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Abstract21

The CA1 region of the hippocampus is one of the most studied regions of the rodent brain, thought22

to play an important role in cognitive functions such as memory and spatial navigation. Despite a23

wealth of experimental data on its structure and function, it can be challenging to reconcile information24

obtained from diverse experimental approaches. To address this challenge, we present a community-25

driven, full-scale in silico model of the rat CA1 that integrates a broad range of experimental data, from26

synapse to network, including the reconstruction of its principal afferents, the Schaffer collaterals, and27

a model of the effects that acetylcholine has on the system. We have tested and validated each model28

component and the final network model, and made input data, assumptions, and strategies explicit and29

transparent. The flexibility of the model allows scientists to address a range of scientific questions. In30

this article, we describe the methods used to set up simulations that reproduce and extend in vitro and31

in vivo experiments. Among several applications in the article, we focus on theta rhythm, a prominent32

hippocampal oscillation associated with various behavioral correlates and use our computer model to33

reproduce and reconcile experimental findings. Finally, we make data, code and model available through34

the hippocampushub.eu portal, which also provides an extensive set of analyses of the model and a user-35

friendly interface to facilitate adoption and usage. This neuroscience community-driven model represents36

a valuable tool for integrating diverse experimental data and provides a foundation for further research37

into the complex workings of the hippocampal CA1 region.38

Keywords39

hippocampus, CA1, neuroscience community, large-scale compartmental modeling, data-driven.40
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1 Introduction41

The hippocampus is thought to play a fundamental role in cognitive functions such as learning, memory,42

and spatial navigation (Morris et al., 1982; O’Keefe & Dostrovsky, 1971). It consists of three subfields43

of cornu ammonis (CA), CA1, CA2, and CA3 (see Amaral and Witter, 1989). CA1, for instance, one44

of the most studied, provides the major hippocampal output to the neocortex and many other brain45

regions (e.g. Soltesz and Losonczy, 2018). Therefore, understanding the function of CA1 represents a46

significant step towards explaining the role of hippocampus in cognition.47

Each year the large neuroscientific community studying hippocampus contributes thousands of papers48

to an existing mass of empirical data collected over many decades of research (see Figure S1). Recent49

reviews have, however, highlighted gaps and inconsistencies in the existing literature (Bezaire & Soltesz,50

2013; Pelkey et al., 2017; Sanchez-Aguilera et al., 2021; Wheeler et al., 2015). Currently, the community51

lacks a unifying, multiscale model of hippocampal structure and function with which to integrate new52

and existing data.53

Computational models and simulations have emerged as crucial tools in neuroscience for consolidating54

diverse multiscale data into unified, consistent and quantitative frameworks that can be used to validate55

and predict dynamic behavior (Fan & Markram, 2019). However, constructing such models requires56

assigning values to model parameters, which often involves resolving conflicts in the data, identifying57

gaps in knowledge, and making explicit assumptions to compensate for any incomplete data. In order to58

validate the model, it must be tested under specific experimental conditions using independent sources59

of empirical evidence before the model can be used to generate experimentally testable predictions.60

Therefore, the curation of a vast range of experimental data is a fundamental step in constructing and61

parametrizing any data-driven model of hippocampus.62

The challenge of incorporating these data into a comprehensive reference model of hippocampus, how-63

ever, is considerable and calls for a community effort. While community-wide projects are common in64

other disciplines (e.g. Human Genome Project in bioinformatics, CERN in particle physics, NASA’s65

Great Observatories program in astronomy - Aad and Abbott, 2015; Hood and Rowen, 2013; Rock-66

ström et al., 2009), they are a relatively recent development in neuroscience. OpenWorm, for example,67

is a successful, decade-long community project to create and simulate a realistic, data-driven reference68

model of the roundworm Caenorhabditis elegans (C. elegans) including its neural circuitry of ∼30269

neurons to study the behavior of this relatively simple organism in silico (Gerkin et al., 2018; Szigeti70

et al., 2014). By contrast, for the hippocampus, with a circuit many orders of magnitude larger than71

C. elegans, models have typically been constructed with a minimal circuit structure on a relatively small72

scale and often their model parameters have been tuned with the goal of reproducing a single empirical73

phenomenon (see Sutton and Ascoli, 2021). Comparing the results from a variety of circuit models74

is problematic because they vary in their degree of realism and frequently rely on one or a few single75

neuron models making generalization of their findings difficult (see Sutton and Ascoli, 2021). While76

these focused models have led to valuable insights (see M. E. Hasselmo et al., 2020), this piecemeal77

approach fails to demonstrate whether these separate phenomena can be reproduced in a full circuit78

model without the need to adjust parameters.79
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Large-scale circuit models of hippocampus using realistic multi-compartment spiking neuronal models80

pioneered by Traub and colleagues (Traub et al., 1988, 1992, 2000; Traub & Miles, 1991) have been81

used to explain key characteristics of oscillatory activity observed in hippocampal slices and to examine82

the origins of epilepsy in region CA3. More recently, with significant increases in high-performance83

computing resources, Cutsuridis et al. (2010) in a microcircuit model of CA1 and notably Bezaire et al.84

(2016) in a full-scale CA1 model, have examined the contribution of diverse types of interneurons to85

the generation of prominent theta (4-12 Hz) oscillations. While these large-scale circuit models provide86

a more holistic approach, they still need to incorporate other features to improve their realism. For87

instance, to better reflect the highly curved shape of the hippocampus, an atlas-based structure that88

more closely mimics anatomy is required. Additionally, models need to employ pathway-specific short-89

term synaptic plasticity known to regulate circuit dynamics and neural coding (Tsodyks & Markram,90

1997). While Yu et al. (2020) have constructed a down-scaled, atlas-based model of the rat dentate91

gyrus (DG) to CA3 pathway, there has to date been no atlas-based, full-scale model of rat CA1 (For a92

more detailed comparison of these models, see Table S2).93

To initiate a community effort of this magnitude requires an approach that standardizes data curation94

and integration of diverse datasets from different labs and uses these curated data to construct and95

simulate a scalable and reproducible circuit automatically. A reconstruction and simulation methodology96

was introduced and applied at the microcircuit scale, for the neocortex (Markram et al., 2015) and the97

thalamus (Iavarone et al., 2023) and at full-scale for a whole neocortical area (Reimann et al., 2022).98

However, these models relied primarily on datasets collected specifically for the purpose rather than data99

sought from and curated with the help of the scientific community.100

In this paper, we describe a community-driven reconstruction and simulation of a full-scale, atlas-based101

multiscale structural and functional model of the area CA1 of the hippocampus that extends and improves102

upon the approach described in Markram et al. (2015). To stimulate the model beyond its intrinsic103

circuitry, we have also modeled the synaptic input from the largest afferent pathway to CA1, the Schaffer104

collaterals (SC) axons from CA3, the input most commonly stimulated electrically in the experiments,105

and the neuromodulatory influence of cholinergic inputs, perhaps the most studied neuromodulator in the106

hippocampus (Teles-Grilo Ruivo & Mellor, 2013). We constrained all model parameters and data using107

available experimental data from different labs or explicit assumptions made when data were lacking. We108

extensively tested and validated each model component and the final network to assess its quality. To109

maximize realism of the simulations, we set up simulation experiments to represent as closely as possible110

the experimental conditions of each empirical validation. We demonstrated the broad applicability of111

the model by studying the generation of neuronal oscillations, with a specific focus on theta rhythm, in112

response to a variety of different stimulus conditions. Over time and with the help of the community,113

limitations of the model revealed by these processes can be addressed to improve upon it. To facilitate114

a widespread adoption by the community, we have developed a web-based resource to share the model115

and its components, open sourcing extensive analyses, validations, and predictions that can be accessed116

as a complement to direct interaction with the model (hippocampushub.eu). Finally, we have developed117

a massive online open course (MOOC) to introduce users to the building, analysis, and simulation of a118

rat CA1 microcircuit (https://www.edx.org/course/simulating-a-hippocampus-microcircuit) providing119

a smaller version of the full-scale model for education purposes.120
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2 Results121

We divide the results section into model reconstruction, and model simulation and applications. These122

subsections represent two distinct processes: the reconstruction of the general model and its use to123

investigate specific scientific questions (see Table S1, for a list of abbreviations and acronyms used in124

the paper).125

2.1 Model reconstruction126

In this section, we describe how we reconstructed the main components of the model: the cornus127

ammonis 1 (CA1), its main afferents, the Schaffer collaterals (SC), and the effect of acetylcholine128

(ACh). We describe each model component as a compound model of several building blocks (Figure 1).129

For each building block, we show how we evolved from the sparse data available in the literature to the130

dense data necessary for the reconstruction process. We provide the source of the data, our assumptions131

and our rationale. Finally, we show validations of the building blocks to assess their robustness and132

validity. We describe the technical details briefly in Methods, and fully in Supplementary Methods.133

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 17, 2023. ; https://doi.org/10.1101/2023.05.17.541167doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.17.541167


Figure 1: Overview of the model and the reconstruction process. A visualization of a full-scale,
right-hemisphere reconstruction of rat CA1 region and its components. The number of cells is reduced
to 1% for clarity, where neurons are randomly colored. The CA1 network model integrates entities
of different spatial and temporal scales. The different scales also reflect our bottom-up approach to
reconstruct the model. Ion channels (step 1) were inserted into the different morphological types (step
3) to reproduce electrophysiological characteristics and obtain neuron models (step 4). Neurons were
then connected by synapses to generate an intrinsic CA1 connectome (step 5). For each intrinsic path-
way, synaptic receptors (step 2) and transmission dynamics were assigned based on single neuron paired
recording data (step 6) to create a functional intrinsic CA1 network model (step 7). The intrinsic
CA1 circuit received synaptic input from CA3 via Schaffer collateral (SC) axons (step 8). The neuro-
modulatory influence of cholinergic release on the response of CA1 neurons and synapses was modeled
phenomenologically (step 9). The dynamic response of the CA1 network was simulated with a variety
of manipulations to model in vitro and in vivo, intrinsic and extrinsic stimulus protocols while recording
intracellularly and extracellularly (step 10) to validate the circuit at different spatial scales against spe-
cific experimental studies (step 11) and to make experimentally testable predictions (step 12).

