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Abstract

ARTIFICIAL Intelligence (AI) is revolutionizing a vast range of industrial

and scientific applications due to its several advantages, which include

self-learning capabilities, extraction of intrigued hidden patterns from input

data, and flexibility. While the cloud-based computing paradigm has been

a baseline approach for AI inferences in the past years, recent technology

advancements and AI optimization methods advocate and support a shift

toward an edge-computing alternative. Nevertheless, Edge AI poses storage,

computational, and efficiency challenges that must be addressed to support

the deployment of compute-intense algorithms in embedded devices. To

continuously increase the quality of their outputs, AI models are evolving

into more complex algorithms, with extremely high memory and comput-

ing requirements that strain the resource capacity of edge low-power nodes.

Aware of this challenge, the research community is studying the problem

from different perspectives, mainly focusing on algorithmic optimizations

or hardware accelerators. On one hand, the optimization of AI algorithms

can reduce their memory need and computing complexity. On the other

hand, the implementation of domain-specific hardware accelerators enables

efficient executions of AI workloads by providing specialized resources de-

signed to accelerate common kernels in AI inferences (e.g., matrix-vector

multiplications).

Although optimization approaches tackling this problem from either an algo-

rithmic or a hardware perspective exist, hardware-software co-design method-

ologies are key. Indeed, by employing a co-design strategy, hardware-aware
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algorithmic transformations can be effectively harnessed in workload-aware

hardware resources to retrieve real energy efficiency gains. In this context, I

endorse the implementation of accuracy-driven co-design methodologies, as

they can guarantee that the optimized design abides by user-defined output

quality levels. Such a co-design optimization vision is the research focus

of this thesis. First, I introduce the E2CNNs methodology, an algorithmic-

level transformation that builds ensembles of Convolutional Neural Networks

(CNNs) to improve accuracy and robustness without increasing the initial

memory and computing requirements. Then, I apply this methodology to

different co-design strategies including codebook-based representations, ap-

proximate computing, and in-memory computing accelerators. The achieved

results show that synergic combinations of hardware-aware application-level

optimizations allow significant efficiency improvements in the evaluated AI

benchmarks.

Keywords: Artificial intelligence, machine learning, deep learning, convo-

lutional neural networks, embedded systems, internet-of-things, edge AI,

energy efficiency, co-design, heterogeneous optimization.



Résumé

L’INTELLIGENCE artificielle (IA) est en train de révolutionner une vaste

gamme d’applications industrielles et scientifiques en raison de ses

nombreux avantages, notamment ses capacités d’auto-apprentissage, l’ex-

traction de caractéristiques cachés à partir de données d’entrée, et sa flexibi-

lité. Alors que le paradigme de l’informatique en nuage a été une référence

pour les inférences d’IA au cours des dernières années, les progrès techno-

logiques récents et les méthodes d’optimisation de l’IA préconisent et sou-

tiennent un changement vers une alternative d’informatique en périphérie.

Néanmoins, l’IA périphérique pose des problèmes de stockage de données,

de calcul, et d’efficacité qui doivent être résolus pour soutenir le déploiement

d’algorithmes à forte intensité de calcul dans les appareils embarqués. Pour

améliorer en permanence la qualité de leurs résultats, les modèles d’IA évo-

luent vers des algorithmes plus complexes, avec des exigences extrêmement

élevées en matière de mémoire et de calculs qui mettent à rude épreuve

les ressources des nœuds périphériques à faible consommation d’énergie.

Consciente de ce défi, la communauté des chercheurs étudie le problème

sous différents angles, en se concentrant principalement sur les optimisations

algorithmiques ou les accélérateurs matériels. D’une part, l’optimisation des

algorithmes d’IA peut réduire leur besoin en espace mémoire ainsi que la

complexité de calcul. D’autre part, la mise en œuvre d’accélérateurs maté-

riels spécifiques à un domaine permet des exécutions efficaces des charges

de travail de l’IA en fournissant des ressources spécialisées conçues pour
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accélérer les noyaux communs dans les inférences de l’IA (par exemple, les

multiplications matrice-vecteur).

Bien qu’il existe des approches d’optimisation abordant ce problème d’un

point de vue algorithmique ou matériel, les méthodologies de co-conception

matériel-logiciel sont essentielles. En effet, en employant une stratégie de

co-conception, les transformations algorithmiques conscientes des enjeux

matériels peuvent s’adapter pleinement aux ressources matérielles sensibles

à la charge de travail afin de récupérer de réels gains d’efficacité énergétique.

Dans ce contexte, j’approuve la mise en œuvre de méthodologies de

co-conception axées sur la précision, car elles peuvent garantir que la

conception optimisée respecte les niveaux de qualité de sortie définis par

l’utilisateur. Cette vision de l’optimisation de la co-conception est l’objet

de recherche de cette thèse. Tout d’abord, je présente la méthodologie

E2CNNs, une transformation au niveau algorithmique qui construit des

ensembles de réseau de neurones convolutifs pour améliorer la précision et

la robustesse sans augmenter les exigences initiales en matière de mémoire

et de calcul. Ensuite, j’applique cette méthodologie à différentes stratégies

de co-conception, y compris les représentations basées sur le codebook, le

calcul approximatif, et les accélérateurs de calcul en mémoire. Les résultats

obtenus montrent que les combinaisons synergiques d’optimisations au

niveau de l’application en fonction du matériel permettent des améliorations

significatives de l’efficacité dans les repères d’IA évalués.

Mots-clés : Intelligence artificielle, apprentissage automatique, apprentissage

profond, convolutional neural networks, systèmes embarqués, internet des

objets, edge AI, efficacité énergétique, co-conception, optimisation hétéro-

gène.
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Introduction

1

1.1 Artificial Intelligence
Artificial intelligence (AI) has been a research topic investigated by the com-

puter science community for more than 60 years now. The term was first

used in 1956 at the Dartmouth Conference, held at Dartmouth College, in the

USA. Indeed, that conference is considered a milestone in the development

of AI, although the roots of this approach can be traced even further. For

example, the early foundations of AI can be found in the work of Alan Turing,

who introduced the concept of universal machine [1] in 1936, paving the

groundwork for the theoretical possibility of intelligent machines. Other key

pioneers in the field of AI include Warren McCulloch and Walter Pitts, who

introduced the concept of neural networks in 1943 [2]. In the years following

the Dartmouth Conference, AI research gained momentum, and various al-

gorithms and methods were developed. These include symbolic reasoning,

expert systems, machine learning, and natural language processing. Since

then, AI has received continuously growing attention, which led to signifi-

cant progress and breakthroughs. An emblematic example of the incredible

potential of AI in those years was represented by Deep Blue [3], an AI-based

check player developed by IBM and able to defeat the world chess champion

Garry Kasparov in 1997.

Over the years, numerous AI algorithms have been proposed. The Logic

Theorist [4], developed by Allen Newell and Herbert A. Simon in 1956, was

1



Chapter 1. Introduction

one of the earliest AI programs, designed to prove mathematical theorems

using symbolic logic and heuristic search. Two years later, Frank Rosenblatt

presented the perceptron [5], a type of neural network algorithm aimed at

mimicking the functioning of a biological neuron and able to recognize and

classify patterns. The list of artificial intelligence algorithms grew faster and

faster since then, with the introduction of more sophisticated and diverse AI

algorithms encompassing areas such as machine learning, and, more recently,

deep learning.

The high interest in AI is due to its capability to address a wide range of prob-

lems and challenges across a large pool of domains. A few examples of tasks

and applications AI can efficiently handle include pattern recognition [6],

predictive analytics [7], personalized recommendations [8], and fraud detec-

tion [9]. This ability makes these algorithms particularly appealing to solve

tasks such as image recognition [10], speech recognition [11], and natural

language processing [12]. In this context, AI finds application in fields like

computer vision, voice assistants, and automated language translation, where

Convolutional Neural Networks (CNNs) [13] represent widely investigated

models. A more recent application of AI consists in providing personalized

recommendations in various domains, such as e-commerce, streaming ser-

vices, and content platforms, with AI-powered systems able to analyze user

behavior and preferences. In all the presented applications, AI algorithms

can also help in detecting anomalies in input data, identifying patterns of

fraudulent behavior, and thus enhancing cybersecurity measures [14].

As a consequence of the vast range of opportunities offered by AI algorithms,

several industries and scientific research areas are investing in this research

topic. In healthcare, AI is currently used in medical imaging analysis, disease

diagnosis, drug discovery, and personalized health monitoring using wearable

systems [15–17]. Other sectors highly interested in employing AI as part of

their software infrastructure include finance, manufacturing, education, and

agriculture, as well as astronomy, genomics, drug discovery, climate modeling,

and particle physics in scientific domains [18–20].

The reason why AI is so widely spread in almost every industrial and scien-

tific application is due to the several advantages it provides when compared

2



1.2 Convolutional Neural Networks

to non-AI alternatives. First, AI can effectively handle complex and large-

scale input data. In particular, deep learning models efficiently deal with

high-dimensional and unstructured data (e.g., images, audio, or text), being

able to extract relevant features to ultimately produce accurate predictions.

Second, the learning ability of AI algorithms allows them to improve their ac-

curacy over time. An embodiment of this approach, known as reinforcement

learning [21], enables these models to handle evolving situations, making

their predictions and decisions better and better over a certain number of

simulations. Finally, AI algorithms scale well to different degrees of task com-

plexity and can discover intricate patterns that traditional approaches may

not easily discern. Nonetheless, despite the aforementioned advantages, it

must be noticed that AI algorithms are not always superior to non-AI alter-

natives. Usually, the choice between AI and non-AI approaches may depend

on several factors, such as the specific problem, the type and the amount

of available data, the available hardware resources, and the need for results

interpretability [22].

1.2 Convolutional Neural Networks
Among the plethora of AI, machine learning, and deep learning models pro-

posed in the past years, this thesis focuses on Convolutional Neural Networks

(CNNs) as target benchmarks, presenting different HW-SW co-design method-

ologies to optimize their execution from a resource, performance, energy,

and accuracy perspectives. As detailed in the next paragraph, CNNs show

different degrees of complexity, which make them good candidates to demon-

strate the effectiveness of the proposed methodologies on a wide range of AI

applications.

CNNs are indeed deep learning models that find applications in multiple

fields, from computer vision [23,24] to personalized healthcare [25,26]. CNNs

exhibit a layer-based structure, comprising convolutional, fully-connected,

and pooling layers among the most common ones. These are combined in

linear or more complex structures and enable the automatic extraction of

features from input data (usually having spatial relationships, such as images),

eventually producing abstract interpretations as output (e.g., recognizing

objects, or classifying input samples). The parameters of CNN models, mainly

3



Chapter 1. Introduction
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Figure 1.1: Computation of convolutional (left) and fully-connected (right)
layers of neural network models. While fully-connected layers
are naturally represented as matrix-vector operations, convolu-
tions can be implemented in a similar way using an algorithmic
transformation based on the im2col method (bottom).

used to perform convolutional and fully-connected layers, are referred to as

weights. Conversely, the input and output features of each layer are known as

activations.

Convolutional and fully-connected layers are the most compute-intense lay-

ers of CNNs, requiring the execution of millions of multiply-accumulate

(MAC) instructions in recent models [27]. The former group together sets

of learnable weights into multiple convolutional filters, which are then con-

volved over a region of the input data. Filters slide over the input features,

producing a scalar output activation for each position covered. As a conse-

quence, each filter produces as output a two-dimensional plane, and by em-

ploying multiple filters, convolutional layers can produce three-dimensional

outputs. An example is illustrated in Figure 1.1(top-left), where three four-

channel convolutional filters are applied to the four-channel input feature

map to generate a three-channel output. Instead, in fully-connected layers,

input and output elements, usually referred to as neurons, are connected
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1.2 Convolutional Neural Networks

in a full-mesh topology by a matrix of weights, with output elements being

computed using matrix-vector operations (Figure 1.1(top-right)).

Recent algorithms implement both convolutional and fully-connected layers

as a series of matrix-vector multiplications. On one side, fully-connected

layers are naturally represented as matrix-vector operations, with wi , j being

the element of the weight matrix connecting the i -th input to the j -th output,

as shown in Figure 1.1(bottom-right). On the other side, convolutions can be

transformed to matrix-vector multiplications as well by properly reshaping

input weights and activations. This offers computing advantages, especially

when implementing them in HW accelerators, and it can be obtained using

the im2col algorithm [28]. This approach indexes weights of entire convolu-

tional layers as a matrix, including in each row the unrolled values of a filter.

A schematic overview of this approach is depicted in Figure 1.1(bottom-left).

To perform their task (e.g., classification, detection, or segmentation), CNNs

must undergo a process, called training, that allows them to properly tune

their weights to achieve good performance. Training can be implemented

in different ways, but the most common is supervised training [29]. First, a

dataset comprising input samples enriched with corresponding labels (e.g.,

the class the sample belongs to, in the case of classification problems) must

be collected. Usually, samples are pre-processed, by resizing them according

to specific input constraints of the target CNN model, and by normalizing

their values (e.g., fitting them to a specific data range). The dataset is then

divided into training, validation, and testing sets. The first one is used to

actually train the model, with the validation set being used to evaluate its

performance during the process. The testing set is instead used only after the

training is completed, to measure accuracy on new data, unseen during the

training stage.

The weights of the CNN are first initialized, usually randomly and following

Gaussian distributions. Then, the CNN model is fed with the samples in the

training set and its output predictions are compared with the correct labels

(forward pass). This comparison is used to measure, using a loss function,

the discrepancy between the predicted outputs and the true labels. Gradients

with respect to the computed loss are then evaluated using a process called
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Figure 1.2: Number of parameters (a) and of floating-point operations
(GFLOPS) (b) in state-of-the-art models designed for Ima-
geNet classification. The highest accuracies are obtained with
large and compute-intense models. Plots are extracted from
https://paperswithcode.com
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backpropagation, which propagates the gradients from the last layers of the

CNN model to the first ones. Gradients are then used to update the weight

values in each layer, in order to minimize the loss. Different algorithms have

been proposed to implement the weights update, including Stochastic Gra-

dient Descent (SGD), Adam, and RMSprop, among the most common. The

validation set is then used to evaluate the new accuracy of the model, after

the update of its parameters. The forward pass, the backpropagation, and

the validation accuracy evaluation are repeated multiple times in an iterative

procedure until the model accuracy converges or achieves acceptable perfor-

mance. Once training is complete, the obtained model is tested on the so far

unused testing set, to evaluate its performance on unseen data.

Figure 1.2 illustrates a summary of AI models proposed in the literature in

the past years to solve image classification tasks. It compares them in terms

of accuracy, as well as from memory and computing requirements perspec-

tives. The best-performing architectures rapidly evolved to highly accurate

implementations with extremely high memory and computing requirements.

Indeed, the plots show that to achieve high accuracy, models tend to be larger

and, in particular, increase their computing requirements, with billions of

floating-point operations required in most models. This poses some chal-

lenges for the deployment of these models, especially when the execution is

shifted from the cloud to the edge, as discussed in the following section.

1.3 Edge AI
In the era of rapidly evolving technologies and increasing data generation,

edge computing has emerged as an alternative to cloud computing as a

promising paradigm for distributed data processing [30]. On one side, both

the cloud and the edge computing approaches aim to provide computing

capabilities and solutions to the end nodes deployed for different applications

in the field of the Internet of Things (IoT). On the other side, they differ in

terms of architectural design, processing capabilities, latency, scalability,

degree of privacy, and resource utilization. An overview of the two computing

paradigms is illustrated in Figure 1.3.
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Figure 1.3: Comparison between the cloud computing and the edge com-
puting approaches. By advocating data processing in the edge
nodes, the amount of data collected at the edge and transmit-
ted to the cloud is significantly reduced.

Cloud computing is a traditional approach that sees the end nodes mainly

(or only) as data-collecting systems, leaving data processing to take place in

large-scale data centers with high computing power and storage capacity (i.e.,

the cloud). Due to its centralized and high-performance architecture, cloud

computing has the main advantage of providing high scalability and resource

availability, being able to handle massive workloads and accommodating

spikes in computing demand by provisioning additional resources [31].

Conversely, the edge computing paradigm is a decentralized approach that

processes data at the network edge, where it is collected by the end nodes

(or very close to it). Executing data processing workloads locally in the edge

nodes offers several advantages. First, edge computing excels in low-latency

and real-time scenarios because it minimizes the delay caused by transmit-

ting data to remote servers. This makes it suitable for applications such as

autonomous vehicles, industrial control systems, and, more in general, any

real-time application. Second, for a similar reason, edge computing opti-

mizes network bandwidth, since only the computed outputs, in contrast to

the whole amount of collected inputs, are transmitted to the central cloud.

Finally, it also addresses data security and privacy concerns by keeping sen-

sitive data within the local network or device. The described advantages, as

well as hardware technology and optimization methods advancements, are

the core reasons for the rapid development of new edge computing solutions

8



1.4 Optimizations for Edge AI

in a wide range of applications. This also applies to artificial intelligence and

goes under the name of Edge AI.

Nevertheless, new challenges arise in this context: one of the main limitations

of edge computing resides in the hardware constraints of embedded devices,

whose limited memory and computing resources can prevent the execution

of large AI workloads. This problem is currently being investigated in the

research community, which tackles it from different perspectives. It is also

the main focus of this thesis, where I present different co-design method-

ologies combining application-level transformations with ad-hoc hardware

optimizations to reduce memory, computing, and energy requirements in

Edge AI inference.

1.4 Optimizations for Edge AI
Optimizations supporting Edge AI can be broadly divided into three main

categories. First, continuous technology improvements and, in particular,

CMOS technology scaling, allow new generations of embedded devices to be

equipped with higher-capacity memories and faster computing units. How-

ever, these advancements are currently slowing down, while the requirements

of AI workloads are increasing at a fast pace [32]. Therefore, Edge AI optimiza-

tions tackle the computing and efficiency challenges of edge computing from

two other perspectives, widely investigated in the research community. This

thesis shows how these two optimization paths can be merged to retrieve

larger efficiency gains.

1.4.1 Application-level optimizations

On one hand, algorithmic-level optimizations aim at reducing the complexity

of AI workloads. Several techniques have been proposed so far. Quantization

is a popular method that reduces the precision of input and output operands

from the traditional 32-bit floating-point format to more compact integer

representations [33,34]. Common quantization levels include 8-bit and 16-bit

schemes. Thus, quantization effectively reduces memory requirements, but

can also improve efficiency as integer arithmetic requires simpler circuits

than the ones required to manage floating-point formats. Targeting the same
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objectives, pruning is another approach to reduce complexity, especially

in machine learning and deep learning models [35, 36]. It removes specific

computing elements from the original model and it is often applied to CNN

models. Such an approach can be effectively applied due to the intrinsic

redundancy of AI models, so that pruned architectures can still achieve ac-

ceptable accuracy levels. In the case of CNNs, pruning is usually applied to

convolutional layers, either removing specific weights (fine-grain pruning)

or removing entire convolutional filters (coarse-grain pruning). In addition

to quantization and pruning methods, weights encoding [37, 38] and weights

clustering [39] are other examples of strategies sometimes used to further

shrink the memory needs of AI workloads. Most of these methods are or-

thogonal or complementary to each other and are hence often applied in

synergy.

1.4.2 Hardware-level optimizations

On the other hand, hardware-level optimizations play a crucial role in achiev-

ing high-performance and energy-efficient Edge AI solutions and focus on

providing AI applications with specific physical resources to efficiently exe-

cute the typical computing patterns of these workloads. To this end, ultra-

low power processors have been designed for embedded systems to limit

energy consumption. An example is the PULP platform [40], specifically de-

signed to address the requirements of energy-efficient and high-performance

computing in resource-constrained environments. It consists of a family

of open-source processor cores optimized for ultra-low power consump-

tion, that enable the implementation of parallel processing systems. The

cores within the PULP platform are based on the RISC-V instruction set ar-

chitecture [41], which enables customization and optimization. Targeting

AI workloads, PULP also includes features and extensions that support AI

algorithms, such as specialized instructions and hardware accelerators for

efficient matrix operations, which are fundamental to many AI computations

such as neural network inference.

In addition to low-power processors, dedicated hardware accelerators are

largely employed in the field of Edge AI. Typical specialized units include

Graphics Processing Units (GPUs), Field-Programmable Gate Arrays (FPGAs),
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or Application-Specific Integrated Circuits (ASICs), which trade off comput-

ing flexibility for efficiency. Focusing on deep learning accelerators, two very

popular classes of dedicated processing elements include systolic arrays [42]

and neuromorphic accelerators [43]. The former consist of a grid of process-

ing elements (PEs) interconnected in regular patterns to synchronously share

data. These grids are often programmable, enable high levels of parallelism

and data reuse, and, thanks to their structure, are particularly well-suited for

energy-efficient executions of matrix-vector operations, which are indeed

the core computing patterns of the majority of deep learning algorithms.

Neuromorphic accelerators are instead inspired by the functionality of the

human brain and excel in the execution of neural networks. By leveraging

the inherent sparsity and irregularity of neural networks, and by simulating

the sparse nature of neural activity, these accelerators reduce computational

requirements and memory bandwidth, leading to significant efficiency gains.

Sparsity-driven techniques, such as spike-based coding and event-driven

processing, enable the selective and efficient processing of relevant infor-

mation. Additionally, they also support on-chip learning and adaptability,

allowing them to continuously learn and evolve with the data they process. A

recent and revolutionary class of accelerators for Edge AI is represented by

In-Memory Computing (IMC) devices [44, 45]. The IMC paradigm overcomes

the traditional Von Neumann architecture by moving computation where

data resides (or very close to it). By performing arithmetic and logic oper-

ations inside (or at the proximity of) the storage elements, IMC minimizes

data movements and latency, enabling efficient and high-performance Edge

AI solutions.

Another venue to reduce the energy cost of Edge AI workloads is the ap-

proximate computing paradigm [46–48]. The key idea is that inexact, yet

simpler, arithmetic circuits can produce approximate outputs that can still

lead to acceptable output quality levels. Thus, they trade off precision for

faster and less energy-expensive executions. Common approximate opera-

tors include adders and multipliers, as highly stressed computing units in AI

inferences [49, 50].

Finally, dynamic voltage and frequency scaling (DVFS) is a method that op-

timizes power consumption by adjusting the supply voltage and the oper-
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ating frequency at which the system operates. Although not deeply investi-

gated in the literature on AI optimization methodologies, few previous works

have studied the impact of this technique from an energy-saving perspec-

tive [51, 52]. Since the voltage level is quadratically proportional to power

consumption, its reduction can lead to significant energy savings, but it

should be carefully tailored to avoid impacting performance and Quality of

Service (QoS). In fact, errors can appear in the memory sub-system as a result

of DVFS techniques: when reducing the voltage in SRAMs, stuck-at faults

emerge as weaker bit-cells cannot be correctly written. Alternatively, when

reducing the operating frequency in DRAMs, the resulting lower refresh rates

can make bit-cells lose their content.

1.5 Trading-off accuracy for efficiency
Most of the optimization methods presented in the previous sections intro-

duce data approximations or computation errors. For example, quantization

and clustering adjust the weights of AI models, forcing them to assume spe-

cific values, hence being equivalent to a form of data approximation. Similarly,

inexact operators introduce approximations in the performed computation,

while pruning approximates the input-output relation by reducing the com-

plexity of the involved functions. Aggressive voltage scaling can introduce

stuck-at faults when applied to memory elements, as weaker bit-cells do not

receive enough energy to flip their content during write operations.

As a result, different degrees of inexactness usually affect inferences in Edge

AI when the presented optimization methods are applied. Nevertheless, the

research community has demonstrated that, up to a certain degree, these

techniques do not significantly affect output quality [53–55]. In fact, the re-

dundant structure and sparse nature of most ML models (e.g., random forests

and neural networks) make them intrinsically tolerant toward a certain level

of inexactness. This is why it is possible to retrieve essential efficiency im-

provements by introducing specific magnitudes of approximation so that the

desired QoS can still be achieved. Importantly, the algorithmic characteris-

tics of ML models cannot provide a designer with a priori knowledge of the

accuracy impact of a specific error density or noise level. In other words, it

is not possible to determine, at design time, the accuracy degradation that
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a certain model experiences when one of the aforementioned optimization

approaches is employed. For example, voltage reductions may cause memory

errors, which randomly affect memory bit-cells. As a consequence, the im-

pact of these faults will be different based on the affected cells: for example,

errors affecting the most significant bits (MSb) of a word usually introduce

larger variations than errors affecting the least significant bits (LSb).

The methodologies for optimizing Edge AI applications that I present in

this thesis take into account and address this challenge: I will show differ-

ent strategies to optimize AI workloads, combining algorithmic-level and

hardware-level methods to increase achievable gains. In all proposed design

methodologies, I will include accuracy constraints to drive the optimization

procedures. This approach, sometimes overlooked in state-of-the-art studies,

enables the optimizations of AI applications from memory, performance,

and energy perspectives, while also abiding by user-defined accuracy levels.

As previously discussed, I consider CNN models as target benchmarks for

evaluating the proposed Edge AI methodologies. Nonetheless, the majority of

the presented solutions and techniques can be naturally extended to different

models in the field of AI.

