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Abstract
This thesis concerns the theory of positive-definite completions and its mutually beneficial
connections to the statistics of function-valued or continuously-indexed random processes,
better known as functional data analysis. In particular, it dwells upon the reproducing
kernel character of covariances.

In the introduction, we attempt to summarize the basic ideas and thoughts upon which
the thesis is built.

Chapter 1 deals with the problem of covariance completion and develops an intuitive and
interpretable approach to the problem of covariance estimation for fragmented functional
data based on the concept of canonical completion. For a suitably restricted class of
domains, we describe how the canonical completion may be constructed and use it
to produce a characterization of the set of all completions. Furthermore, we identify
necessary and sufficient conditions for uniqueness of completion and for the exact recovery
of the true covariance.

Chapter 2 considers the problem of positive-definite completion in its generality and
represents a purely mathematical treatment of the subject compared to Chapter 1. We
study the problem for many classes of domains and present results concerning existence
and uniqueness of solutions, their characterization and the existence and uniqueness
of a special solution called canonical completion. We prove many new variational and
algebraic characterizations of the canonical completion. Most importantly, we show the
existence of canonical completion for the class of band-like domains. This leads to the
existence of a canonical extension in the context of the classical problem of extensions
of positive-definite functions, which is shown to correspond to a strongly continuous
one-parameter semigroup and consequently, to an abstract Cauchy problem.

Chapter 3 presents a rigorous generalization of undirected Gaussian graphical models to
arbitrary, possibly uncountable index sets. We prove an inverse zero characterization for
these models, analogous the one known for multivariate graphical models and develop
a procedure for their estimation based on the notion of resolution. The utility of the

ix
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concept and method is illustrated using real data applications and simulation studies.

Chapter 4 concerns the problem of recovering conditional independence relationships
between a finite number of jointly distributed second-order Hilbertian random elements
in a sparse high-dimensional regime with a particular interest in multivariate functional
data. We propose an infinite-dimensional generalization of the multivariate graphical
lasso and prove model selection consistency under natural assumptions. The method can
be motivated from a coherent maximum likelihood philosophy

Chapter 5 discusses ways in which the results of this thesis can be strengthened or
completed and its ideas and conclusions extended. With the only exception of Chapter
5, all chapters are independent self-contained articles and can be read in an arbitrary
order although the given order is recommended.

Keywords: positive-definite completion, canonical completion, functional data analysis,
covariance completion, continuous-time graphical models, reproducing kernel.
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Résumé
Le sujet de cette thèse est la théorie des complétions positives-définies et ses liens mu-
tuellement bénéfiques avec la statistique des processus aléatoires à valeurs fonctionnelles
ou à indices continus, mieux connus sous le nom d’analyse des données fonctionnelles.
En particulier, elle s’attarde sur le caractère de noyau reproducteur des covariances.

Dans l’introduction, nous tentons de résumer les idées et les réflexions fondamentales sur
lesquelles repose la thèse.

Le chapitre 1 traite du problème de la complétion de la covariance et développe une
approche intuitive et interprétable du problème de l’estimation de la covariance pour les
fonctions fragmentées, basée sur le concept de complétion canonique. Pour une classe de
domaines raisonnablement restreinte, nous décrivons comment la complétion canonique
peut être construite et nous l’utilisons pour produire une caractérisation de l’ensemble
de toutes les complétions. En outre, nous identifions conditions nécessaires et suffisantes
pour l’unicité de la complétion et pour la récupération de la vraie covariance.

Le chapitre 2 considère le problème de la complétion positive-définie dans toute sa généra-
lité et représente un traitement purement mathématique du sujet par rapport au chapitre
1. Nous étudions le problème pour de nombreuses classes de domaines et présentons des
résultats concernant l’existence et l’unicité des solutions, leur caractérisation et l’existence
et l’unicité d’une solution spéciale appelée complétion canonique. Nous prouvons de
nombreuses nouvelles caractérisations variationnelles et algébriques de la complétion
canonique. Surtout, nous montrons l’existence d’une complétion canonique pour la classe
des domaines similaires à une bande. Il en résulte l’existence d’une extension canonique
dans le contexte du problème classique des extensions des fonctions définies-positives,
que nous montrons correspond à un semigroupe fortement continu et par conséquent, à
un problème de Cauchy abstrait.

Le chapitre 3 présente une généralisation rigoureuse des modèles graphiques gaussiens
non orientés à des ensembles d’indices arbitraires, potentiellement indénombrables. Nous
prouvons une caractérisation de l’inverse du zéro pour ces modèles, analogue à celle
connue pour les modèles graphiques multivariés et nous développons une procédure pour
leur estimation basée sur la notion de résolution. L’utilité du concept et de la méthode est
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Résumé

illustrée à l’aide de nombreuses applications de données réelles et d’études de simulation.

Le chapitre 4 concerne le problème de la récupération des relations d’indépendance
conditionnelle entre un nombre fini d’éléments aléatoires hilbertiens du second ordre
distribués conjointement dans un régime à haute dimension éparse, avec un intérêt
particulier pour les données fonctionnelles multivariées. Nous proposons une généralisation
en dimension infinie du lasso graphique multivarié et prouvons la cohérence de la sélection
de modèle sous des hypothèses naturelles. La méthode peut être motivée à partir d’une
philosophie cohérente du maximum de vraisemblance.

Le chapitre 5 discute des façons dont les résultats de cette thèse peuvent être renforcés
ou complétés et ses idées et conclusions étendues. À l’exception du chapitre 5, tous les
chapitres sont des articles indépendants et autonomes et peuvent être lus dans un ordre
arbitraire, bien que l’ordre indiqué soit recommandé.

Mots-clés : complétion positive-définie, complétion canonique, analyse des données
fonctionnelles, complétion de la covariance, modèles graphiques à temps continu, noyau
reproducteur.
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Introduction
As a mathematical discipline travels far from its empirical source, or still more,

if it is a second and third generation only indirectly inspired by ideas coming from
“reality” it is beset with very grave dangers. It becomes more and more purely
aestheticizing, more and more purely l’art pour l’art. This need not be bad, if the
field is surrounded by correlated subjects, which still have closer empirical connections,
or if the discipline is under the influence of men with an exceptionally well-developed
taste. But there is a grave danger that the subject will develop along the line of least
resistance, that the stream, so far from its source, will separate into a multitude
of insignificant branches, and that the discipline will become a disorganized mass
of details and complexities. In other words, at a great distance from its empirical
source, or after much “abstract” inbreeding, a mathematical subject is in danger of
degeneration. At the inception the style is usually classical; when it shows signs of
becoming baroque, then the danger signal is up...

In any event, whenever this stage is reached, the only remedy seems to me to
be the rejuvenating return to the source: the re-injection of more or less directly
empirical ideas. I am convinced that this was a necessary condition to conserve the
freshness and the vitality of the subject and that this will remain equally true in the
future.

John von Neumann, The Mathematician (1947)

This thesis is centered around the theory of positive-definite completions and its con-
nections to the statistics of function-valued or continuously-indexed random processes,
better known as functional data analysis. The problem of positive-definite completion is
a general formulation in terms of reproducing kernels which encompasses many classical
problems such as positive-definite completions of partially specified matrices and exten-
sions of positive-definite functions which have been studied in analysis (Krein, 1940) and
linear algebra (Grone et al., 1984), and is intimately related to several others in operator
theory (Gohberg et al., 1989) and probability (Parthasarathy and Varadhan, 1964).

Let X be a set and Ω ⊂ X × X. Given a function KΩ : Ω → R, we are interested in
determining whether it can be extended to a reproducing kernel K on X, which is to say,
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a function K : X ×X → R which satisfies K(x, y) = K(y, x) for x, y ∈ X and

n∑
i,j=1

αiαjK(xi, xj) ≥ 0

for every n ≥ 1, {αj}nj=1 ⊂ R and {xj}nj=1 ⊂ X. In other words, the matrix [K(xi, xj)]ni,j=1
is positive semidefinite for every n ≥ 1 and {xj}nj=1 ⊂ X. If extension is indeed possible,
then we are interested in studying the properties of the completions K. In particular, we
are interested in the properties of a special solution K⋆ to the above problem, called the
canonical completion.

Reproducing kernels on a set X can naturally be thought of as covariances of a Gaussian
process indexed by X. The covariance of a Gaussian process being the canonical
completion K⋆ endows the process with a peculiar conditional independence structure.
In fact, the process can be regarded as a (possibly infinite) undirected Gaussian graphical
model with the graph (X,Ω) which one obtains by considering X as the vertex set and Ω
as the edge set. We shall see that this insight renders the beautiful paradigm of graphical
modelling, which is very popular in multivariate statistics, accessible to functional data
analysis. So far, this development had been obstructed by the fact that covariances of
function-valued or continuously-indexed random processes are rather poorly endowed
in terms of algebraic and analytic structure, in that, they do not have (well-behaved)
inverses, a behaviour which is categorically different from covariance matrices that we
encounter in multivariate statistics.

It is here that Aronszajn’s theory of reproducing kernels rescues us with its radically
different way of looking at things. Instead of treating our covariances as arrays of numbers
or linear transformations of vectors in the usual way, it proposes that we think of them
as corresponding to certain Hilbert spaces of functions on the index set. The correct
analogue of the inverse of a covariance for our setting is then the inner product associated
with the Hilbert space of the covariance.

Statistical Origins

The completion problem arose in connection with a covariance estimation problem for
functional data. Consider a real-valued stochastic process Y = {Yt}t∈I on an interval
I ⊂ R. We are interested in estimating the covariance of Y but instead of complete
independent samples Y j ∼ Y which are observed over the entire interval, we are given
partially observed samples or fragments Y j |J for Y j ∼ Y , where J is a much smaller
subinterval of I. Consequently, familiar methods only permit us to estimate the covariance
of Y over the region Ω ⊂ I × I instead of I × I. To produce an estimate of the covariance
of Y over I×I, we need to extrapolate the partial estimate from the region Ω to the region
Ωc = (I × I) \ Ω where the covariance can’t be estimated. The extrapolation procedure
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must ensure that the resulting estimate is at least approximately positive-definite. If we
think of I as X and the partial estimate of the covariance as KΩ, this can be understood
as an approximate form of the positive definite completion problem.

Our first construction of canonical completion was also achieved by reflecting on how
one might approach the problem of linear prediction when the entire covariance of the
process is not available. In fact, the basic idea is so simple that we shall venture to give
it here.

For simplicity, assume that Ω = (I1 × I1) ∪ (I2 × I2) where I1 are I2 subintervals of I
such that I1 ∪ I2 = I. Furthermore, assume that we are given KΩ : Ω → R such that
the restrictions K1 = KΩ|I1×I1 and K2 = KΩ|I2×I2 are reproducing kernels. We shall
construct a Gaussian process Y⋆ = {Y⋆(t)}t∈I whose covariance K⋆ is a completion of
KΩ. Let Y1 = {Y1(t)}t∈I1 and Y2 = {Y2(t)}t∈I2 be Gaussian processes with mean zero
and covariance K1 and K2, respectively. Also, let J = I1 ∩ I2.

Define Y⋆ = {Y⋆(t)}t∈I as follows:

Y⋆(t) =

Y1(t) for t ∈ I1,

Ŷ (t) + Z(t) for t ∈ I2 \ I1,

where
Ŷ (t) = E[Y2(t) | Y2(u) = Y1(u) for u ∈ J ]

and Z = {Z(t) : t ∈ I2 \ I1} is an independent Gaussian process with mean zero and
covariance KZ(s, t) = E[W (s)W (t)] for s, t ∈ I2 \ I1 with

W (t) = Y2(t) − E[Y2(t) | Y2(u) for u ∈ J ]

for t ∈ I2 \ I1. Taking conditional expectations in this manner requires some additional
theoretical justification. However, if we were to interpret them in a formal way, some,
slightly tedious, verification would reveal that the covariance K⋆ of Y⋆ is indeed a
completion of KΩ. It turned out that this relatively innocuous construction has many
remarkable properties, perhaps most important of them being that Y⋆ can be thought of
as a graphical model with the graph Ω. For this reason, K⋆ is called canonical completion.

It is worth pointing out that the canonical completion for the special case of symmetric
Toeplitz matrices made its first appearance also in connection with the statistical problem
of autocovariance estimation for stationary time series in the work of J. P. Burg (Burg,
1975).
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Synopsis

In Chapter 1, we refine the said construction by abstracting away the Gaussian processes
with curves of vectors in a reproducing kernel Hilbert space and extend it to more
general domains. Furthermore, we develop a theory of covariance completion which
comprehensively answers many of the questions posed by the problem of covariance
estimation with functional fragments. In particular, we show how the knowledge of the
“graph” of the underlying process is crucial to the problem.

In Chapter 2, we attempt to exploit the rich structure provided by the theory of reproduc-
ing kernels to its fullest extent towards studying the completion problem. We study the
completion problem for a variety of domains and derive many new and interesting results
in addition to recovering several old ones with great ease. In particular, we prove the
existence of a canonical extension to the classic positive-definite extension problem. The
relatively innocuous original construction of the canonical completion has been refined
beyond recognition and been complemented by many different characterization of an
algebraic or variational nature. In comparison to Chapter 1, Chapter 2 is a completely
mathematical treatment of the subject without any statistical preoccupations whatsoever.

Chapter 1 tells us how to augment covariance estimation for a process using the knowledge
of its graph. In Chapter 3, we take the opposite perspective and attempt to solve the
inverse problem: recovering the graph of the process from its covariance. One of the
strengths of the reproducing kernel formalism is that it can describe the graphical structure
of a Gaussian process in terms of the covariance without requiring the covariance to have
a well-behaved inverse. This allows us to characterize the graph of a continuous-time
Gaussian process in terms of its covariance and develop a method for its estimation.

Prior to coming up with the reproducing kernel approach, we attempted to solve the
completion problem for reproducing kernels using what can be understood as a maximum
entropy approach. Basically, for matrices there is a functional, namely the matrix
determinant, which has this extraordinary property that maximizing the functional
over the space of all (not necessarily positive-definite) completions yields the canonical
completion. We attempted to construct a similar functional for kernels using the
Fredholm determinant. Unfortunately, it became apparent that for the method to
work, it would be necessary for the kernels to satisfy some very stringent and unnatural
conditions. Thankfully, the tools acquired in pursuing this approach, such as Radon-
Nikodym derivatives of Gaussian measures and Fredholm determinants, could be easily
salvaged and appropriated for solving a quite different problem of recovering conditional
independence graphs for multivariate functional data. Chapter 4 is a product of this line
of research.
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1 The Completion of Covariance
Kernels

Es gibt nichts Praktischeres als eine gute Theorie.

There is nothing more practical than a good theory.

Ludwig Boltzmann

Abstract1

We consider the problem of positive-semidefinite continuation: extending a
partially specified covariance kernel from a subdomain Ω of a rectangular domain
I × I to a covariance kernel on the entire domain I × I. For a broad class of domains
Ω called serrated domains, we are able to present a complete theory. Namely,
we demonstrate that a canonical completion always exists and can be explicitly
constructed. We characterise all possible completions as suitable perturbations of the
canonical completion, and determine necessary and sufficient conditions for a unique
completion to exist. We interpret the canonical completion via the graphical model
structure it induces on the associated Gaussian process. Furthermore, we show how
the estimation of the canonical completion reduces to the solution of a system of
linear statistical inverse problems in the space of Hilbert-Schmidt operators, and
derive rates of convergence. We conclude by providing extensions of our theory to
more general forms of domains, and by demonstrating how our results can be used
to construct covariance estimators from sample path fragments of the associated
stochastic process. Our results are illustrated numerically by way of a simulation
study and a real example.

1The chapter has been adapted from the article: Waghmare, K. G. and Panaretos, V. M. (2022). The
completion of covariance kernels. The Annals of Statistics, 50(6):3281 – 3306.
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Chapter 1. The Completion of Covariance Kernels

1.1 Introduction

Consider a bivariate function KΩ : Ω → R where Ω is a subset of I × I for some bounded
interval I ⊂ R. An extension of KΩ to a covariance kernel on I is called a completion.
Under appropriate conditions on Ω and KΩ, we would like to answer the following
questions: Does a completion always exist? Is there a canonical completion and can
we construct it explicitly? Can we characterise the set of all completions? Can we
give necessary and sufficient conditions for a unique completion to exist? Is a unique
completion necessarily canonical?

Such questions are arguably very natural from a mathematical point of view, with
connections to the trigonometric moment problem and the continuation of characteristic
functions, via Bochner’s theorem. They are well understood for covariance matrices and
for stationary/isotropic kernels. It appears that the study of positive-definite completions
was initiated by Carathéodory (1907), who showed that every positive-definite function
on a subset {j ∈ Z : |j| ≤ n} of Z extends to a positive-definite function on Z. A
continuous analogue of this result was proved by Krein (1940) for continuous positive-
definite functions on a symmetric interval of the real line, and the problem of uniqueness
as well as that of description of all extensions in case of non-uniqueness was considered
in the same context by Krein and Langer (2014). Higher-dimensional versions of the
problem were considered by Calderón and Pepinsky (1952) and Rudin (1963), whose
results were extended to discontinuous kernels by Artjomenko (1941b) and Gneiting and
Sasvári (1999). A short survey of these developments can be found in Sasvári (2006).
The case of positive-definite completions of banded matrices was considered by Dym
and Gohberg (1981). The general case was treated by Grone et al. (1984). Many of
these results have been further extended to matrices with operator entries in Gohberg
et al. (1989) and Paulsen et al. (1989). An extensive survey concerning the importance
of positive-definite functions and kernels can be found in Stewart (1976).

Our interest is to obtain a theory for the case where I is an interval and KΩ is not
constrained to satisfy invariance properties such as stationarity. Besides the intrinsically
mathematical motivation for developing such extensions, we are motivated by the problem
of covariance estimation from sample path fragments. Namely, estimating the covariance
of a (potentially non-stationary) second-order process X = {Xt : t ∈ I} on the basis of
i.i.d. sample paths {Xj} censored outside subintervals {Ij}, i.e. on the basis of fragments
Xj |Ij drawn from XIj = {Xt : t ∈ Ij} for a collection of subintervals {Ij} of I. Because
of the fragmented nature of the observations, one is only able to estimate a restriction KΩ
of K to a symmetric region, say Ω ⊂ I × I centered around the diagonal. Nevertheless,
one needs an estimator of the full covariance K, as this is necessary for further statistical
analysis – tasks like dimension reduction, regression, testing, and classification require
the complete covariance. The problem thus reduces to ascertaining how and under what
conditions one can estimate K from an estimate K̂Ω of KΩ. This problem arises in a
range of contexts, as documented in the references in the next paragraph. For instance,

6



1.1 Introduction

in longitudinal studies where a continuously varying random quantity (e.g. bone mineral
density or systolic blood pressure) is measured on each study subject over a short time
interval (see Section 1.11 for a presentation and analysis of such an example), or in the
modeling of hourly electricity pricing, where price functions are only partially observed.

Kraus (2015) originally introduced and studied a simpler version of this problem, where
some samples were observable over the entire domain, hence resulting in reduced rather
than no information outside Ω. Delaigle and Hall (2016) were the first to attack the
genuinely fragmented problem, by imposing a (discrete) Markov assumption. Though
their approach also yielded a completion, it was more focused on predicting the missing
segments. Similarly, Kneip and Liebl (2020) focused on how to optimally reconstruct
the missing segments using linear prediction. The problem has been recently revisited
with a firm focus on the identifiability and estimation of the complete covariance itself,
see Descary and Panaretos (2019b), Delaigle et al. (2021) and Lin et al. (2021). At a
high level, they all proceed by (differently) penalized least squares fitting of a finite-
rank tensor product expansion over the region Ω, which is then used to extrapolate the
covariance beyond Ω. While there are substantial differences in their set up and technique,
common to all three approaches is the pursuit of sufficient conditions on the process X for
identifiability to hold, i.e. for a uniquely existing completion. Imposing such conditions a
priori ensures that extrapolation is sensible. Starting with a strong condition in Descary
and Panaretos (2019b) (namely, analyticity), these sufficient conditions have progressively
been weakened, albeit not to the point of attaining conditions that are also necessary.

We shall pursue a different approach to the problem, which we believe sheds more insight,
and ultimately leads to necessary and sufficient conditions for uniqueness. Rather than
start by focusing on uniqueness, we will aim at a comprehensive description of the
set of all valid completions from a broad class of domains Ω called serrated domains.
Specifically, we will exhibit that a canonical completion can always be explicitly and
uniquely constructed (Section 1.3). Canonicity will be clearly interpreted by means of
a graphical model structure on the associated Gaussian process (Section 1.4). We will
then obtain necessary and sufficient conditions for a unique completion to exist, and
discuss how these relate to the problem of identifiability (Section 1.5). Furthermore, we
will constructively characterise the set of completions as suitable perturbations of the
canonical completion (i.e. show how any other valid completion can be built using the
canonical completion; see Section 1.6) and parametrize this set in terms of contractions
between certain L2 spaces (Theorem 1.7). As for the statistical side of the question related
to fragments, since a canonical solution always exists uniquely, and is equivalent to the
unique completion when uniqueness holds, it is always an identifiable and interpretable
target of estimation. We thus consider how to estimate it based on an estimator of
the observed partial covariance, say K̂Ω, and provide rates of convergence in Section
1.7. We then show how our results can be adapted to more general domains Ω in
Section 1.8. This allows us to give a treatment of the statistical problem of covariance
estimation from sample path fragments in Section 1.9. The finite sample performance of
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Chapter 1. The Completion of Covariance Kernels

our statistical methodology is investigated by means of an extensive simulation study
(Section 1.10) and a data analysis (Section 1.11). The proofs of our results are collected
in the Supplementary Material.

Our general perspective is inspired by the work of Grone et al. (1984) and Dym and
Gohberg (1981) on matrices. Our methods, however, are very different, because algebraic
tools such as determinants and matrix factorization that are elemental to those works are
unavailable in the kernel case. Instead, we generalize the concept of canonical extension
Dym and Gohberg (1981) (or determinant-maximizing completion Grone et al. (1984))
to a general kernel version by demonstrating and exploiting its intimate connection to
Reproducing Kernel Hilbert Spaces (RKHS) and graphical models for random processes
(Theorem 1.4). An apparent consequence is that our necessary and sufficient conditions
for a partial covariance to complete uniquely (Theorem 1.5) seem to be novel even in the
context of matrices.

1.2 Background and Notation

To set the context of the problem, we delineate the functions KΩ that are admissible
as partial covariances, and the types of domains Ω under consideration. Recall that
K : I × I → R is a covariance kernel on I if

1. K(s, t) = K(t, s) for s, t ∈ I, and

2. ∑n
i,j=1 αiαjK(ti, tj) ≥ 0 for n ≥ 1, {ti}ni=1 ⊂ I and {αi}ni=1 ⊂ R.

We shall denote the set of covariances on I by C. We shall say that Ω ⊂ I × I is a
symmetric domain if (s, t) ∈ Ω if (t, s) ∈ Ω for s, t ∈ I and {(t, t) : t ∈ I} ⊂ Ω. Since a
covariance is always defined over square domains, it is natural to define partial covariances
as follows:

Definition 1.1 (Partial Covariance). Let I be a set and Ω ⊂ I × I be a symmetric
domain. A function KΩ : Ω → R is called a partial covariance on Ω if for every J ⊂ I

such that J × J ⊂ Ω, the restriction KJ = KΩ|J×J is a covariance on J .

In the above definition, the set J need not be an interval.

Remark 1.1 (On Notation). Whenever we write KJ for some J ⊂ I, we will always
understand that this refers to the restriction KΩ|J×J of the partial covariance KΩ to the
square J × J ⊆ Ω.

A completion of the partial covariance KΩ will be a function K : I × I → R such that

K ∈ C and K|Ω = KΩ. (1.1)
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The set of all possible completions of KΩ will be denoted by

C(KΩ) = {K ∈ C : K|Ω = KΩ}.

Note that our definition of partial covariance does not a priori assume that KΩ arises as
the restriction of a covariance K on I. Rather, it defines KΩ intrinsically on Ω. In this
sense, our setting is more general than the functional fragment setting. Consequently,
C(KΩ) is not automatically non-empty. Notice however that if K1,K2 ∈ C(KΩ) then
αK1 + (1 − α)K2 ∈ C(KΩ) for every α ∈ (0, 1). C(KΩ) is thus convex. It is also
poitwise bounded so long as supt∈I KΩ(t, t) < ∞ because for every K ∈ C(KΩ) we have
|K(s, t)| ≤

√
K(s, s)K(t, t) ≤ supt∈I KΩ(t, t). It follows from convexity that C(KΩ) can

either be an empty set, a singleton or have an (uncountably) infinite number of elements.
Finally, the elements of C(KΩ) inherit the regularity properties of KΩ. In particular, if
KΩ ∈ Ck,k(Ω), then K ∈ Ck,k(I × I), where Ck,k(∆) for a domain ∆ ⊂ I × I denotes the
set of functions F : ∆ → R such that the partial derivatives ∂jy∂ixF (x, y) and ∂ix∂jyF (x, y)
exist for 0 ≤ i, j ≤ k. This is a direct consequence of the fact that the process X is
k-differentiable in quadratic mean if and only its covariance’s partial derivatives ∂jy∂ixK
and ∂ix∂

j
yK exist for 0 ≤ i, j ≤ k at the diagonal {(x, x) : x ∈ I} (see Loeve (2017) or

Saitoh and Sawano (2016)). Indeed, if KΩ ∈ Ck,k(Ω), then the corresponding process X
is k-differentiable in quadratic mean and hence K ∈ Ck,k(I × I).

In some cases, we will need to work with the covariance operators associated with the
corresponding covariance kernels. For a measure µ on the Borel sets of I, and S ⊆ I we
define the Hilbert space L2(S) to be the set of all f : S → R such that

∫
S f

2(x) µ(dx) < ∞
with associated inner product

⟨f, g⟩2 =
∫
S
f(x)g(x)µ(dx), f, g ∈ L2(S).

Since continuity of KΩ implies continuity of any completion thereof, any completion K

induces a Hilbert-Schmidt integral operator K : L2(I) → L2(I) given by

Kf(x) =
∫
I
K(x, y)f(y)µ(dy), µ− a.e.,

i.e. an operator with K as its integral kernel. Similarly, any restriction K|S×S on a
square domain induces an integral operator K|S : L2(S) → L2(S) by way of

K|S g(x) =
∫
S
K(x, y)g(y) µ(dy), µ|S − a.e.

The operator norm ∥ · ∥∞ and Hilbert-Schmidt norm ∥ · ∥2 of an operator K : L2(S1) →
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Figure 1.1: A serrated domain (left) and a nearly serrated domain (right).

L2(S2), S1, S2 ⊆ I, with continuous kernel K : S1 × S2 → R will be defined via

∥K∥2
∞ = sup

f∈L2(S1)\{0}

∫
S2

(∫
S1
K(u, v)f(v)µ(dv)

)2
µ(du)∫

S1
f2(u)µ(du)

and
∥K∥2

2 =
∫
S1

∫
S2
K2(u, v)µ(du)µ(dv).

The positive root of an operator A will be denoted by |A| = (AA∗)1/2. We denote the
space of Hilbert-Schmidt operators from L2(S1) to L2(S2) as S2(S1, S2). The image of
a subset S1 ⊆ L2(S1) via the operator K : L2(S1) → L2(S2) will be simply denoted as
KS1 = {Kf : f ∈ S1}. We shall use the same convention for operator multiplication, for
example, we denote KS2(S3, S1) = {KA : A ∈ S2(S3, S1)}.

Given a Hilbert-Schmidt operator K : L2(S1) → L2(S1) with integral kernel K : S1×S1 →
R, we define the Reproducing Kernel Hilbert Space (RKHS) of K (equivalently of K) as
the Hilbert space H(K) = K1/2L2(S1), endowed with the inner product

⟨f, g⟩H(K) := ⟨K−1/2f,K−1/2g⟩L2(S1), f, g ∈ H(K).

As for the types of symmetric domains Ω under consideration, our main focus will be on
serrated domains:

Definition 1.2 (Serrated Domain). Let I ⊂ R be a bounded interval. A domain Ω ⊆ I × I

is called serrated if it can be written as a union Ω = ∪j(Ij × Ij) for {Ij} a finite cover of
I comprised of subintervals Ij ⊆ I.

Informally, a serrated domain consists of a collection of squares of varying sizes, strung
symmetrically along the diagonal in a manner that covers it (see Figure 1.1). When
restricting attention to matrices or stationary kernels, serrated domains reduce to the
types of domains on which the problem has been previously studied. In the functional
fragments problem, the observation of a finite collection of path fragments Xj |Ij leads
to partial covariance information on the serrated domain Ω = ∪j(Ij × Ij). By taking
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sequences of covers consisting of progressively more squares, serrated domains can
approximate a very rich class of symmetric domains that we call nearly serrated (see
Figure 1.1 and Definition 1.4 for a rigorous definition). In the next sections, we develop
an essentially complete theory of completion for serrated domains. Then, Section 1.8
demonstrates how our results on serrated domains can be used to obtain results for nearly
serrated domains.

1.3 The Canonical Completion

Recall that the set of completions C(KΩ) of a partial covariance KΩ can be empty, a
singleton, or uncountably infinite. We will now show that for Ω a serrated domain, C(KΩ)
is never empty. We will do so by explicitly constructing a completion K⋆, that will be
subsequently argued to be canonical.

It is instructive to commence with the 2-serrated case, i.e. when Ω = (I1 × I1) ∪ (I2 × I2)
for two intervals {I1, I2} such that I1 ∪ I2 = I, depicted in Figure 1.2 (left). Define a
function K⋆ : I × I → R as follows:

K⋆(s, t) =


KΩ(s, t), (s, t) ∈ Ω〈
KΩ(s, ·),KΩ(·, t)

〉
H(KI1∩I2 )

, (s, t) /∈ Ω. (1.2)

Here, KI1∩I2 = KΩ|(I1∩I2)2 is the restriction of the partial covariance KΩ to the square
(I1 ∩ I2) × (I1 ∩ I2) and H(KI1∩I2) is the RKHS of KI1∩I2 . It is implicit in the notation
⟨KΩ(s, ·),KΩ(·, t)⟩H(KI1∩I2 ) that the domain of KΩ(s, ·) and KΩ(·, t) is automatically
restricted to I1 ∩ I2 within that inner product, as depicted in Figure 1.2 (right).

Remark 1.2. The reproducing kernel inner product in Equation 1.2 can be seen as the
infinite-dimensional equivalent of matrix multiplication formulas appearing in maximum
entropy matrix completion (Johnson, 1990) and low rank matrix completion (Descary
and Panaretos, 2019a).

Our first result is now:

Theorem 1.1 (Canonical Completion from a 2-Serrated Domain). Given any partial
covariance KΩ on a 2-serrated domain Ω ⊆ I × I, the function K⋆ : I × I → R defined
in (1.2) is a well-defined covariance that constitutes a valid completion, i.e.

K⋆ ∈ C(KΩ).

In particular, if KΩ admits a unique completion, then this must equal K⋆.

The second part of the theorem hints at why we refer to the completion K⋆ as the
canonical completion of KΩ. We will provide a more definitive reason in Section 1.4, but
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first we will use the formula from the 2-serrated case in order to extend our result to a
general serrated domain.

Figure 1.2: A two serrated domain (left) and a heuristic illustration of the formula for
K⋆.

We will do this iteratively. Intuitively, if we have a general serrated domain generated by
a cover of m subintervals {I1, ..., Im}, we can apply the 2-serrated formula to any pair of
successive squares {I2

p , I
2
p+1}, to reduce to the problem to one of completion from a serrated

domain generated the reduced set of m−1 subintervals {I1, ..., Ip−1, Ip∪Ip+1, Ip+2, ..., Im}
(see Figure 1.3). Repeating the same prescription, we can eventually complete KΩ to
a covariance on I. To be more precise, let Ω = ∪mj=1(Ij × Ij) be an m-serrated domain
and for notational ease assume that the indices of the {Ij} correspond to their natural
partial ordering as intervals. Define the intersection of any two successive squares as

Jp = (Ip × Ip) ∩ (Ip+1 × Ip+1)

and the corresponding restriction of KΩ as KJp = KΩ|Jp×Jp . Next define the square of
the union of the intervals {I1, ..., Ip} as

Up = (I1 ∪ . . . ∪ Ip) × (I1 ∪ . . . ∪ Ip).

Finally, define the serrated domain generated by the cover {∪pj=1Ij , Ip+1, ..., Im} as

Ωp = Up
⋃{

∪mj=p+1(Ij × Ij)
}

noting that Ω1 = Ω.

The following algorithm uses the formula from the 2-serrated case to extend KΩ to a
partial covariance on Ω2, then Ω3, and so on, until completion to covariance on I2 = Ωm:
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KI1

KI1∩I2

KI2

KIm

Figure 1.3: Illustration of the iterative completion procedure for a general serrated
domain.

Table 1 m-Serrated Completion by Successive 2-Serrated Completions

1. Initialise with the partial covariance K1 = KΩ on Ω1 = Ω.

2. For p ∈ {1, ...,m− 1} define the partial covariance Kp+1 on Ωp+1 as

Kp+1(s, t) =


Kp(s, t), (s, t) ∈ Ωp〈
Kp(s, ·),Kp(·, t)

〉
H(KJp )

, (s, t) ∈ Ωp+1 \ Ωp.

3. Output the covariance K⋆ = Km on I × I = Ωm.

Of course, there is nothing special about the application of the iterative completion in
ascending order. We could have set up our notation and algorithm using a descending
order starting with {I2

m, I
2
m−1}, or indeed using an arbitrary order, starting from any

pair of successive squares {I2
p , I

2
p+1} and moving up and down to neighbouring squares.

Our second result shows that, no matter the chosen order, the algorithm will output the
same valid completion K⋆ ∈ C(KΩ):

Theorem 1.2 (Canonical Completion from a General Serrated Domain). The recursive
application of the 2-serrated formula as described in Algorithm (1) to a partial covariance
KΩ on a serrated domain Ω yields the same valid completion K⋆ ∈ C(KΩ), irrespective
of the order it is applied in. In particular, if KΩ admits a unique completion, then this
must equal K⋆.

Notice that Theorems 1.1 and 1.2 make no assumption on KΩ except that it be a partial
covariance. In particular, KΩ need not be continuous or even bounded.
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Example 1.1 (Brownian Motion). As an example, consider the following partial covari-
ance on a 2-serrated subdomain of [0, 1]2:

KΩ(s, t) = s ∧ t, (s, t) ∈ Ω = ([0, 2/3] × [0, 2/3])︸ ︷︷ ︸
I1×I1

∪ ([1/3, 1] × [1/3, 1])︸ ︷︷ ︸
I2×I2

.

Clearly, this can be completed to the covariance of standard Brownian motion on [0, 1]2,

K(s, t) = s ∧ t, (s, t) ∈ [0, 1]2.

To see what our completion algorithm yields, we note that the restriction K[1/3,2/3] yields
the RKHS inner product

⟨f, g⟩H(K[1/3,2/3]) = 1
(1/3)f(1/3)g(1/3) +

∫ 2/3

1/3
f ′(u)g′(u) du,

,

K⋆(s, t) = 3 · (s ∧ 1/3)(t ∧ 1/3) +
∫ 2/3

1/3
0 du = 3 · (1/3) · t = t = s ∧ t, since t < s.

Iterating, we can directly see that the extension of a partial covariance that has the form
s ∧ t on an arbitrary domain by means of Algorithm 1 will also yield the covariance of
Brownian motion.

The example illustrates that Algorithm 1 yields the “right” answer in an important special
case. The next section demonstrates that this is no accident, and that the completions
given in Theorems 1.1 and 1.2 are indeed canonical in a strong sense.

1.4 Canonicity and Graphical Models

We will now interpret the canonical completion via the conditional independence structure
it induces on the associated Gaussian process. Recall that an undirected graph G on a
set I is an ordered pair G = (I,Ω) where I is called the vertex set and Ω ⊆ I × I is the
edge set such that (s, t) ∈ Ω if and only if (t, s) ∈ Ω. We shall often refer to the graph
(I,Ω) as Ω. Notice that if I is an interval of the real line, then a symmetric domain Ω
induces an uncountable graph on I with Ω serving as the edge set.

We shall say that S ⊂ I separates s, t ∈ I with respect to the graph (I,Ω) if every path
from s to t comprised of edges in Ω is intercepted by S, that is, for every {ti}ri=1 ⊂ I

with r ≥ 1 such that t1 = s, (ti, ti+1) ∈ Ω for 1 ≤ i < r and tr = t, we have that tj ∈ S

for some 1 < j < r.

A graph (I,Ω) induces a conditional independence structure on a Gaussian process

14



1.4 Canonicity and Graphical Models

XI := {Xt : t ∈ I} much in the same way as in the finite dimensional case.

Definition 1.3 (Graphical Models on Gaussian Processes). The Gaussian process
X = {Xt : t ∈ I} is said to form an undirected graphical model over the graph Ω ⊆ I × I,
if for every s, t ∈ I separated by J ⊂ I, we have

Cov(Xs, Xt|XJ) ≡ E [(Xs − E [Xs|XJ ])(Xt − E [Xt|XJ ])|XJ ] = 0 a.s. (1.3)

Equation (1.3) implies that E [XsXt|XJ ] = E [Xs|XJ ]E [Xt|XJ ] almost surely. Taking
the expectation gives

E [XsXt] = E [E [Xs|XJ ]E [Xt|XJ ]] , (1.4)

i.e. the covariance of Xs and Xt coincides with that of their best predictors given XJ

when J separates s and t. Notice that from (1.4), it follows that

E [E [Xs|XJ ]E [Xt|XJ ]] = E [E [XsE [Xt|XJ ] |XJ ]] = E [XsE [Xt|XJ ]]

and thus, E [(Xt − E[Xt|XJ ])Xs] = 0 which implies that E[Xt|XJ ] = E[Xt|XJ , Xs] by
the projection theorem. Similar reasoning yields,

E [f(Xt)|XJ , Xs] = E [f(Xt)|XJ ] , (1.5)

which is reminiscent of Markov processes, where

E [f(Xt)|{Xu : u ≤ v}] = E [f(Xt)|Xv] . (1.6)

Indeed, the undirected graphical model structure induced by Ω is a natural generalization
of the Markov property, but with a notion of separation stemming from the graph
structure rather than simple time ordering. In the terminology of Markov random fields,
Definition 1.3 is equivalent to the global Markov property with respect to Ω.

Theorem 1.3. Let KΩ be a partial covariance on a serrated domain Ω ⊂ I. The canonical
completion K⋆ is the only completion of KΩ such that the associated Gaussian process
{Xt : t ∈ I} forms an undirected graphical model with respect to the graph G = ([0, 1],Ω).

Said differently, K⋆ is the only completion of KΩ that possesses the global Markov
property with respect to the edge set Ω. Intuitively, the canonical completion is the
unique completion to rely exclusively on correlations intrinsic to the “observed” set
Ω: it propagates the “observable” correlations of KΩ to the rest of I via the Markov
property, without introducing any extrinsic “unobserved” correlations. By contrast, any
other completion will introduce correlations extrinsic to those observed via KΩ. This
last statement is considerably refined in Section 1.6, where we characterise all possible
completions as perturbations of the canonical completion.
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Chapter 1. The Completion of Covariance Kernels

In closing this section, we give a result going in the opposite direction: namely we show
that a Gaussian process admits a graphical model structure w.r.t. a serrated Ω if and only
if it has a covariance that satisfies the defining equations (1.2) of a canonical completion.
This is a result that is of interest in its own right, since it characterises the set of all
Gaussian process graphical models compatible with Ω. Because this characterization is
pointwise in nature, it provides an arguably more convenient way of expressing conditional
independence relations in a Gaussian process than, say, cross-covariance operators defined
by Baker (1973). To state it rigorously, define the set of covariances

GΩ =
{
K ∈ C : K(s, t) =

〈
K(s, ·),K(·, t)

〉
H(KJ )

for all J ⊂ I separating s, t ∈ I in Ω
}
.

We can now state:

Theorem 1.4. Let {Xt : t ∈ I} be a Gaussian process with covariance K. Then, X
forms an undirected graphical model with respect to a serrated Ω if and only if K ∈ GΩ.

There is actually no reason to restrict attention to Gaussian processes, and we did
this solely for interpretability: for a Gaussian process, the condition K ∈ GΩ can be
interpreted in terms of conditional independence. But we can more generally define a
second-order graphical model as long as we focus solely on conditional uncorrelatedness
rather than conditional independence – just take Definition 1.3 and drop the word
“Gaussian”, while replacing “graphical model” by “second order graphical model”.

1.5 Necessary and Sufficient Conditions for Unique Com-
pletion

We will now state necessary and sufficient conditions guaranteeing unique completion
from a serrated domain Ω ⊂ I. And we will argue that identifiability can occur even
without enforcing the existence of a unique extension. For this, we need some additional
notation. Given A ⊂ B ⊂ Ω, let KB/KA be the Schur complement of KB with respect
to KA,

(KB/KA)(s, t) = KB(s, t) −
〈
KB(s, ·),KB(·, t)

〉
H(KA)

, that is, the covariance of the residuals {Xt − Π(Xt|XA) : t ∈ B \A}, where Π(W |Z) is
the best linear predictor of W given Z. We now have:

Theorem 1.5 (Unique Completion from a Serrated Domain). Let KΩ be a partial
covariance kernel on a serrated domain Ω = ∪mp=1Ip× Ip ⊂ I corresponding to m intervals
{Ip}mp=1 covering I. The following two statements are equivalent:

(I) KΩ admits a unique completion on I, i.e. C(KΩ) is a singleton.
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(II) there exists an r ∈ {1, . . . ,m}, such that

KIp/KIp∩Ip+1 = 0, for 1 ≤ p < r and KIq+1/KIq∩Iq+1 = 0, for r ≤ q < m.

Condition (II) is strictly weaker than any of the sufficient conditions that have previously
been stated in the literature on functional fragments, such as Theorem 1 in Delaigle
et al. (2021) and Proposition 2 in Descary and Panaretos (2019b). Consequently, none
of those conditions is necessary in the context of a serrated domain (for a discussion of
more general domains, see Section 1.8). Furthermore, an appealing feature of (II) is that
it is checkable at the level of KΩ in a concrete manner by constructing a finite number
of Schur complements (in fact the number is linear in m).

Theorem 1.5 elucidates just how restrictive it is to a priori assume that a unique
completion exists. When the Schur complements involved in (II) vanish, one can start
with the associated process {Xt : t ∈ Ir} restricted to Ir, and iteratively perfectly predict
each segment {Xt : t ∈ Ij} by means of best linear prediction. Consequently, the entire
process {Xt : t ∈ I} is generated as the image of its restriction {Xt : t ∈ Ir} via a
deterministic linear operator. Indeed which interval(s) {Ij}mj=1 generate(s) the process
can be discovered by checking the equations given in (II).

Note, however, that being able to identify K from K|Ω does not require assuming that
K|Ω completes uniquely – all we need is a way to select one element from C(K|Ω).
For example, to obtain identifiability, it would be much less restrictive to assume the
admittance of a (second order) graphical model with respect to (I,Ω). The set of
covariances GΩ corresponding to such processes is potentially very large, and encompasses
highly “non-deterministic” dependence structures. Assuming that K ∈ GΩ will then yield
identifiability given K|Ω via Theorem 1.3, which can be re-interpreted in this notation as
stating

C(K|Ω) ∩ GΩ = {K⋆}

Since a unique completion is automatically canonical, it must also lie in GΩ. Therefore,
the assumption K ∈ GΩ is strictly weaker than the uniqueness assumption, while still
guaranteeing identifiability. As noted earlier, in the last paragraph of Section 1.4, one can
easily define a “second-order graphical model” structure with conditional uncorrelatedness
replacing conditional independence, so imposing the assumption K ∈ GΩ in no way entails
assuming Gaussianity. The family GΩ can also be thought of as a covariance selection
model of the kind first proposed by Dempster (1972) for multivariate normal distributions,
so that imposing the condition K ∈ GΩ amounts to doing continuous-domain parameter
reduction.
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Chapter 1. The Completion of Covariance Kernels

Figure 1.4: Illustration of Theorem 1.6. The 2-serrated domain Ω is shaded in grey, and
the central square is (I1 ∩ I2)2. The set C(KΩ) is spanned as K⋆ + C, where C ranges
over cross-covariances supported on the union of the two squares shaded in red, and
compatible with the covariances KI1 \KI1∩I2 and KI2 \KI1∩I2 (outlined in red).

1.6 Characterisation of All Completions

We will now show how the elements of C(KΩ) can be spanned by suitable perturbations
of the canonical completion, when Ω is serrated. Again, it is instructive to commence
with the 2-serrated case (see the left plot in Figure 1.2, p. 12).

Theorem 1.6 (Characterisation of Completions in the 2-Serrated Case). Let Ω =
(I1 × I1) ∪ (I2 × I2) be a 2-serrated subdomain in I × I. The function K : I × I → R is a
completion of KΩ : Ω → R if and only if

K = K⋆ + C

where C : (I1 ∪ I2)2 → R satisfies C(s, t) = 0 for (s, t) ∈ I2
1 ∪ I2

2 and is otherwise such
that the function L : [(I1 \ I2) ∪ (I2 \ I1)]2 → R given by

L|(I1\I2)2 = KI1/KI1∩I2 , L|(I1\I2)×(I2\I1) = C|(I1\I2)×(I2\I1),

L|(I2\I1)2 = KI2/KI1∩I2 , L|(I2\I1)×(I1\I2) = C|(I2\I1)×(I1\I2)

is a covariance.

Said differently, in the 2-serrated case Ω = (I1 × I1) ∪ (I2 × I2) one has

K ∈ C(KΩ) ⇐⇒ K = K⋆ + C

where K⋆ is the canonical completion and C is a valid perturbation. The set of all valid
perturbations C is given by the cross-covariances C|(I1\I2)×(I2\I1) (with C|(I2\I1)×(I1\I2)
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1.6 Characterisation of All Completions

determined by symmetry, i.e. C(s, t) = C(t, s)) corresponding to all possible couplings
(Yt,Wt) of the Gaussian processes

{Yt : t ∈ I1 \ I2}, Y ∼ N(0,KI1/KI1∩I2),
{Wt : t ∈ I2 \ I1}, W ∼ N(0,KI2/KI1∩I2),

over the indicated region, and are zero elsewhere.

Selecting valid perturbations C is straightforward: it basically amounts to the functional
analogue of “assigning a correlation to two variances”. At the same time, notice that any
non-zero perturbation C introduces arbitrary correlations that were never observed (i.e.
are entirely extrinsic to the partial covariance KΩ). This observation crystallises some
of the remarks made in the closing of Section 1.4, i.e. that the canonical completion is
unique in not introducing any arbitrary correlations extrinsic to KΩ.

We will now re-interpret the last result through the lens of operator theory – this
perspective will allow a fruitful extension of our characterisation to general serrated
domains. First, we note that if KΩ is continuous on Ω, then so are all elements of C(KΩ)
on I and L is also continuous on [(I1 \ I2) ∪ (I2 \ I1)]2 (for the latter, see Remark A.3 in
Section A.2 in the Supplementary Material). As a result, we can think of L as the kernel
of a covariance operator. Let

L1 : L2(I1 \ I2) → L2(I1 \ I2) and L2 : L2(I2 \ I1) → L2(I2 \ I1)

denote the integral operators induced by the covariance kernels

L|(I1\I2)×(I1\I2) = KI1/KI1∩I2 and L|(I2\I1)×(I2\I1) = KI2/KI1∩I2 .

Moreover, let
L12 : L2(I2 \ I1) → L2(I1 \ I2)

denote the integral operator corresponding to the kernel

L|(I2\I1)×(I1\I2).

Finally, define

L : L2(I1 \ I2) × L2(I2 \ I1) → L2(I1 \ I2) × L2(I2 \ I1)

to be a linear operator defined via its action:

L(f, g) = (L1f + L12g,L∗
12f + L2g).

Clearly, L is a completion if and only if L is positive semidefinite. Notice that L1
and L2 are trace-class and positive semidefinite, and as a result L is trace-class if it is
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Chapter 1. The Completion of Covariance Kernels

positive-semidefinite. Now, L is positive semidefinite if and only if there is Gaussian
measure µ12 on the Hilbert space L2(I1 \ I2) ×L2(I2 \ I1) with zero mean and covariance
operator L which has two Gaussian measures µ1 and µ2 with zero mean and covariance
operators L1 and L2 as marginals. According to Theorem 2 of Baker (1973), the possible
values of L are precisely the ones given when setting

L12 = L1/2
1 ΨL1/2

2

for Ψ : L2(I1 \ I2) → L2(I2 \ I1) a bounded linear map with operator norm ∥Ψ∥∞ ≤ 1. In
summary, if KΩ is continuous, Theorem 1.6 can be re-interpreted at the level of operators.
Namely, in block notation, the operator K has a kernel in C(KΩ) if and only if

Kf = K⋆f +


0 0 (L1/2

1 ΨL1/2
2 )∗

0 0 0
L1/2

1 ΨL1/2
2 0 0


︸ ︷︷ ︸

C

 f |I1\I2

f |I1∩I2

f |I2\I1

 . (1.7)

Here K⋆ is the operator with the canonical completion K⋆ as its kernel, and as Ψ ranges
over the ball ∥Ψ∥∞ ≤ 1, the expression above generates all possible operator completions.
Choosing Ψ = 0 obviously yields the canonical completion. Note that the operator C in
Equation (1.7) is precisely the operator corresponding to the (cross-covariance) integral
kernel C as described earlier.

We will use this operator perspective to obtain a characterisation in the general case,
where Ω = ∪mj=1(Ij × Ij) is an m-serrated domain. This will require some additional
notation to avoid excessively cumbersome expressions. For 1 ≤ p < m define the following
sets:

Jp = Ip∩Ip+1, Dp = Ip+1 \Ip, Sp =
[
∪pj=1Ij

]
\Ip+1, Rp = Dp×Sp, R′

p = Sp×Dp.

See Figure 1.5 for a visual interpretation.

Let K be a covariance on I with associated operator K. For every 1 ≤ j ≤ m, let
Kj : L2(Ij) → L2(Ij) be the Hilbert-Schmidt operator induced by the integral kernel
KIj = K|Ij×Ij . And for 1 ≤ p < m, let Jp ∈ S2(Jp, Jp) and Rp ∈ S2(Dp, Sp) be Hilbert-
Schmidt operators induced by the integral kernels KJp = K|Jp×Jp and KRp = K|Sp×Dp

respectively.

We will now show that K can always be written in a sort of “block notation”, i.e. in
terms of {Kj}j , {Jp}p and {Rp}p. This will allow us to generalise the type of expression
Equation (1.7) to the m-serrated case.

Lemma 1.1. Given any f ∈ L2(I) and continuous kernel K : I × I → R with associated
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KI1

KIp

KJp

KIp+1

KIm

Rp

R′
p

Sp

Dp

| |

Jp Dp

Sp

K1

Kp

Kp+1

Km

Rp Sp

Dp

Figure 1.5: Illustration of the sets Dp, Sp, Rp and R′
p (left) and the corresponding

operators (right).

operator K, the mapping f 7→ Kf can be represented blockwise as

Kf(t) =
∑
j:t∈Ij

Kjf |Ij (t) +
∑
p:t∈Sp

Rpf |Dp(t) +
∑

p:t∈Dp

R∗
pf |Sp(t) −

∑
p:t∈Jp

Jpf |Jp(t) a.e.

Consequently, in order to characterize any integral operator corresponding to a completion
of KΩ, it suffices to characterize the operators {Rp}p. These are the only “missing pieces”,
as the rest is known from KΩ (see Figure 1.5).

To this end, for 1 ≤ p < m, we define Dp ∈ S2(Jp, Dp) and Sp ∈ S2(Sp, Jp) to be
the Hilbert-Schmidt operators induced by the integral kernels KΩ|Dp×Jp and K⋆|Jp×Sp

respectively (with K⋆ the canonical completion, as always).

Now we have all the ingredients to characterise all completions from a serrated domain:

Theorem 1.7 (Characterisation of Completions from a General Serrated Domain). Let
KΩ be a continuous partial covariance on a serrated domain Ω of m intervals. Then
K : I × I → R with K|Ω = KΩ is a completion of KΩ if and only if the integral operator
K corresponding to K is of the form

Kf(t) =
∑
j:t∈Ij

KjfIj (t) +
∑
p:t∈Sp

RpfDp(t) +
∑

p:t∈Dp

R∗
pfSp(t) −

∑
p:t∈Jp

JpfJp(t) a.e., (1.8)

where for 1 ≤ p < m,

Rp =
[
J−1/2
p S∗

p

]∗ [
J−1/2
p Dp

]
+ U1/2

p ΨpV1/2
p , (1.9)
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with

Up = KSp −
[
J−1/2
p S∗

p

]∗ [
J−1/2
p S∗

p

]
, Vp = KDp −

[
J−1/2
p D∗

p

]∗ [
J−1/2
p D∗

p

]
and Ψp : L2(Dp) → L2(Sp) is a bounded linear map with ∥Ψp∥ ≤ 1.

The only degrees of freedom in Equation (1.9) stem from the m contractions {Ψ}mp=1. All
other operators involved in Equation (1.9) (and in the right hand side of Equation (1.8))
are uniquely defined via KΩ (or equivalently via K⋆). Allowing these to range over the
unit balls

∥Ψp∥∞ ≤ 1, Ψp : L2(Dp) → L2(Sp), p = 1, . . . ,m

we trace out the set C(KΩ) and get an idea of what the different possibilities of the
actual covariance may look like. Substituting Ψp = 0 for all 1 ≤ p < m returns the
integral operator corresponding to the canonical completion K⋆ of KΩ. Since all other
elements of Equation (1.9) are fully determined by KΩ, it is clear that the choice of {Ψp}
is arbitrary, and any non-zero choice will introduce information extrinsic to observed
correlation patterns – extending the intuition build in the 2-serrated case relating to the
canonicity of K⋆.

Theorem 1.7 also complements Theorem 1.2, in that it expresses the canonical completion
as the solution of a system of equations rather than the output of an algorithm. This
manner of specification is slightly weaker, in that it assumes continuity of KΩ, whereas
Theorem 1.2 makes no such assumption. On the other hand, it provides a characterisation
of the canonical solution in a form that lends itself for the problem of estimation, treated
in the next section.

1.7 Estimation of the Canonical Completion

In this section, we consider the problem of estimation of the canonical completion K⋆

when we only have access to an estimator of the partial covariance KΩ. From a purely
analytical sense, we are studying the stability of the canonical completion K⋆ of KΩ
with respect to perturbations of the partial covariance KΩ. From the statistical point
of view, this relates to the problem that arises in the context of covariance recovery
from functional fragments: when we observe fragments Xj |Ij of i.i.d. realisations of a
second-order process {Xt : t ∈ I} for a collection {Ij} of subintervals Ij ⊂ I covering I.
Because of the fragmented nature of the observations, we only have covariance information
on the serrated domain Ω = ∪jIj × Ij , or equivalently we only can identify the partial
covariance KΩ corresponding to the restriction of Cov{Xs, Xt} = K(s, t) to the serrated
domain Ω.

In this context, we posit that it makes good sense to choose the canonical completion
K⋆ as the target of estimation. This is because the canonical completion is always an
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identifiable and interpretable object:

1. When a unique completion exists, it must be the canonical one. So choosing the
canonical completion allows us to adapt to uniqueness.

2. When multiple completions exist, the canonical completion remains identifiable,
and is least presumptuous – it relies solely on the available data.

Targeting the canonical completion without any attempt to enforce uniqueness is qualita-
tively very different from previous approaches to covariance recovery from fragmented
paths. Those approaches imposed uniqueness by way of assumptions (indeed assumptions
implying very rigid consequences, as demonstrated in Section 1.5). Once uniqueness is a
priori guaranteed, any estimator K̂ whose restriction K̂|Ω is consistent for KΩ will be
valid – so, for instance, one can safely extrapolate an estimator K̂Ω of KΩ by means
of a basis expansion or matrix completion. But when uniqueness fails to hold, such
“extrapolation” estimators yield arbitrary completions, indeed completions that likely will
not even converge asymptotically, but rather oscillate in some open neighbourhood of
C(KΩ). On the other hand, the adaptivity (to uniqueness) and stability/interpretability
(under non-uniqueness) of the canonical completion comes at a price: to be able to target
the canonical completion K⋆ we need an estimator that is not merely consistent for KΩ
on Ω, but one that (asymptotically) also satisfies the system of equations in Theorem 1.7
(with Ψp identically zero). This has consequences on the rates of convergence, which can
no longer be as fast as the rates of estimating the partial covariance KΩ.

Figure 1.6: Illustration of the problem of covariance recovery from fragments: (from
the left) fully observed sample paths of a process on the unit interval I = [0, 1]; the
region I2 on which the covariance can be estimated in the fully observed case; partially
observed versions of the same sample paths; and, the region on which the covariance can
be estimated from the sample paths of the corresponding colour.

23



Chapter 1. The Completion of Covariance Kernels

1.7.1 Definition of the Estimator

Courtesy of Theorem 1.7, the specification of K⋆ reduces to that the solution of the
following system of linear equations:

J1/2
p Xp = S∗

p,

J1/2
p Yp = Dp,

for 1 ≤ p < m. (1.10)

Notice that the operator J1/2
p is compact because Jp is. It follows that the canonical

completion K⋆ does not depend continuously on the partial covariance KΩ. In practice
we only have access to an estimator K̂Ω of KΩ. Therefore, the operator of the inverse
problem, i.e. J1/2

p , as well as the data of the inverse problem, in the form of Dp and Sp,
are inexactly specified.

We will thus define our estimator as the solution of a regularized empirical version of
the system. Let K̂Ω be an estimator of KΩ. Let K̂p, D̂p and Ĵp be the Hilbert-Schmidt
operators with the kernels K̂Ω|Ip×Ip , K̂Ω|Jp×Dp and K̂Ω|Jp×Jp , respectively.

Finally, motivated by the definition

Rp =
[
J−1/2
p S∗

p

]∗ [
J−1/2
p Dp

]
and using a truncated inverse of Ĵp, we define the regularised empirical version of Rp as

R̂p =
Np∑
k=1

1
λ̂p,k

· Ŝpêp,k ⊗ D̂∗
pêp,k (1.11)

where λ̂p,k and êp,k denote the kth eigenvalue and eigenfunction of Ĵp, Np is the truncation
or regularization parameter, and Ŝp has kernel K̂⋆|Sp×Jp . Notice that the definition is
recursive:

• R̂p depends on Ŝp and thus on R̂i for i < p.

• Ŝ1 is fully determined by K̂Ω, and Ŝp+1 is fully determined by K̂Ω and R̂p.

In particular, though the kernel of Ŝp can a posteriori be seen to equal K̂⋆|Sp×Jp , this
does not mean that it depends a priori on K̂⋆ (i.e., there is no vicious circle in the
definition).

We can now define our estimator K̂⋆ : I × I → R of K⋆ to be the integral kernel of the
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Hilbert-Schmidt operator K̂⋆ : L2(I) → L2(I) defined via the action

K̂⋆f(t) =
∑
j:t∈Ij

K̂jf |Ij (t) +
∑
p:t∈Sp

R̂pf |Dp(t) +
∑

p:t∈Dp

R̂∗
pf |Sp(t) −

∑
p:t∈Jp

Ĵpf |Jp(t). (1.12)

Equivalently, we can define K̂⋆ ∈ L2(I × I) recursively as follows: K̂⋆|Ω = K̂Ω and K̂⋆|Rp

is the kernel associated with the Hilbert-Schmidt operator R̂p defined recursively via
(1.11).

1.7.2 Rate of Convergence

We will now characterize the rate of convergence of K̂⋆ to K⋆ in terms of the spectral
properties of the partial covariance KΩ, and the rate of convergence of the partial
covariance estimator K̂Ω we have used as a basis, to the partial covariance KΩ itself.
Concerning the spectral properties of KΩ, let {λp,k}∞

k=1 be the eigenvalues of Jp and
define Ap,k as:

Ap,k =

∥∥∥∥∥∥
∞∑

j=k+1

Spep,k ⊗ D∗
pep,k

λp,k

∥∥∥∥∥∥
2

2

where {ep,k}∞
k=1 are the eigenfunctions of Jp. Notice that Ap,0 is simply the Hilbert-

Schmidt norm of Rp and Ap,k represents the error in approximating Rp by using a rank-k
truncated inverse of J1/2

p instead of J1/2
p in the expression

Rp =
[
J−1/2
p S∗

p

]∗ [
J−1/2
p Dp

]
.

Consequently, Ap,k must necessarily converge to 0 as k → ∞. The following result gives
the rate of convergence for the case when the eigenvalues and approximation errors decay
at a polynomial rate.

Theorem 1.8 (Consistency and Rate of Convergence). Let KΩ be a partial covariance
on a serrated domain Ω of m intervals and K̂Ω be an estimator thereof. Let K̂ be defined
as in Equation (1.12). Assume that for every 1 ≤ p < m, we have λp,k ∼ k−α and
Ap,k ∼ k−β. If the error in the estimation of KΩ satisfies

∥K̂Ω −KΩ∥L2(Ω) = OP(1/nζ)

where n is the number of fragments, then the error in the estimation of the canonical
completion satisfies, for every ε > 0,

∥K̂⋆ −K⋆∥L2(I×I) = OP(1/nζγm−1−ε)
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provided the truncation parameters N = (Np)m−1
p=1 scale according to the rule

Np ∼ nγp/β

where γm−1 = β
β+2α+3/2

[
β

β+α+1/2

]m−2
.

Remark 1.3 (Plug-in Interpretation). The theorem can be seen as a plug-in rate of
convergence theorem. We plug-in the “baseline” rate of convergence of K̂Ω → KΩ, and
get a rate for K̂⋆ → K⋆. Note that the tuning of the truncation parameters also depends
on the baseline rate of convergence. Baseline rates are readily available for sparse, dense,
and complete observation regimes.

Notice that the rate of convergence γm−1 strictly decreases as a function of the number
of intervals m, but can get arbitrarily close to 1 for a large enough rate of decay of
approximation errors β. Moreover, an increase in the rate of decay of eigenvalues α is
accompanied by a decrease in the rate of convergence. If KΩ is r-times differentiable
then the same applies to the kernels KΩ|Jp×Jp of Jp implying λp,k is o(1/nr+1) for every
1 ≤ p < m and thus α = r + 1 . Thus, all other things being equal, an increase in the
smoothness of KΩ also tends to decrease the rate of convergence —which is not surprising
from an inverse problems perspective.

1.8 Beyond Serrated Domains

Our theory has thus far concentrated on domains that are serrated in the sense of
Definition 1.2. We now turn our attention to a much larger class of domains, namely
domains that can be approximated to an arbitrary level of precision by serrated domains.
Recall that for subsets X and Y of a metric space (M,d), the Hausdorff distance is
defined as

dH(X,Y ) =
[

supx∈X infy∈Y d(x, y)
]

∨
[

supy∈Y infx∈X d(x, y)
]
.

We define the class of nearly serrated domains as the Hausdorff “closure” of the set of
serrated subdomains of I × I:

Definition 1.4 (Nearly Serrated Domain). We say that Ω̃ ⊂ I × I is a nearly serrated
domain if for every ϵ > 0, there exist serrated domains Ωϵ and Ωϵ such that Ωϵ ⊂ Ω ⊂ Ωϵ

and dH(Ω,Ωϵ), dH(Ω,Ωϵ) < ϵ, where dH is the Hausdorff metric induced by the Euclidean
metric on I × I ⊂ R2.

Notice that every serrated domain is nearly serrated according to the above definition. Of
particular importance is the case when Ω is a strip of width w > 0 around the diagonal,
that is, Ω = {(s, t) ∈ I × I : |s− t| ≤ w/

√
2}. This occurs asymptotically in the problem

of covariance recovery from fragments, when each sample path is observable which over
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KΩ(s, ·)

KΩ(·, t)

KΩ

(s, t)

Figure 1.7: Left: Illustration of a nearly serrated domain (in green) as enveloped by two
serrated domains (in light and dark grey). Right: a point (s, t) escaping the scope of
Equation (1.2).

“uniformly distributed” intervals of constant length w/
√

2.

It should be clear from Figure 1.7 that we cannot exploit Equation 1.2 to recover the
canonical completion of a partial covariance on a nearly serrated but not serrated domain,
as we did for serrated domains previously. This is because for such domains there are
points (s, t) for which the cross-covariances KΩ(s, ·) and KΩ(·, t) are not available, nor
can they be iteratively calculated from the part of the covariance that is known. Thus one
cannot evaluate their inner product

〈
KΩ(s, ·),KΩ(·, t)

〉
H(KI1∩I2 )

as required in Equation
1.2. It was precisely because the domain was serrated that we were able to recover the
value of the canonical completion over successively larger regions as we did in Algorithm
(1).

Additionally, since we cannot apply Algorithm 1, it is unclear what it means for a
completion of a partial covariance KΩ on a nearly serrated domain to be canonical. Here
we must lean on our graphical models interpretation to define the canonical completion.
We shall say that a covariance K is a canonical completion of KΩ if it is a completion i.e.
K|Ω = KΩ and K ∈ GΩ as defined in Section 1.4.

