In: LATIN 1998: Theoretical Informatics, 3rd Latin American

Symposium. Ed. by Claudio L. Lucchesi and Arnaldo V. Moura. Vol. 1380. Lecture

Notes in Computer Science. Campinas, Brazil: Springer, Heidelberg, Germany, Apr.

1998, pp. 163–169.

[42] Andrea Caforio, Fatih Balli, and Subhadeep Banik. Complete Practical Side-Channel-

Assisted Reverse Engineering of AES-Like Ciphers. In: Smart Card Research and Ad-

vanced Applications - 20th International Conference, CARDIS 2021, Lübeck, Germany,

November 11-12, 2021, Revised Selected Papers. Ed. by Vincent Grosso and Thomas

Pöppelmann. Vol. 13173. Lecture Notes in Computer Science. Springer, 2021, pp. 97–

117.

[43] Andrea Caforio, Fatih Balli, and Subhadeep Banik. Energy Analysis of Lightweight

AEAD Circuits. In: Cryptology and Network Security - 19th International Conference,

CANS 2020, Vienna, Austria, December 14-16, 2020, Proceedings. Ed. by Stephan

Krenn, Haya Shulman, and Serge Vaudenay. Vol. 12579. Lecture Notes in Computer

Science. Springer, 2020, pp. 23–42.

[44] Andrea Caforio, Fatih Balli, and Subhadeep Banik. Melting SNOW-V: improved light-

weight architectures. In: J. Cryptogr. Eng. 12.1 (2022), pp. 53–73.

[45] Andrea Caforio, Fatih Balli, Subhadeep Banik, and Francesco Regazzoni. A Deeper

Look at the Energy Consumption of Lightweight Block Ciphers. In: Design, Automa-

tion & Test in Europe Conference & Exhibition, DATE 2021, Grenoble, France, February

1-5, 2021. IEEE, 2021, pp. 170–175.

[46] Andrea Caforio and Subhadeep Banik. A Study of Persistent Fault Analysis. In: Secu-

rity, Privacy, and Applied Cryptography Engineering - 9th International Conference,

SPACE 2019, Gandhinagar, India, December 3-7, 2019, Proceedings. Ed. by Shivam

Bhasin, Avi Mendelson, and Mridul Nandi. Vol. 11947. Lecture Notes in Computer Sci-

ence. Springer, 2019, pp. 13–33.

[47] Andrea Caforio, Subhadeep Banik, Yosuke Todo, Willi Meier, Takanori Isobe, Fukang

Liu, and Bin Zhang. Perfect Trees: Designing Energy-Optimal Symmetric Encryption

Primitives. In: IACR Trans. Symmetric Cryptol. 2021.4 (2021), pp. 36–73.

205

Bibliography

[48] Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni. A Small

GIFT-COFB: Lightweight Bit-Serial Architectures. In: Progress in Cryptology - AFRI-

CACRYPT 2022 - 13th International Conference on Cryptology in Africa, Fes, Morocco,

July 18-20, 2022, Proceedings. Ed. by Abderrahmane Nitaj and Lhoussain El Fadil.

Vol. 13143. Lecture Notes in Computer Science. Springer, 2022, pp. 246–267.

[49] Andrea Caforio, Daniel Collins, Ognjen Glamocanin, and Subhadeep Banik. Improv-

ing First-Order Threshold Implementations of SKINNY. In: Progress in Cryptology -

INDOCRYPT 2021 - 22nd International Conference on Cryptology in India, Jaipur, In-

dia, December 12-15, 2021, Proceedings. Ed. by Avishek Adhikari, Ralf Küsters, and Bart

Preneel. Vol. 13143. Lecture Notes in Computer Science. Springer, 2021, pp. 246–267.

[50] Andrea Caforio, F. Betül Durak, and Serge Vaudenay. Beyond Security and Efficiency:

On-Demand Ratcheting with Security Awareness. In: PKC 2021: 24th International

Conference on Theory and Practice of Public Key Cryptography, Part II. Ed. by Juan

Garay. Vol. 12711. Lecture Notes in Computer Science. Virtual Event: Springer, Hei-

delberg, Germany, May 2021, pp. 649–677.

[51] D. Canright. A Very Compact S-Box for AES. In: Cryptographic Hardware and Em-

bedded Systems – CHES 2005. Ed. by Josyula R. Rao and Berk Sunar. Vol. 3659. Lec-

ture Notes in Computer Science. Edinburgh, UK: Springer, Heidelberg, Germany, Aug.

2005, pp. 441–455.

[52] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María Naya-

Plasencia, Pascal Paillier, and Renaud Sirdey. Stream Ciphers: A Practical Solution for

Efficient Homomorphic-Ciphertext Compression. In: Journal of Cryptology 31.3 (July

2018), pp. 885–916.

[53] Anne Canteaut, Sébastien Duval, Gaëtan Leurent, María Naya-Plasencia, Léo Perrin,

Thomas Pornin, and André Schrottenloher. Saturnin: a suite of lightweight symmet-

ric algorithms for post-quantum security. In: NIST Lightweight Cryptography Project

(2019).

[54] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul Nandi.

TriviA and uTriviA: two fast and secure authenticated encryption schemes. In: Journal

of Cryptographic Engineering 8.1 (Apr. 2018), pp. 29–48.

[55] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas Lopez, Mridul

Nandi, and Yu Sasaki. LOTUS-AEAD and LOCUS-AEAD. In: NIST Lightweight Cryp-

tography Project (2019).

[56] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, and Mridul Nandi. HYENA. In: NIST

Lightweight Cryptography Project (2019).

[57] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi. Blockcipher-

Based Authenticated Encryption: How Small Can We Go? In: Journal of Cryptology

33.3 (July 2020), pp. 703–741.

206

Bibliography

[58] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square. In: Fast

Software Encryption – FSE’97. Ed. by Eli Biham. Vol. 1267. Lecture Notes in Computer

Science. Haifa, Israel: Springer, Heidelberg, Germany, Jan. 1997, pp. 149–165.

[59] Joan Daemen, Pedro Maat Costa Massolino, Alireza Mehrdad, and Yann Rotella.

The Subterranean 2.0 Cipher Suite. In: IACR Transactions on Symmetric Cryptology

2020.S1 (2020), pp. 262–294.

[60] Joan Daemen and Vincent Rijmen. The Block Cipher Rijndael. In: Smart Card Re-

search and Applications, This International Conference, CARDIS ’98, Louvain-la-

Neuve, Belgium, September 14-16, 1998, Proceedings. Ed. by Jean-Jacques Quisquater

and Bruce Schneier. Vol. 1820. Lecture Notes in Computer Science. Springer, 1998,

pp. 277–284.

[61] Christophe De Cannière. Trivium: A Stream Cipher Construction Inspired by Block

Cipher Design Principles. In: ISC 2006: 9th International Conference on Information

Security. Ed. by Sokratis K. Katsikas, Javier Lopez, Michael Backes, Stefanos Gritza-

lis, and Bart Preneel. Vol. 4176. Lecture Notes in Computer Science. Samos Island,

Greece: Springer, Heidelberg, Germany, Aug. 2006, pp. 171–186.

[62] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. KATAN and KTAN-

TAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Crypto-

graphic Hardware and Embedded Systems – CHES 2009. Ed. by Christophe Clavier and

Kris Gaj. Vol. 5747. Lecture Notes in Computer Science. Lausanne, Switzerland: Spri-

nger, Heidelberg, Germany, Sept. 2009, pp. 272–288.

[63] Lauren De Meyer, Begül Bilgin, and Oscar Reparaz. Consolidating Security Notions in

Hardware Masking. In: IACR Transactions on Cryptographic Hardware and Embedded

Systems 2019.3 (2019), pp. 119–147.

[64] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials. In:

Advances in Cryptology – EUROCRYPT 2009. Ed. by Antoine Joux. Vol. 5479. Lecture

Notes in Computer Science. Cologne, Germany: Springer, Heidelberg, Germany, Apr.

2009, pp. 278–299.

[65] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon

v1.2. In: NIST Lightweight Cryptography Project (2022).

[66] Orr Dunkelman and Nathan Keller. Treatment of the initial value in Time-Memory-

Data Tradeoff attacks on stream ciphers. In: Inf. Process. Lett. 107.5 (2008), pp. 133–

137.

[67] Maria Eichlseder, Marcel Nageler, and Robert Primas. Analyzing the Linear Keystream

Biases in AEGIS. In: IACR Transactions on Symmetric Cryptology 2019.4 (2019),

pp. 348–368.

[68] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. A new SNOW

stream cipher called SNOW-V. In: IACR Transactions on Symmetric Cryptology 2019.3

(2019), pp. 1–42.

207

Bibliography

[69] Muhammed F. Esgin and Orhun Kara. Practical Cryptanalysis of Full Sprout with TMD

Tradeoff Attacks. In: SAC 2015: 22nd Annual International Workshop on Selected Areas

in Cryptography. Ed. by Orr Dunkelman and Liam Keliher. Vol. 9566. Lecture Notes in

Computer Science. Sackville, NB, Canada: Springer, Heidelberg, Germany, Aug. 2016,

pp. 67–85.

[70] Martin Feldhofer, J. Wolkerstorfer, and Vincent Rijmen. AES implementation on a

grain of sand. In: Information Security, IEE Proceedings 152 (Nov. 2005), pp. 13–20.

[71] Dahmun Goudarzi, Jérémy Jean, Stefan Kölbl, Thomas Peyrin, Matthieu Rivain,

Yu Sasaki, and Siang Meng Sim. Pyjamask v1.0. In: NIST Lightweight Cryptography

Project (2019).

[72] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Steinwandt. Ap-

plying Grover’s Algorithm to AES: Quantum Resource Estimates. In: Post-Quantum

Cryptography - 7th International Workshop, PQCrypto 2016. Ed. by Tsuyoshi Takagi.

Fukuoka, Japan: Springer, Heidelberg, Germany, Feb. 2016, pp. 29–43.

[73] Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search. In: 28th

Annual ACM Symposium on Theory of Computing. Philadephia, PA, USA: ACM Press,

May 1996, pp. 212–219.

[74] Chun Guo, Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas

Peyrin. Romulus v1.3. In: NIST Lightweight Cryptography Project (2022).

[75] Matthias Hamann, Matthias Krause, and Willi Meier. LIZARD – A Lightweight Stream

Cipher for Power-constrained Devices. In: IACR Transactions on Symmetric Crypto-

logy 2017.1 (2017), pp. 45–79.

[76] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Model-

ing for Three-Subset Division Property Without Unknown Subset - Improved Cube

Attacks Against Trivium and Grain-128AEAD. In: Advances in Cryptology – EURO-

CRYPT 2020, Part I. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12105. Lecture Notes

in Computer Science. Zagreb, Croatia: Springer, Heidelberg, Germany, May 2020,

pp. 466–495.

[77] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A Stream Ci-

pher Proposal: Grain-128. In: Proceedings 2006 IEEE International Symposium on In-

formation Theory, ISIT 2006, The Westin Seattle, Seattle, Washington, USA, July 9-14,

2006. IEEE, 2006, pp. 1614–1618.

[78] Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sönnerup, and Hirotaka

Yoshida. Grain-128AEAD. In: NIST Lightweight Cryptography Project (2022).

[79] Martin E. Hellman. A cryptanalytic time-memory trade-off. In: IEEE Trans. Inf. Theory

26.4 (1980), pp. 401–406.

[80] Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farahmand,

Panasayya Yalla, Jens-Peter Kaps, and Kris Gaj. CAESAR Hardware API. Cryptology

ePrint Archive, Report 2016/626. 2016.

208

Bibliography

[81] Jin Hong and Palash Sarkar. New Applications of Time Memory Data Tradeoffs. In:

Advances in Cryptology – ASIACRYPT 2005. Ed. by Bimal K. Roy. Vol. 3788. Lecture

Notes in Computer Science. Chennai, India: Springer, Heidelberg, Germany, Dec.

2005, pp. 353–372.

[82] Akinori Hosoyamada, Akiko Inoue, Ryoma Ito, Tetsu Iwata, Kazuhiko Mimematsu,

Ferdinand Sibleyras, and Yosuke Todo. Cryptanalysis of Rocca and Feasibility of Its

Security Claim. In: IACR Transactions on Symmetric Cryptology 2022.3 (2022), pp. 123–

151.

[83] Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An Algebraic Formulation of the

Division Property: Revisiting Degree Evaluations, Cube Attacks, and Key-Independent

Sums. In: Advances in Cryptology – ASIACRYPT 2020, Part I. Ed. by Shiho Moriai and

Huaxiong Wang. Vol. 12491. Lecture Notes in Computer Science. Daejeon, South Ko-

rea: Springer, Heidelberg, Germany, Dec. 2020, pp. 446–476.

