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Abstract
This paper focuses on over-parameterized deep
neural networks (DNNs) with ReLU activation
functions and proves that when the data distribu-
tion is well-separated, DNNs can achieve Bayes-
optimal test error for classification while obtain-
ing (nearly) zero-training error under the lazy
training regime. For this purpose, we unify three
interrelated concepts of overparameterization, be-
nign overfitting, and the Lipschitz constant of
DNNs. Our results indicate that interpolating
with smoother functions leads to better generaliza-
tion. Furthermore, we investigate the special case
where interpolating smooth ground-truth func-
tions is performed by DNNs under the Neural Tan-
gent Kernel (NTK) regime for generalization. Our
result demonstrates that the generalization error
converges to a constant order that only depends
on label noise and initialization noise, which the-
oretically verifies benign overfitting. Our analysis
provides a tight lower bound on the normalized
margin under non-smooth activation functions, as
well as the minimum eigenvalue of NTK under
high-dimensional settings, which has its own in-
terest in learning theory.

1. Introduction
Benign overfitting has attracted significant research interest
recently in an effort to understand why predictors with zero
training loss can still achieve counter-intuitively good gener-
alization performance even in the presence of noise (Koehler
et al., 2021; Zou et al., 2021; Chatterji and Long, 2022;
Wang et al., 2022; Mei and Montanari, 2022). Current
efforts on benign overfitting mainly focus on the finite sam-
ple behavior under linear regression (Bartlett et al., 2020;
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Chatterji et al., 2021; Zou et al., 2021), kernel-based estima-
tors (Mei and Montanari, 2022; Liang et al., 2019), and lo-
gistic regression (Montanari et al., 2019; Wang et al., 2021).

To our knowledge, results on neural networks (NNs) are
restricted to two-layer neural networks (Tsigler and Bartlett,
2020; Ju et al., 2021; Frei et al., 2022; Cao et al., 2022) and
three-layer neural networks but only the last layer is trained
(Ju et al., 2022). The extension from shallow NNs to deep
neural networks (DNNs) is non-trivial: under what condi-
tions does benign overfitting occur in deep neural networks?
and what makes them special? are still open problems in
both statistical learning theory and deep learning theory.

In this work, we address this open question in benign over-
fitting of deep ReLU NNs for binary classification under the
lazy training regime. We assume the network is trained by
stochastic gradient descent (SGD) on well-separated data
under adversarially corrupted labels, following the stan-
dard problem setting of Frei et al. (2022). We prove that
the ReLU DNN exhibits benign overfitting, i.e., obtaining
Bayes-optimal test error while obtaining zero training error
under the lazy training regime.

Our results establish a rigorous connection between the
Lipschitz constants of DNNs and benign overfitting. We
demonstrate that interpolating with (Lipschitz) smoother
functions leads to a faster convergence rate on the general-
ization guarantees. Accordingly, for a better understanding
of how the estimator by DNNs interpolates the ground-truth
function, we also consider a regression task for DNNs from
an approximation theory view (Cucker and Zhou, 2007),
interpolating the smooth ground-truth function by DNNs
under the neural tangent kernel (NTK) regime (Bach, 2017;
Jacot et al., 2018).

Overall, we expect our results to foster a refined analysis of
the generalization guarantees for large dimensional machine
learning models, especially on DNNs.

1.1. Contributions and technical challenges

In this paper, we consider a finite sample behavior, in which
the input dimension d can be large but fixed, or comparably
large with the number of training data n and model parame-
ters to obtain a dimension-free bound (Bartlett et al., 2020;
Ju et al., 2022; Li et al., 2021). Our main contributions are
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summarized below:

• We adhere to the standard data setting with label noise
that has been previously explored in two-layer net-
works (Frei et al., 2022), along with the model setting
for multi-layer fully connected neural networks (Cao
and Gu, 2019; Allen-Zhu et al., 2019b). Building
upon the proof concept of (Frei et al., 2022), we ex-
tend our results to deep ReLU neural networks, which
presents a considerable challenge in connecting the
Bayes-optimal test error to the training dynamics of
deep neural networks. Theorem 1 for binary classifica-
tion shows that, under the lazy training regime, even
though training on noisy data, DNNs can still obtain
the Bayes-optimal test error, i.e., the error rate is less
than the proportion of incorrect labels in the training
set plus a generalization term that converges to zero.
We also demonstrate that this term is positively cor-
related with the Lipschitz constants of DNNs, which
implies that interpolating more smooth functions leads
to a faster convergence rate.

• Theorem 2 provides the first lower bound on the mini-
mum eigenvalues of the NTK matrix of DNNs in the
high-dimensional setting and demonstrates its phase
transition under different tendencies of the number of
training data and input dimension. We believe that it
has its own interest in learning theory.

• Theorem 3 builds the generalization guarantees of over-
parameterized neural networks under the NTK regime
in the high-dimensional setting to learn a ground-truth
function in RKHS. Our result exhibits a phase transi-
tion on the excess risk (related to generalization perfor-
mance) between the n < d and n > d case. It implies
that the excess risk finally converges to a constant order
only relying on the label noise and initialization noise,
which theoretically verifies the benign overfitting.

Technical challenges. The main technical challenge of this
paper is how to derive the lower bound of the non-smooth
function in deep ReLU neural networks for the normalized
margin on test points. In the context of lazy training (Chizat
et al., 2019), the function of a neural network is nearly
linear during the initial stages of training. By analyzing
the accumulation of weights for each training step, we can
establish a lower bound for the normalized margin on test
points. By doing so, we transform the Bayes-optimal test
error to the expected risk and Lipschitz constant of DNNs.

When compared with Frei et al. (2022) on shallow neural
networks with smooth activation functions for binary clas-
sification, we extend their results to our deep ReLU neural
networks, not limited to high-dimensional settings, and ob-
tain a faster convergence rate with the number of data. The

key difficulty lies in how to build the relationship between
the Bayes-optimal test error and the training dynamics of
DNNs. When compared to the generalization results of
deep neural networks (DNNs) in the over-parameterized
regime (Cao and Gu, 2019), our results focus on overfitted
models that are trained by noisy data and achieve a faster
convergence rate. Besides, Ju et al. (2022) present general-
ization guarantees on three-layer neural networks (only the
last layer is training) for regression, which has the closed-
form min L2-norm solution. However, this nice property
is invalid in our DNN setting. In this case, we build the
connection between DNNs and kernel methods (e.g., NTK)
in high dimensional settings for benign overfitting.

1.2. Related work

Benign overfitting: There has been a significant amount of
research devoted to understanding the phenomenon of be-
nign overfitting, with a particular emphasis on linear models,
e.g., linear regression (Bartlett et al., 2020; Chatterji et al.,
2021; Zou et al., 2021), sparse linear regression (Chatterji
and Long, 2022; Koehler et al., 2021; Wang et al., 2022), lo-
gistic regression (Montanari et al., 2019; Wang et al., 2021),
ridge regression (Tsigler and Bartlett, 2020) and kernel-
based estimators (Mei and Montanari, 2022; Liang et al.,
2019). Furthermore, the concept of benign overfitting can be
extended to tempered or catastrophic based on various spec-
tra of the kernel (ridge) regression (Mallinar et al., 2022).

For nonlinear models, Li et al. (2021) study the benign
overfitting phenomenon of random feature models. Frei
et al. (2022) prove that a two-layer fully connected neural
network exhibits benign overfitting under certain conditions,
e.g., well-separated log-concave distribution and smooth
activation function. Then Xu and Gu (2023) extends the
previous results to the non-smooth case. Similarly, Cao
et al. (2022) focus on the benign overfitting of two-layer
convolutional neural networks (CNN).

Mallinar et al. (2022) argue that many true interpolation
methods (such as neural networks) for noisy data are not
benign but tempered overfitting, and even catastrophic under
various model capacities.

Generalization of NNs and Neural Tangent Kernel
(NTK): The generalization ability of neural networks has
been a core problem in machine learning theory. Brutzkus
et al. (2017) show that SGD can learn an over-parameterized
two-layer neural network with good generalization abil-
ity. Allen-Zhu et al. (2019a) study the generalization
performance of SGD for 2- and 3-layer networks. Cao
and Gu (2019) study the training and generalization of
deep neural networks (DNNs) in the over-parameterized
regime. Besides, Arora et al. (2019a); Cao and Gu (2020); E
et al. (2020) provide the algorithm-dependent generalization
bounds for different settings.
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The NTK (Jacot et al., 2018) is a powerful tool for deep
neural network analysis. Specifically, NTKs establish equiv-
alence between the training dynamics of gradient-based
algorithms for DNNs and kernel regression under specific
initialization, so it can be considered as an intermediate step
between simple linear models and DNNs (Allen-Zhu et al.,
2019b; Du et al., 2019a; Chen et al., 2020). Besides, the
convergence rate (Arora et al., 2019b) and generalization
bound (Cao and Gu, 2019; Zhu et al., 2022; Nguyen et al.,
2021; Bombari et al., 2022) can be linked to the minimum
eigenvalue of the NTK matrix.

One can see that studying benign overfitting for DNNs is
missing and it appears possible to borrow some ideas from
deep learning theory, e.g., NTK. Nevertheless, we need to
tackle the noisy training as well as the high-dimensional
setting for benign overfitting, which is our main interest.

2. Problem Settings
In this section, we detail the problem setting for a deep
ReLU neural network trained by SGD from the perspec-
tive of notations, neural network architecture, initialization
schemes, and optimization algorithms.

2.1. Notation

In this paper, we use the shorthand [n] := {1, 2, . . . , n}
for a positive integer n. We denote by a(n) ≳ b(n): the
inequality a(n) ≥ cb(n) that hides a positive constant c
that is independent of n. Vectors (matrices) are denoted
by boldface, lower-case (upper-case) letters. The standard
Gaussian distribution is N (0, 1) with the zero-mean and
the identity variance. We use the Lipf to represent the
Lipschitz constant of the function f . We follow the standard
Bachmann–Landau notation in complexity theory e.g., O,
o, Ω, and Θ for order notation.

