=Pr-L

m Ecole
polytechnique
fédérale
de Lausanne

Thése n°

Hardware-Software co-design Methodologies for
Edge Al Optimization

Présentée le 25 septembre 2023

Faculté des sciences et techniques de I'ingénieur
Laboratoire des systemes embarqués
Programme doctoral en génie électrique

pour I'obtention du grade de Docteur és Sciences

par

Flavio PONZINA

Acceptée sur proposition du jury

Prof. A. M. Alahi, président du jury

Prof. D. Atienza Alonso, directeur de thése
Prof. T. Simunic Rosing, rapporteuse

Prof. L. Pozzi, rapporteuse

Prof. A. Burg, rapporteur

10318

2023

wa/\

N

%L/

{//]

L g

Acknowledgements

EXTREMELY hard is to include in this section all the people who had an

impact on my life and allowed me to reach this achievement. Starting
from the beginning, the first mention goes to my family, who intensively
supervised my studies during the very first years of school, always stressing
the importance of school, respect, and commitment.

I am really grateful I had Prof. Massimo Castagno for three years at high
school. In addition to his technical classes on computer science, he teaches
his students responsibility and method. I believe his words significantly
contribute to my growth, as a professional and, even more, as a person.
During the same years, I met a real friend, Davide Saggese, who motivated
me to improve continuously and with whom I spent some of my best days.

At Politecnico di Torino, I had the chance to be in contact with so many good
professors and researchers. I want to recognize Prof. Andrea Calimera and Dr.
Valentino Peluso for the opportunity they gave me to work on cutting-edge
research on Artificial Intelligence for my master’s thesis. Valentino spent so
much time teaching me and supervising my work, and I am really thankful
for what he has done. Let me also recognize his patience in making me
understand topics that took me time to (hopefully) master.

The Embedded Systems Laboratory (ESL) of EPFL welcomed me in 2019 and
allowed me to broaden my horizons in these last years. I had the honor to
join the lab to pursue a Ph.D., which is something I had never considered at
an early age, and that I usually thought of as something much bigger than me

(even recently when seeing the great work of other students in the lab). Here,
I met people from all over the world, who definitely changed the way I look at
my future. We are one of the largest labs in EPFL, so citing all of them would
result in an incredibly long list. I want to thank Denisa, Davide, Giovanni,
Miguel, José, and Tomds, post-docs of the lab who taught me a lot. I also met
really astonishing colleagues like Elisabetta, Darong, and Lara, who I really
admire for their commitment and passion for what they do.

I also want to thank the commission who reviewed my thesis and helped me
improve the clarity of its content. Namely, I thank Professors Pozzi, Rosing,
Alahi, and Burg for their time spent reading and evaluating this document.
Moreover, I must also thank them for accepting to be part of my Ph.D. com-
mission and especially for being available to attend my private defense on a
late Friday afternoon!

Finally, I must conclude these acknowledgments by mentioning the person
who really had the most considerable impact on my work in these years: Pro-
fessor David Atienza, my thesis supervisor. Always available and supportive
when I needed help. Most importantly, he believed in me and, by accepting
me as a Ph.D. student in his laboratory, he gave me the most valuable oppor-
tunity I had in my life. Not only that, but he is still assisting me in my future
career, supporting among other things, my application for a postdoctoral
position abroad.

Thanks, David.

Lausanne, September 9, 2023 Flavio Ponzina

Abstract

ARTIFICIAL Intelligence (Al) is revolutionizing a vast range of industrial
and scientific applications due to its several advantages, which include
self-learning capabilities, extraction of intrigued hidden patterns from input
data, and flexibility. While the cloud-based computing paradigm has been
a baseline approach for Al inferences in the past years, recent technology
advancements and Al optimization methods advocate and support a shift
toward an edge-computing alternative. Nevertheless, Edge Al poses storage,
computational, and efficiency challenges that must be addressed to support
the deployment of compute-intense algorithms in embedded devices. To
continuously increase the quality of their outputs, Al models are evolving
into more complex algorithms, with extremely high memory and comput-
ing requirements that strain the resource capacity of edge low-power nodes.
Aware of this challenge, the research community is studying the problem
from different perspectives, mainly focusing on algorithmic optimizations
or hardware accelerators. On one hand, the optimization of Al algorithms
can reduce their memory need and computing complexity. On the other
hand, the implementation of domain-specific hardware accelerators enables
efficient executions of Al workloads by providing specialized resources de-
signed to accelerate common kernels in Al inferences (e.g., matrix-vector
multiplications).

