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When we say we are a pile of atoms, we do not mean we are merely a pile of atoms,
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might well have the possibilities which you see before you in the mirror.

——Richard Feynman
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group. I want to give a big thanks to Kristiāns and Xiaoqian who have helped with proofreading

the manuscript, and Johan for taking care of examining the French abstract.

Additionally, I want to thank the secretaries Tanya Castellino, Annick Evequoz and Patricia

Byron for their help with scientific and administration issues.

Finally, I would like to express a huge gratitude to my family, for their persistent love and

support over the past years — that has been the biggest motivation of mine.

Lausanne, June 29, 2023

ii



Abstract
Recent advances on low-dimensional and topological materials has greatly inspired the re-

search in condensed matter physics. This thesis is devoted to the computational and theoreti-

cal study of topological effects in two-dimensional materials, especially nanostructures based

on ne. The theoretical research contained in the thesis is in different levels: minimal models

and tight-binding modeling of materials. Electronic interactions are discussed effectively as

well.

In the first part of the thesis, I provide the theoretical study on a specific family of topological

insulators: the Euler insulators, which are characterized by the Euler class. Noticing the

relation between the mathematical expression of the Chern class and the Euler class, there rises

the question about the edge states and magnetotransport features of Euler insulators. I show

that the Euler insulators carry a series of signatures in their Landau levels. In contrast to trivial

bands, the topological Euler bands exhibit a Landau level broadening under magnetic fields.

Moreover, I found that the broadening becomes more significant in the case of larger Euler

numbers. With the flat and degenerated bands serving as the simplest limit for investigating

Euler insulators, I further unveil the edge signatures of Euler insulators. In the case of flat

bands, the edge states of Euler insulators exhibit a series of crossings. The order of the crossings

gives the largest Euler number, which can be seen from interpolating edge modes by a set of

polynomials.

The second part of the thesis presents a collection of research on topological effects in twisted

multilayer graphene. The computational studies are performed using atomistic tight-binding

(TB) models, providing the topological phase in twisted multilayer systems. I explore the topo-

logical phase and quantum geometric tensors of twisted bilayer graphene, and the interplay

between band topology and spin textures. To compare with the transport measurements, I

also provide the results of Hofstadter butterfly spectra for different topological phases. The

idea of probing the flat-band topology with quantum Hall response is then verified in an

example material: twisted double bilayer graphene. In addition to the Hofstadter spectra, I

also discuss the topological effects on electronic interactions in a qualitative manner.

Finally, I present the computational study of electronic transmission in wrinkled graphene

sheets. By comparing the transmission in commensurate and incommensurate scenarios, I

found a suppressed back-scattering in the incommensurate wrinkles. Therefore, I conclude

that layer commensuration plays an important role in the transport of wrinkled 2D materials.

The results provide guidelines to controlling the transport properties of graphene in presence

of out-of-plane disorder.
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Résumé
Les avancées dans les matériaux topologiques et à basse dimension grandement inspiré la

recherche en physique de la matière condensée.

Cette thèse est consacrée à l’étude théorique et numérique des effets topologiques dans

les matériaux bidimensionnels, en particulier les nanostructures basées sur le graphène. La

recherche théorique contenue dans la thèse se situe à trois niveaux différents : des modèles

minimaux, une modélisation par liaisons fortes des matériaux et des interactions effectives.

Dans la première partie de la thèse, nous présentons l’étude théorique d’une famille spé-

cifique d’isolants topologiques : les isolants topologiques d’Euler, caractérisés par la classe

d’Euler. En remarquant la relation entre l’expression mathématique de la classe de Chern

et la classe d’Euler, une question se pose quant aux états de bord et aux caractéristiques de

magnétotransport des isolants d’Euler. Nous montrons que les isolants d’Euler portent une

série de signatures dans leurs niveaux de Landau. Contrairement aux bandes triviales, les

bandes d’Euler topologiques présentent un élargissement des niveaux de Landau lorsqu’ils

sont soumis à un champ magnétique. De plus, nous avons constaté que cet élargissement

est d’autant plus important que le nombre d’Euler est grand. Alors que les bandes planes et

dégénérées servent de limite pour l’étude des isolants d’Euler, nous révélons davantage les

signatures de bord des isolants d’Euler en prenant la limite de bande plane exacte. Dans le cas

des bandes planes, les états de bord des isolants d’Euler présentent une série de croisements.

L’ordre des croisements donne le plus grand nombre d’Euler, qui peut être vu en interpolant

les modes de bord par un ensemble de polynômes.

La partie II de la thèse est une collection de recherches sur les effets topologiques dans le

graphène multicouche tordu. Les études computationnelles sont réalisées avec des modèles

de liaisons fortes atomistiques, permettant de calculer la phase topologique dans les systèmes

multicouches tordus. Nous explorons la phase topologique et les tenseurs géométriques quan-

tiques du graphène bicouche tordu, ainsi que l’interaction entre la topologie de bande et les

textures de spin. Pour comparer avec les mesures de transport, nous fournissons également les

résultats des papillons de Hofstadter pour différentes phases topologiques. L’idée de sonder

la topologie de bande plane avec la réponse de Hall quantique est ensuite vérifiée dans un

matériau d’exemple : le graphène bicouche double tordu. En plus des spectres de Hofstad-

ter, nous discutons également des effets topologiques sur les interactions électroniques de

manière qualitative.

Enfin, dans la partie III, nous présentons l’étude computationnelle de la transmission élec-

tronique dans des feuilles de graphène froissées. En comparant la transmission dans des
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scénarios commensurables et incommensurables, nous avons découvert une suppression

de la rétrodiffusion dans les rides incommensurables. Par conséquent, nous concluons que

la commensuration des couches joue un rôle important dans le transport des matériaux 2D

froissés.

Mot clés : d’isolants topologiques, graphène, graphène multicouche tordu, transport quan-

tique, effets Hall quantique
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1 Introduction

Solids have been characterized as conductors and insulators regarding the ability to conduct

electrical currents. Long after the empirical classification of materials, the development of

quantum mechanics revealed the underlying nature of conductivity: the band theory has

worked out well the correspondence between electronic band structures and conductivity.

According to the location of the Fermi surface in electronic bands, insulators are the solids

where the Fermi level lies within the band gap, while in conductors the Fermi level crosses

electronic bands. Band theory, which has its roots in the quantum theory of electrons, has

demonstrated its effectiveness in tackling a wide range of problems.

However, it was realized that the quantum theory of electrons should not only contain the

energy spectrum of electrons. The ensemble of eigenstates, on the other hand, constitutes

the other side of quantum mechanics. More intriguingly, the quantum eigenstates are meant

to be complex, which introduces the phase degree of freedom. A well-known scenario where

the eigenstates play a dominant role is when a two-dimensional (2D) electron gas is placed in

a magnetic field. The magnetic field involves in the phase of electronic states. By inserting

a nontrivial overall phase, the quantized Hall effect emerges. Such robust and quantized

conductance has inspired the study of the underlying geometry of electronic states. Thanks

to the theory of topology, it is possible to characterize the overall structure of eigenstates

over the Brillouin zone (BZ). Since the advancement in the quantum Hall effect (QHE) (von

Klitzing et al., 1980, von Klitzing, 1986, Hatsugai, 1993), the topological aspect of electronic

states has been recognized in condensed matter physics (Thouless et al., 1982, Kane and Mele,

2005a). Typically, the family of topological insulators is expected to exhibit different properties

from the usual insulators due to the topology of occupied bands. The research on topological

insulators shows that band geometry has its manifestation in various physical properties. For

example, exotic behaviours of Chern insulators and quantum spin Hall (QSH) insulators (Kane

and Mele, 2005a,b, Bernevig et al., 2006, Bernevig and Zhang, 2006) shed light on the new

approaches to engineering electrons in solids.

Symmetries play a crucial role in the topology of bands. The milestone work of tenfold classifi-

cation demonstrated the stable topological phases in terms of global symmetries (Schnyder

1



Chapter 1. Introduction

et al., 2008, Kitaev, 2009, Chiu et al., 2016). The discussion of topology and symmetries ex-

pands to crystalline symmetries (Fu and Kane, 2007, Turner et al., 2012, Chiu and Schnyder,

2014, Chiu et al., 2013, Fu, 2011, Fang et al., 2012, Slager et al., 2013, Shiozaki and Sato, 2014,

Alexandradinata et al., 2016, Cornfeld and Chapman, 2019). Further efforts were made to

combine the geometrical characteristics with crystalline symmetries. Fully considering the

crystalline symmetries, there arises the systematic classification of band topology in terms of

irreducible representation combinatorics (Kruthoff et al., 2017), symmetry-based indicators

(Po et al., 2017, Khalaf et al., 2018), elementary band representation (EBR) (Bradlyn et al., 2019,

2017), and real-space topological crystals (Song et al., 2019a). With such theories based on

Elementary Band Representation (EBR), it becomes possible to tabulate the topological prop-

erties of almost all known crystals. The theory of EBR has revealed the essential relationship

between topology and the localization of Wannier orbitals, by systematically demonstrating

the topological classes in all space groups. With the progress in topological classification,

the discrepancy between stable classification and EBR unveils the fragile topology of bands

(Song et al., 2020a, Po et al., 2018a, Song et al., 2020b, Bouhon et al., 2019). Such fragile phases

are sensitive to the number of considered bands, which is different from the previous stable

phases. Generally, the fragile topological bands could be trivialized by adding extra trivial

bands, which cannot affect the stable indicators.

The above discussion has been focusing on electrons without interactions. However, the

Coulomb interaction between electrons also plays a crucial role in modulating electronic

behavior. Furthermore, the topology of bands closely relates to the real-space distribution

of electronic states (Marzari and Vanderbilt, 1997, Xu et al., 2021), which in turn mediates

the interactions between them (Xie et al., 2020, Bernevig et al., 2021, Huhtinen et al., 2022).

A well-known example where the correlation effects and geometry of eigenstates meet each

other is the fractional quantum Hall effect (FQHE). In addition to fractional excitation, the

topology of bands also involves the BCS interaction in the superconducting phase. Such an

effect is considered to contribute to the superconductivity in twisted bilayer graphene (TBG).

In this Chapter, I will introduce the effects of topological numbers in 2D nanostructures based

on graphene. The introduction contains examples of topological phases in materials and a

review of the progress in graphene-based materials specifically. However, it is not intended to

provide detailed techniques, which will be given in the chapter that follows.

1.1 Topology of bands

As indicated by its name, topological band theory aims to describe bands by their topological

properties. Mathematically, band structures are complex vector bundles over n-dimensional

torus (the Brillouin zone), of which the topological characterization gives the band topology.

Physically, the problem is about whether different sets of subbands can be adiabatically

deformed to each other. The term “topological bands” indicates that the electronic states are

distinct from those formed by maximally localized Wannier orbitals, or “trivial bands”. Fig.

2



1.1. Topology of bands

(a) (b)DOS DOS

0 1 Metal Insulator

Trivial
(Atomic insulator)

Topological Bands or
Fragile Topology

Geometry-indicated:
(Nested) Wilson loops;

K-theory and Euler numbers

Symmetry-indicated:
irreps, affine monoids

Gapped electronic bands

Figure 1.1 – (a) Fermi distribution and typical electronic density of states of metals and
insulators. In metals, the Fermi level resides within an energy band, while in insulators the
Fermi level is in a band gap. (b) A diagram of topological classification in gapped electronic
bands. In contrast to trivial or atomic insulators, topological bands indicate that the bands
cannot be projected into localized basis sets. The topology of the bands is characterized either
by the geometry of the eigenstates or by the irreps of the symmetry groups. (This map is
adapted from the work of Song et al (Song et al., 2020a)).

1.1(b) shows a diagrammatic map for the classification of insulators. The trivial or atomic

insulators indicate the case that the bands are formed by localized orbitals. Topological

insulators, on the other hand, cannot be represented as a combination of maximally localized

orbitals.

In this Section, I briefly cover the topological classification of bands, with an emphasis on

Chern numbers and Euler numbers.

1.1.1 From quantized Hall effect to Chern numbers

The well-known quantum Hall effect has inspired the study on topological nature of bands.

Such a quantum version of the Hall effect was first reported by von Klitzing et al (von Klitzing

et al., 1980, von Klitzing, 1984) with the measurement of quantized Hall resistance. In experi-

ments, the Hall conductance of the sample shows quantization steps, which correspond to the

Landau levels of 2D electronic gas. The theory was developed by Laughlin (Laughlin, 1981),

who explained the relation of quantized conductance and gauge invariance.

After that, Thouless, Kohmoto, Nightingale and Nijs (TKNN) conducted the work of quantum

Hall conductance in the presence of periodic potentials (Thouless et al., 1982). Their result

points out explicitly the dependence of Hall conductance on the index of Landau levels by the

Kubo-Greenwood formula. Since the potential forms a periodic lattice, the Brillouin zone is in

turn a 2D torus. The characterization number of a complex bundles over the 2D torus is given

3



Chapter 1. Introduction

by the Chern number. It can be calculated by integrating the Berry curvature over the BZ:

Cm =− 1

2π

∫
B Z

Ωm(k)dk =− 1

2π

∫
B Z

dk[〈∂kx u|∂ky u〉−〈∂ky u|∂kx u〉], (1.1)

which is indeed in the form of quantum Hall conductance as the correlation function of

currents ĵx and ĵy : σH = 〈 ĵx ĵy − ĵy ĵx〉. Therefore, the quantization of Hall conductance is not

a coincidence, but rooted in the topological nature of the bands.

The paper (Thouless et al., 1982) paves the way towards topological properties of condensed

matter physics, giving an observable that is related to a topological number which is called

the TKNN number or Chern number. It was then discovered the invariant is closely related to

the Berry phase of the Bloch functions. As reported by Halperin and TKNN (Hatsugai, 1993,

Thouless et al., 1982), the Hall conductance of the edge states is only determined by the TKNN

number.

Since it is topological, the quantization of Hall conductance is robust against disorder, which

ensures the precise measurement of the Hall conductance. The quantized Hall conductance

then plays an important role in the newest definition of the SI unit systems for it provides an

approach to measure some physical constants such as the charge of an electron.

1.1.2 Euler numbers

In the special cases where the system possess P T or C2T symmetries1, there exists a global

gauge where the eigenstates are real vectors. The Hamiltonian H(k) is in turn real-symmetric:

C2T H(k) =C2H∗(−k) = H∗(k). (1.2)

Computing the Berry curvature on such a ensemble of real eigenstates returns only null results,

which further gives exactly zero Chern number in such systems. However, the bands could still

possess nontrivial topology indicated by the Euler numbers. In contrast to the Chern number

which depicts the topology of U (N ) bundles, the Euler numbers are defined on SO(N ) bundles

and thus describes the topology of real eigenstates. The Euler number can also be expressed

as an integration of differential forms:

Eα = 1

2π

∫
dkEuα, (1.3)

in which the Euler curvature Euα is defined on even-dimensional real vector bundle. Such a

topological number provides geometry-indicated fragile topological phases: the classification

falls intoZ-indicator in 2-band case, while it degenerates to Z2 if the number of bands is larger

than 2. Such fragility makes it possible to construct “imbalanced” Euler phases in (2+2) bands.

The Bloch condition imposes the total 4 bands to be topologically trivial, E4 = 0. Since the

1P , T indicate the parity and time-reversal symmetries, while Cn cyclic group represents the rotational
symmetry.
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1.1. Topology of bands

4-band space falls into Z2 classification, E4 = 0 only implies E++E− = 0 mod 2.

It is also worth noticing that the Euler form in 2-band case duals to the Berry curvature of a

single bands. Denoting the bands as [u1(k),u2(k)], and a Chern basis is defined by a rotation:

v+ = (u1 + i u2)/
p

2 (1.4)

v− = (u1 − i u2)/
p

2

it follows that the Berry curvature F (v) is connected to the Euler characteristics by F (v) =
±Eu(u).

1.1.3 Role of symmetries: tenfold classification and EBR

The Chern number is related to the localization of Wannier orbitals of certain subbands

(Marzari and Vanderbilt, 1997). Following the ideas of Wannier obstruction, a systematic

approach is then derived to tabulate topology with the crystal symmetries. Such methods

are called elementary band representations (EBR). Since the main body of the thesis is not

strongly relevant to EBR, here I only briefly cover the EBR with its basic ideas.

After the first prediction of 2D and 3D topological insulators (Bernevig and Zhang, 2006,

Zhang et al., 2009), various first-principle studies has been carried out to find candidates

of topological materials. Besides the quickly increasing library of 2D and 3D topological

materials, the classification theory of topological materials was also established. Kitaev has

shown the topological phase in dimension d = 1-3 considering time-reversal (TR), chiral (C)

and particle-hole (PH) symmetries. The work resulted to the tenfold classification of topology,

which is based on Clifford algebra and the K-theory and thus applicable to arbitrary number

of bands: adding trivial occupied bands does not change the topology.

In addition to the symmetries discussed in the tenfold classification, there are many other

kinds of symmetries in crystals which are spatial symmetries. The work of (Fu and Kane,

2007) gives an approach to determine the topological invariant with wave functions on the

high-symmetry points. Such method then inspired the study of topological phases protected

by other symmetries (Fang et al., 2012). Further works of the symmetry indicators of topology

extend to general symmetry groups, making it possible to investigate the topology protected

by all 230 space groups systematically. The idea is based on the distinction from atomic

insulators: if the system is inequivalent to any atomic insulator, it is classified to be topological.

This can be done with surprisingly simple mathematics. To investigate the symmetry, the

irreducible representations (irreps) of the little groups on each high-symmetry point in the

Brillouin zone are checked. The symmetry of the band structure is indexed by the “symmetry

vector” composed of the multiplicity of irreps:

B = {mi
K1

;mi
K2

; ...mi
Kn

}
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Chapter 1. Introduction

where mi
K j

denotes the multiplicity of irrep i of the little group at the j th Wyckoff point K j .

Due to the linearity of the representations, the topology of the bands can be determined by

decomposing the symmetry vector B into a sum of vectors of atomic insulators:

B =∑
ai B AI

i

Based on the coefficients ai in such decomposition, the set of occupied bands is classified into

several distinct topological classes, and for each topological class, the topological index can be

extracted from the symmetries (such as Z or Z2). If all ai are positive integers, which means

the bands are Wannierizable to localized Wannier functions, the system is topologically trivial.

Otherwise, if some of the coefficients in ai are rational fractions, the system is topologically

nontrivial and may show nontrivial boundary states (Benalcazar et al., 2019, 2017a). The

distinction between these two cases is consistent with K-theory in the sense that the difference

between integer and fractional decomposition is stable.

The group-theoretical classification is powerful in the computational search for topological

materials, leading to an exhaustive study of the topology in over 40,000 materials (Bradlyn

et al., 2017, Autès et al., 2019). Meanwhile, it also offers a new perspective to examine the

topological classes. When carefully looking into the group-theoretical classification, a subtle

zone shows up: if all coefficients in ai are integers but some are negative, it also indicates a

Wannier obstruction that is not stable. Such a kind of Wannier obstruction is removable by

simply adding trivial occupied bands; thus, it is called the “fragile” topological phase. The

fragile topology is not discussed in the K-theory approach since it is trivial in the many-band

limit. However, in some real systems, the fragile phase can occur and lead to some new

phenomena. For example, synthetic materials engineered with fragile topology exhibit in-gap

states in twisted boundary conditions (Song et al., 2020b), which provides an analogy of the

bulk-boundary correspondence of Chern insulators.

The EBR theory based on irreps has explained the crystalline fragile topology from the algebraic

perspectives. Meanwhile, the Berry-phase indicated index of crystalline fragile topology is

still to be developed. Recently, some works have developed nested Wilson loops under crystal

symmetries (Bouhon et al., 2019), while a complete theory is still on its way.

1.2 Manifestation of topology in materials

Recognizing distinct topological classes of bands, there follows the question about their

effect on physical properties of materials. The physical observables determined by topological

numbers bridge the microscopic band structures with macroscopic phenomena. Furthermore,

finding topological effects in materials is crucial for diagnosing different topological phases.

The intrinsic robustness of the topological numbers could protect certain physical effects.

Engineering such topological states promises to open another dimension of creating emergent

electronic states in nanostructures. In the following paragraphs, I present the manifestation

of topology and Berry curvature in materials. The discussion focuses on low-dimensional
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1.2. Manifestation of topology in materials

cases with d = 1,2, while there are also generalizations in 3D (Benalcazar et al., 2017a, Qi et al.,

2008).

In its simplest form, topology of bands describes the phase of wavefunction over the Brillouin

zone. I start with the phase of wave functions and its relation to the real-space position of the

charge center:

r̄ =−i ln〈u(k)|u(k+2π)〉, (1.5)

where u(k) denotes the periodic parts of selected eigenstates at momentum k. Such a relation

follows naturally from the periodicity of lattice. r̄ is sometimes called the Wannier center of

the bands. The phase accumulated from k to k +2π can be written as an integration:

〈u(k)|u(k+2π)〉 =
∫

dk− i 〈u(k)|∂k|u(k)〉 =
∫

Adk, (1.6)

where A = 〈u|∂k|u〉 is a gauge field on the BZ known as the Berry connection. In its one-

dimensional manifestation, such results of Wannier function leads to a modern theory of

charge polarization in topological insulators (Coh and Vanderbilt, 2009, Resta, 2010). Note

that the electronic contribution to polarization is traced by the Wannier centers:

P =− 2

Vc

Nocc∑
i=1

ri =− 2i

(2π)3

∫
dk〈u(k)|∇k|u(k)〉. (1.7)

The definition of 2D topological numbers suggests nontrivial response to gauge fields (Qi et al.,

2008, Resta, 2010, Chang and Niu, 2008, 1996, Gao et al., 2015, Thonhauser et al., 2005), as

natural generalizations to the quantized Hall effect (von Klitzing, 1986, Thouless et al., 1982).

There are two effects rising from the topology of the bands: the quantum Hall (QH) response

and orbital magnetization. I address such electromagnetic effects with a 2D electron gas in a

weak periodic potential: in this scenario, the physics are well-captured by Landau levels of

free electron gas, while the periodic potential enables topological arguments on a compact

manifold. The QH response is defined as (Qi et al., 2008):

σH = 〈 ĵx ĵy − ĵy ĵx〉 (1.8)

= e2

h

1

2π

∫
dkx

∫
dky Fx y ,

which is proportional to the Chern number. The QH response also induces response of the

charge density ρ. Introducing a magnetic field B adiabatically versus time t , it follows that:

∂ρ

∂t
=−∇· j =σH

∂B

∂t
(1.9)

ρ(B)−ρ0 =σH B.

This relationship is alternatively expressed by the Streda formula (Streda, 1982a,b) in a crystal
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Chapter 1. Introduction

(Dana et al., 1985a):

σH
e2

h
= ec

∂N (E)

∂B
, (1.10)

which relates the Hall conductance to the electron filling N (E). Therefore, the band topology

implies the quantized response to external magnetic fields.

In addition to the charge density, the energy of topological bands is also pumped by the mag-

netic field. Such a response is also called the orbital magnetization (Resta, 2010, Thonhauser

et al., 2005, Shi et al., 2007, Thonhauser, 2011, Wu et al., 2021, Sundaram and Niu, 1999),

defined as the linear-order response to magnetic field mn(k) appearing in the perturbative

response of energy bands:

εn,σ(k,B) = εn(k)+µB gσB +mn(k)B , (1.11)

where the term µB gσB is the Zeeman effects from spins. The orbital magnetic moment is:

mn(k) =−µB
2me

~2 Im

{ ∑
m 6=n

〈n|∂kx H |m〉〈m|∂ky H |n〉
εn −εm

}
, (1.12)

of which the form is closely related to the spectral representation of Berry curvature. Such

response to magnetic field is generally not quantized. In the special limit of Landau levels, as

the bands are dispersionless and effective mass me remains constant, the mn of each Landau

level is constant within small magnetic fields.

The topology of bands also relates closely to the spatial distribution of Wannier functions2,

(Marzari and Vanderbilt, 1997, Marzari et al., 2012) which is concluded as Wannier obstruction

to subbands (Marzari and Vanderbilt, 1997, Zhang et al., 2020a). The term Wannier obstruction

describes the effect that a set of topological subbands is prevented from forming localized

Wannier orbitals. It can be seen from the spread functional of the bands:

Ω=∑
i

[〈r 2〉i −〈r 〉2
i ]. (1.13)

Ω contains two parts of contributions:

Ω=ΩI + Ω̃, (1.14)

in which two positive-definite terms ΩI and Ω̃ represent the gauge-invariant part and gauge-

dependent part of the spread functional. Minimizing Ω therefore indicates finding a smooth

gauge that gives minimal Ω̃. Indeed, both ΩI and Ω̃ relate closely to the topology of bands

(Marzari and Vanderbilt, 1997, Marzari et al., 2012). The minimum value of Ω̃ is given by the

Berry curvature, which is vanishing only if the bands are topologically trivial (Marzari and

2Wannier functions can be chosen differently up to a gauge transformation. For the instance, it’s sufficient to
take it as a basis of certain bands. An introduction on Wannier functions will be given in Chapter. 2
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1.2. Manifestation of topology in materials

Vanderbilt, 1997). Moreover, the gauge-invariant component ΩI equals to the integral of the

quantum geometrical tensor g (k):

ΩI = V

(2π)N

∫
dkTr g (k), (1.15)

the term g (k) serves as a metric tensor on the Brillouin zone:

g (k) =∑
n
〈∂u(k)|(1−|u(k)〉〈u(k)|)|∂u(k)〉. (1.16)

Consequently, there is an obstruction towards building maximally localized Wannier orbitals

with topological bands. The Wannier obstruction simutaneously invloves singularities in

polarization if the Chern number is nonzero (Benalcazar et al., 2017a,b).

The theory of Wannier obstruction further implies the signatures of edge states or corner

states (Benalcazar et al., 2017a,b, Song et al., 2020c). As its simplest example, the Wannier

charge centers in Chern insulators move through unit cells upon a momentum pumping. Such

pumping leads to edge modes of Chern insulators, which can be seen by inserting a cut in the

system. A generalization of the argument naturally gives the predictions to corner states, hinge

states and defect modes (Benalcazar et al., 2017b). In analogy to the formulas for polarization,

the higher-moment operators are defined for quadrupole (qi j ) and octupole (oi j k ) moments

as well (Benalcazar et al., 2017a):

pi =
∫

d 3rρ(r)ri , (1.17)

qi j =
∫

d 3rρ(r)ri r j , (1.18)

oi j k =
∫

d 3rρ(r)ri r j rk . (1.19)

Under certain symmetries, the electrical multipole moment can be quantized, giving localized

corner modes in the gap carrying fractional charge (Benalcazar et al., 2017b). These localized

electronic modes has an effect on catalysis as well (Li et al., 2022).

Wannier functions of the bands mediates the interactions between electrons. In real space,

the effects come from the distribution of the wave functions:

Hi nt (φi ,φ j ) = 〈φi |e
2/2

ri j
|φ j 〉. (1.20)

An example is the topological nematic states (Barkeshli and Qi, 2012), built from the hybrid

Wannier functions. In the reciprocal space, the formula of Coulomb interaction closely relates

to the overlap of momentum-eigenstates:

λ(k,q) = 〈U (k+q)|U (k)〉, (1.21)

sometimes also called the form factors. The expression is expected to behave differently
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Chapter 1. Introduction

in topological bands as compared to trivial bands. Such an effect was recently revealed to

contribute to flat-band superconductivity (Xie et al., 2020, Peotta and Törmä, 2015), giving a

superfluid weight bounded by the geometry of flat bands:

TrDs = 8e2∆

~2

√
ν(1−ν)

∫
d 2k

4π2 Tr g . (1.22)

The topological part may contribute significantly to the moiré superconductivity (Xie et al.,

2020, Cao et al., 2018a).

Concerning the intriguing issue of flat-band superconductivity, the interplay between topology

and (pseudo)spin textures is worth mentioning (Wilczek and Zee, 1983, Sondhi et al., 1993).

Briefly, in a O (3) nonlinear-σ model (NLσM) involving (pseudo) spins, the charge carried by a

skyrmion is determined by:

ρ =CW, (1.23)

where C is the Chern number of the bands and W is the skyrmion winding number.

1.3 Graphene and twisted bilayer graphene

The isolation of atomically thin graphene monolayer (Novoselov et al., 2004) has greatly

inspired the study of two-dimensional (2D) materials (Novoselov et al., 2005). The family of

2D materials provides a large variety of electronic structures, including the massless Dirac

fermions in graphene and the quantum spin Hall (QSH) phase in 1T’-MoS2 (Qian et al., 2014).

Such electronic properties and topology of 2D materials are of interest in both condensed

matter physics and microelectronics (Jang et al., 2016, Ju et al., 2015, Han et al., 2018, Gomes

et al., 2012). The progress on 2D materials also drives the study of 2D nanostructures and

metamaterials (Cao et al., 2018a, Wang et al., 2016, Moon and Koshino, 2014, Cao et al., 2018b),

aiming at the manipulation of electronic states in low-dimensional systems.

As the first discovered 2D material, graphene plays an important role in such 2D nanostruc-

tures (Po et al., 2018b, Yazyev, 2013, Talirz et al., 2016). Intrinsic graphene provides a good

example of a system hosting massless fermions on a 2D honeycomb lattice (Gomes et al., 2012,

Son et al., 2011, Mariani et al., 2012) while by engineering on graphene, it is possible to tune the

band structure such as creating a gap (Cao et al., 2017, Haldane, 1988) or squeezing the band

width (Bistritzer and MacDonald, 2011a). On the basis of graphene, many nanostructures and

metamaterials are found with nontrivial band topology (Po et al., 2018b, Luo, 2019, Liu et al.,

2020, Song et al., 2019b) and correlated electronic states (Cao et al., 2018a,b, Du et al., 2009,

Dean et al., 2013). The study on these materials, including computational simulation and

development of analytical models, will be helpful in understanding the origin of band topology

(Po et al., 2018b, 2019) and to design novel materials with intended electronic properties.

