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Abstract

Synaptic plasticity underlies the brain’s ability to learn and adapt. This process is often studied
in small groups of neurons in vitro or indirectly through its effects on behavior in vivo. Due to the
limitations of available experimental techniques, investigating synaptic plasticity at the micro-
circuit level relies on simulation-based approaches. Although modeling studies provide valuable
insights, they are usually limited in scale and generality. To overcome these limitations, we ex-
tended a previously published and validated large-scale cortical network model with a recently
developed calcium-based model of functional plasticity between excitatory cells. We calibrated
the network to mimic an in vivo state characterized by low synaptic release probability and low-
rate asynchronous firing, and exposed it to ten different stimuli. We found that synaptic plasticity
sparsely and specifically strengthened synapses forming spatial clusters on postsynaptic dendrites
and those between populations of co-firing neurons, also known as cell assemblies: among 312 mil-
lion synapses, only 5% experienced noticeable plasticity and cross-assembly synapses underwent
three times more changes than average. Furthermore, as occasional large-amplitude potentiation
was counteracted by more frequent synaptic depression, the network remained stable without
explicitly modeling homeostatic plasticity. When comparing the network’s responses to the dif-
ferent stimuli before and after plasticity, we found that it became more stimulus-specific after
plasticity, manifesting in prolonged activity after selected stimuli and more unique groups of
neurons responding exclusively to a single pattern. Taken together, we present the first stable
simulation of Hebbian plasticity without homeostatic terms at this level of detail and analyze
the rules determining the sparse changes.
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1 Introduction

Learning and memory are orchestrated by synaptic plasticity, the ability of synapses to change
their efficacy in an activity-dependent manner. Donald O. Hebb’s postulate about how synaptic
plasticity might manifest was paraphrased to the well known mantra: "cells that fire together,
wire together" (Hebb, 1949; Shatz, 1992). The first proof of coincident pre- and postsynaptic
population activity leading to potentiation (an increase in efficacy) came from pathway stimu-
lation in hippocampal slices (Bliss and Lømo, 1973). It was later confirmed at the neuron pair
level (Markram et al., 1997; Bi and Poo, 1998), and spike-time dependent plasticity (STDP)
became a quintessential protocol to study Hebbian plasticity in vitro. In the early 2000’s a
plethora of cortical pathways were studied and plasticity proved to be synapse location- and
therefore pathway-dependent (Sjöström and Häusser, 2006; Letzkus et al., 2006; Froemke et al.,
2010). The molecular substrate of Hebbian coincidence detection is the N-methyl-D-aspartate
(NMDA) receptor, which upon removal of the Mg2+ block by depolarization, conducts Ca2+

as well (Mayer et al., 1984). The calcium-control hypothesis, put forward by Lisman (1989)
postulates that prolonged, moderate amounts of Ca2+ lead to depression (a decrease in efficacy)
while large transients of Ca2+ lead to potentiation. By putting these together, it became evi-
dent that it is not necessarily the timing of the postsynaptic spike, but the depolarization of the
postsynaptic dendrite is important to evoke changes in synaptic efficacy (Goldberg et al., 2002;
Lisman and Spruston, 2005).

In parallel with slice electrophysiology, Hebbian plasticity was also studied through its ef-
fect on behaviour via fear conditioning experiments (McKernan and Shinnick-Gallagher, 1997)
and this line of research lead to a plethora of new techniques for tagging and re-activating
cells that participate in newly formed memories (Tonegawa et al., 2015). While these studies
highlighted the need to study plasticity at the network level, most changes are expected to hap-
pen at the synapse level. Therefore, high-throughput methods tracking synaptic proteins like
PSD95 (Ray et al., 2023) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) sub-
unit GluA1 (Graves et al., 2021; Kim et al., 2023) are currently being developed. While readily
applicable to monitor synaptic efficacy in vivo, currently, these techniques cannot be supple-
mented with recordings of neural activity thus the reason for the changes in efficacy can only be
speculated.

The bridge between in vitro pairs of neurons and in vivo behavior is often provided by
complementary simulation based-approaches. Early theoretical work explored the potential link
between memories and cells that fire and therefore wire together, concentrating on the storage
and retrieval of memories in strongly recurrent networks (Hopfield, 1982), which remained an
active topic of research (Fusi and Abbott, 2007; Krotov and Hopfield, 2016; Widrich et al., 2020).
In parallel with the STDP experiments, modelers developed plenty of learning rules that could
explain the most recent pathway-specific findings (Gerstner et al., 1996; Kempter et al., 1999;
Song et al., 2000; Pfister and Gerstner, 2006; Clopath et al., 2010). Of particular interest is the
calcium-based model of Graupner and Brunel (2012), which models the evolution of intracellular
calcium concentration ([Ca2+]i) given the pre- and postsynaptic spike trains and updates the
efficacy of the synapse, upon [Ca2+]i crossing thresholds for depression and potentiation. Linking
memory storage, recall and bioplausible learning rules together, combinations of diverse sets
of plasticity rules have been used to model the formation and maintenance of Hebbian cell
assemblies, i.e., groups of neurons that fire together (Litwin-Kumar and Doiron, 2014; Zenke
et al., 2015; Fauth and Van Rossum, 2019; Kossio et al., 2021). A common theme in these
models is the necessity of fast homeostatic plasticity, that keeps the networks stable (Zenke
et al., 2017a), however experimental evidence for those mechanisms is lacking (Turrigiano and
Nelson, 2004). While these studies provided mechanistic explanation of learning and memory,
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they used point-neuron models, therefore neglecting the structural and functional importance of
dendrites and other subcellular components (but see Bono et al., 2017; Kastellakis and Poirazi,
2019). The compartmentalized nature of dendritic trees gives rise to spatial clustering of synapses
(Farinella et al., 2014; Iacaruso et al., 2017; Kastellakis and Poirazi, 2019) and local, non-linear
voltage events (Poirazi et al., 2003; Stuart and Spruston, 2015) both of which are thought to
contribute to removing the Mg2+ block from NMDA receptors and therefore gating plasticity.

To go beyond networks of point neurons stabilized with homeostatic plasticity, we equipped
the biophysically detailed, large-scale cortical network model of Markram et al. (2015) with our
recently developed, calcium-based model of functional plasticity (Chindemi et al., 2022) between
excitatory cells (Figure 1). This way, we had access to more realistic pre- and postsynaptic
activity and efficacy of millions of synapses and could characterize the rules governing plasticity
at the microcircuit level. To make our predictions more relevant, we calibrated the circuit’s
activity to mimic an in vivo state, characterized by low synaptic release probability and low
firing rates (Isbister et al., 2023). Thanks to the biophysical detail of the model, we could also
take the effect of low extracellular calcium concentration ([Ca2+]o) into account (Chindemi et al.,
2022), which was experimentally shown to reduce plasticity (Inglebert et al., 2020; Figure 1E).
As we followed a bottom-up framework and did not model any specific task, we will refer to
the effects of plasticity as changes in synaptic efficacy instead of learning. Changes in synaptic
efficacy were sparse, affecting 5% of all synapses in 10 minutes of biological time. On the other
hand, this was still enough to reorganize the network’s dynamics, manifesting in more pattern-
specificity after plasticity than before. We found an increased likelihood of changes within and
across cell assemblies and in synapses forming spatial clusters on postsynaptic dendrites. Among
312 million synapses, potentiation dominated in amplitude and depression counteracted it in
frequency, which lead to stable firing rates without explicitly introducing any homeostatic terms
(Turrigiano and Nelson, 2004; Zenke et al., 2017a). To support future, potentially more task-
related studies of learning in the cortex, we made the model and the simulator available to the
community.

2 Results

To achieve a continuous readout of plastic changes in synaptic efficacy of millions of excitatory
synapses, we used a biophysically detailed, large-scale cortical model of the rat non-barrel so-
matosensory cortex (nbS1). The model improves on Markram et al. (2015) in terms of both
anatomical, e.g., atlas based cell composition and placement (described in Reimann et al., 2022),
and physiological properties, e.g., improved single cell models, multi-vesicular synaptic release,
and layer-wise compensation for missing synapses (described in Isbister et al., 2023). For this
study, we used a seven column subvolume comprising 211,712 neurons in 2.4mm3 of tissue (Figure
1A) to keep the complexity of simulation and analysis manageable. In line with the biological
variability, excitatory cells are modeled as a diverse set of morphologies (Kanari et al., 2019;
Reimann et al., 2022; Figure 1B) equipped with conductances distributed across all compart-
ments (Reva et al., 2022; Supplementary Figure S1A). The connectivity and synaptic physiology
of these cells were extensively validated (Reimann et al., 2022; Isbister et al., 2023; Figure 1C;
Supplementary Figure S1C). The model is also equipped with fibers from the ventral posteriome-
dial nucleus of the thalamus (VPM) and the high-order posteriomedial nucleus of the thalamus
(POm; Figure 1D; Meyer et al., 2010). We use these fibers to deliver inputs with spatio-temporal
precision.
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Figure 1: Overview of the network model. A: Visualisation of the seven column subvolume of
rat nbS1. Rendering of 10% of the cells was done with Brayns. B: Representative morphologies for
the 18 excitatory m-types and their typical firing pattern (e-type, top left). C: Exemplary connections
to L5 TTPCs (top) and their STP profiles (bottom). Thin gray represent the 20 individual repeti-
tions, while the thicker black ones their means. Renderings of morphologies (on B as well) were done
with NeuroMorphoVis (Abdellah et al., 2018). Neurite diameters are scaled (x3) for better resolution.
D: Bouton density profiles of thalamocortical fibers, and locations of VPM (black) and POm (purple)
synapses on neurons (in a 5µm radius subvolume). Rendering was done with BioExplorer. The scale
bar on B applies to the whole figure. (Similar panels have been shown in Reimann et al., 2022, Isbister
et al., 2023, and Chindemi et al., 2022.) E: Variables of the plasticity model during coincident activation
of the pre- and postsynaptic neurons. Left: under in vitro-like conditions (taken from Chindemi et al.,
2022). Right: same pair of neurons under in vivo-like conditions. Schematics on their lefts illustrate the
difference between in vitro- and in vivo-like conditions.
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2.1 Calcium-based, biophysically detailed model of long-term plasticity

