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Summary

Cortical dynamics underlie many cognitive processes and emerge from complex multi-
scale interactions, which can be studied in large-scale, biophysically detailed models. We
present a model comprising eight somatosensory cortex subregions, 4.2 million morpho-
logical and electrically-detailed neurons, and 13.2 billion local and long-range synapses.
In silico tools enabled reproduction and extension of complex laboratory experiments
under a single parameterization, providing strong validation. We reproduced millisecond-
precise stimulus-responses, stimulus-encoding under targeted optogenetic activation, and
selective propagation of stimulus-evoked activity to downstream areas. The model’s di-
rect correspondence with biology generated predictions about how multiscale organisation
shapes activity. We predict that structural and functional recurrency increases towards
deeper layers and that stronger innervation by long-range connectivity increases local
correlated activity. The model also predicts the role of inhibitory interneuron types in
stimulus encoding, and of different layers in driving layer 2/3 stimulus responses. Simu-
lation tools and a large subvolume of the model are made available.

2

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.05.17.541168doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.17.541168
http://creativecommons.org/licenses/by-nc/4.0/


1 Introduction

Cortical dynamics underlie many cognitive processes and emerge from complex multiscale
interactions, which are challenging to study in vivo. Such dynamics can be explored in
large-scale, data-driven, biophysically detailed models (Markram et al., 2015; Billeh et al.,
2020), which integrate different levels of organization. The strict biological and spatial
context enables the integration of knowledge and theories, the testing and generation of
precise hypotheses, and the opportunity to recreate and extend diverse laboratory ex-
periments within a single model. Investigating the multiscale interactions that shape
perception, requires a model of multiple cortical subregions with interregion connectiv-
ity. This approach differs from more abstract models in that it emphasizes anatomical
completeness of a chosen brain volume rather than implementing a specific hypothesis.
Using a “bottom-up” modeling approach, many detailed constituent models are combined
to produce a larger multiscale model. To the best possible approximation, such models
should explicitly include different cell and synapse types with the same quantities, geo-
metric configuration and connectivity patterns as the biological tissue it represents.

Here and in our companion paper (Reimann et al., 2022a), we present how we built
and validated a model of the entire non-barrel primary somatosensory cortex (nbS1) com-
prising eight subregions. Whilst our previous data-driven, biophysically detailed model
(Markram et al., 2015) provided insights at the scale of a single cortical column (Reimann
et al., 2013, 2017, 2022b; Nolte et al., 2019, 2020; Newton et al., 2021), the new model
is ∼140 times larger and to our knowledge offers the first simulations of in vivo-like
spontaneous and stimulus-evoked activity in a biophysically detailed cortical model with
interregion connectivity. In the companion paper, we introduce the anatomical model
(Fig. 1, Step 1), describing how neuron morphologies were placed within an atlas-based
geometry and connected through local and long-range synapses. Here, we describe our im-
proved techniques to model and validate the electrical properties of neurons and synapses
(Figure 1, Steps 2 & 3 (Reva et al., 2022; Barros-Zulaica et al., 2019)), and to compen-
sate for input from missing brain areas (Figure 1, Steps 4). These improvements enabled
enhanced validation of emerging in vivo-like activity (Figure 1, Steps 5), including the
reproduction and extension of five published studies in rodent sensory cortex under a sin-
gle in vivo-like regime (Figure 1, Steps 6). The model’s direct biological correspondence
and ability to go beyond laboratory experiments generated diverse predictions about how
multiscale orgnanization shapes emergent activity.

Ensuring that network activity emerges from the same interactions driving in vivo
dynamics, is best validated through comparison with an increasing battery of labora-
tory experiments. Spontaneous activity reproduced layer-wise in vivo firing rates (or a
specified proportion of in vivo firing rates to account for in vivo recording bias (Wohrer
et al., 2013)), varied along a spectrum of asynchronous to synchronous activity, exhibited
spatially structured fluctuations and produced long-tailed firing rate distributions with
sub 1 Hz peaks as in vivo (Wohrer et al., 2013; Buzsáki and Mizuseki, 2014). Under the
same parameterization, the model also reproduced precise millisecond dynamics of layer-
wise populations in response to simple stimuli and demonstrated selective propagation of
stimulus-evoked activity to downstream areas. Again under the same parameterization,
we reproduced and extended more complex experiments through accurate modeling of
targeted optogenetic stimulation and lesions. Particularly, through methods currently
not possible in vivo, the model generated predictions about the role of different layers in
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driving layer 2/3 stimulus responses and how inhibitory interneuron types encode con-
trast, synchronous and rate-coded information.

Using the full structural connectome and metrics outlined in the companion paper,
the model made further predictions about the relation between cortical structure and
function. For example, the model predicts that the recurrency of connectivity and activ-
ity jointly increase from superficial to deeper layers, and that subregions more strongly
innervated by long-range connectivity have higher correlated activity locally. Such anal-
ysis provided general insights and tools for calibrating and understanding large cortical
models. Importantly, we highlight where emergent activity shows discrepancies with in
vivo activity, to guide future data-driven model refinement. To provide a framework
for further simulation-based studies and integration of experimental data, a sizable part
of the model and simulation tools are made available to the community (Figure 1, Step 7).

These results were made possible by a novel methodology presented here, which com-
pensates for missing synapses from non-modeled brain regions. Without compensating
for the resulting lack of excitatory drive, an in vivo-like and computationally relevant
activity state can not be attained (see also Billeh et al., 2020). This represents a funda-
mental challenge for biophysically detailed models. Compensation which changes existing
parameters would violate the important stipulation of anatomical completeness, whilst
modeling each missing synapse (∼2 times the model’s 13.2B synapses) would be too com-
putationally expensive (Cremonesi et al., 2020). Here we model the effect of these missing
synapses explicitly as noisy somatic conductance injections (Destexhe et al., 2001) and
present an algorithm which efficiently calibrates the parameters of this input compensa-
tion, despite the non-linearity and computational cost of simulations (Figure 1, Step 4).
Unlike in our previous model (Markram et al., 2015), these parameters were specific for
different neuron populations and were found to be in accordance with laminar profiles of
long range innervation (Felleman and Van Essen, 1991; Harris et al., 2019; Gao et al.,
2022). Importantly, the algorithm rapidly produces a set of activity regimes for testing,
closing the loop for iterative refinement of cortical models.

2 Results

The companion paper describes the full anatomical nbS1 model containing 4.2M mor-
phological neuron models, connected through 9.1B local synapses and 4.1B long-range
synapses (Reimann et al., 2022a). Each neuron is modeled as a multi-compartmental
model belonging to one of 60 morphological types (m-types; Fig. 2A1), and is either an
instance or statistical variant of an exemplar in a pool of 1,017 morphological recon-
structions. Neurons were placed (orientated towards the surface) within an atlas-based
geometry (Fig. 2A2) based on estimated layer-wise density profiles of different morpho-
logical types. Local connectivity is based on axo-dendritic overlap with neighbouring
neurons, whilst long-range connectivity combines data on interregion connectivity and
laminar innervation profiles. Thalamocortical afferents were also modeled based on lami-
nar innervation to the barrel cortex. To simulate emergent activity it is necessary to model
and validate the electrical properties of these neurons and synapses (Figure 1 Steps 2 &
3). These modeling steps are based on published methods and data sources (Table 1),
and are summarized first. The method for compensating for missing synapses and the
remaining results are then described (Figure 1 Steps 4-6).
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Figure 1: Overview of the physiology and simulation workflow. 1. Anatomical model:
Summary of the anatomical nbS1 model described in the companion paper. 2. Neuron physi-
ology: Neurons were modeled as multi-compartment models with ion channel densities optimised
using previously established methods and data from somatic and dendritic recordings of membrane
potentials in vitro. 3. Synaptic physiology: Models of synapses were built using previously
established methods and data from paired recordings in vitro. 4. Compensation for missing
synapses: Excitatory synapses originating from outside nbS1 were compensated with noisy so-
matic conductance injection, parameterized by a novel algorithm. 5. In vivo-like activity: We
calibrated an in silico activity regime compatible with in vivo spontaneous and stimulus-evoked
activity. 6. In silico experimentation: Five laboratory experiments were recreated. Two
were used for calibration and three of them were extended beyond their original scope. 7. Open
Source: Simulation software and a seven column subvolume of the model are available on Zenodo
(see data availability statement). Data generalisations: Three data generalisation strategies
were employed to obtain the required data. Left: Mouse to rat, middle: Adult to juvenile (P14)
rat, right: Hindlimb (S1HL) and barrel field (S1BF) subregions to the whole nbS1. Throughout
the figure, the corresponding purple icons show where these strategies were used.
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Table 1: Previously published modeling techniques and data to parameterize them that were
combined in this work to model the physiology of nbS1 and conduct in silico experimentation.

Data
Stage Topic Reference

Neuron physiology E-type composition Markram et al. (2004, 2015)
Electrophysiological recordings Markram et al. (2015)

Larkum et al. (2001)
Nevian et al. (2007)

Ion-channel models Reva et al. (2022)
Synaptic physiology Synaptic pathway physiology Markram et al. (2015)

Barros-Zulaica et al. (2019)
Gupta et al. (2000)

13 additional sources in
Tables S4, S5, S6

In vivo-like activity In vivo spont. firing rates Reyes-Puerta et al. (2015)
De Kock et al. (2007)

In vivo evoked responses Reyes-Puerta et al. (2015)
Yu et al. (2019)

In vivo thalamic spiking Diamond et al. (1992)
Yu et al. (2019)

In silico experimentation L4 - L2/3 pathway Varani et al. (2022)
Visual contrast Shapiro et al. (2022)
Coding in inhibitory subpopulations Prince et al. (2021)

Modeling methods
Stage Topic Reference

Neuron physiology E-model building Van Geit et al. (2016)
Reva et al. (2022)

Synaptic physiology Synapse model building Ecker et al. (2020)
Model of multi-vesicular release Barros-Zulaica et al. (2019)

In vivo-like activity Missing input compensation *New, original methods based on
Destexhe et al. (2001)

In silico experimentation *New, original methods

2.1 Modeling and validation of neuron physiology

Electrical properties of single neurons were modeled by optimising ion channel densities in
specific compartment-types (soma, axon initial segment (AIS), basal dendrite, and apical
dendrite) (Figure 2B) using an evolutionary algorithm (IBEA; Van Geit et al., 2016) so
that each neuron recreates electrical features of its corresponding electrical type (e-type)
under multiple standardized protocols. The methodology and resulting electrical models
are described in Reva et al. (2022) (see also STAR*Methods). Electrical features included
firing properties (e.g. spike frequency, interspike interval), action potential waveforms (e.g.
fall and rise time, width) and passive properties (e.g. input resistance). The optimisation
was performed for a subset of neuron models. The resulting ion channel densities were
generalised to other neuron models of the same e-type, and the resulting electrical activity
of each neuron was validated against the corresponding electrical features, including the
characteristic firing properties of the 11 e-types (Figure 2C).

For each of the 60 morphological types (m-types), the corresponding fractions of e-
types were determined from experimental data as in Markram et al. (2015), resulting in
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Figure 2: Modeling and validation of neuron physiology. A1: Example excitatory neuron
morphologies. See companion paper for exemplar morphologies of all morphological types. A2:
Example morphologies placed within the atlas-based volume. Axons shown in grey. B: Optimized
conductance densities for two exemplary e-types. B1: cADpyr e-type on L5 TPC:A m-type, B2:
bSTUT and cSTUT e-types on L5 NBC m-type. (The L5 NBC m-type is combined with more
e-types than the two shown, see panel D.) Morphologies were visualized with NeuroMorphoVis
(Abdellah et al., 2018). Neurite diameters are enlarged (x3) for visibility. Soma and dendrites in
black, axon in red. C: e-types used in the model. As used in Markram et al. (2015) and similar
to the Petilla terminology (Ascoli et al., 2008)).
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D: me-type composition. Heatmap shows the proportion of e-types for each m-type. Each me-type
is assigned to one of the three I subpopulations. Assignments depending not only on m-type are
highlighted by a green box. Particularly, for BTC and DBC m-types, the cACint e-type belongs to
the Sst+ subpopulation. E: Validation of dendritic physiology of all L5 TTPCs. Panel reproduced
from Reva et al. (2022). E1: Validation of back-propagating action potential (bAP) amplitude
(i.e., the dependence of bAP amplitude on distance from the soma) for basal (green) and apical
(blue) dendrites. Reference data (in red) comes from Stuart and Sakmann (1994); Larkum et al.
(2001) (apical) and Nevian et al. (2007) (basal). Lines show exponential fits for the in silico (green
and blue) and in vitro (red) data. Color bar indicates dendritic diameter. E2: Validation of EPSP
attenuation. Reference data (in red) comes from Berger et al. (2001) (apical) and Nevian et al.
(2007) (basal). Lines and colorbar same as in D2.

208 morpho-electrical types (me-types; Figure 2D). Correspondence with predominant
expression of biological markers PV (parvalbumin), Sst (somatostatin) or 5HT3aR (sero-
tonin receptor 3A) was determined based on me-type, as previously done in Markram
et al. (2015) (Figure 2D). Finally, for layer five thick-tufted pyramidal cell (L5 TTPC)
morphologies, we found that dendritic electrical features, namely the attenuation of back
propagating action potentials and excitatory postsynaptic potentials (EPSPs), reproduced
experimental measurements (Figure 2E, Reva et al., 2022).

2.2 Modeling and validation of synaptic physiology

Synapses are modeled with a stochastic version of the Tsodyks-Markram model (Tsodyks
and Markram, 1997; Markram et al., 1998; Fuhrmann et al., 2002; Loebel et al., 2009),
upgraded to feature multi-vesicular release as described in Barros-Zulaica et al. (2019)
and Ecker et al. (2020). The model assumes a pool of available vesicles that is utilized by a
presynaptic action potential, with a release probability dependent on the extracellular cal-
cium concentration ([Ca2+]o; Ohana and Sakmann, 1998; Rozov et al., 2001; Borst, 2010).
Additionally, single vesicles spontaneously release with a low frequency as an additional
source of variability. The utilization of vesicles leads to a postsynaptic conductance with
bi-exponential kinetics. Short-term plasticity (STP) dynamics in response to sustained
presynaptic activation are either facilitating (E1/I1), depressing (E2/I2), or pseudo-linear
(I3). E synaptic currents consist of both AMPA and NMDA components, whilst I currents
consist of a single GABAA component, except for neurogliaform cells, whose synapses also
feature a slow GABAB component. The NMDA component of E synaptic currents de-
pends on the state of the Mg2+ block (Jahr and Stevens, 1990), with parameters fit to
cortical recordings from Vargas-Caballero and Robinson (2003) by Chindemi et al. (2022).