A family of graphene-based material, twisted multilayer graphene, has recently attracted
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Figure 1.2 – Graphene lattice and a plot of its band structure. (a) The structure of graphene
lattice. Each unit cell contain two carbon atoms labelled A and B. (b) Reciprocal lattice vectors
of graphene lattice and the Brillouin zone. High-symmetry paths of momentum are shown in
red. (c) Nearest-neighbour tight-binding band structure of graphene along the k path.

massive attention due to their exotic electronic properties since the observation of supercon-

ductivity and correlated insulating behavior in magic-angle twisted bilayer graphene (TBG)

(Cao et al., 2018a,b). Such electronic properties are related to flat electronic bands near the

Fermi energy, which is a consequence of the twisted stacking.

Besides the experimental work, many theoretical models have been proposed for the moiré flat

bands (Po et al., 2018b, Song et al., 2019b, Bistritzer and MacDonald, 2011b, Lian et al., 2018,

Zhang et al., 2019, Liu et al., 2019a, Tarnopolsky et al., 2019, Hejazi et al., 2019). These models

provide useful perspectives for understanding the magic angle TBG, while the theoretical

explanation to the correlated behavior is still not complete due to the complexity of moiré

superlattice. On the experimental side, a common and effective way to characterize such moiré

superstructures is the transport measurements with an out-of-plane magnetic field (Dean

et al., 2013, Lian et al., 2018, Schultz et al., 1998). Thanks to the moiré-induced superperiodicity,

for moiré superlattices it is possible to further probe the fractal Landau level or Hofstadter

butterfly (Dean et al., 2013, Wang et al., 2012, Kim et al., 2017) which is conjectured to be

related with fragile topology (Lian et al., 2018).

I present an introduction to the family of materials: graphene and twisted bilayer graphene.

This section covers the electronic structures of the materials, the topological effects and

magnetotransport properties.

1.3.1 Hamiltonian of graphene

Graphene consists of a honeycomb lattice of carbon atoms. As shown in Fig. 1.2(a), each unit

cell contains two sublattices, referred to as A and B atoms. The lattice constant of graphene

is usually taken to be a = 2.46 Å, corresponding to the C-C bond length of 1.42 Å. It is worth

presenting, the widely-used tight-binding Hamiltonian involving pz orbitals, and the k ·p

model of graphene. Considering only the nearest-neighbour coupling of the orbitals, the
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Chapter 1. Introduction

Hamiltonian writes:

H = ∑
〈i , j 〉

tc†
i c j , (1.24)

where 〈i , j 〉 denotes the nearest-neighbour bonds. In momentum space, it is expressed as a

2×2 matrix:

H(kx ,ky ) = t

(
0 1+e−i kx +e−i ky

1+e i kx +e i ky 0

)
. (1.25)

A sketch of the Brillouin zone and the band structure of graphene along the k-path is presented

in Fig. 1.2 (b-c). Such a Hamiltonian gives linear dispersion at the Fermi level, near the two

high-symmetry points K/K’ which are referred as Dirac points. The k ·p approximation of the

Hamiltonian near each Dirac point gives:

H±
kp =±~v f (σx kx ±σy ky ), (1.26)

in which the signs ± correspond to valley K and K’ respectively.

1.3.2 Berry phase and topological effects of Dirac cones

The Dirac cones of graphene carry nonzero Berry phase, which makes the material interesting

in terms of topology. Such effect is seen by the winding of eigenstates along a loop enclosing

the Dirac point. Taking the k ·p Hamiltonian near one of the valleys: H = ~v f (σx kx +σy ky )

and writing it in polar coordinates, the Hamiltonian becomes:

H(φ,r ) = ~v f r

(
0 e iφ

e−iφ 0

)
. (1.27)

The eigenstates are then ψ± = (e iφ/2,±e−iφ/2). While φ winds around the Dirac points, i.e. φ

goes from 0 to 2π, each of ψ± gains a phase factor of π. Such a nonzero Berry phase makes

graphene a promising precursor for 2D topological phases. By properly gapping the Dirac

cones, it is possible to build the Haldane model with Chern numbers C =±1.

Note that the two valleys are in opposite phases which imply opposite chiralities, such an

effect leads to a signature of the Berry phase in inter-valley scatterings (Dutreix et al., 2019).

1.3.3 Twisted multilayer graphene

The van der Walls (vdW) heterostructures of 2D materials are of special interest since they

provide another dimension of manipulating the structure of the matter. Typically, the scenario

of twisted stacking has attracted much attention: twisted multilayers of 2D materials enables

tuning the periodicity of the lattice by the interlayer twist angle.
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mBZ

(a) (b)

Figure 1.3 – (a) An example structure of twisted bilayer graphene. The twist angle θ determines
the moiré lattice constant lm . (b) Effect of interlayer twist in the reciprocal space and the
moiré Brillouin zone. The reciprocal vector is given by b =p

3kθ, where the distance between
moiré Dirac points is kθ = 2sin(θ/2)kD , where kD is the graphene Dirac-point momentum.

Table 1.1 – Typical indices and their corresponding twist angles θ.

n 1 5 20 30 31
θ (deg) 21.79 6.01 1.61 1.08 1.05

As shown in Fig. 1.3, bilayer graphene with an interlayer twist features the moiré superperiod-

icity. The relation between the twist angle and the superlattice length is derived by the com-

mensuration conditions. I use the commonly-accepted notation for twisted bilayer graphene,

where the commensurate twist angles θ are defined on the lattice vectors (m,n) = ma1 +na2

(see Fig. 1.3), where the interlayer twist is considered as a rotation operator R̂(m,n) = (n,m).

The twist angle is given by

θnm = arg

[
m +n/2+p

3ni /2

n +m/2+p
3mi /2

]
. (1.28)

The series m = n + 1 is predominantly examined as “minimal series” of twists. I present

the table with a few typical indices and the corresponding twist angles between the layers.

Within the series, θ decreases as n increases. The lattice constant lm of the moiré supercell

is determined by (m,n) as: lm = a
p

m2 +n2 +mn, where a = 2.46 Å is the graphene lattice

constant.

While the lattice constant is enlarged in the moiré supercells, the reciprocal lattice becomes

smaller than that of graphene. Fig. 1.3(b) shows the relation between moiré Brillouin zone

and the graphene BZ.

The local interlayer stacking is varying between AA and AB across the moiré cell. Consequently,

the interlayer coupling between orbitals is also inhomogeneous.

The Hamiltonian of twisted bilayer graphene is expressed on the basis of k ·p Hamiltonian of
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Figure 1.4 – (a) The evolution of Fermi velocity and bandwidth over twist angles, obtained
from TB calculations. Vanishing Fermi velocity and bandwidths are present near θ = 1.1◦. The
flat bands in TBG at magic angle θ = 1.08◦, from (b) tight-binding models and (c) k ·p models.

graphene. In the vicinity of the K valley, the k ·p Hamiltonian writes (Liu et al., 2019a):

H+(k) =
(
~v f (k−K1) ·σ U

U † ~v f (k−K2) ·σ

)
, (1.29)

in which ~v f (k−Ki ) ·σ are the Hamiltonian of each layer, Ki indicates the K points of the

graphene layers. The U blocks contain interlayer coupling and encode the spatial dependence:

U =U0e i∆K ·r =
(

u0g (r) u1g (r− rAB )

u1g (r+ rAB ) u0g (r)

)
e i∆K ·r, (1.30)

where the phase factor g (r) =∑3
j=1 e i q j ·r provides the interlayer coupling. The equation can be

solved in the plane-wave basis. As shown in Fig. 1.4, there is a range of twist angles where the

Fermi velocity is compressed. Such flat bands are also verified by the atomistic TB calculations

with Slater-Koster Hamiltonian (Slater and Koster, 1954, Gargiulo and Yazyev, 2018).

The flat bands appearing at the “magic angles” provide a platform where various aspects

of physics meet together. General flat bands are expected to exhibit electronic correlation

since the kinetic energy is suppressed. In the case of TBG, the flat bands near the Fermi

level are also featuring nontrivial topology, carrying Euler number E = 1. Moreover, transport

measurements has revealed the correlated insulating phases and superconductivity in twisted

bilayer graphene (Cao et al., 2018a,b). Therefore, the flat-band physics involves the correlation

effects of topological electronic bands.

The progress on twisted bilayer graphene has inspired a series of further studies aiming at

studying the superconductivity in twisted multilayer graphene systems. Similar to twisted
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Figure 1.5 – Sketch of twisted multilayer systems. (a) Twisted (M +N )-layer graphene. (b)
Alternating twisted multilayer graphene.

bilayer graphene, these systems also show flat bands near the Fermi level, as well as the

unconventional superconductivity. Fig. 1.5 shows two classes of twisted multilayers, as gen-

eralizations of the TBG. The (M +N ) layers twisted graphene (Fig. 1.5a) has topological flat

bands near the Fermi level. By controlling the stacking between M-layer graphene and N -layer

graphene, the system can be engineered to carry arbitrary valley Chern numbers (Liu et al.,

2019b). The alternating twisted graphene features a composition of Dirac cones and flat bands.

Both the magic angle and the superconducting transition temperature are changed in such

multilayer scenario (Park et al., 2022). In TBG and alternating twisted trilayer graphene, the

critical temperature is around 3 K, while for 4-layer and 5-layer cases the temperature goes to

2.2 K. On the other hand, the “magic angle” increases as increasing the number of layers. In

the limit of infinite layer alternating twisted graphene, the magic angle goes up to θM ≈ 2.2◦.

1.4 Outline of the thesis

This thesis contains various aspects of topological effects in 2D materials. The research

contains two levels of studies: theoretical models of topological systems and the related effects

or physical observables in 2D materials. The outline of the following part will be:

• Chapter 2 presents the theory and methodology for studies of following chapters. It

consists of the basic theory of band structure and topological band theory, as well as

numerical methods for the calculations.

• Part I focuses on the theoretical studies of Euler insulators. As a unique class of fragile

topological insulators, the properties of Euler insulators are still being explored. This

part examines the Landau levels and edge states of Euler insulators, aiming to identify

physical probes for such topological classes. The investigation into the Landau levels

of Euler insulators reveals similarities with mirror-Chern insulators while also demon-

strating the magnetization of Euler bands. This discovery is particularly intriguing when

compared to the existing results for Chern insulators. In addition to the Landau levels,

the edge states of Euler insulators are also investigated. We develop a theory of edge

Hamiltonians for Euler insulators, which shows that the algebraic order of the edge
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states is equal to the bulk Euler number. This study of edge theory provides observable

properties for Euler insulators and further enriches the understanding of bulk-edge

correspondence.

• Part II focuses on the study of twisted bilayer graphene. In recent years, the family of

twisted multilayer materials has attracted significant attention due to the presence of

unconventional correlated insulating states and superconductivity. Theoretical inves-

tigations on twisted multilayer graphene span several distinct levels. Using atomistic

tight-binding models, we explore the electronic band properties of twisted bilayer

graphene under strong magnetic fields, the interplay between band topology and mag-

netic skyrmions, and the Landau levels in twisted double bilayer graphene. These

studies aim to deepen our understanding of the complex electronic behaviors observed

in these materials and potentially uncover novel properties and phenomena.

• Part III contains the study of electronic transport in graphene with out-of-plane disorder.

Using first-principles calculations, we discover the transmission across commensurate

and incommensurate disorder. When wrinkles or folds match with the graphene lattice,

a transmission oscillation is induced by backscattering. However, in the incommen-

surate case, the transmission shows vanishing backscattering. The contrast between

these cases reveals the effect of lattice commensuration on the electronic transport in

graphene with out-of-plane disorder..
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2 Theory

This chapter delves into the theoretical foundations of the studies on two-dimensional solid-

state materials. I begin with the fundamentals of the Schrödinger equation and then introduce

the tight-binding (TB) approximation for electronic structure calculations. The theories

presented in this chapter establish the formalism for a range of calculations based on TB

models, providing the necessary background to understand the methods and techniques used

in subsequent chapters. This comprehensive overview of the theoretical framework will serve

as a solid basis for the exploration of various phenomena within the context of electronic

properties of two-dimensional materials and nanostructures.

2.1 Schrödinger equation and Band theory

The motion of electrons follows the (time-independent) Schrödinger equation:

Ĥψ= Eψ, (2.1)

where in most cases the effects from nuclei is neglected taking the Born-Oppenheimer ap-

proximation (Combes et al., 1981). Generally, the Hamiltonian Ĥ contains different terms

including the electron kinetic energy Te , the potential energy from nuclei Vn and the electron

interactions Ve−e :

Ĥ = Te +Vn +Ve−e + ..., (2.2)

and ψ is the many-body wavefunction. Solving the many-electron Schrödinger equation

is typically difficult. To simplify the problem, the single-electron approximation is often

employed by assuming that the electron-electron interaction term, Ve−e , is negligible. This

approximation significantly reduces the computational complexity and makes the problem

more tractable.

For crystals, it is considered that the system is spatially periodic, i.e. the Hamiltonian H

and lattice translation Tr commute: [Ĥ ,Tr] = 0 for lattice translations r. The solutions of the
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single-electron Schrödinger equation has a general form called the Bloch functions:

ψn(k,r) = e i k·run(r), (2.3)

which are composed of a plane-wave function modulated by a function u(r) with the same

periodicity as the lattice.

As there is translational symmetry of the lattice, it is possible to construct the wavefunction

with a set of orbitals residing in each unit cell, called the Wannier functions (WFs). The relation

between these orbitals and the Bloch functions is:

ψ(k,r) =∑
R

e i k·Rφ(r −R), (2.4)

where the function φ is defined for each unit cell, called the Wannier functions. Fig. 2.1(a)

shows a comprehensive plot comparing the Bloch function and Wannier function.

Translational-invariant wave functions form the basis set of the Hamiltonian, and the energy

levels become functions of the momentum k, which has a periodicity in reciprocal of the lattice

constant. To illustrate this, I provide in Fig. 2.1(b) the band structures for one-dimensional

systems with periodic potential U (r ). The Hamiltonian containing kinetic energy Ek and the

periodic potential writes:

H = Ek +U (r ), (2.5)

where the potential U (r + a) = U (r ) has periodicity of a, the momentum thus exhibits a

periodicity of 2π/a. Different regimes emerge during the evolution from the limits of nearly-

free electrons (Ek ÀU ) to localized orbitals (Ek ¿U ), while they other term is treated as a

perturbation. Near k = 0, the nearly-free electron limit behaves asymptotically as E ∝ k2. By

adding the on-site periodic potential, the full energy E(k) develops into a series of energy

bands. In the limit Ek ¿U , E(k) appears as discrete energy levels that are barely dependent

on k.

The band structure serves as the foundation for exploring the electronic properties of solids,

including conductivity and the effective mass of electrons. In practice, calculating the band

structure is an essential step in the study of quantum materials.

2.2 Tight-binding Hamiltonian for electrons in solids

An approach to model the electrons in solids is the tight-binding (TB) approximation, where

the basis sets are taken as a discrete series of orbitals. The general formulation of TB Hamilto-

nians is:

Htb =∑
i , j

ti j c†
i c j +

∑
i

Vi c†
i ci , (2.6)
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(b)(a)
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Bloch functions Wannier functions

Figure 2.1 – (a) An illustrative plot of Bloch functions and Wannier functions (adapted from
(Marzari et al., 2012)). (b) Diagrammatic energy spectrum for a one-dimensional system on
different levels of periodic potential U . The nearly-free-electron dispersion evolves into sets
of bands in the presence of a periodic potential.

where the first term encompasses the kinetic energy of electrons through hopping integrals

ti j , while the second term includes the potential energy of the orbitals. The operators c†
i ,ci

represent creation and annihilation operators for localized-orbital states or Wannier functions.

The TB Hamiltonian, given by Eq. 2.6, is related to the general Hamiltonian of electrons as

follows:

ti j = 〈ψi |Ĥ |ψ j 〉
Vi = 〈ψi |Ĥ |ψi 〉
ψi = c†

i |0〉. (2.7)

To close this subsection, I discuss the Peierls substitution which introduces magnetic fields in

tight-binding models. In the presence of magnetic field B =∇×A, the tight-binding hopping

integrals are transformed to t ′i j by adding the integral of vector potential A into the phase

factors:

t ′i j = ti j e iθ

θ =
∫ r j

ri

A ·dr. (2.8)

The phase factor explicitly alters the lattice’s periodicity. Due to the magnetic flux, translation

operators in a and b directions do not commute TaTb = e iφTbTa (Herzog-Arbeitman et al.,

2022). To restore translational invariance, the unit cell must be expanded to create a magnetic

supercell satisfying [T ′
a ,T ′

b] = 0. As an example, consider the Peierls substitution in a square

lattice (Fig. 2.2(a)) in the Landau gauge A = [0,B x,0] with Φ= 2π p
q . The magnetic unit cell is

constructed with Tqa and Tb , ensuring the total fluxΦm = 2pπ. The super-periodicity induced

by the flux Φ= 2πp/q splits the spectrum into q subbands. As shown in Fig. 2.2(b), the energy
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1

(a) (b)

Figure 2.2 – (a) A sketch of the Peierls substitution in a square lattice. The flux per unit cell is
proportional to the phase φ gained over a loop enclosing the area of the cell. The magnetic
unit cell containing q unit cells is built for Φ= 2πp/q . (b) The energy levels versus magnetic
flux Φ in a square lattice, featuring a fractal pattern. Each gap in the fractal spectrum carries a
topological Chern number, identified by the slope ∂N /∂B .

levels form a fractal structure called the Hofstadter butterfly (Hofstadter, 1976). The gaps in

the Hofstadter butterfly are marked with topological Chern numbers (Wannier, 1978).

2.3 The Slater-Koster model calculations

While the nearest-neighbour (NN) tight-binding model provides a quite faithful description of

the electronic structure of flat monolayer graphene, the modelling of general graphene-based

nanomaterials goes beyond the NN approximation. To account for both interlayer coupling

and curvature effects in tight-binding calculations of graphene nanostructures, I utilize the

Slater-Koster model (Slater and Koster, 1954, Zhu et al., 2012). The pz atomic orbitals of carbon

atoms form the intralayer π bonds and the interlayer σ bonds, as shown in Fig. 2.3(a). The

general form of the Hamiltonian including both contributions writes:

Ĥ =∑
i , j

tπi j c†
i c j +

∑
i , j

tσi j c†
i c j .

Explicit expressions for the hoppings tπi j and tσi j are dependent on the orientation of the two

pz orbitals on atom i , j (Zhu et al., 2012)

tπi j =V π
0 exp

(
−r −a0

r0

)
|sinθi sinθ j |, (2.9)

tσi j =V σ
0 exp

(
−r −d0

r0

)
|cosθi cosθ j |. (2.10)

Following the previous Slater-Koster parametrization (Zhu et al., 2012, Crosse et al., 2020),

I set V π
0 = −2.7 eV, V σ

0 = 0.48 eV, characteristic distances a0 = 1.42 Å, d0 = 3.35 Å, and the
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(a) (b)

layer a

layer b

Figure 2.3 – Layout of pz orbitals and different coupling regimes in the Slater-Koster models.
(a) Couplings between pz orbitals, including the π-bonds and σ-bonds. (b) Local orientations
of pz orbitals and the angles in Slater-Koster models for a coupling ti j : θi and θ j .

decay length r0 = 0.184a. a is the graphene lattice constant, given by a =p
3a0 = 2.46 Å. In

the orientation-dependent terms, angles θi and θ j are defined as the angle between ri j and

the local normal vector at atomic positions ri and r j , specifically, θi =∠(ri j ,ni ) as shown in

Fig. 2.3(b). These terms account for the effect of local curvature of the graphene sheet on the

overlap between pz orbitals.

2.4 Wilson loop calculation of topological numbers

The direct calculation of Chern numbers can be done by integrating the Berry curvature, while

there is a drawback that such algorithm usually requires very dense momentum points to

reach convergence and is thus inefficient. A widely-accepted formalism for calculating the

topological invariants is the hybrid Wannier center calculation, or the Wilson loop calculations.

Such a method involves finding the Wannier charge center (WCC) of a given set of subbands,

and calculate the topological number by the winding of the WCCs.

In this section, I introduce the methods based on Wannier charge center (WCC) sheets to

obtain the topological phase. WCC sheets demonstrate the pumping of Wannier functions

in real space, which is closely related to the topology of bands. The Chern numbers of the

bands are calculated using the formalism of hybrid Wannier function methods introduced

by Soluyanov and Vanderbilt (Soluyanov and Vanderbilt, 2011). See also Refs. (Taherinejad

et al., 2014, Wu et al., 2017) The Wannier functions Wn(R) are conventionally defined as

localized orbitals that are built through integral representation from the Bloch wave functions

uk, (Wannier, 1962)

Wn(R) = 1

(2π)2

∫
BZ

dke i k·(r−R)|unk〉. (2.11)
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On the contrary, the hybrid Wannier functions (HWFs) are wannierized only along one of

the two spatial dimensions (e.g. x), thus remaining a Bloch-periodic function in momentum

along the other dimension (e.g. ky ). HWFs had proved to be useful to diagnose the topological

properties, in particular Chern numbers of flat electronic bands (Gresch et al., 2017). The

underlying idea is to compute the evolution of the hybrid Wannier functions |W (h)
n 〉 along a

ky -path, and the Chern number is given by the total winding of the Wannier centers. This

approach is based on the observation that every nontrivial Chern number presents an ob-

struction for constructing maximally-localized Wannier functions (Marzari et al., 2012). The

numerical advantage of the implement is: instead of finding the full 2D Wannier functions, the

program calculates the Wannier charge centers (WCCs) in one of the dimensions (e.g. x), and

track it along the momentum on the other dimension (ky ). Here I present an example of the

calculation of hybrid Wannier functions. For the 2D electronic system with its eigenstates in

BZ being |uk(kx ,ky )〉 in the conventional Bloch band framework, the Wannier charge centers

(WCC) are defined through the phase accumulation φx ,

|uk(kx +2π,ky )〉 = e iφx |uk(kx ,ky )〉, (2.12)

The numerical calculations are performed on the samplings of BZ. The phase factor φx is

calculated by evolving from kx = 0 to kx = 2π, and tracing the accumulated phase in each

increment

φx (ky ) = arg

[
n−1∏
i=1

|uk(k i
x ,ky )〉〈uk(k i+1

x ,ky )|
]

(2.13)

in order to preserve the smooth gauge. Thus defined, the WCC winding on the cylinder

determines the Chern numbers by counting the number of times the WCC is crossing the

boundaries (Gresch et al., 2017). The winding of the WCC provides the Chern number of a

single or a composite band. In multiple-band systems, the total Chern number is determined

by the sum of the winding of all the bands. This method is particularly useful for evaluating

the Chern numbers of flat electronic bands. A numerical problem arises from the arbitrari-

ness of the eigenstates: the gauge of the eigenstates may not be smooth. Such arbitrariness

may eventually lead to a diverging WCC. In practice, singular-value-decomposition (SVD) is

performed on the outer-product matrix obtained in each step

|uk(k i
x ,ky )〉〈uk(k i+1

x ,ky )| =UΣV ∗. (2.14)

Only the unitary part UV ∗ is kept, in order to avoid the numerical artifacts.

This approach ensures a smooth gauge over kx and suppresses the arbitrary phase factors

of the multi-band bundle. The winding of the Wannier charge center corresponds to the

total Chern number of a set of bands. This can be seen from Eq. 2.13 after rewriting it in a
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continuous manner:

φx (ky ) =
∫ 2π/a

kx=0
dkx〈ψ(kx ,ky )|∂kx |ψ(kx ,ky )〉, (2.15)

which comes from reformularing Eq. 2.12 and corresponds to the discretized version Eq. 2.13.

And noticing Chern number is expressed as:

C = 1

2π

∫
B Z

dk 2Im〈ψ(kx ,ky )|∂ky∂kx |ψ(kx ,ky )〉, (2.16)

C has the same value as the total winding number of Eq. 2.15:

C = 1

2π

∫
dkyφ

−1
x ∂kyφx . (2.17)

2.5 Investigating electron interaction on the basis of TB calculations

Flat bands have garnered significant interest as platforms for adjustable strong electron

correlations. In particular, flat bands are predominantly observed in moiré supercells within

twisted multilayer systems. The twisting process not only offers extensive tunability for

electronic states but also increases the size of unit cells. Performing a comprehensive many-

body calculation for moiré supercells is highly challenging. To address the issue of interactions

within moiré flat bands, I have devised methods that enable many-body postprocessing based

on tight-binding (TB) results.

The idea of such methods is to evaluate the Coulomb interaction within the selected bands,

usually the flat bands and their neighbors. There are basically two essentially equivalent

approaches. A regular approach is to Wannierize the bands near the Fermi level and construct

an effective TB model with much fewer bands. For moiré materials, such a Wannierization is

usually performed as a secondary process for the bands calculated by TB models. For example,

in the work (Davydov et al., 2022), Wannierizing the TB results produces effective models with

four bands or twelve bands. The Wannierization reduces the dimension of the problem from

over ten thousands to much smaller numbers which enables further many-body calculations.

The only limit of the method lies in Wannier obstruction of topological bands: if the concerned

bands are topological several extra bands must be added into the TB model.

A parallel method for such many-body calculation is to use momentum-space eigenstates as

the basis set (Abouelkomsan). The interacting Hamiltonian in the momentum space writes:

Hi nt =
∑

q
V (q) : ρ(q)ρ(−q) :, (2.18)

the symbol :: denotes the normal ordering of operators. The density operators ρ(q) is defined
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as:

ρ(q) = ∑
k∈B Z

Nsel∑
i1,i2=1

λ(k,q)d †
k+q,i1

dk,i2 , (2.19)

which is defined as projected electron density on the Nsel selected bands, summed over the

orbitals. The d (†) operators are the creation/annihilation operators for energy eigenstates from

TB calculation. λ represents the overlap between the eigenstates on different momentum

points, which involves the quantum geometry of states into the interaction.

2.6 Landauer-Buttiker Transmission and beyond

Fig. 2.4 (a) presents a typical diagram for two-terminal electronic transmission. In the paper

(Meir and Wingreen, 1992), the tunneling current is formulated using Green’s function:

J = i e

~
(GLd −G†

dR ) = i e

~
∑

(V 〈c†
kadn〉−V ∗〈d †

ncka〉), (2.20)

where c(†) and d (†) represents the annihilation/creation operators in the leads (c) or the device

(d). Eq. 2.20 can be alternatively presented in a Landauer-like formalism:

J = i e

2h

∫
dE(Tr

[
( fLΓL − fRΓR )(Gr −Ga)

]+Tr
[
(ΓL −ΓR )G<]

). (2.21)

This is Eq. 6 in the original paper (Meir and Wingreen, 1992), where fL(r ) are Fermi distribution

functions, G is the device Green’s function and Γ represents the effects of the lead:

ΓL(R) = i [ΣL(R) −Σ†
L(R)] (2.22)

ΣL(R) =V †GL(R)V , (2.23)

where V is the coupling between the device and the lead. Eq. 2.22 applies to the general cases

of transmission, while in the case of weak interactions, it is a good approximation to consider

the non-interacting transmission. In the noninteracting case, the transmission equation

becomes the Landauer-Buttiker formula:

J = e

h

∫
dE( fL − fR )Tr

[
GrΓLGaΓR]

T (E) = Tr
[
GrΓLGaΓR]

, (2.24)

where Ga(r ) are the single-particle Green’s functions of the device.

In practice, the leads connected to the device are usually modeled as semi-infinite and periodic

structures. As shown in Fig. 2.4, a semi-infinite lead is considered as a series of repetitive unit

cells with identical Hamiltonian Hi and inter-cell couplings T . For each of the semi-infinite

leads, Green’s function Gi is obtained through the recursive Green’s function methods. In each
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L R
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......
...... ......

Device

Figure 2.4 – (a) Diagrams of two-terminal transmission setup. The device region is connected to
two leads formed by periodic units. (b) An illustration of recursive Green’s function algorithm
for the lead self-energies.

step, one layer is added to the lead, and the Green’s function iterates as g j = [E−h−T g j−1T †]−1.

The lead Green’s function from the i -th semi-infinite lead Gi is taken as the converged value

of g , that is, Gi = g j→∞
j . Subsequently, the self-energy term from the i -the lead is obtained by

Σi =Vi Gi V †
i , where V (†)

i depicts the coupling of the lead to the scattering region.

2.7 Lanczos recursions and the calculation of Hofstadter butterfly

in large systems

The Landau level calculation serves as the basis for magneto transport in the quantum regime.

Numeric calculation of the Landau levels in crystal systems requires a specific choice of gauge.

In practice, I apply the periodic Landau gauge with φ=φ0p/q . The magnetic supercell is q

times the original unit cell. As a consequence, there follows the problem of increasing matrix

dimension, especially for the calculation of the Hofstadter butterfly in moiré systems. In the

models of twisted bilayer graphene, the dimension of the Hamiltonian goes up to a million,

calling for special numerical techniques.

Regular diagonalization methods with complexity O(N 3) fail quickly due to the high con-

sumption of computational resources. In order to perform the required calculation of the

Hofstadter and Wannier diagrams, I use the Lanczos algorithm implemented in the Wannier-

Tools package (Wu et al., 2017). The Lanczos algorithm solves the eigenvalue or density of

states problems by iteration, requiring much less memory than the direct diagonalization. The

idea of the algorithm is to apply iteratively the Hamiltonian matrix to the set of initial vectors,

and subsequently transform the Hamiltonian into a tridiagonal form during the process. To

diagonalize a Hamiltonian H , the algorithm starts with an initial vector |v1〉 whose norm is 1,

each iteration contains the following steps:

1. The main diagonal element is obtained through αi = 〈vi |H |vi 〉;
2. Generate the second vector |vi+1〉 = H |vi 〉−αi |vi 〉;
3. Find the sub-leading diagonal βi = ||H |vi+1〉||;
4. Rescale |vi+1〉 = |vi+1〉/βi .
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The operations are further performed iteratively until the convergence is achieved. By the

above iteration, the Hamiltonian is transformed into a tridiagonal form:

Htri =


α1 β1 0 0 0

β1 α2 β2 0 0

0 β2 ... βn−1 0

0 0 βn−1 αn βn

0 0 0 βn ...