In previous versions of the circuit model, synapses were only equipped with short-term plasticity
(STP; Figure 1C). In the remainder of the manuscript we will call this the non-plastic version, as
our scope here is long-term plasticity. To model long-term plasticity we integrated our recently
published calcium-based plasticity model that was used to described functional long-term poten-
tiation and depression between pairs of pyramidal cells (PCs; Chindemi et al., 2022). In short,
the model follows the formalism of Graupner and Brunel (2012), where pre- and postsynaptic
spikes lead to changes in synaptic [Ca2+]i (Figure 1E). Calcium entering though NMDA recep-
tors and voltage-dependent calcium channels (VDCCs) contributes to [Ca2+]i (equation (2) in
Methods). When the integrated calcium trace of a synapse crosses the threshold for depression
(θd) or the higher one for potentiation (θp), synaptic efficacy (ρ, exhibiting a bistable dynamics
Lisman, 1985) is updated (Figure 1E left; equation (1) in Methods).

As Graupner and Brunel (2012) modeled [Ca2+]i of synapses on point neurons phenomeno-
logically, they had to refit their plasticity model parameters to explain different experimental
datasets. On the other hand, Chindemi et al. (2022) has shown that a generative model, op-
timized against STDP protocols from only two pathways can explain a large array of other
experimentally measured pathways, thanks to the biophysically detailed model of [Ca2+]i and
the morphological complexity of the neurons. The finding of Chindemi et al. (2022), that one
unique plasticity rule can rule them all, crucially depends on the location of synapses on the den-
drites. The generative model converts location dependent pre- and postsynaptic [Ca2+]i peaks
into synapse-specific θd and θp parameters for all excitatory to excitatory (E to E) synapses in
the circuit. In our model, we found presynaptically evoked [Ca2+]i peaks to be three orders
of magnitude larger, than the ones evoked by postsynaptic spikes (Supplementary Figure S2A).
Postsynaptically evoked [Ca2+]i peaks had a multimodal distribution in the apical dendrites
(Supplementary Figure S2A right), in line with Landau et al. (2022).

Changes in ρ are then converted into changes in the utilization of synaptic efficacy (USE),
a variable of the Tsodyks-Markram model of STP describing the baseline release probability
(Tsodyks and Markram, 1997) and the peak AMPA receptor conductance (ĝAMPA; equations
(5) and (6) in Methods). As a results of updating USE as well, short- and long-term plasticity
are tightly coupled in the model (Markram and Tsodyks, 1996; Costa et al., 2015; Deperrois and
Graupner, 2020). In our network model USE is also modulated by [Ca2+]o, where a reduction in
[Ca2+]o leads to pathway-specific, non-linear reduction in USE (Figure 1E right; Markram et al.,
2015; Ecker et al., 2020). At initiation, synapses are assumed to be at one of the two fixed points
(fully depressed ones at ρ = 0 and fully potentiated ones at ρ = 1) and their assignment to these
states is pathway-specific (Supplementary Figure S1C3).

2.2 Achieving in vivo-like network activity

After equipping the circuit with the extra parameters required for long-term plasticity, it was
ready to be simulated. To drive network activity, we compensated for missing synaptic input
arriving through long-range projections from other brain areas not included in the circuit model
(Isbister et al., 2023) and provided inputs through the thalamocortical fibers. Complex phenom-
ena like plasticity are traditionally studied under controlled laboratory conditions in vitro, but
classical STPD protocols were shown to not induce any plastic changes under in vivo-like low
[Ca2+]o (Figure 1E, Inglebert et al., 2020; Chindemi et al., 2022). As our broad interest is under-
standing the rules governing plasticity in living brains, and our modeling pipeline is capable of
taking the effects of low [Ca2+]o into account (Markram et al., 2015), we calibrated the network’s
activity to mimic in vivo conditions. To that end, we calibrated layer-wise spontaneous firing
rates and evoked activity to brief VPM inputs matching in vivo data from Reyes-Puerta et al.
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(2015). Spontaneous activity was driven by somatic injection of a layer- and cell type-specific
noisy conductance signal (see Isbister et al., 2023 and Methods). By introducing plasticity at all
E to E synapses, an additional depolarizing current from VDCCs was added to the model, which
made the network more active than its non-plastic counterpart (Supplementary Figure S3A).
This required an algorithmic lowering the amplitude of injected conductances from Isbister et al.
(2023) to achieve the same in vivo-like layer-wise spontaneous firing rates (Supplementary Figure
S3B).

Evoked activity was driven by a thalamocortical input stream already described in Ecker
et al. (2023). In short, ten VPM input patterns were repeatedly presented in random order
with a 500 ms inter-stimulus interval, together with a non-specific POm input. The ten VPM
patterns were defined with varying degrees of overlap in the sets of activated fibers (Figure 2A;
see Methods). Spike trains delivered on the pattern fibers followed a 100 ms-long inhomogeneous
adapting Markov process (Muller et al., 2007). The overlap of the patterns is clearly visible in
the firing pattern of each group of fibers corresponding to them (Supplementary Figure S4). An
exemplary raster plot, characterizing the evoked state of the plastic network is shown on Figure
2B.

2.3 Sparse synaptic changes induced by long-term plasticity

After achieving in vivo-like network activity, we simulated 10 minutes of biological time and
measured the changes in synapses with respect to their initial states. The distribution of ĝAMPA

remained lognormal, in line with biology (Buzsáki and Mizuseki, 2014; Rößler et al., 2023), and
its mean shifted by only 0.07% (+0.5 pS, Figure 2C1). This minimal strengthening was achieved
by less frequent, but stronger potentiation, and at the same time the network remained stable
because of the more frequent, but weaker depression (Figure 2C2), without needing to model
homeostatic plasticity (Turrigiano and Nelson, 2004; Zenke et al., 2017a). Changes in ĝAMPA

are difficult to interpret, as the overall scale of its values is pathway-dependent (Supplementary
Figure S1C3), i.e., the change associated with full potentiation in one pathway would indicate
only partial potentiation in another. Therefore, in the rest of the article we will analyse ρ instead,
as it always lies in the [0, 1] interval. While ρ is changing on a faster time scale than ĝAMPA

(see equations (5) and (6) in Methods), the propensity of changes at the end of a 10minute-
long simulation was virtually identical (Figure 2C3 vs. D3). When comparing the amount of
changes in ρ across time steps, we found that most of the plastic changes happened in the first
1-2 minutes of the simulation, after which they stabilized (Figure 2D1). By splitting synapses at
the end of the simulation based on their target neurite type and layer, we learned that an order
of magnitude more synapses changed on basal dendrites compared to apical ones, although there
are roughly the same amount of apical synapses in the circuit (Figure 2D2). Layer 5 (L5) PCs
contributed mostly to changes on the basal dendrites, while apical changes happened mostly on
L6 PCs.

