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Abstract

The dynamics of neuron populations during diverse behaviours evolve on low-dimensional
manifolds. However, it remains challenging to disentangle the role of manifold geometry and dy-
namics in encoding task variables. Here, we introduce an unsupervised geometric deep learning
framework for representing non-linear dynamical systems based on statistical distributions of local
dynamical features. Our method provides geometry-aware or geometry-agnostic representations
for robustly comparing dynamical systems based on sparse measurements. Our representations
are generalisable to compare computations across systems, interpretable to discover a geometric
correspondence between neural dynamics and kinematics in a primate reaching task, and intrin-
sically encode temporal information to give rise to a decoding algorithm with state-of-the-art
accuracy. Our results suggest that using the manifold structure over temporal information is
important to develop better decoding algorithms and assimilate data across experiments.

Introduction

Despite the widespread recognition that behaviour is underpinned by the dynamics of neural popula-
tions1,2, interpreting the structure of these dynamics in the context of relevant computations remains
a fundamental challenge3. Several works have focused on the geometry of neural manifolds–low-
dimensional smooth subspaces of neural state space, over which the high-dimensional neural activi-
ties evolve4–12–while others have suggested that computations are encoded by the dynamical flows of
neural population activity3,11,13. In the latter viewpoint, manifold geometry is merely a dynamical
imprint that changes over time or across animals4. Recently, high-fidelity techniques provided simul-
taneous experimental access to the dynamics of large neuron populations14–16 and behaviour17–19.
However, theoretical frameworks for finding representations of neural dynamics that are comparable
across experiments, interpretable based on behavioural variables and can independently consider the
geometry and dynamics are currently lacking.

Current approaches for representing neural dynamics do not meet the above challenges. While
dynamical models can accurately predict trajectories for a single experiment20–25, their implicit de-
pendence on the manifold geometry hinders their ability to generalise to other experiments. Although
alignment by fitting additional linear transformations can partially address this shortcoming24,25, this
only holds for manifolds with negligible curvature. Manifold learning approaches, on the other hand,
can effectively unfold non-linear structures but cannot decouple dynamics and geometry as they
treat trajectories as point clouds26,27. Finally, topological data analysis methods28 measure invariant
structures in the data, such as loops6 and tori9, while disregarding continuous differences in both
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the dynamics and geometry. To overcome these limitations, we need methods that can represent
non-linear dynamics intrinsically on the manifold.

We propose a theoretical framework with an associated computational method, called MARBLE,
that combines ideas from empirical dynamical modelling29 and the statistical descriptions of collec-
tive systems30,31 to represent non-linear dynamics intrinsically on the manifold. Unlike in dynamical
modelling20–25 and current geometric deep learning methods32–37, which learn a single mathematical
object to encode the dynamics globally, we focus on the distribution of local vector fields. Specifi-
cally, leveraging continuity over the manifold we use geometric deep learning38–40 and unsupervised
contrastive learning41 to produce a similarity-preserving feature embedding of local vector fields into
a shared latent space. This allows us to define a robust similarity metric between possibly sparsely
and irregularly sampled dynamical systems to infer continuous and abrupt dynamical changes with
respect to varying system parameters or input gains. Further, making the latent features rotation
invariant obtains geometry-agnostic embeddings that facilitate comparing dynamics across system
realisations. This is particularly important when a direct neuron-to-neuron comparison is unviable
as in the case of RNN instances or animals. The similarity-preserving property of the embeddings is
fundamental for their interpretability in terms of population-level system properties, such as decision
variables and movement kinematics. For example, in RNNs trained on a contextual decision-making
task, we predicted the discrimination threshold from a dynamical transition detected during gain
modulation. Additionally, we discovered a geometric representation of electrophysiological recordings
in macaques during a reaching task, which revealed a previously unreported spatiotemporal structure
mirroring the unseen kinematics. We leveraged this structure to decode kinematic trajectories with
state-of-the-art accuracy. Our results suggest that differential geometric notions can reveal as yet
unaccounted-for non-linear variations in neural data that can further our understanding of neural
dynamics underpinning behaviour and guide the design of brain-machine interfaces.

Results

Data-driven distributional representation of vector fields over manifolds

To characterise neural computations during behaviour, e.g., decision-making or motor actions, a typi-
cal experiment involves a set of trials producing d-dimensional time-series measurements {x(t)} of the
state of an animal, e.g., neural activity or behavioural kinematics. Frequently, these experiments are
replicated under diverse conditions, requiring comparing sets of trajectories to reveal alterations in
neural mechanisms. However, two main challenges hinder this analysis. First, trajectories initialised
differently across trials produce uneven and possibly sparse sampling of the relevant basins of attrac-
tion of the dynamics. Second, similar dynamics may unfold over manifolds with different geometries
or orientations across subjects4,24, making a direct neuron-to-neuron comparison infeasible.

To address these challenges, instead of learning the temporal evolution of the states, we build a
statistical representation of the dynamics based on the local spatial context of sample points. This is
possible as the trajectories of neural dynamics13 or more generally of dissipative dynamical systems42

converge to an m-dimensional submanifold of the original d-dimensional state-space (Fig. 1a). We
first treat the trajectories under a given experimental condition c as a vector field Fc = (f1, . . . , fn)
anchored to a point cloud Xc = (x1, . . . ,xn) (Fig. 1b). To approximate the geometry of the underlying
manifold, we fit a proximity graph to Xc. The local context of a point i is then given by the vector
field in the p-hop neighbourhood of i. Second, we jointly embed individual local vector fields from
different conditions c into a shared latent space to obtain features Zc = (z1, . . . , zn) that represent the
dynamical system as an empirical distribution Pc =

∑n
i δ(zi), where δ is the Dirac delta function. To

define a metric between dynamical systems under conditions c and c′, we use the optimal transport
distance (Eq. S18), d(Pc, Pc′), between their empirical distributions in the shared latent space, which
generally outperforms entropic measures (e.g., KL divergence) when detecting complex interactions
based on overlapping distributions31.