The workflow for determining a dense parameter set for all synaptic pathways, start-
ing with sparse data from the literature, is described for the use case of hippocampal CA1
in Ecker et al. (2020) and briefly in the STAR*Methods. We combined data sources used
in Markram et al. (2015), with a large number of recent data sources (Qi and Feldmeyer,
2016; Barros-Zulaica et al., 2019; Yang et al., 2020, 2022). The resulting pathway-specific
parameters are listed in Tables S1, S2, S3, the most common short-term dynamics are
depicted in Figure 3A1-2, and the assignment of STP profiles to different pathways are
shown in Figure A3. Postsynaptic potential (PSP) amplitudes and their coefficient of vari-
ation (CV; std/mean) closely matched their biological counterparts (r = 0.99, n = 27;
Figure 3B1; Table S4 and r = 0.63, n = 10; Figure 3C1; Table S5, respectively). The
dense parameter set also allowed prediction of PSP amplitudes and CVs for all cortical
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A1: Exemplary pair of L5 TTPCs (visualized with NeuroMorphoVis (Abdellah et al., 2018)).
Presynaptic cell in gray, postsynaptic cell in red, synapses between them in purple. Neurite
diameters are enlarged (x3) for visibility and axons were cut to fit into the figure. Pre- and
postsynaptic voltage traces on the top right. A2: Exemplary postsynaptic traces with different
STP profiles. A3: Assignment of STP profiles to viable pathways. (Pathways were considered
viable if there were at least 10 connections in all eight subregions of the model.) B1: Validation of
first PSP amplitudes (see also Table S4). Dashed gray line represents perfect correlation between
experimental and model values. Error bars show one standard deviation (also for C1, D and
F). B2: Predicted PSP amplitudes of all viable pathways in the circuit. Postsynaptic cells were
held at -70 mV using an in silico voltage-clamp. Means were calculated over 100 pairs of neurons
with 35 repetitions each. C1 and C2: same as B1 and B2, but showing the CV of the first PSP
amplitude (corresponding Table is S5). D: Validation of mPSC frequencies (see also Table S6).
E: Location of synapses from VPM fibers (purple) and POm fibers (red) on 38 neurons (dark
gray) in a 5µm radius column (visualized with BioExplorer). F: Validation of thalamocortical
EPSP amplitudes as in B1. The four pathways used for the validation are marked with a black
rectangle on H1 to its right. G: EPSP latencies (time from presynaptic spike to the rise to 5% of
peak EPSP amplitude in the postsynaptic trace). H1 Left: mean VPM evoked EPSP amplitudes
on postsynaptic cell types (over 50 pairs). Right: Comparison of normalized in silico amplitudes
(normalized by L4 E as in Sermet et al. (2019)) to in vitro reference data from Sermet et al. (2019).
Heatmap shows model minus reference values, thus positive values indicate a higher normalized
EPSP amplitude in our model than in the reference experimental dataset. H2: same as H1 but
for POm (normalized by L5 E as in Sermet et al. (2019)).

pathways (Figure 3B2, C2). The frequency of miniature postsynaptic currents (mPSCs)
were also in line with in vitro measurements (r = 0.92, n = 5; Figure 3D; Table S6).

The anatomical model includes fibers from the thalamus, based on fibres projecting
to the barrel cortex from the ventral posteriomedial (VPM) and posteriormedial (POm)
thalamic nuclei. These fibres make synaptic contacts within a radius of the fiber proba-
bilistically based on laminar innervation profiles (see Reimann et al. (2022a); Figure 3E).
Compared to the previous model (Markram et al., 2015), POm projections are added
and the physiology of synapses from VPM improved (see STAR*Methods; Figure 3E, F).
Latencies of layer-wise EPSPs increase with distance from the thalamus (Figure 3G). Ad-
ditionally, thalamocortical EPSP amplitudes normalized relative to a single population
were compared to normalized EPSPs in response to optogenetic stimulation targeting
bundles of thalamic fibers (Sermet et al., 2019). This provided contrasting insights, how-
ever. For example, whilst VPM to L6 I EPSPs match the initial validation data (Figure
3F), VPM to L6 PV+ responses appear too strong relative to other populations (Figure
3H1). The results suggest that the model’s POm to L5 E pathway is too weak, when
compared to other POm to E and all POm to PV+ pathways (Figure 3H2, right).

2.3 Defining subvolumes and populations

To enable smaller simulations and targeted analyses, we defined standardized partitions
comprising all neurons (and their connections) contained in a subvolume of the full nbS1
model. We decomposed the model into full-depth hexagonal prisms of a certain diameter
that we call hexagonal subvolumes. These are slightly curved, following the geometry of
the cortex, and have an intact layer structure. When the diameter of the hexagons is
520µm, comparable to the size of the single cortical column model from (Markram et al.,
2015), we call these subvolumes columns. Taken together, a central column and the six
columns surrounding it define a seven column subvolume (Figure 4A). Additionally, when
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we separately analyze the E and I neurons in different layers, we refer to them as neuron
populations of the model or a subvolume. Groups of I neurons that predominantly express
either PV, Sst or 5HT3aR markers, are referred to as inhibitory subpopulations.

2.4 Compensating for missing brain regions

Initial simulations produced no activity, and it was necessary to compensate for missing
excitatory input from neurons external to the model. We estimated that the number of
missing synapses for the full nbS1 and seven hexagon subvolume as ∼ two and seven times
the number of internal synapses, based on Oh et al. (2014). We model the effect of these
missing synaptic inputs explicitly as time-varying and statistically independent somatic
conductance injections, using Ornstein-Uhlenbeck (OU) processes that mimic aggregated
random background synaptic inputs (Destexhe et al., 2001; Figure 4B1; see also Discus-
sion). The mean (OUµ) and standard deviation (OUσ) are defined as a percentage of an
individual cell’s input conductance at its resting membrane potential. The choice of OUµ

and OUσ for different populations and [Ca2+]o (Figure 4B2), determine the model’s emer-
gent dynamics and mean firing rates (Figure 4B3). Initial simulations showed that using
the same value of OUµ and OUσ for all neurons makes some populations highly active
whilst others are silent, or produces network-wide bursts. Finding population-specific OU
parameters which produce stable in vivo-like activity is challenging, however, due to the
non-linearity and computational cost of simulations.

We developed an algorithm that efficiently calibrates population-specific OU param-
eters, for different values of [Ca2+]o, which affects the strength and reliability of synaptic
transmission (see “Synaptic Physiology”). Additionally, it fixes the ratio OUσ/OUµ, de-
noted ROU , across all neurons to specific values representing the amount of noise in the
extrinsic inputs (Figure 4B2). As extracellularly-derived firing rates are known to be
severely overestimated to an unknown degree (Olshausen and Field, 2006; Wohrer et al.,
2013; Buzsáki and Mizuseki, 2014), the algorithm finds parameters which produce real-
istic inter-population firing rate ratios at different global levels of activity (Figure 4B3).
Specifically, it targets mean spontaneous firing rates of neuron populations that are a
constant fraction PFR of in vivo reference values, for 10 PFR values between 0.1 and 1.
We refer to [Ca2+]o, ROU and PFR as meta-parameters. The initial calibration was made
for the seven hexagonal subvolume, and later generalised to the full nbS1 model.

The algorithm was first run for [Ca2+]o = 1.1 mM, ROU = 0.4. Target firing rates for
the 10 PFR values were reached (Figure 4C) after five iterations of 10 simulations of 6.5
seconds (Figure 4D, left upper). Only three iterations were needed when calibration began
using previously calibrated parameters for different ROU and [Ca2+]o (Figure 4D, right
upper). This allowed us to parameterize extrinsic input for a range of combinations of the
three meta-parameters (Figure 4D, lower & 4E, left) within biologically relevant ranges
([Ca2+]o: 1.05 mM - 1.1 mM (Jones and Keep, 1988; Massimini and Amzica, 2001; Amzica
et al., 2002; Gonzalez et al., 2022); PFR: 0.1 - 1.0; ROU : 0.2 - 0.4 (Destexhe et al., 2001)).
We found that the resulting mean conductance injections were highly population-specific
(Figure 4E, centre). The range of OUµ values between populations was on average 5.2
times higher than the range of OUµ values for a single population across meta-parameter
combinations (Figure 4E, right). This was expected, as the missing long-range inner-
vation is known to have specific and heterogeneous laminar profiles (Felleman and Van
Essen, 1991; Harris et al., 2019; Gao et al., 2022). We estimated the number of missing
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Figure 4: Spontaneous activity: calibration, in vivo-like dynamics, linking structure
to function. A: Seven column subvolume. B: OUµ and OUσ of somatic conductance injection
(B1) parameterized by population (B2) determine FRs (B3). Target FRs equal to in vivo firing
rates multiplied by PFR. Inset: Table summarising meta-parameters. C: Target PFR (x-axis)
plotted against the observed PFR (y-axis) for each E (red) and I (blue) population after calibration.
The number of sides of the shape indicates the layer (triangle used for L2/3).
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D: Euclidean distance between target and observed PFR values (over populations) decreases over
iterations for two meta-parameter combinations (upper). Values after final iteration shown for all
meta-parameter combinations (lower; dashed line shows termination condition). E: (left) Firing
rates, (centre) mean conductance injection and (right) OUµ by population for the non-bursting
simulations (1 line per simulation; E and I values separated). F: Mean missing number of synapses
vs. the mean conductance injection, averaged over all combinations, for each population. G1:
Max normalised histograms for two meta-parameter combinations (5 ms bin size, 1σ Gaussian
smoothing). G2: Effect of meta-parameters on correlation between E and I histograms (5 ms
bin size, 1σ Gaussian smoothing; central column). G3: Fourier analysis of spontaneous activity
for the 59 non-bursting simulations. H: Activity in flat space over seven consecutive 100 ms
windows. Activity smoothed (Gaussian kernel, σ = 1pixel). I: Left: Correlation r-value between
the histograms of layer-wise E and I populations for the 59 non-bursting simulations. Right: RC/U

by population for the 59 non-bursting simulations. J: Top: The mean node participation of E and
I populations in each layer for dimension one (left) and six (right) vs. RC/U for the parameter
combination [Ca2+]o = 1.05 mM, ROU = 0.4 and PFR = 0.3. Markers as in C. Line shows linear
fit. Bottom: Correlation r-values between mean node participation and RC/U when neurons with
highest node participation are not included in the calculation of mean node participation (via a
sliding threshold).

synapses per neuron assuming a total density of E synapses of 1.1 synapses/µm, based
on mean spine densities (Larkman, 1991; Datwani et al., 2002; Kawaguchi et al., 2006),
and subtracting the number of synapses present in the model. We confirmed a strong
correlation between this measure and required conductance injection (Figure 4F).

2.5 In vivo-like spontaneous activity

Histograms of spontaneous activity for two meta-parameter combinations are shown in
Figure 4G1 (and for all combinations in Video 1). The two combinations have the same
population firing rates (PFR = 0.9) but the first simulation uses a higher ROU and lower
synaptic transmission reliability ([Ca2+]o). In the second simulation, we found larger
fluctuations, correlated between E and I populations across layers. Overall, increasing
[Ca2+]o and PFR, and decreasing ROU , increases the amplitude of correlated fluctua-
tions (Video 1; Figure 4G2) and increases power at lower frequencies (Figure 4G3). This
supports the notion that decreasing ROU or increasing [Ca2+]o shifts the model along a
spectrum from externally (noise) driven to internally driven correlated activity.

We confirmed that spontaneous firing rate distributions were long-tailed with peaks
below 1 Hz for all of the meta-parameter combinations, in line with in vivo activity (Fig-
ure S3). In the horizontal dimensions, under higher correlation regimes, fluctuations are
spatially coordinated and global within the central hexagon of the simulated subvolume
(Figure 4H; Video 2). In depth, the size of fluctuations and level of correlated activ-
ity increases from supragranular to infragranular layers (Figure 4G1, I, left; Video 1),
suggesting that activity in deeper layers of the model is more internally driven. We char-
acterized the effect of recurrent connectivity by measuring the layer-specific decrease in
firing rates when neurons in the model are disconnected from each other. As expected, we
found that the effect (quantified by the ratio between connected and disconnected firing
rates: RC/U ) increased from supra- to infragranular layers (Figure 4I, right).
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2.6 High-dimensional connectivity motifs predict layer-wise spontaneous activity

By analysing the underlying network structure, we observed a corresponding gradient in
the topology of intra-layer synaptic connectivity from supra- to infragranular layers. We
calculated the mean node participation of neuron populations in various dimensions (see
STAR*Methods; Figure 4J, top). For dimension one, this is simply the degree of a neuron;
for dimensions above one, this generalizes the notion to counting participation in dense,
directed motifs of increasing size (directed simplices; Reimann et al., 2017). We found
that correlations of this measure with the ratio of connected and disconnected firing rates
increased with dimension (Figure 4J, bottom, 100% of data), indicating the importance
of large directed simplices in shaping activity. Curiously, the correlations for higher di-
mensions were driven by a small number of neurons with a very high node participation.
This was indicated by a sharp drop of correlation when neurons above a given value were
excluded (Figure 4J, bottom). This demonstrates high variability between neurons, in
line with biology, both structurally (Towlson et al., 2013; Nigam et al., 2016) and func-
tionally (Wohrer et al., 2013; Buzsáki and Mizuseki, 2014).

2.7 Stimulus-responses reproduce in vivo dynamics with millisecond-scale precision

We compared stimulus-responses with in vivo barrel cortex responses to both single
whisker deflections and active whisker touches under anaesthetized (Reyes-Puerta et al.,
2015) and awake states (Yu et al., 2019) respectively. While the model is of non-barrel
somatosensory regions, this nevertheless provides validations of overall excitability and
the laminar structure of responses reflecting general trends of cortical processing. We ac-
tivated a percentage (FP ) of the VPM fibers projecting to the central column of the seven
column subvolume (Figure 5A1). For each selected thalamic fiber, spike times were drawn
from VPM PSTHs (peristimulus time histogram) recorded in vivo for the two stimulus
types (Figure 5A2; STAR*Methods). For both stimulus types, a single thalamic stimulus
was presented 10 times at 1 s intervals at three intensities (FP : 5%, 10%, 15%).

For the parameter combination [Ca2+]o = 1.05 mM, ROU = 0.4, PFR = 0.3 and
FP = 10%, E and I populations in each layer show clear responses on each trial (Figure
5B; three trials shown), except for L1. Videos 3 and 4 show all simulated combinations
of the four meta-parameters. Out of 72 parameter combinations, 21 passed an initial
assessment of in vivo similarity to the in vivo data based on latencies and decays (see
STAR*Methods, Figure 5C; Figure S4). Responses remained localized to within 600µm
of the stimulus location (Figure 5D, Video 5). In vivo, layer-wise I populations precede
the corresponding E populations and response latencies increase with distance from thala-
mus, except for the fast response of L4 I. The latencies and decays are matched by criteria
passing simulations (Figure 5C, E, left), except for a longer L4 I latency, and shorter and
longer sustained responses of L2/3 E and L4 E. PV+ and Sst+ subpopulations respond
reliably in layers 2-6, but the 5HT3aR+ subpopulation responses are weaker and less
reliable (Figure S4). Under the active whisker touch paradigm, PV+ latencies precede
Sst+ latencies in vivo, and either precede or are simultaneous with Sst+ latencies in silico
(Figure 5E, right).

The passing parameter combinations form a contiguous region in the parameter space
(Figure 5F), characterized by combinations of low PFR, [Ca2+]o and FP with higher ROU ,
which displayed weakly correlated spontaneous activity (compare Figure 5F with Figure
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Figure 5: Layer-wise population responses to single whisker deflection and active
whisker touch stimuli closely match in vivo millisecond dynamics and response am-
plitudes. A1: Stimuli are simulated by activating a proportion (FP ) of fibers projecting to the
central hexagon of the seven column subvolumne. A2: Each fiber is assigned a spike time from a
PSTH of VPM activity recorded in vivo for either a single whisker deflection or active whisker touch
paradigm. B: Spiking activity and histograms (baseline and max normalised) for each layer-wise
E and I population for the parameter combination [Ca2+]o = 1.05 mM, ROU = 0.4, PFR = 0.3
and FP = 10% for a 2.5s section of the 10 whisker deflection test protocol. C: Trial-averaged
PSTHs (baseline and max normalised) in response to the single whisker deflection stimulus for
all of the parameter combinations which passed the initial criteria, and the in vivo references.
D: Spatiotemporal evolution of the trial-averaged stimulus response in flat space for the same
parameter combination in B. E: Left: Latencies of different layer-wise E and I populations for all
criteria passing combinations in response to single whisker deflection stimuli. Right: Latencies for
inhibitory interneuron subpopulations in response to active whisker touch stimuli. Correponding
in vivo references are shown. F: Heatmap showing the effect of the meta-parameters on the dif-
ference of RE for the entire central column from the corresponding in vivo reference. Parameter
combinations which failed the criteria tests are masked. G: Left: Ratio RE between maximum
evoked response and spontaneous baseline activity by population. One line per simulation. Simu-
lation line colour shows the difference of RE for the entire central column from the corresponding
in vivo reference (color values shown in G). Thick black line shows median of in silico values.
White shows in vivo reference. Right: Normalised ratios of each simulation by dividing by RE for
the entire central column.