Although optimization approaches tackling this problem from either an algo-
rithmic or a hardware perspective exist, hardware-software co-design method-
ologies are key. Indeed, by employing a co-design strategy, hardware-aware

iii

algorithmic transformations can be effectively harnessed in workload-aware
hardware resources to retrieve real energy efficiency gains. In this context, I
endorse the implementation of accuracy-driven co-design methodologies, as
they can guarantee that the optimized design abides by user-defined output
quality levels. Such a co-design optimization vision is the research focus
of this thesis. First, I introduce the E2CNNs methodology, an algorithmic-
level transformation that builds ensembles of Convolutional Neural Networks
(CNNs) to improve accuracy and robustness without increasing the initial
memory and computing requirements. Then, I apply this methodology to
different co-design strategies including codebook-based representations, ap-
proximate computing, and in-memory computing accelerators. The achieved
results show that synergic combinations of hardware-aware application-level
optimizations allow significant efficiency improvements in the evaluated Al
benchmarks.

Keywords: Artificial intelligence, machine learning, deep learning, convo-
lutional neural networks, embedded systems, internet-of-things, edge Al,
energy efficiency, co-design, heterogeneous optimization.

NL

Résumé

L’ INTELLIGENCE artificielle (IA) est en train de révolutionner une vaste

gamme d’applications industrielles et scientifiques en raison de ses
nombreux avantages, notamment ses capacités d’auto-apprentissage, I'ex-
traction de caractéristiques cachés a partir de données d’entrée, et sa flexibi-
lité. Alors que le paradigme de I'informatique en nuage a été une référence
pour les inférences d’IA au cours des dernieres années, les progres techno-
logiques récents et les méthodes d’optimisation de I'IA préconisent et sou-
tiennent un changement vers une alternative d'informatique en périphérie.
Néanmoins, I'IA périphérique pose des problemes de stockage de données,
de calcul, et d’efficacité qui doivent étre résolus pour soutenir le déploiement
d’algorithmes a forte intensité de calcul dans les appareils embarqués. Pour
améliorer en permanence la qualité de leurs résultats, les modeles d’'IA évo-
luent vers des algorithmes plus complexes, avec des exigences extrémement
élevées en matiere de mémoire et de calculs qui mettent a rude épreuve
les ressources des nceuds périphériques a faible consommation d’énergie.
Consciente de ce défi, la communauté des chercheurs étudie le probleme
sous différents angles, en se concentrant principalement sur les optimisations
algorithmiques ou les accélérateurs matériels. D’'une part, 'optimisation des
algorithmes d’IA peut réduire leur besoin en espace mémoire ainsi que la
complexité de calcul. D’autre part, la mise en ceuvre d’accélérateurs maté-
riels spécifiques a un domaine permet des exécutions efficaces des charges
de travail de I'IA en fournissant des ressources spécialisées concues pour

\%

accélérer les noyaux communs dans les inférences de I'IA (par exemple, les
multiplications matrice-vecteur).

Bien qu'il existe des approches d’optimisation abordant ce probleme d'un
point de vue algorithmique ou matériel, les méthodologies de co-conception
matériel-logiciel sont essentielles. En effet, en employant une stratégie de
co-conception, les transformations algorithmiques conscientes des enjeux
matériels peuvent s’adapter pleinement aux ressources matérielles sensibles
ala charge de travail afin de récupérer de réels gains d’efficacité énergétique.
Dans ce contexte, japprouve la mise en ceuvre de méthodologies de
co-conception axées sur la précision, car elles peuvent garantir que la
conception optimisée respecte les niveaux de qualité de sortie définis par
'utilisateur. Cette vision de I'optimisation de la co-conception est ’objet
de recherche de cette these. Tout d’abord, je présente la méthodologie
E2CNNs, une transformation au niveau algorithmique qui construit des
ensembles de réseau de neurones convolutifs pour améliorer la précision et
la robustesse sans augmenter les exigences initiales en matiere de mémoire
et de calcul. Ensuite, j’applique cette méthodologie a différentes stratégies
de co-conception, y compris les représentations basées sur le codebook, le
calcul approximatif, et les accélérateurs de calcul en mémoire. Les résultats
obtenus montrent que les combinaisons synergiques d’optimisations au
niveau de I'application en fonction du matériel permettent des améliorations
significatives de 'efficacité dans les reperes d’IA évalués.