Our focus will, therefore, be to obtain results pertaining to uniqueness/canonicity of
completions from nearly serrated domains Ω̃ by means of serrated subdomains Ω ⊂ Ω̃ or
superdomains Ω̃ ⊂ Ω. Our first result gives a sufficient condition for unique completion
from a nearly serrated domain:

Theorem 1.9 (Checking Uniqueness via Serrated Subdomains). Let KΩ̃ be a partial
covariance on a nearly serrated domain Ω̃ and let Ω ⊂ Ω̃ be a serrated domain. If the
restriction KΩ̃

∣∣∣
Ω

admits a unique completion, then so does KΩ̃.
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Chapter 1. The Completion of Covariance Kernels

Theorem 1.9, via our necessary and sufficient conditions for uniqueness on serrated
domains (Theorem 1.5), yields sufficient conditions for unique completion from a banded
domain that are strictly weaker than any previously known set of sufficient conditions.

In the serrated case, a unique completion is necessarily canonical. A natural question
is whether this remains the case for nearly serrated domains. The answer is in the
affirmative:

Theorem 1.10 (Unique Completions are Canonical). If the partial covariance KΩ̃ on a
nearly serrated domain Ω̃ has a unique completion on I × I, this completion is canonical.

Theorem 1.10 shows that targeting canonical completions remains a sensible strategy in
the context of nearly serrated domains – they remain interpretable and yield the “correct
answer” in the presence of uniqueness. That is, of course, if we know how to construct
them. Our last result pertains to this matter:

Theorem 1.11 (Construction of Canonical Completions). A covariance K⋆ on I can be
recovered as the canonical completion of its restriction K⋆|Ω on a serrated domain Ω if
and only if it is the canonical completion of a partial covariance on some nearly serrated
domain Ω̃ ⊂ Ω.

In particular, if a unique completion of K|Ω̃ exists then it equals the canonical completion
of K|Ω for a (in fact any) serrated Ω ⊃ Ω̃. Alternatively, if the process X with covariance
K forms a second-order graphical model with respect to the nearly serrated Ω̃, then
K can be obtained by means of Algorithm 1 applied to K|Ω′ , for any Ω′ ⊃ Ω̃. This is
possible because if Ω̃ ⊂ Ω, then every separator of Ω also separates Ω̃. As a result, if
the “separation equation” is satisfied by (s, t) ∈ (Ω̃)c for separators of Ω̃, then it is also
satisfied for separators of Ω. Thus Ω̃ ⊂ Ω implies GΩ̃ ⊂ GΩ.

1.9 Covariance Estimation from Sample Path Fragments

We now elucidate how one can make combined use of our results from Section 1.7 and
Section 1.8, in order to address the problem of covariance estimation from sample path
fragments in a general context. Let X be a second-order process on the unit interval I
with the covariance K. Suppose that for n intervals Ii ⊂ I we observe n sample path
fragments Xi = Xi|Ii , where Xi∼X independently. Now define the domain

Ω∞ = lim sup
k→∞

(Ik × Ik),

as the set of pairs (x, y) ∈ I × I such that Ii ∋ {x, y} infinitely often. The sequence
{Xi}ni=1 enables us to consistently estimate the restriction KΩ := K|Ω of K on any
Ω ⊂ Ω∞. Call such a consistent estimator K̂Ω.
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1.9 Covariance Estimation from Sample Path Fragments

However, we wish to estimate the complete K, not merely its restrictions to Ω ⊂ Ω∞.
This requires K to be identifiable from Ω∞. One means to securing identifiability is to
impose unique extendability, i.e. assume that C(KΩ) = {K} for some Ω whose elements
are covered infinitely often by the sequence of rectangles Ik × Ik (i.e. we have the
inclusion2 Ω ⊂ Ω∞). But uniqueness was seen to be overly restrictive (see Theorem 1.5).
We therefore wish to avoid this route to identifiability. Instead, following the development
in Section 1.4 we will secure identifiability by assuming that the underlying process X
is globally Markov with respect to some domain Ω (i.e. K ∈ GΩ) whose elements are
covered infinitely often by the sequence the rectangles Ik × Ik (i.e. Ω ⊂ Ω∞). This is
a substantially weaker assumption (due to Theorem 1.10), and arguably much more
intuitive.

Proceeding thus, let Ω ⊂ Ω∞ be some nearly serrated domain with respect to which X is
global Markov. By Theorem 1.4, the true covariance K is the canonical completion from
Ω, and by Theorem 1.11, it is also the canonical completion from any serrated domain
containing Ω. Thus we can identify K directly from KΩ as the canonical completion
of KΩm for some m-serrated Ωm (with some m < ∞) satisfying Ω ⊆ Ωm ⊆ Ω∞. The
inclusions will always be possible for some m < ∞ provided the boundaries ∂Ω and ∂Ω∞
are everywhere distinct (i.e. ∥u− v∥ > 0 for all u ∈ ∂Ω and v ∈ ∂Ω∞).

Now we distinguish two cases:

(i) Ω∞ is serrated. If intervals {Ij}nj=1 are sampled from a finite cover of I, then Ω∞
will be a serrated domain. This represents a fixed domain setting, in that for all
sufficiently large n the observation domain becomes almost surely fixed.

(ii) Ω∞ is nearly serrated. If the intervals {Ij}nj=1 are sampled from an infinite cover
of I, then Ω∞ will be a nearly serrated domain. This represents a variable domain
setting, as our observation domain will continue evolving as n grows.

In case (i), we are squarely within the context of Section 1.7 and can use K̂Ω to directly
define the estimator K⋆ used in Equation 1.12.

In case (ii), we choose and fix an m-serrated approximation of the observable region
Ωm ⊂ Ω. We then construct the estimator K̂⋆ in Equation 1.12 based on K̂Ωm . So long
as Ωm contains Ω and m is held fixed, the estimator thus constructed will converge to
K as per Theorem 1.8. A good choice of Ωm involves a trade-off between covering a
large subregion of Ω∞ (to use as much of the observable domain as possible) and keeping
m small (to limit the number of inverse problems solved). This approach is illustrated

2Note that in general the inclusion Ω∞ ⊃ Ω is to be taken as strict. The “critical” equality case would
be rather exceptional, because Ω∞ is defined by the censoring mechanism, whereas the Ω is a population
quantity. Stipulating that the structure of X varies with or is tailored to the censoring mechanism would
be contrived.
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Ω

Ωm Ω∞

Figure 1.8: The regions Ω (red), Ωm (gray), and Ω∞ (blue).

through a data analysis in Section 1.11, and its performance is investigated via extensive
simulations in Section 1.10 (with special focus on the effect of the choice of m).

Remark 1.4 (On m vs n – Practical Considerations). From a practical point of view,
the choice of a serrated approximation Ωm to Ω∞ does not entail any significant loss. In
practice, Ω∞ is in fact unknown, and the de facto domain of observation is the n-serrated
domain ∪nj=1(Ij × Ij). Nevertheless, statistical considerations suggest that we should not
use the full observation domain, namely:

1. The domain ∪nj=1(Ij × Ij) generally “overfits” Ω = lim supj (Ij × Ij). Regions of
I × I that are more densely populated by observations are better proxies for Ω∞
(meaning regions comprised of pairs (x, y) ∈ I × I such that #{k ≤ n : {x, y} ⊂ Ik}
is large). This suggests choosing Ωm with m distinctly smaller than n.

2. When the fragments are observed discretely and smoothing is used to construct
K̂Ωm , we still use data in the region ∪nj=1(Ij×Ij)\Ωm as part of the local averaging,
even though we desist from estimating outside Ωm. Hence we do not necessarily
discard information, but rather focus on a smaller region on which we can estimate
more efficiently: because this region is more densely populated by observations and
furthermore because we avoid boundary effects.

Remark 1.5 (On m vs n – Asymptotic Considerations). As argued earlier, m need
not grow with n for consistent estimation. We can nevertheless ask at what rate one
might choose to let m grow with n, in the spirit of trading off more error due to a higher
number of inverse problems to solve in exchange for more data. Theorem 1.8 can partially
inform heuristics on this. Suppose that the error K̂Ω is n−α–consistent for KΩ, α ∈ (0, 1)
– which is certainly the case under complete observation. Take γm−1 = O(ηm) where
η ∈ (0, 1). Plugging these into Theorem 1.8 would suggest that

∥K̂⋆ −K⋆∥L2(I×I) ⪯ n−αηm = exp [−αηm logn] → 1
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This would indicate that m should not grow any faster than O(log logn), effectively leading
to m being practically constant: the increase in ill-posedness overwhelms any gain by
adding more data.

1.10 Simulation Study

We consider three covariances:

K1(s, t) =
4∑
j=1

ϕj(s)ϕj(t)
2j−1 , K2(s, t) = s ∧ t, K3(s, t) = 10ste−10|s−t|2

where ϕ1(t) = 1, ϕ2(t) =
√

3(2t−1), ϕ3(t) =
√

5(6t2 −6t+1) and ϕ4(t) =
√

7(20t3 −30t2 +
12t− 1). The first covariance is both finite-rank and analytic, the second is infinite-rank
and non-analytic and the third is infinite-rank and analytic. For the first and the third
covariance, every restriction to a serrated domain admits a unique completion (due to
analyticity), which is not the case for the second covariance (by Lemma A.2 in the
Supplementary Material). Define the domains Ωj as follows:

Ω1 = [0, 3/5]2 ∪ [2/5, 1]2

Ω2 = Ω1 ∪ [1/5, 4/5]2

Ω3 = Ω2 ∪ [1/10, 7/10]2 ∪ [3/10, 9/10]2

Ω4 = Ω3 ∪ [1/20, 13/20]2 ∪ [3/20, 15/20]2 ∪ [5/20, 17/20]2 ∪ [7/20, 19/20]2

Ω5 = Ω4 ∪ [1/40, 25/40]2 ∪ [3/40, 27/40]2 ∪ [5/40, 29/40]2 ∪ [7/40, 31/40]2

∪ [9/40, 33/40]2 ∪ [11/40, 35/40]2 ∪ [13/40, 37/40]2 ∪ [15/40, 39/40]2.

The number of intervals m for the domains is 2, 3, 5, 9 and 17, respectively. The variable
domain simulations of Delaigle et al. (2021) roughly correspond to an implicit choice of
m = 17 (i.e. Ω5).

The computations have been implemented in the R programming language (R Core Team,
2019) with the exception of those involving the estimator proposed in Delaigle et al.
(2021) which was implemented in MATLAB. The implementation of our estimator in R
can be found in the covcomp package (Waghmare, 2022).

1.10.1 General Simulation Study

For the covariances K = K1,K2 and K3, we study the performance of our estimator
(1.12) for the domains Ω2 (m = 3) and Ω4 (m = 9), and the number of fragments n = 100
and 500, for two different sampling regimes:
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(a) Regularly Observed Fragments. We simulate n fragments corresponding to Ω over
a regular grid of size 100 over the unit interval. And, we estimate the covariance
over Ω using the pairwise empirical covariance estimator given by: for s, t such that
n(s, t) = #{j : s, t ∈ Uj} ≥ 10,

K̂Ω(s, t) = 1
n(s, t)

∑
j:s,t∈Uj

Xj(s)Xj(t) (1.13)

where Uj ⊂ I denotes the support of the fragment Xj .

(b) Sparsely Observed Fragments. We generate n fragments as before in (a) but retain
only ∼ 6 points for every fragment chosen randomly and discard the rest. We
estimate the covariance over Ω by locally linear kernel smoothing. For K1 and K2,
this is achieved using the fdapace package (Carroll et al., 2021) in R under the default
parameters. For K2, the same method is unsuitable due to non-differentiability at
the diagonal, and so we use the reflected triangle estimator proposed in Jouzdani
and Panaretos (2021) instead.

Using the estimate of KΩ, we construct the completion using the method described in
Section 1.7. We do this 100 times for every combination of covariance, domain and
number of samples. We calculate the median and mean absolute deviation for the error
in the form of integrated squared error in estimating K over the observed region Ω and
its complement Ωc to which it is extended using the completion procedure. The results
are summarized in Table 1.1. Note that for high sample size combinations in the sparse
observation case of K = K2, our computational resources proved to be inadequate for
using the available implementation of the reflected triangle estimator to complete the
computation. For such cases, the results provided are for n = 200 and have been marked
with an asterisk.

The choice of truncation parameter can be made using a scree plot or the fraction of
variance explained (FVE) criterion given by

Np = min{r ≥ 1 :
r∑
j=1

λ̂j(Jp) > 0.95 · tr(Jp)}.

Here, we choose the truncation parameters manually to illustrate how the nature of the
covariance affects the choice of the truncation parameter. For a finite rank covariance,
the truncation parameter should be close to but not exceeding the rank. Therefore, for
K1, we choose Np = 4. For infinite rank covariances exhibiting fast eigenvalue decay,
such as K2 and K3, small values of Np such as 2 or 3 work well. Accordingly, we choose
Np = 2 for them. This choice also seems to work slightly better in practice.

The results are summarised in Table 1.1. Naturally, the error in the estimation of KΩ
and K⋆ tends to decrease as N increases in all cases. The error in estimating KΩ tends
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to increase as m increases, even relative to the norm of KΩ. The same applies to the
error in estimating K⋆ in the case of regular observations, however for sparse observations
there does not seem to be a clear relationship.

Table 1.1: Results of General Simulation Study

Median ± Mean Absolute Deviation of of Integrated Squared Errors.

Parameters Regular Observations Sparse Observations Squared Norms
K m N

∫
Ω |K̂Ω −KΩ|2

∫
Ωc |K̂⋆ −K|2

∫
Ω |K̂Ω −KΩ|2

∫
Ωc |K̂⋆ −K|2

∫
Ω |K|2

∫
Ωc |K|2

K1

3 100 0.0901 ±0.0604 0.0318 ±0.0325 0.1395 ±0.0823 0.1489 ±0.1630 1.3080 0.0381
3 500 0.0152 ±0.0099 0.0100 ±0.0112 0.0397 ±0.0182 0.0930 ±0.1136 1.3080 0.0381
9 100 0.1781 ±0.1159 0.1980 ±0.1947 0.1729 ±0.0893 0.0749 ±0.0713 1.3225 0.0236
9 500 0.0301 ±0.0197 0.0482 ±0.0465 0.0567 ±0.0310 0.0664 ±0.0633 1.3225 0.0236

K2

3 100 0.0058 ±0.0052 0.0007 ±0.0006 0.0046 ±0.0043 0.0010 ±0.0011 0.1573 0.0094
3 500 0.0016 ±0.0013 0.0002 ±0.0001 0.0034 ±0.0028* 0.0005 ±0.0005* 0.1573 0.0094
9 100 0.0128 ±0.0078 0.0013 ±0.0008 0.0068 ±0.0067 0.0009 ±0.0010 0.1614 0.0053
9 500 0.0025 ±0.0017 0.0003 ±0.0002 0.0037 ±0.0035* 0.0005 ±0.0006* 0.1614 0.0053

K3

3 100 0.3657 ±0.2879 0.0231 ±0.0230 0.6279 ±0.3913 0.0420 ±0.0391 5.7930 0.0021
3 500 0.0758 ±0.0604 0.0198 ±0.0119 0.1594 ±0.0943 0.0278 ±0.0220 5.7930 0.0021
9 100 0.6543 ±0.4339 0.0463 ±0.0329 0.7780 ±0.6108 0.0569 ±0.0536 5.7949 0.0001
9 500 0.1082 ±0.0764 0.0231 ±0.0098 0.2417 ±0.1508 0.0410 ±0.0266 5.7949 0.0001

*values computed for n = 200.

1.10.2 Estimator Performance versus m

We now turn to studying the dependence of the error of estimating K⋆ on the number
of intervals m corresponding to Ω. To this end, we generate n = 100 fragments of the
covariances K = K1,K2 and K3 corresponding to the domains Ω ∈ {Ωj}5

j=1 over a
grid of length 100, estimate the partial covariance on the corresponding domain using
the pairwise empirical covariance estimator as defined by Equation 1.13 and apply the
completion algorithm. We then compute the ratio of relative errors (RRE) defined as
the ratio of the median ISE in estimating KΩc to that of KΩ both relative to the norms
of the respective quantities they are estimating. In other words,

RRE =
∫

Ωc |K̂⋆ −K|2/
∫

Ωc |K|2∫
Ω |K̂Ω −KΩ|2/

∫
Ω |K|2

. (1.14)

The results have been summarized as boxplots in Figure 1.9. We observe that the median
RRE does not vary much in response the number of intervals m for any of the covariance
scenarios as we move from smaller values such as m = 2, 3 to larger values such as m = 17.
The most noticeable effect appears to be in the finite rank case, where the interquantile
range of the RRE increases with m, even if the median is relatively stable. Importantly,
we observe that the increase in error (across scenarios) is nowhere so large so as to affect
the utility of the estimation procedure and the empirical performance appears more
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optimistic than what predicted by Theorem 1.8.

Figure 1.9: Boxplot of Ratio of Relative Errors (RRE) vs. the number of intervals m for
K1 (left), K2 (middle) and K3 (right).

1.10.3 Comparative Simulations

In order to benchmark the performance of our estimator K̂⋆, we compare to that of the
estimator K̂p proposed in Delaigle et al. (2021). For different choices of K, m and n we
generate fragments on a regular grid of size 50 on the unit interval. We then estimate
the covariance on Ω using locally linear kernel smoothing and then apply the completion
procedure. We do this 100 times and calculate the median and mean absolute deviation
of the integrated squared error. We do the same for the estimator K̂p. The results
are summarized by Table 1.2. As can be expected, neither estimator dominates, and
performance varies according to scenario. The scenarios involving K1 and K3 feature
covariances that are analytic and exactly or effectively low rank. As expected, K̂p has
better performance here, since these two settings admit unique extension and their infinite
smoothness combined with their low (effective) rank is ideally suited for truncated series
extrapolation. That being said, the performance of K̂⋆ remains competitive, with errors
of similar magnitude in these two scenarios. On the other hand, K̂⋆ outperforms K̂p

by an order of magnitude in scenario K2, which is a low regularity scenario without a
unique completion. One would summarise that K̂⋆ behaves like a “robust” estimator:
competitively in “easy” scenarios, but substantially better otherwise. Another overarching
observation (in line with intuition and theoretical results) is that the performance of K̂⋆

is tied to the performance of the estimator of KΩ – in some cases (see e.g. scenario K3),
the larger errors relative to K̂p might have more to do with the quality of estimation on
Ω itself, than the with completion procedure.
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Table 1.2: Results of Comparative Simulation Study

Median ± Mean Absolute Deviation of of Integrated Squared Errors.

Parameters Our estimator K̂⋆ The estimator K̂p

K m N
∫

Ω |K̂Ω −KΩ|2
∫

Ωc |K̂⋆ −K|2
∫

Ω |K̂p −KΩ|2
∫

Ωc |K̂p −K|2

K1

3 100 0.0779 ±0.0541 0.0984 ±0.1080 0.0614 ±0.0402 0.0742 ±0.0407
3 500 0.0157 ±0.0103 0.0288 ±0.0295 0.0146 ±0.0086 0.0145 ±0.0099
9 100 0.1250 ±0.0773 0.1400 ±0.1450 0.0982 ±0.0479 0.1115 ±0.0721
9 500 0.0279 ±0.0204 0.0622 ±0.0760 0.0225 ±0.0123 0.0224 ±0.0143

K2

3 100 0.0058 ±0.0053 0.0007 ±0.0005 0.0049 ±0.0041 0.0055 ±0.0049
3 500 0.0016 ±0.0014 0.0001 ±0.0001 0.0009 ±0.0006 0.0010 ±0.0008
9 100 0.0129 ±0.0073 0.0012 ±0.0007 0.0081 ±0.0065 0.0059 ±0.0052
9 500 0.0029 ±0.0020 0.0003 ±0.0002 0.0020 ±0.0017 0.0012 ±0.0009

K3

3 100 0.0232 ±0.0202 0.0057 ±0.0059 0.0023 ±0.0018 0.0025 ±0.0022
3 500 0.0053 ±0.0039 0.0009 ±0.0008 0.0006 ±0.0004 0.0006 ±0.0004
9 100 0.0340 ±0.0254 0.0064 ±0.0054 0.0050 ±0.0035 0.0044 ±0.0034
9 500 0.0058 ±0.0037 0.0013 ±0.0010 0.0010 ±0.0009 0.0008 ±0.0005

1.11 Illustrative Data Analysis

Following Delaigle et al. (2021), we apply our method to the spine bone mineral density
(BMD) data described in Bachrach et al. (1999). We consider measurements of 117
females taken between the ages of 9.5 and 21 years. The measurements for every
subject are taken over a short period of time, comprising in each case an interval far
shorter than the age-range interval. Hence, the measurements on each subject constitute
independent sparsely observed fragments, see Figure 1.10 (left), and yield information
only on a partial covariance. Nevertheless, if we wish to conduct further analyses such as
classification, regression, prediction, or even dimension reduction, we need access to a
complete covariance.

We plot all those pairs of ages for which we have measurements on the same subject, see
Figure 1.10 (right). Based on the plot, we infer that the covariance can be estimated
reasonably well over the serrated domain Ω (colored in red) corresponding to the intervals
[9.5, 13.5], [11.5, 15.5], [13.5, 17.5], [15, 19.5] and [17, 21]. We then estimate the covariance
on Ω using locally linear kernel smoothing through the fdapace package and use the
completion algorithm to estimate the covariance over the entire region, see Figure 1.11.
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Figure 1.10: (left) Sparsely observed spine BMD curves for 117 females (right) Scatter
plot of pairs of ages for which simultaneous observations are available.

Figure 1.11: Completed covariance of the BMD data.
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2 Positive-Definite Completions

I think that it is a relatively good approximation to truth... that mathematical
ideas originate in empirics, although the genealogy is sometimes long and obscure.
But, once they are so conceived, the subject begins to live a peculiar life of its own
and is better compared to a creative one, governed by almost entirely aesthetical
motivations, than to anything else and, in particular, to an empirical science.

John von Neumann, The Mathematician (1947)

Abstract

We study the positive-definite completion problem for a variety of domains
and prove results concerning the existence and uniqueness of solutions and their
characterization. Most importantly, we study a special solution called the canonical
completion which is the reproducing kernel analogue of the determinant-maximizing
completion known to exist for matrices, and establish many results concerning its
existence and uniqueness, which include many interesting algebraic and variational
characterizations.

Most importantly, we prove the existence of a canonical completion for domains
which are equivalent to the band. This extends to the existence of a canonical exten-
sion in the context of the classical extension problem of positive-definite functions.

2.1 Introduction

Let X be a set and Ω ⊂ X ×X. Given a function KΩ : Ω → R, we consider the problem
of extending KΩ to X × X such that the resulting extension K : X × X → R is a
reproducing kernel, which is to say K(x, y) = K(y, x) for x, y ∈ X and

n∑
i,j=1

αiαjK(xi, xj) ≥ 0
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Chapter 2. Positive-Definite Completions

for every n ≥ 1, {αj}nj=1 ⊂ R and {xj}nj=1 ⊂ X. We shall refer to this as a completion
problem of KΩ and the extensions K, which can be regarded as its solutions, shall be
called completions.

The problem has been studied before in the literature for certain special cases by several
well-known mathematicians. For finite X, the problem can be understood as that
specifying the unspecified entries of a partially specified matrix so as to make it positive
semidefinite. In this form, the problem has been studied for the band case, where
Ω = {(i, j) : |i − j| ≤ p} for X = {j : 1 ≤ j ≤ n} for some n > 1, by H. Dym and
I. Gohberg in Dym and Gohberg (1981), where they derived necessary and sufficient
conditions on KΩ for the existence of a completion K and established the existence of a
unique special completion which maximizes the determinant of the matrix [K(i, j)]i,j∈X
among all completions K and is the unique completion with the property that the ijth
entry of the inverse of the matrix [K(i, j)]i,j∈X vanishes if (i, j) /∈ Ω. Grone et al. (1984)
studied the problem for general Ω and proved the existence and uniqueness of the special
completion assuming the existence of a completion. Necessary and sufficient conditions
for the existence of a completion for general Ω were derived by Paulsen et al. (1989). A
complete characterization of completions for the band case was arrived at in Gohberg
et al. (1989) and the results were also extended to matrices of operators, which can be
thought of as operator-valued kernels in our setting (see Bakonyi and Woerdeman (2011)
and Paulsen and Raghupathi (2016)).

For infinite X, the completion problem has been studied mostly in the form of the
extension problem for positive-definite functions. In this setting, X = Z or R usually
and one is concerned with positive-definite extensions F̃ , that is F̃ : X → R such that
K̃(x, y) = F̃ (x − y) for x, y ∈ X is a reproducing kernel, of positive-definite functions
F on {x ∈ X : |x| < a} for some a > 0, which is to say that K(x, y) = F (x − y) for
0 ≤ x, y < a is also a reproducing kernel. In our language, this means that Ω is the
band {(x, y) : |x − y| < a} ⊂ X × X and we only consider stationary completions,
that is, completions of the form K̃(x, y) = F̃ (x− y), of stationary KΩ, which is to say
KΩ(x, y) = F (x− y) for some F : {x ∈ X : |x| < a} → R. For X = Z, it was shown by
Carathéodory (1907), that every positive-definite function F on {x ∈ Z : |x| < a} for
some integer a > 0, admits a positive-definite extension to Z. The analogous result for
X = R was proved by Krein (1940) for continuous F , and later by Artjomenko (1941a)
without the continuity assumption. Necessary and sufficient conditions for uniqueness of
extension were derived by Keich (1999). A short historical survey of further developments
can be found in Sasvári (2006). An analogue of the special solution from the matrix case
for X = Z arose in the work of Burg (1975) concerning spectral estimation for stationary
time series. However, no such analogue for X = R has been studied in the existing
literature to the best of our knowledge.

In this chapter, we study the positive-definite completion problem in greater generality,
and in particular, without requiring stationarity or finiteness of X. Needless to say, this is
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2.1 Introduction

a non-trivial problem because the methods used for proving the classical results discussed
previously, such as matrix determinants and factorization or unitary representation, do
not generalize in an obvious way to arbitrary reproducing kernels. The problem has not
been studied in such a setting before in the existing literature, with the exception of
Waghmare (2022). Our approach mostly involves a generous use of simple tools from the
theory of reproducing kernels such as contraction maps and inner products of reproducing
kernel Hilbert spaces (Paulsen and Raghupathi, 2016), and some results from the theory
of tensor products of Hilbert spaces (Ryan, 2002; Treves, 2016), Γ-convergence (Braides,
2002; Dal Maso, 1993) and strongly continuous one-parameter semigroups (Davies, 1980;
Engel and Nagel, 2000).

A few of the results presented here (Section 2.5 in particular) appeared in Waghmare
(2022) for the special case of X being an interval of R. This chapter represents a more
mathematically mature treatment of the subject and the results here are more general
and elegant.

2.1.1 Contributions

We also study the general characteristics of the set of completions and derive a surprisingly
simple characterization of its extreme points in terms of their reproducing kernel Hilbert
space.

For domains which are, in a certain sense, large (see Figure 2.1), we show that positive-
definite completion is equivalent to solving a linear equation in the projective tensor
product space of certain reproducing kernel Hilbert spaces. As a consequence, we
characterize the set of completions in terms of bounded extensions of a linear functional
on the tensor product space.

For the class of serrated domains, we prove the existence of a unique canonical completion
and given an iterative formula involving certain contraction maps for computing it.
We derive a particularly simple closed form expression for the inner product of its
reproducing kernel Hilbert space. Furthermore, we present many interesting variational
characterizations of the canonical completion. Finally, we prove partial analogues of the
determinant maximization and inverse zero characterizations. All of these results can be
generalized to a even more expansive class of domains we call junction-tree domains.

For X = R, we establish the existence of the analogue of the special completion from
the matrix case, which we call the canonical completion, for continuous KΩ on domains
Ω which are, in a sense, band-like. Importantly, we prove the existence of a canonical
extension F⋆ to R of a positive-definite function F on (−a, a) ⊂ R for some a > 0,
thus demonstrating the existence of an analogue of the determinant-maximizing special
completion from the matrix case for positive-definite functions on R. The extension is
shown to correspond to a certain strongly continuous semigroup on a reproducing kernel
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Chapter 2. Positive-Definite Completions

(a) A large domain. (b) A serrated domain. (c) A regular domain.

Figure 2.1: Domains. The red region represents Ω.

Hilbert space and consequently, can be thought of as the solution of an abstract Cauchy
problem in that space. Under certain technical conditions, we also show the uniqueness
of the canonical extension and recover the generator of its semigroup as the closure of a
certain operator, which basically amounts to recovering the canonical extension.

2.1.2 Interpretations and Connections to other Problems

Reproducing kernels are everywhere in analysis and probability. In some contexts, they
arise purely by virtue of being the essence of positive-definiteness, for example, as positive
semidefinite matrices, inner products and Mercer kernels; while elsewhere for less obvious
reasons, for example, as characteristic functions of distributions. In this section, we
discuss how the completion problem relates to these other contexts.

Fourier Transforms and Characteristic Functions

Positive-definite functions occur naturally as Fourier transforms of finite positive Borel
measures in probability and analysis and as characteristic functions of random variables
in probability theory. Because the correspondence is precise, we can think of positive-
definite extensions of a continuous positive-definite function F on an interval (−a, a) for
a > 0, as corresponding to Borel measures µ on R which satisfy∫ ∞

−∞
eitx dµ(x) = F (t) for t ∈ (−a, a). (2.1)

This can be regarded as a generalization of the Hamburger moment problem, since the
moments of a measure are determined by the values of the Fourier transform around the
origin. Krein’s result implies the existence of a measure µ satisfying (2.1). Our result
concerning the existence of a canonical extension F̃ of F points to the existence of a
special solution of the above problem.
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Gaussian Processes and Graphical Models

There is a well-known bijective correspondence between reproducing kernels and the
covariances of Gaussian processes. The completions K of KΩ thus correspond to zero-
mean Gaussian processes Y = {Yx : x ∈ X} satisfying

E[YxYy] = KΩ(x, y) for (x, y) ∈ Ω. (2.2)

In finite dimensions, the differential entropy of a zero-mean Gaussian distribution is
proportional the logarithm of the determinant of its covariance matrix. Therefore, for
finite X, the canonical completion K⋆ corresponds to the Gaussian process Y which
maximizes differential entropy under the constraint (2.2). The canonical completion also
has an interesting interpretation in terms of the probability density p of Y because the
inverse of [K⋆(i, j)]i,j∈X being zero at the entries corresponding to (i, j) /∈ Ω implies that
products of the form titj for (i, j) ∈ Ω do not appear in p(t) where t = (tj)j∈X .

The canonical completion can also be interpreted in this context for possibly infinite X.
It corresponds to the Gaussian process satisfying (2.2) which is Markov with respect to
Ω in the extended sense of the global Markov property:

P[Yu ∈ A, Yv ∈ B|YS ] = P[Yu ∈ A|YS ]P[Yv ∈ B|YS ] (2.3)

where A,B ⊂ R and YS = {Ys : s ∈ S}. In other words, the random variables Yu and
Yv for u, v ∈ X separated by S ⊂ X are conditionally independent given YS . This
is analogous to how the future and the past are conditionally independent given the
present for an ordinary Markov process. The global Markov property is of natural way
of extending Markovianity to processes indexed by vertices of a graph instead of time.
Alternatively, we can say that K⋆ is the covariance of the Gaussian graphical model Y
corresponding to the “graph” Ω satisfying (2.2).

Constrained Embeddings into Hilbert Spaces

Notice that for every completion K of KΩ, we can write for the generators kx ∈ H(K)
of K given by kx(y) = K(x, y) for x, y ∈ X, that ⟨kx, ky⟩ = KΩ(x, y) for (x, y) ∈ Ω.
Every completion thus corresponds to an embedding x 7→ φx of X into a Hilbert space
H satisfying the constraint that

⟨φx, φy⟩ = KΩ(x, y) for (x, y) ∈ Ω. (2.4)

In fact, every such embedding into a Hilbert space H will be equal, up to isometry, to an
embedding of the form x 7→ kx into the reproducing kernel Hilbert space H(K) of some
completion K of KΩ. The set C = C(KΩ) can thus be regarded as the set of solutions to
a constrained embedding problem (2.4).
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Chapter 2. Positive-Definite Completions

A canonical solution to the completion problem naturally corresponds to a special solution
to the embedding problem. In fact, the canonical solution K⋆ can be understood as
corresponding to an embedding x 7→ kx such that the vectors kx are, in a sense, maximally
dispersed in H(K). When X is finite, this is can be easily formalized by choosing the
determinant of the matrix [K(i, j)]i,j∈X as the measure of dispersion, which is only
natural given that the determinant is proportional to the “volume” of the simplex formed
by the vectors {kj : j ∈ X} in H(K). Moreover, it vanishes if {kj : j ∈ X} are linearly
dependent. Furthermore, if Ω is the diagonal {(j, j) : j ∈ X}, then by Hadamard’s
inequality, it follows that the determinant is maximized precisely when the vectors
{kj : j ∈ X} are orthogonal to each other, which perfectly conforms with our intuitive
understanding of dispersion.

For infinite X and under certain conditions, we prove a local analogue of the determinant
maximization principle, which essentially says that every nice perturbation of a canonical
solution K⋆ tends to increase the determinant in an appropriate sense, thus justifying
the interpretation of the canonical completion in terms of dispersion for infinite X.

Metric Embeddings into Hilbert Spaces

According to Schoenberg’s embedding theorem, a metric space (X, d), where d : X×X →
R is a distance function on X, can be embedded into a Hilbert space if and only if
Kt(x, y) = e−td2(x,y) is a reproducing kernel for every t > 0. Naturally, one can think of a
partially specified counterpart of the distance function d : X×X → R+ and this gives rise
to the notion of a partially specified metric space (X, dΩ) where dΩ : Ω → R+ for some
Ω ⊂ X ×X is a partially specified distance function. Many natural phenomenon such
as molecules can be regarded as partially specified metric spaces because the distances
between two points are not always fixed. Every extension of dΩ to X×X which is a valid
distance function can be thought of as a conformation of the partially specified metric
space (X, dΩ). The problem of determining whether (X, dΩ) admits a conformation that
can be embedded into a Hilbert space is equivalent to that of determining whether there
exists an extension d of dΩ to X ×X such that Kt(x, y) = e−td2(x,y) where x, y ∈ X is a
completion of KtΩ(x, y) = e−td2

Ω(x,y) where (x, y) ∈ Ω for every t > 0.

2.1.3 Organization of the Chapter

After discussing some preliminaries in Section 2.2, we begin by treating the general
properties of completions in Section 2.3. We then proceed by studying the completion
problem while gradually increasing the extent of positive-definiteness imposed on KΩ.
In Section 2.3, we impose no assumption on KΩ. In Section 2.4 we assume that certain
restrictions of KΩ are reproducing kernels. Finally, from Section 2.5 onwards, we deal
exclusively with KΩ for which every restriction to A×A ⊂ Ω for A ⊂ X is a reproducing
kernel. Section 2.6 is dedicated to study of canonical extensions of positive-definite
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functions.

2.2 Preliminaries and Notation

2.2.1 Reproducing Kernels

Let X be a set. A reproducing kernel K on X is defined as a function K : X ×X → R
satisfying K(x, y) = K(y, x) for x, y ∈ X and

n∑
i,j=1

αiαjK(xi, xj) ≥ 0

for every n ≥ 1, {αj}nj=1 ⊂ R and {xj}nj=1 ⊂ X. The functions kx : X → R given by
kx(y) = K(x, y) for x, y ∈ X are called the generators of K. The closure of the linear
span of the generators under the norm induced by the inner product ⟨kx, ky⟩ = K(x, y)
for x, y ∈ X is called the reproducing kernel Hilbert space or associated Hilbert space of
K and denoted by H(K) and associated with the inner product ⟨·, ·⟩H(K) and the induced
norm ∥ · ∥H(K). To avoid cluttering our notation, we shall always omit the subscript and
denote the inner product as ⟨·, ·⟩ and the norm as ∥ · ∥, except in cases where there is a
possiblity of confusion. Note that for a function f and kernel K on S, f ∈ H(K) with
∥f∥ ≤ C if and only if for some C > 0,

∣∣∣∣∣
m∑
i=1

αif(xi)
∣∣∣∣∣ ≤ C

√√√√ m∑
i,j=1

αiαjK(xi, xj) (2.5)

for every m ≥ 1, {xi}mi=1 ⊂ S and {αi}mi=1 ⊂ R.

For A ⊂ X and x ∈ X, we define kx,A : A → R as kx,A(y) = K(x, y) for y ∈ A.
Furthermore, for A ⊂ X, we can define the subkernel KA : A×A → R as the restriction
KA = K|A×A. Naturally, KA is also a reproducing kernel. Its associated Hilbert space
is given by H(KA) = {f |A : f ∈ H(K)} and the functions kx,A for x ∈ A are its
generators. Using (2.5), one can show that the restriction JA : H(K) → H(KA) given
by f 7→ f |A is a bounded linear map satisfying ∥f |A∥ ≤ ∥f∥ for f ∈ H(K), where ∥f |A∥
is understood as the norm of f |A in H(KA). Its adjoint J∗

A : H(KA) → H(K) is given
by J∗

Ag(x) = ⟨J∗
Ag, kx⟩ = ⟨g, JAkx⟩ = ⟨g, kx,A⟩ which is equal to g(x) for x ∈ A. Notice

that J∗
Akx,A = kx for x ∈ A. In fact, the associated Hilbert space H(KA) is isometrically

isomorphic to the closed linear subspace in H(K) spanned by {kx : x ∈ A} under the
inner product induced by the ambient space and the isometry is given by JA. This result
is known as subspace isometry. A direct consequence of this result is that

∥ΠAf∥ = ∥f |A∥. (2.6)
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for f ∈ H(K) where ΠA is the projection to the closed linear subspace spanned by
{kx : x ∈ A}. Similarly, the orthogonal complement of a subspace is also isomorphic
to a certain reproducing kernel Hilbert space. For B ⊂ X, we can define the Schur
complement K/KB : (X \ B) × (X \ B) → R as K/KB(x, y) = K(x, y) − ⟨kx,B, ky,B⟩.
K/KB is a reproducing kernel because, by subspace isometry, we can write K(x, y) −
⟨kx,B, ky,B⟩ = ⟨kx, ky⟩ − ⟨ΠBkx,ΠBky⟩ = ⟨(kx − ΠBkx), (ky − ΠBky)⟩. It can be shown
that H(K/KB) = {f ∈ H(K) : f |B = 0} and that it is isometrically isomorphic to the
orthogonal complement of ΠBH(K). Furthermore,

∥f − ΠBf∥ = ∥g∥H(K/KB) (2.7)

where g = (f − ΠBf)|X\B or equivalently, g(y) = f(y) − ⟨f |B, ky,B⟩ for y ∈ X \B.

2.2.2 Graphs

Experience with the positive-definite completions of partially specified matrices and their
connection to Gaussian graphical models suggests that there is great utility to thinking
of a domain Ω as an undirected graph (X,Ω) on the set of vertices X, with the vertices
x, y ∈ X being adjacent iff (x, y) ∈ Ω. The pair (x, y) ∈ Ω can thus be thought of as the
edge between x and y, which makes Ω the edge set. Since X will almost always be fixed,
we shall often omit writing (X,Ω) and simply identify the graph (X,Ω) with its edge
set Ω. Notice that for a set S ⊂ X such that S × S ⊂ Ω, every x, y ∈ S are adjacent.
We call such sets cliques. For x, y ∈ X, a path in Ω between x and y is a finite sequence
{zk}n+1

k=0 ⊂ X such that z0 = x, zn+1 = y and (zk, zk+1) ∈ Ω for 0 ≤ k ≤ n. We say
that x, y ∈ X are connected in Ω if there is a path in Ω between them and disconnected
otherwise. We say S ⊂ X is a separating set or a separator of Ω, if there exist x, y ∈ X \S
such that for every path {zk}n+1

k=0 ⊂ X between x and y, zk ∈ S for some 1 ≤ k ≤ n, or
in other words, every path between x and y passes through S. Alternatively, S ⊂ X

is a separator if X \ S is disconnected. We adopt the convention that, if x and y are
disconnected, then they are separated by the empty set ∅.

2.2.3 Domains and Completions

A domain Ω on X is a subset of X × X which is symmetric in that (x, y) ∈ Ω if and
only if (y, x) ∈ Ω and contains the diagonal {(x, x) : x ∈ X} ⊂ X ×X. If KΩ : Ω → R is
a function, an extension K : X ×X → R of KΩ which is a reproducing kernel on X is
called a positive-definite completion or simply, a completion of KΩ.

Definition 2.1 (Completion). Let KΩ be a function on a domain Ω on X. A reproducing
kernel K on X is called a completion of KΩ if the restriction of K to Ω is KΩ.

We shall denote the set of completions of a function KΩ by C(KΩ) or simply C. The
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symmetry of the domain Ω merely accounts for the fact that the completions are
themselves symmetric by definition, while containing the diagonal ensures that the set of
completions C is bounded (Theorem 2.1).

Of course, not every such function KΩ admits a completion. A necessary condition is
that suitable restrictions of KΩ be reproducing kernels. A function KΩ : Ω → R on a
domain Ω ⊂ X ×X is called a partially reproducing kernel if for every A ⊂ X such that
A×A ⊂ Ω, the restriction KA = KΩ|A×A is a reproducing kernel on A. Naturally, every
reproducing kernel K on X is a partially reproducing kernel on the domain Ω = X ×X.
We extend the definition of kx,A for partially reproducing kernels KΩ by defining them
for x ∈ X and A ⊂ X such that x × A ⊂ Ω as the functions kx,A : A → R given by
kx,A(y) = K(x, y) for y ∈ A.

If X is a subset of R or Z, we call a partially reproducing kernel KΩ stationary if for
some F : X → R we have KΩ(x, y) = F (x − y) for (x, y) ∈ Ω. Note that this includes
reproducing kernels K on X as they can be considered as partially reproducing kernels
with Ω = X ×X.

2.2.4 Projective Tensor Product

Consider two Hilbert spaces H1 and H2 and their tensor product

H1 ⊗ H2 = Span{f ⊗ g : f ∈ H1 and g ∈ H2}.

We define the projective tensor product norm or more simply, the π-norm ∥ · ∥π on
H1 ⊗ H2, as

∥τ∥π = inf


∞∑
i=1

∥fi∥∥gi∥ : τ =
n∑
i=1

fi ⊗ gi where n ≥ 1, fi ∈ H1, gi ∈ H2 for i ≥ 1

.
The completion of H1 ⊗ H2 under ∥ · ∥π is a Banach space called the projective tensor
product space of H1 and H2, and denoted by H1 ⊗̂πH2. It turns out that the dual of
the projective tensor product space of two Hilbert spaces is isometrically isomorphic to
the space of bounded linear operators between them (Ryan, 2002, Chapter 2.2; Treves,
2016, Proposition 43.8). In other words,

[
H1 ⊗̂πH2

]∗ = L(H1,H2) (2.8)

and we can think of every Φ ∈ L(H1,H2) as a bounded linear functional Φ on H1 ⊗̂πH2
in the following sense: Φ[f ⊗ g] = ⟨Φf, g⟩ for f ∈ H1 and g ∈ H2. The expression Φ[τ ]
is well-defined for every τ ∈ H1 ⊗̂πH2 as a result of continuous extension. This result
provides an alternative expression for the π-norm which we shall call the duality formula
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given by
∥τ∥π = sup{|Φ[τ ]| : Φ ∈ L(H1,H2), ∥Φ∥ ≤ 1}. (2.9)

The space H1 ⊗̂πH2 can also be thought of as the space L1(H1,H2) of nuclear operators
from H1 to H2 and of course, vice-versa (Treves, 2016, Proposition 47.2).

2.3 General Properties of Completions

In this section, we study some of the general properties of the set of completions C such
as convexity and compactness, and their consequence.

Theorem 2.1. The set of completions C(KΩ) is convex and compact in the topology of
pointwise convergence.

Proof. Let C0 = {K : |K(x, y)| ≤
√
KΩ(x, x)KΩ(y, y) for x, y ∈ X}. For K ∈ C0,

the range of K(x, y) is compact by the Heine-Borel theorem for every x, y ∈ X. By
Tychonoff’s theorem, C0 is itself compact in the product topology, which is same as the
topology of pointwise convergence.

Notice that K ∈ C if and only if K ∈ C0, K(x, y) = KΩ(x, y) for (x, y) ∈ Ω, K(x, y) −
K(y, x) = 0 for x, y ∈ X, and

n∑
i,j=1

αiαjK(xi, xj) ≥ 0

for every n ≥ 1, {xi}ni=1 ⊂ X and {αi}ni=1 ⊂ R. Because the expressions K 7→ K(x, y),
K 7→ K(x, y) −K(y, x) and K 7→

∑n
i,j=1 αiαjK(xi, xj) are continuous linear functionals

under the topology of pointwise convergence, C is a closed subset of C0 implying that it
is compact.

Note that C under the topology of pointwise convergence is not, in general, second-
countable, and therefore, compactness does not necessarily imply sequential compactness.
In Section 2.4.5, we shall show that C is also sequentially compact under an additional
assumption on Ω.

2.3.1 Convexity

The set of completions C is a compact convex subset of the space of real-valued functions
on X ×X which forms a Hausdorff, locally convex topological vector space under the
topology of pointwise convergence. By the Krein-Milman theorem, C is equal to the
closed convex hull of Ext(C), where Ext(C) denotes the set of extreme points of C. A
completion K ∈ C is an extreme point of C if it can not be represented as a proper

46



2.3 General Properties of Completions

linear combination of other completions. In other words, there do not exist completions
K1,K2 ∈ C such that K = αK1 + (1 − α)K2 for 0 < α < 1. The following result gives
remarkably simple characterization of the set of extreme points of C in terms of their
reproducing kernel Hilbert spaces.

Theorem 2.2. K ∈ Ext(C) if and only if for every self-adjoint Ψ : H(K) → H(K),

⟨kx,Ψky⟩ = 0 for (x, y) ∈ Ω =⇒ Ψ = 0,

where kx ∈ H(K) is given by kx(y) = K(x, y) for x, y ∈ X.

The above result is a direct consequence of the following lemma, the proof of which can
be found in Appendix B.

Lemma 2.1. Let K be a reproducing kernel on X with the associated Hilbert space H.
There is a bijective correspondence between H : X×X → R such that K+H,K−H ≥ O

and self-adjoint contractions Ψ ∈ L(H) given by H(x, y) = ⟨Ψkx, ky⟩ for x, y ∈ X, where
kx ∈ H(K) is given by kx(y) = K(x, y) for x, y ∈ X.

2.3.2 Compactness

An important consequence of compactness in the topology of pointwise convergence is
that a completion problem admits a solution if and only if so does every finite subproblem.
Let KΩF denote the restriction of KΩ to the set Ω ∩ (F × F).

Theorem 2.3. C(KΩ) is nonempty if and only if so is C(KΩF) for every finite F ⊂ X.

Proof. Let a be a finite subset of X and Ka denote a completion of KΩa. Define

Ka =

Ka(x, y) x, y ∈ a

0 otherwise.

The mapping a 7→ Ka forms a net on the directed set A = {a ⊂ X : a is finite} ordered
by inclusion. By compactness of C0, Ka has a convergent subnet, say Kb = Kb(a) which
converges to some K ∈ C0. It turns out that K ∈ C. Indeed, K(x, y) = limbK

b(x, y) =
KΩ(x, y) for (x, y) ∈ Ω, K(x, y) −K(y, x) = limb

[
Kb(x, y) −Kb(y, x)

]
= 0 for x, y ∈ X

and
n∑

i,j=1
αiαjK(xi, xj) = lim

b

 n∑
i,j=1

αiαjK
b(xi, xj)

 ≥ 0

for n ≥ 1, {xi}ni=1 ⊂ X and {αi}ni=1 ⊂ R. The converse is trivial because if K is a
completion of KΩ, then K|F×F is a completion of KΩF.
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Chapter 2. Positive-Definite Completions

For finite X, we have the following result of Paulsen which gives necessary and sufficient
conditions for the existence of a completion, in the language of matrices.

Theorem 2.4 (Paulsen et al. (1989, Theorem 2.1)). Let J ⊂ {1, . . . , n}2 for some n ≥ 1
such that (j, j) ∈ J for 1 ≤ j ≤ n and (i, j) ∈ J if (j, i) ∈ J . A partially specified matrix
T = [tij ](i,j)∈J which is symmetric (i.e. tij = tji for (i, j) ∈ J) admits a completion if
and only if for every positive semidefinite matrix M = [mij ]ni,j=1 such that mij = 0 for
(i, j) /∈ J we have ∑

(i,j)∈J
mijtij ≥ 0.

The above result gives a concrete but somewhat unwieldy criterion for determining
whether C is nonempty. We shall say that KΩ is symmetric, if KΩ(x, y) = KΩ(y, x) for
(x, y) ∈ Ω.

Corollary 2.1. Assume that KΩ is symmetric. C(KΩ) is nonempty if and only if for
every finite F = {xi}ni=1 ⊂ X and positive semidefinite matrix M = [mij ]ni,j=1 such that
mij = 0 for (xi, xj) /∈ Ω we have∑

(xi,xj)∈Ω
mijKΩ(xi, xj) ≥ 0.

A criterion of this form can be easily used to work out maximum and minimum values
that a completion can have at a given point. Define m,M : X ×X → R as

M(x, y) = sup{K(x, y) : K ∈ C(KΩ)} and m(x, y) = inf{K(x, y) : K ∈ C(KΩ)}.

We fix K(x, y) = c for some c ∈ R and formulate a new completion problem on the domain
Ω ∪ {(x, y), (y, x)} for a new function equal to KΩ on Ω and c on {(x, y), (y, x)}. By
Corollary 2.1, the function admits a completion if and only if for every finite F = {x, y}∪
{xk}nk=1 ⊂ X and positive semidefinite matrix M = [mij ] where i, j ∈ {x, y}∪{k}nk=1 such
that mij , mxj and miy are zero when (xi, xj), (x, xj) and (xi, y) is not in Ω, respectively,
we have

2mxyc+ 2
∑

(x,xj)∈Ω
mxjKΩ(x, xj) + 2

∑
(xi,y)∈Ω

miyKΩ(xi, y) +
∑

(xi,xj)∈Ω
mijKΩ(xi, xj) ≥ 0.

Define for the pair (M,F ) where M and F are as described above,

Rxy(M,F ) = −1
mxy

 ∑
(x,xj)∈Ω

mxjKΩ(x, xj)+
∑

(xi,y)∈Ω
miyKΩ(xi, y)+1

2
∑

(xi,xj)∈Ω
mijKΩ(xi, xj)

.
By working out the values of c for which the above statement is true the following result
becomes apparent.
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2.4 Completion on Large Domains

Theorem 2.5. Assume that KΩ is symmetric and C is nonempty. We have

M(x, y) = inf
mxy<0

Rxy(M,F ) and m(x, y) = sup
mxy>0

Rxy(M,F ).

Notice that the value of a completion K at a point (x, y) ∈ Ωc is uniquely determined if
and only if m(x, y) = M(x, y). Using this observation, it is not difficult to see why the
following result holds.

Theorem 2.6. Assume that KΩ is symmetric. C is a singleton if and only if for every
(x, y) ∈ Ωc and ϵ > 0 there exist pairs (M,F ) and (M ′, F ′) where M ′ = [m′

ij ] such that
mxy < 0, m′

xy > 0 and
Rxy(M,F ) − Rxy(M ′, F ′) < ϵ.

2.4 Completion on Large Domains

We say that a domain Ω is large if there exist X1, X2 ⊂ X such that X = X1 ∪X2 and
X1 × X1, X2 ∪ X2 ⊂ Ω. Let ∆ = Ω ∩ (X2 × X1) and ∆∗ = Ω ∩ (X1 × X2) (see Figure
2.2). We shall assume throughout this section that the restrictions KX1 = KΩ|X1×X1

and KX2 = KΩ|X2×X2 are reproducing kernels.

X1 ×X1

X2 ×X2

(a) ∆ = ∅

X1 ×X1

X2 ×X2

∆

∆∗

(b) ∆ ̸= ∅

Figure 2.2: Large domain. The colored regions represent Ω.

2.4.1 Contractions and Completions

We begin by considering the special case where ∆ is empty (see Figure 2.2a). For every
U ⊂ X such that U × U ⊂ Ω and u ∈ U , we denote ku,U : U → R as ku,U (x) = KΩ(x, u).

Theorem 2.7 (Contraction Characterization). Let KΩ be a partially reproducing kernel
on a domain Ω = (X1 × X1) ∪ (X2 × X2) where X1, X2 ⊂ X (see Figure 2.3). There
is a bijective correspondence between the completions K of KΩ and contractions Φ :
H(KX1) → H(KX2) satisfying Φkx,X1 = kx,X2 for x ∈ X1 ∩X2 given by

K(x, y) = ⟨Φkx,X1 , ky,X2⟩ for x ∈ X1 and y ∈ X2. (2.10)
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Chapter 2. Positive-Definite Completions

If X1 ∩X2 = ∅, then there is a bijective correspondence between the completions K of
KΩ and the contractions Φ : H(KX1) → H(KX2).

KX1

kx,X1

KX2

k
y
,X

2

k
x
,X

1

ky,X2

kz,X1 kz,X2

(x, y)

Figure 2.3: The coloured region represents Ω with the kernels KX1 and KX2 being
represented by the red and blue regions and blue and green regions, respectively. The
functions ku,U are being represented by at the position corresponding to their values
relative to the kernel.

Proof of Theorem 2.7. Let K be a completion of KΩ. Define Φ0 : Span{kx,X1 : x ∈
X1} → H(KX2) as Φ0kx,X1 = kx,X2 . For m,n ≥ 1, let {xi}mi=1 ⊂ X1, {yk}nk=1 ⊂ X2 and
{αi}mi=1, {βk}nk=1 ⊂ R. By positive definiteness, the expression

m∑
i,j=1

αiαjK(xi, xj) + 2
m,n∑
i,k=1

αiβkK(xi, yk) +
n∑

k,l=1
βkβlK(yk, yl) ≥ 0 (2.11)

is non-negative. This can be rewritten in terms of Φ0 and f = ∑m
i=1 αikxi,X1 and

g = ∑n
k=1 βkkyk,X2 as follows

⟨f, f⟩ + 2⟨Φ0f, g⟩ + ⟨g, g⟩ ≥ 0

Replacing g with −g and using continuity of the inner product, we get for every g ∈
H(KX2),

|⟨Φ0f, g⟩| ≤ 1
2 [⟨f, f⟩ + ⟨g, g⟩] .

For ∥f∥, ∥g∥ ≤ 1, we have |⟨Φ0f, g⟩| ≤ 1 and thus, ∥Φ0f∥ ≤ 1. It follows that for
f ∈ Span{kx,X1 : x ∈ X1}, ∥Φ0f∥ ≤ ∥f∥. As a consequence, Φ0 uniquely extends by
continuity to a contraction Φ on H(KX1) satisfying Φkx,X1 = kx,X2 for x ∈ X1 ∩X2 by
construction.

To show the converse, let Φ : H(KX1) → H(KX2) be a contraction satisfying Φkx,X1 =
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2.4 Completion on Large Domains

kx,X2 for x ∈ X1 ∩X2. Define

K(x, y) =


KΩ(x, y) for (x, y) ∈ Ω,
⟨Φkx,X1 , ky,X2⟩ if x ∈ X1 \X2 and y ∈ X2 \X1,

⟨Φky,X1 , kx,X2⟩ if y ∈ X1 \X2 and x ∈ B \X1.

(2.12)

By construction, K is symmetric. We can write (2.11) using the Cauchy-Schwarz
inequality as

⟨f, f⟩ + 2⟨Φf, g⟩ + ⟨g, g⟩ ≥ ∥f∥2 − 2∥f∥∥g∥ + ∥g∥2

= (∥f∥ − ∥g∥)2 ≥ 0.

It follows that K is indeed a completion. Hence proved.

This is a slightly more general analogue of a standard operator-theoretic result (Bakonyi
and Woerdeman, 2011, Lemma 2.4.4) concerning the necessary and sufficient conditions
for the non-negativity of a 2 × 2 operator matrix with only the diagonal entries specified,
which was derived by Baker (Baker, 1973, Theorem 1) in the context of joint Gaussian
measures on Hilbert spaces.

2.4.2 Existence, Characterization and Uniqueness

We are now prepared to deal with the more general case where ∆ can be non-empty. We
can assume without any loss of generality that X1∩X2 = ∅, by simply taking X2 = X\X1.
Notice that every completion of KΩ is also a completion of KΩ|(X1×X1)∪(X2×X2). By
Theorem 2.7, we can write every completion K of KΩ as in (2.10) for some contraction
Φ : H(KX1) → H(KX2) satisfying ⟨Φkx,X1 , ky,X2⟩ = K(x, y) for (x, y) ∈ ∆, which can be
thought of as a linear equation in Φ. Indeed, using (2.8) allows us to rewrite it as

Φ[kx,X1 ⊗ ky,X2 ] = KΩ(x, y) for (x, y) ∈ ∆, (2.13)

where Φ is a bounded linear functional on the projective tensor product space H(KX1) ⊗̂πH(KX2).
It follows that Φ is a bounded extension of the linear functional Φ0 : Span{kx,X1 ⊗ ky,X2 :
(x, y) ∈ ∆} → R given by

Φ0[kx,X1 ⊗ ky,X2 ] = KΩ(x, y) for (x, y) ∈ ∆. (2.14)

If Φ0, thus defined, is a linear functional of norm not exceeding 1, then the Hahn-Banach
theorem guarantees the existence of an extension Φ of Φ0 to H(KX1) ⊗̂πH(KX2) such
that ∥Φ∥ = ∥Φ0∥. In fact, every extension Φ of norm not exceeding 1 will correspond to
a completion of KΩ according to (2.10). On the other hand, if Φ0 is not well-defined or
∥Φ0∥ > 1, then KΩ does not admit a completion. The following result summarizes our
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Chapter 2. Positive-Definite Completions

discussion.

Theorem 2.8 (Existence and Characterization of Completion). Consider KΩ : Ω → R
on a domain Ω on X. Assume that there exists a partition {Xi}2

i=1 of X such that
for every i, Xi ×Xi ⊂ Ω and KXi = KΩ|Xi×Xi is a reproducing kernel. The following
statements hold:

1. The function KΩ admits a completion to X if and only if (2.14) defines a bounded
linear functional Φ0 : Span{kx,X1 ⊗ ky,X2 : (x, y) ∈ ∆} → R such that ∥Φ0∥ ≤ 1 or
equivalently, ∣∣∣∣∣∣

n∑
j=1

αjKΩ(xj , yj)

∣∣∣∣∣∣ ≤

∥∥∥∥∥∥
n∑
j=1

αjkxj ,X1 ⊗ kyj ,X2

∥∥∥∥∥∥
π

(2.15)

for every n ≥ 1, {(xj , yj)}nj=1 ⊂ ∆ and {αj}nj=1 ⊂ R.

2. There is a bijective correspondence between the completions K of KΩ and bounded
extensions Φ of Φ0 to H(KX1) ⊗̂πH(KX2) satisfying ∥Φ∥ ≤ 1 given by

Φ[kx,X1 ⊗ ky,X2 ] = K(x, y) for x ∈ X1 and y ∈ X2.

In essence, Theorem 2.7 together with the isomorphism (2.8) allowed us to linearize the
completion problem for KΩ by framing it as a linear equation (2.13) on a tensor product
space.

Equation (2.15) is sometimes called Helly’s theorem or extension principle (see (Narici
and Beckenstein, 2010, Theoreom 7.10.1) and (Edwards, 2012, 2.3.1 Theorem)). It is
reminiscent of the condition (2.5) for a function to belong to a reproducing kernel Hilbert
space. Equation (2.15) can also be used to derive tight lower and upper bounds for the
values of completions at points outside ∆. To find the maximum value M(x, y) and
minimum value m(x, y) of K(x, y) for some (x, y) ∈ (X1 ×X2) \ ∆ over the completions
K of KΩ, we consider an augmented completion problem: let Ω̃ = Ω ∪ {(x, y), (y, x)}
and define KΩ̃ : Ω̃ → R as KΩ̃|Ω = KΩ and KΩ̃(x, y) = KΩ̃(y, x) = ν. There exists a
completion K of KΩ which satisfies K(x, y) = ν if and only if KΩ̃ admits a completion,
which is when∣∣∣ν −

∑n
j=1 αjKΩ(xj , yj)

∣∣∣ ≤
∥∥∥kx,X1 ⊗ ky,X2 −

∑n
j=1 αjkxj ,X1 ⊗ kyj ,X2

∥∥∥
π

for every n ≥ 1, {(xj , yj)}nj=1 ⊂ ∆ and {αj}nj=1 ⊂ R. It follows that

M(x, y) = inf
{∑n

j=1 αjKΩ(xj , yj) +
∥∥∥kx,X1 ⊗ ky,X2 −

∑n
j=1 αjkxj ,X1 ⊗ kyj ,X2

∥∥∥
π

}
m(x, y) = sup

{∑n
j=1 αjKΩ(xj , yj) −

∥∥∥kx,X1 ⊗ ky,X2 −
∑n
j=1 αjkxj ,X1 ⊗ kyj ,X2

∥∥∥
π

}
where the supremum and infimum are taken over n ≥ 1, {(xj , yj)}nj=1 ⊂ ∆ and {αj}nj=1 ⊂
R. Note that the value of a completion K s uniquely determined at (x, y) if and only if
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2.4 Completion on Large Domains

m(x, y) = M(x, y). If m(x, y) = M(x, y) for every (x, y) outside ∆, then KΩ admits a
unique completion. The following result is now immediate.

Theorem 2.9 (Uniqueness of Completion). Let KΩ be as in Theorem 2.8. Then KΩ
admits a unique completion if and only if for every (x, y) ∈ X1 ×X2 \ ∆ and ϵ > 0 there
exist n ≥ 1, {(xj , yj)}nj=1 ⊂ ∆ and {αj}nj=1, {βj}nj=1 ⊂ R such that

∑n
j=1(αj − βj)KΩ(xj , yj) +


∥∥∥kx,X1 ⊗ ky,X2 −

∑n
j=1 αjkxj ,X1 ⊗ kyj ,X2

∥∥∥
π

−
∥∥∥kx,X1 ⊗ ky,X2 +∑n

j=1 βjkxj ,X1 ⊗ kyj ,X2

∥∥∥
π

 < ϵ.

In particular, this holds if Span{kx,X1⊗ky,X2 : (x, y) ∈ ∆} is dense in H(KX1) ⊗̂πH(KX2).

Remark 2.1. The linearization approach to completion can be used to determine the
existence of completions with given constraints so long as the constraints are linear for Φ.
For example, if we want to ascertain whether there exists a completion K of KΩ for which
K(x, y) = K(x′, y′) for some points (x, y), (x′, y′) outside Ω, we need only to impose
an additional constraint on Φ0, that is Φ0[kx,X1⊗ky,X2

− kx′,X1⊗ky′,X2
] = 0 and check if

∥Φ0∥ ≤ 1 as before. We can do the same for a partial derivative ∂1K of a completion K

which can be expressed as ∂1K(x, y) = ⟨Φk′
x,X1

, ky,X2
⟩ for some k′

x,X1
∈ H(KX1) under

appropriate conditions. This allows us to find the maximum and minimum values of the
derivative of a completion at any point.

2.4.3 Completion on Large Regular Domains

Although Equation (2.15) may appear too unwieldy to be of any use, it is quite straightfor-
ward to apply it for bootstrapping on results for finite domains such as those concerning
completions of matrices.

Theorem 2.10. Let Ω be a large regular domain on X = [0, 1]. Every partially repro-
ducing kernel KΩ admits a completion.

Proof. Pick n ≥ 1, {(xi, yi)}ni=1 ⊂ ∆ and {αi}ni=1 ⊂ R. Let F1 = {xi}ni=1, F2 = {yi}ni=1
and F = F1∪F2. We consider the completion problem as restricted to F×F. According to
a classical result (Grone et al., 1984, Theorem 7) concerning the completions of partially
specified Hermitian matrices, KΩ restricted to Ω ∩ (F ×F) admits an extension to F ×F.
By Theorem 2.8, this means∣∣∣∣∣

n∑
i=1

αiKΩ(xi, yi)
∣∣∣∣∣ ≤

∥∥∥∥∥
n∑
i=1

αikxi,F1 ⊗ kyi,F2

∥∥∥∥∥
π

.

Let R1 : H(KX1) → H(KF1) and R2 : H(KX2) → H(KF2) denote the restrictions to F1
and F2 respectively. Observe that for every contraction ΦF : H(KF1) → H(KF2) there

53



Chapter 2. Positive-Definite Completions

exists a contraction Φ : H(KX1) → H(KX2) such that Φ = R∗
2ΦFR1:

⟨ΦFkx,F1 , ky,F2⟩ = ⟨ΦFR1kx,X1 , R2ky,X2⟩ = ⟨R∗
2ΦFR1kx,X1 , ky,X2⟩.