 . (2.25)

Having the tridiagonalized Hamiltonian, the density of states (DOS) is thereafter evaluated

through the Green’s functions,

ρ(E + iε) =− ImTr([G(E + iε)]) =− ImTr[(E + iε)I −H ]−1. (2.26)

One further applies the continued fraction method to calculate G=[(E + iε)I −H ]−1. For the

complex frequency Ω=E + iε, the continued fraction representation is

G(Ω) = (Ω−Htri)
−1 = 1

Ω−α1 − β2
1

Ω−α2−
β2

2
Ω−...

. (2.27)

Further-on, the DOS in the selected energy range is obtained by calculating TrG(E).
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3 Landau Levels of the Euler Class
Topology

Two-dimensional systems with C2T (PT ) symmetry exhibit the Euler class topology E ∈Z
in each two-band subspace realizing a fragile topology beyond the symmetry indicators. By

systematically studying the energy levels of Euler insulating phases in the presence of an

external magnetic field, we reveal the robust gaplessness of the Hofstadter butterfly spectrum

in the flat-band limit, while for the dispersive bands the gapping of the Landau levels is

controlled by a hidden symmetry. We also find that the Euler class E of a two-band subspace

gives a lower bound for the Chern numbers of the magnetic subgaps. Our study provides new

fundamental insights into the fragile topology of flat-band systems going beyond the special

case of E = 1 as e.g. in twisted bilayer graphene, thus opening the way to a very rich, still

mainly unexplored, topological landscape with higher Euler classes.

This Chapter is adapted from the paper:

Yifei Guan*, Adrien Bouhon*, Oleg V. Yazyev

Landau Levels of the Euler Class Topology,

Phys. Rev. Research 4, 023188 (2022)

My contribution includes: initializing the idea of investigating Landau levels of Euler insulators,

performing the numerical calculations and proposing the theory to interpret the Hofstadter

butterfly with Streda formula.

3.1 Introduction

Since the discovery of the integer quantum Hall effect (QHE) (von Klitzing et al., 1980, von

Klitzing, 1986) the concept of topology has played an increasing role in condensed matter

physics (Hatsugai, 1993, Thouless et al., 1982, Laughlin, 1981, Stone, 1992, Thouless, 1998,

Avron et al., 1983, 1989). The prediction of the quantum spin-Hall effect (Kane and Mele,

2005a,b, Bernevig et al., 2006, Bernevig and Zhang, 2006) and the three-dimensional topo-

logical insulators (TI) (Fu et al., 2007, Chen et al., 2009, Qi and Zhang, 2011) protected by

time-reversal symmetry have then opened the way to the realization of many novel electronic
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states and has attracted much attention to the topological aspects of electronic band structures.

The role of symmetries has proven essential for the tenfold classification of topological phases

of matter (Schnyder et al., 2008, Kitaev, 2009) and its extension to crystalline symmetries (Chiu

et al., 2016, Fu and Kane, 2007, Turner et al., 2012, Chiu and Schnyder, 2014, Chiu et al., 2013,

Fu, 2011, Fang et al., 2012, Slager et al., 2013, Shiozaki and Sato, 2014, Alexandradinata et al.,

2016, Cornfeld and Chapman, 2019). This has recently culminated in systematic classification

schemes that address the global band structure topology (Watanabe et al., 2016) in terms of

irreducible representation combinatorics (Kruthoff et al., 2017, Bouhon and Black-Schaffer,

2017, Shiozaki et al., 2017), symmetry-based indicators (Po et al., 2017, Khalaf et al., 2018),

topological quantum chemistry (Bradlyn et al., 2017, Höller and Alexandradinata, 2018), and

real-space topological crystals (Song et al., 2019a, 2020c, Thorngren and Else, 2018, Shiozaki

et al., 2018). The discrepancy between the stable symmetry indicators and the topology of split

elementary band representations has then led to the definition of crystalline fragile topology

for few-band subspaces (Song et al., 2020a, Po et al., 2018a, Song et al., 2020b, Bouhon et al.,

2019, Ahn et al., 2019a, Peri et al., 2020).

In its most intriguing form, fragile topology arises without symmetry indicators and is pro-

tected by an anti-unitary symmetry that squares to +1 and leaves the momentum invariant,

e.g. PT symmetry in spinless systems, or C2T symmetry in two-dimensional spinless and

spinful materials, in which case it is called the Euler class topology (Ahn et al., 2018, Bouhon

et al., 2020a,b, Zhao and Lu, 2017). Two-dimensional Euler insulating phases have been found

to exhibit very rich physics, ranging from the non-Abelian braiding of nodal points (Ahn et al.,

2019a, Wu et al., 2019) in electronic band structures (Bouhon et al., 2020a, Chen et al., 2021), in

acoustic metamaterials (Jiang et al., 2021) and in the phonon band structures of silicates (Peng

et al., 2022a) and Al2O3 (Peng et al., 2022b), where it also explains the stability of the Goldstone

modes degeneracy at Γ (Park et al., 2021a, Lange et al., 2022). Furthermore, the Euler class

topology has been found at the origin of Hopf linking signatures in quenched optical lattices

(Ünal et al., 2020), and in the topology in magic-angle twisted bilayer graphene (TBG) (Song

et al., 2020a, Po et al., 2019, Liu et al., 2019a).

The unveiling of further robust physical signatures for the Euler class topology is very timely.

Recently, the effect of an external magnetic field on effective models of the moiré flat bands in

TBG has been reported (Lian et al., 2020a), as well as in other twisted bilayer systems (Lian

et al., 2020b). By facilitating much higher magnetic flux per unit cell, moiré super-lattices

represent a great venue for the measurement of the Hofstadter butterfly spectrum (Dean et al.,

2013, Dana et al., 1985b) as shown in (Wu et al., 2021, Cao et al., 2018b). Reversely, the effect of

different band structure topologies on the Hofstadter spectrum has been shown to lead to rich

distinctive features (Herzog-Arbeitman et al., 2020).

In this Chapter, we study the effect of the Euler class topology on the Hofstadter spectrum of

two-dimensional systems. We reveal qualitative signatures of the Euler class in the flat-band

limit and more general non-degenerate and dispersive (non-flat) band structures. In particular,

we provide the first systematic study of balanced and imbalanced Euler topological phases,
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3.2. Euler class topology

which are characterized by equal, and, respectively, distinct Euler classes below and above

the energy gap. While the flat-band limit exhibits a robust gapless Hofstadter spectrum, we

unveil a hidden symmetry that controls the gaplessness of the Hofstadter spectrum of the

dispersive balanced Euler insulators. We furthermore show that the Hofstadter spectrum of

the imbalanced Euler phases is generically gapless.

3.2 Euler class topology

The C2zT symmetry of a two-dimensional system has [C2zT ]2 =+1 and leaves the momen-

tum of the Bloch states invariant within the two-dimensional Brillouin zone. This guarantees

the existence of a basis with a real and symmetric Bloch Hamiltonian, H → H̃ = H̃ T ∈RN ×RN

(Bouhon et al., 2020a). We are here excluding non-orientable phases characterized by π-Berry

phases along some non-contractible loops of the Brillouin zone (Ahn et al., 2018, Bouhon

et al., 2020b). The Euler class E ∈Z of real oriented rank-2 vector bundles (Hatcher, 2003) then

characterizes the two-dimensional topology of every (orientable) two-band vector subspace

V α of the band structure, which we label by α = I , I I , . . . , i.e. V α = 〈uα
a ,uα

b 〉R2 is the vector

space spanned by the eigenvectors {uα
n }n=a,b corresponding to the eigenvalues {εαn }n=a,b ob-

tained from the spectral decomposition H̃uα
n = εαn uα

n , where we assume the energy ordering

εαn < εα+I
n (n = a,b). Then, the topology for any group of bands with more than two bands

is reduced to the second Stiefel-Whitney class w2 = E mod2 ∈ Z2 (Ahn et al., 2019a, 2018,

Bouhon et al., 2020a,b, Zhao and Lu, 2017), i.e. there is a Z→Z2 reduction specific to fragile

topology. In particular, any two-band subspace with an even Euler class is trivialized when

a third (trivial) band is added to the band-subspace. The Euler class of the α-th two-band

subspace is computed through the integral (Xie et al., 2020, Ahn et al., 2019a, 2018, Bouhon

et al., 2020a, Zhao and Lu, 2017)

Eα = 1

2π

∫
BZ

dk1dk2 Euα, (3.1)

over BZ=[−π,π)2, the Brillouin zone of the two-dimensional lattice, with the integrand given

by the Euler curvature

Euα = PfF [(uα
a uα

b )],

= (∂k1 uα
a )T · (∂k2 uα

b )− (∂k2 uα
a )T · (∂k1 uα

b ),
(3.2)

here defined as the Pfaffian of the two-state Berry curvature

F [(uα
a uα

b )] = F [|uα〉],
=−i

(〈∂k1 uα|∂k2 uα〉−〈∂k2 uα|∂k1 uα〉
)

,
(3.3)

with the matrix of two column eigenvectors |uα〉 = (uα
a uα

b ). Alternatively, the Euler class can

be obtained as the winding of the two-band Wilson loop (Bouhon et al., 2019, Xie et al., 2020,

Ahn et al., 2019a, 2018, Bouhon et al., 2020a), see Fig. 3.1. Interestingly, Eq. 3.2 motivates yet
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Chapter 3. Landau Levels of the Euler Class Topology

another way to compute the Euler class. Defining the Chern basis

vα+ = (uα
a + iuα

b )/
p

2,

vα− = (uα
a − iuα

b )/
p

2,
(3.4)

and writing the one state Berry curvature F [vα+] = (∂k1 vα−)T · (∂k2 vα+)− (∂k2 vα−)T · (∂k1 vα+), we

readily find Euα = F [vα+], from which we obtain (Bouhon et al., 2020a) the Euler class as a

one-band Chern number

Eα = 1

2π

∫
BZ

dk1dk2 F [vα+] =C . (3.5)

In the limit of degenerate bands (εαa = εαb ), the Chern basis becomes an eigenbasis of H̃ .

This plays an important role in the flat-band limit discussed below. An essential observable

associated with the Euler class Eα is the number 2|Eα| of stable nodal points hosted by the

α(=I , I I )-th two-band subspace (i.e. the nodes cannot be annihilated as long as the energy

gaps above and below the two-band subspace remain open), see e.g. the four stable nodes

in each two-band subspace of Fig. 3.1(a) for the Euler phase with E I = E I I = 2. These nodes

cannot be annihilated as long as the energy gaps above and below the two-band subspace

remain open (Ahn et al., 2019a, Bouhon et al., 2020a,b). This must be contrasted for instance

with the two nodes of graphene that can be annihilated upon breaking the C6 crystal symmetry

while preserving C2T symmetry.

3.3 Four-band real symmetric Hamiltonian

In the following, we consider a four-orbital system that is insulating at half-fillingν= Nocc/Norb =
1/2, with Norb the total number of orbitals (i.e. either four spinless orbitals, or two spin-1/2

pairs) and Nocc the number of bands below the energy gap. The most general four-band real

symmetric Bloch Hamiltonian is spanned by nine real independent terms, i.e.

H̃ = ∑
i , j=0,x,y,z

hi jΓi j , (3.6)

for Γi j = σi ⊗σ j and i , j = 0, x, y, z with σx,y,z the Pauli matrices and σ0 = 1, under the con-

straint that only the terms with ImΓi j = 0 are kept. Thus, the most general Bloch Hamiltonian

is parametrized by only ten parameters,

{h00,h0x ,h0z ,hx0,hxx ,hxz ,hy y ,hz0,hzx ,hzz } ∈R. (3.7)

In the following, we,discard the term h00 since it does not affect the topology.

We first consider the Hofstadter butterfly in the limit of flat bands. The flat-band limit of

the Euler insulating phases implies the two-by-two degeneracy of the bands since each two-

band subspace with a non-zero Euler class hosts stable nodal points, as we have seen above.

The most general four-band Bloch Hamiltonian (real and symmetric) with a gapped and flat

spectrum, i.e. we set the eigenvalues to (ε1,ε2,ε3,ε4) = (−1,−1,1,1), takes the form (see Sec.
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3.3. Four-band real symmetric Hamiltonian

3.8)
H̃ [n,n′] = n′

1(−n1Γzz +n2Γzx +n3Γx0)

−n′
2(+n1Γxz −n2Γxx +n3Γz0)

+n′
3(+n1Γ0x +n2Γ0z −n3Γy y ) ,

(3.8)

which depends on two unit vectors

n(′) = (n(′)
1 ,n(′)

2 ,n(′)
3 )

= (cosφ(′) sinθ(′), sinφ(′) sinθ(′),cosθ(′)).
(3.9)

The Bloch Hamiltonian Eq. 3.8 thus defines a mapping from the Brillouin zone onto two unit

spheres, (k1,k2) 7→ (n,n′) ∈ (S2,S2′
), the Fourier transform of which defines a tight-binding

model (Bouhon et al., 2020b). The topology of Eq. 3.8 is then determined by two skyrmion

numbers,

q =W [n] and q ′ =W [n′], (3.10)

computing the winding of the unit vectors through

W [n(′)] = 1

4π

∫
BZ

dk1dk2 n(′) · (∂k1 n(′) ×∂k2 n(′)) ∈Z. (3.11)

The Euler classes of the two two-band subspaces are then readily obtained from the Skyrmion

numbers (Bouhon et al., 2020b) (see Sec. 3.8)

E I = q −q ′, E I I = q +q ′. (3.12)

We importantly note that the sign of the Euler classes can be flipped in pair, i.e. (E I ,E I I ) →
(−E I ,−E I I ), under an adiabatic transformation of the Hamiltonian which is obtained from the

nontrivial action of the generator of π1[GrR2,4] =Z2 on π2[GrR2,4] =Z2 (Bouhon et al., 2020b).

In the following we distinguish between two classes of phases, the balanced phases for which

|E I | = |E I I |, and the imbalanced phases with |E I | 6= |E I I |. The balanced phases are readily

obtained by setting one skyrmion number to zero, e.g. fixing n′ = (0,1,0) Eq. 3.8 gives

H̃bal[n] = H̃ [n, (0,1,0)],

=−n1Γxz +n2Γxx −n3Γz0,
(3.13)

which is characterized by q ′ = 0 and E I = E I I = q . Moreover, it can be shown that every pair

of balanced phases (E I ,E I I ) = (q̄ , q̄), i.e. setting q = q̄ and q ′ = 0, and (E I ,E I I ) = (−q̄ , q̄), i.e.

setting q = 0 and q ′ = q̄ , are homotopy equivalent (Bouhon and Slager, 2022). The imbalanced

phases are then realized when both skyrmion numbers q and q ′ are nonzero, such that

the nine terms in Eq. 3.8 are nonzero. Limiting ourselves to E I +E I I ≤ 4 and E I ,E I I ≥ 0,

we discuss the balanced phases for (E I ,E I I ) = (1,1), (2,2), and the imbalanced phases for

(E I ,E I I ) = (0,2), (1,3). Fig. 3.1 presents the band structure and the Wilson loop of the balanced

phase (E I ,E I I )=(2,2). Since we do not find any qualitative difference in the Hofstadter spectrum
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Chapter 3. Landau Levels of the Euler Class Topology

(a) (b)

Figure 3.1 – (a) Band structure of the tight-binding model of the balanced phase with the Euler
class E I = E I I = 2. Four nodal points are present in each two-band subspace as a manifestation
of the nontrivial Euler topology. (b) The value of the Euler class can be computed through the
winding number, here 2, of the two-band Wilson loop.

between the phases (E I ,E I I ) ∼ (−E I ,−E I I ) and (E I ,−E I I ) ∼ (E I ,−E I I ), it is enough to show the

results for E I ,E I I ≥ 0.

3.4 Hofstadter Spectrum

The effect of an external magnetic field B =∇×A is most conveniently introduced through

the Peierls substitution ti j → t̃i j = ti j exp
(
iφi j

)
with φi j ∝

∫ R j

Ri
A ·dr (Graf and Vogl, 1995).

Restricting to a rational magnetic flux, i.e. φ = ∫
u.c. Bd 2r = 2(r /s)φ0 with r and s coprime

integers (φ0 = h/e is the magnetic flux quantum), the magnetic tight-binding Hamiltonian

acquires a reduced periodicity with a magnetic unit cell (Herzog-Arbeitman et al., 2020) that is

s times as large as the non-magnetic one. It follows that the rotation C2z acts as a nontrivial

permutation of the s sub-lattice sites of the magnetic unit cell, leading to the breaking of C2zT

symmetry. We emphasize that while C2z is not necessarily a symmetry of the Hamiltonian,

C2zT alone imposes the C2z -symmetric spatial configuration of the atomic orbitals since T

does not affect the position operator. In other words, any orbital ϕβ located away from a C2z

center, say rβ, must have a C2z partner located at C2z rβ. As a consequence of the breaking of

C2zT by the external magnetic field, the 2Eα nodal points of each two-band subspace become

gapped leading to magnetic Chern bands, see Section 3.6.

We show the standard Hofstadter butterfly spectrum of a gapped phase with trivial bands in

Fig. 3.2(a), computed here for a two-band system with each band with finite bandwidth. In

particular, the gap of the zero-field phase is preserved at a finite field. On the contrary, the

Hofstadter spectrum of the nontrivial Chern phase is gapless, see Fig. 3.2(b) for the two-band

system now with C = ±1 Chern numbers. The closing of the gap is here explained by the

change of the filling factor of the principal gap as a function of the magnetic flux, i.e. according

to the Streda formula ν=Cφ/2+1/2 for a filling ν0 = 1/2 at zero fields (Dana et al., 1985b).
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3.5. Flat-band limit

(a) (b)

ϕ/ϕ0ϕ/ϕ0

Figure 3.2 – Hofstadter butterfly spectrum for a gapped two-band model with (a) trivial bands
and (b) topological bands with the Chern numbers C =+1 in the lower band and C =−1 in the
upper band. The Chern gap reaches the band edge in (b) as predicted by the Streda formula.

Similarly, while the Hofstadter spectrum of the phase with trivial Euler topology (E I = E I I = 0)

is gapped, we show that the nontrivial Euler phases exhibit gapless Hofstadter spectra with

the crossing of the Landau levels at half-filling (ν= 1/2), i.e. within the gap of the zero-field

phases, at a finite magnetic flux. In this work, we identify several qualitative features of the

Hofstadter spectrum that relate to the finite Euler classes E I ,I I of the phases at zero fields. The

Hofstadter spectrum, band structures and the Wilson loop calculations are performed with

the open-source package WannierTools (Wu et al., 2018).

3.5 Flat-band limit

In the limit of small flux, the effect of an external magnetic field B on the energy levels takes

the semi-classical form (Gao et al., 2015, Shi et al., 2007, Alexandradinata and Glazman, 2018,

Wang et al., 2019)

εn,B (k) ≈ εn,0(k)+mn(k)B , (3.14)

where εn,0(k) is the energy eigenvalue at zero flux, and mn(k) describes the orbital magnetic

susceptibility of the n-th band. In the case of TBG, it has been shown that mn(k) is related

to the band topology at zero fields (Wu et al., 2021). More generally, the orbital magnetic

susceptibility has contributions both from Berry curvature (Resta, 2010, Thonhauser et al.,

2005, Thonhauser, 2011) and from the quantum geometry of the bands (Piéchon et al., 2016,

Hwang et al., 2021). By minimizing the effect of dispersion, the flatness of the bands thus

makes the Landau levels a good probe of the topology and the quantum geometry of the bands

(Rhim et al., 2020).

Figure 3.3 shows the Hofstadter butterfly spectrum for different Euler phases in the flat-band

limit. We find the qualitative trend that the crossing point of the Landau levels at half-filling

moves toward zero for higher Euler classes, i.e. the minimum magnetic field at which the

Landau levels cross, φcross, decreases with increasing Euler classes.

35
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(a)

(b)

(c)

(d)

ϕ/ϕ0 ϕ/ϕ0

(1,1)

(2,2)

(0,2)

(1,3)

2

3

1

2

-1
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Figure 3.3 – Hofstadter butterfly spectra calculated in the flat-band limit for the balanced
phases with Euler classes (E I ,E I I ) of (a) (1,1), (b) (2,2) and the imbalanced phases with (E I ,E I I )
of (c) (0,2) and (d) (1,3). The Chern numbers of the main magnetic band gaps are written on
the pictures.

We now give the rationale for the gap-closing of the Hofstadter butterfly. Starting with the

balanced phases, Fig. 3.3(a,b), we show in Sec. 3.10 that every C2zT -symmetric Bloch Hamil-

tonian with two-by-two degenerate bands is necessarily symmetric under an effective basal

mirror symmetry mz = C2z I , with I the inversion symmetry and C2z a spinful π-rotation

(i.e. C 2
2z =−1) around the axis perpendicular to the basal plane of the two-dimensional sys-

tem. The degenerated system is thus symmetric under the magnetic point group 2′/m =
{E ,mz ,C2zT , IT }, with [C2zT ]2 = +1 and [IT ]2 = −1, where the IT symmetry implies

Kramers degenerate bands at all momenta. We conclude that the degenerate limit exists for

all balanced Euler insulating phases without the need for fine-tuning. In other words, the

degeneracy of the bands is always associated with a symmetry of the Hamiltonian such that

it is not accidental (see Sec. 3.10 for a detailed exposition). We also find that the Chern basis

Eq. 3.4, i.e. an eigenbasis of the balanced Hamiltonian in the flat-band limit, is an eigenbasis

of the mz symmetry operator (Sec. 3.10). There is thus a one-to-one correspondence between

the Euler class and the mirror Chern number of the occupied bands, that is (Sec. 3.10)

E I = E I I =−C (−i) =C (i) ∈Z. (3.15)

Interestingly, the enrichment of C2zT -symmetric phases with mz symmetry implies that

each two-band vector subbundle becomes oriented with the signed Euler class as topological

invariant, i.e. E (−i)
I ∈ Z, by virtue of attaching a fixed orientation to each mirror-eigenvalue

sector (Sec. 3.10). Given that mz -symmetry is preserved at finite magnetic field Bz , the cross-
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ings between Landau levels of distinct mirror eigenvalues are protected by symmetry. We

now can derive the qualitative trend as a function of the Euler class from the Streda formula

ν=C (∓i)φ/2+ν0 with ν0 = 1/2 the filling at zero flux (Dana et al., 1985b). Indeed, the subband

with Chern number C (∓i) must reach the band edge (ν = 0,1) at φ = 1/|C (∓i)|, which gives

an upper bound for the gap-closing flux in each mz -eigensector (see Fig. 3.2(b) showing the

Hofstadter spectrum of a generic Chern insulating phase with C =+1 in the lower band). More

precisely, the occupied Landau levels at half-filling with a Chern number Cv = max{C (−i)
I ,C (i)

I }

at zero flux must reach the filling ν=Cv /2+1/2 at the flux φ= 1 (e.g. ν= 1 if Cv = 1), while

the conduction Landau levels at half-filling with a Chern number Cc = max{C (−i)
I I ,C (i)

I I } at zero

flux must reach the filling ν=−Cc /2+1/2 (note the sign change for the conduction bands) at

the flux φ= 1 (e.g. ν= 0 if Cc = 1). Furthermore, if Cv =C (−i)
I > 0 (and thus Cv =C (i)

I > 0), then

Cc =C (i)
I I > 0 (and Cc =C (−i)

I I > 0), since C (∓i)
I +C (∓i)

I I = 0. We hence conclude that Landau levels

of distinct mz -eigenvalues must cross at half-filling (see also (Herzog-Arbeitman et al., 2020)),

with the trend through Eq. 3.15 of a smaller gap-closing flux for a higher Euler class. This is in

agreement with the numerical results.

We now consider the imbalanced phases (|E I | 6= |E I I |) in the flat-band limit, shown in Fig. 3.3(c,d),

where the same trend is observed. Contrary to the balanced case, there is no effective mirror

symmetry. This implies that the two-by-two band degeneracy requires fine-tuning. We find

that the exact degeneracy, similarly to the flat-band limit, requires infinite-range hopping

terms in the tight-binding model. In practice, it can be achieved in very good numerical

approximation by keeping hopping terms up to sufficiently far neighbours, see Sec. 3.8. The

absence of effective mirror symmetry in the imbalanced Euler phases leaves unexplained the

stability of the Landau level crossing at half-filling [Fig. 3.3(c,d)]. Nevertheless, by making

use of the Chern basis Eq. 3.4 as the eigenbasis (permitted by the two-by-two degeneracy

of the bands), we can still decompose the bands at zero magnetic fields into two decoupled

imbalanced Chern insulators, i.e. H = H+⊕H− with C±
I =±E I and C±

I I =∓E I I . The stability

of the gaplessness of the Hofstadter spectrum, Fig. 3.3(c,d), suggests that the effect of the

magnetic field introduced via the Peierls substitution preserves the decoupling between the

two Chern sectors, even though there is no global symmetry of the Hamiltonian protecting

the decoupling (like mz in the balanced case).

3.6 Dispersive bands

We are now ready to address the more general situation of dispersive (non-flat) and non-

degenerate Euler insulating phases [e.g. Fig. 3.1(a)]. Any adiabatic perturbation of Eq. 3.8

removes the degeneracy and the flatness of the bands while preserving the Euler class topology.

From the Hofstadter spectra shown in Fig. 3.4, we readily find that the gaplessness at half-filling

remains a feature of the nontrivial Euler insulating phases, both for the balanced Fig. 3.4(a,b)

and imbalanced Fig. 3.4(c,d) phases. This is somehow surprising since the non-degenerate

balanced phases do not preserve the effective mz -symmetry (i.e. there is no mirror Chern

number), and the Chern basis [Eq. 3.4] are not eigenvectors of the Hamiltonian anymore. We
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Figure 3.4 – Hofstadter butterfly spectra calculated for the Euler insulating phases away
from the flat-band and degenerate limit for Euler classes (a) (1,1), (b) (2,2), (c) (0,2) and (d)
(1,3). While the effective mz -symmetry is broken, the balanced phases all satisfy the hidden
symmetry (see text). The magnetic subgap Chern numbers are bounded from below by the
Euler classes.

hence would conclude that, in principle, the crossing of the Landau level branches in the gap

at half-filling is not protected, as was reported in Ref. (Herzog-Arbeitman et al., 2020) for the

E I = E I I = 1 case. We give below an explanation for Landau-level crossings in the phases with

nonzero Euler classes at zero-field.

We first resolve the apparent contradiction, i.e. the observed Landau-level crossings with-

out symmetry protection, in the case of the balanced phases. By systematically probing all

perturbations of the Euler insulating phases allowed by C2zT symmetry, we find that only

the term hy y added to H̃bal[n] [Eq. 3.13] controls the gapping of the Hofstadter spectrum,

see Fig. 3.5(a,b) obtained with a constant term hy y = δ > 0 added adiabatically. (See Sec.

3.11, for a detailed discussion of all the symmetry-allowed perturbations.) Since there is no

global symmetry that can account for the vanishing or non-vanishing of this term, we call

the condition hy y = 0 a hidden symmetry of the balanced Euler insulating phases described

by Eq. 3.13. We note that under a change of orbital basis of the Bloch Hamiltonian, the term

that controls the hidden symmetry must be changed accordingly. We emphasize that all the

balanced Euler phases at zero flux shown in Fig. 3.4(a,b) satisfy the hidden symmetry, i.e. all

the terms hi j in Eq. 3.7 are non-zero except hy y .

The imbalanced phases on the contrary are mainly unaffected by C2zT -preserving perturba-

tions, exhibiting a robust gapless Hofstadter spectrum, as one can see in the results Fig. 3.5(d-f)
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Figure 3.5 – Effect of breaking the hidden symmetry on the Hofstadter butterfly spectra for
balanced (a) (1,1), (b) (2,2) and imbalanced (c) (0,2), (d) (1,3) phases. The imbalanced phases
remain gapless. The magnetic subgap Chern numbers are still bounded from below by the
Euler classes.

obtained for hy y 6= 0. This can be understood by noting that the flat degenerate imbalanced

Bloch Hamiltonian, Eq. 3.8 with q, q ′ 6= 0, already has all the nine independent terms hi j in Eq.

3.7 nonzero and without relations between them, such that a further perturbation in hy y does

not lead to a qualitative change of the spectrum.

3.6.1 Magnetic sub-gaps

When the nodal points, located at quarter fillings ν= 1/4,3/4, are well separated in energy

from the rest of the bands, we can easily identify the Landau levels originating from the nodes

at a small magnetic flux. We find that the number of stable nodal points contained in each

two-band subspace gives a lower bound for the Chern numbers of the magnetic sub-gaps

above and below these Landau levels, i.e. 2|Eα| ≤ |Cν=(2[α]−1)/4| with [α] defined by [I ] = 1 and

[I I ] = 2. Indeed, the Chern numbers of the magnetic sub-gaps can be increased by adding

unstable nodes, such as e.g. in graphene, while the Euler class dictates the minimal number of

nodes to be 2|Eα| in each two-band subspace.
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3.7 Discussion

We briefly discuss the difference between the Landau levels of Euler insulators with the Landau

levels of mirror Chern insulators and time-reversal symmetric topological insulators (i.e. the

Kane-Mele Z2 quantum spin Hall phases). First of all, despite the existence of a mirror (mz )

Chern number in the (flat) two-by-two degenerate Euler phases, the Euler insulators, in

general, are different from mirror Chern insulators by their fragility. That is, while the mirror

Chern topology is stable, the Z Euler topology of two-band subspaces is reduced to the Z2

second Stiefel-Whitney class topology under the addition of trivial bands (Po et al., 2018a,

Bouhon et al., 2019, Ahn et al., 2019a, Lian et al., 2020a). Furthermore, the Z2 Stiefel-Whitney

insulators, which have no topological edge states, are also distinct from the Kane-Mele Z2

phases, with topological helical edge states. In the context of the Hofstadter spectrum, time-

reversal symmetry is broken by the magnetic field and, if no other symmetry is present, the Z2

Kane-Mele phases exhibit a gapped Hofsdtater spectrum (Herzog-Arbeitman et al., 2020).

