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Highlights

1. (Comprehensive, data-driven molecular model) The study presents a detailed molecular model

of the metabolic system in young and old rodent neocortex, examining over 66,000 molecular

interactions within neurons, glia, and blood vessels.

2. (Aging impacts action potential generation) Findings show that the aging brain experiences

impaired action potential generation, primarily due to compromised functionality of the

Na+/K+-ATPase and reduced ATP supply.

3. (Loss of metabolic flexibility) The study reveals that the metabolic system loses flexibility as a

consequence of aging, hindering its ability to effectively respond to various stimuli.

4. (Strategies for restoring youthful state) Potential strategies for rejuvenating the aged system

include supplying specific factors to the blood, increasing the expression of key elements, and

blocking detrimental components.

5. (Importance of transcription factors) The analysis underscores the critical role of transcription

factors, such as ESRRA, in affecting the function of enzymes and transporters involved in

metabolic processes, providing a foundation for future research on age-related changes in brain

function and cognitive health.
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Abstract

Cognitive impairments and neurodegeneration in aging are linked to disrupted brain energy

metabolism. We address this experimentally challenging problem with a computational molecular

model that provides mechanistic insights and therapeutic predictions. This model encompasses key

enzymes, transporters, metabolites, and other important factors, enabling the investigation of over

66,000 molecular interactions within and across cellular and subcellular compartments of neurons,

glia, and blood vessels. During aging, action potential generation is primarily impaired due to reduced

expression of the Na+/K+-ATPase pump and diminished ATP supply. The metabolic system loses

flexibility, hindering its ability to effectively respond to stimuli or adapt to molecular damage.

Astrocytes may defer to neuronal energy stability at their own expense. We identified potential

strategies for rejuvenating the aged brain including supplying nutritional factors to the blood,

increasing the NADH cytosol-mitochondria shuttle capacity and the expression of Na+/K+-ATPase.

Transcription factor analysis implicated the estrogen related receptor alpha (ESRRA) as having the

highest potential impact on aging, suggesting that dysregulated energy metabolism may be a

transitional state between healthy aging and neurodegenerative disorders, rather than a hallmark of

aging. This high-fidelity model serves as a foundation for future research on aging and cognitive

health.

Main

Brain aging mechanisms

Age is a significant risk factor for numerous disorders, including neurodegenerative diseases (Niccoli

and Partridge, 2012; Hou et al., 2019). At the core of brain aging lies energy metabolism (López-Otín

et al., 2013, 2023; Mattson and Arumugam, 2018). Neuronal signal transduction is energetically

demanding, consuming substantial amounts of ATP. This is reflected in the brain's disproportionate

oxygen and glucose consumption compared to the rest of the body (Kety, 1957; Mink et al., 1981;

Sokoloff, 1996; Rolfe and Brown, 1997). Moreover, metabolic dynamics and neuronal activity are

closely linked (Mann et al., 2021), suggesting that age-related changes in one could potentially

influence the other.

We developed and simulated a comprehensive data-driven model of the neuro-glial-vascular (NGV)

unit metabolism, integrating neuronal firing and blood flow dynamics (Fig. 1). The NGV unit is a

combination of the molecules and processes in neuron, astrocyte, blood and the extracellular space. In

the model, concentrations of molecules are specified in molar units (mM) and fluxes of reactions and
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transport processes are given in molar concentrations per second (mM/second). Volume ratios of the

compartments (given in the supplementary model file) are applied for the scaling of

cross-compartment processes (e.g., transports or exchanges). We validated the model against existing

literature data (Supplementary Fig. 1, Supplementary Table 1). Consistent with recent evidence

(Barros, 2022), our model shows that Na+/K+ pump ATP use in the astrocyte is comparable with that of

the neuron (Figure 3i). In line with previous studies (Bélanger et al., 2011), our quantitative validation

revealed that mitochondrial ATP production is higher in neurons (84%). Cytosolic ATP production is

slightly more favored in astrocytes (Supplementary Fig. 2) where only 70% of astrocytic ATP is

produced by mitochondria (Supplementary Fig. 2). This observation closely matches experimental

estimates of 75% (Bouzier-Sore et al., 2006; Barros, 2022).

Alterations in enzyme expression have recently been shown to actively contribute to tissue aging and

serve as potential drug targets (Palla et al., 2021). To model aging of NGV metabolism, we used RNA

expression fold changes (RNA FCs) from a mouse cell-type specific study (Schaum et al., 2020;

Zhang et al., 2021a) as scaling factors for enzyme and transporter concentrations. These concentrations

are crucial components of the corresponding reaction/transport rate equations. Notably, succinate

dehydrogenase (SDH) is differentially affected by aging in neurons and astrocytes. SDH is a

mitochondrial energy nexus and serves as complex II of the mitochondrial electron transport chain

(ETC). SDH connects the tricarboxylic acid cycle (TCA) and the ETC. Pre- and post-SDH enzymes of

TCA (fumarase and succinate CoA ligase) display opposite fold changes in aged neurons and

astrocytes. SDH itself decreases more in aged neurons than in aged astrocytes. In neurons, aging

reduces both succinate CoA ligase and SDH, while increasing fumarase. In astrocytes, succinate CoA

ligase levels rise during aging (unlike in neurons), SDH experiences a minor decrease, and fumarase

levels decline. Overall, the expression of most enzymes decreases with aging in both neurons and

astrocytes.

In addition to changes in enzyme and transporter expression, we used published values to adjust

arterial glucose, lactate, β-hydroxybutyrate levels, the total NAD (reduced and oxidized) pool, as well

as glutamate concentration changes upon synaptic release events (Dong and Brewer, 2019; Cox et al.,

2022). To balance the model, we also reduced the NADH shuttle capacity between the cytosol and

mitochondria. These aging input factors are summarized in Fig. 2, with further details available in the

Methods section. We then simulated system dynamics driven by either synaptic input or current

injection and observed numerous age-specific differences consistent with prior reports (Supplementary

Table 1).
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Aging affects metabolite levels both at rest and upon stimulation.

The simulated aging phenotype exhibits distinct resting state metabolite concentrations. The response

of these concentrations to stimuli (Fig. 3c, d, Supplementary Fig. 3, 4, 5d, 6a) also differs.

Interestingly, aging-associated changes in metabolic responses to stimuli of varying amplitudes are not

uniform across different metabolites (Supplementary Fig. 6, 7). We performed Uniform Manifold

Approximation and Projection for Dimension Reduction (UMAP) dimensionality reduction on relative

differences in concentration traces between the two ages, and observed numerous interdependencies

between pathways. However, the pentose phosphate pathway (PPP) and TCA tend to form

pathway-related clusters (Supplementary Fig. 8). Moreover, pairwise Kendall correlation between

metabolic concentration traces is also affected by aging (Supplementary Fig. 9). This effect may be

caused by widely described metabolic dysregulation in aging (Mattson and Arumugam, 2018).

Consequently, reaction and transport fluxes are impacted as well (Supplementary Fig. 10-12). To sum

up, aging effects on metabolite concentrations at rest and in response to neuronal activation are

metabolite-specific and largely uncorrelated, reflecting metabolic deregulation in aging.

Lactate transport directionality depends on blood glucose levels in aged, but not young.

In the aged state, neuronal lactate import flux is lower, while astrocyte lactate export flux is slightly

higher. This effect can be explained by mitochondrial hypometabolism, which results in increased

pyruvate levels and correspondingly higher lactate.

We simulated the effects of varying resting blood glucose levels in a range of 1.6 to 14.6 mM with

increments of 1 mM and found a dependence of lactate transport directionality upon glucose levels in

aged, but not in young animals (Supplementary Fig. 13). In the young state, we observed an

astrocyte-to-neuron lactate shuttle (ANLS) at all tested blood glucose levels. As blood glucose levels

increase, lactate export from astrocytes rises while lactate import to neurons decreases. This

observation is logical since higher glucose availability reduces the need for neurons to import lactate,

and more lactate is available in astrocytes, facilitating its export.

Unexpectedly, in the aged state, we found that both neurons and astrocytes export lactate when blood

glucose levels are low (1.6 to 5.6 mM). However, when blood glucose levels are moderate (6.45 to

10.6 mM), ANLS with smaller flux amplitudes occurs, consistent with observations in a recent

preprint (Acevedo et al., 2023). At high blood glucose levels (11.6 to 14.6 mM), both types of cells

import lactate. This counterintuitive observation may represent a manifestation of metabolic

dysregulation in aging. A potential explanation could involve NAD+/NADH and ATP/ADP ratios due

to their regulatory role over the entire metabolic network, but a definitive answer would require
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experimental investigation. As blood glucose levels increase, lactate export from astrocytes decreases,

and neurons switch from export to import of lactate. In summary, lactate transport directionality in

aged, but not the young brain, is sensitive to blood glucose levels.

Aging-associated changes in metabolism alter electrophysiological characteristics.

Interestingly, aging metabolism leads to changes in neuronal firing characteristics for both presynaptic

input (Fig. 3) and current injection-driven simulations (Supplementary Fig. 5). Age-related differences

in neuronal firing characteristics evoked by current injection are particularly important because we

have excluded glutamate release effects from the simulation. This was done to mitigate the possibility

of synaptic activity reduction becoming a confounding factor. Observations are consistent between

synaptic input and current injection-driven responses (Supplementary Fig. 14), indicating that the

effects on neuronal firing characteristics result from changes in metabolism rather than just synaptic

glutamate release scaling. The primary driving factor is the reduction in Na+/K+-ATPase expression in

the aged brain. If Na+/K+-ATPase expression remains at its young level, neuronal firing characteristics

only slightly differ between young and old under conditions of high-frequency firing (78-79 Hz).

However, no significant differences are observed for firing at lower frequencies such as 4-8 Hz.

Altogether, age-related change in Na+/K+-ATPase expression rather than ATP-level reduction is the key

factor defining the differences in characteristics of neuronal firing and the shape of an action potential

in aging, consistent with a recently suggested theory of non-canonical control of neuronal energy

status (Baeza-Lehnert et al., 2019).

Less energy is available and consumed by neuronal signaling in the aged state.