Mots-clés : Intelligence artificielle, apprentissage automatique, apprentissage
profond, convolutional neural networks, systemes embarqués, internet des
objets, edge Al, efficacité énergétique, co-conception, optimisation hétéro-
gene.

S

W

=/

ik

Contents

Acknowledgements

Abstract (Résumé)

1 Introduction

1.1
1.2
1.3
1.4

Artificial Intelligence . . .

Convolutional Neural Networks

EdgeAl
Optimizations for Edge Al

1.4.1 Application-level optimizations
1.4.2 Hardware-level optimizations
1.5 Trading-off accuracy for efficiency

2 Embedded Ensembles of
Convolutional Neural Networks

2.1

2.2

2.3

Introduction

2.1.1 Robustnessof CNNmodels

2.1.2 Ensembling
E?CNNs methodology . .

2.2.1 Buildingtheensemble

2.2.2 Example: LeNet5 vs.

LeNet5-based E2CNNs

2.2.3 Selecting the E2CNNs cardinality

E2CNNs achievements . .
2.3.1 Experimental set-up

iii

© © N W = -

10
12

17
17
17
20
23
23
25
26
28
28

vii

Contents

2.3.2 Accuracyimprovements 31

2.3.3 Robustnessimprovements 32

2.3.4 Reducing energy and memory requirements 34

3 Codebook-based compression 37
3.1 Introduction 37
3.1.1 Codebooks-based representations 38

3.1.2 Using codebooks to represent CNN models 40

3.2 Codebook-based compression methodology 42
3.2.1 Target: general purpose systems 43

3.2.2 Heterogeneous codebook-based compression strategy . 44
3.2.2.1 Use of E2CNNs in contrast to single-instance

model 45

3.2.2.2 Per-layer iterative compression method 45

3.2.2.3 Sensitivity-based logarithmic batch optimization 46

3.2.2.4 Complexityanalysis 47

3.3 Experimentalresults 48
3.3.1 ExperimentalSet-up 48
3.3.2 Compression/Accuracy trade-off 49
3.3.3 Performancegains 52

4 Approximate Computing 55
4.1 Introduction 55
4.1.1 Approximate computing 56
4.1.2 Approximations in machine learning 57
4.1.3 Approximate multipliers 58

4.2 Unleash inexact arithmeticinCNNs 59
4.2.1 Methodology overview: a co-designvision 60
4.2.2 Heterogeneous per-layer quantization 60
4.2.2.1 Stage A: Robustness-Aware CNN Optimization 61

4.2.2.2 Stage B: Mapping on Inexact HW Resources . . 62

43 Results 64
4.3.1 ExperimentalSetup 64
4.3.2 Sensitivityanalysis 67
4.3.3 Analysis of the QoS/Energy trade-off 69
434 Areaoverhead, 73

viii

Contents

44 Conclusions 74
In-Memory Computing 77
5.1 IMCarchitecturaldesign. 78
5.1.1 Physical implementations 78
5.1.2 Implementing multiply-accumulate operations 81
5.1.3 Multiplications as a series of shift-adds 83
5.1.4 AcceleratingCNNlayers 86
5.2 AnIMC-aware CNN quantization methodology 90
5.2.1 Methodology evaluation 93
5.2.1.1 ExperimentalSetup 93
5.2.1.2 ExperimentalResults 94
5.3 Managing overflowsinIMC 97
5.3.1 Numericaloverflows 98
5.3.2 Overflow-free arithmetic for in-memory computing .. 99
5.3.2.1 Architecturaldesign 100
5.3.2.2 Workflow for CNN acceleration 101
5.3.2.3 Improved heterogeneous quantization strategy 103
5.3.3 Experimentalsetup...................... 105
53.3.1 Baselines....................... 105
5332 Benchmarks. 106
5.3.3.3 Pytorch-based environment for CNN training . 107
5.3.3.4 Accuracy and runtime evaluations 108
5.3.3.5 IMCimplementation 108
5.3.4 Experimentalresults 108
5.3.4.1 Areaand energyevaluation 108