2.1.1 Cornu ammonis 1 (CA1)134

We reconstructed a full-scale model of the CA1 field of the rat hippocampus (Figure 1) by follow-135

ing and adapting the method described in Markram et al. (2015). For the neuron models, we de-136

fined morphological type (m-type) and electrical properties type (e-type) of rat CA1 based on exper-137

imental datasets. For m-types, we used two datasets (from young adult Sprague Dawley and Wistar138

rats) which include 43 morphological reconstructions of neurons belonging to 12 m-types (Table S3,139

https://www.hippocampushub.eu/model/experimental-data/neuronal-morphology/). In particular, we140

considered one type of excitatory neuron, the pyramidal cell (PC), and 11 types of inhibitory neurons:141
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axo-axonic cell (AA), two types of bistratified cell (BS), back-projecting cell (BP), cholecystokinin (CCK)142

positive basket cell (CCKBC), ivy cell (Ivy), oriens lacunosum-moleculare cell (OLM), perforant pathway143

associated cell (PPA), parvalbumin positive basket cell (PVBC), Schaffer collateral associated cell (SCA),144

and trilaminar cell (Tri). We subsequently repaired, scaled and cloned the neurons to produce a morphol-145

ogy library of 2,592 cells (https://www.hippocampushub.eu/model/digital-reconstructions/neurons/).146

To validate the resulting morphology library, we considered the distributions of 21 different morphological147

features and computed a similarity score between original and cloned morphologies. We report the148

average scores grouped per feature and per m-type in Figure S2 and show that the similarity scores of149

the clone morphologies are in agreement with the original samples (see supplementary methods) . We150

also conducted correlation tests for different neurites between original and cloned morphologies (apical151

dendrites: R = 0.99, p = 1.57 × 10−42, basal dendrites: R = 0.99, p = 1.56 × 10−27, axons: R = 0.99,152

p = 1.03×10−26). In addition, we compare the topological features of the original, repaired, and cloned153

morphologies using Topological Morphology Descriptor (TMD), as described in Kanari et al. (2018).154

In Figure S3, we present the persistence diagrams of the three stages, which indicate an increase in155

morphological diversity introduced by the cloning process. The details of the topological differences per156

m-type are presented in Figures S4 and S5.157

For e-types, we used one dataset (from Sprague Dawley rats), which includes 1,456 experimentally158

obtained somatic voltage traces from 154 single cell recordings. We classified the recordings into159

four different e-types: classical accommodating for pyramidal cells and interneurons (cACpyr, cAC),160

bursting accommodating (bAC), and classical non-accommodating (cNAC), according to the well-161

established classification of Petilla Nomenclature (Petilla Interneuron Nomenclature Group et al., 2008)162

(https://www.hippocampushub.eu/model/experimental-data/neuronal-electrophysiology/). By analyz-163

ing our datasets, and where necessary, including data from the literature, each m-type can have one164

or multiple e-types with different probability. We used this information to derive the morpho-electrical165

type (me-type) composition (Table S4, https://www.hippocampushub.eu/model/reconstruction-data/166

cell-composition/).167

We combined electrophysiological features (e-features) extracted from the single cell recordings with 34168

morphologies to produce 39 single cell models (or electrical models, e-models) (Ecker et al., 2020; R.169

Migliore et al., 2018) (https://www.hippocampushub.eu/model/reconstruction-data/neuron-models/).170

From this initial pool, we excluded three models because they did not correspond to any me-types171

described experimentally. We combined the remaining 36 e-models with 2,973 morphologies to obtain172

a library of 26,112 models that matched the initial set of e-features (https://www.hippocampushub.173

eu/model/reconstruction-data/neuron-models/). In the case of pyramidal cells, we further validated174

the e-models in terms of back-propagating action potential (BPAP) showing a close correlation to175

experimental findings (Golding et al., 2001) (R = 0.878, p = 0.121) and post-synaptic potential (PSP)176

attenuation (Magee & Cook, 2000) (R = 0.846, p = 0.001) (Figure S6).177

To move from single cell to network level, we started to define the volume of the region (Figure178

S7). We took a publicly available atlas reconstruction of the hippocampus (http://cng.gmu.edu/179

hippocampus3d/) (Ropireddy et al., 2012) and considered only the CA1 region. Despite the fact180

that CA1 layers (stratum oriens (SO), stratum pyramidale (SP), SO. stratum radiatum (SR), and181
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stratum lacunosum moleculare (SLM)) were annotated in the original atlas, the presence of artifacts182

(see S1.13.1) made using the volume challenging with our existing algorithms. To alleviate the prob-183

lem, we followed additional curation steps. First, we algorithmically divided the volume into layers184

with a fixed ratio of their thicknesses (SO: 0.258 SP: 0.090 SR: 0.428 SLM: 0.224), according to185

the values extracted from the Sprague Dawley and Wistar dataset (https://www.hippocampushub.186

eu/model/experimental-data/layer-anatomy/). Then we defined vector fields and a coordinate sys-187

tem that follow the three axes of the hippocampus (longitudinal, transverse, and radial) (Figure 2,188

https://www.hippocampushub.eu/model/experimental-data/layer-anatomy/). These extra features in-189

formed the subsequent processes of cell placement and circuit analysis.190
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Figure 2: Custom CA1 parametric coordinates system used as spatial reference for circuit
building, circuit segmentation, and for simulation experiments. A. Longitudinal (l, red), transverse
(t, blue) and radial (r, green) axes of the CA1 volume are defined parametrically in range [0,1]. Left:
Slice from volume shows radial depth from SO/alveus (r=0) to SLM/pial (r=1) and transverse extent
from CA3/proximal CA1 (t=1) to distal CA1/subiculum (t=0) boundaries. Right: Full volume shows
surface grid of transverse vs longitudinal axes. B. Circuit segmentation for analysis and simulation. (B1)
Coordinates system used to select CA1 slices of a given thickness at specific locations along longitudinal
axis. (B2) Coordinate system used to select cylinder of a given surface diameter throughout entire
depth of CA1 at specific positions along longitudinal axis. C. Extracellular electrode placed at a given
surface position (right) and channels at selected laminar depth (left) in CA1 volume. D. Each neuron in
the circuit defined by a unique general identifier (gid), its morphological type (m-type), electrical type
(e-type), spatial xyz-coordinates and parameterized ltr-coordinates.

Once we had defined the volume, we populated it with the single cell models according to our constraints191

on cell composition (Figure S8A-B, Table S3). Despite the multiple constraints of the cell placement,192

we could include 2,523 neuron morphologies out of the 2,592 in the morphology 25,355 neuron models193

out of the 26,112 in the neuron model library into the volume. Subsequently, we validated the cell194

composition (R = 0.999, p = 1.31 × 10−28) and pyramidal cell density to guarantee a consistency195

with input data (Figure S9B-C, Table S3). We also validated cell densities using an additional dataset196
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(Figure S9C, Table S5). The discrepancies can be explained by the absence of some cell types and by197

our strategy to compensate for this lack by increasing the number of cells in other layers. In fact, since198

most of our reconstructions were experimentally sampled from the SP, the density in SP is higher than199

the value reported in literature while it is lower in other layers. Despite these discrepancies, we have a200

good match with experimental data (R = 0.999, p < 0.0001) (Figure S9C).201

We positioned the cells following a series of rules that describe how different neurite types target the202

different layers (Figure S8C-D, Table S6), and we validated the resulting cell placements visually (Figure203

S9A). In general, cells in our model follow the curvature of the hippocampus and the different parts of204

the cells target the expected layers. However, a closer look may reveal several artifacts. First, some205

branches can be present outside the volume. In some cases, there is clear experimental evidence that206

neurites extend beyond CA1. For example, the PC axons and OLM dendrites invade the alveus, back-207

projecting neurons project to CA2, CA3 and DG. In other cases, there is no clear evidence that the208

biological morphologies comply with the layer boundaries. Another artifact is that neurites may not209

follow the exact curvature of the layers. Experimentally, cells were sampled from some specific areas210

but in the model, they may be positioned in locations with different curvatures. We could overcome211

these two limitations with morphology synthesis (Kanari et al., 2022), but this approach is beyond the212

scope of this paper.213

To connect the placed neurons, we used the connectome algorithm previously described in Reimann214

et al. (2015) and initially applied in the cortical model of Markram et al. (2015). This algorithm215

has been demonstrated to recreate higher-order topological features (Gal et al., 2017). In brief, the216

algorithm searches for co-localization of axon and postsynaptic neurons. To identify a potential synapse217

(touch or apposition), segments have to be within a certain distance (maximum touch distance). After218

identifying all potential synapses, a subsequent step (pruning) discards those that exceed the known219

bouton densities (Table S7) and number of synapses per single axon connection (Table S9). While this220

algorithm was originally developed for cortical connections, we found that it generalized effectively to221

the hippocampus with an important modification.222

Based on the maximum touch distances used in the cortex model of 2.5 µm and 0.5 µm for pyramidal cells223

(PCs) and interneurons (INTs), respectively, interpreted as the presence or absence of dendritic spines,224

our CA1 model showed that PCs predominantly made their synapses with other PCs (97.4%) rather than225

with INTs (2.6%). This finding is significantly different from experimental evidence in the CA1 (PC:226

39.2%, INT: 53.8%, unknown: 6.9%, scaled up after distributing the unknown cells proportionally to227

reach a ratio of PC: 42.2%, INT: 57.8%) (Takács et al., 2012). We reasoned that this large discrepancy228

with experimental data could not be explained solely by the absence of certain cell types in our model.229

Instead, we hypothesized that there might be another biological mechanism that makes the connections230

among PCs less probable and the connections between PCs and INTs more probable than chance. Since231

we did not have a complete understanding of the underlying mechanism, we decided to optimize the232

maximum touch distance and found that a value of 1.0 µm and 6.0 µm for the distances to PCs and233

INTs, respectively, represented the minimum values that allowed us to match experimental data and234

give some flexibility in the subsequent synapse pruning (see Supplementary methods for details).235

Once the connectome had been constrained, it consisted of about 821 million synapses. We validated236
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and analyzed it extensively to make predictions about uncharacterized pathways (Figures S11, S12, S13,237

and S14). First, we validated the bouton density and number of synapses per connection to confirm238

that we could still match the data we used to constrain the connectome (bouton density: R = 0.909,239

p = 0.0120; number of synapses per connection: R = 0.992, p = 2.41×10−9, Figure S11 and Tables S7240

and S9). We observed that distributions of connection probability (Figure S12A), convergence (Figure241

S13A) and divergence (Figure S14A) had the same skewed shape obtained experimentally (Giacopelli242

et al., 2021). In the case of connection probability, experimental data did not allow comparison (Figure243

S12C, Table S8). Typically, only the slice thickness and the maximum distances between neuron pairs244

tested was given. For convergence, we compared our results with Megias et al. (2001) to validate the245

synapses on different compartments of pyramidal cells and our model appears to be in a good agreement246

with reported values (R = 0.988, p = 0.012, Figure S13C). For divergence, we had more datasets. First,247

for several m-types, we had the total number of synapses they form (Table S10). However, the model did248

not match the experimental data well (R = 0.524, p = 0.2864, Figure S14C). Many factors may have249

contributed to this difference: e.g., the small sample size in many experiments (but also in the model250

since we started from the few example reconstructions), or high variability in axon lengths preserved in251

the experimental slices. We compared divergence also in terms of the percentage of synapses formed252

with PCs or INTs (Figure S14D, Table S11) and validated distribution of diverging synapses in the253

different layers (SO: R = 0.798, p = 0.057; SP: R = 0.905, p = 0.013; SR: R = 0.813, p = 0.049;254