Effective integration between hardware and software is crucial for optimiz-

ing Edge AI systems from energy and performance points of view. On one

hand, hardware-aware software optimization, such as algorithmic transfor-

mations and quantization can adjust AI models in order to maximize the

utilization of hardware resources and effectively leverage them. On the other

hand, software-aware accelerators can be designed to efficiently implement

specific computing patterns of the target workload or application domain.

Without such a co-design vision, the risk of not being able to fully exploit the

potential of the applied optimization is high. For example, very fine-grained

quantization levels cannot reach the desired shrink of memory requirements

if the target platform only supports 32-bit data. Dually, reducing the volt-

age to save energy cannot be a practical solution if the application is not

robust enough to cope with the potential memory errors deriving from this

technique. Starting from these considerations, the next chapters describe co-

design methodologies targeting domains where different classes of hardware

resources are available.
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First, I introduce the concept of Embedded Ensembles of Convolutional Neural

Networks (E2CNNs), an algorithmic-level transformation I propose to improve

robustness against errors in neural network models. E2CNNs combines prun-

ing and replication to construct ensemble-based models that benefit the

higher accuracy and resiliency of state-of-the-art ensembles, but without

increasing the requirements of the baseline single-instance model. Then, I

take advantage of the characteristics of E2CNNs to retrieve high-efficiency

gains in a wide spectrum of AI co-designs.

I initially focus on general-purpose processing units as target hardware re-

sources. In this case, ad-hoc hardware accelerators may not be available,

thus posing a limit to the pool of algorithmic-level optimizations that can

be effectively exploited in hardware. I propose a methodology based on

codebook-based optimizations, a class of algorithmic-level transformations

that effectively reduce the computing and memory requirements of AI mod-

els. By tightly limiting the number of unique weight values, they allow the

storage of representative parameters in small look-up tables (i.e., codebooks)

containing a limited number of floating-point entries. AI models are then

represented as low-bitwidth indexes of such codebooks, enabling model

compression while preserving floating-point inference. I introduce a novel

methodology that employs an E2CNNs design and finds highly beneficial

codebook schemes, trading off accuracy for model compression in codebook-

based models.

Then, I consider the availability of approximate hardware as a design choice

to reduce energy in Edge AI. Indeed, previous studies have demonstrated that,

up to a certain degree, AI models can tolerate noisy input data and inaccurate

intermediate results, ultimately being still able to produce acceptable output

qualities. Nonetheless, when dealing with arithmetic inexact operators, a

judicious use of approximation is crucial to limit accuracy degradation. Deter-

mining the magnitude of inexactness that can be introduced is a challenging

task because the implementation of inexact operators is often decided at

design time when the application and its robustness profile are unknown.

The result is a risk of over-constraining or over-provisioning the hardware. To

bridge this gap, I propose a two-stage optimization that initially optimizes

the target model, applying E2CNNs in conjunction with a heterogeneous
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quantization strategy. This phase reduces the bitwidth of input and output

operands enhancing at the same time error resiliency, so that inexact opera-

tions can be performed as frequently as possible. Then, a sensitivity analysis

is performed and used to drive the mapping of computing kernels into either

exact or inexact hardware.

Finally, I target In-Memory Computing (IMC) accelerators, proposing differ-

ent implementation and algorithmic optimization approaches to maximize

energy savings when running AI inferences. In fact, IMC supports the effi-

cient execution of data-centric workloads, such as those characterizing AI

algorithms. These accelerators provide computing capabilities as part of the

memory array structures, bringing the processing elements inside storage. By

doing so, IMC minimizes the cost of data access and enables highly parallel

computations by exploiting the regular structure of memory arrays. How-

ever, the regular layout of memory elements also constrains the data range

of inputs and outputs, since the bitwidths of operands and results stored at

each address cannot be freely varied. To tackle this challenge, I introduce a

novel optimization heuristic, which tailors the quantization levels according

to both memory design characteristics and workloads considerations. I also

show how lightweight hardware support is required in the proximity of stor-

age elements to increase computing parallelism and to ensure overflow-free

arithmetic under strict bitwidth constraints. Finally, I combine most of the

presented techniques and methodologies in a more complete co-design ap-

proach. On the one hand, I show that highly effective error detection and

mitigation strategies can be implemented in IMC devices with little extra

hardware. On the other hand, I use algorithmic transformations including

E2CNNs and quantization to increase the robustness of AI models against

errors. In doing so, more aggressive voltage scaling techniques can be applied

to run the accelerator relying on ultra-low supply voltage levels. While this

approach inevitably introduces errors in the memory arrays, the higher de-

gree of resiliency exposed by algorithmic optimization minimizes the impact

of such errors on the output quality of the model.
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2

Herein, I present Embedded Ensembles of Convolutional Neural Networks

(E2CNNs), a methodology to build memory- and compute-constrained

ensemble-based models. First, in Section 2.1, I include a brief analysis

of CNN and ensemble-based models, discussing the two alternative

implementations in terms of timing and resource requirements and from

an error resiliency perspective. Then, I detail the E2CNNs methodology in

Section 2.2, describing how to construct and train constrained ensembles,

analyzing their benefits with respect to state-of-the-art ensembles of CNNs.

Finally, in Section 2.3, I evaluate the E2CNNs design by comparing different

E2CNNs configurations to the corresponding baseline single-instance CNNs.

This methodology has been presented in [56].

2.1 Introduction

2.1.1 Robustness of CNN models

In many real-world scenarios, input data is often corrupted by noise or errors.

Measurement imprecision, interference, memory faults, or incorrect data

transmission are just a few examples of data corruption sources [57–59]. In

such situations, it is crucial to have robust algorithms that can tolerate such

inaccuracies and still provide accurate and reliable outputs. In this regard,

machine learning models happen to be highly resilient to input noise and

data approximations [48, 53]. In particular, CNN models well tolerate errors
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Table 2.1: Yield analysis showing the percentage of simulated chips with
accuracy degradation limited to 5 % for an industrial CNN
model used for capsule recognition at different sub-nominal
voltage levels. Error rates at different voltage supplies are
derived from [51].

Voltage 850 mV 750 mV 700 mV 650 mV 600 mV
Error rate 0 1.3×10−5 1.0×10−4 7.0×10−4 2.2×10−3

Floating-point 100.0% 11.2% 0.0% 0.0% 0.0%
Fixed-point 8/16 100.0% 100.0% 99.5% 66.3% 0.2%

in the processed data, thus being able to offer acceptable output quality, even

in non-ideal conditions [54]. Nevertheless, these models are nowadays em-

ployed in a vast range of applications, that typically require different degrees

of robustness and must abide by specific Quality of Service (QoS) metrics.

For example, computer vision, speech recognition, or natural language pro-

cessing applications can tolerate a certain degree of QoS degradation without

significantly affecting their overall performance and user experience. On the

contrary, the quality of the output is a must in sensitive or safety-critical ap-

plications, such as medical diagnosis, autonomous driving vehicles, financial

forecasting, and industrial automation.

To investigate the robustness of CNN models against errors, my colleagues

and I have evaluated the impact of data representation in a proprietary CNN

model used for coffee capsule recognition [60]. In particular, our analysis

considered memory errors due to sub-nominal voltage supplies in the mem-

ory sub-system, producing stuck-at faults in the input data, also impacting

the whole inference execution. We have conducted experiments varying the

voltage level to evaluate the accuracy degradation at different error rates.

For each of them, we have considered 1000 random error maps which emu-

late different fabricated memory chips. Finally, we have performed a yield

analysis to measure the percentage of chips that were able to achieve accu-

racies within 5% of the baseline. A simplified, yet not reductive, overview

of the results obtained in [60] is presented in Table 2.1, comparing the yield

achieved by a floating-point model with the one obtained quantizing weights
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and activations using 8 and 16 bits, respectively (i.e., a scheme I refer to as

8/16 quantization level). These results provide multiple insights: first, the

yield obtained at a nominal voltage (i.e., 850 mV) confirms that, if properly

designed, quantization has a negligible impact on accuracy. More precisely,

accuracy evaluations showed that the accuracy degradation with respect to

the floating-point baseline is negligible when employing an 8/16 quantiza-

tion scheme. Second, results indicate that a fixed-point format is significantly

more robust than floating-point representations, achieving a yield of 99.5%

at 700 mV, where instead none of the chips employing a floating-point repre-

sentation can reach the target accuracy level. The higher sensitivity toward

memory errors of the floating-point implementation can be explained by

considering the peculiar memory representation of floating-point values. In

fact, the distinction between sign, exponent, and mantissa bits may be critical

if errors affect certain bit positions: for example, errors affecting the sign bit

produce dramatic deviations in high-magnitude floating-point numbers. In a

similar way, errors affecting the exponent bits can transform relatively small

values into high-magnitude ones, and vice-versa. In addition, specific float-

ing point codes are used to represent ±∞ and not-a-number (NaN) values. As

a consequence, if errors make them appear, these values propagate through

the CNN layers, preventing arithmetic computation and thus producing un-

reliable outputs. In contrast, fixed-point formats do not suffer similar effects,

as, in the worst case, errors affecting the sign or the most significant bits can

have a significant, but not so critical, impact.

As a result, this analysis shows that fixed-point representations are key for

the resiliency of CNN models and, if properly dimensioned, these formats

do not even affect the baseline floating-point accuracy. In line with the

results presented in related works [54, 55], this analysis demonstrates the

intrinsic resiliency of (quantized) CNN models. Nevertheless, above a certain

threshold, the error density results in high-magnitude data perturbations

that dramatically degrade output quality. Error protection mechanisms and

algorithmic strategies to improve the robustness against errors have a double

target. On one hand, mitigating the impact of errors by limiting noise or

introducing error detection mechanisms (e.g., parity check or memory error

correction codes) is crucial in safety-critical applications. On the other hand,
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an increased robustness against errors can be leveraged to enable more

aggressive optimization strategies, ultimately achieving improved energy

efficiency levels for a minimal accuracy cost, as discussed in Chapter 1.

While several approaches to improve the accuracy and robustness of CNN

models exist [61–63], I am now going to focus on ensembling methods [64–66],

proposing a novel way to construct ensemble-based models for Edge AI

inference.

2.1.2 Ensembling

In machine learning, ensembling is a technique that combines together mul-

tiple algorithmic instances to create a more robust and accurate model [67].

The core idea is that by combining the predictions of several weak models,

the errors and biases of individual models can be offset, leading to a more

precise and reliable overall prediction.

As deeply detailed in [67], there are several ways to perform ensembling in

machine learning applications, including:

• Bagging. It consists in training multiple models on random subsets of

the training data and then combining their predictions to produce the

output result. Bagging is often used with decision tree models, creating

a random forest ensemble.

• Boosting. In this technique, multiple weak models are trained sequen-

tially, with each new one trained on the residuals of the previous model.

The final prediction is then a weighted average of the predictions of all

the trained instances.

• Stacking. It involves training multiple instances and using their pre-

dictions as input features for a higher-level model, making the final

prediction. This approach can be particularly effective when the indi-

vidual instances are trained on different aspects of the data, allowing

the higher-level model to learn from a wider range of features.
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Ensembling is a powerful technique that has been used with great success

in many areas of machine learning, including image recognition, natural

language processing, and speech recognition [64, 65].

While bagging mainly operates on dataset splits and, like boosting, is com-

monly used to build random forests, stacking is instead a more general en-

sembling method that has been also applied to CNN models [66], and hence

considered in this chapter. In this regard, it employs multiple CNN instances,

possibly sharing different structures, and combines together their individual

predictions to compute the ensemble output. Depending on the objective

task, aggregation can be implemented either as a simple average of individual

predictions of each CNN instance in the ensemble or using those predictions

to feed (and tune) an additional meta-model. The meta-model, typically a

very simple machine learning model, eventually uses these predictions as

input features to produce the final output.

One of the key advantages of stacking is that it can handle complex relation-

ships between features and target variables. By combining the predictions of

multiple models, stacking enables the capture of a wider range of patterns

and features from the input data, leading to improved accuracy and general-

ization performance. Even more, ensemble-based architectures also increase

resiliency against errors. Figure 2.1 illustrates this concept by comparing the

effect of an error in a single-instance CNN model (left) and in an ensemble

of four CNNs (right). This simple example shows that an error affecting the

first layer of the single-instance CNN model results in a wrong classification

of the input image. On the other hand, the same error affecting the first

instance of the ensemble still produces a misclassification in the first CNN

instance. Nonetheless, the wrong prediction can be mitigated by the correct

predictions of the other three instances, ultimately allowing the ensemble to

correctly classify the input sample.

Stacking but, more in general, any ensembling method, is computationally

expensive, requiring careful tuning of the base models and, if included, of

the meta-model. Let’s consider the example depicted in Figure 2.1, assuming

the four models in the ensemble-based design share the same structure.

The higher accuracy and resiliency of the ensemble-based architecture are
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Figure 2.1: Single-instance CNN model (left) and a state-of-the-art
ensemble-based alternative comprising four CNN instances
(right). While leading to misclassification in the single-instance
model, the same error can be mitigated in an ensemble-based
implementation.

achieved at the cost of memory and computing overheads. In particular,

memory requirements increase by 4× because four CNN models have to be

stored in memory. Similarly, inference runtime also increases by a similar

factor, as four CNN models must be evaluated. In general, overhead may

be even larger, since in some cases tens or hundreds of CNN models are

combined together [68, 69].

Therefore, while the accuracy and robustness gains of state-of-the-art ensem-

bles are key for most applications, their actual deployment in edge devices is

often prohibitive, due to the memory, timing, and energy constraints of em-

bedded systems. To address this limitation, I propose Embedded Ensembles

of Convolutional Neural Networks (E2CNNs) [56], a methodology to build and

deploy ensembles in edge AI applications. As the name suggests, it targets

CNN models, although the key concept of this methodology could be applied

to different machine learning models.
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Compression Replication Training

Figure 2.2: E2CNNs methodology. The baseline CNN model is first com-
pressed to reduce its complexity. Then, the obtained (pruned)
structure is replicated multiple times to build an ensemble that
has the same properties as the baseline model. Each instance
is trained from initial random weight initialization, resulting in
different trained weights distribution, key to improving accu-
racy and robustness.

2.2 E2CNNs methodology

E2CNNs transforms a target CNN model into an equivalent ensemble-based

architecture. Targeting edge devices, the objective is to construct ensembles

of CNN models that do not increase the memory and computing require-

ments of the initial single-instance network. To achieve this goal, E2CNNs

combines pruning and replication to construct ensembles that benefit from

the higher accuracy and robustness of state-of-the-art ensembles, but with-

out increasing baseline requirements.

2.2.1 Building the ensemble

The proposed methodology to build E2CNNs is summarized in Figure 2.2.

The first step is to compress the baseline single-instance structure to reduce

its complexity. In particular, the input can be an untrained CNN architec-

ture, and the compression stage reduces the number of parameters (i.e.,

weights and biases of convolutional and fully-connected layers), as well as

the number of multiply-accumulate (MAC) operations required to execute

the network. In general, both metrics are reduced by a factor N . Compres-

sion is performed via filter pruning [35]. Since the input single-instance

structure is an untrained architecture, random filter pruning is used. This

approach removes random filters from the convolutional layers of the input
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TRAINING STAGE INFERENCE STAGE

Training 
Dataset

Individual output 
probabilities

E2CNN 
prediction

Aggregation

Same structure
Different initialization

Trained CNN 
instances with 

different weights 
distribution

Testing 
Dataset

Figure 2.3: E2CNNs training (left) and inference (right) stages. Training is
performed offline, before deploying the ensemble in the target
application. At inference time, the same sample is processed
by all trained instances, with a final aggregation step producing
the E2CNNs prediction.

CNN. While more advanced filter pruning methods have been proposed [36],

the pseudo-randomness selection of filters to remove makes this approach

one of the few approaches suitable for untrained CNN structures. To avoid

over-compressing certain layers and under-compressing others, filter prun-

ing homogeneously compresses the whole architecture.

The resulting pruned structure exhibits N× fewer parameters and N× less

MAC operations than the initial model. As a consequence, the obtained

pruned CNN can be replicated N times to build an ensemble of CNNs with

N instances, without incurring any memory or computing overheads with

respect to the initial single-instance baseline.

Before their deployment in the field for inference executions, the N models

must first be trained. Training is performed offline, before deploying E2CNNs

in the target device. A high-level scheme showing the two distinct phases is

presented in Figure 2.3. Each pruned CNN is independently trained on the

entire training dataset, starting from a random initialization of the model
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Table 2.2: LeNet5 vs. LeNet5-based 2-E2CNNs structure

LeNet5 In/Out Feature Size MACs Params

Convolutional 32×32×1 −→ 28×28×6 117,600 156
Max Pool 28×28×6 −→ 14×14×6 - -
Convolutional 14×14×6 −→ 10×10×16 240,000 2,416
Max Pool 10×10×16 −→ 5×5×16 - -
Convolutional 5×5×16 −→ 1×1×120 48,000 48,120
Fully-Connected 120 −→ 84 10,080 10,164
Fully-Connected 84 −→ 10 840 850

Totals 416,520 61,706

2-E2CNNs instance In/Out channels MACs Params

Convolutional 32×32×1 −→ 28×28×4 78,400 104
Max Pool 28×28×4 −→ 14×14×4 - -
Convolutional 14×14×4 −→ 10×10×10 100,000 1,010
Max Pool 10×10×10 −→ 5×5×10 - -
Convolutional 5×5×10 −→ 1×1×80 20,000 20,000
Fully-Connected 80 −→ 84 6,720 6,804
Fully-Connected 84 −→ 10 840 850

Totals 205,960 28,848

weights. In this way, the resulting trained CNN instances will show different

weights distributions, which ultimately allow E2CNNs to improve its general-

ization capabilities and robustness. Notice that an ensemble where all the

CNN instances have the same weight values will perform exactly like each

individual instance would perform alone. Finally, the trained models are

deployed in the field. To act as an ensemble, the individual predictions of

each CNN instance are combined together using a simple output average.

2.2.2 Example: LeNet5 vs. LeNet5-based E2CNNs

This section presents an example showing a very simple CNN model be-

ing transformed into an E2CNNs equivalent. For simplicity, this example

considers LeNet5 [70] as the baseline single-instance CNN, and an E2CNNs
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implementation composed of two instances (in the rest of this thesis, I use

the N -E2CNNs notation to refer to ensembles of N instances).

The structure of LeNet5 is reported in Table 2.2(top). It consists of three

convolutional layers and two fully-connected (FC) layers, with two additional

pooling layers to reduce input dimensionality. The second column of the

table reports the size of input and output features for each layer, in the form

W × H ×C , with W , H , and C being the width, height, and depth of the

corresponding feature maps, respectively. Next, the last two columns show

the number of MAC operations executed in each layer and the number of

weights required for their execution. Pooling layers have no parameters and

their complexity is negligible compared to convolutional and FC layers. In

total, LeNet5 executes more than 400K MAC operations per inference and

needs more than 60K parameters.

Building 2-E2CNNs requires halving both the memory and the computing

requirements of LeNet5. The result of the pruning stage is shown in Table 2.2

(bottom). Filter pruning reduces the number of filters in the three convolu-

tional layers, from the baseline 6, 16, and 120 filters, to the 4, 10, and 80 filters

applied by the pruned model. The reduction of the number of filters has a

positive effect on both memory size (since fewer filters must be stored) and

performance (since a lower number of filters must be applied to the input

features). Reducing the number of convolutional filters in layer i positively

impacts both layer i and layer i +1. In fact, fewer filters in layer i produce

smaller output feature maps (i.e., outputs have a lower number of channels).

As a consequence, this has an effect on layer i +1, because each filter can be

smaller, as it must be applied to a reduced number of input channels.

In conclusion, the table shows that the pruned instance used to build 2-

E2CNNs has approximately halved the number of MAC operations and the

number of weights. Therefore, when employing two instances, there will be

no overhead when compared to the baseline LeNet5 implementation.

2.2.3 Selecting the E2CNNs cardinality

This section concludes the description of the E2CNNs methodology dis-

cussing how to determine the cardinality of the generated ensemble. The
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term cardinality is used to indicate the number N of instances included

in E2CNNs. I will show in Section 2.3 that E2CNNs of different cardinality

achieve different accuracy levels and exhibit different robustness degrees,

thus making the selection of the E2CNNs cardinality N an important design

choice.

In general, E2CNNs implementations of different cardinality could be imple-

mented and evaluated, eventually selecting the best-performing one. Nev-

ertheless, training several CNN instances can be a time-consuming process

and consumes a large amount of energy. Moreover, the design space can be

extremely complex if N is not bounded or constrained. In [56], I also propose

a heuristic approach that automatically selects the cardinality of the ensem-

ble based on a target application and an expected error rate. An overview of

the E2CNNs selector is summarized in Algorithm 1. It receives as input the

baseline single-instance CNN, a user-defined set of possible quantization

levels to be applied, an accuracy threshold, and an expected error density.

First, the most aggressive quantization scheme that still preserves accuracy

to the user-defined level is employed. Experimental evaluations on multiple

benchmarks revealed that the 8/16 quantization level (i.e., 8-bit weights and

16-bit activations) typically results in accuracy within 1% with respect to the

floating-point baseline. Then, the single-instance model is iteratively pruned,

reducing its complexity by 2× at each step. This approach constrains the

cardinality N to be multiple of 2, thus evaluating E2CNNs comprising 2, 4, 8,

..., instances. Although N can be in practice any integer value greater than

1, this heuristic aims to reduce this exploration’s complexity. Experimental

observations showed that only a highly-over-designed single-instance model

can be transformed into an ensemble with a cardinality N > 8. Therefore,

most commonly, only E2CNNs implementations of 2, 4, or 8 instances are the

ones considered by the heuristic. When a pruned CNN architecture is estab-

lished, it is then trained, and the accuracy is evaluated. Finally, it is compared

with a threshold, empirically determined based on the required robustness

level needed. In the case of expected high error densities (or high-magnitude

noise levels), the need for additional robustness becomes more crucial and

the heuristic allows accuracy drops up to 5% in the pruned CNN instance.

Conversely, in the case of low expected error rates, the accuracy degrada-
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tion is limited to just 1%. The reason is based on empirical evidence and

motivated by the fact that ensembles with high cardinality trade off a lower

accuracy (since each instance is pruned more) for a higher robustness against

errors. In other words, increasing cardinality initially improves accuracy. Yet,

at a certain point where the pruning required to build the ensemble becomes

too aggressive, the accuracy of the ensemble starts dropping. Conversely,

robustness always tends to increase with cardinality. For this reason, relaxing

the accuracy threshold in the case of high noise levels supports the construc-

tion of higher cardinality (and hence more robust) E2CNNs architectures.

Consequently, more conservative thresholds limit the possibility of having

high-cardinality ensembles in favor of E2CNNs designs with higher accuracy

in the absence of significant noise levels.

2.3 E2CNNs achievements

2.3.1 Experimental set-up

The E2CNNs methodology is evaluated on a pool of benchmarks of different

complexity. The following CNN models and datasets are included in the

study:

• LeNet5 [70] on the MNIST dataset [71]

• AlexNet [72] on the CIFAR-10 dataset [73]

• GoogLeNet [74] on the EuroSAT dataset [75]

• MobileNet [76] on the EuroSAT dataset [75]

• A proprietary CNN (CapsuleNN) used for coffee capsule recognition

CapsuleNN is a proprietary network with a structure similar to AlexNet, but

specifically designed to classify coffee capsules. This is the same model my

colleagues and I have analyzed in [60], evaluating its resiliency against er-

rors. LeNet5 is a tiny CNN model, introduced in the literature several years

ago. AlexNet has significantly larger convolutional layers, resulting in a much

more compute- and memory-intense network to execute. GoogLeNet and
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Algorithm 1 E2CNNs heuristic. In the first stage, a certain quantization
level preserving the baseline floating-point accuracy is selected. Then, an
iterative heuristic search evaluates the accuracy of different pruned CNNs.
The resulting E2CNNs cardinality is determined based on the accuracy and
considering an expected error density.

1: procedure BUILDER(Er r or Rate,QuantLevel s, AccMi n)
2: i ← 0
3: repeat
4: Quant ←QuantLevel s[i ]
5: New Model ←Quanti ze(Model ,Quant )
6: if New Model .Acc ≥ AccMi n then
7: Model ← New Model
8: end if
9: i ++

10: until New Model .Acc < AccMi n
11: Accur ac y ← Model .Acc
12: if Er r or Rate >= 0.0001 then
13: Dr opT hr eshold ← 5%
14: else
15: Dr opT hr eshold ← 1%
16: end if
17: repeat
18: New Model = Model .pr une(compr essi on = 2x)
19: New Model .Tr ai n()
20: dr op ← Accur ac y −New Model .Acc
21: if dr op < Dr opT hr eshold then
22: Model ← New Model
23: end if
24: i ++
25: until Dr op ≥ Dr opT hr eshold
26: end procedure
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MobileNet are instead much deeper networks (i.e., they both contain more

than 20 convolutional layers, while LeNet5 and AlexNet only contain three

and five, respectively) which also include normalization layers. Additionally,

GoogLeNet uses inception blocks, while MobileNet uses separable convolu-

tional layers.