In addition to looking at changes in individual synapses, we also performed analyses at the
connection level. To do so, we averaged ρ values of all (4.1 ± 2.3; Supplementary Figure S1C1)
synapses mediating a connection and analyzed the propensity of changes as before. As expected,
changes at the connection level became more frequent than at the synapse level (Figure 2E1,
E3). By plotting the propensity of changes against the pairwise mean firing rates of the pre and
postsynaptic neurons, we found that the percentage of changes increased as the pairwise firing
rates increased (Figure 2E2), in line with previous modeling insights (Litwin-Kumar and Doiron,
2014; Graupner et al., 2016). Although, previous theoretical work has shown that embedding
simple STDP rules in spiking networks without homeostatic plasticity leads to pathological
behavior (Morrison et al., 2007), they relied on higher firing rates. To better understand if only
the scale of the simulated network, its biorealistic connection probabilities and the low, in vivo-
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Figure 2: Synaptic changes in large-scale plastic simulations. A: Centers of the VPM fibers
associated with the ten input patterns in flat map space. Bottom row 3rd: pyramid-like overlap setup of
VPM patterns, 4th centers of POm fibers associated with all stimuli. B: Raster plot of the microcircuit’s
activity and the population firing rates below. The y-axis shows cortical depth. (As cortical layers do not
have the same cell density, the visually densest layer is not necessarily the most active. Similar panels
have been shown in Ecker et al. (2023). C: Evolution of ĝAMPA during the 10minute-long simulation.
C1: Distribution of ĝAMPA in the beginning and end of the plastic simulation. C2: Plastic changes
that lead to the shift in the distributions shown in C1 (blue: depression, red: potentiation throughout
the figure). C3: Layer-wise propensity of changes. D: Evolution of synaptic efficacy (ρ). D1: L2 norm
of changes in ρ across time. Similarly to C1, insert shows distribution of ρ values in the beginning and
end of the simulation. D2: Layer- and neurite type-wise distribution of non-trivial (neither 0: totally
depressed, nor 1: totally potentiated) ρ at the end of the simulation. D3: As C3. E: Evolution of mean
ρ (aggregated over connections). E1: Propensity of changes across time against STDP controls (see
Methods). E2: Plastic changes (in mean ρ) vs. mean pairwise firing rates. E3: Same as C3.
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like rates contribute to the sparsity of changes observed in our simulation, we took the 36 M
excitatory spikes from our simulation and characterized the propensity of changes resulting from
a traditional spike pair-based STDP rule (Gerstner et al., 1996; Kempter et al., 1999; Song et al.,
2000; see Methods). Using this plasticity rule, connections evolved rapidly and nearly all "active"
connections update their efficacy (Figure 2E1 pink curve). More precisely, 28% of the simulated
neurons did not fire a single action potential and thus their connections (40% of all connections)
could not be updated with STDP rules. In our model, vesicle release is a stochastic process
with a low release probability at in vivo [Ca2+]o (Borst, 2010; Markram et al., 2015). To take
stochasticity into account, we developed a tighter control, where presynaptic spikes were only
considered with a 0.24 probability (see Methods). With this stochastic STDP rule, connections
still changed swiftly, although the propensity of changes remained lower (42% vs. 50%; compare
purple and pink lines on Figure 2E1). Taken together, these control experiments show that not
all spikes contribute to plastic changes in our simulations, which is better aligned with Hebb’s
original rate-based postulate than STDP rules are (Hebb, 1949; Lisman and Spruston, 2005).

To test to what degree was presynaptic transmission required to trigger plasticity, we ran
simulations without intrinsic connectivity between the neurons but keeping their extrinsic inputs,
or parts thereof, intact (Supplementary Figure S5). When neurons received only the somatic
conductance injection representing noisy background inputs, we did not observe any changes in
mean ρ. When they additionally received the thalamic inputs patterns, we observed changes in
ρ, albeit an order of magnitude fewer than in the baseline condition (Supplementary Figure S5).
In conclusion, while the calcium-based plasticity model of Chindemi et al. (2022) is not strictly
Hebbian, as the effect of postsynaptic firing alone could change synaptic efficacy, for most of
the observed changes presynaptic release was required. Lastly, we ran control simulations in
connected networks but instead of presenting the patterns, delivered random Poisson spikes on
the same VPM fibers at a rate that resulted in the same thalamic spike count. This case was
the closest in terms of changes to our baseline case, but still 25% fewer connections underwent
plastic changes (Supplementary Figure S5), demonstrating the importance of the spatiotemporal
structure of the stimuli over simply the firing of the pre- and postsynaptic neurons.

In summary, we observed that ∼ 5% of synapses undergo long-term plasticity under realistic
in vivo-like conditions in 10 minutes, and most of these synapses are on above-average firing rate
L5 PC’s basal dendrites. Potentiation dominated in amplitude, while depression counteracted it
in frequency, keeping the network stable amidst ongoing plasticity without explicitly considering
any homeostatic mechanisms.

2.4 More frequent plastic changes within and across cell assemblies

With 95% of synapses remaining unchanged, synaptic plasticity appears to be a highly specific
mechanism. We therefore tried to understand the rules that determined which synapses changed.
We specifically hypothesized that plasticity of connections may be structured by the member-
ship of participating neurons in Hebbian cell assemblies, i.e., groups of neurons that fire together
(Hebb, 1949; Harris, 2005). Our reasoning was as follows: from the parametrization of our plas-
ticity model, we learned that presynaptic spikes contribute orders of magnitude higher calcium
than postsynaptic ones (Supplementary Figure S2A) if the NMDA receptors are fully unblocked;
thus, in order to effectively depolarize the dendrites and unblock NMDA receptors, spikes at low,
in vivo-like rates must be synchronized in time, as in Hebbian assemblies. Thus, we detected
cell assemblies from the in silico spiking activity of the 10minute-long plastic simulation using
methods established by experimentalists (Carrillo-Reid et al., 2015; Herzog et al., 2021). In mod-
eling studies, assemblies are usually defined based on their strong internal connectivity, i.e., their
structure (Litwin-Kumar and Doiron, 2014; Zenke et al., 2015; Fauth and Van Rossum, 2019;
Kossio et al., 2021), but we wanted to use them to restrict our analysis of plastic changes and
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therefore detected them based on their co-firing function. The rationale for combining the meth-
ods above and the full pipeline is described in detail in our previous article, Ecker et al. (2023)
and briefly in the Methods. In short, spikes were binned and bins with significantly high firing
rates (Figure 3A) were hierarchically clustered based on the cosine similarity of their activation
vector (Figure 3B1). These clusters correspond to the functional assemblies, with a neuron being
considered a member if its spiking activity correlates with the activity of an assembly signifi-
cantly stronger than chance level (Figure 3C). Since time bins and not neurons, were clustered
in the first place, this method yields one assembly per time bin and single neurons can be part
of several assemblies (Figure 3B, D). Assemblies were activated in all stimulus repetitions and a
series of three to four assemblies remained active for 190± 30ms, similar to our previous results
(Ecker et al., 2023, Figure 3B2). Pattern A elicited the strongest response, while pattern B the
weakest, and the responses of patterns H and I were the most similar to each other, as expected,
since they share 66% of the VPM fibers (Figure 2A). Assembly activations had a well-preserved
temporal order - with some of them always appearing early during a stimulus, while others later
- and from now on we will refer to them as early, middle, and late assemblies, and will order
them in the figures accordingly (Figure 3C-E and 4A, B).

In line with in vivo experiments, these assemblies were detected from functional activity
(spikes). However, in our in silico approach we have access to the full biorealistic connectome
(Reimann et al., 2022) and can thus investigate how the underlying structure constrains function.
In Ecker et al. (2023) we presented an in-depth analysis of this question (in a non-plastic circuit),
so here we will only give an overview of the findings important for this study. Dating back to Hebb
(1949), the most commonly accepted structural correlate of cell assemblies is the abundance of
recurrent connectivity motifs between participating neurons (Harris, 2005; Song et al., 2005; Perin
et al., 2011). In our analysis we also observed that assembly-indegree, i.e., the number of afferent
connections from an assembly, is a great predictor of a neuron’s membership in an assembly
(Supplementary Figure S6A1). Strong positive interactions were also found across assemblies,
but only when the direction of innervation reflected the temporal order of assembly activation,
e.g., assembly 8 to assembly 12 (A8 and A12 in Figure 3B2 responding to patterns H and I). These
results, combined with the biophysics of the plasticity model, suggest that connections within an
assembly and the ones between temporarily ordered assemblies, are expected to undergo plastic
changes with a higher probability.

When checking the propensity of changes within and across assemblies, we indeed found more
synapses undergoing long-term plasticity (Figure 3E2). While only 3.5% of synapses depressed
in the whole dataset, we found up to 10.5% when restricting the analysis to assemblies. Simi-
larly, compared to 1.5% of all synapses potentiating, we observed up to 4.2% when restricting
to assemblies. Interestingly, large values were found in the off-diagonal entries (Figure 3E2),
i.e., synapses across assemblies underwent more plastic changes than the synapses within these
assemblies. Cell type composition of assemblies also influenced the results. The layer profile
of early assemblies mimics that of VPM innervation (compare Figure 3C and Figure 1D; see
more in Ecker et al., 2023) and are thus mostly composed of L4 cells. The initial ρ values
are pathway-specific, and highest in L4 pathways (Brémaud et al., 2007; Supplementary Figure
S1C3). Therefore, assemblies with large number of L4 cells have a higher than average initial
ρ (Figure 3C and E1 respectively), thus their synapses are more likely to depress (Figure 3E2).
Similarly, late assemblies, that are predominantly composed of cells from the deep layers, have
a low initial ρ (Figure 3E1; Supplementary Figure S1C3) and synapses between them are more
likely to potentiate.

Together these results indicate that, in line with 70 years old predictions, cells that fire
together wire together (Hebb, 1949). Our contribution lies in making the qualitative statement
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Figure 3: More frequent changes in cell assembly synapses. A: Firing rate of excitatory cells
with the determined significance threshold. B1: Hierarchical clustering of the cosine similarity matrix
of activation vectors of significant time bins (i.e., above threshold in A). B2: Clustered significant time
bins ordered by the patterns presented. C: Number and location of neurons in each cell assembly: flat
view on top, depth-profile below. D: Jaccard similarity of cell assemblies. E: Propensity of changes in
cell assemblies. E1: Initial mean efficacy (ρ) of within- and cross-assembly synapses. E2: Propensity of
depression and potentiation of within- and cross-assembly synapses. As assemblies are overlapping (see
D) single synapses are taken into account for many different pre- and postsynaptic assembly pairings.
(Similar panels (except E) have been shown in Ecker et al., 2023).

above into a quantitative one: Under in vivo-like conditions cells that fire together more than
expected have three times higher chances of changing the efficacy of their connections.