Energy deficiency is a prominent feature of brain aging (Bonvento and Bolaños, 2021), but cell-type

specific changes remain poorly understood. Adenylate energy charge (AEC), a widely used proxy for

cellular energy status (Atkinson, 1968), is higher in the young compared to the old state (Fig. 3e),

indicating a decrease in energy availability with aging. The total ATP cost of firing at approximately 8

Hz is 2e9 (young) and 1.8e9 (old) molecules of ATP per second per NGV unit, which aligns with

literature estimates (Howarth et al., 2012; Yi and Grill, 2019; Zhu et al., 2019). The primary

energy-demanding functions in the brain are mediated by the Na+/K+-ATPase (Niven, 2016; Meyer et

al., 2022). We observed reduced ATP consumption by the neuronal Na+/K+-ATPase in aging (Fig. 3f),

which could be attributed to a decrease in neuronal firing frequency. Conversely, astrocytic

Na+/K+-ATPase ATP usage slightly increased in the aged state (Fig. 3f). The ratio of the

astrocyte-to-neuron Na+/K+-ATPase flux is around 2 to 3 (Fig. 3g), and this value is marginally higher

in the aged compared to the young state. In summary, aging is accompanied by the decline in energy
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status of both neuron and astrocyte, but changes in ATP use of the Na+/K+ pump are cell-type

dependent.

Aging brain metabolism is more fragile and susceptible to molecular damage.

Protein dysfunction is associated with several aging hallmarks, including loss of proteostasis, oxidative

damage, and impaired DNA repair (Mattson and Arumugam, 2018; Schaum et al., 2020). Moreover,

reduced protein translation fidelity leads to a phenotype resembling an early stage of Alzheimer's

disease (Brilkova et al., 2022). To model the impact of molecular damage on enzyme and transporter

functions, we conducted simulations with one perturbation at a time for each protein's kinetic

parameter, adjusting its value by 20% (increasing and decreasing in separate simulation runs). We then

calculated sensitivities by comparing 2,264 simulation runs with perturbed parameters to the baseline

in young and aged state simulations (see formula in Fig. 4b). From the difference of sensitivities

during stimulus response and at rest normalized by rest state sensitivities, we calculated responsivity

(Fig. 4d), which reveals cell-type specific differences between neuron and astrocyte (Fig. 4d).

Neuronal responsivity mostly decreases with age, while responsivity of the astrocyte mostly increases.

This observation is in line with the literature on astrocyte reactivity (Weber and Barros, 2015).

However, in contrast to the “selfish” astrocyte hypothesis (Weber and Barros, 2015), we suggest that

the increase in astrocytic responsivity is a manifestation of its self-sacrifice in an attempt to support the

declining neuron. Overall, this observation suggests a dysregulation of intercellular communication.

We visualized the responsivity of the entire metabolic network in the two age groups by positioning

the nodes of both metabolites and enzymes using the Fruchterman-Reingold force-directed algorithm

(Hagberg et al., 2008). The lengths of edges were weighted reciprocally to metabolic responsivity (Fig.

4e). More details are available from Supplementary File 2. These networks displayed clustering of

nodes by function, which is better separated in young than in old states.

We then performed a quantitative comparison of the networks. For both age states we calculated the

closeness centrality of nodes, which is the reciprocal of the sum of shortest path distances between

each node and all other nodes. The aged state showed on average longer distances than the young state

(Fig. 4f).

To evaluate the fragility of metabolism at the two ages, we quantified the aging-associated

fragmentation of the network into "islands" by calculating the number of connected components in

young and old networks after removal of edges with responsivities below a given percentile threshold
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(Fig. 4g). Between a 76% and a 93% threshold, we observed a higher number of connected

components in the age state. Both networks are fully connected at lower than 76% threshold values

and fully disconnected at 100%. Therefore, aging brain metabolism is more fragile and susceptible to

damage, while metabolic responsivity moves in opposite directions for neurons (down) and astrocytes

(up) in the aged state.

Molecular responsivity based anti-aging targets are consistent with aging mechanisms.

Enzyme-metabolite pairs exhibiting the highest differences in metabolic responsivity (Supplementary

Fig. 16) can potentially be considered as anti-aging targets (Fig. 5a). To broaden the set of potential

drug targets and narrow down the number of simultaneous therapeutic interventions, we performed

transcription factor (TF) enrichment analysis using ChEA3 (Keenan et al., 2019). ChEA3 is a tool that

prioritizes TFs based on the overlap between a given list of genes and a TF targets database. This

analysis aimed to identify common TFs that could serve as potential anti-aging targets regulating

several target enzymes (Fig. 5b). We then consider the ten highest priority targets.

The top-scoring TF was ESRRA (estrogen-related receptor alpha). This TF regulates expression of

multiple metabolism-related genes, including those of mitochondrial function, biogenesis and turnover,

as well as lipid catabolism (Tripathi et al., 2020). It is also linked to autophagy and NF-kB

inflammatory response via Sirt1 signaling (Cantó et al., 2009; Yuk et al., 2015; Kim et al., 2018;

Suresh et al., 2018). Mitochondrial dysfunction and autophagy impairments are consistently among the

hallmarks of aging (López-Otín et al., 2013, 2023; Mattson and Arumugam, 2018). Notably, ESRRA

expression is downregulated in aging according to various studies (Schaum et al., 2020; Tripathi et al.,

2020). Altogether, ESRRA acts as a regulatory hub of multiple aging-associated pathways as outlined

in Supplementary Fig. 19. The additional transcription factors identified have strong links in the

literature to aging and neurodegeneration (see Supplementary Information File 3).

We further searched the STRING database (Szklarczyk et al., 2019) for the protein-protein

associations of the top TF ESRRA (Fig. 5c) and identified these proteins: Hif1a, Sirt1, Hdac8,

Ppargc1a, Ppargc1b, Mef2c, Nrip1, Ncoa1, Tfam, Perm1. Interestingly, numerous reports attribute

roles in aging and neurodegeneration to these proteins as detailed in the Supplementary Information

File 3.

Our identified anti-aging targets largely align with the literature data on therapeutics for healthy aging

(Campisi et al., 2019). Furthermore, these targets suggest a role for less studied TFs in aging brain
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energy metabolism and provide insights into the links between molecular mechanisms implicated in

aging and neurodegeneration.

Rejuvenation by targeted interventions and a combination of diet, NAD supplementation and

Na+/K+-ATPase activation.

We investigated whether key features of the aged brain phenotype, such as energy deficiency and

altered neuronal firing, could be rejuvenated through targeted interventions. We conducted constrained

optimization on 20 combinations of parameter sets. These parameter sets included: 1) the enzymatic

targets identified by the differences in metabolic responsivity (same as the input for transcription factor

enrichment analysis above), 2) the enzymatic targets regulated by top transcription factor from the

enrichment results mentioned earlier, 3) parameters corresponding to arterial blood glucose and ketone

levels (mimicking diet), 4) parameters corresponding to arterial blood lactate levels (attributed to the

effects of exercise), and 5) total NAD-pool parameter in neuron and astrocyte (NAD supplementation).

Surprisingly, optimization using a combination of diet (lower blood glucose and higher blood

b-hydroxybutyrate), exercise (higher blood lactate), NAD supplementation, and modulation of the

cytosol-mitochondria NAD-associated reducing equivalents shuttle (hereafter referred to as

DEN-therapy) resulted in ATP levels increase of both neurons and astrocytes towards young state

values.

To restore neuronal firing characteristics, we supplemented each intervention by reversing the Na+/K+

pump age-related downregulation. For each intervention, observed neuronal firing characteristics were

similar to those of a young state. The energy status of both cell types was intermediate between young

and old states (Fig. 5). Insulin is a common biological factor that activates the Na+/K+-ATPase and also

lowers blood glucose. In conclusion, we computationally demonstrated restoration of ATP levels and

neuronal firing characteristics in response to identified therapies.

Discussion

This study presents the most detailed dynamic simulation of age-specific NGV metabolism coupled to

neuronal firing and blood flow. Our model specifically emphasizes the key brain energy metabolism

pathways and processes involved in neuronal signal transduction. In building our model, we strove to

be as biologically detailed and unbiased as possible, but due to limited available data, we had to refine

weakly constrained parameters and focus on the most relevant pathways and processes rather than

simulating dynamics at the whole genome-scale. Additionally, due to data sparsity, differences
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between in vitro and in vivo conditions as well as natural biological variability complicate

development of computational models.

In spite of these challenges, our results in both young and aged states align well with various published

experimental reports on metabolite levels and neuronal firing. For example, we discovered

aging-associated changes in metabolism affect neuronal firing patterns and characteristics that are

consistent with literature (Power et al., 2002; Disterhoft and Oh, 2007; Kumar and Foster, 2007;

Smithers et al., 2017; Vitale et al., 2021). In addition, our sensitivity analysis, which mimics the effects

of conditions such as phosphorylation levels, transcription and translation errors, as well as molecular

damage to enzyme and transporter kinetic properties, revealed cell-type specific differences in the aged

brain. It also predicted diminished flexibility in distributing the burden of ATP supply to adapt to

fluctuating energy needs in the aged brain.

With sensitivity and transcription factor enrichment analyses, we were able to pinpoint potential

anti-aging targets. Through constrained optimization, we identified a combinatorial therapy that

rejuvenates key features of the aging brain phenotype. This therapy involves maintaining specific

levels of blood glucose, lactate, and β-hydroxybutyrate achievable through diet and exercise, coupled

with redox state maintenance via NAD-supplementation, modulation of the cytosol-mitochondria

reducing equivalent shuttle (related to NADH), and Na+/K+-ATPase activation. For instance, aging

phenotype reversal can be achieved in part by regulating insulin signaling, which concurrently

addresses blood glucose and Na+/K+-ATPase.

More complex interventions, which act on the top potential targets identified earlier in conjunction

with elements of DEN-therapy, also managed to restore ATP levels in cells while maintaining blood

glucose levels at 5-5.5 mM. However, it is important to consider the translational perspective of these

complex interventions. Given that they act on multiple enzymatic targets at the same time, their

development and implementation would require a significantly more extensive and thorough

investigation before they can be considered for practical application in treating aging-related issues.

Notably, the outcomes of these complex therapies appear to be comparable to those achieved with the

simpler DEN-therapy, raising the question of whether the additional complexity of such therapies is

necessary for effective treatment.