5.3.4.2 Improved heterogeneous quantization method-
ology 109
5.3.4.3 Comparison with baselines 110
5.4 Scaling SRAM voltage to improve efficiency 113
5.4.1 Operating SRAMs at sub-nominal voltages 113
5.4.2 SRAM protectioncodes 114
5.4.3 IMC implementation of memory parity check 115
5.4.3.1 Detection and mitigation strategy 116
5.4.3.2 Detection and mitigation circuit 118

ix

Contents

5.4.4 ExperimentalSetup 119

5.4.4.1 Single-instance and E2CNNs benchmarks . . . 119

5.4.4.2 Stuck-atfaulterrormodel. 120

5.4.4.3 Energyand area evaluation 122

5.4.5 Experiementalresults 123

5.4.5.1 Area, energy and performance breakdown . . . 123

5.4.5.2 Accuracy/energy trade-off 123

6 Concluding remarks 127
6.1 Possible extensions of proposed approaches 129
6.1.1 Short-term 129

6.1.2 Long-term 130
Bibliography 133
Curriculum Vitae 149

SN

X

R

=7

Introduction

1.1 Artificial Intelligence

Artificial intelligence (AI) has been a research topic investigated by the com-
puter science community for more than 60 years now. The term was first
used in 1956 at the Dartmouth Conference, held at Dartmouth College, in the
USA. Indeed, that conference is considered a milestone in the development
of Al, although the roots of this approach can be traced even further. For
example, the early foundations of Al can be found in the work of Alan Turing,
who introduced the concept of universal machine [1] in 1936, paving the
groundwork for the theoretical possibility of intelligent machines. Other key
pioneers in the field of Al include Warren McCulloch and Walter Pitts, who
introduced the concept of neural networks in 1943 [2]. In the years following
the Dartmouth Conference, Al research gained momentum, and various al-
gorithms and methods were developed. These include symbolic reasoning,
expert systems, machine learning, and natural language processing. Since
then, Al has received continuously growing attention, which led to signifi-
cant progress and breakthroughs. An emblematic example of the incredible
potential of Al in those years was represented by Deep Blue [3], an Al-based
check player developed by IBM and able to defeat the world chess champion
Garry Kasparov in 1997.

Over the years, numerous Al algorithms have been proposed. The Logic
Theorist [4], developed by Allen Newell and Herbert A. Simon in 1956, was

Chapter 1. Introduction

one of the earliest Al programs, designed to prove mathematical theorems
using symbolic logic and heuristic search. Two years later, Frank Rosenblatt
presented the perceptron [5], a type of neural network algorithm aimed at
mimicking the functioning of a biological neuron and able to recognize and
classify patterns. The list of artificial intelligence algorithms grew faster and
faster since then, with the introduction of more sophisticated and diverse Al
algorithms encompassing areas such as machine learning, and, more recently,
deep learning.

The high interest in Al is due to its capability to address a wide range of prob-
lems and challenges across a large pool of domains. A few examples of tasks
and applications Al can efficiently handle include pattern recognition [6],
predictive analytics [7], personalized recommendations [8], and fraud detec-
tion [9]. This ability makes these algorithms particularly appealing to solve
tasks such as image recognition [10], speech recognition [11], and natural
language processing [12]. In this context, Al finds application in fields like
computer vision, voice assistants, and automated language translation, where
Convolutional Neural Networks (CNNs) [13] represent widely investigated
models. A more recent application of Al consists in providing personalized
recommendations in various domains, such as e-commerce, streaming ser-
vices, and content platforms, with Al-powered systems able to analyze user
behavior and preferences. In all the presented applications, Al algorithms
can also help in detecting anomalies in input data, identifying patterns of
fraudulent behavior, and thus enhancing cybersecurity measures [14].

As a consequence of the vast range of opportunities offered by Al algorithms,
several industries and scientific research areas are investing in this research
topic. In healthcare, Al is currently used in medical imaging analysis, disease
diagnosis, drug discovery, and personalized health monitoring using wearable
systems [15-17]. Other sectors highly interested in employing Al as part of
their software infrastructure include finance, manufacturing, education, and
agriculture, as well as astronomy, genomics, drug discovery, climate modeling,
and particle physics in scientific domains [18-20].