[84] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware

against Probing Attacks. In: Advances in Cryptology – CRYPTO 2003. Ed. by Dan

Boneh. Vol. 2729. Lecture Notes in Computer Science. Santa Barbara, CA, USA:

Springer, Heidelberg, Germany, Aug. 2003, pp. 463–481.

[85] Arpan Jati, Naina Gupta, Anupam Chattopadhyay, Somitra Kumar Sanadhya, and

Donghoon Chang. Threshold Implementations of GIFT: A Trade-Off Analysis. In:

IEEE Trans. Inf. Forensics Secur. 15 (2020), pp. 2110–2120.

[86] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-Sliding: A Generic

Technique for Bit-Serial Implementations of SPN-based Primitives - Applications to

AES, PRESENT and SKINNY. In: Cryptographic Hardware and Embedded Systems –

CHES 2017. Ed. by Wieland Fischer and Naofumi Homma. Vol. 10529. Lecture Notes

in Computer Science. Taipei, Taiwan: Springer, Heidelberg, Germany, Sept. 2017,

pp. 687–707.

[87] Jérémy Jean and Ivica Nikolic. Efficient Design Strategies Based on the AES Round

Function. In: Fast Software Encryption – FSE 2016. Ed. by Thomas Peyrin. Vol. 9783.

Lecture Notes in Computer Science. Bochum, Germany: Springer, Heidelberg, Ger-

many, Mar. 2016, pp. 334–353.

[88] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia. Quan-

tum Differential and Linear Cryptanalysis. In: IACR Transactions on Symmetric Cry-

ptology 2016.1 (2016), pp. 71–94.

[89] Stéphanie Kerckhof, François Durvaux, Cédric Hoquet, David Bol, and François-

Xavier Standaert. Towards Green Cryptography: A Comparison of Lightweight Ciphers

from the Energy Viewpoint. In: Cryptographic Hardware and Embedded Systems –

CHES 2012. Ed. by Emmanuel Prouff and Patrick Schaumont. Vol. 7428. Lecture Notes

in Computer Science. Leuven, Belgium: Springer, Heidelberg, Germany, Sept. 2012,

pp. 390–407.

209

Bibliography

[90] Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional Differential

Cryptanalysis of NLFSR-Based Cryptosystems. In: Advances in Cryptology – ASI-

ACRYPT 2010. Ed. by Masayuki Abe. Vol. 6477. Lecture Notes in Computer Science.

Singapore: Springer, Heidelberg, Germany, Dec. 2010, pp. 130–145.

[91] Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional Differential

Cryptanalysis of Trivium and KATAN. In: SAC 2011: 18th Annual International Work-

shop on Selected Areas in Cryptography. Ed. by Ali Miri and Serge Vaudenay. Vol. 7118.

Lecture Notes in Computer Science. Toronto, Ontario, Canada: Springer, Heidelberg,

Germany, Aug. 2012, pp. 200–212.

[92] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - Statistical Independence

and Leakage Verification. In: Advances in Cryptology – ASIACRYPT 2020, Part I. Ed. by

Shiho Moriai and Huaxiong Wang. Vol. 12491. Lecture Notes in Computer Science.

Daejeon, South Korea: Springer, Heidelberg, Germany, Dec. 2020, pp. 787–816.

[93] Lars R. Knudsen and David Wagner. Integral Cryptanalysis. In: Fast Software Encryp-

tion – FSE 2002. Ed. by Joan Daemen and Vincent Rijmen. Vol. 2365. Lecture Notes

in Computer Science. Leuven, Belgium: Springer, Heidelberg, Germany, Feb. 2002,

pp. 112–127.

[94] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. Shorter Linear

Straight-Line Programs for MDS Matrices. In: IACR Transactions on Symmetric Cry-

ptology 2017.4 (2017), pp. 188–211.

[95] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-

Encryption Modes. In: Fast Software Encryption – FSE 2011. Ed. by Antoine Joux.

Vol. 6733. Lecture Notes in Computer Science. Lyngby, Denmark: Springer, Heidel-

berg, Germany, Feb. 2011, pp. 306–327.

[96] Virginie Lallemand and María Naya-Plasencia. Cryptanalysis of Full Sprout. In: Ad-

vances in Cryptology – CRYPTO 2015, Part I. Ed. by Rosario Gennaro and Matthew

J. B. Robshaw. Vol. 9215. Lecture Notes in Computer Science. Santa Barbara, CA, USA:

Springer, Heidelberg, Germany, Aug. 2015, pp. 663–682.

[97] Gregor Leander, Thorben Moos, Amir Moradi, and Shahram Rasoolzadeh. The

SPEEDY Family of Block Ciphers Engineering an Ultra Low-Latency Cipher from Gate

Level for Secure Processor Architectures. In: IACR Transactions on Cryptographic

Hardware and Embedded Systems 2021.4 (2021), pp. 510–545.

[98] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning Oracle Attacks. In:

USENIX Security 2021: 30th USENIX Security Symposium. Ed. by Michael Bailey and

Rachel Greenstadt. USENIX Association, Aug. 2021, pp. 195–212.

[99] Shun Li, Siwei Sun, Chaoyun Li, Zihao Wei, and Lei Hu. Constructing Low-latency In-

volutory MDS Matrices with Lightweight Circuits. In: IACR Transactions on Symmetric

Cryptology 2019.1 (2019), pp. 84–117.

210

Bibliography

[100] Stefan Lucks. The Saturation Attack - A Bait for Twofish. In: Fast Software Encryption

– FSE 2001. Ed. by Mitsuru Matsui. Vol. 2355. Lecture Notes in Computer Science.

Yokohama, Japan: Springer, Heidelberg, Germany, Apr. 2002, pp. 1–15.

[101] Alexander Maximov. AES MixColumn with 92 XOR gates. Cryptology ePrint Archive,

Report 2019/833. 2019.

[102] Alexander Maximov and Alex Biryukov. Two Trivial Attacks on Trivium. In: SAC 2007:

14th Annual International Workshop on Selected Areas in Cryptography. Ed. by Carlisle

M. Adams, Ali Miri, and Michael J. Wiener. Vol. 4876. Lecture Notes in Computer Sci-

ence. Ottawa, Canada: Springer, Heidelberg, Germany, Aug. 2007, pp. 36–55.

[103] Alexander Maximov and Patrik Ekdahl. New Circuit Minimization Techniques for

Smaller and Faster AES SBoxes. In: IACR Transactions on Cryptographic Hardware

and Embedded Systems 2019.4 (2019), pp. 91–125.

[104] David A. McGrew and John Viega. The Security and Performance of the Galois/-

Counter Mode of Operation. In: Progress in Cryptology - INDOCRYPT 2004: 5th

International Conference in Cryptology in India. Ed. by Anne Canteaut and Kapalee

Viswanathan. Vol. 3348. Lecture Notes in Computer Science. Chennai, India: Springer,

Heidelberg, Germany, Dec. 2004, pp. 343–355.

[105] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On Ciphers that Contin-

uously Access the Non-Volatile Key. In: IACR Transactions on Symmetric Cryptology

2016.2 (2016), pp. 52–79.

[106] Brice Minaud. Linear Biases in AEGIS Keystream. In: SAC 2014: 21st Annual Interna-

tional Workshop on Selected Areas in Cryptography. Ed. by Antoine Joux and Amr M.

Youssef. Vol. 8781. Lecture Notes in Computer Science. Montreal, QC, Canada: Spri-

nger, Heidelberg, Germany, Aug. 2014, pp. 290–305.

[107] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Pushing

the Limits: A Very Compact and a Threshold Implementation of AES. In: Advances

in Cryptology – EUROCRYPT 2011. Ed. by Kenneth G. Paterson. Vol. 6632. Lecture

Notes in Computer Science. Tallinn, Estonia: Springer, Heidelberg, Germany, May

2011, pp. 69–88.

[108] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and Linear

Cryptanalysis Using Mixed-Integer Linear Programming. In: Information Security

and Cryptology - 7th International Conference, Inscrypt 2011, Beijing, China, Novem-

ber 30 - December 3, 2011. Revised Selected Papers. Ed. by Chuankun Wu, Moti Yung,

and Dongdai Lin. Vol. 7537. Lecture Notes in Computer Science. Springer, 2011,

pp. 57–76.

[109] Yusuke Naito, Mitsuru Matsui, Yasuyuki Sakai, Daisuke Suzuki, Kazuo Sakiyama, and

Takeshi Sugawara. SAEAS. In: NIST Lightweight Cryptography Project (2019).

[110] Ivica Nikolić. Tiaoxin-346: VERSION 2.0. CAESAR Competition. 2014.

211

Bibliography

[111] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold Implementa-

tions Against Side-Channel Attacks and Glitches. In: ICICS 06: 8th International Con-

ference on Information and Communication Security. Ed. by Peng Ning, Sihan Qing,

and Ninghui Li. Vol. 4307. Lecture Notes in Computer Science. Raleigh, NC, USA: Spri-

nger, Heidelberg, Germany, Dec. 2006, pp. 529–545.

[112] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong Wang,

and San Ling. Side-Channel Resistant Crypto for Less than 2,300 GE. In: Journal of

Cryptology 24.2 (Apr. 2011), pp. 322–345.

[113] Georgios Pouiklis and Georgios Ch. Sirakoulis. Clock Gating Methodologies and Tools:

A Survey. In: Int. J. Circuit Theory Appl. 44.4 (Apr. 2016), pp. 798–816.

[114] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Verbau-

whede. Consolidating Masking Schemes. In: Advances in Cryptology – CRYPTO 2015,

Part I. Ed. by Rosario Gennaro and Matthew J. B. Robshaw. Vol. 9215. Lecture Notes

in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.

2015, pp. 764–783.

[115] Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy. Smashing the Implemen-

tation Records of AES S-box. In: IACR Transactions on Cryptographic Hardware and

Embedded Systems 2018.2 (2018), pp. 298–336.

[116] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori Isobe.

Rocca: An Efficient AES-based Encryption Scheme for Beyond 5G. In: IACR Transac-

tions on Symmetric Cryptology 2021.2 (2021), pp. 1–30.

[117] Tobias Schneider and Amir Moradi. Leakage Assessment Methodology - A Clear

Roadmap for Side-Channel Evaluations. In: Cryptographic Hardware and Embedded

Systems – CHES 2015. Ed. by Tim Güneysu and Helena Handschuh. Vol. 9293. Lecture

Notes in Computer Science. Saint-Malo, France: Springer, Heidelberg, Germany, Sept.

2015, pp. 495–513.

[118] Peter Schwabe and Ko Stoffelen. All the AES You Need on Cortex-M3 and M4. In: SAC

2016: 23rd Annual International Workshop on Selected Areas in Cryptography. Ed. by

Roberto Avanzi and Howard M. Heys. Vol. 10532. Lecture Notes in Computer Science.

St. John’s, NL, Canada: Springer, Heidelberg, Germany, Aug. 2016, pp. 180–194.

[119] Adi Shamir. How to Share a Secret. In: Communications of the Association for Com-

puting Machinery 22.11 (Nov. 1979), pp. 612–613.

[120] The ZUC Design Team. The ZUC-256 Stream Cipher. http://www.is.cas.cn/
ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf. 2018.

[121] Yosuke Todo. Structural Evaluation by Generalized Integral Property. In: Advances in

Cryptology – EUROCRYPT 2015, Part I. Ed. by Elisabeth Oswald and Marc Fischlin.

Vol. 9056. Lecture Notes in Computer Science. Sofia, Bulgaria: Springer, Heidelberg,

Germany, Apr. 2015, pp. 287–314.

212

http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf
http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf

Bibliography

[122] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube Attacks on Non-

Blackbox Polynomials Based on Division Property. In: Advances in Cryptology –

CRYPTO 2017, Part III. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10403. Lecture

Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,

Aug. 2017, pp. 250–279.

[123] Yosuke Todo, Willi Meier, and Kazumaro Aoki. On the Data Limitation of Small-State

Stream Ciphers: Correlation Attacks on Fruit-80 and Plantlet. In: SAC 2019: 26th An-

nual International Workshop on Selected Areas in Cryptography. Ed. by Kenneth G.

Paterson and Douglas Stebila. Vol. 11959. Lecture Notes in Computer Science. Water-

loo, ON, Canada: Springer, Heidelberg, Germany, Aug. 2019, pp. 365–392.

[124] Yosuke Todo and Masakatu Morii. Bit-Based Division Property and Application to Si-

mon Family. In: Fast Software Encryption – FSE 2016. Ed. by Thomas Peyrin. Vol. 9783.

Lecture Notes in Computer Science. Bochum, Germany: Springer, Heidelberg, Ger-

many, Mar. 2016, pp. 357–377.

[125] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi Meier.