The promising combination therapy identified in this study, which includes diet, exercise, NAD

supplementation, NAD shuttle and Na+/K+-ATPase modulation, shares similarities with proposed

anti-aging interventions such as caloric restriction, ketogenic diet, and exercise. The suggested
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anti-aging mechanisms of metformin (Kulkarni et al., 2020) and resveratrol (Park et al., 2012; Santos

et al., 2021) also target some of the pathways involved in this combination therapy. However, there are

numerous other processes that are not included in the model, and the most studied anti-aging therapies

remain incompletely characterized. Our data-driven and optimization model construction approach

was remarkably successful in simulating very complex conditions and stimuli, as well as the emulation

of aging phenotypes.

We observed that even with significant modifications attributable to aging, the model remained viable

and produced simulation results consistent with published literature. Importantly, random

modifications of kinetic parameters and enzyme concentrations led to worse simulation outcomes

compared to the data-driven aging version of the model. This result suggests a coordinated response in

the expression changes of enzymes and transporters in response to changes in blood nutrients and total

NAD pool. If the expression changes represent an adaptive response to molecular damage

accumulation, then dysregulated energy metabolism may be a transitional state between healthy aging

and neurodegenerative disorders rather than a distinct aging hallmark.

The model and methods developed in this study open up new avenues for addressing the fundamental

questions of brain aging, disease-associated genetic variants, enzymatic deficiencies, and the effects of

different diets. The fact that the model is able to simulate a variety of stimuli and conditions, including

aging and changes in blood nutrients, suggests that it has the potential to be a valuable tool for future

research. As such, it is most appropriate to treat the mathematical formulation of a biological system as

a tool, which is suitable to address a number of questions in a given context. For this tool to be of

wider use, it needs to be easy to modify so that it can support simulations of different conditions or

even serve in personalized medicine applications. Additionally, the methods used in this study could

be applied to other complex systems, further advancing our understanding of the biological world.
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Figures.

Fig. 1. Model overview. The model consists of three connected sub-systems: metabolism, neuronal

electrophysiology and the blood flow. Compartments of the model include the neuronal and astrocytic

cytosol, mitochondrial matrix and intermembrane space, interstitium, basal lamina, endothelium,

capillary, artery (only with fixed arterial concentrations of nutrients and oxygen), and endoplasmic
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reticulum (only with Ca2+ fixed pool). Enzymes and transporters shown in the figure correspond to the

rate equations in the model which govern the dynamics of metabolite concentration changes. Neuronal

electrophysiology is modeled in a slightly extended Hodgkin-Huxley type of model. Blood flow

activation is described by a simple function dependent on the stimulus onset and duration according to

the literature models.
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Fig. 2. Aging model input (a) and results overview (b). a, Aging input is modeled with RNA

expression fold changes of enzymes and transporters, scaling of arterial glucose, lactate and

b-hydroxybutyrate, as well as the total NAD (reduced and oxidized) pool, synaptic effects of glutamate

concentration changes upon release events, and the reducing equivalents (NADH-related) shuttle
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between cytosol and mitochondria. b, The key results include aging effects on metabolite levels,

electrical activity of the neurons, and changes in adaptivity of the system in response to kinetic

parameter perturbations (mimicking molecular damage and other conditions affecting enzyme and

transporter functions).
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Fig. 3. Simulation results. a, Example AP in voltage traces in simulations of young and aged neurons

with insets providing a closer view. b, Characteristics of neuronal firing in young and old ages upon

synaptic activation. c, Dynamics of metabolism in response to synaptic activation at different ages

(only a selection of the most important variables is shown). Compartment names abbreviations: n -

neuron, a - astrocyte, c - cytosol, m - mitochondria, x - mitochondrial matrix, i - mitochondrial IMS,

cap. - capillary. d, Amplitude of concentration changes in response to synaptic activation in young

(top) and old (bottom), individual metabolites labels are available in Supplementary Fig. 18. e, AEC:

Adenylate Energy Charge in young and old neurons and astrocytes. f, Main energy consumption:

Na+/K+-ATPase rate of ATP use. g, Ratio of astrocyte to neuron Na+/K+ pump rate.
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Fig. 4. Metabolic response to kinetic perturbations changes with age. a, Example metabolite level

profiles in response to kinetic parameter perturbation. b, Calculation of metabolic sensitivity to kinetic

parameter perturbations. c, Active metabolism sensitivity. d, Metabolic responsivity to kinetic

parameter perturbations. e, Metabolic responsivity networks in young and aged (same function-color

relation as in d). f, Closeness centrality of the nodes in the networks of metabolic responsivity

aggregated by enzymes. g, Number of connected components in filtered networks of metabolic

responsivity aggregated by enzymes. Ions, membrane potential, gating variables, mitochondrial

membrane potential, and metabolites with fixed concentrations are removed from the analysis for all

figures in this panel.
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Fig. 5. Reversing aging via targeted metabolism interventions. a, Sensitivity analysis-based

potential targets are outlined by pink boxes and grouped by function in thick line boxes in the modeled

system. b, Transcription factor enrichment results obtained from ChEA3 analysis (the top 10 TFs are

shown). c, Results of the STRING-database search for ESRRA (the top TF from ChEA3 analysis). d,

The interplay of molecular mechanisms in brain aging. e, Time series traces of selected variables in

young, aged, and treated aged states. The treatments were 20 different therapies based on combinations

of different factors. These factors were top enzymes and transporters selected by metabolic

responsivity, as well as top enzymes and transporters regulated by ESRRA. Additional factors included

common interventions as diet, exercise, NAD supplementation and NAD cytosol-mitochondria shuttle

modulation. f, Characteristics of neuronal firing in young, aged, and treated aged with selected

therapies. In addition to selected top-performing and top-translatable therapies, we restored Na+/K+

pump expression to the young state. Application of the Na+/K+ pump expression restoration and each

of the treatments restored characteristics of neuronal firing.

Methods

Baseline model building

We reconstructed and simulated a model of NGV metabolism coupled to a simple blood flow model

and a Hodgkin-Huxley (HH) type of neuron model. The main concepts of electro-metabo-vascular

coupling, as well as blood flow and neuronal electrophysiology model are based on the models

available from the literature (Aubert et al., 2001; Jolivet et al., 2015; Calvetti et al., 2018; Winter et al.,

2018). Our model specifically emphasizes the key brain energy metabolism pathways and processes

involved in neuronal signal transduction. However, to gain a more comprehensive understanding of the

various complementary molecular mechanisms and pathways involved in aging and disease, it is

desirable to further expand the model to a whole-cell scale and incorporate more regulatory processes.

At present, this task is hindered by data sparsity. As more data becomes available, the model can be

iteratively refined and expanded.

Compared to the more generalized phenomenological metabolism models, our metabolism model

features 183 processes (95 enzymatic reactions, 19 processes of transport of molecules across the cell

and mitochondrial membranes, and 69 other processes related to ionic currents, blood flow dynamics

and some miscellaneous non-enzymatic processes, e.g. Mg2+ binding to mitochondrial adenine

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.30.555341doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.30.555341
http://creativecommons.org/licenses/by/4.0/


nucleotides). Every reaction, transport or other process is represented by its rate equation, which is

literature-derived. Changes of molecular concentrations are described by a system of 151 differential

equations and additionally cytosolic ADP, creatine, NAD, NADP are calculated from the conservation

law and total pool of relevant molecules.

The model is based on the combination of literature data for enzyme kinetics and molecular

concentrations. We have meticulously collected all parameters and equations from the literature

sources, as referenced in Supplementary Table 2 and throughout the model code, and

programmatically queried databases BRENDA (Chang et al., 2021), SabioRK (Wittig et al., 2018).

However, observed discrepancies in the parameters reported by different sources define the need for

the optimization procedure, to derive plausible biological middle-ground. The parameters with

uncertainties observed in the literature were constrained by their lower and upper bounds taking into

account the type of the parameter (Michaelis constant of reaction, inhibition/activation constant,

maximal rate of reaction, equilibrium constant, Hill coefficient) and optimized as described in the

Optimization part of the Methods.

To have the most realistic biological average for the initial values of all variables (concentrations,

membrane potential, mitochondria membrane potential, venous volume, gating variables) according to

the literature, we considered not only measured and modeled literature data on the absolute values

themselves, but also additional constraints, such as known ratios of NADH to NAD+ in the neuron

(Neves, 2011; Dienel, 2012; Berndt et al., 2015; Mongeon et al., 2016) and astrocyte (Mongeon et al.,

2016). One of the most important variables in the model, ATP concentration, was reported at 2 mM

level in many experimental and modeling studies (Erecińska and Silver, 1989; Cloutier et al., 2009;

Jolivet et al., 2015; Calvetti et al., 2018; Winter et al., 2018). However, some more recent data report it

at 1 to 1.5 mM scale (Baeza-Lehnert et al., 2019; Köhler et al., 2020). Assuming that more recent

measurement technologies can provide more precise data, we set cytosolic ATP in the neuron to

approximately 1.4 mM according to Baeza-Lehnert et al. (Baeza-Lehnert et al., 2019) and to

approximately 1.3 mM in astrocyte according to Kohler et al. (Köhler et al., 2020) where it was

reported in a range of 0.7 to 1.3 mM (acutely isolated cortical slices) and 1.5 mM (primary cultures of

cortical astrocytes).

Mammalian ATP to ADP ratios are reported in a very wide range of values from 1 to more than 100

(Tantama et al., 2013). Ratio of ATP to AMP is around 100 (Erecińska and Silver, 1989). Further,

metabolite ratios from (Erecińska and Silver, 1989) were used to adjust initial concentrations of

phosphocreatine and phosphate to the ATP levels. Lactate concentrations in different compartments,
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which is central to the ANLS debate, was set according to the recent Mächler et al. paper (Mächler et

al., 2016). We also tested the model with all alternative literature concentrations for the metabolites

mentioned above.

Glucose supply from blood is of key importance to brain energy metabolism (Benton et al., 1996). For

this reason we approached it particularly meticulously. In our model, glucose concentrations are

assigned to detailed compartments, such as arterial, capillary, endothelial, basal lamina, interstitium,

neuronal cytosol and astrocytic cytosol (Barros et al., 2017). According to the literature, hexokinase

flux is split approximately equally between neuron and astrocyte (Barros et al., 2007, 2017; Jolivet et

al., 2010), so that we adjusted Vmax of hexokinase in a way for fluxes to match the literature data at

rest. Upon activation, the ratio of glucose influx to astrocyte versus neuron increases, consistently with

the literature knowledge (Jolivet et al., 2010).