The models are trained and quantized in PyTorch. Quantization is imple-

mented using an approach known as fake quantization [77]. It forces weights

and input/output activations to assume values representable in the target

quantization scheme while maintaining a floating-point notation. As a con-

sequence, built-in functions like convolutional or fully-connected layers use

floating-point precision for their execution, although inputs and outputs can

be updated between consecutive layers to simulate quantization. Therefore,

to simulate real fixed-point arithmetic, a CNN model trained and optimized

in PyTorch is then stored into a binary file, so that its weights can be eas-

ily imported into a C++ inference solver that I have developed to retrieve

more accurate accuracy evaluations. The inference solver can execute con-

volutional, fully-connected, pooling, and normalization layers, to effectively

implement different CNN architectures. CNN models are defined by connect-

ing these layers properly, thus implementing their structure to simulate their

behavior. The specific characteristics of each layer of a CNN (i.e., input size,

number of input/output channels, kernel size, among others) are defined in

a specific header file that represents the CNN model. This file also defines

the size of the input buffer and two intermediate ping-pong buffers storing

input and output activations of each layer. Even more, each layer’s weight

and bias values is used to generate pointers to the array of weights retrieved

from the input binary file. In this way, each layer defined in the structural

implementation of the CNN model can access the correct set of parameters

for its execution. In a similar way, input binary images are imported into the

C++ framework to execute inference simulations.

In addition to error-free accuracy estimations, the C++ solver also implements

an error model simulating SRAMs working at sub-nominal voltage levels and

eDRAMs with reduced refresh rates. Both operating conditions enable energy

savings in the memory, but introduce stuck-at faults (in SRAMs) or bit-flips

(in eDRAMs). Table 2.3 reports the error rates and the read/write energy cost

30



2.3 E2CNNs achievements

Table 2.3: Energy consumption per access (pJ/access) and bit error rate
for an SRAM built on a 40 nm CMOS process at different
voltage levels. Error rates at different voltage supplies are
derived from [51].

Read Write Error Rate

850 mV 9.447 5.868 -

750 mV 7.572 4.703 1×10−5

700 mV 6.766 4.202 1×10−4

650 mV 6.047 3.756 7×10−4

600 mV 5.416 3.364 2×10−3

corresponding to sub-nominal supply voltage levels in SRAMs as illustrated

in [51]. When simulating errors affecting eDRAMs, the refresh rate is reduced

to reproduce error densities comparable to the ones used to evaluate SRAMs.

The use of these error densities allows me to evaluate the robustness improve-

ments of E2CNNs while, at the same time, estimating potential energy savings

by considering the energy of read and write accesses in memory elements

corresponding to the considered sub-nominal voltage levels.

2.3.2 Accuracy improvements

Considering the benchmarks presented in Section 2.3.1, I herein present

an analysis of the accuracy achieved in E2CNNs and in the corresponding

single-instance baselines, for error-free simulations. The highest accuracy

achieved by each benchmark among the different evaluated architectural

designs (i.e., single-instance CNNs or E2CNNs alternatives) is highlighted

in bold in Table 2.4. Results indicate that even if E2CNNs has been initially

designed to improve error resiliency, it also enables accuracy improvements

when compared to single-instance CNNs. The obtained accuracy gain is not

due to a higher number of parameters like it generally happens in state-of-the-

art ensembles. In fact, Section 2.2.1 showed that the number of parameters in

any E2CNNs design is comparable with the one of the input single-instance

CNN. The higher accuracy is just the result of the improved generalization

capabilities offered by an ensemble-based architecture.
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Table 2.4: Accuracy comparison between the original (quantized) CNNs
and three different E2CNNs embodiments (error-free evalua-
tions)

Model
Original 2-E2CNNs 4-E2CNNs 8-E2CNNs

(%) (%) (%) (%)

LeNet5 98.91 99.05 99.06 98,64
CapsuleNN 98.29 99.34 94.87 -
AlexNet 85.20 86.60 85.80 81.60
GoogLeNet 99.70 99.70 100.00 99.90
MobileNet 95.125 95.75 96.75 95.37

The obtained results also suggest that, in error-free inference simulations,

increasing the cardinality N of E2CNNs will eventually result in accuracy

degradations for high cardinality values. This effect manifests clearly in

LeNet5, CapsuleNN, and AlexNet, and it is the consequence of a highly ag-

gressive model compression: indeed, building E2CNNs of higher cardinality

demands significant compression of the initial model. Consequently, the

accuracy drop experienced by the individual pruned CNN instances can be

very high, with the resulting ensemble not being able to fully recover. In

particular, the 8-E2CNNs implementation of CapsuleNN is not even included

in the results presented, because the compressed models obtained reach

accuracy levels lower than 50%.

2.3.3 Robustness improvements

To proceed with the analysis of E2CNNs, this section evaluates its robustness

against memory errors. The plots illustrated in Figure 2.4 depict the accu-

racy achieved by single-instance CNN models as well as different E2CNNs

implementations for different SRAM voltage supply levels. The error rates

corresponding to each evaluated voltage level can be retrieved from Table 2.3.

The rightmost points, showing the accuracy achieved at 850 mV, assume

no memory errors (i.e., nominal voltage level), while the leftmost points,

corresponding to a voltage level of 650 mV, assume the highest evaluated

error density (i.e., 2.2×10−3). The obtained results demonstrate the higher

resiliency against memory errors of E2CNNs implementations with respect
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Figure 2.4: Average accuracy for different error rates in the baseline single-
instance CNNs (black) and in the corresponding E2CNNs
implementations comprising two (red), four (blue), and eight
(green) instances.
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to single-instance CNNs. Moreover, these results indicate that the higher

the cardinality N of E2CNNs, the higher its robustness at high error rates.

Figure 2.4b clearly shows that the accuracy of the 8-E2CNNs is significantly

higher than the accuracy achieved by E2CNNs of lower cardinality at 650 mV.

Nevertheless, the 8-E2CNNs performs worse when no errors affect the sys-

tem, thus motivating the rationale behind the heuristic cardinality selector

discussed in Section 2.2.3.

2.3.4 Reducing energy and memory requirements

In conclusion, I herein briefly present a potential use of E2CNNs as a tool

to reduce energy, as well as memory requirements. Previous sections have

demonstrated how E2CNNs is a more robust design solution than single-

instance alternatives. Results have shown that its increased resiliency against

memory errors can be exploited by allowing memories to operate at sub-

nominal conditions to reduce energy. The energy reductions in the memory

sub-system can be estimated by combining the results in Figure 2.4 with

the energy numbers reported in Table 2.3. In particular, E2CNNs implemen-

tations of LeNet5, AlexNet, CapsuleNN, and GoogLeNet can enable SRAM

memories to operate at just 700 mV without affecting the baseline accuracy.

As a result, the dynamic energy for read and write operations can be reduced

by 28%. Similarly, MobileNet allows reductions of 20%, when the voltage

supply is decreased to 750 mV.

However, E2CNNs can enable more significant energy savings (and infer-

ence speed-ups) in specific, slightly oversized, benchmarks. In particular,

if the accuracy of individual CNN instances is not significantly affected by

pruning, the deployment of only M instances in a N -E2CNNs, with M < N

could be possible. By reducing the number of instances in the ensemble, the

runtime is reduced, as well as the inference energy and the memory require-

ments. For example, I have shown in [56] that deploying only 4 instances

in an 8-E2CNNs designs based on LeNet5, AlexNet, and GoogLeNet does

not affect accuracy but improves energy, performance, and memory size by

2×. Finally, these experiments also show that this approach is completely

orthogonal to the benefits obtained via voltage scaling: in the same work, my

colleagues and I show how higher savings can be obtained by combining the
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two strategies. For example, it is possible to deploy only four instances out

of eight in an 8-E2CNNs GoogLeNet-based implementation and reduce the

SRAM supply-voltage to just 750 mV to obtain more than 53% energy savings

without affecting accuracy.
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3

3.1 Introduction

One of the key motivations behind the proposal of E2CNNs was that state-

of-the-art stacking-based ensembling methods produce significant memory

and computing overhead. These drawbacks are a well-known limiting fac-

tor for deploying most deep learning models in embedded devices, where

resource constraints and low-energy budgets are key. Even more, the current

shift towards more sustainable computing environments is making these con-

cerns relevant in applications employing a cloud-computing approach. As a

consequence, software-level optimizations that reduce complexity in deep

learning models are becoming more and more employed in a large majority

of scenarios. As discussed in Chapter 1, examples of popular model transfor-

mations targeting CNN models (but, more generally, most machine learning

algorithms) include pruning [35], quantization [34], and encoding [37]. In

this context, E2CNNs can also be viewed as an algorithmic-level transforma-

tion that aims at similar goals, as I have illustrated in Chapter 2 how it can

serve as a method to optimize memory needs. Nevertheless, in its original

definition where all defined instances are instantiated, E2CNNs transforms

the input model to increase its error resiliency, but does not reduce memory

or computing requirements.

Conversely, another avenue toward the compression of CNN models is that

of codebook-based methods. These are classes of data representation trans-
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formations that employ small look-up tables to store a limited number of

unique representative values. As I will illustrate in detail in the following sec-

tions, compression can be achieved by leveraging the small size of codebooks

and by transforming the typical value-oriented model representation into

an index-based one. In contrast to quantization, where weight values are

approximated using low-bitwidth formats, codebook-based strategies can

achieve compression while including floating-point values inside codebooks,

thus preserving high-precision floating-point arithmetic.

This chapter presents an effective and novel way to employ codebooks to

compress CNN models. The strategy, that I have originally proposed in [78], is

orthogonal to common compressing methods proposed in the literature for

neural networks. Therefore, compression can be achieved without requiring

ad hoc quantization schemes for HW acceleration and without reducing the

number of model parameters by means of pruning methods. As such, the

proposed codebook-based transformation can be employed in either safety-

critical applications, to reduce memory requirements while preserving high

QoS thanks to accurate floating-point arithmetic, or in edge applications,

where it represents a model optimization that leaves the door open for fur-

ther HW-SW co-design strategies, including, for example, quantization and

encoding.

3.1.1 Codebooks-based representations

As the name suggests, codebook-based representations use codebooks as

core elements for data representation. Codebooks are very tiny look-up tables

that typically store the values or parameters used by a certain application. In

general, codebooks usually have limited sizes, and their entries are generated

using clustering methods. An example illustrating how codebooks are derived

is shown in Figure 3.1, where the original input data is distributed in such a

way that three different groups or classes can be individuated (green, blue,

and yellow areas in the presented example). Clustering methods are machine

learning algorithms that split input samples into different groups (or clusters),

according to specific distance-based metrics. One typical implementation is

represented by the k-means clustering, where input samples are grouped into

k different clusters based on the Euclidean distance between each sample
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Figure 3.1: Codebook-based representations based on data clustering. The
original floating-point data (left) is clustered in three separate
groups (center). The floating-point centroid of each group is
used as a representative value in the 3-entry codebook (right).

and k centroids which represent average values or features of each group.

In the illustrated example, codebooks store the computed centroid of each

cluster, thus reducing the number of inputs to only three distinct values (i.e.,

the three centroids).

When considering neural networks, codebooks can be used to store the

weight and bias values of CNN layers. Indeed, in the context of CNN com-

pression methods, codebooks serve as storage elements of a limited set of

unique weight values that should well represent the distribution of the origi-

nal weights. Clustering methods are hence applied to the input weights to

reduce their number to few unique values, ultimately achieving CNN com-

pression [39, 79]. The key insight behind this approach is that the set of

samples belonging to a certain cluster can be approximated by the corre-

sponding centroid. In this way, assuming that their individual values are

substituted with the corresponding centroids, it would be possible to trans-

form each weight from a floating-point number to an address of the generated

codebook. Referring once more to the example shown in Figure 3.1, we can

assume points as floating-point weights. In this case, each row of the code-

book stores the floating-point value of one of the three centroids (i.e., the

three representative weights, as determined by the clustering algorithm).

Next, each weight can be converted to a 2-bit index, accessing the entry in

the codebook corresponding to the associated centroid (i.e., 2-bit indexes
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Figure 3.2: Using codebooks to compress CNNs. The floating-point
weights in each layer (left) are clustered, and the computed
centroids are stored in heterogeneously sized codebooks (cen-
ter). The CNN weight values are then replaced by low-bitwidth
indexes addressing the generated codebooks (right).

are enough to address up to 4-entry codebooks). In the next section, I will

describe how this strategy can be effectively applied to CNN models in an

accuracy-driven manner to reduce memory requirements.

3.1.2 Using codebooks to represent CNN models

Codebook-based representations can be used to compress CNN models.

Section 3.1.1 has already presented the key insight to understanding how

weight and bias values of convolutional and fully-connected layers can be

represented using codebooks. The key idea is to move from a value-based

representation of these layers into an index-based one. Figure 3.2 illustrates

this process. The baseline model is a typical floating-point representation of a

CNN (Figure 3.2-left). Then, a reduced number of weight and bias parameters

determined via clustering algorithms are stored inside codebooks (Figure 3.2-

center). In this example, this process is done on a layer basis, thus generating
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multiple codebooks of different sizes. Finally, the CNN model is mapped as a

set of indexes allowing the access of specific codebook entries to retrieve the

corresponding floating-point weights (Figure 3.2-right).

Notice that simply storing inside the codebooks all the CNN parameters and

then transforming the model as a set of codebooks indexes is not sufficient to

get any storage benefits. On the contrary, it increases the memory require-

ments, as, in addition to weights and biases, an index for each parameter

must be stored as well. On the opposite, significant memory reductions can

be achieved when limiting the number of unique weight values in each layer.

In fact, clustering weights into only k unique values requires relatively small

codebooks that can then be accessed using low-bitwidth indexes.

As an example, let’s imagine a CNN layer with 100 thousand parameters, a

common size for convolutional layers in most recent CNN models. Assuming

floating-point weights (i.e., 32-bit values), the storage of that layer requires:

Msi ze =Wcount ∗Wwi d th = 3,200,000bi t s (3.1)

with Wcount being the number of weights, and Wwi d th being the bitwidth of

each weight.

Instead, by restricting the number of unique values to just 100, the generated

codebook can be accessed using ⌈log2(100)⌉ = 7 bits. Therefore, the storage

requirements of the layer shrink to:

Msi ze =Codebooksi ze +Wcount ∗ i d xwi d th = 712,800bi t s (3.2)

where Codebooksi ze is the memory occupation of the codebook (i.e., number

of entries × 32 bits), Wcount is again the number of weights, and i d xwi d th

is the bitwidth of the codebook indexes replacing the original weight values
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(i.e., 7 bits in this example). The result is that the original storage capacity is

reduced by more than 4×.

While this approach can potentially enable significant memory savings, it

must be considered that aggressively limiting the number of unique weight

values (to obtain very low-bitwidth indexes) may introduce large approxima-

tions in the weight distribution, with a consequent impact on accuracy. In

this regard, previous works on codebook-based methods for model compres-

sion have showcased memory reductions of up to 8×, with limited impact

on output quality [37, 39]. Yet, they present major shortcomings. First, they

adopt uniform approaches, in which all layers use the same number of clus-

ters k, thus reducing a wide design space to a few (possibly sub-optimal)

alternatives. Second, they do not include an accuracy constraint in their

compression procedure. As discussed in Chapter 1, the impact on accuracy

of different compression levels cannot be determined a priori. Therefore,

state-of-the-art codebook-based compression strategies require a trial-and-

error approach when having to abide by a user-defined accuracy threshold.

The following section presents a methodology I proposed in [78] to solve this

challenge.

3.2 Codebook-based compression methodology
In contrast to common codebook-based compression approaches, the

proposed strategy employs non-uniform representations to better navigate

through the complex trade-off between accuracy and compression. Moreover,

previous works on codebook-based methods for CNN compression [33, 39]

emphasize memory reductions at the cost of limited accuracy drop, but with-

out controlling accuracy degradation. Instead, the approach presented in this

section includes a user-defined accuracy constraint in the optimization loop,

thus compressing the baseline model while abiding by a target accuracy level.

In addition to model compression, Section 3.3.3 shows that this solution can

also improve runtime performance. Finally, in contrast to previous proposals

that either compress fully-connected [79] or convolutional [80] layers,

the proposed approach targets both, hence allowing higher optimization

possibilities in a more vast range of CNN models.
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As previously discussed, the proposed methodology compresses CNN models

only via a codebook-based approach, leaving for future works the possibility

to analyze the effects of additional optimizations. For example, the authors

of [37] described how orthogonal approaches such as quantization, Huffman

coding, and pruning can be effectively used in conjunction with the use of

codebooks to achieve even higher compression gains. However, the proposed

methodology combines a codebook-based compression strategy with the

E2CNNs design described in Chapter 2. Although additional memory reduc-

tions could be achieved by reducing the number of deployed instances (see

Section 2.3.4), E2CNNs is only used to improve accuracy and robustness in

this analysis. Thanks to this combined algorithmic-level optimization, the

CNN compression strategy based on codebook-based representations is able

to achieve compression levels higher than previous works for similar accuracy

degradations.

3.2.1 Target: general purpose systems

I discussed in Chapter 1 the importance of a HW-SW co-design approach

for the definition and deployment of CNN models in edge AI applications.

Usually, this strategy demands using custom HW accelerators that trade off

flexibility for higher computing efficiency, a key aspect for embedded systems.

Recent research efforts addressed the issue of executing heavy workloads

like CNN models into constrained edge devices from different perspectives,

either providing edge devices with dedicated powerful and efficient hardware

resources [81] or optimizing CNN models to reduce their complexity [82].

Usually, the two strategies are in fact combined together, with software-level

optimizations trying to leverage the available hardware resources and capa-

bilities. A common example of this co-design methodology is that of quanti-

zation, where the bitwidth of operands is adjusted to be efficiently used in the

underlying specialized hardware, typically supporting integer arithmetic only.

However, this approach may not be a viable solution under all circumstances.

For certain applications, the use of floating-point arithmetic is a must, espe-

cially when executing safety-critical tasks. In addition, this solution requires

the availability of ad-hoc hardware accelerators, which could not be accessi-

ble in some cases. In fact, the system can be usually defined a priori, hence

forcing the application to adapt to the hardware resources.
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Figure 3.3: Compression methodology. The initial CNN is first trans-
formed into an E2CNNs equivalent to increase robustness.
Then, a clustering-based optimization loop generates increas-
ingly smaller codebooks on a layer basis to reduce memory
requirements.

With these considerations in mind, the proposed codebook-based compres-

sion methodology enables potential compression and efficiency gains with-

out the need for specialized, low-bitwidth hardware resources. In fact, code-

book indexes of arbitrary bitwidth can be easily retrieved with standard mask

and shift operations in any general-purpose computing system. Therefore,

each memory word can accommodate multiple indexes, extracted at runtime,

and employed to fetch the corresponding floating-point weights.

3.2.2 Heterogeneous codebook-based compression strategy

A schematic illustration of the proposed compression methodology is pre-

sented in Figure 3.3. It mainly consists of an optimization loop that iteratively

reduces the size of codebooks in the layers of an E2CNNs implementation, ob-

tained, as a first step, by transforming an input CNN model. In the following,

each stage of this approach is explained in detail.
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3.2.2.1 Use of E2CNNs in contrast to single-instance model

The input of the presented methodology is a single-instance CNN. As a first

step, an equivalent ensemble model is derived to increase robustness (En-

sembling in Figure 3.3), following the E2CNNs methodology described in

Chapter 2. As part of its construction stage, the obtained ensemble is trained

before undergoing the optimization loop. Then, only one instance is selected

and optimized at each iteration, but all of them are evaluated in this loop in

a round-robin fashion. Doing so, a careful control of accuracy degradation

is achieved and, by considering different CNN instances in consecutive op-

timization steps, the proposed strategy returns similar compression levels

among the considered CNNs. Therefore, it prevents the resulting ensemble-

based design from being composed of both highly-optimized and poorly-

optimized CNNs, with a consequent improvement of the overall ensemble

compression.

3.2.2.2 Per-layer iterative compression method

Compression is achieved by independently clustering weights and biases of

each convolutional and fully-connected layer of a target ensemble instance.

As a result, two codebooks are generated in each layer (i.e., one containing

the weights and the other containing the biases). This choice allows a more

accurate clustering of weights and biases and is motivated by the different

distribution of these values. If a layer is selected as a possible target for

optimization, the number of weight and bias values in its codebooks is halved.

In this case, the bits required to index the corresponding codebooks are

reduced by one. The way to select a layer (or multiple layers) at each step is

described in the following section.

Note that only a subset of layers are targeted at each iteration, and a rollback

is performed if the accuracy degradation threshold is violated. Hence, this

strategy results in non-uniform codebook sizes, both in different layers of

the same CNN instance (internal heterogeneity) and in the same layers be-

longing to different instances (external heterogeneity). The first optimization

step always transforms a layer from its baseline value-based representation

to a new codebook-based one. Codebooks with 32 entries, and thus 5-bit

indexes (i.e., K = 32), are used as a first compression step, as empirical obser-
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vations reported no accuracy loss for this compression level in all experiments

described in Section 3.3. Then, the following optimization phases try to it-

eratively limit the number of codebook entries to just 16, 8, 4, or 2 values,

corresponding to 4, 3, 2, or 1-bit indexes, respectively.

The generation (or, more generally, the reduction of the number of entries)

of codebooks in the considered layer(s) is then followed by a few re-training

epochs that try to compensate for the potential accuracy degradation. Never-

theless, re-training affects all the layers of the target CNN instance. Updating

weight values breaks the original codebook-based representation employed

in previously compressed layers. Therefore, to restore a proper codebook-

based representation in those layers, a second clustering stage takes place

after the re-training phase (Compress - Fine tuning - Compress in Figure 3.3).

3.2.2.3 Sensitivity-based logarithmic batch optimization

At each iteration, the methodology evaluates the robustness of convolutional

and fully-connected layers of the target ensemble’s instance. The goal is to

determine which ones should be compressed to minimize the impact on

accuracy. To this end, I introduced the clustering sensitivity metric S, which

measures the range-normalized variance of weights. S is defined as:

S(l ) = σ2(Wl )

max(Wl )−mi n(Wl )
(3.3)

where S(l ) represents the clustering sensitivity of layer l and Wl is the corre-

sponding set of weights. Layers showing a low sensitivity are considered first

as candidates for compression. In fact, low S values indicate that weights are

mostly concentrated in a small region of their entire range. As a consequence,

clustering them does not introduce large absolute-magnitude deviations.

Instead of compressing a single layer at each optimization step, N layers, se-

lected as the ones having the lowest sensitivity S(l ) values, can be compressed

in parallel. In this way, the execution time of the proposed compression strat-

egy is reduced. The value of N identifies the optimization batch size. Large
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choices of N produce significant speed-ups of the optimization process, but

introduce larger approximations that can extensively affect accuracy. On the

other hand, small values of N better preserve accuracy at the cost of longer

execution times.

The compression stage, implemented as the compress-retrain-compress

procedure detailed above, is then followed by an accuracy evaluation. In par-

ticular, the accuracy of E2CNNs, instead of the individual instance currently

under optimization, is evaluated. If the accuracy meets the user-defined ac-

curacy constraint, the optimization is retained and the algorithm continues.

A new iteration starts, another CNN instance is selected, and a new batch of

layers becomes the target for the optimization step. Instead, if the accuracy

degradation exceeds the threshold, the performed optimization is discarded,

the previous instance implementation is restored, and, for the targeted CNN

instance only, the batch size N is halved. Halving the batch size is a key

component of the proposed methodology, as it allows for a more fine-grained

approximation in a future stage when the same instance is selected again.

When N = 1 for a CNN instance (i.e., a batch size of 1), no further optimization

is considered for the targeted layer when a compression iteration produces

an unacceptable accuracy. Finally, the compression procedure ends when no

layer can be selected for further optimization.

3.2.2.4 Complexity analysis

The presented compression strategy has a complexity linear in the number of

instances I of E2CNNs, as well as in the number C of considered compression

levels. In particular, assuming K being the highest number of possible entries

in the generated codebooks, C = log2K , since the codebook size is halved at

each iteration if failing in preserving accuracy. In the worst case, all batch

clustering steps fail in compressing multiple layers in one single shot while

meeting the accuracy constraint at the same time. When this happens, the

batch size N always reaches 1, meaning that each layer is considered in

isolation. In this case, the complexity becomes linear also in the number L of

layers of each CNN, resulting in O (IC L).
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Nevertheless, the proposed sensitivity-based layers selection and a relatively

large initial batch size N support effective runtime reductions. In the best

case, the model can be effectively compressed, preserving the initial batch

size in all iterations, and reducing complexity to O ( IC L
N ). Finally, the user-

defined accuracy threshold plays an important role in this analysis, since very

low acceptable accuracy drops (i.e., less than 1%) reduce the likelihood of

successful compressions of a large batch of layers in parallel. Hence, multiple

batch size reductions affect the runtime of the optimization algorithm from

early iterations.