Improved Division Property Based Cube Attacks Exploiting Algebraic Properties of Su-

perpoly. In: Advances in Cryptology – CRYPTO 2018, Part I. Ed. by Hovav Shacham and

Alexandra Boldyreva. Vol. 10991. Lecture Notes in Computer Science. Santa Barbara,

CA, USA: Springer, Heidelberg, Germany, Aug. 2018, pp. 275–305.

[126] Hongjun Wu and Bart Preneel. AEGIS: A Fast Authenticated Encryption Algorithm. In:

SAC 2013: 20th Annual International Workshop on Selected Areas in Cryptography. Ed.

by Tanja Lange, Kristin Lauter, and Petr Lisonek. Vol. 8282. Lecture Notes in Computer

Science. Burnaby, BC, Canada: Springer, Heidelberg, Germany, Aug. 2014, pp. 185–

201.

[127] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP Method

to Searching Integral Distinguishers Based on Division Property for 6 Lightweight

Block Ciphers. In: Advances in Cryptology – ASIACRYPT 2016, Part I. Ed. by Jung Hee

Cheon and Tsuyoshi Takagi. Vol. 10031. Lecture Notes in Computer Science. Hanoi,

Vietnam: Springer, Heidelberg, Germany, Dec. 2016, pp. 648–678.

[128] Bin Zhang, Xinxin Gong, and Willi Meier. Fast Correlation Attacks on Grain-like Small

State Stream Ciphers. In: IACR Transactions on Symmetric Cryptology 2017.4 (2017),

pp. 58–81.

213

Appendix

A AEAD Energy Analysis

A.1 NanGate 45 nm and UMC 65 nm Synthesis Results

Table 1: Synthesis measurements of the investigated AEAD schemes for the NanGate 45 nm
cell library. The energy consumption corresponds to the encryption of 1024 bits of AD and
1024 plaintext bits.

Cipher Circuit Area Latency Critical Path TP Power Energy

GE Cycles ns Mbits/s µW nJ

GIFT-COFB 1-Round 5395 680 2.18 1467.9 145.6 9.90

1-Round-CG 5248 680 2.20 1454.5 140.9 9.58

2-Round 6049 340 2.49 2570.3 170.2 5.79

2-Round-CG 5902 340 2.56 2500.0 165.4 5.62

3-Round 7010 238 3.36 2721.1 201.2 4.79

3-Round-CG 6862 238 3.47 2634.8 198.2 4.72

4-Round 7358 170 3.40 3764.7 219.3 3.73

4-Round-CG 7212 170 3.46 3699.4 214.5 3.65

SUNDAE-GIFT 1-Round 4284 1000 1.99 804.0 126.5 12.65

1-Round-CG - - - - - -

2-Round 4939 500 2.45 1306.1 150.5 7.53

2-Round-CG - - - - - -

3-Round 5898 350 3.05 1498.8 182.6 6.39

3-Round-CG - - - - - -

4-Round 6248 250 3.37 1899.1 198.2 4.95

4-Round-CG - - - - - -

HyENA 1-Round 4711 680 2.05 1561.0 126.7 8.61

1-Round-CG 4563 680 1.99 1608.0 122.0 8.30

2-Round 5365 340 2.75 2327.3 150.9 5.13

2-Round-CG 5217 340 2.80 2285.7 146.3 4.97

3-Round 6323 238 2.96 3088.8 183.3 4.36

3-Round-CG 6175 238 2.98 3068.1 178.6 4.25

4-Round 6674 170 3.40 3764.7 199.4 3.39

215

216 Appendix

4-Round-CG 6526 170 3.49 3667.6 194.7 3.31

LOTUS-AEAD 1-Round 8279 1428 1.60 2000.0 196.8 28.10

1-Round-CG 7544 1428 1.52 2105.3 172.3 24.60

2-Round 8679 714 2.16 2963.0 196.8 14.05

2-Round-CG 7942 714 2.19 2922.4 181.7 12.97

3-Round 9228 485 2.46 3716.6 231.7 11.24

3-Round-CG 8743 485 2.47 3706.1 208.1 10.09

4-Round 9474 357 3.00 4266.7 241.6 8.62

4-Round-CG 8749 357 2.94 4353.7 217.7 7.77

SKINNY-AEAD 1-Round 9326 952 2.27 1409.7 229.6 21.86

1-Round-CG 8736 952 2.04 1572.5 210.5 20.04

2-Round 9972 476 3.03 2112.2 256.4 12.20

2-Round-CG 9383 476 2.93 2184.3 237.2 11.29

3-Round 11337 323 3.99 2291.4 301.6 9.74

3-Round-CG 10749 323 3.71 2464.4 282.4 9.12

4-Round 11782 238 4.75 2694.7 326.7 7.78

4-Round-CG 11193 238 4.59 2788.7 306.1 7.29

Romulus 1-Round 6892 970 1.55 2064.5 189.5 18.38

1-Round-CG - - - - - -

2-Round 7321 494 2.37 2700.4 211.0 10.42

2-Round-CG - - - - - -

3-Round 9211 324 3.47 2634.8 268.9 8.71

3-Round-CG - - - - - -

4-Round 9206 256 4.09 3129.6 278.3 7.12

4-Round-CG - - - - - -

ForkAE 1-Round 8543 1144 1.78 1797.8 218.6 25.01

1-Round-CG 7954 1144 1.80 1777.8 200.0 22.88

2-Round 9258 576 2.65 2415.1 249.7 14.38

2-Round-CG 8545 576 2.69 2379.2 231.1 13.31

3-Round 10861 384 3.88 2356.4 299.2 11.49

3-Round-CG 10272 384 3.92 2332.4 280.6 10.77

4-Round 10749 288 4.27 2997.7 304.4 8.77

4-Round-CG 10160 288 4.29 2983.7 285.7 8.23

Pyjamask 1-Round 18068 285 1.93 4421.4 501.2 14.28

1-Round-CG 17246 285 2.03 4203.6 467.8 13.33

2-Round 23076 152 2.64 6060.6 687.1 10.44

2-Round-CG 22299 152 2.68 5970.1 658.6 10.01

3-Round 28313 95 2.75 9309.1 888.9 8.44

3-Round-CG 27482 95 2.78 9208.6 855.7 8.13

4-Round 33406 76 3.61 8864.3 1077.8 8.19

4-Round-CG 32568 76 3.63 8815.4 988.9 7.52

Saturnin 1-Round 16981 285 2.05 4162.6 464.8 13.25

1-Round-CG 15873 285 2.08 4102.6 430.1 12.26

2-Round 21994 152 1.24 12903.2 602.2 9.15

2-Round-CG 20892 152 1.31 12213.7 567.5 8.63

216

Appendix 217

3-Round - - - - - -

3-Round-CG - - - - - -

4-Round 23887 76 3.08 10389.6 730.6 5.55

4-Round-CG 22805 76 3.11 10289.4 530.6 4.03

Table 2: Synthesis measurements of the investigated AEAD schemes for the UMC 65 nm cell
library. The energy consumption corresponds to the encryption of 1024 bits of AD and 1024
plaintext bits.

Cipher Circuit Area Latency Critical Path TP Power Energy

GE Cycles ns Mbits/s µW nJ

GIFT-COFB 1-Round 5155 680 7.24 442.0 35.9 2.44

1-Round-CG 5147 680 7.83 408.7 34.1 2.32

2-Round 5805 340 10.23 625.6 54.8 1.86

2-Round-CG 5767 340 10.72 597.0 52.3 1.78

3-Round 6675 238 11.16 819.3 84.0 2.00

3-Round-CG 6573 238 10.80 846.6 82.3 1.96

4-Round 7279 170 15.66 817.4 131.8 2.24

4-Round-CG 7285 170 16.54 773.9 131.1 2.23

SUNDAE-GIFT 1-Round 3701 1000 4.55 351.6 32.2 3.22

1-Round-CG - - - - - -

2-Round 4482 500 7.79 410.8 59.1 2.95

2-Round-CG - - - - - -

3-Round 5390 350 9.40 486.3 82.3 2.88

3-Round-CG - - - - - -

4-Round 6006 250 12.63 506.7 136.8 3.42

4-Round-CG - - - - - -

HyENA 1-Round 4300 680 6.70 477.6 31.9 2.17

1-Round-CG 4176 680 6.79 471.3 29.2 1.99

2-Round 4921 340 9.22 694.1 52.1 1.77

2-Round-CG 4799 340 9.40 680.9 48.8 1.66

3-Round 6029 238 10.86 841.9 86.5 2.06

3-Round-CG 5909 238 11.29 809.8 83.8 1.99

4-Round 6554 170 15.02 852.2 130.5 2.22

4-Round-CG 6459 170 15.44 829.0 124.3 2.11

LOTUS-AEAD 1-Round 6842 1428 8.87 360.8 31.4 4.48

1-Round-CG 6733 1428 7.71 415.0 24.1 3.44

2-Round 7266 714 10.06 636.2 46.3 3.31

2-Round-CG 6875 714 10.42 614.2 38.2 2.73

3-Round 7742 485 11.81 774.2 68.7 3.33

3-Round-CG 7405 485 11.45 798.5 51.4 2.49

4-Round 8165 357 12.85 996.1 91.8 3.28

4-Round-CG 7781 357 15.30 836.6 80.8 2.88

SKINNY-AEAD 1-Round 8274 952 7.93 403.5 65.4 6.22

217

218 Appendix

1-Round-CG 7644 952 7.47 428.4 54.5 5.19

2-Round 8938 476 10.07 635.6 92.0 4.38

2-Round-CG 8421 476 9.88 647.8 80.3 3.82

3-Round 11090 323 14.70 622.0 150.5 4.86

3-Round-CG 10772 323 15.06 607.1 143.2 4.63

4-Round 12847 238 19.33 662.2 286.7 6.82

4-Round-CG 12360 238 20.95 611.0 281.2 6.69

Romulus 1-Round 6167 970 5.23 611.9 50.4 4.89

1-Round-CG - - - - - -

2-Round 6654 494 8.85 723.2 69.3 3.42

2-Round-CG - - - - - -

3-Round 9185 324 16.68 548.1 137.1 4.44

3-Round-CG - - - - - -

4-Round 10569 256 22.54 567.9 261.2 6.69

4-Round-CG - - - - - -

ForkAE 1-Round 7646 1144 6.30 507.9 61.3 7.01

1-Round-CG 7238 1144 6.35 503.9 51.9 5.94

2-Round 8806 576 9.39 681.6 89.1 5.13

2-Round-CG 7876 576 9.87 648.4 75.4 4.34

3-Round 10351 384 12.52 730.3 145.7 5.59

3-Round-CG 9406 384 12.95 706.0 128.7 4.94

4-Round 12560 288 19.57 654.1 296.6 8.54

4-Round-CG 11649 288 19.87 644.2 273.2 7.87

Pyjamask 1-Round 16413 285 7.22 1181.9 106.6 3.04

1-Round-CG 15521 285 7.31 1167.4 87.7 2.50

2-Round 22932 152 11.62 1376.9 337.5 5.13

2-Round-CG 22169 152 11.78 1358.2 316.3 4.81

3-Round 29773 95 13.39 1911.9 528.9 5.02

3-Round-CG 29174 95 13.47 1900.5 501.4 4.76

4-Round 37427 76 16.43 1947.7 807.9 6.14

4-Round-CG 36929 76 16.79 1905.9 764.7 5.81

Saturnin 1-Round 15760 285 9.47 901.1 208.3 5.94

1-Round-CG 14842 285 9.80 870.7 168.8 4.81

2-Round 20920 152 6.27 2551.8 259.5 3.94

2-Round-CG 20031 152 6.35 2519.7 244.5 3.72

3-Round - - - - - -

3-Round-CG - - - - - -

4-Round 23095 76 13.21 2422.4 485.6 3.69

4-Round-CG 22158 76 13.45 2379.2 480.1 3.65

218

Appendix 219

A.2 NanGate 45 nm and UMC 65 nm TI Synthesis Results

Table 3: Synthesis figures the investigated threshold implementations for the NanGate 45 nm
and UMC 65 nm cell libraries. The latency/energy consumption corresponds to the encryp-
tion of 1024 bits of AD and 1024 plaintext bits.