Implementation and simulation.

This metabolism model is implemented and simulated in Julia programming language (Bezanson et al.,

2017). We used the DifferentialEquations.jl package (Rackauckas and Nie, 2017) to solve the

differential equations system using order 2/3 L-stable Rosenbrock-W method (autodifferentiation

disabled, both absolute and relative tolerances set to 1e-8). The choice of Julia language is defined by

the combination of its high performance, extensively developed mathematical methods ecosystem, and

the readability of the code, which supports its future use. Most of the analysis and figures-making code

is written in Python programming language.

The model is built in a modular way, so that every molecular process has a dedicated rate function, and

combination of relevant rate functions defines the dynamics of variables. This supports convenient

testing of various enzymatic mechanisms, parameters and initial values of concentrations, as well as

easier model subsetting and expansion.

Once the manuscript is accepted for publication, we will provide the GitHub repository with the code

for model simulation, optimization, validation and analysis. These scripts are aimed to facilitate the

model’s reuse in future studies.

Optimization.

Time series data on the dynamics of specific metabolites in neurons and astrocytes is very sparse and

sometimes contradictory. To avoid favoring one data source over the other, we only performed
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optimizations for the steady state (minimizing derivatives). We built and optimized the model

bottom-up in multiple iterations, gradually expanding it with more details. We started with the model

of neuronal electrophysiology (Pospischil et al., 2008; Øyehaug et al., 2012; Jolivet et al., 2015;

Krishnan et al., 2015; Calvetti et al., 2018). We included detailed astrocytic ion management based on

the existing literature model (Witthoft et al., 2013). Then for the metabolism model, we started with

capillary dynamics, oxygen and glucose transport, and hexokinase, because they are very well studied

and CMR of glucose is widely measured, which sets a strong constraint on hexokinase rate. Then we

proceeded to add reaction by reaction and evaluate rates in simulations, each time adding a new

reaction, first if needed roughly manually refining underconstrained parameters. Then after several

reactions were added, we ran optimization (with an objective to minimize derivatives) for a selected

small set of parameters which are the least constraint by the literature. Then we modeled lactate

transport and connected it to glycolysis. We separately optimized PPP for steady state (with an

objective to minimize derivatives). For the mitochondria, we started from the electron transport chain,

which is mitochondrial-membrane potential dependent and extremely sensitive to parameter variations.

We mostly used the ETC model from Theurey and the colleagues (Theurey et al., 2019), and then we

carefully selected a small number of parameters to optimize them (with an objective to minimize

derivatives) to make the ETC model compatible with ATP and ADP concentrations from more recent

experimental evidence. Then we added one-by-one TCA reactions to ETC, the same way as described

above for other pathways. And we also added ketones metabolism, part of MAS, glutamate-glutamine

cycle (after having both neuron and astrocyte together in the system).

The optimization procedure referenced above is single objective optimization performed using

BlackBoxOptim.jl [https://github.com/robertfeldt/BlackBoxOptim.jl of Robert Feldt] with the default

algorithm (adaptive differential evolution optimizer) iteratively selecting different sets of processes to

reduce the parameter space.

To avoid non-physiological molecular concentrations (negative or too high values), we used

Julia-callbacks and the “isoutofdomain” mechanism in solving the differential equations system during

optimization. For these biological plausibility reasons, we utilized “isoutofdomain” to control the

solution of the differential equations system to stay non-negative, so that the solver takes smaller time

steps if the solution leaves the domain, unless the minimum step size is reached and integration is

terminated. The same methods were applied for the anti-aging optimization, but the selection of

neuronal firing related variables from the young state simulated time series data were used for the

objective function.
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Computational models are often optimized by fitting parameters to the data using a selected algorithm.

Indeed, some time series data are available for various aspects of brain metabolism, including for

concentrations of glucose, lactate, pyruvate, NADH and ATP, the BOLD signal, and cerebral metabolic

rates of oxygen and glucose. However, to our knowledge these usually come from different

experiments rather than simultaneous measurements of multiple metabolite concentrations and other

characteristics. It has been demonstrated by numerous studies that one can fit system dynamics to

selected data given a sufficient number of weakly constrained parameters and nonlinear rate equations

(Dyson, 2004). An interesting case is when measurements with similar metadata from different studies

produce significantly different dynamics of metabolite concentrations, such as in the example of

extracellular brain glucose from Kiyatkin and Lenoir (Kiyatkin and Lenoir, 2012) as compared to

Fillenz and Lowry (Fillenz and Lowry, 1998), which was further used in one of the early integrative

NGV models (Cloutier et al., 2009). We therefore aimed to avoid the global optimization of fitting

parameters to selected time series, and instead followed laborious iterative refinements in bottom-up

model building with parameter estimation targeting the steady state (minimization of derivatives at

rest). However, this approach has a downside: it does not guarantee exact matching of the

experimentally recorded dynamics of any selected experiment. It is only possible to get close enough

to the time series observed experimentally and in other models if the underlying model has a sufficient

level of detail, uses relevant kinetic data for initial parameterization and employs applicable

constraints (e.g., physiological range of metabolite concentrations, typical range of values for kinetic

parameters of a given type). While many time series produced by our model are close to the literature

reports, glucose concentration traces and cerebral metabolic rate of glucose consumption have only

modest stimulus responses as compared to the literature. This can be explained by our decision to

follow the most detailed (to our knowledge) approach to glucose transport in the brain available in the

literature (Barros et al., 2007; Simpson et al., 2007). This approach takes into account

compartmentalisation into arterial, capillary, basal lamina, interstitial space, astrocytes and neurons,

with glucose transfer between these compartments described by rates that consider

intracellular/extracellular concentration-dependent trans-acceleration and asymmetry of transporters.

Workflow and the key aspects of the bottom-up model building and optimization.

In order to build the model in a bottom-up data-driven way and avoid unreasonable preference for any

particular data source, we developed a workflow, which resulted in the model performing surprisingly

well for different setups. It produced quality simulation outcomes which are largely consistent with

various literature. The only drawbacks are that the workflow is largely iterative, time-demanding, and

requires manual intervention.. Here are the steps and the key considerations.
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Step 1. Collect as much reliable data as available. In our case of building a model which combines the

metabolism, electrophysiology and the blood flow, the following data were needed: molar

concentrations of molecules (metabolites, proteins, ions), enzymes and transporters kinetic parameters,

electrophysiology and blood flow dynamics parameters, rate equations of all processes, mechanisms of

reactions and the data on their inhibitors and activators with corresponding mechanisms of action,

existing models of pathways and their combinations. In most cases, reaction rate is modeled in the

literature with at least a few different equations. This is due to the use of different formalisms in the

literature. For example, the same reaction can be described in a precise mechanistic way considering

multiple transition states of complexes formed by enzyme with substrates, products, regulators, or it

can be described in a more simplified form of modular rate law or Michaelis-Menten kinetics, when

assumptions about the reaction mechanism are met. It is important to keep collected models of

reactions and how they are used in the existing models of pathways and systems, because for practical

applications the scale of the model needs to be balanced with how many parameters are used for each

equation in the model. For example, detailed mechanistic rate equations can be parameterized well for

small models when there is enough consistent reliable data, but for cases with high uncertainty in the

data, it is often hard to optimize and not overfit such models.

Step 2. Next, we model individual reactions. In some cases (most of which are relatively old

biochemistry studies), time series data on individual enzymes are available. These can be used to

optimize the parameters of enzymatic rate equations, especially if they are underconstrained, coming

from different species or tissues. This step also allows us to evaluate how fast individual reactions are,

how significant are the effects of inhibitors and activators and whether to include them in the model or

not, and how problematic each particular reaction is in terms of the steady state and response to

changing inputs.

Step 3. Once the data is collected, we bring together reactions one-at-a-time according to the

reconstructed pathways networks. This process is highly iterative and needs to be repeated multiple

times starting from different data. We need to try multiple combinations to see in which cases the

optimization needed to bring the combination close to steady state is minimal. It is also important to

combine those small subsets of reactions with pseudo-reactions of substrates source flux and products

sink flux, to have an estimate of how this unit will perform once it is plugged into a bigger system.

Iterating on this step, one can grow the system up to the models of pathways in individual cells, and

existing models of those pathways are very helpful for initial choice of the most promising

combinations of reaction rates and parameters. It is also useful to keep approximately the same level of
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detail for the equations of all reactions in the pathway to prevent the emergence of some artificial

bottlenecks. For the refinement of the parameters when connecting reactions in a pathway, instead of

just following commonly used list of reactions of the pathway in order the metabolites enter it, it is

useful to start from different steps of the pathway, especially with the reactions which are either known

key regulators of the overall pathway flux (bottlenecks) or close to connection points to other

pathways, or those with the most complicated mechanisms. The key aspects to decide on the

performance of selected parameters set in the model are the concentrations at the steady state (or

pseudo-steady state if the formal one cannot be achieved in a reasonable time), their response to

stimuli (at least qualitatively in which direction and approximately how fast do they change, when no

data is available), reaction and transport fluxes. It is important to keep several best performing models

for all subsystems/pathways, because once they are plugged into a bigger system, performance ranking

can change.

Step 4. Once small units/pathways are built in at least a few variations, they can be connected into

bigger systems. For the optimization of connecting reactions, it is important to start from different

entry points, compare overall fluxes of the pathways, and consider volumetric scaling aspects. In some

cases temporary use of pseudo-reactions for source and sink of some metabolites for the optimization

significantly improves the performance.

Step 5. Large metabolic system can further be connected (using the same strategy as in Step 4) to the

electrophysiology and blood flow models. Electrophysiology and blood flow models can be found in

the literature in a number variations and need to be optimized separately if needed.

Step 6. Then models of the neuron and the astrocyte can be connected in the same way as described

above. Simulations and sensitivity analysis can further be used to select the parameters optimization of

which has the highest effects and can efficiently improve the model according to available data. If no

consistently reliable data is available, the objective function can be set to minimization of derivatives

at rest state for the system to be at the steady state.

Validation.

First, we tested the response of the key metabolites (ATP, NADH, lactate, glucose) to the stimuli. All

concentration related variables were ensured to stay in the range of biologically plausible values by the

callbacks and the “isoutofdomain” parameter to a solver as described in the Optimization part of

Methods. Next, we calculated the BOLD signal (Supplementary Figure 1d) and OGI (in range of 4.5-5

depending on stimulus, while literature data is in range of 4-5.5) using equations from Jolivet et al.
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2015 to compare them with the literature (Jolivet et al., 2015; Winter et al., 2018; Jung et al., 2021).