2.2. Network

Here we introduce the formulation of DNNs. We focus on
the typical depth-L fully-connected ReLU neural networks
with scalar output, width m on the hidden layers and n
training data, ∀i ∈ [n]:

hi,0 = xi;

hi,l = ϕ(Wlhi,l−1); ∀l ∈ [L− 1];

f(xi;W ) = WLhi,L−1;

(1)

where xi ∈ Rd is the input, f(xi;W ) ∈ R is the neural
network output, and ϕ = max(0, x) is the ReLU activation
function. The neural network parameters formulate the

tuple of weight matrices W := {Wl}Ll=1 ∈ {Rm×d ×
(Rm×m)L−2 × R1×m}.

Initialization: We follow the standard Neural Tangent Ker-
nel (NTK) initialization (Allen-Zhu et al., 2019b):

[W1]i,j ∼ N (0, 2
m ); ∀i, j ∈ [m]× [d];

[Wl]i,j ∼ N (0, 2
m ); ∀i, j ∈ [m] and l ∈ [L− 2] + 1;

[WL]i,j ∼ N (0, 1); ∀i, j ∈ [1]× [m].
(2)

The related Neural Tangent Kernel (NTK) (Jacot et al., 2018)
matrix of neural network f can be expressed as:

KNTK(x, x̃) := EW

〈
∂f(x;W )

∂W
,
∂f(x̃;W )

∂W

〉
. (3)

By virtue of ϕ(x) = xϕ′(x) of ReLU, we have hi,l =
Di,lWlhi,l−1, where Di,l is a diagonal matrix under the
ReLU activation function defined as below.

Definition 1 (Diagonal sign matrix). For each i ∈ [n],
l ∈ [L − 1] and k ∈ [m], the diagonal sign matrix Di,l is
defined as: (Di,l)k,k = 1 {(Wlhi,l−1)k ≥ 0}.

In addition, we define ω-neighborhood to describe the dif-
ference between two matrices.

For any W ∈ W , we define its ω-neighborhood as follows:

Definition 2 (ω-neighborhood).

B(W , ω) := {W ′ ∈ W : ∥W ′
l −Wl∥F ≤ ω, l ∈ [L]} .

2.3. Optimization algorithm

In our work, a deep ReLU neural network is trained by
SGD on the training data {(xi, yi)}ni=1 sampled from a
joint distribution P . The data generation process is deferred
to Section 3.1 for binary classification and Section 4 for
regression. We employ the logistic loss for classification,
which is defined as ℓ(z) = log(1 + exp(−z)), and denote
g(z) := −ℓ′(z) = 1

1+ez for notational simplicity.

The expected risk is defined as E(x,y)∼P ℓ (yf(x;W )).
Denote the empirical risks under ℓ by: L̂(W ) :=
1
n

∑n
i=1 ℓ (yif(xi;W )), we employ SGD to minimize

L̂(W ) initialized at W (0) with fixed step-size α > 0, as
shown in Algorithm 1.

For notational simplicity, at step t, the neural network
output is denoted as f

(t)
i = f(xi;W

(t)) and the deriva-
tive of the loss function is realted to g

(t)
i := g(yif

(t)
i ) =

g(yif(xi;W
(t))).
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Algorithm 1 SGD for training DNNs
Input: training data {(xi, yi) ∼ P}ni=1 and step size α.
Gaussian initialization: W (0)

l ∼ N (0, 2/m), l ∈ [L− 1].
Gaussian initialization: W (0)

L ∼ N (0, 1).
for i = 1 to n do

Draw (xi, yi) from {(xi, yi)ni=1}.
W (i) = W (i−1) − α · ∇W ℓ

(
yif(xi;W

(i−1))
)
.

end for
Output W (n) for the final network f(x;W (n)).

3. Main Results on Binary Classification
In this section, we present our main result on benign overfit-
ting of a ReLU DNN for binary classification under the lazy
training regime. The data generation process is introduced
in Section 3.1, and the related assumptions are given in Sec-
tion 3.2. Our main theory and proof sketch are presented
in Section 3.3 and Section 3.4, respectively. We use NTK
initialization (Allen-Zhu et al., 2019b) in this section, but
the main result can be easily extended to more initializa-
tions, such as He (He et al., 2015) and LeCun (LeCun et al.,
2012).

3.1. Data generation process

We consider a standard mixture model setting (Chatterji and
Long, 2021; Frei et al., 2022) in benign overfitting for binary
classification, where a joint distribution P is defined over
(x, y) ∈ Rd × {±1} and samples from this distribution
can have noisy labels. Following Frei et al. (2022), we
first define the clean distribution P̃ and then define the true
distribution P based on P̃ :

1. Sample a clean label ỹ uniformly at random, ỹ ∼
Uniform({+1,−1}).

2. Sample z ∼ Pclust that satisfy:

• Pclust = P
(1)
clust×· · ·×P

(d)
clust is a product distribution

whose marginals are all mean-zero with the sub-
Gaussian norm at most one;

• Pclust is a λ-strongly log-concave distribution over
Rd for some λ > 0;

• For some κ, it holds that Ez∼Pclust(∥z∥
2
) > κd.

3. Generate x̃ = z + ỹµ.

4. Then, given a noise rate η ∈ [0, 1
2 ), P is any distribu-

tion over Rd×{±1} such that the marginal distribution
of the features for P and P̃ coincide, and the total vari-
ation distance between the two distributions satisfies
dTV(P̃ , P ) ≤ η. Specifically, P has the same marginal
distribution over x as P̃ , but a sample (x, y) ∼ P has
a label equal to ỹ with probability 1−η and has a label

equal to −ỹ with probability η. That is, the labels are
flipped with η ratio.

We denote by C ⊂ [n] the set of indices corresponding to
samples with clean labels, and C′ as the set of indices corre-
sponding to noisy labels so that i ∈ C′ implies (xi, yi) ∼ P
is such that yi = −ỹi using the notation above.

3.2. Assumptions

We make two assumptions about the data distribution.

Assumption 1 (Du et al. (2019a); Allen-Zhu et al. (2019b)).
We assume that the data is bounded, i.e. there is a constant
Cnorm that satisfies ∥x∥2 ≤ Cnorm.

Assumption 2. For two different data sample
(x1, ỹ1), (x2, ỹ2) ∼ P̃ , The NTK kernel defined
in Eq. (3) satisfies that:

E(x1,ỹ1),(x2,ỹ2)∼P̃
[
KNTK(x1,x2)|ỹ1 = ỹ2

]
−E(x1,ỹ1),(x2,ỹ2)∼P̃

[
KNTK(x1,x2)|ỹ1 ̸= ỹ2

]
≥CN > 0 .

Remark: This assumption states that the NTK value for
data points belonging to the same class is larger than that
for a different class, in expectation. This makes sense in
practice, since, as a kernel, the NTK is able to evaluate the
similarity of two data points (Schölkopf et al., 2002): if they
are from the same class, the similarity value is large and
vice versa. To verify this assumption, we give an example
of the two-layer NTK over a uniform distribution inside a
multidimensional sphere such that CN = Θ(1/

√
d), refer

to Appendix B.

Besides, we also empirically verify our assumption on
MNIST (Lecun et al., 1998) with ten digits from 0 to 9.
We randomly sample 1, 000 data for each digit and calcu-
late the empirical mean (to approximate the expectation) of
the two-layer NTK kernel value over these digit pairs. The
experimental result is shown in Figure 1. We can see that
the confusion matrix usually has a larger diagonal element
than its non-diagonal element, which implies that the kernel
value on the same class is often larger than that of different
classes. This verifies the justification of our assumption.

3.3. Theoretical guarantees

Based on our assumption, we are ready to present our theo-
retical result that the test error of a ReLU DNN is close to
the Bayes-optimal (noise rate).

Theorem 1. Given a DNN defined by Eq. (1) and
trained by Algorithm 1 with a step size α ≳
L−2(logm)−5/2. Then under Assumption 1 and 2, for
ω ≤ O(L−9/2(logm)−3) and λ > 0, with probability at
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Figure 1. Averaged kernel values among 10 classes in MNIST,
where a larger kernel value indicates a higher similarity between
two data pairs.

least 1−O(nL2) exp(−Ω(mω2/3L)), we have:

P(x,y)∼P (y ̸= sgn(f(x;W (n))))

≤η + exp

(
− λΘ

(
nα(1− 2η)CN

Lipf(x;W (n))

)2)
,

where the η is the noise rate defined in Section 3.1 and CN
is defined in Assumption 2.

Remark: Theorem 1 provides the upper bound on the test
error rate, including two parts. The first part is the propor-
tion of the wrong labels in the training data. The second part
exponentially decreases with the square of the number of
training samples n. Also, this term is positively correlated
with the Lipschitz constants of DNNs after training, which
implies that interpolating more smooth functions leads to
a faster convergence rate. We take a closer look at this
phenomenon in Section 4, analyzing how neural networks
interpolate target functions in a regression setting. Overall,
this bound shows that the models overfit the wrong or noisy
data on the training set, but still achieve good generalization
error on the testing set. This is consistent with previous
work on broader settings of benign overfitting that are not
limited to classification problems with label noise. For ex-
ample, various regression problems (Bartlett et al., 2020;
Zou et al., 2021; Chatterji and Long, 2022; Koehler et al.,
2021; Tsigler and Bartlett, 2020), classification problems of
2-layer networks (Frei et al., 2022; Cao et al., 2022), 2-layer
and 3-layer NTK networks (Ju et al., 2021; 2022).

Here we discuss the (nearly) zero-training loss and how the
Lipschitz constant affects our error bounds.