2.5 Synapse clustering contributes to the emergence of cell assemblies, and
facilitates plasticity across them

In addition to co-firing, a group of innervating neurons is more effective in depolarizing a given
dendritic branch if they all send synapses to the same branch, i.e., they form a spatial synapse
cluster (Farinella et al., 2014; Iacaruso et al., 2017; Kastellakis and Poirazi, 2019). To quantify
this trend, we previously defined the synaptic clustering coefficient (SCC) with respect to an
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assembly, based on the path distances between synapses from that assembly on to a given neuron
(see Ecker et al., 2023 and Methods). For the assemblies detected in this study, we also found
SCC to be a good predictor of a neuron’s membership in an assembly (Supplementary Figure
S6A2), although the effect was less than half as strong as that of assembly-indegree. We used
assembly-indegree and SCC to select the ten most innervated L5 TTPCs (thick-tufted pyramidal
cells) within a cell assembly and then explicitly detected spatial clusters of synapses, defined as
at least ten synapses within a 20µm stretch of a single dendritic branch (see Methods).

For our next analysis, we grouped all synapses on these ten selected neurons per assembly
into four categories based on assembly membership of the presynaptic neuron and whether the
synapse was part of a cluster or not (see exemplary clustered assembly synapses on Figure
4E1). Then, we quantified the likelihood of plastic change in each category by contrasting the
conditional probability of observing it in a given category with the probability of observing any
change irrespective of the category (see equation (9) in Methods; Figure 4A2). Note that a
nonzero value for one category always has to be compensated by a nonzero value with opposite
sign in another. Surprisingly, clustered within-assembly synapses were not likely to undergo any
changes. This can be explained by the fact that any plastic change depends also on the initial
state of the synapse, i.e., synapses that are initialized as fully potentiated cannot potentiate
any further. We already discussed that early and middle assemblies (12 out of 15) have higher
than average initial ρ, but to provide further evidence, we repeated the analysis on the initial ρ
values and found that early and middle assembly synapses, especially the clustered ones, are very
likely to be initialized as fully potentiated (Figure 4A1). On the other hand, synapses within
the late assemblies were likely to be initialized in the fully depressed state, but were likely to
change. Furthermore, when comparing the amplitude of changes across conditions with a 2-way
ANOVA, we found that clustered within-assembly synapses depress to a smaller degree than the
other ones (Figure 4C). When we checked the temporal evolution of within-assembly synapse
cluster ρ values, we saw that while some of the synapses underwent small constant changes, most
of them changed at the same time (vertical stripes on Figure 4E2). Thus the picture emerging
is as follows: early and middle assemblies are partially defined by clustered (both spatial and
functional) synapses that are initialized as fully potentiated. These synapses are unlikely to
change, but when they do, they depress less than the others, and would converge back to ρ = 1.0
in absence of activity, as they do not cross the ρ = 0.5 unstable fix point.

In our previous investigation, we found that most changes happened across assemblies, so
we extended the analysis described above to cross-assembly synapses. Here, the picture was
reversed: cross-assembly synapses that were part of a spatial cluster were likely to be initiated as
fully depressed and then had a high chance of undergoing potentiation (Figure 4B). Interestingly,
the amplitude of this potentiation was significantly less than that of the other groups’ (Figure
4D), but on average, still enough to cross the ρ = 0.5 unstable fix point.

Together with the previous results, this suggests that synapses between assemblies are more
likely to change, which is even more pronounced if these synapses form a cluster on the postsy-
naptic dendrite.

2.6 Redistribution of assembly efficacies and prolonged stimulus-specific re-
sponses characterize the network after plasticity

In the beginning of our study we used cell assemblies only as a powerful tool to restrict our
analysis of plastic changes to biophysically motivated subpopulations of neurons. On the other
hand, the evolution of assemblies in terms of their composition and association with stimuli is
used to examine the functional consequences of plasticity and the stability of the neural code
in contemporary literature (Fauth and Van Rossum, 2019; Kossio et al., 2021; Pérez-Ortega
et al., 2021). From our investigation we have learned that the early assemblies are defined by
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Figure 4: Changes in synapses participating in spatial clusters. A: Michelson contrast (equation
(9) in Methods) of probabilities of plastic changes within assembly synapses. Depression on top (blue
colormap) and potentiation below (red colormap). Grey parts of the colormaps indicate lower than
expected probabilities of observing synapses in a given state, given that it falls into the indicated category,
while neon green means no synapses found in the given category. A1: Inital ρs, A2: plastic changes in
ρ. B: Same as A, but for cross-assembly synapses (postsynaptic assembly fixed to A15). C: Distribution
of within-assembly ∆ρs across the four conditions. Boxes show all values, while black dots are 1000
samples from each. Significance test was run on the balanced samples (1000 each): 2-way ANOVA and
post-hoc Tukey’s test: *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001. D: Same as C,
but for cross-assembly synapses (data from several postsynaptic assemblies, not only A15 shown on B).
E1: Changes in within-assembly, clustered synapse on an examplary A13 neuron. Rendering was done
with NeuroMorphoVis Abdellah et al. (2018). Neurite diameters are scaled (x2) for better resolution.
(Synapse diameters are arbitrary.) E2: Temporal evolution of the (∼ 1000) synapses on basal dendrites
shown on E1.
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clustered fully potentiated synapses at initialization. As ongoing plasticity weakens those strongly
initialized early assembly synapses and strengthens their connections to the late assemblies we
wondered what would happen to the assemblies if we detected them after the plastic changes.

To study this, we stabilized the network’s state after our 10 minute-long plastic simulation,
i.e., based on the ρ values in the last time step, assigned synapses to either fully potentiated (last
ρ ≥ 0.5) or fully depressed states and updated not only the USE and ĝAMPA values, but also
the peak NMDA conductances (ĝNMDA) accordingly. Then we ran 2 minute-long, non-plastic
simulations of this network and compared the resulting assemblies to the ones detected in a non-
plastic simulation of the network before plasticity, i.e., in its naive state. Note that the stimulus
streams presented were identical between the two cases. From a high level comparison of the
network states before vs. after plasticity we learned that the firing rates increased (Supplementary
Figure S7A1 left) but the pairwise spike correlations only slightly increased in line with recent
findings (Oby et al., 2019; Feulner et al., 2022). Nonetheless spike time reliability of individual
neurons increased (Figure 5A; see Methods). The observed increase in firing rate might explain
the increase in spike time reliability after plasticity, as the two measures are correlated (Cutts
and Eglen, 2014). Plotting pattern-specific peri-stimulus time histograms (PSTHs) before and
after plasticity revealed a general lengthening of the late phases of the response and increased
amplitudes for selected patterns (Figure 5B).

For a better comparison of assemblies, we ran five repetitions of both cases, and compared
consensus assemblies, i.e., the sets of neurons that were reliably part of a given assembly across
repetitions (Figure 5C1 and D1; see Ecker et al., 2023 and Methods). We found more consensus
assemblies after plasticity than before (twelve vs. nine, compare Figure 5C2 and D2). The
emergence of more consensus assemblies after plasticity is not an artefact of grouping assemblies
together, as the optimal number of assemblies (assessed by Davis-Bouldin index (Davies and
Bouldin, 1979); see Methods) was higher in four out of five repetitions after plasticity, and equal
in one repetition (Supplementary Figure S7C). On the other hand, both the Davis-Bouldin index
of the resulting clusters and the cosine similarity of consensus assembly counts across repetitions
decreased after plasticity (Supplementary Figure S7D2). The sizes of consensus assemblies were
similar before and after plasticity (Supplementary Figure S7E). Further comparing consensus
assemblies before and after plasticity has revealed that corresponding pairs had more than 50%
of their neurons shared (Figure 5E).

To gauge the functional consequences of plastic changes, we studied the functional and struc-
tural connectivity of consensus assemblies detected before and after plasticity. When comparing
the mean pairwise spike correlations (a method usually applied to derive functional connectivity;
see Methods) of neurons belonging to consensus assemblies, we observed a general decrease in
the early ones and an increase in middle and late ones (Figure 5F). This was accompanied by
the same arrangement of changes in the structural connectivity of the same consensus assem-
blies (assessed by comparing ρ values). We saw similar trends in the spike time reliability (see
Methods) of individual neurons, i.e., a decrease for early, and an increase for middle and late
consensus assembly neurons. More generally, we found that early assemblies grew less correlated
with weaker internal connectivity through plasticity, which trend was weakened in the subset
of neurons that remained part of the assembly (compare columns of Figure 5F). Conversely,
in middle and late assemblies correlations and connections grew stronger, especially so in the
neurons that were members of the consensus after plasticity.
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Figure 5: Changes in cell assemblies after plasticity. A: Functional network features extracted
from spike times of non-plastic simulations before plasticity, i.e., in the naive circuit vs. after the
10 minute-long plastic simulation. Left: Pairwise spike correlation. Right: Spike time reliability (rspike)
measured over five repetitions of the same 2 minute-long simulations with the same input (see Methods).
B: PSTHs by patterns before vs. after. (Only significant time bins are take into account, see assembly
detection in Methods). C: Non-plastic consensus assemblies before plasticity. C1: Jaccard similarity
based hierarchical clustering of assemblies from the five simulation instances. C2: Significant time bins
from one of the repetitions, ordered by patterns presented, and colored by the consensus assemblies (not
the ones detected from that instance). D: Same as B, but for non-plastic consensus assemblies after
plasticity. (Caption continues on the next page.)
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E: Jaccard similarity of consensus assemblies detected before and after plasticity. F: From left to right:
Changes in pairwise spike correlation, ρ, and rspike of within consensus assembly neurons. Colors indicate
changes (after - before), while columns indicate at which point the consensus assembly was detected.
Right: Changes in total consensus assembly counts per patter. Error bars are over the five repetitions.
G: Input-output map: G1: Input distances as the Earth mover’s distance of the VPM fiber locations
(see Figure 2A). Insert shows the overlap (based on Hamming distance) of pattern fibers. G2: Output
distances are calculated as the (normalized) Euclidean distance of pattern evoked consensus assembly
cluster over repetitions (see Supplementary Figure S7B). G3: Correlation of distances from G1 and G2.
(Similar panels (except A, B, and F) have been shown in Ecker et al., 2023.)