The reason why Al is so widely spread in almost every industrial and scien-
tific application is due to the several advantages it provides when compared

1.2 Convolutional Neural Networks

to non-Al alternatives. First, Al can effectively handle complex and large-
scale input data. In particular, deep learning models efficiently deal with
high-dimensional and unstructured data (e.g., images, audio, or text), being
able to extract relevant features to ultimately produce accurate predictions.
Second, the learning ability of Al algorithms allows them to improve their ac-
curacy over time. An embodiment of this approach, known as reinforcement
learning [21], enables these models to handle evolving situations, making
their predictions and decisions better and better over a certain number of
simulations. Finally, Al algorithms scale well to different degrees of task com-
plexity and can discover intricate patterns that traditional approaches may
not easily discern. Nonetheless, despite the aforementioned advantages, it
must be noticed that Al algorithms are not always superior to non-Al alter-
natives. Usually, the choice between Al and non-Al approaches may depend
on several factors, such as the specific problem, the type and the amount
of available data, the available hardware resources, and the need for results
interpretability [22].

1.2 Convolutional Neural Networks

Among the plethora of Al, machine learning, and deep learning models pro-
posed in the past years, this thesis focuses on Convolutional Neural Networks
(CNNs) as target benchmarks, presenting different HW-SW co-design method-
ologies to optimize their execution from a resource, performance, energy,
and accuracy perspectives. As detailed in the next paragraph, CNNs show
different degrees of complexity, which make them good candidates to demon-
strate the effectiveness of the proposed methodologies on a wide range of Al
applications.

CNNs are indeed deep learning models that find applications in multiple
fields, from computer vision [23,24] to personalized healthcare [25,26]. CNNs
exhibit a layer-based structure, comprising convolutional, fully-connected,
and pooling layers among the most common ones. These are combined in
linear or more complex structures and enable the automatic extraction of
features from input data (usually having spatial relationships, such as images),
eventually producing abstract interpretations as output (e.g., recognizing
objects, or classifying input samples). The parameters of CNN models, mainly

Chapter 1. Introduction

Convolutional layer Fully-connected layer

F filters “ 5

g —— - £

] O

o il | < <

3D * = | Output k= 2,

H| Input feature =) =

feature W — @)

k@ ’ = A

W, k —

1mZcol implementation Outputs Inputs [1xM]
[F x H W] X

} { { { 1| Tnputs | _ Weights)
[‘ ‘ ‘ 17| € x HW] [MxN] Tl EZ

Filters [F x k*C] o

Figure 1.1: Computation of convolutional (left) and fully-connected (right)
layers of neural network models. While fully-connected layers
are naturally represented as matrix-vector operations, convolu-
tions can be implemented in a similar way using an algorithmic
transformation based on the im2col method (bottom).

used to perform convolutional and fully-connected layers, are referred to as
weights. Conversely, the input and output features of each layer are known as
activations.

Convolutional and fully-connected layers are the most compute-intense lay-
ers of CNNs, requiring the execution of millions of multiply-accumulate
(MAC) instructions in recent models [27]. The former group together sets
of learnable weights into multiple convolutional filters, which are then con-
volved over a region of the input data. Filters slide over the input features,
producing a scalar output activation for each position covered. As a conse-
quence, each filter produces as output a two-dimensional plane, and by em-
ploying multiple filters, convolutional layers can produce three-dimensional
outputs. An example is illustrated in Figure 1.1(top-left), where three four-
channel convolutional filters are applied to the four-channel input feature
map to generate a three-channel output. Instead, in fully-connected layers,
input and output elements, usually referred to as neurons, are connected

4

1.2 Convolutional Neural Networks

in a full-mesh topology by a matrix of weights, with output elements being
computed using matrix-vector operations (Figure 1.1(top-right)).

Recent algorithms implement both convolutional and fully-connected layers
as a series of matrix-vector multiplications. On one side, fully-connected
layers are naturally represented as matrix-vector operations, with w; ; being
the element of the weight matrix connecting the i-th input to the j-th output,
as shown in Figure 1.1(bottom-right). On the other side, convolutions can be
transformed to matrix-vector multiplications as well by properly reshaping
input weights and activations. This offers computing advantages, especially
when implementing them in HW accelerators, and it can be obtained using
the im2col algorithm [28]. This approach indexes weights of entire convolu-
tional layers as a matrix, including in each row the unrolled values of a filter.
A schematic overview of this approach is depicted in Figure 1.1 (bottom-left).