SGD can obtain arbitrarily (nearly) zero-training errors
on the training set: A lot of work has shown that deep
neural networks trained with SGD can obtain zero training
error on the training set and perfectly fit any training label
in both classification and regression problems with mean
squared loss or logistic loss (Du et al., 2019b;a; Chizat
et al., 2019; Zou et al., 2020). These results for empirical
loss need to be over-parameterized by the condition that
m = poly(n,L). In Appendix D, we provide proof that the
loss can be arbitrarily small on the training set under the
setting of Section 2. This indicates that when the training
data has label noise, the neural network will learn all the
noise, that is, overfitting. Combined with the bound of the
test error rate in Theorem 1, we can say that the deep neural
network has a benign overfitting phenomenon.

Lipschitz constant of the deep neural network: Theorem 1
shows that the convergence rate of the test error rate with
the amount of data and is closely related to the Lipschitz
constant of the neural network. The Lipschitz constant of
DNNs has been widely studied in (Bubeck et al., 2021; Wu
et al., 2021; Huang et al., 2021; Nguyen et al., 2021). For ex-
ample, for ReLU DNNs, if we employ the result of Nguyen
et al. (2021, Theorem 6.2): Lipf ≲ O

(
(2 logm)L−1

)
, then

our bound is

P(x,y)∼P (y ̸= sgn(f(x;W (n))))

≲ η + exp

(
−λΘ

( n

(2 logm)L−1

)2
)

,

which leads to a better convergence rate on generalization
than the two-layer result Frei et al. (2022).

3.4. Proof sketch of Theorem 1

Let us first introduce a few relevant lemmas.

The first Lemma will follow by establishing a lower
bound for the expected normalized margin on clean points,
E(x,ỹ)∼P̃ [ỹf(x;W )]/Lipf(x;W (t)).

Lemma 1. Given a DNN defined by Eq. (1) and
trained by Algorithm 1. For any t ≥ 0, assuming
E(x,ỹ)∼P̃ [ỹf(x;W

(t))] ≥ 0, then we have:

P(x,y)∼P (y ̸= sgn(f(x;W (t))))

≤η + exp

(
− λ

4

(E(x,ỹ)∼P̃ [ỹf(x;W
(t))]

Lipf(x;W (t))

)2)
.

We next introduce some structural results concerning the
neural network optimization objective. The following
lemma states that near initialization, the neural network
function is almost linear in terms of its weights.

Lemma 2. Let W ,W ′ ∈ B(W (0), ω) with ω =
O(L−9/2(logm)−3), for any x ∈ Rd that satisfy Assump-
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tion 1, with probability at least 1−exp(−Ω(mω2 logm))−
O(nL2) exp(−Ω(mω2/3L)), we have:

|f(x;W )− f(x;W ′)− ⟨∇f(x;W ′),W −W ′⟩ |

≤O(
√

ω2L3m logm)

L−1∑
l=1

∥Wl −W ′
l ∥2 .

The following lemma describes the change of yf(x;W )
from time t to t+ 1.

Lemma 3. Given a DNN defined by Eq. (1) and trained
by Algorithm 1. For any t ≥ 0 and (x, ỹ) ∼ P̃ that
satisfy Assumption 1, with ω = O(L−9/2(logm)−3),
with probability at least 1 − exp(−Ω(mω2 logm)) −
O(nL2) exp(−Ω(mω2/3L)), we have:

ỹ[f(x;W (t+1))− f(x;W (t))]

≥αg
(t)
i

〈
ỹ∇f(x;W (t)), yi∇f(xi;W

(t))
〉

−O(
√
ω2L3m logm)

L−1∑
l=1

∥∥∥W (t+1)
l −W

(t)
l

∥∥∥
2
,

where (xi, yi) is the random selected training sample at
step t+ 1.

Based on the previous lemmas, we can now derive a lower
bound on the normalized margin. Note that this lower bound
on the normalized margin in conjunction with Lemma 1
results in the test error bound for the main theorem.

Lemma 4. Let us define a DNN using Eq. (1) and trained
by Algorithm 1 with a step size α ≳ L−2(logm)−5/2.
Then under Assumption 1 and 2, for any t ≥ 0,
ω ≤ O(L−9/2(logm)−3), with probability at least 1 −
exp(−Ω(mω2 logm))−O(nL2) exp(−Ω(mω2/3L)), we
have:

E(x,ỹ)∼P̃ [ỹf(x;W
(t))] ≥ Θ

(
tα(1− 2η)CN

)
.

Now, we can prove Theorem 1.

Proof. According to Lemma 1, choosing t := n, we have:

P(x,y)∼P (y ̸= sgn(f(x;W (n))))

≤η + exp

(
− λ

4

(E(x,ỹ)∼P̃ [ỹf(x;W
(n))]

Lipf(x;W (n))

)2)
.

Then, by Lemma 4, choosing t := n and α ≳
L−2(logm)−5/2, for ω ≤ O(L−9/2(logm)−3), with prob-
ability at least 1−O(nL2) exp(−Ω(mω2/3L)), we have:

E(x,ỹ)∼P̃ [ỹf(x;W
(n))] ≥ Θ

(
nα(1− 2η)CN

)
.

Combine the results, we have:

P(x,y)∼P (y ̸= sgn(f(x;W (n))))

≤η + exp

(
− λΘ

(
nα(1− 2η)CN
Lipf(x;W (n))

)2)
.

4. Interpolating Smooth Function by NTK
In this section, we take a closer look at the phenomenon of
the relationship between Lipschitz constants of DNNs and
convergence rate in Theorem 1, and accordingly analyze
how neural networks interpolate smooth ground-truth func-
tions in a regression setting from an approximation theory
view (Cucker and Zhou, 2007). In this section, we will also
follow the NTK initialization (Allen-Zhu et al., 2019b). For
other different initialization (Cao and Gu, 2019; Arora et al.,
2019b), similar conclusions will apply.

To be specific, let X ⊆ Rd be an input space, and Y ⊆ R
be the output space, fρ : X → Y be the ground-truth
function, that is smooth in RKHS, described by the source
condition in Section 4.1. We assume that the data (x, y)
is sampled from an unknown distribution ρ, and ρX is the
marginal distribution of ρ over X . The label is generated
through y = fρ(x) + ϵ, where ϵ is the noise. Accordingly,
denote L2

ρX as the ρX weighted L2-space and its norm
∥f∥2L2

ρX

=
∫
X
|f(x)|2 dρX(x), we are interested in the

excess risk ∥f(x;W (t)) − fρ∥2L2
ρX

, which describes how
neural networks interpolate/approximate a smooth ground-
truth function in a certain space (Cucker and Zhou, 2007;
Bach, 2017). In this section, we use the standard NTK
network and initialization, which is equivalent to Arora
et al. (2019b) using the initialization with standard normal
distribution together with the scale factor after each layer
for the training dynamics.

4.1. Assumptions

We make the following assumptions:
Assumption 3 (High dimensionality (Liang and Rakhlin,
2020; Liu et al., 2021)). There exists universal constants
c1, c2 ∈ (0,∞) such that c1 ≤ d

n ≤ c2.
Assumption 4 (Noise condition (Liang and Rakhlin, 2020;
Liu et al., 2021)). There exists a σϵ > 0 such that
E[(fρ(x)− y)2|x] ≤ σ2

ϵ , almost surely.
Assumption 5 (Geifman et al. (2020); Chen and Xu (2021)).
We assume that xi,∀i ∈ [n] are i.i.d. sampled from a
uniform distribution on the d-dimensional unit sphere. i.e.
x ∼ Unif(Sd−1(1)), Sd−1(1) :=

{
x ∈ Rd| ∥x∥2 = 1

}
.
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Remark: The i.i.d unit sphere data assumption implies
that the data x is isotropic asymptotically under our high-
dimensional setting (Wainwright, 2019), i.e., E[xx⊤] =
Id/d. In fact, there is an alternative way in our proof by
directly assuming x is sub-Gaussian and E[xx⊤] = Id/d.

Assumption 6 (Existence of fρ). We assume the ground-
truth function fρ ∈ HNTK, where HNTK is the RKHS asso-
ciated with the limiting NTK kernel.

Remark: This is a standard assumption in learning theory
by assuming that the ground-truth function fρ is indeed
realizable (Cucker and Zhou, 2007; Rudi and Rosasco, 2017;
Liu et al., 2021). This assumption is a special case of the
source condition (Cucker and Zhou, 2007) by taking certain
values and can be easily extended to non-RKHS spaces or
teacher-student settings (Hinton et al., 2015). For ease of
analysis, we directly assume the ground-truth function in an
RKHS.

4.2. Kernel regression estimator

Let X ∈ Rn×d be a matrix, each column of which is the
input of one training sample, ϵ ∈ Rn×1 be the noise in the
output of training data. The empirical risk minimization
(ERM) is defined with the squared loss:

f̂z = argmin
f∈F

{
1

2n

n∑
i=1

(f(xi)− yi)
2

}
, (4)

where the hypothesis space F can be defined properly.
For example, if F is a RKHS HK , Eq. (4) is formu-
lated as a kernel regression. Denoting that Kker(x,X) =
[Kker(x,x1),Kker(x,x1), . . . ,Kker(x,xn)]

⊤ ∈ Rn,
the closed form of the kernel regression estimator to Eq. (4)
is given by:

fker = Kker(x,X)⊤K−1
kery .

If we use a neural network as in Eq. (1) to solve Eq. (4), the
corresponding hypothesis space Fnn is:

Fnn :=

{
f(x;W ) admits Eq. (1) : x ∼ Unif(Sd−1(1)),

W ∈ Rm×d × (Rm×m)L−2 × R1×m
}
,

which implies:

fnn = arg min
f∈Fnn

{
1

2n

n∑
i=1

(f(xi;W )− yi)
2

}
.

In addition to the neural tangent kernel mentioned ear-
lier Eq. (3), we will present some examples of the positive
definite kernels to be studied in this paper.