As plasticity in the cortex changes not only ĝAMPA as in the hippocampus but also USE

(Markram and Tsodyks, 1996; Selig et al., 1999; Sjöström et al., 2003; Costa et al., 2015; Chin-
demi et al., 2022), there is a redistribution of synaptic efficacy towards earlier spikes during
high-frequency firing. This redistribution happens because the increased USE makes the STP
profile of potentiated connections more depressing (Supplementary Figure S7B left; Markram and
Tsodyks, 1996). However, in our simulation, we rarely observed high-frequency firing and also
found the STP profile of potentiated connections to be facilitating at the low in vivo [Ca2+]o
(Supplementary Figure S7A2 and B right respectively). Thus, while Markram and Tsodyks
(1996) showed a redistribution of synaptic efficacy after plasticity at the single connection level
in vitro, we found a redistribution at the network level under in vivo like conditions: efficacy
shifted towards synapses targeting the deeper layers of the cortex. Interestingly, while the firing
rates only increased slightly in the significant time bins, there was a more pronounced increase
when we compared them during the whole 2minute-long simulation (compare Supplementary
Figure S7A1 left to right). This strongly suggests that this network level redistribution of efficacy
and the strengthening of late consensus assemblies lead to their reactivation during spontaneous
activity, in line with experimental findings (Miller et al., 2014; Carrillo-Reid et al., 2015; Stringer
et al., 2019; Herzog et al., 2021; Trägenap et al., 2022).

Lastly, we further analysed the total duration of consensus assembly responses to different
patterns. In line with the prolonged PSTHs, we found a general increase (consensus assemblies
active for 190± 45ms before vs. 200± 60ms after plasticity), and could trace it back to selected
patterns A, E, H, and I (Figure 5D right). This provides the most likely explanation for the
increased number of assemblies after plasticity: the higher number of significant time bins simply
lead to a higher number of optimal clusters (given our metric). The activation sequence of
consensus assemblies can be seen as a low-dimensional representation of the complex, high-
dimensional activity of the network’s response to different patterns. Following our previously
established methods (Ecker et al., 2023), we correlated the Earth mover’s distances between the
locations of the VPM fibers making up the input patterns (Figure 5C1), and the normalized
Euclidean distances of output consensus assembly sequences across repetitions (Figure 5G2).
We observed an increase in the input-output distance correlation after plasticity (r = 0.443 vs.
r = 0.357; Figure 5G3). This increased input-output correlation after plasticity can partially be
explained by the prolonged stimulus-specific assembly sequences.

In summary, when comparing assemblies before and after plasticity, we found that the net-
work became more specific to the patterns it was exposed to. This manifested in assemblies
splitting, weakening of early and strengthening of the late assemblies and the consequent pro-
longed assembly responses to specific patterns.

2.7 Network topology changes are parametrized by input stimuli

Increased pattern specificity after plasticity indicates that the plastic changes are indeed not
random, but stimulus-driven. To better characterize this, we ran 2 minute-long plastic simula-
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tions in which we only presented a single pattern (with the same 500 ms inter-stimulus interval
as before). We repeated this paradigm three times, for all ten patterns, and analysed changes
in mean ρ matrices as before. The propensity of changes in the connections was in line with the
baseline ones (compare Supplementary Figures S5B and S8). While the number of connections
changing was similar across patterns, we wondered if there is any pattern-specific information in
them.

To investigate this, we used an input-output distance correlation analysis, similar to the one
employed to compare consensus assemblies before and after plasticity. In detail, we correlated the
Earth mover’s distance of the input patterns (Figure 5C1 as before) with the Euclidean distance
of the steady state (last time step) mean ρ values and found a clear and strong correlation
between them (r = 0.666, p < 0.0001; Figure 6A left). As controls we ran the analysis with
other distance metrics as well. Neither Hamming distance (taking only the identity of changing
connection into account) nor Earth mover’s distance (taking only the distribution of steady state
mean ρ values into account) showed a clear correlation with the distance of pattern fibers (Figure
6A middle and right respectively), indicating, that the whole network structure needs to be taken
into account to describe the relationship between its steady state and the input patterns.

To further explore the structure of the changes, we focused on the plastic connections that
evolved in the same direction (i.e, potentiation or depression) across all three repetitions for all
patterns, which was around 40% of all changing connections (Supplementary Figure S8). As we
found pattern-specific information in the changing connections, in the next step we analyzed to
what degree the subnetworks they defined are determined only the neurons composing them. We
did this by comparing them to random subnetworks of the entire circuit with the same pre- and
post-synaptic populations and the same number of connections between them. We observed, that
distributions of the changing pathways are different than expected from the network structure
and the pre- and postsynaptic populations alone (Figure 6B1). To quantify this difference, we
counted a particular class of motifs, directed simplices of dimension k, which are motifs on
k+1 neurons, which are all-to-all connected in a feed-forward fashion (Figure 6B2 inset). These
motifs have previously shown to be linked to network function (Reimann et al., 2017) as well
as quantify complexity of the network’s topology (Kahle, 2009; Bobrowski and Kahle, 2018).
We found strong overexpression of these simplices in the subgraphs, compared to their random
controls. In particular, the maximal simplex dimension found in the subgraphs was always one
higher than in the corresponding controls (Figure 6B1).

While we learned that different connections change when different patterns are presented and
the connections and the network topology they define are not entirely defined by the pre- and
postsynpatic populations, so far have not linked the changes to individual patterns. To do so,
we used methods developed in Ecker et al. (2023) and first studied the propensity of changes
against pattern-indegree i.e., the number of VPM fibers belonging to a pattern that innervate a
neuron. The propensity of changes increased as either the pre- or the postsynaptic side of the
connection’s pattern-indegree increased (Figure 6C). Moreover, we confirmed that the effect of
pattern-indegree of the pre- and postsynaptic neurons are not independent by computing the
conditional mutual information between them and the probability of their connection to change.
As expected, the mutual information is non-zero (between 0.0126 and 0.0291) and much larger
than the one obtained for corresponding random controls (between 2.27 × 10−7, 4.52 × 10−7).
Thus, in our last analysis we investigated the joint distribution and characterized the propensity
of changes against pattern-indegree of both pre- and postsynaptic neurons. The propensity
of both depression and potentiation grew rapidly with patter-indegree (Figure 6D1 and D2
respectively). While depressing and potentiating connections totaled to only 3% in the whole
network, the amount of depressing connections was above 15%, and above 5% for potentiation
when both sides of the connection were highly innervated by the VPM fibers. They reach the
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Figure 6: Topology of changing subnetworks in response to single pattern presentations.
A: Input-output distance correlations. A1: Different (from left to right: Euclidean, Hamming, Earth
mover’s) distances of mean ρ matrices. Three repetitions for each of the ten input patterns. A2:
Correlation of input distances (as in Figure 5C1) and distances of mean ρ matrices above on A1. B1:
Layer-wise distribution of consistently changing (three out of three repetition) connections in response to
presenting pattern A. Below its control, which was generated by taking the same number of connections
between the same pre- and postsynaptic populations. B2: Directed simplex counts in subnetworks from
B1 (but for all patterns). Colors correspond to simplex counts of the consistently changing subnetworks,
while black to their controls. Note that by construction the controls must have the same number of
0- and 1-simplices which correspond to the number of cells and connections in the subnetwork. Insert
illustrates simplex dimension. C: Propensity of changes vs. pattern-indegree of the presynaptic (left) or
postsynaptic (right) neurons. D: Propensity of changes (split for depression D1 and potentiation D2)
against the pattern indegree of both pre- and postsynaptic neurons.
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highest values for patterns A, H, and I, the same ones whose responses were strengthened by
plasticity when all patterns were presented. Curiously, pattern-indegree of the presynaptic side
was less important for potentiation, where pattern-indegree of the postsynaptic side was more
predictive. The intuitive explanation for this is the following: if input from the VPM fibers
depolarized the postsynaptic dendrites enough, then a successful release from any presynaptic
neuron (independent of their pattern-indegree) caused Ca2+ entering though the at least partially
opened NMDA receptors.

In summary, the network evolved differently when single patterns were presented, and the
distance between the steady states achieved reflected the geometric distance between the pat-
terns. Moreover, the steady state reached for each pattern could not be determined only by
the pre- and postsynaptic populations of the changing connections, but by their precise location
within the network as well as their pattern-indegree. The propensity of depression increased
in connection in which both pre- and postsynaptic neurons was strongly innervated by pattern
fibers, while for potentiation postsynaptic pattern-indegree dominated. Moreover, these effects
are not independent.