Using the duality formula (2.9), we can write

∥
∑n
i=1 αikxi,F1 ⊗ kyi,F2∥π = sup{|

∑n
i=1 αi⟨ΦFkxi,F1 , kyi,F2⟩| : ∥ΦF ∥ ≤ 1}

≤ sup{|
∑n
i=1 αi⟨Φkxi,X1 , kyi,X2⟩| : ∥Φ∥ ≤ 1}

= ∥
∑n
i=1 αikxi,X1 ⊗ kyi,X2∥π.

Therefore, ∣∣∣∣∣
n∑
i=1

αiKΩ(xi, yi)
∣∣∣∣∣ ≤

∥∥∥∥∥
n∑
i=1

αikxi,X1 ⊗ kyi,X2

∥∥∥∥∥
π

and the conclusion follows from Theorem 2.8. The converse is trivially true because any
completion of KΩ restricted to F × F is a completion of KΩ|F×F.

Of course, we could have derived the result far more easily using Theorem 2.3. But
this was good preparation for proving Artjomenko’s generalization of Krein’s extension
theorem which is what follows.

2.4.4 Extension of Positive-definite Functions

Let F : (−a, a) → R be a positive-definite function for some a > 0. An extension
F̃ : (−2a, 2a) → R of F is a positive-definite function such that F̃ |(−a,a) = F . To express
the extension problem of F as a completion problem on a large domain, let X = [0, 2a)
with X1 = [0, a) and X2 = [a, 2a). Define KΩ : Ω → R as KΩ(x, y) = F (x − y) for
Ω = {(x, y) : |x− y| < a} ⊂ X ×X. The extensions F̃ of F correspond to the stationary
completions K̃ of KΩ. As discussed in Remark 2.1, we can account for the stationarity
of K by imposing an additional constaint on Φ0. Define S, T ⊂ X1 ×X2 as

S = Span{kx,X1 ⊗ ky,X2 : y − x < a}, and
T = Span{kx,X1 ⊗ ky,X2 − kw,X1 ⊗ kz,X2 : y − x = z − w}.

To show that a stationary completion K̃ exists, we need to show that there exists a
contraction Φ such that ⟨Φkx,X1 , ky,X2⟩ = F (y − x) and Φ[τ ] = 0 for τ ∈ T .

Theorem 2.11. Every positive-definite function F of (−a, a) ⊂ R for some a > 0 admits
an extension to (−2a, 2a).

Proof. As before, we construct a grid. Pick δ > 0 and let n = max{j : jδ < a}.
Let F1 = {xi}ni=1 where xi = a − δi ∈ X1 for 1 ≤ i ≤ n and F2 = {yj}nj=0 where
yj = a + δj ∈ X2 for 0 ≤ j ≤ n. Let F = F1 ∪ F2 The restriction of KΩ to F × F can
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now be thought of as a partially specified matrix A = [Aij ]2n+1
i,j=1 where

Aij =

F (δ|i− j|) for |i− j| ≤ n+ 1
unspecified. for |i− j| > n+ 1

By Carathéodory’s result, this partially specified matrix admits a positive-definite
completion which is also Toeplitz. We can argue as in Theorem 2.10 that

|Φ0[σ]| ≤ ∥σ + τ∥π (2.16)

for σ ∈ S0 and τ ∈ T0 for dense subsets S0 ⊂ S and T0 ⊂ T given by

S0 = ∪δ>0
[
Span{kxi,X1 ⊗ kyj ,X2 : δ|j − i| ≤ a}

]
T0 = ∪δ>0

[
Span{kxi,X1 ⊗ kyj ,X2 − kxk,X1 ⊗ kyl,X2 : i− j = k − l}

]
The density follows from the observation that every bounded linear functional which
vanishes on S0 (T0) vanishes on all of S (T ). The inequality (2.16) implies that Φ0
is well-defined. Using extension of continuity, we have that (2.16) holds for all σ ∈ S
and τ ∈ T . The conclusion now follows from the Hahn-Banach theorem as in Theorem
2.8.

Since every positive-definite function on (−a, a) can be extended to a positive-definite
function on (−2a, 2a) for any a > 0, we can iterate the argument and conclude:

Corollary 2.2. Every positive-definite function F : (−a, a) → R for some a > 0, admits
an extension F̃ to the real line.

Needless to say, we can derive analogous expressions for the maximum and minimum
values of the extension on (−2a, 2a) as well as conditions for uniqueness.

2.4.5 Beyond Large Domains

There does not appear to be an obvious way of extending the linearization technique
to “smaller” domains, say if Ω is a domain on X such that Ω ⊃ ∪i(Xi ×Xi) for some
partition {Xi}pi=1 of X where p > 2. However, we can still draw some general conclusions
using Theorem 2.7.

Theorem 2.12. Let Ω be as above and KΩ : Ω → R be such that the restrictions
KXi = KΩ|xi×xi are reproducing kernels. Then there exists a positive semidefinite
operator matrix [Φij ]pi,j=1 of contractions Φij : H(KXj ) → H(KXj ) such that

K(x, y) = ⟨Φjikx,Xi , ky,Xj ⟩ for x ∈ Xi and y ∈ Xj .
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A consequence of the Banach-Alaoglu theorem and the above embedding of completions
into the product of unit balls in L(H(KXi),H(KXj )) is the following result.

Theorem 2.13. If X can be partitioned into a finite or countably infinite number of
cliques Xi in Ω, then the set of completions C of KΩ is sequentially compact under the
topology of pointwise convergence.

2.5 Canonical Completion

In this section, we study special solutions of the completion problem we shall call
canonical completions. We begin by introducing a family of domains for which doing
this is particularly simple.

Definition 2.2 (Serrated Domain). Let X be a set. We say that a domain Ω on X

is a n-serrated domain if there exists n ≥ 1 and subsets {Xj}nj=1 of X such that (a)
X = ∪nj=1Xj (b) Xi ∩Xk ⊂ Xi ∩Xj for 1 ≤ i < j < k ≤ n and (c) Ω = ∪nj=1(Xj ×Xj).

Furthermore, every n-serrated domain is a serrated domain.

We shall derive interesting characterizations of canonical completions in terms of their
associated norms and contraction maps. We shall also prove partial analogues of the
classical results concerning determinant maximization and inverse zero properties known
for matrices. We shall also extend some of these results to a larger families of domains.

2.5.1 Contractions

Let K be a reproducing kernel on X. For A,B ⊂ X, let KA = K|A×A and KB =
K|B×B. Define ΦBA : H(KA) → H(KB) as the unique bounded linear map satisfying
ΦBAkx,A = kx,B for x ∈ A. By thinking of KA∪B as the completion of KΩ = K|Ω where
Ω = (A × A) ∪ (B × B), we can deduce using Theorem 2.7 that ΦBA is a contraction.
We shall see that these contraction maps can be used to construct completions.

Theorem 2.14 (Properties of Contraction Maps). Let A,B ⊂ X and f ∈ H(KA).

1. Adjoint. Φ∗
BA = ΦAB,

2. Evaluation. ΦBAf(y) = ⟨f, ky,A⟩ for y ∈ B.

3. Restriction. If B ⊂ A, then ΦBAf = f |B,

4. Minimum Norm Interpolation. If A ⊂ B, then

ΦBAf = arg min
g∈H(KB)

{∥g∥ : g|A = f}
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Proof. Property (1) follows from writing

⟨ky,B,ΦBAkx,A⟩ = ⟨kx,B, ky,B⟩ = K(x, y) = ⟨kx,A, ky,A⟩ = ⟨ΦABky,B, kx,A⟩.

for every x ∈ A and y ∈ B. For properties (2) and (3), notice that ΦBAf(y) =
⟨ΦBAf, ky,B⟩ = ⟨f,ΦABky,B⟩ = ⟨f, ky,A⟩ for y ∈ B which is equal to f(y) if A ⊂ B.
Finally, to show property (4), let g ∈ H(KB) such that g|A = f . Then

⟨g − ΦBAf,ΦBAf⟩ = ⟨ΦABg, f⟩ − ⟨f,ΦABΦBAf⟩ = ⟨g|A, f⟩ − ⟨f, f⟩ = 0

and we can write ∥g∥2 = ∥g − ΦBAf∥2 + ∥ΦBAf∥2 which implies that the norm of g is
minimum precisely when g = ΦBAf . Hence proved.

2.5.2 Canonical Completion for 2-Serrated Domains

Consider a set X with subsets X1 and X2 such that X1 ∪ X2 = X. Let Ω = (X1 ×
X1) ∪ (X2 ×X2). Let KΩ be a partially reproducing kernel on Ω. In other words, KX1 =
KΩ|X1×X1 and KX2 = KΩ|X2×X2 are reproducing kernels on X1 and X2 respectively.
Using Theorem 2.3, we can argue as in Theorem 2.10, that KΩ admits a completion.
Furthermore, by Theorem 2.7, the set C of completions K is parametrized by contractions
Φ : H(KX1) → H(KX2) satisfying Φkx,X1 = kx,X2 for x ∈ X1 ∩ X2 according to the
relation

K(x, y) = ⟨Φkx,X1 , ky,X2⟩

for x ∈ X1 and y ∈ X2. The case where x ∈ X2 and y ∈ X1 is covered by the symmetry
of K.

We shall construct a special completion K⋆ of K. Notice that for x ∈ X1 ∩ X2, the
contraction map ΦX1∩X2,X1 maps kx,X1 to kx,X1∩X2 and the contraction map ΦX2,X1∩X2

maps kx,X1∩X2 to kx,X2 . It follows that the product Φ⋆ = ΦX2,X1∩X2ΦX1∩X2,X1 satisfies
Φ⋆kx,X1 = kx,X2 for x ∈ X1 ∩ X2 and is obviously a contraction by virtue of being
the product of two contractions. We have thus successfully constructed a member of
the family of contractions Φ which parametrizes C. Corresponding to the constructed
contraction Φ⋆ is a completion K⋆ of K given by

K⋆(x, y) = ⟨Φ⋆kx,X1 , ky,X2⟩

for x ∈ X1 and y ∈ X2. If for x ∈ X and U ⊂ X, we define k⋆x,U : U → R as
k⋆x,U (y) = K⋆(x, y), then we can also describe K⋆ in terms of its generators as

k⋆x,X2 = Φkx,X1 for x ∈ X1 (2.17)

or equivalently, k⋆y,X1
= Φ∗ky,X2

for y ∈ X2. Alternatively, we can express K⋆ without
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using any contraction maps as

K⋆(x, y) = ⟨Φ⋆kx,X1 , ky,X2⟩
= ⟨ΦX1∩X2,X1kx,X1 ,ΦX1∩X2,X2ky,X2⟩
= ⟨kx,X1∩X2 , ky,X1∩X2⟩

for x ∈ X1 and y ∈ X2. Needless to say, the completion does not change if we switch
X1 and X2, which implies that is a property of KΩ only and does not depend on how
Ω is parametrized in terms of X1 and X2. The following result summarizes the above
discussion.

Theorem 2.15. Let X be a set with subsets X1, X2 ⊂ X such that X1 ∪X2 = X and
let Ω = (X1 × X1) ∪ (X2 × X2). If KΩ is a partially reproducing kernel on Ω, then it
admits a completion given by

K⋆(x, y) = ⟨Φ⋆kx,X1 , ky,X2⟩

for x ∈ X1 and y ∈ X2, where Φ⋆ = ΦX2,X1∩X2ΦX1∩X2,X1 . Furthermore, K⋆ can also be
expressed as

K⋆(x, y) = ⟨kx,X1∩X2 , ky,X1∩X2⟩ (2.18)

for x ∈ X1 and y ∈ X2.

Minimum Norm Interpolation

We can acquire deeper insight into the construction of K⋆ by understanding the na-
ture of the contraction Φ⋆. Notice that we can rewrite Equation (2.17) as k⋆x,X2

=
ΦX2,X1∩X2kx,X1∩X2

for x ∈ X1. It follows that k⋆x,X2
for x ∈ X1 is the minimum norm

interpolation of kx,X1∩X2 in H(KX2):

k⋆x,X2 = arg min
f∈H(KX2 )

{∥f∥ : f |X1∩X2 = kx,X1∩X2} for x ∈ X1. (2.19)

Similarly, we can write for y ∈ X2, that k⋆y,X1
= arg min{∥g∥} over g ∈ H(KX1) such

that g|X1∩X2 = ky,X1∩X2 .

Characterization of Completions

In a certain sense, the canonical completion K⋆ lies at the center of the set of completions
C, which allows us to come up with a simpler characterizations of completions of KΩ
than provided by Theorem 2.8. The following result is a reproducing kernel counterpart
of a classic result (Johnson, 1990, Section II) in the theory of matrix completions.

Theorem 2.16. There is a bijective correspondence between the completions K of KΩ
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and the contractions Ψ : H(KX1/KX1∩X2) → H(KX2/KX1∩X2) given by

K(x, y) = ⟨kx,X1∩X2 , ky,X1∩X2⟩ + ⟨Ψpx, qy⟩ (2.20)

for x ∈ X1 \ X2 and y ∈ X2 \ X1, where px(u) = KX1/KX1∩X2(x, u) and qy(u) =
KX2/KX1∩X2(y, u).

Proof. Define the partially reproducing kernel DΩ on Ω given by DΩ(x, y) = KΩ(x, y) −
⟨kx,X1∩X2 , ky,X1∩X2⟩ for (x, y) ∈ Ω. Clearly,

DΩ(x, y) =


KX1/KX1∩X2(x, y) x, y ∈ X1 \X2

0 x or y ∈ X1 ∩X2

KX2/KX1∩X2(x, y) x, y ∈ X2 \X1

which means that DΩ is indeed a partially reprocuding kernel. Notice that because
DΩ(x, y) = 0 for x, y ∈ X1 ∩X2, completing DΩ is equivalent to completing DΩ|Ω̃ to a
kernel on X \ (X1 ∩X2) where Ω̃ = [(X1 \X2) × (X1 \X2)] ∪ [(X2 \X1) × (X2 \X1)].
The setting of completing DΩ|Ω̃ is equivalent to that of Theorem 2.7 and therefore, the
completions D of DΩ are characterized by D(x, y) = ⟨Ψpx, qy⟩ for x ∈ X1 \ X2 and
y ∈ X2 \X1 where Ψ : H(KX1/KX1∩X2) → H(KX2/KX1∩X2) is a contraction.

Notice that there is a bijective correspondence between the completions K of KΩ and
the completions D of DΩ given by D(x, y) = K(x, y) − ⟨kx,X1∩X2 , ky,X1∩X2⟩ for x, y ∈ X.
Indeed, for every completion K we can write for x, y ∈ X

D(x, y) = ⟨kx − ΠX1∩X2kx, ky − ΠX1∩X2ky⟩

which satisfies D|Ω = DΩ and is clearly a reproducing kernel. On the other hand, for
every completion D, we have for x, y ∈ X,

K(x, y) = D(x, y) + ⟨kx,X1∩X2 , ky,X1∩X2⟩.

Since(x, y) 7→ ⟨kx,X1∩X2 , ky,X1∩X2⟩ K|Ω = KΩ and D are reproducing kernels so is K
and clearly, K|Ω = KΩ. The conclusion follows.

Using Theorem 2.1, we can obtain a slightly more elegant characterization of C by simply
observing that C is centered around K⋆ and for H : X ×X → R, K⋆ +H ∈ C if and only
if K⋆ −H ∈ C.

Corollary 2.3. There is a bijective correspondence between the completions K of KΩ
and self-adjoint contractions Ψ : H(K⋆) → H(K⋆) satisfying ⟨Ψk⋆x, k⋆y⟩ = 0 for (x, y) ∈ Ω
given by

K(x, y) = ⟨(I + Ψ)k⋆x, k⋆y⟩ (2.21)
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for x, y ∈ X, where k⋆x ∈ H(K⋆) is given by k⋆x(y) = K⋆(x, y).

The Associated Inner Product

We shall now derive the inner product associated with the canonical completion for
2-serrated domains. To this end, the following lemma is useful.

Lemma 2.2. If K = K⋆, then we have K/KX1 = KX2/KX1∩X2 and K/KX2 =
KX1/KX1∩X2.

Proof. For x, y ∈ X2 \X1

K/KX1(x, y) = K(x, y) − ⟨kx,X1 , ky,X1⟩
= K(x, y) − ⟨ΦX1,X1∩X2ΦX1∩X2,X2kx,X2 ,ΦX1,X1∩X2ΦX1∩X2,X2ky,X2⟩
= K(x, y) − ⟨ΦX1,X1∩X2kx,X1∩X2 ,ΦX1,X1∩X2ky,X1∩X2⟩
= K(x, y) − ⟨ΦX1∩X2,X1ΦX1,X1∩X2kx,X1∩X2 , ky,X1∩X2⟩
= K(x, y) − ⟨kx,X1∩X2 , ky,X1∩X2⟩ = KX2/KX1∩X2(x, y).

We can argue similarly that K/KX2 = KX1/KX1∩X2 . Hence proved.

Thus, when K = K⋆, the Schur complements K/KX1 and K/KX2 also simplify.

Theorem 2.17. Let KΩ and K⋆ be as before. The norm associated with K⋆ can be
expressed as follows:

∥f∥2
⋆ = ∥fX1∥2 − ∥fX1∩X2∥2 + ∥fX2∥2. (2.22)

where ∥fU∥ denotes the norm of fU = f |U in H(KU ) for U ⊂ X such that U × U ⊂ Ω.
Consequently, the inner product is given by

⟨f, g⟩⋆ = ⟨fX1 , gX1⟩ − ⟨fX1∩X2 , gX1∩X2⟩ + ⟨fX2 , gX2⟩. (2.23)

Proof. Notice that for f ∈ H we can write

∥f∥2 = ∥ΠX1f + f − ΠX1f∥2 = ∥ΠX1f∥2 + ∥f − ΠX1f∥2 + 2⟨ΠX1f, f − ΠX1f⟩

where ⟨ΠX1f, f − ΠX1f⟩ = 0 by the projection theorem. By (2.6) and (2.7), ∥ΠX1f∥ =
∥fX1∥ and ∥f − ΠX1f∥ = ∥g∥H(K/KX1 ) where g ∈ H(K/KX1) is given by g(x) =
(f − ΠX1f)(x) for x ∈ X2 \X1. Thus,

∥f∥2 = ∥fX1∥2 + ∥g∥2
H(K/KX1 ). (2.24)
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On a closer look, g(x) = ⟨f − ΠX1f, kx⟩ = f(x) − ⟨fX1 , kx,X1,x⟩ where

⟨fX1 , kx,X1,x⟩ = ⟨fX1 ,ΦX1,X1∩X2ΦX1∩X2,X2kx,X2⟩
= ⟨ΦX1∩X2,X1fX1 ,ΦX1∩X2,X2kx,X2⟩
= ⟨fX1∩X2 , kx,X1∩X2⟩

implying that g(x) = f(x)−⟨fX1∩X2 , kx,X1∩X2⟩ = (fX2 −ΠX1∩X2fX2)(x) for x ∈ X2 \X1.
By Lemma 2.2, K/KX1(x, y) = KX2/KX1∩X2(x, y) for x, y ∈ X2 \ X1. It follows that
the norm of g in H(K \KX1) can be written as

∥g∥2
H(K/KX1 ) = ∥fX2 − ΠX1∩X2fX2∥2 = ∥fX2∥2 − ∥fX1∩X2∥2. (2.25)

The conclusion follows by substituting (2.25) in (2.24). The inner product formulas can be
derived using the observation that ⟨f, g⟩ = 1

4
[
∥f + g∥2 − ∥f − g∥2]. Hence proved.

Projections

Let ΠU denote the projection H(K) to the closed linear subspace spanned by {ku,X : u ∈
U}. Using the equivalence between a projection ΠU and restriction to U , we can rewrite
(2.22) as

⟨f, f⟩ = ∥fX1∥2 + ∥fX2∥2 − ∥fX1∩X2∥2

= ⟨ΠX1f, f⟩ + ⟨ΠX2f, f⟩ − ⟨ΠX1∩X2f, f⟩
= ⟨(ΠX1 + ΠX2 − ΠX1∩X2)f, f⟩.

In fact, we can express that K is the canonical completion purely in terms of these
projection operators on H(K).

Theorem 2.18. Let K be a completion of a partially reproducing kernel KΩ on a
2-serrated domain Ω. The following statements are equivalent.

1. K = K⋆,

2. I − ΠX1 − ΠX2 + ΠX1∩X2 = 0, and

3. ΠX1∩X2 = ΠX1ΠX2 = ΠX2ΠX1.

Proof. We reason as follows:

61



Chapter 2. Positive-Definite Completions

(1 =⇒ 2) By Lemma 2.17, we can write ∥f∥2 as

⟨f, f⟩ = ∥fX1∥2 + ∥fX2∥2 − ∥fX1∩X2∥2

= ⟨ΠX1f, f⟩ + ⟨ΠX2f, f⟩ − ⟨ΠX1∩X2f, f⟩
= ⟨(ΠX1 + ΠX2 − ΠX1∩X2)f, f⟩.

Thus, ⟨(I − ΠX1 − ΠX2 + ΠX1∩X2)f, f⟩ for f ∈ H.

(2 =⇒ 3) Multiplying both sides of the above equation with ΠX1 gives

ΠX1 − ΠX1ΠX1 − ΠX1ΠX2 + ΠX1ΠX1∩X2 = −ΠX1ΠX2 + ΠX1∩X2 = 0.

Similarly, we can show ΠX2ΠX1 = ΠX1∩X2 .

(3 =⇒ 1) For x ∈ X1 \ X2 and y ∈ X2 \ X1, K(x, y) = ⟨kx, ky⟩ = ⟨ΠX1kx,ΠX2ky⟩ =
⟨ΠX2ΠX1kx, ky⟩ = ⟨ΠX1∩X2kx, ky⟩ = ⟨kx,X1∩X2 , ky,X1∩X2⟩ = K⋆(x, y). Simi-
larly, K(x, y) = K⋆(x, y) for x ∈ X2 \X1 and y ∈ X1 \X2.

Hence proved.

Separation and Inheritance

It turns out that (2.18) in Theorem 2.15 holds more generally for a separator S ⊂ X of
x, y in Ω, so long as we replace ku,X1∩X2 with k⋆u,S for u = x, y and we can write

K⋆(x, y) = ⟨k⋆x,S , k⋆y,S⟩. (2.26)

Note that S ⊂ X is a separator if and only if S ⊂ X1 ∩X2, which is to say X1 ∩X2 is
the minimal separator of Ω.

There is an alternative way of looking at (2.26). Consider the partially reproducing
kernel KΩ̃ = K⋆|Ω̃ for the 2-serrated domain Ω̃ = ∪2

j=1(Sj × Sj) where S1 = X1 ∪ S and
S2 = X2 ∪S. Equation (2.26) is now equivalent to saying that the canonical completion of
KΩ̃ is same as K⋆ and the restriction KΩ̃ can be said to inherit the canonical completion
of KΩ. In other words, for any 2-serrated domain Ω̃ which contains Ω, the canonical
completion of K⋆|Ω̃ is K⋆. We shall now use this insight to prove (2.26).

Theorem 2.19. If S separates x ∈ X1 and y ∈ X2, then K⋆(x, y) = ⟨k⋆x,S , k⋆y,S⟩.

Proof. Define S1 = X1 ∪ S and S2 = X2 ∪ S. Let Ω̄ = ∪2
j=1(Sj × Sj) and KΩ̄ = K⋆|Ω̄.

The proof now reduces to showing that the canonical completion of KΩ̄ is K⋆. It suffices
to show that the associated inner products are equal. By Theorem 2.17, the inner product
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associated with the canonical completion of KΩ̄ is

∥fS1∥2 − ∥fS1∩S2∥2 + ∥fS2∥2 = ∥fS1∥2 − ∥fS∥2 + ∥fS2∥2 (2.27)

However, KS1 is itself the canonical completion of KΩ1 = KΩ|Ω1 where Ω1 = (X1 ×X1) ∪
(S × S) as can be verifed from Equation (2.18) and therefore, we can write

∥fS1∥2 = ∥fX1∥2 − ∥fX1∩S∥2 + ∥fS∥2 (2.28)

by Theorem 2.17. Using the same reasoning for Ω2 = (S × S) ∪ (X2 × X2) and Ω3 =
[(X1 ∩ S) × (X1 ∩ S)] ∪ [(X2 ∩ S) × (X2 ∩ S)], we can write

∥fS2∥2 = ∥fS∥2 − ∥fX2∩S∥2 + ∥fX2∥2 (2.29)

∥fS∥2 = ∥fX1∩S∥2 − ∥fX1∩X2∥2 + ∥fX2∩S∥2 (2.30)

Substituting Equations (2.28), (2.29) and (2.30) in the expression (2.27) yields

∥fX1∥2 − ∥fX1∩X2∥2 + ∥fX2∥2

as desired. The conclusion follows.

2.5.3 Canonical Completion for Serrated Domains

In the last section, the canonical completion K⋆ of a 2-serrated domain was defined
by construction. We now give a general definition of the canonical completion of any
partially reproducing kernel in terms of separation.

Definition 2.3 (Canonical Completion). A completion K⋆ of a partially reproducing
kernel KΩ is called a canonical completion, if we have

K⋆(x, y) = ⟨k⋆x,S , k⋆y,S⟩

for every x, y ∈ X separated by S ⊂ X in Ω, where k⋆u,U : U → R for u ∈ X and U ⊂ X

is given by k⋆u,U (v) = K⋆(u, v).

Our construction of K⋆ for a partially reproducing kernel KΩ on a 2-serrated domain
can be iteratively extended to any serrated domain. Observe that we can extend KΩ
by extending its restriction to (Xi ×Xi) ∪ (Xi+1 ×Xi+1) using canonical completion to
(Xi ∪Xi+1) × (Xi ∪Xi+1). This results in a partially reproducing kernel on a (m− 1)-
serrated domain and continuing the procedure results in a completion of KΩ to X ×X in
m− 1 steps. It turns out that regardless of the order of the 2-serrated completions, one
always recovers the same completion which is actually the unique canonical completion
of KΩ in the sense of Defintion 2.3. The proof is not straightforward, but using some

63



Chapter 2. Positive-Definite Completions

clever argumentation, we shall now reduce this statement to verifying the separation
property for a 2-serrated domain.

Theorem 2.20 (Canonical Completion for Serrated Domains). Let KΩ be a partially
reproducing kernel on a serrated domain Ω on X. Then the following statements hold.

1. KΩ admits a unique canonical completion K⋆.

2. If x ∈ Xi and y ∈ Xj for some 1 ≤ i < j ≤ n, then

K⋆(x, y) = ⟨[Φj,j−1 · · · Φi+2,i+1Φi+1,i] kx,Xi , ky,Xj ⟩

where for |p−q| = 1, the mapping Φp,q : Hq → Hp is given by Φp,q = ΦXp,Xp∩Xq ΦXp∩Xq ,Xq .

3. The norm ∥ · ∥⋆ associated with the canonical completion K⋆ of KΩ can be expressed
as

∥f∥2
⋆ =

n∑
j=1

∥fXj ∥2 −
n−1∑
j=1

∥fXj∩Xj+1∥2

where ∥fU∥ for U ⊂ X denotes the norm of fU in H(KU ).

Proof. Let Ω be an m-serrated domain. We proceed by induction on m. The base case
m = 2 follows from Theorem 2.15 and Theorem 2.17. Assuming that the statement holds
for every m ≤ n for some n ≥ 2, we shall show that it holds for the case m = n+ 1.

Consider an (n+ 1)-serrated domain Ω = ∪n+1
j=1 (Xj ×Xj). Let X̄1 = ∪nj=1Xj , X̄2 = Xn+1

and Ω1n = ∪nj=1(Xj ×Xj), KΩ1n = KΩ|Ω1n and K1n be the unique canonical completion
of KΩ1n . It follows from the induction hypothesis that the restriction to X̄1 × X̄1 of a
canonical completion K⋆ of KΩ has to be a canonical completion of KΩ1n and thus, equal
to K1n. Define the 2-serrated domain Ω̄ = (X̄1 × X̄1) ∪ (X̄2 × X̄2) (see Figure 2.4a) and
the partially reproducing kernel KΩ̄ : Ω̄ → R as

KΩ̄(x, y) =

K1n(x, y) if x, y ∈ ∪nj=1Xj

KΩ(x, y) if x, y ∈ Xn+1.

If K⋆ : X × X → R is a canonical completion of KΩ̄ then for x ∈ ∪nj=1Xj \ Xn+1 and
y ∈ Xn+1\Xn we must have K⋆(x, y) = ⟨k̄x,Xn∩Xn+1 , k̄y,Xn∩Xn+1⟩, where k̄x,Xn∩Xn+1(y) =
KΩ̄(x, y), by taking S = Xn ∩Xn+1 as the separator in Definition 2.3. It follows that if
KΩ admits a canonical completion, the it must be K⋆, which is the canonical completion
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KX1

KX2

KX3

...

KXn

KXn+1

KXn∩Xn+1

(a) The coloured region represents Ω̄.

KX1

...

KXj

KXj+1

...

KXn+1

KXj ∩Xj+1

(b) The coloured region represents Ω̃.

Figure 2.4: The red and blue region represents Ω.

of KΩ̄. Notice that

K⋆(x, y) = ⟨k̄x,Xn∩Xn+1 , k̄y,Xn∩Xn+1⟩
= ⟨ΦXn∩Xn+1,Xn [Φn,n−1 · · · Φi+1,i] kx,Xi , [ΦXn∩Xn+1,Xn+1 ]ky,Xn+1⟩
= ⟨Φn+1,n [Φn,n−1 · · · Φi+1,i] kx,Xi , ky,Xn+1⟩

for x ∈ Xi and y ∈ Xn+1. Furthermore, we can calculate the associated norm ∥ · ∥⋆
associated with H(K⋆) using Theorem 2.17, as follows

∥f∥2
⋆ = ∥fX̄1

∥2 − ∥fX̄1∩X̄2
∥2 + ∥fX̄2

∥2

=
[∑n

j=1 ∥fXj ∥2 −
∑n−1
j=1 ∥fXj∩Xj+1∥2

]
− ∥fXn∩Xn+1∥2 + ∥fXn+1∥2

= ∑n+1
j=1 ∥fXj ∥2 −

∑n
j=1 ∥fXj∩Xj+1∥2

for f ∈ H(K⋆).

It remains to be shown that K⋆ is a canonical completion of KΩ. Let x, y ∈ X such
that they are separated by S ⊂ X in Ω. Then x, y must also be separated by a minimal
separator Xi ∩ Xi+1 ⊂ S for some 1 ≤ i ≤ n. Let X̃1 = ∪ij=1Xj , X̃2 = ∪n+1

j=i+1Xj and
Ω̃ = (X̃1 × X̃1) ∪ (X̃2 × X̃2) (see Figure 2.4b). Consider the partially reproducing kernel
KΩ̃ : Ω̃ → R given by

KΩ̃(x, y) =

K1i(x, y) if x, y ∈ X̃1

Ki,n+1(x, y) if x, y ∈ X̃2

where K1i and Ki,n+1 are the canonical completions of KΩ|Ω̃1
and KΩ|Ω̃2

where Ω̃1 =
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∪ij=1(Xj ×Xj) and Ω̃2 = ∪n+1
j=i+1(Xj ×Xj). It is clear that K⋆ is the canonical completion

of KΩ̃ from the observation

∥f∥2
⋆ = ∑n+1

j=1 ∥fXj ∥2 −
∑n
j=1 ∥fXj∩Xj+1∥2 = ∥fX̃1

∥2 − ∥fX̃1∩X̃2
∥2 + ∥fX̃2

∥2

where

∥fX̃1
∥2 = ∑i

j=1 ∥fXj ∥2 −
∑i−1
j=1 ∥fXj∩Xj+1∥2

∥fX̃2
∥2 = ∑n+1

j=i+1 ∥fXj ∥2 −
∑n
j=i+1 ∥fXj∩Xj+1∥2

and ∥fX̃1∩X̃2
∥2 = ∥fXi∩Xi+1∥2 are the quadratic forms associated with the reproducing

kernels K1i, Ki,n+1 and KXi∩Xi+1 . Notice that S can now be thought of as a separator
of x, y ∈ X in the 2-serrated domain Ω̃. By Theorem 2.19, we conclude that

K⋆(x, y) = ⟨k⋆x,S , k⋆y,S⟩,

where k⋆u,U : U → R for u ∈ X and U ⊂ X is given by k⋆u,U (v) = K⋆(u, v). Hence
proved.

We can also interpret K⋆ as the result of sequence of multiple minimum norm interpo-
lations of the kind that appeared in the study of 2-serrated domains. And similar to
2-serrated domains, the expression for the norm can be evaluated purely in terms of
norms of restrictions of the restrictiosn KXj and KXj∩Xj+1 of KΩ. The following result
can be proved in the same way as Theorem 2.18.

Theorem 2.21 (Projections). Let K be a completion of a partially reproducing kernel
KΩ on an n-serrated domain Ω. The followings statements are equivalent.

1. K = K⋆,

2. I = ∑n
j=i ΠXj −

∑n−1
j=i ΠXj∩Xj+1, and

3. for 1 ≤ j < n, Aj = ∪jk=1Xk and Bj = ∪nk=j+1Xk, ΠXj∩Xj+1 = ΠAj
ΠBj

= ΠBj
ΠAj

Theorem 2.22. If K = K⋆ and S1, S2 ⊂ X such that S1 ∩ S2 separates S1 \ S2 and
S2 \ S1, then

ΠS1∪S2 = ΠS1 + ΠS2 − ΠS1∩S2 (2.31)
ΠS1∩S2 = ΠS1ΠS2 = ΠS2ΠS1 . (2.32)

Property (2.32) is somewhat reminiscent of projection valued measures.

Example 2.1 (Matrices with Banded Inverses). Let X = {1, . . . ,m} and Ω = ∪nj=1(Xj ×
Xj) be a serrated domain on X. If KΩ be a partially reproducing kernel on Ω, we can
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2.5 Canonical Completion

think of it as a matrix AΩ = [Aij ]mi,j=1 where Aij is unspecified for (i, j) /∈ Ω. The inner
product associated with a reproducing kernel K on finite X is given by (f ,g) 7→ ⟨A†f ,g⟩
where A is the kernel K in matrix form and A† denotes the pseudoinverse of A. Using
this fact and the form we have derived for the inner product associated with the canonical
completion, we can write the canonical completion of KΩ in a closed matrix form as

A† = A†
1 − A†

12 + A†
2 − · · · − A†

n−1,n + A†
n

where Ak is the m×m matrix with the (i, j)th entry Aij for i, j ∈ Xk and 0 otherwise,
and Ak,k+1 is the m × m matrix with the (i, j)th entry Aij for i, j ∈ Xk ∩ Xk+1 and 0
otherwise.

2.5.4 Canonical Completion for Junction Tree Domains

The results for the serrated domains on an interval can be extended to a more general
setting where the domains are tree-like in a certain sense. A tree is an undirected graph
in which there exists a unique path connecting every two vertices. As with other graphs,
a tree T on the set {1, . . . , n} can be treated as a subset of {1, . . . , n} × {1, . . . , n}. We
say that Ω can be represented as a junction tree if there exists for some n ≥ 1, a tree T

on {1, . . . , n} and subsets {Xj}nj=1 of X such that (a) X = ∪jXj , (b) Ω = ∪j(Xj ×Xj),
and (c) for every (i, j), (j, k) ∈ T, we have Xi ∩ Xk ⊂ Xj (see Figure 2.5). Essentially,
this means that the graph Ω admits a tree decomposition into cliques (see Diestel, 2010).

X1

X2

X3
X4

X5

Figure 2.5: A junction tree domain Ω visualized as a graph on X = ∪5
j=1Xj with

the edges given by interpreting the regions Xj as cliques. The tree T is given by
{(1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (4, 5), (5, 4)}.

Notice that if we apply the completion formula (2.18) to Xi and Xj for two adjacent
vertices i, j of T, then we get a partially specified reproducing kernel over a larger domain
with a simpler junction tree representation of n− 1 vertices since Xi and Xj get replaced
by Xi ∪Xj . Iterating the procedure, results in a completion of KΩ.

Theorem 2.23. Suppose that Ω admits a juction tree representation for some n ≥ 1, a
tree T on {1, . . . , n} and subsets {Xj}nj=1 of X. Then the following statements apply.
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Chapter 2. Positive-Definite Completions

1. KΩ admits a canonical completion.

2. The norm ∥ · ∥⋆ associated with the canonical completion K⋆ of KΩ can be expressed
as

∥f∥2
⋆ =

∑
j

∥fXj ∥2 −
∑

(i,j)∈T

∥fXi∩Xj ∥2

where ∥fU∥ for U ⊂ X denotes the norm of fU in H(KU ).

3. If x ∈ Xi and y ∈ Xj for some 1 ≤ i, j ≤ n, then

K⋆(x, y) = ⟨
[
ΦjikΦikik−1 · · · Φi1i

]
kx,Xi , ky,Xj ⟩

where (i, i1), (i1, i2), . . . , (ik, j) ∈ T is the unique path from i to j and for two
adjacent vertices p and q, the mapping Φpq : Hq → Hp is given by Φpq =
ΦXp,Xp∩Xq ΦXp∩Xq ,Xq .

The proof of Theorem 2.23 is very similar to that of Theorem 2.20 and is hence omitted.
Almost all of the following results in this chapter which apply to serrated domains can
be easily generalized to junction tree domains, although we shall refrain from doing so
for the sake of simplicity.

2.5.5 Dual and Variational Characterization

Theorem 2.20 provides an iterative procedure for calculating K⋆ for a partially reproducing
kernel on KΩ on a serrated domain KΩ. We now provide a more direct and elegant
characterization of the canonical completion which relies on the simple form of its
associated norm. The key idea is that the quadratic form associated with a reproducing
kernel and the square of its associated norm are, in a certain sense, convex conjugates of
each other.

Theorem 2.24 (Duality Relations). Let K be a reproducing kernel on X and with
the associated Hilbert space H = H(K) equipped with the norm ∥ · ∥. For every n ≥ 1,
{αi}ni=1 ⊂ R and {xi}ni=1 ⊂ X,

1
2

n∑
i,j=1

αiαjK(xi, xj) = max
f

[
n∑
i=1

αif(xi) − 1
2∥f∥2

]
(2.33)

where the maximum is taken over functions f : X → R. Furthermore, for every f ∈ H,

1
2∥f∥2 = sup

α,x

 n∑
i=1

αif(xi) − 1
2

n∑
i,j=1

αiαjK(xi, xj)

 (2.34)

where the supremum is taken over n ≥ 1, α = {αi}ni=1 ⊂ R and x = {xi}ni=1 ⊂ X.
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2.5 Canonical Completion

Proof. Let g = ∑n
i=1 αikxi . Then ∑n

i=1 αif(xi) = ⟨f, g⟩ and we can write the right-hand
side of Equation 2.33 as

max
f

[
⟨f, g⟩ − 1

2⟨f, f⟩
]

= 1
2 max

f

[
∥g∥2 − ∥f − g∥2

]
= 1

2∥g∥2 − 1
2 min

f

[
∥f − g∥2

]
= 1

2∥g∥2

which is equal to 1
2
∑n
i,j=1 αiαjK(xi, xj). Similarly, we can simplify the right-hand side

of Equation 2.34 as

sup
α,x

[
⟨f, g⟩ − 1

2∥g∥2
]

= 1
2∥f∥2 − 1

2 inf
α,x

[
∥f − g∥2

]
= 1

2∥f∥2

since the set of linear combinations g = ∑n
i=1 αikxi is dense in H. Hence proved.

Given a space of functions and an inner product which under which point evaluations
are continuous, Equation (2.33) reduces the problem of calculating the corresponding
reproducing kernel to a calculus of variations problem, thus providing a direct method
for calculating the kernel. Indeed, once we calculate the quadratic form q(α, β) =
1
2
[
α2K(x, x) + 2αβK(x, y) + β2K(y, y)

]
using

q(α, β) = max
f

[
αf(x) + βf(y) − 1

2∥f∥2
]

we have K(x, y) = 1
4 [q(1, 1) − q(1,−1)]. Using this observation, the duality relation (2.33)

can be used to derive a very elegant formula for calculating the canonical completion.

Corollary 2.4. Let K⋆ be the canonical completion of a partially reproducing kernel KΩ
on a serrated (or junction tree) domain Ω. Then,

K⋆(x, y) = −1
2 [KΩ(x, x) +KΩ(y, y)] + max

f

[
f(x) + f(y) − 1

2∥f∥2
Ω

]
(2.35)

for x, y ∈ X.

The connection to convex analysis also makes obvious many fundamental results in the
theory of reproducing kernels. Take for example, the fact that the norm associated with
the sum K1 +K2 of two reproducing kernels K1 and K2, can be expressed as

∥f∥2 = inf
h

[
∥f − h∥2

1 + ∥h∥2
2

]
where ∥ · ∥1 and ∥ · ∥2 are the norms associated with K1 and K2. In light of the previous
observation, this can be seen as an corollary to the fact that for two convex functionals
F and G, the sum of their convex conjugates F ∗ +G∗ is equal to the convex conjugate of
the infimal convolution F□G of F and G given by (F□G)(x) = infy [F (x− y) +G(y)].
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Chapter 2. Positive-Definite Completions

Indeed, let gi = ∑n
j=1 αjkxj ,i for n ≥ 1, {αj}nj=1 ⊂ R and {xj}nj=1 ⊂ X, where kx,i(y) =

Ki(x, y) for x, y ∈ X. The convex conjugate of 1
2∥f∥2 can then be written as

maxf
[∑n

j=1 αjf(xj) − 1
2∥f∥2

]
= sup

f,h

[
⟨f − h, g1⟩1 + ⟨h, g2⟩2 − 1

2
[
∥f − h∥2

1 + ∥h∥2
2

]]
= 1

2 sup
f,h

[
∥g1∥2

1 + ∥g2∥2
2 − ∥f − h− g1∥2

1 − ∥h− g2∥2
2

]
= 1

2

[
∥g1∥2

1 + ∥g2∥2
2

]
= 1

2

n∑
i,j=1

αiαj [K1(xi, xj) +K2(xi, xj)].

which implies that the reproducing kernel corresponding to the norm ∥·∥ is indeed K1+K2.
Similarly, we can show that the norm corresponding to the subkernel KA = K|A×A for
some kernel K on X and A ⊂ X is ∥f∥ = infh{∥h∥ : h ∈ H(K) and h|A = f}.

Theorem 2.25 (Variational Characterization). Let K be a reproducing kernel on X and
with the associated Hilbert space H = H(K) equipped with the norm ∥ · ∥. Then

kx = arg min
f

[
∥f∥2 − 2f(x)

]
where the minimum is taken over all functions f : X → R. Additionally,

kx = arg min
{

∥f∥
∣∣∣∣ f : X → R such that f(x) = K(x, x)

}
.

Proof. Clearly, ∥f∥2 − 2f(x) = ∥f − kx∥2 − K(x, x) is minimized for f = kx. Hence
proved.

Corollary 2.5. Let K⋆ be the canonical completion of a partially reproducing kernel KΩ
on a serrated (or junction tree) domain Ω. Then,

k⋆x = arg min
f

[
∥f∥2

Ω − 2f(x)
]
, and

k⋆x = arg min
{

∥f∥Ω

∣∣∣∣ f : X → R such that f(x) = KΩ(x, x)
}

for x ∈ X where k⋆x(y) = K⋆(x, y) for y ∈ X.

Proof. The first characterization is an immediate corollary of Theorem 2.25, while the
second one follows from the observation that for a reproducing kernel K on X and x ∈ X,
the generator kx minimizes the associated norm among all functions f ∈ H(K) satifying
f(x) = K(x, x).
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2.5 Canonical Completion

We conclude this section by demonstrating how Theorem 2.25 can be used to recover the
reproducing kernel of a Hilbert space of functions from the norm.

Example 2.2 (Brownian Motion). Let H be the Sobolev space of functions f : [0, 1] → R
such that f(0) = 0, f is absolutely continuous and f ′ ∈ L2[0, 1] equipped with the inner
product ⟨f, g⟩ =

∫ 1
0 f(u)g(u) du. We would like to calculate the corresponding reproducing

kernel K. Pick x ∈ [0, 1] and by Theorem 2.25, we can write

kx = arg min
f

[∫ 1

0
[f ′(u)]2 du− 2f(x)

]
.

Fix f(x) = z for some z ∈ R. Then the problem reduces to minimizing the integral∫ 1
0 [f ′(u)]2 du and the minimum occurs when f is given by the linear interpolation

f(u) =

[z/x]u u ∈ [0, x]
z u ∈ [x, 1]

when x ̸= 0 and f(u) = 0 for u ∈ [0, 1] when x = 0. The problem reduces to finding the
value of z which minimizes∫ 1

0
[f ′(u)]2 du− 2f(x) =

[
z
x

]2
x− 2z

which is when z = x! Thus, kx = f with z = x, or in other words, K(x, y) = x∧ y, which
is the Brownian motion covariance.

2.5.6 Vanishing Trace and Determinant Maximization

We are now in position to establish that the canonical completion is the reproducing
kernel counterpart of the determinant maximizing completion whose inverse vanishes
outside the specified region which appears in the classical theory of completions of
partially specified matrices. The role of the matrix inverse and matrix determinant is
played by the trace and the Fredholm determinant of an operator in the reproducing
kernel Hilbert space.

Theorem 2.26. Let K⋆ be the canonical completion of a partially reproducing kernel KΩ
on a serrated or junction tree domain Ω on X and Ψ : H(K⋆) → H(K⋆) be a trace-class
operator. If ⟨Ψk⋆x, k⋆y⟩ = 0 for (x, y) ∈ Ω, then

1. tr Ψ = 0, and

2. det(I + Ψ) ≤ 0 with equality if and only if Ψ = 0.
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Proof. By Theorem 2.21, we can write tr Ψ for a serrated domain Ω as

tr(IΨ) = ∑n
j=1 tr(ΠXiΨ) −

∑n−1
j=1 tr(ΠXi∩Xi+1Ψ)

= ∑n
j=1 tr(ΠXi

ΨΠXi
) −

∑n−1
j=1 tr(ΠXi∩Xi+1

ΨΠXi∩Xi+1
).

Clearly, the operators ΠXiΨΠXi for 1 ≤ i ≤ n and ΠXi∩Xi+1ΨΠXi∩Xi+1 for 1 ≤ i ≤ n− 1
are both zero, since ⟨Ψk⋆x, k⋆y⟩ = 0 for x, y ∈ Xi. Therefore, tr Ψ = 0.

The second conclusion follows from noticing that Ψ 7→ − log det(I+Ψ) is a strictly convex
function whose Gateux derivative vanishes at 0 because

d

dt
[log det(I + tΨ)]

∣∣∣∣
t=0

= tr Ψ

and that the operators Ψ form a linear subspace. The proof for junction tree domains is
analogous.

To see the analogy with the matrix setting, it helps to write down the trace tr Ψ in terms
of matrix trace assuming that X is finite. For X = {xi}ni=1, the statement tr Ψ = 0
(Theorem 2.26 (1)) can be expressed as

tr K−1P = ∑
i,j(K−1)ijPij = 0

if Pij = 0 for (xi, xj) ∈ Ω, where K = [K⋆(xi, xj)]ni,j=1 and P = [Pij ]ni,j=1 with Pij =
⟨Ψkxi , kxj ⟩. This implies that (K−1)ij = 0 for (xi, xj) /∈ Ω. To make sense of Theorem
2.26 (2) in the same way, we need the following lemma.

Lemma 2.3. Let K be a strictly positive reproducing kernel and Ψ : H(K) → H(K) be
a trace-class operator. Consider the nets {KF}F and {HF}F of matrices indexed by finite
subsets F of X ordered by inclusion where

KF = [K(x, y)]x,y∈F and HF = [⟨Ψkx, ky⟩]x,y∈F for j ≥ 1.

Then limF [log det(KF + HF) − log det(KF)] = log det(I + Ψ).

Proof. We have by Grümm’s Convergence Theorem that ΠFΨΠF → Ψ in trace norm
(see Theorem 2.19 of Simon (2005) and also, Theorem 3.8 in Simon (1977)) because ΠF

strongly converges to I (Proposition 3.9 of Paulsen and Raghupathi (2016)). Therefore,
det(I+ΠFΨΠF) → det(I+Ψ). It suffices to show that log det(I+ΠFΨΠF) = log det(KF+
HF) − log det(KF).

For finite rank Ψ, we can write Ψ = ∑r
i=1 fi ⊗ gi for r ≥ 1 and {fi}ri=1, {gi}ri=1 ⊂ H(K).
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So,

log det(I + ΠFΨΠF) = log det
(

I +
r∑
i=1

ΠFfi ⊗ ΠFgi

)
.

By Plemelj’s formula,

log det
(

I +
r∑
i=1

ΠFfi ⊗ ΠFgi

)
=

∞∑
k=1

(−1)k−1

k
tr
{[

r∑
i=1

ΠFfi ⊗ ΠFgi

]n}
(2.36)

where the trace terms can be written as sums of products of the inner products
⟨ΠFfi,ΠFgk⟩ which can be simplified as

⟨ΠFfi,ΠFgk⟩ = ⟨fi|F, gk|F⟩ = f⊤
i K−1

F gk = (K−1/2
F fi)⊤K−1/2

F gk,

where fi = [fi(x)]x∈F and gj = [gk(x)]x∈F are to be thought of as column vectors. By
working our way backwards with the matrix form, we can rewrite (2.36) as

log det
(

I +
r∑
i=1

ΠFfi ⊗ ΠFgi

)
=

∞∑
k=1

(−1)k−1

k
tr
{[

r∑
i=1

(K−1/2
F fi)

(
K−1/2

F gi
)⊤
]n}

= log det
(

I +
r∑
i=1

(
K−1/2

F fi
)(

K−1/2
F gi

)⊤
)

= log det
(

I + K−1/2
F

[
r∑
i=1

fig⊤
i

]
K−1/2

F

)
= log det

(
I + K−1/2

F HFK−1/2
F

)
= log det(KF + HF) − log det(KF).

Even if Ψ is not finite rank, we can approximate by finite rank operators in trace norm
and the conclusion follows from the continuity of the Fredholm determinant in trace
norm.

Roughly speaking, Theorem 2.26 (2) seems to say that trace-class self-adjoint perturba-
tions of the canonical solution tend to decrease the determinant.

2.5.7 Canonical Completion for Regular Domains

In this section, we shall study the problem of canonical completion for a different class of
domains which can be thought of as the limit of a sequence of serrated domain.

Definition 2.4 (Regular Domain). Let X = [0, 1] ⊂ R. We say that a domain Ω on X

is a regular domain if we can write

Ω = ∪t∈T (It × It)
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where T = [0, t0] for some t0 ∈ (0, 1) and It = [t, b(t)] for a strictly increasing function
b : [0, w] → R satisfying b(t) > t for t ∈ T and b(w) = 1.

Regular domains are particularly nice in that It for t ∈ (0, t0) are all minimal separators
of Ω. Note that by appropriately rescaling X, we can make any regular domain Ω in to
the band {(x, y) : |x− y| ≤ a} for some a > 0. Thus regular domains are domains which
are equivalent to the band.

We shall prove the existence of a canonical completion K⋆ of every partially reproducing
kernel KΩ on a regular domain Ω. Roughly speaking, our proof relies on approximating
Ω with a sequence of serrated domains Ωj ⊂ Ω and a canonical completion K⋆ as a
limit of the canonical completions Kj of the partially reproducing kernels KΩj = KΩ|Ωj

on the serrated domains Ωj . In spite of their simple definition, the norms ∥ · ∥Ωj we
do not have much insight into their limiting behaviour as j → ∞. We circumvent this
problem by relying on sequential compactness properties of the sequence ∥ · ∥Ωj under
a special notion of convergence known as Γ-convergence or epiconvergence (Dal Maso,
1993; Braides, 2002).

The opaque nature of our construction makes it difficult to show that the canonical
completion is unique, although our experience with serrated domains is a compelling
reason to believe that this is certainly the case. Regardless, we are still able to derive an
interesting algebraic characterization of canonical completion in terms of semigroupoids
of contraction maps. In the next section, we establish the uniqueness of canonical
completion for some stationary partially reproducing kernels.

Γ-Convergence in Separable Hilbert Spaces

As a result, we are forced to rely on general properties of the norm, such as the fact that
∥f∥2 is a quadratic form on the space of functions f : X → R. Let R̄ denote R ∪ {∞}.

Definition 2.5 (Γ-Convergence in Hilbert Space). Let X be a Hilbert space. We say
that a sequence {Λj}∞

j=1 of functionals Λj : X → R̄ converges in the Γ sense or simply,
Γ-converges to Λ : X → R̄ if for every f ∈ X we have:

1. for every {fj}∞
j=1 ⊂ X, limj→∞ fj = f implies Λ(f) ≤ lim infj Λj(fj), and

2. there exists {fj}∞
j=1 ⊂ X such that limj→∞ fj = f and Λ(f) ≥ lim supj Λj(fj).

If Λj Γ-converges to Λ, we write Γ-limj Λj = Λ.

Γ-convergence is quite different from other modes of convergence with which the reader
may be familiar. Perhaps most strikingly, even the limit Γ-limj Λj of a constant sequence
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Λj = Λ is not necessarily equal to Λ unless Λ is lower semicontinuous. A functional
Λ : X → R is said to be lower semicontinuous if for every f ∈ X and {fj}∞

j=1 ⊂ X

such that fj → f , we have lim infj Λ(fj) ≥ Λ(f) (Remark 1.8 in Braides (2002)). Note
that Γ-limits themselves are always lower semicontinuous (Proposition 6.8 of Dal Maso
(1993)).

Somewhat unsurprisingly, the limit Γ-limj Λj is not necessarily equal to the pointwise limit
f 7→ limj Λj(f). Thankfully, many intuitive properties continue to hold, if only under
certain conditions. Let {Λj}∞

j=1 be sequence of functionals on X such that Γ-limj Λj = Λ.
For a continuous and increasing function φ : R̄ → R̄ and then Γ-limj φ ◦ Λj = φ ◦ Λ
(Proposition 6.16 of Dal Maso (1993)). We also have monotonicity. Let {Λ̃j}∞

j=1 be
another sequence of functionals Λ̃j : X → R̄ such that Γ-limj Λ̃j = Λ̃. If Λj(f) ≤ Λ̃j(f)
for f ∈ X and j ≥ 1, then Λ ≤ Λ̃ (Proposition 6.7 of Dal Maso (1993)). Naturally, this
means that if Λ̄(f) ≤ Λ̃j(f) for f ∈ X and j ≥ 1 for some lower semicontinuous functional
Λ̄ : X → R̄, then Λ̄ ≤ Λ̃. Furthermore, Γ-limits are superadditive, in that

Λ + Λ̃ ≤ Γ-limj

[
Λj + Λ̃j

]
so long as the limit Γ-limj

[
Λj + Λ̃j

]
exists and the sums Λj + Λ̃j and Λ + Λ̃ are well-

defined, in the sense that for no point in X is one of the functionals in the sum equal to
∞ when the other is −∞.

Interestingly, Γ-convergence is sequentially compact on second-countable spaces that
is, every sequence {Λj}∞

j=1 of functionals Λj : X → R̄ has a Γ-convergent subsequence
(Theorem 8.5 of Dal Maso (1993)). Note that because separability and second-countability
are equivalent for metric spaces, this also holds true for our setting of separable Hilbert
spaces. We shall use this property to construct our canonical completion from a sequence
of canonical completions on serrated domains. To this end, we shall need another
importantly property of Γ-convergence, which is that the Γ-limit of non-negative quadratic
forms is a non-negative quadratic form (Theorem 11.10 of Dal Maso (1993)).

Existence of Canonical Completion on Regular Domains

In this section, we shall establish the existence of the canonical completion for partially
reproducing kernel on regular domains.

Theorem 2.27. Let KΩ be a partially reproducing kernel on a regular domain Ω. Then
KΩ admits a canonical completion.

Let KΩ be a continuous partially reproducing kernel on a regular domain Ω on [0, a] with
Ω = ∪t∈T (It × It) where T = [0, t0] as in Definition 2.4. Define an increasing sequence
{Ωj}∞

j=1 of serrated domains on [0, a] by Ωj = ∪t∈Tj (It×It) where Tj = { i
2j t0 : 0 ≤ i ≤ 2j}.

To retain the serrated domain notation, we denote Xij = Itij where tij = i−1
2j t0, and now
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Chapter 2. Positive-Definite Completions

we can write Ωj = ∪mj

i=1(Xij ×Xij) where mj = 2j + 1.

For j ≥ 1, let Kj denote the canonical completion of the restriction KΩj = KΩ|Ωj with
the associated Hilbert space Hj = H(Kj). Define the quadratic forms Λj as the squares
of the associated norms ∥f∥j of Hj :

Λj(f) = ∥f∥2
j = ∑mj

i=1 ∥fXij ∥2 −
∑mj−1
i=1 ∥fXij∩Xi+1,j ∥2

where ∥f∥j is the norm associated with Hj .

Let X = H1 and ∥ · ∥ = ∥ · ∥1. We shall treat Λj as functionals on X. Notice that {Λj}∞
j=1

is equicoercive in that 1
m1

∥f∥2 ≤ Λj(f) for every f ∈ X and j ≥ 1, since

1
m1

∥f∥2 ≤ 1
m1

∑m1
i=1 ∥fXi1∥2 ≤ 1

m1

∑m1
i=1 ∥f∥2

j = ∥f∥2
j = Λj(f) (2.37)

as Xi1 ×Xi1 ⊂ Ωj for every 1 ≤ i ≤ m1. Moreover, note that K1 is continuous because
KΩ1 is continuous. This implies that X = H(K1) is a second-countable space, since
continuous kernels induce separable Hilbert spaces and for Hilbert spaces, separability
and second-countability are equivalent.

By the sequential compactness property of Γ-convergence (Dal Maso, 1993, Theorem
8.5), there exists a subsequence {jk}∞

k=1 ⊂ {j}∞
j=1 such that Γ-limk Λjk = Λ for some

lower-semicontinuous functional Λ. Because every Λjk is a non-negative quadratic form
so is Λ (by Theorem 11.10 of Dal Maso (1993)). Define HΛ = {f ∈ X : Λ(f) < ∞}. By
virtue of being a non-negative quadratic form, Λ(f) defines an inner product ⟨·, ·⟩Λ on
HΛ given by

⟨f, g⟩Λ = 1
4 [Λ(f + g) − Λ(f − g)].

The inner product induces the norm ∥f∥Λ =
√

Λ(f) on HΛ.

Lemma 2.4. The space HΛ equipped with the inner product ⟨·, ·⟩Λ is a reproducing kernel
Hilbert space.

Proof. HΛ is clearly an inner product space. We need to show that HΛ is complete
with respect to the norm ∥ · ∥Λ. Let {fj}∞

j=1 ⊂ X be a ∥ · ∥Λ-Cauchy sequence. This
implies that {∥fj∥Λ}∞

j=1 is bounded. Furthermore, because (2.37) we can conclude using
Proposition 6.7 of Dal Maso (1993) that

1
m1

∥f∥2 ≤ ∥f∥2
Λ = Λ(f)

implying that {fj}∞
j=1 is also Cauchy with respect to ∥·∥ and therefore it must converge to

some f ∈ X. We conclude from the lower semicontinuity of Λ that Λ(f) ≤ limj→∞ ∥fj∥Λ <

∞ and thus, f ∈ HΛ. Notice that fj − fi → fj − f in X as i → ∞, so we can write again
using the lower semicontinuity of Λ that ∥fj − f∥Λ ≤ limi→∞ ∥fj − fi∥Λ for every j ≥ 1.
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2.5 Canonical Completion

Taking the limit as j → ∞ gives

lim
j→∞

∥fj − f∥Λ ≤ lim
j,i→∞

∥fj − fi∥Λ = 0.

Thus fj → f in the norm ∥ · ∥Λ and HΛ is a Hilbert space. To show that HΛ is a
reproducing kernel Hilbert space we need only observe that for every f ∈ Hjk ⊂ X and
x ∈ X,

|f(x)| = |⟨f, kx,jk⟩| ≤ ∥f∥jk∥kx,jk∥jk =
√
KΩ(x, x) · ∥f∥jk =

√
KΩ(x, x) · Λjk(f)

by Cauchy-Schwarz inequality, where kx,jk(y) = Kjk(x, y) for y ∈ X. Proposition 6.7 of
Dal Maso (1993) allows us to conclude that the same is true for Λ, and thus

|f(x)| ≤
√
KΩ(x, x) · ∥f∥Λ =

√
KΩ(x, x) · Λ(f)

which implies that point evaluations are continuous in HΛ. Hence proved.

Let KΛ denote the reproducing kernel of HΛ.

Lemma 2.5. KΛ is a completion of KΩ and limk→∞Kjk(x, y) = KΛ(x, y) for every
x, y ∈ X.

Proof. Pick x, y ∈ X. Proposition 6.21 of Dal Maso (1993) tells us that if G is a
continuous functional on X, then Γ-limj→∞ Λj = Λ implies Γ-limj→∞ Λj +G = Λ +G.
Notice that the point evaluations f 7→ f(u) for u ∈ X are continuous linear functionals
on X. We deduce from Γ-limk→∞ Λjk = Λ that Γ-limk→∞(−Λ̃jk) = (−Λ̃), where

Λ̃jk(f) = f(x) + f(y) − 1
2∥f∥2

jk
and Λ̃(f) = f(x) + f(y) − 1

2∥f∥2
Λ.

Because {Λjk}∞
k=1 is equicoercive (2.37), we can conclude using Theorem 7.8 of Dal Maso

(1993), that min(−Λ̃jk) → min(−Λ̃) as k → ∞ or alternatively, max Λ̃jk → max Λ̃ as
k → ∞. By Theorem 2.24, we have

1
2 [KΩ(x, x) +KΩ(y, y) + 2Kjk(x, y)] → 1

2 [KΩ(x, x) +KΩ(y, y) + 2KΛ(x, y)]

or Kjk(x, y) → KΛ(x, y) as k → ∞. Thus the kernel KΛ of HΛ is actually the pointwise
limit of the kernels Kjk of Hjk . Notice that KΛ is a completion of KΩ. Indeed, for (x, y)
in the interior of Ω, limk→∞Kjk(x, y) = KΩ(x, y) since Kjk(x, y) = KΩ(x, y) for large
enough k. For (x, y) ∈ Ω which lie on the boundary of Ω, the same conclusion follows
from the continuity of the kernels.

Lemma 2.6. KΛ is a canonical completion of KΩ.
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Chapter 2. Positive-Definite Completions

Proof. It suffices to show that the separation property is satisfied for minimal separators,
for otherwise we can argue as in Theorem 2.20. Let S = Xpq. Then S is a minimal
separator of Ω which separates Ω into two connected components Y1, Y2 ⊂ X. Define
S1 = S ∪ Y1 and S2 = S ∪ Y2 (see Figure 2.6a). Note that S × S ⊂ Ωjk for jk ≥ q.
Consider the sequence {Λjk} for jk ≥ q.

S × S
S1 × S1

S2 × S2

(a) The red region is Ωjk
for jk ≥ q.

S × S
S̃1 × S̃1

S̃2 × S̃2

(b) S̃ × S̃ is the dashed square around S × S.

Figure 2.6: Canonical Completion. The colored regions represent Ω.

The norm of the function fS1 in H(Kjk |S1×S1) can be expressed as

∥fS1∥2
jk,S1 =

pjk∑
i=1

∥fXijk
∥2 −

pjk
−1∑

i=1
∥fXijk

∩Xi+1,jk
∥2

where pjk is given by Xpjk
,jj = Xpq, that is pjk = 1 + (p− 1)2jk−q. Similarly, the norm

of the function fS2 in H(Kjk |S2×S2) is

∥fS2∥2
jk,S2 =

mjk∑
i=pjk

∥fXijk
∥2 −

mjk
−1∑

i=pjk

∥fXijk
∩Xi+1,jk

∥2.

Because Ω̃ = (S1 × S1) ∪ (S2 × S2) ⊃ Ωjk , we can write using the inheritance property of
canonical completion that

∥f∥2
jk

= ∥fS1∥2
jk,S1 + ∥fS2∥2

jk,S2 − ∥fS∥2
jk,S

where fS1 = f |S1 , fS2 = f |S2 and of course, fS = f |S . Notice that S × S ⊂ Ωjk , so
∥fS∥jk,S = ∥fS∥S . Since f 7→ ∥fS∥2

S is a continuous function on X, we get by taking the
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2.5 Canonical Completion

Γ-limit of both sides that

∥f∥2
Λ = Γ-limk→∞

[
∥fS1∥2

jk,S1 + ∥fS2∥2
jk,S2

]
− ∥fS∥2

S

≥ Γ-limk→∞ ∥fS1∥2
jk,S1 + Γ-limk→∞ ∥fS2∥2

jk,S2 − ∥fS∥2
S

because we taking the limit of a sum with a continuous functional −∥fS∥2
S (Dal Maso,

1993, Proposition 6.21) and superadditivity of the Γ-limits of ∥fS1∥2
jk,S1

and ∥fS2∥2
jk,S2

(Dal Maso, 1993, Proposition 6.7). Furthermore,

Γ-limk→∞ ∥fS1∥2
jk,S1 = ∥fS1∥2

Λ,S1 and Γ-limk→∞ ∥fS2∥2
jk,S2 = ∥fS2∥2

Λ,S2

where ∥fS1∥2
Λ,S1

and ∥fS2∥2
Λ,S2

denote the norms of fS1 in H(KΛ|S1×S1) and fS2 in
H(KΛ|S2×S2) respectively. To see why, note that using the same arguments as before,
we can show that every subsequence of fS1 → ∥fS1∥2

jk,S1
will admit a Γ-convergent

subsequence which converges to the square of the norm of a completion of KΩ|S1×S1 to
S1 × S1 which is the pointwise limit of the corresponding subsequence of the completions
Kjk |S1×S1 corresponding to the norms ∥ · ∥2

jk,S1
. But Kjk |S1×S1 converges pointwise

to KΛ|S1×S1 by Lemma 2.5, so it follows that all such subsequences of norms squared
converge to ∥fS1∥2

Λ,S1
implying that Γ-limk→∞ ∥fS1∥2

jk,S1
= ∥fS1∥2

Λ,S1
by the Urysohn

property (Dal Maso, 1993, Proposition 8.3) of Γ-convergence which states that if every
subsequence of a sequence Γ-converges to the same limit then the sequence Γ-converges
to that limit. Similarly, we can show that same for ∥fS2∥2

jk,S2
. It follows that

∥f∥2
Λ ≥ ∥fS1∥2

Λ,S1 + ∥fS2∥2
Λ,S2 − ∥fS∥2

Λ,S .