The above approach hinges upon detecting overlaps between the feature distributions of dynami-
cal systems embedded over distinct manifolds. We develop a similarity-preserving embedding of local
vector fields, called MARBLE, using an unsupervised geometric deep learning architecture consisting
of four components (Fig. 1c, see Sect. S1 in Materials and Methods); an optional vector diffusion ker-
nel with learnable parameter τ (Eq. S3) which tunes the size of the local vector fields; p gradient filter
layers whose output together with fi gives the best p-th order approximation of the local vector field
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Figure 1: Data-driven statistical representation of measured dynamics over manifolds.
a Trajectories measured in different trials (colours) evolving over a parabolic manifold. b Vector
field representation of trajectories. The manifold is approximated by a k-nearest neighbour graph.
Black circle marks sample point and its corresponding local vector field. c Geometric deep learning
model, MARBLE, for the node-wise embedding of local vector fields. The vector field is smoothed
by an optional vector diffusion layer. The local vector fields are approximated to p-th order by
gradient filters and optionally transformed into rotation-invariant inner product features. Finally,
a multilayer perceptron (MLP) performs a node-wise similarity-preserving embedding of features
into a latent space. d Vector fields of the Van der Pol oscillator over a parabolic manifold in the
unstable (µ = −0.25) and stable (µ = 0.25) regimes sampled from randomly initialised trajectories
(n ≈ 200). Insets show limit cycle in red and representative trajectories from a vertical projected
view. e Similarity-preserving latent space embedding of local vector fields (two shown in insets)
for different µ visualised in 2D via UMAP embedding. f Distribution distances across conditions.
Clustering indicates an abrupt dynamical change at µ = 0. g Two-dimensional MDS embedding
of the distribution distance matrix recovers the ordering of parameter µ over two weakly connected
one-dimensional manifolds.
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around i (Figs. S1–S3, Eq. S13); inner product features involving learnable linear transformations
which make the gradient features rotation invariant (Figs. S4–S5, Eq. S15); and a multilayer percep-
tron (MLP) with learnable weights ω that produces the latent vectors zi. Unsupervised training is
possible due to the spatial continuity of local vector fields over the manifold, which favours embed-
ding adjacent vector fields close by and those randomly sampled further apart via a soft constraint in
the loss function (Eq. S17). The soft constraint allows MARBLE to identify similar features across
different parts of the same manifold and across different manifolds.

The use of inner product features is optional and gives rise to two operation modes. Not using
them makes MARBLE geometry-aware for obtaining maximally expressive embeddings that con-
tain information about both the geometry and the dynamics. Meanwhile, using geometry-agnostic
embeddings favours learning the variation within local vector fields regardless of their spatial orien-
tations (Figs. S4–S5). This mode should be used whenever the manifold geometry and orientation
are expected to play no role in the respective neural computation. In addition, the initial vector
diffusion layer is also optional and smoothens the vector field for better handling of noisy systems
whose dynamics evolve near a manifold.

Similarity of statistical representations detects continuous and abrupt changes
in global dynamics

Latent parameter variations in dynamical systems can cause both continuous changes, such as slowing
down or speeding up, or abrupt, qualitative transitions, such as bifurcations. As a simple illustration
of our method, we use the well-known Van der Pol oscillator that is unstable for negative damping
parameter µ and stabilises as µ increases above zero in a Hopf bifurcation (Fig. 1d and Sect. S3.1).
In addition, increasing |µ| causes continuous deformations of the limit cycle from circular to asym-
metric corresponding to slow-fast dynamics. To showcase our method on a non-trivial manifold, we
additionally map this system to a parabola.

To study the dynamical response to parameter variations, we simulated short trajectories from
random initial conditions for 20 different values of µ, which plays the role of condition c, and obtained
vector fields for each. Then, we trained a geometry-agnostic MARBLE network to embed the local
vector fields into a common five-dimensional latent space, visualised in two dimensions via UMAP
projection algorithm43 (Fig. 1e). The distributional overlaps of the embedded features reflect the
ability of the method to identify similar local vector fields across trajectory ensembles obtained under
different conditions. For example, with larger |µ|, the points become more disjoint, as most local
neighbourhoods contain either strong convergent or divergent trajectories.

Despite the sparse and irregular sampling of the dynamics and, in turn, the local vector fields,
the embedding distributions revealed robust and ordered variation in the global dynamics across µ.
Indeed, the distance d(Pi, Pj) between pairs of empirical distributions associated with conditions
µi, µj yields a matrix with a two-partition structure for positive and negative µ (Fig. 1f). Although
this structure remained robust when we introduced manifold curvature deformations it was lost when
we trained a geometry-aware network (Fig. S6) confirming the ability of MARBLE to capture on-
manifold dynamics. In addition, a linear embedding of the distance matrix using multidimensional
scaling (MDS) (Fig. 1g) into two dimensional space reveals a continuous deformation of the dynamics
across conditions based on the ordered variation of µ over a one dimensional manifold. This order
is unexpected since it emerges from the distributional changes of irregularly spaced local vector
fields. MARBLE can therefore distinguish abrupt (stable/unstable) and continuous (change of |µ|)
deformation of dynamical systems on manifolds from a collection of sparse, irregular trajectories.

Discriminating computational mechanisms in recurrent neural networks

There has recently been significant interest in RNNs as surrogate models for the computations per-
formed by the brain13,44–46. Previous approaches for comparing computations in RNNs for a given
task relied on static representations of population activity snapshots44,47,48. These methods cannot
distinguish dynamics producing similar static representations and require distributional alignment to
account for different manifold geometries.