Dot product kernel (Ghosh et al., 2022): The dot product
kernels have the following forms:

Kdot(x, x̃) = k(⟨x, x̃⟩), ∀x, x̃ ∈ Sd−1(1) ,

for some function k : [−1, 1] → R.

Laplace kernel (Geifman et al., 2020): The Laplace kernel
is defined as:

KLaplace(x, x̃) = e−c∥x−x̃∥2 , c > 0 .

According to Assumption 5, we have:

KLaplace(x, x̃) = e−c
√

2(1−x⊤x̃) = e−c̃
√
1−u ≜ Kdot(u) ,

(5)
where u = ⟨x, x̃⟩.

4.3. The minimum eigenvalue of NTK matrix under the
high dimensional setting

We are now ready to state the main result of a deep over-
parameterized NTK network. We first provide the lower
bounds of the minimum eigenvalue of NTK under the high
dimensional setting.

Recall that the Neural Tangent Kernel (NTK) (Jacot et al.,
2018) matrix of neural network f is defined in Eq. (3).
When we focus on the infinite-width setting (m → ∞), the
NTK matrix for a neural network Eq. (1) is derived by the
following regular chain rule.

Lemma 5 (Adapted from Lemma 3.1 in Nguyen et al.
(2021)). For any l ∈ [3, L] and s ∈ [2, L], denote

G(1) = XX⊤ ,

G(2) = 2Ew∼N (0,Id)[σ1(Xw)σ1(Xw)⊤] ,

G(l) = 2Ew∼N (0,IN )[σl−1(
√
G(l−1)w)σl−1(

√
G(l−1)w)⊤] ,

Ġ(s) = 2Ew∼N (0,IN )[σ
′
s−1(

√
G(s−1)w)σ′

s−1(
√
G(s−1)w)⊤] .

Then, the NTK for a L-layer neural network defined
in Eq. (1) can be written as

KNTK = G(L) +

L−1∑
l=1

G(l) ◦ Ġ(l+1) ◦ Ġ(l+2) ◦ · · · ◦ Ġ(L) ,

where ◦ represents the element-wise Hadamard product.

Based on the formulation of NTK, we are ready to present
the estimation of the minimum eigenvalue of NTK.

Theorem 2 (Minimum eigenvalue of NTK matrix). For
a DNN defined by Eq. (1), let KNTK be the limiting NTK
recursively defined in Lemma 5 and let λ0 be the minimum

7
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eigenvalue of KNTK. Then, under Assumption 3 and 5, with
probability at least 1− 2e−n, we obtain that:

λ0 ≥


2µ2

1
n
d

(
3
4 − c

4

√
d
n

)2

, if n ≥ d,

2µ2
1
n
d

(√
d
n − c+6

4

)2

, if n < d ,

where we have an absolute constant c = 23.5
√
log(9) ≈

16.77 and µ1 is the 1-st Hermite coefficient of the ReLU
activation function.

Remark: This theorem provides the upper bound of the
minimum eigenvalue of the NTK matrix of the infinite-width
neural network under the high-dimensional setting and can
be easily extended to the finite-width setting. Note that
our result under the high dimensional setting is different
from previous work under the fixed d setting in Zhu et al.
(2022). If we fix d and vary n from small to large, there
exists a phase transition when n increases, see Table 1. If
n ≪ d, the lower bound of the minimum eigenvalue of
NTK λ0 ⩾ Ω(1), then when n increases, we can see that λ0

decreases to a bottom and then increases until n := d. In
the n ≥ d regime, there exists a similar trend to that of the
n ≤ d regime: firstly decreasing and then increasing. When
n ≫ d, we have λ0 ⩾ Ω(n).

Table 1. The trend of the bound with respect to n under different
range of n values and a fixed d.

Range of n Trend w.r.t. n Limit bound

n ≪ d - 2µ2
1

0 ≤ n ≤ ( 4
c+6 )

2d ↘ -

( 4
c+6 )

2 ≤ n ≤ d ↗ -

d ≤ n ≤ c2

9 d ↘ -
c2

9 d ≤ n ↗ -

n ≫ d - 9
8µ

2
1
n
d

4.4. Generalization error bound

Based on the aforementioned upper and lower bounds of the
minimum eigenvalue of NTK under the high dimensional
setting, we establish the relationship between the minimum
eigenvalue of NTK and the generalization error of DNNs.
We provide a bound on the norm of the difference between
the network output and ground truth function under the
weighted L2

ρX space.

Theorem 3 (An upper bound on the generalization error for
deep over-parameterized NTK network). Let θ ∈ (0, 1/2],
δ and c are some non-negative constants, the ground-truth
function fρ lies in a RKHS by Assumption 6 and d large

enough, under Assumption 3, 4 and 5, suppose that, ω ≤
poly(1/n, λ0, 1/L, 1/ log(m), ϵ, 1/ log(1/δ′), κ), m ≥
poly(1/ω) and κ = O( ϵ

log(n/δ′) ). then for any given ε > 0,
with high probability, we have:

E ∥fnn − fρ∥2L2
ρX

≲ O
(
n−θ log4(

2

δ
) +

σ2
ϵ

d
NX̃

+
σ2
ϵ log

2+4ε d

d4θ−1
+ ϵ2 +

n

λ2
0

ω2/3L5m logm+
n3

λ6
0κ

2

)
,

where the λ0 satisfies Theorem 2 and the effective dimension
NX̃ is defined as:

NX̃ :=

n−1∑
i=0

λi(X̃)

(λi(X̃ + γ))2
,

with X̃ := βXX⊤/d+ α11⊤ for some non-negative con-
stants α, β, γ.

Remark:

This theorem builds a connection between DNNs and kernel
methods in benign overfitting and gives the upper bound
of the generalization error of the NTK network in the high-
dimensional setting. To be specific,the first term is the upper
bound of the bias of NTK regression, which decreases as the
number of data increases. The second and the third terms
jointly form the upper bound of variance of NTK regres-
sion, which is mainly affected by the effective dimension
(eigenvalue decay) of the data. The fourth term is the error
introduced by the initialization of the NTK neural network.
The fifth and the sixth term reflect the difference between
the finite-width NTK network and the infinite-width NTK
network (neural tangent kernel regression), which decreases
with the increase of the minimum eigenvalue of the NTK
network we provide in Theorem 2.

Under refined assumptions, e.g., source condition, capacity
condition (Cucker and Zhou, 2007), we can achieve θ = 1
for a better convergence rate. Regarding the convergence
properties, we need to make the following discussion.

The three non-negative constants α, β, and γ are related to
the linearization of the kernel matrix in the high dimension
setting, refer to Liu et al. (2021) for details. Here we give the
following discussion on NX̃ under three typical eigenvalue
decay of XX⊤ cases, and then discuss our generalization
bound. Note that when n > d, the sample matrix XX⊤ has
at most d eigenvalues, so we can directly have NX̃ ≤ O(d).
Accordingly, here we present the results on the n < d case.

• Harmonic decay: λi(X̃) ∝ n/i,∀i ∈ {1, 2, . . . , r⋆}
and λi(X̃) = 0,∀i ∈ {r⋆ + 1, . . . , n}.

8
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We have: NX = O(n), then the term σ2
ϵ

d NX̃ ≤
O(

σ2
ϵ

d n).

• Polynomial decay: λi(X̃) ∝ ni−2a with a >

1/2,∀i ∈ {1, 2, . . . , r⋆} and λi(X̃) = 0,∀i ∈
{r⋆ + 1, . . . , n}.

We have: NX = O(n1/2a), then the term σ2
ϵ

d NX̃ ≤
O(

σ2
ϵ

d n1/2a) ≤ O(
σ2
ϵ

d n).

• Exponential decay: λi(X̃) ∝ ne−ai with a >

0,∀i ∈ {1, 2, . . . , r⋆} and λi(X̃) = 0,∀i ∈
{r⋆ + 1, . . . , n}.

We have: NX̃ = 1
a

(
1

γ+n exp(−a(r⋆+1))−
1

γ+n exp(−a)
)
,

then the term σ2
ϵ

d NX̃ ≤ O(
σ2
ϵ

d
ear⋆

n ).

Based on our discussion on the eigenvalue decay, we are
ready to discuss our generalization bound in Theorem 3.
When n, d are comparably large enough, e.g., n ≥ c2

9 d, in
this case, we have NX̃ ≤ O(d), according to Theorem 2 for
λ0, three terms n−θ log4( 2δ ),

n
λ2
0
ω2/3L5m logm and n3

λ6
0κ

2

convergence to 0. The term σ2
ϵ log2+4ε d
d4θ−1 also converges to 0

for a large enough d. Accordingly, for large enough n and
d, we have

E ∥fnn − fρ∥2L2
ρX

≲ O
(
σ2
ϵ + ϵ2

)
, w.h.p ,

which show that the bound only depends on the noise and
random initialization term, and thus coincide with previous
work on benign overfitting (Frei et al., 2022; Cao et al.,
2022; Ju et al., 2022; Arora et al., 2019b).

Besides, we can also find that the phase transition exists
in the minimum eigenvalue λ0 and the effective dimension
NX̃ from n < d and n > d. This also leads to a phase
transition on the excess risk. Roughly speaking, the excess
risk firstly increases with n until n := d and then decreases
with n when n > d.

5. Conclusion and limitations
In this work, we present a theoretical analysis of benign
overfitting for deep ReLU NNs. For binary classification,
our results demonstrate that DNNs under the lazy training
regime obtain the Bayes-optimal test error with a better
convergence rate than Frei et al. (2022). For regression, our
results exhibit a phase transition on the excess risk from
n < d to n > d, of which the excess risk converges to a
constant order O(1) that only depends on label noise and
initialization noise. The above two results theoretically
validate the benign overfitting of DNNs.