Library Scheme Shares Area Latency Critical Path TP Power Energy

GE Cycles ns Mbits/s µW nJ

NanGate 45 nm GIFT-COFB 3 18034 1360 1.97 812.2 456.3 62.05

GIFT-COFB 4 24932 680 2.79 1147.0 961.3 65.37

SUNDAE-GIFT 3 16045 2000 1.65 484.8 431.2 86.24

SUNDAE-GIFT 4 26706 1000 2.41 663.9 920.3 92.03

HyENA 3 17213 1360 2.16 740.7 440.2 59.86

HyENA 4 29302 680 2.80 1142.9 934.8 63.57

LOTUS-AEAD 3 17966 2856 1.37 1167.9 432.0 123.38

LOTUS-AEAD 4 24030 1428 2.15 1488.4 682.1 97.40

SKINNY-AEAD 3 22543 3808 2.11 379.1 561.8 212.92

Romulus 3 15970 3877 1.97 406.1 460.4 178.48

ForkAE 3 21139 4576 1.92 416.7 552.5 252.83

UMC 65 nm GIFT-COFB 3 18606 1360 6.92 231.2 92.6 12.59

GIFT-COFB 4 29049 680 8.35 383.2 210.0 14.28

SUNDAE-GIFT 3 16968 2000 7.97 100.4 94.7 18.93

SUNDAE-GIFT 4 25726 1000 8.46 189.1 217.1 21.71

HyENA 3 17392 1360 6.76 236.7 90.7 12.33

HyENA 4 27264 680 8.27 386.9 200.2 13.61

LOTUS-AEAD 3 16664 2856 7.19 222.5 61.5 17.55

LOTUS-AEAD 4 22624 1428 8.02 399.0 129.0 18.42

SKINNY-AEAD 3 22365 3808 8.07 102.2 65.4 24.90

Romulus 3 17251 3877 5.38 148.7 109.2 42.34

ForkAE 3 21751 4576 5.78 138.4 139.9 64.02

219

220 Appendix

B Perfect Trees

B.1 Proof of Lemma 1

In the following, we prove the lemma by the means of induction.

Base Case. Consider t1(r) in the original Trivium. We know that for r = 1 → 66(= X 1
1), t1(r) can

be written as functions of depth 0 nodes of the circuit i.e., the state variables x1, x2, x3, . . . , x288,

and it is easy to see that all t1(r), r ∈ [1,66] are perfect depth 1 trees. For r = 67, t1(r) is

expanded as t3(1)+x27+x28 ·x29+x105. Note that t3(1) is no longer a depth 0 node, and hence

t1(67) is not a perfect tree. Also consider a sightly modified form of Trivium in which X f
2 = 62

(say). In this case the recursive definition of t1(r) is as follows:

t1(r) = t3(r −66)+ t3(r −93)+ [t3(r −91) · t3(r −92)]+ t1(r −62)

Now it is easy to see that t1(r) is a perfect depth 1 tree only upto r = 62, as t1(63) will involve

a t1(1) term which is no longer at depth 0. Thus the number of perfect depth 1 trees for t1(r)

in a generalized Trivium circuit has to be the smaller of 66 and 62, i.e., min
{

X ℓ
1 , X f

2

}
. Does

this also depend on the tap position of the two AND gates and the final XOR term t3(r −93)?

The final XOR term must be tapped from the final location of each register to ensure that the

state update function is one-to-one. So numerically, X op
j has to be the length of the register

X j . Since X ℓ
j is an intermediate location and X op

j is the final location of register j , we always

have X ℓ
j < X op

j . If we select the tap locations for the AND gates in the range (X ℓ
j , X op

j), it is

easy to see that the perfect depth 1 trees only occur till the smaller of X ℓ
1 and X f

2 . Even if the

the tap location of one or both inputs to the AND gate is less than X 1
j , we can simply select

the numerically smallest tap location of register X j as X ℓ
j , since in terms of the circuit graph

it does not make a difference if X ℓ
j is input to an XOR or an AND gate. However, here we have

the AND taps strictly in between X ℓ
j and X op

j and so the the actual locations do of the AND

taps not make a difference. Thus it is pretty easy to see base case for our recursive formula

f1(X j) = 0 and g1(X j) = min
{

X ℓ
j , X f

j+1

}
.

Inductive Step. Let us assume the inductive hypothesis; gl , fl are as defined in the Lemma

statement for t = 1,2,3, . . . , l −1. Consider the equation for t1(r) at r = r0 = fl−1(X3)+X op
1 and

r = r0+1. For conciseness, denote by the symbol α the value of fl−1(X3) and ∆= X op
1 −X ℓ

1 . It

holds (note a1, a2 are the AND gate taps with X ℓ
1 < a1, a2 < X op

1)

t1(r0) = t3(r0 −X ℓ
1)+ t3(r0 −X op

1)+ [t3(r0 −a1) · t3(r0 −a2)]+ t1(r0 −X f
2)

= t3(α+∆)+ t3(α)+ [
t3(α+ (X op

1 −a1)) · t3(α+ (X op
1 −a2))

]
+ t1(α+ (X op

1 −X f
2))

t1(r0 +1) = t3(α+∆+1)+ t3(α+1)

+ [
t3(α+1+ (X op

1 −a1)) · t3(α+1+ (X op
1 −a2))

]+ t1(α+1+ (X op
1 −X f

2))

Note that by the inductive hypothesis, t3(α) corresponds to a depth l − 2 tree, whereas

220

Appendix 221

t3(α+ 1) corresponds to a depth l − 1 tree. All other t3 terms in the above expressions are

depth l −1 trees or greater by the inductive hypothesis. If t1(α+(X op
1 −X f

2)) also corresponds

to a depth l −1 tree, it is easy to see that r0+1 is the first value of r for which t1(r) produces a

perfect depth l tree. However that is always not the case. It may so happen that t1(α+ (X op
1 −

X f
2)) still corresponds to a depth l −2 tree for certain specific instances of the generic Trivium

circuit. In such cases the value of r has to be equal to u = fl−1(X1)+X f
2 +1 to ensure that the

t1 term in the expression for t1(r) also produces a depth l−1 tree by the inductive hypothesis.

This is true since t1(u − X f
2) = t1(fl−1(X1)+1) which corresponds to a depth l −1 tree by the

inductive hypothesis.

For t1(r) to definitely correspond to a depth l perfect tree both the depth conditions on

the above t3 and t1 nodes must be satisfied. This leads us to the easy conclusion that the first

value of r for which t1(r) is a perfect depth r tree is the maximum of fl−1(X3)+ X op
1 +1 and

fl−1(X1)+X f
2 +1. Generalizing over all configurations of n-stage registers, we have

fl (X j) = max
{

fl−1(X j−1)+X op
j , fl−1(X j)+X f

j+1

}
.

In order to prove the recursive expression for gl , consider again t1(r) for the generic Triv-

ium circuit for r = r1 = gl−1(X3)+X ℓ
1 and r = r1 +1. For conciseness, denote by the symbol β

the value of gl−1(X3). It holds

t1(r1) = t3(r1 −X ℓ
1)+ t3(r1 −X op

1)+ [t3(r1 −a1) · t3(r1 −a2)]+ t1(r1 −X f
2)

= t3(β)+ t3(β−∆)+ [
t3(β−∆+ (X op

1 −a1)) · t3(β−∆+ (X op
1 −a1))

]
+ t1(β−∆+ (X op

1 −X f
2))

t1(r1 +1) = t3(β+1)+ t3(β+1−∆)

+ [
t3(β+1−∆+ (X op

1 −a1)) · t3(β+1−∆+ (X op
1 −a2))

]
+ t1(β+1−∆+ (X op

1 −X f
2))

By the inductive hypothesis t3(β+1), no longer corresponds to a perfect tree of depth l −1.

Assuming that t3(β−∆), t3(β−∆+(X op
1 −a1)), t3(β−∆+(X op

1 −a1)) and t1(β−∆+(X op
1 −X f

2))

do correspond to perfect depth l −1 trees, r1 = gl−1(X3)+ X ℓ
1 is of course the largest value of

r that produces depth l trees.

There are two assumptions made in the above proof which may not always hold for all

configurations of the generic Trivium circuit. The first is if t3(β−∆) does not correspond to a

perfect depth l −1 tree (note if t3(β−∆) is not a perfect depth l −1 tree, neither of the AND

terms will correspond to depth l −1 trees since their index values are larger than β−∆). The

above happens when

β−∆≤ fl−1(X3) ⇒ gl−1(X3)− fl−1(X3)− (X op
1 −X ℓ

1) ≤ 0.

The above condition essentially means that the number of perfect depth l −1 trees for t3(r) is

less than or equal to X op
1 −X ℓ

1 . This implies that the terms t3(r −X ℓ
1) and t3(r −X op

1) can never

be both of depth l −1, which in turn implies that the expression for t1(r) can never produce

221

222 Appendix

a depth l tree. In this case we can simply set gl (X1) to be some value less than or equal to

fl (X1) to indicate this impossibility. We can simply pick one of the expressions for fl (X1),

i.e., fl−1(X3)+ X op
1 for this purpose. Combining the two assumptions we can write the new

expression as fl−1(X3)+ X op
1 + [(

gl−1(X3)− fl−1(X3)
)− (X op

1 −X ℓ
1)

]+
The second assumption

was that t1 term also produces a perfect depth l −1 tree. For a generic Trivium circuit, this

assumption may be false. The term t1(r − X f
2) will produce a depth l − 1 tree if r − X f

2 ≤
gl−1(X1) ⇒ r ≤ X f

2 + gl−1(X1). Since we need both depth conditions to be satisfied, we take

minimum of the above two. Generalizing for all n-stage Trivium circuits we have

gl (X j) = min
{

fl−1(X j−1)+X op
j +

[(
gl−1(X j−1)− fl−1(X j−1)

)− (X op
j −X ℓ

j)
]+

,

gl−1(X j)+X f
j+1

}
.

B.2 Trivium-LE(S) Security Analysis

We inherit the security of Trivium-LE(F) against the TMD tradeoff attack because it does not

exploit the tap location. Here, we discuss the security against the correlation attack, the Max-

imov/Biryukov’s guess-and-determine attack, and the cube attack.

Linear Distinguishing Attack. On this parameter, the maximum linear correlation is 2−48, and

the required data is about 296 to distinguish the keystream from ideal one. Compared to 2144

in Trivium or Trivium-LE(F), the security margin is very narrow. However, it is still enough to

achieve the claimed security, i.e., 80 bits, which is the same as Trivium.

Maximov/Biryukov’s Guess-and-Determine Attack. Similarly to the case for Trivium-LE(F), we

evaluated the number of collectable linear equations after guessing some outputs of AND

gates. In the scenario T1, the time complexity is c ·277.0503, where 37, 41, and 44 outputs of

AND gates are guessed for each register. Considering c ≈ 216, this attack never threatens the

claimed security, namely 80 bits.

Cube Attack. We also investigated the increase in algebraic degree by using the bit-based

division property. Figure 1 shows the upper bound of the algebraic degree of fk (i v). Trivium-

LE(S) is clearly more vulnerable than Trivium and Trivium-LE(F) against the cube attack. The

degree of even 1000 rounds does not reach 80. In other words, we can attack 1000-round

Trivium-LE(S) with the use of any 76-dimensional cube. The upper bound reaches the full,

i.e., 80, in 1050 rounds although the original Trivium reach the same level in 840 rounds. In

other words, the increase of the degree is about 25% slower because 1050/840 = 1.25. This is

the main reason why we increase the number of rounds in the initialization from 288×4 =
1152 to 288×5 = 1440.

222

Appendix 223

700 750 800 850 900 950 1,000 1,050
30

40

50

60

70

80

47

52

56
58

62

67

72
75
78
80

53

59

66

75

80

32

46 46

61 61

75 75

80

of rounds

d
eg
re
e

Upper bound on algebraic degree of fk(iv).

Trivium (original)

Trivium-LE(F)

Trivium-LE(S)

Figure 1: Increase in algebraic degree with respect to the number of initialization rounds.

223

224 Appendix

B.3 Supplementary Grain-128 Plots

50 100 150 200 250
50

100

150

200

n
J/
1.
28

M
b
it

1 MHz

Regular
Restricted

Ultra

50 100 150 200 250
50

100

150

200

10 MHz

50 100 150 200 250
50

100

150

200

100 MHz

(a) NanGate 15 nm

50 100 150 200 250

4

4.5

5

5.5

n
J/
1.
28

M
b
it

1 MHz

Regular
Restricted

Ultra

50 100 150 200 250
0.6

0.8

1

1.2

1.4

1.6
10 MHz

50 100 150 200 250
0.2

0.4

0.6

0.8

1

1.2

100 MHz

(b) NanGate 45 nm

50 100 150 200 250
0.16

0.18

0.2

0.22

0.24

n
J/
1.
28

M
b
it

0.2 MHz

Regular
Restricted

Ultra

50 100 150 200 250

0.08

0.1

0.12

0.14

0.16

1 MHz

50 100 150 200 250

0.06

0.08

0.1

0.12

0.14

0.16

10 MHz

(c) UMC 65 nm

50 100 150 200 250

0.25

0.3

0.35

0.4

0.45

n
J/
1.
28

M
b
it

0.2 MHz

Regular
Restricted

Ultra

50 100 150 200 250

0.15

0.2

0.25

0.3

0.35
1 MHz

50 100 150 200 250
0.1

0.15

0.2

0.25

0.3

10 MHz

(d) TSMC 90 nm

Figure 2: Grain-128 energy measurements for the three synthesis settings for different fre-
quencies and libraries. Note that energy graphs are noisier for the regular/ultra modes which
indicates that the synthesizer chooses different mapping strategies for varying r .