SLM: R = 0.999, p = 4.11 × 10−8, Figure S14E, Table S12).255

Starting from anatomical connections, we defined synaptic parameters following the methodology de-256

scribed in Ecker et al. (2020), which involved integrating the available datasets into a model of synaptic257

transmission encompassing stochastic neurotransmitter release and short-term plasticity (STP) (Figure258

S15). Since we did not make changes to the synapse model architecture, we used most of the parameters259

identified by Ecker and colleagues. In Tables S13 and S14, we report the values of the pathway-specific260

model parameters for the 22 classes of pathways we have identified. In addition, we performed two261

validations to determine how close to experimental data the model is in terms of post-synaptic poten-262

tial (PSP) amplitudes (Figure S15D, R = 0.999, p = 1.65 × 10−19) and post-synaptic current (PSC)263

coefficient of variation (CV) of the first peak (Figure S15E, R = 0.840, p = 0.018) for the pathways264

with available electrophysiological recordings.265

After having constrained and validated the synapses, the CA1 network was essentially fully constructed.266

However, an isolated CA1 does not have substantial background activity, and normally the network is267

driven by external inputs. In the following section, we describe the reconstruction of Schaffer collaterals,268

a major input to CA1. This input provides the largest proportion of excitatory synapses to CA1 and269

accounts for 92% of synapses in the model.270

2.1.2 Reconstruction of Schaffer collaterals (SC)271

CA1 is not known to contain pacemaker cells and the only spontaneous activity is due to the spontaneous272

synaptic release (Le Bon-Jego & Yuste, 2007). While we can still use the model to reproduce experiments273

where currents are artificially injected, the capability of the model was augmented with the reconstruction274

of Schaffer collaterals, the most studied pathway in the hippocampus (Dumas et al., 2018; Szirmai et al.,275

2012).276
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First, to reconstruct the anatomy of Schaffer collaterals, we constrained the number of CA3 PCs ap-277

plying the ratios between CA3 PCs and CA1 PCs, as reported by Bezaire and Soltesz (2013), resulting278

in 267,238 presynaptic neurons. We modeled each CA3 pyramidal cell to have the same probability279

of contacting CA1 cells regardless of their longitudinal positions (Table S15) since we had scarce to-280

pographical data. We distributed synapses uniformly along the transverse and longitudinal axes, while281

along the radial axis, we followed a layer-wise distribution as reported by Bezaire and Soltesz (2013)282

(Figure 3A-C). In addition, we constrained the convergence of SC synapses on PCs and interneurons283

to mean values of 20,878 and 12,714, respectively (Bezaire & Soltesz, 2013). The resulting Schaffer284

collateral input added 9,122 billion synapses to CA1, 11.1 times more numerous than intrinsic synapses.285

As expected, mean synapse convergence on PCs and interneurons matches experimental values used as286

constraints (one-sample t-test, p = 0.957 for PCs and p = 0.990 for INTs). Interestingly, the variability287

in the model is comparable with the upper and lower limits identified experimentally by Bezaire and288

Soltesz (2013) (model PC: 20,878 ± 5,867 synapses and experimental PC: 13,059 - 28,697, model289

INT: 12,714 ± 5,541 and experimental INT 7,952 - 17,476, Figure 3D-E). Most of the connections290

between each CA3 PC and each CA1 neuron have a single synapse (1.0 ± 0.2 synapses/connection,291

Figure S16A), coherent with what has been previously reported (Bezaire & Soltesz, 2013). Finally, the292

resulting divergence from a single CA3 PC is 34,135 ± 185 synapses (Figure S16A), close to the higher293

end of the ranges measured by Li et al. (1994), Sik et al. (1993), and Wittner et al. (2007) (15,295 -294

27,440, Figure S16B).295

We found limited data on synaptic parameters for the CA3-CA1 pathway in the literature, particularly in296

relation to CA1 interneuron recordings, making parameterizing the synaptic input especially challenging297

(Tables S16 and S17). This can be partly explained because the CA3 afferent pathway is sparsely298

connected to CA1, so the chance of obtaining paired CA3-CA1 neuronal recordings is small between299

PC-PC and much smaller from PC to interneurons (Debanne et al., 1995; Milstein et al., 2015; Sayer300

et al., 1990; Wierenga & Wadman, 2003). Accordingly, rather than applying the usual procedure for301

synaptic parametrization (Ecker et al., 2020), instead we considered SC→PC and SC→INT projections302

separately. In both cases, we set the short-term plasticity (STP) parameters according to Wierenga and303

Wadman (2003). Then, we ran a two-step procedure where we used the available data to optimize the304

missing parameters (Figure S16C). Finally, we validated SC projections using Sasaki et al. (2006), where305

the authors examined the basic input-output (I-O) characteristics of SC projections in vitro.306

For SC→PC synapses, the first step optimized the peak synaptic conductance (0.85 ± 0.05 nS) and the307

size of the readily releasable pool NRRP (12 vesicles) by matching the distribution of EPSP amplitudes308

as measured by Sayer et al. (1990) (Figure 3F, experiment: 0.14 ± 0.11 mV, CV = 0.76, model:309

0.15 ± 0.12 mV, CV = 0.80). We also performed a z-test to compare experimental and model EPSP310

amplitudes (p = value: 0.709). The second step optimized the values of rise and decay time constants311

of AMPA receptors (respectively 0.4 ms and 12.0 ± 0.5 ms) by matching the EPSP dynamics as312

reported experimentally by Sayer et al. (1990) (Figure S16C, 10-90% rise time model: 5.4 ± 0.9 ms and313

experiment: 3.9 ± 1.8 ms, half-width model: 20.3 ± 2.9 ms and experiment: 19.5 ± 8.0 ms, decay time314

constant model: 19.5 ± 2.5 ms and experiment: 22.6 ± 11.0 ms).315

In the case of SC→INT synapses, we followed the distinction identified by Glickfeld and Scanziani (2006)316
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and divided the interneurons into cannabinoid receptor type 1 negative (CB1R-) and positive (CB1R+).317

First, we optimized the peak conductance (CB1R-: 15.0 ± 1.0 nS, CB1R+: 1.5 ± 0.1) and the NRRP318

(CB1R-: 2, CB1R+: 8) to obtain the EPSCINT /EPSCP C ratios similar to experimental measurements319

(Glickfeld & Scanziani, 2006) (EPSCCB1R−/EPSCP C model 6.950 ± 9.200 and experiment 8.15 ±320

6.00 , EPSCCB1R+/EPSCP C model 1.27 ± 1.78 and experiment 1.09 ± 1.44 , Figure 3G-H). We also321

made the comparison between model and experimental data using z-test (CB1R+: p − value = 0.18,322

CB1R-: p − value = 0.06). Then, we optimized the rise and decay constants of AMPA receptors323

(respectively 0.1 ms and 1.0 ± 0.1 ms for all interneurons) to match the correct timing in the EPSP-324

IPSP sequence (Pouille & Scanziani, 2001) (model: 2.69 ± 1.18 ms, experiment: 1.9 ± 0.6 , Figure325

S16D). This short latency between the EPSP (triggered by the SC→PC stimulation) and the IPSP326

(triggered by the di-synaptic loop SC→INT→PC) makes effective feedforward inhibition possible, a key327

aspect for the transmission of oscillations from CA3 to CA1.328
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Figure 3: Schaffer collaterals anatomy and physiology. A. Section of a slice of the dorsal CA1
showing 5 neurons in gray and SC synapses in orange (10% of the existing ones). B. Example of SC
synapse placement (orange dots) on one reconstructed PC (in grey). C. Density of SC synapses (lower
x axis, reported in synapses/µm3) and probability density function (upper x axis) at different depths
(radial axis percentage, from 0 to 1). The black line reports the measured densities in the reconstructed
circuit, while the red line indicates the values measured experimentally (one value per layer). D-E.
Distributions of afferent synapses from SC to pyramidal cells (D) and interneurons (E) (20,878 ± 5,867
and 12,714 ± 5,541 synapses, respectively). F. Fitting results of SC → PC synapses. The plot reports
the distribution of PSP amplitudes computed over the 10,000 pairs of pre and postsynaptic neurons. On
top, experimental (in red) and model (in black) mean and standard deviation values are reported with
a dot and a bar, respectively. G-H. Fitting results of SC → CB1R+ (G) and SC → CB1R- interneurons
synapses. CB1R+ interneurons are PPA, CCKBC, and SCA, while other interneurons are CB1R-. The
plots report the distribution of the PSC ratio computed over the 1000 pairs of SC → INT, grouped by
interneuron class (i.e., CB1R+ or CB1R-). Insets in panels F-H report voltage membrane traces of 10
randomly selected pairs of SC→ PC, SC → CB1R+, and SC → CB1R- interneurons, respectively. The
presynaptic SC is stimulated to fire 8 times at 30 Hz, plus a recovery pulse after 500 ms from the last
spike of the train. Solid black lines represent mean values, and shaded gray areas the standard deviation.
Scale bars: 0.2 mV and 200 ms.

To validate the SC projections, we compared the model results with the I-O characteristics reported329

in Sasaki et al. (2006). I-O of SC-CA1 is thought to be dominated by feedforward inhibition, which330

increases the dynamic range of the network and linearizes the I-O curve (Pouille et al., 2009; Sasaki et331

al., 2006). Application of a gamma-aminobutyric acid receptor (GABAAR) antagonist such as gabazine332
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blocks the feedforward inhibition and drastically reduces the dynamic range of the network resulting in333

an I-O curve that saturates very quickly. We set up the simulations to be as close as possible to the334

experimental conditions (slice of 300 µm, Ca2+ 2.4 m M, Mg2+ 2.4 m M, 32 °C) (Figure 4A). To match335

the metholodology of Sasaki et al. (2006), we randomly sampled 101 neurons in the slice to find how336

many SC axons were required to make all 101 fire. As in the experiment, this represented respectively337

100% of the output and 100% of input. From this point, we tested a decreasing number of SC fibers338

and recorded how many neurons fire. To assess the role of feedforward inhibition, we repeated the339

simulation by cutting the connections from interneurons, mimicking the effect of gabazine. The model340

I-O curves in both control and "no GABA" conditions approximated the experimental measurements341

well (Figure 4B). The model captured the quasi-linearization of the I-O response in control conditions342