We now discuss the potential candidates for observing the manifestations of Euler topology in

the Hofstadter spectrum. Since the Landau levels rely on the effect of the magnetic field, our

findings can be more naturally realized in electronic systems than in charge-neutral systems,

such as optical lattices (Ünal et al., 2020) or acoustic metamaterials (Jiang et al., 2021). In that

sense, the family of materials with moiré superlattices would be of interest. Indeed, moiré

superlattices in twisted heterostructures provide the possibility to realize and tune the fragile

topology, while the large supercell facilitates the measurement of the Hofstadter butterfly that

requires a very high magnetic flux per unit cell. We for instance propose the M +N twisted

multilayer graphene built by stacking the M-layer and N -layer graphene multilayers with a

twist as a platform for realizing Euler insulators with arbitrary topological charge, since in

such superlattices the flat bands can carry (M −N ) Chern numbers (Zhang et al., 2020a, Liu

et al., 2019c).

To conclude, we have studied the response of C2T symmetric fragile topological insulators to

external magnetic fields with tight-binding models hosting a variety of balanced and imbal-

anced Euler insulating phases. We have shown that the Hofstadter energy spectrum is affected

qualitatively by the topological Euler class, especially in the flat-band limit. Our results also

provide an insight for the study of topological flat-band systems with non-trivial quantum

metrics, such as the topologically bounded superfluid weight found in twisted multilayered

systems (Xie et al., 2020) or the divergence found in the Landau levels of anomalous flat bands

(Rhim et al., 2020), generalizing to the very rich, yet mainly unexplored, landscape of higher

Euler class phases.

During the investigation of exact flat-band models of Euler insulators, we noticed the signa-

tures of Euler class in the edge spectra. Such discovery leads to the work on the bulk-boundary

correspondence of Euler insulators, in Chapter. 4.
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3.8 The modelling of Euler insulating phases

3.8.1 The geometric approach

We here briefly review the construction of the homotopy representative Hamiltonian for the

four-band Euler insulating phases at half-filling following Ref. (Bouhon et al., 2020b, Bouhon,

2020).

The spectral decomposition of the 4× 4 real symmetric Hamiltonian H̃ , i.e. H̃un = εnun

with the eigenvalue εn and the eigenvector un ∈ R4 for n = 1, . . . ,4, gives H̃ = R ·D ·RT with

R = (u1 u2 u3 u4) ∈ SO(4) the matrix of real eigenvectors and D = diag(ε1,ε2,ε3,ε4) the matrix

of energy eigenvalues. In the following we set ε1 = ε2 =−ε and ε3 = ε4 = ε> 0.

From the spectral decomposition and the degeneracy of the energy levels, we readily have that

H̃ is invariant under any gauge transformation R → RG with G =Gv ⊕Gc and Gv ,Gc ∈ O(2),

such that detG = det(Gv )det(Gc ) = 1. Defining the corresponding left coset [R] = {RG|G ∈
S[O(2)×O2]}, we thus find that the Hamiltonian is an element of the real unoriented Grass-

mannian as [R] ∈ SO(4)/S[O(2)×O(2)] = GrR2,4.

We are here excluding non-orientable phases characterized by π-Berry phases along the two

non-contractible loops of the Brillouin zone. While the Hamiltonian defines an orientable

vector bundle (see Sec. 3.8.2 below) (Bouhon et al., 2020b), it is convenient to first seek an

element of the real oriented Grassmannian G̃r
R

2,4 = SO(4)/[SO(2)×SO(2)] to construct the

Hamiltonian. This allows us to take advantage of the diffeomorphism G̃r
R

2,4
∼=S2 ×S2. Starting

from the explicit parametrization of R as a generic element of SO(4), the reduction to the

oriented Grassmannian is then carried out through the Plücker embedding permitting the

representation of the Grassmannian as a 4-dimensional manifold subspace of a 6-dimensional

vector space (the second exterior power of R4), i.e.

ι : G̃r
R

2,4 ,−→
∧2(R4) : [R] 7→ (n+,n−) ∈S2

+×S2
−, (3.16)

where

n±(φ±,θ±) = (cosφ± sinθ±, sinφ± sinθ±,cosθ±), (3.17)

are the unit vectors on the two unit spheres S2
± living in two perpendicular 3-dimensional

vector subspaces of
∧2(R4). Since the second arrow in Eq. 3.16 is a bijection, we write the

representative of each coset [R] as R(n+,n−), and the Euler Hamiltonian is readily given by

H̃E [n+,n−] = R(n+,n−) ·
(
−ε1

ε1

)
·R(n+,n−)T . (3.18)

See the Mathematica code of Ref. (Bouhon, 2020) for the explicit expression of R(n+,n−) as a
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function of the four spherical angles (φ+,θ+,φ−,θ−). Defining

n = n+(φ+,θ+),

n′ = n−(φ−+π/2,θ−+π/2),
(3.19)

and writing the components n(′) = (n(′)
1 ,n(′)

2 ,n(′)
3 ), the Euler Hamiltonian is then (Bouhon et al.,

2020b, Bouhon, 2020)

H̃E [n,n′] = n′
1(−n1Γzz +n2Γzx +n3Γx0)

−n′
2(+n1Γxz −n2Γxx +n3Γz0)

+n′
3(+n1Γ0x +n2Γ0z −n3Γy y ) ,

(3.20)

with Γi j =σi ⊗σ j and the Pauli matrices {σi }i=x,y,z , and with σ0 = 1.

Homotopy classification

Considering the unit vector n as a mapping from a base sphere S2
0 to a target sphere S2,

i.e. n = n(φ(φ0,θ0),θ(φ0,θ0)), we define the skyrmion number

W [n] = 1

4π

∫
S2

0

dφ0dθ0 n · (∂φ0 n×∂θ0 n) ∈Z, (3.21)

that counts the number of times n wraps the target sphere S2 as we cover the base sphere S2
0

one time. By setting

nq = (cos
(
qφ0

)
sinθ0, sin

(
qφ0

)
sinθ0,cosθ0),

n′
q ′ = (cos

(
q ′φ0

)
sinθ0, sin

(
q ′φ0

)
sinθ0,cosθ0),

(3.22)

we readily obtain

W [nq ] = q, and W [n′
q ′ ] = q ′, (3.23)

in terms of which the homotopy classification of H̃ [nq ,n′
q ′ ] in Eq. 3.20 is defined, since

π2[G̃r
R

2,4] =π2[S2 ×S2] =π2[S2]⊕π2[S2]

=Z⊕Z 3 (q, q ′).
(3.24)

3.8.2 Topology of the Bloch Hamiltonian

So far, we have not specified the parameter base space of the Hamiltonian. Considering a

two-dimensional crystalline system, we aim at a Bloch Hamiltonian H̃(k) parametrized by a

momentum vector k = (k1,k2) inside the Brillouin zone [−π,π)2 ∼=T2.

Preceding the previous construction by a projection of the Brillouin zone onto the base sphere
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S0, i.e.

T2 →S2
0 →S2 ×S2′ : k 7→ n0(k) 7→ (nq (k),n′

q ′(k)), (3.25)

we obtain an explicit parametrization of the Hamiltonian Eq. 3.20 as a Bloch Hamiltonian for

all the homotopy classes, i.e.

H̃E [n,n′] → H̃E [nq (k),n′
q ′(k)]. (3.26)

Writing the Euler classes (see Sec. 3.2 and 3.3) of the occupied and unoccupied bands E I and

E I I , respectively, we obtain the homotopy classification of the two-dimensional orientable

(excluding π-Berry phases) four-band Euler insulating phases through

E I = q −q ′, E I I = q +q ′. (3.27)

Importantly, the homotopy classification π2[GrR2,4] =π2[G̃rR2,4] =π2[S2 ×S2] =Z⊕Z, assumes

the constraint of a fixed base point (by definition of the homotopy groups). However, Bloch

Hamiltonians do not fix a base point, which allows the nontrivial action of the generator of

the first homotopy group on the second homotopy group (Bouhon et al., 2020b). Writing

π1[GrR2,4] =Z2 = {[x], [`]}, where [x] is the class of loops that can be shrunk to a point and the

generator [`] is the class of loops that cannot be shrunk to a point, the action of [`] on the

second homotopy group is represented by the deformation of a reference point of GrR2,4 over a

nontrivial loop in GrR2,4. This induces the flip of both Euler classes, i.e.

(E I ,E I I )
[`]−−→ (−E I ,−E I I ), (3.28)

leading to a reduction of the classification (Bouhon et al., 2020b)

(q, q ′) ∈Z2 −→ (E I ,E I I ) ∈ {
(a,b) ∈Z2|(a,b) ∼ (−a,−b)

}
, (3.29)

(this captures the distinction between the topology of oriented and orientable spaces). More-

over, it can be shown that the homotopy classification of the balanced phases (|E I | = |E I I |)
is further reduced due to the existence of an adiabatic transformation between the phases

(E I ,E I I ) = (q, q) and (−q, q) (Bouhon and Slager, 2022).

We finally note the sum rule

E I +E I I = 0mod2, (3.30)

which guarantees the cancellation of the second Stiefel-Whitney class over all the bands,

i.e. w2,I +w2,I I = 0mod2.

Balanced and imbalanced phases

The above homotopy classification allows us to distinguish two types of phases, the balanced

phases with |E I | = |E I I |, and the imbalanced phases with |E I | 6= |E I I |. The balanced phases
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are characterized by having one zero skyrmion number, i.e. either q = 0 or q ′ = 0, while

the imbalanced phases are characterized by having two nonzero skyrmion numbers, i.e.

|q|, |q ′| > 0.

In Sec. 3.9 and 3.10, we rederive in detail the general form and the topology of the Bloch

Hamiltonian for the balanced phases with degenerate bands by starting from a system with

spinful basal mirror symmetry. Indeed, we prove in the Sec. 3.10.1 that a balanced Euler

insulating phase has degenerate bands if and only if it has spinful basal mirror symmetry.

3.8.3 Tight-binding Hamiltonian

Once the homotopy representative Hamiltonian has been parametrized in terms of the points

of the Brillouin zone, as in H̃E [nq (k),n′
q ′(k)], we get a tight-binding Bloch Hamiltonian by

expanding each term as a Fourier series, i.e.(
H̃E [nq (k),n′

q ′(k)]
)

ab
= ∑

lx ,ly∈Z

[
a(ab)

(lx ,ly ) cos
(
lx kx + ly ky

)
+b(ab)

(lx ,ly ) sin
(
lx kx + ly ky

)]
.

(3.31)

In practise, we only need to keep a finite number K of terms, such that −K ≤ lx , ly ≤ K , since

the hopping parameters
{

a(ab)
(lx ,ly ),b(ab)

(lx ,ly )

}
decrease rapidly with the distance

√
l 2

x + l 2
y .

The explicit tight-binding models used in this work have been retrieved from Ref. (Bouhon,

2020) which provides a Mathematica notebook that generates four-band (and three-band)

tight-binding models for arbitrary fixed Euler classes.

Flat-band limit

In our context, perfect flat bands would require to keep all hopping terms up to infinitely

distant neighbors (i.e. −∞≤ lx,y ≤∞ in Eq. 3.31). However, we obtain a very good numerical

approximation of the flat bands by keeping hopping terms up to K ≈ 12, see e.g. Fig. 3.6(a) and

(b).

3.9 From complex to real basis

Usually, the tight-binding models of physical systems with C2T -symmetry are not given in

their real form. In order to fix ideas, let us start from the following Bloch-Löwdin orbital basis,

composed of two s-orbitals located at the center of the unit cell, each taken with the two
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Figure 3.6 – Band structures in the approximate flat-band limit for (a) the balanced phase
(E I ,E I I ) = (2,2), and (b) the imbalanced phase (E I ,E I ) = (1,3), obtained for K = 12 in Eq. 3.31.

spin-1/2 components,

|ϕ,k〉 = (|ϕ1,↑,k〉 |ϕ2,↑,k〉 |ϕ1,↓,k〉 |ϕ2,↓,k〉) ,

=∑
R

eik·R (|w1,↑,R〉 |w2,↑,R〉 |w1,↓,R〉 |w2,↓,R〉) , (3.32)

where R runs over all the Bravais vectors of the lattice, and 〈r|wα,R〉 = wα(r−R) is the Wannier

function of the orbital α localized at the lattice site R. The Bloch Hamiltonian then reads,

H =∑
k
|ϕ,k〉H(k)〈ϕ,k|, (3.33)

with

H(k) =
(

H↑↑(k) H↑↓(k)

H †
↑↓(k) H↓↓(k)

)
,

=


H1↑,1↑(k) H1↑,2↑(k) H1↑,1↓(k) H1↑,2↓(k)

H∗
1↑,2↑(k) H2↑,2↑(k) H2↑,1↓(k) H2↑,2↓(k)

H∗
1↑,1↓(k) H∗

2↑,1↓(k) H1↓,1↓(k) H1↓,2↓(k)

H∗
1↑,2↓(k) H∗

2↑,2↓(k) H∗
1↓,2↓(k) H2↓,2↓(k)

 ,

(3.34)

where we have imposed hermiticity.
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Let us list the action on the Bloch orbital basis of a few symmetries that we use below,

C2z |ϕ,k〉 = |ϕ,C2z k〉 (−iσz ⊗ 1) ,
I |ϕ,k〉 = |ϕ,−k〉 (1⊗ 1) ,

mz |ϕ,k〉 = |ϕ,mz k〉 (−iσz ⊗ 1) ,
T |ϕ,k〉 = |ϕ,−k〉(−iσy ⊗ 1

)
K ,

C2zT |ϕ,k〉 = |ϕ,mz k〉 (iσx ⊗ 1)K ,
IT |ϕ,k〉 = |ϕ,k〉(−iσy ⊗ 1

)
K ,

(3.35)

where C2z is the π rotation about the ẑ axis that is perpendicular to the basal plane containing

the two-dimensional system, I is inversion, mz =C2z I = IC2z is the basal mirror, T is time

reversal, and K is complex conjugation.

We now consider a system that is symmetric under C2zT only, i.e. it must satisfy the constraint

(σx ⊗ 1) H∗(mz k) (σx ⊗ 1) = H(k). (3.36)

In 2D systems, the momenta belong to the mz -invariant Brillouin zone, i.e. mz k = k. As a

consequence the blocks Hσσ′(k) that compose H(k) must be of the form

H↑↑ = H1σx +H2σy +H3σz +H41,

H↓↓ = H1σx −H2σy +H3σz +H41,

H↑↓ =
(

H5 + iH6 H7 + iH8

H7 + iH8 H9 + iH10

)
,

(3.37)

where
H1 = Re H1↑,2↑, H6 = Im H1↑,1↓,

H2 = − Im H1↑,2↑, H7 = Re H1↑,2↓,

H3 = (H1↑,1↑−H2↑,2↑)/2, H8 = Im H1↑,2↓,

H4 = (H1↑,1↑+H2↑,2↑)/2, H9 = Re H2↑,2↓,

H5 = Re H1↑,1↓, H10 = Im H2↑,2↓,

(3.38)

From [C2zT ]2 = +1 follows that there exists a basis in which C2zT is represented by K

(Bouhon et al., 2020a). This basis is here given by

|ϕ̃,k〉 = |ϕ,k〉 ·V †,

V =
√
σx ⊗ 1 · 1

2


−1 i 1 −i

i −1 i −1

−i 1 i −1

−1 i −1 i

 ,
(3.39)
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for which
C2zT |ϕ̃,k〉 =C2zT |ϕ,k〉 ·V †,

= |ϕ,k〉 · (iσx ⊗ 1)V T K ,

= |ϕ̃,k〉 ·V (iσx ⊗ 1)V T K ,

= |ϕ̃,k〉K .

(3.40)

Rotating the Hamiltonian in the new basis, we define

H̃(k) =V ·H(k) ·V †, (3.41)

that now must satisfy H̃∗(k) = H̃(k) as a consequence of C2zT symmetry, i.e. H̃(k) is real and

symmetric.

In the “real” basis, the Hamiltonian thus has the generic form

H̃ =


h11 h12 h13 h14

h12 h22 h23 h24

h13 h23 h33 h34

h14 h24 h34 h44

 , (3.42)

where all elements hi j are real and given by

h11 = H3 +H4 −H5,

h22 = H3 +H4 +H5,

h33 = −H3 +H4 −H9,

h44 = −H3 +H4 +H9,

h12 = −H6,

h13 = −H1 +H7,

h14 = H2 −H8,

h23 = H2 +H8,

h24 = H1 +H7,

h34 = H10.

(3.43)

3.10 Mirror Chern number and Euler class

Let us assume that the system satisfies the basal mirror symmetry mz as well. Then, it must

also have −mzC2zT =−C 2
2z IT = IT symmetry. The system thus has the symmetries of the

magnetic point group 2′/m = {E ,C2zT ,mz , IT }. It readily follows that the off-diagonal blocks

H↑↓ = H↓↑ must vanish, i.e. H5 = H6 = H7 = H8 = H9 = H10 = 0. The mz -invariant Hamiltonian

in the spinor basis then reads

H = H↑↑⊕H↓↓. (3.44)

Since IT H = H with [IT ]2 = −1, the bands must be twofold-degenerate at all momenta,

namely the bands are Kramers degenerate. The eigenvalues are indeed readily found to be
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{Eo ,Eo ,Eu ,Eu}, with
Eo = H4 −ε, Eu = H4 +ε,

ε=
√

H 2
1 +H 2

2 +H 2
3 .

(3.45)

We note that H4 can be chosen arbitrarily without affecting the symmetry and the topology,

we thus set H4 = 0 without loss of generality. The eigenvectors are

v (↑)
o =


p

1− r 2

−r eiρ

0

0

 , v (↑)
u =


rp

1− r 2 eiρ

0

0

 ,

v (↓)
o =


0

0p
1− r 2

−r e−iρ

 , v (↓)
u =


0

0

rp
1− r 2 e−iρ

 ,

(3.46)

with

ρ = Arg{H1 + i H2} , r 2 = ε+H3

2ε
. (3.47)

The topology can now be directly assessed from a single spin sector, say from H↑↑. Imposing

the condition of a band gap, i.e. ε> 0, we define the unit vector

n↑ =
1

ε
(H1, H2, H3), (3.48)

in terms of which we obtain the skyrmion number W [n↑] Eq. 3.21. Characterizing the H↓↓ with

the unit vector

n↓ =
1

ε
(H1,−H2, H3), (3.49)

we have

W [n↓] =−W [n↑]. (3.50)

It can be checked that W [n↑] directly gives the Chern number computed through the surface

integral of the Berry curvature for the occupied eigenvector in the ↑-spin sector, i.e. defining

F [v (↑)
o ] =−i

[
(∂k1 v (↑)

o )† · (∂k2 v (↑)
o )

−(∂k2 v (↑)
o )† · (∂k1 v (↑)

0 )
]

, (3.51)

we have

C (↑) = 1

2π

∫
d 2k F [v (↑)

o ] =W [n↑], (3.52)

and similarly

C (↓) = 1

2π

∫
d 2k F [v (↓)

o ] =W [n↓] =−C (↑). (3.53)
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Furthermore, since the mz operator is diagonal in the orbital-spinor basis (see Eq. 3.35), we

readily find the Chern number in the (−i)-mirror eigenvalue sector, i.e.

C (−i) =C (↑) =W [n↑], (3.54)

called the mirror Chern number. Similarly, the mirror Chern number of the other spin (mirror)

sector is

C (i) =C (↓) =W [n↓] =−W [n↑]. (3.55)

Moving to the real basis, we now show that there is a one-to-one correspondence between the

mirror Chern number of one occupied mirror-polarized band and the signed Euler class of

the occupied two-band subspace. First, let us write the mz -invariant Hamiltonian in its real

symmetric form,

H̃ =


H3 0 −H1 H2

0 H3 H2 H1

−H1 H2 −H3 0

H2 H1 0 −H3

 ,

=−H1(σx ⊗σz )+H2(σx ⊗σx )+H3(σz ⊗ 1).

(3.56)

Assuming again the gap condition, i.e. ε2 = H 2
1 +H 2

2 +H 2
3 > 0, without loss of generality we can

deform the Hamiltonian as Hi → n↑,i for i = 1,2,3.

We now derive the direct relation between the mirror Chern number and the Euler class of the

system via the Plücker embedding. First, we parametrize the flattened Hamiltonian Eq. 3.56

through
H1/ε= n↑,1 = cosφsinθ,

H2/ε= n↑,2 = sinφsinθ,

H3/ε= n↑,3 = cosθ.

(3.57)

The eigenvalues are then {−1,−1,1,1}, and the two real eigenvectors of the occupied bands are

given by

u1(φ,θ) =
√

cos(θ/2)2


sinφ tan(θ/2)

cosφ tan(θ/2)

0

−1

 ,

u2(φ,θ) =
√

cos(θ/2)2


−cosφ tan(θ/2)

sinφ tan(θ/2)

−1

0

 .

(3.58)

Then, the wedge product of the two occupied bands (Plücker embedding (Bouhon et al.,

49



Chapter 3. Landau Levels of the Euler Class Topology

2020b)) gives 

u3
1u2

2 −u2
1u3

2

u3
1u1

2 −u1
1u3

2

u1
1u2

2 −u2
1u1

2

u4
1u1

2 −u1
1u4

2

u2
1u4

2 −u4
1u2

2

u3
1u4

2 −u4
1u3

2


·
(
13 13

13 −13

)
=



cosφsinθ

sinφsinθ

−cosθ

0

0

1


= (

n1,↑,n2,↑,−n3,↑,0,0,1
)T .

(3.59)

The Euler class is defined as the winding of the wedge product. The above relation thus

explicitly shows that the Euler class of the two occupied bands is readily given by the (oriented)

number of times n↑(φ(kx ,ky ),θ(kx ,ky )) wraps the sphere when (kx ,ky ) covers the Brillouin

zone one time (Bouhon et al., 2020b). The proof is completed by noting that the Hamiltonian

Eq. 3.56, after flattening the eigenvalues, is defined in terms of Eq. 3.20 by

H̃ [Hi → n↑,i ] = H̃E [(n↑,1,n↑,2,−n↑,3), (0,1,0)]. (3.60)

The Euler class of the system are then determined from the Skyrmion numbers

q =W [(n↑,1,n↑,2,−n↑,3)] =−W [n↑],

q ′ = 0,
(3.61)

via Eq. 3.27, to be (E I ,E I I ) = (q, q). Then with Eq. 3.54, we obtain

E I = E I I =−C (−i) ∈Z. (3.62)

A few comments are needed here. In general (i.e. without mirror symmetry), the sign of

the Euler class is not uniquely defined because, as noted above, Hamiltonians only define

orientable vector bundles (instead of oriented vector bundles) as a consequence of the gauge

freedom ui →±ui for every eigenvector, which allows flipping the sign of the wedge product

between the two occupied eigenvectors, i.e. u1∧u2 →−u1∧u2. This has the consequence that

there exist adiabatic transformations of the Hamiltonian that flip the sign of the pair of Euler

classes, leading to the topological equivalence (E I ,E I I ) ∼ (−E I ,−E I I ) (Bouhon et al., 2020b).

Under the constraint of the basal mirror symmetry mz though, one can associate a signed

winding number to a fixed mirror eigenvalue sector.

Let us write the representation of mz in the basis of real eigenvectors, i.e.(
uT

1

uT
2

)
·Ũmz · (u1 u2) =

(
0 1

−1 0

)
, (3.63)

where

Ũmz =V † · (−iσz ⊗ 1) ·V =σz ⊗ iσy (3.64)
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is the representation of mz in the “real” Bloch orbital basis Eq. 3.39. The eigenbasis of mz is

thus given through the complexification (see the Chern basis in Sec. 3.2)

v+ = (u1 + iu2)
p

2,

v− = (u1 − iu2)/
p

2,
(3.65)

i.e. (
v†
+

v†−

)
·Ũmz · (v+ v−) =

(
−i 0

0 i

)
=−iσz , (3.66)

which is now diagonal, such that v± are eigenvectors of mz with the eigenvalues ∓i. (Note that

we actually recover the action of mz on the spinor basis given in Eq. 3.35.) It is now transparent

from Eq. 3.66 that the relative sign between u1 and u2, and thus the sign of the Euler class (fixed

by the wedge product u1∧u2), is fixed by the mirror symmetry, since the gauge transformation

u1 ∧u2 →−u1 ∧u2 implies v± → v∓ which is forbidden under the constraint of a fixed mirror-

eigenvalue sector. Note that the gauge transformation (u1,u2) → (−u1,−u2) is allowed since it

doesn’t change the fixed mirror-eigenvalue sector, nor does it change the signed Euler class.

We emphasise that {v1, v2} are still eigenvectors of the Hamiltonian since the energy eigen-

values for u1 and u2 are degenerate. Furthermore, we readily recover the (−i)- and (i)-mirror

Chern numbers as the Chern numbers of v1 and v2, respectively. It is now apparent that

the winding associated to a nontrivial Euler class in Eq. 3.59, directly implies the winding

associated to the mirror Chern numbers, according to Eq. 3.54. We conclude that by imposing

that u1 + iu2 has the mirror eigenvalue −i, there is a one-to-one correspondence between the

Euler class Eq. 3.59 and the mirror Chern number Eq. 3.54, leading to Eq. 3.62.

3.10.1 All degenerate balanced phases are mirror-symmetric

Importantly, the above reasoning for balanced Euler insulating phases can be reversed. Namely,

for every (orientable) balanced (E I = E I I ) topological phase with only the C2zT symmetry,

whenever we impose the two-by-two degeneracy of the bands, there must be an effective

basal mirror symmetry mz (spinful with m2
z =−1), leading to the effective IT symmetry with

[IT ]2 =−1. In other words, the degeneracy of the bands is always associated with a symmetry

of the Hamiltonian and no fine-tuning is needed.

We prove this by going back to the general geometric form from which all our tight-binding

Hamiltonian are derived, Eq. 3.20. First of all, all Hamiltonian belonging to GrR2,4 can be adia-

batically mapped to a twofold-degenerate Hamiltonian. By construction the representative of

each (orientable) homotopy class H̃ [n,n′] is twofold degenerate. Without loss of generality,

the balanced phases are obtained by fixing n′ to be non-winding, i.e. q ′ = W [n′] = 0. Note

that we can alternatively fix n to a constant and let n′ wind instead, i.e. the transformation

(q, q ′ = 0) → (0, q ′ = q), which induces the flip of one Euler class. That is from Eq. 3.27

(E I ,E I I ) −→ (E ′
I ,E ′

I I ) = (−E I ,E I I ). (3.67)
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Since we do not observe any qualitative difference in the Hofstadter spectrum between the

phases (E I ,E I I ) and ±(−E I ,E I I ), we have shown results for E I ,E I I ≥ 0 only.

Let us fix n = (H1, H2,−H3)/ε and n′ = n̄ = (0,1,0) in Eq. 3.20, which leads to the Hamiltonian

Eq. 3.56. We find that it is mirror symmetric with

Ũmz · H̃ [n, n̄] ·Ũ T
mz

= H̃ [n, n̄], (3.68)

where Ũmz is defined in Eq. 3.64. Comparing H̃ [n,n′] with two different fixed unit vectors n′,
i.e. in one case n′ = n̄ and in the other case n′ = n1 6= n̄, we find

H̃ [n, n̄] =∆R[n, n̄,n1] · H̃ [n,n1] ·∆R[n, n̄,n1]T , (3.69)

with

∆R[n, n̄,n1] = R[n, n̄] ·R[n,n1]T . (3.70)

Substituting Eq. 3.69 in Eq. 3.68, we then obtain

∆Ũmz (n1) · H̃ [n,n1] ·∆Ũmz (n1)T = H̃ [n,n1], (3.71)

with

∆Ũmz (n1) =∆R[n, n̄,n1]T ·Ũmz ·∆R[n, n̄,n1], (3.72)

i.e. the deformed Hamiltonian H̃ [n, n̄] → H̃ [n,n1] is still mirror symmetric, with a constant

mirror operator ∆Ũmz (n1).

Interestingly, we can consider more general adiabatic transformations for which n′ is non-

constant but still non-winding, i.e. n′ = n′(k) with W [n′(k)] = 0. In that case, the “mirror”

symmetry operator is non-constant, with a nontrivial action of the “mirror” symmetry on the

momentum. We will explore such phases elsewhere.

Since our homotopy representative Hamiltonian of the balanced Euler insulating phases

covers all the balanced homotopy classes (with q ′ = 0 and q ∈ Z), we conclude with the

following statement: Every (two-dimensional, four-band at half-filling, orientable) balanced

Euler insulating phase is (spinful) mirror-symmetric with respect to the basal plane if and only

if the energy eigenvalues are twofold-degenerate.

3.10.2 Degenerate imbalanced phases

Contrary to the balanced case, the imbalanced Euler insulating phases (|E I | 6= |E I I |) with

twofold-degenerate energy eigenvalues are never compatible with an effective mirror symme-

try mz , and thus there is no Kramers degeneracy. As a consequence, the degeneracy of the

bands for these phases always requires fine-tuning.