The expression of the right hand side is actually the squared norm of the canonical
completion K̃ of the restriction of KΛ to Ω̃ = S2

1 ∪ S2
2 . Taking the convex conjugates of

the two sides gives for every n ≥ 1, {αi}ni=1 ⊂ R and {xi}ni=1 ⊂ X that

n∑
i,j=1

αiαjKΛ(xi, xj) ≤
n∑

i,j=1
αiαjK̃(xi, xj)

which implies that the difference K̃−KΛ is a reproducing kernel. But (K̃−KΛ)(x, x) = 0
for every x ∈ X, which implies that (K̃−KΛ)(x, y) = 0 for every x, y ∈ X. Since K̃ = KΛ,
we have

∥f∥2
Λ = ∥f1∥2

Λ,S1 + ∥f2∥2
Λ,S2 − ∥fS∥2

Λ,S .

This implies the separation property for the minimal separators of the form S = Xpq

and by inheritance, the separators which contains these minimal separators. To extend
the result to all minimal separators, let S be a minimal separator. Then it is contained
inside a separator S̃ which separates Ω into two connected components Ỹ1, Ỹ2 ⊂ X which
contains a minimal separator of the form Xpq (see Figure 2.6b). Let S̃1 = S̃ ∪ Y1 and
S̃2 = S̃ ∪ Y2. We can write the separation property for S̃ in terms of the projections ΠS̃1

,
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ΠS̃2
and ΠS̃ in HΛ = H(KΛ) as:

I = ΠS̃1
+ ΠS̃2

− ΠS̃ .

Let S̃ ↓ S in the sense of sets. The conclusion now follows from the continuity of KΛ
and the strong convergence of the projection ΠS̃ to the projection on to the intersection
of the closed subspaces generated by {kx,Λ : x ∈ S̃} in HΛ where kx,Λ(y) = KΛ(x, y) for
y ∈ X(and likewise for ΠS̃1

, ΠS̃2
).

We have thus shown the following:

Theorem 2.28. Let KΩ be a partially reproducing kernel on a regular domain. Then
KΩ admits a canonical completion K⋆. Furthermore, there exists an increasing sequence
{Ωj}∞

j=1 of serrated domains with Ωj ⊂ Ω and ∪∞
j=1Ωj = Ω such that the canonical

completions Kj of KΩj = KΩ|Ωj with the associated norms ∥ · ∥j such that Kj converges
pointwise to K⋆ as j → ∞ and Γ-limj→∞ ∥ · ∥j = ∥ · ∥⋆, where ∥ · ∥⋆ is norm associated
with K⋆.

Notice that for every serrated domain Ω̃ ⊃ Ω, the canonical completion of KΩ̃ = K⋆|Ω̃ is
still K⋆ by inheritance. And as a result, the determinant maximization and trace zero
properties hold for K⋆ as the completion of KΩ̃.

Although, we are unable to draw any conclusion about the uniqueness of canonical
completion, using arguments similar to those in the proof of Lemma 2.5, we can show
the following result.

Theorem 2.29. Let KΩ be a partially reproducing kernel on domain Ω such that there
exists an increasing sequence of serrated domains {Ωj}∞

j=1 with Ωj ⊂ Ω and ∪∞
j=1Ωj = Ω.

Let Kj denote the canonical completions of KΩj = KΩ|Ωj with the associated norms ∥ · ∥j.

If (a) Ω is serrated or (b) Ω is regular and KΩ admits a unique canonical completion,
then Kj converges pointwise to K⋆ as j → ∞ and Γ-limj→∞ ∥ · ∥j = ∥ · ∥⋆, where K⋆

denotes the canonical completion and ∥ · ∥⋆ denotes its associated norm.

2.5.8 Canonical Semigroupoids

The contraction maps of a canonical completion K⋆ of KΩ are remarkable in that they
mimic the structure of the underlying graph Ω. Suppose that A, S and B be subsets
of X. If S separates A and B, then every path from A to B can be decomposed into
two paths: one from A to S, followed by another from S to B. Then the contraction
ΦBA : HA → HB can be written as product of the contractions ΦSA : HA → HS

and ΦBS : HB → HS as ΦBA = ΦBSΦSA. Indeed, let x ∈ A and y ∈ B. Naturally,
K⋆(x, y) = ⟨ΦBAkx,A, ky,B⟩. The separation property gives us another way of writing
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2.5 Canonical Completion

K⋆(x, y) which is

⟨kx,S , ky,S⟩ = ⟨ΦSAkx,A,ΦSBky,B⟩ = ⟨ΦBSΦSAkx,A, ky,B⟩.

Thus ⟨ΦBAkx,A, ky,B⟩ = ⟨ΦBSΦSAkx,A, ky,B⟩. Since x and y can be chosen arbitrarily, it
follows that ΦBA = ΦBSΦSA. It is not difficult to see that the converse is also true.

Lemma 2.7. The contraction maps corresponding to a completion K of KΩ satisfy for
the subsets A, B and S of X

ΦBA = ΦBSΦSA if S separates A and B,

if and only if K is a canonical completion of KΩ.

Recall that the spaces HA, HB and HS can be thought of as subspaces in H. The
subspace HS can thus be said to “separate” HA and HB in H in a way similar to how S

separates A and B in Ω.

Consider a regular domain Ω = ∪t∈T (It × It). Define for x, y ∈ T such that x ≥ y,
Φxy : Hy → Hx as Φxykz,Iy = kz,Ix . Thus, Φxy = ΦIxIy and Φxx = I. Because of the
separation property, we have Φxz = ΦxyΦyz for x ≥ y ≥ z. Hence, we can write

Φwz = Φwx(ΦxyΦyz) = (ΦwxΦxy)Φyz

for w ≥ x ≥ y ≥ z. Thus multiplication in {Φxy}x≥y is associative when defined. The
maps {Φxy}x≥y form a group-like algebraic structure which is called a semigroupoid.
Much like a group, a semigroupoid consists of a set of elements along with an associative
binary operation, but unlike a group, the operation need not be defined for all pairs
of elements and moreover, there need not be an inverse. In our case, the operation is
operator multiplication.

We say that a set {Φxy}x≥y of contractions Φxy : Hy → Hx is a canonical semigroupoid
of KΩ if Φxz = ΦxyΦyz for x ≥ y ≥ z and Φxykz,Iy = kz,Ix for z ∈ Ix∩ Iy. Notice that the
second condition ensures that Φxx = I. Moreover, for x < y, we can define Φxy = Φ∗

yx.

Theorem 2.30. Let KΩ be a partially reproducing kernel on a regular domain Ω.
Then there is a bijective correspondence between canonical completions K̃ and canonical
semigroupoids {Φxy}x≥y of KΩ given by

K̃(x, y) = ⟨Φtskx,Is , ky,It⟩ (2.38)

for x ∈ Is and y ∈ It, where ku,Iv (w) = KΩ(u,w) for v ∈ T and u,w ∈ Iv.

Proof. Given a canonical semigroupoid {Φxy}x≥y of KΩ we can define K̃ using (2.38).
Notice that K̃(x, y) does not depend on the choice of s, t ∈ T so long as x ∈ Is and y ∈ It.
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Indeed, for x ∈ Is, Is′ and y ∈ It we have without loss of generality that s < s′ < t and

⟨Φtskx,Is , ky,It⟩ = ⟨Φts′Φs′skx,Is , ky,It⟩ = ⟨Φts′kx,Is′ , ky,It⟩.

Thus K̃ is well-defined. To see why K̃ is a reproducing kernel, pick an increasing
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Figure 2.7: Semigroupoid characterization of Canonical Completion. The red and green
regions represent Ω while the red, green and blue regions together is Ω̃.

sequence {tj}nj=1 ⊂ T such that tj+1 ∈ Itj for j ≥ 1 and ∪jItj = I. By Theorem 2.7,
the restriction of K̃ to (Itj ∪ Itj+1) × (Itj ∪ Itj+1) is a reproducing kernel for j ≥ 1, since
the contraction Φtjtj+1 satisfies the necessary conditions. Thus the restriction K̃|Ω̃ is a
partially reproducing kernel on a serrated domain where Ω̃ = ∪j [(Itj ∪Itj+1)×(Itj ∪Itj+1)]
(see Figure 2.7a). It is now becomes clear from Figure 2.7b that K̃ is merely the canonical
completion of K̃|Ω̃. For every x ∈ Itj \ Itj+1 and y ∈ Itj+2 \ Itj+1 are separated by Itj+1

in Ω̃ and we have

K̃(x, y) = ⟨Φtj+2tjkx,Itj
, ky,Itj+2

⟩

= ⟨Φtj+2tj+1Φtj+1tjkx,Itj
, ky,Itj+2

⟩

= ⟨Φtj+1tjkx,Itj
,Φtj+1tj+2ky,Itj+2

⟩

= ⟨k̃x,Itj+1
, k̃y,Itj+1

⟩

where
k̃u,Itj+1

(v) = ⟨Φtj+1tjku,Itj
, kv,Itj+1

⟩ = K̃(u, v)

for u ∈ Itj and v ∈ Itj+1 and we can argue similarly for k̃y,Itj+1
. One can now show that

K̃ is a canonical completion by proving the separation propoerty for minimal separators
It for t ∈ T using arguments similar to the ones above. The converse follows from Lemma
2.7.
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Theorem 2.30 can be thought of as a generalization of Theorem 2.7. It is a more
algebraic view which allows us to see canonical completion as simply a consistent way of
extending the generators kx,Iy to I. In Section 2.6, we shall see that this semigroupoid
can actually be reduced to a nicer algebraic structure called semigroup if KΩ is stationary.
The semigroupoids (semigroups) that we are dealing with are equipped with identities
(identity) and strictly speaking, should thus be described as small categories (monoids).
Regardless, we shall stick to our chosen terminology for the sake of simplicity.

2.6 Canonical Extensions of Positive-Definite Functions

In this section, we show that every continuous positive-definite function F on an interval
[−a, a] (a > 0) admits a canonical extension to the entire real line corresponding to a
canonical completion of the partial kernel KΩ(x, y) = f(x−y) for |x−y| ≤ a. Furthermore,
this extension admits a representation in terms of a strongly continuous one-parameter
semigroup on the RKHS of the kernel K(x, y) = F (x− y) for x, y ∈ [0, a]. The canonical
extension can be described in terms of the generator of this semigroup using many
classical formulas such as the post-Widder inversion formula.

In addition to proving the existence, we shall also establish the uniqueness of canonical
extension under certain technical conditions, although experience with serrated domains
suggests that this is generally the case.

2.6.1 The Canonical Extension

The extension problem for positive-definite functions can be framed in terms of completion
of a partially reproducing kernel. Let a > 0 and F be a positive-definition function on
[−a, a]. Define X = [0, b] for some b > a and Ω = {(x, y) : |x − y| ≤ a} ⊂ X × X and
KΩ : Ω → R as KΩ(x, y) = F (x− y). The stationary completions K̃ of KΩ correspond
precisely to the extensions F̃ of F .

A celebrated result of Krein (1940) states that every such function F admits an extension
F̃ to R. We shall now prove a stronger statement by showing that there exists a
canonical extension which correponds to a stationary canonical completion of KΩ. Let
K : [0, a] × [0, a] → R be the reproducing kernel K(x, y) = F (x − y) and H = H(K).
Let It = [t, t+ a] ∩X for t ≥ 0 and notice that Ω is a regular domain and we can write
Ω = ∪t∈T (It × It) for T = [0, b− a].

Theorem 2.31. Let F be a continuous positive-definite function on (−a, a). Define

KΩ(x, y) = F (x− y) for (x, y) ∈ Ω = {(u, v) : |u− v| < a}.

Then KΩ admits a stationary canonical completion.
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Proof. Recall that It = [t, t + a]. Let Ωj = ∪k≥0(Ik/2j × Ik/2j ) for j ≥ 1. For j ≥ 1,
let Kj denote the canonical completion of KΩj = KΩ|Ωj . By the arguments of Section
2.5.7, we can show that there exists a subsequence {Kjk} which converges pointwise to a
canonical completion K̃ of KΩ. Note that for 1 ≤ m ≤ jk,

K̃jk(x, y) = K̃jk(x+ j/2m, y + j/2m)

for x, y ∈ R because of the construction (see Figure 2.8). It follows that K̃(x, y) =
K̃(x+j/2n, y+j/2n) for every j ∈ Z and n ≥ 1. By continuity, K̃(x, y) = K̃(x+h, y+h)
for h ∈ R. So K̃ is indeed stationary. Hence proved.

KI0/22

KI1/22

KI2/22

KI3/22

KI4/22

Figure 2.8: Stationary Canonical Completion. The red region represents Ωj for j = 2,
while the coloured region represents Ω.

For a stationary canonical completion K̃ of K we can define an extension F̃ : R → R of
F as F̃ (x) = K̃(x, 0). We shall refer to F̃ as a canonical extension of F . Conversely, F̃
is a canonical extension of f if K̃(x, y) = F̃ (x− y) a canonical completion of KΩ(x, y) =
F (x− y).

Corollary 2.6. Every continuous positive-definite function F : [−a, a] → R admits a
canonical extension F̃ which satisfies

F̃ (x− y) = ⟨f̃x, ρf̃y⟩

where f̃x : (0, a) → R is given by f̃x(y) = f̃(x+ y) and ρ : H → H with ρg(y) = g(a− y).
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2.6.2 The Canonical Semigroup

We shall now describe how the canonical semigroup can be constructed from the canonical
semigroupoid corresponding to a canonical completion of KΩ.

Construction

The canonical semigroup naturally arises when one attempts to describe the semigroupoid
picture in terms of a single Hilbert space. Notice that the kernels KIt = KΩ|It×It are
essentially identical up to a translation in that KIs(s+ u, s+ v) = KIt(t+ u, t+ v) for
every s, t ∈ R and every u, v ∈ I0. Let Ht = H(KIt) for t ∈ T .

By Theorem 2.7, there exists a semigroupoid {Φts : t, s ∈ T and t ≥ s} of contractions
maps Φ : Hs → Ht satisfying Φtsku,Is = ku,It for t ≥ s. Moreover, define k̃u,Iv : Iv → R
k̃u,Iv (w) = K̃(u,w) for w ∈ Iv and note that Φstk̃u,Is = k̃u,It . Define Ts : H → Hs as
Tsg(u) = g(u− s). It follows that the adjoint of Ts is given by T ∗

s = T−s. Notice that
Tsku,I0 = ku+s,Is for s, t ∈ R. We shall now reduce the canonical semigroupoid to a
one-parameter semigroup.

Theorem 2.32 (Canonical Semigroup). The operators T ∗
s ΦstTt : H → H for s ≥ t

depend only on the difference (s− t), that is

T ∗
s ΦstTt = T ∗

s+hΦs+h,t+hTt+h for h ∈ R.

Define Φs = T ∗
s Φs0 for s ≥ 0. Then {Φt}t≥0 forms a strongly continuous semigroup on

H:

1. Φ0 = I,

2. ΦsΦt = Φs+t for s, t > 0, and

3. limh→0+ ∥Φhg − g∥ = 0 for every g ∈ H.

Proof. Let s, t ∈ R. Notice that for u ∈ I0, we can write

T ∗
s+hΦs+h,t+hTt+hku,I0 = T ∗

s+hΦs+h,t+hk̃u+t+h,It+h

= T ∗
s+hku+t+h,Is+h

= k̃u+t+h−(s+h),I0 ,

while T ∗
s Φs,tTtku,I0 = T ∗

s Φs,tku+t,It = T ∗
s k̃u+t,Is = k̃u+t−s,I0 implying T ∗

s+hΦs+h,t+hTt+hku,I0 =
T ∗
s Φs,tTtku,I0 for u ∈ I0 and therefore, T ∗

s+hΦs+h,t+hTt+h = T ∗
s Φs,tTt. It is obvious that
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Φ0 = I and we can argue as before that ΦsΦt = Φs+t because

ΦsΦtku,I0 = T ∗
s Φs0T

∗
t Φt0ku,I0

= T ∗
s Φs0T

∗
t k̃u,It

= T ∗
s Φs0k̃u−t,I0

= k̃u−t−s,I0

= Φs+tku,I0

for u ∈ I0. We need only verify that limh→0+ Φhg = g for g ∈ H. Let g = ∑n
i=1 αikui,I0

for some n ≥ 1, {αi}ni=1 ⊂ R and {ui}ni=1 ⊂ I0. Then

∥Φhg−g∥2 =
n∑

i,j=1
αiαj

[
K̃(ui + h, uj + h) − K̃(ui, uj + h) − K̃(ui + h, uj) + K̃(ui, uj)

]
→ 0

as h → 0+. Because Span{ku,I0 : u ∈ I0} is dense in H and ∥Φh∥ ≤ 1, it follows that Φh

converges strongly to I as h → 0+ (see (Eidelman et al., 2004, Lemma 9.4.7)) and we are
done. Alternatively, we could have used the equivalence of strong and weak continuity
(see (Engel and Nagel, 2000, Theorem 5.8)).

The following corollary is now immediate from Theorem 2.30.

Theorem 2.33. Let a > 0. There is a bijective correspondence between the canonical
extensions F̃ of a continuous positive-definite function F on [−a, a] and strongly contin-
uous semigroups {Φt}t≥0 of contractions on H = H(K) where K(x, y) = F (x− y) for
x, y ∈ [0, a] satisfying

Φtku = ku−t for 0 ≤ t ≤ u ≤ a

given by

F̃ (t) =

⟨k0,Φtk0⟩ for t ≥ 0
⟨k0,Φ−tk0⟩ for t < 0

(2.39)

where k0(u) = F (u) for 0 ≤ u ≤ a.

Although, all positive-definite functions admit a unitary representation resembling (2.39)
(Stewart, 1976), canonical extensions F⋆ admit a very concrete representation of that
kind. As a consequence of Theorem 2.6, we have

Corollary 2.7. Let a > 0. Every continuous positive-definite function F on [−a, a]
admits a canonical extension F̃ with the representation (2.39) for some strongly continuous
semigroup of contractions {Φt}t≥0 on H(K) where K(x, y) = F (x− y) for x, y ∈ [0, a].
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Generators of Canonical Semigroups

The canonical semigroup {Φt}t≥0, like all strongly continuous one-parameter semigroups,
admits a generator which is defined as the linear operator ∂⋆ : D(∂⋆) → H given by

∂⋆f = lim
h→0+

1
h

[Φhf − f ]

for f ∈ D(∂⋆) = {f ∈ H : limh→0+
1
h [Φhf − f ] exists}. In general, the operator ∂⋆ is not

bounded and its domain D(∂⋆) is not equal to H. However, according to the Hille-Yosida
Theorem for contraction semigroups (see Theorem 3.5 of Engel and Nagel (2000)), the
operator ∂⋆ is closed, its domain D(∂⋆) is dense in H, and the operator λI − ∂⋆ has
a bounded inverse satisfying ∥(λI − ∂⋆)−1∥ ≤ 1/λ for λ > 0 . Most importantly, the
generator ∂⋆ uniquely determines the semigroup {Φt}t≥0.

The connection with semigroups furnishes many interesting representations for a canonical
extension F⋆ in terms of the generator ∂⋆.

Theorem 2.34. Let F⋆ be a canonical extension of a continuous positive-definite function
F on [−a, a] ⊂ R for some a > 0 and let ∂⋆ be the generator of the corresponding canonical
semigroup. For x > 0, we have

F⋆(t) = lim
µ→0

〈
et∂⋆[I−µ∂⋆]−1

k0, k0
〉

(Yosida Approximation Formula)

F⋆(t) = lim
n→∞

〈[
I − t

n∂⋆
]−n

k0, k0
〉

(Post-Widder Inversion Formula)

F⋆(t) = 1
2πi lim

n→∞

∫ ϵ+in

ϵ−in
⟨ezt[zI − ∂⋆]−1k0, k0⟩ dz (Cauchy Integral Formula)

where i =
√

−1 and the convergence is uniform over compact intervals of R+. The
integral is the last equation is to be understood as the usual contour integral from complex
analysis.

Proof. These can be readily seen as straightforward consequences of Theorem 3.5, Corol-
lary 5.5 and Theorem 5.14 from Engel and Nagel (2000) in our setting.

Of course, the beautiful expressions in Theorem 2.34 don’t mean much to us if we
can’t calculate ∂⋆ independently of F⋆. In the following section, we consider a plausible
situation in which the canonical extension can be recovered as the closure ∂̄ of an explicitly
defined operator ∂. In addition to bringing the expressions in Theorem 2.34 to life, this
proves that under the considered scenario the canonical extension is unique.
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2.6.3 Differential Equations in Hilbert Space

The semigroup connection also allows us to think of the canonical extension as the
solution of an abstract Cauchy problem in H = H(K). Consider a function f : R+ → H.
We shall denote the value of f at t ∈ R+ by ft. We say that f is Fréchet differentiable at
t ∈ R+ if there exists ∂tft ∈ H such that limh→0 ∥ 1

h(ut+h − ut) − ∂tut∥ = 0. According
to Proposition 6.2 of Engel and Nagel (2000), if k0 ∈ D(∂⋆), then ft = Φtk0(= k̃0,It) is
the unique solution of the abstract Cauchy problem: for t ≥ 0{

∂tft = ∂⋆ft,

f0 = k0.
(2.40)

When k0 /∈ D(∂⋆), then Proposition 6.4 of Engel and Nagel (2000) tells us that the
function f : t 7→ Φtk0 can still be understood as the unique mild solution to (2.40) in the
sense that for t ≥ 0,

∫ t
0 fu du ∈ D(∂⋆) and

ft = k0 + ∂⋆

∫ t

0
fu du. (2.41)

In essence, the problem of canonical positive-definite extension is equivalent to solving
an abstract differential equation in a certain Hilbert space.

Recovery of the Generator

Computing the operator ∂⋆ explicitly or even identifying its domain D(∂⋆) precisely is
usually very difficult even when {Φt}t≥0 is known. Ours is a more complicated situation
since we only know certain images of {Φt}t≥0 as given by

Φskt = kt−s for 0 ≤ s ≤ t ≤ a.

Fortunately, it is often possible to evaluate ∂⋆ over a subset D ⊂ D(∂⋆). Let D denote
the set of integrals

∫ a
0 α(u)ku du ∈ H where α is an infinitely differentiable real-valued

function on (0, a) with compact support. Note that D is a dense linear subspace of H.
The elements of D serve essentially the same purpose as that of test functions in the
theory of distributions. By definition,

∂⋆

[∫ a

0
α(u)ku du

]
= lim

h→0+

1
h

[∫ a

0
α(u)ku−h du−

∫ a

0
α(u)ku du

]
= lim

h→0+

1
h

[∫ a

0
α(u+ h)ku du−

∫ a

0
α(u)ku du

]
=

∫ a

0

[
lim
h→0+

α(u+ h) − α(u)
h

]
ku du

=
∫ a

0
α′(u)ku du.
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2.6 Canonical Extensions of Positive-Definite Functions

Thus ∂⋆ [
∫ a

0 α(u)ku du] =
∫ a

0 α
′(u)ku du ∈ D and D is invariant under ∂⋆. In the same

way, one can also work out ∂⋆ [
∫ a

0 α(u)ku du] for piecewise once-differentiable α with
compact support as in ∂⋆

∫ t
s ku du = ks − kt for 0 < s < t < a, although expanding D to

include such elements is probably not of much consequence.

Define the operator ∂ : D → H as

∂ [
∫ a

0 α(u)ku du] =
∫ a

0 α
′(u)ku du.

Thus ∂ = ∂⋆|D but here we have defined it exclusively in terms of K without referring to
∂⋆ or F⋆. We would like to recover ∂⋆ from its restriction ∂ to a dense subset D ⊂ H. If
∂⋆ is continuous on H, then this is possible using an ordinary extension by continuity
argument. However, F is analytic if ∂⋆ is continuous (Remark 2.2). Because analyticity
implies unique extension anyway, the special case of bounded generators is unintersting
in that it does not offer us any insight into the problem of canonical extension.

In general, it is not possible to recover an unbounded operator from its restriction to
a dense subspace. Fortunately, ∂⋆ is a closed operator, which means that the graph
G⋆ = {(f, ∂⋆f) : f ∈ D(∂⋆)} is a closed subset of H × H. This makes a different kind of
extension by continuity possible. If the closure Ḡ in H×H of a graph G = {(f, ∂f) : f ∈ D}
for some operator ∂, is equal to G⋆ then that would mean that we can recover ∂⋆ as the
closure ∂̄ of ∂, given by:

∂̄f = lim
j→∞

∂fj

where {fj}∞
j=1 ⊂ D such that limj→∞ fj = f ∈ D(∂⋆) and limj→∞ ∂fj exists. An

alternative way of stating this is to say that D is a core of ∂⋆, which is to say that D

is dense in D(∂⋆) with respect to the norm ∥f∥∂ = ∥f∥ + ∥∂f∥ where f ∈ D. We now
present certain criteria for D to be a core of ∂⋆.

Theorem 2.35. Suppose that e−λx /∈ H for some λ > 0. Then (λI − ∂)D is dense in H

and

1. F admits a unique canonical extension F⋆,

2. ∂⋆ = ∂̄ and D is a core of D(∂⋆),

Proof. Let f be in the orthogonal complement of (λI − ∂)D. Then∫ a

0
[λα(u) − α′(u)]f(u) du⟩ = ⟨f,

∫ a

0
[λα(u) − α′(u)]ku du = 0

for every infinitely differentiable α with a compact support in (0, a). Using some
elementary distribution theory, it can be shown that this can only be true if λf + f ′ = 0
or f(u) = ce−λu for 0 ≤ x < a for some c ∈ R. Since, e−λx /∈ H, it follows that c = 0 and
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f = 0, thus implying that (λI − ∂)D is dense in H. The conclusion now follows from
Theorem 5.2 of Engel and Nagel (2000).

The condition e−λx /∈ H is equivalent to saying that Kλ(x, y) = eλ(x+y)F (x− y) − c is
not a reproducing kernel for any c > 0. It is unclear how stringent this requirement is,
but in light of the consequence, we need only worry about the case of positive-definite
functions F for which e−λx ∈ H for every λ > 0, which remains unsolved.

Theorem 2.36. If for every infinitely differentiable α : (0, a) → R with a compact
support there exists r > 0 such that

∑∞
j=0

rj

j!

√∫ a
0
∫ a

0 D
jα(u)Djα(v)F (u− v) dudv < ∞. (2.42)

then, F admits a unique canonical extension F⋆, ∂⋆ = ∂̄ and D is a core of D(∂⋆).

Proof. This follows from Theorem 1.51 of Davies (1980) by noticing that the expression
(2.42) is equivalent to ∑∞

j=0
rj

j! ∥∂jf∥ < ∞ for f =
∫ a

0 α(u)ku du.

Both conditions e−λx /∈ H and (2.42) are very difficult to verify in general and as a result,
we are unable to construct examples of positive-definite function F for which they apply.
We conclude this section by pointing out the stringency of assuming that the generator
∂⋆ is bounded.

Remark 2.2. The generator ∂⋆ is bounded precisely when the semigroup is uniformly
continuous, that is limh→0+ ∥Φt − I∥ = 0. In this case, Φt = exp(t∂⋆) and we can write

F̃ (t) = ⟨k0,Φtk0⟩ = ⟨k0, exp(t∂⋆)k0⟩ =
∞∑
j=0

⟨k0, ∂
j
⋆k0⟩ t

j

j!

which implies that F⋆ and hence, F is analytic! The series has an infinite radius of
convergence, which makes F̃ an entire function.
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3 Continuously Indexed Graphical
Models

The greatest value of a picture is when it forces us to notice what we never
expected to see.

John W. Tukey, Exploratory Data Analysis (1977)

Abstract
Let X = {Xu}u∈U be a real-valued Gaussian process indexed by a set U . It can be

thought of as an undirected graphical model with every random variable Xu serving
as a vertex. We characterize this graph in terms of the covariance of X through
its reproducing kernel property. Unlike other characterizations in the literature,
our characterization does not restrict the index set U to be finite or countable,
and hence can be used to model the intrinsic dependence structure of stochastic
processes in continuous time/space. Consequently, the said characterization is not
(and apparently cannot be) of the inverse-zero type. This poses novel challenges for
the problem of recovery of the dependence structure from a sample of independent
realizations of X, also known as structure estimation. We propose a methodology
that circumvents these issues, by targeting the recovery of the underlying graph
up to a finite resolution, which can be arbitrarily fine and is limited only by the
available sample size. The recovery is shown to be consistent so long as the graph is
sufficiently regular in an appropriate sense, and convergence rates are provided. Our
methodology is illustrated by simulation and two data analyses.

3.1 Introduction

We consider the problem of defining undirected graphical models with uncountable vertex
sets with the purpose of describing conditional independence relationships inherent in
stochastic process over continuous time/space – in the same way as ordinary (finite)
undirected graphical models do for random vectors in Euclidean spaces. Furthermore,
we consider the statistical problem of recovering the graph from a finite number of
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independent realizations of the process up to a degree of resolution commensurate with
the amount of data available.

Consider a zero-mean Gaussian process X = {Xu}u∈U on a (possibly uncountably infinite)
set U . We would like to think of X as a Gaussian graphical model with every random
variable Xu corresponding to a vertex of a graph ΩX on the index set U . The conditional
independence structure of X should likewise correspond to the edge structure of Ω, in
that, for u, v ∈ U separated by W ⊂ U we have

Xu ⊥⊥ Xv | XW

where XW = {Xw : w ∈ W}. To this end, we will characterize the covariance of processes
admitting a given graphical structure in terms of the reproducing kernel property. And,
going in the other direction, we will use this characterization to define the graph of a
process in terms of its covariance.

Although the stated characterization is always valid, it is somewhat unwieldy for the
purpose of parsing the graph of a given process from its covariance. In the finite
vertex set case, we have a particularly handy result, sometimes called the inverse zero
characterization, which says that if the covariance matrix is invertible, then the ij-th entry
of the inverse of the covariance matrix is zero precisely when there is no edge between the
ith and jth vertices. For (uncountably) infinite U , a direct analogous characterization
for covariance kernels is unavailable to us, if indeed it exists at all. In order to derive
an analogous result, we develop a notion of resolution of a graph. This allows for an
alternative inverse zero characterization, yielding a pixelated version of the graph of
a continuously indexed process, from the zero entries of a certain correlation operator
matrix related to its covariance. The choice of resolution can be arbitrary large, and
under appropriate conditions yields an exact characterization of the graph in the limit.

This framework also allows us to meaningfully pose the problem of recovering the graph
from n independent realizations of the process, with the resolution being dictated by
the available sample size. Because arbitrarily small changes in the covariance kernel
can greatly alter the graph of the associated process, targeting the graph at a sample-
dependent finite resolution can also be seen as quantifying how finely the graphical
structure can be resolved with a given amount of finite information. In this framework,
we propose a graph estimator that relies on thresholding (in the operator norm) of the
entries of the inverse empirical correlation operator matrix. Under standard regularity
assumptions on the correlation operator matrix, we show that the underlying graph can
be recovered with high probability as the number of samples increases. Also, we give a
lower bound for the sample size to recover the graph at a given familywise error rate.

Although we restrict focus on Gaussian processes, our analysis can be easily extended to
sub-Gaussian processes by interpreting the graph in terms of “conditional uncorrelatedness”
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instead of conditional independence. The resulting structure corresponds to a correlational
graphoid (Pearl and Paz, 1985) and a basic strong separoid (Dawid, 2001), and therefore
serves as a reasonable alternative to conditional independence.

The main contributions of this chapter are the notion of graph of a Gaussian process, its
finite resolution inverse zero characterization and the idea of regularization by pixelation.
Furthermore, under standard regularity conditions, we derive better and simpler con-
vergence rates for the estimation of the correlation operator matrix of a second order
random element. For Gaussian random elements, we derive concentration bounds for the
estimator.

3.1.1 Background and Related Work

Undirected graphical models allow us to distinguish direct and indirect associations in
data, and thus have a long history in statistics. They have been investigated as models
(Dempster, 1972; Darroch et al., 1980), and as targets of inference (Lauritzen, 1996),
with a particular emphasis on high-dimensional settings more recently (Meinshausen and
Bühlmann, 2006; Ravikumar et al., 2011; Rothman et al., 2008). Infinite dimensional
graphical models have been investigated by (Montague and Rajaratnam, 2018) from an
axiomatic and probabilistic point of view.

Graphical models with uncountably infinite number of vertices have not received much
attention in the literature but they are implicit in the study of Markov processes, which
can be regarded as infinite graphical models with infinitesimally small graphs. The
generalization of the Markov property to Euclidean spaces by McKean (1963) using the
concept of splitting fields and to locally compact metric spaces by Rozanov (1982), along
with the generalization of the Markov property itself to the quasi-Markov property by
Chay (1972), can be thought of as important steps in this direction.

Graphical models are frequently used to model continuous time (or space) stochastic
processes under the label of “Gaussian Markov random fields (GMRFs)” (Rue and Held,
2005). Although this is usually done for computational benefits, there are important
cases in which there is an explicit link between the underlying process and the GMRFs
used to model them (Lindgren et al., 2011). Roughly speaking, this amounts to modelling
the graphical structure of the process itself.

Our own work complements some of the recent developments in functional data analysis
concerning graphical models. In the context of functional data, a graphical model can
refer to several distinct possibilities. To explain the nuances involved, we introduce some
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notation. Consider an Rp-valued stochastic process X on an interval I ⊂ R given by

t 7→


X1(t)
X2(t)

...
Xp(t)

 ∈ Rp.

Viewing this as a vector-valued function, Qiao et al. (2020) deal with recovering the
graphical structure between {Xj(t) : 1 ≤ j ≤ p} as a function of t. This can be thought of
as a pointwise finite graphical model: for every t, one has a graphical model on p vertices.
This perspective is related to Mogensen and Hansen (2022), who consider finitely indexed
graphical models on diffusions in Rp. On the other hand, viewing each function globally
t 7→ Xj(t) as a random element in a Hilbert space H, one has a single p-vector with
Hilbertian entries, 

X1
X2
...
Xp

 ∈ Hp.

In this context, Qiao et al. (2019), Li and Solea (2018a) and Lee et al. (2023) address the
problem of recovering the graphical structure between the p vector coordinates Xj for
1 ≤ j ≤ p. Thus they address the problem of recovering the structure between a finite
number of related random functions. This can be seen as a global, rather than pointwise
approach.

In either case, the problem can be seen as recovering the dependence structure between a
finite collection of p random functions. In contrast, we wish study the structure within a
single random function. That is, the graphical structure of the collection {Xj(t) : t ∈ I}
for a given fixed j. Thus, we are interested in an intrinsic graphical model. Importantly,
this means that we are concerned with the problem of recovering the dependence structure
between an uncountably infinite number of jointly distributed random variables, unlike
the above mentioned literature, which deals with a finite number of real random variables
or Hilbertian random elements. Indeed, we will see that our setting subsumes existing
notions of functional graphical models as special cases.

3.1.2 Outline of the Chapter

In Section 3.2, we introduce some notation and review certain basic concepts concerning
the theory of graphs, reproducing kernels, and linear operators. In Section 3.3, we
present our characterization of the conditional independence structure of a Gaussian
process in terms of its covariance function. Furthermore, we make concrete the notion
of the graph of a process and derive the graphs of some familiar classes of Gaussian
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processes explicitly. In Section 3.4, we explain the concept of resolution in greater
detail, and derive an analogue of the finite-dimensional inverse zero characterization
(3.5), which we use to come up with a sufficient criterion for the approximate and exact
identifiability of the graph of a process. Additionally, we discuss parallels and differences
in our setting/approach and existing approaches to functional graphical models. Finally,
in Section 3.5, we describe our algorithm for graph recovery. In Section 3.6 and 3.6.2,
we provide asymptotic theory and recovery guarantees. In Section 3.7, we present a
simulation study to gauge the performance recovery procedure, covering a variety of
covariances at different resolutions and samples sizes. In Section 3.8, we illustrate our
method by applying it to spectroscopy and intraday stock price data.

3.2 Preliminaries and Notation

An undirected graph on a set U is defined as a pair (U,Ω) where Ω ⊂ U × U such that
for any (u, v) ∈ U × U we have (u, u) ∈ Ω and (u, v) ∈ Ω ⇐⇒ (v, u) ∈ Ω.

The set U is called the vertex set and the set Ω is called the edge set. All graphs in this
chapter are undirected. Since the vertex set will always be fixed, we shall refer to a graph
by its edge set Ω. We shall say u, v ∈ U are adjacent if (u, v) ∈ Ω, that is, if they have
an edge between them. By convention, we shall assume that every vertex has an edge
with itself. To visualize the graph Ω, notice that the adjacency function 1Ω : U ×U → R
given by

1Ω(u, v) =

1 (u, v) ∈ Ω
0 (u, v) /∈ Ω

describes the structure of the graph in a way analogous to how the adjacency matrix
does the same when U restricted to be finite. A graph is called complete if all vertices
are adjacent to each other. The unique complete graph on U is given by Ω = U × U .

For u, v ∈ U , a path on Ω from u to v is a finite sequence {wk}n+1
k=0 of vertices such that

w0 = u, (wk, wk+1) ∈ Ω (they are adjacent) for 0 ≤ k ≤ n, and wn+1 = v. The vertices u
and v are called connected if there is a path between them and disconnected otherwise. A
subset W of U is said to separate u, v ∈ U if every path between u and v passes through
W . If u and v are disconnected, then they can be said to be separated by the empty set
∅.

A graphical model consists of a set of random variables X = {Xu : u ∈ U} indexed by a
set U , and a graph Ω ⊂ U × U , such for every u, v ∈ U separated by W ⊂ U in Ω, X
satisfies

Xu ⊥⊥ Xv | XW . (3.1)

Here XW := {Xu : u ∈ W} represents the restriction of X to W ⊂ U . It is implicit
in the definition that if u and v are disconnected, then Xu and Xv are independent.
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The separation condition (3.1) brings together X and Ω by making the conditional
independence structure of X conform with the edge structure of the graph Ω. Note that,
for notational convenience, we have defined our graphical models slightly differently than
the standard nomenclature: the vertex set of our graph is the domain U instead the set
of random variables {Xu : u ∈ U}.

Let K be the covariance of the process X. Define the functions K(u, ·),K(·, u) : U → R
as v 7→ K(u, v) for u, v ∈ U . The reproducing kernel Hilbert space H(K) of K is defined
as the closure of the linear span of {K(u, ·) : for u ∈ U} under the norm induced by
the inner product ⟨K(u, ·),K(·, v)⟩ = K(u, v) for u, v ∈ U . We shall denote the inner
product of f, g ∈ H(K) as ⟨f, g⟩H(K).

We shall work with operators on Hilbert spaces. Boldface alphabet such as A will be
used to denote an operator or an operator matrix. Note that an operator matrix can also
be thought of as an operator on an appropriate product Hilbert space. For an operator
matrix A = [Aij ]pi,j=1, we shall use dg A to denote the diagonal part [δijAij ]pi,j=1 where
δij is the Kronecker delta and A0 to denote the off-diagonal part (A − dg A). The
spectrum of a self-adjoint operator A will be denoted by σ(A). If A is compact, then its
kth eigenvalue shall be denoted by λk(A).

3.3 Graphical Representation of Gaussian Processes

In this section, we characterize the relationship between the conditional independence
structure of a Gaussian process X and its covariance kernel K. We then use this
characterization to define the graph of a Gaussian process and discuss certain conceptual
differences with respect to the finite index setting.

3.3.1 The Separation Equation

Let X = {Xu : u ∈ U} be a Gaussian process on a set U satisfying the separation
condition (3.1) for some graph Ω ⊂ U × U . Because X is Gaussian, this is equivalent to
requiring that for every u, v ∈ U separated by W ⊂ U (see Figure 3.1 (a)), the conditional
covariance given by

Cov(Xu, Xv|XW ) = E[XuXv|XW ] − E[Xu|XW ] · E[Xv|XW ]

must vanish almost surely. Taking the expectation and using the law of iterated expecta-
tion, this implies that

E[XuXv] = E
[
E[Xu|XW ] · E[Xv|XW ]

]
(3.2)

almost surely. We shall now express this statement in terms of the kernel K.
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K(·, v)
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Figure 3.1: (a) An example of u, v ∈ U separated by W ⊂ U indicated by W × W
(dashed square) along with the restrictions K(u, ·)|W and K(·, v)|W , and (b) The graph
ΩX of Brownian motion (the diagonal) and the ϵ-envelope ΩX + Bϵ (in green).

The closed linear span L(X) of X = {Xu : u ∈ U} under the norm Y 7→ E[Y 2] forms a
Hilbert space under the inner product (Y1, Y2) 7→ E[Y1Y2] which is induced by the norm.
By Loève’s isometry (Loeve, 2017), L(X) is isometrically isomorphic to H(K). When
W ⊂ U separates (u, v) ∈ U × U , this enables us to rewrite Equation (3.2) as

⟨K(u, ·),K(·, v)⟩H(K) = ⟨ΠWK(u, ·),ΠWK(·, v)⟩H(K) (3.3)

where ΠW denotes the projection in H(K) to the closed linear subspace generated
by {K(w, ·) : w ∈ W}. As before, we shall consider it implicit that if u and v are
disconnected then they are separated by W = ∅ and K(u, v) = 0.

By the reproducing property, ⟨K(u, ·),K(·, v)⟩H(K) = K(u, v). By the subspace isometry
(Paulsen and Raghupathi, 2016), the inner product ⟨ΠWK(u, ·),ΠWK(·, v)⟩H(K) can be
evaluated by taking the inner product of the restrictions K(u, ·)|W and K(·, v)|W in the
reproducing kernel Hilbert space of the restriction KW = K|W×W of the kernel K. Thus,

K(u, v) = ⟨K(u, ·),K(·, v)⟩H(KW ). (3.4)

We shall refer to (3.4) as the separation equation. Going in the opposite direction, notice
that the above equation implies

⟨K(u, ·) − ΠWK(u, ·),K(·, v) − ΠWK(·, v)⟩H(K) = 0.

Because of Gaussianity and the Loève isometry, this means that Xu − E[Xu|XW ] and
Xv − E[Xv|XW ] are independent. Additionally, they are both independent of XW . It
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follows that

Cov(Xu, Xv|XW ) = E
[
(Xu − E[Xu|XW ])(Xv − E[Xv|XW ])|XW

]
= 0.

To summarize, we have established the following theorem.

Theorem 3.1. Given a Gaussian process X = {Xu : u ∈ U} and a graph Ω ⊂ U × U ,
the following two statements are equivalent:

(A) For every u, v ∈ U separated by W ⊂ U in Ω,

Xu ⊥⊥ Xv | XW .

(B) For every u, v ∈ U separated by W ⊂ U in Ω,

K(u, v) = ⟨K(u, ·),K(·, v)⟩H(KW ).

Simply stated, the conditional independence statement (3.1) can be exchanged with the
equation (3.4) in the definition of a graphical model.

One of the properties which force a Gaussian process to obey the separation equation
with respect to a “memory” graph is the analyticity of the covariance kernel, as illustrated
by the following example.

Example 3.1. Let X = {Xt}t∈I be a Gaussian process on the unit interval I with
an analytic covariance K. Then K satisfies the separation equation for every Ω which
contains the strip {(u, v) : |u − v| ≤ w} for some w > 0. Indeed, for any two points
u, v ∈ I separated by W ⊂ I, W must contain an interval of finite length. This implies
that the function f = K(u, ·) − ΠWK(u, ·) is zero on an interval of finite length because
f(w) = ⟨K(u, ·) − ΠWK(u, ·),K(·, w)⟩ = 0 for w ∈ W by the projection theorem. But f
is analytic and hence,

f = K(u, ·) − ΠWK(u, ·) ≡ 0.

By repeating the same argument for v, we can show that

K(u, v) = ⟨K(u, ·),K(·, v)⟩ = ⟨ΠWK(u, ·),ΠWK(·, v)⟩ = ⟨K(u, ·),K(·, v)⟩H(KW )

and the conclusion follows. This argument can be easily extended to Gaussian processes
on connected domains in a Euclidean space which have analytic covariances.

It is natural to ask why the relationship between the conditional independence structure
of X and its covariance K has to be expressed by such tortuous means. After all, if
X = {Xj}pj=1 is a Gaussian random vector with a non-singular covariance matrix C,
satisfying the separation condition (3.1) for some graph Ω ⊂ {1, . . . , p}2, then the relation
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between Ω and C is described very elegantly by the following well-known result:

Pij = 0 if and only if i and j are not adjacent in Ω (3.5)

where P is the inverse of the covariance matrix C. In other words, the zero entries of the
matrix P correspond precisely to missing edges of the graph Ω.

Having an elegant inverse zero characterization as (3.5) for kernels is impeded by technical
difficulties, however. Namely, the “inverse” of a kernel on an uncountable domain U × U

is not a well-defined notion in general. If we attempt to make the space of kernels into a
ring by defining the product of two kernels K1 and K2 in a natural way by

K1 ⊙K2(u, v) =
∫
U
K1(u,w)K2(w, v) dµ(u)

where µ is a Borel measure on U , then the resulting space ends up being a non-unital
ring. This because no kernel can serve as a multiplicative identity the way the identity
matrix does for matrices. Even if we admit the Dirac delta δ(u− v) as the identity, no
kernel would admit an inverse. On the other hand, we can directly consider the inverse
of the integral operator K induced by K as

Kf(u) =
∫
U
K(u, v)f(v) dµ(v)

and define its support indirectly as follows: U1 × U2 ⊂ supp(K−1)c if for every pair f, g
in the range of K such that supp f = U1 and supp g = U2, we have ⟨f,K−1g⟩L2(µ) = 0.
This parallels the matrix case, which can also be interpreted via quadratic forms x⊤Py
involving sparse vectors x,y. But this too is inconvenient given that K−1 is unbounded
in general, leading to delicate conditions on suitable test functions f, g – this, particularly
in a statistical context, where K is to be estimated from finitely many observations, and
hence the true RKHS is not identifiable.

Unlike the inverse zero characterization (3.5), the separation equation (3.4) has the virtue
of holding true regardless of whether U is finite or whether the covariance is boundedly
invertible. But this comes at the expense of the condition being tedious to verify since
one needs to exhaust all admissible combinations of u, v and W .

In Section 3.4, however, we will show that this shortcoming can be circumvented, by
appealing to a notion of resolution. Namely, we will show that an analogue of the inverse
zero characterization (3.5) holds even for infinite domains U , as long as we are willing to
specify the graph Ω up to some finite resolution, and that the characterization behaves
coherently under refinement of the resolution.
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3.3.2 The Graph of a Stochastic Process

Theorem 3.1 allows us to verify whether the conditional independence structure of a
given Gaussian process is compatible with a given graph, in the sense of the separation
condition (3.1). But it does not specify the graph, nor does it guarantee the uniqueness
of a graph compatible with a Gaussian process X. In the finite-dimensional setting, these
questions are answered unequivocally: the zero pattern of the inverse covariance (3.5)
defines an adjacency matrix, so the question boils down to invertibility of the covariance.

To address this question, we note that compatibility with the separation equation is
inherited with respect to graph inclusion: it is not hard to show that when K satisfies
the separation equation (3.4) for a graph Ω then it also does so for every graph Ω̃ which
contains Ω (see Waghmare and Panaretos (2022)). Assume that the index set U of X is
a compact subset of Rn with the natural topology. The previous observation suggests
intersecting all compatible graphs to define the graph of a process.

Definition 3.1. We define the graph of X, denoted by ΩX , to be the intersection of all
closed graphs Ω for which the separation equation (3.4) is satisfied by the covariance K
of X.

Unlike the finite-dimensional setting, there is no guarantee that X will satisfy the
separation condition (3.1) for Ω = ΩX . This may seem dissatisfying given that we would
have hoped ΩX to be interpretable as the “minimal” graph satisfying the separation
equation. But it does point to an interesting aspect special to the infinite-dimensional
case, namely that satisfaction of the separation equation is not closed under infinite
intersections. This means that for certain processes there is simply no “minimal” graph
for which the process satisfies the separation condition. The following example illustrates
this peculiar feature of infinite dimensions. It also demonstrates how being Markov forces
a Gaussian process to satisfy the separation equation.

Example 3.2. Let W = {Wt}t∈I be the Brownian motion process on the unit interval
I. Its covariance K(u, v) = u ∧ v satisfies the separation equation for every strip for
Ωw = {(u, v) : |u− v| ≤ w}, for every w > 0. Indeed, if u, v ∈ I are separated by some
subinterval J ⊂ I, then we can assume without loss of generaity that u > v and by the
Markov property Wu = E[Wu|WJ ]. Then K(u, ·) = ΠWK(u, ·) and the conclusion follows
by taking the inner product with K(·, v).

Consequently, ΩW = ∩w>0 Ωw is the empty graph on I given by the diagonal {(u, v) : u =
v}, in which no two vertices are adjacent. If K were to satisfy the separation equation
for ΩW , it would mean that K(u, v) = 0, which is contradictory. The same argument can
be made for Gaussian processes which are Markov, multiple Markov (Hida and Hitsuda,
1993) or possess analytic covariances covered in Example 3.1.

Determining the conditions under which X satisfies the separation equation for Ω = ΩX
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seems to be a challenging technical problem interfacing the theory of infinite graphs and
the analytical properties of covariances, and is beyond the scope of this chapter. However,
if U×U is equipped with a metric, then one can make up for the gap in intuition resulting
from this anomaly by thinking of the conditional independence structure of a process
X as being represented by ΩX + Bϵ instead of ΩX where ΩX + Bϵ is the ϵ-envelope of
ΩX (see Figure 3.1 (b)). That is, the set of points within ϵ distance from ΩX where ϵ
can be taken to be arbitrarily small. For Gaussian processes on the unit interval which
are Markov, multiple Markov or have analytic covariances, the conditional independence
structure is then given by an ϵ-strip centered along the diagonal. This “open” formulation
rescues the intuition sought in situations like Example 3.2.

The graph ΩX (or its ϵ-envelope), presents an interesting target for estimation given n

independent and identically distributed realizations of X. In Section 3.4, we shall present
an analogue of the inverse zero characterization (3.5) for kernels up to a finite resolution,
and we shall present sufficient conditions on K for ΩX to be identifiable exactly or up to
such a finite resolution.

3.4 Resolving Uncountably Infinite Graphs

In this section, we shall recover an analogue of the inverse zero characterization (3.5) for
kernels. This will enable us to verify the separation condition in a practically feasible
manner, and will also makes allow us to deploy the well-established thresholding approach
of graph recovery (developed in Section 3.5).

As previously argued, an exact inverse zero characterization is unavailable for our setting
and likely infeasible, in light of the distinctly different algebraic properties of kernels in
comparison with, matrices. Our approach will thus consist in introducing an appropriate
notion of resolution, and contenting ourselves with a characterisation valid for any given
finite resolution. That being said, we will also require that our characterisation be
compatible across refinements of the resolution, and that it identify the true graph as
resolution diverges.

From a mathematical point of view, resolving a graph consists in specifying a sequence of
constructible approximations thereof. From a statistical point of view, focussing on a finite
resolution is arguably natural, or even necessary, since the number of potential graphs is
uncountably infinite, and we need to infer the graph from finitely many realizations. Our
estimation theory will reflect how the resolution can increase as a function of sample size,
thus informing us on how finely we can hope to discern the conditional independence
structure of the process from a given amount of finite data.

Our results thus far applied to any covariance kernel K on any set U . From this point
onward, we shall additionally assume K to be continuous and U to be a compact subset of
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Ω

(a)

Ωπ

(b)

Figure 3.2: (a) A graph Ω on an interval and (b) its π-resolution approximation Ωπ.
Each cell of the grid represents a pixel Ui × Uj where Ui, Uj ∈ π.

Rd equipped with a Borel measure µ supported on U . The results can be extended without
much difficulty to more general sets with topological structure enabling a generalization
of Mercer’s theorem to apply, however we shall stick to the compact Euclidean setting
for simplicity.

3.4.1 Resolution

Let U to be a compact subset of Rd equipped with a Borel measure µ supported on U .
Let K : U × U → R be a continuous covariance kernel. We shall now make precise what
we understand by the term resolution in this context.

A partition π of U is a finite collection {Uj}pj=1 such that (a) Uj are Borel subsets of U
such that µ(Ũ) > 0 for every nonempty subset Ũ ⊂ Uj which is relatively open in Uj ,
(b) which are exhaustive in that ∪pj=1Uj = U and (c) disjoint in that Ui ∩ Uj = 0 for
i ̸= j. The additional technical conditions in (a) simply ensure that Mercer’s theorem
applies to Uj individually as it does to U as a whole. In common mathematical parlance,
a partition need not be finite nor contain only Borel sets but using the above definition
lends brevity to our presentation.

We shall refer to sets of the form Ui × Uj for 1 ≤ i, j ≤ p as pixels. A π-resolution
graph Ω ⊂ U × U is a union of pixels which includes the pixels on the diagonal, that is,
∪pj=1Uj × Uj ⊂ Ω. Every graph Ω on U admits what we shall call the best π-resolution
approximation Ωπ which we define as the intersection of all π-resolution graphs on U which
contain Ω. Thus, Ωπ is the smallest π-resolution graph which contains Ω. Alternatively,
we can express Ωπ as the union of all Ui × Uj which intersect with Ω. As above, we
shall denote the best π-resolution approximation of a graph Ω on U by Ωπ. Figure 3.2
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illustrates the difference between Ω and Ωπ.

We shall denote by Ω̃π the intersection ∩ϵ>0 (Ω + Bϵ)π where Bϵ denotes the intersection
of the Euclidean ball of radius ϵ in R2d with U × U and the sum A + B denotes the
set {a + b : a ∈ A and b ∈ B} ∩ U × U . Because the sets “decrease” as ϵ → 0 in that
ΩX + Bϵ1 ⊂ ΩX + Bϵ2 for ϵ1 < ϵ2, we can also write Ω̃π as limϵ→0 (ΩX + Bϵ)π. The
distinction between Ωπ and Ω̃π is mainly technical and is a consequence of the fact
observed in Example 3.2 that for certain processes there is no minimal graph Ω for which
the covariance satisfies the separation equation. For this reason and for lack of a better
alternative, we shall refer to both Ωπ and Ω̃π as the best π-resolution approximation of
Ω while indicating which of the two we mean by their respective symbols.

Example 3.3. A simple instance of how Ω̃X can differ from Ωπ
X is given by the processes

considered in Examples 3.1 and 3.2, where ΩX = {(u, v) : u = v}. Thus, Ωπ
X = ∪{Ui×Uj :

|i− j| = 0} but Ω̃π
X = ∪{Ui ×Uj : |i− j| ≤ 1} since the strip {(u, v) : |u− v| < ϵ} always

intersects the pixels Ui × Uj for which |i− j| = 1.

3.4.2 Approximate Inverse Zero Characterization

We shall now show how one can recover the best π-resolution approximation of Ω from
the covariance kernel K(s, t) = E[XsXt] of X. Let Kij = K|Ui×Uj . For 1 ≤ i, j ≤ p, let
Kij : L2(Uj , µ) → L2(Ui, µ) be the integral operator induced by the integral kernel Kij

given by
Kijf(u) =

∫
Uj

Kij(u, v)f(v) dµ(v)

Define the covariance operator matrix Kπ induced by the partition π as Kπ = [Kij ]pi,j=1.
Furthermore, we define the correlation operator matrix Rπ induced by the partition π

as Rπ = [Rij ]pi,j=1 specified entrywise by Rij = K−1/2
ii KijK

−1/2
jj . Alternatively, we can

write Rπ as Rπ = [dg Kπ]−1/2Kπ[dg Kπ]−1/2. If Rπ is invertible and then we can define
the precision operator matrix Pπ = [Pij ]pi,j=1 as the inverse of Rπ, that is Pπ = R−1

π .

The key result is now stated as follows:

Theorem 3.2. If Rπ is invertible, then the graph ΩX and the precision operator matrix
Pπ induced by the partition π are related as:

Ω̃π
X ≡ lim

ϵ→0
(ΩX + Bϵ)π ⊂ ∪ {Ui × Uj : ∥Pij∥ ≠ 0}. (3.6)

If, in addition, for every ϵ > 0 there exists a partition πϵ of U such that every pixel is
contained within a ball of radius ϵ and Rπϵ is invertible, then the above relation is an
equality. In other words, Ω̃π

X is same as the union of Ui ×Uj for (i, j) such that Pij ≠ 0.

Thus by discerning which entries of the partition-induced correlation operator matrix are
zero, one can work out a finite resolution approximation Ω̃π

X of ΩX . It follows immediately
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that Ω̃π
X is identifiable if Pπ is invertible. We expect that the technical condition for

equality is an artifact of our proof technique, and not an essential feature of the problem.

3.4.3 Refinement and Identifiability

If we know Ωπ1 and Ωπ2 then we can get a finer approximation of Ω by simply taking their
intersection. The resulting graph Ωπ1∧π2 = Ωπ1 ∩ Ωπ2 is the best (π1 ∧π2)-approximation
where the partition π1 ∧ π2 is the refinement of the partitions π1 and π2 given by
{U1 ∩ U2 : U1 ∈ π1 and U2 ∈ π2} which is in other words composed of the intersections
of the sets in the original partitions. We shall say that π2 is finer than π1 if π2 = π1 ∧ π2.
We can define the refinement of a countable number of partitions {πj}∞

j=1 as

∧∞
j=1πj = {∩∞

j=1Uj : Uj ∈ πj for j ≥ 1}

and thus if we know Ωπj for j ≥ 1 then the best π-resolution approximation for π = ∧∞
j=1πj

is given by Ωπ = ∩∞
j=1Ωπj . Additionally, we shall say that the partitions {πj}∞

j=1 separate
points on U if ∧∞

j=1πj = {{u} : u ∈ U}.

We shall say that ΩX is identifiable up to π-resolution if its best π-resolution approxi-
mation Ω̃π

X is identifiable. Moreover, we shall say that ΩX is identifiable exactly if its
closure in U is identifiable. In essence, the distinction between ΩX and its closure does
not concern us here, nor is it amenable to our method. The following corollary is now
almost immediate from Theorem 3.2 and gives sufficient conditions for identifiability of
ΩX .

Corollary 3.1. Let X be a Gaussian process on U with a continuous covariance. If
π is a partition of U such that the correlation operator Rπ is invertible, then ΩX is
identifiable up to π-resolution.

Furthermore, if there exists a sequence {πj}∞
j=1 of partitions on U such that (a) the

correlation operators Rπj are invertible and (b) the partitions separate points on U , then
ΩX is identifiable exactly.

The criteria for exact identifiability may appear to be too demanding but they are
required only for an infinite resolution or exact identifiability of Ω. For applications, we
can always content ourselves with identifiability up to π-resolution for a reasonably fine
partition π which would only require that the correlation operator Rπ induced by π be
invertible.

3.4.4 Relation to Functional Graphical Models

Consider the functional graphical model introduced in Qiao et al. (2019) in which the set
of vertices consists of X = (X1, . . . , Xp) where every Xk is a random real-valued function
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Figure 3.3: A functional graphical model can be seen as a single stochastic process by
concatenating successive vector components.

on an interval Ik and there is an edge between Xi and Xj unless

Cov[Xi(u), Xj(v)|Xk(w) for k ̸= i, j and w ∈ Ik] = 0 for u ∈ Ii and v ∈ Ij .

If we define
U =

p⊔
j=1

Ij = ∪pj=1{j} × Ij

to be the disjoint union of {I1, . . . , Ip}, the vector-valued function X = (X1, . . . , Xp)
can be thought of as a single real-valued stochastic process X = {Xu : u ∈ U} =
{Xj(t) : 1 ≤ j ≤ p , t ∈ Ij} indexed by both j and t. This can be visualized by serially
concatenating successive vector components (see Figure 3.3) and the set U can thus be
thought of as a compact subset of R. Recovering the graph of X in the functional sense
reduces to recovering the graph of ΩX in the uncountably indexed sense, but only up
to a specific π-resolution, namely where the partition π consists of the sets {(j, Ij)}pj=1.
Thus, ΩX ≡ Ω̃π

X . This restriction highlights the fact that functional graphical models
concern interactions between the random functions {Xj}pj=1 and not with interactions
within a random function Xj – the latter requires the notion of coherently resolving an
uncountable graph. Furthermore, in the same vein, it shows that functional graphical
models can be cast as special cases of our more general uncountably indexed graphical
models.
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3.5 Graph Recovery from Sample Paths

Given a partition π of the index set U ⊂ Rd, we now present our approach to the problem
of recovering the graph ΩX of a process X given n independent realizations {Xk}nk=1,
up to resolution π. Equivalently, this amounts to determining which of the entries of the
π-induced precision operator matrix Pπ = R−1

π are zero based on {Xk}nk=1 .

Evidently, for the last statement to make sense at all, we must assume that Rπ is indeed
invertible. Consequently, any consistent estimator of Rπ based on a sample of size n will
also be eventually invertible w.r.t. n, almost surely. Whenever the inverse of such an
estimator appears, it is implicit that n is sufficiently large.

Since the partition π that induces the operators Kπ, Rπ = P−1
π is the same, we shall

denote these operators simply as K, R, and P = R−1 whenever there is no danger of
confusion. By writing K = dg K + K0, the correlation operator matrix can be expressed
as

R = I + [dg K]−1/2K0[dg K]−1/2.

Thus the diagonal entries Rii of R are all equal to identity and we need not burden
ourselves with their estimation. Furthermore, since we are effectively trying to invert the
compact operator dg K, regularization is necessary, which we do by adding a ridge of
size κ. Once an estimator of the precision operator matrix is formed, we threshold it
entrywise in operator norm to estimate ΩX .

In summary, the estimation procedure consists of the following two steps:

Step 1. Estimation. We estimate the mean vector m = [mj ]pj=1, the covariance
operator matrix K̂ = [K̂ij ]pi,j=1, and the correlation matrix R̂ = [R̂ij ]pi,j=1
corresponding to the partition π = {Uj}pj=1 by

m̂j :=
n∑
k=1

Xk
Uj

K̂ij := 1
n

n∑
k=1

[
Xk
Ui

− m̂i

]
⊗
[
Xk
Uj

− m̂j

]
R̂ := I + [κI + dg K̂]−1/2K̂0[κI + dg K̂]−1/2,

for a ridge parameter κ > 0.

Step 2. Thresholding. The estimate Ω̂π of the best π-resolution approximation Ω̃π
X

is calculated as
Ω̂π = ∪ {Ui × Uj : ∥(R̂−1)ij∥ > ρ}

for a thresholding parameter ρ > 0.

106



3.6 Large Sample Theory

There are two tuning parameters involved in the procedure: the ridge κ, and the threshold
ρ. Their choice is guided via our asymptotic theory (see the next Section), in relation
to the sample size n and the partition size p (the partition π will typically be a regular
partition into p intervals of equal length). Practical rules for their choice are discussed in
Section 3.7.

We remark that the ridge estimator of the correlation operator matrix in Step 2(b) is
essentially the same as the estimator introduced by Li and Solea (2018a) in the context
of graphical models for random vectors with Hilbertian entries, adapted to our setting.
Though the context is somewhat different, there are direct parallels to be drawn, and we
hence compare to their asymptotic analysis in the next section.

3.6 Large Sample Theory

Developing asymptotic guarantees for our procedure will rely on controlling the estimation
error for the entries of the precision operator matrix in operator norm. As remarked in the
previous section, the ridge estimator is of the same form as in Li and Solea (2018a), and
thus we opt to work with the same regularity conditions. We improve upon their results in
two ways, however. Firstly, we derive both improved and simplified rates of convergence
for the estimation of the correlation operator. Secondly, under the assumption that
X is a sub-Gaussian random element in some Hilbert space, we derive concentration
bounds for the estimated correlation and precision operator matrices, along with a tail
bound on the precision operator matrix. Taken in combination, these results allow us to
then establish consistency and rates for our graph recovery method, quantifying what
resolutions can be attained at given sample sizes.