(Pearson R = 0.992, p-value = 2.56 × 10−9). Looking at the behavior following the stimulation at 50%343

of this intensity (Figure 4C) in control conditions, the spiking activity of CA1 SP neurons is rather weak344

and rapidly suppressed by the feedforward inhibition. However, without GABAergic inhibition, CA1 SP345

neurons fire at high frequency (up to 200 Hz) and for more than 50 ms.346

Figure 4: Schaffer collaterals validation. Effect of the feedforward inhibition on the input-output
relationship of the network illustrated in a slice experiment. A. The illustration (redrawn from Figure
1A, (Sasaki et al., 2006)) shows the in silico experimental setup tailored to the experiment presented
in Sasaki et al. (2006). B. Without GABA (orange line for experimental data, gray for model results),
most of the SP neurons are recruited as soon as the number of SCs increases. With GABA (red line for
experiments, black for model), the feedforward inhibition linearizes the response allowing a more modular
activation of the cells in response to an increasing input. The dashed boxes identify the condition (50%
of active SC) that is used to show the model’s results in panel C. C. Raster plots of SP neurons in
response to the SC stimulation (orange vertical line) with the overlaying firing rate (blue). On the right,
membrane voltage traces of three randomly selected SP neurons in control (black) and no GABA (gray)
conditions. Scale bars: 40 mV and 20 ms.
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While the Schaffer collaterals do not represent the only input to CA1, they can account for the majority347

of the excitatory synapses and represent a prototype for modeling other inputs. Finally, as demonstrated348

in the Simulation and Applications section, the SC allows us to deliver realistic synaptic inputs to the349

network and significantly increases the capabilities of the model. Indeed, network dynamics are not only350

shaped by the trafficking of spikes among regions, but there is an important phenomenon that has a351

profound impact on the network behavior: neuromodulation.352

2.1.3 Cholinergic modulation353

The behavior of the hippocampus is shaped by several neuromodulators, with acetylcholine (ACh)354

among the most studied. Cholinergic fibers originate mainly from the medial septum and have been355

correlated with phenomena such as theta rhythm, plasticity, memory retrieval and encoding, as well as356

pathological conditions such as Alzheimer’s disease (Dannenberg et al., 2017). This section describes357

the reconstruction of a phenomenological model of ACh, quantifying the effects of ACh on cells and358

synapses, and developing a novel method to integrate available experimental data (Tables S18 and359

S19, Figure 5A-B). The data used to build the model was obtained from in vitro application of various360

cholinergic agonists such as ACh and carbachol (CCh); here we assume that their effects are comparable361

(Colangelo et al., 2019).362

Our method allows the integration of disparate datasets, including the effects of ACh on resting mem-363

brane potential and firing frequency. This is achievable because we can estimate the net current that is364

required to evoke the corresponding changes in membrane potential or firing rate, for a given concen-365

tration of ACh.366

Idepol = 0.567ACh0.436

1000.436 + ACh0.436 (1)

where Idepol is the depolarizing current (in nA) and ACh is the neuromodulator concentration in µM (fit367

R2 = 0.691, N = 28, Figure 5AC).368

We also include the effect of ACh on synaptic transmission, where ACh seems to act principally at the369

level of release probability (M. E. Hasselmo, 2006; Tsodyks & Markram, 1997; D. Yang et al., 2021).370

USE = 1.0ACh−0.576

4.541−0.576 + ACh−0.576 (2)

where USE is the release probability. (fit R2 = 0.667, N = 27, Figure 5BD).371

Once we had constrained the effect of ACh on neuron excitability and synaptic transmission, we validated372

the effect of ACh at the network level. Available data (Table ??) allowed a qualitative, although not373

a precise validation of the model. In particular, we performed in silico bath application of ACh and374

simulated a wide range of concentrations (from 0 µM (i.e., control condition) to 1000 µM) (Figure 5E-375

F). We observed a sub-threshold increase in the membrane potential of all neurons for values of ACh376

lower than 50 µM, without any significant change in spiking activity. At intermediate doses (i.e., 100 µM377
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and 200 µM), the network shifted to a more sustained activity regime. Here, we observed a generalized378

increase in firing rate as ACh concentration increased and a progressive build-up of coherent oscillations379

whose frequencies ranged from 8 to 16 Hz (from high theta to low beta frequency bands). The correlation380

peak between CA1 neurons occurred at 200 µM ACh (Figure 5G-H). At very high concentrations (i.e.,381

500 µM and 1000 µM) we observed a decrease in the power of network oscillations, which was further382

confirmed by analysis of local field potential (LFP) (Figure 5I). Power spectral density (PSD) analysis383

showed a maximum absolute amplitude for 200 µM ACh with a peak frequency of ∼15 Hz (Figure384

5J-K). Higher concentrations decreased the maximum amplitude of the PSD while the peak frequency385

converged toward 17 Hz (Figure 5K).386

Thus, we predict the emergence of three different regimes at low, intermediate, and high cholinergic387

stimulation. The heterogeneity of the methodologies used to establish ACh influences on network388

activity confounds the interpretation of the reports of the effects of ACh, and it is yet unclear whether389

the network behavior we observe is validated by experimental findings. For instance, some research390

shows that cholinergic agonism induces oscillations in isolated CA1 slices (Pietersen et al., 2014), but391

several other studies show that while CCh evokes oscillations in CA3, and these can be transmitted to392

CA1 via SC, it fails to induce oscillations in the CA1 region (Bianchi & Wong, 1994; Fellous & Sejnowski,393

2000; Fisahn et al., 1998; J. H. Williams & Kauer, 1997). Arguably, there are no evident reasons to394

justify the observed discrepancy, even though the possibility that CA1 mini slices were contaminated by395

adjacent regions cannot be excluded. Moreover, even though in vivo ACh release and the emergence396

of theta waves in the CA1 region are tightly correlated (Zhang et al., 2010), some authors report397

that ACh’s role is to increase the power and the coherence of the oscillations rather than generating398

them (Vandecasteele et al., 2014). For a more exhaustive recapitulation of the different findings and399

the methodologies applied, we redirect the reader to Table S20. In our CA1 model, progressive ACh400

application induced a build-up of oscillatory activity, differently than in a previous model of neocortical401

ACh release (Ramaswamy et al., 2018), where cholinergic stimulation caused desynchronization of402

network activity at comparable concentrations. It’s interesting to notice that even though the effects of403

ACh release are roughly the same (generalized depolarization and decreased synaptic release probability)404

the impact on network activity is drastically different in the two reconstructed microcircuits.405

Capturing the relationship between cholinergic agonist application and subsequent local effects allows406

a more rigorous description of the phenomenon and the prediction of the effect of virtually any ACh407

concentration at synapse, neuron, and network level. The introduction of ACh allows the model to408

reproduce a larger set of experiments in which ACh or its receptor agonists are necessary (see, for409

example, Sections 2.2.1 and 2.2.2). Finally, the model of ACh can be used as a prototype to introduce410

the effects of other neuromodulators.411
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Figure 5: Acetylcholine modeling. (for legend, see next page)
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Figure 5 (previous page): Acetylcholine modeling. A. Dose-response modulation of neuronal excitabil-
ity caused by ACh. Experimental data points (black dots) are extracted from the literature and the blue
curve represents the fitted equation describing the relationship between ACh concentration (in µM)
and the depolarizing current (in nA). The dashed part of the curve indicates regions outside available
experimental data. B. Dose-response modulation of synaptic release. Same as in A, but describing
the relationship between the ACh concentration and the scaling of the USE parameter (adimensional).
C. Example traces for PC (C1) and interneurons (C2) in sub-threshold and supra-threshold conditions,
with different concentrations of ACh (control: black, 10 µM: dark gray, and 100 µM: light gray). D.
Example traces showing the STP dynamics for PC (D1) and interneurons (D2) at different concentra-
tions of ACh. E. The illustration shows the in silico experimental setup to analyze network effects of
CCh. Different concentrations of CCh are applied to the circuit, and multiple types of recordings made
in the CA1 (membrane voltage, spike times, LFPs). F. The voltage of 100 randomly selected neurons
during 500 ms of simulation at different levels of ACh. The upper histograms show the instantaneous
firing rate (in bins of 10 ms). G. Mean spike time tiling coefficient (STTC) values computed for 10,000
pairs of CA1 neurons with spike trains lasting 9 s as a function of CCh concentration. H. Spike-spike
correlation histograms (bin = 10 ms) computed for 10,000 pairs of CA1 neurons. I. LFP measured in SP
computed in simulations at four different ACh levels. Colors correspond to different levels of continuous
wavelet transform (CWT). J. PSD of the LFPs reported in panel I. K. Maximum of the LFP power
spectrum density (PSD, in mV2 Hz−1) and location of the peak frequency (in Hz) as a function of ACh
concentration.

2.2 Model simulation and applications412

In this section, we explain how to use the model to set up simulation experiments, accurately replicate413

experimental setups, and address scientific questions. A simulation experiment is essentially a model414

of the experimental setup that is reproduced with as much accuracy as possible. As presented in the415

reconstruction section, the model contains features that allow us, for example, to make slices of a certain416

thickness, change extracellular concentration of ions, change temperature, and enable spontaneous417

synaptic events. Here, we show several simulations with particular emphasis on theta oscillations, a418

prominent network phenomenon observed in the hippocampus in vivo and related to many behavioral419

correlates (Buzsáki, 2005). Despite extensive research on hippocampal theta oscillations, the scientific420

community has yet to converge on a single model, and conflicting evidence remains. However, this421

represents an opportunity to use the model to integrate existing knowledge into a coherent framework.422

Additionally, the model also allows us to explore many different ramifications of the initial scientific423

question. Following one of these ramifications, in the second part of the simulation section, we go424

beyond the theta oscillations and test whether a wider range of frequencies can pass more reliably425

through SC than other pathways.426

2.2.1 Theta oscillations427

During locomotion and REM sleep, CA1 generates a characteristic rhythmic theta-band (4-12 Hz)428

extracellular field potential (Goyal et al., 2020; Grastyan et al., 1959; Green & Arduini, 1954; Jung429
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& Kornmüller, 1938; Vanderwolf, 1969). Neurons in many other brain regions such as neocortex are430

phase-locked to these theta oscillations (Siapas et al., 2005; Sirota et al., 2008) suggesting hippocampal431

theta plays a crucial coordinating role in the encoding and retrieval of episodic memory during spatial432

navigation (Buzsáki, 2002, 2005). The activity in each of the different classes of CA1 neurons correlates433

with specific phases of the theta cycle suggesting a complex interaction between pathways (see Table434

S22): pyramidal cells, OLM, and BS spike during the rising phase, CCKBC and AA discharge before or435

at the peak, and PVBC fire in the falling phase of the theta cycle (Fuentealba et al., 2008; Klausberger,436

2005; Klausberger et al., 2003, 2004).437

Yet despite more than eighty years of research, the trigger that generates theta oscillations in CA1438

remains unclear. In vivo evidence points to a fundamental role of the medial septum (MS) (Colgin, 2013).439

MS contains hyperpolarization-activated cyclic nucleotide–gated channel (HCN)-expressing interneurons440

that fire rhythmically at theta frequencies and are phase-locked to theta rhythms in the hippocampus441

(Hangya et al., 2009). These cells are believed to target CA1 interneurons preferentially (Sun et al.,442

2014). GABAergic MS interneurons predominantly target parvalbumin-positive (PV+) interneurons443

in CA1 offering a disinhibitory mechanism for theta generation (Müller & Remy, 2018; Sun et al.,444

2014). Depth recordings in CA1 have identified two main extracellular current sink-source current for445

theta rhythms (Brankack et al., 1993; Kamondi et al., 1998; Kocsis et al., 1999). The strongest active446

current sink is located in SLM, where perforant path (PP) input terminates (Kamondi et al., 1998; Ylinen447

et al., 1995). The weaker active source-sink is located between SR, where associational and commissural448

