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While it is important to design stellarators with high magnetohydrodynamic stability
β-limit, it is also crucial to ensure that good magnetic surfaces exist in a large range
of β values. As β increases, pressure-driven currents perturb the vacuum magnetic field
and often lead to the emergence of magnetic field line chaos, which can worsen the
confinement and is the cause of another kind of β-limit, the so-called equilibrium β-limit.
In this paper, we explore numerically the dependence of the equilibrium β-limit on the
bootstrap current strength in a classical stellarator geometry using the stepped pressure
equilibrium code. We develop a diagnostic to determine whether or not magnetic islands
are expected to participate significantly to radial transport, and we build an analytical
model to predict the expected equilibrium β-limit, which recovers the main features of
the numerical results. This research opens the possibility to include additional targets in
stellarator optimization functions, provides additional understanding on the existence of
magnetic surfaces at large β, and is a step forward in the understanding of the equilibrium
β-limit.
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1. Introduction

In magnetic fusion devices such as stellarators, zeroth-order confinement of particles
and energy is obtained by constructing an equilibrium with magnetic surfaces. Magnetic
islands and magnetic field line chaos can be detrimental to confinement, i.e. they can
contribute to the radial transport of particle and energy (Hudson & Nakajima 2010).
While it is possible to design equilibria with good magnetic surfaces in a vacuum (Cary
& Kotschenreuther 1985; Cary & Hanson 1986; Pedersen et al. 2016), pressure-driven
plasma currents, such as diamagnetic, Pfirsch–Schlüter and bootstrap currents, perturb
finite pressure equilibria, and, at a sufficiently large pressure, magnetic islands and chaos
emerge.
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A pressure increase can also sometimes heal magnetic islands (Bhattacharjee et al.
1995). While this mechanism can improve confinement locally, other islands might open
elsewhere in the plasma as β increases. There is thus a critical value of β at which
magnetic islands open and magnetic field line chaos emerges. This defines an equilibrium
β-limit. Note, however, that the equilibrium β-limit is a ‘soft’ limit, since crossing it
does not lead to a loss of control of the plasma. Additional input power may, however,
leak through the damaged magnetic surfaces more easily (Rechester & Rosenbluth 1978),
thereby preventing an increase of β. Crossing the equilibrium β-limit may thus not
be as concerning as crossing a stability limit (which may lead to plasma disruptions),
but it still limits the overall performance of the reactor. It is consequently of crucial
importance to understand these equilibrium β-limits better, especially for the operation
of existing experiments and the design of new machines. Configurations where good
magnetic surfaces are preserved over a large range of β have to be sought, which will
help to ultimately identify configurations with large enough equilibrium β-limit.

In the case of a classical stellarator, Loizu et al. (2017) proposed a model for the
equilibrium β-limit of a configuration with zero net toroidal current as well as one with a
fixed edge rotational transform. Other studies computed high β equilibria in a number of
experimentally relevant stellarator configurations and predicted the emergence of magnetic
field line chaos at sufficiently large β – see, for example, the calculation by Suzuki,
Watanabe & Sakakibara (2020) in the Large Helical Device and Reiman et al. (2007)
in Wendelstein 7-AS (W7-AS). However, to the authors’ knowledge, no attempt has been
made to analytically model the impact of the bootstrap current on the equilibrium β-limit,
and to determine how this critical β depends on the device parameters.

We propose to extend the work of Loizu et al. (2017) to the case of a classical stellarator
with bootstrap current. We use the stepped pressure equilibrium code (SPEC) to compute
a large number of free-boundary equilibria at different β, including the effect of bootstrap
current. The code SPEC has been chosen for its speed, its capability to describe equilibria
with magnetic islands and chaos, and the possibility to calculate free-boundary equilibria
(Hudson et al. 2020) with a constrained toroidal current profile (Baillod et al. 2021).
The code SPEC has been verified in stellarator geometry (Loizu, Hudson & Nührenberg
2016b), and its core algorithm has been improved to run faster and to be more robust (Qu
et al. 2020b). It has been successfully applied to study current sheets at rational surfaces
(Loizu et al. 2015a,b; Huang et al. 2022), ideal linear instabilities (Kumar et al. 2021,
2022), tearing mode stability (Loizu & Hudson 2019) and nonlinear saturation (Loizu
et al. 2020), penetration of resonant magnetic perturbations in the ideal limit (Loizu et al.
2016a) and relaxation phenomena in reversed field pinches (Dennis et al. 2013b, 2014; Qu
et al. 2020a).

To numerically identify the equilibrium β-limit, Loizu et al. used a diagnostic based
on the volume of chaos, i.e. the volume of plasma occupied by chaotic field lines,
which were identified by measuring their fractal dimension (Meiss 1992). However, this
approach is too pessimistic since some chaotic magnetic field lines might be able to
preserve confinement (Hudson & Breslau 2008). An alternative approach, proposed by
Paul, Hudson & Helander (2022), is to measure the effective volume of parallel diffusion.
This measures the fraction of plasma volume over which the local parallel transport
dominates over the perpendicular one in setting the radial transport. Contrary to the
volume of chaos, this approach takes into account only sufficiently large resonances that
do participate significantly to the radial transport. In this paper, we follow Paul et al. and
measure the equilibrium β-limit by taking the β above which the radial transport generated
by damaged magnetic surfaces represents a significant fraction of the total radial transport.
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FIGURE 1. Sketch of a SPEC equilibrium with four volumes. The plasma boundary, ΓPB = I4,
is the dark grey surface and the computational boundary; ΓCB, is the light grey surface.

This paper is organized as follows. In § 2, the equations solved by SPEC are recalled. In
§ 3, we construct free-boundary equilibria in a rotating ellipse geometry, and construct a
bootstrap current model. In § 4, a new diagnostic is developed to measure the equilibrium
β-limit and compared with the volume of chaos. In § 5, we derive an analytical model to
explain the numerically obtained equilibrium β-limit. Finally, some concluding remarks
are provided in § 6.