3 Discussion

Using a detailed, large-scale cortical network model equipped with a calcium-based model of
long-term functional plasticity, we have examined changes in synaptic efficacy in response to
repeated presentation of ten different stimuli over 10 minutes of biological time, under in vivo-
like conditions. Our principal observations in this bottom-up simulation framework are as fol-
lows: (1) Plastic changes were sparse, affecting only 5% of the synapses. A balance between
occasional large-amplitude potentiation and more frequent depression kept the network stable
without explicitly modeling homeostatic plasticity. (2) Plastic changes were largely determined
by the anatomical structure of synaptic connectivity and its relation to functional units, i.e.,
changes were most likely between co-firing cell assemblies and at clustered synapses. (3) Early-
responding cell assemblies were defined by clustered synapses initialized as fully potentiated and
remained fairly stable. In contrast, their synapses to late-responding assemblies underwent three
times more changes than expected, resulting in prolonged and more reliable responses to selected
patterns after plasticity. (4) Changes in the network evoked by the presentation of individual
patterns reflected the geometric distance between the patterns themselves. The structure of these
changes could be partially explained by the innervation of the pre- and postsynaptic neurons by
the pattern fibers, though the populations alone are not enough to determine these changes,
since the changing connections between them are not random.

The first observation (1) is quite significant considering that we did not design the learning
rule to be sparse and stable. In previous models of plastic networks, additional mechanisms were
needed to keep the network’s activity stable, not to mention the sparsity of changes (Turrigiano
and Nelson, 2004; Litwin-Kumar and Doiron, 2014; Zenke et al., 2015, 2017a; Fauth and Van
Rossum, 2019; Kossio et al., 2021). The machine learning community is also aware of the im-
portance of sparse changes, as in continual learning one has to balance plasticity and stability to
avoid catastrophic forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990). In recent years, they
have come up with impressive techniques that mask connections to improve the performance
of deep neural networks (Zenke et al., 2017b; Mallya and Lazebnik, 2018; Frankle and Carbin,
2019), whereas in our model it emerged naturally from the high level of biophysical detail. Of
course, the amount of data that deep networks are expected to store far exceeds the ten patterns
used here, and it is outside of our scope to find the maximal capacity of our network. On the
other hand, we know from theoretical work that for bistable synapses operating on multiple time
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scales, capacity scales with the square root of the number of synapses (Crick, 1984; Fusi et al.,
2005).

The second observation (2) can be explained from the biophysics of the plasticity model
and links our results to the classical work of Hebb (1949) as well as the recent literature on
synapse clustering (Farinella et al., 2014; Iacaruso et al., 2017; Kastellakis and Poirazi, 2019).
With respect to the latter, we would highlight that our synapses are stochastic and the release
probability between PCs is ∼ 0.04 at the simulated low [Ca2+]o = 1.05mM (Jones and Keep,
1988; Borst, 2010; Markram et al., 2015; Ecker et al., 2020). Therefore, care should be taken when
comparing our results with either glutamate uncaging experiments, which bypass the presynaptic
machinery (Pettit et al., 1997; Losonczy and Magee, 2006), or with other modeling studies that
use deterministic synapses (Poirazi et al., 2003; Farinella et al., 2014; Ujfalussy and Makara,
2020). In relation to observations (2-4): While we were able to use cellular and subcellular
features of the model’s biorealistic structural connectivity (Reimann et al., 2022) to predict
plastic changes to a certain degree, this process also highlighted that many other rules govern
plasticity at the network level. Further analysis considering the embedding of a connection in the
entire network and thus the state of the whole network may be able to provide that explanation.

According to the contemporary view of L5 PCs, sensory bottom-up inputs target their basal
dendrites, and top-down information arrives at the apical ones, and the coincidence activation
of basal and apical inputs is encoded by bursts of action potentials (Larkum, 2013; Naud and
Sprekeler, 2018). During bursts of action potentials, the bAPs propagate to the distal apical
dendrites better (Williams and Stuart, 1999), enough to turn apical depression into potentiation
(Letzkus et al., 2006). Therefore, bursts are not only important for coding, but for plasticity
as well. L5 TTPC bursts were rare in our simulations, as the model is based on an early
developmental stage (P14-16: juvenile rats) and burst firing only becomes prominent as the
animals mature (Zhu, 2000). On the other hand, burst firing could probably be rescued with
stronger top-down input. As the top-down input represents context/brain state and is thought to
serve as an error/target signal for learning, it has to be highly specific (Makino, 2019). Although
we added inputs from POm fibers as they were shown to gate plasticity in L2/3 PCs in vivo
via dis-inhibiting the distal dendrites (Gambino et al., 2014; Williams and Holtmaat, 2019), we
only used randomly distributed fibers, to keep our setup simple in this first investigation. For
a profound understanding of the role of bursts in apical plasticity, more learning/task-related
studies with more precise top-down input would be needed in the future.

We presented here what we believe to be a new way of studying unsupervised learning and
plasticity in the cortex by taking the diversity of cell types and morphologies into account,
modeling connections as multi-synaptic, validating synapse anatomy and physiology, modeling
synapses with bistable dynamics, and simulating the network in an in vivo-like state. On the
other hand, building a model of this scale and detail required gathering and systematic integration
of a large amount of data over several years (Markram et al., 2015; Chindemi et al., 2022;
Reimann et al., 2022; Isbister et al., 2023). As the first of its kind, the work presented here
did not exhaust all the additional understanding one could possibly gain from the high level of
detail. To facilitate that process, we are open-sourcing our model alongside detailed instructions
to launch simulations and analyze the results (see Data and code availability). As any other
model, it has several assumptions (listed in Table 1) and limitations and can best be proven
wrong and iteratively updated in a community-driven manner. Simulating the model requires a
performant hardware and software infrastructure (e.g., we needed 16.5M core hours to run the
simulation presented in this manuscript). With respect to the second part we are continuously
improving the performance and efficiency of the simulator (Kumbhar et al., 2019).
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Table 1: List of assumptions

1. As we combined the models of Isbister et al. (2023) and Chindemi et al. (2022) all assump-
tions therein are inherited. Of particular interest:
2. Extracellular recordings are assumed to have to same bias across layers and neuron popu-
lations. Furthermore it is assumed that different inhibitory subpopulations require the same
ammount of input compensation.
3. The extracellular magnesium concentration of 1mM used in vitro is assumed to be repre-
sentative of the in vivo level.
4. As the plasticity model of Chindemi et al. (2022) is based on [Ca2+]i, by using it we as-
sumed that other factors, like metabotropic glutamate receptors, endocannabinoid release,
BDNF signaling are negligible for the network-level effects of plasticity that we investigated.
5. Spines are assumed to be separate biochemical compartments, i.e., [Ca2+]i of the dendrites
does not influence that of the synapses.
6. By detecting a single set of assemblies in the 10 minute-long plastic simulation we assumed
that assemblies are stable on that time scale.

4 Methods

4.1 Calcium-based plasticity model

The calcium-based plasticity model is fully described in Chindemi et al. (2022), but a mini-
mal description of it can be found below. Synaptic efficacy (ρ) is based on the Graupner and
Brunel (2012) formalism, which exhibits a bistable dynamics (ρ = 0 fully depressed, ρ = 1 fully
potentiated, and ρ = 0.5 unstable fix point) described as:

τ
dρ

dt
= −ρ(1− ρ)(ρ∗ − ρ) + γp(1− ρ)Θ

(
Ca∗(t)− θp

)
− γdρΘ

(
Ca∗(t)− θd

)
(1)

where τ is the time constant of convergence, θd and θp are depression and potentiation thresholds,
γp and γp are depression and potentiation rates and Θ is the Heaviside function. The dynamics
of [Ca2+]i in spines was modeled as:

d[Ca2+]i
dt

=
(
I∗NMDAR + IV DCC

) η

2FX
−

[Ca2+]i − [Ca2+]
(0)
i

τCa
(2)

where I∗NMDAR and IV DCC are calcium currents through NMDA receptors and VDCCs, η is the
fraction of unbuffered calcium, F is the Faraday constant, X is the spine volume, [Ca2+]

(0)
i is

the resting value of [Ca2+]i, and τCa is the time constant of free (unbuffered) calcium clearance.
I∗NMDAR depends on the state of the Mg2+ block. This nonlinear voltage dependence is described
with the Jahr and Stevens (1990) formalism, with parameters fitted to cortical recordings from
Vargas-Caballero and Robinson (2003).