224

Appendix 225

50 100 150 200 250 300

0.4

0.6

0.8

1

S(T)

m
W

10 MHz

50 100 150 200 250 300

4

6

8

10

S(T)

100 MHz

50 100 150 200 250 300

40

60

80

100

S(T)

1000 MHz

(a) NanGate 15 nm

50 100 150 200 250 300

1.6

1.8

S(T)

m
W

1 MHz

50 100 150 200 250 300

4

6

8

S(T)

10 MHz

50 100 150 200 250 300

20

40

60

S(T)

100 MHz

(b) NanGate 45 nm

50 100 150 200 250 300

0.01

0.01

0.02

0.02

0.02

Perfect Trees

m
W

0.2 MHz

50 100 150 200 250 300

0.04

0.06

Perfect Trees

1 MHz

50 100 150 200 250 300
0.2

0.4

0.6

Perfect Trees

10 MHz

(c) UMC 65 nm

50 100 150 200 250 300

0.02

0.03

S(T)

m
W

0.2 MHz

50 100 150 200 250 300
0.05

0.1

0.15

S(T)

1 MHz

50 100 150 200 250 300

0.5

1

S(T)

10 MHz

(d) TSMC 90 nm

Figure 3: Power measurements of several Grain-128 circuits as a function of S(T).

225

226 Appendix

C Atom

C.1 Banik’s Distinguishing Attack on Sprout

Atom is secure against generic Time Memory Data (TMD) Tradeoff attacks as shown in [37],

for the same reason that Sprout, Plantlet and Lizard are secure. The reason is that it is not

possible to construct a one way function that maps the internal state to any keystream vector

that does not additionally require the secret key. Furthermore the key update component

in the state update function is completely linear, this ensures that table based special state

attacks of [64] do not apply to all post-Sprout constructions. An interesting distinguishing

attack against Sprout using slid keystreams was presented in [10] that also applies to Plantlet

and Lizard. We will present the attack in context of Atom.

Consider any random initial state SR ∈ {0,1}159. Since the state update function in both

the keystream generation and key-IV initialization is bijective and efficiently invertible, we

can apply both the Init−1 and Update−1 algorithms on it. Given the secret key, the former

would reverse the entire key-IV initialization on any random string of 159 bits, and the latter

inverts one round of the state update during keystream generation. A state SR is a valid initial

state after key-IV initialization, if a) its last 9 bits in decimal representation equals 511 and b)

if Init−1(SR) has the 22 bit constant used to initialize Atom in bit positions 128 to 149. Thus

the probability that a random SR is a valid initial state is around 2−22−9 = 2−31. Similarly the

probability that SR is a valid t th state after initialization is also 2−31 (S = [Update−1]t (SR) and

Init−1(S) must satisfy the required conditions). Hence the probability that for any given key

SR is both the 0th and t th post-initialization state for 2 different IVs is around 2−62. From

randomness considerations we can therefore conclude that on average for every key there

exists 2159−62 = 297 IV pairs IV1, IV2 that satisfy such a condition. If t is such that the order

and sequence of keybits that is used in the state update following the 0-th and t-th clocks are

the same, then it is clear that the IV pair IV1, IV2 produce t-bit shifted keystream for the given

key. So our distinguisher is as follows:

• Generate around 2t keystream bits Z1||Z2 for the unknown Key K and some randomly

generated Initial Vector IV (where Z1 and Z2 are t-bit vectors each).

• Store the keystream bits in some appropriate data structure such as a hash table keyed

with both Z1 and Z2 (to help easy detection of collisions).

• Continue the above steps with more randomly generated IVs IV till we obtain two Ini-

tial Vectors for K that generate t-bit shifted keystream.

Imagine the space of Initial Vectors as an undirected Graph G = (W,E), where W = {0,1}128 is

the Vertex set which contains all the possible 128 bit Initial vector values as nodes. An edge

(IV1, IV2) ∈ E if and only if (K , IV1) and (K , IV2) produce t-bit shifted keystream sequence.

From the above discussion, it is clear that the cardinality of E is expected to be 297. When we

run the Distinguisher algorithm for N different Initial Vectors, we effectively add
(N

2

)
edges to

the coverage and a match occurs when one of these edges is actually a member of the Edge-

set E . Since there are potentially
(2128

2

)
edges in the IV space, by the Birthday bound, a match

226

Appendix 227

will occur when the product of
(N

2

)
and the cardinality of E which is around 297 is equal to(2128

2

)
. From this equation solving for N , we get N ≈ 279.5 =

p
2159 which is square root of the

cardinality of the state space. This gives a bound for the time and memory complexity of the

Distinguisher. The time complexity is around
p

2159 encryptions, and the memory required

is of the order of 2t ·
p

2159 bits.

This keystream distinguisher also works for Atom, but we claim that this can not be con-

verted to a key-recovery attack. Consider what happens when the attacker finds two IVs

IV1, IV2 that produces 128-bit shifted keystream for some secret key K . This implies that there

exists a state SR which is the 0th and 128th post-initialization state after initialization with

key-IV pairs (K , IV1) and (K , IV2) respectively. This implies the following two things

• SR and [Update−1]128(SR) are such that the last 9 LFSR bits of both these states is the 9

bit string 19.

• Init−1SR and Init−1◦[Update−1]128(SR) are such that the last 31 LFSR bits of both these

states is the 31-bit constant used to initialize Atom.

Of these, the latter is not of much use cryptographically, since Init−1 is an algebraically com-

plex function, most probably of degree close to (128+ 159). However, Update−1 is a linear

function on the LFSR part of the state. It implies that the SR can be denoted as the symbolic

variable string ℓ0,ℓ1, . . . ,ℓ59,19 over GF(2). Furthermore, there is a set of 9 linear equations

over the 60 variables ℓi . The kernel of this system has dimension 51, which implies that there

are 251 possible values that the LFSR part of SR can have. Hereafter, the attacker may use the

equation solving approach used in the previous subsection to solve for the NFSR state and

the key. The only difference is that the attacker now has fewer number of LFSR states to try

out. This implies that the total complexity required for this approach is faster than the attack

complexities from Section 5.3.5 by a factor of 29, plus an additive complexity of 279.5 required

to find the shifted keystreams. This is still worse than exhaustive search and requires memory

of 2t ·279.5 ≈ 287.5 bits.

227

228 Appendix

D Rocca-S

D.1 Finding the Round Function Parameters

In this section, we search for optimal parameters that satisfy the security requirements. Let

s, a, and m be #State, #AESENC, and #Message, respectively. Once we select r ate and s

according to Requirement 1 and Requirement 3, then we can properly choose pairs of a and

m by Requirement 2 (see Section 8.2.2). Specifically, we search for all fifteen candidates with

parameters such that rate = 2 to 3 and s = 6,7,8 as shown in Table 4. For each parameter, we

try to search for candidates that satisfy Requirement 4 for all patterns of block permutations

and the combinations of positions of inserted messages and AESENC/XOR in the target class

of Figure 8.2 through a MILP-aided evaluation. Sakamoto et al. estimated the total number

of search space as s!× (s
a

)× (s
m

)
[116]. However, this search space includes equivalent class

of round functions. Considering such equivalent classes, we can reduce it by the formula

of s!
m! ×

(s
m

)× (s
a

)
. For example, the candidates of the class of s = 7, a = 4, and m = 2 can be

reduced from 221.82 in [116], to 220.82. In our evaluation, if the total number of candidates

in the class exceeds 223, we randomly choose 220 candidates and evaluate these due to the

limitations of the computational power.

Table 4: Candidate of round functions for each class.

#State #AESENC #Message Rate Total #Searched #Found

6 4 2 2.0 216.31 All 0

6 6 3 2.0 211.23 All 0

6 5 2 2.5 216.98 All 0

6 6 2 3.0 212.40 All 0

7 4 2 2.0 220.82 All 0

7 6 3 2.0 217.65 All 0

7 7 3 2.33 214.84 All 0

7 5 2 2.5 220.08 All 0

7 6 2 3.0 218.50 All 14

8 4 2 2.0 225.24 220 0

8 6 3 2.0 223.33 220 0

8 7 3 2.33 221.52 All 0

8 5 2 2.5 224.91 220 0

8 8 3 2.67 218.52 All 0

8 6 2 3.0 223.91 220 784

Table 4 shows the summary of our search. We found 14 candidates in s = 7, a = 6, and

m = 2 and 784 candidates in s = 8, a = 6, and m = 2 which satisfy Requirement 4. Due to Re-

quirement 3, we choose 14 candidates of the class of s = 7, a = 6, and m = 2. This evaluation

228

Appendix 229

requires about 45 days on three computers equipped with AMD Ryzen Threadripper 3990X

(64-Core) and 256 GB RAMs.

Selecting the Best Round Function for Rocca-S. To determine one round function from 14 can-

didates of s = 7, a = 6, and m = 2, we evaluate the security and performance of these.

• Table 5 shows the required number of rounds for full diffusion and the lower bound for

the number of active S-boxes for forgery setting. We choose seven candidates which

attain 46 active S-boxes and achieve the full diffusion after 5 rounds named as RF-1, 2,

3, . . . , 7.

Table 5: The lower bound for the number of differentially active S-boxes and the full diffusion
rounds.

Active S-boxes Full Diffusion Rounds # Candidates

44 6 7
46 5 7

• Table 6 shows the security of the initialization phase of these candidates against differ-

ential attacks and integral attacks by a byte-based MILP, assuming that the adversary

can control only nonce. In addition, Table 6 compares the speed of the round function

of 7 candidates and Rocca, where the speed is measured as the average of the round

function executed 223.25 times with 64 kB messages on Intel(R) Core(TM) i7-1068NG7

CPU @ 2.30GHz.

Table 6: Lower bound of differentially active S-boxes, maximum rounds of the integral dis-
tinguisher and speeds.

Target
Active S-boxes Integral

distinguisher
Speed

(cycles / Byte)6R 7R 8R 9R 10R

AEGIS-128L 85 86 94 111 120 6R 0.188985
Tiaoxin-346 53 93 99 123 134 15R 0.200404

Rocca 54 62 82 85 93 7R 0.123258
RF-1 (Rocca-S) 94 113 122 134 152 5R 0.122219

RF-2 76 88 103 115 131 6R 0.129443
RF-3 96 101 114 129 136 6R 0.118518
RF-4 80 100 108 120 145 5R 0.122185
RF-5 81 86 95 121 141 5R 0.122286
RF-6 97 113 122 139 151 6R 0.129258
RF-7 97 110 128 132 137 6R 0.129523

Considering results of Table 6, we finally adopt RF-1 as shown in Figure 8.1.

229

230 Appendix

D.2 Auxiliary Round-based and 2-Round Unrolled Synthesis Results

Table 7: Rocca-S circuit area comparison for the NanGate 45 nm and UMC 65 nm cell li-
braries.

(a) Rocca-S

LUT DSE S F T TT

Round-Based

NanGate 45 nm

µm2 81409 87312 41075 45093 40947 107530

GE 102016 109414 51472 56508 51312 134749

UMC 65 nm

µm2 146945 162474 78839 86212 78563 199989

GE 102045 112829 54749 59869 54558 138881

2-Round Unrolled

NanGate 45 nm

µm2 151865 163937 71463 79524 71208 204390

GE 190307 205435 89553 99654 89233 256128

UMC 65 nm

µm2 275923 306846 139575 154317 139019 381893

GE 191613 213088 96927 107165 96541 265203

(b) AEGIS

LUT DSE S F T TT

Round-Based

NanGate 45 nm

µm2 60986 65706 31028 34041 30926 80884

GE 76424 82338 38882 42658 38754 101358

UMC 65 nm

µm2 109598 121988 59261 64791 59054 150129

GE 76110 84714 41153 44994 41010 104256

2-Round Unrolled

NanGate 45 nm

µm2 116454 124907 55551 61667 55347 155263

GE 145932 156525 69613 77277 69357 194565

UMC 65 nm

µm2 208727 232660 107207 118226 106792 288941

GE 144949 161569 74449 82101 74161 200653

(c) AES-256-GCM

LUT DSE S F T TT

Round-Based

NanGate 45 nm

µm2 36793 37599 30374 31001 30351 46162

GE 46107 47117 38063 38848 38034 57847

UMC 65 nm

µm2 68774 71351 58282 59434 58239 86261

GE 47760 49549 40474 41274 40444 59903

2-Round Unrolled

NanGate 45 nm

µm2 70455 72153 57703 58957 57657 89281

GE 88289 90417 72310 73881 72252 111881

UMC 65 nm

µm2 132767 137928 111792 114095 111706 167653

GE 92199 95783 77633 79233 77574 116426

(d) SNOW-V-GCM

LUT DSE S F T TT

Round-Based

NanGate 45 nm

µm2 53496 54878 43319 44323 43285 59934

GE 67038 68769 54284 55543 54242 75105

UMC 65 nm

µm2 97934 102018 81109 82953 81040 111384

GE 68010 70846 56326 57606 56278 77350

2-Round Unrolled

NanGate 45 nm

µm2 96639 99438 76319 78328 76251 109511

GE 121102 121102 95638 98155 95553 137232

UMC 65 nm

µm2 179742 187886 146069 149755 145931 206618

GE 124821 130476 101437 103997 101341 143485

230

Appendix 231

Table 8: Rocca-S throughput comparison for the NanGate 45 nm and UMC 65 nm cell li-
braries.