3.3 Experimental results

3.3.1 Experimental Set-up

The proposed compression methodology has been evaluated on the follow-

ing benchmarks: LeNet5 [70], AlexNet [72], VGG16 [83], GoogLeNet [74],

ResNeXt [84], and MobileNet [76], all trained and tested on the CIFAR100

dataset [73]. As in Chapter 2, the benchmarks considered in this evaluation

differ in size and complexity to demonstrate the applicability of the proposed

approach in a wide range of AI applications. As part of the first optimization

stage, E2CNNs implementations of different cardinality (I = {2,4,8}) are con-

sidered. For clarity, only configurations that maximize classification accuracy

are presented in Section 3.3.2.

Accuracy evaluations are performed in PyTorch [85]. All benchmarks are

trained for 200 epochs, using the same training hyper-parameters: the Adam

optimizer, a fixed learning rate of 10−3, and a weight decay of 10−4. A deeper

investigation to determine the best training configuration for each bench-

mark is not performed because out of the scope of this analysis. However, the

baseline accuracies obtained are in line with those reported in the literature.

Compression is achieved using the k-means clustering function provided by

Scikit-learn [86], using an initial uniform clusters distribution. As the authors

of [37] demonstrate in their work, this approach better protects the initial

classification accuracy by preserving high-magnitude parameters. The num-

ber of fine tuning epochs executed in each clustering-based compression
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phase is set to 10, and it is followed by a second execution of the k-means

algorithm that clusters again the weight values to their pre-training codebook-

based representation. The batch size N is empirically set equal to half of the

total number of layers. This choice results in a good compromise between

compression and execution time. In addition to the aforementioned PyTorch

implementation, a C++ inference solver (based on the same framework de-

scribed in Chapter 2) is adopted to measure inference runtime performance.

To accurately simulate the behavior of the compressed benchmarks, the

index-based weight accessing is implemented, thus using shift-mask opera-

tions to retrieve codebook indexes and ultimately get the clustered weight

values.

Two state-of-the-art baselines are used to compare the compression/accuracy

trade-off achieved by the proposed methodology. The first one is uniform

quantization, which represents a more traditional way to compress CNN

models. The second baseline employs instead codebooks. In contrast to the

proposed solution, this baseline forces codebooks to have the same size in all

layers. This approach is similar to the one described in [33], but without the

constraint of having symmetric weights and instead employing a layer-based

incremental strategy. In addition, no accuracy control is performed in that

work.

3.3.2 Compression/Accuracy trade-off

Before analyzing the accuracy/compression trade-off achieved with state-of-

the-art approaches and with the proposed methodology, I present in Table 3.1

the accuracy improvements of E2CNNs implementations with respect to their

single-instance baselines. The achieved accuracy improvements of up to

more than 5% confirm the findings I have illustrated in [56] and reported

in Chapter 2, hence motivating the use of E2CNNs as a preliminary model

transformation in this methodology.

The comparison between the proposed codebook-based compression

methodology with state-of-the-art alternatives is instead summarized

in Figure 3.4. The six plots compare uniform quantization (black lines)

and uniform codebook-based compression methods (red lines) with the
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Table 3.1: Accuracy of single-instance and E2CNNs implementations eval-
uated on the CIFAR100 dataset.

Benchmark
Accuracy

Accuracy Gain
Single Inst. E2CNNs

LeNet5 42.56% 43.63% 1.07%
AlexNet 55.84% 61.16% 5.32%
VGG16 69.24% 74.18% 4.94%

GoogLeNet 72.62% 76.48% 3.86%
ResNeXt 75.33% 78.09% 2.76%

MobileNet 64.61% 67.74% 3.13%

proposed solution considering three different accuracy thresholds of 0.5%

(green triangles), 1% (yellow triangles), and 5% (blue triangles).

These results indicate that, from a model compression perspective, codebook-

based strategies outperform quantization, providing higher accuracy levels

for the same compression. In the case of quantization, compression refers to

the bitwidths used to represent weight values, while in the case of codebook-

based compression, it refers to the reduced size of codebook indexes. Con-

sidering optimized models reaching accuracy within 1% of their baselines,

the uniform codebook-based strategy enables more aggressive bitwidth re-

ductions, achieving an average 29.16% higher compression when compared

to quantization. The superior accuracy of the codebook-based approach

derives from its higher flexibility, as the selected weight values stored inside

codebooks better adapt to the original distribution during the clustering pro-

cess. In fact, weight values obtained using a uniform quantization approach

span the representable range uniformly, with any pair of two consecutive

values being separated by a fixed amount (i.e., the quantization step, or reso-

lution). Conversely, clustering does not limit the selected centroids to assume

equally-distant values, thus more accurately representing the input weights

distribution.

Anyway, the two presented solutions do not control accuracy. Therefore,

sudden accuracy drops affect the optimized models when the size of all

codebooks is aggressively reduced beyond a critical point that, as previously
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Figure 3.4: Accuracy achieved in compressed benchmarks. Uniform quanti-
zation (black) and uniform codebook-based compression (red)
correspond to previous state-of-the-art works. Green, yellow,
and blue triangles refer to the proposed strategy considering
0.5%, 1%, and 5% accuracy thresholds, respectively.
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Figure 3.5: Performance gains in different processors

discussed, cannot be determined in advance. Conversely, the proposed strat-

egy addresses this issue by introducing an accuracy-driven optimization loop.

While the ability to preserve accuracy to user-defined levels is already an im-

provement with respect to state-of-the-art alternatives, the proposed solution

also offers more favorable accuracy/compression trade-offs, due to its het-

erogeneous nature and thanks to the higher robustness of E2CNNs designs.

Indeed, Figure 3.4 shows that the described methodology improves compres-

sion across all benchmarks by an average of 22.27%, 8.31%, and 13.13% for

accuracy thresholds of 0.5%, 1%, and 5%, respectively, when compared to

uniformly codebook-based compressed alternatives. Moreover, considering

single-instance floating-point baselines, this approach enables average com-

pressions of 11×, 13×, and 15×, respectively, for the three evaluated accuracy

thresholds. Improvements in the considered trade-off derive from adopting

different compression schemes in the CNN layers. Thus, deeper compres-

sions (i.e., smaller codebooks) are only applied in layers exhibiting a higher

degree of robustness.

3.3.3 Performance gains

It would be reasonable to expect a performance slow-down when executing

the benchmarks compressed using the proposed codebook-based strategy.

Indeed, masking and shifting operations are required to retrieve an index

of arbitrary bitwidth from a word (usually composed of 32 or 64 bits) read

from memory. For example, to get a 6-bit codebook index from a 32-bit mem-
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ory word, a mask operation is first required to discard 26 bits. This can be

achieved with a logical AN D operation with the 32-bit memory word contain-

ing the desired index and a mask with 1s in the bit positions corresponding

to the index, and 0s everywhere else. Then, the memory word must be (right)-

shifted to move the 6-bit index to the 6 LSBs. The index is then retrieved,

but an additional level of indirection is introduced, as this index is used as

an address in a look-up table (i.e., the codebook) storing the corresponding

floating-point weight value.

Counter-intuitively, the presented methodology offers instead a significant

reduction in inference runtime. The time required for inferences using the

baseline floating-point implementation of the benchmarks is measured and

compared to those optimized with the proposed methodology, considering an

accuracy degradation threshold of 1%. Figure 3.5 illustrates the achieved re-

sults for five different systems-on-chip of different computing power: SiFive

Freedom U740 (based on the RISC-V ISA), ARM Cortex A9 MPCore, AMD

EPYC 7551, Intel Xeon Gold 6154, Intel i7-4790, and Intel i9-10900K. The

measured speed-ups are strongly correlated to the reduction of memory ac-

cesses in the optimized benchmarks: on one side, it decreases the energy-per-

inference and, on the other side, it reduces the probability of cache misses,

with clear performance benefits. Codebooks are usually small and, therefore,

are retrieved from local cache memories. Moreover, thanks to their reduced

bitwidth, multiple indexes are read at each word access in the main memory,

thus reducing the number of (slow) read operations. Improvements are in-

deed more substantial in high-performance CPUs, for which the clock-cycle

cost of memory accesses is far more expensive than the one required for arith-

metic operations (e.g., multiplications and additions in MACs). Therefore,

the achieved reduction of memory operations limits the number of cache

misses, thus producing very high speedups. Average improvements range

from less than 5% on RISC-V and ARM processors, to more than 80% on

high-performance Intel CPUs. Our results also suggest that the overhead

considered of shift and mask operations required to extract the bit fields cor-

responding to low-bitwidth indexes from memory words, as well as the time

required to retrieve floating-point weights from the codebooks, are negligible

with respect to memory read and write operations.
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4

4.1 Introduction
In Chapter 1, I have explained how deeply the edge computing paradigm [30]

is revolutionizing the field of Artificial Intelligence (AI), impacting scenarios

ranging from personalized healthcare to astronomy [9, 11, 15, 17, 19]. Dis-

cussing the benefits of this computing strategy, I focused on Convolutional

Neural Networks (CNNs) as extensively investigated models, with several

optimization efforts proposed by the research community. Their increasing

complexity translates into very compute-intense workloads, demanding the

execution of millions of multiply-accumulate (MAC) operations. This trend,

strains the capabilities of ultra-low-power embedded systems, especially in

the case of edge computing. Two widely employed optimization avenues

include pruning approaches [35], which remove specific neural connections

or entire computational blocks from CNN models, and quantization strate-

gies [33], that instead reduce the bitwidth of CNN operands. In Chapter 3, I

have presented codebook-based representation as another approach to re-

duce the memory requirements of CNN models, proposing a methodology to

compress CNN models (or the E2CNNs implementations discussed in Chap-

ter 2) targeting general-purpose computing devices, that do not necessarily

employ specialized hardware resources. That approach targets the case of

architectural designs where the computing system is already defined, thus

not allowing the introduction of custom HW accelerators.
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Nonetheless, I have also underlined that, in general, a hardware-software

(HW-SW) co-design approach is key to achieving important gains in com-

putation efficiency. Herein, I analyze possible HW-SW co-design strategies

to improve energy efficiency in embedded systems. Indeed, another way to

optimize the performance of CNNs is the use of approximate operators that

trade arithmetic correctness for efficiency [87]. The implementation of hard-

ware units producing approximated arithmetical results can be beneficial

to reduce energy in AI applications. Since models like CNNs can tolerate a

certain degree of noise, the exact multiplier and adder units can be effec-

tively replaced by inexact counterparts, without significantly affecting their

output quality. The main advantage is that inexact arithmetic operators are

specifically optimized from area, energy, and latency perspectives, ultimately

allowing the control of the trade-off between introduced approximation and

efficiency improvements.

Focusing on inexact multipliers, I propose a two-stage optimization method-

ology where inexact arithmetic is employed in carefully selected layers of CNN

models to increase their inference efficiency while abiding by user-defined

accuracy constraints. The optimization strategy combines quantization and

inexact arithmetic with a sensitivity analysis that evaluates the robustness

of individual CNN layers to select the ones that are robust enough to be exe-

cuted using an approximate multiplier. This approach has been presented

in [88].

4.1.1 Approximate computing

In general terms, the approximate computing paradigm encompasses strate-

gies trading off the exactness of computed outputs with performance metrics

such as runtime and energy consumption [89]. Approaches and studies re-

lated to Approximate Logic Synthesis (ALS) are of particular relevance in this

regard, because they can derive inexact, yet extremely efficient, arithmetic cir-

cuits for widely used operators [90]. These can then be employed as building

blocks for more complex hardware accelerators [91].

Adders represent one of the most investigated classes of arithmetic units

as they are largely employed in most applications and workloads, and also
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because they are the fundamental building blocks for more complex units

(e.g., they can be combined to implement multipliers). In inexact operators,

the arithmetic approximation is tuned at design time and typically introduced

at the gate level. For example, XOR gates are required to compute the sum bit

in half adders. However, replacing the XOR gate with an OR gate introduces an

error in a single row of the corresponding 4-entry truth table. Indeed, when

both inputs are ‘1’, the XOR gate returns ‘0’, while the OR gate outputs ‘1’.

For the other three combinations, both implementations produce the same

result. Still, the OR implementation is a much better option in terms of area,

latency, and energy, thus being a good candidate to leverage the arithmetic

inexactness to improve efficiency. As a result, approximate operators such as

adders and multipliers can be designed using this gate-level approximation

to construct inexact alternatives [50].

4.1.2 Approximations in machine learning

Thanks to their intrinsic redundancy and robustness, machine learning mod-

els, and CNNs in particular, have been extensively studied in conjunction

to approximate computing methods. In a sense, most of the techniques

discussed in the previous chapters can be seen as forms of approximate com-

puting. A schematic representation of the different optimization methods

that introduce approximation into CNN models is summarized in Figure 4.1.

Removing convolutional filters from a baseline CNN model (i.e., pruning)

is indeed a form of approximation, as the objective is to obtain a simplified

architecture that, compared to the input network, produces similar output

qualities, but exhibits a lower number of parameters. The approximation

introduced by quantization is an even more standard way to consider approx-

imate computing in CNN models. In fact, reducing the arithmetic precision

of weights and activations means approximating inputs and outputs with

respect to the floating-point values. Weight clustering introduces inexactness

in a way similar to quantization. Indeed, clustering weight values and replac-

ing them using the computed centroids is another form of approximation.

Finally, approximate operators are circuits of high interest in the machine

learning community. Among the plethora of approximate operators, this

chapter restricts its focus to multipliers, mainly due to their relatively high

energy footprint (e.g., with respect to adders). Moreover, as the main bench-
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Figure 4.1: Common optimization strategies for CNNs usually introduce a
specific form of approximation. Pruning reduces computing
complexity (a), while quantization and clustering approximate
data values (b, c). Finally, approximate operators implement
inexact arithmetic (d).

marks evaluated in this thesis are neural network models, multipliers result

in highly stressed units when executing these workloads and can hence signif-

icantly contribute to the overall energy consumption of an edge computing

node.

4.1.3 Approximate multipliers

Approximate multipliers are of particular interest when designing approxi-

mate arithmetic units for CNN accelerators, as they usually exhibit parallel

and compute-intensive structures, where a major contribution to resource

and energy budgets is the arithmetic logic in their datapaths [92, 93]. The

authors of [55, 94] highlight that, when considering CNNs, multipliers are the

most amenable target for approximation. In fact, multipliers typically present

a high energy footprint and are largely used in neural networks that require a

very high number of multiplications to run inference. ALS methods can be

used to design approximate operators of specific approximation degrees. For

example, these methods are used by the authors of [50] to derive a multitude

of adders and multipliers which differ in their physical characteristics as well

as in the inexactness degree of their outputs.
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Instead of focusing on approximate multipliers design for CNN efficient exe-

cutions, this chapter presents an application-mapping methodology, aiming

to leverage the available energy-saving opportunities in inexact hardware

resources while controlling accuracy degradation. Similarly to the codebook-

based compression methodology discussed in Chapter 3, the impact of inex-

act arithmetic on CNNs output quality cannot be evaluated at design time, as

the effects also depend on the CNN structure and on the application com-

plexity. For example, the authors of [55] analyzed the impact of different

inexact multipliers on the convolutional and fully-connected layers of VGG16

and concluded that the first and last layers are particularly sensitive to ap-

proximation. Based on this observation, they suggest a hybrid approach

where only the central layers are executed using approximate multipliers. A

similar observation is presented in [95], although the authors of this work

investigate the higher sensitivity of the first and last layers towards analog

noise. Nonetheless, this chapter will show how the finding of [55] does not

hold in general, when applied to diverse CNN models.

4.2 Unleash inexact arithmetic in CNNs
This section shows that the judicious use of approximate multipliers in highly

optimized (quantized) models can further improve efficiency beyond that

attainable by quantization alone. Hence, the proposed approach carefully

maps them to execute specific CNN layers and combines them with orthogo-

nal state-of-the-art CNN optimization strategies to fully exploit their benefits.

To guide the selection of CNN layers where inexact arithmetic can be applied

while abiding by a certain user-defined accuracy level, I propose a heuristic

optimization strategy that evaluates the resiliency of individual layers and

that aims at improving efficiency while limiting the search space to reduce

the complexity and runtime of the proposed methodology. This approach log-

ically separates the approximation degree of the employed inexact multiplier

from the target accuracy level to achieve, making these two values indepen-

dent input parameters in the developed methodology. Like other previous

works analyzed in previous chapters, I have noticed that studies on approx-

imate multipliers for CNN models do not explicitly control accuracy [55].

Conversely, I consider the accuracy-driven nature of the proposed optimiza-
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tion strategy a key element in improving state-of-the-art proposals. Therefore,

I present an incremental mapping strategy, where accuracy is effectively con-

trolled at each optimization step, independently of the approximation degree

of the multiplier itself.

As also done for the codebook-based compression methodology presented

in Chapter 3, I transform the input single-instance CNN into an E2CNNs

equivalent to improve its robustness. Then, I combine the use of inexact

arithmetic with a tailored per-layer quantization and show how the combi-

nation of the two methods can be effectively employed to fully leverage the

available hardware resources to reduce energy.

4.2.1 Methodology overview: a co-design vision

The methodology discussed in this section combines algorithmic and hard-

ware optimizations into a single design approach. On the algorithmic side,

the E2CNNs methodology presented in Chapter 2 and a HW-aware per-layer

quantization scheme are employed. Concerning E2CNNs, the preliminary

hypothesis is that its higher robustness against memory errors can be also

leveraged in the presence of arithmetic approximations, thus allowing for

more extensive uses of inexact resources while achieving a certain accuracy

level. Experiments presented in Section 4.3 confirm this intuition. Instead,

the proposed quantization strategy is oriented toward the available hard-

ware elements: it considers the available multipliers to determine acceptable

quantization levels. An overview of the overall methodology is depicted in

Figure 4.2.

4.2.2 Heterogeneous per-layer quantization

The methodology summarized in Figure 4.2 aims at effectively exploring the

wide space of candidate designs that can result from different combinations

of ensembling methods, heterogeneous quantization, and inexact operators.

The optimization methodology accepts as input a single-instance CNN. First,

it transforms the baseline model into an E2CNNs equivalent to increase

robustness (and accuracy). Then, it applies a per-layer quantization to reduce

the use of memory bandwidth and computational resources in each layer. An
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CNN using exact/inexact 
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Figure 4.2: The proposed two-stage methodology. It combines together
E2CNNs, heterogeneous quantization strategies, and approxi-
mate computing to improve inference efficiency.

analysis of the layers of the baseline CNN model estimates their sensitivity

to approximation due to a target approximate operator. Finally, it leverages

the outcomes of the algorithmic-level optimizations and the results of the

sensitivity analysis to map the quantized E2CNNs design on approximate

hardware resources, exploiting their lower power consumption to increase

inference efficiency. These steps are implemented offline in two distinct

stages.

4.2.2.1 Stage A: Robustness-Aware CNN Optimization

The input single-instance floating-point model is optimized in a two-step

process. First, the structure of the input model is transformed into an E2CNNs

design to improve accuracy and robustness against data perturbations (En-

sembling in Figure 4.2). E2CNNs is derived by combining filter pruning and

replication following the methodology presented in [56] and discussed in

Chapter 2. Then, a uniform quantization scheme employing 8-bit weights

and 16-bit activations (i.e., an 8/16 quantization scheme) is applied to all
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the obtained CNN instances during the last training epochs. Previous experi-

ments and studies have already shown that such a quantization level does

not significantly reduce the baseline floating-point accuracy (see results in

Chapter 2 or [54, 56]).

The generated ensemble is then further optimized with a second quanti-

zation step (Per-layer quantization in Figure 4.2). This phase targets each

instance individually and proceeds per layer in topological order, reducing

the bitwidth of weights and activations to 4 and 8 bits, respectively (i.e., a

4/8 quantization scheme). The 4/8 quantization level is applied to a certain

layer only if the resulting accuracy abides by a user-defined constraint. Oth-

erwise, the previous 8/16 quantization level is retained. When all layers (of all

CNN instances) have been considered in the quantization optimization loop

this procedure ends. As introduced before, CNN ensembling and per-layer

quantization are employed in a combined approach. On one hand, the high

robustness of E2CNNs supports a more intense use of approximation, either

implemented in the form of inexact arithmetic or in the form of quantization.

On the other hand, E2CNNs also enables a more fine-grained heterogeneous

quantization, because of the two degrees of heterogeneity obtained thanks to

the multi-layer optimization (internal heterogeneity) in a multi-instance ar-

chitecture (external heterogeneity), as presented in Chapter 3. Moreover, the

more compact quantization scheme applied to specific layers also reduces

memory size and computing requirements. More importantly, it also im-

proves efficiency by enabling the use of simpler, and therefore more efficient,

multipliers for the execution of 4/8 quantized layers.

4.2.2.2 Stage B: Mapping on Inexact HW Resources

When executing a certain subset of CNN layers using a target approximate

multiplier, the impact on accuracy is unpredictable at design time. The

result is that a cautious mapping strategy is required to prevent undesirable

output quality degradations. Therefore, in the second stage of the proposed

methodology, a heuristic approach is used to select the layers robust enough

to be implemented using inexact arithmetic. Only the layers quantized using

the 8/16 scheme are considered candidate layers for the use of approximate

arithmetic (i.e., the layers quantized more aggressively in Stage A are executed
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with exact multipliers). First, the heuristic orders the layers according to their

approximation sensitivity (Sensitivity analysis in Figure 4.2). Sensitivity is

measured by instantiating a target approximate multiplier in only one layer of

the single-instance CNN at a time to evaluate the resulting inference accuracy.

This analysis is performed on the initial single-instance baseline, uniformly

quantized on the 8/16 scheme. The results of this analysis are then extended

to the CNN instances that compose the generated E2CNNs design.

First, I have tested the same sensitivity analysis on each CNN instance of

different E2CNNs implementations and found that very similar outputs are

produced. Hence, these results indicate that layers’ resiliency may be more

closely associated with their size and structure than with their actual weight

values. Then, such an approach reduces the runtime execution of the heuris-

tic method and optimization loop as the sensitivity analysis can be executed

only once. Potentially, this stage can be executed in parallel to stage A, as

it operates on the input single-instance model. Moreover, in contrast to

an impractical exhaustive exploration, this heuristic can efficiently scale

to large CNN applications. Indeed, being L the number of convolutional

and fully-connected layers, the complexity of the presented methodology is

linear in L, and can be thus expressed as O (L). In fact, the heterogeneous

quantization optimization and the analysis to map CNN layers onto inexact

multipliers are themselves of linear complexity. Therefore, applying them

in sequence makes the entire procedure linear as well. The low complexity

degree of the proposed heuristic methods enables a relatively fast design

step, although it cannot guarantee that the optimal mapping configuration

is found for specific accuracy thresholds. Such a solution can be only pro-

vided by an exhaustive exploration that would need to enumerate all the

possible combinations (and test them). Thus, its complexity would be O (3L),

since 3 alternative implementations exist for each layer (i.e., 4/8 quantization,

8/16 quantization, 8/16 quantization with inexact multipliers), preventing its

applicability in almost any practical application.

The choice of introducing approximation only in 8/16 quantized layers is well

motivated by the results presented in Section 4.3. Still, preliminary tests on

multiple 4/8 approximate multipliers available in [50] show that they all have

a very large impact on accuracy when compared to their exact alternative.
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Furthermore, the energy savings due to the use of an exact multiplier for

4/8 quantized layers is significantly higher than the one obtained by using

inexact multipliers in 8/16 ones. Therefore, the proposed strategy allows

the use of an approximate multiplier in 8/16 quantized layers only, using

an exact implementation in the other layers. From the observation of larger

savings from quantization than from approximate arithmetic derives also the

choice of applying the heterogeneous quantization stage before the injection

of arithmetic approximation. In fact, the two steps are executed using the

full user-defined accuracy margin. Therefore, the initial quantization phase

maximizes the number of layers quantized more aggressively, at the cost

of leaving little or no additional accuracy degradation to trade off when

introducing inexact arithmetic. This greedy approach is also motivated by a

second observation showing how the use of certain approximate multipliers

in individual layers may not even affect the output quality of the model

(although a more extensive use definitely does it).

The results of the sensitivity analysis are then combined with the optimized

ensemble, to iteratively introduce approximate multipliers in specific lay-

ers of the CNN instances of E2CNNs, starting from the least sensitive ones.

This phase terminates when no further layer can be approximated while

complying with the accuracy constraint.

4.3 Results

4.3.1 Experimental Setup

Similar to the experiments presented in previous chapters, multiple CNN

benchmarks are considered to evaluate the benefits of the proposed optimiza-

tion strategy. For this analysis, the following models are used: AlexNet [72],

VGG16 [83], GoogLeNet [74], ResNext [84], and MobileNet [76], all evaluated

considering their Top-1 classification accuracy on the CIFAR-100 dataset [73].

These models are trained in PyTorch [85], using fake quantization functions

as presented in [77] for the last 20 training epochs. Fake quantization pre-

serves floating-point arithmetic, tuning weights and input activations of

convolutional layers according to the desired quantization scheme. In this
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way, these layers are still executed using floating-point arithmetic, but input

operands are adjusted forcing them to assume values representable in the

target quantization level. Therefore, this approach simulates quantization in

the training process, but does not exactly reflect real fixed-point arithmetic.