2. The stepped-pressure equilibrium code

The code SPEC finds three-dimensional free-boundary magnetohydrodynamic (MHD)
equilibria with stepped-pressure profiles. Pressure steps are supported by a finite number
of nested toroidal surfaces Il, thereby defining Nvol nested volumes Vl with constant
pressure pl, with l ∈ {1, . . . ,Nvol} (see figure 1).

The magnetic field B in each volume is allowed to reconnect and can form magnetic
islands and chaotic field lines, while the volume interfaces are constrained to be nested
magnetic surfaces. The magnetic field in each volume is a force-free field described by a
Taylor state (Taylor 1974, 1986),

∇ × B = μlB, (2.1)

with μl a constant specific to the volume Vl, and the solution to (2.1) depends on the
geometry of the interfaces enclosing the volume Vl. The code SPEC finds the geometries
of interfaces Il such that force balance is satisfied,[[

p + B2

2μ0

]]
l

= 0, (2.2)

where μ0 is the vacuum permeability, p is the pressure and [[·]]l denotes the jump across
the interface Il. Equation (2.2) is the local equivalent to the more common force-balance
condition j × B = ∇p.
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The last interface defines the plasma boundary ΓPB. The plasma is surrounded by a
vacuum region (where pl = 0 and μl = 0), itself bounded by a computational boundary
ΓCB that lies outside the plasma and inside the coils. The toroidal surface ΓCB is an
otherwise arbitrary mathematical surface and not necessarily a magnetic surface, i.e.
generally B · n �= 0 on ΓCB, with n a vector normal to ΓCB. Note that the plasma averaged
β is evaluated from a SPEC equilibrium as

β = 1
V

Nvol∑
l=1

2μ0pl

∫∫∫
Vl

dv
B2
, (2.3)

with V the volume enclosed by ΓPB.
Free-boundary equilibria are determined by providing the total current flowing through

the torus hole, Ic, the geometry of the computational boundary, and the harmonics of the
vacuum field (produced by the coils) normal to the computational boundary. In addition,
SPEC requires as input, in each volume, the enclosed toroidal flux ψt,l, the pressure pl, the
net toroidal current within the volume Ivφ,l (closely related to the constant μl), and the net
toroidal current flowing at each interface Is

φ,l, which is a surface current.
Volume currents Ivφ,l represent all externally driven currents, such as ohmic current,

electron cyclotron current drive or neutral beam current drive. Surface currents Is
φ,l are all

pressure-driven currents, such as diamagnetic, Pfirsch–Schlüter or bootstrap current, or
island shielding currents. Further details about the SPEC algorithm and implementation
can be found in Hudson et al. (2012, 2020) and Baillod et al. (2021).

3. Rotating ellipse with bootstrap current

We study the case of a rotating ellipse (sometimes also called a classical stellarator)
with an analytical bootstrap current model. While a rotating ellipse is arguably a simple
geometry, it is still relevant since all stellarators without magnetic axis torsion are rotating
ellipses close to the magnetic axis (Helander 2014). An experimental instance of rotating
ellipse was, for example, the Wendelstein VII-A stellarator (Grieger, Renner & Wobig
1985).

We choose a computational boundary ΓCB (see figure 2) using standard cylindrical
coordinates x = RCB(θ, φ)êR + ZCB(θ, φ)êZ , with

RCB(θ, φ) = R0 + R10 cos(θ)+ R11 cos(θ − Nfpφ), (3.1)

ZCB(θ, φ) = Z10 sin(θ)+ Z11 sin(θ − Nfpφ), (3.2)

with Nfp = 5 the number of field periods, R0 = 10 m, R10 = −Z10 = 1 m, R11 = Z11 =
0.25 m. The effective minor radius is aeff = √

rminrmax with rmin = R10 − R11 and rmax =
R10 + R11 the minor and major radii of the ellipse, respectively. We define εa = aeff/R0 as
the inverse aspect ratio at the plasma boundary.

We assume that a coil system exists such that Bc · n = Bv êz · n on ΓCB, where Bc is the
magnetic field produced by the coils, and Bv êz is a constant vertical field, which is applied
to keep the plasma within the computational boundary at high β. We set Bv = −0.03 T.
This vertical field has little to no impact on the results presented hereafter; its only purpose
is to keep the plasma within the volume defined by ΓCB. We fix the total current flowing
in the torus hole to Ic = 17.1 MA, which determines the toroidal flux enclosed by the
computational boundary, ψt,V = 1 Tm2.

We choose a pressure profile with a linear dependence on the toroidal flux, i.e. p =
p0(1 − ψt/ψa), with p0 a free parameter andψa = 0.25 Tm2 the total toroidal flux enclosed
by the plasma boundary ΓPB. We approximate the pressure profile with seven steps of equal
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FIGURE 2. Computational boundary described by (3.1)–(3.2). Colours indicate the magnetic
field strength in a vacuum.

magnitude [[p]]l = p0/Nvol. We thus define seven plasma regions, i.e. Nvol = 7, surrounded
by a vacuum region. This means that ψt,l = (l − 1)ψa/Nvol and pl = p(ψt,l). The number
of volumes determines how the pressure profile is represented – more volumes means
more and smaller pressure steps. As each interface is a discrete constraint on the magnetic
topology, increasing the number of volumes reduces the available space for reconnection
and thus the maximum size of magnetic islands and regions of magnetic field line chaos.
In this paper, we are, however, interested in the onset of loss of magnetic surfaces, which is
not affected by the volume available for islands to grow. Therefore, our results only depend
weakly on the number of volumes (see the Appendix).