We need to mention that, our results are only applicable to
lazy training regimes and appear difficult to be extended to

the non-lazy training regime, commonly used in practice.
This is because DNN cannot be linearly approximated well
under the non-lazy training regime. We leave this as a future
work. Besides, an interesting direction is, extending our
data-generating distribution assumption from log-concave
distribution to a general one, as we require it to ensure the
output of neural networks is sub-Gaussian.
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Appendix introduction
The Appendix is organized as follows:

• In Appendix A, we state the symbols and notation used in this paper.

• In Appendix B, we provide a example to verify the Assumption 2.

• In Appendix C, we provide the proof for the lemmas in Section 3.4.

• In Appendix D, we provide the theorem and its proof of the optimization result for the classification problem.

• In Appendix E, we provide the proof for the Theorem 2.

• In Appendix F, we provide the proof for the Theorem 3.
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A. Symbols and Notation
In the paper, vectors are indicated with bold small letters and matrices with bold capital letters. To facilitate the understanding
of our work, we include some core symbols and notation in Table 2.

Table 2. Core symbols and notations used in this project.
Symbol Dimension(s) Definition

N (µ, σ) - Gaussian distribution of mean µ and variance σ
B(W , ·) - Neighborhood of matrix W

λ(M) - Eigenvalues of matrices M
λmin(M) - Minimum eigenvalue of matrices M

λ0 - Minimum eigenvalue NTK matrix

ϕ(x) = max(0, x) - ReLU activation function for scalar
ϕ(v) = (ϕ(v1), . . . , ϕ(vm)) - ReLU activation function for vectors

1 {A} - Indicator function for event A
sgn(·) - Sign function
Lip(·) - Lipschitz constant of a function

n - Size of the dataset
d - Input size of the network
L - Depth of the network
m - Width of intermediate layer

xi Rd The i-th data point
yi {±1} The i-th clean label
ỹi {±1} The i-th training label
P - Clean data distribution that (xi, yi) ∼ P

P̃ - Training data distribution that (xi, ỹi) ∼ P̃
Pclust - Cluster distribution for generate data
C - A subset of training data for clean labels
C′ - A subset of training data for noisy labels

α - Step size of SGD
η - Noise rate
ω - Lazy training rate
λ - Strongly log-concave rate of distribution Pclust

ℓ - Logistic loss function
L̂ - Empirical risks
g
(t)
i - Value of g for input xi at time t, where g(z) := −ℓ′(z)

f
(t)
i - Output of neural network for input xi at time t

fρ - Ground-truth function
KNTK, KLaplace, Kdot Rn×n Three different kernel matrices
HNTK, HLaplace, Hdot - RKHS of the kernel

W1 Rm×d Weight matrix for the input layer
Wl Rm×m Weight matrix for the l-th hidden layer
WL R1×m Weight matrix for the output layer
hi,l Rm The l-th layer activation for input xi

Di,l Rm×m Diagonal sign matrix of l-th layer input xi

B. A example of Assumption 2

Proposition 1. For two different data samples x1,x2 ∈ Rd ∼ P̃ := Unif(Sd−1(Cnorm)), y =

{
1 if xi > 0,∀i ∈ [d],

−1 if xi ≤ 0,∀i ∈ [d],

the 2-layer NTK kernel defined in Eq. (3) with L = 2 satisfy that:

E(x1,ỹ1),(x2,ỹ2)∼P̃
[
KNTK(x1,x2)|ỹ1 = ỹ2

]
− E(x1,ỹ1),(x2,ỹ2)∼P̃

[
KNTK(x1,x2)|ỹ1 ̸= ỹ2

]
≥ CN = Θ(1) .

13
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Proof. According to Bietti and Mairal (2019), we have for 2-layer neural network:

KNTK(x1,x2) = ∥x1∥2 ∥x2∥2 κ
(

⟨x1,x2⟩
∥x1∥2 ∥x2∥2

)
,

where κ(u) := uκ0(u) + κ1(u) with κ0(u) :=
1
π (π− arccos(u)) and κ1(u) :=

1
π (u(π− arccos(u)) +

√
1− u2). Denote

cos(θ) := ⟨x1,x2⟩
∥x1∥2∥x2∥2

, we have:

KNTK(x1,x2) = ∥x1∥2 ∥x2∥2 κ
( ⟨x1,x2⟩
∥x1∥1 ∥x2∥2

)
= ∥x1∥2 ∥x2∥2 κ

(
cos(θ)

)
= ∥x1∥2 ∥x2∥2

(
cos(θ)κ0(cos(θ)) + κ1(cos(θ))

)
= ∥x1∥2 ∥x2∥2

(
cos(θ)

1

π
(π − θ) +

1

π
(cos(θ)(π − θ) + |sin(θ)|)

)
= ∥x1∥2 ∥x2∥2

(
cos(θ)

2

π
(π − θ) +

|sin(θ)|
π

)
.

According to y =

{
1 if x1 > 0

−1 if x1 ≤ 0
, we have if x3 = −x2 then y3 = −y2 and cos(θ′) := ⟨x1,x3⟩

∥x1∥2∥x3∥2
= − cos(θ), so

θ′ = π − θ and|sin(θ′)| = |sin(θ)|.

According to the symmetry of P̃ , we can compute that:

E(x1,ỹ1),(x2,ỹ2)∼P̃
[
cos(θ)

2

π
(π − θ) +

|sin(θ)|
π

|ỹ1 = ỹ2
]

=E(x1,ỹ1),(x3,ỹ3)∼P̃
[
cos(θ)

2

π
(π − θ) +

|sin(θ)|
π

|ỹ1 = ỹ3
]

=E(x1,ỹ1),(x3,ỹ3)∼P̃
[
− cos(θ′)

2

π
θ′ +

|sin(θ′)|
π

|ỹ1 = ỹ3
]

According to the isotropy of P̃ , we have:

E(x1,ỹ1),(x2,ỹ2)∼P̃
[
KNTK(x1,x2)|ỹ1 = ỹ2

]
− E(x1,ỹ1),(x2,ỹ2)∼P̃

[
KNTK(x1,x2)|ỹ1 ̸= ỹ2

]
=E(x1,ỹ1)∼P̃ ∥x1∥2 E(x2,ỹ2)∼P̃ ∥x2∥2

×
(
E(x1,ỹ1),(x2,ỹ2)∼P̃

[
cos(θ)

2

π
(π − θ) +

|sin(θ)|
π

|ỹ1 = ỹ2
]
− E(x1,ỹ1),(x2,ỹ2)∼P̃

[
cos(θ)

2

π
(π − θ) +

|sin(θ)|
π

|ỹ1 ̸= ỹ2
])

=E(x1,ỹ1)∼P̃ ∥x1∥2 E(x2,ỹ2)∼P̃ ∥x2∥2

×
(
E(x1,ỹ1),(x2,ỹ2)∼P̃

[
cos(θ)

2

π
(π − θ) +

|sin(θ)|
π

|ỹ1 = ỹ2
]
− E(x1,ỹ1),(x3,ỹ3)∼P̃

[
− cos(θ′)

2

π
θ′ +

|sin(θ′)|
π

|ỹ1 = ỹ3
])

=2E(x1,ỹ1)∼P̃ ∥x1∥2 E(x2,ỹ2)∼P̃ ∥x2∥2 E(x1,ỹ1),(x2,ỹ2)∼P̃
[
cos(θ)|ỹ1 = ỹ2

]
=2C2

normE(x1,ỹ1),(x2,ỹ2)∼P̃
[
cos(θ)|ỹ1 = ỹ2

]
≥2C2

normE(x1,ỹ1),(x2,ỹ2)∼P̃ |cos(θ)| ,

where the last inequality holds by the fact that the inner product of two data points from the same class is always non-
negative in our problem setting. We know that the distribution of the angle between the vectors uniformly distributed on a
d-dimensional sphere is (Cai et al., 2013):

p(θ) =
Γ(d2 )

Γ(d−1
2 )

√
π
sind−2 θ, θ ∈ [0, π] .
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Then we use substitution that x = cos θ, then we have the distribution of the cosine of the angle between the vectors
uniformly distributed on a d-dimensional sphere is:

p(x) =
Γ(d2 )

Γ(d−1
2 )

√
π
(1− x2)(d−3)/2, x ∈ [−1, 1] .

Then we have:

E(x1,ỹ1),(x2,ỹ2)∼P̃ |cos(θ)| =
∫ 1

−1

|x| p(x)dx

= 2
Γ(d2 )

Γ(d−1
2 )

√
π

∫ 1

0

x(1− x2)(d−3)/2dx

=
2Γ(d2 )

Γ(d−1
2 )

√
π(d− 1)

=
Γ(d2 )

Γ(d+1
2 )

√
π
.

Then, we have:

E(x1,ỹ1),(x2,ỹ2)∼P̃
[
KNTK(x1,x2)|ỹ1 = ỹ2

]
− E(x1,ỹ1),(x2,ỹ2)∼P̃

[
KNTK(x1,x2)|ỹ1 ̸= ỹ2

]
≥

2C2
normΓ(

d
2 )

Γ(d+1
2 )

√
π

= Θ

(
1√
d

)
.

When we fix the data dimension d, it is a constant order.

C. Proof for Lemmas in Section 3.4
C.1. Proof of Lemma 1

Let us restate Lemma 1 as below:

Lemma 1. Given a DNN defined by Eq. (1) and trained by Algorithm 1. For any t ≥ 0, assuming E(x,ỹ)∼P̃ [ỹf(x;W
(t))] ≥

0, then we have:

P(x,y)∼P (y ̸= sgn(f(x;W (t))))

≤η + exp

(
− λ

4

(E(x,ỹ)∼P̃ [ỹf(x;W
(t))]

Lipf(x;W (t))

)2)
.

Proof. According to the proof of Chatterji and Long (2021, Lemma 9) and Frei et al. (2022, Lemma 3), we have:

P(x,y)∼P (y ̸= sgn(f(x;W (t)))) = P(x,y)∼P (ysgn(f(x;W
(t))) < 0)

≤ η + P(x,ỹ)∼P̃ (ỹf(x;W
(t)) < 0) .