(a) Rocca-S

LUT DSE S F T TT

Round-Based

NanGate 45 nm

Critical Path (ns) 1.87 1.82 2.41 2.14 2.36 1.55

Max TP (Tbps) 0.137 0.141 0.106 0.120 0.108 0.165

UMC 65 nm

Critical Path (ns) 5.53 5.12 6.02 5.37 5.87 4.24

Max TP (Tbps) 0.046 0.050 0.043 0.048 0.044 0.060

2-Round Unrolled

NanGate 45 nm

Critical Path (ns) 3.43 3.30 4.45 3.93 4.38 2.73

Max TP (Tbps) 0.149 0.155 0.115 0.130 0.117 0.188

UMC 65 nm

Critical Path (ns) 10.25 9.52 11.27 9.99 11.02 7.70

Max TP (Tbps) 0.050 0.054 0.045 0.051 0.046 0.066

(b) AEGIS

LUT DSE S F T TT

Round-Based

NanGate 45 nm

Critical Path (ns) 1.60 1.56 2.16 1.89 2.10 1.35

Max TP (Tbps) 0.080 0.082 0.059 0.068 0.061 0.095

UMC 65 nm

Critical Path (ns) 5.16 4.71 5.62 4.96 5.46 3.84

Max TP (Tbps) 0.025 0.027 0.023 0.026 0.023 0.033

2-Round Unrolled

NanGate 45 nm

Critical Path (ns) 3.22 3.12 4.28 3.75 4.20 2.55

Max TP (Tbps) 0.08 0.082 0.06 0.068 0.061 0.10

UMC 65 nm

Critical Path (ns) 10.11 9.35 11.09 9.81 10.85 7.53

Max TP (Tbps) 0.025 0.027 0.023 0.026 0.024 0.034

(c) AES-256-GCM

LUT DSE S F T TT

Round-Based

NanGate 45 nm

Critical Path (ns) 2.93 2.93 2.93 2.93 2.93 2.93

Max TP (Tbps) 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027

UMC 65 nm

Critical Path (ns) 7.78 7.78 7.78 7.78 7.78 7.78

Max TP (Tbps) 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

2-Round Unrolled

NanGate 45 nm

Critical Path (ns) 5.55 5.55 5.55 5.55 5.55 5.55

Max TP (Tbps) 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029

UMC 65 nm

Critical Path (ns) 13.5 13.5 13.5 13.5 13.5 13.5

Max TP (Tbps) 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012

(d) SNOW-V-GCM

LUT DSE S F T TT

Round-Based

NanGate 45 nm

Critical Path (ns) 3.61 3.61 3.61 3.61 3.61 3.61

Max TP (Tbps) 0.035 0.035 0.035 0.035 0.035 0.035

UMC 65 nm

Critical Path (ns) 9.08 9.08 9.08 9.08 9.08 9.08

Max TP (Tbps) 0.014 0.014 0.014 0.014 0.014 0.014

2-Round Unrolled

NanGate 45 nm

Critical Path (ns) 6.01 6.01 6.01 6.01 6.01 6.01

Max TP (Tbps) 0.043 0.043 0.043 0.043 0.043 0.043

UMC 65 nm

Critical Path (ns) 15.00 15.00 15.00 15.00 15.00 15.00

Max TP (Tbps) 0.017 0.017 0.017 0.017 0.017 0.017

231

232 Appendix

Table 9: Rocca-S power/energy comparison for the NanGate 45 nm and UMC 65 nm cell
libraries.

(a) Rocca-S

LUT DSE S F T TT

Round-Based

Lat. Short (Cycles) 44 44 44 44 44 44

Lat. Long (Cycles) 5036 5036 5036 5036 5036 5036

NanGate 45 nm

Power (mW) 3.695 2.744 1.746 1.932 1.750 3.579

Energy Short (nJ) 16.26 12.07 7.68 8.50 7.70 15.75

Energy Long (nJ) 1860.8 1381.9 879.3 973.0 881.3 1802.4

UMC 65 nm

Power (mW) 1.137 0.467 0.882 0.864 0.837 0.417

Energy Short (nJ) 5.00 2.05 3.88 3.80 3.68 1.83

Energy Long (nJ) 572.6 235.2 444.2 435.1 421.5 210.0

2-Round Unrolled

Lat. Short (Cycles) 22 22 22 22 22 22

Lat. Long (Cycles) 2518 2518 2518 2518 2518 2518

NanGate 45 nm

Power (mW) 7.061 5.117 3.127 3.507 3.134 6.788

Energy Short (nJ) 15.53 11.26 6.88 7.72 6.89 14.93

Energy Long (nJ) 1778.0 1288.5 787.4 883.1 789.1 1709.2

UMC 65 nm

Power (mW) 5.597 1.667 4.056 3.906 3.480 1.235

Energy Short (nJ) 12.31 3.67 8.92 8.59 7.66 2.72

Energy Long (nJ) 1409.3 419.8 1021.3 983.5 876.3 311.0

(b) AEGIS

LUT DSE S F T TT

Round-Based

Lat. Short (Cycles) 48 48 48 48 48 48

Lat. Long (Cycles) 10032 10032 10032 10032 10032 10032

NanGate 45 nm

Power (mW) 2.343 1.895 1.130 1.245 1.131 2.510

Energy Short (nJ) 11.25 9.096 5.424 5.976 5.429 12.05

Energy Long (nJ) 2350.5 1901.1 1133.6 1249.0 1134.6 2518.0

UMC 65 nm

Power (mW) 0.355 0.210 0.234 0.253 0.230 0.222

Energy Short (nJ) 1.704 1.008 1.123 1.214 1.104 1.066

Energy Long (nJ) 356.14 210.67 234.75 253.81 230.74 222.71

2-Round Unrolled

Lat. Short (Cycles) 24 24 24 24 24 24

Lat. Long (Cycles) 5016 5016 5016 5016 5016 5016

NanGate 45 nm

Power (mW) 5.348 3.879 2.384 2.674 2.388 5.131

Energy Short (nJ) 12.835 9.310 5.722 6.418 5.731 12.31

Energy Long (nJ) 2682.6 1945.7 1195.8 1341.3 1197.8 2573.7

UMC 65 nm

Power (mW) 3.451 1.136 2.566 2.468 2.392 0.875

Energy Short (nJ) 8.282 2.726 6.158 5.923 5.741 2.100

Energy Long (nJ) 1731.0 569.82 1287.1 1237.9 1199.8 438.90

(c) AES-256-GCM

LUT DSE S F T TT

Round-Based

Lat. Short (Cycles) 266 266 266 266 266 266

Lat. Long (Cycles) 160010 160010 160010 160010 160010 160010

NanGate 45 nm

Power (mW) 2.057 1.665 1.959 1.925 1.906 2.296

Energy Short (nJ) 54.72 44.29 52.11 51.21 50.70 61.07

Energy Long (nJ) 32914 26642 31346 30802 30498 36738

UMC 65 nm

Power (mW) 0.378 0.272 0.341 0.335 0.336 0.379

Energy Short (nJ) 10.05 7.24 9.07 8.91 8.94 10.08

Energy Long (nJ) 6048.4 4352.3 5456.3 5360.3 5376.3 6064.4

2-Round Unrolled

Lat. Short (Cycles) 133 133 133 133 133 133

Lat. Long (Cycles) 80005 80005 80005 80005 80005 80005

NanGate 45 nm

Power (mW) 5.241 4.421 5.007 4.918 4.894 5.679

Energy Short (nJ) 69.71 58.80 66.59 65.41 65.09 75.53

Energy Long (nJ) 41931 35370 40059 39347 39154 45435

UMC 65 nm

Power (mW) 0.985 0.770 0.908 0.898 0.898 0.983

Energy Short (nJ) 13.10 10.24 12.08 11.94 11.94 13.07

Energy Long (nJ) 7880.5 6160.4 7264.5 7184.4 7184.4 7864.5

(d) SNOW-V-GCM

LUT DSE S F T TT

Round-Based

Lat. Short (Cycles) 42 42 42 42 42 42

Lat. Long (Cycles) 10026 10026 10026 10026 10026 10026

NanGate 45 nm

Power (mW) 2.722 2.290 2.544 2.502 2.481 2.466

Energy Short (nJ) 11.43 9.62 10.69 10.51 10.42 10.36

Energy Long (nJ) 2729.1 2296.0 2550.6 2508.5 2487.5 2472.4

UMC 65 nm

Power (mW) 0.491 0.371 0.442 0.439 0.434 0.365

Energy Short (nJ) 2.062 1.558 1.856 1.844 1.823 1.533

Energy Long (nJ) 492.28 371.96 443.15 440.14 435.13 365.95

2-Round Unrolled

Lat. Short (Cycles) 21 21 21 21 21 21

Lat. Long (Cycles) 5013 5013 5013 5013 5013 5013

NanGate 45 nm

Power (mW) 7.128 5.670 6.830 6.698 6.625 5.948

Energy Short (nJ) 14.97 11.91 14.34 14.07 13.91 12.49

Energy Long (nJ) 3573.3 2842.4 3423.9 3357.7 3321.1 2981.7

UMC 65 nm

Power (mW) 1.341 0.964 1.204 1.184 1.176 0.921

Energy Short (nJ) 2.816 2.024 2.528 2.486 2.470 1.934

Energy Long (nJ) 672.24 483.25 603.57 593.54 589.53 461.70

232

Appendix 233

D.3 Partially Unrolled Synthesis Results

Table 10: Hardware synthesis figures of the Rocca-S circuit with a partial round function for
two cell libraries and a clock frequency of 10 MHz.

LUT DSE S F T TT

Lat. Short (cycles) 88 88 88 88 88 88

Lat. Long (cycles) 10072 10072 10072 10072 10072 10072

NanGate 15 nm

Area (µm2) 16767 16881 9532 10145 9464 20399

Area (GE) 85281 85861 48482 51600 48136 103755

Critical Path (ns) 0.237 0.236 0.283 0.268 0.269 0.202

Throughput (Tbps) 0.540 0.542 0.452 0.478 0.476 0.634

Power (mW) 1.379 0.791 1.261 1.313 1.199 0.849

Energy Short (nJ) 12.14 6.960 11.10 11.55 10.55 7.471

Energy Long (nJ) 1388.9 796.7 1270.1 1322.5 1207.6 855.1

NanGate 45 nm

Area (µm2) 59359 62969 33798 36309 33721 75329

Area (GE) 74385 78909 42353 45500 42257 94397

Critical Path (ns) 2.47 2.34 2.94 2.68 2.89 2.07

Throughput (Tbps) 0.052 0.055 0.044 0.048 0.044 0.062

Power (mW) 2.587 2.022 1.390 1.501 1.392 2.540

Energy Short (nJ) 22.77 17.79 12.23 13.21 12.25 22.35

Energy Long (nJ) 2605.6 2036.6 1400.0 1511.8 1402.0 2558.3

UMC 65 nm

Area (µm2) 105810 115499 63227 67835 63054 138866

Area (GE) 73479 80208 43908 47108 43788 96435

Critical Path (ns) 7.54 7.35 8.27 7.62 8.11 6.36

Throughput (Tbps) 0.017 0.017 0.015 0.017 0.016 0.020

Power (mW) 1.084 0.523 0.848 0.842 0.810 0.474

Energy Short (nJ) 9.54 4.60 7.46 7.41 7.13 4.17

Energy Long (nJ) 1091.8 526.8 854.1 848.1 815.8 477.4

TSMC 90 nm

Area (µm2) 192141 212413 121994 132261 121984 254592

Area (GE) 68077 75260 43223 46861 43220 90204

Critical Path (ns) 4.36 4.36 4.97 4.68 4.73 4.36

Throughput (Tbps) 0.029 0.029 0.026 0.027 0.027 0.029

Power (mW) 1.952 1.034 1.831 1.802 1.688 0.933

Energy Short (nJ) 17.178 9.099 16.113 14.854 8.210 20.940

Energy Long (nJ) 1966.1 1041.4 1844.2 1815.0 1700.2 939.7

233

234 Appendix

D.4 Software Reference Implementation

1 #include <memory.h>
2 #include <immintrin.h>
3 #include <stdlib.h>
4 #include <stdint.h>
5