For this reason, accuracy evaluations are performed using a C++ inference

solver, as discussed in Section 2.3.1.

As in [56], E2CNNs designs containing 2, 4, or 8 instances are evaluated,

presenting the results of the configuration achieving the highest accuracy.

Efficiency is measured as the energy required by all exact and inexact multi-

plications executed in a CNN inference. The overall energy impact of MAC

operations at the chip level is architecture-dependent: on one side, it is usu-

ally relatively low in single-core platforms where data movements account

for the largest fraction of energy consumption. On the other side, it can dom-

inate in multi-core edge AI accelerators comprising hundreds of processing

elements [96], thus justifying this methodology.

Compared to the evaluation method implemented in [48], where inexactness

is achieved by reducing operands’ precision (i.e., similar to the effects of

quantization), this study emulates the behavior of a (possibly inexact) target

multiplier. To do so, I extend the developed C++ inference solver by replacing

all multiply instructions with custom multiply implementations emulating

the target inexact multiplier. The C++ code serving this purpose is publicly

available [50].

Additionally, a second difference with respect to [55] is that the authors of

that work apply approximation to float16 arithmetic by using approximation

matrixes that simulate inexact operators. Instead, two distinct integer approx-

imate multipliers are presented here. As in [88], I present an analysis showing

the accuracy/energy results achieved employing two inexact multipliers se-

lected from [50]. The selected multipliers differ in the approximation degree

and serve to illustrate the applicability, effectiveness, and hardware-agnostic

characteristics of the proposed methodology. In particular, the structure of

the considered approximate multipliers is provided by [50] in the form of a

Verilog description and is derived by employing a multi-objective Cartesian

genetic programming approach (CGP), using various exact implementations
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as baselines. Among the large number of potential candidates provided by

this library, the two presented in this thesis have a significant approximation

degree, which allows me to present two considerations: first, their significant

arithmetic error mandates a precise mapping methodology since their use

in multiple layers can critically impact the CNN outputs. As I will show later

on in this section, using one of the two approximate multipliers to run all

CNN layers has a dramatic effect on accuracy. Second, although their highly

inexact nature results in significant energy savings (i.e., compared to exact

implementations or other inexact alternatives), I will show that the imple-

mentation of an exact 4/8 multiplier (i.e., an exact implementation designed

to operate with inputs of lower bitwidth) still enables more significant energy

reductions.

To perform a fair comparison, the structure of the employed inexact mul-

tipliers is adapted to match the bitwidth of input and output operands in

the quantized layers of the CNN models considered in this study: indeed,

the original 16-bit multipliers defined in [50] are over-dimensioned for the

8/16 layers of the considered benchmarks, as, in the experiments I discuss,

one input operand (i.e., the weight) requires only 8 bits. Therefore, the origi-

nal Verilog implementation is modified, adjusting the bitwidth of input and

output operands, as well as the bitwidth of the connected internal compo-

nents. I characterized the power consumption of the circuits using Synopsys

Design Compiler, employing HVT cells from the 40LP TSMC technology li-

brary (40nm, low power). The error induced by approximation is measured

in terms of Mean Relative Error (MRE) by running a C++ simulation over all

the possible input combinations. The synthesis and simulation results of the

employed multipliers are summarized in Table 4.1. Exact16 and Exact8 are

exact multipliers used in 8/16 and 4/8 layers, respectively, while MulF6B and

Mul8VH are the target approximate multipliers used only in 8/16 layers.

As convolutional and fully-connected layers account for the largest percent-

age of MACs in the majority of recent CNN architectures, the proposed ap-

proach supports the use of arithmetic approximation in both types of layers

(as opposed to [94], where only convolutional ones are candidate layers for

approximation). To validate the methodology presented in Section 4.2, a

system featuring two exact multiplier implementations (i.e., Exact16 and
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Table 4.1: Operands bitwidth, mean relative error (MRE), and area/power
characterization of the multipliers used in the proposed experi-
ments.

Multiplier Bitwidth MRE (%) Power (µW) Area µm2

Exact16 (8 × 16) N/A 277.5 622.5
Exact8 (4 × 8) N/A 39.9 94.8
MulF6B (8 × 16) 5.9×10−5 237.3 441.7
Mul8VH (8 × 16) 1.9×10−3 137.3 192.9

Exact8) and a single approximate multiplier (i.e., either MulF6B or Mul8VH)

is considered in the following experiments.

4.3.2 Sensitivity analysis

Before focusing on the accuracy, energy, and area results achieved by the

proposed optimization methodology, I will first show the results of the sen-

sitivity analysis (discussed in Section 4.2) used to estimate the resiliency of

individual layers of a CNN model against arithmetic approximation. This

analysis is conducted using the Mul8VH inexact multiplier, since its higher

approximation degree results in more significant accuracy degradations, ul-

timately better illustrating the intended considerations. A summary of this

investigation is presented in Figure 4.3. The obtained results demonstrate

that the measured resiliency is highly layer- and model-dependent. First,

these results indicate that the use of a certain inexact multiplier (i.e., Mul8VH

in this case) to run a specific layer of a CNN model affects accuracy in a way

that varies significantly across different benchmarks. Second, these results

also highlight that the obtained accuracy drop depends on the CNN structure.

For example, the drop never exceeds 5% in VGG16. On the contrary, it can be

very close to 10% in multiple layers of MobileNet and around 20% in AlexNet,

on average. In particular, the high drop shown by this latter model can be

due to the absence of normalization layers, which demonstrate to be highly

effective in mitigating this behavior1. Finally, the impossibility of predicting

the resiliency of CNN layers at design time makes the sensitivity analysis a

1Normalization layers are instead included after convolutional layers in all the other CNN
models considered in this analysis.
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Figure 4.3: Sensitivity analysis performed on the five considered bench-
marks. The accuracy drop obtained by instantiating, one at a
time, a target approximate multiplier (i.e., MUL8VH in these
plots) in each layer of the CNN models is measured and it is
considered as a proxy of robustness.
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Figure 4.4: Achieved accuracy when using Mul8VH in an increasing number
of layers of both VGG16 and an equivalent E2CNNs implemen-
tation. Following the topological order of VGG16 layers (black)
and E2CNNs (red) to introduce approximation produces higher
accuracy drops than introducing instead approximation follow-
ing the order suggested by the proposed sensitivity analysis,
both in the single-instance VGG16 (blue) and the correspond-
ing E2CNNs (green).

precious tool allowing a selection of candidate layers for the use of inexact

arithmetic. Figure 4.4 confirms the benefits of this analysis by comparing the

accuracy drop due to the use of Mul8VH in an increasing number of layers

of the VGG16-CIFAR100 benchmark. The figure shows that simply introduc-

ing approximation in the VGG16 layers following a topological order (i.e.,

introducing the approximate multiplier from the first layer to the last one)

performs much worse than introducing inexact arithmetic in an increasing

number of layers following the order suggested by the sensitivity analysis.

The major benefit of this second approach is that, for any given accuracy

threshold, the number of layers executed using the approximate multiplier is

higher, thus increasing the potential energy savings.

4.3.3 Analysis of the QoS/Energy trade-off

Table 4.1 shows that the two considered inexact multipliers consume 15%

(MulF6B) and 50% (Mul8VH) less than the alternative exact implementation

(Exact16), at the cost of introducing a relatively large arithmetic approxima-
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tion. Clearly, more aggressive inexact multipliers like Mul8VH enable larger

energy savings. Nevertheless, the use of Exact8, enabled by the heterogeneous

quantization phase, offers energy savings of 85%, without introducing arith-

metic errors in the computed products. The approximation in 4/8 layers is

hence derived only from the quantization process that reduces the precision

of weights and activations, while arithmetic operations do not generate any

approximate results. Notice also that, at this point, the accuracy degradation

due to this type of approximation is already evaluated during the quantiza-

tion process. Therefore, the use of the Exact8 multiplier does not induce

any further output quality reduction. These findings, combined with the

more general observation that quantization has a lower impact on accuracy

than inexact arithmetic, have driven the choice of pushing quantization as

much as possible in the first stage of the proposed co-design optimization

approach.

To appreciate the benefits of this methodology from an accuracy/energy per-

spective, I include in Figure 4.5 the results of an analysis conducted on the

considered pool of benchmarks, showing the accuracy level, and the corre-

sponding energy savings, achieved in each step of the presented strategy. In

each plot, the black mark represents the baseline uniformly quantized single-

instance CNN. These plots consider the Mul8VH as a target inexact multiplier.

First, this model is transformed into an E2CNNs equivalent (yellow mark).

The main result of this transformation is an accuracy improvement ranging

from 1.8% in AlexNet, to more than 6% in ResNext. Then, the results show

that the largest fraction of energy savings is achieved by heterogeneously

quantizing the E2CNNs implementations, enabling Exact8 in all 4/8 quan-

tized layers. The results reported in Figure 4.5 consider an accuracy threshold

of 5% and show energy savings ranging from 22% in ResNext to more than

80% in VGG16.

Finally, the last stage of the proposed methodology adds inexact arithmetic

in specific 8/16 quantized layers, by executing them using Mul8VH instead

of Exact16 in the plots depicted in Figure 4.5. The accuracy-energy numbers

obtained with our approach (green triangles) demonstrate that approximate

operators can be effectively used to increase inference efficiency, allowing

up to 20% more energy reductions. The amount of savings due to the intro-
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Figure 4.5: Accuracy/energy trade-off in the considered benchmarks con-
sidering Mul8VH as target inexact multiplier. The accuracy of
baseline single-instance models (black) is improved by trans-
forming them into E2CNNs equivalents (yellow). A per-layer
quantization strategy enables large energy gains by supporting
the use of the Exact8 multiplier (blue). Further energy savings
can be retrieved by the cautious use of approximate multipli-
ers as suggested by the proposed solution (green), while an
indiscriminate use of approximation in all 8/16 layers results
in unacceptable accuracy drops (red).
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duction of inexact arithmetic is linearly proportional to the number of 8/16

layers using the approximate multiplier. In turn, this number depends on

multiple factors: on the one hand, it depends on the heterogeneous quanti-

zation applied in the first stage of this methodology. In fact, a high number of

aggressively quantized layers and a large consumed accuracy margin return a

lower possibility of mapping the remaining 8/16 layers into inexact arithmetic

resources. This effect is clearly visible in VGG16, where most of the energy

savings are due to quantization. On the other hand, the number of 8/16 layers

that can be executed with arithmetic approximation depends on multiple

factors: first, the lower the user-defined accuracy level, the higher the magni-

tude of approximation that can be injected. Second, the intrinsic degree of

resiliency of the target architecture is directly proportional to the number of

layers that can be approximated. Moreover, the higher the accuracy improve-

ments of E2CNNs, the higher the accuracy margin to trade-off by employing

more aggressive quantization schemes and by using more frequently inex-

act arithmetic. When instead considering MulF6B as a target approximate

multiplier, the proposed solution matches the fully inexact mapping strat-

egy. This important result indicates that when considering multipliers that

introduce a limited arithmetic error like MulF6B, the described methodology

can maximize energy savings by allowing inexact arithmetic in all 8/16 layers.

Nonetheless, it also demonstrates that this specific mapping strategy is not

a viable solution in general, especially for tight accuracy constraints, as the

conducted experiments show critical accuracy degradation in the case of an

extensive use of Mul8VH.

Figure 4.5 indicates that heterogeneous quantization and approximate com-

puting can be effectively combined to increase inference efficiency in CNN

benchmarks. Yet, this combination should be carefully tailored. The green

triangles representing the accuracy/energy characteristics of our optimized

models show indeed that the two approaches can be effectively combined, by

employing careful accuracy control in the optimization loop. Conversely, the

approximation degree introduced when employing Mul8VH indiscriminately

in all 8/16 layers can be too large, resulting in an unacceptable (and unpre-

dictable) accuracy degradation (red circles). In some cases, this drop could

be even higher when targeting more inexact multiplier implementations.

72



4.3 Results

0 20 40 60 80 100 120 140 160 180

Mul8VH

+6%

+31%

Relative area occupation (%)

Exact16

SIMD Exact 8/16

MulF6B +71%

Figure 4.6: Area overhead relative to the Exact16 multiplier implementa-
tion. The overhead required to extend the Exact16 multiplier
to enable SIMD executions of 8-bit multiplications is high-
lighted in green. The overhead for instantiating MulF6B and
Mul8VH is illustrated in orange and red, respectively.

As a consequence, only an accuracy-driven optimization strategy can solve

the challenge of properly mapping CNN layers into either exact or inexact

arithmetic operators.

To conclude, the achieved results show 59.4%, 83.6%, 42.7%, 39.9%, 82.6%

energy reductions for an accuracy degradation limited to 5% in AlexNet,

VGG16, GoogLeNet, ResNext, and MobileNet, respectively, when compared

to baseline exact single-instance implementations. Moreover, the proposed

approach is able to retrieve up to 78% of the energy gains achievable when

employing Mul8VH in all CNN layers, but preserving accuracy to user-defined

levels.

4.3.4 Area overhead

A practical implementation of the proposed framework employing exact and

inexact arithmetic requires the deployment of three multipliers: Exact8 is

used for 4/8 quantized layers, while Exact16 and an approximate multiplier

are used for 8/16 quantized ones. The Exact16 multiplier can be implemented

by properly combining Exact8 units. In this way, 4/8 quantized layers can be

executed using a Single-Instruction Multiple-Data (SIMD) approach, where

the two individual Exact8 units operate independently on the input data (i.e.,
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two 8-bit multiplicands and two 4-bit multipliers). Synthesis results of this

SIMD multiplier design indicate that the additional logic and routing required

to implement it incur just a 6% area overhead with respect to a non-SIMD

16-bit multiplier. In this way, the execution runtime of 4/8 quantized layers

can be effectively halved.

The approximate multiplier must be instead instantiated as a second multi-

plier in this design. In general, the area overhead of this second multiplier

can vary significantly, with highly inexact multipliers usually having a lower

overhead than less approximate ones. Results considering the two evaluated

approximate multipliers are summarized in Figure 4.6 and show that the area

overhead for executing both exact and inexact arithmetic in the presented

design can be limited to 31% (i.e., in the case of Mul8VH). Consequently, the

ability of the proposed methodology to handle highly inexact multipliers can

limit the area overhead. In fact, the deployment of Mul8VH in conjunction

with the exact multiplier in the final design demands a smaller area footprint

compared to less inexact (and thus larger) implementations such as MulF6B,

which increases area requirements by 71%. At the same time, using Mul8VH

still increases efficiency and guarantees a user-defined output quality thanks

to a judicious per-layer mapping. Finally, although the trade-off between

accuracy and efficiency could be explored more deeply by instantiating differ-

ent approximate multipliers in different layers (i.e., according to their degree

of resiliency), the obtained results indicate that the significant area overhead

of these circuits may limit such an approach.

4.4 Conclusions
This chapter has discussed the effective use of approximate multipliers in

quantized E2CNNs designs. The proposed accuracy-driven methodology

maps CNN layers into exact or inexact arithmetic resources to reduce energy

while abiding by target output quality constraints. The illustrated approach

can be extended to other deep learning models as well, such as Recurrent

Neural Networks or transformers. More in general, any application that

makes extensive use of multiply instructions can benefit from the proposed

solution. In fact, being accuracy-driven, it can be applied to applications

having different robustness levels, ultimately ensuring a desired QoS.
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Still, the energy reductions at the system level can be very different depending

on the actual physical implementation. In fact, the addition of an approx-

imate multiplier in processor pipelines may not be advantageous. While

being one of the most energy-hungry arithmetic units, the multiplier con-

sumes far less energy than data transfers between the processor and the

memory elements. As a consequence, despite the significant energy gains

in the processor, the overall energy savings at the system level can be mini-

mal. Conversely, this picture can be quite different when targeting hardware

accelerators. For example, systolic arrays can be composed of hundreds of

processing elements (PE), each necessarily instantiating a multiplier unit,

among others. In these highly-parallel architectures, the energy cost is instead

dominated by the arithmetic and logic operations of PEs, thus motivating the

use of inexact arithmetic as a tool to reduce energy.
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In this chapter, the focus is on a novel class of hardware accelerators, that,

due to their particular structure, mandate mindful co-design strategies. In-

Memory Computing IMC represents a new computing paradigm that over-

comes the usual Von Neumann computing structure by moving the execution

of logic and arithmetic instructions very close to the memory elements. Doing

so, IMC architectures become particularly appealing, as in-memory compu-

tation avoids energy-expensive data movements in-between processing and

storage components. At the same time, the parallelism made available by the

regular structure of memory banks presents a good opportunity to support

the typical SIMD patterns of machine learning applications. Different IMC ar-

chitectures have been proposed in the past years and a complete overview of

the main proposed solutions is presented in the following section. My focus

in this chapter is on a particular embodiment of IMC, named Bit-line Com-

puting (BC). BC accelerators can be efficiently integrated into existing SRAMs.

When two memory rows are accessed simultaneously, bit-wise operations

(i.e., AND and NOR) between the bits of the two activated rows can be re-

trieved in the bit-lines. These logic operations between the two memory rows

are then leveraged to derive more complex arithmetic operations, ultimately

allowing the in-memory acceleration of compute-intense AI workloads.

In this regard, I would like to underline that my contribution to the stud-

ies presented in the next sections is mainly focused on the hardware-aware

methodologies that optimize CNN models for their IMC inference execution.
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Instead, the physical design and implementation of IMC resources have been

proposed by Marco Rios, a colleague (and a friend) I have extensively collab-

orated with during the years of my Ph.D. As a result of a close collaboration

between the two of us, as well as with other senior research members of

the lab, a strong interaction between hardware design and application-level

optimizations pervades the presented solutions. The description of architec-

tural IMC solutions illustrated in the next sections is included anyway, as it is

key to understanding my proposed approaches for improving the inference

efficiency of the considered benchmarks.

5.1 IMC architectural design

5.1.1 Physical implementations

A wide variety of in-memory computing accelerators have been proposed

in the last years, all aiming at blending computation and storage, but ap-

proaching the challenges of IMC system integration, technology, and analog

vs. digital computation from different perspectives. Considering IMC integra-

tion in computing systems, IMC units have been proposed targeting different

levels of the memory hierarchy, either interfacing the main memory [97]

and/or caches [98], or as functional units augmenting processor pipelines

and facing register files [99].

From a technology perspective, SRAM-based [98, 100] and DRAM-based [97]

IMCs employ charge sharing, achieved by the concurrent activation of mul-

tiple memory rows. An alternative is represented by crossbar-based archi-

tectures, in which non-volatile programmable resistors are employed at the

junction of horizontal and vertical wiring, modulating their connection. Both

traditional memories and crossbars have been used to parallelize compu-

tations in the digital domain to realize logic gates [101, 102]. Nonetheless,

they can also be employed as analog devices, where current, time, and volt-

age values represent inputs and outputs. In particular, Analog In-Memory

Computing (AIMC) crossbars structures featuring non-volatile resistors are

quite common accelerators in the field of AI, thanks to their higher density

and energy efficiency [45]. AIMC crossbar architectures leverage arrays of

digital-to-analog converters to encode inputs as voltage values that gener-
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ate currents flowing through the crossbar. These currents then propagate

through wires across resistances acting as programmable weights. Output

currents are hence the result of analog matrix-vector multiplications, and are

finally converted back into the digital domain by analog-to-digital convert-

ers at the crossbar periphery. Operations on AIMC cores are done in a fully

parallel way, resulting in very potential speedups in workloads dominated

by recurrent computing patterns based on dot products. Nonetheless, as

computation is performed in the analog domain, outputs are affected by

non-deterministic noise, deviating from expected results. This is due to a

number of device and circuit non-idealities, including, but not limited to (a)

device-to-device and cycle-to-cycle conductance variations, (b) output noise,

(c) weight read noise, (d) IR drop, and (e) quantization noise [103, 104]. More-

over, these devices require the challenging co-integration of digital, analog,

and non-volatile technologies.

A second strategy to implement IMC is that of Bit-line Computing (BC) [105].

This solution can be efficiently integrated into existing SRAM memories by

adding the capability to concurrently activate multiple memory words. Bit-

wise operations can be then retrieved by employing sense amplifiers. As the

name suggests, bit-line computing relies on the behavior of the bit-lines (BL

and BL) when two word-lines (WLs) are activated simultaneously, during

the same cycle clock. Figure 5.1 illustrates this behavior, showing two SRAM

bit-cells implemented as two cross-coupled inverters connected to the same

BLs. Let’s assume to activate simultaneously two WLs. If at least one of the

two activated bit-cells in each BL stores the value ‘0’, the voltage on the BL

wire discharges to the ground through one (or both) access transistor(s) (M0)

and the NMOS of their inverter. Only when both cells store the value ‘1’ do

the corresponding BLs remain at Vdd. Therefore, the BL connection behaves

as the logic AND gate. Similarly, the negated BL signal (BL) only retains Vdd

if both cells store the value ‘0’. Therefore, Q0 and Q1 are both ‘1’ in this case,

ultimately implementing the functionality of a NOR gate.

This particular characteristic of bit-line computing accelerators can induce

data corruption due to undesirable currents flowing among the memory cells.

Previous studies have tackled this challenge in different ways: for example,

the authors of [105] reduce the operating frequency, while the authors of [106]
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Figure 5.1: Bit-line Computing (BC) operating concept. Two word-lines
are activated simultaneously and the discharge of the bit-lines
results in the logical bit-wise AND and NOR between the
accessed words.

propose 10T bit-cells as a more robust solution. Nevertheless, both solutions

either decrease the performance or imply large area overheads.

My colleagues and I have recently shown [107, 108] that such operations can

be reliably performed at high clock frequencies if the activated WLs belong to

different sets of SRAM arrays, named Local Groups (LGs). This arrangement

makes only memory cells in the same LG sharing short-distance vertical con-

nections, named local bit-lines (LBLs). During read accesses, cell values are

propagated via LBLs to the LG Periphery (LGP) circuit, which includes sense

amplifiers and read/write ports. In-memory bit-line operations are then

retrieved at the outputs of these sense amplifiers, thus protecting memory

cells from data corruption. A more detailed discussion of this approach is

presented in the next sections. The presence of bit-wise AND and NOR logic

operations at the output of the BL sense amplifiers can be leveraged to im-

plement arithmetic functionalities. For example, additions can be derived at

the array periphery with limited additional logic. Multiplications can be also

implemented as a sequence of shift-add operations between two memory

words, ultimately allowing in-memory computing to execute a wide range of

applications at the cost of minimal overhead at the memory periphery.
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BL Logic / Adder

SRAM 
memory cells

multiplicands

multipliers

partial products

MAC outputs

Figure 5.2: IMC architecture comprising multiple subarrays. Multiplica-
tions are derived by leveraging the adder and shifter units
included in the memory periphery (green area). Multiplicands
and the computed partial products reside inside the IMC, while
multipliers are streamed bit-by-bit to compute the partial prod-
ucts.

5.1.2 Implementing multiply-accumulate operations

In the previous section, I briefly discussed how arithmetic instructions such

as additions and multiplications can be effectively implemented at the pe-

riphery of memory arrays, using the bit-wise AND and NOR as baseline

signals. Herein, I present a more detailed description of the implementation

of multiply-accumulate (MAC) operations. Then, in Section 5.2, I introduce a

co-design methodology targeting a novel BC architectural solution, which,

from a HW-SW co-design perspective, I then exploit to enable an efficient

execution of optimized AI workloads. My colleagues and I have presented

this work in [101].

An overview of the proposed IMC architecture implementing MAC instruc-

tions is illustrated in Figure 5.2. It is structured as an SRAM memory array
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composed of multiple subarrays, each comprising Local Groups (LGs) as

in [98]. In this way, multiple operations among operands in the same sub-

array, but different LGs, can be performed in parallel. The figure also shows

the arrangement of multiplicands and multipliers (i.e., input operands of

multiplications): multiplicands are stored inside the memory elements and

are hence defined as In-Memory Operands (IMOs). Conversely, multipliers

are broadcasted bit-by-bit inside the IMC periphery (Broadcasted Operands,

BOs). Indeed, as previously presented in Section 5.1, multiplications are

implemented as a series of shift-add instructions. In this way, one bit of the

multiplier generates a partial product, that has to be repeatedly accumulated

to compute the final output. This arrangement enables the parallel execution

of different multiplications in multiple IMC subarrays, by broadcasting the

same bit of a multiplier to different subarrays (i.e., to multiply in parallel

the same BO with different IMOs). Importantly, the bit-by-bit streaming of

multipliers allows them to employ arbitrary bitwidths, thus supporting very

heterogeneous quantization schemes.

IMOs are latched when first read to improve performance so that repetitive

accesses to the same memory words (and the associated energy cost) are

avoided when performing multiplications. In fact, by using latches (rather

than flip-flops) the fetching of an in-memory operand and the first shift-

add operation can be performed in the same clock cycle. Since results of

in-memory operations are stored in registers inside the IMC periphery (as

opposed to SRAM cells), write-backs to the SRAM memory array are avoided

during the calculation of products. Therefore, the assertion of the Write Bit-

Lines (WBL) can be performed in parallel with the pre-charging of read bit-

lines (RBLs), since the read/write paths of flip-flops are separated, differently

from SRAMs. The result is a 2× acceleration of multiply operation compared

to state-of-the-art bit-line computing architectures [98].