Two current profiles have to be provided to SPEC: the profile of volume currents,
{Ivφ,l}, and the profile of surface currents {Is

φ,l} (see § 2). Here we study the case of an
equilibrium with zero externally driven currents and with bootstrap current. No externally
driven currents implies, in SPEC, that there are no currents in the plasma volumes, i.e.

Ivφ,l = 0. (3.3)

The bootstrap current is a pressure-driven current, and is consequently described by a
surface current at the volume’s interfaces. We model it with

Is
φ,l = −C

(
ψt,l

ψa

)1/4 [[
p
]]

l , (3.4)

where (ψt/ψa)
1/4 ≈ √

ε/εa is related to the fraction of trapped particles, with ε the inverse
aspect ratio; [[p]]l is a measure of the local pressure gradient; and C is a coupling constant,
in [APa−1], which controls the strength of the bootstrap current in the system. A full
neoclassical calculation of the bootstrap current, for example with the SFINCS code
(Landreman et al. 2014), would require the density and temperature profiles as inputs –
and the freedom in the choice of the coupling constant C reflects the freedom in these
profiles.

The current density associated with the current in (3.4) is

jφ,l = − Cψa

πa2
eff

(
ψt,l

ψa

)1/4 dp
dψt

. (3.5)
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Note that if

C = C0 ≡
√
εaR0

ι-vB0
, (3.6)

with ι-v the edge rotational transform in vacuum and B0 such that μ0Ic = 2πR0B0, (3.5)
reduces to the well-known large-aspect ratio tokamak bootstrap current approximation
(Helander & Sigmar 2002),

jφ = √
εaR0

dp
dψp

, (3.7)

where ψp is the poloidal flux, and we made the approximation dψp/dψt = ι- ≈ ι-v. We
normalize C by C0, and define Ĉ ≡ C/C0. In the case of a large aspect ratio circular
tokamak, we thus have Ĉ = 1, while in a stellarator with no bootstrap current, Ĉ = 0.

We use the recently implemented capability of SPEC to prescribe the toroidal current
profile (Baillod et al. 2021), with the profiles defined in (3.3) and (3.4). Unless stated
otherwise, the Fourier resolution used in all results presented in this paper is |n| ≤ N = 12,
m ≤ M = 12, with n the toroidal mode number and m the poloidal mode number, meaning
that 2[N + M(2N + 1)] + 1 = 625 Fourier modes are used to describe each interface
geometry. Results presented in this paper have been checked for convergence with respect
to Fourier resolution (see the Appendix).

In summary, we can construct free-boundary SPEC equilibria with a simple bootstrap
current model and we are left with two free parameters, namely (i) β which controls
the total pressure in the system and (ii) Ĉ, a dimensionless parameter, that controls the
bootstrap current strength for a given plasma β.

3.1. Scans over Ĉ and β

A scan has been performed with β ∈ [0, 2 %] and Ĉ ∈ [0, 2.26] representing 680 SPEC
calculations, each requiring approximately 24 CPU-hours on the MARCONI cluster1 .
Figure 3 shows some selected Poincaré sections at different values of β and Ĉ, while
figure 4 shows the edge rotational transform, i.e. the rotational transform on the outer side
of ΓPB, as a function of β for four different values of Ĉ.

For small values of Ĉ, namely for Ĉ < Ĉcrit ≈ 0.59, the edge rotational transform
decreases with increasing β and eventually reaches zero (figure 4, black stars and red
dots), at which point an m = 1, n = 0 island opens and forms a separatrix at the plasma
boundary (see figure 3a,c,e). We will refer to this β-limit as the ideal equilibrium β-limit,
denoted by β ideal

lim , since it is well described by ideal MHD theory (see § 5.1). The value of
β ideal

lim obtained with SPEC is shown as a function of Ĉ in figure 5 (black triangles).
The ideal equilibrium β-limit can also be observed in tokamaks, although the underlying

mechanism is different. In a tokamak, the plasma may be kept centred by applying a
vertical magnetic field BZ . As β grows, BZ has to be increased, until it compensates the
poloidal field Bp on the high field side. When this happens, the field is purely toroidal and
a separatrix opens. In a stellarator, the poloidal magnetic field does not have to cancel
everywhere for a separatrix to open, it merely has to be such that a field line never
completes a poloidal turn. If this happens, the edge rotational transform is zero and a
separatrix opens. In our calculations, the net toroidal current is constrained in the plasma
volumes and at the interfaces. However, the actual dependencies of the current density
on the toroidal and poloidal angle are unconstrained. Pfirsch–Schlüter and diamagnetic

1https://www.hpc.cineca.it/hardware/marconi
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 3. Poincaré plot (black dots) of equilibria at toroidal angle φ = 0 and at different values
of (β, Ĉ): (a,c,e) Ĉ = 0.46; (b,d, f ) Ĉ = 0.91. Red lines, inner plasma volume interfaces; blue
line, plasma boundary; yellow line, computational boundary.

currents angular dependencies are the source of the poloidal magnetic field perturbation,
the lowering of the edge rotational transform, and ultimately the opening of the separatrix.
This is why, even in a zero net-toroidal-current stellarator (Ĉ = 0), the edge rotational
transform reaches zero.

For values of Ĉ > Ĉcrit, the (now strong enough) bootstrap current is able to prevent
the edge rotational transform from reaching zero for any β, and hence no m = 1, n = 0
island appears anywhere (see the blue crosses and green squares in figure 4). Instead, the
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FIGURE 4. Edge rotational transform, ι-a, as a function of plasma average β, for different values
of Ĉ; stars, circles, crosses and squares are SPEC calculations while full lines are given by (5.1).

