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Rectified-linear-unit (ReLU) neural networks, which play a prominent role in deep 
learning, generate continuous and piecewise-linear (CPWL) functions. While they 
provide a powerful parametric representation, the mapping between the parameter 
and function spaces lacks stability. In this paper, we investigate an alternative 
representation of CPWL functions that relies on local hat basis functions and that 
is applicable to low-dimensional regression problems. It is predicated on the fact 
that any CPWL function can be specified by a triangulation and its values at the 
grid points. We give the necessary and sufficient condition on the triangulation (in 
any number of dimensions and with any number of vertices) for the hat functions 
to form a Riesz basis, which ensures that the link between the parameters and 
the corresponding CPWL function is stable and unique. In addition, we provide an 
estimate of the �2 → L2 condition number of this local representation. As a special 
case of our framework, we focus on a systematic parameterization of Rd with control 
points placed on a uniform grid. In particular, we choose hat basis functions that are 
shifted replicas of a single linear box spline. In this setting, we prove that our general 
estimate of the condition number is exact. We also relate the local representation to 
a nonlocal one based on shifts of a causal ReLU-like function. Finally, we indicate 
how to efficiently estimate the Lipschitz constant of the CPWL mapping.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

1.1. Continuous and piecewise-linear functions for supervised learning

The purpose of supervised learning is to reconstruct an unknown mapping from a set of samples [1]. 
Namely, given a collection of training data pairs (vk, yk) ∈ Rd × R for k = 1, . . . , K, one wants to find 
f : Rd → R such that f(vk) ≈ yk for k = 1, . . . , K, without overfitting. As such, the problem is ill-posed. 
To make it numerically tractable, a reconstruction space H is chosen as the image of a finite-dimensional 
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Fig. 1. Local and nonlocal building bricks of CPWL functions, from dimension 1 to any dimension. Notice that the nonlocal basis 
functions have several equivalent variations; only the ReLU-like one is shown in this figure.

parameter space Θ under a given synthesis operator T : Θ → H. This operator maps a parameter θ ∈ Θ
to its continuous representation T{θ} ∈ H. A celebrated way to choose the synthesis operator is to pick a 
feedforward neural-network architecture. Given the multidimensional parameter θ = (θ1, . . . , θL+1) ∈ Θ, 
we then have that

T{θ} = (fθL+1
◦ σL ◦ fθL

◦ σL−1 ◦ · · · ◦ σ2 ◦ fθ2
◦ σ1 ◦ fθ1

), (1)

where L is the number of hidden layers of the neural network, fθk
: Rdk → Rdk+1 is an affine function pa-

rameterized by θk, and σk is an activation function that is chosen a priori. For the model to be able 
to generate a function space with good approximation properties, the activation functions need to be 
nonaffine—otherwise, the generated function would remain trivially affine. The pointwise rectified-linear 
unit (ReLU) x �→ max(x, 0) is one of the most popular activation functions and it usually provides state-
of-the-art performance [2,3]. In this case, T{θ} is the composition of continuous piecewise-linear (CPWL) 
functions, which turns out to be a CPWL function as well [4]. The reverse also holds: any CPWL function 
Rd → R can be parameterized by a deep neural network with at most �log2(d + 1)� hidden layers [5]. The 
depth of the architecture is instrumental to improve the approximation power of the network [4,6,7] and 
its generalization ability [8], but it is an obstacle to the control of the model. For instance, to control the 
Lipschitz constant of a feedforward neural network, state-of-the-art techniques rely on theoretical upper 
bounds whose tightness degrades each time a new layer is added [9,10]. The depth also makes it hard to 
determine the role of each parameter in the constructed mapping.

1.2. Linear expansion of continuous and piecewise-linear functions

More interpretable representations of CPWL functions are provided by linear expansions. They boil down 
to two families: local and nonlocal representations (Fig. 1).

1.2.1. Local representation
In dimension d = 1, any CPWL function f can be represented by the linear expansion f =

∑
k f(vk)βk, 

where the βk are the underlying triangular B-spline functions [11] (Fig. 1, upper left) and the {vk} are the 
knots of f , where the slope of f changes. In dimension d > 1, the knots are replaced by a triangulation of 
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the set {vk} of vertices, which partitions the input domain into simplices. These simplices are the convex 
hull of a subset of (d + 1) vertices and will serve to define the linear regions of f . Given an appropriate 
triangulation, any CPWL function can be represented by the linear expansion f =

∑
k f(vk)βk, where the 

βk now denote the hat functions—a.k.a. nodal basis functions or tent-shaped linear basis functions—that 
correspond to the triangulation [12] (Fig. 1, upper right). Each basis function βk is defined as the unique 
CPWL function that satisfies βk(vq)= 1 for k = q and βk(vq) = 0 otherwise, and that is affine over each 
simplex of the triangulation. The βk are locally supported, hence the attribute local. When the vertices 
are regularly spaced so that they coincide with the sites of a lattice, the hat functions can be chosen as 
translates of a unique function, namely, a linear box spline [13,14].

There exist recent works that leverage the explicit representation offered by the local parameterization to 
learn a CPWL function f for regression tasks. Since the partition of f is known and typically not learned, 
it is possible to regularize the function during training with an explicit regularizer. For instance, one can 
use the total roughness of f [15–17] or the Hessian total variation of f [18,19], which is not possible with 
neural networks (NNs). With NNs, it is more common to regularize the parameters, which yields an implicit 
regularization on the learned mapping that is hard to understand. The global knowledge of the function 
offered by the local parameterization has, however, a cost. Since the linear regions are fixed, it suffers from 
the curse of dimensionality. To partially overcome this limitation, it was proposed in [16] to use the local 
parameterization on subspaces of the features along with ensemble techniques.

1.2.2. Nonlocal representations
In dimension d = 1, a CPWL function f with control points vk can also be represented by the nonlocal 

representation [20]

f(x) = a0 + a1(x− v1) +
K−1∑
k=2

akReLU(x− vk). (2)

Note that (2) is one instance out of many nonlocal representations, another one being f(x) = c0 +
c1(x − v1) +

∑K−1
k=2 ck |x− vk|. The generalization to any dimension is due to Wang and Sun [21]. 

Their generalized hinging-hyperplanes (GHH) model can represent any CPWL function as f(x) =∑
k εk max(fk

1 (x), . . . , fk
mk

(x)), where fk
1 , . . . , f

k
mk

are affine functions, εk = ±1, and mk ≤ d + 1. This ex-
pansion has also different variations and can be recast as f(x) =

∑
k εk max(gk1 (x), . . . , gkmk−1(x))+, where 

gk1 , . . . , g
k
mk−1 are affine functions, εk = ±1, mk ≤ d + 1, and for any x ∈ R, (x)+ := max(x, 0) = ReLU(x).

The basis functions of nonlocal representations are the building blocks of many feedforward neural net-
works. They play the role of activation functions, including ReLU, Leaky ReLU, PReLU, CReLU, and 
maxout [2,22–25].

1.3. Stability of the parameterizations

The stability of a parameterization can be analyzed through various metrics, including the condition 
number and the Lipschitz constant of appropriate mappings (see Section 2 for the mathematical definitions).

Condition number of the interpolation problem: Consider the problem of finding the parameter θ such 
that T{θ} interpolates the data (vk, yk). For linear models, this amounts to solving a system of linear 
equations with unknown θ and input (yk). The stability of this problem is usually quantified via its condition 
number, which is the ratio of the largest to the smallest singular value of the system matrix. For the local 
representation, the explicit solution is f =

∑
k ykβk in any dimension. The associated condition number is 

unity and optimal. The situation is less favorable for nonlocal representations. In Fig. 2, we illustrate a case 
where a small change in a single target value implies a significant change of the nonlocal parameter θ for 
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Fig. 2. Linear expansions of two nearly identical CPWL one-dimensional functions (solid thick blue line and mixed thick orange 
line). The weighted basis functions are represented with thin lines (solid gray and solid orange respectively if different). Left: the 
local expansions of the two curves are very similar. Right: the small difference between the two curves induces a great difference in 
their nonlocal parameterization. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

T{θ} to remain interpolatory. In Appendix A, we prove that the interpolation condition number given K
data points is at least O(K3/2) for the nonlocal representation (2) in the one-dimensional case. Thus the 
problem is generally ill-conditioned.