4G2). This offers a prediction that true in vivo firing rates are within the range of these
lower FRs. The remaining results apply to the criteria passing simulations. We character-
ized the magnitude of responses by RE , the ratio between the peak of the evoked response
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and the pre-stimulus baseline activity level. Assuming that extracellular sampling biases
are similar during spontaneous and evoked activity, RE provides a bias-free metric for
comparing response magnitude with in vivo. Decreasing ROU and PFR, and increasing
[Ca2+]o and FP led to a global increase of RE , and results matched in vivo closely for a
large part of the parameter space (Figure 5F).

Interestingly, the parameter combination closest to in vivo was central in the param-
eter space of criteria passing simulations (Figure 5G, left). Values of RE , normalized by
the mean RE across populations, were remarkably constant (Figure 5G, right), indicating
that variation of the parameters provides a global scaling of response magnitude. More-
over, I populations matched the in vivo reference closely, while the responses of L2/3 E
were slightly greater, and for L4 E and L5 E slightly weaker. The region of the parameter
space where responses match in vivo for the active whisker touch stimulus was the same
as for single whisker deflections (Figure S5). Latencies were also similar to in vivo, with
the main discrepancy being slower responses in L4 (E and I). With respect to the meta-
parameters, we found that the best match for the anesthetized state was characterized by
lower firing rates (PFR) and reduced external noise levels (lower ROU ) compared to the
awake active whisker touch paradigm (white areas in Figures 5F and S5B). These results
fit expectation for anaesthetized and awake states respectively, and provide predictions
of their spontaneous firing rates, noise levels and corresponding in silico regimes.

Response sparsity (i.e. the proportion of neurons spiking at least once following a
stimulus) varied across populations and meta-parameter combinations, but was around
the range of 10-20% reported in vivo in the barrel cortex (Barth and Poulet (2012); Figure
S4D). Interestingly, excitatory population responses were sparser than the corresponding
inhibitory layer-wise populations across layers. The observed heterogeneous layer-wise
population sparsities offer a prediction for in vivo. Moreover, the majority of responding
cells spike only once to single whisker whisker deflections (Figure S4E), as reported in
vivo (Isbister et al., 2021).

2.8 Validation and prediction through reproduction and extension of complex labora-
tory experiments using a single model parameterization

Building upon the in vivo-like activity states, we combined various simulation techniques
to recreate laboratory experiments from the literature (see STAR*Methods). For these
experiments, we use the parameter combination: [Ca2+]o = 1.05 mM, ROU = 0.4 and
PFR = 0.3, as this combination supports realistic in vivo-like responses to the two stim-
ulus types over a range of fiber percentages (FP ).

2.8.1 Exploring the canonical model: layer-wise contributions to L2/3 stimulus-responses

In the canonical model of the cortex (reviewed e.g., in Lübke and Feldmeyer, 2007; Feld-
meyer, 2012) information from the thalamus arrives to L4, then propagates to L2/3, from
there to L5 (which serves as the main cortico-cortical output layer) and lastly to L6 (which
projects back to the thalamus). The coordinated action of all layers of S1 is required for
high-level behavioral tasks (Park et al., 2020). As the canonical model is based on the
highest layer-wise density of axons, it cannot describe all interactions in the cortex. For
example VPM does not only innervate L4, but also the border of L5 and L6, as well as the
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bottom of L2/3 (Meyer et al., 2010; Constantinople and Bruno, 2013; Sermet et al., 2019).

To study how L4 contributes to the stimulus preference of L2/3 PCs, Varani et al.
(2022) used optogenetic inactivation of L4 PCs during whisker stimulation and quantified
the changes in the subthreshold response of L2/3 PCs. They found, that the early phase of
the subthreshold response significantly differed from the control condition, if the whisker
was deflected in either the most or the least preferred direction (see the top and bottom
rows of their Figure 5B, C). From this they concluded that both L4 and VPM contribute
to the direction tuning of L2/3 PCs. After reproducing their experimental conditions
in silico (Figure 6A-D; see STAR*Methods) we confirmed that we can reproduce their
results, i.e., subthreshold responses of L2/3 PCs decreased, when L4 PCs were inhibited
(Figure 6E for preferred direction whisker stimulation; see STAR*Methods).

We then leveraged our in silico setup to study what Varani et al. (2022) could not,
because of methodological limitations. In our reading, the authors aimed to test how
direct E connections from L4 PCs to L2/3 PCs influence the stimulus representation in
L2/3. This connection can not specifically be blocked in vivo, instead (95% of) the L4 PC
population is inhibited (as well as some lower L3 PCs). In our setup we could selectively
block the connection and found almost the same result (compare Figure 6E and F, left).
This extends the conclusion of Varani et al. (2022): L4 PCs contribute to the stimulus
preference of L2/3 PCs via direct E connections, and not via disynaptic inhibition.

The authors also discussed studying L5 PCs’ contribution to L2/3 responses (as a
large fraction of L5 PC axons terminate in L2/3), but this is infeasible with current
mouse lines. Leveraging our model, we found that L5 contributes much less to subthresh-
old L2/3 traces than L4 (Figure 6F, right). Extending to other presynaptic layers, we
found that the contribution of L2/3 is similar to that of L4, whereas inputs from L6 are
negligible (Figure 6F, right). Whilst mouse lines targeting L5 PCs might might arrive
soon (which could validate our predictions), blocking L2/3 connections between L2/3 cells
without hyperpolarizing the same L2/3 population seems only achievable in silico.

2.8.2 Contrast tuning by inhibitory interneuron sub-types under optogenetic activation

Shapiro et al. (2022) compared the modulatory effects of optogenetic activation of in-
terneuron subtypes on contrast tuning of neurons in V1. Whilst visual regions differ from
somatosensory regions, the study provided an opportunity to explore the generality of
interactions between E and I subpopulations. We therefore created a version of the study
in silico, presenting spatio-temporally modulated patterns with various contrast levels
through the VPM inputs (Figure 7A; see STAR*Methods).

Overall, we found within the single simulated column 228 PCs and 259 PV+ interneu-
rons with robust contrast tuning of their responses (see STAR*Methods). Within spike
detection range of a vertically penetrating extracellular electrode (50µm; Henze et al.
(2000); Buzsáki (2004)), we found 15 PCs and 13 PV+ interneurons with robust tuning,
which is roughly comparable to the original study (average of 8.2 tuned PCs and 3.0
PV+ neurons per mouse Shapiro et al., 2022). Unlike the original study we found no
Sst+ neurons with robust tuning.
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Figure 6: Exploring the canonical model. Reproducing the effect of optogenetic
inactivation of L4 pyramidal cells on L2/3 stimulus responses and predicting the role
of other pathways through circuit lesions. A: Schematics of whisker kinetics and VPM fiber
rates during 500 ms long whisker hold stimulus. Fraction of VPM fibers coding for each kinetic
feature are taken from Petersen et al. (2008). B: Mimicking the effect of activation of the Halo
inhibitory opsin in silico. Injected somatic hyperpolarizing current mimicking opsin activation
(top), and the resulting somatic voltage trace from a combination of injected conductance, current,
and synaptic PSPs from the network (bottom). C: Raster plots of the microcircuit’s activity and
population firing rates below. C1: Control conditions, C2: 95% of L4 PCs inhibited (by direct
somatic current injection depicted in B above, see STAR*Methods). D: Voltage traces of all
L2/3 (top) and all L4 (bottom) PCs. Panels show spiking traces (top), and subthreshold traces
(bottom). D1 and D2 depict the same conditions as C above. E:: Comparison of average traces
from selected L2/3 PCs (see STAR*Methods) in control (black) and optogenetically inhibited
(green) conditions. F: Same as E, but instead of mimicking the optogenetic inhibition of L4 PCs,
only the connections to L2/3 PCs are ”cut” (compare inset with the one in E). The right part
depicts connections systematically cut from PCs in all layers, while the left shows L4 only for a
better visual comparison with the conditions of Varani et al. (2022) in E.
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Figure 7: Encoding by interneuron subtypes. Contrast tuning by PV+ interneurons
matches in vivo, and in vivo predictions of encoding of synchronous and rate-coded
signals by interneuron subtypes. A: Spatial distribution of firing rates of VPM fibers project-
ing to a single simulated column at different points in time, corresponding to linear drifting gratings
with a temporal frequency of ftemp = 2 Hz and a spatial frequency of fspat = 0.001 cycles/µm.
B: Firing rate signal of a single VPM fiber corresponding to a random sequence of drifting grat-
ing patterns with different contrast levels C, as indicated by the legend. All optogenetic stimuli
targeting PV+ (or Sst+) interneurons were completely overlapping with the grating stimulus in-
tervals, as indicated by the blue bars. C1: Spiking activity and PSTH of an exemplary PV+
interneuron over 10 repetitions (trials) in response to a grating stimulus at maximum contrast
(C = 1.0) without (control) and with medium strength (150%) optogenetic stimululation. D1:
Contrast tuning modulation of an exemplary PV+ interneuron by different levels of PV+ optoge-
netic stimulation, ranging from 0% (control) to 300%. The individual markers denote actual data
points (mean ± SD over 10 repetitions, normalized to baseline response at maximum contrast)
while curves illustrate sigmoidal fits to these data points.
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E1: Scatter plots showing the fitted sigmoidal parameter values in control condition vs. PV+
optogenetic stimulation at lowest (50%) and highest (300%) level respectively for all 259 robustly
tuned PV+ interneurons. Diamond markers indicate mean values over neurons, including all
optogenetic stimulation levels from 50% to 300%. Colors as in panel D1 legend. C2/D2: Same as
C1/D1, but for exemplary PCs. D2 inset: Illustration of sigmoidal parameters m, n, Rmax, and
c50. E2: Same as E1, but for all 228 robustly tuned PCs. F: A binary signal is encoded either
through changes in the rate or synchronicity of optogenetic pulses applied to a set of PCs. We
define a direct correspondence between single optogenetic pulses and single spikes. Spiking activity
is measured in PV+, Sst+ and 5HT3aR+ cells, and the mutual information between the binned
activity of individual cells and the original binary signal is measured. G: Visualization of the
rate (upper) and synchronous (lower) coded stimulus experiments stimulating 1000 PCs, showing
the binary signal (top), input neuron spike trains for 40 neurons (middle), and responses of the
three L2/3 neuron types (bottom). H: Upper: Results for the rate coded stimulus experiment.
Left: Mutual information between spiking activity and the binary signal (one point for each cell
that spiked at least once). Only activity in the 50 ms following the change of the binary signal is
considered. Cells with mutual information not significantly different from that of a shuffled control
are coloured grey. Centre: Same as left but considering all time bins. Right: The effect of the
number of stimulus neurons on the mean single cell mutual information for each subpopulation.
Lower: The same as upper but for the synchronous stimulus type.

Additionally, we found the following results, all in line with (Shapiro et al., 2022):
The firing rates of both PCs and PV+ neurons were affected by optogenetic activation of
the PV+ subpopulation (Figure 7C), resulting in changes to the contrast tuning curves
of these populations (Figure 7D). The main effect of the optogenetic manipulation was
an increase in contrast tuning for PV+ and a decrease for PCs. The tuning curves could
be accurately fit by sigmoidal functions (r2PV+ = 0.995±0.008; r2PC = 0.990±0.012), and
consequently the effect of optogenetic activation could be quantified in terms of changes to
the fitted parameters (Figure 7D1 inset, E; STAR*Methods). We found great variability
between neurons with increasing trends for parameter m in PV+ and c50 in PCs, and
decreasing trends for Rmax in PV+ and both m and Rmax in PCs. Unlike in (Shapiro
et al., 2022), we found in addition an increasing trend of c50 also in PV+ interneurons
(Figure 7E1).

Comparing three abstract mathematical models (Shapiro et al., 2022; STAR*Methods),
we found that the saturation additive model best captured the effect of the optogenetic
manipulation for PV+ neurons (Figure S8A, B1), as in the reference study. The relative
contributions of saturation and addition varied strongly between individual neurons (Fig-
ure S8C1). At low intensities of the optogenetic manipulation, this distribution matched
qualitatively the results of Shapiro et al. (2022), but at higher intensities we observed
a shift towards stronger saturation. Combining the saturation additive model with a
simplified, population-level model of PC firing (Shapiro et al., 2022; STAR*Methods)
provided a good description of the observations (Figure S8B2) with relative contributions
of saturation and addition that qualitatively match the reference (Figure S8C2).

2.8.3 Encoding of synchronous and rate-coded signals by inhibitory interneuron sub-types

Prince et al. (2021) studied how different I subpopulations represent signals that are en-
coded as changes in the firing rate or synchronicity of PCs (Figure 7F). We repeated
their study in silico (Figure 7G), but using in vivo-like conditions as the authors have
suggested in their Discussion. The original study pointed out the importance of mem-
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brane properties and short-term dynamics of synaptic inputs onto the subpopulations in
shaping the results. Note, that the lower synaptic reliability in vivo weakens synaptic
depression (Borst, 2010), and the ongoing background input leads to higher membrane
conductance (Destexhe et al., 2001); therefore our results are expected to differ substan-
tially, and provide an independent prediction for a different dynamic state. While in the
original in vitro study stimulation of 10 PCs was sufficient to find a decodable signal,
we expected a larger number to be required under our in vivo-like conditions, due to the
lower [Ca2+]o, and the higher level of noise (see STAR*Methods).

Indeed, we found little discernible mutual information in I spiking for the activation
of 10 PCs, but that mutual information increased with the number of activated neurons
(Figure 7H, right). For 1000 activated neurons each of the three I subpopulations in L2/3
showed clear but qualitatively unique modulation for both encoding schemes (Figure
7G). As in (Prince et al., 2021) we found differences in the encoding capabilities of the
I subpopulations (Figure 7H). We found strongest encoding in PV+ neurons for both
schemes, and overall low encoding strength in Sst+ neurons. Further, we found overall
low amounts of mutual information for the synchronous stimulus, which is in line with
Prince et al. (2021), as they linked encoding of that stimulus to depressing synaptic
dynamics, which would be weakened in vivo.

2.9 Long-range connectivity determines independent functional units and selective
propagation of stimulus-responses at larger spatial scales

After calibrating the model of extrinsic synaptic input for the seven column subvolume,
we tested to what degree the calibration generalizes to the entire nbS1. Notably, this
included addition of long-range connectivity (Reimann et al., 2022a). The total number
of local and long-range synapses in the model was 9138 billion and 4075 billion, i.e., on
average full model simulations increased the number of intrinsic synapses onto a neuron
by 45%. Particularly, the final ϕ1.05,0.4 calibrated for the seven column subvolume was
used in conjunction with PFR ∈ [0.1, 0.15, ..., 0.3]. Each of the full nbS1 simulations (using
[Ca2+]o = 1.05 mM and ROU = 0.4) produced stable non-bursting activity, except for the
simulation for PFR = 0.3, which produced network-wide bursting activity.

Activity levels in the simulations of spontaneous activity were heterogeneous, ranging
from a mean firing rate of 0.15 Hz to 0.3 Hz (when activity was averaged in flat space for
PFR = 0.15; Figure 8A1; Video 6). The subregion with consistently higher firing rates was
the upper-limb representation (S1ULp), separated from subregions of lower activity by the
dysgranular zones (S1DZ, S1DZO). This demonstrates that the larger spatial scale of the
model supports several independently acting functional units. Locations with higher fir-
ing rates were accompanied by higher spiking correlations of the local population (Figure
8A2), indicating activity that was more driven by intrinsic excitation. Unlike in the sim-
ulations of smaller volumes, the correlation emerged mostly from short, transient packets
of activity in L6 (Figure 8B). Consequently, deviation from the target PFR in those cases
was largest in L6 (Figure 8C). Taken together, it appears as if the additional synapses
from long-range connectivity moved the model along the spectrum from extrinsically vs.
intrinsically driven, but further for some regions than for others. We confirmed a diver-
gence into two populations: one with correlation slightly increased from the simulations of
smaller volumes, and one with almost maximal correlations (Figure 8D). This distinction
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was determined mostly in L6 with increases of correlations in other layers remaining small.