3.6.1 Rates and Bounds

Recall that we defined our estimator of the correlation operator matrix as

R̂ = I + [κnI + dg K̂]−1/2K̂0[κnI + dg K̂]−1/2. (3.7)

for K̂ our estimator of the covariance operator matrix, and κn the regularization parameter.
The error R̂ − R of estimating R using R̂ can be split into estimation error E = R̂ − Re

(related to variance) and approximation error A = Re − R (related to bias).

To control the approximation error, we will require the following regularity condition on
R:

Assumption 1. For some bounded operator matrix Φ0 with all the diagonal entries zero
and β > 0, we have

R0 = [dg K]βΦ0[dg K]β. (3.8)
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Note that this implies that R0 is compact. From an inverse problems perspective,
the assumption simply ensures that K0 = [dg K]1/2+βΦ0[dg K]1/2+β is linearly well-
conditioned for inversion by [dg K]1/2.

Our first result now relates ∥R̂ − R∥ to ∥K̂ − K∥, K and ∥R∥:

Theorem 3.3 (Bounding ∥R̂ − R∥ ). Under Assumption 1, given any sequences κn > 0
and δn ≥ ∥K̂ − K∥, we have

∥R̂ − R∥ ≤ ∥A∥ + ∥E∥ ≤ 5 · ∥R∥ ·
[
(δn/κn)2 + (δn/κn)

]
+ 2 · κβ∧1

n · ∥Φ0∥ · ∥K∥2β−β∧1.

The estimator R̂ is consistent so long as the regularization parameter κn is chosen such
that κn → 0 and δn/κn → 0 as n → ∞. The optimal rate is given by

10 · (∥R∥ ∨ ∥Φ0∥∥K∥2β−β∧1) · δ
β∧1

1+β∧1
n

and it is achieved for the choice κn ≍ δ
1

1+β∧1
n .

In fact, the theorem is valid for any choice of estimator K̂, provided that it is non-negative
definite (for a suitable δn, of course). Under our specific choice of K̂ as an empirical
covariance, the central limit theorem yields ∥K̂ − K∥ = OP(n− 1

2 ). So we can substitute
OP(n− 1

2 ) for δn and obtain the following rate of convergence for the estimator of the
correlation operator matrix:

Corollary 3.2 (Rate of Convergence for R̂). Under Assumption 1, the optimal choice
of the regularization parameter is given by κ ≍ n

− 1
2 · 1

1+β∧1 and we have

∥R̂ − R∥ = OP
(
n

− 1
2 · β∧1

1+β∧1
)
.

Note that when β ranges in (0, 1/2], the above rate is strictly better than the rate n− 2β
5+2β

·

derived in Li and Solea (2018a), and the two rates coincide when β > 1/2. In addition
to slightly improving the rate of convergence for poorly conditioned R0 corresponding to
β < 1/2, this implies that the apparent phase transition at β = 1/2 observed in the rates
of Li and Solea (2018a) is an artefact of their analysis. The only transition we observe
in the convergence is at β = 1 as for β > 1, the rate is same as that for β = 1 which is
n−1/4. However, the dependence on ∥K∥ does change, as observed in Theorem 3.3.

Turning to the precision operator matrix, recall that for P := R−1 to be well defined at
all, we need R to be strictly positive definite. The following assumption is only slightly
stronger, and represents the non-compact counterpart of the familiar assumption that
eigenvalues are separated from 0:

Assumption 2. The spectrum of R0 satisfies r = 1 + inf σ(R0) > 0.

108



3.6 Large Sample Theory

Under assumption 2, R is certainly strictly positive. Consequently, in the context of
Corollary 3.2, the operator R̂ is strictly positive for all sufficiently large n, by virtue of
being consistent. Hence, for all sufficiently large n, we may write

P̂ − P = R̂−1RR−1 − R̂−1R̂R−1 = R̂−1
[
R − R̂

]
R−1 = P̂

[
R − R̂

]
P. (3.9)

Since P̂ is a random quantity, bounding ∥P̂ − P∥ using (3.9) requires us to find a bound
for ∥R̂ − R∥, as well as ∥P̂∥. It was shown in Li and Solea (2018a), that ∥P̂∥ is bounded
in probability under Assumption 2. As a result, the convergence rates for ∥R̂ − R∥ also
apply to ∥P̂ − P∥.

Corollary 3.3 (Rate of Convergence for P̂). Under the Assumption 1 and 2, the optimal
choice of the regularization parameter is given by κ ≍ n

− 1
2 · 1

1+β∧1 and we have

∥P̂ − P∥ = OP
(
n

− 1
2 · β∧1

1+β∧1
)
.

We shall now use basically the same principle to derive concentration bounds for ∥P̂−P∥.

Remark 3.1. It is worth mentioning that our assumptions are rather minimal. It is
well known in inverse problems literature that the rate of convergence of the solution
of a linear inverse problem can be arbitrarily slow in the absence of any regularity such
as that provided by Assumption 1. On the other hand, Assumption 2 is necessary if
we are to connect the empirical covariance with the graph of the process via Theorem
3.2. Though it has occasionally been claimed in the literature that R always admits a
eigenvalue gap (i.e. that R ≥ cI for some c > 0), this is not true as the following simple
counterexample illustrates: take K = [Kij ]2i,j=1 to be given by K11 = K22 = ∑

j λjej ⊗ ej
and K12 = K21 = −λ1e1 ⊗ e1. Then R = [Rij ]2i,j=1 given by R11 = R22 = I and
R12 = R21 = −e1 ⊗ e1 is not invertible since R[e1 e1] = 0. The same counterexample
shows that intervibility itself of R cannot be secured by requiring Ker Kjj = {0}.

In order to derive concentration bounds on the correlation and precision operator matrices,
we exploit a concentration bound in the operator norm which is a consequence of Theorem
9 from Koltchinskii and Lounici (2017). The results can be extended effortlessly to random
elements in Banach spaces but in the interest of a simpler presentation we shall refrain
form doing so.

Theorem 3.4. Let X be a sub-Gaussian random element in a Hilbert space, with mean
zero and covariance operator K. Let X1, . . . , Xn be i.i.d. replications of X. Define the
empirical covariance operator K̂ = 1

n

∑n
j=1Xj ⊗Xj. For every 0 < t ≤ ∥K∥,

P{∥K̂ − K∥ ≥ t} ≤ e−cnt2/∥K∥2

for n ≥ (1 ∨ r(K))∥K∥2/t2 where r(K) = (E∥X∥)2/∥K∥ and c is a universal constant.
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Using our earlier results, we can now derive concentration bounds for ∥R̂−R∥ and∥P̂−P∥
and a tail bound for P̂, which will eventually enable us to prove the consistency of our
graph recovery procedure:

Theorem 3.5 (Concentration and Tail Bounds). Let X be a stochastic process on the
set U corresponding to a sub-Gaussian random element in the Hilbert space L2(U, µ) with
the covariance operator K. Let cK be the universal constant c appearing in Theorem 3.4,
ρK = ∥K∥, nK = [1 ∨ r(K)]∥K∥2,

MR = 10 ·
[
∥R∥ ∨ ∥Φ0∥∥K∥2β−β∧1

]
and r = inf

j
[1 + λj(R0)] = ∥P∥−1.

Define, cR = cKM
2+2/β∧1
R , ρR = MRρ

β∧1/(β∧1+1)
K , nR = nKM

2+2/β∧1
R and cP =

cR(r2/2)2+2/β∧1.

1. Under Assumption 1, we have

P[∥R̂ − R∥ > ρ] ≤ exp
{

−cRnρ2+2/β∧1
}

(3.10)

for 0 < ρ < ρR and n > nR/ρ
2+2/β∧1.

2. Under Assumptions 1 and 2, we have

P[∥P̂∥ > (r − ρ)−1] ≤ exp
{

−cRnρ2+2/β∧1
}

(3.11)

for 0 < ρ < r ∧ ρR and n > nR/ρ
2+2/β∧1.

3. Under Assumptions 1 and 2, we have

P[∥P̂ − P∥ > ρ] ≤ 2 · exp
{

−cPnρ2+2/β∧1
}

(3.12)

for 0 < ρ < (r/2) ∧ ρR and n > nR/ρ
2+2/β∧1.

Note that the parameters ρK and nK depend only on the covariance kernel K whereas
the parameters cR, cP , ρR, MR, r and nR depend only on K and π.

3.6.2 Consistent Graph Recovery

We can now have the tools to establish sufficient conditions for the estimator Ω̂π
X of Ω̃π

X

to be consistent.

Theorem 3.6 (Consistency at Given Resolution). Let X be a Gaussian process on U

with continuous covariance kernel K, corresponding to a (Gaussian) random element
in the Hilbert space L2(U, µ). Let {Xk}nk=1 be n independent copies of X and π be a
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partition on U . Under Assmptions 1 and 2, we have for 0 < ρ < 1
2r ∧ ρR ∧ ρP and

n > nR/ρ
2+2/β∧1,

P[Ω̂π
X ̸= Ω̃π

X ] ≤ 2p2 · exp
[
−cPnρ2+2/(β∧1)

]
→ 0 as n → ∞

where p is the cardinality of π, ρP = 1
2 min{∥Pij∥ : Pij ̸= 0} and the parameters ρR, nR

and cP are as in Theorem 3.5 and depend only on K and π.

Alternatively, for the probability P[Ω̂π
X ̸= Ω̃π

X ] to be less than some α ∈ (0, 1), we need
the sample size n to satisfy

n >
1
cP

[1
2r ∧ ρR ∧ ρP ]−2−2/β∧1 log

[
2p2

α

]
.

Notice that even if the thresholding parameter is chosen as a function of the sample size,
as in ρ ≡ ρ(n), then the estimator is consistent so long as nρ2+2/β∧1

n → ∞ as n → ∞.
Regardless, Theorem 3.6 guarantees exact recovery of Ω̃π

X with high probability so long
as the thresholding parameter ρ is fixed to be small enough and the sample size n is
large enough. It is in contrast to the asymptotic results of Li and Solea (2018a) in which
the thresholding parameter needs to decrease as the sample size increases for consistent
recovery of the graph and we do not know how quickly P[Ω̂π

X ̸= Ω̃π
X ] converges to 0 in

terms of the sample size.

A natural question now is: at how fine a resolution p can we estimate the graph ΩX

reliably from a given sample size n? Put differently, how can we refine our partition π as
the sample size n increases to construct a consistent estimator for the graph ΩX itself?
Let {πj}∞

j=1 be partitions on U which separate points and {αj}∞
j=1 ⊂ R be such that∑∞

j=1 αj < ∞. For every j ≥ 1, let Ω̂j denote the estimator Ω̂πj

X constructed only using
the sample {Xk}

nj

k=1 with an admissible values of the threshold ρj according to Theorem
3.6 where the parameter nj has been chosen to be the smallest n such that

n >
1
cPj

[1
2rj ∧ ρRj ∧ ρPj ]−2−2/βj∧1 log

[
2p2
j

αj

]
. (3.13)

Here, pj is the cardinality of πj while βj , rj , ρRj , ρPj and cPj are the parameters β, r,
ρR, ρP and cP corresponding to the correlation operator R = Rπj . Essentially, we are
saying that for larger sample sizes n > nj we can recover ΩX to higher resolution pj with
an eventually decreasing probability of failure αj since αj → 0 as j → ∞. We now have
the following result.

Theorem 3.7 (Consistency under Resolution Refinement). Let X be a Gaussian process
on a compact set U ⊂ R with the continuous covariance K corresponding to a (Gaussian)
random element in the Hilbert space L2(U, µ). Let {Xk}nk=1 be independent copies of X
and {πj}∞

j=1 be partitions on U which separate points such that: (a) πj+1 is finer than
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πj for every j ≥ 1 and (b) the associated correlation operators Rπj satisfy Assumptions
1 and 2. Then for Ω̂j as defined before,

lim
n→∞

Ω̂max{j:nj<n} = ΩX almost surely.

In other words, Ωmax{j:nj<n} is a consistent estimator of ΩX

3.7 Finite Sample Implementation and Performance

To implement the procedure in practice, one needs to specify the partition π, the ridge
κ, and the threshold ρ, and we now discuss this specification in a finite-sample context
(as opposed to a large sample context, as in the previous sections).

• Partition. The choice of partition π is in principle up to the analyst, based on
which regions of the domain one is interested to probe for conditional independencies.
In most cases, one will work with a regular partition (p contiguous subintervals of
[0, 1] of equal length). In any practical setting involving measurement/computation
on a grid, it is clear that the finest possible partition is de facto that grid. If the
paths are sampled very densely (high frequency) relative to the sample size, then it
is judicious to not use the finest possible grid as per our large sample theory. In
any case, one can also adopt a scale-space approach and consider multiple values
of p, searching for persistent zero patterns in the associated correlation operator
matrices.

• Ridge. The ridge parameter κ ensures that the sample counterpart [κI+dg K̂]−1/2

of [dg K]−1/2 is stable to sampling variation, in view of the inversion operation. A
classical – if computationally intensive– approach is to employ generalized cross
validation to make this choice (as in Li and Solea (2018a)). A simpler strategy is
to instead choose κ so as to minimize

∥(dg K̂)(κI + dg K̂)−1(dg K̂) − dg K̂∥
∥ dg K̂∥

. (3.14)

The justification of this rule is simple: we seek a value of κ which makes (κI+dg K̂)−1

an approximate generalised inverse of dg K̂. This selection rule with a search grid
of the form κ ∈ {10−j∥K̂∥ : 1 ≤ j ≤ 15} seems to work well in our simulation study,
whereas tuning κ more finely does not improve results significantly.
Notice that the value of (3.14) does not decrease monotonically as κ gets smaller
because dg K̂ is not invertible. Instead, it eventually increases, thus leading to
a U-shaped curve with a minimum. This minimum corresponds to the operator
(κI + dg K̂)−1 whose action on dg K̂ resembles that of a (generalised) inverse the
most, over all choices of κ. Roughly speaking, this amounts to choosing κ such
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(a) K1 (Gaussian kernel)
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(b) K2 (Brownian motion)
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(c) K3 (Integrated Brownian motion)
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(d) K4 (Pólya covariance)
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(e) K5 (Linear interpolation of random vector)

Figure 3.4: Plots of the covariance K (left), the matrix of norms P = [∥Pij∥]pi,j=1 (center)
and Ωπ

X (right) for K = (a) K1, (b) K2, (c) K3, (d) K4 and (e) K5. 113
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that the error in ∥(dg K̂)(κI + dg K̂)−1(dg K̂) − dg K̂∥ is around the same as the
noise level ∥ dg K̂ − dg K∥ of the estimate dg K̂ as prescribed by the Morozov
descrepancy principle (see Kaipio and Somersalo, 2006). Notice furthermore that
we have used the same estimator dg K̂ of dg K in all the terms of (3.14) instead
of using replicated versions generated using the bootstrap. Although doing things
this way would not pose a significant computational burden, it turns out that it
also does not significantly improve results. For this reason we have elected to use
the simpler method which works and scales well for the purpose of our simulation
study.

• Threshold. According to our theoretical results, ρ need not decrease with n, but
rather any sufficiently small value will suffice. Naturally, as n → ∞, the ij-entries
of P̂ij corresponding to Pij = 0 converge to zero while those for which Pij ̸= 0
converge to Pij . In fact, when we plot histograms of the set {log10 ∥P̂ij∥ : 1 ≤
i, j ≤ p} for increasing sample sizes, we notice that it tends to separate into roughly
two components corresponding to zero and nonzero entries (see Figure 3.5). The
separation between the two grows more prominent as the sample size increases and
because the scale we have used is logarithmic, the actual difference between the
components is that of an entire order of magnitude.

The above observation suggests that the threshold ρ should be chosen so as to
divide these two components. Of course, in practice, the two components are rarely
as clearly separated as in Figure 3.5 (d) and (e). Realistically, we are more likely
to find ourselves in a situation that resembles Figure 3.5 (a). A kernel density
estimator can make the components more visible. The local minimums and elbows
of the density function can now serve as candidates for the threshold ρ as illustrated
in Figure 3.6.

Intuitively speaking, if ρ is chosen in this manner, then it is ambiguous to which
component an entry P̂ij with ∥P̂ij∥ = ρ belongs. In other words, ∥P̂ij∥ = ρ

represents the decision boundary for the purpose of classifying Pij into one of the
two aforementioned components.

Alternatively, one can use the stability selection approach of Meinshausen and
Bühlmann (2010) which is often used for model selection in LASSO and graphical
LASSO. For operator thresholding, the selection probability monotonically decreases
with the threshold ρ and we obtain a very simple form for the selection criterion
which says that there is an edge between i and j if

1
Ns

Ns∑
k=1

1{∥P̂k
ij∥≥ρ} > πthreshold

where P̂k
ij for 1 ≤ k ≤ Ns are bootstrap estimates of Pij obtained from random

subsamples of size n/2 and usually, we choose Ns = 100. However, this still
leaves us with two tuning parameters: ρ and πthreshold ∈ (1/2, 1) and a significant
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Figure 3.5: Histograms of log-norms {log10 ∥P̂ij∥ : 1 ≤ i, j ≤ p} for the integrated
Brownian motion covariance K3 (described in Section 3.7.1) for the sample sizes (a) 200,
(b) 400, (c) 600, (d) 800 and (e) 1000. The grid size was 200. The two components
increasingly separate with increasing sample size.
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Figure 3.6: The local minima (a) and elbows (b) of the kernel density estimator of
{log10 ∥P̂ij∥ : 1 ≤ i, j ≤ p} serve as good candidates for the threshold ρ.
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computational burden. It thus appears that stability selection is not particularly
well adapted to inverse thresholding.

To probe the finite sample performance of our approach as dependent on sample size and
the discussion above, we conduct a simulation study considering a variety of Gaussian
processes on the unit interval, U = [0, 1] ⊂ R and focussing on regular partitions.

3.7.1 Simulations

In this section we shall study the performance of our method for different covariances
(K), resolutions (p) and sample sizes (N). We pick U to be the unit interval [0, 1] ⊂ R
and consider the partitions π given by the collection of subintervals Uj = [j/p, (j + 1)/p)
for 0 ≤ j ≤ p − 1 and Up = [(p − 1)/p, 1]. This makes it possible to visualise the
graphs involved. Furthermore, we consider three values for the sample size N : 50 (low),
100 (moderate) and 200 (high); and three values for the resolution p: 20, 30 and 40,
corresponding to p partitions of U . The covariances we study are described in Subsection
3.7.1 and Figure 3.4 displays the level plots of the covariances along with the level plots of
the matrix P = [Pij ]pi,j=1 (which contains the norms of the entries of the precision matrix
P) and the graphs Ω̃π

X . For some of these covariances, Ω̃π
X could not be ascertained from

theory and was evaluated numerically instead.

For every covariance K and resolution p, we generate N samples from the Gaussian
distribution corresponding to K with mean zero on a regular grid on U of length 600
and calculate Ω̂π

X(ρ) for various values of ρ using the method described in Section 3.5.
We compare Ω̂π

X(ρ) with the true Ω̃π
X and calculate the True Positive Rate (TPR) and

the False Positive Rate (FPR) of classifying the pixels Ui × Uj for every ρ and plot a
Receiver Operating Characteristic (ROC) curve as in Figure 3.8. We calculate the Area
Under the Curve (AUC) of the ROC curve. We do this 100 times for every combination
of K, p and N , and report the median and mean absolute deviation of the AUC rounded
to two decimal places. The results are displayed in Table 3.1.

The median AUC naturally increases with the sample size accross covariances and
resolutions. Almost perfect results for the covariances K = K1, K2 and K3 are most
probably due to the structure of their graphs which is, in some sense, simple. For a
fixed covariance K and sample size N , the results seem to worsen for the covariances
K = K2,K3 but improve for K = K4 with increasing resolution p. For K = K5, there is
an intriguing anomaly for K = K5 and p = 30 where the results are noticeably worse
than those for the resolutions p = 20, 40 which are almost perfect.

We expect that, generally speaking, the results should worsen with increasing resolution
eventually. The reason this does not seem to be the case for K = K4 is probably the
relatively complicated nature of its graph. Increasing the resolution allows for estimating
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the graph at a finer scale, at least for when considering a range of low resolutions.
If this is indeed the case then the increase in performance should decrease with the
increase in resolution beyond a certain range, which is indeed the case as shown in Table
3.1. The anomaly for K = K5 is probably a result of the corresponding correlation
operator R = Rπ being close to noninvertible. Both these observations suggest that a
multiresolution approach –one in which one tries to recover the graph of X at several
different resolutions so as to detected incidental unfavourable properties of the correlation
operator Rπ – can be beneficial.

Table 3.1: Medians ± mean absolute deviations (MAD) of Area under the curve (AUC)

Parameters N

K p 50 100 200

K1

20 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00
30 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00
40 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

K2

20 0.95 ±0.01 0.97 ±0.01 0.98 ±0.01
30 0.95 ±0.01 0.96 ±0.01 0.97 ±0.00
40 0.95 ±0.01 0.96 ±0.06 0.97 ±0.00

K3

20 0.84 ±0.02 0.88 ±0.02 0.89 ±0.02
30 0.86 ±0.02 0.87 ±0.02 0.88 ±0.01
40 0.86 ±0.02 0.87 ±0.01 0.88 ±0.01

K4

20 0.82 ±0.03 0.85 ±0.00 0.85 ±0.03
30 0.85 ±0.03 0.87 ±0.02 0.88 ±0.02
40 0.86 ±0.02 0.89 ±0.02 0.90 ±0.01

K5

20 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00
30 0.93 ±0.01 0.93 ±0.01 0.94 ±0.01
40 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Construction of Covariances

The five covariances on U = [0, 1] (and corresponding graphs) considered in our simulation
study are as follows:

1. Analytic Covariances. As we have mentioned before, all analytic covariances
have the degenerate graph given by the diagonal ΩX = {(u, v) : u = v}. From this
category we shall choose the familiar Gaussian kernel K1(u, v) = e−(u−v)2 .

2. Covariances of Gaussian Markov Processes. The most familiar Markov
Gaussian process is Brownian motion Xt = Wt which has the graph ΩX = {(u, v) :
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u = v} and the covariance K2(u, v) = u ∧ v.

3. Integrated Brownian Motion. To see how the effect of applying a linear filter on
a process we consider Xt =

∫ t∧1
0∨(t−0.5)Ws ds with the covariance, say K3. Although

we are unable to establish this theoretically, robust numerical evidence suggests
that the graph is (approximately) given by ΩX ≈ {(u, v) : |u− v| = 0 or 0.5}.

4. Pólya Covariances. Consider the positive-definite function of the Pólya type ∆w

given by ∆w(t) = (1 − |t/w|)1{1−|t/w|≥0}. We consider K4(u, v) = 0.8∆0.7(u− v) +
0.2∆0.8(u− v). This leads to an interesting graph ΩX approximately given by

ΩX ≈ {(u, v) : |u− v| = 0 or 0.8} ∪ {0, 0.2, 0.8, 1}2.

Once again, this is an approximate result supported by robust numerical evidence
and not an exact one justified by theory.

5. Linear Interpolation of a Random Vector. To verify that our method for
graph recovery in continuous time conforms to our intuition for graph recovery in
finite dimensions, we construct a process Xt by linearly interpolating a Gaussian
random vector X = (X1, . . . , Xq+1) ∈ Rq+1 with mean zero and the covariance
given by the Kac-Murdock-Szegö matrix C = [α|i−j|]q+1

i,j=1 with the parameters
α = 0.3 and q = 10. Thus Xt = (1 − t′)Xi + t′Xi+1 where i = 1 + ⌊tq⌋ and
t′ = t− i/q. Moreover, the covariance is given by

K5(u, v) = (1 −u′)(1 − v′)α|i−j| + (1 −u′)v′α|i−j−1| +u′(1 − v′)α|i+1−j| +u′v′α|i−j|

for i = 1 + ⌊uq⌋, j = 1 + ⌊vq⌋, u′ = u − i/q and v′ = v − j/q. It can be shown
that the graph of X is given by the adjacency matrix [1|i−j|≤1]q+1

i,j=1 and that
ΩX = {(u, v) : |⌊qu⌋ − ⌊qv⌋| ≤ 1}.

By numerical evidence above, we mean that this is the structure suggested from computing
Ω̂π
X for the exact covariances K3 and K4 with p = 50 on a grid size of 1200 for the values

of the truncation parameter corresponding to the longest region of stability as explained
in Subsection 3.7.1 and illustrated in Figure 3.7.

To understand how well this approach might work, we compute the estimator Ω̂π
X(ρ) for

the covariances Kj for 1 ≤ j ≤ 5 discretized on a regular grid of length 600. We then plot
histograms of log10 ∥Pij∥ and identify regions of stability. We ignore the small number
of ∥Pij∥ which are computationally zero, so the logarithm does not pose a problem. The
results are documented in Figure 3.7.

Notice that the signal which constitutes significant entries Pij of the precision matrix is
often comfortably separated from the noise which is composed of those entries which
are supposed to be zero and often by many orders of magnitude. Although, this is not
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Figure 3.7: Histograms of log-norms {log10 ∥Pij∥ : 1 ≤ i, j ≤ p} for the covariances (a)
K1, (b) K2, (c) K3, (d) K4 and (e) K5. The green bars indicate regions of stability i.e.
the values of the thresholding parameter ρ for which Ω̂π

X(ρ) = Ω̃π
X . Additionally, the

blue bars in (a) and (e) represent the values of ρ for which Ωπ
X(ρ) = Ωπ

X .
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Figure 3.8: Sample ROC curves for simulated instances of the covariances Kj for
1 ≤ j ≤ 5.

exactly the case for K1 (a) (probably due to its smoothness) and K5 (e), we are still able
to identify relatively long regions (blue) over which Ω̂π

X(ρ) = Ωπ
X for (a) and (e).

3.8 Illustrative Data Analysis

In this section, we illustrate our method by analysing two data sets. The first concerns
infrared absorption spectra obtained from fruit purees where we expect the graph to
have significant associations between distant locations. The second involves the intraday
price of a certain stock where we expect the graph to resemble that of a Markov process
as in Figure 3.4 (a) or (b).

3.8.1 Infrared Absorption Spectroscopy

A very interesting application of graphical modelling to absorption spectrometry appears
in Codazzi et al. (2022), in which the absorption spectra obtained from a sample
of strawberry purees are modelled as continuous functions and an attempt is made at
estimating their conditional dependence structure via a Bayesian inference procedure. The
method involves B-spline smoothing of the spectra and uses the conditional dependence
between the smoothing coefficients as a substitute for the conditional dependence structure
of the spectra.

This structure is of interest to determining the chemical composition of the puree
samples. In particular, if different regions of the spectrum are related, then they

120



3.8 Illustrative Data Analysis

1000 1200 1400 1600 1800

0
1

2
3

4

Normalized Absorption Spectra from Strawberry Purees

Wavelength (nm)

N
or

m
al

iz
ed

 In
te

ns
ity

Figure 3.9: Absorption spectra of strawberry purees.

Wavelength (nm)

W
av

el
en

gt
h 

(n
m

)

1000

1200

1400

1600

1000 1200 1400 1600

0.0e+00

2.0e+07

4.0e+07

6.0e+07

8.0e+07

1.0e+08

1.2e+08

1.4e+08

1.6e+08

(a)

Wavelength (nm)

W
av

el
en

gt
h 

(n
m

)

1000

1200

1400

1600

1000 1200 1400 1600

0

1

(b)

Figure 3.10: (a) The matrix of operator norms [∥Pij∥]pi,j=1 and (b) the graph Ω̃π
X obtained

for the threshold ρ = 107.5 for the absorption spectra of strawberry purees.
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Figure 3.11: Histogram and density of the log-norms {log10 ∥P̂ij∥ : 1 ≤ i, j ≤ p} for
the strawberry puree data. The green line indicates the threshold ρ chosen for the
graph in Figure 3.10 (b). It has been manually chosen to be slightly less than the value
corresponding to the elbow of the density curve which corresponds to ρ = 107.6.

probably correspond to the same chemical component. This could be useful for detecting
adulteration. Using our method, we approach the problem directly. We calculate the
covariance of L1-normalized absorption spectra readings from the dataset Shu et al. (2019),
obtained from n = 351 samples of freshly prepared strawberry purees on a uniform grid
of 235 wavelengths in the interval I = [899.327 nm, 1802.564 nm] (see Figure 3.9). We
discard the last wavelength so as to make it easier to divide the domain into p = 39
partitions and calculate the corresponding precision matrix, which is thresholded at
a manually chosen level of ρ = 107.5 using the method described in Section 3.7 (see
Figure 3.11). The kernel density estimate was automatically calculated using the density
function in the R Base package (R Core Team, 2021) with default parameters. The
results are summarized in Figure 3.10. The graph thus obtained is very similar to the
one obtained in Codazzi et al. (2022).

3.8.2 Stock Price for Pfizer Limited

We consider the intraday price of Pfizer Limited (NSE: PFIZER) listed on India’s National
Stock Exchange (NSE) at 1 minute intervals during 988 regular trading sessions (09:15
AM - 15:30 PM IST) from 2nd January 2017 to 1st January 2021 (see Figure 3.12). The
prices are considered relative to the opening price of the day. The data has been made
freely available on Kaggle by Kumar (2022).

On many days, trading was halted during the session, which lead to missing data. To
circumvent this problem, we estimate the covariance in a pairwise manner. The resulting

122



3.8 Illustrative Data Analysis

-1
50

-1
00

-5
0

0
50

10
0

15
0

Relative Change in the Price of Pfizer Limited

Time (IST)

C
ha

ng
e 

in
 P

ric
e 

(I
N

R
)

09
:1

5

09
:3

0

09
:4

5

10
:0

0

10
:1

5

10
:3

0

10
:4

5

11
:0

0

11
:1

5

11
:3

0

11
:4

5

12
:0

0

12
:1

5

12
:3

0

12
:4

5

13
:0

0

13
:1

5

13
:3

0

13
:4

5

14
:0

0

14
:1

5

14
:3

0

14
:4

5

15
:0

0

15
:1

5

Figure 3.12: Relative price of Pfizer Limited during regular trading sessions from 2nd
January 2017 to 1st January 2021.

estimate is almost but not exactly positive semidefinite, so we project it to the cone of
positive semidefinite matrices by retaining only the positive part of its eigendecomposition.
The resolution of the grid is 375 and we choose p = 25. The results are summarized in
Figure 3.14. The choice of the threshold using the method described in Section 3.7 is
summarized in Figure 3.13 and the kernel density estimate was automatically calculated
using the density function in the R Base package R Core Team (2021) with default
parameters as before.

The graph almost exactly resembles what one would expect for a Markov process, except
for a noticeable clique for times between 12:15 and 13:45. The almost Markov nature
of the graph is to be expected since it is widely believed in the academic literature in
finance that stocks are mostly efficiently priced. The apparent existence of a clique may
or may not be an interesting feature open to financial interpretation.
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Figure 3.13: Histogram and density of the log-norms {log10 ∥P̂ij∥ : 1 ≤ i, j ≤ p} for
stock price data. The green line indicates the threshold ρ chosen for the graph in Figure
3.14 (b). It has been chosen to be an elbow of the density curve which corresponds to
ρ = 108.8
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Figure 3.14: (a) The matrix of operator norms [∥Pij∥]pi,j=1 and (b) the graph Ω̃π
X obtained

for the threshold ρ = 108.8 for the stock price of Pfizer Limited.
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4 Functional Graphical Lasso

Abstract
...In 1961 one of us (Tribus) asked Shannon what he had thought about when he

had finally confirmed his famous measure. Shannon replied: “My greatest concern
was what to call it. I thought of calling it ‘information,’ but the word was overly used,
so I decided to call it ‘uncertainty.’ When I discussed it with John von Neumann,
he had a better idea. Von Neumann told me, ‘You should call it entropy, for two
reasons. In the first place your uncertainty function has been used in statistical
mechanics under that name. In the second place, and more importantly, no one
knows what entropy really is, so in a debate you will always have the advantage.’”

Edward C. McIrvine and Myron T. Tribus, Energy and Information (1971)

Abstract
We consider the problem of recovering conditional independence relationships be-

tween a finite number of jointly distributed second-order Hilbertian random elements
given multiple realizations thereof. We operate in the sparse high-dimensional regime
and propose an infinite-dimensional generalization of the multivariate graphical
lasso. We prove model selection consistency under natural assumptions and extend
many classic results to infinite dimensions. Most importantly, our method can be
understood as arising from a coherent maximum likelihood philosophy.

4.1 Introduction

We consider the problem of recovering conditional independence relationships between
a finite number of jointly distributed second-order Hilbertian random elements given
multiple realizations thereof. We operate in the sparse high-dimensional regime, where
every random element is conditionally dependent on only a small number of other random
elements, and the number of joint observations of the random elements is small compared
to the number of random elements. We propose a plug-in procedure which recovers
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the conditional independence graph from an estimate of the joint covariance of the
random elements and can be thought of as an infinite-dimensional generalization of the
multivariate graphical lasso.

Specifically, consider X = (X1, . . . , Xp)⊤ where {Xj}pj=1 are jointly distributed second-
order random elements in the Hilbert spaces {Hj}pj=1, respectively. The conditional
independence structure of X can be thought of as an undirected graph G with the
vertices {Xj}pj=1, where for i ̸= j, Xi and Xj are adjacent unless they are conditionally
independent given the rest of the vertices {Xk}k ̸=i,j , that is

Xi ⊥⊥ Xj | {Xk}k ̸=i,j .

The maximum degree d of G is defined as the maximum number of neighbours (adjacent
vertices) of a vertex of G. We are interested in determining the edges of the graph G

from n independent realizations {Xk}nk=1 of X in the sparse high-dimensional regime,
where n ≪ p and d ≪ p. The standard multivariate version of the problem can be seen
as a special case where Hj = R for every j and consequently {Xj}pj=1 are real-valued
random variables.

In the multivariate setting, the problem has been studied comprehensively and many
methods have been devised. Of these, precision thresholding is the simplest as it merely
requires thresholding the entries of the inverse of the empirical covariance matrix Ĉ. If the
absolute value of the (i, j)th entry of Ĉ−1 is below the threshold, then the corresponding
edge is understood as being absent in the graph. The motivation for this comes directly
from a classic result in the theory of Gaussian graphical models that we shall call the
inverse zero characterization, which states that if X is Gaussian with an invertible
covariance C, the (i, j)-th entry of C−1 is non-zero if and only if Xi and Xj are adjacent
(Lauritzen, 1996; Meinshausen and Bühlmann, 2006; Drton and Maathuis, 2017). The
method does not perform well in the sparse high-dimensional regime (n ≪ p) because it
cannot make use of the sparsity in the graph structure.

Fortunately, there are methods which are consistent in high-dimensions. One such
method, known as neighbourhood selection (Meinshausen and Bühlmann, 2006), involves
performing ℓ1-penalized linear regression on each of the random variables against the
rest with the non-zero coefficients in the regression corresponding to the neighbours
of the random variable. A second such method, called the graphical lasso (Yuan and
Lin, 2007; Friedman et al., 2008) combines the sparsity-exploiting properties of the ℓ1
penalty along with the inverse zero characterization and is known to be consistent in
high-dimensional settings (Rothman et al., 2008; Ravikumar et al., 2011). In practice,
the graphical lasso is often the method of choice for Gaussian graphical models, likely
due to its conceptual simplicity and ability to perform estimation and model selection
(i.e., support estimation) in a single step (Yuan and Lin, 2007). The method involves
estimating the precision matrix by maximizing the appropriately penalized Gaussian
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log-likelihood:
Q̂ = arg min

Q
tr
(
ĈQ

)
− log det(Q) + λ∥Q∥1−, (4.1)

where Q = [qij ]pi,j=1 is positive-definite, λ > 0 is a tuning parameter and ∥Q∥1− =∑
i ̸=j |qij | is the penalty term which promotes sparsity in Q by driving the the less

significant of its off-diagonal entries to zero.

We shall extend the graphical lasso to the general Hilbertian setting by reformulating
the optimization problem (4.1) in infinite-dimensional terms. Our primary concern is
the multivariate functional data setting in which Xj are real-valued random functions on
compact intervals of the real line. The distinctive feature of functional data (Ramsay and
Silverman, 2005; Hsing and Eubank, 2015), as opposed to multivariate data, is the fact
that the covariance operator is trace-class and thus not boundedly invertible, obscuring
the relationship between the graphical model and the support of the inverse covariance.
While we focus on multivariate functional data, our approach can in principle be used to
recover relationships between diverse types of random objects, be it variables, vectors,
functions, surfaces, so long as they can be represented as second-order random elements
in a Hilbert space. We shall mostly restrict ourselves to the classical setting where Xj

are jointly Gaussian. For non-Gaussian Xj , our method recovers relationships based
on an alternative notion of irrelevance, which is called conditional uncorrelation and is
based purely on linear relationships between the random elements.

Recovering conditional independence graphs of multivariate functional data by means
of extending the graphical lasso has been attempted before in the literature. Qiao
et al. (2019) proposed an intuitive approach that proceeds by representing every random
function Xj as a random vector of a chosen number of its principal component scores.
Then the conditional independence graph of the resulting representations is recovered
using the joint graphical lasso (Danaher et al., 2014), which ensures that the procedure
recovers relationships between the different random functions while ignoring those between
principal scores corresponding to the same random function. While the method is elegant
in its conception, Zapata et al. (2022) noted that connecting conditional independence
relationships between the random function with the zeros of the precision matrix of
their principal component representations seems to require that every random function
can be represented as a finite linear combination of a fixed number of deterministic
functions with random coefficients. In other words, the functional data has to be exactly
finite-dimensional. Observing that this assumption is impractical and unrealistic for
certain applications, Zapata et al. (2022) advance a novel assumption of their own, called
partial separability, under which they link the conditional independence graph of the
random functions with the zero entries of a suitably defined precision matrix, while
allowing the data to be infinite dimensional. As an interesting generalization of the
separability assumption that is popular in multi-way functional data (Aston et al., 2017),
partial separability could be of interest even in areas other than functional graphical
models. However, it still constitutes a serious structural assumption as it postulates that
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the covariance operators {Cjj}pj=1 of the random functions {Xj}pj=1 are simultaneously
diagonalizable, that is, they have the same eigenfunctions. Moreover, evaluating the
plausibility of the assumption for a given data set on an intuitive basis is difficult and a
statistical test for it has not yet been developed.

Both of these approaches to functional graphical models are based on functional prin-
cipal components analysis, treating functional realizations in terms of their truncated
principal component representations, and recovering conditional independence relation-
ships between random elements from these representations demands imposing structural
assumptions. The necessity of dimensionality reduction can be understood as stemming
from the absence of a determinant-like functional on the space of covariance operators.
Indeed, every functional defined as the product of eigenvalues must vanish everywhere
because the eigenvalues of covariance operators converge to zero by virtue of compactness.
In this chapter, we shall present an approach that circumvents this problem by reformu-
lating (4.1) in terms of correlation operators, which are operator analogues of correlation
matrices, and a regularized infinite-dimensional generalization of the matrix determinant
known as the Carleman-Fredholm determinant (or alternatively the Hilbert-Carleman
determinant). Although the use of correlation in place of covariance is not uncommon in
functional data (Lee et al., 2023; Li and Solea, 2018b) and is, in fact, standard practice
for the multivariate graphical lasso (Kovács et al., 2021), it arises quite naturally in our
treatment, which can be understood as emerging from a coherent maximum likelihood
philosophy. The key idea is to use the product measure of the “coordinates” {Xj}pj=1 as
a reference measure.

4.1.1 Related Work

Other well-known methods of graph recovery for multivariate data that we mentioned
above have also been generalized to the multivariate functional setting. Of these, inverse
thresholding (Li and Solea, 2018b; Lee et al., 2023) is naturally the simplest, as it merely
requires thresholding the entries of the inverse of a certain correlation operator that
can be computed from the data. This requires the operator to be invertible. Like
its multivariate counterpart and for the same reasons, this method is not supposed to
perform well in the sparse high-dimensional setting. Naturally, all results proving model
selection consistency for this approach assume that p is fixed.

Functional generalizations of the neighborhood selection approach (Zhao et al., 2021; Lee
et al., 2022) involve performing appropriately penalized functional regression on each of
the random elements against every other random element. Unlike inverse thresholding,
these methods do work well in the high-dimensional settings and they also possess
the computational advantage of being amenable to parallel implementation. But due
to their reliance on functional regression, they require the regression operator to be
Hilbert–Schmidt. This constitutes a substantial structural assumption since regression
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operators are not bounded in general (Kneip and Liebl, 2020), and it does not hold if,
for example, one of the random element is a linear combination of some other random
elements since the corresponding regression operator will then be proportional to identity,
which is not a Hilbert–Schmidt operator.

Many works in the literature, including those discussed here, deal with the more compli-
cated setting where {Xj}pj=1 are non-Gaussian or have non-linear relationships, making
them very different in flavor from the work presented here. They exhibit a complex variety
in the details of the structural assumptions they make. As an interesting development,
we mention here Solea and Dette (2022), but a comprehensive review of these different
approaches is beyond the scope of this chapter.

4.1.2 Contribution

We extend the graphical lasso to a general infinite-dimensional Hilbertian setting. Under
rather minimal and intuitive functional counterparts of the multivariate assumptions,
we prove functional analogues of state-of-the-art results in the form of finite-sample
guarantees concerning the family-wise error rate of model selection and the rates of
convergence for precision estimation known for multivariate graphical lasso (Ravikumar
et al., 2011) and, as a result, establish model selection consistency.

Our method can be motivated in a very natural manner from the maximum likelihood
principle, which is uncommon, to say the least, for functional data due to the lack of
a suitable replacement for the Lebesgue measure in function spaces. In doing so, we
demonstrate what might be the right approach to applying the likelihood method to
multivariate functional data. This development could be of wider interest.

Furthermore, we extend classic results concerning the equivalence of graphical lasso to
penalized log-likelihood maximization, Kullback-Leibler divergence minimization and
determinant maximization which were known in the multivariate setting, to the general
setting of infinite-dimensional Hilbert spaces. From an analytical perspective, methods in
functional data analysis are often infinite-dimensional reformulations of their counterparts
in multivariate analysis. While reformulating functions such as the trace and Frobenius
norm is almost trivial, we have managed to achieve the same for the nontrivial and
rather tricky case of the determinant. This is significant given that the determinant is
an important measure of the joint dispersion in multivariate analysis and appears in
many other problems. We expect the development in this paper to bear other fruitful
generalizations in the future.

Our treatment also clarifies certain elements of the multivariate functional data literature.
For example, the hitherto ad-hoc concept of correlation operator arises naturally from
the likelihood approach, while the assumption of eigenvalue gap, previously made only
in order to ensure that the correlation operator is invertible, now admits a concrete
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interpretation in terms of the supports of the measures involved. Moreover, we show that
the inverse zero characterization holds in complete generality, without the need for any
structural assumptions.

In the abstract tradition, the functional graphical lasso also contributes to our under-
standing of its multivariate counterpart by identifying the analytical properties of the
random objects involved, that make the method work. It also suggests new ways of using
the graphical lasso in the multivariate setting. In principle, using tools such as kernel or
graph embeddings, the method can be extended to other classes of random objects such
as distributions and networks, and to nonlinear relationships.

For all of its attractive theoretical properties, the approach is not without practical
merits. It greatly eases the burden of parameter tuning, requiring only the lasso-type
penalty parameter to be chosen, which is well-understood and can be easily interpreted
using the method’s divergence minimization characterization. The use of truncated
representations is also completely optional in the moderately high-dimensional setting,
where p is not so large as to compel some kind of dimensionality reduction due to
computational constraints. Our simulations reveal that, in spite of its computational
benefits, dimensionality reduction can be counterproductive if the underlying functions
do not admit efficient representations, as is the case when the sample paths of the random
functions {Xj}pj=1 are rough. Furthermore, the coordinate-free operator formulation of
the method allows the user to choose whichever discretization scheme they deem fit, be
it basis representation, point evaluation or cell averaging for reasons of representation
accuracy or efficiency. For the same reason, working with heterogeneous data, where
{Xj}pj=1 comprises of different kinds of random objects such as variables, vectors, curves
or surfaces, is as simple as dealing with homogeneous data. Finally, the plug-in nature
of the method permits the user to choose the covariance estimation procedure which is
appropriate given the nature of the available observations, thus making it applicable to
functional time series and sparsely observed functional data as well.

4.1.3 Structure of the Chapter

We begin by describing important concepts and introducing our notation in Section 4.2.
This is followed by the problem formulation and a discussion of the assumptions of our
method in Sections 4.3 and 4.4, respectively. In Section 4.5, we describe our methodology,
its motivations and interpretations. Our main results, including finite sample results
concerning the estimation of the precision operator and model selection consistency, are
stated in Section 4.6. The proof are deferred to the supplementary material. Section
4.7 contains the details of how the method is implemented, and Section 4.8 presents
simulation studies of our method’s performance.
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4.2 Background and Notation

The symbols I and 0 shall denote the identity and zero elements of the spaces they
inhabit, which will be clear from the context, according to which they can be elements,
operators or operator matrices. The symbols x ∨ y shall be used as a short-hand for
maximum of x, y ∈ R.

For 1 ≤ j ≤ p, let Hj be separable Hilbert spaces equipped with the inner products
⟨·, ·⟩j . The subscript j shall always be clear from the context and we shall avoid writing
it explicitly, preferring ⟨f, g⟩ instead, for f, g ∈ Hj . We shall denote by H, the product
Hilbert space denoted by H1 × · · · × Hp or ×p

j=1Hj equipped with the inner product

⟨f ,g⟩ =
p∑
j=1

⟨fj , gj⟩

for f ,g ∈ H, where f = (f1, . . . , fp) and g = (g1, . . . , gp).

4.2.1 Operators and Operator Matrices on Hilbert Spaces

Operators between Hilbert spaces shall be denoted using boldface, as in A with the
corresponding operator norm and adjoint being written as ∥A∥ and A∗ as usual. We
define the spectrum σ(A) of A as the set of λ ∈ R for which the operator A − λI does
not admit a bounded inverse. The notation A−1 shall denote the inverse of the operator
A or its pseudoinverse, in case it is not invertible.

We shall mostly work with spaces of Hilbert–Schmidt operators. The space of Hilbert–
Schmidt operators on a Hilbert space H shall be denoted as L2(H). The space L2(H)
forms a Hilbert space under the inner product ⟨·, ·⟩2 induced by the Hilbert–Schmidt
norm ∥ · ∥2 given by

∥H∥2
2 =

∞∑
j=1

σ2
j (H)

where {σj}∞
j=1 are the singular values of H, or equivalently, the eigenvalues of |H| =√

H∗H. It is a well-known fact that if H is the space of square-integrable functions, Hilbert–
Schmidt operators can be elegantly represented as an integral operators corresponding
to square-integrable kernels.

An operator matrix is a matrix of the form A = [Aij ]pi,j=1 where the ijth entries are
operators Aij : Hj → Hi. For an operator matrix A, we define the diagonal part dg A of
A as the diagonal matrix D = [Dij ]pi,j=1 given by Dij = Aij for i = j and 0 otherwise.
The off-diagonal part A−dg A shall be denoted as A0. Operator matrices can be thought

131



Chapter 4. Functional Graphical Lasso

of as operators on the product Hilbert space H, as given by

Af =

 p∑
j=1

Aijfj

p
i=1

for f = (f1, . . . , fp) ∈ H. The adjoint of an operator matrix A shall be denoted as A⊤.

Note that the trace tr A and Hilbert–Schmidt norm ∥A∥2 of an operator matrix A =
[Aij ]pi,j=1 can be written in terms of the traces and Hilbert–Schmidt norms of the entries
as

tr(A) =
p∑
i=1

tr(Aii) and ∥A∥2
2 =

p∑
i,j=1

∥Aij∥2
2.

To mirror the behaviour of Euclidean spaces in the product Hilbert space, we devise
some additional norms. The operator counterparts ∥ · ∥2,1 and ∥ · ∥2,∞ of the ℓ1 and
ℓ∞ norms are given by ∥A∥2,1 = ∑p

i,j=1 ∥Aij∥2 and ∥A∥2,∞ = maxi,j ∥Aij∥2. In the
same way, we define the operator analogues of matrix norms: |||A|||2,∞ = maxi

∑
j ∥Aij∥2

(maximum column sum) and |||A|||2,1 = maxj
∑
i ∥Aij∥2 (maximum row sum). Note that

|||A|||2,1 =
∣∣∣∣∣∣∣∣∣A⊤

∣∣∣∣∣∣∣∣∣
2,∞

and that these norms are sub-multiplicative (see Appendix).

The tensor product A ⊗ B of operator matrices A and B is defined as the linear map
D 7→ BDA and can also be expressed as an array [Aij⊗Bkl]pi,j,k,l=1 of the tensor products
of their entries. The action D 7→ BDA can be imitated by a matrix [Aij ⊗ Bkl](i,j),(k,l)
(indexed by the pairs (i, j) and (k, l)) acting on vectorized version of D = [Dij ](i,j)
(indexed by (i, j)). As a result, we can simultaneously think of the tensor product A ⊗ B
as a linear map and as a matrix with tensor product entries.

4.2.2 Second-Order Random Elements in Hilbert Space

A random element X is said to be second-order if E[∥X∥2] < ∞. For such random
elements, we can define the mean and the covariance operator

m = E[X] and C = E[(X − E[X]) ⊗ (X − E[X])],

respectively. If H is the product Hilbert space of certain Hilbert spaces Hj for 1 ≤ j ≤ p,
then we can write X as a random tuple, as in X = (X1, . . . , Xp) where {Xj}pj=1 are
jointly distributed random elements on their respective Hilbert spaces. The covariance
operator C can then be thought of as an operator matrix, as in C = [Cij ]pi,j=1 where the
(i, j)-th entry is given by the operator Cij = E[(Xi − mi) ⊗ (Xj − mj)].

By a well-known result of Baker (1973), for every 1 ≤ i, j ≤ p for i ≠ j there exists a unique
bounded linear operator Rij : Hj → Hi with ∥Rij∥ ≤ 1 such that Cij = C1/2

ii RijC1/2
jj
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and Rij = ΠiRijΠj where Πi, Πj are projections to the closures of the images of Cii

and Cjj in their respective co-domains, which is to say that Rij maps the closure of
the range of Cjj to that of Cii. Accordingly, we define the correlation operator matrix
as R = [Rij ]ni,j=1 where Rii = I and Rij = C−1/2

ii CijC−1/2
jj for i ≠ j, where C−1/2

ii and
C−1/2
jj are understood to be the operator pseudoinverses of C1/2

ii and C1/2
jj , respectively. It

can be shown that R is always a positive semi-definite operator. Theorem 4.2 specifies a
sufficient condition on the random element X, under which R is strictly positive-definite
and hence invertible.

If R is invertible, we can write its inverse as R−1 = I + H where I is understood as the
identity operator matrix and H = [Hij ]pi,j=1 is a bounded operator matrix. We shall refer
to H as the precision operator matrix or simply, the precision operator of X.

We shall describe the diffusedness of the distributions of our random elements using the
notion of sub-Gaussian and sub-exponential norms of random variables. The sub-Gaussian
and sub-exponential norms of a random variable Z are given by

∥Z∥ψ2 = inf{t > 0 : E
[

exp(Z2/t2)
]

≤ 2} and ∥Z∥ψ1 = inf{t > 0 : E
[

exp(|Z|/t)
]

≤ 2},

respectively.

4.2.3 Conditional Independence Graphs of Random Elements

LetX = (X1, X2, X3) be a random element in the product Hilbert space H = H1×H2×H3.
We say that X1 and X2 are conditionally independent given X3, or alternatively, X1 ⊥⊥
X2 | X3 if the conditional measures PX1|X3 , PX2|X3 and PX1,X2|X3 satisfy

PX1,X2|X3 = PX1|X3 ⊗ PX2|X3 .

The σ-algebra generated by the random variables {⟨h,X3⟩ : h ∈ H3} is same as the Borel
σ-algebra associated with H3 (Hsing and Eubank, 2015, Theorem 7.1.1). Therefore,
the above statement can be interpreted in terms of the familiar notion of conditional
independence for real-valued random variables as follows: for every f ∈ H1 and g ∈ H2,
we have that

⟨f,X1⟩ ⊥⊥ ⟨g,X2⟩ | {⟨h,X3⟩ : h ∈ H3}. (4.2)

Thus X1 and X2 are conditionally independent given X3 if and only if any two linear
functionals of X1 and X2 are conditionally independent given every linear functional
of X3. If X is second-order, we can define a purely second-order counterpart of the
notion of conditional independence called conditional uncorrelatedness which we denote
as X1 ⊥⊥2 X2 | X3 and define as

E
[(

⟨f,X1⟩ − E2
[
⟨f,X1⟩

∣∣∣L(X3)
])(

⟨g,X2⟩ − E2
[
⟨g,X2⟩

∣∣∣L(X3)
])]

= 0 (4.3)
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or equivalently,

E
[
⟨f,X1⟩⟨g,X2⟩

]
= E

[
E2
[
⟨f,X1⟩ | L(X3)

]
· E2

[
⟨g,X2⟩ | L(X3)

]]
(4.4)

where E2[Z | L(X3)] denotes the best linear unbiased predictor of the random variable Z
from the closed linear span L(X3) of the random variables {⟨h,X3⟩ : h ∈ H3}. For zero-
mean Gaussian random elements, the two notions of independence and uncorrelatedness
coincide (see Loeve, 2017).

Consider a random element X = (X1, . . . , Xp) on a product Hilbert space H. Let G
be an undirected graph with the vertex set {1, . . . , p}. By convention, every vertex is
understood to be adjacent to itself. We say that X has the graph G if it satisfies the
pairwise Markov property, that is, for every 1 ≤ i, j ≤ p such that i and j are not adjacent
in G we have

Xi ⊥⊥ Xj | Xk : k ̸= i, j (4.5)

or equivalently, we have

⟨fi, Xi⟩ ⊥⊥ ⟨fj , Xj⟩ | {⟨fk, Xk⟩ : fk ∈ Hk, k ̸= i, j}

for every fi ∈ Hi and fj ∈ Hj . We refer to G, thus defined, as the conditional
independence graph of X. For a second-order X, we can similarly define the conditional
uncorrelation graph of X, by simply replacing ⊥⊥ in (4.5) with ⊥⊥2. We shall see eventually
that the graph of a second-order random element X is intimately related to the entries
of the precision operator matrix H.

4.2.4 The Carleman-Fredholm Determinant

In order to properly generalize the multivariate graphical lasso to random elements,
we will need to reformulate the graphical lasso objective function in terms of operator
matrices. Although, one can think of fairly straightforward extensions to the definitions
of trace and the ℓ1 penalty from matrices to operators (or operator matrices), doing the
same for the determinant is slightly more involved and non-standard.

Definition 4.1. Let H ∈ L2(H) with the eigenvalues {λj}∞
j=1. We define the Carleman-

Fredholm determinant of H as

det2(I + H) =
∞∏
j=1

(1 + λj)e−λj (4.6)

It can be shown that the infinite product converges when ∑∞
j=1 λ

2
j < ∞ and thus, the

Carleman-Fredholm determinant is well-defined for all Hilbert–Schmidt operators. It is
also known that the map H 7→ det2(I + H) is strictly log-concave, continuous everywhere
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in ∥ · ∥2 norm and Gateaux differentiable on {H : −1 /∈ σ(H)} ⊂ L2(H) (see Appendix).
Note that it is not simply the product of the eigenvalues 1 + λj of I + H. Defining
the determinant simply as the product of the eigenvalues leads to what is known as
the Fredholm determinant, which is defined only for trace-class operators. We shall see
that the Carleman-Fredholm determinant appears most naturally when one attempts to
correctly generalize the multivariate graphical lasso optimization function to covariance
operators. For a more in-depth discussion on the generalization of determinants to
operators, the interested reader is invited to consult Gohberg et al. (2000) and Simon
(1977).

4.2.5 The Big O and Ω Notation

For f, g : N → R, we write f(n) = O(g(n)) if for some C > 0 and n0 ≥ 1, f(n) ≤ Cg(n)
for n ≥ n0. The notation f(n) = Ω(g(n)) denotes the inverse statement, that is, for some
c > 0 and n0 ≥ 1, f(n) ≥ cg(n) for n ≥ n0.

4.3 Problem Statement

Let X = (X1, . . . , Xn) be a second-order random element in H and {Xk}nk=1 be (not
necessarily independent) realizations of X. Given an estimate Ĉ = Ĉn(X1, . . . , Xn)
of the covariance C of X, we are interested in estimating the graph G of the random
elements {Xj}pj=1, which is given by the adjacency matrix A = [Aij ]pi,j=1 where

Aij =

1 if i = j,

1{H∗
ij ̸=0} otherwise

and H∗ = R−1 − I, with R being the correlation operator matrix of X. Essentially,
we are interested in determining the non-zero off-diagonal entries of H∗. Of particular
interest to us is the sparse high-dimensional setting, where the number p of random
elements Xj can be much larger than the number n of samples, and the graph G is
known to be sparse in the sense that the maximum degree d of a vertex in G is much
smaller than p.

When X is Gaussian, the graph G is identical to the conditional independence graph of
{Xj}pj=1 and if X is not Gaussian, we can still interpret the off-diagonal zero entries of H
in terms of the alternative notion of conditional uncorrelatedness (see Theorem 4.2). In
either case, the graph describes the dependence structure of the random elements {Xj}pj=1
in the following sense: Xi is adjacent to Xj if and only if Xj can tell us something
about Xi that other elements {Xk}k ̸=i,j put together cannot. We use linear relationships
between the random elements to judge what they tell us about each other and therefore,
the graph G can be regarded as the graph of linear relationships between Xj . For
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Gaussian X, the relationships are always linear and as a result the graph G is equal to
the conditional independence graph.

4.4 Assumptions

In this section, we discuss the conditions we assume in order to prove the consistency
and rates of convergence of functional graphical lasso. In particular, we explain how they
can be interpreted in terms of properties of the distribution of X and how they may
break down in certain cases.

4.4.1 Equivalence

The support of a measure (denoted by supp) is intuitively understood as the set on which
the measure lives. It is formally defined as the largest closed set such that each of its
open subsets have positive measure. Two measures are said to be equivalent, if they have
the same support, and singular, if they have disjoint supports. In general, it is possible
for two measures to be neither equivalent nor singular. But according to a classical result
known as the Feldman-Hájek theorem, two Gaussian measures on a locally convex space
must be either equivalent or singular.

Let PXj and PX denote the random measures corresponding to Xj in the space Hj for
every 1 ≤ j ≤ p and X in the product space H = ⊗p

j=1Hj respectively. We can also view
the components Xj of X separately, and they would correspond to the product measure
⊗p
j=1PXj . If X is Gaussian, we shall make the following assumption:

Assumption 3 (Equivalence). PX is equivalent to the product measure ⊗p
j=1PXj , that

is,
supp PX = supp ⊗p

j=1PXj .

According to Corollary 6.4.11 of Bogachev (1998), this seemingly innocuous statement is
actually equivalent to saying that: (a) the off-diagonal entries of the correlation operator
matrix R are Hilbert–Schmidt and (b) that there is a gap between the eigenvalues of R
and 0, that is, 1 + infj λj(R0) > 0. This ensures that the correlation operator matrix R is
invertible and that the operator H = R−1 − I is Hilbert–Schmidt (Lemma 4.1), implying
that our optimization functional is well-defined at H. It is important to note that for
us this is a consequence of a “first principles” assumption imposed upon the observed
random element X itself, namely the support condition. In contrast, previously this
was a convenient assumption imposed upon intermediate quantities such as R so as to
make certain operations (such as operator inversion or evaluation of the Hilbert–Schmidt
norm), that one intends to perform, well-defined. To put it differently, Assumption 3 is a
fundamental assumption as opposed to an operational assumption. It allows us to see
the Hilbert–Schmidtness of H in a new light, whereas otherwise it would be seen merely
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as the operator matrix counterpart of the familiar non-singularity of the covariance or
correlation matrix assumed elsewhere in the multivariate literature (for example Rothman
et al., 2008).

If X is not Gaussian, we shall assume the properties (a) and (b) directly through the
following assumption instead:

Assumption 1* (Eigenvalue Gap). The cross-correlation operator matrix R0 = R − I
is Hilbert–Schmidt and the eigenvalues {λj(R0)}∞

j=1 of R0 satisfy

1 + infj λj(R0) > 0.

Define ρ = 1 + |||R0|||2,∞. It is worth pointing out that the assumption of an eigenvalue
gap is not so harsh considering that 1 + λk(R0) ≥ 0 for k ≥ 1 anyway since R is
non-negative and λk(R0) → 0 as k → ∞ because R0 is Hilbert–Schmidt.

Lemma 4.1. If 1 + infj λj(R0) > 0 and R0 = R − I is Hilbert–Schmidt, then so is
H∗ = R−1 − I.

Proof of Lemma 4.1. Let c = 1 + infj λj(R0). By the spectral mapping theorem,
λk(H∗) = [1 + λk(R0)]−1 − 1 = −λk(R0)[1 + λk(R0)]−1 and therefore,

∥H∗∥2
2 =

∞∑
k=1

λ2
k(R0)

[1 + λk(R0)]2 ≤ 1
c2

∞∑
k=1

λ2
k(R0) = ∥R0∥2

2
c2 < ∞.

Hence proved.

In fact, we shall see in Section 4.5.1 that Assumption 3 allows us to treat the product
measure ⊗p

j=1PXj as a reference measure to describe the distribution of X much like the
Lebesgue measure serves to do the same in Euclidean spaces.

Remark 4.1. It is not difficult to imagine a scenario where Assumption 3 fails to
hold. Consider a Gaussian process X on the unit interval [0, 1] with continuous sample
paths which corresponds to a Gaussian measure in the space L2[0, 1]. Then X can be
thought of as a pair (X1, X2) where X1 and X2 are the processes (and random elements)
corresponding to the restrictions of X to the intervals [0, 1/2] and (1/2, 1] respectively.
Let Y be the random element (process) corresponding to the product measure PX1 ⊗ PX2 .
The sample paths of the process Y are almost surely discontinuous at t = 1/2 while that
of the process X are almost surely continuous throughout. Thus the measures PX and
PX1 ⊗ PX2 are singular.

Remark 4.2. Assumption 1∗ here is strictly weaker than Assumption 1 of Lee et al.
(2022) which states that for every 1 ≤ i ≤ p, the regression operator C†

−i,−iC−i,i is
Hilbert-Schmidt (see the appendix for a proof).
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4.4.2 Incoherence

Let Γ denote the outer product of the operator matrix R with itself, i.e.

Γ = R ⊗ R = [Rij ⊗ Rkl]pi,j,k,l=1 .

Equivalently, Γ can be thought of as an operator matrix indexed by the pairs (i, j) and
(k, l) with Γ(i,j)(k,l) = Rij ⊗ Rkl just as R is indexed by the vertices i, j in Rij . For two
sets A and B of vertex pairs we can write the submatrix ΓAB as

ΓAB =
[
Γ(i,j)(k,l)

]
(i,j)∈A,(k,l)∈B

.

Finally, observe that Γ can be thought of as an operator on the product space of the tensor
product spaces Hi ⊗ Hj with ΓA = RAR. Because R is invertible (under Assumption
3), it follows that so is Γ with Γ−1 = R−1 ⊗ R−1.

Let S denote the set of (i, j) such that i and j are adjacent in G or equivalently, (i, j)
corresponds to an edge. Naturally, Sc denotes its complement. Then ΓSS can be shown
to be invertible by virtue of being a principal submatrix of Γ. The following assumption
shall serve as the functional analogue of the familiar mutual incoherence condition from
Ravikumar et al. (2011).

Assumption 4 (Incoherence). For some α > 0, we have

max
e∈Sc

∥ΓeS Γ−1
SS∥2,1 ≤ 1 − α. (4.7)

Notice that like R, the inverse of submatrix ΓSS can be written as the sum of identity
and a Hilbert–Schmidt operator matrix. Indeed, for A = (R0)S , where R0 = R − I, we
can write

Γ−1
SS = [I ⊗ I + I ⊗ A + A ⊗ I + A ⊗ A]−1 = I + ΛSS

where ΛSS is Hilbert–Schmidt by Lemma 4.1 because the operator I ⊗ A + A ⊗ I + A ⊗ A
inside the inverse is itself Hilbert–Schmidt. Define γ = 1 + |||ΛSS |||2,∞.

Intuitively speaking, if we could think of R as the covariance operator of a zero mean
random element Z = (Zj)pj=1 with Rij = E [Zi ⊗ Zj ], we would consider the random
elements

Y(i,j) = Zi ⊗ Zj − E [Zi ⊗ Zj ]

for 1 ≤ i, j ≤ p. Using the same tools as in multivariate analysis (doing a Taylor expansion
of the moment generating function), it can be shown that Γ(i,j)(k,l) = E

[
Y(i,j) ⊗ Y(k,l)

]
when Zj are Gaussian. Let YS = {Ye : e ∈ S}. Assumption 4 can now be expressed as

max
e∈Sc

∥∥∥E [Ye ⊗ YS ]E [YS ⊗ YS ]−1
∥∥∥

2,1
≤ 1 − α.
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Notice that ΓeS is the cross-covariance of Ye with YS and ΓSS is the covariance of YS . If
we were to find the best linear predictor of Ye using YS , the linear coefficients would be
given by ΓeS Γ−1

SS . Assumption 4 is essentially saying that these coefficients cannot be to
large: none of the “non-edges” Ye (with e ∈ Sc) are highly correlated with the “edges”
YS and therefore one cannot predict the “non-edges” Ye from the “edges” YS too well.