To perform their task (e.g., classification, detection, or segmentation), CNNs
must undergo a process, called training, that allows them to properly tune
their weights to achieve good performance. Training can be implemented
in different ways, but the most common is supervised training [29]. First, a
dataset comprising input samples enriched with corresponding labels (e.g.,
the class the sample belongs to, in the case of classification problems) must
be collected. Usually, samples are pre-processed, by resizing them according
to specific input constraints of the target CNN model, and by normalizing
their values (e.g., fitting them to a specific data range). The dataset is then
divided into training, validation, and testing sets. The first one is used to
actually train the model, with the validation set being used to evaluate its
performance during the process. The testing set is instead used only after the
training is completed, to measure accuracy on new data, unseen during the
training stage.

The weights of the CNN are first initialized, usually randomly and following
Gaussian distributions. Then, the CNN model is fed with the samples in the
training set and its output predictions are compared with the correct labels
(forward pass). This comparison is used to measure, using a loss function,
the discrepancy between the predicted outputs and the true labels. Gradients
with respect to the computed loss are then evaluated using a process called

Chapter 1. Introduction

12.5G
10G
(%]
s
< 756G
[24
<C
o
S 5G
&
g BASIC-L (Lion, fine-tuned)
= 256 DaviT &G
P4 "
MobileViTv3-XXS MobileViTv3-XS FixEfficientNet-B1 DaVir-H
0 o —o—eo—0—00—e—o—0-ssse—0—0¢
-2.5G
65 70 75 80 85 90
TOP 1 ACCURACY
Other models -e- Pareto frontier
(@)
4k
3k
CoAtNet-7
2k
g CoAtNet-6
s DaViTl-G
C
DaViT-H

GhostNet x0.5 CoE-Small + CondConv + PWLU UniNet—BS. /‘

-1k
65 70 75 80 85 90

TOP 1 ACCURACY

Other models -e Pareto frontier

(b)

Figure 1.2: Number of parameters (a) and of floating-point operations
(GFLOPS) (b) in state-of-the-art models designed for Ima-
geNet classification. The highest accuracies are obtained with
large and compute-intense models. Plots are extracted from
https://paperswithcode.com

1.3 Edge Al

backpropagation, which propagates the gradients from the last layers of the
CNN model to the first ones. Gradients are then used to update the weight
values in each layer, in order to minimize the loss. Different algorithms have
been proposed to implement the weights update, including Stochastic Gra-
dient Descent (SGD), Adam, and RMSprop, among the most common. The
validation set is then used to evaluate the new accuracy of the model, after
the update of its parameters. The forward pass, the backpropagation, and
the validation accuracy evaluation are repeated multiple times in an iterative
procedure until the model accuracy converges or achieves acceptable perfor-
mance. Once training is complete, the obtained model is tested on the so far
unused testing set, to evaluate its performance on unseen data.

Figure 1.2 illustrates a summary of Al models proposed in the literature in
the past years to solve image classification tasks. It compares them in terms
of accuracy, as well as from memory and computing requirements perspec-
tives. The best-performing architectures rapidly evolved to highly accurate
implementations with extremely high memory and computing requirements.
Indeed, the plots show that to achieve high accuracy, models tend to be larger
and, in particular, increase their computing requirements, with billions of
floating-point operations required in most models. This poses some chal-
lenges for the deployment of these models, especially when the execution is
shifted from the cloud to the edge, as discussed in the following section.

1.3 EdgeAl

In the era of rapidly evolving technologies and increasing data generation,
edge computing has emerged as an alternative to cloud computing as a
promising paradigm for distributed data processing [30]. On one side, both
the cloud and the edge computing approaches aim to provide computing
capabilities and solutions to the end nodes deployed for different applications
in the field of the Internet of Things (IoT). On the other side, they differ in
terms of architectural design, processing capabilities, latency, scalability,
degree of privacy, and resource utilization. An overview of the two computing
paradigms is illustrated in Figure 1.3.

Chapter 1. Introduction

Cloud Computing Edge Computing

Computation Minimal data exchange

O
takes place here with the cloud
Cloud Cloud
Large amount of
Edge dge

Cloud response

raw data transfer
Processed outputs

sent back to the edge

W
Computation
takes place here

Figure 1.3: Comparison between the cloud computing and the edge com-
puting approaches. By advocating data processing in the edge
nodes, the amount of data collected at the edge and transmit-
ted to the cloud is significantly reduced.