FIGURE 5. Equilibrium β-limit as a function of Ĉ: black triangles, ideal equilibrium β-limit,
β ideal

lim , as obtained from SPEC; solid black line, analytical prediction for β ideal
lim from (5.6); the

dashed vertical line indicates the analytical value of Ĉcrit from (5.7); red dots, values of the
chaotic equilibrium β-limit, βchaos

lim , obtained from SPEC for Br,crit/B = 10−5; the red area shows
the range obtained from SPEC for Br,crit/B ∈ [10−6, 10−4]; solid red line, analytical prediction
for βchaos

lim obtained by solving (5.10); blue squares, SPEC values for which ι-a = 2ι-v .

edge rotational transform increases until many island chains open in the plasma and in the
vacuum region (figure 3b,d, f ). When these islands are large enough to have a significant
impact on the radial transport, the chaotic equilibrium β-limit is reached, denoted by βchaos

lim .
Finally, for all values of Ĉ, islands start to overlap and generate large regions of chaotic
field lines at sufficiently large values of β (figure 3e, f ). In § 4, a diagnostic to measure the
critical value of β at which the chaotic equilibrium β-limit is reached will be presented,
and an analytical model that explain the results will be derived in § 5.2.
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It may be argued that volume interfaces might not be able to support the pressure if
islands or chaos are close by (see, for example, figure 3f ) – i.e. that SPEC equilibria
might not be trusted at large β without further analyses. This question has been thoroughly
studied in slab geometry by Qu et al. (2021). They identified two reasons why a solution
might not exist.

The first possibility is that the magnetic surface does not exist, in particular that it
is fractal. In our calculations above the equilibrium β-limit, large magnetic islands and
chaotic regions develop close to volume interfaces. In this situation, it is indeed not
known if the solution exists and additional analyses would be required, for example with
convergence studies as proposed by Qu et al. (2021). Below the equilibrium β-limit,
however, only small islands are present. The interfaces are not perturbed by neighbouring,
large magnetic islands, and it is likely that the volume interfaces are magnetic surfaces.
Since we are only interested in computing the equilibrium β-limit, it is sufficient to
calculate equilibria below or equal to the equilibrium β-limit; larger β equilibria are
irrelevant, and thus the question of existence of interfaces is eluded. In practice, we observe
that large magnetic islands and chaotic field lines get close to the volume interfaces only for
equilibria with β sufficiently large to trust the results presented in this paper. Nevertheless,
convergence studies have been performed, and results presented in this paper have been
shown to be spectrally converged (see the Appendix).

The second possibility is that the pressure jump on an interface is too large and a
solution to the force-balance equation (2.2) does not exist. This is a possible explanation
for when SPEC does not find an interface geometry that satisfies the force balance equation
(2.2). However, in our calculations, SPEC finds magnetic geometries that do satisfy force
balance. This means that the pressure jump across the interfaces is small enough and a
solution exists. To summarize this discussion, we can trust the SPEC solutions presented
in this paper.

4. Measure of magnetic chaos and its effect on radial transport
4.1. Fractal dimension, volume of chaos

One approach to discriminate between a chaotic field line and other magnetic field line
topologies is to evaluate the fractal dimension D of the field line Poincaré section, for
example using a box-counting algorithm (Meiss 1992). An almost binary behaviour is then
observed: either a magnetic field line stays on a magnetic surface whose Poincaré section
is a one-dimensional object, D = 1, or the magnetic field line has a fractal dimension
D > Dcrit, with 1 < Dcrit < 2. In our case, we observe that Dcrit = 1.3 can be used to
differentiate between magnetic surfaces and chaos. Loizu et al. (2017) proposed to evaluate
the volume occupied by chaotic field lines with

Vchaos = Vtotal

Nlines∑
i=1

(ψt,i − ψt,i−1)

ψa
H(Di − Dcrit), (4.1)

where Nlines is the number of considered field lines, Di is the fractal dimension of the
ith line, H is the Heaviside function, Vtotal is the total plasma volume, and ψt,i − ψt,i−1
measures the enclosed toroidal flux between field lines i and i − 1.

The chaotic equilibrium β-limit could then be defined as the β above which Vchaos > 0.
The volume of chaos, however, while very useful as a measure of the number of chaotic
field lines, does not provide enough information about whether or not the radial transport
is enhanced by the destruction of magnetic surfaces. In addition, the volume of chaos
is sensitive to the numerical resolution of the equilibrium – the larger the number of
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FIGURE 6. Here Vchaos/Vtotal (blue), and fPD evaluated for Br,crit/B = 10−5 (red) versus
plasma averaged β, for M = N = 8 (crosses) and M = N = 10 (circles).

Fourier modes, the greater the number of potential resonances in the equilibrium. Due
to overlap between small islands chains generated by high-order rationals, chaos may
emerge at smaller β as the Fourier resolution is increased. For example, in figure 6
the volume of chaos is plotted as a function of β for two different Fourier resolutions,
M = N = 8 and M = N = 10 (blue lines). We see that with this diagnostic, the measured
chaotic equilibrium β-limit would drop from ∼1.5 % to ∼1 % if it were defined as the
β above which Vchaos > 0. However, in the M = N = 10 scan, some of the chaotic field
lines are formed by high-order rationals and their associated smaller islands are expected
to participate weakly with the radial transport, and could potentially be ignored. An
alternative diagnostic that takes into account the effect of the magnetic field lines topology
on the radial transport is thus required.