These two high-level phenomena are commonly used as benchmarks in NGV metabolism modeling

papers (Jolivet et al., 2015; Calvetti et al., 2018; Winter et al., 2018). We also qualitatively compared

dynamics of some key metabolites and reaction and transport fluxes to their expected response to

stimuli. Then we estimated energy use from the components of the Na+/K+-ATPase rate equation

(calculated from sum of neuron and astrocyte Na+/K+ pump ATP consumption flux in mM

concentration per second with the volume of 17.8 um3 and the literature estimate of ionic gradients

sharing 31% of total energy use) and compared it to the literature estimates (Howarth et al., 2012). We

further validated aging-associated effects against the literature data shown in Supplementary Table 1.

Implementing aging effects in the model

Aging is a multifactor phenomenon which affects metabolism at different levels: transcriptome,

proteome, metabolome, and potentially even kinetic properties of enzymes and transporters due to

accumulated genetic damage, lower protein synthesis fidelity and higher chances of protein

misfolding. To implement the aging effect in our model in a fully data driven way, the data on neuron

and astrocyte specific proteomics, metabolomics and kinetics of enzymes are needed. However, to the

best of our knowledge, most of such data is not yet publicly available.

We modeled the aging effects as following:

1. enzymes and transporters expression fold changes from TMS dataset (Schaum et al., 2020;

Zhang et al., 2021a) applied as scaling factors to levels of corresponding enzymes and

transporters

2. scaled initial concentrations of blood glucose, lactate, beta-hydroxybutyrate according to the

literature data on difference in their levels in aging (approximation, because effect size depends

on the literature source)

3. total NAD+ and NADH concentration pool scaling, because it decreases in aging according to

qualitative literature (approximation)

4. synaptic glutamate release pool (approximation, but synaptic input is set the same for

comparability of the results)

5. scaling of reducing equivalents shuttles between cytosol and mitochondria: NADH shuttle is a

generalized rate equation based on activity of multiple enzymes of malate-aspartate and

glycerol-phosphate shuttles, for which we followed literature to model it (Jolivet et al., 2015).
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For the above factors, which mention “approximative/approximation”, the direction of change is

according to the literature, but the absolute number of scaling factors (not known/contradictory in the

literature) is set with an objective for the model to be steady at rest.

We implemented the aging effects on enzyme and transporter levels in two parallel ways: 1) using

cell-type specific transcriptomics data (Schaum et al., 2020; Zhang et al., 2021a) and 2) using

integrated proteomics data from the metaanalysis we performed earlier (Shichkova et al., 2021). The

first approach featured higher coverage depth for the astrocyte-specific data. So that, to reduce bias

from inferring missing data in the second method, we decided to rely on RNA data for implementing

aging effects into simulation, while we used the second data source as a part of validation.

RNA fold changes for modeling aging effects

The extensive single-cell transcriptomics mouse data has recently become available (Schaum et al.,

2020; Zhang et al., 2021a), providing the insights into the aging patterns of various cells, including

neurons and astrocytes. However, RNA needs to be translated into proteins. As the changes in protein

synthesis are reported in aging, RNA data need to be used with caution when inferring age-dependent

protein concentrations. Even though, using RNA fold changes to scale enzyme and transporter levels

results in metabolite concentration changes consistent with the literature (Supplementary Table 1).

We mapped reaction IDs to gene names using the gene-reaction-rules from publicly available

metabolism reconstruction Recon 3D (Brunk et al., 2018). Then for the cases of multiple genes per

reaction (i.e. enzymes built of several protein subunits or different isoforms present at the same time)

we calculated age-scaling in two ways: 1) by using geometric mean of all fold changes, and 2) taking

fold changes which results in lowest levels of RNA in aging, i.e. using the assumption that each

protein subunit or isoform can be rate limiting if it's concentration is not sufficient to build

fully-functional protein. Each of these methods we applied twice: for all genes and only for those with

significant changes (significance defined by the source data paper). Next, we manually went through

the mapping of all genes to reactions to make sure to keep only those that are enzyme

subunits/isoforms and not regulatory factors and refine by subcellular location.

Protein levels for modeling aging effects.

Several studies measured brain protein levels in different ages, but they provided mostly brain

tissue/regions data, rather than single neuron and astrocyte age-specific protein levels. The other

studies provided neuron and astrocyte specific protein levels, but they were either using cultured cells,

or young/adult rodents. For these reasons even a combination of proteomics data sets remains sparse

for the goal of cell-type and age specific protein quantification. Even though using protein levels
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directly to scale Vmax of the enzymes and transporters would allow to take into account

posttranscriptional effects of protein synthesis and degradation, to reduce potential bias, we decided to

rely only on the RNAseq data for age-associated changes in enzyme and transporter levels.

Other necessary aging factors

Arterial glucose, lactate and b-hydroxybutyrate, as well as total NAD (reduced and oxidized) pool are

fixed in the model, but multiple studies report their changes in aging. For this reason we scaled them

according to the literature. The resulting model was far from steady state, which could be explained by

some missing age-associated changes. Indeed, we then scaled NADH exchange between mitochondria

and cytosol, as it is also known to be affected by the aging process, and it resulted in a

well-functioning model producing biologically meaningful observations. Further, for a more realistic

setup, we also scaled synaptic effects of glutamate concentration changes upon release events, but it

had less effect and the age-associated changes in electric features extracted from simulations with only

current injection are consistent with those driven synaptically.

Data Availability

All the data used in this study are publicly available from referenced sources. The model is available

on the web portal [this information will be available after peer-reviewed publication].
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Supplementary Information

Supplementary Table 1. Observed aging effects and their comparison to the

literature.

Decrease in aging is highlighted by blue background, increase in aging is highlighted by red;

consistency with literature is highlighted by green background, inconsistency is highlighted by orange

background; literature data from different sources providing contradictory evidence is highlighted by

purple background.

Observation
from simulation

Changes in aging Literature data, reference,
agrees or not

Energy budget characteristics

Total energy
use (neuron +
astrocyte)

At rest: approximately the same
1.5e9 molecules ATP/second in both
young and old.

During neuronal firing in response to
synaptic activation: decrease from
2e9 molecules ATP/second (young)
to 1.8e9 molecules ATP/second
(old).

Energy use for neuronal firing in
response to synaptic input is more
affected by aging than the baseline
rest state metabolism.

Adenylate
energy charge
(AEC)

AEC slightly decreases in aging in
both neuron and astrocyte.
Amplitude of AEC response to
stimulation decreases very slightly in
the aging neuron and astrocyte.
Surprisingly, there is a small
overshoot of AEC in the astrocyte
right after the approx. 7 seconds
interval of neuronal firing in
response to synaptic activation in
aging, but not in the young state.

Total
Na+/K+-ATPas
e ATP

Na+/K+-ATPase ATP consumption
in response to neuronal firing is
slightly lower in aging. It is at least

“Activity decreases with aging”
(Fraser and Arieff, 2001)
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consumption in
response to
synaptic
activation

partially related to the lower mean
firing frequency in aging.

ATP cost of AP Lower in aging. It may be the result
of limited ATP availability, i.e.
metabolic aging serves as a cause for
aging-associated changes in neuronal
firing characteristics.

Astrocyte to
neuron ratio of
Na/K ATPase
rate

Increases with aging.

Neuronal firing characteristics

Voltage base
(the average
voltage during
the last 10% of
time before the
stimulus)

From approx. -72 mV in young to
approx. -78.5 mV in aged.

“Aged Type I neurons exhibited a
hyperpolarized resting membrane
potential (RMP) of circa -80 mV
compared to circa -70 mV in the
Young” (Smithers et al., 2017)

Mean firing
frequency

Lower in the aged than in young. Different reports (increase,
decrease, no change) in different
cell types and species (Rizzo et
al., 2015)

AP amplitude,
height, and
peak voltage

Lower in the aged than in young. Different reports (increase,
decrease, no change) in different
cell types and species (Rizzo et
al., 2015)

AP rise rate and
maximum of
rise rate of
spike (AP peak
upstroke)

Lower in the aged than in young.

AP fall rate and
minimum of fall
rate from spike
(AP peak
downstroke)

Absolute values are lower in the
aged than in young.

Spike width Wider spikes in the aged than in
young.

Slightly increases from 1 month
to 10 months [Fig. 4 in (Vitale et
al., 2021)]

AHP depth Higher amplitude. Mostly positive in
the aged while mostly negative in
young.

“Enhanced AHP in aging”
(Power et al., 2002)

“Age-enhanced AHP” (Disterhoft
and Oh, 2007)
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“The amplitude of the AHP
increases during aging” [(Riddle,
2007), especially fig. 10.1]
Increase or no change depending
on cell type and species
(Rizzo et al., 2015)

AHP depth
from peak

Lower in the aged than in young.

Difference of
the amplitude of
the first and the
last peak

Lower in the aged than in young.

Difference in
amplitude of the
first and the
second peak,
and difference
in peak voltage
of the second to
first spike

Lower in the aged than in young.

The decay time
constant of the
voltage right
after the
stimulus

Lower in the aged than in young.

Irregularity
index (Mean of
the absolute
difference of all
ISIs, except the
first one (see
LibV1:
ISI_values
feature for more
details.))

Higher in the aged than in young.

Maximum
difference of
the height of
two subsequent
peaks

Lower in the aged than in young.

Na+ Up in both neuron and astrocyte

Metabolism characteristics

Mitochondrial
membrane
potential

From approx. 155 mV in young to
approx. 145 mV in aged (observed
from sim.)

“Decreased mitochondrial
membrane potential
(DeltaPsi(M)) has been found in
a variety of aging cell types from
several mammalian species.”
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(Sugrue and Tatton, 2001)

ATP Down in all compartments (observed
from sim.)

“Decreased ATP concentration in
the neuronal somata of aged
flies” (Oka et al., 2021)

“The neuronal metabolism of
glucose declines steadily,
resulting in a growing deficit of
adenosine triphosphate (ATP)
production - which, in turn, limits
glucose access.” (Błaszczyk,
2020)

“Decrease in mitochondrial
energy transducing capacity”
(Ivanisevic et al., 2016)

Down in Fig 5. of (Ivanisevic et
al., 2016)

Mg2+ Down in the mitochondrial matrix
(observed from sim.)