Of course, strictly speaking, the operator R is not the covariance operator of any random
element in Hilbert space due to not being trace-class. We believe that this explanation
can be made rigorous by treating R as the covariance operator of Gaussian random
element on a suitably chosen locally convex topological vector space (where covariance
operators do not have to be trace-class). Even without the technical details formalizing
this, the intuition is just as valuable.

Incoherence is the assumption that enables us to exploit sparsity. It seems that incoherence
is an indispensable assumption for multivariate graphical lasso and weaker assumptions
lead to substantially weaker rates of convergence (Rothman et al., 2008). It would thus
be unreasonable to expect functional graphical lasso to work for anything less.

4.4.3 Regularity

To execute our method, we shall need to estimate the correlation operator matrix R. We
do this by first estimating the covariance operator C and then resolving the following
linear problem for R:

[dg C]1/2R[dg C]1/2 = C. (4.8)

Note that the problem is ill-posed because C (and dg C) are compact operators. To
ensure reasonable rates of convergence for this estimation procedure we need to impose
the following condition on R:

Assumption 5 (Regularity). For some 0 < β ≤ 1, we have R = [dg C]βΦ0[dg C]β for
some Hilbert–Schmidt operator matrix Φ0, whose diagonal entries are zero.

In principle, it is possible that R = [dg C]βΦ0[dg C]β with β > 1 but for our purpose
this situation is essentially identical to the case β = 1. Note that for 0 < β′ < β,
the condition R = [dg C]βΦ0[dg C]β implies R = [dg C]β′Φ′

0[dg C]β′ for some Φ′
0, and

therefore, Assumption 5 holds for β = 1 if it holds for β > 1. Note that Assumption 5 is
equivalent to saying that for every i ̸= j,

∞∑
k,l=1

[ 1
µkλl

]1+2β
|⟨ek,Cijfl⟩|2 < ∞

for some β > 0, where {(µk, ek)}∞
k=1 and {(λl, fl)}∞

l=1 are the eigenpairs of Cii and Cjj ,
respectively. Essentially, this means that Cij admits an efficient or sparse representation
in the eigenbases of Cii and Cjj .
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In fact, it is a classical result in inverse problem theory that in the absence of such
source conditions, the rate of convergence for the solution of an infinite-dimensional linear
inverse problem can be arbitrarily slow (Hanke, 2017). In the language of numerical
linear algebra, Assumption 5 means that the operator C is intrinsically preconditioned
for inversion by dg C. Moreover, the usage of such regularity conditions is standard
in the literature (c.f. Li and Solea, 2018b)). We shall see that the performance of our
procedure shall depend critically on the maximum degree d of the graph and that this
dependence is mediated by β.

4.5 Methodology and Philosophy

We now describe our two-step estimation procedure to recover the graph G of X given
an estimate Ĉ of the covariance C of X.

Firstly, we estimate the correlation operator matrix R of X. Because C is known only
approximately, estimating R using Equation (4.8) presents an ill-posed linear problem.
We use the regularized estimator R̂ = [R̂ij ]pi,j=1 given by

R̂ij =

I for i = j, and
[ϵnI + dg Ĉii]−1/2Ĉij [ϵnI + dg Ĉjj ]−1/2 for i ̸= j,

where ϵn serves as a tuning parameter. Recall that Rij = I when i = j, so we need not
burden ourselves with its estimation.

Secondly, we minimize the proposed objective functional F over the space of Hilbert–
Schmidt operators H on H given by

F [H] =

tr(HR̂0) − log det2(I + H) + λn∥H0∥2,1 if I + H > 0, and
∞ otherwise.

(4.9)

where the trace tr(HR̂0) can be expressed as∑i ̸=j tr(HijR̂ij) and ∥H0∥2,1 = ∑
i ̸=j ∥Hij∥2

is the ℓ1-norm of the Hilbert–Schmidt norms of the off-diagonal entries of H and can be
likened to a group lasso penalty proposed in Yuan and Lin (2006). Note that the trace is
well-defined since both H and R̂0 are Hilbert–Schmidt implying that the product HR̂0 is
trace-class. Thus, F [H] is well-defined for a Hilbert–Schmidt operator H. Furthermore as
an eigenvalue of H approaches −1 from above, det2(I+H) converges to 0 and its logarithm
grows without bound implying that F [H] → ∞. The piece-wise definition is thus quite
reasonable and in fact, makes F into a coercive, strictly convex functional which is
continuous in the extended sense. This will ensure that F always has a unique minimum
and minimizer (Theorem 4.3). The nonzero entries of the minimizer Ĥ = arg minH F [H]
describe the graph G in that Ĥij ̸= 0 if and only if i and j are adjacent.
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To summarize, given an estimator Ĉ of the covariance C we have the following procedure
to estimate the graph G of X:

Step 1. Estimation. Estimate the correlation operator matrix R̂ as follows:

R̂ = I + [ϵnI + dg Ĉ]−1/2Ĉ0[ϵnI + dg Ĉ]−1/2. (4.10)

Step 2. Minimization. Compute Ĥ:

Ĥ = arg min
[
tr(HR̂0) − log det2(I + H) + λn∥H0∥2,1

]
, (4.11)

where the minimum is taken over all Hilbert–Schmidt operators H such that
I + H > 0. The adjacency matrix Â = [Âij ]pi,j=1 of the estimate Ĝ of the
graph G is given by Âij = 1{Ĥij ̸=0} for i ̸= j and 1 otherwise.

A variety of methods have been used in the literature for choosing the tuning parameter
ϵn. For example, Li and Solea (2018b) use generalized cross validation. We prefer a
simpler approach inspired by Waghmare and Panaretos (2023) which involves minimizing
(3.14). The tuning parameter λn can be chosen using stability selection proposed by
Meinshausen and Bühlmann (2010). We show in Section 4.6.2, that the rate at which
ϵn → 0 and λn → 0 is related to how well Ĉ concentrates around C together with the
regularity β.

In Section 4.7, we describe how the quantities involved are actually calculated in practice
and how the minimization procedure is implemented using the alternating direction
method of multipliers (ADMM) algorithm.

4.5.1 Penalized Log-likelihood Maximization

The usage of likelihood maximization techniques in functional data analysis is largely
impeded by the absence of a compelling reference measure in infinite dimensional function
spaces, with respect to which the likelihood can be defined. In multivariate statistics,
we are mostly concerned with finite dimensional Euclidean spaces where the Lebesgue
measure serves as a de facto reference measure due to its translation invariance and the
accompanying indifference to points in the space, even though it is not a probability
measure. However, according to a classical result, every nontrivial translation invariant
Borel measure on an infinite dimensional separable Banach space, is bound to assign
infinite measure to every open set. Consequently, translation invariance proves to be an
excessively harsh criterion for a reference measure to satisfy in infinite dimensions.

We propose to use the product Q = ⊗p
j=1PXj as our reference measure. It is not translation

invariant like the Lebesgue measure. However, unlike the Lebesgue measure, it is a
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probability measure and represents an actually possible scenario, which is when Xj are
all independent —arguably the simplest of all possible scenarios under consideration. Of
course, we do not know Q a priori but it turns out that we can, in a certain sense, evaluate
the log-likelihood without knowing Q exactly using what amounts to a renormalization
technique.

Let P and P̃ be two zero-mean Gaussian measures with the marginals {PXj }pj=1 which
are equivalent to Q = ⊗p

j=1PXj . By Corollary 6.4.11 of Bogachev (1998), we can write
the covariance operators of P and P̃ as

CP = C1/2
Q (I + R0)C1/2

Q

CP̃ = C1/2
Q (I + R̃0)C1/2

Q

where CQ = dg C = dg CP = dg CP̃, and R0, R̃0 are Hilbert–Schmidt operators with
diagonal entries all zero and eigenvalues separated from −1 in the sense of Assumption
1∗. The average log-likelihood of P with respect to Q evaluated with an infinite number
of samples drawn from P̃ evaluates to the following expectation:

Lemma 4.2. We have∫
log

[
dP
dQ

]
dP̃ = −1

2[tr(HR̃0) − log det2(I + H)] (4.12)

where H = (I + R0)−1 − I.

If we think of P̃ as the empirical measure generated from the samples {Xk}nk=1 drawn
from P, the expression on the left of Equation (4.12) is exactly the log-likelihood of P
with respect to Q. Of course, we require P̃ to be a Gaussian measure which an empirical
measure cannot be. So, we treat P̃ as the zero-mean Gaussian measure with the covariance
operator CP̃ ≈ Ĉ. Roughly speaking, this would mean that R̃0 ≈ R̂0 and the right hand
side of Equation (4.12) becomes

−1
2[tr(HR̂0) − log det2(I + H)] (4.13)

which makes for a compelling substitute for the sought after log-likelihood and corresponds
to the first two terms of our objective functional F [H]. The idea of using a Gaussian
measure P̃ corresponding approximately to the empirical covariance operator Ĉ instead
of the empirical measure to evaluate the log-likelihood is reminiscent of the idea of
parametric bootstrap.

Essentially, we have conditioned the log-likelihood on the prior knowledge that P̃ is
a Gaussian. Deriving expression (4.13) is also possible with a more direct approach
using the empirical measure, but requires usingsome renormalization techniques such as
truncation and regularization needed to deal with the infinities arising from the difference
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in the supports of the empirical and true versions of the measures involved, all of which
we have managed to avoid here.

Since we know that the sparse edge structure of the graph is encoded in the non-zero off-
diagonal entries of the Hilbert–Schmidt operator matrix H, it seems natural to penalize
(4.13) with the ℓ1 norm of the norms ∥Hij∥2. This gives

−1
2F [H] = −1

2
[
tr(HR̂0) − log det2(I + H)

]
− λn

2
∑
i ̸=j

∥Hij∥2. (4.14)

We have thus shown that our method can be thought of as penalized log-likelihood
maximization, albeit with a few leaps of imagination.

4.5.2 Constrained Divergence Minimization

The continuity and convexity of the functional F implies that the optimization problem
(4.11) has an equivalent dual formulation.

In fact, minimizing F is actually equivalent to evaluating the convex conjugate G∗ of the
functional G[A] = log det2(I + A) − λn∥A0∥2,1 at −R̂0. Indeed,

minA F [A] = − max
A

[
tr(A(−R̂0)) + log det2(I + A) − λn∥A0∥2,1

]
= −G∗[−R̂0].

Now, the convex conjugate of A 7→ − log det2(I + A) is actually twice the Kullback-
Leibler divergence of the Gaussian measure with the correlation operator I − B assuming
dg B = 0. This can be verified from Equation (4.12) which yields for P̃ = P, the
Kullback-Leibler divergence D[R0] of a Gaussian measure P with correlation operator
R = I + R0 with respect to its product measure Q, to be

D[R0] = −1
2 log det2(I + R0)

Using infimal convolution we can combine this convex conjugate with that of A 7→
∥A0∥2,∞ and rewrite the convex conjugate of G as the solution of a constrained mini-
mization or maximization problem.

Theorem 4.1. The optimization problem (4.11) satisfies

min
A

F [A] = −2 min
B

D[B0] = max
B

log det2(I + B0), (4.15)

arg min
A

F [A] = arg min
B

D[B0] = arg max
B

det2(I + B0) (4.16)

where B are Hilbert–Schmidt operator matrices with dg B = 0 such that ∥B0 − R̂0∥2,∞ ≤
λn.
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In other words, the optimization problem (4.11) is equivalent to minimizing the Kullback-
Leibler divergence D[B0] with respect to Q or maximizing the Carleman-Fredholm
determinant det2(I + B0) under the constraint that every off-diagonal entry Bij stays
within λn in Hilbert–Schmidt distance from R̂ij . Our method can thus be seen as
constrained minimization of the Kullback-Leibler divergence.

4.5.3 Limit of the Multivariate Graphical Lasso

Our functional graphical lasso can also be motivated from its multivariate counterpart
by correcting the multivariate objective function so as to obtain meaningful limiting
behaviour as the grid resolution increases and finding an appropriate replacement for the
penalty term.

Suppose that the spaces Hi are composed of continuous functions on the sets Ui and
X = (X1, . . . , Xp) is a Gaussian random element on H. We construct a grid {uij}mj=1 of
m points on each set Ui. A natural way to study the graph of X = (X1, . . . , Xp) is to
study the graph of the random vector

X = (X1(u11), . . . , X1(u1m), X2(u21), . . . , X2(u2m), . . . , Xp(up1), . . . , Xp(upm)).

Thus we can apply the multivariate graphical lasso to the random vectors Xk corresponding
to the independent realizations Xk of X and see what happens as m → ∞ and the grids
{uij}mj=1 populate the sets Ui more and more densely.

To this end, we evaluate the empirical covariance estimator Ĉ of the covariance C of X.
Notice that C and Ĉ are simply restrictions to the grid {uij}p,mi=1,j=1 of the continuous
integral kernels of the operators C and Ĉ. Now, consider the objective function given by

F(Θ) = tr(ΘĈ) − log det(Θ) + λ
∑

i ̸=j
|Θij|,

where Θ is a possible candidate for the precision matrix C−1. Observe that we can write

Ĉ = 1
mD1/2

c (I + 1
m R̂0)D1/2

c

where Dc and R̂0 are approximately the restrictions to the grid of the integral kernels
of the Hilbert–Schmidt operators dg Ĉ and R̂0. The factors 1

m are a result of having to
replicate the operations Aijfj(x) =

∫
Uj
A(x, y)f(y)dy whose discrete approximation is

given by l 7→ 1
m

∑m
k=1A(uil, ujk)f(ujk). This suggests that we should parametrize Θ as

in
Θ−1 = 1

mD1/2
c (I + 1

mH)−1D1/2
c

in terms of a rough approximation H to the grid {uij}p,mi=1,j=1 of H. We can now write
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the first two terms as

tr(ΘĈ) − log det(Θ) = tr([ 1
mD1/2

c (I + 1
mH)−1D1/2

c ]−1Ĉ) − log det([ 1
mD1/2

c (I + 1
mH)−1D1/2

c ]−1)
= tr((I + 1

mH)[mD−1/2
c ĈD−1/2

c ]) − log det(I + 1
mH) + log det( 1

mDc)
= tr((I + 1

mH)(I + 1
m R̂0)) − log det(I + 1

mH) + log det( 1
mDc)

= tr( 1
m2 HR̂0) + tr( 1

mH) − log det(I + 1
mH) + pm + log det( 1

mDc)

using the fact that tr R̂0 ≈ 0 and tr(I) = pm. Assuming polynomial decay of eigenvalues,
log det( 1

mDc) ≈ Cp
∑m

j=1 log(1/jα) ≈ −Cαpm log(m) which diverges to −∞ faster than
the second last term pm diverges to ∞. This suggests that the above expression diverges
to −∞ and explains why the multivariate graphical lasso is not stable with respect
to grid resolution. If we ignore the terms pm and log det( 1

mDc) with ill-defined limits
or alternatively, introduce the correction term −pm − log det( 1

mDc), we can obtain a
nontrivial limiting behaviour from the above expression, which gives

tr( 1
m2 HR̂0) + tr( 1

mH) − log det(I + 1
mH) = tr( 1

m2 HR̂0) −
[
log det(I + 1

mH) − tr( 1
mH)

]
→ tr(HR̂0) − log det2(I + H)

as m → ∞. Because we know from Theorem 4.2 how the information about the graph
is in the off-diagonal entries of H, it now makes sense to penalize the above expression
accordingly, thus recovering our objective functional F [H]. Section 4.7.1 contains a
longer discussion on how operators are discretized and on how the above formulas may
be obtained.

4.6 Theoretical Guarantees

4.6.1 Identifiability and Well-posedness

If X is a Gaussian random element and the correlation operator matrix R is invertible,
the pairwise Markov property can be expressed in a particularly elegant way in terms of
the precision operator matrix H. Even if X is not Gaussian, the same applies for the
conditional uncorrelatedness version of the pairwise Markov property.

Theorem 4.2 (Precision Operator and Conditional Independence). Let X = (X1, . . . , Xp)
be a second-order random element in the product Hilbert space H = H1 × · · · × Hp.

1. Under Assumption 3, if X is Gaussian then the correlation operator matrix R is
invertible and for 1 ≤ i, j ≤ p with i ̸= j, we have the correspondence

Xi ⊥⊥ Xj | Xk : k ̸= i, j if and only if H∗
ij = 0,

2. Under Assumption 1∗, the correlation operator matrix R is invertible and for
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1 ≤ i, j ≤ p with i ̸= j, we have the correspondence

Xi ⊥⊥2 Xj | Xk : k ̸= i, j if and only if H∗
ij = 0,

where H∗ = [H∗
ij ]
p
i,j=1 is the precision operator matrix of X.

In other words, the off-diagonal zero entries of the adjacency matrix of G (which represent
edges) correspond precisely to the off-diagonal zero entries of the precision operator
matrix H∗. This is the Hilbert space generalization of the familiar result for Gaussian
graphical models where the role of the precision matrix is served by the inverse of the
covariance instead.

As mentioned before, F is coercive, strictly convex and continuous in the extended sense
and these are sufficient conditions for a functional to admit a unique minimum and
minimizer in Hilbert space. Our theoretical analysis depends critically on exploiting the
stationary condition (4.17).

Theorem 4.3. The optimization problem (4.11) admits a unique solution Ĥ for every
λn > 0 and estimated correlation operator R̂ which satisfies

R̂ − (I + Ĥ)−1 + λnẐ = 0 (4.17)

for some Ẑ ∈ ∂∥Ĥ0∥2,1, where ∂∥Ĥ0∥2,1 denotes the subdifferential (the set of subgradi-
ents) of H 7→ ∥H0∥2,1 at H = Ĥ.

4.6.2 Finite Sample Theory

We begin by introducing some language from Ravikumar et al. (2011) which will be
useful for describing the tail behaviour of our estimators. For δ∗ > 0 and a function
f : N × R+ → R+, which is monotonically increasing in both arguments, we say that an
estimator Â = [Âij ]pi,j=1 of an operator matrix A = [Aij ]pi,j=1 satisfies a tail condition
with the parameters f and δ∗ if for every n ≥ 1 and 0 < δ < δ∗ we have

P[∥Âij − Aij∥2 ≥ δ] ≤ 1/f(n, δ)

To handle the behaviour of Â under such tail conditions, we define

n̄f (δ, r) = max{n : f(n, δ) ≤ r} and δ̄f (r, n) = max{δ : f(n, δ) ≤ r}.

Essentially, n̄f (δ, r) is the smallest n and δ̄f (r, n) is the smallest δ for which ∥Â−A∥2 < δ

with probability at least 1 − 1/r.

Let X = (X1, . . . , Xp) be a second-order random element in H with the covariance C. Let
{Xk}nk=1 be n independent realizations of X and Ĉ = Ĉ(X1, . . . , Xn) be an estimator
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of C which satisfies the tail condition with the parameters f and δ∗. Then these tail
conditions together with the regularity conditions of Assumption 5, naturally lead to
similar conditions on the corresponding estimator R̂ of the correlation operator R. Recall
that ρ = 1 + |||R0|||2,∞ and γ = 1 + |||ΛSS |||2,∞.

Theorem 4.4. Let Ĉ be an estimator of C satisfying the tail condition with the parameters
f and δ∗ such that dg(Ĉ) is non-negative. Under Assumption 5, for ϵn = δ

1
1+β , the

corresponding estimator R̂ for the correlation R satisfies for i ̸= j

P
[
∥R̂ij − Rij∥2 ≥ κδ

β
1+β

]
≤ 1
f(n, δ)

for 0 < δ ≤ δ∗, where κ = 16
√

2 ([1 ∨ maxi ̸=j ∥Rij∥2] ∨ [maxi ̸=j{∥Φij∥2}[2 ∨ 2 maxj{∥Cjj∥}]]).
Consequently, ∥R̂ij − Rij∥2 ≤ κδ̄f (n, r)

β
1+β with probability at least 1 − 1/r when

ϵn = δ̄f (n, r)
1

1+β .

In other words, if Ĉ satisfies tail conditions with the parameters f and δ∗, then R̂ satisfies
a tail condition with the parameters g(n, δ) = f(n, [δ/κ]1+1/β) and [δ∗/κ]1+1/β. Note
that

δ̄g(n, r) = κδ̄f (n, r)
β

1+β and n̄g(δ, r) = n̄f ([δ/κ]1+1/β, r).

Theorem 4.4 tells us how well we can estimate the correlation operator R, given an
estimator Ĉ of the covariance operator C. The performance depends crucially on the
regularity β, with smaller values of β requiring higher sample sizes n = n̄g(δ, r) to
estimate Rij up to the same error with high probability.

Estimation of the Precision Operator

We begin by describing the entry-wise Hilbert–Schmidt deviation of the estimator Ĥ. In
the following results, the parameter τ is user-defined and can be increased to get better
concentration of Ĥ near H∗ in exchange for more demanding requirements on the sample
size n.

Theorem 4.5. Let X = (X1, . . . , Xp) be a second-order random element in the Hilbert
space H with the covariance C and let Ĉ be an estimator of C satisfying the tail condition
with parameters f and δ∗ > 0, and let τ > 2. Under Assumptions 3/1*, 4 and 5, and
conditions for Theorem 4.4, if ϵn = δ̄f (n, pτ )

1
1+β , λn = 8

ακδ̄f (n, pτ )
β

1+β and the sample
size n satisfies

n ≥ n̄f

1/max

 1
δ∗
,

[
12dκ

(
1 + 8

α

)2 [
ργ ∨ ρ3γ2

]]1+ 1
β

 , pτ
 , (4.18)

then with probability at least 1 − 1/pτ−2, we have:
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1. The estimate Ĥ satisfies

∥Ĥ − H∗∥2,∞ ≤ 2γ
(

1 + 8
α

)
κδ̄f (n, pτ )

β
1+β . (4.19)

2. If for some (i, j), ∥H∗
ij∥2 > 2γ(1 + 8/α)κδ̄f (n, pτ )

β
1+β , then Ĥij is nonzero.

Notice how the sample size requirement (4.18) depends on the incoherence parameter α,
the degree d of the graph, and the parameters ρ and γ in essentially the same way as
Theorem 1 of Ravikumar et al. (2011), except for the coefficient κ and the power 1 + 1/β.
As the regularity β → 0, the sample size requirement increases while the bound (4.19) on
the entry-wise deviation ∥Ĥ − H∗∥2,∞ weaken. The parameters κ, ρ and γ can be said
to capture the sizes of involved quantities while the degree d describes the sparsity of the
graph. The factor (1 + 8/α) quantifies the dependence of our sample size requirement
and bound on entry-wise deviation on Assumption 4 and decreasing the incoherence α
unsurprisingly weakens the bound. Interestingly, the dependence on the degree d of the
graph is through the regularity β.

The bound on the maximum deviation of an entry of Ĥ from the corresponding entry of
H∗ in Hilbert–Schmidt norm, naturally yields a bound on the deviation of Ĥ itself from
H∗ in Hilbert–Schmidt norm.

Corollary 4.1. Let s denote the total number of nonzero off-diagonal entries in H∗.
Under the same conditions and choices of ϵn, λn and n as Theorem 4.5, we have

∥Ĥ − H∗∥2 ≤ 2γ
(

1 + 8
α

)
κ

√
p+ sδ̄f (n, pτ )

β
1+β .

with probability at least 1 − 1/pτ−2.

Proof. Clearly, ∥Ĥ − H∗∥2
2 = ∑p

i=1 ∥Ĥii − H∗
ii∥2

2 + ∑
i ̸=j ∥Ĥij − H∗

ij∥2
2 ≤ (p + s)∥Ĥ −

H∗∥2
2,∞.

Model Selection Consistency

If we increase the sample size enough, we can ensure that we recover the whole graph
exactly with high probability. Specifically, the sample size has to high enough to ensure
that the Ĥij is nonzero for the smallest ∥H∗

ij∥2 with high probability. Naturally, a smaller
θ leads to a more stringent sample size requirement.

Corollary 4.2 (Model Selection Consistency). Let θ = min{∥H∗
ij∥2 : H∗

ij ̸= 0} and τ > 2.
Under the same conditions as Theorem 4.5, if ϵn = δ̄f (n, pτ )

1
1+β , λn = 8

ακδ̄f (n, pτ )
β

1+β
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and the sample size n satisfies

n ≥ n̄f

1/max

 1
δ∗
,

[2γκ
θ

(
1 + 8

α

)]1+ 1
β

,

[
12dκ

(
1 + 8

α

)2 [
ργ ∨ ρ3γ2

]]1+ 1
β

 , pτ


then P[Ĝ = G] ≥ 1 − 1/pτ−2.

Proof. In addition to the sample size requirement of Theorem 4.5, we require that
θ > 2γ(1 + 8/α)κδ̄f (n, pτ )

β
1+β . By Theorem 4.5 (2), this ensures that the entry Ĥij is

nonzero for every nonzero entry H∗
ij thus implying exact recovery of the graph G.

4.6.3 Sub-Gaussian Random Elements

In this section, we shall work out the finite sample theory for sub-Gaussian random
elementsX = (X1, . . . , Xp), if the covariance C is estimated using the empirical covariance
operator Ĉ = 1

n

∑n
k=1X

k ⊗Xk − X̄ ⊗ X̄ where X̄ = 1
n

∑n
k=1X

k.

There are many definitions of sub-Gaussianity for random elements in Hilbert spaces
(cf. Chen and Yang (2021), Antonini (1997)). For our purpose, the sub-Gaussianity
of the norms of the constituent random elements provides a natural generalization of
the definition used in Ravikumar et al. (2011) which required the coordinates to be
sub-Gaussian random variables.

Definition 4.2. We shall say that X = (X1, . . . , Xp) is a sub-Gaussian random element
in the product space H if the norms ∥Xj∥ are sub-Gaussian random variables for 1 ≤ j ≤ p.
Equivalently, X is a sub-Gaussian random element if

∥X∥∞ = maxj ∥∥Xj∥∥ψ2 < ∞.

The above definition is weaker than an alternative definition proposed by Chen and Yang
(2021) but stronger than the one suggested by Vershynin (2018). Using the Karhunen-
Loève expansion, it can be shown that for a Gaussian random element X = (X1, . . . , Xp),
the sub-Gaussian norms of Xj satisfy

∥∥Xj∥∥2
ψ2 = ∥∥Xj∥2∥ψ1 ≤ 8

3 tr(Cjj)

and therefore, ∥X∥∞ ≤
√

8/3 maxj [tr(Cjj)]1/2 ≤
√

8/3 [tr(C)]1/2. Thus our definition
includes all Gaussian random elements X as sub-Gaussian.

Using Bernstein’s inequality (cf. Theorem 2.8.1 of Vershynin (2018)), we can show that

Lemma 4.3. If Ĉ = 1
n

∑n
k=1X

k ⊗Xk − X̄ ⊗ X̄ is the empirical covariance estimator,
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then for 0 < δ ≤ δ∗, we have

P{∥Ĉij − Cij∥2 ≥ δ} ≤ 2 exp
[
− cnδ2

∥X∥4
∞

]

where
δ∗ = min

ij
∥∥Xi ⊗Xj − E [Xi ⊗Xj ] − X̄i ⊗ X̄j + E[Xi] ⊗ E[Xj ]∥∥ψ1 .

If E[X] = 0, the statement continues to hold even for Ĉ = 1
n

∑n
k=1X

k ⊗ Xk and
δ∗ = minij ∥∥Xi ⊗Xj − E [Xi ⊗Xj ] ∥∥ψ1.

If the mean is zero, which is the case addressed in Ravikumar et al. (2011), then
δ∗ simply does not depend on n. If the mean E[X] is not zero, the dependence of
the quantity δ∗ on n is not as pronounced as it may seem because for large n, δ∗ ≈
minij ∥∥Xi ⊗ Xj − E [Xi ⊗Xj ] ∥∥ψ1 which can be shown to be always greater than or
equal to minij ∥∥Xi∥∥Xj∥ − E [∥Xi∥∥Xj∥] ∥ψ1 by Jensen’s inequality.

Now, Lemma 4.3 essentially says that Ĉ satisfies the tail condition for f(n, δ) =
1
2 exp

[
cnδ2

∥X∥4
∞

]
and δ∗ > 0, which implies that

n̄f (δ, r) =
⌊

∥X∥4
∞ log(2r)
cδ2

⌋
and δ̄f (n, r) =

√
∥X∥4

∞ log(2r)
cn

.

Applying Theorem 4.5 to our special case now yields explicit parameter choices, sample
size requirements and upper bounds on the entry-wise deviations.

Theorem 4.6 (Sub-Gaussian Random Elements). Assume that X = (X1, . . . , Xp) is
such that the norms ∥Xj∥ are sub-Gaussian and let Ĉ = 1

n

∑n
k=1X

k ⊗ Xk − X̄ ⊗ X̄.
Under the same conditions as Theorem 4.5, if the parameters ϵn and λn are chosen as

ϵn =
[

∥X∥4
∞(log 2 + τ log p)

cn

] 1
2(1+β)

, λn = 8
α
κ

[
∥X∥4

∞(log 2 + τ log p)
cn

] β
2(1+β)

and the sample size n satisfies

n > [log 2 + τ log p] max

 1
δ2

∗
,

[
12dκ

(
1 + 8

α

)2 [
ργ ∨ ρ3γ2

]]2+ 2
β

 ∥X∥4
∞

c

we have with probability at least 1 − 1/pτ−2 that

∥Ĥ − H∗∥2,∞ ≤ 2γ
(

1 + 8
α

)
κ∥X∥2

∞

[ log 2 + τ log p
cn

] β
2(1+β)

and ∥Ĥ−H∗∥2 ≤
√
s+ p∥Ĥ−H∗∥2,∞ where s denotes the number of nonzero off-diagonal

entries of H. Here δ∗ is as in Lemma 4.3.
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Assuming the parameters κ, ρ, γ and α do not change very much with respect to p, this
suggests that

∥Ĥ − H∗∥2 = O

√
s+ p

[ log p
n

] β
2(1+β)

 .
It must be noted that even under the most favourable regularity conditions, which
is when β = 1, we cannot recover the bound for the multivariate case, which is
O(
√

(s+ p)(log p)/n). It appears that this an enduring consequence of having to use
correlation operator matrices, which is necessary in the functional setting because covari-
ance operators (which are compact) do not admit bounded inverses, but optional in the
multivariate setting where the inverse of a full-rank covariance matrix is always bounded.
Fortunately, the sample size requirement is still reasonable in that it only requires

n = Ω((δ−2
∗ + d2+2/β)τ log p),

which implies that estimation with a relatively small sample size is still feasible so long
as d ≪ p and s ≪ p2.

Corollary 4.3 (Model Selection Consistency for Sub-Gaussians). Let θ = min{∥H∗
ij∥2 :

H∗
ij ̸= 0}. Under the same conditions and parameter choices of ϵn and λn as in Theorem

4.6, if the sample size n satisfies,

n > [log 2+τ log p] max

 1
δ2

∗
,

[2γκ
θ

(
1 + 8

α

)]2+ 2
β

,

[
12dκ

(
1 + 8

α

)2 [
ργ ∨ ρ3γ2

]]2+ 2
β

 ∥X∥4
∞

c

we have P[Ĝ = G] ≥ 1 − 1/pτ−2.

The sample size requirement for model selection consistency is thus higher. In Big-Ω
notation, we need

n = Ω((δ−2
∗ + θ−2−2/β + d2+2/β)τ log p)

samples to recover the true graph with at least 1 − pτ−2 probability. The dependence on
θ and d is mediated by the regularity β.

Remark 4.3. Our theoretical analysis also gives insight into the multivariate case by
showing that a partial recovery might still be feasible even when the graph is not sparsely
connected so long as it can be partitioned into sparsely connected subgraphs. Given a
random vector Y = {Yj}Pj=1 for some P ≫ 1, this would correspond to partitioning Y
into sparsely related smaller random subvectors Xj ⊂ Y while the entries of Y withing
an individual random vector Xj are allowed to be densely related. This ensures that the
maximum degree d for the graph of {Xj}pj=1 is small even if that of {Yj}Pj=1 is not, thus
creating the sufficient conditions for our finite sample arguments to work. We would
expect the standard multivariate graphical lasso to fail here because it does not leverage
the latent sparsity in the form of sparsely related subvectors of Y .
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4.7 Implementation

4.7.1 Discretization

The operator formalism used in (4.11) has so far allowed us to put off the delicate issue
of how the involved quantities are discretized for the purpose of computation. It turns
out that this is mostly a question of finding the correct discrete equivalents of the objects
and operations involved. As in Section 4.5.3, we shall denote the discrete counterparts of
functional quantities (eg. X or C) using the sans serif font (eg. X or C).

We shall discretize every element f = (f1, . . . , fp) in H as a column vector f of length K
indexed by J = [1, . . . ,K]. The coordinates fi in Hi shall be discretized as subvectors
fi = [fij : j ∈ Ji] of length Ki indexed by Ji ⊂ J such that J is the concatenation of the sets
Ji. There are many different ways of doing this. For example, if Hi is the space L2(Ui, µi)
of square-integrable functions on some space Ui equipped with the measure µi, we can
generate a mesh {Uij} of Ki cells of roughly equal measure on Ui and take fij to be the
average value 1

µi(Uij)
∫
Uij

fi of fi in the jth cell. Often, Hi is composed of continuous
functions on Ui and we can take fij to be the value fi(uij) at some fixed point uij ∈ Uij .
These discretizations schemes can be described as discretization by cell averaging and
discretization by point evaluation respectively (c.f. Masak and Panaretos, 2022).

Another recourse is to take fij to be the jth coefficient ⟨fi, ej⟩ in the basis expansion of fi
with respect to a fixed basis {ej}∞

j=1 on Hi. This is discretization by basis representation.
An element f ∈ H can thus be represented in terms of the tensor product basis formed
from bases on the spaces Hj . There are plenty of different ways of doing this. One can use
pre-specified bases such as B-splines or empirical bases corresponding to Karhunen-Loève
type expansions, be it a one-dimensional expansion in every node like in Qiao et al.
(2019), a two-dimensional expansion under additional structural assumptions like in
Zapata et al. (2022), or any other version of multivariate functional PCA (Chiou et al.,
2014).

Let f ,g,h ∈ H where f = (f1, . . . , fp) and g = (g1, . . . , gp), with the discretizations f, g
and h. The tensor or outer product f ⊗ g of f ,g ∈ H is to be discretized simply as the
matrix fg⊤. The inner product ⟨f ,g⟩, however, is to be discretized as f⊤Mg, where the
K × K matrix M is the discrete equivalent of the inner product operation, which actually
depends on the scheme of discretization employed. If we are averaging on cells or using
point evaluations as discussed before, M is given by Mij = 1/Kl if both i = j ∈ Jl and is 0
otherwise. On the other hand, if we are using a basis representation, M is same as the
K × K identity matrix IK. This difference follows from the observation that for fi, gi ∈ Hi

and their discretizations fi, gi, we have under the former schemes of observation

⟨fi, gi⟩ =
∫
Ui
fi(u)gi(u)dµi(u) ≈ 1

Ki

∑Ki
j=1 fijgij
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while under the latter scheme, we have

⟨fi, gi⟩ = ∑∞
j=1⟨fi, ej⟩⟨gi, ej⟩ ≈

∑Ki
j=1 fijgij

instead. The correct way to represent (f ⊗ g)h = ⟨g,h⟩f is thus (g⊤Mh)f = (fg⊤)Mh.

Because compact operators are infinite sums of tensor products of elements, we can
discretize them in essentially the same way as elements themselves. Thus the discretization
of a Hilbert–Schmidt operator matrix A = [Aij ]pi,j=1 is a K × K matrix A, with the entries
of A being represented by the submatrices of A in the same way as with the element
f and its coordinates. And just like the outer products, we can represent Ah as AMh.
The same applies to operator-operator multiplication and the correct representation
of the product AB is AMB, where B is another Hilbert–Schmidt operator with the
discretization B.

Non-compact operators such has I on the other hand, cannot be discretized like compact
operators. For such operations, it is best to find the discrete equivalent of their action
on the elements directly. For I, notice that If = f . What linear operation when applied
to f would return f? Of course, that’s the K × K identity matrix IK. So the correct way
to represent the operation If is IKf. Trivial as it may appear, understanding this is what
allows us to arrive at the correct representation of the operation (I + A)−1/2f which is
(IK + AM)−1/2f, as can be inferred from the binomial expansion of (I + A)−1/2.

Using the same principle, we can work out that the trace tr(A) and Carleman-Fredholm
determinant det2(I + A) of A can be represented as

tr[MA] and det[IK + MA] · exp (−tr[MA]),

respectively. Note also that the action of taking the diagonal part dg(A) of A is equivalent
to taking the Hadamard product D ◦ A with matrix D = [Dij] where Dij = 1 if both i, j ∈ Jl
for some 1 ≤ l ≤ p and is 0 otherwise. We are now going to describe the discretized
version of our algorithm.

Given n realizations of X in the form of vectors {Xk : k = 1, . . . , n} we compute the
discretized version C of the estimated covariance Ĉ. For example, if Ĉ is the empirical
covariance estimator, we get:

C = 1
n
∑n

k=1 XkX⊤
k −

[
1
n
∑n

k=1 Xk

] [
1
n
∑n

k=1 Xk

]⊤
The off-diagonal part Ĉ0 = Ĉ − dg Ĉ is discretized as C − D ◦ C. Since dg Ĉ f is given
by (D ◦ CM)f, the estimated cross-correlation operator matrix R̂0 (which is compact)
thus corresponds to R0 given by

R0 = [ϵnIK + D ◦ CM]−1/2 · [C − D ◦ C] · [ϵnIK + D ◦ MC]−1/2 .
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The operator trace tr(HR̂0) and the Carleman-Fredholm determinant det2(I + H) can
be evaluated in terms of the matrix trace tr and determinant det as

tr[MHMR0] and det[IK + MH] · exp (−tr[MH]),

respectively. Finally, recall that the discretization of A = [Aij ]pi,j=1 is defined as a K × K
matrix A = [Aij]Ki,j=1 where each of the operators Aij is discretized as A[Ji, Jj] = [Akl]k∈Ji,l∈Jj .
Because ∥A∥2,1 = ∑p

i,j=1 ∥Aij∥2 = ∑p
i,j=1[tr(AijA∗

ij)]1/2, the discretized counterpart is
given by

p∑
i,j=1

tr
[
M[Ji, Ji]A[Ji, Jj]M[Jj, Jj]A[Ji, Jj]⊤

]

=
p∑

i,j=1
tr
[
(M[Ji, Ji]1/2A[Ji, Jj]M[Jj, Jj]1/2)(M[Ji, Ji]1/2A[Ji, Jj]M[Jj, Jj]1/2)⊤

]
= ∥M1/2AM1/2∥2,1

where the norm ∥ · ∥2,1 is defined as ∥A∥2,1 = ∑p
i,j=1 ∥A[Ji, Jj]∥F. Altogether, the opti-

mization functional F can thus be written as

F[H] = tr[MHMR0] + tr[MH] − log det[IK + MH] + λn · ∥M1/2(H − D ◦ H)M1/2∥2,1.

Now, using the cyclic property of the trace and multiplicativity of the determinant, we
can write

tr[MHMR0] + tr[MH] = tr[(M1/2HM1/2)(M1/2R0M1/2)] + tr[M1/2HM1/2]
= tr[(IK + M1/2HM1/2)(IK + M1/2R0M1/2)] − tr[IK + M1/2R0M1/2]

log det[IK + MH] = log det[IK + M1/2HM1/2]
∥M1/2(H − D ◦ H)M1/2∥2,1 = ∥(IK + M1/2HM1/2) − D ◦ (IK + M1/2HM1/2)∥2,1

Ignoring the constant term −tr[IK + M1/2R0M1/2] in the second equation, the problem
reduces to minimizing

F̃(Q) = tr[QR] − log det[Q] + λn · ∥Q − D ◦ Q∥2,1 (4.20)

with respect to Q under the constraint Q > 0, where

Q = IK + M1/2HM1/2 and R = IK + M1/2R0M1/2.

Note that the matrix determinant should be evaluated directly as the product of the
eigenvalues of the matrix calculated using the eigendecomposition rather than using
cofactor expansion. The former is vastly superior in terms of computational efficiency
and numerical precision.
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The operator formalism used in (4.11) faithfully encapsulates the three different dis-
cretization techniques (averaging on cells, evaluation at points, or an orthonormal basis
representation) discussed above, in a coordinate-free way (Stone, 1987). As a consequence
of this faithful representation, the above formulas are comparable across (high enough)
resolutions. Their value does not change drastically if one increases the number of
points, cells or basis functions without bound and in fact tends to the exact values of the
corresponding quantities as the number of samples increases.

4.7.2 Optimization

We use the alternating direction method of multipliers (ADMM, Boyd et al., 2011) to
solve the convex optimization problem 4.20. The basic idea of ADMM is to introduce an
auxiliary variable Z to separate the loss or likelihood term and from the penalty term,

arg min
Q,Z

tr[QR] − log det[Q] + λn ·
∑
i̸=j

∑
u∈Ii

∑
v∈Ij

Z2
uv

1/2

s.t. Q = Z

The augmented Lagrangian can then be written as

arg min
Q,Z

tr[QR] − log det[Q] + λn ·
∑
i̸=j

∑
u∈Ii

∑
v∈Ij

Z2
uv

1/2

+ ρ

2∥Q − Z∥2
F + ⟨Y,Q − Z⟩

and subsequently minimized w.r.t. Q and Z in an alternating fashion, with the dual variable
Y updated after every iteration. In the above, ρ is a small positive constant affecting
the convergence speed, not the convergence itself, which is guaranteed irrespective of
the choice (Boyd et al., 2011). We use the default ρ = 1 in our applications of the
algorithm. It is customary to perform another variable change: U := Y/ρ. The augmented
Lagrangian then becomes

Lρ(Q,Z,U) = tr[QR] − log det Q + λn ·
∑

i ̸=j

[∑
u∈Ii

∑
v∈Ij Z2

uv

]1/2
+ ρ

2∥Q − Z + U∥2
F,

which is equal to the one above up to a constant, and hence the optimal H can be
obtained easily from the optimal Q, indeed providing a solution to the original problem
4.20. Overall, the l-th iteration of the ADMM algorithm consists of the following three
steps, iterated until confergence for m = 1, 2, . . . starting from an initial point Z(0),U(0):

Q(m) := arg min
Q

Lρ(Q,Z(m−1),U(m−1))

Z(m) := arg min
Z

Lρ(Q(m),Z,U(m−1))

U(m) := U(m−1) + (Q(m) − Z(m))
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The first step has an analytic solution. Equating the derivative of Lρ(Q,Z(m−1),U(m−1))
w.r.t. Q to zero, one obtains the following non-linear system:

ρQ − Q−1 = ρ(Z(m−1) − U(m−1)) − R.

Denoting by E(m−1)Γ(m−1)(E(m−1))⊤ the eigendecomposition on the right-hand side and
changing the variable to Q̃ = (E(m−1))⊤QE(m−1), the non-linear system becomes

ρQ̃ − Q̃−1 = Γ(m−1).

Note that Q̃ and Q̃−1 have the same eigenvectors, and Γ(l−1) is diagonal, i.e. the eigen-
vectors are forming the canonical basis of RK . Hence the solution is given by matching
the eigenvalues only: for i = 1, . . . ,K it is sufficient to have ρq̃ii − 1/q̃ii = γ

(l−1)
ii . These

quadratic equations are solved, respectively, by

q̃(m)
ii =

γ
(m−1)
ii +

√[
γ

(m−1)
ii

]2
+ 4ρ

(2ρ) .

With these forming the diagonal of Q̃(m), we obtain Q(m) = E(m−1)Q̃(m)(E(m−1))⊤. Note
that we chose the negative sign above to obtain a positive semi-definite solution, which
is naturally the one sought even though we do not make this constraint explicit.

In the second step, the problem separates in variables Zi,j := Z[Ii, Ij] with the group lasso
penalizing only off-diagonal blocks. Hence, using the shorthand notation, the solution is
given by

Z(m)
i,j =

Q(m)
i,j + U(m−1)

i,j for i = j,
Sλn/ρ(Q

(m)
i,j + U(m−1)

i,j ) for i ̸= j,

where St(M) = (1 − t
∥M∥F

)+M is the group-wise soft-thresholding operator (Friedman
et al., 2010). We always use Z(0) = U(0) = diag(R) as the starting point and iterate until
the relative residual is small, namely until ∥Q(m) − Z(m)∥F /∥Q(m)∥F ≤ 10−4.

4.8 Simulation Study

The finite sample performance of the proposed methodology is explored in a small
simulation study. We devise three simulation setups underlining several claims we intend
to make. Below, we describe the three setups briefly, while a full description is available
in the supplementary material.

Setup 1 is closely related to Model 1 of Qiao et al. (2019), which generates the functional
datum in every node as a zero-mean Gaussian with the covariance being rank 5
with Fourier eigenfunctions and equal eigenvalues, with the precision matrix chosen
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such that a functional AR(2) process is formed between the nodes. This is done
in a perfectly regular way such that all rank-one projections of the processes form
AR(2) processes on their own, and the dependencies are created over the whole
functional domain. We change this slightly to rank 10, eigenvalues λj = 1/l for
k = l, . . . , 10, and create the AR(2) dependencies only between the eigenfunctions
corresponding to λ6, . . . , λ10.

Setup 2 also utilizes Fourier eigenfunctions but differs from Setup 1 in two aspects.
Firstly, the rank is not finite, with eigenvalues decaying quadratically as λl =
1/l2. Secondly, the functional AR(2) dependencies are not flat, they are created
only locally on one tenth of the functional domain corresponding to every node.
This makes them harder to discover after a projection. We consider these local
dependencies in the time domain more realistic as opposed to the perfectly global
spectral dependencies in Setup 1, where eigenfunctions directly influence themselves
across different nodes.

Setup 3 superposes independent Fourier rank-5 processes with fractional Brownian
motions (with the parameter H = 0.2, i.e. a relatively slow eigendecay). But
here, the dependency is only formed between the fractional Brownian motions. In
other words, every functional datum has an independent smooth component and a
dependent but rough component. We believe such rough short-scale dependencies
could be interesting e.g. in portfolio optimization (Carvalho et al., 2007) with a
short time horizon (Lin and SenGupta, 2021).

The proposed functional graphical lasso is implemented using the ADMM algorithm
described in Section 4.7 and compared against the functional graphical lasso of Qiao et al.
(2019) implemented using a block coordinate gradient descent. The computer code for
the latter was kindly provided to us by the authors, and we slightly modified it to allow
for non-regular settings (namely Setup 3). Note that the very fact that this modification
can be done and is guaranteed to work, stems from the theoretical development in this
paper. We do not compare against other, possibly non-functional approaches, since these
have been shown inferior by Qiao et al. (2019).

The results are averages of 24 independent simulation runs. They are reported in terms
of mean ROC curves, showing the performance across all values of the the lasso penalty
parameter λn leading to different sparsity levels. This not only leads to fair comparisons,
but also note that λn is typically chosen in practice in order to obtain a desired sparsity
level (Danaher et al., 2014). Alternatively, the stability selection approach of Meinshausen
and Bühlmann (2010) can be used.

The competing projection-based approach of Qiao et al. (2019) requires a user to choose
the projection levels, i.e. the rank and the number of B-splines. The authors provide
a standard prediction-based cross-validation approach to choose first the number of
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B-splines and then the rank. While their approach works reasonably well for the former,
we see no reason why it should work for the latter. In fact, it not always does in
our experience, e.g. in Setup 2. Hence we show two versions of the algorithm in our
simulations, one with the cross-validated tuning parameters, and the other with the
no. of B-splines fixed at 15 and the rank fixed at 5. Those are two arbitrary and
rather low choices one might think about given the other parameters of the problems,
and can be interpret easily for comparison purposes. On the other hand, the proposed
methodology does not require a choice of any tuning parameters, which is a genuine
practical advantage.

We fix n = p = 100 in order to facilitate comparisons with Qiao et al. (2019) or even
Zapata et al. (2022). Still, we do not emulate specifically the simulation setups of Zapata
et al. (2022) or include their method in our comparisons for the following reasons. While
the approach of Qiao et al. (2019) needs a choice of two tuning parameters, they are
both easily interpretable, and a relatively simple way of choosing them is provided. On
the other hand, the approach of Zapata et al. (2022) also requires a choice of two tuning
parameters: the no. of partially separable components and a tuning parameter weighing
their sparsity levels together. But the first one is chosen arbitrarily (as the proportion of
variance explained) while the second one is chosen in an oracle fashion, and does not have
a straightforward interpretation. The point of this simulation study is not to demonstrate
a general superiority of our approach, there is in fact no reason why our methodology
should outperform that of Qiao et al. (2019) or Zapata et al. (2022) for well chosen
values of their respective tuning parameters. But we rather aim to demonstrate the
advantages of not being forced to choose any tuning parameters, which is an implication
of the theoretical development in this paper, free of any structural assumptions. And
this point is self-evident in the case of Zapata et al. (2022).

Figure 4.1 displays the results of our simulation study. We can see that in Setup 1, the
proposed methodology matches that of Qiao et al. (2019). Even though we increased the
number of Fourier eigenfunctions to 10 and only created dependencies between the second
group of five, the cross-validation approach of Qiao et al. (2019) correctly identifies the
number of components needed, and matches the performance of the proposed method
back. On the other hand, the poor performance of the fixed pre-chosen projection in
Setup 1 shows the dangers of choosing the projection level too low. In Setup 2, on the
other hand, the cross-validation approach of Qiao et al. (2019) underestimates the rank,
leading to a worse performance than with the pre-chosen values of the projection levels.
Still, the proposed approach clearly outperforms both of its competitors. Finally, in Setup
3, the proposed approach vastly outperform its competitors, because this simulation
setup generally disfavors projections. While cross-validation leads to higher projection
levels than the pre-chosen ones in this case, it does not retain a sufficient number of
components.

Overall, Setup 1 constitutes an example where not performing projections even in
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Figure 4.1: ROC curves in the three simulation setups for the proposed method and
the projection approach of Qiao et al. (2019) with pre-chosen values for the projection
dimensions and with cross-validated choice of projection dimensions.

a perfectly low-dimensional case poses no issues. Secondly, Setup 2 illustrates that
projecting data in a not perfectly low-dimensional case can lead to a loss of information.
Finally, Setup 3 constitutes a case where projections are simply not advisable.

159





5 Future Directions

The thesis raises many interesting problems which remain unsolved in spite of our best
efforts. At the same time, our methods are somewhat alien to how things are usually
done and consequently, there are many problems to which our methods provide elegant
solutions. We discuss below some of the ways in which the work in this thesis can be
built upon, in an increasing order of difficulty.

5.1 Extreme Points of the Set of Completions

A sizeable amount of literature in linear algebra (Li and Tam, 1994; Grone et al., 1990)
and statistics (Parthasarathy, 2002) is dedicated to the study of the extreme points
of so-called correlation matrices, which are really positive semi-definite matrices with
diagonal entries all equal to one. Because correlation matrices can also be regarded
as positive semi-definite completions of the identity matrix over off-diagonal entries,
Theorem 2.2 of Chapter 2 provides a remarkably simple characterization of their extreme
points as well as those of completions of any partially specified matrix. Building on this
characterization could help us understand the set of completions in greater detail, which
seems to be a difficult problem even for matrices.

5.2 Covariance Selection and Estimation from Incomplete
Observations

There are many classical problems concerning covariance estimation which are well-
understood for multivariate data, such as covariance selection and estimation with
incomplete observation, but whose resolution for multivariate functional data has been
obstructed for want of an infinite-dimensional counterpart of the likelihood function. It
appears that the likelihood approach devised in Chapter 4 can address these problems
with relative ease. Covariance selection, which can be understood as using the a priori
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knowledge of certain conditional independence relationships for the purpose of improving
covariance estimation, can be performed by merely maximizing the proposed multivariate
functional likelihood under certain constraints. Similarly, an expectation-maximization
algorithm can be formulated based on the proposed likelihood for estimating the covariance
from incomplete observations as it is done in a multivariate setting.

5.3 Large-scale Nonparametric Covariance Modelling

For many applications such as those in geostatistics, estimation of covariance is a
computationally challenging task and as a result one often defers to parametric methods
of estimation. Using results from Chapter 2, we can extend the ideas of Chapter 1
towards a method which can pool local nonparametric estimates of the covariance on
small regions, which can be computed with relative ease, to construct a global covariance
estimate which propagates the local estimate using canonical completion. This can be
thought of as nonparametric model of covariance and appears particularly natural for
geostatistical applications dealing with natural processes which are known to propagate
locally.

5.4 Speed of Spatio-Temporal Processes

Chapter 3 makes it possible to think of spatio-temporal processes as graphical models.
In particular, we can think of the temporal evolution of a process in terms of changes
propagating through a graph on space and time. Say we are interested in quantifying
how quickly changes at a point in space affect nearby points for a given spatio-temporal
process {X(s, t) : s, t ∈ R}. We can formalize this as asking whether for a given δs, δt > 0
and every s′ ∈ (s− δs, s+ δs), there is an edge between X(s, t) and X(s′, t+ δt). If there
is an edge, then it would mean that change from s has propagated to a region of radius
δs by δt amount of time. Furthermore, we can say that the speed v at which the change
is propagating satisfies v > δs/δt.

5.5 A Complete Theory of Positive-Definite Completion

Arguably, the biggest shortcoming of this thesis has been the failure to prove the
uniqueness of canonical completion for regular domains except for the stationary case
under technical conditions which are admittedly opaque and convenient. Although no
new hints to the solution have been found as of yet, this remains an obvious venue for the
direction of future research efforts, in addition to being the principal impediment towards
achieving a more complete theory of positive-definite completion. Furthermore, there are
plenty of results that are known to hold for completions of matrices which we haven’t
been able to prove for kernels. Results from the discrete case suggest that canonical
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completions exist for every partially reproducing kernel which admits a completion not
just those considered in Chapter 2. A related problem is that of characterizing the entire
set of completions in terms of certain bounded linear maps, as was done in Gohberg et al.
(1989) for completions of matrix specified on a band around the diagonal.

163





A Appendix A.
The Completion of Covariance
Kernels

This appendix collects some additional graphs and the proofs of the formal statements
in Chapter 1.

A.1 Graphs

Figure A.1 depicts plots of covariance completions in the case of regular and sparse
observations for K1,K2 and K3.

A.2 Proofs of Formal Statements

We will arrange our proofs into subsections that parallel the corresponding sections of
the paper. We shall make extensive use of the projection theorem as well as certain
isometries between Hilbert spaces, such as the Loève isometry. For tidiness, we introduce
some shorthand notation for the restrictions KΩ(t, ·) or K(t, ·): for u ∈ I and J ⊂ I,
we denote by ku,J the function ku,J : J → R given by ku,J(v) = K(u, v) or KΩ(u, v)
according to the context. Similarly, we denote by k⋆u,J the function k⋆u,J : J → R given
by k⋆u,J(v) = K⋆(u, v).

Moreover, for every covariance K we have ku,J ∈ H(KJ) for every u ∈ I and J ⊂ I. This
is known as the restriction theorem (Paulsen and Raghupathi, 2016, Corollary 5.8). For
f, g ∈ H(KJ) we shall denote the norm ∥f∥H(KJ ) and the inner product ⟨f, g⟩H(KJ ) in
H(KJ) simply as ∥f∥ and ⟨f, g⟩, since the Hilbert space can always be inferred form the
domain of the involved function.
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Figure A.1: Covariance Completions of K1 (top), K2 (middle) and K3 (bottom) for
m = 9 and N = 300. For every row, the plot on the left is the true covariance, the plot
in the middle is the completion from regular observations using the pairwise estimator
on the right is the completion for sparse observations.
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A.2 Proofs of Formal Statements

A.2.1 The Canonical Completion

The completion K⋆ as defined in Equation (1.2) is well-defined because the restrictions of
KΩ(s, ·) and KΩ(t, ·) to I1 ∩ I2 belong to the RKHS H(KI1∩I2) thanks to the restriction
theorem (Paulsen and Raghupathi, 2016, Corollary 5.8). We shall however make use of a
stronger result in order to prove our theorems.

Let HJ denote the closed subspace spanned by {kx : x ∈ J} in H and let ΠJ denote the
projection from H to HJ . Then the subspace HJ is isomorphic to the reproducing kernel
Hilbert space H(KJ).

Theorem A.1. There exists an isometry ρ : HJ → H(KJ) such that its adjoint ρ∗

satisfies ρ∗g|J = g for g ∈ HJ .

Proof. Define a linear map σ0 : Span{kx,J : x ∈ J} → HJ by σ0(kx,J) = kx for x ∈ J .
For f = ∑n

j=1 cjk
J
xj

, we have

∥σ0(f)∥2 =
n∑

i,j=1
cicjK(xi, xj) = ∥f∥2

Therefore, if f = 0, then σ0(f) = 0. It follows that the map σ0 is well-defined, injective
and continuous. Moreover, it maps Span{kx,J : x ∈ E} onto Span{kx,J : x ∈ J}.

Extending σ0 by continuity from Span{kx,J : x ∈ J} to H(KJ) gives σ : H(KJ) → HJ

such that σ(f) = σ0(f) for f ∈ Span{kx,J : x ∈ J}. Additionally, ∥σ(f)∥ = ∥f∥ for every
f ∈ H(KJ) and therefore σ is also well-defined, injective and continuous.

To show that σ is surjective, pick any g ∈ HJ . Then there exists a sequence {gj}∞
j=1 ⊂

Span{kx : x ∈ J} such that gj → g in H. Let fj ∈ Span{kx,J : x ∈ J} be such that
σfj = gj for j ≥ 1. Since {gj}∞

j=1 is Cauchy, so is {fj}∞
j=1 and therefore it converges to

some f ∈ H(KJ) such that σf = g.

Now, notice that for every x ∈ J ,

σ∗g(x) = ⟨σ∗g, kx,J⟩ = ⟨g, σkx,J⟩ = ⟨g, kx⟩ = g(x)

Define ρ = σ∗ and the conclusion follows.

We shall see that the above isometry enables a sort of infinite-dimensional matrix algebra
with the partial covariance in order to recover its unknown values. We shall refer to it as
the subspace isometry, in contrast to another isometry we often make use of, which is
the Loève isometry.

Remark A.1. Notice that for f, g ∈ H(K) and ΠJ : H(K) → H(K) the closed subspace
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spanned by {ku : u ∈ J}, we have

⟨ΠJf,ΠJg⟩H(K) = ⟨ρΠJf, ρΠJg⟩H(KJ )

= ⟨ΠJf |J ,ΠJg|J⟩H(KJ )

= ⟨f |J , g|J⟩H(KJ )

since for t ∈ J , ΠJf(t) = ⟨ΠJf, kt⟩ = ⟨f,ΠJkt⟩ = ⟨f, kt⟩ = f(t). Thus, projection boils
down to restriction.

Proof of Theorem 1.1. It suffices for us to construct a Hilbert space H with a set of
vectors {φx}x∈I ⊂ H such that K⋆(s, t) = ⟨φs, φt⟩ for every s, t ∈ I. Accordingly, we let
H = H(KI1) ⊕ H(KI2), the direct sum of the reproducing kernel Hilbert spaces of KI1

and the space KI2 .

KI1

KI2

KJ1

kt,I1

kt,I1

ks,I2

I2 \ I1I1

Figure A.2: The Partial Covariance KΩ

Let H1 denote the closed subspace in H(KI1) spanned by {kt,I1 : t ∈ J1} and similarly,
let H2 denote the closed subspace in H(KI2) generated by {kt,I2 : t ∈ J1}. By Theorem
A.1, both H1 and H2 are isomorphic to H(KJ1) with the restrictions ρ1 : H1 → H(KJ1)
and ρ2 : H2 → H(KJ1) given by ρ1f = f |J1 and ρ2g = g|J1 , serving as isometries. It
follows that H1 and H2 are isomorphic, with the isometry ρ∗

1ρ2 : H2 → H1. Also, let
ΠJ1 : H(KI2) → H(KI2) denote the projection to H2.

Define φt as follows,

φt =

kt,I1 ⊕ 0 if t ∈ I1

ρ∗
1ρ2ΠJ1kt,I2 ⊕ [kt,I2 − ΠJ1kt,I2 ] if t ∈ I2 \ I1
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All that remains now, is for us to verify that ⟨φs, φt⟩ is indeed equal to K⋆(s, t) for every
s, t ∈ I. We shall do this on a case-by-case basis as follows:

Case 1. If both s and t ∈ I1, then ⟨φs, φt⟩ = ⟨ks,I1 , kt,I1⟩ + 0 = KI1(s, t) = K⋆(s, t).

Case 2. If s ∈ I1 and t ∈ I2 \ I1, then by the projection theorem and Theorem A.1 we
get

⟨φs, φt⟩ = ⟨ks,I1 , ρ
∗
1ρ2ΠJ1kt,I2⟩ + 0 = ⟨ρ1ks,I1 , ρ2ΠJ1kt,I2⟩ = ⟨ks,J1 , kt,J1⟩

If s ∈ J1, then ⟨ks,J1 , kt,J1⟩ = KJ1(s, t) = K⋆(s, t). On the other hand, if
s ∈ I1 \ J , ⟨ks,J1 , kt,J1⟩ = K⋆(s, t) by definition.

Case 3. Covered by Case 2 by symmetry.

Case 4. If both s and t ∈ I2 \ I1, then

⟨φs, φt⟩ = ⟨ρ∗
1ρ2ΠJ1ks,I2 , ρ

∗
1ρ2ΠJ1kt,I2⟩ + ⟨ks,I2 − ΠJ1ks,I2 , kt,I2 − ΠJ1kt,I2⟩

By Theorem A.1, ⟨ρ∗
1ρ2ΠJ1ks,I2 , ρ

∗
1ρ2ΠJ1kt,I2⟩ = ⟨ΠJ1ks,I2 ,ΠJ1kt,I2⟩ = ⟨ks,J1 , kt,J1⟩.

And using the projection theorem,

⟨ks,I2 − ΠJ1ks,I2 , kt,I2 − ΠJ1kt,I2⟩
= ⟨ks,I2 − ΠJ1ks,I2 , kt,I2⟩ − ⟨ks,I2 − ΠJ1ks,I2 ,ΠJ1kt,I2⟩
= ⟨ks,I2 , kt,I2⟩ − ⟨ΠJ1ks,I2 , kt,I2⟩ − 0
= ⟨ks,I2 , kt,I2⟩ − ⟨ΠJ1ks,I2 ,ΠJ1kt,I2⟩
= KI2(s, t) − ⟨ks,J1 , kt,J1⟩

Thus, ⟨φs, φt⟩ = KI2(s, t) = K⋆(s, t).

Now that we have established that K⋆(s, t) = ⟨φs, φt⟩ is a covariance extension of KΩ,
we need only verify that K(s, t) = ⟨ks,J1 , kt,J1⟩ for (s, t) ∈ Ωc. For s ∈ I2 \ I1 and
t ∈ I1 \ I2 ⊂ I1

⟨φs, φt⟩ = ⟨ρ∗
1ρ2ΠJ1ks,I2 ⊕ [ks,I2 − ΠJ1ks,I2 ] , kt,I1 ⊕ 0⟩

= ⟨ρ∗
1ρ2ΠJ1ks,I2 , kt,I1⟩

= ⟨ρ2ΠJ1ks,I2 , ρ1kt,I1⟩
= ⟨ks,J1 , kt,J1⟩

This completes the proof.

Remark A.2. Nothing in the proof above requires that I1 and I2 have to be intervals of
the real line. In fact, the result holds true so long as I1 and I2 are any two sets with a
non-empty intersection.
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Proof of Theorem 1.2. By Theorem 1.1, the result of a 2-serrated completion is a valid
completion and therefore, the same should be true for successive 2-serrated completions.

Let K⋆ denote the completion obatined by using Algorithm 1. In order to show that the
resulting completion is independent of the order in which the completion is carried out,
it suffices to show that for s, t ∈ I separated by Jp and Jq, we have that ⟨ks,Jp , kt,Jp⟩ =
⟨ks,Jq , kt,Jq ⟩.