Riesz basis and Riesz ratio: In the context of the local parameterization, we consider the parameter space 
�2(Z) of finite-energy sequences and equip the function space with the L2 norm. Although the collection 
(βk) of the local atoms is not an orthonormal basis, it forms a Riesz basis under weak conditions [26,27]. 
This means that (βk) is the image of an orthonormal basis under a bounded invertible linear operator. 
This guarantees that the synthesis operator T is a bounded linear bijection from �2(Z) to H ⊂ L2(Rd) and 
allows us to define the condition number of T , referred to as the Riesz ratio in the sequel. The Riesz basis 
is a standard requirement in many signal-processing theories and finite-elements methods [28–32] within a 
broad spectrum of applications. To the best of our knowledge, the exact Riesz bounds of linear box splines 
are not known in high dimensions and the case of arbitrary triangulations has not been addressed in full 
generality so far.

In the context of the nonlocal representation, since the basis functions do not belong to L2(Rd), the 
synthesis operator T : Θ → H is ill-conditioned, in the sense that a small change of θ can lead to arbitrarily 
large changes in ‖T{θ}‖L2 . In other words, it is not possible to form a Riesz basis with nonlocal CPWL 
atoms. Consequently, the associated guarantees on stability disappear.

Since the condition number of the interpolation problem is always 1 for the local parameterization, we 
shall only concentrate on the Riesz ratio in the remainder of the paper, as the latter requires a more involved 
analysis.

Lipschitz constant: Beyond the stability of the synthesis operator, in many learning applications, it is 
also highly desirable to control the stability of the input-output mapping. For instance, neural networks 
with controlled Lipschitz constants tend to generalize better [33–35], to be more robust against adversarial 
attacks [36–39], and to be more interpretable [38,40]. Despite many recent advances to control the Lipschitz 
constant of deep models [41–44], it remains very challenging to learn compositional models under a Lipschitz 
constraint [45]. This results from the fact that the determination of the Lipschitz constant of a ReLU network 
is already NP-hard as soon as there is one hidden layer [46].

1.4. Contributions and outline

In this paper, we propose to investigate in any dimension the stability of the local parameterization of 
CPWL functions with the hope to bring detailed results against which other parameterizations could be 
compared. We define the Riesz ratio in Section 2 and establish a few preliminary results in Section 3. We 
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then derive in Section 4 an upper bound on the Riesz ratio that is applicable to any triangulation and that 
considers the worst-case scenario. We also propose a complementary stochastic framework that addresses 
better an average behavior instead. In Section 5, we show that our upper bound on the Riesz ratio is 
exact for linear box splines. Finally, in Section 6, we show that the local parameterization gives access to 
the Lipschitz constant of the map and we provide novel fast-to-evaluate upper and lower bounds on the 
Lipschitz constant.

2. Mathematical preliminaries

2.1. Simplicial continuous and piecewise-linear functions

Definition 1. A function f : Rd → R is continuous and piecewise-linear (CPWL) if it is continuous and if 
there exist distinct affine functions f1, f2, . . . , fM and subsets R1, R2, . . . , RM of Rd such that

(i) each Rm is closed with nonempty interior;
(ii) for n �= m, Rn and Rm have disjoint interiors;
(iii) the space is partitioned as 

⋃M
m=1 Rm = Rd;

(iv) the function f agrees with fm on Rm.

We extend this definition to compact input domains of Rd and to any function f : Rd → R whose 
restriction to any compact set is CPWL (sometimes referred to as locally piecewise-affine functions [47]).

Definition 2. A set V ⊂ Rd is locally finite if its intersection with any compact set of Rd is finite.1

In the sequel, V will always denote a locally finite set of Rd indexed by I ⊂ N that is not contained in 
any (d − 1)-dimensional affine subspace of Rd. To each point vk ∈ V we associate a target value yk ∈ R. 
Under Definition 1, it is not clear how to construct a CPWL function f that satisfies f(vk) = yk. The 
local representation offers a more systematic way to address this problem. This requires first to form a 
triangulation of the set V.

2.1.1. Partition of the input domain into simplices
A polyhedron is the intersection of finitely many half spaces. A polytope is a bounded polyhedron. 

Simplices are the polytopes that have the fewest number of faces; in growing number of dimensions d =
0, . . . , 3 they include points, segments, triangles, and tetrahedrons. Formally, a d-simplex s of Rd is the 
convex hull of (d + 1) affinely independent vertices

s = conv(v1, . . . ,vd+1) =
{

d+1∑
k=1

λkvk : λk ≥ 0,
d+1∑
k=1

λk=1
}
. (3)

A k-face of a simplex is the convex hull of (k+ 1) of its vertices, which is a k-simplex embedded in Rd. The 
volume of a simplex admits the explicit form Vol(s) = 1

d! |det(v2 − v1, . . . , vd+1 − v1)|.

Definition 3 (adapted from [48]). A triangulation of a locally finite set V ⊂ Rd of points is a collection S of 
d-simplices whose vertices are points in V and such that

(i) the union of all the simplices equals conv(V) (union property);

1 Note that the meaning of the term “locally finite” depends on the mathematical field.
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Fig. 3. Left: 3D view of two hat functions on a finite triangulation. Note that, although the left hat function seems discontinuous, 
it is continuous on the triangulation. Right: star of two vertices of the triangulation (filled area).

(ii) any pair of simplices intersects in a (possibly empty) common face (intersection property).

A triangulation of V is said to be full if all the points of V are vertices of it, a property that we shall 
always assume to hold in the sequel. For a given locally finite set V ⊂ Rd of vertices of dimension d, the 
existence of a triangulation is granted but in general not unique. In practice, most applications fall into one 
of the two.

• Regular Sampling Locations: The vertices coincide with the sites of a lattice, for which explicit trian-
gulations are known (e.g., the Kuhn triangulation [49,50]).

• Irregular (Random) Sampling Locations: A Delaunay triangulation always exists in any number of 
dimensions for a finite set V, and there exist algorithms to compute it [51,52].

Definition 4. Let S be a triangulation of a locally finite set V ⊂ Rd. The star St(v) of a vertex v ∈ V is the 
set of those simplices of S that contain v.

We define the volume of the star of a vertex as Vol(St(v)) =
∑

s∈St(v) Vol(s). Its cardinality is denoted 
by |St(v)|.

2.1.2. Hat basis functions
The set of CPWL functions on a triangulation S with vertices V is defined as

CPWL(S) = {f ∈ Rconv(V) : f is affine on any s ∈ S and continuous on conv(V)}. (4)

It is said to be the space of linear simplicial splines on S. Note that the functions in CPWL(S) are only 
defined over the convex hull conv(V) of V, which can range from a compact set to the whole space Rd.

It is known that any polyhedron can be partitioned into simplices [53]. As a result, any CPWL function 
can be viewed as a linear simplicial spline. Two affine functions that coincide on the vertices of a d-simplex 
are equal, which means that any element of CPWL(S) is uniquely determined by the values it assumes at 
the vertices V of S. This leads to the local linear expansion

∀f ∈ CPWL(S) : f =
∑
v∈V

f(v)βS
v , (5)

where the hat functions βS
v ∈ Rconv(V) (see Fig. 3) are defined on every simplex s ∈ S by
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βS
v |s =

{
λs
v, s ∈ St(v)

0, otherwise,
(6)

where λs
v is the unique affine function that vanishes at all vertices of s but takes value 1 at vertex v. In 

other words, λs
v outputs the barycentric coordinate of simplex s attached to vertex v for a given x ∈ s. Note 

that depending on the set of vertices, the hat basis functions might not be defined over the whole Rd and, 
in the sequel, for any f ∈ Rconv(V) we use the notation ‖f‖Lp

= (
∫
x∈conv(V) |f(x)|pdx)1/p. The hat basis 

functions have many desirable properties such as

• for u, v ∈ V, βS
v (u) =

{
1, v = u
0, otherwise;

• continuity;
• compact support supp(βS

v ) =
⋃

s∈St(v) s;
• minimal support among all nonzero functions of CPWL(S);
• ability to reproduce polynomials of degree up to 1 on conv(V), so that

∀(a, b) ∈ Rd ×R, ∀x ∈ conv(V) : aTx + b =
∑
v∈V

(aTv + b)βS
v (x), (7)

which includes the partition-of-unity condition 
∑

v∈V βS
v = 1.