CA3 axons terminate, and SP, where perisomatic inhibition of pyramidal cells occurs. The cholinergic449

antagonist, atropine, can block theta when the PP pathway is bilaterally removed but theta is largely450

unaffected when it is intact (Ylinen et al., 1995), suggesting the existence of independent atropine-451

resistant and atropine-sensitive theta oscillation generators. More recently, an intrinsic generator has452

been considered. Goutagny et al. (2009) recorded spontaneous atropine-resistant theta oscillations in453

an in vitro, intact, isolated, mouse hippocampal preparation but not in horizontal or transverse slices454

prepared from the same tissue. While the amplitude was 10-20% of that in vivo (Goutagny et al.,455

2009), these theta oscillations were abolished when GABAA receptors were blocked suggesting that an456

interaction between local pyramidal cells and interneurons might contribute to theta generation.457

Intrinsic generation458

To investigate possible intrinsic mechanisms of theta rhythm generation in CA1 (Goutagny et al., 2009),459

we examined three candidate sources of excitation that might induce oscillations: (i) spontaneous460

synaptic release or miniature postsynaptic potentials (minis or mPSPs), (ii) homogeneous random spiking461

of SC afferent inputs, and (iii) varying bath concentrations of extracellular calcium and potassium to462

induce tonic circuit depolarisation. While in their CA1 circuit model Bezaire et al. (2016) reported463

random synaptic activity was sufficient to induce robust theta rhythms, in our model we found none464

of these candidates generated robust theta rhythms. For minis, we found setting release probabilities465

to match empirically reported mPSP rates (Table S21) led to irregular, wide-band activity in CA1 (see466

Figure S17). For random synaptic barrage, varying presynaptic rate to match the mean postynaptic467

firing rate of pyramidal cells in Bezaire et al. (2016) resulted in irregular beta-band not regular theta-468

band oscillations (see Figures S18 and S19). Meanwhile, for tonic depolarisation, within a restricted469
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parameter range it was possible to generate theta oscillations around 10-12 Hz, but their intensity was470

variable and episodic (see Figures S20 and S21).471

Extrinsic pacemakers472

After investigating possible intrinsic mechanisms, we examined whether theta oscillations could be473

generated by extrinsic oscillatory sources such as CA3 or by disinhibition via medial septum (MS)474

GABAergic projections.475

CA3 input476

To mimic the influence of CA3 theta oscillations in CA1, we generated spike trains in a random subset of477

SC axons that were modulated by a sinusoidal rate function with signal frequency (range 4-10 Hz) and478

inhomogeneous random Poisson spike times for a range of mean individual SC axon spiking rates (0.1-0.4479

Hz). As Goutagny et al. (2009) found that the volume of isolated hippocampus in vitro was crucial to480

whether theta oscillations were generated or not, we compared simulations performed at different scales481

using whole circuit, thick slice circuit, and cylinder microcircuit models (Figure 2).482

Across all scales of circuit tested, for in vitro calcium levels (2 mM) the LFP signal faithfully reproduced483

the modulation frequency of the sinusoidal input signal in theta-band. For example, 8 Hz modulated484

spike trains delivered via SC axons generated a highly regular 8 Hz LFP signal in CA1 full, thick slice485

and cylinder circuit models (Figure 6ABC). In rat CA1, theta oscillation waveforms are typically more486

sawtooth-like than sinusodial (Buzsáki et al., 1985). Waveform asymmetry can be described using the487

asymmetry index, which is the log ratio of the duration of the rising and decaying phases of the LFP488

oscillation, e.g. in rats the mean index is -0.27 during locomotion and -0.13 during REM sleep periods489

(Belluscio et al., 2012). Here we found the generated LFP waveforms were highly asymmetrical with a490

fast rise and slower decay (mean asymmetry index = −1.34 ± 0.23; see Figure S22). A strong narrow-491

band peak of power at 8 Hz was maintained throughout the entire period of stimulation (Figure 6ABC,492

middle columns). Consistent with experimental evidence (e.g. Figure 1b in Goutagny et al., 2009),493

first (16 Hz) and second order (24 Hz) harmonics of the theta modulation frequency were also present.494

The magnitude of the modulation and harmonic powers were directly proportional to circuit size (Figure495

6ABC, middle right column). Current source density (CSD) showed a highly regular alternating current496

dipole between layers with a phase reversal between stratum pyramidale and stratum radiatum, similar497

to in vivo LFP recordings in the absence of perforant pathway input (Figure 6ABC, far right column).498

However, at in vivo calcium levels (1 mM), while the full circuit showed similar frequency response, it499

was around three orders of magnitude less powerful due to the far lower CA1 spiking rate (e.g. in full500

circuit, pyramidal cell mean firing rate of 0.00018 ± 0.0067 (1 mM) vs 0.25 ± 0.50 Hz (2 mM); Figure501

6D).502
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Figure 6: CA3 theta (8 Hz) oscillatory input entrains CA1 to matched theta oscillation across
different scales of circuit. (for legend, see next page)

Figure 6 (previous page): A. Full circuit model (2 mM calcium). B. Slice circuit model (thickness of
300 µm, 2 mM calcium). C. Cylinder circuit model (radius of 300 µm, 2 mM calcium). D. Full circuit
model (1 mM calcium). Far left column, extracellular LFP recordings from stratum pyramidale (SP)
show highly regular but asymmetric shape waves at 8 Hz. Left middle column, the Morlet complex
wavelet spectrogram shows constant 8 Hz energy with first and second order harmonics present. Right
middle column, power spectral density (PSD) shows identical qualitative power distribution independent
of circuit scale while magnitude is in direct proportion to circuit size (N.B. panel D has 1000 times
smaller y-axis scaling than panels ABC). Far right column, current source density (CSD) analysis of
translaminar currents showing stratum pyramidale and stratum radiatum current dipoles alternating at
8 Hz.

When the spike times of neurons close to the extracellular recording electrode in stratum pyramidale were503
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compared with the phases of theta-band LFP rhythm (theta trough = 0°), all neuron types were found504

to respond at roughly the same phase of the theta cycle (Figure 7). In a cylinder circuit, for example,505

as the mean rate of SC afferent spiking increased more neurons became phase-locked yielding a denser506

mono-phase distribution for higher signal modulation frequencies (Figure 7A). For example, under stimuli507

with a 0.4 Hz SC mean spiking frequency and 8 Hz signal modulation, CA1 pyramidal cells fired first508

during the mid-rising phase and were followed by all types of interneurons, whose spiking mostly ended509

before peak theta, with bistratified neurons emitting few or no spikes (Figure 7B left). Significantly510

phase-locked neurons had tighter tuning with pyramidal-interneuron phase-ordering (Figure 7B middle).511

When compared with in vivo recordings of phase-locked neurons (see Table S22) (Fuentealba et al.,512

2008; Klausberger, 2005; Klausberger et al., 2003, 2004), the mean phase angle of model spiking was513

closely matched for CCK+ basket cells but substantially out of phase for axoaxonic cells (Figure 7B514

right). Although the angular deviation of phase-locking was generally tighter than observed in vivo515

(e.g., model vs in vivo for SP_AA 8.9°(n=4) vs 55.0°(n=2), SP_PVBC 12.0°(n=2) vs 68.0°(n=5), and516

SP_Ivy 10.9°(n=19) vs 63.1°(n=4)).517

Figure 7: CA1 morphological types are homogeneously tuned to CA3 theta oscillatory input.(for
legend, see next page)
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Figure 7 (previous page): A. Phase locking angle and strength for a range of individual SC cell frequencies
(columns) and modulation frequencies (rows) shows a single grouping. Neurons for analysis were selected
within 100 µm radius of the stratum pyramidale electrode location. B. Phase Modulation. Left: Spike
discharge probability of all neurons grouped by morphological type shows they tuned between mid-rising
phase and peak of theta LFP rhythm with SP_PC slightly in advance of interneurons. Middle: phase
locked neurons tuning over theta cycle for each morphological class over a single theta cycle is tighter
but with the grouping preserved. Right: Experimental validation of phase-locking generally shows poor
match to in vivo recordings. C. Spiking raster plots over many seconds show strong phase modulated
SP_PC cell spiking (top panel) compared with LFP theta rhythm (trace above plot) with intereuron
spiking (bottom panel) of SP_Ivy cells showing a similar spiking pattern but other interneurons spiking
fired more irregularly. D. Intraceullar traces from morphological cell types. Left: SP_PC and SP_Ivy
cells spiking responses were similar, although firing in SP_Ivy cells was relatively delayed. The firing of
other interneuron types overlaps with that of SP_Ivy cells. Right: All neuronal types except SP_Ivy
cells are less active than in vivo during theta rhythms with SP_Ivy and especially SP_AA types outside
the range recorded in in vivo.

For in vitro calcium levels (2 mM), pyramidal cell spiking was closely aligned to theta LFP rhythm518

although individual neurons did not spike at every cycle (Figure 7C top). Ivy cells showed a similar519

pattern to pyramidal cells while other types of interneuron participated more sporadically (Figure 7C520

bottom). Intracellular voltage traces for pyramidal and ivy cells were also similar albeit with ivy cell521

firing slightly later and overlapping with other types of interneurons (Figure 7D left). Mean firing rates522

during theta were generally lower than observed in vivo except for ivy cells, which was a close match;523

axoaxonic, bistratfied, and basket cells (CCK+ and PV+) were well below empirical expectations (Figure524

7D right). During 8 Hz theta, the pyramidal cell membrane potential was modulated by 1.57-7.34 mV525

(for 0.1-0.4 Hz SC axon frequency), consistent with the in vivo range (2-6 mV, Ylinen et al., 1995).526

When we compared model population synchrony during theta oscillations with in vivo data (Csicsvari527

et al., 1998), we found that, regardless of circuit size, the percentage of pyramidal cell spiking was a528

poor match around the theta trough (0°) but was a better match around theta peak (180°), while fast-529

spiking PV+ basket cells and to a lesser degree axoaxonic cells were under-recruited (see Figure S23).530

Overall, for this stimulus the pyramidal-interneuron theta phase order suggests that intrinsic inhibition531

was activated more powerfully by recurrent than by afferent excitation.532

Medial septum input533

Medial septum (MS) has for many decades been considered a main generator of CA1 theta rhythms534

(Colgin, 2013). In the absence of a detailed model of MS cholinergic and GABAergic projections to CA1,535

we attempted to reproduce its in vivo effects by (i) setting an in vivo extracellular calcium concentration536

(1 mM), (ii) applying a tonic depolarizing current (% of rheobase current) to all neurons to represent537

in vivo background activity, (iii) introducing an additional current to mimic the depolarizing effect of538

an arhythmic release of ACh from the cholinergic projection (see ACh section), and (iv) applying a539

theta frequency sinusoidal hyperpolarizing current stimulus only to PV+ CA1 neurons to represent the540

rhythmic disinhibitory action of the GABAergic projection (see Figure 8A).541
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Prior to the onset of the disinhibitory stimulus ("MS OFF"), the global tonic depolarization resulted in542

weak, irregular beta-band LFP activity in CA1 but after its onset ("MS ON"), it induced a strong and543

sustained, regular theta oscillation matching the frequency of the hyperpolarizing stimulus (see Figure544