4.2. Fraction of effective parallel diffusion
We discuss an alternative measure to the volume of chaos to determine if the destruction
of magnetic surfaces significantly impacts the radial transport. Here the parallel and
perpendicular direction are defined as the direction along and across the magnetic field,
respectively, and the radial direction r as the direction perpendicular to isotherms,
∇T × ∇r = 0, with T the temperature. In recent work, Paul et al. (2022) discussed the
properties of the anisotropic heat diffusion equation, ∇ · (κ‖T + κ⊥T) = 0, where κ‖
and κ⊥ are the parallel and perpendicular heat conductivities. In particular, Paul et al.
demonstrated that, under the assumption that κ and ∇ · κ are analytical, isotherms are
topologically constrained to be toroidal surfaces – this forbids isotherms to align with the
magnetic field in regions occupied by magnetic islands and magnetic field line chaos. Here
κ is the diffusion tensor, defined as κ = κ⊥I + (κ‖ − κ⊥)BB/B2, with I the identity tensor.
Motivated by comparing the local parallel diffusion with the local perpendicular diffusion,
Paul et al. introduced the volume of effective parallel diffusion, which is the volume of
plasma where the parallel heat transport dominates perpendicular heat transport,

VPD = 1
Vtotal

∫
Vtotal

H(κ‖|∇‖T|2 − κ⊥|∇⊥T|2) dx3, (4.2)
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where the parallel and perpendicular gradients are defined as ∇‖ = B(B · ∇)/B2 and
∇⊥ = ∇ − ∇‖, respectively. In regions occupied by magnetic islands and magnetic field
line chaos, the constraint on the isotherms topology implies that the magnetic field has
a non-zero radial component, thus ∇‖T > 0. Depending on the ratio κ‖/κ⊥, the volume
of effective parallel diffusion can then be greater than zero. On the contrary, in regions
occupied by magnetic surfaces, isotherms largely coincide with magnetic surfaces, which
means that ∇‖T is negligible, and consequently the volume VPD is zero. Leveraging these
properties, we can define the chaotic equilibrium β-limit as the β above which VPD > 0.

To determine the chaotic equilibrium β-limit, it is only required to determine if VPD is
zero or not; its absolute value is irrelevant. We thus construct a proxy function for VPD
that does not depend on the temperature profile, but only on the magnetic field. We start
by noticing that the Heaviside function in (4.2) is greater than zero when κ‖|∇‖T|2 ≥
κ⊥|∇⊥T|2. As we expect the radial magnetic field to be small in comparison with the total
magnetic field, Br � B, we can write ∇‖T ∼ ∇TBr/B, and ∇⊥T ∼ ∇T . The volume of
effective parallel diffusion is then greater than zero if there is a finite volume where(

Br

B

)2

≥ κ⊥
κ‖

≡
(

Br,crit

B

)2

. (4.3)

Considering the electron heat transport as a figure of merit for the confinement properties
of the equilibrium, and using the Spitzer–Härm conductivity for κ‖,e (Braginskii 1965), we
get (

Br,crit

B

)2

= 5.2 × 10−22 ne logΛχ⊥,e
T5/2

e
, (4.4)

where logΛ is the Coulomb logarithm, and typically χ⊥,e = κ⊥,e/ne ∼ 1 m2 s−1. Here
everything is to be expressed in SI units except Te, which is in eV . For temperatures and
densities between 1 to 10 keV and 1019 to 1020 m−3, respectively, Br,crit/B ranges from
10−6 to 10−4. For example using typical values for W7-X high performance experiments
(Klinger et al. 2019), i.e. ne = 4 × 1019 m−3, Te = 5 keV, we obtain a critical normalized
radial magnetic field of Br,crit/B ∼ 10−5. As a side note, we remark that the criterion
(4.3) can also be derived by considering the radial heat diffusion equation for electrons,
qr = −κ⊥,e(∇⊥Te)r − κ‖,e(∇‖Te)r ∼ −κ⊥,e dTe/dr − κ‖,e dTe/drB2

r/B
2. Magnetic islands

and chaos play then an important role in setting the local heat radial transport when the
second term on the right-hand side of the heat diffusion equation is larger than the first
one, which occurs when B2

r/B
2 ≥ κ⊥/κ‖, recovering (4.3).

The volume of effective parallel diffusion can thus be written using the criterion (4.3),

VPD ∼ 1
Vtotal

∫
Vtotal

H
([

Br

B

]2

−
[

Br,crit

B

]2
)

dx3. (4.5)

This measure is, however, unpractical for the purpose of this paper, as it would require us
to evaluate the radial magnetic field everywhere in the plasma. Instead, the radial magnetic
field is evaluated where it is expected to be the largest, i.e. on a selected number of rational
surfaces. We then construct the fraction of parallel diffusion,

fPD = 1
Nres

Nres∑
i=1

H
([

Br

B

]2

−
[

Br,crit

B

]2
)
, (4.6)

where Nres is the number of considered resonances, and the algorithm used to evaluate
the radial magnetic field Br from SPEC equilibria is described in § 4.3. The fraction of
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effective parallel diffusion is then the fraction of resonances in the plasma that contribute
to the transport, i.e. the fraction of resonances over which the diffusion due to parallel
dynamics dominates. Note that fPD �= VPD, but if fPD = 0, we can expect VPD to be zero,
and the opposite is true as well. The fraction of parallel diffusion can then be used as a
proxy function to determine if the volume of parallel diffusion is zero or not. The chaotic
equilibrium β-limit, βchaos

lim , is obtained by taking the value of β above which fPD > 0 (see
figure 6).

Note that this does not define an equilibrium β-limit from an experimental point of
view – the metric fPD is positive as soon as one resonance satisfies (4.3), which would, in
practice, only flatten the temperature and density profiles locally. It is certainly possible
to increase the plasma averaged β further by increasing the input power. Our metric fPD,
however, informs us that the effect of field line topology starts to become important and
has to be taken into account in transport calculations for β > βchaos

lim . One could imagine
to combine the volume of chaos given by (4.1) with the criterion given by (4.3), and only
consider resonances that span a sufficiently large volume and that contribute significantly
to the radial transport. This idea will not be explored in this paper, and is left for future
studies.