When St(v) is convex, the hat function simply reads [54]

βS
v =
(

min
s∈St(v)

λs
v

)
+
. (8)

2.2. Riesz basis and Riesz ratio

For a set I ⊂ N, we denote by �2(I) the set of complex-valued sequences indexed by I with finite energy.

Definition 5. Let H be a separable Hilbert space over C and I ⊂ N. A collection of functions {ϕk}k∈I in H
is a Riesz basis if

(i) Span({ϕk}k∈I) = H (completeness),
(ii) there exist 0 < A ≤ B < +∞ such that, for any c ∈ �2(I),

A‖c‖�2 ≤ ‖
∑
k∈I

ckϕk‖L2 ≤ B‖c‖�2 (Riesz-sequence property), (9)

where ‖c‖�2 =
(∑

k∈I |ck|
2
)1/2

.

The tightest constants A and B that satisfy (9) are called the Riesz bounds.

Riesz ratio: Consider the linear synthesis operator T : c �→
∑

k∈I ckϕk, where {ϕk}k∈I is a Riesz basis. 
The synthesis operator T is a bounded linear bijection, which means that there is a unique and stable link 
between the parameters and the functions being generated. The condition number of the linear operator T
is defined as

κ(T ) = sup ‖T{c1}‖L2/‖T{c2}‖L2

‖c ‖ /‖c ‖ . (10)

c1,c2 �=0 1 �2 2 �2
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It follows from (9) that κ(T ) is the ratio B/A of the Riesz bounds of {ϕk}k∈I . Hence, we refer to this 
number as the Riesz ratio. The Riesz ratio is 1 if and only if the collection of functions (ϕk)k∈I forms an 
orthonormal basis (up to a scaling factor).

When the collection of functions is formed by the multiindex shifts of a single generating function ({ϕk} =
{ϕ(· − k) : k ∈ Zd}), the Riesz-sequence property is characterized via the discrete-time Fourier transform ĝ
of the sampled autocorrelation of ϕ, as given by

ĝ : ω �→
∑
k∈Zd

〈ϕ,ϕ(· − k)〉e−ikTω. (11)

In this uniform scenario, the Fourier equivalent of the Riesz-sequence condition is [29,55]

0 < A2 = ess inf
ω∈[0,2π]d

ĝ(ω) ≤ B2 = ess sup
ω∈[0,2π]d

ĝ(ω) < +∞. (12)

2.3. Lipschitz constant

A function f : Rd → R is Lp-Lipschitz, with Lp ∈ R+ and p ≥ 1, if, for any x, y ∈ Rd, it holds that

|f(x) − f(y)| ≤ Lp‖x − y‖p, (13)

and Lipp(f) ∈ R+ is the smallest constant Lp for which f is Lp-Lipschitz. It is well-known that a CPWL 
function with finitely many affine pieces is Lipschitz continuous. In particular, the Lipschitz constant of the 
CPWL function f as defined in Definition 1 is given by the maximum Lipschitz constant of its affine pieces, 
so that

Lipp(f) = max
m=1,...,M

Lipp(fm). (14)

3. Affine functions on simplices

Considerations on affine functions on simplices will help us lay the foundations of the analysis of the 
stability of the local parameterization on simplicial partitions (Sections 4 and 5).

Proposition 1. Let f : Rd → C be an affine function and s = conv(v1, . . . ,vd+1) a d-simplex. Then

Vol(s)
(d + 2)(d + 1)

d+1∑
k=1

|f(vk)|2 ≤
∫

x∈s

|f(x)|2dx ≤ Vol(s)
(d + 1)

d+1∑
k=1

|f(vk)|2. (15)

Prior to proving Proposition 1, we provide a series of useful results regarding the computation of some 
integrals of affine functions over simplices.

For a linear function f : Rd → R, an integer p ∈ N, and a d-simplex s = conv(v1, . . . ,vd+1), it is known 
that [56,57]

∫
s

f(x)pdx = Vol(s)
(
p + d

d

)−1 ∑
k∈Nd+1,|k|=p

f(v1)k1 · · · f(vd+1)kd+1 , (16)

where we use the notation k = (k1, . . . , kd+1) and |k| := k1 + · · · + kd+1. We can extend this to affine 
functions.
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Lemma 1. Let f : Rd → R be an affine function and s = conv(v1, . . . ,vd+1) a d-simplex. For any p ∈ N, 
we have that

∫
s

f(x)pdx = Vol(s)
(
p + d

d

)−1 ∑
k∈Nd+1,|k|=p

f(v1)k1 · · · f(vd+1)kd+1 . (17)

Proof. If the affine function f is not constant, then it can be written as f(x) = aT (x − x0). Equation (16)
can be applied after a change of variable, as in∫

s

f(x)pdx =
∫
s

(aT (x − x0))pdx =
∫

s−x0

(aTy)pdy (18)

= Vol(s− x0)
(
p + d

d

)−1 ∑
k∈Nd+1,|k|=p

(aT (v1 − x0))k1 · · · (aT (vd+1 − x0))kd+1 (19)

= Vol(s)
(
p + d

d

)−1 ∑
k∈Nd+1,|k|=p

f(v1)k1 · · · f(vd+1)kd+1 , (20)

where s − x0 := {x− x0 : x ∈ s}. If now the affine function f is constant with f(x) = b, then 
∫
s
f(x)pdx =

Vol(s)bp. We also have that

Vol(s)
(
p + d

d

)−1 ∑
k∈Nd+1,|k|=p

f(v1)k1 · · · f(vd+1)kd+1 = Vol(s)
(
p + d

d

)−1 ∑
k∈Nd+1,|k|=p

bp = Vol(s)bp,

(21)
where we have used that 

∑
k∈Nd+1,|k|=p 1 =

(
p+d
d

)
. This number is known in combinatorics as the combina-

tions with replacement [58]. �
We can now deduce an important property of the hat functions.

Proposition 2. The Lp norm of the hat function βS
v only depends on the dimension d and the volume of its 

support. It reads

‖βS
v ‖Lp

=
((

p + d

d

)−1

Vol(St(v))
)1/p

. (22)

Proof. We split the integral over the simplices of the support of βS
v and apply Lemma 1, which reads

‖βS
v ‖pLp

=
∫

conv(V)

|βS
v (x)|pdx =

∫
conv(V)

βS
v (x)pdx

=
∑
s∈S

∫
s

βS
v (x)pdx =

∑
s∈St(v)

∫
s

βS
v (x)pdx

=
∑

s∈St(v)

(
p + d

d

)−1

Vol(s) =
(
p + d

d

)−1

Vol(St(v)). � (23)

In the sequel, we shall make use of Proposition 2 through the two following relations:
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• the L2 norm

‖βS
v ‖2

L2
= 2Vol(St(v))

(d + 1)(d + 2); (24)

• the inner-product relation

〈βS
v ,
∑
u∈V

βS
u 〉conv(V) = 〈βS

v , 1〉conv(V) = ‖βS
v ‖L1 = Vol(St(v))

(d + 1) , (25)

where 〈f, h〉conv(V) =
∫
x∈conv(V) f(x)h(x)dx and where the first equality results from the partition of 

unity of the hat functions.

When p = 2, the integral in Lemma 1 is a quadratic form of the value of the function on the vertices and 
admits the matrix form shown in Lemma 2.