8B). The LFP waveforms generated were close to symmetrical (mean asymmetry index = 0.25±0.11; see545

Figure S24). Over a range of ACh concentrations and tonic depolarization levels, this theta rhythm was546

robust, narrow-band (Figure 8BC), and was generated by a highly regular current source restricted to547

stratum pyramidale (Figure 8E). Higher ACh concentrations, while slightly reducing theta-band power,548

reduced the level of beta-band activity (Figure 8C). Increased levels of tonic depolarization enhanced549

theta harmonics and higher frequency components (Figure 8CD). Theta-band power was more dependent550

on the amplitude of the disinhibitory oscillation than either ACh concentration or tonic depolarization551

level (Figure 8F).552

Figure 8: Medial septum (MS) disinhibition of parvalbumin-positive (PV+) interneurons induced
theta oscillations in CA1. (for legend, see next page)
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Figure 8 (previous page): A. In this setup, all neurons received a tonic depolarizing current as a per-
centage of each neuron’s rheobase current only ("MS OFF" condition) and later, for a given period
an oscillatory hyperpolarizing current was injected into PV+ interneurons only ("MS ON" condition)
in the presence of ACh. B. Before onset of disinhibition ("MS OFF"), CA1 showed weak, irregular
beta-band activity but changed to strong, regular theta-band activity after onset of disinhibition ("MS
ON"). C. Morlet complex wavelet spectrogram shows how efficiently dishinibition induces theta oscil-
lations throughout the oscillatory period and for range of ACh concentrations and tonic depolarisation
levels following onset of disinhibition. D. Power spectral density (PSD), across different levels of tonic
depolarization, exhibits an absence of any strong theta response without disinhibition, but narrow-band
8 Hz with disinhibition. E. Current source density (CSD) analysis shows lack of a strong oscillation
across layers before the oscillatory disinhibitory stimulus (top) but a strong source-sink alternation in
stratum pyramidale (∼0.3 mm depth) during the stimulus (bottom). F. Theta band power was more
dependent on the amplitude of oscillatory hyperpolarizing current than ACh concentration or level of
tonic depolarization.

During theta rhythm, morphological cell type responses separated into one of two main groups that were553

in anti-phase with each other (see Figure 9). As the level of tonic depolarization increased, more phase554

locked cells were detected (Figure 9A) and only above 110% depolarization (where 100% represents555

the depolarization necessary to reach spike threshold) were there enough interneurons, that were active556

enough to discern this dual grouping. Increasing ACh concentration tended to weaken pyramidal phase557

locking (Figure 9A). For example, at 120% depolarisation and 1 µM ACh, the firing of pyramidal, ivy,558

and CCK+ basket cells was broadly tuned around the theta trough and rising phase, while the firing of559

axoaxonic, bistratified and PV+ basket neuron was more narrowly tuned around the peak of the theta560

rhythm (Figure 9B left). Neurons with significant phase locking matched this pattern but were even561

more narrowly tuned (Figure 9B middle). The phase locking of axoaxonic, ivy and pyramidal cells closely562

matched in vivo recordings (see Table S22) (Fuentealba et al., 2008; Klausberger, 2005; Klausberger563

et al., 2003, 2004) but bistratified and basket cells (CCK+ and PV+) were by comparison more than564

90 degrees out of phase (Figure 9B right).565
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Figure 9: Medial septum (MS) disinhibition induced anti-phase modulation of CA1 neurons
during theta cycles.(for legend, see next page)
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Figure 9 (previous page): A. Phase locking angle and strength for range of ACh concentration (columns)
and levels of tonic depolarization (where 100% represents the spike threshold, rows) for modulation
amplitude (A=0.2 nA) divides cell types into two groups (SP_PC grouped with SP_Ivy and SP_CCKBC,
while SP_PVBC grouped with SO_BS, SP_AA, and SP_BS) once enough phase-locked interneurons of
each type are included. Neurons for analysis were selected within 100 µm radius of the stratum pyramidale
electrode location. B. Phase Modulation. Left: Spike discharge probability of all neurons grouped by
morphological type shows PV+ neurons (SO_BS, SP_AA, SP_PVBC, and SP_BS) are closely tuned
to peak of LFP theta-band (top trace) while pyramidal cells and PV- interneurons (SP_CCKBC and
SP_Ivy) are more broadly tuned around theta trough (0°). Middle: Phase locking for each morphological
class over a single theta cycle is tighter than reported experimentally especially PV+ interneurons. Right:
Experimental validation of phase locking shows some cell types closely match in vivo recordings (SP_AA,
SP_Ivy and SP_PC) while others are more than a quarter-cycle out of phase (SP_BS, SP_CCKBC
and SP_PVBC). C. Spiking raster plots over longer period show weaker phase modulation in pyramidal
cell spiking (top panel) than in LFP theta rhythm (trace above plot). PV+ interneurons are tightly
modulated, however, while PV- interneurons are more weakly modulated (bottom panel). D. Intraceullar
traces of morphological cell types. Left: PV+ interneurons tightly spike on release from disinhibition
whereas PV- interneurons do not. Right: comparing firing rates, all neuronal types in the model are less
active than in vivo during theta rhythms with SP_Ivy and especially SP_AA types outside empirical
range.

At first sight, the pattern of pyramidal firing appears to be more weakly modulated by theta but566

pyramidal cells failed to spike on every theta cycle (Figure 9C top). In contrast, whereas axoaxonic,567

bistratified, and PV+ basket cells spiked tightly for most cycles, ivy cells spiked more rarely and CCK+568

basket cells more tonically (Figure 9C bottom). Intracellular voltage traces for axoaxonic, bistratified,569

and PV+ basket cells showed they spiked tightly on the rebound from the release of the hyperpolarizing570

stimulus, whereas pyramidal and other interneurons lacking this were less reactive to theta (Figure571

9D left). However, all neurons spiked at a lower average rate than in vivo recordings (Fuentealba572

et al., 2008; Klausberger, 2005; Klausberger et al., 2003, 2004) with pyramidal cells around 1 Hz573

lower and, at the extreme, axoaxonic cells almost 16 Hz lower (Figure 9D right, stimulus: modulation574

amplitude 0.2 nA, 120% depolarization and 1 µM ACh). The population synchrony of pyramidal cells575

with theta trough ("theta-") was consistent with in vivo data (Csicsvari et al., 1998) for a range of576

disinhibitory stimulus amplitudes whereas for fast-spiking interneurons like axoaxonic and PV+ basket577

cells, synchronization with theta peak ("theta+") only occured with lower stimulus amplitudes (Figure578

S25). Overall, the network response to an extrinsic, inhibitory, oscillatory stimulus matched many though579

not all experimental validations of in vivo theta oscillations in CA1.580

Taken together, the simulations showed the interplay between extracellular calcium concentration, tonic581

depolarization, ACh, and MS disinhibition. ACh and depolarization cooperate to increase excitability.582

Similarly, both ACh and low extracellular calcium concentration tend to decouple the neuron activity. The583

latter prevents the higher-frequency oscillation that otherwise results from the depolarization. Instead,584

it generates sparse activity necessary to entrain the network to the rhythm imposed by MS disinhibition.585
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In summary, we investigated five possible mechanisms for theta oscillations compatible with a variety586

of experimental setups: (i) spontaneous synaptic release, (ii) random afferent synaptic barrage, (iii)587

bath manipulation of calcium and potassium, (iv) excitatory oscillatory input via Schaffer collaterals,588

and (v) oscillatory disinhibition via medial septum GABAergic projections. Spontaneous synaptic release589

and random afferent synaptic barrage did not induce detectable theta oscillations in the model. Tonic590

depolarization at certain strengths induced a variable and unstable theta oscillation at 10-12 Hz. More591

stable and stronger theta oscillations followed extrinsic drivers. Importantly, while the model showed592

that both inputs trigger theta, the underlying mechanisms were different, and effect of MS disinhibition593

was more compatible with in vivo data. The presence of multiple mechanisms could explain, at least in594

part, the heterogeneity of the experimental data.595

2.2.2 Propagation of oscillatory inputs596

As illustrated above, an oscillatory input through SC can reliably produce an oscillation of the same597

frequency in CA1 (see section onTheta oscillations). To test whether other input frequencies (i.e., 0.5-598

200 Hz) applied via SC afferents also reliably entrained oscillations of the same frequency in CA1, we599

simulated an oscillatory input from CA3, with four different signal strengths (i.e., changing the average600

firing rate of CA3 PC: 0.1 Hz, 0.2 Hz, 0.4 Hz, and 0.8 Hz) and measured the activity of CA1 (Figure601

10A).602

The I-O gain, minimally defined as the ratio between the overall number of output spikes divided by the603

number of input spikes, is not constant, but it depends both on the mean firing rate of CA3 PCs and604

on the oscillatory frequency of the input (Figure 10B). For each CA3 mean firing rate, the number of605

output neurons is maximized at different frequencies. Notably, the I-O responses of PC and interneurons606

are radically different (Figure 10B). Overall, the highest CA1 output was obtained with a 0.4 Hz mean607

CA3 frequency. For this reason, we considered this condition for further analysis.608

I-O responses of CA1 displayed band-pass filtering characteristics. Focusing on spike train correlations609

(examples of spike trains in Figure 10C), CA1 activity is generally well correlated with the input from610

CA3 for delta to low gamma input frequencies (i.e., between 1 and 30 Hz), while for lower and higher611

frequencies the correlation decreases. A similar pass-band filtering behavior can be seen in the internal612

CA1-CA1 spike time tiling coefficient (STTC). In this case the pass-band bandwidth is larger, extending613

to the gamma band (Figure 10D). The spike-spike correlation histograms confirm the propagation614

of oscillations from CA3 to CA1 for delta to gamma waves (Figure 10E). All spike train correlation615

measurements have been repeated using standard covariance and cross-correlation functions, and they616

confirmed the results obtained with the STTC analysis (not shown).617
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Figure 10: I-O transformation. A. The illustration shows the in silico experimental setup used to
study the propagation of CA3 oscillations in CA1. B. Ratio between the number of CA1 (output) and
CA3 (input) spikes as a function of the input oscillation frequency (abscissae) for four levels of input
mean firing rate (ordinatey-axis). Considering all CA1 neurons (left) or uniquely CA1 PCs (center)
and CA1 interneurons (right). C. Examples of CA3 and CA1 spike train (in this case for 0.4 Hz mean
CA3 firing rate and oscillation frequency of 10 Hz). 100 random CA3 neurons and CA1 neurons are
selected and shown. The same neurons are used to compute the 10,000 pairs of STTC and spike-
spike correlations (panels D-E), in one case crossing CA3 and CA1, in the other case within CA1
neurons. D. Heatmaps representing the computed STTC values (bins = 10 ms) for each combination of
input oscillation (abscissae) and mean CA3 frequency (ordinate), for CA3-CA1 and CA1-CA1 neurons,
respectively. E. Spike-spike normalized correlation histograms (bins = 10 ms, 1 s of simulated activity)
in four example cases: 1 Hz, 10 Hz, 20 Hz, and 200 Hz (with a mean CA3 firing rate of 0.4 Hz), for
CA3-CA1 and CA1-CA1 neurons, respectively.