In practice, the metric fPD is greater than zero when relatively small islands in
comparison with the plasma minor radius emerge (using Br,crit/B = 10−5). Thus, as long as
the SPEC volumes are large enough to allow these islands to grow, the number of volumes
does not affect the metric evaluation. In addition, given a sufficiently large number of
volumes, the pressure profile is well resolved by the stepped-pressure approximation
and thus the equilibrium does not depend strongly on the number of volumes (see the
Appendix).

4.3. Measure of the radial magnetic field
To evaluate the radial magnetic field Br, it is useful to construct a general set of coordinates,
such as quadratic flux minimizing (QFM) surfaces (Dewar, Hudson & Price 1994; Hudson
& Dewar 1996, 1998), or ghost surfaces (Hudson & Dewar 2009), which have been shown
to coincide with isotherms (Hudson & Breslau 2008). We construct QFM surfaces using
the pyoculus package2 . These surfaces, thereafter named Γmn, are smooth toroidal surfaces
that pass through the X- and O- points of the island chain corresponding to the ι- = n/m
rational resonant surface, and are constructed by finding the surfaces Γmn minimizing the
weighted quadratic flux

∫
Γmn

w(B · n)2 dS, where the weight w is cleverly chosen such that
the underlying Euler–Lagrange equation has non-singular solutions. Some examples of
QFM surfaces are plotted in figure 7. The radial coordinate r is then defined as the direction
perpendicular to the QFM surfaces.

We can now measure the radial component of the magnetic field at each resonant surface
ι- = n/m. We start by identifying all potential resonances (m, n) ∈ N in each volume Vl
within the plasma boundary, such that (i) n/m is within the rotational transform extrema
in the volume, and (ii) n is a multiple of the number of field periods. We construct
QFM surfaces Γmn for each of the identified resonances ι- = n/m. The magnetic field
perpendicular to the QFM surface, Br, is obtained by projecting the magnetic field on
their normal direction, and the magnetic field resonant harmonic, Br,mn is obtained after a
standard Fourier transform of Br. Here, the poloidal angle is the straight-field line angle
of the magnetic field tangential to the QFM surface. The Fourier spectrum of Br is largely
dominated by the (m, n) harmonic – it has been verified that Br,mn is at least twice as large

2https://github.com/zhisong/pyoculus
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FIGURE 7. Black, Poincaré plot with magnetic surfaces and magnetic islands; red, QFM
surface r = const. The coordinate s is a radial-like coordinate.

as the other Fourier harmonics of the radial magnetic field. We can thus assume Br ≈ Br,mn
to filter out numerical noise that may be generated by the QFM surface construction.

Only resonances with large radial magnetic field will significantly participate to
the radial transport. Since the magnetic field harmonics Bmn are expected to decrease
exponentially with the square of their mode numbers m and n, i.e. Bmn ∼ exp(−m2 − n2),
we can discard resonances with large poloidal and toroidal mode number and study only
harmonics with mode number smaller than a given resolution, m ≤ Mres and n ≤ Nres. In
this paper, we set Mres = 25 and Nres = 10.

With the definition of the chaotic equilibrium β-limit from the fraction of effective
parallel diffusion (4.6), only resonances with large radial magnetic field component matter;
increasing the Fourier resolution of the equilibrium only introduces resonances with small
radial magnetic field components, and thus has only a small impact on the value of fPD
– see for example the comparison between two β-scans with resolution M = N = 8 and
M = N = 10 in figure 6 (red curves), and the chaotic equilibrium β-limit convergence
study in the Appendix. Indeed, the critical β at which fPD becomes larger than zero, namely
βchaos

lim , becomes quite insensitive to the Fourier resolution for sufficiently large values of
M and N, as the ones used for this paper (M = N = 12). In that sense, this new diagnostic
is more robust than the diagnostic based on the volume of chaos.

The chaotic equilibrium β-limit obtained using the metric fPD defined in (4.6) is plotted
in figure 5 with a red shaded area, spanning the range of βchaos

lim obtained when varying
Br,crit/B from 10−6 to 10−4. The value of βchaos

lim obtained for Br,crit/B = 10−5 is shown
with red dots. We observe that the largest β-limit occurs at Ĉ ≈ 0.75. A small, but
non-zero bootstrap current thus increases the equilibrium β-limit with respect to a classical
stellarator without any net toroidal current (Ĉ = 0), and is thus beneficial.

5. Analytical prediction for the equilibrium β-limits

We now derive an analytical model that predicts both the ideal and chaotic equilibrium
β-limits. We make use of high-β stellarator expansion theories derived by Wakatani (1998)
and Freidberg (2014) to describe how the rotational transform at the plasma edge ι-a evolves
with β, taking into account the effect of the bootstrap current as well. Once a formula for
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ι-a(β) has been derived, we can find whether an ideal β-limit is reached by solving ι-a(β) =
0. When no solution is possible, a chaotic β-limit may also be estimated by assuming that
the edge iota is modified by order one with respect to the vacuum rotational transform,
ι-a(β)− ι-a(0) ∼ ι-a(0), at which point it is likely that many resonances exist.

Assuming that (i) ε � 1, δ = |Bp|/Bφ ∼ ε3/4 with Bp the poloidal magnetic field, β ∼ ε

and Nfp ∼ ε−1/2, that (ii) magnetic surfaces are circular, and (iii) considering Solove’v
profiles for the pressure dp/dψp = const, and the surface averaged toroidal current density
〈jφ〉 = const, one can derive (Wakatani 1998; Freidberg 2014) an analytical model for the
edge rotational transform,

ι-a = (ι-I + ι-v)
√

1 − ν2, (5.1)

with ι-I = R0

2ψa
μ0Iφ(β) (5.2)

and ν = β

εa(ι-I + ι-v)2
, (5.3)

where Iφ is the net toroidal current enclosed by the plasma and ι-v is the edge rotational
transform in a vacuum.