We proceed by induction. The statement is vacuously true for the case m = 2 by Theorem
1.1. We shall prove it for m = 3 and on. For m = 3, it suffices for us to show that for
(s, t) ∈ (I3 \ I2) × (I1 \ I2),

⟨k⋆s,J1 , k
⋆
t,J1⟩ = ⟨k⋆s,J2 , k

⋆
t,J2⟩

since only such s and t are separated by both J1 and J2. By definition, k⋆s,J1
(u) =

⟨k⋆s,J2
, k⋆u,J2

⟩ for u ∈ J1. k⋆s,J1
can be written in terms of k⋆s,J2

in a more concise way, as
an image of a linear operator.

kt,J1

k⋆s,J1

k⋆t,J2

ks,J2

(s, t)

KI1

KI3

KI2

KJ1

KJ2

Figure A.3: The Partial Covariance KΩ

Let ρ1 : H(KI2) → H(KJ1) and ρ2 : H(KI2) → H(KJ2) denote the restrictions given
by ρ1f = f |J1 and ρ2f = f |J2 respectively. Let Π1 : H(KI2) → H(KI2) denote the
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projection to the closed subspace generated by {ku,I2 : u ∈ J1}. Now, for u ∈ J1,

ρ1Π1ρ
∗
2k
⋆
s,J2(u) = ⟨ρ1Π1ρ

∗
2k
⋆
s,J2 , ku,J1⟩

= ⟨k⋆s,J2 , ρ2Π1ρ
∗
1ku,J1⟩

= ⟨k⋆s,J2 , ρ2Π1k
⋆
u,I2⟩

= ⟨k⋆s,J2 , ρ2k
⋆
u,I2⟩

= ⟨k⋆s,J2 , k
⋆
u,J2⟩.

because ρ∗
1ku,J1 = ku,I2 , ρ2k

⋆
u,I2

= k⋆u,J2
, and Π1k

⋆
u,I2

= k⋆u,I2
as u ∈ J1. Therefore,

k⋆s,J1
= ρ1Π1ρ

∗
2k
⋆
s,J2

. Using this representation,

⟨k⋆s,J1 , k
⋆
t,J1⟩ = ⟨ρ1Π1ρ

∗
2k
⋆
s,J2 , k

⋆
t,J1⟩

= ⟨k⋆s,J2 , ρ2Π1ρ
∗
1k
⋆
t,J1⟩

= ⟨k⋆s,J2 , k
⋆
t,J2⟩.

Thus, K⋆ indeed satisfies the separation condition. Uniqueness follows by observing that
the separation condition uniquely determines K⋆ given K⋆|I3×I3 and K⋆|S2

1×S2
1
, which is

in turn uniquely determined given K⋆|I1×I1 and K⋆|I2×I2 .

Now, assuming the statement for m ≤ q, we consider the case m = q + 1. Thus,
K⋆|[∪k

j=1Ij ]×[∪k
j=1Ij ] and K⋆|[∪k+1

j=2 Ij ]×[∪k+1
j=2 Ij ] are uniquely determined. It suffices to verify

the separating condition for the remaining part. So we need to show that for (s, t) ∈
(Iq+1 \ Iq) × (I1 \ I2), that,

⟨k⋆s,J1 , k
⋆
t,J1⟩ = ⟨k⋆s,J2 , k

⋆
t,J2⟩ = · · · = ⟨k⋆s,Jq

, k⋆t,Jq
⟩.

Pick 1 ≤ p < q, and let I ′
1 = [∪pj=1Ij ], I ′

2 = [∪qj=p+1Ij ], and I ′
3 = Iq+1. Then Ω′ =

∪3
j=1I

′
j×I ′

j is a serrated domain of three intervals and we are back to the case when m = 3.
This implies that, ⟨k⋆s,J ′

1
, k⋆t,J ′

1
⟩ = ⟨k⋆s,J ′

2
, k⋆t,J ′

2
⟩ for J ′

1 = I ′
1 ∩ I ′

2 = Jp and J ′
2 = I ′

2 ∩ I ′
3 = Jq.

Since p was chosen arbitrarily, it follows that, ⟨k⋆s,Jp
, k⋆t,Jp

⟩ = ⟨k⋆s,Jq
, k⋆t,Jq

⟩ for 1 ≤ p < q.
Uniqueness follows the same way as in the case m = 3. Hence proved.

Lemma A.1. Let J ⊂ I be a separator of Ω containing Jp for some p. Then K as
defined above, satisfies

⟨ks,Jp , kt,Jp⟩H(KJp ) = ⟨ks,J , kt,J⟩H(KJ ) (A.1)

for every s, t ∈ I separated by J .

Proof. By Theorem 1.2, K⋆(s, t) = ⟨k⋆s,Jp
, k⋆t,Jp

⟩ and by Remark A.1, ⟨k⋆s,Jp
, k⋆t,Jp

⟩ =
⟨Πpk

⋆
s,J ,Πpk

⋆
t,J⟩, where Πp : H(K⋆|J×J) → H(K⋆|J×J) denotes the projection to the

closed subspace spanned by {k⋆u,J : u ∈ Jp}. Thus, all we need to show is for s, t ∈ I
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separated by J ⊂ I,

⟨k⋆s,J − Πpk
⋆
s,J , k

⋆
t,J − Πpk

⋆
t,J⟩ = ⟨k⋆s,J , k⋆t,J⟩ − ⟨Πpk

⋆
s,J ,Πpk

⋆
t,J⟩

= ⟨k⋆s,J , k⋆t,J⟩ − ⟨k⋆s,Jp
, k⋆t,Jp

⟩

= 0.

Recall that Jp = [ap+1, bp]. Define J− = {u ∈ J : u < v for some v ∈ Jp} and

kt,J kt,Jp

ks,J

ks,Jp

(s, t)

KJp

Figure A.4: The Partial Covariance KJ

J+ = {u ∈ J : u > v for some v ∈ Jp}. Thus, J = J− ∪ Jp ∪ J+. Notice that for
u ∈ J \ J+,

⟨k⋆s,J − Πpk
⋆
s,J , k

⋆
u,J − Πpk

⋆
u,J⟩ = ⟨k⋆s,J − Πpk

⋆
s,J , k

⋆
u,J⟩ − ⟨k⋆s,J − Πpk

⋆
s,J ,Πpk

⋆
u,J⟩

= K⋆(s, u) − ⟨Πpk
⋆
s,J , k

⋆
u,J⟩ − 0

= ⟨k⋆s,Jp
, k⋆u,Jp

⟩ − ⟨Πpk
⋆
s,J , k

⋆
u,J⟩

= ⟨Πpk
⋆
s,J ,Πpk

⋆
u,J⟩ − ⟨Πpk

⋆
s,J , k

⋆
u,J⟩

= ⟨Πpk
⋆
s,J ,Πpk

⋆
u,J − k⋆u,J⟩ = 0

Therefore, k⋆s,J − Πpk
⋆
s,J belongs to the closed subspace spanned by {k⋆u,J − Πpk

⋆
u,J : u ∈

J+}. Similarly, it can be shown that k⋆t,J − Πpk
⋆
t,J belongs to the closed subspace spanned

by {k⋆u,J − Πpk
⋆
u,J : u ∈ J−}. If we are able to show that these subspaces themselves are

mutually orthogonal, we would be done. Arguing as before, for u ∈ J− and v ∈ J+,

⟨k⋆u,J − Πpk
⋆
u,J , k

⋆
v,J − Πpk

⋆
v,J⟩ = ⟨k⋆u,J − Πpk

⋆
u,J , k

⋆
v,J⟩

= K⋆(u, v) − ⟨Πpk
⋆
u,J , k

⋆
v,J⟩

= ⟨k⋆u,Jp
, k⋆v,Jp

⟩ − ⟨Πpk
⋆
u,J , k

⋆
v,J⟩

= ⟨Πpk
⋆
u,J ,Πpk

⋆
v,J⟩ − ⟨Πpk

⋆
u,J , k

⋆
v,J⟩

= ⟨Πpk
⋆
u,J ,Πpk

⋆
v,J − k⋆v,J⟩ = 0
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The conclusion follows.

Let J ⊂ I separating s, t ∈ I be such that (s, t) ∈ Ωc. Then for some 1 ≤ p, q < m,
Jp ⊂ I separates s, t ∈ I, since (s, t) ∈ Dp × Sp from some 1 ≤ p < m and Jq ⊂ J

separates s, t ∈ I. By Lemma A.1 and Theorem 1.2,

⟨ks,J , kt,J⟩H(KJ ) = ⟨ks,Jq , kt,Jq ⟩H(KJq )

⟨ks,Jq , kt,Jq ⟩H(KJq ) = ⟨ks,Jp , kt,Jp⟩H(KJp )

And again by Theorem 1.2, K⋆(s, t) = ⟨ks,Jp , kt,Jp⟩H(KJp ). We have thus shown the
following:

Theorem A.2. If KΩ is a partial covariance on a serrated domain Ω, then KΩ has a
unique covariance completion K⋆ to I which possesses the separation property: for every
s, t ∈ I separated by J ⊂ I,

K⋆(s, t) = ⟨k⋆s,J , k⋆t,J⟩H(KJ )

where k⋆u,J : J → R is given by k⋆u,J(v) = K⋆(u, v) for v ∈ J . Furthermore, K⋆ can be
recursively computed using Algorithm 1.

A.2.2 Canonicity and Graphical models

Proof of Theorem 1.3. Simply use Theorem A.2 in conjunction with Theorem 1.4.

Proof of Theorem 1.4. The process X is said to form a graphical model with ([0, 1],Ω)
precisely when for every s, t ∈ I separated by J ⊂ I, we have

Cov(Xs, Xt|XJ) ≡ E [(Xs − E [Xs|XJ ])(Xt − E [Xt|XJ ])|XJ ] = 0 a.s.

which is equivalent to saying that E [XsXt|XJ ] = E [Xs|XJ ]E [Xt|XJ ] almost surely.
According to Loeve (2017), for a Gaussian process X, the conditional expectation
E [Xt|XJ ] is same as the projection Π(Xt|XJ) as described in Section 1.5. Because the
mean of the Gaussian process is zero, we can write the above equation as

K(s, t) = Π(Xs|XJ)Π(Xt|XJ)

By the Loève isometry,
K(s, t) = ⟨ΠJks,ΠJkt⟩

which reduces to
K(s, t) = ⟨ks,J ,ΠJkt,J⟩.

173



Appendix A: The Completion of Covariance Kernels

by the subspace isometry from Theorem A.1. Thus, K(s, t) = ⟨K(s, ·),K(t, ·)⟩H(KJ ) and
the conclusion follows.

A.2.3 Necessary and Sufficient Conditions for Unique Completion

Naturally, we begin by dealing with the 2-serrated case. To this end we prove another
existence result which captures how much the completion of a partial covariance on a
2-serrated domain can vary at a given point.

Lemma A.2. Let KΩ be a partial covariance on a serrated domain Ω of two intervals,
s ∈ I1 \J1, t ∈ I2 \J1 and α ∈ R. There exists a covariance extension K of KΩ such that

K(s, t) = α+ ⟨ks,J1 , kt,J1⟩

if any only if
|α| ≤

√
KI1/KJ1(s, s) ·KI2/KJ1(t, t).

Proof. We begin by getting rid of the part of the covariance that is due to J1. Let
J− = I1 \ J1, J+ = I2 \ J1, Jc = J− ∪ J+, Ω0 = [J− × J−] ∪ [J+ × J+] and define
LΩ0 : Ω0 → R as LΩ0(s, t) = KΩ(s, t) − ⟨ks,J1 , kt,J1⟩. This is similar to taking a Schur
complement with respect to J1. Strictly speaking, LΩ0 is not a partial covariance, but it
possesses the necessary structure of one and hence we can talk of its extension, which
would be a covariance L0 on Jc such that L0|Ω0 = LΩ0 .

Notice that KΩ has an extension if and only if LΩ0 does. Indeed, if K is an extension
of KΩ then K/KJ1 is an extension of LΩ0 . Conversely, if L0 is an extension of LΩ0 ,
then L : I × I → R given by L|Jc×Jc = L0 and 0 otherwise, is a covariance, and so is
K : I × I → R given by K(s, t) = L(s, t) + ⟨ks,J1 , kt,J1⟩ for s, t ∈ I. Thus, there is a clear
one-one correspondence between the extensions K of KΩ and the “extensions” L0 as
defined above. Let s ∈ I1 \ J1 and t ∈ I2 \ J1.

( =⇒ ) If K is a covariance extension of KΩ, then α = K(s, t) − ⟨ks,J1 , kt,J1⟩ = L(s, t).
Since, L is a covariance,

|α| = |L(s, t)| ≤
√
L(s, s) · L(t, t) =

√
KI1/KJ1(s, s) ·KI2/KJ1(t, t)

( ⇐= ) Let α ∈ R with the given property. It suffices to show that there is an extension
L0 of LΩ0 such that L0(s, t) = α. To do this, we shall rearrange the points of J− ∪ J+ so
that the region over which L0 is known, resembles a serrated domain.
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Let I− = J− \ {u} and I+ = J+ \ {v}. Now consider the sets J− = I− ∪ {u}, {u, v} and
{v} ∪ I+ = J+. These exhibit an overlapping pattern resembling that of the intervals of a
serrated domain, although they are not intervals themselves – see Figure A.5. In light of
Remark A.2, by applying the completion procedure in Equation 1.2 twice or equivalently
using Algorithm 1 we can complete the partial covariance on this “serrated-type-domain".
This permits us to conclude that there exists a covariance L such that L(u, v) = α for
every α as described above and the conclusion for K follows from the correspondence
between the two.

−→
(t, s)

(s, t) (t, t)

(s, s)

KJ−

KJ+

KI−

KI+

Figure A.5: Rearrangement of Jc = J− ∪ J+

The following corollary is immediate.

Corollary A.1. Let KΩ be a partial covariance on a 2-serrated domain Ω. Then KΩ
has a unique extension if and only if KI1/KJ1 = 0 or KI2/KJ1 = 0.

To extend this result to all serrated domains by induction we need to understand the
effect uniqueness has on Schur complements.

Lemma A.3. Let KΩ be a partial covariance on a 2-serrated domain. If KΩ has a
unique extension K⋆, then KI1/KJ1 = K⋆/KI2 and KI2/KJ1 = K⋆/KI1.

Proof. For s, t ∈ I1 \ J1 = I \ I2,

KI1/KJ1(s, t) −K⋆/KI2(s, t) = KI1(s, t) − ⟨ks,J1 , kt,J1⟩ −K⋆(s, t) + ⟨ks,I2 , kt,I2⟩
= ⟨ks,I2 , kt,I2⟩ − ⟨ks,J1 , kt,J1⟩
= ⟨ks,I2 , kt,I2⟩ − ⟨ks,I2 ,ΠJ1kt,I2⟩
= ⟨ks,I2 , kt,I2 − ΠJ1kt,I2⟩
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where ΠJ1 : H(KI2) → H(KI2) denotes the projection to the closed subspace spanned by
{ku,I2 : u ∈ J1}. To see why this term vanishes we reason as follows.

KJ1KI1

KI2K⋆

Figure A.6: The covariances KJ1 , KI1 , KI2 and K⋆

Observe that for u ∈ I2,

⟨ku,I2 , kt,I2 − ΠJ1kt,I2⟩ = ⟨ku,I2 , kt,I2⟩ − ⟨ku,I2 ,ΠJ1kt,I2⟩
= kt,I2(u) − ⟨ΠJ1ku,I2 ,ΠJ1kt,I2⟩
= K⋆(u, t) − ⟨ku,J1 , kt,J1⟩
= 0.

Therefore, kt,I2 − ΠJ1kt,I2 = 0 and the conclusion follows. Similarly, we can show that
KI2/KJ1 = K⋆/KI1 .

In other words, uniqueness causes certain Schur complements to reduce to “smaller"
Schur complements. We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. We shall use induction on m. The base case m = 2 follows from
Corollary A.1. Assume that the result holds for some m ≥ 2 and consider a partial
covariance KΩ on an (m+ 1)-serrated domain Ω. Let

Ī1 = ∪mj=1Ij , Ω1 = ∪mj=1Ij × Ij ⊂ Ī1 × Ī1, KΩ1 = KΩ|Ω1 ,

Ī2 = ∪m+1
j=2 Ij , Ω2 = ∪m+1

j=2 Ij × Ij ⊂ Ī2 × Ī2, KΩ2 = KΩ|Ω2 ,

and Ω̄ = (Ī1 × Ī1) ∪ (Ī2 × Ī2).

If KΩ admits a unique extension then so do the partial covariances KΩ1 and KΩ2 , for
otherwise using Theorem 1.1, one can complete two distinct completions of KΩ1 and
KΩ2 to get two distinct completions of KΩ. By the induction hypothesis, there exist
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KI1

KI2

KJ1

KIm

KIm+1

KĪ1

KĪ2

KĪ1∩Ī2

K⋆

Figure A.7: The covariance extensions KĪ1
, KĪ2

, KĪ1∩Ī2
and K⋆

r1 ∈ {1, . . . ,m} and r2 ∈ {2, . . . ,m+ 1} such that KIp/KJp = 0 for 1 ≤ p < r1 ∨ r2 and
KIq+1/KJq = 0 for r1 ∧ r2 ≤ q < m+ 1. Pick any r such that r1 ∧ r2 ≤ r ≤ r1 ∨ r2. Then
KIp/KJp = 0 for 1 ≤ p < r and KIq+1/KJq = 0 for r ≤ q < m+ 1.

To show the converse, assume that KIp/KJp = 0 for 1 ≤ p < r and KIq+1/KJq = 0 for
r ≤ q < m + 1 for some r ∈ {1, . . . ,m + 1}. Then KIp/KJp = 0 for 1 ≤ p < r ∧ m

and KIq+1/KJq = 0 for r ∧ m ≤ q < m and KIp/KJp = 0 for 2 ≤ p < r ∨ 2, and that
KIq+1/KJq = 0 for r ∨ 2 ≤ q < m+ 1. By the induction hypothesis, it follows that KΩ1

and KΩ2 both admit unique completions, say KĪ1
and KĪ2

respectively.

Due to uniqueness, KĪ1
(s, t) = KĪ2

(s, t) for s, t ∈ Ī1 ∩ Ī2, so together they form a partial
covariance KΩ̄ on Ω̄ given by KΩ′(s, t) = KĪ1

(s, t) if (s, t) ∈ Ω1 and KĪ2
(s, t) if (s, t) ∈ Ω2.

To prove that KΩ admits a unique completion, it suffices to show that KΩ̄ admits a
unique completion. Since Ω̄ is a 2-serrated domain, we can use the base case and this
reduces to showing that KĪ1

/KĪ1∩Ī2
= 0 or KĪ2

/KĪ1∩Ī2
= 0. By applying Lemma A.3 to

the 2-serrated domains

(I1 × I1) ∪ [(Ī1 ∩ Ī2) × (Ī1 ∩ Ī2)] and [(Ī1 ∩ Ī2) × (Ī1 ∩ Ī2)] ∪ (Im+1 × Im+1)

we get that KĪ1
/KĪ1∩Ī2

= KI1/KJ1 and KĪ2
/KĪ1∩Ī2

= KIm+1/KJm , at least one of which
has to be zero by our assumption. The conclusion follows.
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A.2.4 Characterisation of All Completions

Proof of Theorem 1.6. Let K be a completion of KΩ and ΠJ : H(K) → H(K) denote
the projection to the closed subspace spanned by {ku : u ∈ J}. Then

L(s, t) = K(s, t) −
〈
KΩ(s, ·),KΩ(·, t)

〉
H(KI1∩I2 )

= ⟨ks, kt⟩ − ⟨ks,J , kt,J⟩

= ⟨ks, kt⟩ − ⟨ΠJks,ΠJkt⟩
= ⟨ks − ΠJks, kt − ΠJkt⟩

is a completion of LΩ′ . The converse is obvious.

Remark A.3. Notice that if KΩ is continuous, then so is K and so is the term〈
KΩ(s, ·),KΩ(·, t)

〉
H(KI1∩I2 )

as a function of s and t. This is because the mapping
t → kt is continuous since

∥kt+h − kt∥2 = K(t+ h, t+ h) − 2K(t, h) +K(t, t) → 0

as h → 0 and the same would apply to the mapping t → ΠJkt. It follows that L is
continuous.

Proof of Lemma 1.1. For f ∈ L2(I) we have

⟨f,Kf⟩2 =
m∑
j=1

⟨f |Ij ,Kjf |Ij ⟩2 +
m−1∑
p=1

[
2⟨f |Sp ,Rpf |Dp⟩2 − ⟨f |Jp ,Jpf |Jp⟩2

]
.

Let g ∈ L2(I). Then we can write

⟨g,Kf⟩2 = 1
4 [⟨f + g,K(f + g)⟩2 − ⟨f − g,K(f − g)⟩2]

=
m∑
j=1

⟨g|Ij ,Kjf |Ij ⟩2 +
m−1∑
p=1

[
⟨g|Sp ,Rpf |Dp⟩2 + ⟨Rpg|Dp , f |Sp⟩2 − ⟨g|Jp ,Jpf |Jp⟩2

]
Thus,

Kf(t) =
∑
j:t∈Ij

Kjf |Ij (t) +
∑
p:t∈Sp

Rpf |Dp(t) +
∑

p:t∈Dp

R∗
pf |Sp(t) −

∑
p:t∈Jp

Jpf |Jp(t) a.e.

Proof of Theorem 1.7. We use induction. Consider the base case m = 2. Using Theorem
1.6, we know that the integral kernel KR1 of R1 at some point (s, t) is given by the
contribution due to the canonical completion which is ⟨ks,J1 , kt,J1⟩ plus the perturbation.
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By (Paulsen and Raghupathi, 2016, Theorem 11.18), we can write the first term as

⟨kΩ
s,J1 , k

⋆
t,J1⟩ = ⟨J−1/2

1 kΩ
s,J1 ,J

−1/2
1 k⋆t,J1⟩L2(J1)

and therefore corresponding integral operator is given by[
J−1/2

1 S∗
1

]∗ [
J−1/2

1 D1
]
. (A.2)

Due to (Baker, 1973, Theorem 2) as mentioned before, the second term has to be of the
form

U1/2
1 Ψ1V1/2

1

for some bounded linear map Ψ1 : L2(D1) → L2(S1) with ∥Ψ1∥ ≤ 1 where

U1 = KI1 −
[
J−1/2

1 S∗
1

]∗ [
J−1/2

1 S∗
1

]
, V1 = KI2 −

[
J−1/2

1 D∗
1

]∗ [
J−1/2

1 D∗
1

]
(A.3)

are simply integral operators corresponding to the Schur complements KI1/KJ1 and
KI2/KJ1 found using the technique in Equation (A.2).

In the base case m = 2, we have from Theorem 1.6 that

R1 =
[
J−1/2

1 S∗
1

]∗ [
J−1/2

1 D1
]

+ U1/2
1 Ψ1V1/2

1 (A.4)

Now for the induction case, assume that K is known over the region (∪pj=1Ij) × (∪pj=1Ij).
Consider the 2-serrated domain given by[

(∪pj=1Ij) × (∪pj=1Ij)
]

∪ (Ip+1 × Ip+1).

Then (∪pj=1Ij) ∩ Ip+1 = Jp, (∪pj=1Ij) \ Ip+1 = Sp and Ip+1 \ (∪pj=1Ij) = Dp. Repeating
the above reasoning gives

Rp =
[
J−1/2
p S∗

p

]∗ [
J−1/2
p Dp

]
+ U1/2

p ΨpV1/2
p

for some bounded linear map Ψp : L2(Dp) → L2(Sp) with ∥Ψp∥ ≤ 1 where

Up = KSp −
[
J−1/2
p S∗

p

]∗ [
J−1/2
p S∗

p

]
, Vp = KDp −

[
J−1/2
p D∗

p

]∗ [
J−1/2
p D∗

p

]
The proof is this complete.

A.2.5 Estimation of the Canonical Completion

Solving Equation (1.10) involves an interesting complication. Since KΩ is specified
inexactly, both the operator, which is J1/2

p , as well as the data, in the form of the
operators Dp and Sp, are inexactly specified. In essence, the problem is to estimate an
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operator

W =
∞∑
j=1

Uej ⊗ Vej
λj

where {(λj , ej)}∞
j=1 are the eigenpairs of T, from the estimates Û, V̂ and T̂ which

converge to the operators U, V and T almost surely or in L2. A natural candidate is
the estimator

Ŵ =
N∑
j=1

Ûêj ⊗ V̂êj
λ̂j

where N serves as the truncation or regularization parameter. We shall work out how
fast N can grow as the estimates Û, V̂ of T̂ converge to U, V and T for Ŵ to converge
to W. We have the following estimate:

Lemma A.4. Let αj be the eigenvalue gap given by

αj =


(λ1 − λ2)/2

√
2 j = 1[

(λj−1 − λj) ∧ (λj − λj+1)
]
/2

√
2 j > 1.

If αj is monotonically decreasing with j, then for every N satisfying λN > ∥T − T̂∥2, we
have the bound

∥W − Ŵ∥2
2 ⪯ N

λ2
N

[
∥U − Û∥2

2 + ∥V − V̂∥2
2

]

+ N

λ2
Nα

2
N

∥T − T̂∥2
2 +

∥∥∥∥∥∥
∞∑

j=N+1

Uej ⊗ Vej
λj

∥∥∥∥∥∥
2

2

.

(A.5)

Moreover, if αj is not monotonically decreasing with j, the above bound still holds if we
replace αN with minj≤N αj,

Proof. We take a step wise approach. Define

Ŵ1 =
N∑
j=1

Ûej ⊗ V̂ej
λj

,Ŵ2 =
N∑
j=1

Ûêj ⊗ V̂êj
λj

and Ŵ3 =
N∑
j=1

Ûêj ⊗ V̂êj
λ̂j

.

Naturally,

∥W − Ŵ∥2
2 ≤ 2∥W − Ŵ1∥2

2 + 2∥Ŵ1 − Ŵ2∥2
2 + 2∥Ŵ2 − Ŵ3∥2

2

We now proceed by working out an upper bound for every term individually:

Step 1. Using the identity ∥x + y∥2 ≤ 2∥x∥2 + 2∥y∥2 we can write the first term as
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follows

∥W − Ŵ1∥2
2 ≤ 2

∥∥∥∥∥∥
N∑
j=1

Uej ⊗ Vej
λj

−
N∑
j=1

Ûej ⊗ V̂ej
λj

∥∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥∥
∞∑

j=N+1

Uej ⊗ Vej
λj

∥∥∥∥∥∥
2

2

= 2

∥∥∥∥∥∥
N∑
j=1

[U − Û]ej ⊗ Vej + Ûej ⊗ [V − V̂]ej
λj

∥∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥∥
∞∑

j=N+1

Uej ⊗ Vej
λj

∥∥∥∥∥∥
2

2

≤ 2

∥∥∥∥∥∥
N∑
j=1

[U − Û]ej ⊗ Vej
λj

∥∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥∥
N∑
j=1

Ûej ⊗ [V − V̂]ej
λj

∥∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥∥
∞∑

j=N+1

Uej ⊗ Vej
λj

∥∥∥∥∥∥
2

2

≤ 2
[
∥V∥2

2∥U − Û∥2
2 + ∥Û∥2

2∥V − V̂∥2
2

] N∑
j=1

1
λ2
j

+ 2

∥∥∥∥∥∥
∞∑

j=N+1

Uej ⊗ Vej
λj

∥∥∥∥∥∥
2

2

≤ 2 N
λ2
N

[
∥V∥2

2∥U − Û∥2
2 + ∥Û∥2

2∥V − V̂∥2
2

]
+ 2

∥∥∥∥∥∥
∞∑

j=N+1

Uej ⊗ Vej
λj

∥∥∥∥∥∥
2

2

Step 2. In the same way, we can write the second term as

∥Ŵ1 − Ŵ2∥2
2 =

∥∥∥∥∥∥
N∑
j=1

Ûej ⊗ V̂ej
λj

−
N∑
j=1

Ûêj ⊗ V̂êj
λj

∥∥∥∥∥∥
2

2

≤

∥∥∥∥∥∥
N∑
j=1

Û(ej − êj) ⊗ V̂ej
λj

∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥
N∑
j=1

Ûêj ⊗ V̂(ej − êj)
λj

∥∥∥∥∥∥
2

2

≤ 2∥Û∥2
2∥V̂∥2

2 ·
N∑
j=1

∥ej − êj∥2

λ2
j

⪯ 2∥Û∥2
2∥V̂∥2

2∥T − T̂∥2
2 ·

N∑
j=1

1
α2
jλ

2
j

⪯ N

α2
Nλ

2
N

∥Û∥2
2∥V̂∥2

2∥T − T̂∥2
2

The third inequality is a consequence of the perturbation bound for eigenfunctions which
states that the perturbation ∥ej − êj∥ can be controlled by the perturbation ∥T − T̂∥ of
T divided by the eigenvalue gap αj . In the last inequality, we use the assumption that
the eigenvalue gap αj decreases with N . If this is not true we can simply replace αN
above with minj≤N αj .
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Step 3. And now the third term satisfies,

∥Ŵ3 − Ŵ2∥2
2 =

∥∥∥∥∥∥
N∑
j=1

Ûêj ⊗ V̂êj
λj

−
N∑
j=1

Ûêj ⊗ V̂êj
λ̂j

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
N∑
j=1

Ûêj ⊗ V̂êj
λ̂j − λj

λj λ̂j

∥∥∥∥∥∥
2

2

≤ 2
N∑
j=1

∥Û∥2
2∥V̂∥2

2

[
λ̂j − λj

λj λ̂j

]2

≤ 2 N

λ2
N λ̂

2
N

∥Û∥2
2∥V̂∥2

2∥T − T̂∥2
2

Here, we used the perturbation bound for eigenvalues which is given by

|λ̂j − λj | ≤ ∥T − T̂∥.

Since, we choose N such that ∥T − T̂∥ ≤ λN , we can bound the λ̂j in the denominator
using the fact that λ̂N ≥ λN − ∥T − T̂∥ > 0 and write,∥∥∥∥∥∥

N∑
j=1

Ûêj ⊗ V̂êj
λj

−
N∑
j=1

Ûêj ⊗ V̂êj
λ̂j

∥∥∥∥∥∥
2

2

≤ 2 N
λ2
N

∥Û∥2
2∥V̂∥2

2
∥T − T̂∥2[

λN − ∥T − T̂∥
]2

⪯ N

λ4
N

∥Û∥2
2∥V̂∥2

2∥T − T̂∥2
2.

The last inequality follows from the fact that

1[
λN − ∥T − T̂∥

] = 1
λN

[
1 + ∥T − T̂∥

λN
+ ∥T − T̂∥2

λ2
N

+ · · ·
]

⪯ 1
λN

.

Step 4. Putting everything together, we get

∥Ŵ1 − W∥2
2 + ∥Ŵ1 − Ŵ2∥2

2 + ∥Ŵ3 − Ŵ2∥2
2

⪯ N

λ2
N

[
∥V∥2

2∥U − Û∥2
2 + ∥Û∥2

2∥V − V̂∥2
2

]
+ N

α2
Nλ

2
N

∥Û∥2
2∥V̂∥2

2∥T − T̂∥2
2

+ N

λ4
N

∥Û∥2
2∥V̂∥2

2∥T − T̂∥2
2 + 2

∥∥∥∥∥∥
∞∑

j=N+1

Uej ⊗ Vej
λj

∥∥∥∥∥∥
2

2

⪯ N

λ2
N

[
∥U − Û∥2

2 + ∥V − V̂∥2
2

]
+ N

λ2
Nα

2
N

∥T − T̂∥2
2 +

∥∥∥∥∥∥
∞∑

j=N+1

Uej ⊗ Vej
λj

∥∥∥∥∥∥
2

2

since αj < λj . Hence proved.
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Remark A.4. The next result illustrates how the estimate from Lemma A.4 can be used
to derive consistency and rates of convergence for our estimator. We begin by considering
the case when the tuning parameters Np are allowed to be random and then consider
the case when they are required to be deterministic. Strictly speaking the results are
independent and the impatient reader can skip them and go directly to Lemma A.6, but
we believe that they are helpful in understanding the the proof of the rate of convergence
result.

Theorem A.3 (Consistency). Let KΩ be a continuous partial covariance on a serrated
domain Ω of m intervals, K̂Ω ∈ L2(Ω). If K̂Ω → KΩ in L2(Ω) and the regularization
parameters N = (Np)m−1

p=1 are chosen such that for 1 ≤ p < m, δp = ∥Ŝp − Sp∥2 ∨ ∥D̂p −
Dp∥2 and ϵp = ∥Ĵp − Jp∥2 we have

1. Np → ∞,

2. λp,Np > ϵp,

3. Np

λ2
p,k
δ2
p → 0 and Np

λ2
p,k
α2

p,k
ϵ2p → 0

as δp, ϵp → 0 where λp,k denotes the kth eigenvalue of Jp and αp,k is given by

αp,k =

(λp,1 − λp,2)/2
√

2 k = 1[
(λp,k−1 − λp,k) ∧ (λp,k − λp,k+1)

]
/2

√
2 k > 1

then K̂⋆ → K⋆ in L2(I × I).

Proof of Theorem A.3. We again proceed by induction on the number of intervals m.
The claim is vacuously true for m = 1. Assume that it holds for m = q − 1 for some
q ≥ 2. We shall show that it holds for m = q.

Consider a partial covarianceKΩ on a serrated domain Ω of q intervals: I1, . . . , Iq. Let I ′ =
∪q−1
j=1Ij and Ω′ = ∪q−1

j=1Ij×Ij . Define KΩ′ = KΩ|Ω′ . Let ϵ =
∫

Ω[K̂Ω(x, y)−KΩ(x, y)]2 dxdy.
We can decompose the error of K̂ as follows:

∫
I×I

[
K̂⋆(x, y) −K⋆(x, y)

]2
dx dy =

∫
I′×I′

[
K̂⋆(x, y) −K⋆(x, y)

]2
dx dy

+
∫
Aq

[
K̂Ω(x, y) −KΩ(x, y)

]2
dx dy

+ 2
∫
Rq

[
K̂⋆(x, y) −K⋆(x, y)

]2
dx dy

(A.6)

where Aq = [Iq × Iq] \ [Jq−1 × Jq−1]. By construction, the estimator for the canonical
extension of KΩ′ is the restriction K̂|I′×I′ of the estimator K̃ for the canonical extension
of KΩ. Therefore, the first term in Equation A.6 converges to zero as ϵ → 0, by the
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induction hypothesis. The same applies to the second term for more obvious reasons. It
suffices to show that the third term∫

Rq

[
K̂⋆(x, y) −K⋆(x, y)

]2
dxdy = ∥R̂q − Rq∥2

2

converges to zero as ϵ → 0. Clearly, by Lemma A.4,

∥R̂q − Rq∥2
2 ⪯ Nq

λ2
q,Nq

[
∥Sq − Ŝq∥2 ∧ ∥Dq − D̂q∥2

]2

+ Nq

λ2
q,Nq

α2
q,Nq

∥Jq − Ĵq∥2
2 +

∥∥∥∥∥∥
∞∑

j=Nq+1

Sqeq,j ⊗ D∗
qeq,j

λq,j

∥∥∥∥∥∥
2

2

.

The first two terms converge to zero because Nq has been chosen such that Np

λ2
p,Np

α̃2
p,Np

∥K̂Ω−

KΩ∥2
L2(Ω) → 0 which means that Nq

λ2
q,k
δ2
q → 0 and Nq

λ2
q,k
α2

q,k
ϵ2q → 0 and the last term

converges to 0 as Nq → ∞. The conclusion follows.

Notice that Equation A.5 decomposes the error ∥W − Ŵ∥2
2 into estimation and approxi-

mation terms as follows:

EN = N

λ2
N

[
∥U − Û∥2

2 + ∥V − V̂∥2
2

]
+ N

λ2
Nα

2
N

∥T − T̂∥2
2

AN =

∥∥∥∥∥∥
∞∑

j=N+1

Uej ⊗ Vej
λj

∥∥∥∥∥∥
2

2

Notice that AN is a completely deterministic term which depends on U, V and the
spectral properties of T. Furthermore, the error in U and V has much less weight than
the error in T.

Lemma A.5. Under the setting of Lemma A.4, if λN ∼ N−α and AN ∼ N−β, the best
error is achieved for

N ∼ δ−2/2α+β+1 ∧ ϵ−2/4α+β+3

and is given by
∥W − Ŵ∥2 ⪯ N−β/2

Proof. Since, λN ∼ N−α, it follows that αN ∼ N−α−1. Following the above discussion,
we can write

∥W − Ŵ∥2
2 ⪯ EN +AN

where

EN = N2α+1δ2 +N4α+3ϵ2

AN = N−β
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To minimize the error or in other wordsm maximize the decay rate, the estimation
term should decrease at least as fast as the approximation term as N increases. Thus,
N2α+1δ2 ⪯ N−β and N4α+3ϵ2 ⪯ N−β . It follows that for the sum EN +AN to decay at
the maximum rate we need that

N ∼ δ−2/2α+β+1 ∧ ϵ−2/4α+β+3.

The total error then satisfies
∥W − Ŵ∥2

2 ⪯ N−β

and the conclusion follows.

Theorem A.4 (Rate of Convergence). Let KΩ be a partial covariance on a serrated
domain Ω of m intervals and K̂Ω be its estimate. Let K̂ be defined as above. Assume that
for every 1 ≤ p < m, we have λp,k ∼ k−α and Ap,k ∼ k−β. If the truncation parameters
N = (Np)m−1

p=1 are chosen according to the rule

Np ∼ ∥K̂Ω −KΩ∥−2γp/β
L2(Ω)

then
∥K̂⋆ −K⋆∥L2(I×I) ⪯ ∥K̂Ω −KΩ∥γm−1

L2(Ω)

where γm−1 = β
4α+β+3

[
β

2α+β+1

]m−2
for m > 1 and 1 for m = 1.

Proof of Theorem A.4. We proceed by induction on the number of intervals m. The
statement is vacuously true for the base case m = 1. Assume that it holds for m = q − 1
for some q ≥ 3. We shall show that it must hold for m = q.

As before, consider a partial covariance KΩ on a serrated domain Ω of q intervals:
I1, . . . , Iq. Let I ′ = ∪q−1

j=1Ij and Ω′ = ∪q−1
j=1Ij × Ij . Define KΩ′ = KΩ|Ω′ . Let ϵ =∫

Ω[K̂Ω(x, y) −KΩ(x, y)]2 dxdy. The error of K̂⋆ can be decomposed as in Equation A.6.

By construction, the estimator for the canonical extension of KΩ′ is the restriction K̂⋆|I′×I′

of the estimator K̂⋆ for the canonical extension of KΩ. By the induction hypothesis,∫
I′×I′

[
K̂⋆(x, y) −K⋆(x, y)

]2
dxdy ≲

[∫
Ω′

[
K̂Ω(x, y) −KΩ(x, y)

]2
dxdy

]γm−2

≲ ϵγm−2 .

Thus the first term in Equation (A.6) can be bounded by a power of ϵ. The second term
is obviously less than ϵ. We now turn our attention to the third term,∫

Rq

[
K̂⋆(x, y) −K⋆(x, y)

]2
dxdy = ∥R̂q − Rq∥2

2
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Using Lemma A.5, we have

Nq ∼ [ϵγm−2 ]−2/2α+β+1 ∧ ϵ−2/4α+β+1 = [ϵγm−2 ]−2/2α+β+1

and,
∥R̂q − Rq∥2

2 ⪯ N−β
q ∼ [ϵγm−2 ]β/2α+β+1 = ϵγm−1

From Equation A.6,

∫
I×I

[
K̂⋆(x, y) −K⋆(x, y)

]2
dx dy ⪯ ϵγm−2 + ϵ+ 2ϵγm−1 ∼ ϵγm−1 (A.7)

and the proof is complete.

We now present results which treat the tuning parameter as a deterministic quantity.

A.2.6 Consistency and Rates of Convergence with Nonrandom Tuning
Parameter

Recall the setting of Lemma A.4 and let ϵn = ∥T−T̂n∥2 and δn = ∥U−Ûn∥2∨∥V−V̂n∥2.

Lemma A.6. Assume that λN ∼ N−α, AN ∼ N−β, ϵn = OP(n−ζ) and δn = OP(n−ζ′).

1. If the tuning parameter scales as N ∼ nx where

0 < x <
ζ

2α+ 2/3 ∧ ζ ′

α+ 1/2 ,

then ∥W − Ŵn∥2 → 0 in probability as n → ∞.

2. For every ε > 0,
∥W − Ŵn∥2 = OP(1/ny∗−ε)

where
y∗ = βζ

β + 2α+ 3/2 ∧ βζ ′

β + α+ 1/2

so long as the tuning parameter satisfies N ∼ ny∗/β.
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Proof. Let {ηn}∞
n=1 be a sequence with ηn > 0. Then,

P{∥W − Ŵn∥2
2 > ηn}

= P{∥W − Ŵn∥2
2 > ηn | λN > ∥T̂n − T∥} · P{λN > ∥T̂n − T∥}

+ P{∥W − Ŵn∥2
2 > ηn | λN ≤ ∥T̂n − T∥} · P{λN ≤ ∥T̂n − T∥}

≤ P{∥W − Ŵn∥2
2 > ηn | λN > ∥T̂n − T∥} · 1

+ 1 · P{λN ≤ ∥T̂n − T∥}

≤ P
{
N
λ2

N
δ2
n + N

λ2
Nα

2
N
ϵ2n +

∥∥∥∥∑∞
j=N+1

Uej⊗Vej

λj

∥∥∥∥2

2
> Cηn

∣∣∣∣ λN > ϵn

}
+ P{ϵn ≥ λN}

≤
P
{
N
λ2

N
δ2
n + N

λ2
Nα

2
N
ϵ2n +

∥∥∥∑∞
j=N+1

Uej⊗Vej

λj

∥∥∥2

2
> Cηn

}
P{λN > ϵn}

+ P{ϵn ≥ λN}

≤
P
{
N
λ2

N
δ2
n + N

λ2
Nα

2
N
ϵ2n +

∥∥∥∑∞
j=N+1

Uej⊗Vej

λj

∥∥∥2

2
> Cηn

}
1 − P{ϵn ≥ λN}

+ P{ϵn ≥ λN}

It suffices for us to show that P{ϵn ≥ λN} → 0 and

P
{
N
λ2

N
δ2
n + N

λ2
Nα

2
N
ϵ2n +

∥∥∥∑∞
j=N+1

Uej⊗Vej

λj

∥∥∥2

2
> Cηn

}
→ 0

as n → ∞. Furthermore, since λN ∼ N−α, we have αN ∼ N−α−1 and we are given that∥∥∥∑∞
j=N+1

Uej⊗Vej

λj

∥∥∥
2

∼ N−β.

Now,
P{ϵn ≥ λN} ≤ P{nζϵn ≥ nζN−α}

and

P
{
N
λ2

N
δ2
n + N

λ2
Nα

2
N
ϵ2n +

∥∥∥∑∞
j=N+1

Uej⊗Vej

λj

∥∥∥2

2
> Cηn

}
≤ P

{
N2α+1δ2

n > C ′ηn
}

+ P
{
N4α+3ϵ2n > C ′ηn

}
+ P

{
N−2β > C ′ηn

}
≤ P

{
n2ζ′

δ2
n > C ′ n

2ζ′
ηn

N2α+1

}
+ P

{
n2ζϵ2n > C ′ n

2ζηn
N4α+3

}
+ P

{
1 > C ′ ηn

N−2β

}

where C ′ = C/3.

Let ηn ∼ n−2y and N ∼ nx. We need to show that there exists y, x > 0 such that the
following terms increase with n:

nζ

Nα
∼ nζ−αx,

n2ζ′
ηn

N2α+1 ∼ n2′ζ′−2y−(2α+1)x,

n2ζηn
N4α+3 ∼ n2ζ−2y−(4α+3)x,

ηn
N−2β ∼ n−2y+2βx.
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It follows that:

ζ − αx > 0
2ζ ′ − 2y − (2α+ 1)x > 0
2ζ − 2y − (4α+ 3)x > 0

−2y + 2βx > 0

(A.8)

Any pair (x, y) with x, y > 0 satisfying the inequalities (A.8), indicated by the yellow

−2y + 2βx = 0

ζ ′

ζ ′/(α+ 1/2)

ζ

ζ/(2α+ 3/2) ζ/α

2ζ − 2y − (4α + 3)x = 0

ζ − αx = 0

2ζ′ − 2y − (2α + 1)x = 0

Figure A.8: The yellow region indicates the solutions (x, y) of the inequalities (A.8).

region in Figure A.8, corresponds to a consistent estimator for which the tuning parameter
scales according to N ∼ nx and the error decreases at least as fast as n−y in probability.
It thus follows that so long as x satisfies,

x <
ζ

2α+ 2/3 ∧ ζ ′

α+ 1/2

we have ∥W − Ŵn∥ → 0 in probability as n → ∞.

Of course, nothing prevents us from choosing an x for which we can have the highest
possible value of y. From Figure A.8, it is clear that the supremum of y is given by

y∗ = βζ

β + 2α+ 3/2 ∧ βζ ′

β + α+ 1/2

depending on which line among the blue and green ones intersects with the red line first
and thus at a higher value of y. The corresponding value of x is given by x∗ = y∗/β. Thus
by choosing x to be x∗, we have that ∥W − Ŵn∥2 = OP(1/ny∗−ε) for every ε > 0.

Proof of Theorem 1.8. In essence, we shall merely apply Lemma A.6 repeatedly. We
proceed by induction on the number of intervals m. The statement is true for the base
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case m = 2 due to Lemma A.6. Assume that it holds for m = q − 1 for some q > 3. We
shall show that it must hold for m = q.

As before, consider a partial covariance KΩ on a serrated domain Ω of q intervals:
I1, . . . , Iq. Let I ′ = ∪q−1

j=1Ij and Ω′ = ∪q−1
j=1Ij × Ij . Define KΩ′ = KΩ|Ω′ . Let ϵ =∫

Ω[K̂Ω(x, y) −KΩ(x, y)]2 dxdy. The error of K̂⋆ can be decomposed as in Equation A.6.

By construction, the estimator for the canonical extension of KΩ′ is the restriction K̂⋆|I′×I′

of the estimator K̂⋆ for the canonical extension of KΩ. By the induction hypothesis,∫
Ω′

[
K̂Ω(x, y) −KΩ(x, y)

]2
dxdy = OP(n−ζ)

implies that for every ε > 0∫
I′×I′

[
K̂⋆(x, y) −K⋆(x, y)

]2
dxdy = OP(1/nζγm−2−ε).

Thus the first term in Equation (A.6) can be bounded in probability by a power of
n−ζ . This means that in the language of Lemma A.6, δn = OP(1/nζγm−2−ε) and thus
ζ ′ = ζγm−2 − ε. It is given that the second term is OP(n−ζ). We now turn our attention
to the third term, ∫

Rq

[
K̂⋆(x, y) −K⋆(x, y)

]2
dxdy = ∥R̂q − Rq∥2

2

Using Lemma A.6, if the tuning parameter satisfies Nq ∼ nγm−1/β, we have

∥R̂q − Rq∥2 = OP

(
1/n

βζ
β+2α+3/2 ∧ βζ′

β+α+1/2

)
= OP

(
1/n

βζ
β+2α+3/2 ∧ β(ζγm−2−ε)

β+α+1/2

)
= OP

(
1/nζγm−1−ε′)

where ε′ > 0 can be arbitrarily small. From Equation A.6,∫
I×I

[
K̂⋆(x, y) −K⋆(x, y)

]2
dx dy

= OP(1/nζγm−2−ε) +OP(1/nζ) +OP(1/nζγm−1−ε′) = OP(1/nζγm−1−ε′)
(A.9)

and the proof is complete.

Remark A.5. It is indeed possible to give a general consistency result like Lemma A.6(i)
but for the m-serrated domain with m > 2 using Lemma A.6 as before, however this
proves to be a tedious exercise which doesn’t tell us significantly more than what we
already know from Figure A.8 and Theorem 1.8. Hence, we shall skip it.
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A.2.7 Beyond Serrated Domains

Proof of Theorem 1.9. Let K1 and K2 be completions of KΩ̃ and assume that KΩ̃|Ω
admits a unique completion. Then K1 and K2 are completions of KΩ̃|Ω, implying that
K1 = K2.

Proof of Theorem 1.10. Let s, t ∈ Ω̃c separated by J ⊂ I in (I, Ω̃). Let J− = {u ∈ I :
u ≤ v for some v ∈ J} and J+ = {u ∈ I : u ≥ v for some v ∈ J}. Define

Ω̄ = (J− × J−) ∪ (J+ × J+)

If K is the unique completion of KΩ̃ then it is a unique completion of the partial
covariance K|Ω̄ on the serrated domain Ω. The canonical completion of K|Ω̄ would thus
have to be same as the unique completion K and therefore,

K(s, t) = ⟨ks,J , kt,J⟩

It follows that K is the canonical completion of KΩ̃.

ks,J

kt,J

KΩ̃

KJ

KJ+

KJ−

K

(s, t)

Figure A.9: The partial covariance KΩ̃

Proof of Theorem 1.11. Let Ω̃ ⊂ Ω. Then, every pair (s, t) ∈ Ωc separated by J ⊂ I in Ω
is also separated by J ⊂ I in Ω̃. Therefore the canonical completion of K⋆|Ω is equal to
K⋆(s, t). Since this is true for every (s, t) ∈ Ωc, it follows that the canonical completion
of K⋆|Ω is K⋆.

For the converse, if the canonical completion of K⋆|Ω is K⋆ then K⋆ is the completion
of a partial covariance on the nearly serrated domain Ω which is a improper subset of
Ω.
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A.3 Some Additional Remarks on Uniqueness

Theorem 1.5 provides a condition that is both sufficient and necessary for a partial
covariance on a serrated domain to admit a unique extension. It is interesting to briefly
discuss this condition and contrast it to analyticity and/or low-rank conditions, that
have previously been employed as means to guarantee uniqueness.

Intuitively, the condition in Theorem 1.5 is a “rigidity” condition: it specifies that that
the whole process can be generated by some deterministic transformation of a certain part
of it. Analyticity is a special case of “rigidity”, where this deterministic transformation
is manifested as analytic continuation. But it is a very special case, and the condition
in Theorem 1.5 is substantially weaker. Indeed, it makes no reference to smoothness
and can be satisfied by non-differentiable covariances. Such examples can be generated
readily, based on the theorem’s perfect linear prediction interpretation. The following
example illustrates the essence of the general case. Let I1 = [0, 2/3], I2 = [1/3, 1] and
Ω = I2

1 ∪ I2
2 be a 2-serrated domain. Let {B(t) : t ∈ [1/3, 2/3]} be a standard Brownian

motion on I1 ∩ I2. Define

X(t) =


B(2/3 − t), t ∈ I1 \ I2

B(t), t ∈ I1 ∩ I2,

B(4/3 − t), t ∈ I2 \ I1.

(A.10)

to be a process on [0, 1] (Figure A.10 depicts some sample paths thereof). Since X|I1\I2

and X|I2\I1 can be perfectly linearly predicted from X|I1∩I2 , the covariance K of X is the
unique extension of its restriction KΩ to the domain Ω. The process X is “rigid”, in the
sense that its global fluctuations are a deterministic propagation of the local fluctuations
on I1 ∩ I2. Yet its covariance is far from analytic – indeed it is not even differentiable.

-2
-1

0
1

2
3

4

t

X
(t)

Figure A.10: Five sample paths corresponding to the process defined in Equation (A.10).
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Another way to induce rigidity is via rank constraints, e.g. assuming that the partial
covariance KΩ is the restriction of a finite rank covariance K(s, t) = ∑d

i=1 λiφ(s)φ(t)
on [0, 1] to the serrated domain Ω = ∪mj=1Ij × Ij . Equivalently, one can assume that
each KΩ|Ij×Ij has finite rank, i.e. place the assumption directly on KΩ, because having
finite rank locally is equivalent to having finite rank globally1. No additional smoothness
assumptions are made. In this context, Theorem 1.5 can be reduced to a statement
purely about ranks. To do so, for S ⊂ I such that S×S ⊂ Ω, let dS denote the dimension
of H(KS) or equivalently, the rank of the covariance KS = KΩ|S×S . Then we have:

Theorem A.5 (The finite rank case). Let KΩ be a partial covariance over a serrated
domain Ω = ∪mj=1Ip × Ip ⊂ [0, 1]2 such that dIp < ∞, 1 ≤ p ≤ m. Then, KΩ extends
uniquely to a covariance on [0, 1]2 if and only if there exists an r ∈ {1, ...,m} such that
dIp = dJp for 1 ≤ p < r and dIq+1 = dJq for r ≤ q < m.

Proof. Notice that KIp/KJp = 0 if and only if HJp is dense in HIp which is if and only if
dIp = dimHIp = dimHJp = dJp . The statement then follows from Theorem 1.5.

Remark A.6 (Finite ranks and nearly serrated domains). In fact, it is straightforward
to see that the last proof can establish that the same condition remains sufficient for
unique extension from a nearly serrated domain, in the following sense: if the condition
is satisfied for some serrated subdomain Ω of a nearly serrated domain Ω̃, then the partial
covariance KΩ̃ extends uniquely. This is weaker than the condition in Delaigle et al.
(2021), where it was assumed that [0, 1] can be partitioned into intervals {J ′

k}Mk=1 such
that J ′

k × J ′
k ⊂ Ω̃ and the corresponding restrictions of the eigenfunctions {φj |J ′

k
}dj=1 are

linearly independent for every k (or more simply that KJ ′
k

is a rank-d covariance for
every k).

1If K is an extension of KΩ, then every f ∈ H(K) can be written as a sum of elements fj ∈ HIj

for 1 ≤ j ≤ m. But HIj are all finite dimensional, so fj can be written as a sum of finite number of
generators ku for u ∈ Ij . Therefore, f can be represented as a finite sum of the generators. These
generators span H(K), so it follows that H(K) is finite dimensional and hence K must be a finite rank
covariance.
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B Appendix B.
Positive-Definite Completions

This appendix collects the the proofs of the formal statements in Chapter 2.

Proof of Lemma 2.1. Let H : X × X → R be such that K + H,K − H ≥ O. Thus,
K +H,K −H ≥ O which implies that H(x, y) = H(y, x) for x, y ∈ X and

−
n∑

i,j=1
αiαjK(xi, xj) ≤

n∑
i,j=1

αiαjH(xi, xj) ≤
n∑

i,j=1
αiαjK(xi, xj).

for {αi}ni=1 ⊂ R and {xi}ni=1 ⊂ X. Let H be the RKHS of K and H0 = Span{kx : x ∈
X}H where kx : X → R is defined by kx(y) = K(x, y) for x, y ∈ X. Let B : H0×H0 → R
be the symmetric bilinear linear functional given by B(kx, ky) = H(x, y). B is well-
defined because of the above equation. Moreover, |B(f, f)| ≤ ∥f∥2 for every f ∈ H0.
So,

∥f∥2 +B(f, f), ∥f∥2 −B(f, f) ≥ 0

Notice that ∥f − g∥2 +B(f − g, f − g) ≥ 0 implies that

B(f, g) ≤ 1
2

[
∥f − g∥2 +B(f, f) +B(g, g)

]
≤ ∥f∥2 + ∥g∥2 − ⟨f, g⟩

Replacing f by
√
cf and g by g/

√
c for some c > 0 gives

B(f, g) ≤ c∥f∥2 + ∥g∥2/c− ⟨f, g⟩
≤ 2∥f∥∥g∥ + ∥f∥∥g∥ = 3∥f∥∥g∥
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by choosing c = ∥g∥/∥f∥ and applying the Cauchy-Schwarz inequality. By replacing
g by −g, we can derive B(f, g) ≥ −3∥f∥∥g∥. It follows that |B(f, g)| ≤ 3∥f∥∥g∥ and
therefore B is continuous. It uniquely extends by continuity to H × H and admits a
Riesz representation (Kreyszig, 1978, Theorem 3.8-4) of the form B(f, g) = ⟨ΦHf, g⟩,
where ΦH ∈ L(H). Moreover, ΦH is self-adjoint since

⟨ΦHkx, ky⟩ = H(x, y) = H(y, x) = ⟨ΦHky, kx⟩

for x, y ∈ X. By (Conway, 2019, 2.13 Proposition), it follows that

∥ΦH∥2 = sup
f∈H0\{0}

|⟨ΦHf, f⟩|
∥f∥2 ≤ 1

because |⟨ΦHf, f⟩| = |B(f, f)| ≤ ∥f∥2 for f ∈ H0. Thus, ΦH is a self-adjoint contraction.
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C Appendix C.
Continuously Indexed Graphical
Models

This appendix collects the the proofs of the formal statements in Chapter 3.

C.1 Graphical Regularization

C.1.1 Approximate Inverse Zero Characterization

Proof of Theorem 3.2. By Theorem 2.2.3 of Bakonyi and Woerdeman (2011), Pij = 0 is
equivalent to saying that

Rij = [Rik]⊤k∈S [Rkl]−1
k,l∈S [Rlj ]l∈S (C.1)

for S = {m : m ̸= i, j}. Through appropriate manipulations, this can be used to show
that

Kij =
(
[Kkl]−1/2

k,l∈S [Kki]k∈S

)⊤ (
[Kkl]−1/2

k,l∈S [Klj ]l∈S
)
. (C.2)

By Theorem 11.18. of Paulsen and Raghupathi (2016), the above equality can be
rewritten as

K(s, t) = ⟨K(s, ·),K(·, t)⟩H(V ) (C.3)

for s ∈ Ui, t ∈ Uj and V = ∪k∈S Uk. It follows that ΩX ⊂ (Ui ∪ V )2 ∪ (V ∪ Uj)2 or
more simply, that ΩX and Ui × Uj are disjoint. Thus implying that Ui × Uj and Ω̃π

X are
disjoint.

The converse requires more work. Assume that Ui × Uj and Ω̃π
X are disjoint. Now, if

x = (s, t) is in the closure of Ui × Uj , there exists some closed Ω ⊃ ΩX for which (C.3)
holds and x ∈ Ωc. It follows that there is an open ball Bx centered at x such that
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Bx ⊂ Ωc. The closure of Ui × Uj is contained in ∪xBx, and by compactness there exists
a finite subcover ∪qi=1Bxi . We now show that there exists a partition π′ of U such that
every pixel associated with π′ lies in one of the balls Bxi .

Define the function d : Ui × Uj → R+ as

d(x) = max{d(x,Bc
xi

) : x ∈ Bxi}.

Alternatvely, d maps every x to the maximum of its distance from the set Bc
xi

for every i
such that x ∈ Bxi . Observe that R = infx d(x) > 0. So long as we partition U such that
every pixel U ′

k × U ′
l satisfies that the maximum distance between two points in it is less

than R/2, every pixel will be contained entirely in one of the balls Bxi .

The precision operator P′ = Pπ′ corresponding to this new partition π′ satisfies P′
i′j′ = 0

for every i′, j′ corresponding to a pixel contained in in the closure of Ui × Uj . Since such
operators P′

i′j′ can be considered together as an operator, we can write the π′-analogue of
(C.1) and work our way to (C.3) using appropriate manipulations. But (C.3) is partition
independent, we can work our way backwards, this time for π instead of π′ and derive
that Pij = 0. Hence proved.

C.1.2 Identifiability

Proof of Corollary 3.1. The first part is a tautology. For the second part, notice that for
some ϵπ > 0, we can write with a slight abuse of notation that the set ∩ϵ>0(ΩX + Bϵ)π is
equal to (ΩX + Bϵ)π if ϵ < ϵπ. Thus for ϵ < ϵπ1 ∧ ϵπ2 we have[

∩ϵ>0(ΩX + Bϵ)π1

]
∩
[
∩ϵ>0(ΩX + Bϵ)π2

]
= (ΩX + Bϵ)π1 ∩ (ΩX + Bϵ)π2

= (ΩX + Bϵ)π1∧π2

= ∩ϵ>0(ΩX + Bϵ)π1∧π2 .

It follows that ∩∞
j=1Ω̃πj

X = limk→∞ Ω̃∧k
j=1πj

X . If (u, v) ∈ U × U is not contained in the
closure of ΩX , then for a small enough δ > 0 the δ-ball (u, v) + Bδ does not intersect
with the closure of Ω. For a sufficiently large k, there will be a pixel induced by ∧kj=1πj
containing (u, v) and which is itself contained in the δ-ball, for otherwise this would
imply that the partitions do not separate points. For a small enough ϵ > 0, this pixel
will not be included in (ΩX + Bϵ)∧k

j=1πj . It can be worked out from the zero entries of
the operator matrices Pπj for 1 ≤ j ≤ k that this pixel and hence the point is indeed not
contained in the closure of ΩX . Similarly, if (u, v) is in the closure of ΩX we can show
that no pixel containing it will ever be rejected by a finite number of precision operator
matrices Pj . This establishes the claim.
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C.2 Estimation of the Precision Operator Matrix

C.2.1 Correlation Operator Matrix

Proof of Theorem 3.2. We decompose the difference R̂ − R into approximation and
estimation terms as follows

R̂ − R = R̂ − Re + Re − R

where Re = I + [ϵI + dg K]−1/2K0[ϵI + dg K]−1/2. By Lemma C.1 and C.3 it follows that

∥R̂ − R∥ ≤ 5∥R∥
[

∥K̂ − K∥2

ϵ2
+ ∥K̂ − K∥

ϵ

]
+ 2ϵβ · ∥Φ0∥ · ∥K∥β

Choosing ϵ = ∥K̂ − K∥
1

β+1 gives

∥R̂ − R∥ ≤ 10(∥R∥ ∨ ∥Φ0∥∥K∥β) · ∥K̂ − K∥
β

β+1

Similarly, for the case β > 1, we can choose ϵ = ∥K̂ − K∥
1
2 and argue likewise to conclude

that
∥R̂ − R∥ ≤ 10(∥R∥ ∨ ∥Φ0∥∥K∥2β−1) · ∥K̂ − K∥

1
2 .

Lemma C.1. We have

∥R̂ − Re∥ ≤ 5∥R∥
[

∥K̂ − K∥2

ϵ2
+ ∥K̂ − K∥

ϵ

]

Proof. The following equation can be verified with some calculation.

R̂ − Re =
[
[ϵI + dg K̂]−1/2 − [ϵI + dg K]−1/2

]
[K̂0 − K0][ϵI + dg K̂]−1/2

+
[
[ϵI + dg K̂]−1/2 − [ϵI + dg K]−1/2

]
K0

[
[ϵI + dg K̂]−1/2 − [ϵI + dg K]−1/2

]
+

[
[ϵI + dg K̂]−1/2 − [ϵI + dg K]−1/2

]
K0[ϵI + dg K]−1/2

+ [ϵI + dg K]−1/2[K̂0 − K0][ϵI + dg K̂]−1/2

+ [ϵI + dg K]−1/2K0
[
[ϵI + dg K̂]−1/2 − [ϵI + dg K]−1/2

]
Using K = [dg K]1/2R[dg K]1/2 we can write this expansion as

= D[K̂0 − K0][ϵI + dg K̂]−1/2 + AR0A∗ + AR0[dg K]1/2[ϵI + dg K]−1/2

+ [ϵI + dg K]−1/2[K̂0 − K0][ϵI + dg K̂]−1/2 + [ϵI + dg K]−1/2[dg K]1/2R0A∗
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where

R0 = R − I
D = [ϵI + dg K̂]−1/2 − [ϵI + dg K]−1/2

A =
[
[ϵI + dg K̂]−1/2 − [ϵI + dg K]−1/2

]
[dg K]1/2.

So,

∥R̂ − Re∥ ≤ ∥D∥ · ∥K̂0 − K0∥ · 1√
ϵ

+ ∥A∥ · ∥R0∥ · ∥A∥ + ∥A∥ · ∥R0∥ · 1

+ 1√
ϵ

· ∥K̂0 − K0∥ · 1√
ϵ

+ 1 · ∥R0∥ · ∥A∥.

Applying Lemma C.2 to Â = dg K̂ and A = dg K, we derive

∥D∥ ≤ ∥ dg K̂ − dg K∥/ϵ3/2 and ∥A∥ ≤ ∥ dg K̂ − dg K∥/ϵ.

Using the simple observation that

∥ dg A∥ = max
i

∥Aii∥ ≤ ∥A∥

∥A0∥ = ∥A − dg A∥ ≤ ∥A∥ + ∥ dg A∥ ≤ 2∥A∥

we can write

∥R̂ − Re∥ ≤ ∥ dg K̂ − dg K∥∥K̂0 − K0∥
ϵ2

+ ∥R0∥∥ dg K̂ − dg K∥2

ϵ2

+ ∥R0∥∥ dg K̂ − dg K∥
ϵ

+ ∥K̂0 − K0∥
ϵ

+ ∥R0∥∥ dg K̂ − dg K∥
ϵ

≤ ∥K̂ − K∥2

ϵ2
+ ∥R0∥∥K̂ − K∥2

ϵ2

+∥R0∥∥K̂ − K∥
ϵ

+ ∥K̂ − K∥
ϵ

+ ∥R0∥∥K̂ − K∥
ϵ

≤ (2∥R0∥ + 1)
[

∥K̂ − K∥
ϵ

+ ∥K̂ − K∥2

ϵ2

]

≤ 5∥R∥
[

∥K̂ − K∥
ϵ

+ ∥K̂ − K∥2

ϵ2

]

since ∥R0∥ = ∥R − I∥ ≤ ∥R∥ + 1 and ∥R∥ ≥ 1. Hence proved.