At the circuit level, local groups in subarrays have their own set of local bit-

lines (LBL and LBLb). Then, depending on the actual operation, read/write

ports connect LBLs connect to Global Bit-Lines (GBL). To read a word or per-

form an IMC operation, both LBLs and GBLs are pre-charged. Consequently,

a voltage-based sense amplifier inside the LG asserts a logic value controlling

whether the GBL is discharged (or not) once the word-line is activated. Write
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Figure 5.3: Multiplication between IMO in Q0.8 and BO in Q1.4 fixed-
point formats, with the product represented Q1.7 (a). The
performed multiplication produces a 3.51% error (b), because
it is implemented as an iterative approximate algorithm based
on shift-add operations (c).

operations are performed by setting up the data on the GBLs and activating

the WL and the write port at the LG Periphery (LGP).

5.1.3 Multiplications as a series of shift-adds

The IMC architecture designed by Marco Rios, and herein used as a target

hardware resource for the proposed CNN optimizations, supports MACs in

the form (
∑

i , j ai ×b j ), in fixed-point format and between values in the range

[−1,1) encoded in two’s complement. We presented embodiments of such an

architecture in [101, 109].

Fixed-point values are usually defined according to the QN .M notation,

where N represents the number of integer bits (including the sign bit), while

M represents the number of fractional bits. For example, in [109], we scale

weight values in the range [−1,1), so that they can be represented using a

Q1.M representation. Instead, input activations are assumed to be unsigned

real numbers spanning the range [0,1), thus encoded in the Q0.M +1 format.

Figure 5.3 provides a step-by-step illustration of the operations performed

to execute multiplications. The multiplicand and the output result have the

same bitwidth since the latter is then stored inside the IMC arrays. Moreover,

the example shows that the right-shifted bit (i.e., the least significant bit, LSb)

is not always zero, thus leading to approximate products.
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Still, the implemented multiplication is safe by construction from overflows,

even if it potentially induces rounding errors. Indeed, the multiplication de-

picted in this example produces a 3.51% error in the output product. Nonethe-

less, I will show in Section 5.2.1 that this approximation leads to negligible

accuracy drops in the evaluated workloads. Notice that, the instruction in-

volving the Most Significant bit (MSb) of the multiplier adds the right-shifted

partial product to the two’s complement of the IMO (Figure 5.3-c). Compared

to an unsigned multiplication, the implementation of the two’s complement

multiplication requires extra operations, as each partial product is computed

using two right shifts and one addition. Moreover, two new operations have

to be implemented in the IMC periphery to effectively support this algorithm:

in-situ right-shift and in-situ negation (to compute two’s complements). To

speed up the execution time of multiplications and, as a result, the execu-

tion time of MACs, we have shown in [107] how the right-shift and negation

instructions can be executed concurrently with the addition.

This challenge has been addressed by the architectural solution illustrated in

Figure 5.4. First, an embedded shift circuit is introduced in the LGP to enable

the right bit shift in the register storing the partial products (Figure 5.4-a).

Then, the read ports inside the LGP are extended, so that the output from the

adjacent sense amplifier can control the discharge of the GBL (red arrows).

Figure 5.3-c represents the right-shifted bit with a red hyphen. As for all the

bits in the register, the MSb is right-shifted as well, but is also kept in the MSb

position when the shifted value is represented in two’s complement.

The two’s complement of multiplicands is computed by negating their value

inside the LGs. To implement this feature, two multiplexers that can invert

the LBL and LBLb signals are employed, as illustrated by the blue arrows in

Figure 5.4-a. The carry-in of the adder in the subarray periphery must be

set to ‘1’, and by chaining in-situ two’s complements and shifts to additions,

extra clock cycles are avoided. As a consequence, all in-memory operations

take two clock periods: the first one is used to read the operands and perform

the in-memory operation computation, while the second one is used to write

back the result inside the memory subarray.
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Figure 5.4: (a) The Local Group Periphery (LGP) schematic: blue arrows
represent the data path for the in-situ negation operation, while
red arrows show the functionality of the in-situ right-shift. (b)
architectural overview of an 8-bit array in the proposed IMC
design. (c) Multiplexers M1 and M2 output for the two-word
modes: either one 16-bit word or two 8-bit words.
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Word-level parallelism represents a second feature supported by the designed

IMC architecture. In fact, it is possible to consider the stored values as either a

single 16-bit word or two 8-bit words in the memory location of each subarray.

When representing multiplicands (stored inside the IMC array) using just

8-bit operands, the corresponding workload is effectively halved, because two

multiplications are performed in parallel in each subarray. On one side, read

and write operations are executed in the same way, regardless of the selected

mode (either two 8-bit IMOs or one 16-bit IMO). On the other hand, the

in-memory right-shift and addition must be properly adjusted to correctly

implement word-level parallelism. Figure 5.4-b presents the circuit that

enables the selection of one of these two configurations, exemplifying it with

one 8-bit (bit<n+7:n>) word. To implement a single 16-bit operation, two of

the illustrated 8-bit blocks are assembled. First, the mode selection is driven

by two multiplexers in each 8-bit block. Considering a subarray that stores

16-bit words (bit<15:0>), the table depicted in Figure 5.4-c shows the outputs

of the two multiplexers (i.e., M1 and M2) for each of the 16-bit arrays. The

M1 multiplexer controls the shift-right input on the MSb, and, as previously

discussed, the bit shifted in the bit<15> is always the MSb (i.e., s<15>).

Conversely, the shifted bit in the bit<7> is either s<7> for 8-bit modes, or

s<8> for 16-bit modes. The carry-in on the LSb (i.e., C I N in the figure) is ‘0’

for typical additions and ‘1’ for the addition with the two’s complement of

the IMO. Therefore, the carry-in of the bit<8> is either the carry C<7> for the

16-bit mode, or C I N for the 8-bit one.

5.1.4 Accelerating CNN layers

In the previous section, I presented a circuit included in the IMC array pe-

riphery to implement two’s complement multiplications, considering IMOs

as either a single 16-bit word or two 8-bit ones. Therefore, it can also sup-

port efficient execution of MAC operations between in-memory operands

acting as multiplicands and broadcast operands, acting as multipliers. The

computed MAC outputs are then stored back in the memory array. The ex-

ecution of matrix-vector operations requires minimal HW extension and is

extremely easy to implement. First, the input operands of dot products are

mapped as IMOs or BOs. Then, IMOs are initially loaded into the memory

arrays, and finally, BOs are streamed inside the LGP to perform MAC oper-
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Figure 5.5: Overview of a fully-connected layer, with output features com-
puted by applying a weight matrix to the input feature vector
(left). This layer is naturally represented as a matrix-vector
operation, whose execution can be parallelized in the multi-
subarray structure of the proposed IMC architecture (right).

ations. In line with what I have presented in previous chapters, I focus on

deep learning workloads. In particular, considering Convolutional Neural

Networks (CNNs) models, the in-memory acceleration of convolutional and

fully-connected (FC) layers is a natural target for the inference optimization

of these benchmarks. In fact, both types of layers can be implemented as

matrix-vector operations and represent the computing bottleneck of these

models. Therefore, their acceleration in IMC devices offers striking inference

speed-ups.

Fully-connected layers multiply an input feature vector with a weight ma-

trix, to compute the output feature vector, as illustrated in Figure 5.5(left).

The figure also shows how these layers can be naturally decomposed into

matrix-vector operations (top-right). To effectively accelerate these layers

into the proposed IMC arrays, the different IMC embodiments we have re-

cently proposed in [101, 109, 110] to map FC layers in multiple subarrays, as

shown in Figure 5.5(bottom-right). In this way, the same input features are

broadcasted to multiple subarrays simultaneously, to allow a parallel execu-

tion of dot products. Weight values are stored inside the IMC arrays to act as
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Figure 5.6: Decomposing convolutions into multiple partial convolutions
(mapped into multiple subarrays) to speed up their execution
and fit into individual subarrays.

IMOs, while input features are streamed as BOs. Mapping weights as BOs and

activations as IMOs maximizes data reuse of weights, ultimately speeding up

matrix-vector operations.

Conversely, 2D convolutional layers (i.e., the ones typically used when pro-

cessing images) apply a 4D-filter tensor to 3D input features. Each filter

consists of a 3D weights matrix having the same depth as the input feature,

but a much lower width and height, which determines the 2D kernel size (e.g.,

3x3 or 5x5 are common kernel sizes in modern CNNs). The convolution of a

filter with an iso-dimensional fraction of the input feature map produces one

single output element. Then, the filter is slid over the input feature matrix

to compute all output elements of the corresponding output channel. As a

result of this computing pattern, each filter generates a one-channel feature

matrix, so that the number of filters determines the number of channels at the

output of the layer. Due to the large size of convolutional layers in most CNN

architectures, they are decomposed into partial convolutions to be effectively

run in the target IMC architecture. The approach my colleagues and I have

proposed to map these layers in the presented BC architecture is summarized

in Figure 5.6. To accommodate the size of the subarray, individual input

channels are stored in different subarrays. Weights of convolutional filters are
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Table 5.1: Summary of weights and activations mapping as In-Memory
Operands (IMOs) and Broadcasted Operands (BOs) in convo-
lutional and fully-connected layers.

Operands
Layer Type

Convolutional Fully-Connected
Multiplicands (IMOs) Activations Weights

Multipliers (BOs) Weights Activations

then broadcasted as BOs to execute dot products. Finally, the partial outputs

must be summed up together to construct the output of the layer. The com-

puting pattern of convolutions is not directly expressible as a matrix-vector

operation. Nevertheless, previous works have demonstrated that an algorith-

mic and data transformation named im2col [28] can be applied to represent

these layers as matrix-vector operations. As multiple filters are applied on the

same input feature map, it is natural to map weights as BOs, to apply them

in parallel to input features stored in different subarrays (IMOs) as shown in

Figure 5.6. An opposite mapping is used for FC layers, to improve data reuse

and thus performance. Indeed, weights and activations act as IMOs and BOs,

according to the type of layer. A summary of this mapping strategy is shown

in Table 5.1.

So far, I have initially shown how bit-wise logic operations can be retrieved at

the output of BL sense amplifiers and how these outputs can be combined

with low-overhead logic to implement multiplications at the periphery of

memory elements. Then, I have described how the most compute-intense

layers of CNN inference workloads can be mapped and executed in the pre-

sented IMC architecture to speed up inference runtime. Although arithmetic

multiplications require several cycles when implemented as a series of shift-

add operations, high performance can be achieved. On the one hand, word-

level parallelism can be leveraged in each subarray by operating IMOs as two

8-bit words instead of a single 16-bit one. On the other hand, partitioning

the SRAM into different subarrays enables the parallel execution of MACs

between IMOs of different subarrays and the streamed BO.

Additionally, workload optimizations can (and should) be also employed to

reduce the bitwidth of streamed operands, ultimately reducing the number
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of cycles required to execute multiplications. Indeed, the effectiveness of

word-level parallelism and workload optimization is highly influenced by

algorithmic-level optimizations of CNN models, such as quantization and

pruning. In fact, both methods can effectively reduce the number of shift-

adds, either by reducing the bitwidth of BOs (i.e., quantization) or by reducing

the number of multiply instructions (i.e., pruning). Nevertheless, current

works on quantization do not explore this interdependence in detail. As an

example, the authors of [54] adopt a fixed 16-bit representation for activations

and an 8-bit one for weights. This approach does not suit well the proposed

IMC architecture, where an opposite quantization scheme would be more

advantageous in FC layers.

Therefore, I have proposed a novel heterogeneous quantization scheme for

the in-memory execution of CNN inferences in [101]. This methodology,

presented in the next section, underlines the importance of a HW-SW co-

optimization, where a hardware-aware model optimization can be effectively

leveraged in the underlying resources. I will show that important efficiency

gains can be harnessed when employing aggressive stances such as per-layer

quantization schemes, and that these can be effectively supported with little

hardware overhead.

5.2 An IMC-aware CNN quantization methodology
Quantizing edge AI benchmarks is beneficial from a storage perspective, as

it alleviates memory constraints, as well as from a runtime perspective, as

it also reduces the computing complexity of these models. This second per-

spective is particularly true when employing HW units that can efficiently

exploit low-bitwidth operands to improve both energy efficiency and infer-

ence runtime acceleration. Common quantization schemes employ uniform

quantization on 8 or 16 bits, as these schemes are extremely effective for

accelerators supporting integer arithmetic. Nevertheless, the peculiar archi-

tecture of the proposed In-Memory Computing (IMC) accelerator enables

even larger gains when more fine-grained quantization schemes are used. In

fact, data parallelism can be achieved by quantizing In-Memory Operands

(IMOs) to just 8 bits, and the execution time of individual MAC operations

can be reduced by more compact quantization levels in the Broadcasted
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Figure 5.7: Hardware-aware quantization methodology (left). Running
example showing the target operands optimized during each
phase (right).

Operands (BOs). With this in mind, I have proposed in [101] the quantization

methodology summarized in Figure 5.7. For simplicity, the example shown in

figure illustrates a CNN model featuring only two convolutional layers and a

fully-connected one.

The bitwidth of both multiplicands and multipliers is adjusted in a multi-

stage process that leverages the flexibility of the presented IMC architecture

to optimize runtime and efficiency. Input of this quantization strategy is a

uniformly quantized CNN model, having 16-bit multiplicands (i.e., IMOs) and

8-bit multipliers (i.e., BOs), as shown in Figure 5.7-a. As already discussed,

this quantization scheme demonstrated to achieve iso-accuracy levels when

compared to floating-point, as also shown in [106] and [54]. I consider these
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homogeneously quantized models as baselines to evaluate and compare the

resulting CNN models optimized with the proposed strategy.

The first step of the proposed quantization strategy tailors the bit-width of

BOs in each layer independently (Figure 5.7-b). To this end, the bitwidth of

BOs is iteratively reduced starting from the layer having the highest num-

ber of MAC operations (and therefore the higher potential for savings). To

compensate for the approximation induced by the bitwidth reduction of the

BOs in a certain layer, the network is then re-trained for a small number of

epochs. Then, the accuracy of the resulting model is checked: if the accuracy

degradation exceeds a user-defined threshold, the previous BOs bitwidth

is re-employed. In the experiments presented in Section 5.2.1, I consider

a threshold of 1% to show how significant energy savings can be achieved

without sacrificing accuracy. The optimization loop proceeds by considering

all the convolutional and fully-connected layers of the CNN, trying to reduce

the bitwidth of BOs by one bit at each optimization step. Once all layers

have been processed, the described iteration repeats, trying to further reduce

the BOs bitwidth in all layers from which the methodology hasn’t previously

backtracked (i.e. because of unacceptable accuracy values). When no further

bitwidth reduction is possible, this first phase ends.

Focusing on convolutional layers, it turned out that a large number of filters

do not use the entire value range for weights representation, especially after

the above-mentioned heterogeneous quantization procedure. As illustrated

in Figure 5.7-c, the proposed method drops, without loss of accuracy, the

most significant bits in each filter if allowed by weight ranges. For example, if

the value range of a filter is R ⊂ [−0.25,0.25), two MSbs can be dropped, and

outputs should be divided by 2Dr opped_bi t s = 4. It also happened to obtain

filters having all weights equal to zero. Thus, this stage removes them from

the CNN model, without incurring any accuracy degradation.

Finally, the last step of the optimization flow (Figure 5.7-d) reduces the

bitwidth of IMOs. In this way, it leverages the word-level parallelism sup-

ported by the memory arrays of the IMC architecture. Similarly to the ap-

proach adopted for adjusting the bitwidth of BOs, the bitwidth of IMOs is

tailored on a per-layer basis. However, in this case, only two bitwidths are
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admitted (i.e., either the baseline 16-bit IMOs or more compact 8-bit IMOs),

which correspond to either one or two values per memory word, respectively.

While, in principle, this approach could be extended to four 4-bit values or

eight 2-bit values per word, such settings would incur unacceptably large

accuracy degradations and higher area overheads.

5.2.1 Methodology evaluation

5.2.1.1 Experimental Setup

An IMC architecture composed of 32 subarrays of 640 bytes each and inter-

faced to an external read/write port using an H-tree interconnect is consid-

ered in the proposed experiments. With a methodology similar to the one

presented in [98], the proposed IMC architecture is implemented as a full-

custom design, evaluated using hspice energy and timing characterization.

Implemented using a 28nm CMOS technology from TSMC, the architecture

can operate at a maximum frequency of 2.2 GHz. In each subarray, read and

write operations of 16-bit words cost 376pJ and 414pJ, respectively, while

an in-memory shift-add instruction consumes 381pJ. Each subarray has an

area of 1240µm2, of which 26.5% is used for the in-memory computing logic

and the local group periphery circuit. Only 6.4% of the total area is used to

implement the in-situ negation, embedded shift, and word-level parallelism,

while 67% of the area is composed of SRAM cells.

A cycle-accurate simulator1 introduced in [101] is employed to emulate the

execution of convolutional and fully-connected layers from runtime and

energy perspectives. To implement the mapping strategy discussed in Sec-

tion 5.1.4, the simulator tiles the input of each layer and distributes the tiles

to different subarrays, employing multiple rounds if the number of tiles ex-

ceeds the number of subarrays. A data transfer bandwidth of one word per

cycle for writing inputs and reading back results is assumed. Conversely, IMC

operations require two cycles: the first one is to perform the IMC operation,

while the second one is to write back the result. These are executed in parallel

on each subarray.

1https://www.epfl.ch/labs/esl/research/open-source-tools/cnn2blade/
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The CNN optimization methodology is evaluated from an accuracy per-

spective considering the following CNN benchmarks: LeNet5 [70] is eval-

uated on CIFAR-10 [73], while AlexNet [72], VGG16 [83], MobileNet [76], and

Xception [111] are instead evaluated on the more challenging CIFAR-100

dataset [73]. CNNs are first trained in PyTorch [85] using floating-point pre-

cision for 200 epochs, obtaining accuracies in line with the state-of-the-art.

Similarly to [98], models are then homogeneously quantized to 16-bit multi-

plicands and 8-bit multipliers and refined for 20 additional training epochs

using the quantization functions described in [77], ultimately resulting in no

accuracy loss. To establish a baseline, the same re-training procedure is re-

peated to further homogeneously reduce the bitwidth of multipliers (i.e., BOs)

from eight bits down to two bits, re-training the models for five fine-tuning

epochs at each step. Five re-training epochs are also run after each optimiza-

tion step in the proposed methodology following phases (Figure 5.7-b and

Figure 5.7-d).

The presented accuracy numbers, as well as all the accuracy results presented

in the following sections, are evaluated via the C++ inference solver described

in Section 2.3.1, extending its features to better emulate inference processes

as executed in the proposed IMC architecture. Indeed, in addition to its

ability to emulate real fixed-point arithmetic, I have substituted fixed-point

multiplications with a new implementation based on the iterative use of

shift-add operations, as performed in the compute arrays and illustrated in

Figure 5.3.

5.2.1.2 Experimental Results

First, I have conducted experiments to evaluate the impact of the imple-

mented multiplication algorithm (see Figure 5.3) on the accuracy of CNN

models. Indeed, the in-memory implementation of multiply instructions

is based on an algorithm that iteratively truncates partial products. I have

measured the average magnitude of errors introduced by this approximate

implementation of multiplications by executing them, over all possible in-

put combinations of IMOs and BOs. The obtained results indicate that it

introduces a Mean Relative Error (MRE) of only 1.6% in the output results, so

that the effect on output products of such implementation is negligible, on
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average. Most importantly, it also causes an insignificant average accuracy

degradation of just 0.11% in our evaluated benchmarks.

The trade-off between inference speed-ups, illustrated as a reduction in the

number of required clock cycles, and the corresponding accuracy degrada-

tions of different quantized solutions, is summarized in Figure 5.8. Energy

trends closely follow performance ones. Indeed, inference runtime is reduced

as a result of lower operand bitwidths, which, in turn, lowers both the amount

of data transfers and the number of MAC operations. Black lines report the

achieved accuracy of baseline CNNs having a uniform BOs bitwidth, ranging

from eight (leftmost points) to just two bits (rightmost points). For example,

a BO bitwidth of five bits results in energy savings of 35%, with an average ac-

curacy degradation across the evaluated benchmarks of 1.3%, which rapidly

increases for further bitwidths reductions. Conversely, green lines report the

cycle-count reduction and the corresponding achieved accuracy of CNN mod-

els optimized at different steps of the proposed methodology, considering an

imposed accuracy drop threshold of 1%.

Points (b) and (c) in Figure 5.8 show that a heterogeneous quantization of BOs

and the consequent filter-level optimization of bitwidths in convolutional

layers already improve significantly the accuracy/energy trade-off in most

benchmarks. Indeed, the optimized models incur very low accuracy degrada-

tions, achieving at the same time efficiencies comparable to (or higher than)

those obtained with a homogeneous 2-bit quantization. Such a favorable

performance/accuracy trade-off is the result of the flexibility enabled by the

proposed hardware, which effectively supports the computation of highly

heterogeneous CNN models. In particular, the filter-level optimization, rep-

resented as step (c), allows for large BOs bitwidth reductions with no effects

on accuracy. For example, 27% and more than 70% of filters are removed

in LeNet5 and VGG16, respectively, as they contain only 0-valued weights.

The obtained results also indicate that the likelihood of finding prunable

filters is higher in larger models like MobileNet and VGG16 than in smaller

models like LeNet5. More importantly, such a ratio is dramatically increased

by aggressive quantization, as small values are cast to 0. Indeed, just 3% of

filters contain only 0-valued weights in floating-point models, on average.
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Figure 5.8: Achieved cycle-count reductions and corresponding accuracy
level in uniformly quantized benchmarks (black) and in CNNs
optimized using the proposed methodology (green). Letters
(b-d) correspond to the optimization stages of the proposed
strategy, as indicated in Figure 5.7. Letters (e, f) refer instead
to HW-level optimizations including multi-bit shifts performed
by the Embedded Shift (e) and the skip of MACs involving
0 -valued BOs (f).
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Points (d) illustrate the additional savings that can be achieved by reducing

16-bit IMOs to 8-bit IMOs in certain layers. Gains are variable and depend

on multiple factors, such as the size of the optimized layers and the accuracy

margin. Finally, points (e) and (f) are not a direct consequence of the pre-

sented heterogeneous quantization methodology, but instead the result of

features offered by the proposed IMC design. In particular, step (e) represents

the benefits of the embedded shift, which allows up to three single-cycle

bit-shifts, as shown in the multiplication example shown in Figure 5.3. Addi-

tionally, in (f), MAC operations involving zero-valued broadcasted operands

are skipped.

Overall, the obtained results show that the number of cycles to perform con-

volutional and fully-connected layers in the proposed IMC design can be

reduced to more than 90% when optimizing benchmarks according to the

presented quantization methodology. Moreover, these results can be ob-

tained by retaining accuracy within 1% of the baseline. The obtained results

demonstrate the central importance of co-integrating SW optimizations with

HW design. In fact, the designed IMC architecture efficiently supports the use

of custom BO bitwidths and, dually, the heterogeneous quantization strategy

leverages the hardware functionalities to tailor the bitwidth of BOs and IMOs

accordingly.

5.3 Managing overflows in IMC
In the previous section, I presented an In-Memory Computing (IMC) archi-

tecture based on the concept of bit-line computing (BC), that can execute ad-

ditions and multiplications in the periphery of SRAM arrays. I have described

how its functionalities have been extended to efficiently support multiply-

accumulate (MAC) operations, dot products, and, ultimately, matrix-vector

operations. An interesting aspect of the multiplication algorithm based on

shift-add operations is that it does not generate overflows by construction,

but only results in approximations having a negligible impact on accuracy.

Nonetheless, when calculating dot products, overflows can appear during

the accumulation of computed products, thus affecting the reliability and

robustness of a target application. In this section, I discuss this aspect, usually

under-looked in previous works. I will show how the previously proposed
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IMC architecture can be easily extended to prevent overflows in dot product

computation, showing how well this improved implementation compares to

other baselines. I will also present a more general workflow for the in-memory

acceleration of CNN inference, combining operand scaling functions with an

improved quantization strategy to better adapt to the new hardware architec-

ture. This analysis has been recently presented in [109].

5.3.1 Numerical overflows

In computer science, overflows are familiar occurrences that can generate

severe issues in numerical calculations. An overflow happens when a calcu-

lation (e.g., addition or multiplication) produces a result that is too large to

be represented by the data type used to store it. This is more common when

dealing with integer or fixed-point representations, but it may also affect

floating-point arithmetic.

In integer representation, overflows occur when the result of an arithmetic

operation exceeds the maximum value that can be stored using a certain data

type. For example, let’s assume the addition of two 16-bit signed integers.

The maximum value they can represent is composed of all ‘1’s, except for the

MSb, which is ‘0’ (i.e., negative signed integers have the MSb equal to ‘1’).