Lemma 2. Let f : Rd → R be an affine function, s = conv(v1, . . . ,vd+1) a d-simplex, and fs =
(f(v1), · · · , f(vd+1)) ∈ Rd+1. Then,∫

s

f(x)2dx = Vol(s)
(d + 1)(d + 2) f

T
s Pd+1fs, (26)

where

Pd+1 = 1d+1 + Id+1 =

⎡⎢⎢⎢⎣
2 1 . . . 1

1
. . . . . .

...
...

. . . . . . 1
1 · · · 1 2

⎤⎥⎥⎥⎦ ∈ R(d+1)×(d+1), (27)

and where 1d+1 ∈ R(d+1)×(d+1) is the matrix of ones and Id+1 ∈ R(d+1)×(d+1) is the identity matrix.

Proof. Following Lemma 1, on one hand we have that

∫
s

f(x)2dx = Vol(s)
(

2 + d

d

)−1 ∑
k∈Nd+1,|k|=2

f(v1)k1 · · · f(vd+1)kd+1

= 2Vol(s)
(d + 1)(d + 2)1/2

(
d+1∑
p,q=1

f(vp)f(vq) +
d+1∑
p=1

f(vp)2
)

= Vol(s)
(d + 1)(d + 2)

⎛⎝(d+1∑
p=1

f(vq)
)2

+
d+1∑
p=1

f(vp)2
⎞⎠ . (28)

On the other hand, we have that

fTs Pd+1fs =
d+1∑
p=1

f(vp)
(

d+1∑
q=1

f(vq) + f(vp)
)

(29)

=
(

d+1∑
f(vp)

)2

+
d+1∑

f(vp)2. � (30)

p=1 p=1



A. Goujon et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101581 11
Lemma 2 can be extended to pairs of complex-valued functions.

Lemma 3. Let f, g : Rd → C be affine functions, s = conv(v1, . . . ,vd+1) a d-simplex, fs = (f(v1), · · · ,
f(vd+1)) ∈ Rd+1, and gs = (g(v1), · · · , g(vd+1)) ∈ Rd+1. It holds that∫

s

f(x)g(x)dx = Vol(s)
(d + 1)(d + 2) f

H
s Pd+1gs, (31)

where

Pd+1 = 1d+1 + Id+1 ∈ R(d+1)×(d+1). (32)

To prove Lemma 3, we first consider real-valued functions f and g and apply Lemma 2 to the left-hand 
side of the equality 2fg =

(
(f + g)2 − f2 − g2). The announced result is then reached because Pd+1 is a 

symmetric matrix. The generalization to complex-valued functions is directly obtained via the decomposition 
of f and g into their real and imaginary parts.

Proof of Proposition 1. The matrix Pd+1 defined in Lemma 2 is a symmetric circulant matrix generated 
by the vector (2, 1, . . . , 1). Its eigenvalues are known to be [59]

λm = 2 +
d∑

n=1
ζmn
d+1 with m = 1, . . . , d + 1 and where ζd+1 = ei 2π

d+1 . (33)

These expressions are further simplified to

λm = 1 +
d+1∑
n=1

ζmn
d+1 =

{
d + 2, m = d + 1
1, otherwise,

(34)

which shows that minm∈{1,...,d+1}(λm) = 1 and maxm∈{1,...,d+1}(λm) = (d +2). As a result, for any c ∈ Cd+1

‖c‖2
2 ≤ cHPd+1c ≤ (d + 2)‖c‖2

2. (35)

We now conclude by applying Lemma 3. �
The condition number 

√
d + 2 given by the inequalities in Proposition 1 depends on the dimension d. 

However, the eigenvalues of Pd+1 are all 1 except for the largest one, given by (d + 2). This fact is used to 
derive Lemma 4, which offers a stochastic view on the problem.

Lemma 4. Let s = conv(v1, . . . ,vd+1) be a d-simplex, C = (C1, . . . , Cd+1) a random vector of Rd+1 with 
independent zero-mean components and with E(‖C‖2

2) ≤ +∞, and fC : Rd → R the unique affine function 
such that fC(vk) = Ck for k = 1, . . . , d + 1. Then,

E

⎛⎝∫
s

f(x)2dx

⎞⎠ = 2Vol(s)
(d + 1)(d + 2)E(‖C‖2

2). (36)

Proof. Given the matrix Pd+1 defined in Lemma 2, it holds that CTPd+1C =
∑

1≤k,l≤d+1(Pd+1)klClCk. Us-
ing the independence of the zero-mean entries of C, it follows that E(CTPd+1C) =

∑d+1
k=1(Pd+1)kkE(C2

k) =
2E(‖C‖2

2). The conclusion follows from the formula given in Lemma 2. �
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4. Riesz ratio on arbitrary triangulations

4.1. Triangulations with any number of vertices

Triangulations in high dimensions have complex combinatorial structures that can induce a wide range of 
behaviors with the usual descriptors, for instance, shape of the simplices, degree of the vertices, number of 
simplices shared by 2, . . . , d vertices. Fortunately, the necessary and sufficient condition that a triangulation 
must satisfy for the hat functions to form a Riesz basis only relies on the volume of the star of the vertices, 
as outlined in Theorem 1. This result can be seen as an extension of [60, Theorem 3.1], which gives a similar 
bound for the condition number of the mass matrix for the hat functions on triangulations with finitely 
many vertices. The present result applies to any triangulation, including those with infinitely many vertices. 
This will be used to determine the exact Riesz bounds for linear box splines in Section 5.

Theorem 1. Let S be a triangulation of a locally finite set V = {vk}k∈I of vertices in Rd and let (βS
v )v∈V

be the corresponding hat functions. Then, the following statements are equivalent:

(i) the collection of functions (βS
v )v∈V forms a Riesz basis of the space CPWL(S) ∩ L2(Rd);

(ii)
{
V St

inf = infv∈V Vol(St(v)) > 0
V St

sup = supv∈V Vol(St(v)) < +∞;

(iii)
{

infv∈V ‖βS
v ‖L2 > 0

supv∈V ‖βS
v ‖L2 < +∞.

When these statements hold, for any c ∈ �2(I) we have that√
V St

inf
(d + 1)(d + 2)‖c‖�2 ≤ ‖

∑
v∈V

cvβ
S
v ‖L2 ≤

√
V St

sup

(d + 1)‖c‖�2 (37)

or, equivalently, that

1√
2

inf
v∈V

‖βS
v ‖L2‖c‖�2 ≤ ‖

∑
v∈V

cvβ
S
v ‖L2 ≤

√
d + 2

2 sup
v∈V

‖βS
v ‖L2‖c‖�2 . (38)

The Riesz ratio r satisfies

r ≤
√
d + 2

√
V St

sup

V St
inf

=
√
d + 2 × supv∈V ‖βS

v ‖L2

infv∈V ‖βS
v ‖L2

. (39)

Proof. The equivalence (ii) ⇔ (iii) is a direct consequence of (24).
We now show that (i) ⇒ (iii). We consider sequences that are zero everywhere, but at one location, and 

use the Riesz-sequence property to deduce that, for any v ∈ V,

A ≤ ‖βS
v ‖L2 ≤ B, (40)

where 0 ≤ A ≤ B ≤ +∞ are the Riesz bounds.
We now prove (ii) ⇒ (i). Let c ∈ �2(I), f =

∑
v∈V cvβ

S
v . We have that

‖f‖2
L2

=
∫

|f(x)|2dx =
∑
s∈S

∫
|f(x)|2dx
conv(V) s
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≤ 1
(d + 1)

∑
s∈S

∑
v∈s∩V

Vol(s)|f(v)|2

= 1
(d + 1)

∑
v∈V

∑
s∈St(v)

Vol(s)|f(v)|2

= 1
(d + 1)

∑
v∈V

|f(v)|2
∑

S∈St(v)

Vol(s)

= 1
(d + 1)

∑
v∈V

Vol(St(v))|f(v)|2

≤ supv∈V(Vol(St(v)))
(d + 1) ‖c‖2

�2 , (41)

where we have applied Proposition 1 and interchanged the order of the double summation with positive 
arguments (special case of Tonelli’s theorem). Similarly,

‖f‖2
L2

=
∫

conv(V)

|f(x)|2dx =
∑
s∈S

∫
s

|f(x)|2dx

≥ 1
(d + 1)(d + 2)

∑
s∈S

∑
v∈s∩V

Vol(s)|f(v)|2

= 1
(d + 1)(d + 2)

∑
v∈V

∑
s∈St(v)

Vol(s)|f(v)|2

= 1
(d + 1)(d + 2)

∑
v∈V

Vol(St(v))|f(v)|2

≥ infv∈V(Vol(St(v)))
(d + 1)(d + 2) ‖c‖2

�2 . � (42)

Theorem 1 provides a quantitative way to compare the stability of triangulations. In particular, a trian-
gulation is good when the ratio 

V St
sup

V St
inf

is close to 1, which is an indicator of how uniform the triangulation 
is.