Inspired by previous theoretical insights (Rubin et al., 2005), a leaky integrator of [Ca2+]i
was introduced (Ca∗) to slow down its time course instead of modeling enzymes downstream of
calcium (e.g. CamKII as others did (Mäki-Marttunen et al., 2020; Rodrigues et al., 2022)):

dCa∗

dt
= −Ca∗

τ∗
+ [Ca2+]i − [Ca2+]

(0)
i (3)

where τ∗ is the time constant of the integrator. Updates in ρ were done based on this Ca∗ variable
crossing θd and/or θp (see equation (1)). The two synapse-specific threshold were derived based
on peaks in [Ca2+]i caused by pre- and postsynaptic spikes, cpre and cpost respectively. To
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measure these parameters for all 312,709,576 synapses, simulations of single cells were run, in
which either the pre- or the postsynaptic cell was made to fire a single action potential and
the local [Ca2+]i was monitored in each synapse. Since 8% of L6 PCs could not be made to
fire a single action potential (only bursts), synapses on those cells (10,995,513 in total) were
assumed to be non-plastic, i.e., their thresholds were set to a negative value that could not be
crossed. Similarly, as the plasticity of connections between L4 spiny stellate cells was shown
to be non-NMDA dependent (Egger et al., 1999; Chindemi et al., 2022) those connections were
made non-plastic. For the remainder of cells, θd and θp were derived as follows:[

θd
θp

]
=

[
a00 a01
a10 a11

]
×
[

cpre
cpost

]
or

[
b00 b01
b10 b11

]
×
[

cpre
cpost

]
(4)

where ai,j and bi,j are constants optimized during model fitting for apical and basal dendrites
respectively. Changes in ρ were then converted by low-pass filtering into changes USE and ĝAMPA

as follows:
dUSE

dt
=

USE − USE

τchange
where USE = U

(d)
SE + ρ

(
U

(p)
SE − U

(p)
SE

)
(5)

dĝAMPA

dt
=

gAMPA − ĝAMPA

τchange
where gAMPA = ĝ

(d)
AMPA + ρ

(
ĝ
(p)
AMPA − ĝ

(d)
AMPA

)
(6)

where U
(d)
SE , U (p)

SE , ĝ(d)AMPA, and ĝ
(p)
AMPA are the fully depressed (d) and fully potentiated (p) values

of the given variables, in-between which they evolve. All values (fixed and optimized alike) are
listed in Chindemi et al. (2022). Just to give a rough idea of time scales: [Ca2+]i evolves in the
timescale of tens of ms, Ca∗ on the hundreds of ms, while changes in ρ are converted to changes
in USE and ĝAMPA in seconds.

4.2 In vivo-like spontaneous and evoked activity

The calibration process that leads to the in vivo-like spontaneous activity is fully described in
Isbister et al. (2023), but a minimal description and a list of the parameters used in this article
can be found below. As extracellular recordings are known to overestimate firing rates (Wohrer
et al., 2013), a spectrum of spontaneous states at fixed percentage of the rates reported in
Reyes-Puerta et al. (2015) were calibrated (Isbister et al., 2023). Matching specific firing rates in
silico was achieved by iterative adjustments of layer and cell-type (excitatory/inhibitory) specific
somatic conductance injection (following an Ornstein-Uhlenbeck process Destexhe et al., 2001).
The spontaneous state used in the article is characterized by the parameters: [Ca2+]o = 1.05mM
(Jones and Keep, 1988), percentage of reported firing rates = 40%, the coefficient of variation
(CV; std/mean) of the noise process = 0.4.

The thalamic input patterns, and the spike trains delivered on them are fully described in
Ecker et al. (2023), but a minimal description, highlighting the changes applied in this study, can
be found below. First, the flat map location of VPM fibers avoiding the boundaries of the network
were clustered with k-means to form 100 bundles of fibers. Second, the four base patterns (A,
B, C, and D) were formed by randomly selecting four non-overlapping groups of bundles, each
containing 12% of them. The remaining six patterns were derived from these base patterns with
various degrees of overlap: three patterns as combinations of two of the base ones (E, F, G), two
patterns as combinations of three of the base ones (H, I), and one pattern as a combination of
all four base ones (J). Third, the input stream was defined as a random presentation of these
ten patterns, in a balanced way. Last, for each pattern presentation, unique spike times were
generated for its corresponding fibers following a 100ms-long inhomogeneous adapting Markov
process (Muller et al., 2007). The maximal rate of the VPM fibers was set to 17.5 Hz (compared
to 30 Hz for the non-plastic circuit in Ecker et al., 2023) and half of that for POm.
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4.3 Network simulations

Simulations were run using the NEURON simulator as a core engine with the Blue Brain Project’s
collection of hoc and NMODL templates for parallel execution on supercomputers (Hines and
Carnevale, 1997; Kumbhar et al., 2019; Awile et al., 2022; see Data and code availability). Simu-
lating 10minutes of biological time with reporting the state of all synapses (in every second) took
2,350,000 core hours (∼ 4x more than the corresponding non-plastic circuit without reporting),
on our HPE based supercomputer, installed at CSCS, Lugano. Simulations were always repeated
at least three times to assess the consistency of the results.

4.4 Evaluating control STDP rules

To compare the propensity of changes induced by Chindemi et al. (2022) with classical plasticity
rules, the 36,573,737 excitatory spikes from the 10 minute-long simulation were evaluated with
paired-based STDP rules (Gerstner et al., 1996; Kempter et al., 1999; Song et al., 2000). Synaptic
weights evolved as follows under the STDP rule:

∆w+ = A+ exp
(
− ∆t

τ+

)
at tpost if tpre < tpost (7)

∆w− = A− exp
(∆t

τ−

)
at tpre if tpre > tpost (8)

where tpre and tpost are the times of pre- and postsynaptic spikes, ∆t = tpost − tpre is the
difference between them; A± describe the weight update (their specific values did not effect the
results), which decayed exponentially with time constants τ± = 20ms. To make the STDP rule
stochastic, tpres were only kept with a probability of 0.24 for all potential pairs of spikes. This
value represents at least one successful release from an average connection, and was calculated
by taking into account 4.11 ± 2.33 synapses per connection, 1.57 ± 0.69 vesicles per synapse,
0.45± 0.15 USE and the 25 times reduction is USE due to the reduction in [Ca2+]o (Ecker et al.,
2020; Reimann et al., 2022; Isbister et al., 2023). Both STDP rules were implemented in Brian2
(Stimberg et al., 2019).

4.5 Cell assembly detection

The combination of methods from Carrillo-Reid et al. (2015) and Herzog et al. (2021) yielding the
assembly detection pipeline is fully described in Ecker et al. (2023), but a minimal description,
highlighting the changes applied in this study, can be found below. First, spikes of excitatory
cells were binned using 20 ms time bins (Harris et al., 2003). Second, time bins with significantly
high firing rates were determined as crossing a threshold defined as the mean activity level plus
the 95th percentile of the standard deviation of 100 shuffled controls. These shuffled controls were
less strict than in Ecker et al. (2023). Unlike in the original study, where spikes were only shifted
by one time bin forward or backward (Carrillo-Reid et al., 2015), spikes were shifted by any
amount. This change was introduced because the network’s response to the same patterns was
more variable in the plastic simulations, and to not miss any of them, a lower threshold was more
fitting. Third, based on the cosine similarity of activation vectors, i.e., vectors of spike counts
of all neurons in the given significant time bins, a similarity matrix was built (Carrillo-Reid
et al., 2015). Fourth, this similarity matrix was hierarchically clustered using Ward’s linkage
(Montijn et al., 2016; Pérez-Ortega et al., 2021). Like for any other unsupervised clustering
method, the number of optimal clusters cannot be known beforehand, thus potential number of
clusters were scanned between five and twenty. In Ecker et al. (2023), the one with the lowest
Davis-Bouldin index was chosen, which maximizes the similarity within elements of the cluster
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while maximizing the the between cluster similarity (Davies and Bouldin, 1979). For assemblies
detected over the 10minutes-long plastic simulation, this optimal value was overwritten, to have
at least one pattern-specific assembly for all ten patterns. For the assemblies detected over
the 2 minutes-long non-plastic simulation, the optimal value was chosen, to avoid biasing the
before vs. after assembly comparisons. Fifth, neurons were associated to these clusters based on
their spiking activity, and it was determined whether they formed a cell assembly or not. The
correlations between the spike trains of all neurons and the activation sequences of all clusters
were computed and the ones with significant correlation selected to be part of the potential
assemblies. Significance was determined based on exceeding the 95th percentile of correlations of
shuffled controls (1000 controls with spikes of individual cells shifted by any amount as above;
Montijn et al., 2016; Herzog et al., 2021). Finally, it was required that the mean pairwise
correlation of the spikes of the neurons with significant correlations was higher than the mean
pairwise correlation of neurons in the whole dataset (Herzog et al., 2021). Clusters passing
this last criterion were considered to be functional assemblies and the neurons with significant
correlations their constituent cells. Assemblies of neurons were compared using their Jaccard
distances. The assemblyfire package, developed for Ecker et al. (2023) is publicly available on
GitHub.

4.6 Determination of consensus assemblies

Consensus assemblies, resulting from the hierarchical clustering of the Jaccard similarity matrix
of assemblies across repetitions of the same input stream, are fully described in (Ecker et al.,
2023), but a minimal description of them can be found below. It was ensured that assemblies
from the same repetition did not cluster together, first by setting their distances to twice the
maximum, and second, by cutting the tree in a way that resulted in the lowest number of cluster
in which two assemblies from the same repetition did not cluster together. Membership of neurons
in these consensus assemblies was based on the fraction of assembly instances they were part of,
normalized by a binomial control and thresholded. As shown in Ecker et al. (2023), consensus
assemblies are similar to assemblies detected over the average spike trains across repetitions,
but with the added benefit of the membership threshold. In rough terms, this threshold can
be understood as follows: if a neuron was part of 80% of assembly instances that made up the
consensus, then it was also a member of the consensus assembly.

In order to assess the functional connectivity of consensus assemblies before and after plas-
ticity, the spike trains of their neurons across the five repetitions were first averaged and then
binned (using the same 20ms bins as above). Last, the Pearson correlation of all pairs of the
preprocessed spike trains were calculated, and averaged across the population.