Therefore, the maximum value for a signed 16-bit integer is 32767. If the sum

of two positive signed integers exceeds this maximum value, an overflow will

occur. In this case, the result will wrap around to a negative value (i.e., the

MSb becomes ‘1’), causing incorrect results and, as a consequence, potential

unexpected behavior in the running application. Dually, negative overflows

occur when the addition of two large negative values leads to a positive sum.

Similar considerations hold in the case of fixed-point formats, as the involved

arithmetic is the same, except for multiplications where additional right shifts

are necessary to adjust the point position in the computed products. For

example, when multiplying two fixed-point numbers with a limited number

of decimal places, the result may be too large to fit within the available digits,

leading to an overflow.

In general, overflows can affect computing systems as they are forced to

represent data with a finite number of bits. However, this issue is exacer-
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bated in hardware accelerators that usually deal with integer data of reduced

bitwidths (e.g., 8-bit operands). This issue has been addressed with three

main approaches. First, overflows can be prevented at the application level,

by designing algorithms that can be effectively executed without incurring

numerical overflows. Yet, this strategy may not be a doable solution in a wide

range of applications. A second and more common solution is to saturate

addition and multiplication outputs to the maximum positive or negative

representable values when the overflow flag is raised [112]. This approach

requires minimal circuit and computing overheads, but can largely affect out-

put quality, as I will show in Section 5.3.4. Finally, overflows can be prevented

by using larger data types for intermediate results [113]. For example, the sum

of two 8-bit integers will not raise any overflow if the output is represented

as a 9-bit operand. Similarly, the product of two 8-bit integers is safe from

overflows if 16-bit products are employed. Dually, this strategy can be also

seen as a limitation of the actual bitwidth of input operands [98, 114]. In this

way, overflows can be prevented by constraining inputs to fit lower bitwidths

than what they could use, ultimately ensuring that the calculated outputs will

not be affected by overflows. Despite the fact that overflows can be prevented

by construction, this approach can result in output quality degradation if

inputs have to be truncated to fit reduced bitwidths. Moreover, it may also

lead to poor memory utilization, since a significant fraction of bits devoted to

input operands must remain unused to avoid overflows.

5.3.2 Overflow-free arithmetic for in-memory computing

Herein, I present a new approach, based on a HW/SW co-design strategy,

that my colleagues and I have developed to prevent overflow in CNN in-

ferences accelerated using In-Memory Computing (IMC) devices. On the

hardware side, I show that the required circuital overheads to implement the

proposed strategy are minimal and do not penalize efficiency in inference

workloads. From an application-level perspective, I instead present an in-

ference workflow designed for the in-memory acceleration of convolutional

and fully-connected layers that supports overflow-free MAC operations in the

designed IMC architecture. Moreover, the novel proposed CNN quantization

methodology improves the previous proposal presented in Section 5.2 by

increasing the inference cycle-count reduction of the optimized workloads.
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Figure 5.9: Overview of the IMC periphery, composed of the IMO pre-
processing circuit (white box), registers for the MAC operations
(blue box), in-situ shift and negation units (green box), and
the adder (red box).

5.3.2.1 Architectural design

In-memory shift-add operations calculating multiplications are employed

as described in Section 5.1.3, preventing overflow occurrences in the com-

puted products. Instead, the IMC architecture must take special care when

performing accumulations during MAC operations. To this end, the target

IMC architecture has been enriched with MAC registers and a set of constant

registers to manage overflows without significantly affecting performance

and energy, and with a limited increase in area footprint. A conceptual repre-

sentation of these additional elements in the periphery of IMC subarrays is

illustrated in Figure 5.9.

The result of a product, stored in an accumulator register in the IMC periph-

ery, is first added to the content of a new register, named MACL, using the

in-memory adder. Note that this operation may induce positive or negative

overflow. The type of overflow (i.e., positive or negative) is dictated by the

MSb and carry-out bit of the calculated sum: when these are equal, no over-

flow occurs, while, if they differ, a positive (“01") or negative (“10") overflow

occurs. Based on this observation, the proposed solution to manage over-

flows uses those bits to govern the state of a second register, named MACH.

In case of no overflow, its value is retained. Instead, in case of overflows, the
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sum and carry-out signals of the MSb of MACL registers are used to index

two constants, corresponding to the values ‘-1’ and ‘+1’. An in-memory ad-

dition is then triggered between the selected constant and MACH, with the

result being written back to MACH. A more detailed illustration of this reg-

ister arrangement in the IMC periphery is shown in Figure 5.10. The MACH

register is hence used as an overflow register, extending the bitwidth of the

output products stored in MACL. Nevertheless, the output products stored in

the register pair MACH-MACL must be cautiously manipulated. In fact, in

CNN inference, the output activations of a certain layer become the input

activations of the following one. In the previously discussed mapping strat-

egy, activations of convolutional layers act as IMOs, which are then stored

inside the IMC memory elements. For this reason, the computed outputs

stored in two registers MACH-MACL have a bitwidth which is 2× than that

of input IMOs. Therefore, these outputs are moved outside the IMC archi-

tecture where they are first post-scaled to balance the initial scaling of input

IMOs. Moreover, before being loaded back into the IMC architecture for the

execution of the second layer, they are also cast into 16-bit or 8-bit operands,

according to the employed quantization level. In this sense, scaling and post-

scaling operations are transparent from an accuracy perspective and only

serve as a tool to constrain operands bitwidths inside specific boundaries.

5.3.2.2 Workflow for CNN acceleration

A novel workflow for the mapping of convolutional and fully-connected layers

of CNNs considering the presented overflow-free IMC accelerator is depicted

in Figure 5.11. The yellow box represents the considered IMC architecture,

previously described in Section 5.3.2.1. I use it as a target hardware resource

for the implementation of my proposed CNN optimization strategy, includ-

ing input/output scaling and per-layer quantization strategies. Before being

loaded in the IMC arrays, IMOs are scaled in the range [0,1) either as 8-bit

or 16-bit operands. As positive values, IMOs can be treated as unsigned

operands, thus allowing their arithmetic precision to be increased by one bit

(i.e., no need to store their sign bits). BOs are instead broadcasted as usual

to compute dot products. Since the IMOs are scaled, the computed outputs

must be de-scaled as well, to obtain the expected outputs. Both scaling and

de-scaling operations, introduced to constrain operands into specific ranges,
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(a) (b)

Figure 5.10: (a) Block diagram of the IMC architecture, highlighting a
1-bit column of the PE. (b) Detailed circuit implementation
of the read ports and registers. RBL\RBL, and W BL\W BL
refer to the read and write path of the bit-lines, respectively.
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Figure 5.11: In-Memory acceleration of CNN models. Input activations are
first scaled (1) and then stored in the compute arrays as IMOs
(2). Weights are instead broadcasted into the accelerator (3)
to perform MAC operations (4). Then, outputs are scaled
back (5) and finally stored outside the memory computing
banks (6). The table on the right shows the data range at
each step.

are performed outside the IMC architecture. This is also the case for the

execution of other layers such as activation functions or normalization layers.

Doing so, all these operations can be implemented using floating-point arith-

metic, thus allowing the computation of precise scaling and normalization

outputs. Moreover, performance is not significantly affected, as, for most

CNN benchmarks, scaling and de-scaling operations, as well as ReLU and

normalization layers account for less than 1% of the total inference workloads,

which is indeed dominated by convolutional and fully-connected layers.

5.3.2.3 Improved heterogeneous quantization strategy

As in Section 5.2, CNN models must be optimized to fully leverage the effi-

ciency benefits from the IMC acceleration. In a recent study [109], I have

presented a novel heterogeneous compression methodology, based on a

greedy strategy, to optimize the in-memory inference execution of CNN mod-

els. The proposed optimization is based on a per-layer quantization approach

that improves the one I previously proposed in [101] (and illustrated in Fig-

ure 5.7). In fact, the limitation of the previous optimization method is that it
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Figure 5.12: Heterogeneous CNN compression methodology. Among the
possible quantization steps (weights or activations, in each
layer), the one maximizing MAC cycle-count reduction is
applied. The model is then re-trained and an accuracy eval-
uation determines if the imposed quantization scheme can
be accepted or not. The optimization ends when no further
optimization actions are possible.

targets BOs first, maximizing their bitwidth reduction by trading off the whole

accuracy margin available. When no further bitwidth reductions are possible,

the methodology aims to move IMOs from a 16-bit to an 8-bit quantization

scheme, but having a very limited accuracy margin to exchange. The rationale

behind that strategy was based on preliminary observations showing that

IMOs in certain layers could be quantized more aggressively with no accuracy

loss. Nevertheless, the reduction of IMOs bitwidth typically enables more

aggressive cycle-count reductions by supporting word-level parallelism in

dot product computation.

Therefore, I have proposed the newly refined approach summarized in Fig-

ure 5.12. This approach consists in a greedy optimization loop that aims at

maximizing the cycle-count reduction of MAC operations at each step. To

do so, it first evaluates the impact of bitwidth reductions of IMOs and BOs of

different layers on the number of inference MAC cycles. In particular, it looks

for the best optimization action among the 2N possible alternatives, consid-

ering CNN models with N layers (i.e., for each layer, individual optimization

steps could either target IMOs or BOs). The selection of target operands of

a specific layer is followed by their bitwidth reduction and, consequently,

by a few re-training epochs to compensate for the possible accuracy drop.
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Next, the accuracy of the CNN model is evaluated and compared with a user-

defined accuracy constraint. The optimization loop continues if the achieved

accuracy level abides by the user-defined constraint. Instead, if this is not the

case, the previous quantization scheme is used for the optimized operands in

the target layer. The corresponding optimization action is also discarded so

that it will not be considered in future iterations. The optimization procedure

ends when there are no more available optimization actions to be taken.

From a methodology runtime perspective, the worst-case scenario is the one

where all optimization steps are successfully applied to the model, so that the

procedure continues for a high number of iterations. The IMOs can only be

reduced to 8-bit values, and, in this context, have a much lower impact than

BOs, whose bitwidth can assume any quantization level between 1-bit and

8-bit schemes. Therefore, considering a model with N layers, the complexity

of the proposed optimization methodology can be approximated as O (8N ),

ultimately being linear in the number of layers. Notice that the optimization

experiments conducted on the benchmarks proposed in Section 5.3.3.2 to

evaluate this methodology take less than one day when performed on a Tesla

V100 GPU. Conversely, an exhaustive exploration can evaluate all possible

bitwidth combinations of IMOs and BOs of all layers. Still, although it returns

optimal solutions, it is unfeasible in practice, as its complexity is exponential

in the number of layers. In particular, it has a complexity of O ((8·2)N ), where 8

and 2 represent the number of possible BOs and IMOs bitwidths, respectively

(8 ·2 = 16 is the number of possible bitwidth combinations in each layer).

5.3.3 Experimental setup

5.3.3.1 Baselines

To evaluate the proposed co-design methodology comprising the CNN opti-

mization strategy and the overflow-free IMC architecture from an accuracy,

runtime, and energy perspective, we compare it with state-of-the-art overflow

handling strategies. To perform a fair comparison, the considered solutions

are all evaluated on the CNN benchmarks heterogeneously quantized accord-

ing to the quantization method described in Section 5.3.2.3. Moreover, the

considered baselines are directly applicable to the designed IMC architecture
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without dedicated hardware support for overflow management. In other

words, they represent state-of-the-art overflow-handling techniques that can

be applied to the proposed IMC architecture, without relying on additional

peripheral circuitry introduced in the considered architectural solution (e.g.,

MACH/MACL registers, constant registers, ...).

In a first baseline, overflow is managed by saturating large negative and posi-

tive values when overflow occurs [101, 112]. In particular, when an overflow

is encountered, output activations are saturated to either the lowest or high-

est representable value of the employed quantized notation. I refer to this

solution as Saturation when discussing the obtained results.

The second baseline prevents overflow by construction, ensuring that the

accumulator register has a sufficient number of bits to obtain overflow-free

accumulations of dot products in matrix-vector operations. To achieve so,

the bitwidth of IMOs must be reduced. Considering subarrays composed of

256 rows and including 16-bit words, this overflow-preventing strategy must

restrict the bitwidth of IMOs to only 8 bits. In fact, when performing dot prod-

ucts, the width required to perform the operation without any approximation

and to avoid overflows is:

wi d th(y) = wi d th(x)+wi d th(w)+ log2(V ) (5.1)

where y corresponds to the output dot product, x and w are activations and

weights, respectively, and V is the number of added elements (i.e., the length

of vectors x and w). Similar embodiments of this strategy are also proposed in

several works on quantization [98, 113], not necessarily targeting in-memory

computing architectures. In this baseline, referred to as 8-bit IMOs, all IMOs

are quantized as 8-bit values, but sign-extended to 16 bits, hence preventing

the use of 2x8-bit IMOs configuration to parallelize computation (i.e., 8 MSbs

in each memory word remain unused to prevent overflow in the accumulation

registers).

5.3.3.2 Benchmarks

The following CNN models are considered in the conducted experiments:

AlexNet [72], GoogLeNet [74], ResNet-8 [115], ResNext [84], VGG16 [83], and

106



5.3 Managing overflows in IMC

Table 5.2: Baseline floating-point accuracy and complexity (memory and
computing requirements) of the considered CNN models, eval-
uated on the CIFAR-100 dataset.

Benchmark Accuracy (%) Model size [MB] GFLOPs

AlexNet 62.73 14.84 1.04
GoogLeNet 72.11 5.42 0.34
ResNet-8 59.53 5.88 0.19
ResNext 73.07 20.14 1.11
VGG16 60.39 14.62 0.29
MobileNet 47.19 3.15 0.32

MobileNet [76]. All models are evaluated on the CIFAR-100 dataset [73]. As

a consequence, minor adjustments in the first layers are needed to adapt

these models to the image sizes of the target dataset (i.e., 32x32 RGB inputs).

As in previous chapters, the proposed benchmarks exhibit different degrees

of complexity and are, hence, reasonable models to evaluate the proposed

solution across a vast range of edge AI applications. They differ in the num-

ber of parameters, depth, and type of connections of the layers. Table 5.2

reports the achieved Top-1 accuracies, as well as the size and computational

complexity of the presented benchmarks.

5.3.3.3 Pytorch-based environment for CNN training

CNN models are trained and quantized in a PyTorch-based environment [85],

similar to the one employed for the experiments shown in previous chapters.

First, the models are trained using floating-point precision until convergence.

The BOs and IMOs are then quantized using 8-bit and 16-bit representa-

tions, respectively. As quantization may impact CNN accuracy, additional

20 re-training epochs are run, using fake-quantization [77] to force BOs and

IMOs to assume quantized values. The re-training phase allows the 8/16

quantized benchmarks to recover in all cases from the accuracy drop due

to quantization. Finally, benchmarks are optimized using the improved het-

erogeneous quantization methodology illustrated in Section 5.3.2.3, with an

accuracy degradation constraint of 1% with respect to the one achieved by

8/16 quantized models.
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5.3.3.4 Accuracy and runtime evaluations

The accuracy numbers presented in Table 5.2 are evaluated via a custom

inference solver written in C++, extending the features of the one used for

experiments shown in Chapter 2, as already described in 5.2.1. Indeed, it

computes real fixed-point arithmetic and executes multiplication and accu-

mulation operations as implemented in the compute arrays (illustrated in

Figure 5.3) to accurately simulate the execution of the presented benchmarks.

To this end, it also implements scaling and de-scaling functions, as described

in the inference workflow depicted in Figure 5.11. In this way it allows me

to estimate the impact of convolutional and fully-connected layers on the

overall CNN inference runtime.

5.3.3.5 IMC implementation

The SRAM array is implemented as a full-custom design using a 28nm TSMC

CMOS technology, implementing high-density memories using 6T SRAM

cells. A varying number of 2KB subarrays (i.e., 4, 32, and 128 subarrays) are

considered to evaluate the runtime improvements enabled by higher degrees

of parallelism. Each subarray is organized as 1024 16-bit words. Four words in

each memory row are bit-interleaved, so the implemented array presents 256

WLs and 64 BLs. This arrangement allows read and write accesses to operate

at a limit of 2.2 GHz. Convolutional and fully-connected layers are executed

and mapped on the IMC architecture on a layer basis. For each layer, the

number of input and output words, and the number of cycles required to

execute MAC operations is computed. Finally, as done in Section 5.2, IMOs

are tiled to maximize compute parallelism while minimizing at the same time

data movements.

5.3.4 Experimental results

5.3.4.1 Area and energy evaluation

An area and energy breakdown of the target IMC design as reported in [109]

is presented in Table 5.3. The area of the SRAM subarray (i.e., the memory

element, with no computing capabilities) is reported on the top-left side

of the table and is used as a reference to evaluate the overhead of the IMC
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Table 5.3: Area and energy breakdown of the SRAM subarray (256 WLs,
64 BLs) and the IMC Processing Element (PE).

SRAM Area (mµ2) Operation Energy (fJ)
Bit-cell array 2129.9 Read 491.6
Read/write ports 81.0 Write 363.6
Word-line amplifiers 266.2 Leakage 88.9

Totals 2477.1 944.1

IMC Processing Element Area (mµ2) Total Energy (fJ)
Adder 39.0 31.9
Shift/Negation 62.4 51.0
Registers 190.7 155.8

Totals 292.1 238.7

implementation. As expected, the largest fraction of the memory footprint

(i.e., 85%) is due to bit-cells (2129.9µm2 out of a total area of 2477.16µm2),

while read/write ports and word-line amplifiers have a minor impact on the

total subarray size. The required additional area to implement in-memory

computing capabilities is presented at the bottom-left side of the table. It

is limited to 11.8% and is mainly due to the MAC registers illustrated in

Figure 5.10. Instead, the 16-bit adder and shift/negation circuits have a minor

impact on the total area overhead.

The right side of the table shows instead the energy breakdown of the SRAM

subarray and the IMC processing elements. The SRAM subarray requires

491.6 fJ for a 16-bit read operation and 363.6 fJ for a 16-bit write operation,

while consuming 88.9 fJ as leakage energy. The IMC computing capabilities

consume a total of 238.7 fJ to perform shift-add operations, which represents

a 50% energy reduction when compared to IMC operations performed with

data accessed directly from the SRAM array, as shown in [107].

5.3.4.2 Improved heterogeneous quantization methodology

The bitwidth of IMOs and BOs of the CNN benchmarks optimized with the

proposed heterogeneous methodology is illustrated in Figure 5.13. In par-

ticular, solid blue bars show the bitwidth of BOs in convolutional and fully-
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Figure 5.13: Per-layer bitwidth of BOs in the optimized benchmarks. IMOs
are assumed to be reduced from the baseline 16-bit to 8-bit
words, except for those (few) in layers in GoogLeNet and
ResNet-8 marked with checkerboard backgrounds.

connected layers. IMOs are instead reduced to 8-bit words in all layers, except

for those marked with a checkerboard background. The achieved results in-

dicate that, in general, IMOs are the preferred target for optimization, as

their bitwidth reduction impacts the total number of MAC cycles significantly

more than BOs. This is a major difference with respect to the results achieved

with the previous strategy, where only a few layers have IMOs with reduced

bitwidth. On average, this new optimization strategy reduces the number of

shift-add clock cycles by 55.46% when compared to a baseline 8/16 quantized

model, thus accelerating inference runtime and reducing energy. Moreover,

compared to the initial optimization strategy presented in [101] and discussed

in Section 5.2, this improved solution reduces the number of MAC cycles by

13% more, on average.

5.3.4.3 Comparison with baselines

Figure 5.14 illustrates the obtained inference runtime and accuracy results.

In particular, the plots on the left of the figure show the inference runtime,

expressed in seconds, of the optimized benchmarks executed in the designed

IMC architecture. These results indicate that the proposed optimization
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Figure 5.14: Inference runtime for different subarray arrangements (left).
Normalized runtime of 8-bit IMOs and Saturation, with re-
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strategy scales nicely when increasing the number of subarrays. In fact, in

comparison with a 4-subarray design, average inference speed-ups of 5.41×
and 9.92× are measured in 32- and 128-subarray architectures, respectively.

Nonetheless, diminishing performance gains are observed when moving from

32 to 128 subarrays. The reason is that convolutional and fully-connected

layers are not fully exploiting the data parallelism offered by the hardware

when too many subarrays are deployed (and when they are not large enough).

Therefore, for edge AI applications where the number of convolutional filters

is usually bounded to a few hundred, a large number of subarrays may lead

to memory under-utilization.

The barplots at the center of Figure 5.14 show instead the inference runtime

of the different overflow-handling techniques described in Section 5.3.3, nor-

malized with respect to that of the proposed strategy. The runtime required

for a single inference considering an increasing number of memory subarrays

is reported. In this regard, the presented results assume that a unique BO is

broadcasted to all the arrays at each IMC operation. Moreover, the results

also assume both the Saturation and 8-bit IMOs baselines require only one

cycle for accumulations (since they only employ one MAC register), while the

proposed solution requires two (to update MACL and also MACH). Average

speed-ups of 60% are observed when comparing our solution with the 8-bit

IMOs baseline. The obtained performance improvements are mainly the re-

sult of the high degree of data parallelism enabled by our solution. Conversely,

computing parallelism is prevented in the 8-bit IMOs baseline, as the 8 MSBs

of each 16-bit IMO must not be used to ensure overflow-free accumulations.

The result is a non-optimal use of memory for the 8-bit IMOs implementation,

where 50% of memory words cannot be used for computation. Nevertheless,

the 8-bit IMOs approach results in slightly faster executions when consid-

ering IMC designs with 128 subarrays, as the inability of our proposal to

fully exploit data parallelism cannot balance the faster MAC executions of

8-bit IMOs (i.e., one clock cycle vs. two clock cycles per MAC operations of

our implementation). The proposed implementation results in an average

12% increase in inference runtime when compared to the Saturation base-

line. One of the main reasons is that the runtime estimation for this second

baseline considers saturation operations to have no impact on performance.
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This assumption puts the Saturation baseline at an advantage because, in

the proposed implementation, one additional IMC operation is required to

update the value of the MACH register after each MAC operation.

Finally, the barplots on the right of Figure 5.14 depict the accuracy achieved

by different approaches. The bars showing the accuracy achieved using a

fake quantization strategy (yellow bars) are included to demonstrate that the

proposed design can achieve comparable accuracy (blue bars), even when all

intermediate operations abide by rigid bitwidth constraints. When compar-

ing the proposed strategy with the 8-bit IMOs baseline, the only (negligible)

impact on accuracy is due to the shift-add implementation of multiply in-

structions, as overflow is prevented in both solutions. Instead, saturating

the accumulator adversely affects accuracy, which drops dramatically in all

cases for the Saturation baseline. Indeed, these experiments confirm that

the number of saturated elements for each inference depends on multiple

factors, including the CNN structure and the specific input image, and ranges

from just 2% to more than 90% for certain images. On average, 37% of output

activations are saturated across the evaluated benchmarks, thus motivating

the very low accuracy of this second baseline.

5.4 Scaling SRAM voltage to improve efficiency
The key optimization objective discussed in this section is to increase even

more the efficiency gains in IMC devices designed for accelerating CNN infer-

ences. To achieve so, I herein present a methodology that enables the use of

IMC accelerators at sub-nominal voltage levels to reduce energy consump-

tion. The proposed approach combines together lightweight in-hardware

parity check implementations, quantization, and the E2CNNs approach de-

scribed in Chapter 2, improving the robustness of CNN models against mem-

ory errors to support aggressive SRAM voltage scaling.

5.4.1 Operating SRAMs at sub-nominal voltages

Providing computing units and memory elements with sub-nominal voltage

levels is a technique, known as voltage scaling, that reduces energy consump-

tion. In fact, the energy cost of read and write accesses in an SRAM array
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is directly proportional to the applied Vdd . Up to the point where leakage

dominates, reducing the supply voltage levels in SRAMs significantly reduces

energy without critically affecting performance. Therefore, the ability in re-

ducing the energy expenditure of electronic systems makes voltage scaling a

valuable solution in a wide range of low-power applications including edge AI,

where energy efficiency is key. Voltage scaling can be either static or dynamic.

In the first case (i.e., considered in this study), a sub-nominal voltage level is

continuously supplying the memory device. In the second case, the voltage

level is adjusted at runtime, with higher or lower voltages applied according

to the application workloads or the actual battery level.

Yet, a sub-nominal input voltage in SRAMs may introduce permanent errors

in the weakest memory cells, which become unable to flip their content.

As discussed in Chapter 2, errors in memories can catastrophically affect

the function of a system. AI workloads, such as the Convolutional Neural

Networks (CNNs) I have considered in this thesis as evaluation benchmarks,

are relatively resilient to errors, approximation, noise, and, more in general,

data perturbations. In one of my first works, I studied with my colleagues the

resiliency of an industrial CNN to memory stuck-at faults [60]. On one hand,

we have demonstrated the importance of data representations, showing

that compact fixed-point formats are more robust than floating-point ones.

On the other hand, we have also observed that, if properly designed, the

target CNN seemed to be quite resilient to errors up to certain error densities.

Still, focusing on stuck-at-faults memory errors, different algorithmic and

hardware strategies can be employed to increase the intrinsic CNN resiliency

even more, opening the path to more aggressive voltage scaling strategies.