We replicated the delayed-match-to-sample task of49 by training RNNs with a rank-two connec-
tivity matrix (Fig. 2a, Sect. S3.2), which were previously shown to be sufficiently expressive50. The
task is commonly used in contextual decision-making and comprises two distinct stimuli with variable
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Figure 2: Statistical representations discriminate computations across recurrent neural
networks. a Low-rank RNN, taking two stimuli as input and producing a decision variable as a read-
out. b Representative stimulation patterns and decision outcomes for the delayed-match-to-sample
task for one stimulus. Input amplitude equals the ’gain’ during stimulation epochs (red) and zero
otherwise (grey). c Neural dynamics of a trained rank-two RNN evolves on a randomly oriented plane.
The vector field shows mean field dynamics superimposed with a sample trajectory (orange). d Input
weights to neurons in one RNN solution. The two clusters indicate specialisation in respective inputs.
Ellipses represent 3 std of fitted Gaussian distributions. e Phase portraits of manifold dynamics for
no stimulus and increasing stimulus gains (0.32, 1.0). f Distribution distances across gains obtained
from geometry-aware embeddings. Hierarchical clustering indicates two clusters in the non-zero gain
region, showing a bifurcation (red dashed line). g The inferred bifurcation point predicts the drop in
task performance by the network. h Networks sampled from the coefficient distribution of Solution
I have similar dynamics embedded over differently oriented planes, while those trained from other
initial conditions have different dynamics. i Distribution distances across the three networks and
gains obtained from geometry-agnostic embeddings. j MDS embedding of the distance matrix in i
shows alignment of gain-modulated conditions across similar dynamics.
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gain and two stimulation epochs of variable duration interspersed by a delay (Fig. 2b). After setting
the gain to unity, the RNN network was trained to converge to an output of 1 if either stimulus was
presented during both epochs and −1 otherwise (Fig. 2b). As expected51, the neural dynamics of
the trained network evolve on a randomly oriented plane in neural state-space during a trial (Fig. 2c
and Fig. S7a-c). In addition, we found that after training, differently initialised networks produce
two classes of solutions characterised by the distributions of their input weights win

1 ,w
in
2 (Eq. S22):

solution I consist of two subpopulations specialised in sensing the two stimuli (Fig. 2d), whilst in so-
lution II the nodes generalise across the two stimuli (Fig. S7d). These solutions exhibit substantially
different neural dynamics as shown by two representative examples, which we selected for further
analysis (Fig. 2e, Fig. S7e).

We first asked whether MARBLE could infer continuous and abrupt changes in neural dynamics
during varying stimulus gain that predict the loss of task performance. We simulated trajectories
with network solution I from 200 randomly initialised trials for 20 different input gains and performed
a PCA embedding into three dimensions, explaining over 99% of the variance. Then, we split the
trajectories between epochs forming 20 groups of sub-trajectories at no input and 20 groups at different
gains, justified by the fact that neural dynamics are the same at a given stimulation gain11. We then
trained a geometry-aware MARBLE network to jointly embed all groups into a common latent space.
The resulting matrix of pairwise distribution distances exhibits a block-diagonal structure (Fig. 2f).
The top left block, which corresponds to unstimulated conditions, contains vanishing entries implying
that MARBLE is robust to sampling variability. The other two subblocks of the bottom right block
indicate an abrupt change in dynamics, which remarkably corresponds to a sudden drop in task
performance (Fig. 2g) from 1 to 0.5 (random). This shows that MARBLE enables the unsupervised
detection of dynamical events that are interpretable in terms of global decision variables.

We then took both network solution I and II and asked whether comparing distributional embed-
dings can act as a similarity metric for the dynamics across RNNs (Fig. 2h). In addition to comparing
the two trained network solutions, we leveraged the fact that low-rank RNNs sampled from the same
Gaussian weight distribution have the same mean field dynamics50 albeit on differently oriented man-
ifolds. Thus, as a negative control, we generated two networks from the Gaussian distributions fitted
to weights of the network solution I (Fig. 2d). We used 200 trials of these three RNNs to produce
feature embeddings for stimulation epochs with a geometry-agnostic MARBLE network. We found a
block diagonal structure in the distribution distance matrix across gain-modulated conditions which
clearly discriminates between the on-manifold dynamics of networks sampled from Solution I and II
(Fig. 2i). In addition to correctly clustering solutions, the MDS embedding of the distance matrix
(Fig. 2j) also shows that MARBLE reveals the underlying one-parameter variation due to gain mod-
ulation, which is correctly ordered within a network and across sampled networks. These findings
confirm that our method can be used to obtain a robust metric between dynamical processes gen-
erated by different system architectures with possible implications towards guiding their design for
faster training or more accurate predictions.

Representing and decoding neural dynamics in a macaque reaching task

To show that distributional representations generated by MABRLE can be used to interpret neural
dynamics in terms of behavioural variables, we reanalysed the electrophysiological recordings of a
macaque performing a delayed centre-out hand-reaching task24 (Sect. S3.3. During the task, a trained
monkey was instructed to move a handle towards seven distinct targets placed at radial locations from
the start position. The dataset comprised simultaneous recordings of hand kinematics (Fig. 3a) and
neural activity via a 24-channel probe inserted into the premotor cortex (PMd) over 44 recording
sessions (Fig. 3b shows one session).

Since a subset of neurons in PMd is directionally tuned52, we argued that neural representations
must be sensitive to the orientation of the neural manifold. Thus, we trained a geometry-aware
MARBLE network on individual sessions by constructing separate vector fields from the firing rate
traces under individual reach conditions (Fig. 3c-d). Doing so avoids imposing geometric relationships
between conditions and allowed us to test if behaviourally interpretable embeddings emerge from
the neural dynamics. Unexpectedly, we found that, unlike the popular latent factor encoding of
neural dynamics (Fig S8a), the raw MARBLE feature embeddings in 3D strongly reflect the spatial
geometry of the physical reaches (Fig. 3e and Fig. S8a). This geometric configuration is also confirmed
by the diagonal and periodic structure of the condition-averaged distance matrix between feature
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Figure 3: Intepretable representation and decoding of neural activity in a macaque centre-
out reaching task. a Ground truth hand trajectories in seven reaching directions. b Single-trial
spike-trains in premotor cortex during a single trial for three respective reach directions (24 recording
channels). Shaded area shows the analysed traces after the GO cue. c Ten representative firing rate
trajectories PCA-embedded in 3D for visualisation. d Example vector field obtained from firing rate
trajectories for a given reach condition. e Neural data from all conditions in a single session are used to
train a MARBLE network without information about the kinematics. Statistical representation from
MARBLE of neural dynamics for a given session geometrically corresponds to the reach configuration
in physical space. f Matrix of distribution distances across reach conditions averaged across sessions
shows periodic structure. g MDS embedding of the distance matrix recovers the cyclic ordering of
reaches. h Hand trajectories linearly decoded from a representative session from latent factors of the
best LFADS model24 and from MARBLE embeddings. i Decoding accuracy measured by R2 between
ground truth and decoded trajectories across all sessions for final position (left) and instantaneous
velocity (right). Wilcoxon tests (paired samples), **: p < 1 × 10−2, ***: p < 1 × 10−3, ****:
p < 1× 10−4.