We repeated the previous single whisker deflection evoked activity experiment in the
full model, providing a synchronous thalamic input into the forelimb sub-region (S1FL;
Figure 8E; Video 7). Responses in S1FL were remarkably similar to the ones in the seven
column subvolume, including the delays and decays of activity (Figure 8F). However, in
addition to a localized primary response in S1FL within 350µm of the stimulus, we found
several secondary responses at distal locations (Figure 8E; Video 7), which was sugges-
tive of selective propagation of the stimulus-evoked signal to downstream areas efferently
connected by long-range connectivity. The response of the main activated downstream
area (visible in Figure 8E) was confined to L6 (Figure 8G).

As the model is homogeneous across the different subregions in terms of neuronal mor-
phologies and physiology, we expected the differences in spontaneous and evoked activity
across the model to be explained by the topology of synaptic connectivity (Reimann
et al., 2022a). While the extrinsic input from the OU injections was uncorrelated by
design, synaptic input from local connectivity would feature at least some degree of cor-
relation. This led to asking, how correlated was the input from long-range connections?
We estimated for each pair of long-range connections innervating a 460µm hexagonal
subvolume its spiking correlation and compared the resulting distribution to the correla-
tion within the subvolume itself (see STAR*Methods; Figure 8H, upper). We found low
correlations for most pairs, but with a significant number of high-correlation outliers for
subvolumes with high internal correlations. Moreover, when we considered the mean of
the measure, we found that it explains most of the variability in internal correlations, for
both spontaneous (Figure 8H, lower) and evoked states (Figure S9).

This led to the following tentative explanation: Local connectivity provides inputs
from within 500µm, which is virtually guaranteed to be correlated to some degree (Fig-
ure 8I upper vs. lower, orange). This is a result of connections being locally dense, as
they are concentrated within a small neighborhood (Figure 8 lower, green vs. orange).
Long-range connectivity originates from further away, sampling from different functional
units that may or may not be correlated, and being more diluted (Figure 8I lower, green
vs. blue). Consequently, long-range inputs are likely to act not much different from the
uncorrelated OU process, unless this is overcome by a non-random topology of long-range
connectivity.

Specifically, we considered the long-range connectivity at meso-scale in terms of the
graph of synapse counts between 460µm subvolumes. When the graph was thresholded at
eight million synapses, most subvolumes lacked connections at that strength completely,
but others formed a single connected component, indicating the formation of a rich club
(Colizza et al., 2006; Figure 8J, upper, red and orange). We found that subvolumes with
high internal correlation were part of the rich club, or directly adjacent to one of its
members (Figure 8J). In the presence of strong thalamic inputs, this could be overcome,
as the increased activity level spread along sufficiently strong long-range connections
(Figure 8K), albeit with substantial delays between 60 and 100 ms. This could induce
high correlations in strongly connected parts of the model, outside the rich club as well
(Figure S9) and shows that the model supports selective propagation of activity to areas
efferently connected with long-range connectivity.
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Figure 8: Full nbS1 simulations: independent functional units, millisecond-precise
stimulus-responses, selective propagation of stimulus-evoked activity through long-
range connectivity, linking structure to function. Caption on following page.
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A1: Mean FRs across the model. Columns 0 and 39 (subsequently used) are highlighted. A2:
Spiking correlations of E/I populations in 240 hexagonal subvolumes (diameter: ≈ 460µm). B:
Spiking activity and max normalised histograms for layer-wise E and I populations for the param-
eter combination in A, and the 0th (upper) and 39th (lower). C: Target vs. observed PFR values
for the four non-bursting simulations. The number of sides of each marker corresponds to the layer
(triangle represents L2/3). Red: E, blue: I.. D: Correlations between E and I populations by
layer for the four non-bursting simulations for the two hexagons (top and bottom). Color of line
from light to dark represents PFR. Middle: Distributions of spiking correlations of layer-specific
populations in columns (520µm) of the nbS1 model (black dots; mean values: grey). Compared
to the central column when the seven column subvolume is simulated in isolation (green). E:
Trial-averaged activity in flatspace following single whisker deflections. Lower: Subset of time
windows shown with only the top 2% of bins for each time window after baseline activity level
subtracted. F: Trial-averaged PSTHs (baseline and max normalised) for column 0. For FP = 15%
and FP = 25% respectively, the evoked responses passed and failed the latency and decay-based
criteria tests for similarity to in vivo. Response for FP = 20% passed the tests for all populations
except L5 E which showed a more sustained response. G: Trial-averaged response of column
39. H: Correlations of long-range inputs. Upper: Distribution of spiking correlations of inputs
into 240 subvolumes. Calculated at reduced spatial resolution, based on connection counts and
correlations between the subvolumes (see STAR*Methods). Subvolumes are sorted by the E/I cor-
relation of neurons within them. Lower: Mean of the correlations of inputs into 240 subvolumes vs
internal spiking correlation for all subvolumes during spontaneous activity. Black line: linear fit.
Calculated based on connection counts and correlations between 50µm hexagonal subvolumes (see
STAR*Methods). Data for evoked activity is shown in Figure S9. I: Upper: Spiking correlations
of subvolumes against their distances in spontaneous (red) and evoked (orange: Fp = 0.15%, blue:
Fp = 0.2%, green: Fp = 0.25) activity. For increased spatial resolution, smaller (58µm) subvol-
umes were used, hence correlation values are not comparable to values in B. Lower: Distribution
of soma distances of neuron pairs connected by local (orange) or long-range (blue) connectivity.
Green: distances of all pairs, independent of connectivity. J: Upper: Classification of subvolumes
based on low or high internal correlation and membership in long-range rich club Data for evoked
activity shown in Figure S9. Lower: E/I correlation of subvolumes for members of the rich club
(red) and non-members (blue). K: FRs of subvolumes following a stimulus with FP = 0.15%
(top) and FP = 0.2% (bottom). Mean (lines) and SEM (shaded area) over 10 repetitions shown
for subvolumes directly innervated by the VPM stimulus (black), strongly innervated by directly
innervated subvolumes (with over 106 synapses, red), or by medium strength (over 105 synapses,
yellow) or weak (over 104 synapses) indirect innervation. Dashed lines indicate locations of peaks.

3 Discussion

We presented novel methods to build, simulate and validate models of cortical tissue that
correspond directly with 3D digitised brain atlases. As demonstrated, this enables labora-
tory experiments to have a simulatable in silico counterpart, and vice versa: predictions
made by the model automatically have a precise correspondence in biology. By recreat-
ing and extending five laboratory experiments under a single model parameterization, we
provided strong model validation and demonstrated the model’s natural versatility. To
our knowledge the simulations of the full nbS1 represent the first simulations of stable in
vivo-like spontaneous and stimulus-evoked activity in a large-scale biophysically detailed
model of multiple cortical subregions connected through local and long-range connectivity.
The model generated an initial set of predictions about the relationship between cortical
structure and function, and provides a basis for future studies and prediction. Through
the production of high-quality software, we are able to make the model and simulation
tools available for use, enabling community driven testing, exploration and refinement.
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We also presented a novel calibration technique, which allows rapid and methodical
characterisation and validation emergent model activity. The associated parameters and
meta-parameters offer a mathematical notation for complex large-scale biophysically de-
tailed models, that facilitate easy interpretation of large, complex data. Excitation from
non-modeled brain regions is modeled by injecting somatic conductances and is calibrated
for specific populations. Although abstract relative to the model, the injection amplitudes
could be predicted from the number of missing synapses, suggesting it provides a func-
tional representation of their anatomical counterparts. The modular model of extrinsic
connectivity can be refined or replaced in the future, or when larger fractions of the brain
are modeled. Our approach to obtaining in vivo-like activity contrasts with a recent ap-
proach in a large-scale biophysical model of primary visual cortex of similar scale to our
smaller subvolume (Billeh et al., 2020). There, they delivered extrinsic inputs through
dendritic synapses instead of somatic injection, which is more anatomically realistic, and
they adjusted intrinsic recurrent weights to match extracellularly recorded firing rates.
They find a single activity state, instead of the in vivo-compatible spectrum here that
allowed us to contrast anesthetized and awake states. The model in general differs from
hybrid models, which jointly use biologically-detailed models and point neuron models
(Billeh et al., 2020; Dura-Bernal et al., 2023), and also from the work of Egger et al.
(2020) who modeled activation of L5 pyramidal cells by constraining patterns of synaptic
input based on receptive fields and predicted annatomical innervation.

A region of the parameter space defined by three meta-parameters supported in vivo-
like responses to single whisker deflections and active whisker touch stimuli, under anes-
thetized and awake conditions, respectively. Although from the barrel system, these stim-
uli offer some of the simplest stimulus-response paradigms, enabling principles of neural
dynamics and information processing to be studied; in particular, the correspondence be-
tween atomic units of sensory information and neural representations. Such validations
are crucial for complex models, as they provide context for more complex validations. If a
model reproduces properties of neural activity in more complex experimental paradigms,
but not for simpler ones, it would suggest that the model acts in a regime different from
biology. Moreover, in a rich and complex nonlinear system, the source of discrepancies
with in vivo activity are simpler to ascertain under simpler protocols. The model also
predicts the number of thalamic fibers stimulated for both stimuli. Responses were closer
to biology for values of the PFR meta-parameter between 0.1 and 0.3, according with the
known inflation of mean firing rates stemming from the bias of extracellular spike sorting
techniques towards larger and more active neurons (Olshausen and Field, 2006).

Supporting our estimates, patch-clamp experiments show ubiquitous neuronal silence
(Crochet and Petersen, 2006), and spontaneous and stimulus-evoked barrel cortex firing
rates as much as 10 times lower than for extracellular recordings (0.05-0.15 Hz vs. 0.8-
1.5 Hz; Olshausen and Field, 2006). Each recording technique comes with challenges and
biases (Shoham et al., 2006; Olshausen and Field, 2006; Barth and Poulet, 2012; Wohrer
et al., 2013). Calcium imaging and patch-clamp experiments are less biased towards
frequently spiking neurons (Wohrer et al., 2013), yet the former can only infer spiking
activity and may be biased towards neurons that favour marker expression. Patch-clamp
techniques can reduce firing rates, be biased towards larger or more active neurons (Ol-
shausen and Field, 2006); and are limited to recording a few neurons simultaneously,
preventing characterizations of single trial population dynamics. An earlier version of the
model has been used to simulate cortical extracellular potentials (Reimann et al., 2013).
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We can now simulate modern extracellular electrodes and compare spike sorting results to
the in vivo-like ground truth. The model’s large scale also ensures contributions of distal
neurons to the signal. Comparison of firing rates of multi-unit activity could also be made.

Given the complications of elctrophysiological recording, how can we be confident that
the model’s activity is in vivo-like? First, we demonstrated correlated spontaneous dy-
namics in the form of global and local fluctuations and dynamic E-I balance, as found
experimentally (Renart et al., 2010). Second, population firing rate distributions were
long-tailed with sub 1 Hz peaks, and were similar for spontaneous and stimulus-evoked
activity, as reported (Wohrer et al., 2013). Moreover, mean firing rates below 1 Hz are
required by metabolic constraints (Attwell and Laughlin, 2001; Lennie, 2003). In response
to simple whisker stimuli, response sparsity, spike counts, and the temporal profile and
amplitudes of layer-wise populations were similar to in vivo. The effect of the sponta-
neous meta-parameters on evoked responses, also shows that the networks spontaneous
state affects stimulus-responses, as observed in vivo (Isbister et al., 2021).

The calibration of extrinsic inputs approximates the relationship between unconnected
and connected firing rates for different populations. The calibration technique simplifies
this highly complex problem by approximating it for states where firing rates are a con-
stant proportion of reference rates. The number of iterations was reduced by starting
with a calibration from a related model. The ability to change an aspect of the model
and quickly recalibrate the network, could be applied in many other settings, for ex-
ample, when a different brain region is connected to the model. The efficiency of the
optimisation process is critical, given the large computational cost of simulations. Con-
nected divided by unconnected firing rates are also a prediction of the degree to which the
activity of a population is determined by incoming connections from local sources. We
found an increase of the importance of local connectivity from superficial to deeper layers.
This is largely in line with the canonical view of the cortex (Lübke and Feldmeyer, 2007;
Feldmeyer, 2012), which places layers 5 and 6 at the end of local (i.e., intra-columnar)
information flow.

It is important to highlight where the model deviates from biological data. For exam-
ple, the timing of inhibitory subpopulation responses were not reproduced. Furthermore,
the model omits several known anatomical elements, such as glia and the presence of
gap junctions between certain neuron-types, but the model’s spatial context provides a
natural scaffold for them. Some shortcomings indicate a lack of available data. For exam-
ple, the physiological strength of thalamic inputs onto many cortical populations remain
unclear as the best available data mixes structural and physiological strength (Sermet
et al., 2019). Our modeling techniques assume generality of rules and parameters, unless
indicated by the data. Therefore, violations indicate specific biological rules. For exam-
ple, model thalamic inputs innervate any dendrite placed in the targeted layers equally.
The delay of responses of PV+ and Sst+ neurons in layer 4 could be adjusted to match
the biological data better by biasing innervation towards PV+ dendrites. As stated, the
model’s release will allow the community to identify further data-model mismatches, re-
veal gaps in current understanding, and drive furtherrefinements.

During spontaneous activity, we found emerging spatial inhomogeneities in network
activity. Specifically, we observed sharp transitions in firing rates and pairwise correlations
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at disgranular zones. This highlights that the model supports several, independently act-
ing functional units. Analysis of spatial correlations suggests a radius of approximately
400µm for a single unit. This property was not present in the previous intra-regional
scale model (Markram et al., 2015), but is rather an emergent property of the interre-
gional scale, demonstrating that we achieved our goal of building a model that can be
used to study long-range interactions between regions. Analyzing the source of the inho-
mogeneities suggested a prominent role of a non-random rich-club structure of long-range
connections at the meso-scale. Within functional units, we found that inhomogeneous
increases of spiking correlations were confined to spontaneous packets of L6 activity.

In addition to demonstrating close similarity with in vivo whisker-stimulus responses,
we reproduced protocols from three more complex laboratory experiments. These exper-
iments used a wide array of techniques, which could be accurately recreated due to the
model’s close correspondence with biological tissue. Additionally, we could go beyond the
original experiments. For example, we predicted an increased number of neurons would be
required to have a decodable effect on postsynatic activity under in vivo conditions over
the in vitro conditions of the original experiment. This can be explained by lower synap-
tic reliability under in vivo conditions. This demonstrates that the approach of modeling
entire brain regions can be used to further probe the topics of the original articles and
cortical processing. For example, demonstrating selective propagation of stimulus-evoked
activity to downstream areas, and the long-rage interactions shaping local activity cor-
relations, allows the simulation-based study of processing in cortical hierarchies in more
complex setups. For example, the integration of multiple stimuli applied to distal parts
of the model could be studied. Studying activity in more complex paradigms at large
spatial scales may also allow us to characterize expected correlations and replace statis-
tically independent input compensation with more specific conductance injections.