From Theorem 1, we deduce a stronger condition that is sufficient for the Riesz property to hold and 
that gives further insight into the problem. Since Vol(St(v)) =

∑
s∈St(v) Vol(s), we have that

inf
s∈S

Vol(s) × inf
v∈V

|St(v)| ≤ V St
inf ≤ V St

sup ≤ sup
s∈S

Vol(s) × sup
v∈V

|St(v)|. (43)

This means that the hat functions form a Riesz basis whenever the degree of the vertices is upper bounded 
and the volume of the simplices is upper and lower bounded. This condition, however, is not necessary.

Theorem 1 does not contain direct information on the tightness of the bounds. Yet, we shall prove in 
Section 5 that, when the hat functions are shifts of a linear box spline, the given bounds are optimal.

The upper bound on the Riesz ratio given in Theorem 1 behaves as O(
√
d). In Corollary 1, we propose a 

stochastic perspective that conveys the intuition that the upper Riesz bound B only accounts for very rare 
behaviors, all the more in high dimensions.

Corollary 1. Let S be a triangulation of a locally finite set V = {vk}k∈I of vertices in Rd and let (βS
v )v∈V

be the corresponding hat functions. In addition, suppose that
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{
V St

inf = infv∈V Vol(St(v)) > 0
V St

sup = supv∈V Vol(St(v)) < +∞.
(44)

Let C ∈ �2(I) be a random sequence with independent zero-mean entries and such that E(‖C‖2
�2

) ≤ +∞. 
Then,

A2E(‖C‖2
�2) ≤ E

(
‖
∑
v∈V

Cvβ
S
v ‖2

L2

)
≤ 2A2

(
V St

sup

V St
inf

)
E(‖C‖2

�2), (45)

where A =
√

V St
inf

(d+1)(d+2) is the lower Riesz bound of (βS
v )v∈V given in Theorem 1.

Proof. The inequalities in (45) follow from Lemma 4 combined with the proof of Theorem 1. �
Within the setting of Corollary 1, it can be inferred from (45) that the standard deviation of the random 

variable ‖ 
∑

v∈V Cvβ
S
v ‖L2 is upper bounded by a quantity that varies with d in a similar way as the lower 

Riesz bound A given in Theorem 1. This yields the intuition that, in this random setting, the typical 
behavior is better represented by the deterministic lower bound, and that the deterministic upper Riesz 
bound is only rarely approached in high-dimensional input spaces.

4.2. Triangulations with finitely many vertices

For a triangulation S of a finite set V of vertices in d dimensions, the hat functions always form a Riesz 
basis. Indeed, since we assumed that V cannot be contained in any (d − 1)-dimensional affine subspace of 
Rd, all simplices of S are not degenerated and the conditions of Theorem 1 are fulfilled. We now apply our 
formalism to recover a classical result from the finite-element literature, for example [60, Theorem 3.1].

Theorem 2 (see also [60, Theorem 3.1.]). Let S be a triangulation of a finite set V of dimension d of vertices. 
The corresponding hat functions form a Riesz basis of CPWL(S) with Riesz bounds

A =

√
λmin(M)

(d + 1)(d + 2) and B =

√
λmax(M)

(d + 1)(d + 2) , (46)

where the matrix M ∈ R|V|×|V| is symmetric and defined as

[M]pq =
{

2Vol(St(vp)), p = q

Vol(St(vp) ∩ St(vq)), otherwise,
(47)

and where λmin(M) and λmax(M) are the smallest and largest eigenvalues of M.

Proof. Let f =
∑

v∈V cvβ
S
v . The coefficients cv are ordered to form a vector c ∈ R|V|. To each s ∈ S

we associate a matrix Ls ∈ R(d+1)×|V| such that Lsc ∈ Rd+1 contains the coefficients associated with the 
vertices of s. By invoking Lemma 2, we obtain

‖f‖2
L2

=
∫

conv(V)

|f(x)|2dx =
∑
s∈S

∫
s

|f(x)|2dx

= 1
(d + 1)(d + 2)

∑
Vol(s)(Lsc)HPd+1(Lsc)
s∈S



A. Goujon et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101581 15
Fig. 4. Riesz ratio of the local parameterization of CPWL functions on various Delaunay triangulations for the same set of vertices. 
The results stem from Theorem 2 and were obtained numerically. In a) and e), the pattern is similar but the Riesz ratios differ 
significantly. This comes mainly from the behavior on the border since the smallest star has two simplices for a) while it has a 
single one for e).

= 1
(d + 1)(d + 2)c

H

(∑
s∈S

Vol(s)LT
s Pd+1Ls

)
c

= 1
(d + 1)(d + 2)c

HMc, (48)

where M =
∑

s∈S Vol(s)LT
s Pd+1Ls. Let 1 ≤ p, q ≤ |V|. For p �= q, each entry (p, q) of Vol(s)LT

s Pd+1Ls is 
given by

• Vol(s), if and only if vp and vq are in s or, equivalently, s ∈ St(vp) ∩ St(vq);
• 0, otherwise.

Now, for p = q, each term Vol(s)LT
s Pd+1Ls of the sum has the entry (p, p) be

• 2Vol(s), if and only if vp is in s or, equivalently s ∈ St(vp);
• 0, otherwise.

This shows that M is the matrix given in Theorem 2. �
In the previously cited work [60, Theorem 3.1], the basis functions are attached to interior vertices, which 

corresponds to zero boundary conditions in our framework. For finite elements, the matrix M is usually 
referred to as the mass matrix: it is the Gram matrix of the set of basis functions. For hat basis functions, 
this matrix has the direct geometric interpretation given in Theorem 2.

For a finite set V of vertices, one may wonder which triangulation yields the most stable CPWL model 
in the L2 sense (i.e., the smallest Riesz ratio). The Delaunay triangulation is known to be optimal in 
several ways (e.g., in the plane it maximizes the minimum angle of all the angles of the triangles in the 
triangulation), but it does not necessarily give the smallest Riesz ratio. When the Delaunay triangulation 
is not unique, the choice can be guided by the related Riesz ratio, as detailed in Fig. 4.

5. Exact Riesz bounds for linear box splines

Throughout this section, we assume that the vertices coincide with the sites of a lattice Λ. This is relevant 
in some applications, such as image processing [61], but can also be taken advantage of in low-dimensional 
learning problems [18]. While a uniform grid constrains the model and thereby reduces its expressivity, 
it significantly improves the computational performance. In this setting, the parameterization of CPWL 
functions involves shifts of a single linear box spline B for the hat basis functions. The generated space 
CPWL(S) = {

∑
ckB(· − k) : ck ∈ C} is now integer-shift-invariant and lends itself to the tools of 
k∈Λ
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Fourier analysis [62]. Note that, for any x ∈ Rd, the sum 
∑

k∈Λ ckB(x − k) has at most (d + 1) nonzero 
terms. This follows from the short support of linear box splines.

5.1. Linear box splines

Box splines of any degree have been extensively studied. We refer the reader to the book by de Boor 
et al. [13] for a general theory and a more comprehensive account. In this paper, we shall concentrate 
solely on linear box splines, which will in return allow us to derive exact Riesz bounds, which is one of our 
contributions.