(6)

Denoting the Lipschitz constant of the neural network as Lipf(x;W (t)), since Pclust is λ-strongly log-concave, then according
to Wainwright (2019, Theorem 3.16), for any t > 0, we have:

P(|ỹf(x;W (t))− E[ỹf(x;W (t))]| ≥ t) ≤ 2 exp

(
− λ

4

(
t

Lipf(x;W (t))

)2)
.

Choosing t := E[ỹf(x;W (t))], we have:
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P(|ỹf(x;W (t))− E[ỹf(x;W (t))]| ≥ E[ỹf(x;W (t))]) ≤ 2 exp

(
− λ

4

(
E[ỹf(x;W (t))]

Lipf(x;W (t))

)2)
,

which implies:

P(x,ỹ)∼P̃ (ỹf(x;W
(t)) < 0) = P(ỹf(x;W (t))− E[ỹf(x;W (t))] < −E[ỹf(x;W (t))])

≤ exp

(
− λ

4

(
E[ỹf(x;W (t))]

Lipf(x;W (t))

)2)
.

Incorporating it into Eq. (6), we conclude the proof.

C.2. Proof of Lemma 2

Let us restate Lemma 2 as below:

Lemma 2. Let W ,W ′ ∈ B(W (0), ω) with ω = O(L−9/2(logm)−3), for any x ∈ Rd that satisfy Assumption 1, with
probability at least 1− exp(−Ω(mω2 logm))−O(nL2) exp(−Ω(mω2/3L)), we have:

|f(x;W )− f(x;W ′)− ⟨∇f(x;W ′),W −W ′⟩ |

≤O(
√
ω2L3m logm)

L−1∑
l=1

∥Wl −W ′
l ∥2 .

Proof. We can directly calculate that:

f(x;W )− f(x;W ′)− ⟨∇f(x;W ′),W −W ′⟩

=WL(hi,L−1 − h′
i,L−1)−

L−1∑
l=1

W ′
L

( L−1∏
r=l+1

(D′
i,rW

′
r)

)
D′
i,l(Wl −W ′

l )h
′
i,l−1 .

By Allen-Zhu et al. (2019b, Claim 11.2), when W ,W ′ ∈ B(W (0), ω), there exist diagonal matrices D′′
i,l ∈ Rm×m with

entries in {+1,−1} such that
∥∥∥D′′

i,l

∥∥∥
0
≤ O(mω2/3L) and:

hi,L−1 − h′
i,L−1 =

L−1∑
l=1

( L−1∏
r=l+1

(Di,r +D′′
i,r)Wr

)
(Di,l +D′′

i,l)(Wl −W ′
l )h

′
i,l−1, ∀i ∈ [n] .

Therefore, we have:

f(x;W )− f(x;W ′)− ⟨∇f(x;W ′),W −W ′⟩

=

L−1∑
l=1

WL

( L−1∏
r=l+1

(Di,r +D′′
i,r)Wr

)
(Di,l +D′′

i,l)(Wl −W ′
l )h

′
i,l−1

−
L−1∑
l=1

W ′
L

( L−1∏
r=l+1

(D′
i,rW

′
r)

)
D′
i,l(Wl −W ′

l )h
′
i,l−1 .

(7)
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According to Cao and Gu (2019, Lemma B.1), for ω ≤ O(L−9/2(logm)−3), then with probability at least 1 −
O(nL2) exp(−Ω(mω2/3L)), we have:

1

2
∥xi∥2 ≤

∥∥h′
i,l−1

∥∥
2
≤ 3

2
∥xi∥2 ≤ 3

2
Cnorm = Θ(1),∀i ∈ [n], l ∈ [L− 1] . (8)

According to Allen-Zhu et al. (2019b, Lemma 8.7), for s ∈
[
Ω
(

1
logm

)
,O

(
m

L3 logm

)]
, ω = O(L−3/2), with probability at

least 1− exp(−Ω(s logm)), we have:

∥∥∥∥∥WL

( L−1∏
r=l+1

(Di,r +D′′
i,r)Wr

)
(Di,l +D′′

i,l)−W ′
L

( L−1∏
r=l+1

(D′
i,rW

′
r)

)
D′
i,l

∥∥∥∥∥
2

≤ O(
√

L3s logm+ ω2L3m) .

Then, taking s := Θ(mω2), we have mω2 ≤ O
(

m
L3 logm

)
, that is ω ≤ O(L−3/2(logm)−1/2), with probability at least

1− exp(−Ω(mω2 logm)), we have:

∥∥∥∥∥WL

( L−1∏
r=l+1

(Di,r +D′′
i,r)Wr

)
(Di,l +D′′

i,l)−W ′
L

( L−1∏
r=l+1

(D′
i,rW

′
r)

)
D′
i,l

∥∥∥∥∥
2

≤ O(
√
ω2L3m logm) . (9)

Take Eq. (8) and Eq. (9) into Eq. (7), for ω ≤ O(L−9/2(logm)−3), then with probability at least 1−exp(−Ω(mω2 logm))−
O(nL2) exp(−Ω(mω2/3L)), we have:

|f(x;W )− f(x;W ′)− ⟨∇f(x;W ′),W −W ′⟩ | ≤ O(
√

ω2L3m logm)

L−1∑
l=1

∥Wl −W ′
l ∥2 ,

which concludes the proof.

C.3. Proof of Lemma 3

Let us restate Lemma 3:

Lemma 3. Given a DNN defined by Eq. (1) and trained by Algorithm 1. For any t ≥ 0 and (x, ỹ) ∼ P̃ that satisfy Assump-
tion 1, with ω = O(L−9/2(logm)−3), with probability at least 1− exp(−Ω(mω2 logm))−O(nL2) exp(−Ω(mω2/3L)),
we have:

ỹ[f(x;W (t+1))− f(x;W (t))]

≥αg
(t)
i

〈
ỹ∇f(x;W (t)), yi∇f(xi;W

(t))
〉

−O(
√
ω2L3m logm)

L−1∑
l=1

∥∥∥W (t+1)
l −W

(t)
l

∥∥∥
2
,

where (xi, yi) is the random selected training sample at step t+ 1.

Proof. By Lemma 2, for ω = O(L−9/2(logm)−3), with probability at least 1 − exp(−Ω(mω2 logm)) −
O(nL2) exp(−Ω(mω2/3L)), we have:

∣∣∣f(x;W (t+1))− f(x;W (t))−
〈
∇f(x;W (t)),W (t+1) −W (t)

〉∣∣∣ ≤ O(
√
ω2L3m logm)

L−1∑
l=1

∥∥∥W (t+1)
l −W

(t)
l

∥∥∥
2
.

Since ỹ ∈ {±1}, we can calculate that:
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ỹ[f(x;W (t+1))− f(x;W (t))]

≥ỹ
〈
∇f(x;W (t)),W (t+1) −W (t)

〉
−O(

√
ω2L3m logm)

L−1∑
l=1

∥∥∥W (t+1)
l −W

(t)
l

∥∥∥
2

(a)
= ỹαg

(t)
i

〈
∇f(x;W (t)), yi∇f(xi;W

(t))
〉
−O(

√
ω2L3m logm)

L−1∑
l=1

∥∥∥W (t+1)
l −W

(t)
l

∥∥∥
2

=αg
(t)
i

〈
ỹ∇f(x;W (t)), yi∇f(xi;W

(t))
〉
−O(

√
ω2L3m logm)

L−1∑
l=1

∥∥∥W (t+1)
l −W

(t)
l

∥∥∥
2
,

where (xi, yi) is the random selected training sample at step t+ 1, and (a) uses Algorithm 1 and definition of g(t)i that:

W (t+1) −W (t) = −α · ∇ℓ
(
yif(xi;W

(t))
)

= −αℓ′
(
yif(xi;W

(t))
)
· ∇

(
yif(xi;W

(t))
)

= αg
(t)
i yi∇f(xi;W

(t)) .

Finally we conclude the proof.

C.4. Proof of Lemma 4

Let us restate Lemma 4 as below:

Lemma 4. Let us define a DNN using Eq. (1) and trained by Algorithm 1 with a step size α ≳ L−2(logm)−5/2. Then
under Assumption 1 and 2, for any t ≥ 0, ω ≤ O(L−9/2(logm)−3), with probability at least 1− exp(−Ω(mω2 logm))−
O(nL2) exp(−Ω(mω2/3L)), we have:

E(x,ỹ)∼P̃ [ỹf(x;W
(t))] ≥ Θ

(
tα(1− 2η)CN

)
.

Proof. According to the Lemma 3, ∀t ≥ 0, for ω = O(L−9/2(logm)−3), with probability at least 1 −
exp(−Ω(mω2 logm))−O(nL2) exp(−Ω(mω2/3L)), we have:

E(x,ỹ)∼P̃ [ỹ(f(x;W
(t+1))− f(x;W (t)))]

≥αg
(t)
i E(x,ỹ)∼P̃

〈
ỹ∇f(x;W (t)), yi∇f(xi;W

(t))
〉
−O(

√
ω2L3m logm)

L−1∑
l=1

∥∥∥W (t+1)
l −W

(t)
l

∥∥∥
2

≥αg
(t)
i E(x,ỹ)∼P̃

〈
ỹ∇f(x;W (t)), yi∇f(xi;W

(t))
〉
−O(

√
ω2L5 logm)

:=αg
(t)
i E(x,ỹ)∼P̃

〈
ỹ∇f(x;W (t)), yi∇f(xi;W

(t))
〉
− ε ,

(10)

where the second inequality use the result of lazy-training that W (t+1) ∈ B(W (t), 1√
m
) and (xi, yi) is the random selected

training sample at step t+ 1.

By the definition of ε we have:

ε = O(
√
ω2L3 logm) = O(L−2(logm)−5/2) .