“Aging is very often associated
with magnesium (Mg) deficit.”
(Barbagallo et al., 2009)

“Elevation of brain magnesium
prevents synaptic loss and
reverses cognitive deficits in
Alzheimer’s disease mouse
model” (Li et al., 2014)

“Diminished Mg intake, impaired
intestinal Mg absorption and
renal Mg wasting” (Barbagallo et
al., 2021)

“The magnesium status of aging
subjects is likely to be marginal,
if not frankly deficient” (Seelig
and Preuss, 1994)

“The most common cause of Mg
deficit in the elderly population is
dietary Mg deficiency, although
secondary Mg deficit in aging
may also results from many
different mechanisms”
(Barbagallo and Dominguez,
2010)

NAD pool (ox.
+ red.)

Down (implemented into the model) “Its depletion has emerged as a
fundamental feature of aging”
(Fang et al., 2017)
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“A significant decline in
intracellular NAD+ levels and
NAD:NADH ratio with ageing in
the CNS” (Braidy et al., 2014)

Down in Fig 5. of (Ivanisevic et
al., 2016)

NAD+/NADH
cytosol

Down in the cytosol of both the
neuron and astrocyte (observed from
simulations). Limitation: cytosol and
mitochondria NAD pools are
connected by poorly constrained
NAD shuttles, which may influence
this observation.

“A significant decline in
intracellular NAD+ levels and
NAD:NADH ratio with ageing in
the CNS” (Braidy et al., 2014)

“An increased ratio of
NAD+/NADH indicating an
oxidative shift” (Dong and
Brewer, 2019)

NAD+/NADH
mitochondria

Up in mitochondria of both the
neuron and astrocyte (observed from
simulations). Observed increase in
this ratio may be a compensatory
mechanism for the decreased total
NAD pool (ox. + red.)

Limitation: cytosol and mitochondria
NAD pools are connected by poorly
constrained NAD shuttles, which
may influence this observation.

“A significant decline in
intracellular NAD+ levels and
NAD:NADH ratio with ageing in
the CNS” (Braidy et al., 2014)

“An increased ratio of
NAD+/NADH indicating an
oxidative shift” (Dong and
Brewer, 2019)

Glucose in
blood

Increases (implemented into the
model)

“Circulating glucose
concentrations generally increase
during aging” (Mattson and
Arumugam, 2018)

Glucose in
neuron,
astrocyte, basal
lamina,
interstitium

Decreases (observed from sim.) “The neuronal metabolism of
glucose declines steadily”
(Błaszczyk, 2020)

“Glucose metabolism is impaired
in cells; reduced glucose
utilization” (Mattson and
Arumugam, 2018)

Lactate Up in all compartments (in blood:
implemented into the model, other
compartments: observed from sim.)

“High brain lactate” (Ross et al.,
2010)

“Rise of lactate” (Datta and
Chakrabarti, 2018)

Pyruvate in
cytosol of
neuron

Down Down in aged (home cage and
enriched environment) (Ge et al.,
2021)

Pyruvate in Up

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.30.555341doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.30.555341
http://creativecommons.org/licenses/by/4.0/


cytosol of
astrocyte

Pyruvate in
mitochondria

Up in both neuron and astrocyte

AcCoA in
mitochondria

Up in both neuron and astrocyte Up in aged (home cage and
enriched environment) (Ge et al.,
2021)

Down in Fig 5. of (Ivanisevic et
al., 2016)

CoA in
mitochondria

Down in both neuron and astrocyte

Fumarate in
mitochondria

Down in both neuron and astrocyte Down in aged (home cage and
enriched environment) (Ge et al.,
2021)

Malate in
mitochondria

Down in both neuron and astrocyte Not significant in (Ge et al.,
2021)

Oxaloacetate in
mitochondria

Down in both neuron and astrocyte

aKG in
mitochondria

Down in both neuron and astrocyte Down in aged rats (Curtis et al.,
2022)

Not significant (Ge et al., 2021)

Succinate in
mitochondria

Up in both neuron and astrocyte Down in aged home cage, up in
aged enriched environment (Ge
et al., 2021)

Succinate-CoA Down in both neuron and astrocyte

Isocitrate Down in both neuron and astrocyte

Citrate Down in both neuron and astrocyte Down in aged rats (Curtis et al.,
2022)

Not significant (Ge et al., 2021)

Acetoacetate Up in neuron

AcAcCoA Down in neuron

bHB cells and
extracellular

Down in neuron (observed from
sim.), extracellular space

Up in aged enriched
environment, comparable to
young in home cage (Ge et al.,
2021)

bHB blood Down in blood (implemented into
the model)

Down in blood (Eap et al., 2022)

QH2 in
mitochondria

Down in astrocyte; almost no
difference in neuron at rest, but
lower response to stimulus

Down (Mantle et al., 2021;
Hosseini et al., 2022)
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Cytochrome C
in mitochondria

Down in astrocyte; almost no
difference in neuron at rest, but
lower response to stimulus

Down (Jones and Brewer, 2009)

(Jones and
Brewer,
2009)IP3
astrocyte

Lower amplitude of response to
synaptic activation

G1P astrocyte Up

F26BP
astrocyte

Up

G6P Up in both neuron and astrocyte Up in aged with enriched
environment (Ge et al., 2021)

F6P Up in both neuron and astrocyte

FBP neuron Up Up in Fig 5. of (Ivanisevic et al.,
2016)

FBP astrocyte Down

GAP neuron Up

GAP astrocyte Down

DHAP neuron Up Up in aged (home cage) (Ge et
al., 2021)

DHAP
astrocyte

Down

BPG13 Down in both neuron and astrocyte

PG3 Down in both neuron and astrocyte Not significant in (Ge et al.,
2021)

Up in Fig 5. of (Ivanisevic et al.,
2016)

PG2 Down in both neuron and astrocyte

PEP Down in both neuron and astrocyte Not significant in (Ge et al.,
2021)

Up in Fig 5. of (Ivanisevic et al.,
2016)

NADPH neuron Down “age-related declines in
NAD(P)H” (Ghosh et al., 2014)

NADPH
astrocyte

Up

PPP except E4P All metabolite concentrations
increase in both neuron and astrocyte

R5P, R1P up in Fig 5. of
(Ivanisevic et al., 2016)
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E4P neuron Up

E4P astrocyte Down in both neuron and astrocyte

GSH Down in both neuron and astrocyte Comparable to young in human
aging (Tong et al., 2016), but
down in various
neurodegenerative diseases
(Iskusnykh et al., 2022)

Up (Hupfeld et al., 2021)

PCr Down in both neuron and astrocyte “Aging is associated with lower
levels of creatine and
phosphocreatine” (Smith et al.,
2014)

cAMP Down in astrocyte (not implemented
in the neuron model)

Down (Kelly, 2018)

Glutamate Lower amplitude of glutamate
concentration change in response to
synaptic input in neuron (observed
from sim.) and synaptic
compartment (implemented into the
model), down in astrocyte

Down (Kaiser et al., 2005; Hädel
et al., 2013; Cox et al., 2022)

Glutamine
neuron

Up in neuron Up (Kaiser et al., 2005)

Glutamine
astrocyte, ecs

Down in astrocyte and ecs

Derived properties

CMR glucose Down “The neuronal metabolism of
glucose declines steadily”
(Błaszczyk, 2020)

“Glucose metabolism is impaired
in cells; reduced glucose
utilization” (Mattson and
Arumugam, 2018)

Supplementary Table 2. Data sources.

Data References

Electrophysiology model data

(Takahashi et al., 1981; Pospischil et al., 2008;
Witthoft et al., 2013; Jolivet et al., 2015; Calvetti
et al., 2018)

Blood flow dynamics (Jolivet et al., 2015; Winter et al., 2018)

Glucose transport
(Simpson et al., 2007; DiNuzzo et al., 2010;
Barros et al., 2017)
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Lactate transport

(Simpson et al., 2007; Jolivet et al., 2015; Calvetti

et al., 2018)

bHB transport

(Halestrap and Denton, 1974; Roeder et al., 1982;

Neves et al., 2012; Pérez-Escuredo et al., 2016;

Calvetti et al., 2018)

Oxygen transport (Jolivet et al., 2015)

Hexokinase

(Barros et al., 2007, 2017; DiNuzzo et al., 2010;

Jolivet et al., 2010, 2015)

PGLM (astrocyte only) (Lambeth and Kushmerick, 2002)

Glycogen phosphorylase

(Lambeth and Kushmerick, 2002; DiNuzzo et al.,

2010; Xu et al., 2011; Coggan et al., 2020)

Glycogen synthase

(Lambeth and Kushmerick, 2002; DiNuzzo et al.,

2010; Xu et al., 2011; Coggan et al., 2020)

Glycogen metabolism regulation

(Lambeth and Kushmerick, 2002; Xu et al., 2011;

Coggan et al., 2020)

PDE (Rybalkin et al., 2013)

PGI

(Gaitonde et al., 1989; Mulukutla et al., 2014;
Berndt et al., 2015; Bouzier-Sore and Bolaños,
2015)

PFK

(Mulukutla et al., 2014; Berndt et al., 2015;
Bouzier-Sore and Bolaños, 2015; Jolivet et al.,
2015)

PFKFB3 (astrocyte only) (Mulukutla et al., 2014; Berndt et al., 2015)
Aldolase (Mulukutla et al., 2014; Berndt et al., 2015)
TPI (Mulukutla et al., 2014; Berndt et al., 2015)
GAPDH (Mulukutla et al., 2014; Berndt et al., 2015)

PGK
(Sharma and Rothstein, 1984; Mulukutla et al.,
2014; Berndt et al., 2015)

PGM (Mulukutla et al., 2014; Berndt et al., 2015)
Enolase (Mulukutla et al., 2014; Berndt et al., 2015)
Pyruvate kinase (Mulukutla et al., 2014; Berndt et al., 2015)
LDH (Jolivet et al., 2015)
PPP (Winter et al., 2018)
Pyruvate transport to mitochondria (Berndt et al., 2015)

PDH
(Berndt et al., 2015; Mulukutla et al., 2015;
Zhang et al., 2018)
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Pyruvate carboxylase (astrocyte only)
(Barden et al., 1972; Mahan et al., 1975;
Schousboe et al., 2019)