7



distributions across reach directions (Fig. 3f, Fig. S8b) and its associated MDS embedding (Fig. 3g,
Fig. S8c). This spatial structure was lost when training a geometry-agnostic network, which further
evidence the role of neural manifold geometry in coding reach movements (Fig. S8). Hence, MARBLE
can unfold the global geometric information in the neural code that mirrors kinematics in physical
space.

This geometric correspondence between neural and behavioural representations suggests a novel
decoding algorithm. Departing from current decoders which rely on explicitly learning temporal
information23–25 here we asked whether temporal information could emerge naturally from feature
embeddings due to the spatial continuity of local vector fields over the manifold. To show this, we
fitted an optimal linear estimator between the MARBLE embedded time points and their correspond-
ing hand positions. Remarkably, this decoded kinematics outperformed the state-of-the-art LFADS
model24 (Fig. 3h) as quantified by the higher accuracy in the reach direction (Fig. 3i) for all output
dimensions. While a three-dimensional MABRLE embedding accurately encodes spatial positions,
we found that the delay between the GO cue and the beginning of the movement could only be
accounted for with higher embedding dimensions (Fig. 3i). These results highlight that MARBLE
can generate representations of neural dynamics that are simultaneously interpretable and decodable
into behavioural variables.

Discussion

A hallmark of large collective systems such as the brain is the existence of many system realisations
that lead to equivalent computations defined by population-level dynamical processes53,54. The grow-
ing recognition that dynamics in biological and artificial neural networks evolve over low-dimensional
manifolds5,6,8,9 offers an opportunity to reconcile variable dynamics across system realisations with
invariant computations by using manifold geometry as an inductive bias for designing data-driven
models. We have shown that non-linear dynamical systems can be represented as statistical distri-
butions built from the point-wise, similarity-preserving embedding of local vector fields. Due to the
spatial continuity of dynamics over the manifold, latent features can be learnt fully unsupervised using
a geometric deep learning architecture. Further, features can be made rotation invariant to achieve
representations that are robust to perturbations in manifold geometry and orientation. These prop-
erties open the door to independently testing the relevance of manifold geometry and dynamics, and
to comparing dynamics across system realisations.

Our formalism can be framed as a statistical generalisation of the convergent cross mapping
(CCM) framework by Sugihara et al.29, which tests the topological equivalence of two dynamical
attractors through a one-to-one map between their local neighbourhoods. While CCM tests the
causality between two long, concurrent time series, our method provides a similarity metric between
any collection of dynamical systems based on ensembles of variable-length, sparsely sampled time
series. In addition, due to the locality of representation, our approach diverges from typical geometric
deep learning models that learn vector fields globally35,40, and thus unable to consider the manifold
geometry and the dynamics separately. Locality also implies that our method can generalise to
assimilate different datasets without additional trainable parameters to increase the statistical power
of the model even when individual datasets are poorly sampled. Although our method does not
explicitly learn temporal dynamics over manifolds23,37, we showed that temporal ordering naturally
emerges from our similarity-preserving embeddings of local vector fields. We demonstrated that this
property enables kinematic decoding from embeddings of neural data. Beyond decoding, we expect
MARBLE embeddings to provide powerful representations for downstream machine-learning tasks
such as prediction or classification.

Despite the variety of representations of a dynamical system depending on applications, we provide
here a general, model-free approach to be used as an unbiased first-line tool for studying the dynamical
effects of experimental interventions before applying specific model-based methods. The unique ability
of our approach to learning global properties of dynamics from local vector fields points towards
building predictive models with modern transformer architectures using local vector fields as tokens.
Finally, constraining dynamical data over a manifold regularises the space of possible dynamics, which
can in turn be used as a test of geometric consistency for scientific hypotheses and model validation
across disciplines.
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Code availability

The code to carry out the simulations and analysis can be found at github.com/agosztolai/MARBLE.

Data availability

The data generated during the simulations is available with DOI: 10.7910/DVN/KTE4PC.
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S1 The MARBLE method

The MARBLE method aims to find a similarity-preserving map from the local vector fields to a
shared latent space. Since the method processes vector fields point-by-point, it suffices to describe it
applied to a single vector field and the generalisation to the joint embedding of multiple vector fields
is straightforward.

Given a smooth, compact m-dimensional manifoldM described by a point cloud X = (x1, . . . ,xn),
MARBLE aims at representing a set of vector fields F = {f1, . . . , fn} on this manifold as an empirical
distribution P (Z) =

∑n
i=0 δ(zi) on a latent space with coordinates Z = (z1, . . . , zn). Such vector fields

can be obtained from time-series data with for example first-order finite difference fi := x(ti+1)−x(ti).
For a chosen set of points on this manifold, we obtain their latent space coordinates Z from the vector
field restricted to a neighbourhood around each point with an unsupervised learning architecture.

The resulting statistical distribution Pc on the latent space then represents reduced information
about the underlying dynamical system. If subsets of points belonging to different dynamical systems
are considered together, the embedding can be used to disentangle differences in their dynamics, while
being invariant, or not to the geometry encoded in the manifold.