Cloud computing is a traditional approach that sees the end nodes mainly
(or only) as data-collecting systems, leaving data processing to take place in
large-scale data centers with high computing power and storage capacity (i.e.,
the cloud). Due to its centralized and high-performance architecture, cloud
computing has the main advantage of providing high scalability and resource
availability, being able to handle massive workloads and accommodating
spikes in computing demand by provisioning additional resources [31].

Conversely, the edge computing paradigm is a decentralized approach that
processes data at the network edge, where it is collected by the end nodes
(or very close to it). Executing data processing workloads locally in the edge
nodes offers several advantages. First, edge computing excels in low-latency
and real-time scenarios because it minimizes the delay caused by transmit-
ting data to remote servers. This makes it suitable for applications such as
autonomous vehicles, industrial control systems, and, more in general, any
real-time application. Second, for a similar reason, edge computing opti-
mizes network bandwidth, since only the computed outputs, in contrast to
the whole amount of collected inputs, are transmitted to the central cloud.
Finally, it also addresses data security and privacy concerns by keeping sen-
sitive data within the local network or device. The described advantages, as
well as hardware technology and optimization methods advancements, are
the core reasons for the rapid development of new edge computing solutions

1.4 Optimizations for Edge Al

in a wide range of applications. This also applies to artificial intelligence and
goes under the name of Edge AL

Nevertheless, new challenges arise in this context: one of the main limitations
of edge computing resides in the hardware constraints of embedded devices,
whose limited memory and computing resources can prevent the execution
of large Al workloads. This problem is currently being investigated in the
research community, which tackles it from different perspectives. It is also
the main focus of this thesis, where I present different co-design method-
ologies combining application-level transformations with ad-hoc hardware
optimizations to reduce memory, computing, and energy requirements in
Edge Al inference.

1.4 Optimizations for Edge Al

Optimizations supporting Edge Al can be broadly divided into three main
categories. First, continuous technology improvements and, in particular,
CMOS technology scaling, allow new generations of embedded devices to be
equipped with higher-capacity memories and faster computing units. How-
ever, these advancements are currently slowing down, while the requirements
of Al workloads are increasing at a fast pace [32]. Therefore, Edge Al optimiza-
tions tackle the computing and efficiency challenges of edge computing from
two other perspectives, widely investigated in the research community. This
thesis shows how these two optimization paths can be merged to retrieve
larger efficiency gains.

1.4.1 Application-level optimizations

On one hand, algorithmic-level optimizations aim at reducing the complexity
of Al workloads. Several techniques have been proposed so far. Quantization
is a popular method that reduces the precision of input and output operands
from the traditional 32-bit floating-point format to more compact integer
representations [33,34]. Common quantization levels include 8-bit and 16-bit
schemes. Thus, quantization effectively reduces memory requirements, but
can also improve efficiency as integer arithmetic requires simpler circuits
than the ones required to manage floating-point formats. Targeting the same

Chapter 1. Introduction

objectives, pruning is another approach to reduce complexity, especially
in machine learning and deep learning models [35, 36]. It removes specific
computing elements from the original model and it is often applied to CNN
models. Such an approach can be effectively applied due to the intrinsic
redundancy of Al models, so that pruned architectures can still achieve ac-
ceptable accuracy levels. In the case of CNNs, pruning is usually applied to
convolutional layers, either removing specific weights (fine-grain pruning)
or removing entire convolutional filters (coarse-grain pruning). In addition
to quantization and pruning methods, weights encoding [37,38] and weights
clustering [39] are other examples of strategies sometimes used to further
shrink the memory needs of Al workloads. Most of these methods are or-
thogonal or complementary to each other and are hence often applied in

synergy.

1.4.2 Hardware-level optimizations

On the other hand, hardware-level optimizations play a crucial role in achiev-
ing high-performance and energy-efficient Edge Al solutions and focus on
providing Al applications with specific physical resources to efficiently exe-
cute the typical computing patterns of these workloads. To this end, ultra-
low power processors have been designed for embedded systems to limit
energy consumption. An example is the PULP platform [40], specifically de-
signed to address the requirements of energy-efficient and high-performance
computing in resource-constrained environments. It consists of a family
of open-source processor cores optimized for ultra-low power consump-
tion, that enable the implementation of parallel processing systems. The
cores within the PULP platform are based on the RISC-V instruction set ar-
chitecture [41], which enables customization and optimization. Targeting
Al workloads, PULP also includes features and extensions that support Al
algorithms, such as specialized instructions and hardware accelerators for
efficient matrix operations, which are fundamental to many Al computations
such as neural network inference.