Thiolase
(Gilbert et al., 1981; Huth and Menke, 1982;
Yang et al., 1987; Antonenkov et al., 2000)

SCOT
(Hersh and Jencks, 1967; White and Jencks,
1976)

bHBDH (Nielsen et al., 1973; Dombrowski et al., 1977)
Citrate synthase (Berndt et al., 2015; Mulukutla et al., 2015)
Aconitase (Berndt et al., 2015; Mulukutla et al., 2015)

IDH
(Wu et al., 2007; Berndt et al., 2012; Mulukutla et
al., 2015)

aKGDH

(Smith et al., 1974; McCormack and Denton,
1979; Luder et al., 1990; Mogilevskaya et al.,
2006; Berndt et al., 2012)

SCS (Berndt et al., 2015)
SDH (Complex II ETC) (Theurey et al., 2019)
Fumarase (Berndt et al., 2015)
MDH (Berndt et al., 2015)

MAS

(Wilcock et al., 1973; Huynh et al., 1980;
Recasens et al., 1980; Berndt et al., 2015;
Mulukutla et al., 2015; Borst, 2020)

GLT-GLN

(Pamiljans et al., 1962; Listrom et al., 1997;
Chaudhry et al., 1999; Calvetti and Somersalo,
2011; Botman et al., 2014; Mulukutla et al., 2015;
Flanagan et al., 2018)

Creatine kinase (Jolivet et al., 2015)

NADH/NAD+ shuttles (Jolivet et al., 2015)

ETC (Theurey et al., 2019)
C_H_mitomatr_n (Theurey et al., 2019)
K_x_n (Theurey et al., 2019)
Mg_x_n (Theurey et al., 2019)

NADHmito_n (Jolivet et al., 2015)

QH2mito_n (Theurey et al., 2019)
CytCredmito_n (Theurey et al., 2019)
O2_n (Jolivet et al., 2015; Calvetti et al., 2018)

ATPmito_n (Theurey et al., 2019)
ADPmito_n (Theurey et al., 2019)
ATP_mx_n (Theurey et al., 2019)
ADP_mx_n (Theurey et al., 2019)
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Pimito_n (Theurey et al., 2019)
ATP_i_n (Theurey et al., 2019)
ADP_i_n (Theurey et al., 2019)
AMP_i_n (Theurey et al., 2019)
ATP_mi_n (Theurey et al., 2019)
ADP_mi_n (Theurey et al., 2019)
Pi_i_n (Theurey et al., 2019)
MitoMembrPotent_n (Theurey et al., 2019)
Ctot_n (Theurey et al., 2019)
Qtot_n (Theurey et al., 2019)
C_H_ims_n (Theurey et al., 2019)
ATP_n (Baeza-Lehnert et al., 2019)

ADP_n

(Erecińska and Silver, 1989; Mironov, 2007;
Tantama et al., 2013; Jolivet et al., 2015; Calvetti
et al., 2018)

FUMmito_n (Fink et al., 2018)

MALmito_n (Garrett and Grisham, 2013; Fink et al., 2018)

OXAmito_n

(Williamson et al., 1967; Nazaret et al., 2009;
Choi and Gruetter, 2012; Byrne et al., 2014; Fink
et al., 2018)

SUCmito_n
(Byrne et al., 2014; Tretter et al., 2016; Fink et al.,
2018)

SUCCOAmito_n (Park et al., 2016)

CoAmito_n
(Rock et al., 2000; Mogilevskaya et al., 2006;
Poliquin et al., 2013)

AKGmito_n
(Nazaret et al., 2009; Byrne et al., 2014; Park et
al., 2016)

CaMito_n (Brocard et al., 2001; Mogilevskaya et al., 2006)

ISOCITmito_n (Frezza, 2017)

CITmito_n (Ronowska et al., 2018)

AcCoAmito_n
(Cai et al., 2011; Lee et al., 2014; Park et al.,
2016; Ronowska et al., 2018)

AcAc_n (Nehlig, 2004)

AcAcCoA_n (Menahan et al., 1981; Berndt et al., 2018)

PYRmito_n (Nazaret et al., 2009; Arce-Molina et al., 2020)

bHB_n (Chowdhury et al., 2014)
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bHB_ecs
(Nehlig, 2004; Chowdhury et al., 2014; Achanta
and Rae, 2017)

bHB_a (Chowdhury et al., 2014)

bHB_b
(Nehlig, 2004; Chowdhury et al., 2014; Achanta
and Rae, 2017)

ASPmito_n (Maletic-Savatic et al., 2008)

ASP_n (Maletic-Savatic et al., 2008)

GLUmito_n
(Roberg et al., 1999; Nazaret et al., 2009;
Featherstone, 2010)

MAL_n (Mueggler and Wolfe, 1978)

OXA_n
(Williamson et al., 1967; Choi and Gruetter,
2012)

AKG_n (Pritchard, 1995)

GLU_n (Shestov et al., 2007; Byrne et al., 2014)

NADH_n
(Neves et al., 2012; Jolivet et al., 2015; Park et
al., 2016; Calvetti et al., 2018)

C_H_mitomatr_a (Theurey et al., 2019)
K_x_a (Theurey et al., 2019)
Mg_x_a (Theurey et al., 2019)

NADHmito_a (Jolivet et al., 2015)

QH2mito_a (Theurey et al., 2019)
CytCredmito_a (Theurey et al., 2019)
O2_a (Jolivet et al., 2015; Calvetti et al., 2018)

ATPmito_a (Theurey et al., 2019)
ADPmito_a (Theurey et al., 2019)
ATP_mx_a (Theurey et al., 2019)
ADP_mx_a (Theurey et al., 2019)
Pimito_a (Theurey et al., 2019)
ATP_i_a (Theurey et al., 2019)
ADP_i_a (Theurey et al., 2019)
AMP_i_a (Theurey et al., 2019)
ATP_mi_a (Theurey et al., 2019)
ADP_mi_a (Theurey et al., 2019)
Pi_i_a (Theurey et al., 2019)
MitoMembrPotent_a (Theurey et al., 2019)
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Ctot_a (Theurey et al., 2019)
Qtot_a (Theurey et al., 2019)
C_H_ims_a (Theurey et al., 2019)
ATP_a (Köhler et al., 2020)

ADP_a
(Erecińska and Silver, 1989; Tantama et al., 2013;
Jolivet et al., 2015; Calvetti et al., 2018)

FUMmito_a (Fink et al., 2018)

MALmito_a (Garrett and Grisham, 2013; Fink et al., 2018)

OXAmito_a (Byrne et al., 2014)

SUCmito_a (Byrne et al., 2014)

SUCCOAmito_a (Park et al., 2016)

CoAmito_a (Rock et al., 2000; Poliquin et al., 2013)

AKGmito_a (Byrne et al., 2014)

CaMito_a (Brocard et al., 2001; Mogilevskaya et al., 2006)

ISOCITmito_a (Frezza, 2017)

CITmito_a (Ronowska et al., 2018)

AcCoAmito_a
(Cai et al., 2011; Lee et al., 2014; Park et al.,
2016; Ronowska et al., 2018)

AcAc_a (Nehlig, 2004)

AcAcCoA_a (Menahan et al., 1981; Berndt et al., 2018)

PYRmito_a (Arce-Molina et al., 2020)

GLN_n (Shestov et al., 2007)

GLN_out (Bröer and Brookes, 2001; Pochini et al., 2014)

GLN_a (Hertz and Rothman, 2017)

GLUT_a
(Savtchenko et al., 2018; Verkhratsky and
Nedergaard, 2018)

Va (Breslin et al., 2018)

Na_a (Witthoft et al., 2013)

K_a (Witthoft et al., 2013; Flanagan et al., 2018)

K_out (Takahashi et al., 1981)

GLUT_syn

(Robinson and Jackson, 2016; Hertz and
Rothman, 2017; Verkhratsky and Nedergaard,
2018; Mahmoud et al., 2019)

VNeu
(Jolivet et al., 2015; Calvetti et al., 2018; Coggan
et al., 2020)

Na_n (Jolivet et al., 2015; Calvetti et al., 2018; Coggan
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et al., 2020)

h (Jolivet et al., 2015)

n (Jolivet et al., 2015)

Ca_n (Jolivet et al., 2015)

pgate (Pospischil et al., 2008)

nBK_a (Witthoft et al., 2013)

mGluRboundRatio_a (Witthoft et al., 2013)

IP3_a (Witthoft et al., 2013)

hIP3Ca_a (Witthoft et al., 2013)

Ca_a
(Witthoft et al., 2013; Verkhratsky and
Nedergaard, 2018; Coggan et al., 2020)

Ca_r_a (Bennett et al., 2008; Witthoft et al., 2013)

sTRP_a (Witthoft et al., 2013)

vV
(Cloutier et al., 2009; Jolivet et al., 2015; Winter
et al., 2018)

EET_a (Witthoft et al., 2013)

ddHb
(Cloutier et al., 2009; Jolivet et al., 2015; Winter
et al., 2018)

O2cap (Jolivet et al., 2015; Calvetti et al., 2018)

Glc_b (Jolivet et al., 2015)

Glc_t_t (Barros et al., 2017)

Glc_ecsBA (Pathak et al., 2015; Barros et al., 2017)

Glc_a
(Jolivet et al., 2015; Barros et al., 2017; Calvetti
et al., 2018)

Glc_ecsAN (Pathak et al., 2015; Barros et al., 2017)

Glc_n
(Jolivet et al., 2015; Barros et al., 2017; Calvetti
et al., 2018)

G6P_n

(Kauffman et al., 1969; Anderson and Wright,
1980; Orosz et al., 2003; Cloutier et al., 2009;
Park et al., 2016; Winter et al., 2018)

G6P_a

(Kauffman et al., 1969; Anderson and Wright,
1980; Orosz et al., 2003; Cloutier et al., 2009;
Park et al., 2016; Winter et al., 2018)

F6P_n
(Kauffman et al., 1969; Cloutier et al., 2009;
Winter et al., 2018)

F6P_a (Kauffman et al., 1969; Cloutier et al., 2009;
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Winter et al., 2018)

FBP_n (Byrne et al., 2014)

FBP_a (Byrne et al., 2014)

f26bp_a
(Erecińska and Silver, 1994; Mulukutla et al.,
2015)