S1.1 Approximating the manifold by a proximity graph

To define the local neighbourhood onM, we describe it with a proximity graph. To obtain a faithful
representation of the tangent space ofM via the finite difference vector fields F, we need to ensure that
the graph is as homogeneous as possible. In particular, if points come from dynamical trajectories,
taking consecutive temporal points should be prohibited. For this reason, we generate the proximity
graph from a subsample of points obtained by farthest point sampling55, with a criterion β ∈ [0, 1]
that controls the spacing of the points relative to the diameter of the manifold maxij(||xi − xj ||2) <
β diam(M).

Then, several classical proximity graph algorithms can be used, such as the k-NN algorithm and
the ε-ball algorithm, but we found that the continuous k-nearest neighbour (ck-NN) algorithm56

creates more representative neighbourhoods. Indeed, contrary to the classical k-NN graph algorithm,
it can be interpreted as a local kernel density estimate and accounts for sampling density variations
over M. The ck-NN algorithm extends the classical k-NN algorithm by accounting for density
variations by connecting i and j whenever ||xi − xj ||22 < δ||xi − xu||2 ||xj − xv||2, where δ > 0 is a
scaling parameter, u, v are the k-th nearest neighbours of i, j, respectively, and || · ||2 is the Euclidean
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norm. This proximity graph endows M with a geodesic structure, i.e, for any i, j ∈ M there is a
shortest path with distance d(i, j). We can then define the local vector fields as the p-hop geodesic
neighbourhood N (i, p) around each point i.

S1.2 Parametrising the tangent spaces

Unlike Rm, the tangent spaces ofM do not come with a preferred coordinate system. However, being
isomorphic to Rm, they can be parametrised by a family of local orthogonal coordinate frames, also
known as gauges, whose components are Rd-valued vectors. Specifically, we assume that the tangent
space at a node i, TiM, is spanned by the edge vectors eij ∈ Rd pointing from i to K nodes j in

its neighbourhood on the proximity graph. The m largest singular values t
(·)
i ∈ Rd of the matrix

formed by column-stacking eij yield the orthonormal coordinate frame Ti ∈ Rd×m = (t
(1)
1 , . . . t

(m)
i )

spanning TiM. In practice, we pick K > deg(i) closest nodes to i on the proximity graph where
K is a hyperparameter. Larger K increases the overlaps between the nearby tangent spaces and
we find that K = 2|N (i, 1)| is often a good compromise between locality and robustness to noise of
the tangent space approximation. Note that because Ti defines an orthogonal basis, TTi fi acts as a
projection of the signal to the tangent space in the `2 sense. We perform these computations using
a modified version of the Parallel Transport Unfolding package57. For illustration, we display the
computed frames on a spherical manifold (Fig. S1).

S1.3 Connections between tangent spaces

Having the local frames, we next define the parallel transport map Pj→i aligning the local frame
at j to that at i, which is necessary to define convolution operations in a common space. While
parallel transport is generally path dependent, we assume that adjacent nodes i, j are close enough to
consider the unique smallest rotation, known as the Lévy-Civita connection. Thus, for adjacent edges,
Pj→i can be computed as the matrix Oji corresponding to Pj→i, as the orthogonal transformation
(rotation and reflection)

Oji = arg min
O∈O(m)

||Ti − TjO||F , (S1)

where || · ||F is the Frobenius norm. The unique solution to this problem is found by the Kabsch
algorithm58.

Note that Ti is defined only up to an orthogonal transformation (rotation and reflection) within
the tangent space ofM because the m-dimensional TiM only constrains m coordinates of the frame.
However, when the signal is projected to the local frame, the tangent frame alignment by Pj→i = Oij

removes this ambiguity. Indeed, suppose that each node carries the same signal f , then, parallel
transport alignment of the projected signal from j to i yields

TTi f = OijTTj f = (TjOji)
T f = TTi f , (S2)

where the first equality used the definition of the parallel transport, the second equality the transpose
operation, while the third equality used Eq. S1. Note that the same result does not hold when parallel
transporting signals in the ambient space (without projection), because in that case, the ambiguity
in the frame orientation introduces ambiguity in the signal

S1.4 Vector diffusion

Before constructing the vector field features, we use a vector diffusion layer to smooth out noisy vector
field samples. Vector diffusion is a generalisation of the scalar (heat) diffusion, and can be expressed
as a kernel associated with the vector diffusion equation59 to produce a smoothed vector field

vec(F(τ)) = e−τLvec(F) , (S3)

where vec(F) ∈ Rnd×1 the row-wise concatenation of vector-valued signals, τ is a learnable parameter
that controls the scale of the local vector fields and L is the random-walk normalised connection
Laplacian defined as a block matrix whose nonzero blocks are given by

L(i, j) =

{
Im×m for i = j

−deg(i)−1Oij for j ∈ N (i, 1) .
(S4)
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See60 for further details. Intuitively, rather than diffusion of the vectors component-wise, vector
diffusion smoothens vectors based on differences between a vector at a given node and other vectors
parallel transported to this node.

S1.5 Gradient filters

Before we can learn the vector field features, we define gradient filters, whose role is to approximate
the variation of the vector field around a point in the local tangent frame. To numerically compute
the gradient at a point i ∈M we construct an anisotropic filter by extending the directional derivative
filter of39 using local coordinates. To do so, consider the local frame Ti and construct the directional

derivative filter in the direction of the q-th unit vector t
(q)
i . We follow39 and decompose t

(q)
i ∈ Rd×1

by projecting it to the set of edge vectors eij to obtain a vector t̂
(q)
i ∈ Rn×1 at node i pointing in the

basis direction q with components j

t̂
(q)
i (j) =

{
〈t(q)i , eij〉/deg(i) if j ∈ N (i, 1)

0 otherwise .
(S5)

Collating for all nodes, we can write a matrix for the q-th coordinate of the local frame projected onto

the edge vectors T̂q = (t̂
(q)
1 , . . . , t̂

(q)
n ) ∈ Rn×n. Using this decomposition, the directional derivative of

the scalar field si at i in the direction tqi is given by

K(i,q)si := 〈∇si, t̂(q)i 〉 =
∑

j∈N (i,1)

(sj − si) t̂(q)i (j) , (S6)

or, in matrix form, by
K(q)s = (T̂q − diag(T̂q 1n))s , (S7)

where 1n is the n × 1 vector of ones. As a result, the gradient of a scalar field can be obtained by
column-wise concatenating (as new channels) the derivatives against all directions in the basis set

∇s = (D(1)s, . . . ,D(d)s) . (S8)

Figs. S2a,b show the output of the first and second-order filters applied to a linear and a quadratic
scalar field.