The bootstrap current model we employed in our equilibrium calculations (3.4) implies
a linear relation between the net toroidal current in the system and the plasma β, thus

ι-I = σβ, (5.4)

where σ is a proportionality constant. It can be related to C by integrating (3.5) to compute
Iφ in (5.3), leading to

σ = 2
5

1

πε
3/2
a ι-v

Ĉ. (5.5)

Combining (5.1)–(5.5), analytical expressions of the edge rotational transform as a
function of β for different values of Ĉ can be obtained. Figure 4 compares the analytical
curves with results obtained with SPEC. We observe reasonable agreement especially
at low β. As β increases, however, (5.1) consistently underestimates the actual value of
the rotational transform found by SPEC. Thus, even though the equilibrium constructed
in § 3 does not exactly satisfy the assumptions used to derive (5.1), the assumptions
are reasonable enough to use this analytical model to understand our numerical results.
Equation (5.1) provides indeed an analytical (nonlinear) relation for ι-a(β) which can
be used to predict both the ideal and chaotic β-limits, as described in the following
subsections.

5.1. Ideal equilibrium β-limit
The solution to the relation ι-a(β

ideal
lim ) = 0 is given by

β ideal
lim = 1

εaσ 2

[
1
2

− ι-vεaσ −
√

1 − 4ι-vεaσ

]
, (5.6)

which is real for σ < (4ι-vεa)
−1, or

Ĉ ≤ 5
8

ψa

ε
3/2
a R2

0B0

≡ Ĉcrit. (5.7)
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Note the limit

lim
σ→0

β ideal
lim = εaι-2

v, (5.8)

retrieving the result from Freidberg (2014) and Loizu et al. (2017) for a zero-net-current
stellarator (Ĉ = 0).

The curve β ideal
lim (Ĉ) is plotted in figure 5 with a black line. We observe that as Ĉ

increases, the ideal equilibrium β-limit increases. Comparison with data points measured
from SPEC equilibria (red triangles) shows good agreement, especially for weaker
bootstrap current (Ĉ < 0.5). The analytical value of Ĉcrit ≈ 0.48 is reasonably close to
the one obtained with SPEC (smaller by approximately 18 %).

5.2. Chaotic equilibrium β-limit

For larger values of Ĉ, i.e. Ĉ > Ĉcrit, the chaotic equilibrium β-limit is due to the
emergence of chaos and its effectiveness in increasing the transport, thus estimating the
chaotic equilibrium β-limit with (5.1) is not trivial – it is not known, a priori, which
resonance will participate to the radial transport first. However, it is reasonable to assume
that when the bootstrap current modifies the edge rotational transform by order one with
respect to ι-v, i.e.

�ι-a ≡ ι-a − ι-v = ι-v, (5.9)

magnetic islands and chaos are expected to appear. The values of β computed with SPEC
at which the condition (5.9) is satisfied are plotted with brown squares in figure 5. We
observe good agreement with the chaotic equilibrium β-limit (blue dots) for Ĉ > 1.

We can also directly solve (5.9) using (5.1). We obtain a fourth-order polynomial
equation for β,

β4 + 4
ι-v
σ
β3 +

(
2
ι-2
v

σ 2
− 1
ε2

aσ
4

)
β2 − 4

ι-3
v

σ 3
β − 3

( ι-v
σ

)4
= 0. (5.10)

The real, positive root of (5.10) is plotted with a red line in figure 5. Direct comparison
with the numerical data (blue squares) shows that (5.10) consistently underestimates the
values of β that satisfy (5.9); this is a direct consequence of the underestimate of ι-a by
the analytical model (figure 4). The general dependence on Ĉ is, however, recovered,
capturing the chaotic equilibrium β-limit trend (red dots in figure 5) observed numerically
for values of Ĉ > 1. We remark that there are no free parameters in this analytical
model. For Ĉcritical < Ĉ < 1, the analytical model (5.10) overestimates greatly the chaotic
equilibrium β-limit obtained with SPEC. In this transition region, the edge rotational
transform depends weakly on β for β � 1 (see, for example, the blue crosses in figure 4).
As a consequence, the solution to (5.9) is large, and is therefore a bad estimate for the
chaotic equilibrium β-limit. A more refined model would be required to better reproduce
the results.

5.3. Dependence on design parameters
The edge rotational transform in a vacuum is approximately equal to the rotational
transform on axis (low shear configuration), and can be estimated by a zeroth-order near
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FIGURE 8. Analytical predictions of the equilibrium β-limit for different numbers of field
period Nfp: full lines, ideal and chaotic equilibrium β-limits as predicted by (5.6) and (5.10),
respectively; triangles and dots, ideal and chaotic equilibrium β-limits as obtained by SPEC,
respectively.

axis expansion (Helander 2014; Loizu et al. 2017),

ι-axis
v ≈ ι-v = Nfp

2
(rmax − rmin)

2

r2
max + r2

min
. (5.11)

For low values of Ĉ, the ideal equilibrium β-limit grows with the vacuum rotational
transform (see (5.8)). For example, increasing the number of field periods increases ι-v,
thus also the equilibrium β-limit, as shown in figure 8. These results were corroborated by
SPEC calculations with Nfp = 2, while calculations with Nfp = 10 were difficult to achieve
due to SPEC numerical fragility issues.

More generally, any mechanism that increases the rotational transform in a vacuum will
increase the ideal and chaotic equilibrium β-limits. An increase in rotational transform
can be achieved by either increasing the number of field periods, increasing the ellipse
eccentricity (i.e. increasing the harmonic R11 = Z11) or adding some torsion to the
magnetic axis. Magnetic axis torsion can, however, have a strong impact on the computed
equilibrium, and additional studies would be required to see if it affects the conclusions of
this paper.