In addition to low-power processors, dedicated hardware accelerators are
largely employed in the field of Edge Al. Typical specialized units include
Graphics Processing Units (GPUs), Field-Programmable Gate Arrays (FPGAs),

10

1.4 Optimizations for Edge Al

or Application-Specific Integrated Circuits (ASICs), which trade off comput-
ing flexibility for efficiency. Focusing on deep learning accelerators, two very
popular classes of dedicated processing elements include systolic arrays [42]
and neuromorphic accelerators [43]. The former consist of a grid of process-
ing elements (PEs) interconnected in regular patterns to synchronously share
data. These grids are often programmable, enable high levels of parallelism
and data reuse, and, thanks to their structure, are particularly well-suited for
energy-efficient executions of matrix-vector operations, which are indeed
the core computing patterns of the majority of deep learning algorithms.
Neuromorphic accelerators are instead inspired by the functionality of the
human brain and excel in the execution of neural networks. By leveraging
the inherent sparsity and irregularity of neural networks, and by simulating
the sparse nature of neural activity, these accelerators reduce computational
requirements and memory bandwidth, leading to significant efficiency gains.
Sparsity-driven techniques, such as spike-based coding and event-driven
processing, enable the selective and efficient processing of relevant infor-
mation. Additionally, they also support on-chip learning and adaptability,
allowing them to continuously learn and evolve with the data they process. A
recent and revolutionary class of accelerators for Edge Al is represented by
In-Memory Computing (IMC) devices [44,45]. The IMC paradigm overcomes
the traditional Von Neumann architecture by moving computation where
data resides (or very close to it). By performing arithmetic and logic oper-
ations inside (or at the proximity of) the storage elements, IMC minimizes
data movements and latency, enabling efficient and high-performance Edge
Al solutions.

Another venue to reduce the energy cost of Edge Al workloads is the ap-
proximate computing paradigm [46-48]. The key idea is that inexact, yet
simpler, arithmetic circuits can produce approximate outputs that can still
lead to acceptable output quality levels. Thus, they trade off precision for
faster and less energy-expensive executions. Common approximate opera-
tors include adders and multipliers, as highly stressed computing units in Al
inferences [49, 50].

Finally, dynamic voltage and frequency scaling (DVES) is a method that op-
timizes power consumption by adjusting the supply voltage and the oper-

11

Chapter 1. Introduction

ating frequency at which the system operates. Although not deeply investi-
gated in the literature on Al optimization methodologies, few previous works
have studied the impact of this technique from an energy-saving perspec-
tive [51, 52]. Since the voltage level is quadratically proportional to power
consumption, its reduction can lead to significant energy savings, but it
should be carefully tailored to avoid impacting performance and Quality of
Service (QoS). In fact, errors can appear in the memory sub-system as a result
of DVFS techniques: when reducing the voltage in SRAMs, stuck-at faults
emerge as weaker bit-cells cannot be correctly written. Alternatively, when
reducing the operating frequency in DRAMs, the resulting lower refresh rates
can make bit-cells lose their content.

1.5 Trading-off accuracy for efficiency

Most of the optimization methods presented in the previous sections intro-
duce data approximations or computation errors. For example, quantization
and clustering adjust the weights of Al models, forcing them to assume spe-
cific values, hence being equivalent to a form of data approximation. Similarly,
inexact operators introduce approximations in the performed computation,
while pruning approximates the input-output relation by reducing the com-
plexity of the involved functions. Aggressive voltage scaling can introduce
stuck-at faults when applied to memory elements, as weaker bit-cells do not
receive enough energy to flip their content during write operations.

As aresult, different degrees of inexactness usually affect inferences in Edge
Al when the presented optimization methods are applied. Nevertheless, the
research community has demonstrated that, up to a certain degree, these
techniques do not significantly affect output quality [53-55]. In fact, the re-
dundant structure and sparse nature of most ML models (e.g., random forests
and neural networks) make them intrinsically tolerant toward a certain level
of inexactness. This is why it is possible to retrieve essential efficiency im-
provements by introducing specific magnitudes of approximation so that the
desired QoS can still be achieved. Importantly, the algorithmic characteris-
tics of ML models cannot provide a designer with a priori knowledge of the
accuracy impact of a specific error density or noise level. In other words, it
is not pos