To compute the component-wise directional derivative for a vector field F ∈ Rn×m, one must first
parallel transport the local frames at the neighbours j to i before applying the anisotropic filters in
Eq. S7. Let O denote the nm× nm block matrix of m×m blocks given by the connection matrices
Oij . Then, we may express Eq. S12 in matrix form as

D(q)F = ((K(q) ⊗ 1Tm1m)�O)F . (S9)

Here the kronecker product in the inner brackets expands K(q) to the nm× nm block matrix where

the (i, j) m×m block is filled with entries K
(q)
ij .

S1.6 Approximating local vector fields

We now define convolution kernels on M that act on the vector field to give a representation of the
vector field around a given point. We first project the vector signal to the manifold f ′i = TTi fi. This
reduces the dimension of fi from d to m without losing information since fi was already in the tangent
space. We drop the bar in the sequel to understand that all vectors are expressed in local coordinates.
In this local frame, the best polynomial approximation of the vector field around i is given by the
Taylor-series expansion of each component fi,l of fi

fj,l ≈ fi,l +∇fi,l(xj − xi) +
1

2
(xj − xi)

T∇2fi,l(xj − xi) + . . . . (S10)

Motivated by the Taylor approximation, we construct gradient operators of increasing order and

implement them as a set of m anisotropic filters {D(q)} acting along {t(q)i },

∇fi,l ≈
(
D(1)(fi,l), . . . ,D(m)(fi,l)

)T
. (S11)
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Here, D(q)(fi,l) is the l-th component of

D(q)(fi) =

n∑
j=1

K(i,q)
j Pj→i(fj) , (S12)

where Pj→i = Oij is the parallel transport operator that takes the vector fj from the adjacent frame
j to a common frame at i. K(i,q) ∈ Rn×n is a directional derivative filter39 (Eq. S7) expressed in local

coordinates at i and acting along t
(q)
i . As a result of the parallel transport, the value of Eq. S12 is

independent of the local curvature of the manifold. The p-th order gradients can be defined by the
iterated application of the filters, which aggregates information in the p-hop neighbourhood of points.
Although we find that increasing the order of the differential operators increases the expressiveness
of the network (Fig. S3), second-order filters (p = 2) were sufficient for the application considered in
this paper.

The expansion in Eq. S10 suggests augmenting the vectors fi by the derivatives (Eq. S11), to
obtain a matrix

fi 7→ fDi = (fi,∇fi,1, . . . ,∇fi,m,∇(∇fi,1)1, . . . ,∇(∇fi,m)m) , (S13)

of dimensions m× c whose columns are gradients of signal components up to order p to give a total
of c = (1−mp+1)/(m(1−m)) vectorial channels.

S1.7 Inner product for geometry invariance

In the optional geometry-agnostic mode, deformations on the manifold have the effect of introducing
rotations into the local vector fields. Thus, we can achieve invariance to these deformations by making
the learnt features rotation invariant. We do so by first transforming the m× c matrix fDi to a 1× c
vector as

fDi 7→ f ipi =
(
E(1)(fDi ), . . . , E(c)(fDi )

)
. (S14)

Then, by taking for each channel the inner product against all other channels, weighted by a dense
learnable matrix A(r) ∈ Rm×m and summing, we obtain

E(r)(fDi ) = E(r)(fDi ; A(r)) :=

c∑
s=1

〈
fDi (·, r),A(r)fDi (·, s)

〉
, (S15)

for r = 1, . . . , c (Fig. 1f). Taking inner products is valid because the columns of fDi all live in the
tangent space at i. Intuitively, Eq. S15 achieves coordinate independence by learning rotation and
scaling relationships between pairs of channels.

S1.8 Embedding with a multilayer perceptron (MLP)

To embed each local feature, f ipi or fDi , depending on if inner product features are used, (Eq. S14) we
use a multilayer perception (MLP) (Fig. 1g)

zi = MLP(f ipi ; ω) , (S16)

where ω are trainable weights. The MLP is composed of L linear (fully-connected) layers interspersed
by ReLU non-linearities. We used L = 2 with a sufficiently high output dimension to encode the
variables of interest. The parameters were initialised using the Kaiming method61.

S1.9 Loss function

Unsupervised training of the network is possible due to the continuity in the vector field over M,
which causes nearby local vector fields to be more similar than distant ones. We implement this via
negative sampling41, which uses random walks sampled at each node to embed neighbouring points
on the manifold close together while pushing points sampled uniformly at random far away. We use
the following unsupervised loss function41

J (Z) = − log(σ(zTi zj))−QEk∼U(n) log(σ(−zTi zk)) , (S17)
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where σ(x) = (1 + e−x)−1 is the sigmoid function and U(n) is the uniform distribution over the n
nodes. To compute this function, we sample one-step random walks from every node i to obtain
’positive’ node samples for which we expect similar local vector fields to that of node i. The first
term in Eq. S17 seeks to embed these nodes close together. At the same time, we also sample nodes
uniformly at random to obtain ’negative’ node samples with likely different local vector fields from
that of node i. The second term in Eq. S17 seeks to embed these nodes far away. We also choose
Q = 1.

We optimise the loss Eq. S17 by stochastic gradient descent. For training, the nodes from all man-
ifolds were randomly split into training (80%), validation (10%) and test (10%) sets. The optimiser
was run until convergence of the validation set and the final results were tested on the test set with
the optimised parameters.