Consider a matrix Ξ = [ξ1 · · · ξd] ∈ Rd×d, where (ξ1, . . . , ξd) is a collection of linearly independent 
vectors of Rd. The matrix Ξ generates a lattice of Rd whose sites are ΞZd = {Ξk : k ∈ Zd}. Moreover, let 
Ξd+1 = [ξ1· · ·ξd+1] ∈ Rd×(d+1) with ξd+1 =

∑d
k=1 ξk. The linear box spline BΞd+1 : Rd → R generated by 

the collection of vectors (ξ1, · · · , ξd+1) can be defined via its Fourier transform

B̂Ξd+1(ω) = |detΞ|
d+1∏
k=1

1 − e−iξT
k ω

iξTkω
. (49)

The normalization factor | detΞ| ensures consistency with our definition of a hat function, but is often not 
included in the literature. The fact that BΞd+1 is a CPWL function is made explicit with Proposition 3.

Proposition 3.

BΞd+1(x) =
∑

ε∈{0,1}d+1

(−1)|ε| min
(
Ξ−1(x − Ξd+1ε)

)
+ , (50)

where |ε| =
∑d+1

k=1 εk.

Proof. The product in (49) can be expanded as

B̂Ξd+1(ω) = |detΞ|
(

d+1∏
k=1

1
iξTkω

)
×

∑
ε∈{0,1}d+1

(−1)|ε|e−i(Ξd+1ε)Tω. (51)

By invoking Lemma 7 (Appendix B) and making use of the general Fourier-stretch theorem, we get that

min(Ξ−1x)+
F�→ |detΞ|

d+1∏
k=1

(
1

iξTkω
+ πδ(ξTkω)

)
, (52)

where x is the space variable, ω is the pulsation variable and δ is the Dirac distribution. Knowing that 
(1 − e−iξT

k ω)δ(ξTkω) = 0, we observe that (49) has the equivalent form

B̂Ξd+1(ω) = |detΞ|
(

d+1∏
k=1

1
iξTkω

+ πδ(ξTkω)
) ∑

ε∈{0,1}d+1

(−1)|ε|e−iεTΞT
d+1ω. (53)

We conclude by taking the inverse Fourier transform on both sides of (53). �
Proposition 3 is illustrated in dimension d = 2 in Fig. 5. This expansion gives a way to prove that the 

GHH model [21] can represent any linear box spline. In addition, it provides a relation between the local 
and nonlocal representations, with explicit generalized hinging hyperplanes (namely, the shifts of a single 
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Fig. 5. Linear decomposition of the 2D linear box spline with translates of the nonlocal function (x, y) �→ min(x, y)+. The six 
basis functions are all translates of (x, y) �→ min(x, y)+. They are only represented here over a finite-size grid, but they are not 
compactly supported. The location of the corner of each hinge in the central scene is given by the gray arrow.

generalized hinging hyperplane). Our result is close to [63], where a similar formula is proven for three 
directional box splines of any degree, but only in dimension d = 2. In any dimension and for box splines of 
any degree, a comparable decomposition is given in [64]. Nonetheless, when applied to linear box splines, 
the expansion in [64] is made of discontinuous Green functions and contains more terms.

The key properties of the linear box spline BΞd+1 are

• continuity and piecewise linearity (obvious from Proposition 3 since x �→ min(x)+ is CPWL);
• compact support;
• approximation power of order 2 [13], which means that the reconstruction error of sufficiently smooth 

decaying functions decreases with the square of the grid size.

5.2. Derivation of the exact Riesz-basis bounds

Prior to giving the general Riesz-basis bounds of linear box splines (Theorem 3), we show an invariance 
result: the Riesz ratio associated to linear box splines does not depend on the directions (ξ1, . . . , ξd).

Proposition 4. Let (ξ1, . . ., ξd) be a family of linearly independent vectors of Rd, ξd+1 =
∑d

k=1 ξk, Ξd+1 =
[ξ1 · · · ξd+1] and U ∈ Rd×d an invertible matrix. Then, the Riesz bounds of BUΞd+1 are the ones of BΞd+1

scaled by 
√
|det (U)|.

Proof. From Proposition 3, we infer that BUΞd+1 = BΞd+1 ◦ U−1. (The generalized version of this relation 
MUΞ =

∣∣detU−1
∣∣MΞ ◦U−1 is given in [13] and holds true for unnormalized box splines of any degree.) In 

addition, for any f ∈ L2(Rd), a change of variable allows one to show that ‖f ◦ U−1‖2
L2

= |det(U)| ‖f‖2
L2

, 
which means that, for c ∈ �2(Z), it holds that

‖
∑
k∈Zd

ckBUΞd+1(· − UΞk)‖2
L2

= ‖
∑
k∈Zd

ckBΞd+1 ◦ U−1(· − UΞk)‖2
L2

= ‖
∑
k∈Zd

ckBΞd+1(U−1 · −Ξk)‖2
L2

(54)

= ‖(
∑
k∈Zd

ckBΞd+1(· − Ξk)) ◦ U−1‖2
L2

= |det(U)| ‖
∑
k∈Zd

ckBΞd+1(· − Ξk)‖2
L2
, (55)
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which allows us to conclude. �
The fact that {BΞd+1(· − Ξk) : k ∈ Zd} forms a Riesz basis can be inferred directly from established 

criterion in the literature [65,66,26,27]. Here, we go further and provide the upper and lower Riesz bounds 
in any number of dimensions (Theorem 3), which is a new result to the best of our knowledge.

Theorem 3. Let (ξ1, . . . , ξd) be a basis of Rd, ξd+1 =
∑d

k=1 ξk, and Ξd+1 = [ξ1 · · · ξd+1]. Then, the collection 
{BΞd+1(· − Ξk) : k ∈ Zd} of linear box splines forms a Riesz basis with Riesz bounds

A =

√
|detΞ|
(d + 2) and B =

√
|detΞ|. (56)

The associated Riesz ratio is 
√
d + 2.

Proof. Following Proposition 4, we focus solely on the Cartesian lattice Zd and denote the corresponding 
linear box spline by D = BΞd+1 , where Ξd is the identity matrix of Rd. In this case, it is known that the 
simplices form a Kuhn/Freudenthal triangulation [14]. The vertices of any simplex s = conv(v0, . . . , vd) of 
the triangulation take the form

vk = v0 +
k∑

p=1
eσ(p), (57)

where σ is a permutation of the set {0, . . . , d}, k = 1, . . . , d and ei denotes the ith element of the canonical 
basis of Rd. Correspondingly, for p = 0, . . . , d, there is a unique vertex vkp

in each simplex such that ∣∣vkp

∣∣ ≡ p mod (d + 1), where for any x = (x1, . . . , xd+1) ∈ Rd+1, we use the notation |x| =
∑d+1

k=1 xk. 
Indeed, (57) yields that |vk| = |v0| + k. Then, we use the Fourier characterization (12) to find the Riesz 
bounds. Specifically, we have to find the essential extrema of

ĝ : ω �→
∑
k∈Zd

〈D,D(· − k)〉e−iωTk. (58)

Since the basis function D is compactly supported, the sum is finite and the function ĝ : Rd → C is 
continuous and 2π-periodic with respect to each coordinate. We can therefore simply look for the maximum 
and the minimum of ĝ in the hypercube [0, 2π)d. We apply the triangular inequality, use the nonnegativity 
of D and invoke the partition of unity of the linear box spline to conclude that the maximum of ĝ is 
attained for ω = 0. With (25) we find the upper bound B2 = Vol(St(D))

d+1 , where St(D) is the support of D
or, equivalently, the star of the vertex located at 1. Now, for the minimum, we evaluate ĝ at ω0 = (− 2π

d+11)
and get ∑

k∈Zd

〈D,D(· − k)〉e−iω0
Tk = 〈D,

∑
k∈Zd

ζ
|k|
d+1D(· − k)〉

=
∑

s∈St(D)

〈D,
∑
k∈Zd

ζ
|k|
d+1D(· − k)〉s

=
∑

s∈St(D)

〈D,
∑

(k−1)∈Zd∩s

ζ
|k|
d+1D(· − k)〉s, (59)

where 〈f, h〉s =
∫
x∈s

f(x)h(x)dx. On one hand, we apply Lemma 3 and use the inherent structure of the 
Kuhn triangulation displayed in (57) to deduce that
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min
ω∈[0,2π]d

ĝ(ω) ≤ ĝ(ω∗) =
∑

s∈St(D)

1
(d + 1)(d + 2)Vol(s) [1 0 · · · 0]

⎡⎢⎢⎢⎣
2 1 · · · 1

1
. . . . . .