To determine whether particular experimental conditions might have an impact on the result, we specif-618

ically selected a study examining gamma-band oscillations in vitro (Zemankovics et al., 2013). We619

analyzed the local field potential in the CA1 network model while it was driven by SC input modulated620

at gamma frequency. The properties of this external drive and simulation conditions were exactly tailored621

to these in vitro experiments (e.g. 300 µm-thick slices, 2 mM extracellular Ca2+, 2 mM extracellular622

Mg2+, 10 µM ACh). As the present circuit does not model the topography of SC connections to CA1623

neurons, it does not constrain how many active SCs project to the simulated slice. Therefore, we ran624

multiple simulations varying the number of activated SCs, from none to all. We observed that gamma625

oscillatory SC input could entrain the entire CA1 network of the model slice to oscillate at the driving626

frequency (31 Hz) (Figure S26A). In the experiment of Zemankovics et al. (2013), the authors added627

carbachol (CCh) to generate oscillations in CA3, which were transmitted to CA1 via SC, but it is not628

clear whether CCh also has a significant effect on CA1 at the concentration used in the experiment. To629

quantify the effect of CCh, we reran the simulation without CCh. SC inputs, ranging from 15,000 to630
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100,000, were able to induce strong gamma oscillation in the absence of CCh. However, CCh increased631

the number of inputs needed for stable gamma oscillation, probably due to its weakening effect on632

synapses (Figure S26B).633

Oscillations at several frequencies can be induced in CA3 and reliably transmitted to CA1 in vitro634

(Bianchi & Wong, 1994; Fellous & Sejnowski, 2000; Fisahn et al., 1998; J. H. Williams & Kauer,635

1997). Sasaki et al. (2006) also showed that the CA1 network responded more reliably in the near-636

gamma frequency (20-40 Hz) range, acting like a band-pass filter. Other frequencies (e.g., ripples) are637

generated locally in CA1 and are not driven by CA3 activity (Buzsáki, 2015). Our model confirmed638

the CA1 network could be entrained into an oscillatory behavior at various frequencies, by CA3 inputs.639

However, input frequencies that are either too low (< 1 Hz) or too high (> 100 Hz) input frequencies640

fail to propagate. This implies that intermediate frequencies can be used efficiently to synchronize CA1641

with other brain regions or to carry information to CA1. The I-O relationship in different conditions642

changes non-linearly as a function of both the input oscillatory frequency and its strength. Finally, our643

results show that CCh does not significantly influence the propagation of gamma oscillation from CA3644

to CA1 and suggest that the main effect of CCh is the generation of gamma oscillation in CA3.645
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3 Discussion646

3.1 Main summary647

This study presents the reconstruction and simulation of a full-scale atlas-based model of the rat hip-648

pocampal CA1 region driven by community data and collaboration. We extended and improved the649

framework of Markram et al. (2015) to curate and integrate a wide variety of anatomical and phys-650

iological experimental data from synaptic to network levels. We then systematically applied multiple651

validations for each level of the model. We augmented the resulting highly detailed intrinsic CA1 circuit652

with a reconstruction of its main input from CA3 and a phenomenological model of neuromodulation by653

acetylcholine. Importantly, the circuit model is general and not created to reproduce a narrow spectrum654

of use cases but to be capable of addressing a wide range of research questions. To demonstrate its655

general utility, we were able to simulate different scales of circuits and investigate the generation and656

transmission of neuronal oscillations, with particular emphasis on theta rhythm, for a variety of stimulus657

conditions.658

3.2 Previous work and limitations659

For more than three decades, there has been a progression in both the size and level of detail of660

large-scale multiscale models of the rat hippocampus (for a comparison of their key features with the661

present model, see Table S2). These biologically realistic models aim to explain the complex dynamics662

of hippocampal activity, in particular the generation and control of rhythmic responses. However, none663

of these models, including the one reported here, provides a complete description of a hippocampal664

region or regions. Moreover, the results of these models are difficult to compare because of fundamental665

differences in their composition, organization, and underlying assumptions.666

The current model stands out as the only model that realistically constrains the neurons and their667

connectivity by the highly curved shape of CA1 rather than by an artificial space and that reflects668

short-term plasticity and spontaneous synaptic release, both well-established characteristics of central669

nervous system synapses. In addition, the morphologies and electrical properties of model neurons here670

are not just copies of the same class exemplars but their properties have been systematically varied671

to better capture the diverse nature of neuronal circuits and their responses to stimulation. However,672

compared with Bezaire et al. (2016), some elements are still missing from the current model such as673

neurogliaform cells, which did not exist in our available dataset, and GABABR which are not included674

in our simulations.675

Nonetheless, the current model includes the perforant path-associated (PPA) and trilaminar interneu-676

rons, which were absent from all previous models. In addition, we modeled the NMDA synaptic currents677

observed in both hippocampal pyramidal cells and interneurons (with specific NMDAR conductance,678

rise and decay time constants for each pathway) that are absent in the model of Bezaire et al. (2016).679

Furthermore, the connectivity algorithm used for the current model generates an intrinsic connectome680

with more realistic high-order statistics than the more prescriptive approach used in the Bezaire et al.681

(2016) model (Giacopelli et al., 2021). Unlike Yu et al. (2020), we did not replicate the topography682

of the afferent projections, which may play a role in patterning the circuit response, but did model the683

projections and circuit at a full rather than reduced scale. Overall, further improvement to our model684
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requires additional experimental data.685

While we incorporated key features distributed among previous models into a single, general model (see686

Table S2), it is important to recognise that our aims and approach were different, representing a step687

change in hippocampal modeling. The intention of the framework was first to curate and integrate688

community data into the model, preserving provenance for reproducibility, in a way that would allow689

the addition of new datasets from the large hippocampal community. Re-using these datasets and690

then making them publicly available through hippocampushub.eu supports the 3R principles (replace,691

reduce, refine) for the reduction of animal experiments. Each circuit component and the final model692

was then systematically validated in an open and transparent way to a degree not previously attempted.693

To increase the realism and utility of simulation experiments, we sought to approximate experimental694

conditions (e.g. slice thickness and location, bath calcium, magnesium and acetylcholine concentrations,695

and recording temperature) and to increase the capability to manipulate and record from the model696

(e.g. spontaneous synaptic release, alter connectivity, extracellular LFP recording, and apply a variety697

of stimuli). In short, the aim was to offer a more realistic yet scalable and sustainable approach to698

model brain regions at full scale.699

3.3 Future directions700

There are some clear directions that would improve a full-scale atlas-based model of rat CA1. First,701

large-scale models should include other feedforward synaptic pathways such as from CA2 (Tao et al.,702

2021) and entorhinal cortex (EC) (Amaral & Witter, 1989), and back-propagating pathways such as from703

subiculum (Jackson et al., 2014). Second, to date none of the large-scale models cover all the cell classes704

found in the hippocampus (e.g. see Pelkey et al., 2017). For instance, interneuron-specific interneurons705

(ISIs), estimated to represent about 20% of CA1 interneurons (see Bezaire and Soltesz, 2013), and their706

disinhibitory influence have to date been absent in all large-scale circuit models. Third, improvements are707

needed to represent in vivo conditions associated with different brain states more accurately to facilitate708

easier comparisons with corresponding empirical data such as theta-phase preference of morphological709

cell types (e.g. Klausberger et al., 2003). Fourth, while Yu et al. (2020) introduced topographic710

connectivity for EC-DG-CA3 projections based on a 2D flat map, topographic projections such as from711

CA3 to CA1 are best described in 3D space (e.g. Ishizuka et al., 1990) and they can be more accurately712

represented in atlas-based circuits. Fifth, a variety of structural and functional gradients in hippocampus713

have not been adequately modeled, e.g. differences in connectivity and responses along the dorsoventral714

axis of CA1 (Lyttle et al., 2013; Malik et al., 2016a; Papatheodoropoulos, 2015), which may be important715

in behavior. Again, atlas-based circuits are better suited for this task where dorsal and ventral regions716

are predefined. Beyond this, other afferent inputs (e.g. perforant pathway) and circuit properties such717

as gap junctions (e.g. Amsalem et al., 2016; Mercer, 2012; Mercer et al., 2006) and long-term synaptic718

plasticity (e.g. Chindemi et al., 2022) could be incorporated.719

In general, anchoring a circuit model in the volumetric space of a brain region atlas makes mapping720

experimental data for data integration, validation and prediction easier than for more abstract spaces.721

The Allen Brain Atlas has, for instance, demonstrated the advantages of registering community ex-722

perimental data in a common reference atlas (Wang et al., 2020) and a common framework appears723

advantageous for modeling as well. The piecemeal approach of constructing circuits for a specific use724
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case has short-term advantages for practicality but in the long run, a community reference circuit model,725

that also has flexibility for customization and embodies reproducibility, makes comparing results easier726

and offers a longer-term gain for investing in the modeling of any brain region.727

3.4 Lessons learned728

In the context of a community effort, the process of curating and integrating available data to reconstruct729

a brain region and replicating the experimental conditions in silico proved instructive in a number of730

ways.731

Assembling the components to reconstruct a brain region naturally reveals gaps in the available data and732

knowledge. Notably, for instance, while Schaffer collateral input to CA1 has received many decades of733

attention, especially in terms of long-term plasticity, we found the basic information needed to model this734

pathway quantitatively, was limited. To address this gap, we devised a multi-step algorithm constrained735

by the data that were available to parametrize these connections. The process of assembling the736

components can also reveal whether our inferences and assumptions are weak or can hold. For example,737

we initially assumed that connectivity algorithm parameters derived for cortex (Markram et al., 2015)738

could be re-used in hippocampus. However, this overestimated E→E and underestimated E→I synaptic739

connections. We revised our assumption for these parameter values.740

While an open source rat hippocampal atlas (Ropireddy et al., 2012) was crucial to reconstruct CA1, the741

original volumetric reconstruction was too noisy for our purposes and required additional processing to742

give smooth layering. This smoothness was necessary to place and orient morphologies accurately in the743

atlas in relation to the layers. If the morphology was incorrectly placed or oriented, this had a knock-on744

effect for how the circuit was connected. Similarly, the completeness of morphological reconstructions745

also affected connectivity. For these reasons, some cell types in our available dataset could not be used746

in the circuit model, sacrificing a small amount of cell type diversity in favor of completeness.747

Setting up simulations to reproduce the desired experimental conditions requires careful attention. We748

offer two examples from our research. First, when reproducing the I-O gain of SC afferent input749

reported in Sasaki et al. (2006), we initially sampled all neurons in the model slice to plot to the I-O750

curve. However, the result was poor. We later resolved this by following their experimental sampling of751

a subset of neurons with which we could closely match the empirical curve. Second, when reproducing752