The model provides an opportunity to study plasticity under in vivo-like conditions at
the level of interacting regions and beyond pairs of neurons (Markram et al., 1997b; Larsen
and Sjöström, 2015). In an earlier version of this model, we implemented a plasticity rule
that captures the roles of calcium and dendritic integration in plasticity (Chindemi et al.,
2022). We can now bridge these scales to understand learning in cortical hierarchies.
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4 STAR*Methods

Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data
Raw neuron recordings Reva et al. bbp.epfl.ch/nmc-portal/downloads.html

Neuron morphology reconstructions Reimann et al. 10.5281/zenodo.6906785
Raw paired recordings Markram et al. bbp.epfl.ch/nmc-portal/downloads.html

PSP amplitudes Sources as listed in Table S4
CV of PSP amplitudes Sources as listed in Table S5
mPSC frequencies Sources as listed in Table S6
Spont. and evoked spiking freq. Reyes-Puerta et al. from original authors on request
VPM spike trains Diamond et al. digitized from Figure 8

Yu et al. from original authors on request
Volumetric atlases Bolaños-Puchet et al. 10.5281/zenodo.7930276
Ion channel models Reva et al. 10.5281/zenodo.7930276
Anatomical model Reimann et al. 10.5281/zenodo.6906785
Models of neuron electrical types Reva et al. 10.5281/zenodo.7930276
Anatomical and physiological model This paper 10.5281/zenodo.7930276

Software and algorithms
Electrical model optimization Reva et al. github.com/BlueBrain/singlecell-emodel-suite

Simulation software This paper 10.5281/zenodo.8075202
Model loading and interaction This paper 10.5281/zenodo.8026852
Model and simulation analysis This paper 10.5281/zenodo.8016989
Specific simulation configurations This paper 10.5281/zenodo.7930276

Resource availability

Lead contact

Further information and requests for data and code should be directed to and will be
fulfilled by the lead contact: Michael W. Reimann (michael.reimann@epfl.ch)

Materials availability

No materials were used in this computational work.

Data and code availability

• Neuron morphology reconstructions, ion channel models, neuron electrical models,
volumetric atlases, and the description of the model in SONATA format (Dai et al.,
2020) have been deposited at Zenodo and are publicly available as of the data of the
publication. The DOI is listed in the key resources table. Raw single cell recordings
and paired synaptic recordings have been deposited in the Blue Brain portal and
are publicly available as of the date of publication. The links are listed in the key
resources table.

• All original code has been deposited at Zenodo and is publicly available as of the
date of publication. DOIs are listed in the key resources table.
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• Any additional information required to reanalyze the data reported in this paper is
available from the lead contact upon request.

4.1 Method details

4.1.1 Optimisation of ion channel conductance densities

Neuron models from Reva et al. (2022) were made as follows. Ion channel conductance
densities were optimised for a pool of reconstructed neurons, for which in vitro recordings
had previously been made. Ion channel densities were then generalised to other neuron
models of the same e-type. Resulting neuron models were only used in the construction
of the model if the value of the cost function was within 5F standard deviations of the
experimental mean.

4.1.2 AIS Adjustment

For some electrical models, further adjustments were made to AIS sections to handle the
large input currents present under conditions of high network activity. In short, for certain
pyramidal cell morphologies, the AIS was replaced by a cylinder with a length of 60µm.
Its diameter was manually calibrated such that the ratio of the AIS input resistance over
the input resistance of somato-dendritic compartments was equal to 2. Afterwards, it was
confirmed that the cost function of their electrical models remained below the threshold.

4.1.3 Parametrization of synaptic physiology

Synapse physiology parameters were taken from the literature, and after eventual cor-
rections (for differences in the solutions used in the experiments), were put directly into
the model using the technique described for the use case of hippocampal CA1 in (Ecker
et al., 2020). For the parameterization of cortico-cortical synaptic physiology, paired-
recording data sources from Markram et al. (2015) were re-used. To further constrain
the variance of EPSP amplitudes in L5 TTPCs, fitted parameters from Barros-Zulaica
et al. (2019) were used. The dataset was also enriched with recent recordings from L6
(Qi and Feldmeyer, 2016; Yang et al., 2020, 2022). Instead of generalizing L4 E peak
synaptic conductances for all thalamic fibers (as in Markram et al., 2015), synaptic con-
ductances were constrained using EPSP amplitude measurements from thalamocortical
slices (Beierlein and Connors, 2002; Beierlein et al., 2003). Fibers originating from POm
were not present in Markram et al. (2015). Due to the lack of in vitro measurements,
physiological parameters from VPM synapses were generalized to describe POm synapses.

Not all synaptic peak conductances can be measured with paired recordings due to
the space-clamp artifact (Markram et al., 2015; Ecker et al., 2020), and estimating the
number of release-ready vesicles is also challenging experimentally (Loebel et al., 2009;
Barros-Zulaica et al., 2019). Thus, for synaptic pathways for which there was in vitro
reference data, these two parameters were determined in a simulation-driven iterative
process. Firstly, 50 pairs of in silico neurons were randomly sampled. Second, the post-
synaptic cell was current-clamped, and the PSP at the soma of the postsynaptic cell in
response to a presynaptic action potential was measured. This was repeated 35 times for
each pair as in Ecker et al. (2020). Thridly, the mean and the CV of these amplitudes
were extracted and compared with reference in vitro data. Finally, peak conductance (ĝ),
and the average number of vesicles in the release-ready pool (NRRP ) were adjusted to
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match the amplitude and CV of the in vitro reference (Ecker et al., 2020). In some cases,
this resulted in reaching the lower bound of univesicular release (Barros-Zulaica et al.,
2019).

Where experimental data was not available, mean synaptic physiology parameters
from similar pathways were used (Markram et al., 2015; Ecker et al., 2020). For the VPM
to L5 E pathway, the maximum of VPM to L4 E and VPM to L6 E conductances (instead
of the mean) were used, based on resulting evoked firing rates found in a later modeling
step (Figure S4C). To calibrate the mPSC frequencies of different pathways, single cell
simulations with different values of the spontaneous release frequency for all synapses of a
set of 1000 cells in a given pathway were run. In these simulations, in silico voltage-clamp
recordings were performed to measure the resulting mPSC frequency at the soma. This
data was then fitted with a logarithmic function and the value of the spontaneous release
frequency matching the in vitro reference value for the mPSC frequency was interpolated.
As in vitro paired recording data is sparse, all available sources to determine synaptic
parameters were re-used for validation.

4.1.4 Datasets used for validation of in vivo-like dynamics

Activity in the model is compared with spike-sorted extracellular recordings from the bar-
rel cortex of anaesthetised rats (Reyes-Puerta et al., 2015). The dataset contains single
unit spike times for both spontaneous activity and responses to single whisker deflections,
across 6 layer-wise neuron populations (L2/3 E, L2/3 I, L4 E, L4 I, L5 E & L5 I). We
extend the dataset using the average of L2/3 I, L4 I and L5 I as a reference for L1 I and
L6 I, and an alternative reference for L6 E (De Kock et al., 2007). The spontaneous firing
rates of the 9 neuron populations are collected in the vector of reference firing rates, VFR.

As a secondary comparison, we use a dataset of in vivo juxtacellular and whole-
cell recordings of barrel cortex responses in awake mice during an active whisker touch
paradigm (Yu et al., 2019). While the animal model is different, using this data enables
comparison to awake responses of layer-wise E populations and I subpopulations (VIP+
(vasoactive intestinal peptide, a part of our 5HT3aR+ subpopulation), Sst+, FS (fast
spiking, corresponding to our PV+ subpopulation)). Moreover, this allows validating the
model against properties of cortical responses across similar but different paradigms, re-
ducing the risk of over fitting.

4.1.5 Somatic conductance injection

Random background synaptic inputs, representing uncorrelated inputs from other brain
regions not present in the model, are modelled as a conductance-based somatic injec-
tion (Figure 4B1). Specifically, we inject conductance signals described by an Ornstein-
Uhlenbeck (OU) process (similar to Destexhe et al. (2001)), given by the following equa-
tion:

dg(t)

dt
= −1

τ
[g(t) − g0] +

√
D (1)

where g(t) is the conductance signal, g0 its mean value, τ is the decay time constant,
D is the diffusion coefficient, and χ(t) is a Gaussian white noise process. The diffusion co-

efficient can also be expressed in terms of the standard deviation σ of the signal: D = 2σ2

τ .
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Note that we only consider an excitatory conductance signal representing long-range exci-
tatory drive, whereas local inhibitory input is deemed sufficient within the circuit model.
As we are modeling a non-specific random background noise, we use a different, uncorre-
lated OU process for each cell.

Given the diversity of morphologies and electrical behaviors of cells in our circuit,
we scale the mean and standard deviation of the injected signal based on individual cell
properties. Specifically, we compute the input resistance Rin of each cell at its resting
potential, then take its reciprocal value Gin = 1/Rin (units of conductance). The mean
g0 and standard deviation σ of the injected conductance signal are then expressed as
percentages OUµ and OUσ of this input conductance Gin:

g0 =
OUµ

100
∗Gin (2)

σ =
OUσ

100
∗Gin (3)

The OUµ and OUσ percentage values are used in the calibration technique described
in the following sections. To reiterate, OUµ and OUσ scale the mean of the injected
conductance and the size its fluctuations respectively.

4.1.6 Details of spontaneous activity calibration

OUµ and OUσ are parameterised separately for each of 9 populations (layer-wise E and
I combinations; Figure 4B2), leading to 18 parameters, grouped into two 9-dimensional
vectors OUµ and OUσ. Spontaneous firing rates across populations, denoted by the vec-
tor CFR, are then determined by the vectors OUµ and OUσ, and [Ca2+]o. The objective
of the calibration procedure is to determine a mapping that outputs the OUµ and OUσ

required to achieve a particular set of firing rates CFR, for a given [Ca2+]o.

This requires two simplifications: First, we reduce the space of possible OUµ and
OUσ values by fixing OUσ = OUµ ∗ ROU , where ROU is a pre-specified constant that
controls the level of noise assumed to be present in the external synaptic input. Second,
we learn the mapping only for dynamical states where the firing rates of the 9 populations
are a proportion of reference in vivo firing rates, i.e. CFR = PFR ∗VFR, with PFR ∈ [0, 1]
(Figure 4B2). This is based on the assumption that extracellular spike detection sam-
pling biases (Olshausen and Field, 2006; Wohrer et al., 2013) affect all populations equally.

The mapping can be written as ΨCa2+,ROU
: CFR 7→ OUµ and is simplified into two

separate mappings which are determined separately and then combined (Figure S1). The
first mapping finds values of the 9 output parameters OUµ, for a given ROU , which pro-
duce particular unconnected firing rates UFR (i.e., where the neurons in the network are
not connected to each other). The second then maps between UFR and CFR.

The first mapping χ : (ROU ,UFR) 7→ OUµ, is attained by running 1 second simula-
tions over various combinations of OUµ and OUσ (Figure S1). ROU constrains OUµ and
OUσ to a line of possible combinations in the 2D space. We generate an approximation
of χ based on linear interpolation between the results of simulations along the line. Note
in particular, that χ is independent of [Ca2+]o.
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Given the mapping χ, the remaining problem is to determine the values of UFR that
achieve certain target firing rates given by PFR ∗VFR, for PFR ∈ [0, Pmax] and each com-
bination of [Ca2+]o and ROU , i.e., to determine the mapping ϕCa2+,ROU

: UFR 7→ CFR.
This is done by measuring values of CFR produced for given values of UFR in a num-
ber of simulations. However, instead of exploring the whole parameter space of pos-
sible UFR values, we only explore a small number of values of UFR which we expect
to produce the target CFR values. This is done by iteratively learning the mapping
ϕCa2+,ROU

: UFR 7→ CFR and in each iteration using ϕ to predict UFR values that
bring the dynamics closer to the target firing rate, i.e., by sampling values given by
UFR = ϕ−1(CFR) = ϕ−1(PFR ∗ VFR) for 10 equidistant values of PFR ∈ [0, Pmax]. The
initial guess of ϕ is simply the identity, i.e., assuming no effect of connecting the network,
with Pmax = 0.5. All other iterations use Pmax = 1.0.

We update ϕ by fitting an exponential: CFR = α ∗ eβUFR + κ to the values of UFR,
CFR measured on the latest iteration (Figure S1). In a recurrently connected network
such as our model, the connected firing rate of a population depends on the firing rates
of all other populations in complex and nonlinear ways. This is addressed by our sim-
plification to restrict the compatible dynamic states, where by definition the target firing
rate of one population determines the target firing rates of all others.

The firing rates of the L2/3 I, and L4 I and L6 I populations could not be sufficiently
lowered for PFR < 0.2 and PFR < 0.1 respectively, as they spontaneously fired even at
their resting potentials (Figure S1D).

4.1.7 Generalization to other network states

We first approximated ϕ for [Ca2+]o = 1.1 mM and ROU = 0.4. To reduce the num-
ber of iterations steps needed for other combinations of [Ca2+]o and ROU , we initialized
the optimization process with the mapping ϕ obtained for this parameter pair instead of
basing it on the identity (Figure S1D, lower; Figure S1). Only for PFR above 0.8 and
[Ca2+]o = 1.1 mM did we have to slightly relax our acceptance criteria (Figure 4D, lower).
Additionally [Ca2+]o = 1.1 mM, PFR = 1.0, and ROU = 0.2 led to bursting activity un-
characteristic of in vivo activity and was excluded from further study.

4.1.8 Evoked activity comparison and validation

The spike times of single whisker deflection stimuli were drawn from a PSTH of VPM neu-
rons in response to 3 ms mechanical single whisker deflections made at 1 Hz in urethane
anesthetized rats (Diamond et al., 1992; Figure 5A2). Since the in vivo data for cortical
responses to single whisker deflections was from responses to 2 ms mechanical whisker
deflections, we compressed the tail of the VPM PSTH to allow a direct comparison with
in silico responses (Figure 5A2). A VPM PSTH for the active whisker touch stimulus
was used from the same dataset as the corresponding cortical responses (Yu et al., 2019).

Firstly, in silico responses were compared to data from the C2 barrel of the anaes-
thetized rat in response to single whisker deflections made at < 1Hz. For the active
whisker touch stimulus, in vivo activity was used from aggregated over principal barrels
corresponding to the untrimmed whisker.
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As an initial test of similarity with the corresponding in vivo dataset, trial-averaged
PSTHs were first calculated for each parameter combination, both for all neurons, and
for each of the layer-wise E and I populations. We then tested whether the latencies, 50%
and 25%-decay points of the trial-averaged PSTHs were respectively no more than 10 ms,
10 ms and 40 ms later than those of the corresponding in vivo populations, and that there
was no secondary rise in the PSTHs after the initial decay (by testing that none of the
PSTHs for individual populations were more than 35% above baseline after 75 ms). L1 I
was excluded from these tests, as it showed little or no response to the stimulus and we
had no in vivo reference. These tests allowed us to split the 4D parameter space into two
regions, one where in silico responses are consistent with in vivo responses, and another
where they are not (see Results).

4.1.9 In-silico experimental methods

Simulation of a morphologically detailed model first requires specifying the conditions
(parameters and inputs) under which to perform the simulation. Given the correspon-
dence between variables in the model and properties of biological systems, we are able
to mimic to a certain extent the conditions and protocols of experimental studies. These
are combinations of existing techniques, or even techniques that cannot or have not yet
been performed experimentally. On top of the compensation for missing external input
and different [Ca2+]o, we implemented further mechanisms to simulate specific experi-
mental conditions. On a technical level, these comprise somatic current or conductance
injections, adjustment of synaptic connectivity parameters, and selective activation of
thalamic fibers. These are static conditions, however, in that their time course must be
determined before the simulation is run. Somatic injections and connectivity adjustments
can be targeted with single neuron or single pair resolution, respectively. To each thalamic
fiber or neuron in the model, we can assign an arbitrary spike train, triggering synaptic
release from all of its synapses with anatomically determined delays (from axonal con-
duction speed and path length). These mechanisms can target specific groups of neurons,
e.g. based on neuron properties, such as location, layer, m-type or e-type, or inhibitory
subpopulation (determined based on me-type as in Markram et al. (2015); Figure 2B).
We combined mechanisms to simulate various in vitro or in vivo experimental paradigms.
Pathway lesions, for example, are simulated by selecting sets of pre- and postsynaptic
neurons and removing all synaptic connections between them (Figure S2A). Simulated
optogenetic stimulation, in addition to being targeted at specific groups of neurons, took
into account the attenuation of light with depth for the wavelength being used. Neurons
were then inhibited or excited according to the intensity of light reaching them (Figure
S2B). Finally, sensory stimuli were simulated by generating instances of stimulus-specific
stochastic spike trains activating the thalamic input fibers (Figure S2C).