Let us prove this. The imbalanced condition imposes that q, q ′ 6= 0, i.e. the two-unit vectors
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n and n′ both wind. We simply define the imbalanced Hamiltonian from the balanced one

through Eq. 3.69, where we substitute the constant unit vector n1 to the winding one n′. As

a consequence, the degenerate imbalanced Hamiltonian satisfies Eq. 3.71 but now with a

mirror symmetry operator ∆Ũmz (n′) in Eq. 3.72 that winds. Therefore, the condition Eq. 3.71

cannot be interpreted as the symmetry of one fixed homotopy class. Since the degeneracy of

the bands in one imbalanced homotopy class is never associated with a global symmetry of

the Hamiltonian, it is accidental and can only be realized through fine-tuning.

It can be verified with the Mathematica notebook of Ref. (Bouhon, 2020) that the degeneracy of

the bands of imbalanced phases is never exact whenever we truncate the Fourier expansion of

Eq. 3.31. However, since the hopping parameters decay rapidly, similarly to the flat-band limit,

we obtain degenerate bands in a good numerical approximation, see e.g. Fig. 3.6(b) showing

the band structure of the phase (E I ,E I I ) = (1,3) obtained for K = 12 where both degeneracy

and flatness have been imposed.

3.11 Hidden symmetry of the dispersive balanced phases and com-

parison with the QHS model

The non-degenerate phases break the mirror symmetry mz . The constraint of the C2zT

symmetry alone allows all the terms of the real symmetric Hamiltonian in Eq. 3.42 to be

nonzero. Form the systematic probe of all allowed (adiabatic) perturbations of the model

H̃bal[n] = H̃ [n, (0,1,0)] given by Eq. 3.20 (see also Sec. 3.3), we have found that the gapping of

the Hofstadter spectrum at half-filling only happens when h14 6= h23. Setting h23 = h +δ and

h14 = h −δ, a general (real symmetric) balanced Hamiltonian then takes the form

H̃bal = H̃bal[δ= 0]+δ(σy ⊗σy ), (3.73)

with δ= (h23 −h14)/2.

We call the condition δ = 0 a hidden symmetry of the balanced Hamiltonian at finite flux.

In other words, every tight-binding Hamiltonian that is of the form H̃bal[δ= 0] satisfies the

hidden symmetry and exhibits a gapless Hofstadter spectrum. On the contrary, any model

with |δ| > 0 has a gapped Hofstadter spectrum.

Comparison with the QSH model

In Ref. (Herzog-Arbeitman et al., 2020) the authors have considered the BHZ model of the

Quantum Spin Hall phase (QSH) and its generalization when only the C2zT symmetry is

preserved and restricting to balanced phases, which they call H ′′′
QSH . For exhaustiveness, we

give here the mapping from H ′′′
QSH (which is not in its real form) to our models in Eq. 3.42.
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We first write H ′′′
QSH in its generic form, i.e.

H ′′′
QSH = a0(1⊗ 1)+a1(1⊗σz )+a2(σz ⊗σx )+ (3.74)

a3(σz ⊗σx )+a4(σy ⊗σz )+a5(σx ⊗ 1)+a′
5(σy ⊗ 1)+ (3.75)

a6(σx ⊗σy )+a′
6(σy ⊗σy )+a′′

6 (σx ⊗σz ), (3.76)

where we have added the term a4(σy ⊗σz ) which is allowed by C2zT but not present in the

model of Ref. (Herzog-Arbeitman et al., 2020). (We note that we are not concerned here with

the specific expressions of the terms of H ′′′
QSH given in Ref. (Herzog-Arbeitman et al., 2020)

which realizes the phase E I = E I I = 1.)

We now perform a change of basis that brings H ′′′
QSH in its real form in order to compare it with

our models. We define

H̃ ′′′
QSH = P ·V ·H ′′′

QSH ·V † ·P, (3.77)

that is real and symmetric, with

V =p
σx ⊗σz , P =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (3.78)

Writing it explicitly, we have

H̃ ′′′
QSH =


h11 h12 h13 h14

h12 h22 h23 h24

h13 h23 h33 h34

h14 h24 h34 h44

 , (3.79)

with
h11 = a0 +a1 +a4 +a′

5

h22 = a0 +a1 −a4 −a′
5

h33 = a0 −a1 +a4 −a′
5

h44 = a0 −a1 −a4 +a′
5

h12 = a5 +a′′
6

h13 = a2 −a6

h14 =−a3 −a′
6

h23 =−a3 +a′
6,

h24 =−a2 −a6,

h34 = a5 −a′′
6 .

(3.80)

In agreement with our finding of the hidden symmetry, we have verified that only the nonzero
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term a′
6(σy ⊗σy ) of H ′′′

QSH leads to the gapping of the Hofstadter spectrum. We indeed have

a′
6 =

h23 −h14

2
= δ, (3.81)

which is the term responsible for the hidden symmetry discussed above.

55





4 Bulk-boundary correspondence of im-
balanced topological Euler insulators

Topological materials feature nontrivial boundary modes, which originated from bulk topology.

Characteristics of two-dimensional systems with C2T symmetry fall into the Euler classes,

while its boundary signature is still being investigated. Euler insulators differ from other

topological insulators in their qualities. In particular, the Euler numbers of occupied and

empty bands do not have to be equal, thus allowing the scenario of imbalanced Euler insulators.

Edge state crossing indexes in flat-band Euler insulators are reported in this Chapter. The

edge mode features a series of touching points within the limit of exact dispersionless bulk

bands. The algebraic order of the dispersion branches forming the edge nodal points sums up

to the bulk Euler number, according to a comprehensive inspection of the edge states. Such a

summing rule provides bulk-boundary correspondence of an Euler insulator, as well as the

observable to identify balanced and imbalanced Euler insulators.

The motivation of this Chapter is to explore edge signatures for the Euler class topology and

provide a direct comparison against the edge states of Chern insulators.

The Chapter is adapted from:

Y.Guan, A.Bouhon, O.Yazyev

Edge signatures of imbalanced Euler insulators;

My contribution includes: performing the edge state calculations, concluding the relationship

between algebraic orders and the Euler numbers and providing the Wilson loop theory for

edge states.

4.1 Introduction

Bulk-boundary correspondence (BBC) has been the hallmark of topological phases in solids

(Hatsugai, 1993, Thouless, 1998, Fidkowski et al., 2011). Such a correspondence provides a

prominent probe of bulk topology, and the topologically protected states give the possibility

to design robust surface modes (Hatsugai, 1993, Xu et al., 2021, Chiu et al., 2018). Since

the discovery of edge states in Chern insulators and quantum spin Hall insulators, a series
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of studies has expanded the scope of bulk-boundary correspondence to broader ranges of

topological insulators (Qi and Zhang, 2011, Hasan and Kane, 2010, Takahashi et al., 2020,

Hwang et al., 2019, Trifunovic and Brouwer, 2019, Rhim et al., 2018).

While the connection between the edge spectrum and the bulk topology is established for

various types of insulators (Alexandradinata et al., 2016, Fidkowski et al., 2011), inferring

edge states from solely bulk invariants remains problematic. There are two dimensions to

the difficulty of such a situation. First, the present theories rely on the condition that the

edge preserves all bulk symmetries (Alexandradinata et al., 2016), which can be violated in

reality. Moreover, the correspondence faces challenges in fragile topological insulators found

recently, where the bulk topology might be trivialized by adding trivial bands into the occupied

subspace. (Song et al., 2020a, Po et al., 2018a, Song et al., 2020b, Bouhon et al., 2019, 2020b).

The concept of fragile topological insulators rises from the discrepancy between the stable

classification (Schnyder et al., 2008, Kitaev, 2009, Chiu et al., 2016) and symmetry indicators

(Bradlyn et al., 2019, 2017). The notion of fragile topology then brings the study on topological

details of subbands (Bouhon et al., 2020b). Such fragile indicators are sensitive to the number

of bands, which is different from the previous stable phases. Among the intriguing classes

of fragile topological insulators, the crystalline fragile phases have been reported to exhibit

twisted BBC (Song et al., 2020b). Such a scenario is verified by taking adiabatic pumps while

preserving the symmetries (Song et al., 2020b, Peri et al., 2020). However, the BBC for broader

classes of fragile topological insulators has not been fully established.

Typically, the fragile topology appearing in P T or C2T symmetric systems goes beyond solely

symmetry indicators (Ahn et al., 2019a, 2018, Bouhon et al., 2020a, Wu et al., 2019, Ahn et al.,

2019b, Ahn and Yang, 2019). These systems are characterized by geometrical invariants called

Euler numbers. Such fragile characteristics also feature a special subclass of the "imbalanced"

Euler class, where the Euler numbers of occupied and empty bands are different (Bouhon

and Slager, 2022). The imbalanced topological charges are usually absent in conventional

classifications.

Euler-class insulators are also related to rich kinds of physical phenomena. Their manifestation

on observables includes the non-Abelian braiding of nodal points (Bouhon et al., 2020a), the

linking structure in quench dynamics (Ünal et al., 2020) and nontrivial orbital magnetic

moments. The underlying geometry of the eigenstates in Euler bands also mediates the

interaction between electrons, such as the electron pairing in superconducting twisted bilayer

graphene (TBG) (Xie et al., 2020, Peotta and Törmä, 2015, Bauer et al., 2022). Moreover, recent

findings in twisted double bilayer graphene show imbalanced Wilson loop windings in the flat

bands (Crosse et al., 2020), which leads to different orbital magnetic moments in subbands

(Wu et al., 2021). Such an imbalanced topological number suggests that the imbalanced

scenario would emerge in such twisted multilayers, making it interesting to investigate the

features of imbalanced Euler phases.

In this Chapter, we report the heuristic bulk-boundary correspondence of flat-band Euler
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insulators. Our finding covers both the balanced and imbalanced Euler phases. The balanced

Euler insulators relate to mirror-Chern insulators in the dispersionless limit, while the imbal-

anced Euler insulators do not map to such counterparts. In both cases, the edge states exhibit

a series of nodal points near the Fermi level. In the balanced case, the number of nodes equals

the Euler number. While in the imbalanced phase, the algebraic order of the nodes sums up to

the higher Euler number.

4.2 Flat-band Euler insulators

In two-dimensional systems with C2T symmetry, there exists a global gauge where the Hamil-

tonian is real-symmetric. Such a real Hamiltonian gives the real vector bundle of the eigen-

states, which is characterized by Euler numbers E ∈ Z if the number of bands is 2 1. Such

Z-topological number is fragile since the topology degenerates to Z2 Stiefel-Whitney class in

higher-rank bundles (Ahn et al., 2019a,b, Ahn and Yang, 2019). We focus on the 3-band and

4-band models of Euler insulators. As the minimal model carrying the Euler topology, 3-band

models give a series of Euler numbers E = 2N (Bouhon et al., 2020b). On the other hand,

4-band models contain two 2-band subspaces, each giving an Z Euler number. The two Euler

numbers form the Z⊕Z characterization of the 4-band system. Denoting the Euler number

of occupied (empty) bands as E+(E−), the class of general 4-band Hamiltonian is written

as (E+,E−). Different from other characterizations, the total Euler number of the 4-band

subspace is not necessarily zero. E−+E+ = 0 mod 2 is sufficient to guarantee the orientability.

Subsequently, a subclass of imbalanced Euler insulators emerges in 4-band systems, where

E+ 6= E−. Such an imbalanced phase goes beyond conventional classes, and it is important to

interpret its bulk-edge correspondence.

The edge spectrum of Euler insulators within the flat-band limit is shown in the followings. This

limit serves as a baseline for edge spectrum studies because numerous internal symmetries are

retained. The balanced case with E+ = E−, for example, essentially carries the chiral symmetry

as well as an emergent Mz symmetry if the bands degenerate. Flat-band Euler insulators

exhibit gapless edge states, of which the algebraic indexes are determined by the bulk Euler

numbers.

A special case of 4-band Euler insulators is when E+ = E−, and each of the 2-band subspaces

is doubly degenerated. In this case, the 2 Euler bands can be rotated into a Chern basis:

vα+ = (uα
a + iuα

b )/
p

2,

vα− = (uα
a − iuα

b )/
p

2,
(4.1)

which are also eigenstates of Ĥ due to the degeneracy. The Berry curvature on the Chern basis

F [vα+] = (∂k1 vα−)T · (∂k2 vα+)− (∂k2 vα−)T · (∂k1 vα+) equals to the Euler number Euα = F [vα+] of the

original bands. Furthermore, the degenerated Euler insulator has an emergent Mz symmetry,

1Here we only consider orientable bundles.
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Figure 4.1 – Edge states of balanced Euler insulators and flat (degenerated) subbands. The
system has emergent Mz symmetry, and the mirror Chern number coincides with |E |. (a)
E = 1 (b) E = 2. From the results of Mz insulators, n edge states are present in Cmz = n = |E |
phase.

and the Chern basis is also an eigenbasis of the mz operator. Under the Mz symmetry, each

two-band subspace carries a mirror-Chern number

E− = E+ =−C (−i) =C (i) ∈Z, (4.2)

of which the absolute values coincide with the Euler number. The edge states of mirror-Chern

systems have been thoroughly investigated (Kane and Mele, 2005a). In Fig. 4.1, we show two

typical examples of edge states. For Cmz = n insulators, there exist n pairings of topological

edge states due to the Mz symmetry. The mz = ±1 bands contribute to the two different

chiralities of the edge states.

4.2.1 Imbalanced Euler insulators

The 4-band systems with C2T symmetry are characterized by SO(4)/SO(2)×SO(2)=Z⊕Z. A

special property of the 4-band case is that the Euler numbers of the two subbands are not

necessarily the same: only E++E− = 0 mod 2 is required to cancel the total second Stiefel-

Whitney class. Subsequently, the "imbalanced" Euler phases emerge in 4-band systems, which

is absent for other topological characterizations. Such imbalanced phases raise the question

of edge states, typically, whether both E+, andE− affect the edge spectrum.

We investigate the edge states of such imbalanced phases. Note that the topological bands with

exact flatness require infinite hoppings in tight-binding (TB) models, the models are truncated

in our calculation which leads to a small broadening of the bands. Fig. 4.2 shows the edge

states of imbalanced Euler phases within the flat-band limit. The bands are calculated with a

ribbon geometry, such that states on the two edges are twofold degenerate. Unlike in Chern or

mirror-Chern insulators, the total number of edge states stays the same in the imbalanced

case while Euler numbers are changed. Besides the number of edge states, the different Euler

phases lead to a series of edge state crossings. In Fig. 4.2(a), the 1-3 Euler insulator has 3 linear

crossing points, while the 1-5 phase leads to 5 crossings. Further calculations show that the
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Figure 4.2 – Edge states of flat 4-band models with imbalanced Euler numbers: (a) E− = 1,E+ =
3, (b) E− = 5,E+ = 1, (c) E− = 2,E+ = 6 and (d) E− = 3,E+ = 5.

sum of crossing indexes equals the higher one between the Euler numbers:∑
pi = max{|E+|, |E−|}, (4.3)

denoting pi as the order of the i th crossing point, eg: p=1 for linear crossing and p=2 for

quadratic crossing. As an example, the edge states of 2-6 Euler numbers (see Fig. 4.2(c)) have 2

linear crossings and 2 quadratic crossings, leading to
∑

pi = 2+2×2 = 6.

A remarkable feature of the imbalanced flat bands is that the edge index
∑

pi is not only

determined by the topology of occupied states, as in other types of topological classes. If the

system carries E+ > E−, the crossing of edge bands gives the Euler number of the unoccupied

2-band subspace. The reflection of the conduction band Euler number in the edge index then

reveals a fundamental difference from the usual topological classification. Moreover, with the

Euler numbers, it is possible to extract the dispersion of edge states, not only the number of

edge modes.

4.3 Theory

We establish the theory of edge states by a continuum deformation from bulk polarization to

the edge Hamiltonian Coh and Vanderbilt (2009), Fidkowski et al. (2011). Such construction is

adapted from the proof of Wannier centre-edge state correspondence Alexandradinata et al.
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(2016), Fidkowski et al. (2011). The starting point is a spectrally flat Hamiltonian:

H f = P+−P−, (4.4)

where P± indicates the projection operator to the occupied (−) or empty (+) bands:

P±(k) =∑
±
|u±

k 〉〈u±
k |. (4.5)

The flat-band Hamiltonian H f evolves to the edge Hamiltonian if connected to a negative

chemical potential V (y): 2

He = P+V +(y)P+−P−V −(y)P−. (4.6)

Such a connection is chosen as the open boundary conditions on the y-direction. The

deformation of H f naturally behaves as an interpolation between the bulk polarization

φy (kx ) = P (kx )ŷP (kx ) and the edge Hamiltonian He
3. Therefore, we manage to construct an

edge Hamiltonian with φy . The polarization P ŷP is equivalent to the Wannier charge centre

(WCC) winding since:

W ±
y (kx ) = exp

(
i P ŷP

)= exp

[∫
ky

〈uk |∂ky |uk〉
]

. (4.7)

(W ±
y = e iφ±

y ), which is contained in eq7 Given that He (kx ) is with the same form as the polar-

ization φy (kx ), it is possible to construct He based on the Wilson loop winding.

We start with an assumption about the shape of effective 2-band TB models (for the two bands

which cross at the Fermi level) with hopping range N :

He (kx ) =
N∑

n=−N
(σx t n

x +σy t n
y +σz t n

z )e i kx ·rn . (4.8)

For simplicity, we first assume that the edge Hamiltonian is real-symmetric, as required by

the C2T symmetry. Since gapless states are expected, the real-symmetric Hamiltonian H RS
e

contains only σx terms (adding σz terms will open an energy gap)

H RS
e (kx ) =

N∑
n=0

2t n
x σx cos(kx rn) =

N∑
n=−N

t n
x σx e i kx rn . (4.9)

The algebraic order of Eq. 4.9 naturally depends on N :
∑

pi = N . Following the polarization

operator P ŷP , and regarding the WCC sheet of Euler bands as a pair of winding, N is the same

as the winding number of the Wilson loop. To see this, we use a construction of deformation

2V (y) serves as an interpolating parameter to bridge the Wilson loop with edge states, of which the explicit
form is not required.

3While the interpolation acts as He =V (φy ,kx )φy (kx ), the perturbative behavior near the nodal points φy = 0
is determined by φy : H ′

e =V ′φy +Vφ′
y ≈Vφ′

y .
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on the Wilson loop preserving only the winding number f (W ):

f (W ±) = e−i
∑∫

dkφ−1
y ∂kφy +e+i

∑∫
dkφ−1

y ∂kφy , (4.10)

the WCC sheet with winding N± is continuously deformable into:
∑

nσx [exp(i kx ·n/2)+
exp(−i kx ·n/2)] which contain minimal number of terms. Replacing the parameters produces

a Hamiltonian HX of variable X :

H±
X =σx (e−i N±kx /2 +e+i N±kx /2) =σx (X N± +X −N±

), (4.11)

Equation. 4.11 expands He to an algebraic function of a general complex number X . This

automatically gives the algebraic order on the whole complex plane. The difference of algebraic

order ±N indicates 2N zero points on the plane, which are symmetric to the real axis, i.e.

H(a +bi ) = 0 → H(a −bi ) = 0 4. In the flat-band limit, our results show that all the 2N roots

reside on the unit circle X = exp(iθ). Moreover, summing up the contribution of conduct

bands and valance bands involves the Euler numbers of both subspaces: H =σx [X N++X −N++
γ(X N− +X −N−

)]. It is obvious that the order of these roots sums to max{N+, N−} regardless of

the degeneracy.

The discussions above apply well to the flat-band Euler insulators. Note that Eq. 4.11 gives the

number of zero points on the complex plane, the roots might escape from the unit circle and

thus gap some of the nodes. The flat-band limit is considered a special case to establish the

theories. In general Euler bands, which may be dispersive and break various symmetries, the

edge states are not predictable by the theory in sec.III. It is thus important to inspect the bulk

perturbations and their effect on the edge spectrum.

Going further than the flat-band case, we construct models that remove the degeneracy

or band flatness. The flat-band Hamiltonian, or equivalently its projector expression, has

several emergent symmetries such as exact band degeneracy and particle-hole symmetry

which are to be broken. In Fig. 4.3, we present the edge states in non-flat band systems, both

with the imbalanced 4-band model where E+=3 ,E−=1, and in the 3-band model with E=2.

Different from the flat-band cases, the edge nodal points are gapped in both cases. Such a

phenomenon is concluded as a consequence of the chiral symmetry breaking. Instead of the

previous perturbative expression near the nodes Hi =σx (X N +X −N ), the perturbed nodes are

approximated by:

Hδ
i =σx (X N +X −N )+δσz . (4.12)

Such a form of approximation suggests that the algebraic order is still traceable in the presence

of a small symmetry breaking. To fully portray the nodal points on the edge spectrum, we

extend the domain of X from the conventional BZ X = e i kx to the entire complex plane. Such

a variation can be interpreted as a gain or loss term on the couplings, which is seen in the

4Alternatively, one can consider the set cos(kx ·n/2) while using the replacing X → ei kx /2. The resulting
polynomial is then also integer-ordered, while the actual momentum terms lie on the plane as X 2.
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Figure 4.3 – Open-boundary band structures of (a) 4-band model with (E+,E−) = (1,3), (b)
3-band model with E=2. The band flatness and emergent E to −E symmetry are broken.
Subsequently, the edge states are now gapped.

studies on non-Hermitian systems (Yao and Wang, 2018, Zhang et al., 2020b). We track the

zero points of a model Hamiltonian:

H(k,δ) = [X 3 +X −3 +γ(X 1 +X −1)]σx +δσz . (4.13)

Typical layouts of zeros are presented in Fig. 4.4. The subplots Fig. 4.4(a)→(b)→(d) depicts

the effects of γ. At γ = 0.2 three nodes in linear order are expected, while (b) exhibits the

critical case where an order-3 node emerges. When γ is further increased, the zeros start

to escape from the BZ. Such escaping of zeros is also triggered by δ terms which represent

the perturbative symmetry-breaking, see Fig. 4.4(a-c). By extending the momentum to the

complex plane, the relation between bulk Euler number and edge algebraic order becomes

exact. In addition to tracing the nodes by Eq. 4.12, one would expect such correspondence to

be observed in a tunable non-Hermitian setup.

4.4 Conclusions

In this Chapter, we address the edge state features of the flat-band Euler insulators. In the

limit of flat bands, the bulk spectrum is equivalent to the sum of projectors, giving a series of

crossing points on the edge bands. These crossing points serve as probes of the Euler number.

In particular, the algebraic index of the crossing points can give the invariant in imbalanced

Euler insulators. The index reflects the higher Euler number between occupied and empty

bands. Its capability goes beyond traditional observables which can only probe the topological

invariant in the occupied bands, making it possible to gain information on unoccupied bands

as well. Such observations from Euler insulators build the correspondence to not only the

number of edge states but also their shapes. Furthermore, since the Euler number is highly

related to reciprocal node braiding, it is worth investigating the form of edge Hamiltonian

Eq. 4.11, in comparison to knot polynomials. Going to the dispersive bands, the edge nodal

points are broken by the violation of spectral symmetry. However, the corresponding projector

spectrum would still behave the same, and the signature of the algebraic indexes is visible in

the shape of edge states.
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Figure 4.4 – Evolution of zeros by tuning the parameters in model Hamiltonian H = [X 3 +
X −3 +γ(X 1 + X −1)]σx +δσz . (a) γ= 0.2,δ= 0 provide 3 different zeros reside on the BZ. (b)
γ= 3.0,δ= 0 indicates a critical case that the zeros merge to an order-3 node. (c) γ= 0.2,δ= 1.5
and (d) γ= 3.6,δ= 0 show two ways of zeros escaping from the conventional BZ by δ and γ
terms.

Investigating the correspondence of the dispersion of edge states to the bulk topological

invariant, our work opens a new perspective of bulk-edge correspondence. Besides revealing

the edge states, it also provides insight into emergent special properties originating from band

flatness.
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Part IITopological effects in twisted
multilayer graphene
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5 Re-entrant magic-angle phenomena
in twisted bilayer graphene

In this Chapter we address the re-entrance of magic-angle phenomena (band flatness and

quantum-geometric transport) in twisted bilayer graphene (TBG) subjected to strong magnetic

fluxes ±Φ0, ±2Φ0, ±3Φ0... (Φ0 = h/e is the flux quantum per moiré cell). The moiré translation

invariance is restored at the integer fluxes, for which we calculate the TBG band structure using

accurate atomistic models with lattice relaxations. Similarly to the zero-flux physics outside

the magic angle condition, the reported effect breaks down rapidly with the twist. We conclude

that the magic-angle physics re-emerges in high magnetic fields, witnessed by the appearance

of flat electronic bands distinct from Landau levels, and manifesting non-trivial quantum

geometry. We further discuss the possible flat-band quantum geometric contribution to the

superfluid weight in strong magnetic fields (28 T at 1.08◦ twist), according to Peotta-Törmä

mechanism (Peotta and Törmä, 2015).

In this chapter, we show the study of Fubini-Sturdy metric of TBG, under different levels of

external magnetic field. The main results include the high-field band structure and topology

of TBG, while we further provide a comparison of the quantum metric to the Berry curvature.

The chapter is adapted from:

Yifei Guan , Oleg V. Yazyev, Alexander Kruchkov

Re-entrant magic-angle phenomena in twisted bilayer graphene in integer magnetic fluxes,

Phys. Rev. B 106, L121115 (2022)

My contribution to this work includes developing the high-field calculation workflow, and the

methods of computing the map of the Fubini-Sturdy metrics.

5.1 Introduction

In 2D systems, the electronic spectrum in a magnetic field develops a fractal structure ("Hofs-

tadter butterfly") (Hofstadter, 1976), which lowers the effective dimensionality, and contributes

to suppressing superconductivity (long-range order is generically destroyed in dimensions
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Figure 5.1 – Electronic band structure of magic-angle twisted bilayer graphene in integer
magnetic flux: (a) zero flux (Φ= 0); (b) flux one (Φ= h/e); (c) flux two (Φ= 2h/e). All band
structures are calculated with tight binding model including lattice relaxations effects. In these
fluxes, the lower (two out four) flat bands acquire Chern number C =−2.

lower than D=2). The observation of Hofstadter physics requires strong magnetic fluxes

(∼h/e), which became experimentally accessible only with the advent of moiré superlattices

(Dean et al., 2013, Hunt et al., 2013, Ponomarenko et al., 2013). In those experiments (Dean

et al., 2013, Hunt et al., 2013, Ponomarenko et al., 2013), the magnetic fields of nearly 30 T

were employed in the system of graphene monolayer twisted on hexagonal boron nitride

(hBN), resulting into effective fluxes of Φ = B/A ∼ Φ0 (A is the moiré cell area, Φ0=h/e =4

Wb is magnetic flux quantum). Furthermore, the twisted graphene multilayers provide a

natural platform to test the interplay between the Hofstadter physics and strong correlations

(Cao et al., 2018a, Hao et al., 2021, Park et al., 2021b,c, Zhang et al., 2021). In twisted bilayer

graphene, the smaller is the twist θ, the larger is the effective magnetic flux (Φ∝ 1/θ2) at the

fixed field B: for TBG at the magic angle 1.08◦ the magnetic flux, quantum corresponds to

B0 ≈ 28 T, which is reachable in the modern laboratories (Hahn et al., 2019).

The magic-angle graphene heterostructures—two or more graphene sheets twisted to the

angle ∼1◦, at which a very narrow band emerges in the electronic spectrum—have re-attracted

significant attention due to re-entrant superconductivity in strong magnetic fields and re-

ported Pauli limit violation (Cao et al., 2021, Chaudhary et al., 2021, Shaffer et al., 2021). The

re-entrant correlated (Chern) insulator phases were reported at strong magnetic fluxes (Das

et al., 2022, Herzog-Arbeitman et al., 2021), close to the unit magnetic flux quantum Φ0 = h/e

per moiré unit cell (see also Ref. (Sheffer and Stern, 2021)). Naturally, one would expect

Landau-level-like wave functions to be dominant at B ≈ 28 T, and both topology and quantum

geometry of the Bloch states to be the same as at the zero field. In particular, at zero field,

the continuum model of TBG maps the magic angle flat band on the (lowest) Landau level

wavefunctions, where the effective nonhomogeneous magnetic field originates from moiré

interlayer potentials (Tarnopolsky et al., 2019). Our main surprise is that after inserting the

physical flux Φ0=h/e, from the atomistic perspective this mapping is no longer valid: The

magnetic magic-angle flat bands are distinct from the Landau levels.
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Figure 5.2 – Hofstader spectrum of magic-angle bilayer graphene in magnetic flux (in units
h/e). The digits in gaps indicate the in-gap Chern numbers, calculated through the edge
modes counting. Additionally, the insets below show Wannier charge center (WCC) winding
at fluxes h/e and 2h/e, calculated at the half filling of the flat bands (2 of 4 subbands are
occupied). The WCC winding is nontrivial, revealing |C |=2 at half filling in the integer flux.

In this Chapter we report that the nontrivial quantum geometry, electronic band flatness, and

conditions for unconventional quantum transport are re-established at integer magnetic flux

(in units of h/e) through the moiré unit cell. Similarly to the zero-flux case, the Fermi velocity

and the bandwidth drop dramatically at the magic angle, to reappear as a dispersive band both

below and above the magic angle. Importantly, the flat bands in finite flux expose nonzero

Chern numbers |C |=2 (defined at half-filling, see Fig. 5.1) and non-trivial quantum geometry,

which follows the quantum-geometric flatness criterion (Kruchkov, 2022a)

TrGi j (k) ' |Fx y (k)|. (5.1)

We show numerically with atomistic calculations that in the realistic TBG, the ideal flat band

condition Eq. 5.1 is satisfied in the magnetic moiré Brillouin zone (mmBZ) regions where the

band flatness is pronounced in terms of vanishing Fermi velocity (e.g. around the K points

of mmBZ). Here Gi j and Fx y (k) are the real and imaginary parts of the quantum-geometric

tensor Gi j (see further), determining the quantum distance between electronic states in the

(projected) Hilbert space (Provost and Vallee, 1980).
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5.2 Approach

Instead of using the continuum models, in this Chapter we investigate the effect of strong

magnetic fluxes with the help of the accurate atomistic model including TBG lattice relaxation

effects at the magic angle, and compare the observed results with the established knowledge

of the zero-flux TBG case. More details of the tight-binding Hamiltonian are provided in Sec.