6 #define ROCCA_KEY_SIZE (32)
7 #define ROCCA_IV_SIZE (16)
8 #define ROCCA_MSG_BLOCK_SIZE (32)
9 #define ROCCA_TAG_SIZE (32)

10 #define ROCCA_STATE_NUM (7)
11

12 typedef struct ROCCA_CTX {
13 uint8_t key[ROCCA_KEY_SIZE /16][16];
14 uint8_t state[ROCCA_STATE_NUM][16];
15 size_t size_ad;
16 size_t size_m;
17 } rocca_context;
18

19 #define load(m) _mm_loadu_si128 ((const __m128i *)(m))
20 #define store(m,a) _mm_storeu_si128 ((__m128i *)(m),a)
21 #define xor(a,b) _mm_xor_si128(a,b)
22 #define and(a,b) _mm_and_si128(a,b)
23 #define enc(a,k) _mm_aesenc_si128(a,k)
24 #define setzero () _mm_setzero_si128 ()
25

26 #define ENCODE_IN_LITTLE_ENDIAN(bytes , v) \
27 bytes[0] = ((uint64_t)(v) << (3)); \
28 bytes[1] = ((uint64_t)(v) >> (1*8 -3)); \
29 bytes[2] = ((uint64_t)(v) >> (2*8 -3)); \
30 bytes[3] = ((uint64_t)(v) >> (3*8 -3)); \
31 bytes[4] = ((uint64_t)(v) >> (4*8 -3)); \
32 bytes[5] = ((uint64_t)(v) >> (5*8 -3)); \
33 bytes[6] = ((uint64_t)(v) >> (6*8 -3)); \
34 bytes[7] = ((uint64_t)(v) >> (7*8 -3)); \
35 bytes[8] = ((uint64_t)(v) >> (8*8 -3)); \
36 bytes[9] = 0; \
37 bytes [10] = 0; \
38 bytes [11] = 0; \
39 bytes [12] = 0; \
40 bytes [13] = 0; \
41 bytes [14] = 0; \
42 bytes [15] = 0;
43

44 #define FLOORTO(a,b) ((a) / (b) * (b))
45

46 #define S_NUM ROCCA_STATE_NUM
47 #define M_NUM (2)
48 #define INIT_LOOP (16)
49 #define TAG_LOOP (16)

234

Appendix 235

50

51 #define VARS4UPDATE \
52 __m128i k[2], state[S_NUM], stateNew[S_NUM], M[M_NUM];
53

54 #define VARS4ENCRYPT \
55 VARS4UPDATE \
56 __m128i Z[M_NUM], C[M_NUM];
57

58 #define COPY_TO_LOCAL(ctx) \
59 for(size_t i = 0; i < S_NUM; ++i) \
60 { state[i] = load (&((ctx)->state[i][0])); }
61

62 #define COPY_FROM_LOCAL(ctx) \
63 for(size_t i = 0; i < S_NUM; ++i) \
64 { store (&((ctx)->state[i][0]), state[i]); }
65

66 #define COPY_TO_LOCAL_IN_TAG(ctx) \
67 COPY_TO_LOCAL(ctx) for(size_t i = 0; i < 2; ++i) \
68 { k[i] = load (&((ctx)->key[i][0])); }
69

70 #define COPY_FROM_LOCAL_IN_INIT(ctx) \
71 COPY_FROM_LOCAL(ctx) for(size_t i = 0; i < 2; ++i) \
72 { store (&((ctx)->key[i][0]), k[i]); }
73

74 #define UPDATE_STATE(X) \
75 stateNew [0] = xor(state[6], state [1]); \
76 stateNew [1] = enc(state[0], X[0]); \
77 stateNew [2] = enc(state[1], state [0]); \
78 stateNew [3] = enc(state[2], state [6]); \
79 stateNew [4] = enc(state[3], X[1]); \
80 stateNew [5] = enc(state[4], state [3]); \
81 stateNew [6] = enc(state[5], state [4]); \
82 for(size_t i = 0; i < S_NUM; ++i) \
83 {state[i] = stateNew[i];}
84

85 #define INIT_STATE(key , iv) \
86 k[0] = load((key) + 16*0); \
87 k[1] = load((key) + 16*1); \
88 state [0] = k[1]; \
89 state [1] = load(iv); \
90 state [2] = load(Z0); \
91 state [3] = k[0]; \
92 state [4] = load(Z1); \
93 state [5] = xor(state[1], state [0]); \
94 state [6] = setzero (); \
95 M[0] = state [2]; \
96 M[1] = state [4]; \
97 for(size_t i = 0; i < INIT_LOOP; ++i) { \
98 UPDATE_STATE(M) \
99 } \

100 state [0] = xor(state[0], k[0]); \
101 state [1] = xor(state[1], k[0]); \

235

236 Appendix

102 state [2] = xor(state[2], k[1]); \
103 state [3] = xor(state[3], k[0]); \
104 state [4] = xor(state[4], k[0]); \
105 state [5] = xor(state[5], k[1]); \
106 state [6] = xor(state[6], k[1]);
107

108 #define MAKE_STRM \
109 Z[0] = enc(xor(state[3], state [5]), state [0]); \
110 Z[1] = enc(xor(state[4], state [6]), state [2]);
111

112 #define MSG_LOAD(mem , reg) \
113 reg [0] = load((mem) + 0); \
114 reg [1] = load((mem) + 16);
115

116 #define MSG_STORE(mem , reg) \
117 store((mem) + 0, reg [0]); \
118 store((mem) + 16, reg [1]);
119

120 #define XOR_BLOCK(dst , src1 , src2) \
121 dst [0] = xor(src1[0], src2 [0]); \
122 dst [1] = xor(src1[1], src2 [1]);
123

124 #define MASKXOR_BLOCK(dst , src1 , src2 , mask) \
125 dst [0] = and(xor(src1[0], src2 [0]), mask [0]); \
126 dst [1] = and(xor(src1[1], src2 [1]), mask [1]);
127

128 #define ADD_AD(input) \
129 MSG_LOAD(input , M) \
130 UPDATE_STATE(M)
131

132 #define ADD_AD_LAST_BLOCK(input , size) \
133 uint8_t tmpblk[ROCCA_MSG_BLOCK_SIZE] = {0}; \
134 memcpy(tmpblk , input , size); \
135 MSG_LOAD(tmpblk , M) \
136 UPDATE_STATE(M)
137

138 #define ENCRYPT(output , input) \
139 MSG_LOAD(input , M) \
140 MAKE_STRM \
141 XOR_BLOCK(C, M, Z) \
142 MSG_STORE(output , C) \
143 UPDATE_STATE(M)
144

145 #define ENCRYPT_LAST_BLOCK(output , input , size) \
146 uint8_t tmpblk[ROCCA_MSG_BLOCK_SIZE] = {0}; \
147 memcpy(tmpblk , input , size); \
148 MSG_LOAD(tmpblk , M) \
149 MAKE_STRM \
150 XOR_BLOCK(C, M, Z) \
151 MSG_STORE(tmpblk , C) \
152 memcpy(output , tmpblk , size); \
153 UPDATE_STATE(M)

236

Appendix 237

154

155 #define DECRYPT(output , input) \
156 MSG_LOAD(input , C) \
157 MAKE_STRM \
158 XOR_BLOCK(M, C, Z) \
159 MSG_STORE(output , M) \
160 UPDATE_STATE(M)
161

162 #define DECRYPT_LAST_BLOCK(output , input , size) \
163 uint8_t tmpblk[ROCCA_MSG_BLOCK_SIZE] = {0}; \
164 uint8_t tmpmsk[ROCCA_MSG_BLOCK_SIZE] = {0}; \
165 __m128i mask[M_NUM]; \
166 memcpy(tmpblk , input , size); \
167 memset(tmpmsk , 0xFF , size); \
168 MSG_LOAD(tmpblk , C) \
169 MSG_LOAD(tmpmsk , mask) \
170 MAKE_STRM \
171 MASKXOR_BLOCK(M, C, Z, mask) \
172 MSG_STORE(tmpblk , M) \
173 memcpy(output , tmpblk , size); \
174 UPDATE_STATE(M)
175

176 #define SET_AD_BITLEN_MSG_BITLEN(sizeAD , sizeM) \
177 uint8_t bitlenAD [16]; \
178 uint8_t bitlenM [16]; \
179 ENCODE_IN_LITTLE_ENDIAN(bitlenAD , sizeAD); \
180 ENCODE_IN_LITTLE_ENDIAN(bitlenM , sizeM); \
181 M[0] = load(bitlenAD); \
182 M[1] = load(bitlenM);
183

184 #define MAKE_TAG(sizeAD , sizeM , tag) \
185 SET_AD_BITLEN_MSG_BITLEN(sizeAD , sizeM) \
186 state [1] = xor(state[1], k[0]); \
187 state [2] = xor(state[2], k[1]); \
188 for(size_t i = 0; i < TAG_LOOP; ++i) { \
189 UPDATE_STATE(M) \
190 } \
191 __m128i tag128a = setzero (); \
192 for(size_t i = 0; i <= 3; ++i) { \
193 tag128a = xor(tag128a , state[i]); \
194 } \
195 __m128i tag128b = setzero (); \
196 for(size_t i = 4; i <= 6; ++i) { \
197 tag128b = xor(tag128b , state[i]); \
198 } \
199 store((tag) , tag128a); \
200 store((tag)+16, tag128b);
201

202 static const uint8_t Z0[] = {0xcd ,0x65 ,0xef ,0x23 ,0x91 , \
203 0x44 ,0x37 ,0x71 ,0x22 ,0xae ,0x28 ,0xd7 ,0x98 ,0x2f ,0x8a ,0x42};
204 static const uint8_t Z1[] = {0xbc ,0xdb ,0x89 ,0x81 ,0xa5 , \
205 0xdb ,0xb5 ,0xe9 ,0x2f ,0x3b ,0x4d ,0xec ,0xcf ,0xfb ,0xc0 ,0xb5};

237

238 Appendix

206

207 void rocca_init(rocca_context * ctx , const uint8_t * key , \
208 const uint8_t * iv) {
209 VARS4UPDATE
210 INIT_STATE(key , iv);
211 COPY_FROM_LOCAL_IN_INIT(ctx);
212 ctx ->size_ad = 0;
213 ctx ->size_m = 0;
214 }
215

216 void rocca_add_ad(rocca_context * ctx , const uint8_t * in, size_t size)
217 {
218 VARS4UPDATE
219 COPY_TO_LOCAL(ctx);
220 size_t i = 0;
221 for(size_t size2 = FLOORTO(size , ROCCA_MSG_BLOCK_SIZE); \
222 i < size2; i += ROCCA_MSG_BLOCK_SIZE) {
223 ADD_AD(in + i);
224 }
225 if(i < size) {
226 ADD_AD_LAST_BLOCK(in + i, size - i);
227 }
228 COPY_FROM_LOCAL(ctx);
229 ctx ->size_ad += size;
230 }
231

232 void rocca_encrypt(rocca_context * ctx , uint8_t * out , \
233 const uint8_t * in , size_t size) {
234 VARS4ENCRYPT
235 COPY_TO_LOCAL(ctx);
236 size_t i = 0;
237 for(size_t size2 = FLOORTO(size , ROCCA_MSG_BLOCK_SIZE); \
238 i < size2; i += ROCCA_MSG_BLOCK_SIZE) {
239 ENCRYPT(out + i, in + i);
240 }
241 if(i < size) {
242 ENCRYPT_LAST_BLOCK(out + i, in + i, size - i);
243 }
244 COPY_FROM_LOCAL(ctx);
245 ctx ->size_m += size;
246 }
247

248 void rocca_decrypt(rocca_context * ctx , uint8_t * out , \
249 const uint8_t * in , size_t size) {
250 VARS4ENCRYPT
251 COPY_TO_LOCAL(ctx);
252 size_t i = 0;
253 for(size_t size2 = FLOORTO(size , ROCCA_MSG_BLOCK_SIZE); \
254 i < size2; i += ROCCA_MSG_BLOCK_SIZE) {
255 DECRYPT(out + i, in + i);
256 }
257 if(i < size) {

238

Appendix 239

258 DECRYPT_LAST_BLOCK(out + i, in + i, size - i);
259 }
260 COPY_FROM_LOCAL(ctx);
261 ctx ->size_m += size;
262 }
263

264 void rocca_tag(rocca_context * ctx , uint8_t *tag) {
265 VARS4UPDATE
266 COPY_TO_LOCAL_IN_TAG(ctx);
267 MAKE_TAG(ctx ->size_ad , ctx ->size_m , tag);
268 }

239

240 Appendix

E A Small GIFT-COFB

E.1 ANF Equations of the 3-Share GIFT-128 S-Box

Below we list the exact ANF equations for all component functions of the 3-share first-order

threshold implementation of the GIFT S-box as proposed in [85].