18



Benign Overfitting in Deep Neural Networks under Lazy Training

According to Assumption 2, we have:

E(x,ỹ)∼P̃

〈
ỹ∇f(x;W (t)), yi∇f(xi;W

(t))
〉

=P(i ∈ C)E(x,ỹ)∼P̃

[〈
ỹ∇f(x;W (t)), yi∇f(xi;W

(t))
〉
|i ∈ C

]
+ P(i ∈ C′)E(x,ỹ)∼P̃

[〈
ỹ∇f(x;W (t)), yi∇f(xi;W

(t))
〉
|i ∈ C′

]
=P(i ∈ C)P(ỹ = yi)E(x,ỹ)∼P̃

[〈
∇f(x;W (t)),∇f(xi;W

(t))
〉
|i ∈ C, ỹ = yi

]
− P(i ∈ C)P(ỹ ̸= yi)E(x,ỹ)∼P̃

[〈
∇f(x;W (t)),∇f(xi;W

(t))
〉
|i ∈ C, ỹ ̸= yi

]
+ P(i ∈ C′)P(ỹ = yi)E(x,ỹ)∼P̃

[〈
∇f(x;W (t)),∇f(xi;W

(t))
〉
|i ∈ C′, ỹ = yi

]
− P(i ∈ C′)P(ỹ ̸= yi)E(x,ỹ)∼P̃

[〈
∇f(x;W (t)),∇f(xi;W

(t))
〉
|i ∈ C′, ỹ ̸= yi

]
≥(1− η)× 1

2
× CN + [η × 1

2
× (−CN )]

=
1− 2η

2
CN ,

(11)

where the C and C′ represent the subset of training data for clean labels and noisy labels respectively. And (xi, yi) is the
random selected training sample at step t+ 1.

According to Cao and Gu (2019, Lemma B.1). For ω ≤ O(L−9/2(logm)−3), then with probability at least
1−O(nL2) exp(−Ω(mω2/3L)), 1

2 ≤
∣∣f(xi;W (t)))

∣∣ ≤ 3
2 ∥xi∥2 ≤ 3

2Cnorm,∀i ∈ [n].

That means:

g
(t)
i = −ℓ′(yif(xi;W

(t))) =
1

1 + exp
(
yif(xi;W (t)

) ≥ 1

1 + exp( 32Cnorm)
, ∀i ∈ [n] . (12)

Take Eq. (11) and Eq. (12) into Eq. (10), we have for ω ≤ O(L−9/2(logm)−3), then with probability at least 1 −
exp(−Ω(mω2 logm))−O(nL2) exp(−Ω(mω2/3L)):

E(x,ỹ)∼P̃ [ỹ(f(x;W
(t+1))− f(x;W (t)))]

≥αg
(t)
i E(x,ỹ)∼P̃

〈
ỹ∇f(x;W (t)), yi∇f(xi;W

(t))
〉
− ε

≥αg
(t)
i

1− 2η

2
CN − ε

≥ α

1 + exp( 32Cnorm)

1− 2η

2
CN − ε

=Θ
(
α(1− 2η)CN

)
,

where the last inequality hold for α ≳ ε = O(L−2(logm)−5/2).

Since the symmetry of the random Gaussian initialization and zero-mean of ỹ, we have E(x,ỹ)∼P̃ [ỹf(x;W
(0))] = 0, then

we have:
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E(x,ỹ)∼P̃ [ỹf(x;W
(t))]

=E(x,ỹ)∼P̃ [ỹf(x;W
(0))] +

n−1∑
s=0

E(x,ỹ)∼P̃ [ỹ(f(x;W
(s+1))− f(x;W (s)))]

≥0 +

t−1∑
t=0

Θ
(
α(1− 2η)CN

)
=Θ

(
tα(1− 2η)CN

)
.

D. Optimization result for the classification problem
Before presenting the optimization result, we first introduce the following assumption:
Assumption 7. For (x1, ỹ1), (x2, ỹ2) ∼ P̃ , if y1 ̸= y2, then ∥x1 − x2∥2 ≥ ϕ for some ϕ > 0.

Then we present the theorem and its proof.
Theorem 4. Given a DNN defined by Eq. (1) and trained by Algorithm 1 with the training data satisfy Assumption 1
and Assumption 7, then for the step size α = O(n−3L−9m−1), the width m = Ω̃(poly(n, ϕ−1, L))Ω(1/δ) and the maximum
number of iteration t = O

(
poly(n, ϕ−1, L)

)
O(1/δ) then with high probability, Algorithm 1 can find a point W (t) such

that L̂(W (t)) ≤ δ.

Proof. Recall our loss function is:

ℓ(z) = log(1 + exp(−z)) .

And we can derive that:

ℓ′(z) = − 1

1 + ez
, ℓ′′(z) =

ez

(1 + ez)2
.

It is easy to verify that:

ℓ′(z) < 0, lim
z→∞

ℓ(z) = 0, lim
z→∞

ℓ′(z) = 0, −ℓ′(z) ≥ min

{
1

2
,
1

2
ℓ(z)

}
, |ℓ′′(z)| ≤ 1

4
.

Then according to Zou et al. (2020, Theorem 4.1), we conclude the proof.

E. Proof of Theorem 2
Before proving Theorem 2, we first introduce the following lemmas.
Lemma 6 (Minimum eigenvalue of sample covariance matrix. Adapted from Lemma 1 in Kuzborskij et al. (2021)). Let
X = [x1, · · · ,xn]⊤ ∈ Rn×d be a matrix with i.i.d. columns that satisfy Assumptions 5, and let Σ̂ = X⊤X/n, and
Σ = E[xx⊤]. Then, for every s ≥ 0, with probability at least 1− 2e−n, we have:

λmin(Σ̂) ≥ λmin(Σ)

(
3

4
− c

4

√
d

n

)2

, if n ≥ d ,

and

λmin(Σ̂) ≥ λmin(Σ)

(√
d

n
− c+ 6

4

)2

, if n < d ,

where we have an absolute constant c = 23.5
√

log(9).
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Proof. According to Assumption 5, we have maxi ∥xi∥ψ2
is bounded and ∥xi∥Σ† =

√
d almost sure for all i ∈ [n].

Without loss of generality, take maxi ∥xi∥ψ2
≤ 1

2 into Kuzborskij et al. (2021, Lemma 1), then choosing s := n,which
conclude the proof.

Then we are ready to prove Theorem 2.

Proof of Theorem 2. According to Lemma 5 and Zhu et al. (2022, Theorem 1), we have:

λ0 ≥ 2µ2
1λmin(XX⊤) ,

where µ1 is the 1-st Hermite coefficient of the ReLU activation function.

We know that, XX⊤ and X⊤X have the same non-zero eigenvalues. Then according to Lemma 6 and Assumption 5, with
probability at least 1− 2e−n, we have:

Case 1: n ≥ d

λ0 ≥ 2µ2
1λmin(XX⊤)

= 2µ2
1nλmin(Σ̂)

≥ 2µ2
1

n

d

(
3

4
− c

4

√
d

n

)2

, if n ≥ d .

Case 2: n < d

λ0 ≥ 2µ2
1λmin(XX⊤)

= 2µ2
1nλmin(Σ̂)

≥ 2µ2
1

n

d

(√
d

n
− c+ 6

4

)2

, if n < d .

where we have an absolute constant c = 23.5
√

log(9) ≈ 16.77.

F. Supplementary proofs for Theorem 3
In this section, we present the proofs of Theorem 3 in Section 4.

F.1. A Precise Form of the Theorem 3

Theorem 5 (Precise form of Theorem 3). Let α, β and γ be three non-negative parameters depends on the Laplace
kernel, under Assumption 3, 4 and 5, let 0 < δ < 1

2 , 0 < θ ≤ 1/2, the ground-truth function fρ lies in a RKHS
by Assumption 6 and d large enough, suppose that, ω ≤ poly(1/n, λ0, 1/L, 1/ log(m), ϵ, 1/ log(1/δ′), κ), m ≥ poly(1/ω)
and κ = O( ϵ

log(n/δ′) ). then for any given ε > 0, it holds with probability at least 1− 2δ − δ′ − d−2 − 2e−n.

E ∥fnn − fρ∥2L2
ρX

≤n−θ log4(
2

δ
) +

σ2
ϵβ

d
N γ

X̃
+

σ2
ϵ log

2+4ε d

γ2d4θ−1
+O

((
ϵ+

√
n

λ0
ω1/3L5/2

√
m logm+

n3/2

λ3
0κ

)2)
,

where:

λ0 ≥


2µ2

1
n
d

(
3
4 − c

4

√
d
n

)2

, if n ≥ d,

2µ2
1
n
d

(√
d
n − c+6

4

)2

, if n < d .

where we have an absolute constant c = 23.5
√

log(9), X̃ := βXX⊤/d+ α11⊤,N γ

X̃
=

∑n−1
i=0

λi(X̃)

(λi(X̃+γ))2
, ∥f∥2L2

ρX

=∫
X
|f(x)|2 dρX(x), and µ1 is the 1-st Hermite coefficient of the ReLU activation function.
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Remark: The three non-negative parameters α, β, and γ depend on the linearization of the Laplace kernel in the high
dimension setting, refer to (Liu et al., 2021) for details.

F.2. Propositions

We present several propositions that are needed for our Theorem 3 as below.
Proposition 2 (Convergence to the NTK at initialization. Adapted from Theorem 3.1 in Arora et al. (2019b)). Fix ϵ > 0 and
δ ∈ (0, 1). Suppose that m ≥ Ω(L

6

ϵ4 log(L/δ)). Then for any inputs ∥x1∥ ≤ 1, ∥x2∥ ≤ 1, with probability at least 1− δ
we have: ∣∣∣∣〈∂f(x1;W )

∂W
,
∂f(x2;W )

∂W

〉
−KNTK(x1,x2)

∣∣∣∣ = O(ϵL) .