2.3. The key observation is that the magnetic translation operators commute at every integer

flux Φ= NΦ0, namely

T̂a1 T̂a2 = e i 2πΦ/Φ0 T̂a2 T̂a1 , → [T̂a1 , T̂a2 ]Φ=NΦ0 = 0.

Thus the moiré unit cell is restored, and the system flows towards the electronic band structure

defined on the mmBZ, which in the integer flux has the same periodicity as the moiré Brillouin

zone (mBZ) in zero magnetic flux. But instead of dispersionless Landau levels, we recover the

set of dispersive bands, with its band structure depending crucially on the twist angle (Fig.

5.3).

5.3 Re-entrant magic angle spectra at integer magnetic flux

We start from considering the electronic band structure at an integer magnetic flux Φ= N h/e.

Such a flux provides the 2πN circulation of magnetic vector potential, and hence reconstructs

the moiré Brillouin zone (mBZ→mmBZ); magnetic translation operators commute at integer

flux [T̂a1 , T̂a2 ] = 0. This allows us to re-introduce momentum as a good quantum number and

compute the electronic band structure starting from the tight binding model (Gargiulo and

Yazyev, 2018, Nam and Koshino, 2017) for magic-angle twisted bilayer graphene with atomic

relaxations, modified with Peierls substitution,

ti j → ti j e
−i e

h

∫ ri
r j

A(r′)dr′
. (5.2)

Compared to the widely-used continuum models (Bistritzer and MacDonald, 2011b, Tarnopol-

sky et al., 2019, Lopes Dos Santos et al., 2007), the accurate tight binding model has an impor-

tant advantage of addressing the magic-angle physics under realistic conditions of atomic

lattice relaxations, proved to be indispensable in the experiments due to domain formation

(Carr et al., 2018). Worth noting, the finite magnetic flux shifts the effective Brillouin zone

(see Fig. 5.1), thus re-defining the positions of high-symmetry points. Otherwise, the original

moiré Brillouin zone and the reconstructed magnetic moiré Brillouin zone have the same

orientation and periodicity, which is the main technical condition to observe the magic angle

phenomena.

We report that the characteristic flat band, the hallmark of the magic-angle graphene, re-

appears in every integer magnetic flux, ±Φ0, ±2Φ0, ±3Φ0... Figure. 5.1 provides the electronic

band spectrum at Φ= 0,Φ0,2Φ0. The first observation is that the flat band reappears exactly

at the magic angle, while the higher bands are dispersive (see Fig. 5.3). We argue below that
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Figure 5.3 – Magic angle signature in integer magnetic flux Φ = h/e at different twists. (a)
Above the magic angle, θ = 1.47◦. (b) At the magic angle, θ = 1.08◦. (c) Below the magic angle,
θ = 0.81◦. We observe the similar behavior as the zero-flux TBG tuned outside of the magic
angle (Bistritzer and MacDonald, 2011b, Tarnopolsky et al., 2019).

the magic-angle flat bands (MAFBs) in the integer flux are not a consequence of Landau level

(LL) flattening 1 since: (i) It has |C |=2 at half-filling; (ii) It demonstrates quantum geometry

incompatible with LL physics (Fig. 5.3); and (iii) It becomes dispersive outside the magic angle.

Worth noting, the strong magnetic fields restore the asymptotic particle-hole symmetry of the

low energy states, which was moderately broken in the zero flux.

5.4 Magnetic spectrum distinct from Landau levels

We further address the properties of the electronic band spectrum versus magnetic field. For

this, the characteristic quantity to calculate is the Hofstadter diagram, which traces the energy

of electronic states allowed in quantized magnetic field, as a function of magnetic flux through

the unit cell (Fig. 5.2). We observe that the flat bands at the integer flux are not stemming

from Landau level Hofstadter physics, but rather from the magic angle physics of the TBG.

To show that they are fundamentally different from the LLs, we calculate the Chern number

through Wilson loop computation in the form of Wannier charge center winding, see Fig.

5.2. We find that the flat bands at integer Φ have Chern numbers |C | = 2 incompatible with

Chern numbers of Landau levels on the lattice (|C | = 1). Furthermore, we fix magnetic flux

to h/e, and investigate the change in electronic band spectrum versus the change in twist

angle. While the spectrum is strongly dispersive outside of the magic angle (the bandwidth is

approximately 100 meV at 1.47◦ twist, at the magic angle 1.08◦ the bandwidth is just 15 meV,

comparable to the magic angle bandwidth in zero flux (see also Fig. 5.1). We conclude that the

magic angle physics is in its essence restored.

1We remark that Ref. (Herzog-Arbeitman et al., 2021) comes to the similar conclusions for the gapless case when
all the bands are occupied. The gap opening at the Dirac point occurs in case of C2 or C3z symmetry breaking,
which leads to appearance of the Chern numbers C =±2 at half filling
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Figure 5.4 – Asymptotic particle-hole symmetry (PHS) in strong magnetic flux is emergent
for Φ≥2h/e. The low-energy PH asymmetry of the flat bands is determined as a maximum
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asymmetry is maximal in zero flux (Φ = 0) resulting in nearly 4 meV. The PHS violation is
however strongly suppressed with applied magnetic field, resulting to 1 meV at Φ= h/e, and
just 0.07 meV at Φ= 2h/e. The suppression of PH asymmetry roughly follows ∼ exp[−Φ/Φ∗],
with Φ∗ ≈ 0.7h/e.

5.5 Emergent particle-hole symmetry

We now focus on the low-energy numerical analysis of the flat bands. The main observations

under strong magnetic fields is that the low-energy electronic spectrum, featuring flat bands,

acquires asymptotic particle-hole symmetry (Fig. 5.4) To quantify the particle-hole asymmetry

(PHA), we track the maximum difference in the flat band energies between the occupied and

free bands at neutrality, and investigate it versus magnetic field (Fig. 5.4). We observe that

while PHS is generically violated in zero flux (PHA = 4 meV), in strong magnetic fields this

symmetry reemerges in its asymptotic form above Φ ≥ 2h/e (Fig. 5.4). Approximately, the

suppression of PH asymmetry is observed as ∼ exp[−Φ/Φ∗], with Φ∗ ≈ 0.7h/e (corresponding

to ≈ 20 T). This could be qualitatively understood in terms local tight binding hoppings, which

due to strong magnetic fields are oscillating rapidly in space; the system thus performs self-

averaging which re-defines effective hopping parameters. In realistic TBG systems at B = 0,

with sublattice hoppings and lattice relaxations, the Chern number in zero flux vanishes since

the particle-hole symmetry (PHS) is violated on the atomistic level, chiral symmetry (CS) is

broken explicitly, and time reversal (TRS) is present. At integer fluxes, we have asymptotic PHS,

broken TRS, broken CS, and while strictly speaking the system belongs to class A topological

insulator, its dynamics flows towards class C , characterized by 2Z (even-valued) topological

invariants in 2D systems (Altland and Zirnbauer, 1997). This gives a plausible explanation of

promotion of the |C |=2 Chern numbers in the flat bands at integer flux |Φ| ≥Φ0, once the two

of four subbands are slightly gapped out (Fig. 5.1). We observe that the magic-angle TBG at

zero flux Φ= 0 and integer flux Φ= h/e belong to different topological classes, which should

74



5.6. Non-trivial quantum geometric properties

be taken into account for understanding recent TBG experiments.

5.6 Non-trivial quantum geometric properties

We report that the magic-angle flat band in integer magnetic flux has non-trivial quantum

geometry (Fig. 5.5), distinct from Landau levels. The quantum geometry is defined for the

Bloch states in the projective Hilbert space; it can be separated into real (diagonal) part which

is Fubini-Study metrics, and imaginary (off-diagonal) part, with its components being Berry

curvature (Provost and Vallee, 1980). Numerically, we compute quantum-geometric tensor for

flat bands in TBG by using its spectral representation (Kruchkov, 2022b)

Gi j (k) = ∑
n,m

〈unk|∂Hk
∂ki

|umk〉0〈umk|∂Hk
∂ki

|unk〉0

(εnk −εmk)2 . (5.3)

We further introduce Gi j =ReGi j , Fi j =−2ImGi j . One can find a basis in which Gi j is diagonal

and Fi j is off-diagonal. The plots for Gxx ,Gy y (Fubini-Study metrics) calculated at half-filling

are presented in Fig. 5.5. We observe that the re-entrant flat band has nontrivial quantum

geometry within the mmBZ, as manifested in Figs. 5.5(a,b,c), which is not compatible with a

Landau level quantum geometry (the LL quantum geometry is constant in the whole Brillouin

zone).

For comparison, we plot the Berry curvature Fx y together with trace of Fubini-Study’s Gi j in

Fig. 5.3d. We observe that the flat band closely follows the quantum-geometric condition for

ideal flat bands (Kruchkov, 2022a) TrGi j =Fx y . It is certainly interesting that this condition

is satisfied almost exactly in the regions of mmBZ, where the band flatness is pronounced

in terms of vanishing Fermi velocity (around the K points of mmBZ). The deviation to this

quantum-geometric bound TrGi j (k)=Fx y (k) are observed in the regions of mmBZ with finite

dispersion and significant vk=∂εk/∂k caused by broken CS of the tight-binding calculations.

The criterion TrGi j (k) =Fx y (k), tests the closeness of a realistic flat band in TBG to flat band

idealization through holomorphic/meromorphic representation of the flat band wave func-

tions (Kruchkov, 2022a). However, since total |C | = 2, the relevant toy model for TBG in integer

flux cannot be represented by solely a holomorphic representation of the quasi-LLL TBG

(found in Ref. (Tarnopolsky et al., 2019)); one needs to take meromorphic flat band contribu-

tions into account (Popov and Milekhin, 2021). Since the Berry curvature Fx y (k), calculated

within the mmBZ (Fig. 5.3), reveals a non-homogeneous structure, it is not consistent with the

homogeneous Berry curvature of the generic Landau levels (LLs are "Berry flat"). For scale

comparison, we sketch the Berry-flat lowest Landau level distribution on the same plot (Fig.

5.3a) as the dashed grey line. The non-homogeneous quantum geometry of TBG can exceed

this bound by nearly an order in magnitude. Finally, we check numerically that the TBG Berry

flux Fx y in mmBZ (red line in Fig. 5.5a) sums up to |C |=2.0±0.07 at the half-filling (see also

Figs. 5.1, 5.2).
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5.7 Quantum-geometric transport

As was first introduced by Peotta and Törmä (Peotta and Törmä, 2015), the nontrivial quantum-

geometric tensor Gi j leads to the the finite superfluid current Ji=−Di j A j even in the limit of

perfectly flat band (here Di j is the superfluid weight). This argument is now understood to

apply directly to TBG in zero flux, where the TrGi j is nonzero due to nontrivial topology of the

flat bands. 2. It was reported with different methods (Xie et al., 2020, Hu et al., 2019, Julku et al.,

2020) that the quantum geometric tensor (QGT) contribution to the superfluid weight DS in

TBG is if not dominant, than at least commensurate with the conventional contributions, thus

leading to the BTK transition temperature estimate TBKT ∼∑
k TrGi j . The QGT contribution

holds for different symmetries of the order parameter, and the argument is valid beyond the

mean field (Wang et al., 2020). The essential physics is captured by Bogoliubov-de-Gennes

Hamiltonian (Sigrist and Ueda, 1991)

HBdG =
(

Hk ∆k

−∆∗
−k −H∗

−k

)
. (5.4)

Without loss of generality, we consider superconducting order∆k =∆. The superfluid weight is

then calculated within Kubo formalism through the current-current correlators. We explicitly

calculate Gi j numerically (Fig. 5.4) with consequent mmBZ integration at half-filling (for two

of four flat bands occupied, we have TrGi j ≈ 2.8), to obtain at the superfluid weight maximum

positioned at the middle of the composite flat band with |C | = 2,

Dxx = 2e2

~2 ∆
∑

k
TrGi j (k) ≈ (5.6±0.1)

e2

~2∆. (5.5)

Symmetry Dxx=D y y is assumed. Here we took into account factor
p
ν(1−ν) (in notations of

Ref. (Peotta and Törmä, 2015)), where ν is the filling factor of the composite flat band (indexed

by C =−2 in Fig. 5.1).

We can further make estimates for the BKT transition temperature (Berezinskii, 1971, Kosterlitz

and Thouless, 1973, Nelson and Kosterlitz, 1977), indicating the disappearing of the phase

coherence of superconducting order from expression π~2D(T∗)/8e2T∗ = 1. The order-of-

magnitude estimate gives T∗ ∼ ~2D(0)/e2 ∼ ∆. The remaining question is of course, what

is the value of ∆, which should be found self-consistently by solving Gorkov equations in

magnetic field, or through indirect experimental data—and it is beyond the scope of this work.

For a rough estimate, even ∆∼ 0.1 meV will give a physically relevant T∗ ∼ 1 K.

2We remark that the flat band in (5.5) is not required to expose nonzero Chern numbers, but it does need to
feature Wannier-obstructed electronic orbitals (and hence, nontrivial quantum geometry (Marzari and Vanderbilt,
1997)). Hence, the superfluid weight (5.5) originates from the interband transitions, finite due to the Wannier
orbitals overlap of the bare states. The presence of nonzero Chern number (e.g. C=2 in our case) automatically
satisfies this criterion
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Figure 5.5 – Nontrivial quantum metrics in integer magnetic flux Φ=h/e, calculated at half-
filling (two of four flat bands are occupied). (a) Comparison between the trace of Fubini-
Study tensor TrGi j and Berry curvature Fx y , which probes how close the band flatness is
to the perfect flatness through closeness to TrGi j (k)=|Fx y (k)|. For scale comparison, the
dashed grey line at 2320 Å2=TrGi j (k)=Fx y (k) indicates the Berry-flat distribution, associ-
ated with the lowest Landau level (LLL). All quantities are normalized to the moiré BZ area
AmBZ=8π2/

p
3a2

M=2.74 ·10−3 Å−2 (hence
∫

mBZ
dk
2πF LLL

x y =1). (b-c) Map of the quantum geomet-
ric tensor Gi j (k) for flat bands in TBG: (b) shows the map of Fx y =−2ImGx y , while (c) gives
TrGi j .

5.8 Conclusions

We conclude that there is a re-entrant magic angle physics in twisted bilayer graphene at

every integer magnetic flux quanta ±Φ0, ±2Φ0, ±3Φ0, etc., through the moiré cell. To date,

the practical importance represents the first magnetic quantum ±Φ0, which at twist angle

1.08◦ corresponds to experimentally-achievable fields of 28 Tesla. We confirm with accurate

atomistic calculations, incorporating lattice relaxation effects, that at such fields the magic-

angle phenomena re-emerge. This, in particular, could be seen through the re-emergence

of very flat bands at the magic angle distinct from Landau levels, while beyond the magic

angle this physics breaks down, similar to the zero-flux case (Bistritzer and MacDonald, 2011b,

Tarnopolsky et al., 2019). These flat bands at half filling carry nontrivial Chern numbers (|C |=2)

and nontrivial quantum geometry (Fubini-Study metrics), and are fundamentally different

from conventional Landau levels. We conjecture that, similar to TBG in the zero flux, there is

a nonvanishing contribution to the superfluid weight coming from the re-entrant quantum

geometric properties, and in the flat topological bands this contribution is significant. Due

to the strong quantum geometry of the TBG flat bands in integer flux (
∑

BZ TrGi j ≈ 3), the

estimated BKT temperature is in order of the gap T∗ ≈ ∆, which gives values significantly

elevated with regard to the conventional superconductivity in geometrically-trivial dispersive

bands. The behaviour of superfluid order parameter beyond the conventional magnetic

thresholds (i.e. towards the integer magnetic flux) is a subject for further research.
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6 Unconventional Flat Chern Bands
and 2e Charges in Skyrmionic Moiré
Superlattices
The interplay of topological characteristics in real space and reciprocal space can lead to the

emergence of unconventional topological phases. In this Chapter, we implement a novel

mechanism for generating higher-Chern flat bands on the basis of twisted bilayer graphene

(TBG) coupled to topological magnetic structures in the form of the skyrmion lattice. In

particular, we discover a scenario for generating |C | = 2 dispersionless electronic bands when

the skyrmion periodicity and the moiré periodicity are matched. Following the Wilczek

argument, the statistics of the charge-carrying excitations in this case is bosonic, characterized

by electronic charge Q = 2e, that is even in units of electron charge e. The required skyrmion

coupling strength triggering the topological phase transition is realistic, with its threshold

estimated as low as 4 meV. The Hofstadter butterfly spectrum of this phase is different resulting

in an unexpected quantum Hall conductance sequence ±2e2

h , ±4e2

h , ... for TBG with skyrmion

order.

This Chapter discusses the effect of spin Skyrmions on the topology of TBG. It is adapted from

the paper:

Yifei Guan, Oleg V. Yazyev, Alexander Kruchkov

Unconventional Flat Chern Bands and 2e Charges in Skyrmionic Moiré Superlattices

Nano Lett. 2023, 23, 10, 4209–4215 (2023)

My contribution to the work includes: building the tight-binding models for TBG with

skyrmion spin texture, performing the calculations of the topological phase diagram and

Wannier diagrams.

6.1 Introduction

The interplay between the real- and momentum-space topologies is a new direction in explor-

ing interacting topological phases of matter. Generically, the band topology was introduced in

condensed matter physics through the quantum-Hall-like arguments (Thouless et al., 1982,

Haldane, 1988), which are typically insensitive to the real-space defects. Nevertheless, it
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later became clear in the context of quantum Hall ferromagnetism that the coexistence of

real-space topology (skyrmions) and momentum-space topology (Chern numbers) is possible

for the flat bands (Sondhi et al., 1993, Fertig et al., 1994). More broadly, the question can be

formulated in the form: Can the real space topology influence the change in the momentum

space topology? The answer is positive; (Lux et al., 2021) and we provide a concrete example

of a realistic system.

The skyrmions have been called upon to explain possible pairing mechanisms in twisted

bilayer graphene (TBG) and similar heterostructures (Khalaf et al., 2021, Chatterjee et al.,

2020), see also Refs. (Zhang and Senthil, 2019, Abanov and Wiegmann, 2001, Grover and

Senthil, 2008). In particular, the skyrmion-based theories are able to address not only the

problem of possible mechanism for unconventional superconductivity in TBG (Cao et al.,

2018a), but also provide reasonable explanation (Chatterjee et al., 2020) for nonmonotonic

magnetoresistance observed in experiments (Sharpe et al., 2019, Serlin et al., 2020). Thus, the

coexistence of the skyrmion order and the moiré potentials, to one or another extent, seems

feasible. Since this is a consistent theoretical mechanism, we ask the following question: What

is the effect of the skyrmion order on the TBG flat bands themselves?

The topological flat bands can induce a non-collinear magnetic order, such as skyrmions

(Fertig et al., 1997). In general, however, the skyrmion excitations are neither bosonic, nor

fermionic, and reshape themselves continuously between the two opposite quantum statistics

(Wilczek and Zee, 1983). It can be shown that excess electric charge density ρ(r), polarized by

the presence of a skyrmion S(r) on a flat Chern band is given by (Sondhi et al., 1993, Abanov

and Wiegmann, 2001, Hsu and Chakravarty, 2013)

ρ(r) =Ce
S · (∂x S×∂y S)

4π
, (6.1)

where C is the Chern number of the underlying electronic band. Upon integration over the

unit cell one obtains

Q =CW e, (6.2)

where W is the skyrmion winding number (an integer). Thus, skyrmions polarize a discrete

electric charge when the underlying flat band is topological.

The collective effect of the real-space and momentum-space topologies in mechanism (6.2)

plays an important role. Indeed, the effective magnetic field, assigned to the skyrmion B(r) ∝
S · (∂x S×∂y S) in (6.1) is essentially the Berry field (Nagaosa and Tokura, 2013). In momentum

space, the gluing mechanism (6.2) can be rewritten as

ρ(q) = e
∑

k
c†

k+qck =W
Fx y

2π
, (6.3)

where Fx y is the Berry curvature associated with the Chern band, C = 1
2π

∫
BZ Fx y dkx dky . Thus,
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6.2. Underlying skyrmion lattice
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Figure 6.1 – Unconventional Chern flat bands of |C | = 2 in twisted bilayer graphene matched
with the skyrmion lattice. (a) Band structure and density of states (DOS) of magic-angle TBG
without skyrmion order. The associated Chern number is zero. (b) The inclusion skyrmion
order (m0 = 4 meV, µ= 8 meV) results in flat Chern bands with |C | = 2.

according to Eq. (6.3), it is possible to have an unconventional electronic pairing mechanism

induced by the skyrmion order when electrons are moving in the Chern band. This has been

recently pointed out in the models of skyrmionic superconductivity in TBG (Khalaf et al.,

2021, Chatterjee et al., 2020), where unconventional pairing mechanism is resulting from the

skyrmions in the pseudospin space built upon reshuffling intrinsic C =+1 and C =−1 sectors

(Khalaf et al., 2021). However, a different situation is possible if the moiré system develops a

flat band of a higher Chern number. Namely, in the C = 2N case, the electric charge polarized

by the skyrmion is

Q = 2NW e, (6.4)

that is bosonic. In other words, in case of |C | = 2 electron pairs are preformed independently of

mechanism developed in Ref. (Khalaf et al., 2021). In this work, we show that the flat bands in

TBG acquire even Chern numbers |C | = 2 when electrons are firmly coupled to the underlying

skyrmion lattice.

6.2 Underlying skyrmion lattice

The calculations below are independent of a particular origin of the skyrmion lattice (SkL),

and can be applied to both (i) the case of proximity to a substrate hosting skyrmion lattice, or

(ii) the case of spontaneous formation of skyrmion lattice in the moiré system. In the former

scenario (i), the periodicity of SkL λSkL = J/2D dictated by the interplay of Heisenberg (J)

and Dzyaloshinskii-Moriya (D) interactions can be engineered (Tokura and Kanazawa, 2020)

to match the periodicity of the moiré superlattice of TBG (aM = 12.9 nm at the magic angle

θ = 1.08◦). The later scenario (ii), represented by the SkL forming as a result of instability

associated with the flat band, is supported by recent theoretical calculations (Wu and Sarma,

2020, Bömerich et al., 2020). At ν= 3/4 filling of the conduction band, TBG has been reported

to exhibit giant spontaneous magnetism, resulting from internal Berry fields of the band

81



Chapter 6. Unconventional Flat Chern Bands and 2e Charges in Skyrmionic Moiré
Superlattices

Topological phasesa.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Skyrmion strength , meV

gapless

Electric polarization

Polarized charge

c.

10 meV

1
0

 m
e

V

trivial

0 0

k

b.

k

π/a π/a

ae ae

U
n

if
o

rm
 m

ag
n

e
ti

za
ti

o
n

 m
0
, m

e
V

Figure 6.2 – (a)Phase diagram of flat Chern band phases in twisted bilayer graphene with
the skyrmion order. We see that at the low skyrmion field the topologically–trivial phases
are energetically preferred. However, at higher skyrmion fields, the phase diagram shows a
remarkable new phase of C = 2 flat composite bands. (b) The calculated electric polarization
of the different TBG phases with skyrmion lattice, see Eq. (6.10). The numerical parameters
used: µ= 8 meV, m0 = 4 mev (C = 2 cylinder) and µ= 2 meV, m0 = 4 mev (C = 0 cylinder). (c)
Sketched phase volume depicting the polarized charge 2e (in units of Fig. 6.2a).

structure, that is orbital in nature (Sharpe et al., 2019, Serlin et al., 2020). It is interesting

that the TBG flat band can be viewed as a Landau level in non-homogeneous magnetic field

(Tarnopolsky et al., 2019, Popov and Milekhin, 2021, San-Jose et al., 2012), and this real-space

Berry field has strong inhomogeneities of the same periodicity as the patern moiré potential

(Ledwith et al., 2020). Thus, the resulting SkL instability, if allowed by the mechanism of

Ref. (Wu and Sarma, 2020), will naturally inherit the same periodicity as the pristine TBG

moiré superlattice. In what follows below, we consider the skyrmion lattice matched with the

periodicity of TBG, but similar principles can be applied to other moiré heterostructures.

6.3 Band structure and unconventional Chern flat bands

We start by addressing the effect of skyrmion order on the band structure of TBG. We demon-

strate that the skyrmion lattice, when being commensurate with the moiré periodicity aM at

the first magic angle, changes the electronic response of the system beyond recognition. We

define the underlying SkL as (Nagaosa and Tokura, 2013, Mühlbauer et al., 2009)

m(r) = m0 +µ
3∑

j=1
(Sb j e i b j ·r +S−b j e−i b j ·r), (6.5)

where m0 is the uniform magnetization component, µ the SkL strength and reciprocal vectors

b1 = q2 −q1, b2 = q3 −q1, b3 = q3 −q2 are the same for the SkL and the moiré superlattice
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(here q1 = kθ(0,−1), q2,3 = kθ(±p3/2,1/2), with moiré wave number kθ = 2kD sin θ
2 , kD being

Dirac momentum of the monolayer graphene and θ being the twist angle). For the considered

ranges of parameters m0,µ = 0..10 meV, the effective local magnetic fields are sufficient to

modify the band structure (Fig. 6.1) and promote unconventional Chern phases (Fig. 6.2).

We focus our attention on the effect of the underlying skyrmion order (6.5) on the electronic

band structure of TBG at the magic angle θ = 1.08◦. We have first confirmed this effect within

the continuum model, and then performed the tight-binding model calculations for spinful

electrons on a magic-angle TBG configuration that takes into account lattice relaxation effects.

To the main approximation, the hopping amplitudes are barely affected by the real-space

magnetic order. Hence on the tight-binding level the effect of local magnetization enters the

Hamiltonian as on-site exchange field terms on each atom. In the basis (ψ↑
i ,ψ↓

i ) the exchange

field reads as HS =σ ·m(ri ), where σ= (σx ,σy ,σz ) are the conventional 2×2 Pauli matrices.

At atomic position r, the on-site Hamiltonian term from the skyrmion order is

Hos(r) =
(

1 0

0 1

)
V (r)+

(
0 1

1 0

)
µx (r)+

(
0 -i

i 0

)
µy (r)+

(
1 0

0 -1

)
[µz (r)+m0], (6.6)

where we distinguish between the uniform magnetization (m0 = 〈m(r)〉) and the skyrmion

order itself µ= m(r)−m0. The overall real-space magnetic phase is approximated by

m(r) = m0 +µ
∑
j=1

(Sq j e i q j ·r +S−q j e−i q j ·r), (6.7)

where for the skyrmion lattice it is sufficient to cut the Fourier terms by the first triade q1 +
q2+q3 = 0, with |qi | commensurate with moiré periodicity. Adding such on-site terms on each

orbital, the full spinful Hamiltonian with the underlying skyrmion order reads

H = Hhop +Hos =
∑
i 6= j

ti jσ0 +
∑

i
σ0Vi (6.8)

+∑
i
σxµx (ri )+σyµy (ri )+σz [µz (ri )+m0]. (6.9)

Since the atomic relaxation has an effect on the interlayer coupling in AA and AB stacking re-

gion, and has dramatic effects on band flatness in TBG, we build the tight-binding hamiltonian

based on the relaxed atomic structures. The atomic structure relaxation is done with classi-

cal potential on the LAMMPS package (Plimpton, 1995). Further details of the Slater-Koster

models are provided in Sec. 2.3.

Figure. 6.1a compares the electronic band structure of TBG without the skyrmion order

with that (Fig. 6.1b) for a representative case characterized by m0 = 4 meV and µ = 8 meV.

Importantly, these parameters result in the Q = 2e phase as shown in phase diagram in Fig. 6.2a.

In absence of SkL (m0 = 0 meV, µ= 0 meV) magic-angle TBG has 8 flat bands near the Fermi

level isolated from remote bands (Fig. 6.1a). At the K point of mini Brillouin zone, the flatband

manifold has degenerate Dirac-like band crossing with renormalized Fermi velocity, while
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the degeneracy at the Γ point due to the spin and valley degrees of freedom. Introducing the

uniform magnetization (m0 6= 0) lifts the spin degeneracy splitting the flat band manifold into

2 groups, while leaving intact the degeneracy at the Dirac points. In the presence of skyrmion

order (µ 6= 0), the spin-orbit terms couple the spin with the bands opening gaps at points K and

K ′ and contributing to the hybridization of flat bands at the Γ point (Fig. 6.1b). In this case, the

8 flat bands decompose into 4 doubly degenerate sub-bands, which remain significantly flat.

Employing the band flatness criterion of Bistritzer and MacDonald (Bistritzer and MacDonald,

2011b) (renormalized Fermi velocity vF the at the K point), we observe that these bands

become very flat in the K , K ′ valleys (vF = 3.3×104 m/s without SkL vs. vF = 2×102 m/s with

SkL). For comparison, the overall bandwidths in TBG with SkL are significantly lower than

in the pristine TBG case (5.3 mev, 13 meV in pristine TBG and 2.7 meV, 5 meV, 8.5 meV, 9.3

meV in TBG with SkL, given in ascending bandwidth order). Importantly, the density of states

(DOS) remains significant upon adding SkL term (Fig. 6.1), thus enabling strong correlations.