4.1.10 Optogenetic inhibition or activation

We model optogenetic inhibition or activation of a neuron population through a current
injection at the soma of each cell in the population, with an intensity proportional to
the cell’s threshold current (see Reva et al. (2022)). To mimic the conditions of surface
illumination, we considered the dependence of effective depolarization strength on cortical
depth using a modified Beer-Lambert law approximation for the exponential attenuation
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of light intensity through scattering tissue (Al-Juboori et al., 2013; Azimipour et al., 2014,
Figure S2B):

I(d) = I0 exp(−µeff d) (4)

where I(d) describes the light intensity at depth d (in mm), with a maximum light in-
tensity I0 (on the surface of the cortex) and an effective attenuation coefficient given
by:

µeff =
√

3µa(µa + µ′s) (5)

Values for the absorption coefficient µa and the reduced scattering coefficient µ′s were
interpolated for the chosen wavelength from Mesradi et al. (2013). For implementation
reasons, the targeted cells were grouped into depth bins and for each group the intensity
at the center of the bin was used. Bins were equally distributed in terms of the injected
current, and not in terms of depth. The value of I0 was calibrated independently for each
experimental paradigm.

4.1.11 Modeling sensory inputs

Sensory inputs were simulated using a three step procedure (Figure S2C2): First, a
time series representing sensory stimulation is assigned to each selected thalamic fiber;
second, the time series is optionally transformed with a fiber-dependent transfer function;
third, a spike train is generated from the time series through a stochastic spiking process.
Thalamic input fibers were associated with roughly columnar, overlapping volumes of the
model that they formed synaptic connections in (Reimann et al., 2022a). Their centers
were projected into the plane using a flat map of the model (Bolaños-Puchet and Reimann,
prep), yielding [xζ , yζ ], the flat locations of each fiber ζ. A sensory stimulus was defined
based on fiber location as ρζ(t) = ρ(xζ , yζ , t). The stimulus function could be partially
stochastic and its value was evaluated for each time bin of the simulation (Figure S2C1).
Next, a fiber could be associated with a transfer function υζ that transforms the results of
ρ. If none is mentioned, identity was used as transfer function. Finally, a spiking process
ψ was used to instantiate a spike train for each fiber, based on its transformed time series.
That is, the spike train associated with ζ was Γζ = ψ(υζ(ρζ)). The processes used were
stochastic, leading to different spike trains for fibers associated with the same time series.
Different, specific ρ, υ and ψ were used for different experimental paradigms that will be
further described below.

4.1.12 Recreating Varani et al., 2022

To study how input from L4 contributes to L2/3 subthreshold responses Varani et al.
(2022) used a 500 ms long whisker hold paradigm, while patch-clamping PCs in L2/3 in
anesthetized and awake mice. We encoded the whisker hold stimulus as a step function
(ρζ(t) = 1, if 2000 ms ≤ t < 2500 ms, 0 otherwise) in 10% of the VPM fibers within
the seven column subvolume. One of four transfer functions were assigned to each fiber,
based on the types of kinetic response properties of thalamic neurons identified in (Pe-
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tersen et al., 2008). The types were selective for whisker position (υpos), velocity (υvel),
acceleration (υacc), or direction (υdir), and were implemented as:

υpos(t) = rmax · ρ(t)

υvel(t) = rmax · (ρ(t+ 1) − ρ(t))

υacc(t) = rmax · (ρ(t+ 1) − 2ρ(t) + ρ(t− 1))

υdir(t) = rmax · |ρ(t+ 1) − ρ(t)|+
where rmax = 150 Hz denotes the firing rate of a thalamic fiber when its associated feature
property is at the fiber’s preferred value. Transfer functions were randomly assigned to
fibers with the fractions identified in Petersen et al. (2008) (Figure 6A, 11% coding for
position and acceleration, 58% for velocity and 20% for direction). The spiking process ψ
was an adapting Markov process (Muller et al., 2007) with an adaptation time constant
of 100 ms. As the whisker movements were short lasting, rates were evaluated at submil-
lisecond (0.1) resolution.

Similarly to before, only the seven column subvolume (210k neurons) was used for the
simulations, and the in vivo-like state was realized as Ca2+ = 1.05 mM, ROU = 0.4, and
PFR = 0.3.

The optogenetic inhibition in this experiment targeted 95% (in line with Varani et al.
(2022)) of excitatory cells in layer 4. The authors found a few cells which also tested pos-
itive for Halo at the bottom of L3 as well, but as they did not quantify it, we decided not
to target any lower L3 PCs in the in silico version of the experiment. Based on the 595 nm
wavelength (yellow light) parameters were set to µa ≈ 0.49mm−1 and µ′s ≈ 4.12mm−1.
For the depth-based spatial binning of cells, 5 bins were used in L4. After scanning several
values, I0 was set to -200% as that reproduced the ≈ 10 mV hyperpolarization of L4 PCs
observed in vivo. In line with the in vivo experiment, the optogenetic stimulus ended in
a (100 ms long) ramp to avoid rebound spikes (Figure 6B).

When going beyond reproducing the same experimental conditions and instead lever-
aging the in silico nature of our setup, synaptic pathways were lesioned by selecting the
excitatory population in a given layer as the pre-synaptic population and the excitatory
population in L2/3 as the post-synaptic population and not instantiating the connecting
synapses during the simulation.

L2/3 PCs had to meet three criteria to be included in the subsequent analysis. Firstly,
their activity was required to remain subthreshold during the 500 ms long whisker hold
stimulus and in 200 ms long time windows before and after the stimulus, both in control
and in silico optogenetic runs. Second, they had to be innervated by at least one (active)
VPM fiber. Third, the derivative of their voltage trace had to cross the 1 mV/ms threshold
in a 20 ms time window after stimulus onset in the control simulation. The last two were
motivated by comparing subthreshold voltages to voltage traces from Varani et al. (2022)
that showed large, stimulus evoked EPSPs. Around 8% of L2/3 PCs in the central
column met all the above criteria and their voltages were averaged to arrive to the traces
shown in Figure 6E-F. Thus, unlike in the original analysis, cells rather than trials were
averaged. The motivation for this approach is that while in vivo it is easier to repeat the
same paradigm after establishing stable recording conditions in a given cell, in silico it is
quicker to record from all cells in a single simulation, instead of repeating the stimulus
several times.
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4.1.13 Recreating Shapiro et al., 2022

Since our model comprises the nbS1 and not the V1 brain area, we modelled visual drifting
gratings in a more abstract way, without taking specifics of the visual system into account.
In particular, we defined ρ(xζ , yζ , t) as a spatio-temporal rate pattern corresponding to
linear sinusoidal drifting gratings for a fraction FP of 937 VPM fibers projecting to a
single simulated column (30k neurons, 520µm diameter). For all other VPM fibers ρ was
zero. The gratings had a temporal frequency of ftemp = 2 Hz and a spatial frequency of
0.03 cycles/degree which we translated to fspat = 0.001 cycles/µm by assuming a cortical
magnification factor in rat of 30 µm/degree (Gias et al., 2005). In Figure 7A, the spatial
grating patterns are illustrated at different points in time.

As in Shapiro et al. (2022), we used five contrast levels C ∈ [0.06, 0.12, 0.24, 0.5, 1.0]
which were defined as the Michelson contrast given the minimum and maximum luminance
values Lmin and Lmax:

C(Lmin, Lmax) =
Lmin − Lmax

Lmin + Lmax
(6)

Since the physical quantity of luminance does not have a clear correspondence in our
model, we used normalized luminance values Lmin and Lmax between 0.0 and 1.0 by
computing the inverse Michelson contrast centered around a mean normalized luminance
of 0.5. The resulting values of Lmin and Lmax where then scaled and shifted to the
minimum and maximum rates of the sinusoidal modulation Rmin and Rmax respectively
such that the peak firing rate at contrast 1.0 was given by Rpeak and the mean of the
modulation corresponding to the background firing rate at contrast 0.0 was given by Rbk.
The resulting sinusoidal input rate signal can be written as:

ρζ(t) = R(t, lζ) = Rmin + 0.5(Rmax −Rmin)
[
1 + sin(2π ftemp t− 2π fspat lζ)

]∣∣∣∣
+

(7)

where t is the time in seconds, lζ the linear position of ζ within the grating, and |+ denotes
that firing rates are truncated to positive values only. Figure 7B illustrates a random series
of rate signals corresponding to different contrasts. No transfer function was used, and
spiking process ψ was an adapting Markov process (Muller et al., 2007) with an adaptation
time constant of 100 ms. Values for FP , Rpeak, and Rbk were determined beforehand
by a parameter optimization so that the resulting grating responses were qualitatively
comparable with the ones reported by Shapiro et al. (2022), see next subsection for details.

Calibration of drifting grating stimulus We ran a parameter scan to determine optimal
values for FP (fraction of 937 VPM fibers projecting to the central column of our model
to apply grating stimulus to), Rpeak (peak firing rate at contrast 1.0), and Rbk (back-
ground firing rate at contrast 0.0). This calibration was done by running 45 simu-
lations using all combinations of parameter values in the ranges FP ∈ [0.5, 0.75, 1.0],
Rpeak ∈ [5.0, 10.0, 15.0, 20.0, 25.0] Hz and Rbk ∈ [0.05, 0.1, 0.2] Hz, and selecting the op-
timal combination amongst them. Each simulation lasted 40 s during which 20 contrast
stimuli were presented for 1 s, followed by a 1 s (blank) inter-stimulus interval. Four con-
trast levels C ∈ [0.06, 0.12, 0.5, 1.0] were presented five times each in random order, which
was sufficient to fit sigmoidal tuning functions with four parameters (see Eq. 9).

We observed that especially under strong stimulus conditions the response rates of PCs
to the first and second cycle of the sinusoidal grating pattern (1 s stimulus at ftemp = 2 Hz)
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were quite different, with the second response largely attenuated due to synaptic depletion.
Therefore, we extracted first and second peak firing rates r1 and r2 respectively from the
peristimulus time histograms (PSTHs) computed with 1 ms resolution and 20 ms Gaussian
smoothing (Figure S6). We defined a measure of the normalized peak difference as the
Michelson contrast of the peak rates r1 and r2, given by

r̂diff =
r1 − r2
r1 + r2

(8)

Additionally, we extracted average firing rates for each contrast level of the whole
population of PCs within the full (1 s) as well as the first and second halves (0.5 s each)
of the stimulation intervals. We then fitted sigmoidal tuning functions with parameters
c50, m, n, and Rmax (see Eq. 9) to these average tuning responses (Figure S7). Finally, as
summarized in Figure S6 and S7, we selected the best combination of parameters based
on the following selection criteria:

• The peak firing rates in response to the grating stimulus should be sufficiently strong,
covering a range of values including the one reported in (Shapiro et al., 2022, cf.
Figure 1D). So we imposed the constraint that the maximum peak rates over the
whole population of PCs of the first and second peaks r1 and r2 respectively should
be at least rth = 30 Hz at maximum contrast.

• The peak responses to the first and second cycle of the grating stimulus should not
be too different. So we aimed for a low peak difference r̂diff at maximum contrast.

• The overall tuning response of the PCs should be in a regime where the tuning curve
would have a sigmoidal shape, meaning that it should be increasing but saturating
with increasing contrasts. To fulfill this constraint, we aimed for

– Low c50, i.e., the inflection point of the tuning curve would be at low contrasts

– High n, i.e., a steep non-linear increase of the tuning curve until saturation

In order to combine these criteria independent of the actual scales of r̂diff , c50 and
n, we computed their individual rank scores in decreasing (r̂diff , c50: lower is better) or
increasing (n: higher is better) order. We then selected the parameter combination with
the highest product of rank scores, excluding the ones with peak firing rates r1 and r2
below rth and the ones with c50 values close to 1.0 (border cases). We found an optimal
parameter combination of FP = 1.0, Rpeak = 10.0 Hz, and Rbk = 0.20 Hz which we used
throughout this in-silico experiment.

Optogenetic stimulation Optogenetic stimulation was targeted at either 1654 PV+ or
822 Sst+ interneurons in a single column. We used parameters µa ≈ 0.46 mm−1 and
µ′s ≈ 5.38 mm−1, based on the wavelength of 470 nm (blue light; see Figure S2). I0 was
increased from 0% to 300% in steps of 50%.

Quantification of contrast tuning responses by sigmoidal functions We quantified contrast
tuning responses in the same way as described by Shapiro et al. (2022), by least-squares
fitting sigmoidal functions to the normalized tuning curves. Normalized tuning curves
were obtained by computing the time-averaged firing rates of all 1 s stimulus intervals
and dividing them by the mean baseline firing rate (i.e., w/o optogenetic stimulation) at
the highest contrast level. The sigmoidal function was given by

R(c) =
Rmax c

n

cn + cn50
+m (9)
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where R(c) describes the response amplitude at contrast c, m is the baseline response at
minimum contrast, Rmax is the maximum increase above baseline, n defines the steepness
of the curve, and c50 is the contrast at half Rmax. We used the coefficient of determination
(r2 score) as a measure of the goodness of fit.

Detection of neurons with robust contrast tuning We identified PV+, Sst+, and pyramidal
neurons with robust contrast tuning behavior under all conditions. In the experimental
study of Shapiro et al. (2022), tetrode recordings were used together with spike sorting.
Correspondingly, we only considered neurons firing at rates above 0.5 Hz under all stimulus
conditions, meaning they could potentially be detected by spike sorting (Pedreira et al.,
2012). In addition, we considered neurons as being robustly tuned if they had strictly
monotonically increasing tuning curves.

Modelling the effects of optogenetic stimulation of interneurons Direct photostimulation
effects on interneurons were modelled by a divisive scaling model Rdiv(c), a subtractive
shifting model Rsub(c), or a saturation additive model Rsat(c) (Shapiro et al., 2022).
For fitting these models, the parameters c50, m, n, and Rmax of the underlying contrast
tuning function R(c) were kept constant at values obtained from baseline fits (i.e., w/o
optogenetic stimulation). The divisive scaling model was defined as

Rdiv(c) = R(c)/g (10)

with a scaling term g. The subtractive shifting model was given by

Rsub(c) = R(c) − h
∣∣∣
+

(11)

with a shifting term h and rectification to rates equal or above zero. The saturation
additive model was defined as

Rsat(c) = R(c) +
S c−n

c−n + c−n
50

+A (12)

with a saturation term S and an additive term A. We used the r2 score to measure the
goodness of model fits.

Indirect effects on PCs receiving inhibitory input from optogenetically activated in-
terneurons were modelled by a conductance-based model Rcond(c), assuming a saturating
additive model description of interneurons (Shapiro et al., 2022). Response rates under
this conductance-based model were given by

Rcond(c) =
[
∆V (c) − Vth

]3∣∣∣∣
+

(13)

with a spike threshold Vth = 3.4 mV and rectification to rates equal or above zero. The
membrane potential ∆V (c) as a function of contrast was given by

∆V (c) =
gLRL + gE(c)RE + gI(c)RI

gL + gE(c) + gI(c)
− Vr (14)

with values for leak conductance gL = 6 nS, leak reversal potential RL = −50 mV, ex-
citatory reversal potential RE = 0 mV, inhibitory reversal potential RI = −65 mV, and
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resting potential Vr = −50 mV as reported by Shapiro et al. (2022). The excitatory
synaptic conductance was given by

gE(c) =
gE max c

n

cn + cn50
+ gE min (15)

with the excitatory conductances at low/high contrast given by gE min and gE max re-
spectively. The inhibitory synaptic conductance was given by

gI(c) = gE(c) +
S c−n

c−n + c−n
50

+ ∆gIE min +A (16)

with an inhibitory conductance offset ∆gIE min = 2 nS at low contrast relative to gE min.