Equation (5.7) gives Ĉcrit = 0.48, i.e. the equilibrium β-limit is maximized for a
bootstrap current that has half the strength of the bootstrap current in an equivalent
circular tokamak. Interestingly, if we approximate the total toroidal flux in the plasma as
ψa ≈ πa2

effB0, with B0 the modulus of the magnetic field on axis, we get Ĉcrit = 5π
√
εa/8,

which only depends on the inverse aspect ratio.

6. Conclusion

The SPEC code has been used to perform a large number of free-boundary stellarator
equilibrium calculations including bootstrap current that allowed us to completely
characterize classical stellarators in terms of their equilibrium β-limit. For configurations
with low bootstrap current (Ĉ < Ĉcrit), an ideal equilibrium β-limit has been identified,
where a central (m, n) = (1, 0) island appears. Stronger bootstrap current (Ĉ > Ĉcrit)
prevents this central island from opening. Instead, a chaotic equilibrium β-limit is
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reached, where the radial heat transport generated by pressure-induced magnetic islands
and magnetic field line chaos competes with turbulence. We have implemented a proxy
function to determine if the effective volume of parallel diffusion proposed by Paul et al.
(2022) is greater than zero, thereby assessing the impact of the field line topology on radial
transport and deducing the equilibrium β-limit from SPEC equilibrium calculations.

An analytical model showed good agreement with the ideal equilibrium β-limit obtained
numerically for weak bootstrap current. The general trend for the chaotic equilibrium
β-limit could also be extracted for stronger bootstrap current, up to Ĉ ∼ 2. Analytical
insights provided ways to predict the effect of design parameters on the equilibrium
β-limit; for example, the ideal β-limit has been shown to increase with Ĉ, while the chaotic
equilibrium β-limit decreases with Ĉ, thereby showing a peak equilibrium β-limit around
Ĉcrit. The critical value of Ĉcrit depends only on the inverse aspect ratio, under reasonable
assumptions.

To improve the equilibrium β-limit of stellarators, optimization of different parameters
can be performed. For example, Landreman, Medasani & Zhu (2021b) recently coupled
SPEC with the simsopt framework (Landreman et al. 2021a) to perform optimization for
good magnetic surfaces at the same time as quasisymmetry in a vacuum, and Baillod
et al. (2022) showed that good magnetic surfaces can be recovered in finite β, finite
current equilibria by modifying either the plasma boundary, the coils, or by injecting a
toroidal current in the plasma. Applying the same recipe to a sequence of equilibria with
increasing β, one can optimize a stellarator configuration for larger equilibrium β-limit.
Note, however, that the fraction fPD is generally not a smooth function of the equilibrium
and might not be a good target function for optimization. Another smooth function should
be developed from the radial magnetic field component Br if one desires to minimize the
impact of field line topology on radial transport.

Future studies will focus on more exotic stellarator geometries, for example
configurations optimized for quasisymmetry or quasi-isodynamicity, and include
self-consistent bootstrap currents, as proposed by Landreman, Buller & Drevlak (2022).
Finally, one could use the SPEC code to evaluate the stability limit for different values
of Ĉ, using the methods developed by Kumar et al. (2021, 2022). This would provide
useful information on the dependence of the stability limit on the parameter Ĉ, and allow
comparison with the equilibrium β-limit.
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FIGURE 9. Chaotic equilibrium β-limit, as obtained by SPEC for Br,crit/B0 = 10−6, and Ĉ =
1.37 as a function of the equilibrium Fourier resolution. The black, dashed line is the analytical
prediction obtained by solving (5.10).
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Appendix. Convergence on numerical resolution and number of volumes

The chaotic equilibrium β-limit, as obtained by SPEC for Br,crit/B0 = 10−6, and Ĉ =
1.37, is plotted on figure 9 as a function of the equilibrium Fourier resolution. Convergence
towards a value close to the analytical prediction is observed. The resolution used to
compute the results presented in this paper, i.e. Mpol = Ntor = 12, seems large enough so
that the relative variations obtained by further increasing the Fourier resolution become
small, of the order of 3 %.

We now discuss the dependence of the ideal and the chaotic equilibrium β-limit
dependence on the number of volumes Nvol. Keeping the same coil shapes and currents, we
approximate the pressure profile p = p0(1 − ψt/ψa) with different numbers of interfaces
supporting an equal pressure step, [[p]]l = p0/Nvol. We set Ivφ,l = 0 and Is

φ,l following the
bootstrap current model described in (3.4). A large range of β is scanned for Ĉ = 0.46 <
Ĉcrit and Ĉ = 1.37 > Ĉcrit, and for Nvol = {2, 4, 6, 8, 10, 12}. The corresponding ideal and
chaotic equilibrium β-limits obtained from SPEC are shown on figure 10.

For Ĉ = 0.45, an ideal equilibrium β-limit is found, that grows with the number of
volumes, asymptotically approaching the analytical prediction as obtained by (5.6). This is
expected, as ideal MHD is recovered as the number of volumes approaches infinity (Dennis
et al. 2013a). Interestingly, we observe variations of the chaotic equilibrium β-limit of the
order of 30 % as the number of volumes is changed, clearly within the range of values
covered when Br,crit is varied. The dependence of the chaotic equilibrium β-limit is thus

https://doi.org/10.1017/S0022377823000910 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000910


Equilibrium β-limits dependence on bootstrap current in classical stellarators 19

FIGURE 10. Dependence of the equilibrium β-limit on the number of volumes Nvol: black, ideal
equilibrium β-limit, obtained for Ĉ = 0.45; red, chaotic equilibrium β-limit, obtained for Ĉ =
1.37; full lines, equilibrium β-limit, as obtained with SPEC; dashed line, analytical prediction,
as obtained with the HBS theory.

negligible in comparison with its dependence on Br,crit, i.e. on the plasma temperature and
densities. We conclude that the stepped-pressure assumption made by the SPEC model
has few to no consequences on the physical results presented in this paper.
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