To quantify the the band flatness further, we investigate the band flatness criterion in terms

of wave functions (Kruchkov, 2021). We thus confirm that upon adding the SkL term, the

flat bands remain well-defined with clear real-space localization resulting into significant

electronic density of states (Fig. 6.1b), with two of the resulting flat Chern bands having the

high Chern number |C | = 2. Thus, non-collinear spin texture of skyrmion lattice coupled to

charge-carrier in twisted bilayer graphene modifies its original band structure, but preserves

the flatness in the atomistic model with lattice relaxations We now proceed to the effect on

band topology.

6.4 Skyrmion-induced band topology and the phase diagram

The pristine TBG has band structure with hidden Chern numbers C =±1 per valley that sum

up to zero Chern number in total. Thus, in absence of skyrmion lattice or explicit symmetry

breaking, TBG is not expected to demonstrate Chern indices of the composite flat bands

(i.e. m0 = µ = 0 meV in phase diagram shown in Fig. 6.2a is topologically trivial). In what

follows below, we discuss the half-filling of the conduction and valence bands (ν= 3/4 and

ν = 1/4 fillings of the 8 moiré flat bands, respectively), motivated by the experimentally

relevant filling ν= 3/4 (see e.g. Ref. (Sharpe et al., 2019)). The formalism of hybrid Wannier

functions (HWFs) (Soluyanov and Vanderbilt, 2011) is employed to calculate the positions

of the Wannier charge centers (WCC). This formalism gives us advantage of both addressing

the Chern numbers as the winding of WCC on the cylinder (see Fig. 6.2b), and linking the

nontrivial winding to electric polarization: The sum of all Wannier charge centers 〈W h
n |r|W h

n 〉
is gauge-invariant (mod lattice constant), and relates to the electric polarization of the system

(Coh and Vanderbilt, 2009, King-Smith and Vanderbilt, 1993, Resta, 1993)

Pe = e
∑
n
〈W (h)

n |r|W (h)
n 〉. (6.10)

Upon including the skyrmion order the C = 2 phase exhibits ∆Pe = 2ea, witnessed through

the polarized charge 2e. For definiteness, in Fig. 6.2a and the text below, the phase diagram
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Figure 6.3 – Hofstadter and Wannier diagrams of TBG without and with the skyrmion order. (a)
Hofstadter and (b) Wannier diagrams of twisted bilayer graphene without the skyrmion order.
(c) Hofstadter and (d) Wannier diagrams of twisted bilayer graphene with the skyrmion order.
We clearly see a different pattern of gaps and Chern numbers, attributed to the magnetic-
field responds of a flat Chern band (see main text). All calculations are performed with the
tight-binding model accounting for atomic relaxations of TBG. Here nS = 8 (total bands) and
Φ0 = h/e.

traces the total Chern number at ν = 3/4, that is of the lowest three composite flat bands,

which is the same in absolute value as the Chern number of the upper composite flat band, in

the range from 0 to 10 meV for both the uniform component m0 and the skyrmion strength

µ. This range is dictated by the typical bandwidth scale in the system. Larger values of m0

(over 20 meV) drives the flat bands to overlap with remote bands and destroys the separation

condition of the flat bands, while µ does not induce the overlap explicitly.

The phase diagram in Figure 6.2a can be divided into three parts: two topologically-trivial

phases (gapped C = 0 phase and gapless phase denoted "gapless" for which the Chern num-

bers cannot defined). Below the critical value µ ≈ 4 meV, the system remains in one of the

trivial phases. Upon increasing the skyrmion strength above µ= 4 meV, the new topological

phase with C = 2 emerges. This phase, however is possible if only both µ and m0 are finite:

As shown in Fig. 6.2a, the WCC winding is zero when m0 = 0. One can find a tiny band gap

near the Γ point at m0 = 0, in which the Chern number is zero. However, a weak ferromag-

85



Chapter 6. Unconventional Flat Chern Bands and 2e Charges in Skyrmionic Moiré
Superlattices

netic component m0 ¿µ is sufficient to drive the system into the C = 2 phase, provided the

skyrmion strength with µ> 4 meV. On the other hand, the ferromagnetic component m0 does

not contribute to the finite Chern number itself, since in the region µ< 4 meV the total Chern

number is always zero (or undefined as a consequence of gaplessness). We highlight that the

skyrmion strength of 4 meV is a realistic value, comparably smaller than the bandwidth itself,

and a small uniform magnetization turns the system into a higher-Chern topological phase.

6.5 Hofstadter spectra

Another qualitative difference of the system with skyrmionic order can be traced in the re-

sponse to the magnetic field. In this connection, the established apparatus involves the

Hofstadter butterfly spectrum, which depicts the evolution of Landau levels in the system

versus magnetic flux (Hofstadter, 1976). The Hofstadter butterfly spectra, together with the

Wannier diagrams (Wannier, 1978), provide a comprehensive and sensitive map of the Chern

numbers, and is directly linked to the observable quantum Hall conductance sequences

(Dean et al., 2013, Hunt et al., 2013, Ponomarenko et al., 2013). In Figure 6.3, we show the

difference between the magnetic field response of magic-angle TBG with and without the

skyrmion order. For the skyrmion-free TBG, the Landau levels at small magnetic fluxes are

clearly recognizable, and their field-dependence in the limit of low field is consistent with the

behavior of Dirac electrons scaling as
p

B (Fig. 6.3a). In this limit, the Hofstadter spectrum

is energetically bound to the bandwidth of the original flat band, which is expected for the

trivial phase (Herzog-Arbeitman et al., 2020). Upon increasing the magnetic flux, a moderate

broadening of the Landau levels is observed, while sufficiently large gaps separate low-index

Landau levels.

The situation changes dramatically upon including the skyrmion order (Fig. 6.3c; for m0 =
4 meV and µ= 8 meV). First of all, the low-field behavior is no longer recognizable as a simplep

B behavior since the Dirac physics is no longer relevant in this case. Instead, the behavior is

qualitatively consistent with universal response of a Chern band to magnetic fields (Herzog-

Arbeitman et al., 2020). A different pattern of pronounced gaps emerges upon increasing

the flux. The broadening and hybridization between sub-bands is promoted, leading to a

more complex butterfly structure. We observe that the Hofstadter spectrum of the flat band is

not bounded by the bandwidth of the original flat band, and can hybridize with other bands,

which in turn trivializes the band topology leading to C = 0 gaps. Importantly, the particle-hole

asymmetry is pronounced, which results in the particle-hole asymmetric Wannier diagrams

and asymmetric Hall response. Since the TBG with SkL host a Chern band characterized by

C = 2, we observe a different pattern of in-gap Chern numbers, as indicated in Fig. 6.3c. In

order to draw the quantitative difference between these two cases, we proceed to the analysis

of the Wannier diagrams.
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6.6. Hall conductance sequences

Table 6.1 – Summary of quantum Hall conductance sequences at neutrality.

TBG (C3 symmetric) ±4 e2

h , ±12 e2

h , ...

TBG+SkL (C = 0 phase) ±4 e2

h , ±8 e2

h , ...

TBG+SkL (C = 2 phase) ±2 e2

h , ±4 e2

h , ...

TBG experiments ±2 e2

h , ±4 e2

h , ... + further
sample-dependent.

6.6 Hall conductance sequences

The Wannier diagram (Wannier, 1978) is obtained from the Hofstadter butterfly spectrum

by presenting the statistical weight of the states below a given gap versus the magnetic flux.

Each line in the Wannier diagram depicts a gap in the Hofstadter butterfly spectrum, while its

slope characterizes the in-gap Chern numbers (dn/dB =Ce/h). In Figs. 6.3b,d we plot the

Wannier diagrams that correspond to the respective Hofstadter spectra shown in Figs. 6.3a,c.

To facilitate the analysis, we overlay the lines that trace the minimal intensities in the Wannier

diagrams (Fig. 6.3c,d). We find that for pristine TBG with the preserved C3 symmetry, the

relevant Hall conductance sequence is ±4 e2

h , ±12 e2

h , ..., that is in increments of 8 conductance

quanta (Zhang, 2019). On contrary, the presence of skyrmion order changes the Hall sequence

dramatically. For the TBG with SkL in the C = 2 phase, the Hall conductance "fingerprint" (Fig.

6.3) at neutrality reads

GSkL
TBG =±2e2

h
, ±4e2

h
, ... (6.11)

One might be tempted to interpret these results as a trivial lifting of the spin degeneracy by

the uniform component m0 of the skyrmion phase. However, we observe that by changing the

skyrmion parameters to m0 = 4 meV and µ= 2 meV, for which the system is in the C = 0 phase

(see Fig. 6.2a), a different Hall sequence ±4 e2

h ,−8 e2

h is obtained, even though the system still

has the same uniform magnetization m0. Instead, we believe that this effect is connected to

the fundamentally different Hosftadter spectrum for the trivial and Chern bands, and hence,

Wannier diagrams. The obtained results are summarized in Table I. Wannier diagrams can

be directly probed in experiment by performing Shubnikov–de Haas measurements on high-

quality magic-angle TBG samples (Lu et al., 2019). We remark that the experimentally observed

QH sequences are strongly sample-dependent,1 however the two leading contributions to the

low-field Landau fans can be considered as ±2 e2

h , ±4 e2

h . It is certainly interesting that TBG with

1The question of the Landau fan (LF) in TBG is a hard one. The original studies (Cao et al., 2018a) reported the
Hall sequence, in units e2/h: ±4, ±8, ±12 at neutrality, instead of expected ±4, ±12... (Moon and Koshino, 2012),
thus puzzling theorists. The consequent experiments (Lu et al., 2019) on more homogeneous samples brought
even further surprise with the QH sequence ±2, ±4, ±8. Moreover, LF with ±2, ±4 was reported in Ref. (Sharpe
et al., 2019); LF with ±2, ±4, ±6 was reported in TBG stabilized by WSe2; (Arora et al., 2020) and LF with −2, −4 in
the sample of Ref. (Pierce et al., 2021). For the high-field behavior of Landau fans, we refer readers to the recent
observation of correlated Chern insulators in TBG e.g. in Refs. (Pierce et al., 2021, Xie et al., 2021)
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SkL in the C = 2 phase (but not the C = 0 phase) gives a reasonable Hall sequence, without

demanding C3z or C2z breaking (Zhang, 2019).

6.7 Conclusion

In this Chapter, we considered the influence of the real-space skyrmionic order on the dis-

persion and topology of flat bands. For the particular example of magic-angle twisted bilayer

graphene, we find that the commensurate skyrmionic order itself redefines both the band

structure and topology of the system. Surprisingly, the real-space skyrmion order influences

the electronic bands topology, giving the rise to an unexpected C = 2 phase. To our knowledge,

this is the first realistic system which provides a robust and affirmative answer to the question

of the interplay between topologies in real and reciprocal spaces (Lux et al., 2021). According

to the field-theoretical arguments (Sondhi et al., 1993, Abanov and Wiegmann, 2001, Hsu

and Chakravarty, 2013), the elementary excitations in this case are Q = 2e, a consequence

important for the transport phenomena in twisted bilayer graphene. Experimentally, the

reported effect manifests in magnetotransport observables with the leading quantum Hall

sequence ±2 e2

h , ±4 e2

h . This Landau fan fingerprint resonates well with experimental reports,

and arises naturally in our model as a direct consequence of the emergent skyrmion order.
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7 Landau Levels as a Probe for Band
Topology in Graphene Moiré Superlat-
tices
We propose Landau levels as a probe for topological character of electronic bands in two-

dimensional moiré superlattices. We consider two configurations of twisted double bilayer

graphene (TDBG) that have very similar band structures, but show different valley Chern

numbers of the flat bands. These differences between the AB-AB and AB-BA configurations of

TDBG clearly manifest as different Landau level sequences in the Hofstadter butterfly spectra

calculated using the tight-binding model. The Landau level sequences are explained from the

point of view of the distribution of orbital magnetization in momentum space that is governed

by the rotational C2 and time-reversal T symmetries. Our results can be readily extended to

other twisted graphene multilayers and h-BN/graphene heterostructures thus establishing

the Hofstadter butterfly spectra as a powerful tool for detecting the non-trivial valley band

topology.

This Chapter reveals the effect of band topology on the Hofstadter butterfly spectra. It is

adapted from the paper:

QuanSheng Wu, Jianpeng Liu, Yifei Guan, and Oleg V. Yazyev

Landau Levels as a Probe for Band Topology in Graphene Moiré Superlattices

Phys. Rev. Lett. 126, 056401 (2021)

in which my contributions are: implementing the computational algorithms of Landau gauges

for calculating the Hofstadter butterfly.

7.1 Introduction

The recent discovery (Cao et al., 2018a,b, Lu et al., 2019, Chen et al., 2019, Burg et al., 2019,

Shen et al., 2020) of correlated insulating phases, unconventional superconductivity, and

quantum (Serlin et al., 2020) anomalous Hall effect (Sharpe et al., 2019, Liu et al., 2019d,

Bultinck et al., 2020) in twisted bilayer graphene (TBG) and related moiré superlattices have

drawn widespread attention from in theoretical and experimental physics communities. In

these twisted graphene multilayers, the width of the four-band manifold around the charge
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Chapter 7. Landau Levels as a Probe for Band Topology in Graphene Moiré Superlattices

neutrality point (CNP) vanishes at the so-called “magic” angle (Bistritzer and MacDonald,

2011b, Suárez Morell et al., 2010). These flat bands often have non-trivial topology such

as the recently proposed fragile topology (Song et al., 2019b, Po et al., 2019, Ahn and Yang,

2019). Although the physical mechanisms underlying the observed novel correlated phases

are still under debate, the small bandwidth and the non-trivial topology of the relevant bands

are certainly pointing to new, interesting physics. However, directly probing the topological

properties in experiments is difficult due to their “hidden” nature: the topological properties

of the two valleys intrinsic to the electronic structure of these systems would cancel each other

provided that valley degeneracy is preserved.

In this Chapter, we propose Landau levels as such a probe of the topological character of

electronic bands in graphene moiré superlattices. We illustrate this idea using the example of

twisted double bilayer graphene (TDBG), a system constructed by twisting two AB-stacked

bilayer graphene (BLG) counterparts placed on top of each other. This more complex four-

layer moiré heterostructure has recently revealed several novel properties such as the gap

opening at large twist angles (Haddadi et al., 2020, Adak et al., 2020, Rickhaus et al., 2019,

Choi and Choi, 2019, Culchac et al., 2020, Chebrolu et al., 2019) and two types of stacking

configurations that have distinct topological properties (Liu et al., 2019d, Chebrolu et al.,

2019). Moreover, the band structure and topological properties of TDBG can be controlled by

applying external electrical fields (Shen et al., 2020, Liu et al., 2019d, Chebrolu et al., 2019, Lee

et al., 2020, Koshino, 2019), and could lead to quantum anomalous Hall effect when correlation

effects are taken into account (Liu et al., 2021).

7.2 Distinct configurations of TDBG

Two distinct configurations of TDBG referred to as AB-AB and AB-BA are related to each other

by rotating the BLG counterparts by 180◦ with respect to each other. Both belong to the D3

symmetry group, but differ by having the C2x and C2y symmetries, respectively. The band

structures of the AB-AB and AB-BA configurations were found to be similar (Culchac et al.,
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Figure 7.1 – (a) Brillouin zones of the two BLG components (orange and blue for top and botton
bilayers, respectively) and moiré supercell (grey hexagons). (b) Change of valley momenta
under rotational (C2x , C2y ) and time-reversal (T ) symmetry operations.

90



7.3. Hofstadter’s butterfly of TDBG and Wannier diagrams
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Figure 7.2 – (a,b) Band structures and (c,d) Hofstadter butterfly spectra of the AB-AB and
AB-BA configurations of TDBG, respectively, characterized by twist angle θ = 1.89◦. The flat
band manifold is shown in blue. The numbers in the HB spectra indicate the Chern numbers
of the LLs gaps.

2020, Koshino, 2019), but the above-mentioned symmetry differences result in different band

topologies. The C2x symmetry requires the Chern number for each valley to be vanishing,

while C2y doesn’t. The time-reversal symmetry requires the Chern numbers of the two valleys

are opposite. Hence, the AB-AB configuration of TDBG has trivial valley Chern numbers, while

the AB-BA configuration is topologically nontrivial. The Chern number is the integral of Berry

curvature that affects the Landau level (LL) spectrum when magnetic field is applied (Chang

and Niu, 2008, Sundaram and Niu, 1999). We show that the LL spectra of the AB-AB and AB-BA

configurations of TDBG are dramatically different, which allows to discriminate them despite

their virtually indistinguishable band structures.

7.3 Hofstadter’s butterfly of TDBG and Wannier diagrams

The HB spectrum and LLs of TBG close to the magic angle have recently been investigated in

several works (Lian et al., 2018, Hejazi et al., 2019, Zhang and Senthil, 2019). Lian et al. studied

the HB of TBG, and found that the HB of the flat-band manifold is generically connected

with the remote bands since the flat bands have non-trivial fragile topology (Lian et al., 2018).

Zhang et al. found that the degeneracy of the LLs would be lifted when the crystal symmetry

is broken (Zhang and Senthil, 2019). In our work, we show that the distribution of orbital

magnetization in momentum space can lift the LL degeneracy, and that the LL splittings are

crucially dependent on the stacking configuration and band topology of the TDBG system.

The tight-binding (TB) Hamiltonian in presence of a magnetic field is obtained by adding
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phase factors φi j to the corresponding hopping integrals, a procedure known as the Peierls

substitution (see Sec. 2.3), applied electric field and intrinsic polarization effects were not

considered in the reported calculations. The phase factorφi j is in general not periodic modulo

2π in the usual Landau gauge A = B xêy when ri and r j are not nearest neighbours. In order to

cope with this problem, we adopt the periodic Landau gauge introduced by Nemec and Cu-

niberti (Nemec and Cuniberti, 2007) and further used by Hasegawa and Kohmoto (Hasegawa

and Kohmoto, 2013) to study TBG. This periodic Landau gauge is defined as

A(r) = Φ

2π

(
(ξ1 −bξ1c)K2 −ξ2

∞∑
n=−∞

δ(ξ1 −n +ε)K1

)
, (7.1)

where (ξ1,ξ2) are the oblique coordinates defined by r = ξ1R1 + ξ2R2 with R1,R2 being the

primitive vectors of the moiré unit cell, K1, K2 are the corresponding reciprocal lattice vectors,

ε is a positive infinitesimal and bxc is the floor function defined as largest integer not greater

than x. Φ is the magnetic flux through the moiré unit cell defined as

Φ= BS = p

q
Φ0, (7.2)

where S is the area of the moiré unit cell, p and q are co-prime integers. The size of magnetic

supercell is q times the moiré unit cell along the R2 direction. The HB and LLs spectra,

represented by the local density of states, are obtained by numerically solving the eigenvalue

problem using the Lanczos recursion method as implemented in the WannierTools open-

source software package (Wu et al., 2018), and described in Sec. 2.7.

Without loss of generality, we will focus on TDBG with twist angle θ = 1.89◦, for which we

set q = 500 in our calculations. As shown in Figs. 7.2a,b, the band structures of the AB-AB

and AB-BA configurations are practically indistinguishable as far as the flat-band manifold is

concerned. Figs. 7.2c,d show the HB spectra of these two TDBG configurations. It is evident

that despite very similar band structures, the AB-AB and AB-BA configurations have very

different HB spectra as well as Chern numbers associated with the LL gaps. The LLs of the flat

bands are connected with the LLs originating from higher energy bands in both cases, which

is observed also for smaller twist angles. Lian et al. (Lian et al., 2018) attributed this to the

nontrivial fragile topology of TBG. However, we note that no fragile topology and no valley

Chern numbers characterize the AB-AB configuration of TDBG.

A convenient way for observing the HB in experiments relates to the Wannier diagrams (WDs)

obtained by plotting the Hofstadter energy spectrum as integrated charge-carrier density n

versus magnetic field B or magnetic flux Φ (Wannier, 1978). WDs show that all spectral gaps

are constrained to linear trends in the density-field diagrams. This can be described by a

simple Diophantine relation

n/ns = tΦ/Φ0 + s, (7.3)

where n/ns and Φ/Φ0 are the normalized carrier density and magnetic flux, respectively, and
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Figure 7.3 – Landau levels, Wannier diagrams, Hall conductivity and orbital magnetization
plots for the flat-band manifold in the AB-AB (left) and AB-BA (right) configurations of TDBG
at twist angle θ = 1.89◦. (a,h) The LL spectra as a function of magnetic flux per moiré unit cell.
The valley Chern numbers of the LL gaps are indicated. (b,i) Normalized charge-carrier density
per moiré unit cell as a function of magnetic field flux. The linear trends correspond to the
gaps, hence the LL filling factors can be deduced from the slopes of these lines. (c,j) Quantized
Hall conductivity of the Landau fans. Panels (d-g) and (k-n) show the orbital magnetization
mn,τ(k) in units of µB , where n is the band index representing conduction or valence bands
and τ is the graphene valley index K + or K −.

s and t are integer numbers. Here, n/ns represents the Bloch band filling fraction. The first

quantum number t is related to the Hall conductivity σx y associated with each minigap in

the fractal spectrum. σx y is quantized according to the relation σx y = 4te2/h, where factor 4

originates from the valley and spin degeneracies. The second quantum number s corresponds

to the Bloch band filling index in the fractal spectrum.

In the limit of weak out-of-plane uniform fields B = (0,0,B), the evolution of energy bands can

be treated perturbatively as (Chang and Niu, 2008, 1996, Sundaram and Niu, 1999, Sun et al.,

2020)

εn,σ,τ(k,B) = εn,τ(k)+µB gσB +mn,τ(k)B , (7.4)

whereσ is the electron spin operator assuming ±1/2 values for up and down spins, respectively,
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and τ=±1 is the valley index. The valley orbital magnetization is defined as

mn,τ(k) =−µB
2me

~2 Im
∑
l 6=n

〈n,τ|∂kx Hτ|l ,τ〉〈l ,τ|∂ky Hτ|n,τ〉
εn,τ,k −εl ,τ,k

. (7.5)

There are two contributions to the energy due to magnetic field. The first contribution origi-

nating from the Zeeman effect of electron spin is neglected throughout this work for simplicity.

The second contribution is related to the orbital magnetization contribution mn,τ(k).

The LL spectra, Wannier diagrams and the distribution of orbital magnetization in momentum

space for the the flat-band manifold of the AB-AB and AB-BA configurations of TDBG at

θ = 1.89◦ in a low-field range are presented in Fig. 7.3. In the case of Bernal (AB-stacked) BLG,

the sequence of the Hall conductivity values σx y =±4,±8,±12, ... e2/h (Novoselov et al., 2006)

with the increment of 4 e2/h is related to the combination of the spin and (bilayer graphene)

valley degeneracies. In TDBG, the moiré valley degeneracy adds to the above degeneraciers

increasing the increment of the Hall conductivity sequence to 8 e2/h. In our calculations,

however, we observe the 4 e2/h increment close to the CNP for both the AB-AB and AB-BA

configurations of TDBG (Figs. 7.3c,j). This implies that one of three degeneracy flavors is

lifted under applied magnetic field. Due to the neglected Zeeman effect term, either bilayer

graphene valley or moiré valley degeneracies are expected to be lifted by magnetic field. In

order to clarify this issue, we consider the transformations of orbital magnetization mn,τ(k)

under the C2x , C2y and T symmetries:

T : mn(k) =−mn(−k),

C2x : mn(kx ,ky ) =−mn(kx ,−ky ),

C2y : mn(kx ,ky ) =−mn(−kx ,ky ).

In the AB-AB configuration of TDBG, the C2x symmetry operation exchanges moiré valleys Ks

and K ′
s while keeping the bilayer graphene valleys K + and K − unchanged (Fig. 7.1). Eventually,

the orbital magnetization mn,τ(k) is the same for the two bilayer graphene valleys while it

is opposite in the two moiré valleys. The orbital magnetization mn,τ(k) of the conduction

and valence bands for the two valleys, calculated using the continuum model Hamiltonian

described in Ref. (Liu et al., 2019d), is shown in Fig. 7.3d-g. The results are fully consistent with

our symmetry analysis. The Landau levels at the CNP originate from the energy bands at the

two moiré valleys Ks and K ′
s . According to Eqn. (7.4), the LLs originating from moiré valleys Ks

and K ′
s are no longer degenerate due to their opposite orbital magnetization mn,τ(k), while

the LLs of the two bilayer graphene valleys preserve the degeneracy due to the same orbital

magnetization. To support this argument, let us consider the lowest LL of the valence and

conduction bands shown in Figs. 7.3a,b. The large splitting of the lowest LLs originating from

the valence band contrasts with essentially no splitting for the conduction band LLs. This

can be explained by the fact that mn,τ(k) of the valence band at Ks and K ′
s is about ±6.5µB

while that of the conduction band is zero. To provide a rough estimate, the energy splitting at
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Φ/Φ0 = 0.1 (corresponds to B ≈ 9 T) assuming a orbital magnetization of 6.5µB is ca. 3.2 meV

which is comparable to the lowest LL splitting of the valence band shown in Fig. 7.3a. Note

that the orbital magnetization of the conduction band at Ks and K ′
s is close to zero as shown

in Figs. 7.3d,e. Eventually, the LL splitting of the conduction band close to CNP is much

weaker than that of the valence band. For this reason, the splitting of the lowest LL of the

conduction band at CNP is missing, which manifests in apparent absence of σx y = 4 e2/h

from the Hall conductivity sequence (Fig. 7.3c). The same scenario is also observed for the

AB-BA configuration of TDBG discussed below. The LLs at n/ns =±1 originate from the Γs

point where the orbital magnetization of the conduction and valence bands is zero due to

the symmetry constrain. Eventually, as shown in Figs. 7.3a-c, the sequence of the LLs at

n/ns =±1 is 0, ±4, ±8,... with increment of 4 originating from the combination of spin and

bilayer graphene valley degeneracies.

In the AB-BA configuration of TDBG, the C2y symmetry exchanges bilayer graphene valleys

K − and K + while keeping the moiré valleys unchanged. In this case, the orbital magnetization

mn,τ(k) shown in Figs. 7.3k-n is the same for the two moiré valleys, while it is opposite for the

two bilayer graphene valleys. The latter indicates that the bilayer graphene valley degeneracy of

LLs is lifted under magnetic field, as supported by Figs. 7.3h-j. The Hall conductivity sequence

at CNP n/ns = 0 is σx y = 0,±4,±8, ... e2/h, i.e. the same as for the AB-AB configuration.

However, at n/ns =±1 the Hall conductivity sequence σx y = 0,±2,±4, ... e2/h with increment

of 2 e2/h is different from that of the AB-AB configuration. Furthermore, another Landau fan

at half-filling n/ns = 1/2 can be observed, while it is absent in the case of AB-AB configuration

of TDBG. This Landau fan at n/ns = 1/2 appears when the degeneracy is lifted in the whole

BZ.

In conclusion, through large-scale numerical calculations based on the atomistic tight-binding

model and symmetry analysis, we have investigated the LL spectra of two configurations of

TDBG with the same value of twist angle. It was found that the LL sequences close to the

CNP of both systems are very similar although their origin is different, while the LL sequences

at n/ns =±1 and n/ns =±1/2 of both systems are very different. These similarities and dif-

ferences are caused by the momentum-space distribution of orbital magnetization mn,τ(k)

subject to symmetries. These considerations can be readily generalized to a broader class of

moiré superlattice systems, such as other twisted graphene multilayers and h-BN/graphene

heterostructures, characterized by flat bands with non-trivial valley Chern numbers. Our re-

sults thus suggest Landau levels as a versatile experimental probe for the “hidden” topological

character of bands in two-dimensional moiré systems.

95





Part IIIQuantum transport in
graphene-based nanostructures

97





8 Electronic transport in graphene with
out-of-plane disorder

Real-world samples of graphene often exhibit various types of out-of-plane disorder–ripples,

wrinkles and folds–introduced at the stage of growth and transfer processes. These complex

out-of-plane defects resulting from the interplay between self-adhesion of graphene and its

bending rigidity inevitably lead to the scattering of charge carriers thus affecting the electronic

transport properties of graphene. We address the ballistic charge-carrier transmission across

the models of out-of-plane defects using tight-binding and density functional calculations

while fully taking into account lattice relaxation effects. The observed transmission oscillations

in commensurate graphene wrinkles are attributed to the interference between intra- and

interlayer transport channels, while the incommensurate wrinkles show vanishing backscat-

tering and retain the transport properties of flat graphene. The suppression of backscattering

reveals the crucial role of lattice commensuration in the electronic transmission. Our results

provide guidelines to controlling the transport properties of graphene in presence of this

ubiquitous type of disorder.

This Chapter explores the influence of wrinkles and folds in the electronic transmission of

graphene. The lattice matching effect in the wrinkle is extensively discussed.

This chapter is adapted from the paper:

Yifei Guan and Oleg Yazyev*

Electronic transport in graphene with out-of-plane disorder (2022)

https://arxiv.org/abs/2210.16629

My contribution includes developing the tight-binding transmission code, establishing the

single atomic chain model and concluding the theory of momentum matching.