In a first step, parameters S and A were set to zero and the model parameters c50,
gE min, gE max, and n were fit to baseline responses of PCs. In a second step, those
parameter values were kept constant and the model parameters S and A were fit to PC
responses under photostimulation conditions. Again, we used the r2 score to measure the
goodness of model fits.

4.1.14 Recreating Prince et al., 2021

We also compared the in vivo state of our model with the results of a recent in vitro study
(Prince et al., 2021), which explored how neurons with different biophysical properties
encode different types of signals. The in vitro study optically activated groups of 10 PCs
in slices of L2/3 barrel cortex from mouse lines labelling fast-spiking (FS) and regular-
spiking (RS) interneurons. Each PC was targeted individually and a binary signal was
encoded either through changes in the rate of optical pulses applied to the 10 stimulus
neurons, or through changes in the synchronicity of the pulses. The mutual information
shared between the binary signal (when encoded either as changes in firing rate or syn-
chronicity) and the firing rate of different inhibitory sub-types (recorded using whole-cell
patch clamping in vitro) was analysed.

While the in vitro stimuli used optical pulses targeted at single neurons with timings
drawn from Poisson processes, it was not necessary to explicitly model such an optical
stimulus in silico, as we can instead elicit spikes directly in the model. In the original
study, the 10 stimulus neurons were uniformly separated in a grid-like pattern at hori-
zontal and vertical distances of ∼50µm. The binary signal alternated between two states
at random intervals of 2-7 s. For the rate coding paradigm, the timings of the optical
pulses for the 10 stimulus neurons were drawn from 10 independent inhomogeneous Pois-
son processes, with the rates of optical activation varying between 5 Hz and 0.5 Hz for the
up and down states respectively (average firing rate: 2.7 Hz). For the synchronous case,
the timings of the optical pulses for the 10 stimulus neurons were drawn from a single
inhomogeneous Poisson process during the up state, or 10 independent inhomogeneous
Poisson processes during the down state. For the synchronous case, the firing rates of
the up and down state were both 2.7 Hz. We therefore tested stimulus encoding using a
range of stimulus neuron counts: from 10 to 1,000.

In our interpretation of the study, mutual information was measured between the bi-
nary signal and neural activity during a 0-5 ms and 5-50 ms window following a change
in the signal. These represented ‘early’ and ‘late’ stimulus encoding windows following
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the change in the signal, respectively. As the synchronous up state activated synchronous
patterns at a rate of 2.7 Hz, we calculated that a synchronous pattern would only be
activated during the early and late windows with probability 0.0135 (= 2.7 ∗ 5/1000) and
0.1125 (= 2.7 ∗ 45/1000) respectively. We therefore chose to use higher FR of 20 Hz for
the synchronous up and down states, and to analyse mutual information between the
binary signal and all 50 ms bins. To afford comparison with the rate code experiment
type, we used 30 Hz and 10 Hz as the FRs of the up and down states respectively. We also
compare stimulus coding during the first 50 ms following the stimulus change for both the
synchronous and rate stimulus types.

4.1.15 Analyzing long-range connectivity & correlations

Neurons were split into hexagonal subvolumes of a specified diameter d considering their
locations in a flattened view (Bolaños-Puchet and Reimann, prep).Then, the number
of long-range connections within and between the hexagonal subvolumes were counted,
yielding in S, the adjacency matrix of the resulting directed graph. Distances between
hexagonal subvolumes were calculated by considering the centers of the hexagons in the
flattened view. Furthermore, correlations of spiking activity of pairs of hexagonal sub-
volumes were also calculated. To that end, all spikes within a hexagonal subvolume were
pooled and their number in 5 ms time bins; and lastly the Pearson correlations of the
resulting time series were calculated. The correlation within a hexagonal subvolume was
calculated similarly, but using the separate time series of the E and I populations. To-
gether, this yielded F , the matrix of correlations of subvolumes. Based on S and F , the
expected correlations of long-range inputs was calculated as follows: Let i be a hexagonal
subvolume and Si the column of S associated with input counts into i. Then P = Si ·S⊤

i

is in the matrix of counts of pairs of inputs for all pairs of hexagonal subvolumes. Com-
bining P and F allows one to estimate the distribution of correlations of long-range inputs
into i, albeit at the population rather than single-cell level. For the correlation in Figure
8A2, H, J1 a hexagon size of 400µm was used, while in Figure 8I2 a smaller size of only
50µm was used.

4.1.16 Node participation

Given a connectivity graph G, a directed n-simplex in G is a set of n+ 1 nodes which are
all all-to-all connected in G in a feed-forward fashion, i.e., such that any subset of these
has a unique source and a unique sink (see Reimann et al. (2017) for more details). The
n-node participation of a node v in G is the number of directed n-simplices this node is
part of. In particular, for n = 1, this is the total degree of the node in G. Thus, this can be
though of a generalization of the notion of degree that takes into account account higher
order interactions and has been shown to strongly correlate with other node centrality
metrics Sizemore et al. (2018).

4.2 Quantification and statistical analysis

Details of all statistical analyses can be found in figures and figure legends.

4.3 Additional Resources

No other additional resources.
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Videos

1. Layer-wise E and I population rasters and max-normalised histograms of sponta-
neous activity for the central column of the seven column subvolume for each of the
60 meta-parameter combinations. Meta-parameter values are shown in brackets in
the following order: Ca2+, PFR, ROU .

2. Visualisation of spontaneous activity for the seven column subvolume for the param-
eter combination Ca2+ = 1.1 mM, PFR = 0.9, ROU = 0.2 after collapsing activity
to flatspace (activity binned and smoothed).

3. Layer-wise E and I population rasters and max-normalised histograms of evoked
activity during the 10 single whisker deflection protocol for each of the simulated
meta-parameter combinations. Meta-parameter values are shown in brackets in the
following order: Ca2+, PFR, ROU , FP .

4. Trial-averaged max-normalised histograms of evoked activity during the 10 single
whisker deflection protocol for each of the simulated meta-parameter combinations.
Rasters of spiking activity shown for the first of 10 trials activity. Dashed lines show
in vivo single whisker deflection reference data. Meta-parameter values are shown
in brackets in the following order: Ca2+, PFR, ROU , FP .

5. Visualisation of trial-averaged response of the seven column subvolume over the 10
single whisker deflection protocol for the parameter combination Ca2+ = 1.1 mM,
PFR = 0.3, ROU = 0.4, FP = 20% after collapsing activity to flatspace (activity
binned and smoothed).

6. Visualisation of spontaneous activity for the full nbS1 model for the parameter
combination Ca2+ = 1.05 mM, PFR = 0.15, ROU = 0.4 after collapsing activity to
flatspace (activity binned and smoothed).

7. Visualisation of trial-averaged response of the full nbS1 model over the 10 single
whisker deflection protocol for the parameter combination Ca2+ = 1.1 mM, PFR =
0.15, ROU = 0.4, FP = 20% after collapsing activity to flatspace (activity binned
and smoothed).
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eling and analysis of detailed neuron simulations. International Journal of High Performance
Computing Applications, 34((4)):428–449.

Crochet, S. and Petersen, C. C. (2006). Correlating whisker behavior with membrane potential in
barrel cortex of awake mice. Nature Neuroscience, 9(5):608–610.

Dai, K., Hernando, J., Billeh, Y. N., Gratiy, S. L., Planas, J., Davison, A. P., Dura-Bernal,
S., Gleeson, P., Devresse, A., Dichter, B. K., Gevaert, M., King, J. G., van Geit, W. A.,
Povolotsky, A. V., Muller, E., Courcol, J. D., and Arkhipov, A. (2020). The SONATA data
format for efficient description of large-scale network models. PLoS Computational Biology,
16(2):e1007696.

Datwani, A., Iwasato, T., Itohara, S., and Erzurumlu, R. S. (2002). NMDA receptor-dependent
pattern transfer from afferents to postsynaptic cells and dendritic differentiation in the barrel
cortex. Molecular and Cellular Neuroscience, 21(3):477–492.

De Kock, C., Bruno, R. M., Spors, H., and Sakmann, B. (2007). Layer-and cell-type-specific
suprathreshold stimulus representation in rat primary somatosensory cortex. The Journal of
physiology, 581(1):139–154.

Destexhe, A., Rudolph, M., Fellous, J. M., and Sejnowski, T. J. (2001). Fluctuating synaptic
conductances recreate in vivo-like activity in neocortical neurons. Neuroscience, 107(1):13–24.

Diamond, M. E., Armstrong-James, M., and Ebner, F. F. (1992). Somatic sensory responses in the
rostral sector of the posterior group (pom) and in the ventral posterior medial nucleus (vpm)
of the rat thalamus. Journal of Comparative Neurology, 318(4):462–476.

Dura-Bernal, S., Neymotin, S. A., Suter, B. A., Dacre, J., Moreira, J. V., Urdapilleta, E., Schie-
mann, J., Duguid, I., Shepherd, G. M., and Lytton, W. W. (2023). Multiscale model of primary
motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics.
Cell Reports, 42(6).
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Table S1: Excitatory synaptic pathways. Average class parameters are marked in bold and are used predictively
(in lack of reference in vitro data) for the remaining pathways belonging to the same class. Physical dimensions are as
follows: peak conductance ĝ: nS, depression and facilitation time constants D, F , and the EPSC τdecay: ms, the Hill
coefficient of the nonlinear, [Ca2+]o dependent scaling of release probability UHill: mM, the release probability USE ,
the average number of vesicles in the release-ready pool NRRP , and the NMDA/AMPA ratio ĝratio are dimensionless.

Pre Post ĝ USE D F NRRP τdecay ĝratio UHill

PC to Sst+IN (E1)

PC MC 0.2±0.1 0.09±0.12 138±211 670±830 1.5 1.74±0.18 0.8 2.79
PC PT 0.6±0.5 0.02±0.00 194±18 507±37 4.5 1.74±0.18 0.8 1.09
PC DT 0.2±0.1 0.02±0.00 194±18 507±37 1.5 1.74±0.18 0.8 2.79

PC to PC (E2)

L23 PC L23 PC 1.0±0.5 0.46±0.26 671±17 17±5 2.6 1.74±0.18 0.7 2.79
L4 PC L4 PC 0.6±0.3 0.86±0.09 671±17 17±5 1.0 1.74±0.18 0.9 2.79
L4 SSC L23 PC 0.2±0.1 0.79±0.04 671±17 17±5 1.8 1.74±0.18 0.5 2.79
L5 STPC L5 STPC 0.9±0.3 0.39±0.03 690±90 44±21 1.0 1.74±0.18 0.7 2.79
L5 TTPC L5 TTPC 1.9±1.0 0.38±0.10 365±100 25±45 2.8 1.74±0.18 0.7 2.79
L23 PC L5 TTPC 0.5±0.2 0.50±0.02 671±17 17±5 1.5 1.74±0.18 0.7 2.79
L4 SSC L5 STPC 0.6±0.3 0.50±0.02 671±17 17±5 1.2 1.74±0.18 0.7 2.79
L4 SSC L6 PC 0.4±0.2 0.50±0.02 671±17 17±5 1.0 1.74±0.18 0.7 2.79
L6 TPC:A L6 TPC:A 1.0±0.5 0.37±0.11 280±90 90±80 1.0 1.74±0.18 0.7 2.79
L6 TPC:C L6 TPC:C 0.5±0.2 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 IPC L6 IPC 0.9±0.3 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 PC to same L6 PC 0.8±0.2 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 TPC:A L6 TPC:C 1.2±0.5 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 TPC:A L6 BPC 0.3±0.1 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 TPC:C L6 IPC 0.2±0.1 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 IPC L6 BPC 0.4±0.1 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 BPC L6 TPC:A 0.2±0.1 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 PC to diff. L6 PC 0.5±0.4 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
PC PC 0.7±0.4 0.50±0.02 671±17 17±5 1.5 1.74±0.18 0.7 2.79

PC to Sst-IN (E2)

PC NBC 0.6±0.4 0.72±0.12 227±70 13±24 4.5 1.74±0.18 0.8 1.09
PC PT 0.6±0.5 0.50±0.02 671±17 17±5 4.5 1.74±0.18 0.8 1.09
PC L1 GABAB- 0.3±0.1 0.50±0.02 671±17 17±5 1.5 1.74±0.18 0.8 1.94
L6 TPC:A L6 BC 0.4±0.1 0.58±0.13 240±80 70±90 1.5 1.74±0.18 0.8 1.09
L6 TPC:C L6 BC 0.4±0.1 0.36±0.21 380±310 280±340 1.5 1.74±0.18 0.8 1.09
L6 IPC L6 BC 0.3±0.1 0.51±0.20 440±300 100±50 1.5 1.74±0.18 0.8 1.09
L6 PC L6 BC 0.4±0.1 0.47±0.21 370±290 155±215 1.5 1.74±0.18 0.8 1.09
PC IN 0.4±0.1 0.50±0.02 671±17 17±5 1.5 1.74±0.18 0.8 1.94

Proximal Targeting inhibitory mtypes: N/L/SBC, CHC. N/LBC etypes: cACint, cIR, bAC, bIR, cNAC have E1,
while the rest of etypes; and SBC and CHC mtypes have E2 short-term dynamics.
Distal Targeting inhibitory mtypes: BP, DBC, BTC. L1 GABAB- comprise all non NGC mtypes in L1
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Table S2: Inhibitory synaptic pathways. Average class parameters are marked in bold and are used predictively
(in lack of reference in vitro data) for the remaining pathways belonging to the same class. Physical dimensions are
as follows: peak conductance ĝ: nS, depression and facilitation time constants D, F , and the IPSC τdecay: ms, the
Hill coefficient of the nonlinear, [Ca2+]o dependent scaling of release probability UHill: mM, the release probability
USE , the average number of vesicles in the release-ready pool NRRP , and the GABAB/GABAA ratio ĝratio are
dimensionless.

Pre Post ĝ USE D F NRRP τdecay ĝratio UHill

IN to PC (I1)

L6 BC L6 BC 2.3±0.5 0.16±0.10 45±21 376±253 1.0 10.40±6.20 0.0 1.94
SBC (cACint) PC 1.9±1.0 0.16±0.10 45±21 376±253 3.3 10.40±6.20 0.0 1.94

IN to PC and IN (I2)

MC PC 3.0±1.5 0.30±0.08 1250±520 2±4 1.0 8.30±2.20 0.0 1.94
DT PC 3.0±1.5 0.25±0.13 706±405 21±9 1.0 8.30±2.20 0.0 1.94
NBC PC 1.9±1.0 0.14±0.05 875±285 22±5 3.3 8.30±2.70 0.0 1.94
NGC PC 0.2±0.1 0.25±0.13 706±405 21±9 1.0 36.50±1.30 0.8 1.94
L1 GABAB- PC 0.3±0.1 0.25±0.13 706±405 21±9 1.0 8.30±2.20 0.0 1.94
SBC (dNAC) PC 1.9±1.0 0.25±0.13 706±405 21±9 3.3 8.30±2.20 0.0 1.94
IN * 2.3±0.5 0.25±0.13 706±405 21±9 1.0 8.30±2.20 0.0 1.94

IN to PC (I3)

L6 BC L6 PC 1.9±1.0 0.44±0.25 195±190 200±320 1.0 10.40±6.20 0.0 1.94
PT PC 1.9±1.0 0.32±0.14 144±80 62±31 3.3 6.40±1.70 0.0 1.94

Proximal Targeting inhibitory mtypes: N/L/SBC, CHC. N/LBC etypes: cNAC, dSTUT, cSTUT, bSTUT have I3,
while the rest of etypes; and SBC (except: cACint and dNAC) and CHC mtypes have I2 short-term dynamics.
Distal Targeting inhibitory mtypes: BP, DBC, BTC. L1 GABAB- comprise all non NGC mtypes in L1

Table S3: Thalamocortical synaptic pathways. Values taken from the internal connectivity (Table S1) are
marked in bold. Physical dimensions are the same as in Table S1.