Lemma C.2. If Â is positive, then

∥[ϵI + Â]−1/2 − [ϵI + A]−1/2∥ ≤ ∥Â − A∥/ϵ3/2∥∥∥∥ [[ϵI + Â]−1/2 − [ϵI + A]−1/2
]

A1/2
∥∥∥∥ ≤ ∥Â − A∥/ϵ
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Proof. Notice that

[ϵI + Â]−1/2 − [ϵI + A]−1/2

= [ϵI + Â]−1/2
[
[ϵI + Â]1/2 − [ϵI + A]−1/2

]
[ϵI + A]1/2

= [ϵI + Â]−1/2
[
[ϵI + Â]1/2 + [ϵI + A]1/2

]−1 [
[ϵI + Â] − [ϵI + A]

]
[ϵI + A]−1/2

=
[
ϵI + Â + [ϵI + A]1/2[ϵI + Â]1/2

]−1
[Â − A][ϵI + A]−1/2

Since Â + [ϵI + A]1/2[ϵI + Â]1/2 is positive, we can write

∥[ϵI + Â]−1/2 − [ϵI + A]−1/2∥

≤
∥∥∥∥ [ϵI + Â + [ϵI + A]1/2[ϵI + Â]1/2

]−1
∥∥∥∥ · ∥Â − A∥ · ∥[ϵI + A]−1/2∥

≤ 1
ϵ

· ∥Â − A∥ · 1
ϵ1/2

and similarly,∥∥∥∥ [[ϵI + Â]−1/2 − [ϵI + A]−1/2
]

A1/2
∥∥∥∥

≤
∥∥∥∥ [ϵI + Â + [ϵI + A]1/2[ϵI + Â]1/2

]−1
∥∥∥∥ · ∥Â − A∥ · ∥[ϵI + A]−1/2A1/2∥

≤ 1
ϵ

· ∥Â − A∥ · 1.

Hence proved.

Now, we shall find an upper bound for the approximation error under a regularity
condition.

Lemma C.3. If R0 = [dg K]βΦ0[dg K]β for some bounded operator matrix Φ0 with the
diagonal entries all zero and β > 0, then

∥Re − R∥ ≤

2ϵβ · ∥Φ0∥ · ∥K∥β 0 < β ≤ 1
2ϵ · ∥Φ0∥ · ∥K∥2β−1 1 < β < ∞
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Proof. We decompose the difference as follows:

Re − R = [ϵI + dg K]−1/2[dg K]1/2R0[dg K]1/2[ϵI + dg K]−1/2 − R0

=
[
[ϵI + dg K]−1/2 − [dg K]−1/2

]
[dg K]1/2R0[dg K]1/2[ϵI + dg K]−1/2

+ R0[dg K]1/2
[
[ϵI + dg K]−1/2 − [dg K]−1/2

]
=
[
[ϵI + dg K]−1/2 − [dg K]−1/2

]
[dg K]1/2+βΦ0[dg K]1/2+β[ϵI + dg K]−1/2

+ [dg K]βΦ0[dg K]1/2+β
[
[ϵI + dg K]−1/2 − [dg K]−1/2

]

Using ∥[dg K]1/2+β[ϵI + dg K]−1/2∥ ≤ ∥ dg K∥β ≤ ∥K∥β, it follows that

∥R − Re∥ ≤
∥∥∥∥[[ϵI + dg K]−1/2 − [dg K]−1/2

]
[dg K]1/2+β

∥∥∥∥∥Φ0∥∥ dg K∥β

+ ∥ dg K∥β∥Φ0∥
∥∥∥∥[dg K]1/2+β

[
[ϵI + dg K]−1/2 − [dg K]−1/2

]∥∥∥∥
The conclusion is now an obvious consequence of Lemma C.4.

Lemma C.4. We have
∥∥∥∥[[ϵI + dg K]−1/2 − [dg K]−1/2

]
[dg K]1/2+β

∥∥∥∥ ≤

ϵβ 0 < β ≤ 1
ϵ · ∥ dg K∥β−1 1 < β < ∞

Proof. By the spectral mapping theorem,∥∥∥∥[[ϵI + dg K]−1/2 − [dg K]−1/2
]
[dg K]1/2+β

∥∥∥∥ ≤ sup
0≤λ≤∥ dg K∥

{∣∣∣∣ 1√
ϵ+ λ

− 1√
λ

∣∣∣∣ · λ1/2+β
}

It can be shown using some elementary calculations that

∣∣∣∣ 1√
ϵ+ λ

− 1√
λ

∣∣∣∣ · λ1/2+β = ϵλβ√
ϵ+ λ(

√
λ+

√
ϵ+ λ)

≤


ϵ
[
λβ

ϵ+λ

]
0 < β < 1/2

ϵ
[
λ2β−1

ϵ+λ

]1/2
1/2 ≤ β < 1

ϵλβ−1 1 ≤ β < ∞

The conclusion follows from Lemma C.5.

Lemma C.5. For 0 < x < 1 and λ ≥ 0, we have

λx

ϵ+ λ
≤ ϵx−1

2

Proof. Consider the reciprocal expression. It follows from elementary differential calculus
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that the minimum of the reciprocal occurs at λ∗ = xϵ/(1 − x). Therefore,

ϵ

λx
+ λ1−x ≥ ϵ

λx∗
+ λ1−x

∗ = ϵ1−x

xx(1 − x)1−x ≥ ϵ1−x

max0<x<1[xx(1 − x)1−x] = 2ϵ1−x

C.2.2 Concentration Inequalities

Proof of Theorem 3.4. Apply Theorem 9 from Koltchinskii and Lounici (2017) and
replace t with nt2/∥K∥2, simplify and restate the conditions accordingly.

We now prove a concentration inequality for the correlation operator.

Proof of Theorem 3.5. 1. This is a straightforward consequence of Theorem 3.4 and
3.3.

P[∥R̂ − R∥ > ρ] ≤ P[∥K̂ − K∥ > (ρ/MR)1+1/β∧1] ≤ exp
[
−cRnρ2+2/β∧1

]
.

2. Under Assumption 3∗, r = 1 + infk λk(R0) > 0. Thus, R ≥ rI. By the spectral
mapping theorem, ∥P∥ ≤ 1/r. For ∥f∥ = 1, we have

⟨f, [R̂ − (r − ρ)I]f⟩ = ρ+ ⟨f, [R̂ − R]f⟩ + ⟨f, [R − rI]f⟩

and so,

inff ⟨f, [R̂ − (r − ρ)I]f⟩ ≥ ρ+ inf
f

⟨f, [R̂ − R]f⟩ + inf
f

⟨f, [R − rI]f⟩

≥ ρ− ∥R̂ − R∥.

The result follows by the spectral mapping theorem from the following observation

P[∥P̂∥ > (r − ρ)−1] ≤ P[∥R̂ − R∥ > ρ].

3. Using a union bound, we have

P[∥P̂ − P∥ > ρ] ≤ P[∥P̂∥ > (r − ρ)−1] + P[∥R̂ − R∥ > ρ(r − ρ)/∥P∥]
≤ exp

{
−cRnρ2+2/(β∧1)

}
+ exp

{
−cRn [ρ(r − ρ)/∥P∥]2+2/(β∧1)

}
Now we need only notice that since 0 < r ≤ 1 and ∥P∥ = 1/r, we must have
ρ > ρ(r − ρ)/∥P∥. If we require that ρ ≤ r/2, then ρ(r − ρ)/∥P∥ ≥ ρr2/2 and the
conclusion follows.
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C.3 Model Selection Consistency

Proof of Theorem 3.6. Notice that Ω̂π ̸= Ωπ if and only if for some 1 ≤ i, j ≤ p we have

1. ∥Pij∥ ≠ 0 and ∥P̂ij∥ < ρ, or

2. ∥Pij∥ = 0 and ∥P̂ij∥ ≥ ρ.

If we require that ρ < 1
2 mini,j ∥Pij∥, then this implies that for some (i, j) we must have

∥P̂ij − Pij∥ > ρ.

Therefore,

P[Ω̂π ̸= Ωπ] = P ∪i,j [∥P̂ij − Pij∥ > ρ]

≤
p∑

i,j=1
P[∥P̂ij − Pij∥ > ρ]

≤ p2 · P[∥P̂ − P∥ > ρ].

Now we apply Theorem 3.5 (3).

Proof of Theorem 3.7. The proof is a straightforward application of the Borel-Cantelli
lemma. Since,

∞∑
j=1

P[Ω̂j ̸= Ω̃πj

X ] ≤
∞∑
j=1

αj < ∞

it follows that P[Ω̂j ̸= Ω̃πj

X i.o.] = 0. With probability 1, there exists some j0 ≥ 1 such
that for all j ≥ j0 we have Ω̂j = Ω̃πj

X . The conclusion follows from observing that
∩j≥j0Ω̃πj

X = ΩX .
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D Appendix D.
Functional Graphical Lasso

D.1 Background and Notation

Lemma D.1. The functionals |||·|||2,∞ and |||·|||2,1 are sub-multiplicative norms.

Proof. For A = [Aij ]pi,j=1, B = [Bij ]pi,j=1, A = [∥Aij∥2]pi,j=1 and B = [∥Bij∥2]pi,j=1, we
have

|||A + B|||2,∞ ≤ |||A+B|||∞ ≤ |||A|||∞ + |||B|||∞ = |||A|||2,∞ + |||B|||2,∞,

and similarly,

|||AB|||2,∞ ≤ |||AB|||∞ ≤ |||A|||∞ · |||B|||∞ = |||A|||2,∞ · |||B|||2,∞.

with the same conclusion following for |||·|||2,1 from |||A|||2,1 =
∣∣∣∣∣∣∣∣∣A⊤

∣∣∣∣∣∣∣∣∣
2,∞

. The first
inequalities in both the cases follow from the sub-additivity and sub-multiplicativity of
the Hilbert-Schmidt norm.

D.2 Conditional Independence for Random Elements

In the following proof we will use “sub-setted" matrix Ass to mean the matrix A with
ijth entries with neither i nor j in s being equal to 0. The symbols Asi and Ajs are
defined accordingly.

Proof of Theorem 4.2. Pick i ̸= j such that Pij = 0. Let s = {k : 1 ≤ k ≤ p for k ≠ i, j}.
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By Theorem 2.2.3 of Bakonyi and Woerdeman (2011), this is equivalent to

Rij = RisR−1
ss Rsj .

We will show that this is in turn equivalent to saying that for every fi ∈ Hi and fj ∈ Hj ,
we have

⟨fi, Xi⟩ ⊥⊥ ⟨fj , Xj⟩ | {⟨fk, Xk⟩ : fk ∈ Hk where k ̸= i, j}.

Because of Gaussianity, this is equivalent to saying that

Cov[⟨fi, Xi⟩, ⟨fj , Xj⟩|⟨fk, Xk⟩ : fk ∈ Hk where k ̸= i, j]
= E[⟨fi, Xi⟩⟨fj , Xj⟩|⟨fk, Xk⟩ : fk ∈ Hk where k ̸= i, j]

−E[⟨fi, Xi⟩|⟨fk, Xk⟩ : fk ∈ Hk where k ̸= i, j] · E[⟨fj , Xj⟩|⟨fk, Xk⟩ : fk ∈ Hk where k ̸= i, j]
= 0.

Taking the expectation gives that E[⟨fi, Xi⟩⟨fj , Xj⟩] is equal to

E [E[⟨fi, Xi⟩|⟨fk, Xk⟩ : fk ∈ Hk where k ̸= i, j]E[⟨fj , Xj⟩|⟨fk, Xk⟩ : fk ∈ Hk where k ̸= i, j]]
(D.1)

Define f = (f1, . . . , fp)⊤, fi = (0, . . . ,0, fi,0, . . . ,0)⊤, fj = (0, . . . ,0, fj ,0, . . . ,0)⊤ and

fij = (f1, . . . , fi−1,0, fi+1, . . . , fj−1,0, fj+1, . . . , fp)⊤.

Then f , fi, fj and fij can be thought of as elements of the product space H and the
random variables ⟨fi, Xi⟩, ⟨fj , Xj⟩ and ⟨fk, Xk⟩ can be written as ⟨fi, X⟩, ⟨fj , X⟩ and
⟨fij , X⟩ respectively.

Notice that the space of random variables ⟨fij , X⟩ under the inner product (⟨fij , X⟩, ⟨gij , X⟩) 7→
E[⟨fij , X⟩⟨gij , X⟩] is isomorphic to the reproducing kernel Hilbert space H generated by
the kernel K(fij ,gij) = ⟨fij ,Cgij⟩ = ⟨fij ,Cssgij⟩. By Loève isometry, the expression
(D.1) can be rewritten as the inner product in H of the elements fij 7→ ⟨Cfi, fij⟩ =
⟨Csifi, fij⟩, fij 7→ ⟨Cfj , fij⟩ = ⟨Csjfj , fij⟩ ∈ H which can be expressed as

⟨C−1/2
ss Csifi,C

−1/2
ss Csjfj⟩ = ⟨fi, [C−1/2

ss Csi]∗[C−1/2
ss Csj ]fj⟩

which means that we can write E[⟨fi, Xi⟩⟨fj , Xj⟩] = ⟨fi,Cfj⟩ as

⟨fi,Cfj⟩⟨fi,Cfj⟩ = ⟨fi,Cijfj⟩ = ⟨fi, [C−1/2
ss Csi]∗[C−1/2

ss Csj ]fj⟩

or equivalently, Cij = [C−1/2
ss Csi]∗[C−1/2

ss Csj ]. This can be written as Cij = Cis[Css]−1Csj

if Csj is invertible with respect to Css which can be easily shown to be equivalent
to Rij = Ris[Rss]−1Rsj . The conclusion in the general case follows from a density
argument, namely that the space CssL(H) is dense in C1/2

ss L(H) and the function
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Rsj 7→ (dg Css)1/2Rsj(Cjj)1/2 = Csj is continuous.

Proof of Lemma 4.2. By Corollary 6.4.11 of Bogachev (1998), we can write the log-
likelihood log

[
dP
dQ

]
evaluated at X as

log dP
dQ

(X) = 1
2

∞∑
i=1

 λi
1 + λi

 ∞∑
j=1

1
√
µj

⟨φi, ψj⟩⟨X, ψj⟩

2

− log(1 + λi)


where (λj , φj) and (µj , ψj) are the eigenpairs of R0 and CQ respectively. Let λ̃j be such
that 1 + λ̃j = (1 + λj)−1. Then we have∫

log dP
dQ

(X)dP̃(X)

= 1
2

∞∑
i=1

 λi
1 + λi

∫  ∞∑
j=1

1
√
µj

⟨φi, ψj⟩⟨X, ψj⟩

2

dP̃(X) − log(1 + λi)


= 1

2

∞∑
i=1

 λi
1 + λi

∫  ∞∑
j,j′=1

1
√
µjµj′

⟨φi, ψj⟩⟨φi, ψj′⟩⟨X, ψj⟩⟨X, ψj′⟩

 dP̃(X) − log(1 + λi)


= 1

2

∞∑
i=1

 λi
1 + λi

 ∞∑
j,j′=1

1
√
µjµj′

⟨φi, ψj⟩⟨φi, ψj′⟩
∫

⟨X, ψj⟩⟨X, ψj′⟩dP̃(X)

− log(1 + λi)


= 1

2

∞∑
i=1

 λi
1 + λi

 ∞∑
j,j′=1

1
√
µjµj′

⟨φi, ψj⟩⟨φi, ψj′⟩⟨ψj ,CP̃ψj′⟩

− log(1 + λi)


= 1

2

∞∑
i=1

[
λi

1 + λi

〈
φi,C−1/2

Q CP̃C−1/2
Q φi

〉
− log(1 + λi)

]

= 1
2

∞∑
i=1

[
λi

1 + λi
(1 + ⟨φi, R̃0φi⟩) − log(1 + λi)

]

= 1
2

∞∑
i=1

[
−λ̃i⟨φi, R̃0φi⟩ + log(1 + λ̃i) − λ̃i

]
= 1

2

[
−
〈 ∞∑
i=1

λ̃iφi ⊗ φi, R̃0

〉
+

∞∑
i=1

log(1 + λ̃i) − λ̃i

]

= 1
2
[
− tr(HR̃0) + log det2(I + H)

]
,

where H = (I + R0)−1 − I. This establishes the claim.
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D.3 Assumptions

Proof of Remark 4.2. Assume that the regression operator C†
−i,−iC−i,i is Hilbert-Schmidt.

This implies that C−i,i = C−i,−iA for some Hilbert-Schmidt operator A. Because
p(dg C−i,−i) ≥ C−i,−i and consequently p2(dg C−i,−i)2 ≥ C2

−i,−i, we can write using
Douglas majorization (see Douglas, 1966, Theorem 1) that C−i,−i = (dg C−i,−i)B
for some bounded operator B. This implies that C−i,i = (dg C−i,−i)BA for some
Hilbert-Schmidt operator BA. It follows that C−1

ii Cij is Hilbert-Schmidt for every
i ̸= j. Now, let {(µk, ek)}∞

k=1 {(λl, fl)}∞
l=1 be the eigenpairs of Cii and Cjj respec-

tively. Then C−1
ii Cij and C−1

jj Cji being Hilbert-Schmidt implies ∑∞
k,l=1⟨ek,Cijfl⟩2/µ2

k <

∞ and ∑∞
k,l=1⟨ek,Cijfl⟩2/λ2

l < ∞. By Cauchy-Schwarz inequality, it follows that∑∞
k,l=1⟨ek,Cijfl⟩2/µkλl < ∞ and thus, Rij = C−1/2

ii CijC
−1/2
jj is Hilbert-Schmidt for

i ̸= j which is Assumption 3/1∗. It follows that Hilbert-Schmidtness of regression opera-
tors C†

−i,−iC−i,i implies that of the off-diagonal entries Rij of the correlation operator
matrix R.

To see why this is strict, consider the case p = 2 with i = 1 and j = 2, C12 = ∑∞
k=1 αkek⊗

fk with λk ∼ 1/k1/2+ϵλ , µk ∼ 1/k1/2+ϵµ and αk ∼ 1/k1/2+ϵα such that ϵλ > ϵµ > 0
and 2ϵα − 1 ∈ (ϵµ + ϵλ, 2ϵλ). This ensures that ∑∞

k,l=1⟨ek,Cijfl⟩2/µkλl < ∞ while∑∞
k,l=1⟨ek,Cijfl⟩2/λ2

l = ∞, implying that R12 is Hilbert-Schmidt while the regression
operators C†

2,2C2,1 isn’t.

D.4 Dual Problem

Proof of Theorem 4.1. Let G1[A] = − log det2(I + A) and G2[A] = λn∥A∥2,1. It can be
shown that

G∗
1 [B] = max

A
[tr(AB) + log det2(I + A)]

= tr([(I − B)−1 − I]B) + log det2(I + [(I − B)−1 − I]])
= −

[
tr([(I − B)−1 − I][−B]) − log det2(I + [(I − B)−1 − I])

]
.

Note that if we replace B with −B0 such that dg B0 = 0, the above expression is
equal to twice the Kullback-Leibler divergence D(B0) of the Gaussian measure with
the correlation operator I + B0 with respect to its product measure since D(B0) =
−1

2
[
tr([(I + B0)−1 − I][B0]) − log det2(I + B0)

]
.
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D.5 Existence and Uniqueness of Minimizer

If R0 is trace-class, so is R̃ = (I + R0)−1 − I, and we can write

D(R0) = −1
2
[
tr(R̃R0) − log det(I + R̃) + tr(R̃)

]
= −1

2
[
tr(R̃[R0 + I]) − log det(I + R̃)

]
= −1

2
[
tr(I − [R0 + I]) − log det(I + R̃)

]
= −1

2 log det(I + R0) = −1
2 log det2(I + R0).

Since the expression is continuous in the Hilbert-Schmidt norm, the result holds even for
Hilbert-Schmidt R0. Finally,

G∗
2 [B] =

0 if dg B = 0 and ∥B0∥2,∞ ≤ λn

∞ otherwise.

By combining these two using infimal convolution, we get

G∗(−R̂0) = inf
B

[
G∗

1 [B] + G∗
2(−R̂0 − B)

]
= inf{2D(−B0) : ∥ − R̂0 − B0∥2,∞ ≤ λn}
= 2 inf{D(B0) : ∥B0 − R̂0∥2,∞ ≤ λn}

D.5 Existence and Uniqueness of Minimizer

The proof below relies on some basic results in convex analysis in Hilbert spaces that
can be consulted in Bauschke and Combettes (2011) or Ekeland and Temam (1976).

Lemma D.2. The functional A 7→ log det2(I + A) is twice differentiable in the Gâteux
sense, with the first and second Gâteux derivatives at A given by (I + A)−1 − I and
[(I + A) ⊗ (I + A)]−1, respectively.

Proof. We simply evaluate the derivative of f at t = 0 by looking at its Taylor expansion.
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For A,B ∈ L1:

f(t) − f(0) = log det2(I + A + tB) − log det2(I + A)
= log det(I + A + tB) − log det(I + A) − tr(A + tB) + tr A

= log det
[
I + t(I + A)−1B)

]
− t tr(B)

=
[
t tr

[
(I + A)−1B

]
− 1

2 t
2 tr

{[
(I + A)−1B

]2}
+ o(t3)

]
− t tr(B)

= t tr
{

[(I + A)−1 − I]B
}

− 1
2! t

2 tr
{[

(I + A)−1B
]2}

+ o(t3)

The result follows from the continuity of expressions in ∥ · ∥2 norm and the fact that L1
is dense in L2.

Lemma D.3. The optimization problem (4.11) admits a unique solution Ĥ for every
λn > 0 and correlation operator R̂ which satisfies

R̂ − (I + Ĥ)−1 + λnẐ = 0 (D.2)

for some Ẑ ∈ ∂∥Ĥ0∥1.

Proof of Lemma D.3. The Carleman-Fredholm determinant is known to be strictly log-
concave (see Lemma 2.1 of Bakonyi and Woerdeman (1998)). From Theorem 6.5 of
Simon (1977),

| det2(I + A) − det2(I + B)| ≤ ∥A − B∥2 exp
[

1
2(∥A∥2 + ∥B∥2 + 1)2

]
.

Thus the function A 7→ − log det2(I + A) is strictly convex and continuous in ∥ · ∥2.
Because the functions H 7→ tr(HR̂0) are H 7→ ∥H0∥1 = ∑

i ̸=j ∥Hij∥2 are also convex, it
follows that the function H 7→ F (H) is strictly convex and continuous.

Using the method of Lagrange multipliers, we can rewrite the optimization problem
(4.11) in a constrained form as

inf
∥H0∥1≤r

[
tr(HR̂0) − log det2(I + H)

]
for some r = r(λn). Notice that tr(HR̂0) = ∑

i ̸=j tri(HijR̂ji) depends only on H0 and is
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hence bounded. Let λ∞ = maxj λj(H). Using λj(H) > −1 we can write

[det2(I + H)]−1 =
∞∏
j=1

eλj(H)(1 + λj(H))−1

=
∞∏
j=1

[
1 + 1

(1 + λj(H))

∞∑
k=2

λkj (H)
k!

]

=
∞∏
j=1

[
1 + 1

(1 + λj(H))

∞∑
m=1

λ2m
j (H)
(2m)!

(
1 + λj(H)

2m+ 1

)]

≥
∞∏
j=1

[
1 + 1

(1 + λ∞)
λ2
j (H)
2!

(
1 − 1

3

)]

≥ 1 + 1
3(1 + λ∞)

∞∑
j=1

λ2
j (H)

= 1 + 1
3(1 + λ∞)∥H∥2

2

In the first inequality, we used the fact that 1 + λj(H)/(2m+ 1) > 0 and we retained
only the first term of the infinite sum. Thus the Carleman-Fredholm determinant
− log det2(I + H) → ∞ as ∥H∥2 → ∞ and is therefore coercive. It immediately follows
that F admits a unique minimum, say at Ĥ (Propostion 1.2, Ekeland and Temam (1976)).
Consequently, it must satisfy the stationary condition (Theorem 16.3, Bauschke and
Combettes (2011)) at Ĥ given by

0 ∈ ∂F(Ĥ).

Because H 7→ tr(HR̂0) and H 7→ log det2(I + H) are Gâteaux differentiable with the
Gâteaux derivatives at Ĥ given by R̂0 and (I + Ĥ)−1 − I respectively, this is equivalent
to saying that there exists Ẑ ∈ ∂∥Ĥ0∥1 such that

R̂0 −
[
(I + Ĥ)−1 − I

]
+ λnẐ = R̂ − (I + Ĥ)−1 + λnẐ = 0.

Hence proved.

D.6 Proof of Main Result

Our proof is a nontrivial adaptation of the multivariate proof in Ravikumar et al. (2011)
to the more general setting of elements and operators in Hilbert spaces. We closely
follow the steps in the original proof and adapt them so as to not rely on topological
properties such as the compactness of closed and bounded sets which are absent in
infinite-dimensional spaces. We will use the new norms that we have developed to mimic
the topology of Euclidean space in the product Hilbert space H. Crucially, controlling
the difference between the oracle solution and the true solution (Lemma D.6) is achieved
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using the Banach fixed-point theorem instead of Brouwer’s fixed-point theorem.

Let H̃ be the solution of the original optimization problem (4.11) assuming that the
support S = {(i, j) : H∗

ij ̸= 0} of H∗ is known. Thus,

H̃ = arg min
HSc =0

[
tr(HR̂0) − log det2(I + H) + λn∥H0∥2,1

]
. (D.3)

The essence of the proof is to show that the oracle solution H̃ assuming the support is
known, is equal to the solution Ĥ with high probability. Because the oracle solution H̃
possesses nice properties, the same applies to Ĥ with high probability. To show that H̃
solves the original problem we will show that it satisfies the stationary condition (4.17)
for some Z̃ ∈ ∂∥H̃0∥2,1. We will therefore construct a witness Z̃ ∈ ∂∥H̃0∥2,1 such that

R̂ − (I + H̃)−1 + λnZ̃ = 0 (D.4)

holds.

Notice that because H̃ solves (D.3), it satisfies the corresponding stationary condition,
which can be written as

R̂S − (I + H̃)−1
S + λnZ̃S = 0

for some ZS ∈ ∂
[∑

(i,j)∈S,i̸=j ∥H̃ij∥2
]

(note that this implies that ∥ZS∥2,∞ ≤ 1). Thus
(D.4) is already satisfied for the entries (i, j) ∈ S. To ensure that (D.4) is satisfied for all
entries, we simply define ZSc as follows:

Z̃Sc = 1
λn

[
−R̂Sc + [(I + H̃)−1]Sc

]
.

Now that (D.4) is satisfied, we need to show that Z̃ ∈ ∂∥H̃0∥2,1, which obviously
holds for the entries (i, j) ∈ S by construction. For (i, j) ∈ Sc, notice that H̃Sc = 0
and therefore its subdifferential ∂∥H̃Sc∥2,1 has a particularly simple form given by
∂∥H̃Sc∥2,1 = {ZSc : ∥ZSc∥2,∞ < 1}. The proof thus reduces to showing that Z̃Sc as
defined above satisfies

∥Z̃Sc∥2,∞ < 1. (D.5)

with high probability. The condition (D.5) is known as strict dual feasibility.

We begin by showing in Lemma D.4 that strict dual feasibility is satisfied if the sampling
noise W and the remainder term E(D) are small enough compared to λn where

W = R̂ − (I + H∗)−1 = R̂ − R∗, and (D.6)

E(D) = (I + H̃)−1 − (I + H∗)−1 + (I + H∗)−1D(I + H∗)−1 with D = H̃ − H∗. (D.7)
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Then we show that E(D) can be controlled by controlling D in Lemma D.5. And finally,
we prove in Lemma D.6 that by controlling W and λn we can control D. In summary,
choosing λn appropriately and having enough samples to keep W is small, ensures that
H̃ = Ĥ, thus transferring the nice oracle properties that H̃ possesses to Ĥ.

Proof of Theorem 4.5. Notice that the deviations of W = R̂ − R satisfy

P[∥Wij∥2 ≥ δ] ≤ 1/g(n, δ)

where g(n, δ) = f(n, [δ/κ]1+1/β∧1).

According to Lemma D.4, we need to choose the tuning parameter λn such that for a
large enough sample size n we would have strict dual feasibility, which boils down to:

∥W∥2,∞ ≤ αλn
8 ,

∥E(D)∥2,∞ ≤ αλn
8 .

The first of the above conditions is satisfied with probability greater than 1 − 1/pτ by
requiring λn = 8δ̄g(n, pτ )/α since ∥W∥2,∞ ≤ ∥W∥2,2 ≤ δ̄g(n, pτ ). It turns out that the
second condition is also satisfied if we require that n be large enough such that

2γ
(

1 + 8
α

)2
δ̄g(n, pτ ) ≤ 1

3ρd ∨ 6ρ3γd
. (D.8)

Indeed, by Lemma D.6, we have ∥D∥2,∞ ≤ 2γ(∥W∥2,∞ + λn) since

2γ(∥W∥2,∞+λn) ≤ 2γ
(

1 + 8
α

)
δ̄g(n, pτ ) ≤ 2γ

(
1 + 8

α

)2
δ̄g(n, pτ ) ≤ 1

3ρd ∨ 6ρ3γd
≤ 1

3ρd
(D.9)

and therefore, by Lemma D.5, we have from the bound (D.9) on ∥D∥2,∞,

∥E(D)∥2,∞ ≤ 3
2d∥D∥2

2,∞ρ
3

≤ 6ρ3γ2d ·
(

1 + 8
α

)2
δ̄g(n, pτ )2

≤ 6ρ3γ2d ·
(

1 + 8
α

)2
δ̄g(n, pτ ) · δ̄g(n, pτ )

≤ 6ρ3γ2d · 1
6ργd ∨ 12ρ3γ2d

· δ̄g(n, pτ )

≤ 1
2 · δ̄g(n, pτ ) ≤ δ̄g(n, pτ ) = αλn

8 .

Now, (D.8) actually follows from the given condition on the sample size n because it
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implies

δ̄g(n, pτ ) = κδ̄f (n, pτ )β∧1/1+β∧1 ≤
[
12(1 + 8/α)2d(ργ ∨ ρ3γ2)

]−1
.

Therefore, we have Ĥ = H with probability 1 − pτ and when this is indeed true, we
can write that D = ∥Ĥ − H∥2,∞ ≤ 2γ(1 + 8/α)δ̄g(n, pτ ). It follows that if ∥Hij∥2 >

2γ(1 + 8/α)δ̄g(n, pτ ), then Ĥij ̸= 0. The result follows from rewriting δ̄g(n, pτ ) in terms
of δ̄f (n, pτ ).

D.6.1 Strict Dual Feasibility

For an operator A, let A denote the column vector [Aij : (i, j) = (1, 1), (1, 2), . . . , (p, p−
1), (p, p)]⊤ indexed by the pairs (i, j), instead of i and j separately as in the original
matrix form. In other words, A is the vectorized version of the operator matrix A. Denote
the subvectors [Aij : (i, j) ∈ S]⊤ and [Aij : (i, j) ∈ Sc]⊤ as AS and ASc respectively.

Lemma D.4 (Strict Dual Feasibility). Under the following condition, we have ∥Z̃Sc∥2,∞ <

1 and hence, H̃ = Ĥ.
∥W∥2,∞ ∨ ∥E(D)∥2,∞ ≤ αλn

8 (D.10)

Proof. We rewrite Equation (4.17) using Equations (D.6) and (D.7) as

(I + H∗)−1D(I + H∗)−1 + W − E(D) + λnZ̃ = 0. (D.11)

Let Γ denote the outer product of (I + H∗)−1 with itself. Then,

(I + H∗)−1D(I + H∗)−1 =
[
(I + H∗)−1 ⊗ (I + H∗)−1

]
D = ΓD.

By vectorizing Equation (D.11), subsetting on S and Sc, and using DSc = 0, we can
write

ΓSSDS + WS − ES + λnZ̃S = 0, (D.12)
ΓScSDS + WSc − ESc + λnZ̃Sc = 0. (D.13)

for E = E(D). Notice that ΓSS is invertible and therefore we can solve the above system
of equations for DS and Z̃Sc as follows:

DS = Γ−1
SS

[
− WS + ES − λnZ̃S

]
(D.14)

Z̃Sc = − 1
λn

ΓScSΓ−1
SS(WS − ES) − 1

λn
(WSc − ESc) + ΓScSΓ−1

SSZ̃S (D.15)
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Then by taking the ∥ · ∥2,∞-norm,

∥Z̃Sc∥2,∞ ≤ 1
λn

∣∣∣∣∣∣∣∣∣ΓScSΓ−1
SS

∣∣∣∣∣∣∣∣∣
2,∞

(
∥WS∥2,∞ + ∥ES∥2,∞

)
(D.16)

+ 1
λn

(
∥WSc∥2,∞ + ∥ESc∥2,∞

)
+ ∥ΓScSΓ−1

SSZ̃S∥2,∞. (D.17)

By Assumption 4, we have
∣∣∣∣∣∣∣∣∣ΓScSΓ−1

SS

∣∣∣∣∣∣∣∣∣
2,∞

= maxe∈Sc ∥ΓeSΓ−1
SS∥2,1 ≤ 1 − α and using

∥Z̃S∥2,∞ ≤ 1 which follows by construction, we get

∥ΓScSΓ−1
SSZ̃S∥2,∞ = max

e∈Sc
∥ΓeSΓ−1

SSZ̃S∥2 (D.18)

≤ max
e∈Sc

∥ΓeSΓ−1
SS∥2,1∥Z̃S∥2,∞ ≤ (1 − α). (D.19)

The above bounds together with the inequality (D.10) imply that

∥Z̃Sc∥2,∞ ≤ 1 − α

λn

(
αλn

4

)
+ 1
λn

(
αλn

4

)
+ (1 − α) = 1 − α/2 − α2/4 < 1.(D.20)

Thus, controlling the noise level W and the remainder term E = E(D) enables us
to enforce strict dual feasibility. We now show how the remainder term itself can be
controlled by controlling D = H̃ − H∗.

D.6.2 Control of Remainder

Lemma D.5 (Control of Remainder). Let J = ∑∞
k=0(−1)k

[
(I + H∗)−1D

]k. Then,

E(D) = (I + H∗)−1D(I + H∗)−1DJ(I + H∗)−1.

If ∥D∥2,∞ ≤ 1/3ρd, then
∣∣∣∣∣∣∣∣∣J⊤

∣∣∣∣∣∣∣∣∣
2,∞

≤ 3/2 and ∥E(D)∥2,∞ ≤ 3
2d∥D∥2

2,∞ρ
3.

Proof. Recall that

E(D) = (I + H∗ + D)−1 − (I + H∗)−1 + (I + H∗)−1D(I + H∗)−1.

Because D has no more than d non-zero entries in every row or column, we have
|||D|||2,∞ ≤ d∥D∥2,∞. Using sub-additivity and sub-multiplicativity of |||·|||2,∞ we can
write∣∣∣∣∣∣∣∣∣(I + H∗)−1D

∣∣∣∣∣∣∣∣∣
2,∞

= |||D + R∗
0D|||2,∞ ≤ |||D|||2,∞+|||R∗

0|||2,∞|||D|||2,∞ ≤ ρd∥D∥2,∞ < 1/3.
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By expanding (I + (I + H∗)−1D)−1 into a geometric series we can write

(I + H∗ + D)−1 = (I + (I + H∗)−1D)−1(I + H∗)−1

= (I + H∗)−1 − (I + H∗)−1D(I + H∗)−1

+
∞∑
k=2

(−1)k
[
(I + H∗)−1D

]k
(I + H∗)−1

= (I + H∗)−1 − (I + H∗)−1D(I + H∗)−1

+ (I + H∗)−1D(I + H∗)−1DJ(I + H∗)−1

where J = ∑∞
k=0(−1)k

[
(I + H∗)−1D

]k which satisfies,

|||J|||2,1 =
∣∣∣∣∣∣∣∣∣J⊤

∣∣∣∣∣∣∣∣∣
2,∞

≤
[
1 − |||D|||2,∞

(
1 + |||R∗

0|||2,∞
)]−1

≤ 3/2.

It follows from the above expansion that

E(D) = (I + H∗)−1D(I + H∗)−1DJ(I + H∗)−1

and therefore, we can control the remainder term as follows:

∥E(D)∥2,∞ = ∥(I + H∗)−1D(I + H∗)−1DJ(I + H∗)−1∥2,∞

= max
i,j

∥e⊤
i (I + H∗)−1D(I + H∗)−1DJ(I + H∗)−1ej∥2

≤ max
i

∥e⊤
i (I + H∗)−1D∥2,∞ · max

j
∥(I + H∗)−1DJ(I + H∗)−1ej∥2,1

where {ei}pi=1 are “unit vectors" given by ei = (δijIj)pj=1 where δij is the Kronecker delta.
The first term can be bounded as

max
i

∥e⊤
i (I + H∗)−1D∥2,∞ = max

i
∥e⊤
i (D + R∗

0D)∥2,∞

≤ max
i

∥e⊤
i D∥2,∞ + max

i
∥e⊤
i R∗

0D∥2,∞

≤ ∥D∥2,∞ + max
i

∥e⊤
i R∗

0∥2,1∥D∥2,∞

= (1 + |||R∗
0|||2,∞)∥D∥2,∞ = ρ∥D∥2,∞

and the second term as

max
j

∥(I + H∗)−1DJ(I + H∗)−1ej∥2,1 =
∣∣∣∣∣∣∣∣∣(I + H∗)−1DJ(I + H∗)−1

∣∣∣∣∣∣∣∣∣
2,1

=
∣∣∣∣∣∣∣∣∣(I + H∗)−1J⊤D(I + H∗)−1

∣∣∣∣∣∣∣∣∣
2,∞

.

By substituting (I + H∗)−1 = I + R∗
0 and using sub-additivity and sub-multiplicativity
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of |||·|||2,∞ we can bound the above term by

≤
∣∣∣∣∣∣∣∣∣J⊤D

∣∣∣∣∣∣∣∣∣
2,∞

+
∣∣∣∣∣∣∣∣∣R∗

0J⊤D
∣∣∣∣∣∣∣∣∣

2,∞
+
∣∣∣∣∣∣∣∣∣J⊤DR∗

0

∣∣∣∣∣∣∣∣∣
2,∞

+
∣∣∣∣∣∣∣∣∣R∗

0J⊤DR∗
0

∣∣∣∣∣∣∣∣∣
2,∞

≤ 3
2 |||D|||2,∞(1 + |||R∗

0|||2,∞)2

≤ 3
2d∥D∥2,∞ρ

2

It follows by combining all the above estimates that

∥E(D)∥2,∞ ≤ 3
2d∥D∥2

2,∞ρ
3

Now that we know how to control the remainder with the error term D, we will see how
D can be controlled using the noise level W and the tuning parameter λn.

D.6.3 The Fixed Point Argument

The proof uses the Banach fixed-point theorem instead of Brouwer’s fixed-point theorem
as in Ravikumar et al. (2011) to make up for the lack of compactness in L2.

Lemma D.6 (Control of D). Let r0 = min{1/3ρd, 1/6ρ3γd}. If r = 2γ(∥W∥2,∞ +λn) ≤
r0 then ∥D∥2,∞ = ∥H̃ − H∗∥2,∞ ≤ r.

Proof. Notice that H̃Sc = H∗
S = 0, so it suffices to bound DS = H̃S −H∗

S . Notice further
that H̃S is the unique solution to the stationary condition (D.3) and hence by subsetting
on S we can write that H̃S is the unique solution to

G(HS) = −[(I + H)−1]S + R̂S + λnZ̃S

since we can assume HSc = 0. Define Br = {A ∈ L2 : ∥AS∥2,∞ ≤ r and ASc = 0}.
It follows that showing that ∥DS∥2,∞ ≤ r is equivalent to showing that the equation
G(H∗

S + DS) = 0 admits a (unique) solution DS ∈ Br.

Note that a fixed point of the function F : L2 → L2 given in the vectorized form by

F̄(DS) = −Γ−1
SS

[
Ḡ(H∗

S + DS)
]

+ DS . (D.21)

in Br corresponds to a solution of G(H∗
S + DS ) = 0. It suffices for us to show that F

admits a unique fixed point in Br. We begin by simplifying the expression for F . By
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definition,

G(H∗
S + DS) = −

[
(I + H∗ + D)−1

]
S

+ R̂S + λnZ̃S

= −
[
(I + H∗ + D)−1

]
S

+
[
(I + H∗)−1

]
S

+ R̂S −
[
(I + H∗)−1

]
S

+ λnZ̃S

= −
[
(I + H∗ + D)−1

]
S

+
[
(I + H∗)−1

]
S

+ WS + λnZ̃S .

By Lemma D.5,

(I + H∗ + D)−1 − (I + H∗)−1 + (I + H∗)−1D(I + H∗)−1 =
[
(I + H∗)−1D

]2
J(I + H∗)−1.

and this can be vectorized as

(I + H∗ + D)−1 − (I + H∗)−1 + ΓD = [(I + H∗)−1D]2 J(I + H∗)−1.

By subsetting the above equation on S we can rewrite F as

F̄(DS) = −Γ−1
SS

[
Ḡ(H∗

S + DS)
]

+ DS

= Γ−1
SS

[
(I + H∗ + D)−1 − (I + H∗)−1

]
S

− Γ−1
SS

(
WS + λnZ̃S

)
+ DS

= Γ−1
SS

[
[(I + H∗)−1D]2 J(I + H∗)−1

]
S

− Γ−1
SS

(
WS + λnZ̃S

)
Using essentially the same technique as in Lemma D.5, we can show that for A,B ∈ Br,
we can write

∥F(A) − F(B)∥2,∞ ≤ γ∥
[
(I + H∗)−1A

]2
J(I + H∗)−1 −

[
(I + H∗)−1B

]2
J(I + H∗)−1∥2,∞

≤ γ∥(I + H∗)−1(A − B)(I + H∗)−1AJ(I + H∗)−1∥2,∞

+ γ∥(I + H∗)−1B(I + H∗)−1(A − B)J(I + H∗)−1∥2,∞

≤ 3
2dρ

3γ (∥A∥2,∞ + ∥B∥2,∞) ∥A − B∥2,∞.

Therefore, ∥F(A) − F(B)∥2,∞ ≤ 3
2dρ

3γ (∥A∥2,∞ + ∥B∥2,∞) ∥A − B∥2,∞. It follows from
∥A∥2,∞, ∥B∥2,∞ ≤ r, that ∥F(A) − F(B)∥2,∞ ≤ 1

2∥A − B∥2,∞. Thus F is contractive in
Br. Moreover, F maps Br into itself since

∥F(A)∥2,∞ ≤ 1
2∥A∥2,∞ + ∥F(0)∥2,∞

≤ 1
2∥A∥2,∞ + γ(∥W∥2,∞ + λn)

≤ 1
2r + 1

2r = r.

By Banach’s fixed-point theorem, it follows that F has a unique fixed point in Br.
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D.7 Estimation of the Correlation Operator

Theorem 4.4 is a consequences of a slightly stronger result, in the form of Lemma D.7.

Proof of Theorem 4.4. Apply Lemma D.7 to X ′ = (0, . . . ,0, Xi,0, . . . ,0, Xj ,0, . . . ,0)
and make the necessary simplifications for κ.

Lemma D.7 is a variant of Theorem 6.2 from Waghmare and Panaretos (2023), and can
be proved similarly with the only important change being the use of the Hilbert-Schmidt
norm for bounding the involved quantities. The difference is that the lemma concerns
concentration in the Hilbert-Schmidt norm while Theorem 6.2 concerns the same in
operator norm. Because the proof is somewhat complicated, we include an outline of the
proof along with the most tedious calculations here. We then give the statement of the
lemma, and break down its proof into further lemmas.

Recall that the empirical correlation matrix R̂ is given by R̂ = I+[ϵnI+dg Ĉ]−1/2Ĉ0[ϵnI+
dg C]−1/2 and we are interested in quantifying how well it estimates the correlation
operator matrix R. To this end, we define Re as

Re = I + [ϵI + dg C]−1/2C0[ϵI + dg C]−1/2

where it is implicit that ϵ ≡ ϵn. The operator matrix Re is essentially R̂ assuming that
C is known and hence it can be thought of as an oracle estimator of R. The error of
estimating R with R̂ can now be bounded above by estimation and approximation terms
as follows:

∥R̂ − R∥2 ≤ ∥R̂ − Re∥2 + ∥Re − R∥2.

We will now bound the terms on the right hand side in terms of the regularization
parameter ϵ, the error ∥Ĉ − C∥2 and a few other quantities which depend only on C.
Finally, we will choose ϵ so as to minimize the bound and this will give us a rate of
convergence in the form of the following result.

Lemma D.7. If dg(Ĉ) is positive, then

∥R̂ − R∥2 ≤ 2(1 + ∥R0∥2)
[

∥Ĉ − C∥2
2

ϵ2n
+ ∥Ĉ − C∥2

ϵn

]
+ 2ϵβ∧1

n · ∥Φ∥2 · ∥ dg C∥2β−β∧1.

In particular, if ∥Ĉ − C∥2 ≤ δ then for ϵn = δ
1

1+β∧1 we have ∥R̂ − R∥2 ≤ κδ
β∧1

1+β∧1 where

κ = 8
[
(1 + ∥R0∥2) ∨ ∥Φ∥2∥ dg C∥2β−β∧1

]
.

Proof. The proof follows from Lemma D.8 and D.10.
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In the following discussion, Lemmas D.7, D.8, D.9, D.10, D.11 are merely Hilbert-Schmidt
counterparts of almost identical results (with almost identical proofs) in Waghmare
and Panaretos (2023), while Lemma D.12 is exactly identical and is included here for
convenience. We begin by treating the estimation error.

Lemma D.8. If dg Ĉ is positive then

∥R̂ − Re∥2 ≤ 2(1 + ∥R0∥2)
[

∥Ĉ − C∥2
2

ϵ2
+ ∥Ĉ − C∥2

ϵ

]

Proof. It can be verified with some simple algebraic manipulation that

R̂ − Re =
[
[ϵI + dg Ĉ]−1/2 − [ϵI + dg C]−1/2

]
[Ĉ0 − C0][ϵI + dg Ĉ]−1/2

+
[
[ϵI + dg Ĉ]−1/2 − [ϵI + dg C]−1/2

]
C0
[
[ϵI + dg Ĉ]−1/2 − [ϵI + dg C]−1/2

]
+

[
[ϵI + dg Ĉ]−1/2 − [ϵI + dg C]−1/2

]
C0[ϵI + dg C]−1/2

+ [ϵI + dg C]−1/2[Ĉ0 − C0][ϵI + dg Ĉ]−1/2

+ [ϵI + dg C]−1/2C0
[
[ϵI + dg Ĉ]−1/2 − [ϵI + dg C]−1/2

]
.

Using C0 = [dg C]1/2R0[dg C]1/2, we can rewrite this expansion in terms of D and A
given by

D = [ϵI + dg Ĉ]−1/2 − [ϵI + dg C]−1/2

A =
[
[ϵI + dg Ĉ]−1/2 − [ϵI + dg C]−1/2

]
[dg C]1/2

as

= D[Ĉ0 − C0][ϵI + dg Ĉ]−1/2 + AR0A∗ + AR0[dg C]1/2[ϵI + dg C]−1/2

+ [ϵI + dg C]−1/2[Ĉ0 − C0][ϵI + dg Ĉ]−1/2 + [ϵI + dg C]−1/2[dg C]1/2R0A∗.

Thus,

∥R̂ − Re∥2 ≤ ∥D∥ · ∥Ĉ − C∥2 · 1√
ϵ

+ ∥A∥ · ∥R0∥2 · ∥A∥ + ∥A∥ · ∥R0∥2 · 1

+ 1√
ϵ

· ∥Ĉ − C∥2 · 1√
ϵ

+ 1 · ∥R0∥2 · ∥A∥.

Using Lemma D.9 (immediately below) for Â = dg Ĉ and A = dg C, and using ∥ dg Ĉ −
dg C∥2 ≤ ∥Ĉ − C∥2, we derive ∥D∥ ≤ ∥Ĉ − C∥2/ϵ

3/2 and ∥A∥ ≤ ∥Ĉ − C∥2/ϵ. It follows
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that

∥R̂ − Re∥2 ≤ ∥Ĉ − C∥2
2

ϵ2
+ ∥R0∥2

∥Ĉ − C∥2
2

ϵ2
+ ∥R0∥2

∥Ĉ − C∥2
ϵ

+ ∥Ĉ − C∥2
ϵ

+ ∥R0∥2
∥Ĉ − C∥2

ϵ

= (1 + ∥R0∥2)∥Ĉ − C∥2
2

ϵ2
+ (1 + 2∥R0∥2)∥Ĉ − C∥2

ϵ

≤ 2(1 + ∥R0∥2)
[

∥Ĉ − C∥2
2

ϵ2
+ ∥Ĉ − C∥2

ϵ

]
.

Lemma D.9. If Â is positive, then

∥[ϵI + Â]−1/2 − [ϵI + A]−1/2∥ ≤ ∥Â − A∥2/ϵ
3/2,∥∥∥∥ [[ϵI + Â]−1/2 − [ϵI + A]−1/2

]
A1/2

∥∥∥∥ ≤ ∥Â − A∥2/ϵ.

Proof. Notice that

[ϵI + Â]−1/2 − [ϵI + A]−1/2

= [ϵI + Â]−1/2
[
[ϵI + Â]1/2 − [ϵI + A]−1/2

]
[ϵI + A]1/2

= [ϵI + Â]−1/2
[
[ϵI + Â]1/2 + [ϵI + A]1/2

]−1 [
[ϵI + Â] − [ϵI + A]

]
[ϵI + A]−1/2

=
[
ϵI + Â + [ϵI + A]1/2[ϵI + Â]1/2

]−1
[Â − A][ϵI + A]−1/2.

Since Â + [ϵI + A]1/2[ϵI + Â]1/2 is positive, we can write

∥[ϵI + Â]−1/2 − [ϵI + A]−1/2∥

≤
∥∥∥∥ [ϵI + Â + [ϵI + A]1/2[ϵI + Â]1/2

]−1
∥∥∥∥∥Â − A∥∥[ϵI + A]−1/2∥

≤ 1
ϵ

· ∥Â − A∥2 · 1
ϵ1/2

and similarly,∥∥∥∥ [[ϵI + Â]−1/2 − [ϵI + A]−1/2
]

A1/2
∥∥∥∥

≤
∥∥∥∥ [ϵI + Â + [ϵI + A]1/2[ϵI + Â]1/2

]−1
∥∥∥∥∥Â − A∥∥[ϵI + A]−1/2A1/2∥

≤ 1
ϵ

· ∥Â − A∥2 · 1.
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Now, we will find an upper bound for the approximation error under a regularity condition.

Lemma D.10. If R0 = [dg C]βΦ[dg C]β for some Φ ∈ S2 and β > 0, then

∥Re − R∥2 ≤

2ϵβ · ∥Φ∥2 · ∥ dg C∥β 0 < β ≤ 1
2ϵ · ∥Φ∥2 · ∥ dg C∥2β−1 1 < β < ∞.

Proof. We decompose the difference as follows:

R − Re = [ϵI + dg C]−1/2[dg C]1/2R[dg C]1/2[ϵI + dg C]−1/2 − R

=
[
[ϵI + dg C]−1/2 − [dg C]−1/2

]
[dg C]1/2R[dg C]1/2[ϵI + dg C]−1/2

+ R[dg C]1/2
[
[ϵI + dg C]−1/2 − [dg C]−1/2

]
=
[
[ϵI + dg C]−1/2 − [dg C]−1/2

]
[dg C]1/2+βΦ[dg C]1/2+β[ϵI + dg C]−1/2

+ [dg C]βΦ[dg C]1/2+β
[
[ϵI + dg C]−1/2 − [dg C]−1/2

]
.

Using ∥[dg C]1/2+β[ϵI + dg C]−1/2∥ ≤ ∥C∥β, it follows that

∥R − Re∥2 ≤
∥∥∥∥[[ϵI + dg C]−1/2 − [dg C]−1/2

]
[dg C]1/2+β

∥∥∥∥∥Φ∥2∥ dg C∥β

+ ∥ dg C∥β∥Φ∥2

∥∥∥∥[dg C]1/2+β
[
[ϵI + dg C]−1/2 − [dg C]−1/2

]∥∥∥∥.
The conclusion is now a direct consequence of Lemma D.11, stated immediately below.

Lemma D.11. We have
∥∥∥∥[[ϵI + dg C]−1/2 − [dg C]−1/2

]
[dg C]1/2+β

∥∥∥∥ ≤

ϵβ 0 < β ≤ 1
ϵ · ∥ dg C∥β−1 1 < β < ∞.

Proof. By the spectral mapping theorem,∥∥∥∥[[ϵI + dg C]−1/2 − [dg C]−1/2
]
[dg C]1/2+β

∥∥∥∥ ≤ sup
0≤λ≤∥ dg C∥

{∣∣∣∣ 1√
ϵ+ λ

− 1√
λ

∣∣∣∣ · λ1/2+β
}
.

It can be shown using some elementary calculations that

∣∣∣∣ 1√
ϵ+ λ

− 1√
λ

∣∣∣∣ · λ1/2+β = ϵλβ√
ϵ+ λ(

√
λ+

√
ϵ+ λ)

≤


ϵ
[
λβ

ϵ+λ

]
0 < β < 1/2

ϵ
[
λ2β−1

ϵ+λ

]1/2
1/2 ≤ β < 1

ϵλβ−1 1 ≤ β < ∞.

220



D.8 Concentration of Sub-Gaussian Random Elements

The conclusion now follows from Lemma D.12, stated immediately below.

Lemma D.12. For 0 < x < 1 and λ ≥ 0, we have

λx

ϵ+ λ
≤ ϵx−1

2

Proof. Consider the reciprocal expression. It follows from elementary differential calculus
that the minimum of the reciprocal occurs at λ∗ = xϵ/(1 − x). Therefore,

ϵ

λx
+ λ1−x ≥ ϵ

λx∗
+ λ1−x

∗ = ϵ1−x

xx(1 − x)1−x ≥ ϵ1−x

max0<x<1[xx(1 − x)1−x] = 2ϵ1−x.

D.8 Concentration of Sub-Gaussian Random Elements

Lemma D.13. Let X be a random element in a Hilbert space H such that E[X] = 0
and ∥X∥ is sub-Gaussian (in the sense defined in the main paper). Then for Cij =
E[Xi ⊗Xj ] − E[Xi] ⊗ E[Xj ] and Ĉij = 1

n

∑n
k=1X

k
i ⊗Xk

j − X̄i ⊗ X̄j we have

P{∥Ĉij − Cij∥2 ≥ t} ≤ 2 exp
[
− cnt2

∥∥Xi∥∥2
ψ2

∥∥Xj∥∥2
ψ2

]

for 0 ≤ t ≤ ∥∥Xi⊗Xj −E [Xi ⊗Xj ]− X̄i⊗ X̄j +E[Xi]⊗E[Xj ]∥∥ψ1 where c is a universal
constant. In particular,

P{∥Ĉij − Cij∥2 ≥ t} ≤ 2 exp
[
− cnt2

∥X∥4
∞

]

for 0 ≤ t ≤ tX , where ∥X∥∞ = maxi ∥∥Xi∥∥ψ2 and tX = minij ∥∥Xi⊗Xj−E [Xi ⊗Xj ]−
X̄i ⊗ X̄j + E[Xi] ⊗ E[Xj ]∥∥ψ1.

Proof. Let Yk = Xk
i ⊗Xk

j −E [Xi ⊗Xj ] − X̄i ⊗ X̄j +E[Xi] ⊗E[Xj ] for 1 ≤ k ≤ n. Then,
the Yk are sub-exponential random elements in the space of Hilbert-Schmidt operators
on H. Indeed,

∥∥Y ∥∥ψ1 = ∥∥Xi ⊗Xj − E [Xi ⊗Xj ] − X̄i ⊗ X̄j + E[Xi] ⊗ E[Xj ]∥∥ψ1

≤ ∥∥Xi ⊗Xj∥ + ∥E [Xi ⊗Xj ] ∥ + ∥X̄i ⊗ X̄j∥ + ∥E[Xi] ⊗ E[Xj ]∥∥ψ1

≤ ∥∥Xi ⊗Xj∥∥ψ1 + ∥∥E [Xi ⊗Xj ] ∥∥ψ1 + ∥∥X̄i∥∥X̄j∥∥ψ1 + ∥∥E[Xi]∥∥E[Xj ]∥∥ψ1

≤ ∥∥Xi∥∥Xj∥∥ψ1 + ∥E [∥Xi ⊗Xj∥] ∥ψ1 + ∥∥Xi∥∥Xj∥∥ψ1 + ∥E[∥Xi∥]E[∥Xj∥]∥ψ1

≤ ∥∥Xi∥∥Xj∥∥ψ1 + ∥E [∥Xi ⊗Xj∥] ∥ψ1 + ∥∥Xi∥∥Xj∥∥ψ1 + ∥E[∥Xi∥]∥ψ2∥E[∥Xj∥]∥ψ2 .
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Using the centering property of the sub-exponential and sub-Gaussian norms and the
fact that product of two sub-Gaussian random variables is sub-exponential (see Exercise
2.7.10 and Lemma 2.7.7 of Vershynin (2018)), we get

∥∥Y ∥∥ψ1 ≲ ∥∥Xi∥∥Xj∥∥ψ1 + ∥∥Xi ⊗Xj∥∥ψ1 + ∥∥Xi∥∥Xj∥∥ψ1 + ∥∥Xi∥∥ψ2∥∥Xj∥∥ψ2

= ∥∥Xi∥∥Xj∥∥ψ1 + ∥∥Xi∥∥Xj∥∥ψ1 + ∥∥Xi∥∥Xj∥∥ψ1 + ∥∥Xi∥∥ψ2∥∥Xj∥∥ψ2

≲ ∥∥Xi∥∥ψ2∥∥Xj∥∥ψ2 + ∥∥Xi∥∥ψ2∥∥Xj∥∥ψ2 + ∥∥Xi∥∥ψ2∥∥Xj∥∥ψ2 + ∥∥Xi∥∥ψ2∥∥Xj∥∥ψ2

≲ ∥∥Xi∥∥ψ2∥∥Xj∥∥ψ2 .

By Theorem 2.8.1 (Bernstein’s Inequality) of Vershynin (2018), we have

P
{∥∥∥ 1

n

∑n
k=1 Yk

∥∥∥ ≥ t
}

= P {∥
∑n
k=1 Yk∥ ≥ nt}

≤ P {
∑n
k=1 ∥Yk∥ ≥ nt}

≤ 2 exp
[
−c
(

n2t2

n∥∥Y ∥∥2
ψ1

∧ nt

∥∥Y ∥∥ψ1

)]

≤ 2 exp
[
− cnt2

∥∥Y ∥∥2
ψ1

]

for 0 < t < ∥∥Y ∥∥ψ1 where c is an absolute constant. It follows that

P
{

∥Ĉij − Cij∥2 ≥ t
}

≤ 2 exp
[
− cnt2

∥∥Xi∥∥2
ψ2

∥∥Xj∥∥2
ψ2

]

for 0 < t < ∥∥Xi ⊗Xj − E [Xi ⊗Xj ] − X̄i ⊗ X̄j + E[Xi] ⊗ E[Xj ]∥∥ψ1 for some absolute
constant c > 0.

Remark D.1. If X has mean zero and we take Ĉ = 1
n

∑n
k=1X

k ⊗Xk, then the above
result is still true for tX = minij ∥∥Xi ⊗Xj − E [Xi ⊗Xj ] ∥∥ψ1. Regardless, even if the
mean is not zero, X̄i ≈ E[Xi] for large enough n and therefore,

tX ≈ min
ij

∥∥Xi ⊗Xj − E [Xi ⊗Xj ] ∥∥ψ1 .

D.9 Setups for the Simulation Study

Below we describe how we perform a single draw of a multivariate functional datum in
the three setups considered in our simulation study. In all cases, the sample size is chosen
as n = 100, so this process is repeated independently one hundred times. From the
resulting sample, the empirical covariance operator is calculated, which is subsequently
transformed into the correlation operator using generalized inverses. All the simulations
were run on a computer cluster with the total runtime of about six hundred CPU hours.
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D.9.1 Setup 1

This is the only setup where a precision matrix Q ∈ Rpr×pr is explicitly formed, and then
inverted to obtain C ∈ Rpr×pr. The scores δ = (δ1, . . . , δp)⊤ ∈ Rpr for the first r = 10
Fourier eigenfunctions in all p = 100 nodes are then drawn jointly from the multivariate
Gaussian distribution with mean 0 and covariance C. Finally, the multivariate functional
datum is formed as

X = (X1, . . . , Xp)⊤ =
(

r∑
l=1

δ1,lel(t) , . . . ,
r∑
l=1

δp,lel(t)
)⊤

where el(t) is the l-th Fourier basis function. In practice, these are naturally evaluated
on an equidistant grid (we use the grid size K = 30 throughout this simulation study).

Note that the conditional dependencies are thus directly governed by the block sparsity
pattern of the finite-dimensional precision matrix Q ∈ Rpr×pr. This simulation setup is
thus not truly functional.

It remains to specify the choice of Q = (Qi,j)pj,j=1, where Qi,j ∈ Rr×r for i, j = 1, . . . , p
are the respective blocks. For i = 1, . . . , p, we take

Qi,i = diag(1, . . . , 10)/10,
Qi,i−1 = 0.4 diag(0, . . . , 0, 6, . . . , 10)/10,
Qi,i−2 = 0.2 diag(0, . . . , 0, 6, . . . , 10)/10,

and Qi,i = 0 for |i− j| > 2. This choice constitutes an AR(2) process. Note that due
to the zeros at the end of the diagonals of Qi,i−1 and Qi,i−2 the dependencies are only
created between eigenspaces spanned by e6(t), . . . , e10(t). Those actually have lower
corresponding eigenvalues than e1(t), . . . , e5(t), since Q is the precision matrix and the
relative importance in the spectrum gets reversed when inverting to obtain C.

D.9.2 Setup 2

Here we create a process by applying linear operators to an initial multivariate functional
datum (Z1, . . . , Zp)⊤ with independent nodes. Firstly, we draw Zj for j = 1, . . . , p
(again with p = 100) independently from a Gaussian distribution with mean zero and
a covariance Σ that has the Fourier basis eigenfunctions and quadratically decaying
eigenvalues, i.e. λl = 1/l2 for l = 1, 2, . . .. Then, we create X = (X1, . . . , Xp)⊤ as

X1 = Z1,

X2 = 2
5A1(X1) + Z2,

Xj = 2
5A1(Xj−1) + 1

5A2(Xj−2) + Zj , j = 3, . . . , p,
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where A1 and A2 are zero-extended restriction operators on the first and last tenth of the
functional domain. Specifically, if ∆E(t) = 1 for t ∈ E and 0 otherwise, where E ⊂ [0, 1],
we define A1(f)(t) = ∆[0,1/10](t)f(t) and A2(f)(t) = ∆[9/10,1](t)f(t) for any f . Since
clearly ∥Ak(f)∥ ≤ ∥f∥ for k = 1, 2, we have that ∥Ak∥ ≤ 1. Thus, the formulas above
define a mean-reverting process that has the Markov property of order 2

The goal of this construction is to have AR(2)-type dependencies, that are however
created only locally in the time domain, as opposed to global dependencies in the spectral
domain, like in Setup 1. We believe this setup constitutes a more realistic scenario,
e.g. from the perspective of neuroimaging applications.

D.9.3 Setup 3

In this final set of simulations, we generate Zj , j = 1, . . . , p (with p = 99) similarly to
the previous setup as independent Gaussian processes with mean zero and the covariance
ΣZ being rank-5 with Fourier basis eigenfunctions and the five non-zero eigenvalues all
equal to one. For j = 3k − 1 where k = 1, . . . , 33, we then generate Wj as independent
zero-mean Gaussian processes (also independent of Zj ’s) with the covariance ΣW and
the corresponding kernel k(t, s) = 1

2(|t|2H + |s|2H − |t − s|2H), where H = 0.2. For
j = 3k or j = 3k − 2 where k = 1, . . . , 33, we set Wj := W3k−1. That is, the Wj ’s
are fractional Brownian motions with relatively rough sample paths (less smooth than
those of standard Brownian motion, which corresponds to H = 0.5), and they are
dependent (in fact, identical) in subsequent triplets. A single multivariate functional
datum X = (X1, . . . , Xp)⊤ is then composed as

Xj = 3Zj +Wj (D.22)

and the actual measurements on the equidistant grid are also superposed with additional
Gaussian white noise with variance 1/5.

First, it is easy to verify by calculating conditional covariances that the graphical model
is (V,E) with the vertex set V = {1, . . . , p} and the edge set E = {(i, j) | i, j = 1, . . . , 99 :
⌊i/3⌋ = ⌊j/3⌋} in this case, i.e. subsequent triplets of nodes are connected. Next, note
that this is the only setup where we add measurement error to the generated values. The
reason why we did not do this in the two previous setups (where the signal is smoothly
varying) is that this would heavily favor the competing methods, which use denoising
as the first step. Of course, we could also use some form of denoising, but we wish to
avoid any specific approaches to estimate the covariance, since we view the methodology
developed in this paper as one of a plug-in type. In this setup, however, the signal is
relatively rough and so the competing approaches working with low-rank projections of
the data are at a disadvantage. It is thus reasonable to add measurement error here,
which also exemplifies that our method can naturally cope with it. Finally, the constant 3
in formula (D.22) and the white noise variance 1/5 is chosen such that the total variability
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(as captured by the trace of the respective covariance operator) of the smooth component
Zj , the rough signal Wj and the additional white noise, respectively, are in proportions
3:1:2 with each other. Thus while the form of the dependency is particularly simple in
this setup, the signal is not very strong in the data.
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