MS-induced theta oscillations, we initially simulated under default conditions of extracellular calcium753

concentration at 2 mM, resulting in theta oscillations that occurred episodically and only for a restricted754

parameter regime. However, when we lowered the extracellular calcium to in vivo levels (1 mM), sparser755

activity led to more robust and stable theta oscillations.756

Computational methods and simulations allow the integration of sparse experimental results and provide757

a framework to interpret them. For instance, the effects of ACh release on network activity have not been758

fully elucidated yet, and it is not clear whether cholinergic agonism evokes oscillations in the CA1 region759

(Bianchi & Wong, 1994; Fellous & Sejnowski, 2000; Fisahn et al., 1998; Pietersen et al., 2014; J. H.760

Williams & Kauer, 1997). Our model predicts that a progressive increase in ACh concentration induces761

a shift in network activity, which becomes initially highly correlated and then highly desynchronized at762
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high concentrations. Moreover, various mechanisms have been proposed for the generation of theta763

oscillations in CA1 (Colgin, 2013). Using our general model, while multiple mechanisms can potentially764

trigger theta oscillations in CA1, we observed that the neuronal dynamics induced by different extrinsic765

pacemakers were distinct. Only the medial septal disinhibition of PV+ interneurons was able to induce766

a theta rhythm compatible with observed in vivo firing phases of interneurons.767

3.5 A community-driven modeling approach768

The model was built and simulations run through the cooperation of several laboratories each with769

different expertise. Since we could not access a standardized core set of data made for the purpose of770

modeling as done previously (Iavarone et al., 2023; Markram et al., 2015; Reimann et al., 2022), instead,771

data had to be curated and integrated from different sources from labs following different protocols.772

The majority of single neuron morphologies and recordings, for instance, came from University College773

London (UCL) (Ali et al., 1998; Ali & Thomson, 2008; Ali et al., 1999; Fuentealba et al., 2008; Hughes774

et al., 2000; Mercer et al., 2006; Pawelzik et al., 1999, 2002; Thomson et al., 2000). From these data,775

single neuron models were created between the Blue Brain Project (BBP) and Italian National Research776

Council (CNR) (R. Migliore et al., 2018) and these were then validated by a computational lab at777

Institute of Experimental Medicine, Budapest (KOKI) (Sáray et al., 2021). Similarly, physiological data778

from paired recordings that characterized individual synaptic pathways were provided by an experimental779

lab in KOKI and then curated and integrated together with BBP (Ecker et al., 2020). Subsequently,780

BBP used these single neuron and synapse models to build and share the circuit model so computational781

labs at BBP, CNR, and KOKI could simulate various hippocampal use cases, only some of which have782

been presented here. Combining the framework of Markram et al. (2015) with community data and783

collaboration resulted in the generalization and improvement of data curation and integration methods784

for more varied data, improvements in tools like BluePyOpt for optimizing neurons, and the development785

of a new tools such as HippoUnit to systematically validate and compare different single neuron models.786

This approach offers important features that make an attractive case for adoption by the wider hip-787

pocampus community. The model components, validations, and circuit are openly available through a788

dedicated portal hippocampushub.eu to maximize transparency and to allow the community to examine789

and judge how the circuit model was built, validated, simulated and analyzed. This includes providing790

metadata and provenance to improve reproducibility. Consequently, the framework and tools are well791

positioned to incorporate new data from the wider community to help improve the model in an open,792

transparent and reproducible way. Finally, this circuit model can be extended to incorporate glia and793

vascular systems within the same framework (Zisis et al., 2021). These systems are fundamental to794

regulating neuronal activity and communication in health and disease (Giaume et al., 2010) and could795

be adapted to make atlas-based circuit models much more realistic embodiment of brain regions. To796

conclude, this breakthrough, community-driven approach has potential to enhance understanding of797

hippocampal function and contribute significantly to advancing neuroscience research.798
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4 Methods799

4.1 Reconstruction800

We followed and adapted the method described in Markram et al. (2015) and Reimann et al. (2022)801

to reconstruct a full-scale model of the rat hippocampus CA1 (Figure 1). In brief, we collected 3D802

morphological reconstructions, belonging to different morphological types. Initial reconstructions were803

curated to produce a library of morphologies. The library was mixed and matched with the initial set804

of single-cell models (Ecker et al., 2020; R. Migliore et al., 2018) to produce a library of Hodgkin-805

Huxley multicompartimental neuron models. We placed neuron models into the CA1 region volume806

(Ropireddy et al., 2012) according to available data on cell densities and composition. We derived the807

intrinsic connectivity following the method of Reimann et al. (2015), and assigned synaptic parameters808

as described in Ecker et al. (2020).809

4.2 Schaffer collaterals810

Schaffer collaterals were generated according to anatomical information and then functionalized lever-811

aging previous work (Ecker et al., 2020; Markram et al., 2015). The number of fibers was constrained812

considering the ratio between CA3 PCs and CA1 PCs and then connected with target in-degree ratios on813

CA1 PCs and INTs. Finally, synaptic physiology parameters were drawn from distributions with means814

and standard deviations specifically optimized for SC→PC and SC→INT projections.815

4.3 Cholinergic modulation816

To model the effect of ACh release, we expand the initial work of Ramaswamy et al. (2018). We collected817

data on the effect of ACh on neurons and synapses. In the case of neurons, we sampled 100 instances for818

each m-type and computed how an amount of somatic current deflects the voltage (sub-threshold) or819

increases the firing rate (supra-threshold). We then modeled the effect of ACh concentration on somatic820

voltage and firing rate with a current that produced the same effect. For synapses, we sampled 1,000821

random connections, and computed how a change in the parameter USE led to a change in somatic822

PSP. Next we incorporated the data on the effect of ACh concentration on PSP with a change in USE .823

4.4 Model availability824

The circuit and simulation output are in SONATA format (Dai et al., 2020). The entire model, its825

components, and the source data can be explored and downloaded from hippocampushub.eu.826

4.5 Simulation827

Unless it is otherwise specified, we ran simulations with the following default parameters: extracel-828

lular calcium concentration of 2 mM, extracellular magnesium concentration of 1 mM, acetylcholine829

concentration of 0 µm, spontaneous synaptic events (minis) absent, Schaffer collaterals disconnected,830

temperature of 34.0°C, action potential detected at axon initial segment (AIS), voltage initiated at -65831

mV, time step of 0.025 ms, CoreNEURON as simulator. Default simulations were run over cylindrical832

microcircuits and stored the spike times of each neuron and somatic voltages with a time step of 0.025833

ms. Analyses of the simulations normally excluded the first 1000 ms to remove an initial circuit transient.834
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4.6 Local field potential835

The extracellular field potential in the simulations was estimated using EMSim (see Table 1) (Newton836

et al., 2021; Reimann et al., 2013). The transmembrane currents from all the neuronal compartments,837

necessary to estimate the extracellular signal, were acquired with a temporal resolution of 0.5 ms.838

The local field potential (LFP) signal was generated by the low-pass filtering of this extracellular field839

potential (< 400 Hz cutoff) and its spectral characteristics were then analyzed using the Elephant840

package (Denker et al., 2018). For more details, see supplementary section S1.22.1.841

4.7 Statistical analysis842

Unless otherwise stated, values are expressed as mean ± standard deviation. We generally perform843

correlation tests to compare model and experiment data, and results are reported as (Pearson correlation844

coefficient, p-value). When correlation test is not applicable, depending on the data availability, we845

perform a z-test, t-test or even a qualitative comparison between model and experimental data (see846

S1.24).847

4.8 Visualization848

Hippocampus circuit and simulations were visualized with Brayns software, while morphologies were849

visualized with NeuroMorphoVis (Abdellah et al., 2018) (see Table 1).850

4.9 Available hardware851

Simulations were run initially using Blue Brain IV (BB4) system and later Blue Brain 5 (BB5) system,852

hosted at the Swiss National Computing Center (CSCS) in Lugano, Switzerland. BB4 was based on853

IBM BlueGene/Q (Haring 2012) with 4,096 nodes consisting of 65,536 PowerPC A2 cores. BB5 is an854

HPE SGI 8600 (Hewlett Packard Enterprise 2019) platform with 200 Intel Skylake with 7,200 cores and855

later 880 Intel Cascade Lake nodes with 35,200 cores.856

In Table S24, we list HPC resources required to run and analyze exemplar simulations in this paper.857

We note the major bottlenecks in simulating the circuit with individual columns such as the circuit858

size, presence of SC, type of recording (intracellular or LFP) and report on the amount of memory859

required to load and simulate the circuit as well as how much time it takes to run them. We observed860

that the amount of required resources varied between 3.7 GB - 1.56 TB (422x) depending on these861

parameters and the computation time diverged around 4.08x between NEURON and CoreNEURON862

simulators (Kumbhar et al., 2019).863

4.10 Supplementary information864

Supplemental information includes Supplemental methods, figures, and tables.865
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7 Software used902

Table 1 gives a list of software used in the paper.903
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Software Name Source Identifier

bbp-workflow BBP/EPFL software package not yet open source
BluePy BBP/EPFL software package not yet open source
BluePyEfe BBP/EPFL software package https://github.com/BlueBrain/BluePyEfe
BluePyOpt BBP/EPFL software package https://github.com/BlueBrain/BluePyOpt
BluePyMM BBP/EPFL software package https://github.com/BlueBrain/BluePyMM
Brainbuilder BBP/EPFL software package not yet open source
Brayns BBP/EPFL software package https://github.com/BlueBrain/Brayns
circuit-build BBP/EPFL software package not yet open source
CoreNEURON BBP/EPFL software package https://github.com/BlueBrain/CoreNeuron
eFEL BBP/EPFL software package https://github.com/BlueBrain/eFEL
Elephant Elephant authors and contributors https://doi.org/10.5281/zenodo.1186602
EMSim BBP/EPFL software package https://github.com/BlueBrain/EMSim
Hippounit KOKI software package https://github.com/KaliLab/hippounit
ITK-SNAP University of Pennsylvania http://www.itksnap.org/
morphology-workflows BBP/EPFL software package https://github.com/BlueBrain/morphology-workflows
mtspec pypi python package https://pypi.org/project/mtspec/
neo The NeuralEnsemble Initiative https://github.com/NeuralEnsemble/python-neo
NeuroMorphoVis BBP/EPFL software package https://github.com/BlueBrain/NeuroMorphoVis
NeuroM BBP/EPFL software package https://github.com/BlueBrain/NeuroM
NeuroR BBP/EPFL software package https://github.com/BlueBrain/NeuroR
projectionizer BBP/EPFL software package not yet open source
psp-validation BBP/EPFL software package not yet open source
regiodesics BBP/EPFL software package not yet open source
TMD BBP/EPFL software package https://github.com/BlueBrain/TMD
voxcell BBP/EPFL software package https://github.com/BlueBrain/voxcell

Table 1: List of software used
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