4.7 Calculation of spike time reliability

Spike time reliability, quantify the reliability of a single neuron across multiple presentations of
the same input, is described in (Ecker et al., 2023), but the same description of it can be found
below. Spike time reliability was defined as the mean of the cosine similarities of a given neuron’s
mean centered, smoothed spike times across all pairs of repetitions (Schreiber et al., 2003; Cutts
and Eglen, 2014). To smooth the spike times, they were first binned to 1ms time bins, and then
convolved with a Gaussian kernel with a standard deviation of 10 ms.
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4.8 Synaptic clustering coefficient and likelihood of plastic changes in synapse
clusters

Synaptic clustering coefficient (SCC), quantify the co-localization of synapses on the dendrites
of a neuron from its presynaptic assembly with a single number, is fully described in (Ecker
et al., 2023), but a minimal description of it can be found below. First, the nearest neighbor
distance (along the dendrites) between all pairs of synapses from the presynaptic assembly were
computed and averaged (mean nnd). Second, 20 controls were generated by always selecting
the same number of random presynaptic E cells from the circuit and mean nnds of the control
populations were calculated. Last, SCC was defined as the negative z-score of assembly mean
nnd with respect to the distribution of control mean nnds. SCC is thus a parameter-free metric,
centered at zero, and is positive for intersynaptic distances that are lower than expected (indi-
cating clustering) and negative otherwise (indicating dispersion). Additionally, the significance
of the clustering or dispersion of the synapse locations was determined with a two-tailed t-test
of assembly mean nnd against the 20 random samples with an alpha level of 0.05. SCC was
implemented using NeuroM and ConnectomeUtilities.

Synapse clusters were also detected based on synapse neighbour distances. In order to be
part of a spatial cluster, a synapse was required to have at least nine other synapses on the same
dendritic branch, i.e., between two branching points of the dendrite, with ≤ 10µm (Euclidean)
distance. Significance of spatial clustering was determined similar to Druckmann et al. (2014).
The distribution of synapse neighbour distances of the ten selected synapses were compared with
a Poisson model (assuming exponentially distributed inter-synapse distances) based on all (same
branch) synapse neighbour distances on the given neuron. Clusters were merged in a subsequent
step, thus synapse clusters with more than ten synapses, spanning more than 20µms were also
feasible. As plastic changes in synapse clusters were only analyzed for a small subpopulation
of assemblies (ten L5 PCs per assembly), SCC was used to select subpopulations with high
probability of finding synapse clusters. To this end, assembly neurons with positive, significant
SSC values with respect to an assembly (either the same assembly for within-assembly analysis,
or other ones for analysing cross-assembly interactions) were selected, and the ones with the ten
highest assembly indegree (with respect to the same assembly) selected (see Ecker et al., 2023 for
the same selection method). Control synapse clusters, originating from non-assembly neurons
were also detected on the same postsynaptic neurons.

The normalized likelihood of changes, conditioned on the four categories a synapse could
fall into (assembly clustered, assembly non-clustered, non-assembly cluster, non-assembly non-
clustered) were quantified using the Michaelson contrast, defined as:

P (changed | category)− P (changed)

P (changed | category) + P (changed)
(9)

where changed was split to be either potentiated or depressed.
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Figure S1: Physiology of excitatory cells and E to E connections. A: Distribution of ion-
channel densities in the excitatory (cADpyr) electrical type (etype). B: Validation of dendritic
physiology of the cADpyr e-type on L5 TTPC mtypes. B1: Validation of back-propagating action
potential (bAP) amplitude for basal (teal) and apical (blue) dendrites. Reference data (in orange) comes
from Stuart and Sakmann (1994); Larkum et al. (2001) (apical) and Nevian et al. (2007) (basal). Lines
show exponential fits for the in silico (teal and blue) and in vitro (orange) data. Color bar indicates
dendritic diameter. B2: Validation of EPSP attenuation. Reference data comes from Berger et al.
(2001) (apical) and Nevian et al. (2007) (basal). Lines and color bar same as in B2. Data taken from
(and partially shown in) Reva et al. (2022). (A similar panel has also been shown Isbister et al., 2023).
C: Anatomy and physiology of E to E connections. C2: Connection probability and number of synapses
per connections for all E to E connections. White boxes indicate non-feasible connections, or on the left
panel: no pairs found within the 200µm intersomatic distance used. C2: Mean (over 100 pairs) PSP
amplitude (left) and CV (std/mean on the right) of all E to E connections. (Data taken from (and shown
in) Isbister et al., 2023). C3: Initial synaptic physiology parameters. From left to right: ρ, ĝAMPA, and
USE .
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Figure S2: Synapse-specific parameters of the plasticity model. A: Layer- and neurite type-
wise distribution of measured [Ca2+]i peaks (used to derive parameters of the plasticity model shown
in B). Synapses are grouped based on the soma location of the postsynaptic cell. 10% of all synapses
are shown. Schematics on their lefts illustrate the measurement protocols. B: Layer- and neurite type-
wise distribution of depression and potentiation thresholds (θp and θp) of the plasticity model. Synapses
grouped and shown as in A. C: Correlations of the parameters shown in A and B.
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Figure S3: Calibration of the in vivo-like network state. A: Same as 2B (i.e., raster plots of
the microcircuit’s activity) under different synapse setups. The microcircuit equipped with the plasticity
model of Chindemi et al. (2022) only resembles that of the non-plastic network’s of Isbister et al. (2023)
when VDCCs (voltage-dependent calcium channels) are blocked (last row). B: Re-calibration of the in
vivo-like state using the plasticity model. B1: Left: Euclidean distance of the measured percentages of
firing rates (PFRs) from the target ones in different iterations of the calibration process. Right: Validation
of network states after the final (4th) iteration. Dashed gray line along the diagonal indicated perfect
match. B2 Left: Injected Ornstein-Uhlenbeck (OU) conductances in the non-plastic model of Isbister
et al. (2023) vs. the plastic one for PFR = 40% (the state used in the current article). Dashed gray line
along the diagonal indicated perfect match. Right: Layer-wise (absolute) firing rates of excitatory (E)
and inhibitory (I) subpopulations at PFR = 40%. Legend on the bottom applies to the last three panels
in B.
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Figure S4: Activity of the thalamic fibers. Raster plots of VPM fibers forming each of the ten
input patterns (Figure 2A) for the stimulus stream in (i.e., from pattern A at 2000 ms to pattern J at
6500 ms). Bottom row shows the same for non-specific POm fibers. (A similar panel has been shown in
Ecker et al., 2023.)
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Figure S5: Changing connections in plastic control simulations. A: Same as Figure 2B and
E2 (i.e., raster plots of the microcircuit’s activity and plastic changes in mean(ρ) vs. firing rates under
different conditions. The last row of A2 is not an exact replica of Figure 2E2 as these simulations were run
for 2 minutes. B: Similar to Figure 2E3 (i.e., layer-wise propensity of changes in mean(ρ)) but split across
conditions. C: Similar to Figure 2D1 (i.e., L2 norm of changes) but for mean ρ values of connections
(not synapses) for all conditions.
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Figure S6: Connectivity features underlying cell assembly membership. A: Selected connec-
tivity features of assemblies. A1: Left: Probability of membership in an exemplary assembly (A13)
against assembly-indegree with respect to all assemblies. Solid lines indicate the mean and the shaded
areas indicate 95% confidence interval. Right: nI (normalized mutual information, see Ecker et al., 2023)
of assembly-indegree and assembly membership (blue arrow indicates postsynaptic assembly A13, shown
in detail on its left). A2: Probability of membership in the same exemplary assembly against synapse
clustering coefficient (SCC, see Methods and Ecker et al., 2020) with respect to all assemblies; nI of SCC
and assembly membership. White boxes indicate non-significant nI. B: Summary of within-assembly
interactions (diagonals of nI matrices) for all connectivity features considered in Ecker et al. (2023).
(Similar panels have been shown in Ecker et al., 2023.)
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Figure S7: Comparison of cell assemblies before and after plasticity. A1: Firing rates before
and after plasticity. In all time bins on the left, and only in significant ones (see Methods) on the right.
(Caption continues on the next page.)
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A2 Interspike interval (ISI) distribution (of all excitatory spikes) before and after plasticity on the left.
On the right: Zoom in to low ISIs (≤ 5) ms split by layer. B: STP profiles before and after plasticity. At in
vitro [Ca2+]o on the left, and in vivo on the right. Thin lines represent the 20 individual repetitions, while
the thicker ones their means. C: Davis-Bouldin index (see Ecker et al., 2023 and Methods) of different
number of assemblies before and after plasticity across repetitions. (The index is to be minimized to
achieve optimal number of clusters.) D1: Number of times a consensus assembly is active over repetitions
before and after plasticity. E.g. the first rows per patterns are the counts of colored boxes from Figure
5A2 and B2. This representation can be used to judge the grouping of assemblies (see D2), and also
for calculating their normalized Euclidean distance (see Figure 5G2). D2: Cosine similarity of rows of
consensus assembly matrices (split by patterns before vs. after plasticity). E: Number and location of
consensus assembly neurons before and after plasticity.
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Figure S8: Layer-wise propensity of changes per single pattern. As on Figure 2E3, layer corresponds to
the soma location of the postsynaptic cells.
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