S1.10 Pseudo code of MARBLE algorithm

We implemented MARBLE architecture with Pytorch Geometric62. The general algorithm is as
follows.

Algorithm 1 MARBLE

Input: d-dimensional vector field samples F = (f1, . . . , fn)
connection Laplacian L
derivative filters D(q)

i for i ∈ {1, . . . , n} and q ∈ {1, . . . ,m}
derivative order p

Output: Embedding zi for all i ∈ {1, . . . , n}
F← eτLF . Apply diffusion layer (optional)

h(0) ← fi

for 1 ≤ l ≤ p do . Loop over filter orders

∇h(l)q =
(
D(1)(h

(l)
q ), . . . ,D(m)(h

(l)
q )
)T

. Compute filters

h(l) ← concat
(
h(l−1),∇h(l)1 , . . . ,∇h(l)m

)
. Concatenate derivatives

end for

h(l) ←
(
E1(h(l); A1), . . . , Ec(h(l); Ac)

)
. Inner product features (optional)

zi ← MLP(h(l); ω) . Pass through MLP

S2 Distributional distance between latent representations

To test whether shifts in the statistical representation of the dynamical system can predict global
phenomena in the dynamics we define a similarity metric between pairs of vector fields F1,F2 with
respect to their corresponding embeddings Z1 = (z1,1, . . . , zn1,1) and Z2 = (z1,1, . . . , zn2,1). We use
the optimal transport distance between the empirical distributions P1 =

∑n1

i δ(zi,1), P2 =
∑n2

i δ(zi,2)

d(P1, P2) = min
γ

∑
uv

γuv||zu,1 − zv,2||22 , (S18)

where γ is the transport plan, a joint probability distribution subject to marginality constraints that∑
u γuv = P2,

∑
v γuv = P1 and || · ||2 is the Euclidean distance.

S3 Examples

We give here more details on the examples of the main text.
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S3.1 Van der Pol oscillator on parabola example

We used the following equations to simulate the Van der Pol system:

ẋ = y

ẏ = µ(1− x2)y − x ,
(S19)

parametrised by µ. If µ = 0, the system reduces to the harmonic oscillator, if µ < 0, the system is
unstable and if µ > 0, the system is stable and converges to a limit cycle. In addition, we map this
two-dimensional system to a parabola as with the map

x, y 7→ x, y, z = parab(x, y)

ẋ, ẏ 7→ ẋ, ẏ, ż = parab(x+ ẋ, y + ẏ)− parab(x, y) ,

where parab(x, y) = −(αx)2−(αy)2. For Fig. 1, we trained MARBLE in the geometry-agnostic mode,
see Table 1 for parameters. In Fig. S6, we illustrate other examples of the application of MARBLE
on this system, with different regimes of µ, and randomness in the parabola curvature across µ,
demonstrating the difference between geometry-aware and geometry-agnostic modes of MARBLE.

S3.2 Low-rank RNNs

We consider low-rank RNNs composed of N = 500 rate units in which the activation of the i-th unit
is given by

τ
dxi
dt

= −xi +

N∑
j=1

Jijφ(xj) + ũi(t) + ηi(t), xi(0) = 0 , (S20)

where τ = 100 ms is a time constant, φ(xi) = tanh(xi) is the firing rate, Jij is the rank-R connectivity
matrix, ui(t) is an input stimulus and ηi(t) is a white noise process with zero mean and std 3× 10−2.
The connectivity matrix can be expressed as

J =
1

N

R∑
r=1

mrn
T
r , (S21)

for vector pairs (mr,nr). For the delayed-match-to-sample task, the input is of the form

ũi(t) = win
1iu1(t) + win

2iu2(t) , (S22)

where w1i, w2i are coefficients controlling the weight of inputs u1, u2 into node i. Finally, the network
firing rates are read out to the output as

o(t) =

N∑
i=0

wout
i φ(xi) . (S23)

To train the networks we followed the procedure in50. The experiments consisted of 5 epochs; a
fixation period of length between 100 − 500 ms chosen uniformly at random, a 500 ms stimulation
period, a delay period of length between 500− 3000 ms, a 500 ms stimulation period and a 1000 ms
decision period. During training, the networks were subjected to the two inputs, whose value varied
discontinuously between zero and a non-zero gain during stimulation periods. The networks were
trained against a loss function

L = |o(T )− ô(T )| , (S24)

where T is the length of the trial and ô(T ) = 1 when both stimuli were present and −1 otherwise.
Coefficient vectors were initially drawn from zero-mean and unit std Gaussian distributions and then
optimised. For training, we used the ADAM optimiser63 with moment decay rates 0.9 − 0.999 and
learning rates 10−3 − 10−2. We trained MARBLE in geometry-agnostic mode. See Table 1 for the
parameters.
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S3.3 Macaque hand reaching data

We used publically available24 electrophysiology data during a centre-out instructed-delay reaching
task. The neural activity was recorded using linear multielectrode arrays (V-Probe, 24-channel linear
probes) from rhesus macaque motor (M1) and dorsal premotor (PMd) cortices. See24 for further
details on experimental procedures. Each trial began with the monkey’s hand at the centre position,
after which one (or more) of the radial targets at 10cm from the centre position were marked visually
(target onset). After a variable delay period, one of the radial targets was highlighted indicating the
go-cue for reaching. We analysed the 700ms period after the go-cue consisting of a delay followed
by the reach. A total of 44 consecutive experimental sessions with a variable number of trials were
considered.

For each of the 24 channels of each trial, we extracted the spike trains using the neo package
in Python (http://neuralensemble.org/neo/) and converted them into instantaneous rates using
Gaussian kernel convolution with a standard deviation of 100ms. We then binned the rates at
20ms intervals using the elephant Python package64 to match the sampling frequency in the decoded
kinematics in24. Finally, we fitted a PCA across all trials in a single session to reduce the dimension
of the 24-channel rates to five principal components. We trained MARBLE in geometry-aware mode
(without inner product features) separately on each individual session, treating each of the seven
movement conditions as individual manifolds. See Table 1 for parameters.