...
...

. . . . . . 1
1 · · · 1 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

1
ζd+1

...
ζdd+1

⎤⎥⎥⎦
= Vol(St(D))

(d + 1)(d + 2) . (60)

On the other hand, Theorem 1 implies that minω∈[0,2π]d ĝ(ω) ≥ Vol(St(D))
(d+1)(d+2) , from which we infer that 

A2 = Vol(St(D))
(d+1)(d+2) . Moreover, we have that 

∫
Rd D(x)dx = D̂(0) = det (I) = 1 (from (49)) and, since the box 

spline D is nonnegative, 
∫
Rd D(x)dx = ‖D‖L1 = Vol(St(D))

(d+1) (from (25)). In short, Vol(St(D)) = (d + 1), 
which allows us to derive the result for the Cartesian lattice. The extension to any lattice then follows from 
Proposition 4. �

Theorem 1 and 3 yield the same bounds for linear box splines, which shows the relevance of the bounds 
provided for arbitrary triangulations.

In the proof of Theorem 3 we showed, on one hand, that the volume of the star of a vertex in the Kuhn 
triangulation is (d + 1). On the other hand, the volume of the simplices of this triangulation can be readily 
computed and amounts to 1

d! . We deduce that the linear box spline is made of (d +1)! nonzero affine pieces.
From Theorem 3, the Riesz ratio of the linear box-spline parameterization is 

√
d + 2, which grows with 

the dimension. However, this metric only reflects extreme cases. A good estimate of the average behavior 
of the parameterization is given by the mean of the function ĝ (defined in the proof of Theorem 3) over 
[0, 2π]d, computed as

1
(2π)d

∫
ω∈[0,2π]d

∑
k∈Zd

〈D,D(· − k)〉e−iωTkdω = 〈D,D〉 = ‖D‖2
L2

= 2 Vol((St(D))
(d + 2)(d + 1) = 2 min

ω∈[0,2π]d
ĝ(ω).(61)

We infer that ĝ rarely takes values close to its upper bound, especially in high dimensions, which was 
observed for affine functions on a simplex in Lemma 4. In short, although the Riesz ratio scales badly with 
the dimension, most linear combinations of box splines will behave in a similar way to the lower bound and 
the dimension should not significantly degrade the stability of the parameterization.

6. Lipschitz bounds

While the determination of the Lipschitz constant of ReLU networks is NP-hard, the situation is much 
more favorable for the local parameterization.

6.1. Lipschitz properties of ReLU networks

Consider a one-hidden-layer ReLU network mapping Rd to R and defined by

h : x �→ uTReLU(WTx + b) =
m∑

k=1

ukReLU(wT
k x + bk), (62)

where W ∈ Rd×m, u, b ∈ Rm are the parameters, and wk are the columns of W. This network parameterizes 
a CPWL function; hence, its Lipschitz constant is the maximal Lipschitz constant of its affine pieces. 
However, the knowledge of these affine pieces is not straightforward as it requires one to determine the 
linear regions of h. This amounts to finding the nonempty regions of the form
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m⋂
k=1

{x ∈ Rd : εk(wT
k x + bk) ≥ 0}, (63)

where εk ∈ {0, 1}. This geometrical problem is known as “finding the chambers of a hyperplane arrange-
ment”, and a sharp upper bound on the maximal number of these regions for given (d, m) can be found in 
[67]. The combinatorial aspect of the problem is such that the computation of Lip2(h) is NP-hard [46]. In 
addition, under the exponential-time hypothesis, there exists no polynomial-time approximation algorithm 
with ratio Ω(d1−c) for the computation of Lip1(h) and Lip∞(h) for any constant c > 0 [68]. In practice, 
the strict control of the Lipschitz constant can be achieved by the use of fast-to-compute but loose bounds. 
The most-common approach relies on the submultiplicativity of the Lipschitz constant for compositions 
[41,69,70], which yields that

Lipp(h) ≤ ‖WT ‖p,p‖u‖q, (64)

where the matrix norm ‖ · ‖α,β is defined as

‖M‖α,β = sup
‖x‖α=1

‖Mx‖β . (65)

Remark. The (p, p) norm of the row matrix uT ∈ R1×d is the q vector norm ‖u‖q, where 1/p + 1/q = 1.

6.2. Lipschitz properties of the local parameterization

6.2.1. Lipschitz constant
In comparison to ReLU neural networks, the local parameterization f =

∑
v∈V cvβ

S
v generates CPWL 

functions with known linear regions, namely, the simplices of S. The Lipschitz constant of f therefore reads

Lipp(f) = sup
s∈S

(‖∇f |̊s‖q), (66)

where 1/p +1/q = 1, and where ∇f |̊s is the gradient of f in the interior of the simplex ̊s, hence, a constant 
vector. Note that when (66) is not finite, then f is not a Lipschitz function. For d > 1, the discrete estimate

sup
v,u∈V

|cv − cu|
‖v − u‖p

≤ Lipp(f), (67)

is inadequate, as illustrated in [71, Figure 2], and is generally only a lower bound. The determination of 
Lipp(f) requires some more involved computations. Let s = conv(v1, . . . ,vd+1) be a d-simplex, and let 
h : x �→ gT

s x + bs be the affine function which satisfies h(vk) = ck for k = 1, . . . , d + 1. The gradient gs can 
then be computed as

gs = (ΔV−T
s )Δc, (68)

where ΔVs = [v2 − v1 · · · vd+1 − v1] and Δc = (c2 − c1, . . . , cd+1 − c1). The matrix ΔVs is indeed 
invertible since we have assumed that Vol(s) = 1

d! |det(ΔVs)| > 0. It follows from (66) and (68) that Lipp(f)
can always be computed in polynomial time for finite partitions.

6.2.2. Lipschitz constant of the hat function
We propose a geometrical interpretation of the Lipschitz constant of the hat basis function, which will 

then lead us to a practical Lipschitz bound in Proposition 5.
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Lemma 5. Let βS
v be the hat basis function attached to the vertex v. For s ∈ St(v), let fs,v be the facet of 

s opposed to v, let ns,v be the normal vector of fs,v pointing toward the interior of s, and let hs,v,p be the 
p-norm length of the height of s with apex v. Then,

∇βS
v |̊s = (1/hs,v,2)ns,v, and Lipp(βS

v ) = max
s∈St(v)

(1/hs,v,q), (69)

where 1/p + 1/q = 1.

Proof. Let s ∈ St(v). To simplify the proof, we write s = conv(v1, . . . ,vd+1), where v1 = v. Following (68), 
we have that

∇βS
v |̊s = −(ΔV−T

s )1. (70)

In addition, we have that

ΔVsei = vi+1, (71)

where ei is the ith element of the canonical basis. Finally, we obtain for any 1 ≤ i < j ≤ d

∇βS
v |Ts̊ (vi+1 − vj+1) = −1TΔV−1

s ΔVs(ei − ej) = 0, (72)

which means that ∇βS
v |̊s is orthogonal to the facet of s opposed to v. Let r be the orthogonal projection 

of v onto the facet of s opposed to v. On the one hand, βS
v |s(v) = 1 and βS

v |s(r) = 0. On the other hand, 
v − r is parallel to ∇βS

v |̊s, which yields

∇βS
v |̊s = v − r, (73)

and allows us to conclude the proof. �
6.2.3. A Lipschitz bound with finite differences and geometrical descriptors

To compute the Lipschitz constant of a CPWL function expressed with the local representation, one has 
to compute the gradients of the function over each simplex. This requires solving a set of linear problems 
that are specific to both the geometry (triangulation) and the sequence of coefficients (c), as shown in (68). 
We now propose simpler-to-compute upper and lower bounds. They require solving linear problems that 
depend only on the geometry and, hence, can be solved offline for a given triangulation and then used for 
any sequence of coefficients c (Proposition 5). The bounds highlight the role of the finite differences of the 
coefficients and the geometry of the simplices.