Pre Post ĝ USE D F NRRP τdecay ĝratio UHill

VPM, POm to Sst+IN (E1)

* Sst+ 0.2±0.1 0.09±0.12 138±211 670±830 1.5 1.74±0.18 0.8 2.79

VPM, POm to PC (E2)

VPM L23 PC 1.7±0.6 0.75±0.1 671±17 17±5 1.5 1.74±0.18 0.7 2.79
VPM L4 PC 1.1±0.4 0.75±0.1 671±17 17±5 1.5 1.74±0.18 0.7 2.79
VPM L56 PC 2.4±0.9 0.75±0.1 671±17 17±5 1.5 1.74±0.18 0.7 2.79
POm PC 1.7±0.6 0.75±0.1 671±17 17±5 1.5 1.74±0.18 0.7 2.79

VPM, POm to PV+IN (E2)

VPM L4 PV+ 1.4±0.4 0.72±0.12 227±70 13±24 4.5 1.74±0.18 0.8 1.09
VPM L6 PV+ 3.1±1.0 0.72±0.12 227±70 13±24 4.5 1.74±0.18 0.8 1.09
VPM L235 PV+ 2.2±0.4 0.72±0.12 227±70 13±24 4.5 1.74±0.18 0.8 1.09
POm PV+ 2.2±0.4 0.72±0.12 227±70 13±24 4.5 1.74±0.18 0.8 1.09

VPM, POm to 5HT3aR+IN (E2)

* 5HT3aR+ 0.4±0.1 0.50±0.02 671±17 17±5 1.5 1.74±0.18 0.8 1.94

Sst+ inhibitory mtypes: MC and BP, DBC, BTC (cACint etype only). PV+ inhibitory mtypes: N/LBC, CHC.
5HT3aR+ mtypes: the rest of the mtypes not listed above (e.g. NGC, SBC, and everything in L1).
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Table S4: Validation of PSP amplitudes (see Figure 3B1)

Pre Post in vitro (mV) in silico (mV) Reference

L23 PC L23 PC 1.00±0.70 0.99±0.67 Feldmeyer et al. (2006)
L23 PC L5 TTPC 0.30±0.30 0.30±0.24 Reyes and Sakmann (1999)
L4 EXC L4 EXC 1.59±1.51 1.62±1.31 Feldmeyer et al. (1999)
L4 SSC L23 PC 0.70±0.60 0.66±0.34 Feldmeyer et al. (2002)
L4 SSC L5 STPC 0.60±0.40 0.59±0.33 Feldmeyer et al. (2005)
L4 SSC L6 PC 0.29±0.16 0.30±0.30 Qi and Feldmeyer (2016)
L5 TTPC L5 TTPC 1.30±1.10 1.24±0.73 Markram et al. (1997a)
L5 STPC L5 STPC 0.80±0.20 0.75±0.40 Le Bé et al. (2007)
L6 BPC L6 TPC:A 0.21±0.00 0.22±0.15 Berger (2009)
L6 IPC L6 BPC 0.42±0.18 0.42±0.21 Berger (2009)
L6 IPC L6 IPC 1.05±0.31 1.09±0.81 Berger (2009)
L6 TPC:C L6 IPC 0.18±0.00 0.19±0.13 Berger (2009)
L6 TPC:C L6 TPC:C 0.43±0.22 0.43±0.29 Berger (2009)
L6 TPC:A L6 BPC 0.32±0.27 0.31±0.17 Berger (2009)
L6 TPC:A L6 TPC:C 1.19±0.15 1.10±0.63 Berger (2009)
L6 TPC:A L6 TPC:A 1.51±0.98 1.45±1.11 Berger (2009)

L23 PC L1 GABAB- 1.10±0.30 1.09±0.83 Wozny and Williams (2011)
L4 EXC L4 FS 2.20±2.20 2.17±2.46 Beierlein et al. (2003)
L5 TTPC L5 MC 0.28±0.30 0.28±0.33 Silberberg and Markram (2007)
L6 IPC L6 BC 1.59±1.60 1.56±1.48 Berger (2009)
L6 TPC:A L6 BC 2.20±3.28 2.02±1.44 Berger (2009)
L6 TPC:C L6 BC 1.29±1.65 1.28±0.84 Berger (2009)
L6 PC L6 MC 0.20±0.12 0.15±0.14 Berger (2009)

L1 NGC L23 PC 0.58±0.10 0.54±0.41 Wozny and Williams (2011)
L1 GABAB- L23 PC 0.27±0.04 0.26±0.13 Wozny and Williams (2011)
L4 FS L4 EXC 1.10±0.80 1.14±0.81 Beierlein et al. (2003)
L5 MC L5 TTPC 0.50±0.40 0.47±0.25 Silberberg and Markram (2007)

VPM L4 EXC 2.40±2.00 2.51±2.10 Beierlein et al. (2003)
VPM L4 FS 4.10±3.20 4.09±2.52 Beierlein et al. (2003)
VPM L6 EXC 1.20±0.80 1.28±1.96 Beierlein and Connors (2002)
VPM L6 FS 3.90±3.50 3.11±2.57 Beierlein and Connors (2002)

Thick-tufted mtypes: L5 TPC:A, L5 TPC:B. Slender-tufted mtypes: L5 TPC:C, L5 UPC.

Table S5: Validation of first PSP amplitudes’ CVs (see Figure 3B2)

Pre Post in vitro (mV) in silico (mV) Reference

L4 EXC L4 EXC 0.37±0.16 0.25±0.06 Feldmeyer et al. (1999)
L4 EXC L4 FS 0.27±0.13 0.38±0.25 Beierlein et al. (2003)
L4 FS L4 EXC 0.25±0.11 0.28±0.09 Beierlein et al. (2003)
L4 SS L5 STPC 0.33±0.20 0.43±0.06 Feldmeyer et al. (2005)
L4 SS L6 PC 0.50±0.11 0.51±0.06 Qi and Feldmeyer (2016)
L4 SS L23 PC 0.27±0.13 0.32±0.07 Feldmeyer et al. (2002)
L5 TTPC L5 TTPC 0.31±0.14 0.39±0.09 Barros-Zulaica et al. (2019)
L5 STPC L5 STPC 0.58±0.24 0.51±0.06 Le Bé et al. (2007)
L23 PC L23 PC 0.33±0.18 0.43±0.15 Feldmeyer et al. (2006)
L234 PC L234 NBC 0.32±0.08 0.21±0.08 Wang et al. (2002)

Thick-tufted mtypes: L5 TPC:A, L5 TPC:B. Slender-tufted mtypes: L5 TPC:C, L5 UPC.
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Table S6: Validation of mPSC frequency (see Figure 3E2)

Pre Post in vitro (Hz) in silico (Hz) Reference

E L23 PC 8.20±2.90 9.36±4.38 Brasier and Feldman (2008)
E L4 PC 11.90±2.40 15.64±7.84 Brasier and Feldman (2008)
E L6 CC 2.80±0.80 3.87±2.14 Yang et al. (2020)
E L6 CT 0.95±0.36 1.41±0.74 Yang et al. (2020)
I L5 PC 21.10±4.80 16.06±6.74 Ling and Benardo (1999)

Cortico-cortical mtypes: L6 UPC, L6 IPC, L6 HPC.
Cortico-thalamic mtypes: L6 TPC:A, L6 TPC:C.
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Figure S1: Spontaneous activity calibration: estimating χ and ϕ. A: Estimation of χ
and ϕ for L5 E (illustration). ΨCa2+,ROU

: CFR 7→ OUµ is estimated by dividing it into the two
functions χ and ϕ, which are determined separately. Left: χ : (ROU ,UFR) 7→ OUµ. The color of
each point shows the mean unconnected FR in a single column for L5E for different combinations
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of OUµ (x-axis) and OUσ (y-axis). For a given value of ROU interpolation is used over the
datapoints to estimate the predicted FRs along a line of gradient ROU starting at the origin.
As FRs increase monotonically with increasing OUµ and OUσ, the interpolation can be used to
estimate the OUµ and OUσ combination that will produce a given target unconnected FR. Right:
ϕCa2+,ROU

: UFR 7→ CFR. In each iteration, 10 simulations of the seven hexagon subvolume
are run for a range of target PFR values. For each population (i.e. L5 E) an exponential is fit
to unconnected vs. connected firing rates, and used to estimate unconnected firing rates which
will achieve target connected firing rates on the next iteration. B: Visualisation of the meta-
parameter space. The algorithm is run for a single combination of Ca2+ and ROU (blue), and is
then generalised for other combinations (red). C: Data for estimation of χ for each population.
Population FRs from unconnected simulations of a single column. Simulations vary by OUµ

and OUσ. Colour shows FR. Black circles show region where FRs are greater than 0 and less
than the population’s in vivo reference FR. The dependence of unconnected FR on OUµ and
OUσ is heterogeneous across populations. D: Final estimation of ϕ1.1,0.4 for each neuron group.
Exponential fit of unconnected vs connected FRs for each population after 5th iteration. The final
fits are heterogeneous across populations.
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C2
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Figure S2: In silico experimental methods. A: Synaptic pathway lesions. After selecting
a pre- (green) and post-synaptic (blue) population of neurons, connections between them in the
specified direction are removed (red arrows). B: Optogenetic manipulations. B1: Decay with
depth of the strength of a stimulus applied to mimic the effect of optogenetic manipulations with
470 nm (blue) and 595 nm (yellow) light. Indicated for exemplary intensities (values of I0). B2:
Targeted neuronal populations in two in silico optogenetic experiments. Density of affected cells
(combination of expression level and light depth) indicated by the corresponding color of light.
Unaffected populations in grey. Left: Excitation of inhibitory populations. Right: Inhibition of
PCs in L4. C: Stimulation with thalamic inputs. C1: Each thalamic fiber in the model is assigned
a position in a flat coordinate system. Based on the coordinates, type of fiber (VPM vs. POm),
or randomly, time series of sensory stimulation are assigned to the fibers. C2: Sensory stimuli
are transformed by a transfer function capturing pre-thalamic processing. The transfer function
can simply be identity. The transformed signal is then used with a spiking model to generate
stochastic spike trains that serve as inputs into a simulation.
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Figure S3: Firing rate distributions. A: Firing rate distributions of different subpopulations
for one of the parameter combinations. B: Non-spiking cells are excluded for improved visualisa-
tion of the distributions.
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Figure S4: Whisker deflection responses - supplementary. A: PSTHs in response to the
single whisker deflection stimulus for all parameter combinations. PSTHs of simulations which
passed the initial criteria are coloured green, whilst those which did not are coloured grey. B:
Layer-wise PV+ and Sst+ subpopulation PSTHs for simulations which passed the criteria. C:
Analysis of evoked responses of L5 E under two simulation cases. The first case uses the mean of
the VPM to L4 E and L6 E synaptic conductance for the VPM to L5 E conductance, whilst the
second uses the maximum of the two values (VPM to L6 E). C1: For the two simulation cases,
L5 E PSTHs for the criteria passing (green) and failing (grey) simulations. For the mean case,
some of the simulations that do not burst or do not have a secondary rebound, fail the criteria
because of low signal to noise ratio. C2: Ratios between evoked and spontaneous activity of L5
E population for criteria passing simulations. There are fewer criteria passing simulations for the
mean case, and those that do are much lower than the in vivo reference (40.2). D1: Proportion
of spiking cells by population in the central column over 100ms following stimulus onset. Each
line represents a different criteria passing simulation. D2: Heatmap showing the effect of the
meta-parameters on the proportion of spiking cells over the entire central column. E: Heatmap
showing the effect of the meta-parameters on the proportion of spiking cells which spike only once
over 100ms following stimulus onset.
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Figure S5: Active whisker touch responses - supplementary: Same as Fig. 5 but using an
active whisker touch VPM stimulus and in vivo reference for the active whisker touch paradigm
(see Methods).
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Figure S6: Calibration of the drifting grating stimulus based on peak firing rates.
The drifting grating stimulus was calibrated by running a parameter scan of 45 simulations to
determine optimal values for FP , Rbk, and Rpeak. The maximum (top) and average (middle) of the
first and second peak firing rates r1 and r2 (connected points) over the whole population of PCs,
together with the average of the normalized peak difference (Michelson contrast) r̂diff (bottom)
are summarized. Different colors indicate different contrast levels C ∈ [0.06, 0.12, 0.5, 1.0]. The
rate threshold rth = 30 Hz at maximum contrast, the calibration target values that were taken into
account for selecting the optimal parameter set, as well as the optimal parameter set (FP = 1.0,
Rbk = 0.2 Hz, and Rpeak = 10.0 Hz), are highlighted.
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Figure S7: Calibration of the drifting grating stimulus based on sigmodal parameters.
The drifting grating stimulus was calibrated by running a parameter scan of 45 simulations to
determine optimal values for FP , Rbk, and Rpeak. The values of the four parameters m, n, Rmax,
and c50 for fitting a sigmoidal function to the average firing rates of the whole population of
PCs within the full stimulation interval are summarized. Dashed lines indicate fitted parameter
values when considering only the first or second half of the response interval. Calibration target
values that were taken into account for selecting the optimal paramter set, as well as the optimal
parameter set (FP = 1.0, Rbk = 0.2 Hz, and Rpeak = 10.0 Hz), are highlighted.
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Figure S8: Modelling the effects of optogenetic stimulation of interneurons. A1-
A3: Divisive scaling (Div), subtractive shifting (Sub), and saturation additive (SA) model fits
(dashed lines) to responses of an exemplary PV+ interneuron (solid lines) at different levels of
PV+ optogenetic stimulation, ranging from 0% (baseline) to 300%. B1: Goodness of Div/Sub/SA
model fits (µ±SEM of r2 score) for different depolarization levels over all 259 robustly tuned PV+
interneurons, showing that direct photostimulation effects on interneurons can be best described
by the saturation additive model. C1: Polar plot of S (saturation) and A (additive) parameter
values of the SA model fits to all 259 robustly tuned PV+ interneurons at different levels of
PV+ optogenetic stimulation. Diamond markers indicate mean values (in polar coordinates)
over neurons, colored arc lines the circular SD of the polar angles. B2: Same as B1, but for
conductance-based model fits describing indirect photostimulation effects on all 228 robustly tuned
PCs, assuming a saturating additive model description of interneurons. C2: Same as C1, but for
the conductance-based model fits to all robustly tuned PCs.
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Figure S9: Full nbS1 - supplementary: A: Evoked responses of a single hexagonal subvolume
over 10 single whisker deflections. B: Trial-averaged activity of the full circuit for FP = 15%
following the single whisker deflection stimulus (top). Middle and bottom: trial-averaged activity
of the full circuit for FP = 15% following the single whisker deflection stimulus for FP = 15%
and FP = 20%, showing only the top 2% of bins for each time window after the baseline activity
level has been subtracted. C: Distribution of spiking correlations of inputs into 240 subvolumes.
Calculated at reduced spatial resolution, based on connection counts and correlations between
the subvolumes (see Supp. Methods). Subvolumes are sorted by the E/I correlation of neurons
within them. For evoked activity with FP = 20%. D: Mean of the correlations of inputs into 240
subvolumes (as in C) against internal spiking correlation for all subvolumes during spontaneous
activity. Black line: linear fit. Calculated based on connection counts and correlations between
50µm hexagonal subvolumes (see Supp. Methods). E: Classification of subvolumes based on
low or high internal correlation and membership in the long-range rich club. Data from evoked
activity with FP = 20%. F: Indegree from the subvolume innervated by the VPM stimulus against
correlation with that subvolume, indicated for all other subvolumes. Color indicates the ∆t with
maximum correlation.
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