Proposition 3 (Equivalence between trained neural network and kernel regression). Suppose that, ω ≤
poly(1/n, λ0, 1/L, 1/ log(m), ϵ, 1/ log(1/δ), κ), m ≥ poly(1/ω), xte satisfy Assumption 5 and κ = O( ϵ

log(n/δ) ). Then
w.p. at least 1− δ over random initialization, we have:

|fnn(xte)− fNTK(xte)| ≤ O
(
ϵ+

√
n

λ0
ω1/3L5/2

√
m logm+

n3/2

λ3
0κ

)
.

Proposition 4 (Adapted from Theorem 2 in Liu et al. (2021)). Let α, β and γ be three non-negative parameters depends on
the laplace kernel, under Assumption 3, 4 and 5 let 0 < δ < 1

2 , θ = 1
2 − 2

8+m , ground-truth function fρ lies in a RKHS and
d large enough, then for any given ε > 0, it holds with probability at least 1− 2δ − d−2.

E ∥fNTK − fρ∥2L2
ρX

≤ n−2θr log4(
2

δ
) +

σ2
ϵβ

d
N γ

X̃
+

σ2
ϵ log

2+4ε d

γ2d4θ−1
,

where X̃ := βXX⊤/d+ α11⊤,N γ

X̃
=

∑n−1
i=0

λi(X̃)

(λi(X̃+γ))2
, ∥f∥2L2

ρX

=
∫
X
|f(x)|2 dρX(x).

F.3. Proof of Proposition 3

Before proving Proposition 3, we need the following lemmas:
Lemma 7 (Gradient Perturbation → Kernel Perturbation). For any two data point x1, x2 that satisfy Assumption 5 and the
neural network defined in Eq. (1), if

∥∥∥∂f(x1;W
(t))

∂W − ∂f(x1;W
(0))

∂W

∥∥∥ ≤ ϵ and
∥∥∥∂f(x2;W

(t))
∂W − ∂f(x2;W

(0))
∂W

∥∥∥ ≤ ϵ, we have∣∣∣K(t)
NTK(x1,x2)−K

(0)
NTK(x1,x2)

∣∣∣ = O(ϵ) ,

where the K
(t)
NTK means the NTK kernel defined in Eq. (3) for neural networks Eq. (1) at training time t.

Proof. According to Lemma 5 in Zhu et al. (2022) and our network Eq. (1), we have:

∂f(x;W (0))

∂W
= Θ(1) .

Then we use triangle inequality, which concludes the proof.

Lemma 8 (Adapted from Lemma 8.2 in Allen-Zhu et al. (2019b)). Suppose that ω = O( 1
L9/2(logm)3

), then w.p. at least

1− exp(−Ω(mω2/3L)) over random initialization, if ∥Wl −W ′
l ∥2 ≤ ω,∀l ∈ [L], we have

∥∥∥Wlhi,l−1 −W ′
lh

′
i,l−1

∥∥∥
2
=

O(ωL5/2
√
logm),∀l ∈ [L].

For notational simplicity, we define the notation bl:

bl =

{
1 if l = L+ 1,

Dl(Wl+1)
⊤bl+1 otherwise.
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Lemma 9 (Adapted from Lemma 8.7 in Allen-Zhu et al. (2019b)). Suppose that ω = O( 1
L6(logm)3/2

), then with probability

at least 1− exp(−Ω(ω2/3mL logm)) over random initialization, if ∥Wl −W ′
l ∥2 ≤ ω,∀l ∈ [L], we have ∥bl − b′l∥2 =

O(ω1/3L2
√
m logm),∀l ∈ [L].

Proof. According to Allen-Zhu et al. (2019b, Lemma 8.7), choose s := mω2/3L, which concludes the proof.

Lemma 10. Suppose that ω = O( 1
L6(logm)3 ), then with probability at least 1 − exp(−Ω(ω2/3mL)) over random

initialization, if ∥Wl −W ′
l ∥2 ≤ ω,∀l ∈ [L], we have:∥∥b′l(W ′
l−1h

′
i,l−2)

⊤ − bl(Wl−1hi,l−2)
⊤∥∥

F
= O(ω1/3L5/2

√
m logm) , ∀l ∈ [L] .

Proof. We use Lemmas 8 and 9 and the triangle inequality:∥∥b′l(W ′
l−1h

′
i,l−2)

⊤ − bl(Wl−1hi,l−2)
⊤∥∥

F

≤
∥∥b′l(W ′

l−1h
′
i,l−2)

⊤ − bl(W
′
l−1h

′
i,l−2)

⊤∥∥
F
+

∥∥bl(W ′
l−1h

′
i,l−2)

⊤ − bl(Wl−1hi,l−2)
⊤∥∥

F

≤O(ω1/3L5/2
√

m logm) .

Lemma 11 (Adapted from Lemma F.9 in Arora et al. (2019b)). Let ω ≤ poly(ϵ, L, λ0,
1

log(m) ,
1

log(1/δ) , κ,
1
n ). If m ≥

poly(1/ω), then with probability at least 1− δ over random initialization, we have:∥∥∥W (t)
l −W

(0)
l

∥∥∥
F
≤ ω , ∀t ≥ 0,∀l ∈ [L] ,

and
f (t)
nn (x)− y ≤ exp(−1

2
κ2λ0t)(f

(0)
nn (x)− y) .

Lemma 12 (Kernel Perturbation During Training). Suppose that, ω ≤ poly(1/n, λ0, 1/L, 1/ log(m), ϵ, 1/ log(1/δ)),
m ≥ poly(1/ω) and κ ≤ 1. Then with probability at least 1 − δ over random initialization, we have for all t ≤ 0,
∀(x1,x2): ∣∣∣K(t)

NTK(x1,x2)−K
(0)
NTK(x1,x2)

∣∣∣ ≤ O(ω1/3L5/2
√
m logm) .

Proof. By Lemma 11, we know that for t → ∞,
∥∥∥W (t)

l −W
(0)
l

∥∥∥
F
≤ ω, by Lemma 10, we know that on the gradient,

there is only a small perturbation, then the perturbation of kernel value is small by Lemma 7.

Lemma 13 (Kernel Perturbation → Output Perturbation. Adapted from Lemma F.1 in Arora et al. (2019b)). Fix ϵH ≤ 1
2λ0.

Suppose
∣∣f(xi;W (0))

∣∣ ≤ ϵ0,∀i ∈ [n],
∣∣f(xte;W

(0))
∣∣ ≤ ϵ0 and f

(0)
nn (x) − y = O(

√
n). Furthermore, if ∀t ≥ 0,∥∥∥K(t)

NTK(xte,X)−K
(0)
NTK(xte,X)

∥∥∥
2
≤ ϵte and

∥∥∥K(0)
NTK −K

(t)
NTK

∥∥∥
2
≤ ϵH , then we have:

|fnn(xte)− fNTK(xte)| ≤ O
(
ϵ0 +

√
n

λ0
ϵte +

√
n

λ2
0

log

(
n

ϵHλ0κ

)
ϵH

)
.

Then we are ready to prove Proposition 3.

Proof of Proposition 3. According to Lemma 13, we have:

|fnn(xte)− fNTK(xte)| ≤ O
(
ϵ+

√
n

λ0
ϵte +

√
n

λ2
0

log

(
n

ϵHλ0κ

)
ϵH

)
.

Note that the function g(x) := x log( n
xλ0κ

) achieves its maximum g(x)max = n
eλ0κ

.

Combine this and Lemma 12, we have:
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|fnn(xte)− fNTK(xte)| ≤ O
(
ϵ+

√
n

λ0
ω1/3L5/2

√
m logm+

n3/2

λ3
0κ

)
.

F.4. Proof of Proposition 4

Before proving Proposition 4, we first introduce the following lemmas:
Lemma 14 (Adapted from Theorem 1 in Chen and Xu (2021)). Let HLap and HNTK be the RKHS associated with the
Laplace kernel and the neural tangent kernel of a L-layer fully connected ReLU network. Both kernels are restricted to the
sphere Sd−1. Then the two spaces include the same set of functions:

HLap = HNTK .

Then we are ready to prove Proposition 4.

Proof of Proposition 4. According to Lemma 14, we have HLap = HNTK, that means, the estimators of Eq. (4) under two
RKHS corresponding to the NTK kernel and Laplace kernel are the same:

fNTK(xte) = fLaplace(xte) , (13)

where fNTK, fLaplace are the estimators of Eq. (4) in HNTK and HLaplace, respectively.

According to Eq. (5), when the Laplace kernel is restricted to the sphere Sd−1, it is a dot product kernel.

Combine Eq. (13) and Liu et al. (2021, Theorem 2), we get the result.

F.5. Proof of Theorem 5

Proof. Using triangle inequality, we have:

E ∥fnn − fρ∥2L2
ρX

≤E ∥fnn − fntk∥2L2
ρX

+ E ∥fntk − fρ∥2L2
ρX

≤n−2θ log4(
2

δ
) +

σ2
ϵβ

d
N γ

X̃
+

σ2
ϵ log

2+4ε d

γ2d4θ−1

+E
∫
X

|fntk(x)− fρ(x)|2 dρX(x)

≤n−2θ log4(
2

δ
) +

σ2
ϵβ

d
N γ

X̃
+

σ2
ϵ log

2+4ε d

γ2d4θ−1

+O
((

ϵ+

√
n

λ0
ω1/3L5/2

√
m logm+

n3/2

λ3
0κ

)2)
,

(14)

with probability at least 1−2δ−δ′−d−2, where the first inequality use Proposition 4 and second inequality use Proposition 3.

Then According to Theorem 2, we have:

λ0 ≥


2µ2

1
n
d

(
3
4 − c

4

√
d
n

)2

, if n ≥ d,

2µ2
1
n
d

(√
d
n − c+6

4

)2

, if n < d .

(15)

with probability at least 1− 2e−n.

Combine Eq. (14) and Eq. (15), we conclude the proof.
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