To decode the hand kinematics from the neural trajectories, we followed the same procedure as
in24. Specifically, we used Optimal Linear Estimation (OLE) to decode both the x and y reaching
coordinates and velocities from the neural embeddings. For each individual session, using 5-fold cross-
validation, we fitted an OLE to map from the MARBLE embeddings to the kinematics. To assess the
accuracy of decoded movements, we computed the goodness of fit (R2) between the decoded and real
velocities for both x and y, before taking the mean across them. We also trained a support vector
machine classifier (regularisation of 1.0 with a radial basis function) on the real kinematic movements
against the known condition labels. We then evaluated the classifier on the decoded kinematics and
report the accuracy for each session.

Table 1: Parameters used for MARBLE embedding in the different experiments
Experiment

Parameters van der Pol Low-rank RNN Macaque reaching
Inner product features True False/True False
k 20 15 30
Diffusion False False True
Feature order, p 2 2 2
MLP hidden channels 32 32 100
MLP output channels 5 3 3 or 20
Number of parameters 731 2886/1339 15803
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S4 Supplementary figures

Figure S1: Illustration of local coordinate frames. a,b Local coordinate frames were fitted to
eight neighbours at each point on the rectangular grid over a sphere (manifold of dimension two)
embedded into R3. Unit vectors representing within-manifold basis. c Unit vector represents normal
to the manifold. Note that the orientation of the normal vectors is not necessarily consistent.

Figure S2: Output of gradient filters. a Scalar valued linear function. b Scalar valued parabolic
function. The first column shows the output of the scalar signal convolved with the gradient filter
with respect to a principal spatial coordinate, representing the directional (partial) derivatives along
this direction. The second and third columns show second-order mixed partial derivatives obtained
by a second application of the gradient filter to the derivative signal. In each case, we used a uniform
rectangular grid with eight neighbours.

20



Figure S3: Effect of filter order. a Scalar functions sampled (n = 512) uniformly at random
and fitted with a continuous k-nearest neighbour graph (k = 15). From left to right: constant,
linear, parabola, saddle. b Joint embedding of local scalar fields from all functions based on first-
order (1-hop) directional derivative filters. Dots represent nodes drawn from a with nodes close
together signifying similar signal distributions in their neighbourhoods. Black lines show the convex
polygon obtained from k-means clustering (10 clusters). c As in b, but with first (1-hop) and second-
order (2-hop) filters. Including second-order filters increases the clustering of features. d Histogram
representation of the clustered neighbourhood types. The latter is shown at the bottom in circular
insets. e As in d but with first and second-order filters. Second-order features better discriminate
the parabola and saddle but show little difference for constant and linear fields.
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Figure S4: Effect of rotational invariant filters. a Vector fields sampled (n = 512) uniformly at
random in the interval [−1, 1]2 and fitted with a continuous k-nearest neighbour graph. b Joint em-
bedding of local vector fields based on first-order (1-hop) directional derivative filters. Dots represent
nodes drawn from a with nodes close together signifying similar signal distributions in their neigh-
bourhoods. Features from the linear vector fields cluster together (clusters 2 and 9) while those drawn
from the vortex fields fall on separate halves of a one-dimensional circular manifold corresponding to
the one-parameter (angle) variation between them. c Same as b but with rotation invariant features.
Features from linear fields can no longer be distinguished (cluster 15) because the filter does not learn
the orientation. Features from vortex fields fall on a linear one-dimensional manifold parametrised
by the distance from the centre. d The distribution of orientation-preserving derivative features can
distinguish all fields. e The distribution of rotation-invariant features can discriminate linear fields
from vortex fields but not the orientation.
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Figure S5: Effect of rotational invariant filters on local vector field types. Types are local
vector field types with circular insets representing a local vector field drawn from each of the four
fields in Fig S4. Top left: linear left; top right: linear right; bottom left vortex left; bottom right;
vortex right. White insets indicate that the given type is not present in the vector field. a Without
using rotation invariant filters the network tends to classify local vector fields into separate types. b
With rotation invariant filters, local vector fields cluster more irrespective of the orientation. The
separate types are instead distinguished more based on the expansion, and rotation properties of the
features.

Figure S6: Additional Van der Pol examples We illustrate the MARBLE embedding of the
Van der Pol example with 40 values of µ in the following cases. a Using a larger parameter range
µ ∈ [−1, 1] increases the definition of the clusters. b Using a smaller parameter range µ ∈ [−0.1, 0.1],
corresponding to the red square in a shows lower definition. c In geometry-agnostic mode, varying
the curvature of the parabolic manifold β(x2 +y2) by drawing β uniformly at random from [−0.2, 0.2]
−0.2 to 0.2) does not alter the MARBLE embedding. d In geometry-aware mode, the same variation
as in c destroys the cluster structure.
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Figure S7: Neural activities in a rank-2 RNN during the delayed-match-to-sample task.
a Schematic of a low-rank RNN, taking as input two stimuli and producing a decision variable
as the output. Arrow endings represent inhibitory and excitatory connections. b Two example
input patterns for one of the stimuli, and corresponding output patterns. Red and grey-shaded
bands show stimulated and unstimulated periods. c Mean-field dynamics (heatmap and stream plot)
superimposed with a sampled trajectory (orange) during one trial.
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Figure S8: Comparison of MARBLE and LFADS for learning neural dynamics for in-
dividual sessions of macaque reaching task. a Feature embeddings obtained from MARBLE
for various example sessions. The 3D-embedded points better reflect the arrangement of reaches in
physical space when compared to LFADS. b The matrix of distribution distances between pairwise
conditions for separate sessions shows a stronger periodic structure compared to LFADS. c MDS
embedding of the distance matrix consistently recovers the spatial arrangement of reaches across ses-
sions, when compare to LFADS. d Hand trajectories linearly decoded from MARBLE embeddings
showed much stronger spatial correspondence to ground-truth kinematics than LFADS.
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