SG1 (a2,b2,c2,d2, a3,b3,c3,d3) = a3 +b3 +b2c2 +b2c3 +b3c2,

c3 +1,

b3 +a2c2 +a2c3 +a3c2,

a3 +b3 + c3 +d3 +a2b2 +a2b3 +a3b2;

SG2 (a1,b1,c1,d1, a3,b3,c3,d3) = a1 +b1 +b1c3 +b3c1 +b3c3,

c1,

b1 +a1c3 +a3c1 +a3c3,

a1 +b1 + c1 +d1 +a1b3 +a3b1 +a3b3;

SG3 (a1,b1,c1,d1, a2,b2,c2,d2) = a2 +b2 +b1c1 +b1c2 +b2c1

c2,

b2 +a1c1 +a1c2 +a2c1,

a2 +b2 + c2 +d2 +a1b1 +a1b2 +a2b1;

SF1 (a2,b2,c2,d2, a3,b3,c3,d3) = d3 +a2b2 +a2b3 +a3b2,

b3 + c3 +d3 +a2d2 +a2d3 +a3d2 +1,

a3 +b3,

a3 +1;

SF2 (a1,b1,c1,d1, a3,b3,c3,d3) = d1 +a1b3 +a3b1 +a3b3,

b1 + c1 +d1 +a1d3 +a3d1 +a3d3,

a1 +b1,

a1;

SF3 (a1,b1,c1,d1, a2,b2,c2,d2) = d2 +a1b1 +a1b2 +a2b1,

b2 + c2 +d2 +a1d1 +a1d2 +a2d1,

a2 +b2,

a2.

240

Curriculum Vitae

Andrea Caforio

Date of Birth 18.09.1993

Place of Birth Zürich

Nationality Swiss

Education

2019-2023 PhD, Cryptography

Supervision: Prof. Serge Vaudenay

Area: Symmetric Cryptography

LASEC, Ecole Polytechnique Fédérale de Lausanne

2017-2019 MSc, Computer Science

Ecole Polytechnique Fédérale de Lausanne

2014-2017 BSc, Computer Science

Ecole Polytechnique Fédérale de Lausanne

Work Experience

2018 Software Engineer

Taurus SA, Geneva

2013-2014 Development Aid

Swiss Embassy, Bishkek, Kyrgyzstan

241

Languages

German Mother Tongue

French Fluent

English Fluent

Russian Intermediate

Teaching Assistantships

2022 CS-210, Functional Programming

Prof. Martin Odersky & Prof. Viktor Kuncak

2021 COM-402, Information Security and Privacy

Prof. Jean-Pierre Hubaux

2021 CS-119(g), Information, Calcul, Communication

Prof. Jamila Sam

2020 CS-112(i), Programmation Orientée Objet

Prof. Jamila Sam

2020 CS-438, Decentralised Systems Engineering

Prof. Bryan Ford

Awards

Best Paper Award Energy Analysis of Lightweight AEAD Circuits

19th International Conference on Cryptology and Network Secu-

rity 2020

Vienna, Austria

Best Paper Award A Study of Persistent Fault Analysis

9th International Conference on Security, Privacy and Applied

Cryptographic Engineering 2019

Gandhinagar, India

EDIC Fellowship One year PhD grant awarded for student excellency

242

Publications

1. Andrea Caforio and Subhadeep Banik. A Study of Persistent Fault Analysis. In: Security,

Privacy, and Applied Cryptography Engineering - 9th International Conference, SPACE

2019, Gandhinagar, India, December 3-7, 2019, Proceedings. Ed. by Shivam Bhasin,

Avi Mendelson, and Mridul Nandi. Vol. 11947. Lecture Notes in Computer Science.

Springer, 2019, pp. 13–33 [46]

2. Andrea Caforio, Fatih Balli, and Subhadeep Banik. Energy Analysis of Lightweight

AEAD Circuits. In: Cryptology and Network Security - 19th International Conference,

CANS 2020, Vienna, Austria, December 14-16, 2020, Proceedings. Ed. by Stephan Krenn,

Haya Shulman, and Serge Vaudenay. Vol. 12579. Lecture Notes in Computer Science.

Springer, 2020, pp. 23–42 [43]

3. Fatih Balli, Andrea Caforio, and Subhadeep Banik. The Area-Latency Symbiosis: To-

wards Improved Serial Encryption Circuits. In: IACR Transactions on Cryptographic

Hardware and Embedded Systems 2021.1 (2021), pp. 239–278 [9]

4. Andrea Caforio, Fatih Balli, and Subhadeep Banik. Melting SNOW-V: improved light-

weight architectures. In: J. Cryptogr. Eng. 12.1 (2022), pp. 53–73 [44]

5. Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier, Kosei Saka-

moto, and Santanu Sarkar. Atom: A Stream Cipher with Double Key Filter. In: IACR

Transactions on Symmetric Cryptology 2021.1 (2021), pp. 5–36 [20]

6. Andrea Caforio, F. Betül Durak, and Serge Vaudenay. Beyond Security and Efficiency:

On-Demand Ratcheting with Security Awareness. In: PKC 2021: 24th International

Conference on Theory and Practice of Public Key Cryptography, Part II. ed. by Juan Ga-

ray. Vol. 12711. Lecture Notes in Computer Science. Virtual Event: Springer, Heidel-

berg, Germany, May 2021, pp. 649–677 [50]

7. Andrea Caforio, Fatih Balli, Subhadeep Banik, and Francesco Regazzoni. A Deeper

Look at the Energy Consumption of Lightweight Block Ciphers. In: Design, Automa-

tion & Test in Europe Conference & Exhibition, DATE 2021, Grenoble, France, February

1-5, 2021. IEEE, 2021, pp. 170–175 [45]

8. Andrea Caforio, Fatih Balli, and Subhadeep Banik. Complete Practical Side-Channel-

Assisted Reverse Engineering of AES-Like Ciphers. In: Smart Card Research and Ad-

vanced Applications - 20th International Conference, CARDIS 2021, Lübeck, Germany,

November 11-12, 2021, Revised Selected Papers. Ed. by Vincent Grosso and Thomas

Pöppelmann. Vol. 13173. Lecture Notes in Computer Science. Springer, 2021, pp. 97–

117 [42]

243

9. Andrea Caforio, Daniel Collins, Ognjen Glamocanin, and Subhadeep Banik. Improv-

ing First-Order Threshold Implementations of SKINNY. in: Progress in Cryptology - IN-

DOCRYPT 2021 - 22nd International Conference on Cryptology in India, Jaipur, India,

December 12-15, 2021, Proceedings. Ed. by Avishek Adhikari, Ralf Küsters, and Bart Pre-

neel. Vol. 13143. Lecture Notes in Computer Science. Springer, 2021, pp. 246–267 [49]

10. Andrea Caforio, Subhadeep Banik, Yosuke Todo, Willi Meier, Takanori Isobe, Fukang

Liu, and Bin Zhang. Perfect Trees: Designing Energy-Optimal Symmetric Encryption

Primitives. In: IACR Trans. Symmetric Cryptol. 2021.4 (2021), pp. 36–73

[47]

11. Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni. A Sm-

all GIFT-COFB: Lightweight Bit-Serial Architectures. In: Progress in Cryptology - AFRI-

CACRYPT 2022 - 13th International Conference on Cryptology in Africa, Fes, Morocco,

July 18-20, 2022, Proceedings. Ed. by Abderrahmane Nitaj and Lhoussain El Fadil.

Vol. 13143. Lecture Notes in Computer Science. Springer, 2022, pp. 246–267 [48]

12. Subhadeep Banik, Andrea Caforio, Kazuhide Fukushima, Takanori Isobe, Shisaku Kiy-

omoto, Fukang Liu, Yuto Nakano, Kosei Sakamoto, Nobuyuki Takeuchi, and Ravi

Anand. Rocca-S: Ultra High-Throughput and Quantum-Secure Authenticated Encryp-

tion. 2023 [19]

244

Banked on memory

Mummified circuitry

Skin graft machinery

Sputnik sickles found in the seats

Self-destruct sequence

This station is non-operational

Species growing

Bubbles in an IV loitering

Unknown origin

Is this the comfort of being afraid

Solar eclipsed

Black out the vultures

As they wait

Unknown, unknown

Unknown, unknown, yeah

(One Armed Scissor - At the Drive-In)

245

’Cause I walk onto the water

Buzzing with electrolytes and sacrilege

To be praised for my plastic lack of inspiration

I get that this is heinous

To burn up on re-entry and call the state a traitor

But I guess that’s only half the accusation, in hindsight

I was lost and didn’t have a map to recreate it

The home you said you came with

A moment of weakness labeled revelation

(Star Baby - The Callous Daoboys)

247

248

	Abstract
	Retrospective
	Contents
	Introduction
	Cryptographic Optimisation
	Lightweight Cryptography
	Power/Energy Consumption
	Preview
	Repositories

	Preliminaries
	Notation
	Application-Specific Integrated Circuits
	Hardware Metrics
	Electronic Design Automation
	Cipher-to-Circuit Mapping
	Ciphers
	Trivium
	GIFT
	SKINNY
	AES

	Threshold Implementations
	Swap-and-Rotate

	I Green Cryptography
	AEAD Energy Analysis
	Modus Operandi
	Implementations
	Effects of Design Choices
	Threshold Implementations
	Final Observations

	Perfect Trees
	Restricted Circuits
	Perfect Tree Energy Model
	Circuit to Tree
	Enumerating Perfect Trees

	Energy-Optimal Variants of Trivium
	Trivium-LE(F)
	Trivium-LE(S)
	Trivium-LE-MAC

	Generalisation to Other Stream Ciphers
	Applicability to Grain-128
	Applicability to Subterranean-Deck

	Summary

	Atom
	Specification
	Design Rationale
	Preventing Banik's Key-Recovery Attack on Sprout
	Preventing Banik-Barooti-Isobe Attacks on Plantlet
	Preventing Todo-Meier-Aoki Attacks on Plantlet
	Preventing Esgin-Kara Attacks on Sprout

	Security Evaluation
	TMD Trade-Off Attacks
	Differential Cryptanalysis
	Conditional Differential Cryptanalysis
	Integral/Cube Attacks
	Algebraic Attacks

	Hardware Implementation
	Conclusion

	II ...and Other Optimisations
	Area: Serial Encryption Circuits
	Generic Approach
	AES
	State Pipeline
	Key Pipeline
	8-Bit Datapath

	SKINNY
	State Pipeline
	Key Pipeline
	8-Bit Datapath

	GIFT
	State Pipeline
	Key Pipeline
	4-Bit Datapath

	AEAD
	SUNDAE-GIFT
	SAEAES
	Romulus
	SKINNY-AEAD

	Conclusion

	Area: A Small GIFT-COFB
	GIFT-COFB-SER-S
	Implementing the Feedback Function
	Multiplication by 2 and 3
	GIFT-COFB-SER-S Total Latency

	GIFT-COFB-SER-F
	Tweaking the Feedback Function
	Reordering Data Bits
	Enhancing the Multiplier
	GIFT-COFB-SER-F Total Latency.

	GIFT-COFB-SER-TI
	Leakage Evaluation

	Hardware Implementation
	Conclusion

	Throughput: Rocca-S
	Specification
	Round Function
	Security Claims

	Design Rationale
	Differences to Rocca
	Performance-Security Trade-Off
	Loading Scheme and Output Function

	Security Evaluation
	Differential Attack
	Forgery Attack
	State-Recovery Attack
	Key-Committing Security
	Quantum Security

	Hardware Implementation
	Round-Based Circuits
	Synthesis Results
	Byte-Serial Circuit

	Software Implementation
	Conclusion

	Side-Channels: Partitioning SKINNY
	Partitioning the S-Box
	Angle of Attack
	Exhaustive Partition Search
	A Deeper Dive
	Decomposition into Two Cubic S-boxes

	Hardware Implementation
	Leakage Evaluation
	Conclusion

	Conclusion
	Bibliography
	Appendix
	AEAD Energy Analysis
	NanGate 45 nm and UMC 65 nm Synthesis Results
	NanGate 45 nm and UMC 65 nm TI Synthesis Results

	Perfect Trees
	Proof of Lemma 1
	Trivium-LE(S) Security Analysis
	Supplementary Grain-128 Plots

	Atom
	Banik's Distinguishing Attack on Sprout

	Rocca-S
	Finding the Round Function Parameters
	Auxiliary Round-based and 2-Round Unrolled Synthesis Results
	Partially Unrolled Synthesis Results
	Software Reference Implementation

	A Small GIFT-COFB
	ANF Equations of the 3-Share GIFT-128 S-Box

	Curriculum Vitae