5.4.2 SRAM protection codes

Parity check is a simple and effective technique commonly used to detect

errors in computer memories, ultimately ensuring data integrity. Although

the focus of this section is on SRAM errors resulting from operating the

memory system at sub-nominal voltages, memory errors can be generally

due to noise, interference, or other factors. In all cases, these errors may

cause the data to become corrupted, leading to incorrect results or system

failures. To prevent such errors, error detection and error correction solutions
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have been proposed. For example, the implementation of a parity check

strategy allows to detect errors and only requires adding an extra bit to each

data word. This extra bit is called the parity bit and is set to either ‘0’ or

‘1’ depending on the number of ‘1’s in the data word. If the number of ‘1’s

is even, the parity bit is set to ‘0’, while if it is odd, the parity bit is set to

‘1’. During data transmission or storage, the parity bit is also transmitted or

stored along with the data word. When the data is accessed, the parity bit

is checked to see if it matches the calculated parity bit based on the data

word. A mismatch indicates that an error has occurred and the data word is

corrupted. This memory protection approach demands minimal overhead

and can detect single-bit errors in memory words. However, it cannot detect

multiple-bit errors or errors that affect both the data word and the parity bit.

Moreover, although it can detect single-bit errors, it is not able to correct the

corresponding memory word, as it cannot say which bit is corrupted.

Error correction codes (ECCs) are a more advanced technique used in com-

puter memories to detect and correct errors. To this end, ECCs use a more

sophisticated algorithm than parity checks. ECC adds multiple redundant

bits to each data word, which allows it to detect and correct single-bit er-

rors. ECC is a valuable tool for improving system reliability and performance,

especially in critical systems where data integrity is essential. However, it

does require more memory and processing power than simple parity checks,

which can make it more expensive to implement.

In the proposed approach illustrated in the next sections, I combine a

lightweight parity check with an error mitigation strategy to reduce the

effects of memory errors on the accuracy of CNN models.

5.4.3 IMC implementation of memory parity check

Herein, I will describe how the IMC architecture discussed in previous sec-

tions can be extended by including an error detection mechanism based

on parity bit checks. In addition, I will also introduce a novel and simple

mitigation strategy that reduces the negative effects of detected memory

errors.
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Figure 5.15: (a) In-memory computing architectural structure extending
each memory word to allocate parity bits. (b) Peripheral
circuit details, highlighting the Error Detection and Mitigation
Unit (EDMU) used to compute parity checks and deal with
detected memory errors.

5.4.3.1 Detection and mitigation strategy

To implement a parity check in the memory words of the IMC architecture

described in previous sections, an additional bit must be included in each

word-line, as shown in Figure 5.15-a. Moreover, additional circuitry, referred

to as Bit-line Computing Unit (BCU) in the figure, is included in the array

periphery. Indeed, in addition to the IMC capabilities already presented (e.g.,

multiplications, accumulations, and overflow management) the BCU must

generate parity bits according to the stored memory words, implement parity

checks, and take proper actions when errors are detected. Since these opera-

tions are implemented in the BCU, they are transparent from a system and

application perspective and operate both during standard memory accesses

and during single- or dual-operands in-memory operations.

The error mitigation strategy employed in this proposed design is extremely

efficient yet effective, and aims at minimizing the circuit and computing

overheads while reducing the accuracy impact of memory errors. When an

error is detected in an accessed memory word during in-memory operations,

its content is updated by filling all N bit-cells in the word line with ‘0’. Instead,

in the case of standard memory accesses (i.e., simple read/write operations),

this updated value is delivered to the memory output. Clearly, this approach

cannot correct the memory word content and, in some extreme (and rare)
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Figure 5.16: Activations distribution in the proposed benchmarks, illus-
trating the percentage of values being exactly zero, or lower
than specific fractions of the entire representable range.

cases, it can introduce even large errors in the considered memory word.

Nevertheless, the plots in Figure 5.16, showing the statistical distribution of

activations in CNNs, motivate this approach. In different benchmarks, the

distribution is highly skewed towards zero, with only a few outliers having

a high magnitude. For example, in AlexNet (red bars), more than 80% of

the activation values are 0, while 75% of them are smaller than 0.1% of the

representable range in RexNext (blue bars).

The error detection process is also straightforward when only one operand

is involved, requiring the XORing (⊕) of all bit-lines, including that of the

parity bit. When instead a two-operand in-memory operation is performed

between two words A = {An−1; An−2; . . . ; A0} and B = {Bn−1;Bn−2; . . . ;B0}, only

the values BLi = Ai · Bi and BLi = Ai + Bi are available, but not Ai and Bi

themselves. Nonetheless, Ai ⊕ Bi can be computed as:

Ai ⊕ Bi = BLi + BLi (5.2)

As a consequence, parity checking can be performed using both bit-line

signals, as follows:
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Figure 5.17: Error Detection and Mitigation Unit (EDMU) structure, com-
posed of the XOR-tree and an additional XOR gate to com-
pute the Clear signal.

Par i t y = (An−1 ⊕Bn−1)⊕ (An−2 ⊕Bn−2)⊕·· ·⊕ (A0 ⊕B0)

= (BLn−1 +BLn−1)⊕ (BLn−2 +BLn−2)⊕·· ·⊕ (BL0 +BL0)
(5.3)

5.4.3.2 Detection and mitigation circuit

As shown in [110], the IMC implementation of the presented mitigation strat-

egy requires little hardware. A general structure of the peripheral circuitry

implementing parity bit generation and parity checks is depicted in Fig-

ure 5.15-b, while the core architecture of the detection/mitigation circuitry,

including a tree of XOR gates, named Error Detection and Mitigation Unit

(EDMU), is illustrated in Figure 5.17. When a memory word is accessed, the

EDMU detects if an error occurred and, if so, it assess the "Clear" signal to set

to zero the value at the output of the read/write block. The EDMU inputs are

either the bit-line signals (BL) for normal memory reads and single-operand

in-memory operations, or the bitwise NOR between BL and BL signals for

two-operands ones. The selection of proper inputs is dictated by a dedi-
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cated multiplexer, itself governed by the memory controller illustrated in

Figure 5.15-b.

During each in-memory operation, a new parity bit must be generated. To this

end, the EDMU is traversed again, with the value computed by the arithmetic

logic block (i.e., the output of a certain in-memory operation) at its input.

The computed parity bit is then written back to memory simultaneously with

the data bits of the computed memory word. All the actions outlined above

can be executed in a single clock cycle. While the calculation of parity checks

can be performed in parallel with in-memory arithmetic operations, the

generation of a new parity bit does incur an additional (and marginal) delay

of less than 10% of the circuit critical path, as evaluated in the experiments

presented in Section 5.4.5.

5.4.4 Experimental Setup

Herein, I am going to present the experimental design used to evaluate the

advocated HW-SW co-design methodology including (a) voltage scaling,

to reduce energy consumption, (b) the in-hardware parity check mitiga-

tion strategy to reduce the impact of memory errors, and (c) E2CNNs as an

algorithmic-level transformation to support aggressive voltage reductions

in SRAMs. Quantization is also employed in this methodology, but, for a

fair comparison, it is assumed to be the baseline CNN implementation. In

fact, I have already discussed how the findings I presented in [60] show that

floating-point models are less resilient than quantized alternatives. Therefore,

comparing the co-design approach introduced in this section with floating-

point baseline implementations would not be sufficient to draw effective

conclusions.

5.4.4.1 Single-instance and E2CNNs benchmarks

The presented IMC architecture is evaluated on multiple CNN models in-

cluding AlexNet [72], VGG16 [83], GoogLeNet [74], ResNext [84], and Mo-

bileNet [76], all tested on the CIFAR-100 dataset [73]. In addition to these

single-instance architectures, E2CNNs equivalent models including two and

four instances are considered. As described in Chapter 2, these ensemble-

based designs enable higher accuracy and robustness against memory errors,

119



Chapter 5. In-Memory Computing

without increasing the baseline memory and computing requirements. All

CNN models are trained in PyTorch, using a fake-quantization approach [77]

for the last 20 training epochs, using a uniform quantization level of 8-bit

weights and 16-bit activations. Such a setting leads to negligible accuracy

drops compared to floating-point implementations.

5.4.4.2 Stuck-at fault error model

Errors affecting SRAM are defined as faulty bit-cells permanently stuck at a

given logic value, either ‘0’ or ‘1’. In both cases, the designed model simu-

lates the behavior of weak bit-cells, which are unable to switch their content

during write operations as a result of insufficient current levels provided by

sub-nominal input voltages. Due to the bit-cells inability to flip their con-

tent, these faults can be considered permanent errors, whose number and

distribution in the SRAM array depend on the applied voltage level and on

manufacturing process variability, respectively. During CNN simulations,

the number of faults to inject in the emulated memory system is computed

offline (i.e., before running the inference), according to the evaluated error

rate. Subsequently, errors are injected as “stuck-at-1” or “stuck-at-0” faults

directly in the selected bits of the memory array. Although the rate of soft

errors producing temporary memory bit flips increases as well at low operat-

ing voltages, they are not considered in this analysis, because the considered

(static) error rates are orders of magnitude higher (making the impact of soft

errors negligible from an accuracy perspective).

As for the analysis in Chapter 2, the bit-flip probabilities reported in [51]

for different supply voltage levels in 40nm technology are considered. The

proposed error model introduces stuck-at faults in individual bit-cells by

assuming, for each of them, a certain probability of being always set as a ‘1’

or as a ‘0’, irrespectively of its intended stored value. In some cases, the ith

bit of a memory word written in a memory word containing a stuck-at-fault

in the bit-cell position i can match the value forced by the error itself. As

a consequence, errors can be either observable or not observable. Faults

cause observable errors if they affect the representation of the accessed data

(e.g., a bit-cell stuck at ‘1’ becomes observable when the desired value to be

stored in that position is ‘0’). Assuming an equal probability of stuck-at-0 and
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stuck-at-1 faults, the probability of having an observable error in a memory

bit-cell during memory accesses is as follows:

Pe = 1

2
Pstuck−at (5.4)

where Pstuck−at is the probability of having a stuck-at fault in a bit-cell. Con-

sidering a word of N bits (possibly including a parity bit), the probability of

having k bit-flips when accessing a memory word is then:

P(num−er r==k) =
(

N

k

)
P k

e (1−Pe )N−k (5.5)

Equation 5.5 is then employed to implement the developed error model as

part of the C++ inference solver used in the experiments presented in this

thesis. When executing multiply-accumulate (MAC) operations, a non-zero

probability of bit-flips is assumed when computing output results. MAC

operations are executed as a sequence of shift-adds among two operands

(thus simulating real-hardware executions), in which each of the two may

be affected by stuck-at faults. Without any error mitigation schemes, all bit-

flips are propagated to successive computations. When instead simulating

the proposed error mitigation strategy, output results are set to zero in the

presence of an odd number of bit-flips (i.e., an even number of errors is

not detectable by the implemented parity check). The probability of error

detection is:

Per r or−detect i on =
k=N−1∑

k=1,3,5,...

[(
N

k

)
P k

e (1−Pe )N−k

]
(5.6)
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Table 5.4: Energy consumption per memory access and for each IMC
operation, and bit error rate for an SRAM built on a 40 nm
CMOS process at different voltage levels (fJ/bit) [51].

Read Write IMC op. Error Rate

800 mV 62.7 81.1 101.0

750 mV 46.9 50.9 74.1 1×10−5

700 mV 36.0 34.9 54.3 1×10−4

650 mV 23.7 24.8 42.3 7×10−4

600 mV 18.6 18.3 32.1 2×10−3

Since the probability of having multiple errors (e.g., k = 2,3,4, . . . ) in the

same accessed memory word decreases exponentially, only single-bit stuck-

at faults in the SRAM words are considered in this model.

5.4.4.3 Energy and area evaluation

To be consistent with the error probabilities reported in [51], the in-memory

computing architecture is implemented in 40nm CMOS technology. A sum-

mary of error densities at different error rates and the corresponding energy

cost of read/write and in-memory operations is summarized in Table 5.4. As

in the previously discussed IMC architecture designs, the memory is divided

into multiple local groups including 16-bit words. An iso-size architecture

not including the parity-bit memory cells and corresponding peripheral cir-

cuitry implementing the parity check and error mitigation strategy is also

instantiated to evaluate energy cost in a baseline IMC design.

The number of read, write, and in-memory operations are assessed to re-

trieve energy requirements for different benchmarks. In this regard, the

cycle-accurate simulator proposed in [101] (and also used in previous analy-

ses in this chapter) is employed. For each CNN layer, the simulator computes

the number of cycles required to load the inputs, perform the required in-

memory operations, and stream out the results. Inputs are tiled, and channel-

wise separation is performed if data size exceeds the available storage in the

IMC memory array. In this case, additional operations are reported to stream
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partial convolutions data to the memory array, perform the aggregation oper-

ations in memory, and retrieve the outputs.

5.4.5 Experiemental results

5.4.5.1 Area, energy and performance breakdown

In the target IMC implementation, the majority of the area footprint (i.e.,

76.9%) is occupied by the high-density SRAM bit-cells in the implemented

IMC design. To this end, only 5.9% of this area is reserved for the parity bits,

indicating a limited overhead for the storage of parity bits. The area overhead

of the BCU supporting in-memory arithmetic operations and the proposed

error mitigation strategy is also limited, and corresponds to 12.4% of the total

area.

Per-bit energy values for read, write, and in-memory operations are included

in Table 5.4. A supply voltage reduction from 800 mV to 700 mV reduces the

energy of each operation by 47%, while at 600 mV, the total energy reduction

reaches 72%. Still, the implementation of the error mitigation strategy in-

creases reads and in-memory operations by 15%. This overhead is primarily

due to the parity bit accesses and the EDMU, used twice during the same

cycle in these operations, as described in Section 5.4.3.2.

Operating at sub-nominal voltages forces a reduction of the working fre-

quency. Indeed, a supply voltage of just 650 mV reduces the maximum op-

erating frequency by more than 40 % compared with an 800 mV baseline.

Nevertheless, in this condition, the presented architecture is still able to run

at 300 MHz, a relatively high operating frequency for ultra-low power edge AI

applications. Importantly, in-memory operations are parallelized by employ-

ing multiple subarrays to increase throughput, which compensates for the

frequency reduction.

5.4.5.2 Accuracy/energy trade-off

The accuracy achieved at different sub-nominal voltages is presented in Fig-

ure 5.18, where the energy cost of inference for different benchmarks is shown

on the x-axis. Black curves correspond to baseline single-instance CNNs and
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Figure 5.18: Inference energy reductions due to sub-nominal voltage mem-
ory operations produce errors that degrade accuracy. Black
lines correspond to single-instance (quantized) baselines. The
implementation of parity checks (blue lines) and, even more,
its combination with E2CNNs (green lines), better preserve
accuracy while reducing energy.
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blue ones represent the same models, in which the proposed error mitigation

strategy is applied. Finally, green lines correspond to ensemble-based solu-

tions composed of four instances (i.e., 4-E2CNNs designs), also including the

proposed error mitigation strategy. Markers from left to right correspond to

increasing values of supply voltages as summarized in Table 5.4, from 600 mV

up to the nominal 800 mV (a level in which no error occurs). These results

indicate that voltage scaling dramatically impacts the accuracy of baseline

CNN implementations. In particular, by slightly reducing the voltage from

800 mV to 750 mV the accuracy of the considered baseline models (black

lines) is reduced by 59.8% on average.

On the other hand, Figure 5.18 also demonstrates the accuracy improvements

of the proposed error mitigation approach at any evaluated sub-nominal volt-

age. More precisely, it can be observed that almost iso-accuracy executions

are enabled in all benchmarks at 750 mV when implementing this mitigation

strategy. Observing blue and black curves, it can be noticed that markers

corresponding to the same voltage level are not vertically aligned to the ones

of the single-instance baseline. The reason is that these results take into

account the overhead of the error mitigation strategy implementation. There-

fore, the energy cost for solutions implementing the proposed strategy is

slightly higher for any supply voltage level. Still, the minimal energy over-

head due to the additional circuitry performing the parity check is largely

compensated by the possibility of reducing more the supply voltage, ulti-

mately resulting in a more favorable accuracy/energy trade-off. On average,

energy savings of 41.2 % can be achieved with the described methodology,

while preserving the baseline accuracy. Also, extending the proposed HW-

SW co-design approach with the described ensembles results in even more

advantageous gains. In fact, the error mitigation strategy reduces the inex-

actness introduced by memory errors in the activations, thus limiting their

impact on the accuracy of ensembles, that can achieve, on average, 8.2 %

higher accuracy than single-instance CNNs. In this context, ensembles serve

two objectives: on one side, they increase the initial inference accuracy at

nominal voltage (i.e., error-free executions), and, on the other side, their

additional robustness against errors is exploited to enable more aggressive

voltage scaling. This effect is particularly evident in Figure 5.18 for VGG16,
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GoogLeNet, and ResNext, where the curves of ensembles exhibit a smoother

accuracy degradation than single-instance alternatives when the voltage is

progressively reduced. Combining the presented error mitigation technique

with ensemble-based solutions allows the supply voltage to be reduced to

just 650 mV, resulting in energy savings up to 51.3 % with minimal impact on

the initial CNNs accuracy in most benchmarks
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6
This thesis has presented novel optimization approaches and methodologies

to reduce the memory and computing requirements of CNN models, sup-

porting their deployment and efficient execution in edge nodes. First, the

proposed strategies consist of algorithmic-level optimizations that can be

effectively leveraged in any sort of computing architecture. Then, to achieve

higher efficiency levels, I illustrate hardware-software co-design methodolo-

gies showing a stronger design interconnection between application-level

optimizations and hardware resources. In both cases, the main focus was

on improving the inference execution of Convolutional Neural Networks

(CNNs), deep learning models largely employed in multiple domains, from

an energy-efficiency perspective.

The proposed E2CNNs methodology has proved to be an effective algorithmic-

level transformation to improve the accuracy and robustness of CNN mod-

els. It builds ensemble-based models that, in contrast to state-of-the-art

ensembles, do not exhibit memory and computing overheads. In this re-

gard, it combines pruning and replication, so that the ensemble instances

are pruned versions of the original CNN implementation. To this end, ex-

perimental results revealed that its integration with other application-level

optimization strategies, including quantization and codebook-based trans-

formations, is beneficial to improve even more the inference efficiency and

memory requirements.
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For example, I applied the E2CNNs methodology in conjunction with a

codebook-based compression strategy that, targeting general-purpose hard-

ware, reduces the memory requirements of AI workloads while improving

performance at the same time. Compression is achieved by exploiting the

limited size of codebooks, and small look-up tables storing a constrained

number of unique model weights. In this way, the original CNN implemen-

tation is mapped as a set of codebook indexes (that require small bitwidths

due to the reduced size of codebooks) accessing the corresponding weight

values. Both the E2CNNs methodology and the codebook-based compres-

sion approach are hardware-agnostic, in the sense that their benefits do not

directly depend on the specific resources employed.

Instead, in the context of hardware-software co-design methods, I have

shown how such strategies outperform alternatives focusing only on one

of the two sides of the problem (i.e., either application-level optimizations or

ad-hoc hardware design). To this end, I initially focused on hardware imple-

menting inexact arithmetic, proposing an accuracy-driven methodology to

map layers of CNN models into exact/inexact arithmetic resources, reduc-

ing energy while controlling accuracy to user-defined levels. Results have

demonstrated that hardware-aware quantization approaches enable the use

of specific multiplier units that, combined with a proper mapping approach,

allow significant energy savings and controlled accuracy degradations.

I have also considered In-Memory Computing (IMC) accelerators, as devices

offering even larger degrees of computing efficiency. In particular, I have

developed a hardware-aware quantization strategy to effectively reduce the

number of clock cycles in CNN inferences, ultimately improving performance

and energy consumption. Moreover, to prevent arithmetic overflows in infer-

ence executions, I have proposed a workflow for the IMC acceleration of con-

volutional and fully-connected layers that includes scaling and de-scaling of

IMOs. This method leverages the overflow registers instantiated in hardware,

effectively preventing overflow occurrences by construction, without signif-

icant performance slowdowns. Finally, I have combined together E2CNNs,

quantization, and voltage scaling techniques in a more complete co-design

methodology where a combination of algorithmic-level transformations and

IMC hardware resources enable SRAMs to operate at subnominal voltage
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levels, ultimately resulting in very high energy reductions, with limited or no

impact on the output quality of CNN models.

I envision different extensions of the studies presented in this thesis. I briefly

summarize them in the following section, separating them into short-term

and long-term projects, based on the complexity and depth of possible inves-

tigations.

6.1 Possible extensions of proposed approaches

6.1.1 Short-term

• Combined training of E2CNNs instances. As presented in Chapter 2,

E2CNNs is constructed by pruning an initial single-instance CNN

model, to obtain pruned CNN structures that, once trained, will

compose the designed ensemble. Still, each (replicated) pruned CNN

instance is trained independently on the target training dataset. By

randomly initiating weights in each instance, the training process

generates CNN models with slightly different weight values, crucial to

achieving higher accuracy and resiliency. Nevertheless, the training

process could be potentially improved, by jointly training the generated

CNN instances. In fact, different training strategies can be developed in

this regard, either considering the E2CNNs design as a whole intrinsic

architecture (i.e., to backpropagate the gradients from the output of the

ensemble to the N individual instances) or by employing orthogonal

ensembling approaches such as bagging or boosting.

• E2CNNs of non-iso structured CNN models. Another path to improve

the E2CNNs methodology is to avoid the restriction of having CNN

instances with the same structure. In fact, by allowing individual CNN

architectures to exhibit different structures, more heterogeneous and

complex features could be extracted from input data, ultimately in-

creasing the accuracy of the ensemble. In this sense, a lightweight

meta-learner model [67] could be also included in the last stage of the

E2CNNs architecture to combine together individual predictions to

produce more accurate estimations.
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• Quantizing codebooks for integer-only arithmetic. Clustered weights

stored in codebooks are floating-point values (see Chapter 3). On the

one hand, this allows the execution of high-precision floating-point

arithmetic in CNN inferences and, on the other hand, the proposed

methodology effectively compresses CNN models without the need

for specialized hardware resources. However, a slight variation of this

methodology may be a valid solution for the hardware acceleration

of CNN inferences. In this case, quantizing the codebook values to

precise integer or fixed-point formats can enable efficiency gain in a

wide spectrum of accelerators. However, the accuracy degradation due

to quantization must be evaluated. As the generation of codebooks al-

ready produces several degrees of approximation, quantization should

be carefully tailored. This phase should probably be included in the

optimization loop when codebooks are actually generated. By doing

so, accuracy can be effectively controlled, adjusting codebooks size

and quantization levels while meeting the user-defined output quality

requirements.

6.1.2 Long-term

• E2CNNs in federated learning. Federated learning is emerging as an

approach to train global models in distributed environments, abiding

by privacy, latency, and data heterogeneity constraints [116]. In feder-

ated learning, a global AI model, initially trained in a centralized server,

is then instantiated in a set of end devices. There, these copies are

increasingly fine-tuned on the collected local data. Finally, periodic

steps aggregate the updated local models to generate a new (and more

accurate) global model on the centralized server. In this framework,

E2CNNs can be employed as an alternative to single-instance models.

In addition to the improvements described in this thesis, E2CNNs may

offer additional benefits in the context of federated learning. For exam-

ple, a certain number of instances of E2CNNs in a local device can be

kept local, undergoing the re-training stage, but avoiding being shared

to update the centralized model. In this way, some instances can learn

local features that characterize the data collected by the specific device.

Additionally, since they are kept local, only the remaining instances
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have to be shared for global updates, ultimately reducing latency and

the energy cost for data transmission.

• Approximate multipliers in hardware accelerators. The last section

of Chapter 4 underlined that the proposed methodology may offer

appreciable energy efficiency gains when applied to highly-parallel

computing units, citing systolic arrays as an example. An interesting

research activity could be the design of systolic arrays employing exact

and inexact multipliers, as discussed in this thesis. Then, the optimized

benchmarks could be accelerated in the designed hardware resources,

and the inference energy cost could be evaluated. Moreover, the use

of systolic arrays and, more generally, the use of parallel computing

resources open the door to much more complex exploration paths. For

example, it can be investigated if all Processing Elements (PEs) can ben-

efit from the use of approximate multipliers (in addition to the exact

ones). Another option would be to use approximate multipliers in cer-

tain PEs only, a solution that would certainly demand a different CNN

mapping strategy on the available resources. Finally, a third possibility

would be to allow different degrees of approximation, designing some

(of all) PEs with multiple approximate multipliers. The trade-off to be

explored is still centered on performance, accuracy, energy, and area

metrics, but shows a much higher degree of complexity with respect to

the one presented in this thesis.

• Full-system IMC simulation. The presented co-design approaches on

In-Memory Computing (IMC) focus on addressing specific challenges

of the in-memory acceleration of convolutional and fully-connected

layers of CNN models. Still, a future direction to develop this work

could be to develop an overall framework and architecture integrating

the IMC computing capabilities developed for SRAMs into an existing

computing system. Recently, my colleagues and I have outlined such a

comprehensive co-design vision in [117], describing a possible design

solution that combines different optimization elements discussed in

this thesis.
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