8.1 Introduction

Being the first and the most investigated two-dimensional (2D) material, graphene continues

attracting attention as a platform for exploring novel physics and realizing prospective tech-

nological applications (Castro Neto et al., 2009). The 2D nature of graphene gives rise to soft
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Chapter 8. Electronic transport in graphene with out-of-plane disorder

flexural modes that result in low-energy out-of-plane disorder otherwise absent in bulk, three-

dimensional materials (Deng et al., 2017, Mariani and Von Oppen, 2008, Croy, 2020, de Lima

et al., 2015). The interplay between bending upon in-plane compression and the interlayer

adhesion results in several distinct types of out-of-plane disorder: ripples, wrinkles and folds

(see Refs. (Zhu et al., 2012, Deng et al., 2017) and Figs. 8.1(a,b)). The out-of-plane disorder

has a prominent effect on the electronic structure and transport properties of graphene (Hat-

tab et al., 2012, Xie et al., 2012, Pelc et al., 2015, Kang et al., 2020). Finite curvature of the

deformed region results in pseudo-gauge fields (Vozmediano et al., 2008, Ortolani et al., 2012),

while the collapsed regions in wrinkles and folds provide a pathway for electronic tunnelling

between layers (Zhu et al., 2012, Benameur et al., 2015). In addition, out-of-plane disorder

locally accumulates charges and act as scattering centers (Zhu et al., 2012, Guo and Guo,

2013, Pereira et al., 2010, Nakajima et al., 2019), subsequently having an impact on the op-

eration of graphene-based nanoscale electronic devices (Benameur et al., 2015, Katsnelson

and Prokhorova, 2008, Zhang and Fahrenthold, 2020) as well as electrical characteristics of

large-scale graphene samples.

Out-of-plane disorder in graphene may occur for several reasons. For instance, graphene

grown using the chemical vapour decomposition (CVD) process develops wrinkles and folds as

a result of the thermal contraction of substrate during the cooling stage (Deng and Berry, 2016,

Wang et al., 2021, Pan et al., 2011). The out-of-plane disorder may also be introduced during

the transfer procedure (Lanza et al., 2013, Liu et al., 2011). Significant efforts have then be

devoted to eliminating wrinkles (Deng et al., 2017, Wang et al., 2021), e.g. using the substrates

with matching thermal expansion coefficients (Lanza et al., 2013), strain engineering (Hu et al.,

2021) and tailored temperature control protocols (Wang et al., 2021). Experimental studies of

the electronic transport in graphene with out-of-plane disorder have also been published (Zhu

et al., 2012, Ma et al., 2020). It was proposed that controlled folding of graphene can be used

for engineering charge-carrier dynamics (Fan et al., 2021, Rode et al., 2018, Luo et al., 2022,

Yang et al., 2022). No question, future applications of graphene in electronics call for a detailed

understanding of the effect of this ubiquitous type of disorder on the electronic transport.

In this work, we systematically investigate the electronic transport across wrinkles and folds in

graphene using first-principle computations. For commensurate graphene wrinkles, in which

the interlayer stacking corresponds to the energetically favorable Bernal stacking configura-

tion, we find that the electronic transmission oscillates over wide energy ranges. The observed

oscillation patterns are attributed to quantum interference between the inter- and intralayer

transport channels. In incommensurate wrinkles and folds, the mismatch between the layers

is found to suppresses the interlayer tunneling resulting in transmission probabilities close to

the limit of flat, pristine graphene.
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Figure 8.1 – The structure of out-of-plane disorder in graphene. (a) Definition of compressive
displacement ∆W relative to the flat, unstrained graphene. (b) Formation of the three distinct
types of out-of-plane disorder upon increasing ∆W . The curves show a schematic illustration
of the dependence of energy E on ∆W for the three deformation regimes. Yellow color exposes
the collapsed regions where the interlayer coupling is enabled. (c) Illustration of the inter-
layer coupling between the atoms belonging to the same sublattice in commensurate zigzag
wrinkles and folds.

8.2 Methodology

The atomistic models of graphene with out-of-plane disorder considered in our work are

defined by a compressive displacement of length ∆W (see Fig. 8.1(a)) forming a wrinkle or a

fold along crystallographic vector v = (a,b). The considered configurations are thus assumed

to be periodic along v. The interplay between the bending energy and attractive interlayer

interactions of graphene layers define the evolution across the three types of out-of-plane

disorder realized upon increasing ∆W as shown in Fig. 8.1(b). While ripples are formed at

small ∆W , interlayer attraction collapses such structures to wrinkles for larger values of ∆W ,

and further increase of∆W leads to folds, in which the contact area between graphene layers is

further increased. Extremities of wrinkles and folds have loop-like structures free of interlayer

coupling (Zhu et al., 2012). All atomistic models of wrinkles and folds considered in our work

have been constructed with the help of classical force-field relaxation.

The atomic structures of models of the out-of-plane disorder in graphene were obtained by

means of classical force field simulations using LAMMPS (Plimpton, 1995, LAMMPS). The

classical force field includes the bond-order potential for describing covalent bonding (Los and

Fasolino, 2003) as well as the modified version of the Kolmogorov–Crespi registry-dependent

potential (Kolmogorov and Crespi, 2005) for describing the interlayer van der Waals interac-

tions. The energy minimization was performed using the conjugate-gradient and fast inertial

relaxation engine (FIRE) algorithms (Bitzek et al., 2006).
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First-principles transport calculations were performed with the TranSIESTA package (Soler

et al., 2002, Stokbro et al., 2003). We used the double-ζ plus polarization basis set combined

with the local density approximation exchange-correlation functional (Perdew and Zunger,

1981). The energy shift for constructing the localized basis was set to 275 meV, and the real-

space cutoff to 250 Ry. The estimation of the direct coupling between the top and bottom

layers in graphene folds was extracted from the localized basis set Hamiltonian using the sisl

package (Papior, 2022).

8.3 Electronic transport across commensurate wrinkles

We first consider the special case of wrinkles defined by v = (1,0) and v = (1,1), referring

to them as zigzag and armchair, respectively. The collapsed regions of such wrinkles are

compatible with the energetically favorable Bernal interlayer stacking configuration (Gargiulo

and Yazyev, 2018, Lipson and Stokes, 1942, Butz et al., 2014, Ni and Wakabayashi, 2014), and

hence referred to as commensurate in the rest of our paper. For these relaxed models, we

calculated ballistic charge-carrier transmission from first principles, using the combination

of density functional theory (DFT) and the non-equilibrium Green’s function formalism

implemented in the TranSIESTA package (Soler et al., 2002, Stokbro et al., 2003). The results

of DFT calculations are discussed in comparison with the tight-binding (TB) approximation

calculations employing the Slater-Koster formalism (Slater and Koster, 1954, Zhu et al., 2012).

Figures 8.2(a)-(d) present the ballistic transmission T (E ,k//) for the models of zigzag wrinkles

defined by ∆W = 40, 60, 120 and 240 Å as a function of energy E and momentum parallel

to the wrinkle k//. Furthermore, each panel shows transmission T (E) plotted at a specific

k//=±2π/(3a0) (a0 = 2.46 Å is the lattice constant of graphene), which corresponds to the

momentum of projections of the Dirac cone band degeneracies.

There are two striking observations in the presented transmission plots. Firstly, both in DFT

and TB results, we observe a pronounced electron-hole asymmetry in the charge-carrier

transmission. The electron-hole asymmetry has an origin in the interlayer stacking of zigzag

wrinkles. The collapsed region assumes Bernal stacking configurations AB′
1 or AB′

2 (Gilbert

et al., 2019), as illustrated in Fig. 8.1(c), in which one of the graphene sublattices couples to

itself upon folding since the two layers are mirror-symmetric with respect to each other. Such

a coupling breaks the sublattice symmetry and hence the electron-hole symmetry (ichi Sasaki

et al., 2006, Semenoff, 2012).

Secondly, ballistic transmission T (E ,k//) shows pronounced oscillations over broad energy

ranges. Apart from making transmission highly energy-dependent, such oscillations also affect

average conductance at a finite bias. These oscillations are clearly visible in the side panels of

Figs. 8.2(a-d) that show transmission at a fixed momentum k// = 2π/(3a0) that corresponds

to the projections of the Dirac points. Further analysis shows that the energy separation

∆E between the peaks has an approximately linear dependence on ∆W (Fig. 8.2(e)). Such a

dependence is the signature of the interference between the interlayer and intralayer transport

102



8.3. Electronic transport across commensurate wrinkles

-3

-2

-1

0

1

2

3

0

0.5

1

1.5

2

2.5

3

-3

-2

-1

0

1

2

3

0 1 2 3 0

0

(c)
0

0

-3

-2

-1

0

1

2

3

0

0.5

1

1.5

2

2.5

3

-3

-2

-1

0

1

2

3

0 1 2 3

(a)

-3

-2

-1

0

1

2

3

0

0.5

1

1.5

2

2.5

3

-3

-2

-1

0

1

2

3

0 1 2 3

(d)

-3

-2

-1

0

1

2

3

0

0.5

1

1.5

2

2.5

3

-3

-2

-1

0

1

2

3

0 1 2 3

(b)

0

0.25

0.5

0.75

1

0.005 0.01 0.015 0.02 0.025

(e)

Figure 8.2 – Ballistic transmissions T (E ,k//) of zigzag wrinkle models defined by (a)∆W = 40 Å,
(b) ∆W = 60 Å, (c) ∆W = 120 Å and (d) ∆W = 240 Å calculated from first principles. The
side panels show the transmission probability at k// = 2π/(3a0) which corresponds to the
projections of the Dirac points. The energy spacing ∆E between the oscillation peaks are
highlighted by lines. (e) Dependence of ∆E on 1/∆W .

channels, as found by some of us previously in the case of electromechanical response of

bilayer graphene (Benameur et al., 2015). This transport phenomenon is further addressed in

Section 8.4.

The second family of investigated commensurate configurations is defined by v = (1,1), that is

wrinkles are oriented along the armchair direction. Atomic relaxation effects are more complex

in such wrinkles. Unlike in the zigzag case, realizing the lowest-energy Bernal stacking is

possible only at a cost of introducing shear deformation as shown in Fig. 8.3(a). Consequently,

the Bernal stacking is not achieved at small values of∆W , and the collapsed region assumes the

saddle-point (SP) stacking configuration (San-Jose et al., 2014) that does not break sublattice

symmetry. Figure 8.3(b) presents the evolution of shear deformation ∆y upon the change of

∆W with ∆y = a0/(2
p

3) representing the pure Bernal stacking configuration. Figures 8.3(c-d)

present the transmission maps for the armchair wrinkles with ∆W = 40 Å and ∆W = 120 Å.

In the case of v = (1,1), the Dirac points are projected onto k// = 0. Similar to the case of

zigzag wrinkles, oscillations with the ∆E ∝ 1/∆W period are observed in the transmission

maps. The oscillation pattern is more regular than in the case of ∆W = 40 Å armchair wrinkle,

which assumes the SP stacking and hence preserves electron-hole symmetry. In contrast,

the ∆W = 120 Å wrinkle is significantly closer to the Bernal stacking (see Fig. 8.3(b)) and the

electron-hole symmetry appears to be well visible in this case.
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Figure 8.3 – (a) Schematic illustration of the shear deformation in armchair wrinkles. The
shear is characterized by displacement ∆y . (b) Evolution of shear deformation ∆y versus
compressive displacement ∆W . At small values of ∆W , shear deformation ∆y is small, which
corresponds to to the SP stacking configuration (∆y = a0/(2

p
3) corresponds to pure Bernal

stacking. (c-d) Ballistic transmissions T (E ,k//) across armchair wrinkle models defined by (c)
∆W = 40 Å and (d) ∆W = 120 Å. The T (E) cross sections are taken at k//=0 that corresponding
to the projected Dirac points.

8.4 Conductance oscillations in the atomic chain model

In order to further address the physical mechanism underlying the conductance oscillations

observed in both the zigzag and armchair wrinkles, we introduce a simple one-dimensional

model treated using the tight-binding approximation. The presence of interlayer conductance

channels is defined by ∆W , and also l that represents the absence of interlayer hopping in

the loop-like region as shown in Fig. 8.4(a). At the same time, we observe that k// does not

have any significant effect on the oscillation period, hence we introduce a one-dimensional

chain described using the nearest-neighbor tight-binding model with an extra hopping t ′

that models interlayer coupling in graphene wrinkles. Schematic diagram of this model

with hopping t ′ represented by a rainbow-like graph is shown in Fig. 8.4(b). The ratio of the

newly introduced hopping t ′ to the nearest-neighbor hopping t is chosen to resemble that

of graphene wrinkles t ′/t = 0.48 eV/−2.7 eV (Gargiulo and Yazyev, 2018, Zhu et al., 2012).

Figure 8.4(c) shows transmission T as a function of energy E at a fixed ∆W =12 in units of

intersite distance, while parameter l is varied. We observe that oscillation peaks have the same

positions, which indicates that l is of little effect on the oscillation period. Combined with

the results of DFT calculations we conclude that the oscillations are defined by the largest

path difference ∆W . We further analyze the transmission oscillations in the atomic chain

model using the non-equilibrium Green’s functions (NEGF) approach (see Sec. 2.6), in which

hoppings t ′ are treated as a perturbative correction to the transmission.

First, we define an infinite atomic chain with the Hamiltonian

H = t
∑

i
c†

i ci+1 +h.c., (8.1)
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Figure 8.4 – Transmission oscillations in atomic chain model. (a) Cross-section drawing of the
trivialized graphene wrinkle and (b) its unfolded representation equivalent to atomic chain
with additional hoppings. (c) Transmission T as a function energy E in units of t calculated
using the TB model Hamiltonian. In this plot ∆W = 12 in units of intersite distance is fixed,
while different curves correspond to difference values of l . (d) First-order correction to the
Green’s function δ(E) =G0∆hG0/G0 plotted for different l and constant ∆W = 20 reveals that
the period of oscillations is governed by ∆W .

where ci (c†
i ) is the annihilation (creation) operator on the i th site. This Hamiltonian com-

mutes with the translation operator, thus the energy eigenstates are also momentum eigen-

states.

In the NEGF formalism (Gargiulo and Yazyev, 2014, Büttiker, 1986), the transmission is calcu-

lated as

T (E) = Tr[Γ1GΓ2G], (8.2)

where G is the Green’s function G(E)=[E −H −Σ]−1. The coupling matrices Γi are given by

Γi =i (Σi −Σ†
i ), with Σi being the self-energies of the two semi-infinite leads.

Green’s function G0 describes the chain in absence of t ′, while adding coupling t ′ that models

interlayer coupling in wrinkles adds an additional term ∆h

∆h = t ′
∆W /2∑
i=l /2

c†
i c−i +h.c. (8.3)

The Green’s function is then

G(E) = 1

G−1
0 −∆h

=G0 +G0∆hG0 +G0(∆hG0)2 + ... . (8.4)
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Keeping only the first order of correction G0∆hG0, the transmission becomes

T =Tr [Γ1G0Γ2G0

+Γ1G0Γ2(G0 +G0∆hG0)

+Γ1(G0 +G0∆hG0)Γ2G0

+Γ1(G0 +G0∆hG0)Γ2(G0 +G0∆hG0)]. (8.5)

The Green’s function can be written as an expansion involving eigenstates |ψn〉 of the chain

with no hoppings t ′

G0(E) =∑
n

1

E +εi −En
|ψn〉〈ψn |, (8.6)

and the correction term G0∆hG0 becomes

G0∆hG0 =
∑
m

∑
n

|ψm〉〈ψm |∆h|ψn〉〈ψn |
(E +εi −Em)(E +εi −En)

. (8.7)

As the simplest case, we analyze the En = Em correction G0∆hG0 = 〈ψn |∆h|ψm〉G0 that gives

an Ei -dependent prefactor to the Green’s function. We write the factor as a function δ(E) as

δ(E)G0 =G0∆hG0. (8.8)

The leading order of transmission correction is Γ1(G0 +G0∆hG0)Γ2(G0 +G0∆hG0)], hence the

correction to transmission contains δ2 +4δ+1.

We then evaluate the correction δ(E), keeping in mind that the eigenstates of the pristine

chain

Ĥ |ψ(k)〉 = 2t cos(k)|ψ(k)〉, (8.9)

are also momentum eigenstates. The correction factor δ represents the phase difference

between wavefunctions:

δ(E) =∑
i
〈ψn(ri )|∆h |ψn(r−i )〉∣∣En=E (8.10)

connected by the additional hoppings t ′. It can then be approximated by a sum of sinusoidal

functions

δ(k) = t ′

t

∆W /2∑
i=l /2

cos(2i k). (8.11)

The results of the summation shown in Fig. 8.4(d) suggests that the highest-frequency com-

ponent in Eq. (8.11), which corresponds to the interference path ∆W , defines the oscillation

peaks. Our first-principles results are consistent with the conclusions of this simple model.
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8.5 Transport across incommensurate wrinkles

We will now discuss graphene wrinkles formed along general crystallographic directions

v = (a,b) other than high-symmetry zigzag and armchair orientations. In these cases, the

collapsed region locally forms twisted bilayer graphene with matching vectors (a,b) and (b, a).

The resulting twist angle is

θ = arccos

(
a2 +4ab +b2

2(a2 +ab +b2)

)
, (8.12)

while the translational vector along the wrinkle has a length of d =
p

a2 +b2 +ab.

We discuss the effect of wrinkle direction (a,b) on the transmission T (E ,k//). Translational

vector (a,b) defines a one-dimensional mini Brillouin zone (mBZ) obtained by projecting the

2D Brillouin zone of graphene onto the k// direction in momentum space. The Dirac cones

of graphene are projected onto either k// = 0 (class Ia) or k// = 2π/(3|v|) (class Ib) of the mBZ

according to the classification introduced in Ref. (Yazyev and Louie, 2010). Class Ia is defined

by |a −b| mod 3 = 0, class Ib otherwise. The projections of the Dirac cones define the regions

in the T (E ,k//) maps where transmission is allowed and limited by n conductance channels

in case of n-fold degeneracy of bands at given E and k// in the ballistic regime.

The periodic structure of wrinkles results in consequences deeper than just the conservation

of momentum k// upon ballistic transmission. We stress that semi-infinite graphene sheets

on both sides of wrinkles of constant width have the same crystallographic orientation. The

momentum conservation implies suppressed backscattering at the Dirac point, which can

be observed by evaluating contribution to the transmission from the first-order correction

G0∆hG0. Starting with the pristine graphene and a simple interlayer containing only hopping

between aligned atoms

∆hi j =
t ′, r⊥

i = r⊥
j

0, r⊥
i 6= r⊥

j ,
(8.13)

the effective ∆G writes

G0∆hG0(z) =∑
m

∑
n

〈ψm |∆h|ψn〉
(z −Em)(z −En)

|ψm〉〈ψn |, (8.14)

which becomes most significant at Em = En = z. Recalling the fact that |ψm〉 and |ψn〉 are eigen-

states of pristine graphene, 〈ψm |∆h|ψn〉 gives an exp
(
2πi (km −kn) · ri j

)
term. Integrating over

ri j , ∆G vanishes if km 6= kn , while the wrinkle enforces a transformation km =Mx kn due to

its mirror-symmetric stacking configuration of the two layers as shown in Figs. 8.5(a,b). Here,

Mx denotes the mirror-reflection with respect to transport direction x: Mx (kx ,ky ) = (−kx ,ky ).

From the above rules of momentum conservation, we conclude that the transmission is only

affected in the overlapping region of the Dirac cones. In the non-overlapping region, the

correction G0∆hG0 is vanishing, and the transmission retains the value of ideal, defect-free
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Figure 8.5 – Atomic structure of incommensurate wrinkle defined by the (1,2) direction: (a)
local structure of the collapsed region equivalent to twisted bilayer graphene (unit cell is
shown with the shaded region), (b) side-view with the sketch of the Brillouin zones and the
Dirac cones of adjacent layers, and (c) top-view of the wrinkle illustrating the conservation
of crystallographic orientation of graphene leads. Transmission maps T (E ,k//) for wrinkle
models defined by (d) v=(1,4) and ∆W = 80 Å(class Ia), (e) v=(1,2) and ∆W = 80 Å(class Ib).

graphene. These results are verified by the explicit DFT transport calculations as shown in

Fig. 8.5(d-e) for class Ia and class Ib wrinkles, respectively. The transmission maps T (E ,k//)

have overall shape of the Dirac cone projections. Transmission values near the charge neutral-

ity are T ≈ 2 and T ≈ 1 for class Ia and Ib configurations, respectively, indicating that interlayer

tunnelling plays a minor role. At higher energies where the Dirac cones overlap, e.g. near E ≈ 2

eV in Fig. 8.5(e), backscattering becomes significant leading to a series of transmission dips.

We also point out that class Ia presents larger backscattering from the interlayer coupling since

the projected Dirac cones overlap with each other.

8.6 Transport across graphene folds

We will now discuss folds as the ultimate regime of out-of-plane disorder in graphene. Folds

realize triple-layer graphene configurations in their collapsed regions (Fig. 8.6(a-c)). Impor-

tantly, adjacent layers (pairs 1–2 and 2–3) in incommensurate folds are twisted with respect

to each other, while the outside layers 1 and 3 are aligned. This configuration is equivalent

to mirror-symmetric twisted trilayer graphene. While we still expect the effect of interlayer

coupling to be weakened by the incommensuration, our DFT calculations predict a larger

degree of backscattering in folds than in wrinkles (compare Figs. 8.5(e) and 8.6(d) for the

the (1,2) direction). For the folded region of width l f = 40 Å, the average transmission in
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Figure 8.6 – (a) Atomic structure of an incommensurate fold defined by v = (1,2) as an example.
(b) Side-view of the fold with layers numbered and Brillouin zone orientations indicated.
Transmission maps T (E ,k//) for (c) the incommensurate fold shown in the above panels and
(d) zigzag fold characterized by ∆W = 80 Å.

the energy interval (−0.15 eV, 0.15 eV) is 0.727, while in the wrinkle of equivalent ∆W = 80 Å

it is 0.908. The observed transport behaviour raises the question of whether the enhanced

backscattering in incommensurate folds as compared to wrinkles originates from the direct

coupling of the outmost layers 1 and 3. The corresponding matrix elements of the Hamilto-

nian in localized-basis-set first-principles calculations (Soler et al., 2002, Papior, 2022), are

found to be negligible. The estimated Slater-Koster coupling also has a negligible magnitude

of 10−4 eV. Therefore, we attribute the enhanced scattering to the fact that the number of

interlayer tunneling channels is doubled in the folds. As expected, for a commensurate zigzag

fold (Fig. 8.6(d)) we observe strong backscattering with transmission magnitudes lower than

in the equivalent zigzag wrinkles (Fig. 8.2).

8.7 Tight-binding results for the transmission

In addition to the first-principles resulte, we present the results of tight-binding (TB) transmis-

sion calculations. Our TB calculations include nearest-neighbour (NN) intralayer hoppings

(the π-type bonds between pz orbitals) and the interlayer hoppings in the collapsed region of

the wrinkle. The presence of only NN intralayer hoppings imply electron-hole symmetry of

the pristine graphene layer, which reflects in the envelope of the transmission map T (E ,k//).

Fig. 8.7 presents the transmission T (E ,k//) obtained from TB calculations for commensurate

zigzag wrinkles characterized by the same lateral displacements∆W = 40 Å, 60 Å, 120 Å and 240

Å as the ones used in our DFT calculations. The Slater-Koster TB model is able to reproduce

the oscillating behaviour of the transmission observed in DFT results. Fig. 8.7(b) also provides

a comparison of the TB and DFT transmissions at k// = 2π/(3a0). One can observe good

overall agreement between the two theories throughout the discussed energy range, apart

from the small shift in energy of the two profiles. Our TB calculations also account for correct

electron-hole asymmetry induced by the interlayer tunnelling.
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Figure 8.7 – Tight-binding results for the electronic transmission across zigzag graphene
wrinkles. Ballistic transmissions T (E ,k//) across zigzag wrinkle models characterized by
(a) ∆W = 40 Å, (b) ∆W = 60 Å, (c) ∆W = 120 Å, (d) ∆W = 240 Å. The side panels show the
transmission probability at k// = 2π/(3a0).

Fig. 8.8 presents the results of TB calculations for the incommensurate wrinkle models char-

acterized by v = (1,4) and v = (1,2) wrinkles. As in DFT results we observe nearly perfect

constant transmissions at low charge-carrier energies. The agreement between the two theo-

ries suggests that the Slater-Koster TB model provides a faithful description of the electronic

transport in graphene with out-of-plane disorder, fully accounting for the effects of curvature

and interlayer tunnelling.

8.8 Discussion

We investigated the effect of our-of-plane disorder on the electronic transmission in graphene.

Different forms of the our-of-plane disorder exist in graphene, depending on the compressive

displacement and the orientation of the deformation. Our work studied ballistic transmission

through the wrinkles and folds using first-principle calculations, taking into account their

width and interlayer commensuration.

The interlayer coupling was found to cause substantial oscillations in the electronic trans-

mission across commensurate wrinkles. Such oscillations were found to originate from the

quantum interference involving the interlayer tunneling channels. Based on DFT calculations,

we propose a simple one-dimensional model that fully captures the observed oscillations. On

the other hand, in incommensurate, “twisted” wrinkles the interlayer coupling is effectively
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Figure 8.8 – Tight-binding results for the electronic transmission across incommensurate
wrinkles. Ballistic transmissions T (E ,k//) across wrinkle models characterized by ∆W = 80 Å
and (a) v = (1,4), (b) v = (1,2). The side panels show the transmission probability at k// =
2π/(3a0).

weaker, and the transmission near the Fermi level preserves that of pristine, flat graphene. We

have also found enhanced backscattering in folds that was attributed to the doubled contact

region in this type of the out-of-plane disorder.

Our results offer an approach toward understanding the transport in mesoscopic graphene

samples containing out-of-plane disorder of different type and arbitrary orientation. The the-

ory of transmission across graphene wrinkles and folds is thus useful for designing graphene-

based devices as well as fold-engineering of graphene. As a generalization, the principles

presented in our work are expected to apply also to other types of 2D materials. Formation of

locally twisted bilayers in the wrinkles and folds provides an interesting outlook for further

works, e.g. the “twisted” wrinkles in the smaller-angle regime.
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9 Concluding remarks

Low-dimensional systems are known to host different physical phenomena from bulk ma-

terials. As an example, the quantum Hall effect relies on the two-dimensional nature of the

electron gas, where the topological Chern number is defined. Since the discovery of graphene

(Novoselov et al., 2004, 2005), the last few decades have seen an increasing number of works

in the field of two-dimensional materials. The more recent works on twisted multilayers

have further enriched the topic by providing another tunable degree of freedom (Cao et al.,

2018a,b).

This thesis investigates various phenomena in carbon-based low-dimensional nanostructures,

with an emphasis on the role of band topology. It contains the theoretical work of physical

observables in topological insulators and the computational research of topological effects in

twisted multilayer graphene.

9.1 Overview

Two levels of research are involved on the topic of two-dimensional materials and topology:

theoretical works based on abstract models and a study of moiré materials in atomistic models.

In Part I, we provide the magnetic response and edge states of Euler-class topological insulators.

This part of the work aims to provide signatures for Euler class topology. Compared to the

well-known Chern insulators, we inspect the magnetic-field response and edge states of Euler

insulators. The toy-model results relate to the magic-angle twisted bilayer graphene systems

where topological Euler bands with E = ±1 are reported. We also expect that the general

deductions will apply to broader ranges of materials of Euler numbers greater than one. While

such higher-Euler materials have not been reported yet, we would suggest a family of materials

to consider. Similar to the mechanism in magic-angle TBG, where the Dirac points with ±1

monopole charges evolve into E =±1 Euler bands, the twisted bilayer materials with a higher

monopole charge in each layer may possess E > 1.

Part II is mainly focused on twisted multilayer graphene. Since the discovery of correlated
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states and unconventional superconductivity, there have been extensive discussions on the

topology of moiré flat bands and their effects on the interactions of electrons. We investigate

the effect of underlying quantum geometry in twisted multilayer graphene. Typically, we

calculate the topological numbers of flat bands and the corresponding Wannier diagrams.

Such diagrams provide the maps of quantum Hall conductance, which are widely used in

characterizing 2D materials as they resemble the results of transport measurements. The works

in Part II thus discuss the effect of topological phases and their signatures in the magnetic

response.

Lastly, Part III contains the standalone work of electronic transmission in graphene with the

out-of-plane disorder. This category of disorder is intrinsic in low-dimensional materials,

and its impact on transmission is essential for engineering 2D materials. We find that the

orientation of out-of-plane disorder plays a prominent role in backscattering: wrinkles in a

commensurate direction exhibit larger scattering than the incommensurate case. Such results

connect to twistronics as well, since the incommensurate wrinkles or folds locally form twisted

bilayer or trilayer graphene. We would expect the crossover of zero modes, snake states, and

moiré bands to provide intriguing phenomena near the magic angle.

9.2 Outlook

In addition to the well-known quantum Hall effects, recent works have revealed that the

topology of bands also affects electronic interactions. Examples of such interplay appear in the

fractional Chern insulators (Neupert et al., 2011) and the topological contribution to superfluid

weights (Peotta and Törmä, 2015, Tian et al., 2023). A natural continuation of the research will

be to investigate the effect of band topology in the presence of interactions. As such effects are

extensively discussed for the family of moiré materials, we have developed a set of tools aimed

at post-TB many-body calculations. Such methods will hopefully be able to carry out the

study of interactions, fully involving the quantum geometry of the eigenstates. Considering

the interacting phases, two scenarios are of special interest: the electronic transport in the

presence of phonons, and the transmission in interacting mesoscopic quantum dots.

Another dimension to explore lies in structural complexity. For example, recent progress on

the hyperbolic band theory has enriched the content of the Bloch theorem by embedding a

four-dimensional (4D) Bolza lattice on the hyperbolic tiling. In addition to the first Chern

numbers, such 4D lattice also hosts the second Chern number which is absent in 2D reciprocal

spaces 1. A further category of structural complexity that arises naturally in various materials

is the amorphous phase. While a constant curvature is produced by the tiling in a hyperbolic

lattice, amorphous materials host non-homogeneous spatial curvature. The effect of local

curvature fluctuation in amorphous materials may induce topological transitions. It will be of

interest to explore the effect, for an improved interpretation of topological phase transition

and the behavior of topological materials in the presence of defects.

1Generally, the n-th Chern number requires 2n-dimensional base manifolds.
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