Proposition 5. Consider the same setting as in Theorem 1. Then,

sup
v,u∈V

|cv − cu|
‖v − u‖2

≤ Lip2

(∑
v∈V

cvβ
S
v

)
≤ sup

s∈S

∑
v∈s∩V

|cv − αs|
hs,v,2

, (74)

for any αs ∈ R for s ∈ S, and where hs,v,2 is the height of simplex s with apex v.

Proof. Let f =
∑

v∈V cvβ
S
v . For any s ∈ S, it holds that

∇f |̊s =
∑

cv∇βS
v |̊s. (75)
v∈s∩V
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Hence,

‖∇f |̊s‖2 ≤
∑

v∈s∩V
|cv|‖∇βS

v |̊s‖2 =
∑

v∈s∩V

|cv|
hs,v,2

. (76)

We now note that

∇
( ∑

v∈s∩V
βS
v

)
|̊s = ∇(1)|̊s = 0. (77)

Hence,

∇f |̊s =
∑

v∈s∩V
cv∇βS

v |̊s =
∑

v∈s∩V
(cv − αs)∇βS

v |̊s, (78)

for any αs ∈ R, which allows us to conclude. �
The bound given in Proposition 5 requires one to choose a reference value αs for each simplex s against 

which to compare the value of the function at the vertices. In the case where hs,v,2 does not depend on v, 
then the choice of αs as the median of {cv} for v ∈ s ∩ V leads to the tightest bound. More generally, a 
suitable choice is to pick αs ∈ [minv∈s∩V cv, maxv∈s∩V , cv], which ensures an upper bound of 0 for constant 
functions. Note that this choice yields an exact bound when d = 1, but this is not necessarily true for d > 1.

7. Conclusion

We have provided a measure of the stability of the parameterization of CPWL functions with hat basis 
functions on any triangulation. First, we have estimated the �2 → L2 condition number of the parameter-
ization in full generality. We have found that it is mainly determined by the relative volume of the star of 
the vertices of the triangulation, namely, the relative size of the support of the hat functions. This result is 
in accordance with the literature on finite-element methods, which however only focus on the case of finitely 
many vertices. When the vertices lie at the sites of a lattice, we parameterize the CPWL functions with 
linear box splines. We have provided a formula to relate these local basis functions to nonlocal ReLU-like 
functions. In this uniform setting, we have proved that the exact condition number only depends on the 
dimension d and is 

√
d + 2. Although it increases with the dimension, we noticed that, from a stochastic 

point of view, the dimension might only rarely affect the stability of the local representation. Eventually, 
we have shown that the Lipschitz constant of a CPWL function can be easily determined when its local 
parameterization is known. This highly contrasts with CPWL functions defined by ReLU neural networks.

Data availability

No data was used for the research described in the article.

Appendix A. Interpolation condition number of the nonlocal parameterization

Consider the nonlocal parameterization of one-dimensional CPWL functions with knots v1 < · · · < vK ∈
R

T{θ}(x) = θ1 + θ2(x− v1) +
K−1∑

θk+1(x− vk)+. (79)

k=2
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Given target values y1, . . . , yK ∈ R, the parameters θ1, . . . , θK ∈ R have to satisfy for p = 1, . . . , K that

yp = T{θ}(vp) = θ1 + θ2(vp − v1) +
K−1∑
k=2

θk+1(vp − vk)+, (80)

which, assuming a constant step size h = (vk+1 − vk), further simplifies in yp = θ1 + h 
∑p−1

k=1 θk+1(p − k). 
This yields the matrix equation

θ = 1
h

⎡⎢⎢⎢⎢⎢⎣
1/h 0 · · · · · · 0
1/h 1 0 · · · 0
... 2

. . . . . .
...

...
...

. . . . . . 0
1/h (K − 1) · · · 2 1

⎤⎥⎥⎥⎥⎥⎦

−1

y = M−1y. (81)

To give a lower bound to the condition number of the problem, we remark that Me2 = h 
∑K−1

k=1 kek+1 and 
MeK = heK , where ek are the canonical vectors of Rd. We infer that ‖M−1∑K−1

k=1 kek‖2/‖ 
∑K−1

k=1 kek)‖2 =
(K(K − 1)(2K − 1)/6)−1/2/h and that ‖M

−1eK‖2
‖eK‖2

= 1/h. It implies that the �2 condition number r of the 
problem satisfies

r = max
a,b∈Rd\{0}

{∥∥M−1a
∥∥

‖a‖
‖b‖

‖M−1b‖

}
≥
√

K(K − 1)(2K − 1)
6 . (82)

Appendix B. The generalized hinging-hyperplane generating function of linear box splines

The Fourier transform ĥ of the Heaviside function h : x �→
{

1, x ≥ 0
0, otherwise,

is given by

ĥ : ω �→ 1
iω + πδ(ω). (83)

From this we infer Ĥ, the Fourier transform of H : x �→
∏d

k=1 h(xk), the separable version of h in d
dimensions,

Ĥ : ω �→
d∏

k=1

(
1

iωk
+ πδ(ωk)

)
. (84)

We define a directional Heaviside wall function as W : x �→ h(xd) 
∏d−1

k=1 δ(xk) and the matrix Ad =⎡⎢⎢⎣
1 −1

. . . . . .
1 −1

1 · · · · · · 1

⎤⎥⎥⎦.

Lemma 6.

∀x ∈ Rd, (H ∗ (W ◦ Ad))(x) = min(x)+. (85)

Proof. We have that

(H ∗ (W ◦ Ad))(x) =
∫
Rd

H(x − t)W (Adt)dt. (86)
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In the sequel, we take advantage of two properties.

• We prove that det(Ad) = d by induction using the Laplace/cofactor expansion along the last column.
• We observe that Ad1 = ded, which in turn implies that A−1

d ed = d−11.

We now use the change of variable y = Adt. It yields that

(H ∗ (W ◦ Ad))(x) = (1/d)
∫
Rd

H(x − A−1
d y)h(yd)

d−1∏
k=1

δ(yk)dy

= (1/d)
∫
Rd

H(x − ydA−1
d ed)h(yd)

d−1∏
k=1

δ(yk)dy

= (1/d)
∫
Rd

H(x − yd
d

1)h(yd)
d−1∏
k=1

δ(yk)dy

= (1/d)
∫
Rd

h(yd)
(

d∏
k=1

h(xk − yd/d)
)(

d−1∏
k=1

δ(yk)
)

dy

= (1/d)
∫
R

h(yd)
(

d∏
k=1

h(xk − yd/d)
)

dyd. (87)

The quantity 
∏d

k=1 h(xk − yd/d)h(yd) is nonzero when yd > 0 and yd < dxk for k = 1, . . . , d, which is 
equivalent to yd > 0 and yd < d min(xk). We can now conclude that (H ∗ (L ◦ Ad))(x) = min(x)+. �
Lemma 7.

min(x)+
F�→

d+1∏
k=1

(
1

iωk
+ πδ(ωk)

)
, (88)

where ωd+1 =
∑d

k=1 ωk.

Proof. From Lemma 6, we have that (H ∗ (W ◦ Ad))(x) = min(x)+. The function W is separable and its 
Fourier transform reads Ŵ (ω) = 1

iωd
+ πδ(ωd). In addition, the general stretch theorem implies that

(W ◦ Ad)
F�→ 1

d
Ŵ (A−T

d ω) = 1
d

(
1

ieTd A−T
d ω

+ πδ(eTd A−T
d ω)

)
. (89)

Now, we use that A−1
d ed = d−1ed and the effect of a dilation on the Dirac distribution to conclude that

(W ◦ Ad)
F�→ 1

d
Ŵ (A−T

d ω) =
(

1
iωd+1

+ πδ(ωd+1)
)
. (90)

We conclude by using the Fourier transform of H and by transforming the convolution into a product in 
the Fourier domain. �
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