GLY_a
(Cloutier et al., 2009; DiNuzzo et al., 2010; Waitt
et al., 2017)

AMP_n (Erecińska and Silver, 1989; Theurey et al., 2019)

AMP_a (Erecińska and Silver, 1989; Theurey et al., 2019)

G1P_a (Byrne et al., 2014)

GAP_n
(Tiveci et al., 2005; Cloutier et al., 2009; Jolivet
et al., 2015)

GAP_a
(Tiveci et al., 2005; Cloutier et al., 2009; Jolivet
et al., 2015)

DHAP_n (Kauffman et al., 1969; Byrne et al., 2014)

DHAP_a (Kauffman et al., 1969; Byrne et al., 2014)

BPG13_n
(Lambeth and Kushmerick, 2002; Shestov et al.,
2007)

BPG13_a
(Lambeth and Kushmerick, 2002; Shestov et al.,
2007)

NADH_a
(Jolivet et al., 2015; Park et al., 2016; Calvetti et
al., 2018)

Pi_n (Theurey et al., 2019)
Pi_a (Theurey et al., 2019)

PG3_n
(Lambeth and Kushmerick, 2002; Berndt et al.,
2015; Park et al., 2016)

PG3_a
(Lambeth and Kushmerick, 2002; Berndt et al.,
2015; Park et al., 2016)

PG2_n
(Lambeth and Kushmerick, 2002; Berndt et al.,
2015; Park et al., 2016)

PG2_a
(Lambeth and Kushmerick, 2002; Berndt et al.,
2015; Park et al., 2016)

PEP_n
(Cloutier et al., 2009; Byrne et al., 2014; Jolivet et
al., 2015)

PEP_a
(Cloutier et al., 2009; Byrne et al., 2014; Jolivet et
al., 2015)

Pyr_n
(Lajtha and Reith, 2007; Byrne et al., 2014;
Lerchundi et al., 2015; Calvetti et al., 2018;
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Muraleedharan et al., 2020)

Pyr_a

(Lajtha and Reith, 2007; Byrne et al., 2014;
Lerchundi et al., 2015; Calvetti et al., 2018;
Muraleedharan et al., 2020)

Lac_b (Mächler et al., 2016; Calvetti et al., 2018)

Lac_ecs (Mächler et al., 2016; Calvetti et al., 2018)

Lac_a (Shestov et al., 2007; Calvetti et al., 2018)

Lac_n (Shestov et al., 2007; Calvetti et al., 2018)

NADPH_n (Winter et al., 2018; Bradshaw, 2019)

NADPH_a (Winter et al., 2018; Bradshaw, 2019)

GL6P_n (Winter et al., 2018)

GL6P_a (Winter et al., 2018)

GO6P_n (Gaitonde et al., 1989; Winter et al., 2018)

GO6P_a (Winter et al., 2018)

RU5P_n (Winter et al., 2018)

RU5P_a (Winter et al., 2018)

R5P_n (Winter et al., 2018)

R5P_a (Winter et al., 2018)

X5P_n (Winter et al., 2018)

X5P_a (Winter et al., 2018)

S7P_n (Winter et al., 2018)

S7P_a (Winter et al., 2018)

E4P_n (Winter et al., 2018)

E4P_a (Winter et al., 2018)

GSH_n
(Vali et al., 2007; Koga et al., 2011; Duarte and
Gruetter, 2013; Sedlak et al., 2019)

GSH_a (Koga et al., 2011; McBean, 2017)

GSSG_n (McBean, 2017)

GSSG_a (McBean, 2017)

Cr_n
(Cloutier et al., 2009; Jolivet et al., 2015;
Baeza-Lehnert et al., 2019)

PCr_n
(Cloutier et al., 2009; Jolivet et al., 2015;
Baeza-Lehnert et al., 2019)

Cr_a (Cloutier et al., 2009; Jolivet et al., 2015)

PCr_a (Cloutier et al., 2009; Jolivet et al., 2015)

cAMP_a (Coggan et al., 2018, 2020)
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NE_neuromod (Coggan et al., 2018, 2020)

UDPgluco_a (Tsuboi et al., 1969; Park et al., 2016)

UTP_a (Anderson and Wright, 1980; Park et al., 2016)

GS_a (Xu et al., 2011; Coggan et al., 2020)

GPa_a (Xu et al., 2011; Coggan et al., 2020)

GPb_a (Xu et al., 2011; Coggan et al., 2020)

Supplementary Figures.

Supplementary Fig. 1. Validation, predicted energy budget. a, Simulated concentrations and the

literature data. b, Comparison of ratios of model KM to average mammalian data KM for the same pairs

enzyme-metabolite to min/mean and max/mean ratios of that mammalian data for the same pairs

enzyme-metabolite, c, Lactate dynamics compared to simulation of the other model from the literature

(Jolivet et al., 2015). d, BOLD dynamics (Jolivet et al., 2015; Winter et al., 2018; Jung et al., 2021). e,

NADH dynamics in neuronal mitochondria compared to literature (Jolivet et al., 2015). f, NADH

dynamics in astrocyte cytosol compared to literature (Jolivet et al., 2015). g, ATP consumption per AP

in young and old ages.
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Supplementary Fig. 2. ATP production, glucose and lactate transport fluxes.

Supplementary Fig. 3. Differences between young and old in rest state concentrations (top) and in

sum of relative deviations of concentration from rest (normalized by rest state) upon synaptic

activation (bottom), both ranked by rest state differences (top), only top ranked are shown.
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Supplementary Fig. 4. Comparison of amplitudes of metabolic response to synaptic activation in

young and old ages (filtered by absolute values of deviations and difference in deviations of higher

than 1%).
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Supplementary Fig. 5. Train of APs evoked by 1 nA current injection simulations. a, Dynamics of

metabolism in response to a train of APs evoked by current injection in different ages. b,

Characteristics of neuronal firing in young and old ages evoked by current injection.
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Supplementary Fig. 6. Aging-associated differences in range of response to the current injections of

different amplitudes.
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Supplementary Fig. 7. Dependence of metabolism and electrophysiology responses on the current

injection amplitude in young and old ages. a, Young and old age responses to current injections of two

different amplitudes: input current (top left in A), firing traces (left on second row in A), percent

difference in metabolic response: 100*(m_IinjHigh - m_IinjLow)/m_IinjLow (all other figures in A).

b, Characteristics of neuronal firing in young and old ages upon current injections of two different

amplitudes.
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Supplementary Fig. 8. UMAP of relative differences in concentration traces in old compared to

young.
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Supplementary Fig. 9. Kendall correlation of metabolite concentrations time series data in aging.
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Supplementary Fig. 10. Cytosolic NADH fluxes.

Supplementary Fig. 11. Cytosolic NADPH fluxes.
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Supplementary Fig. 12. Mitochondrial NADH fluxes.
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Supplementary Fig. 13. Lactate shuttle in conditions with different blood glucose levels.

Supplementary Fig. 14. Comparison of synaptic activation and current injection evoked metabolic

responses. a, Young and old age responses to synaptic input and current injection (approximately the

same firing frequency): input current (top left in A), firing traces (left on second row in A), percent

difference in metabolic response: 100*(m_Iinj - m_syn)/m_syn (all other figures in A). b,

Characteristics of neuronal firing in young and old ages upon synaptic activation and current injection

(approximately the same firing frequency).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.30.555341doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.30.555341
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.30.555341doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.30.555341
http://creativecommons.org/licenses/by/4.0/


Supplementary Fig. 15. Sensitivities curve fit.

Supplementary Fig. 16. Metabolic responsivity difference.
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Supplementary Fig. 17. Bottom-up iterative model building workflow and the key considerations.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.30.555341doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.30.555341
http://creativecommons.org/licenses/by/4.0/


Supplementary Fig. 18. Labels of individual metabolites for Fig. 3d.

Supplementary Fig. 19. Literature evidence for ESRRA being a regulatory hub of aging-associated

pathways (colored by reference).
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Supplementary Information File 1.

Explanation of the Fruchterman-Reingold force-directed algorithm to position nodes

The Fruchterman-Reingold force-directed algorithm is used for a representation of the network. Edges

correspond to springs which are holding nodes close, and nodes correspond to repelling objects. There

are two types of forces which define the position of nodes as described below.

1. Attractive force, which acts between nodes that are connected by an edge. It is stronger for nodes

connected by higher-weight edges, so these nodes are pulled closer together by the attractive force.

2. Repulsive force, which acts between all pairs of nodes (regardless of connecting edge presence).

This force pushes nodes away from each other.

So the resulting edge lengths are not directly proportional to the weights. Instead, the edge weight

affects the strength of the attractive force between connected nodes, where larger weight of edge

(which in our case corresponds to smaller metabolic responsivity) means a stronger attractive force,

and nodes being pulled together.

Closeness centrality in context of metabolic responsivity

Closeness centrality (CC) is calculated as a reciprocal of the sum of shortest path distances between

the node and all other nodes. Higher centrality means smaller metabolic responsivity: CC is reciprocal

to distance, while distance is reciprocal to weight, which makes CC proportional to the weight, while

weight is defined as reciprocal of metabolic responsivity, which makes CC reciprocal of metabolic

responsivity (Equation 1).

(Equation 1)𝐶𝐶 ~ 1
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  = 1

1
𝑤𝑒𝑖𝑔ℎ𝑡  

 = 𝑤𝑒𝑖𝑔ℎ𝑡 =  1/𝑀𝑅  

Supplementary Information File 2.

Changes in other characteristics of neuronal firing (related to Fig.3):

AHP1_depth_from_peak: -7.42%, old: 144.86, young: 156.48

AHP2_depth_from_peak: -7.23%, old: 140.48, young: 151.42

AP1_amp: -8.5%, old: 114.94, young: 125.62

AP1_begin_voltage: -0.35%, old: -51.64, young: -51.82

AP1_begin_width: 0.0%, old: 1.3, young: 1.3

AP1_peak: -14.23%, old: 63.3, young: 73.81
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AP1_width: 3.59%, old: 0.76, young: 0.73

AP2_AP1_begin_width_diff: nan%, old: 0.0, young: 0.0

AP2_AP1_diff: -31.37%, old: -1.04, young: -1.52

AP2_AP1_peak_diff: -53.87%, old: -0.49, young: -1.05

AP2_amp: -8.22%, old: 113.9, young: 124.1

AP2_begin_voltage: -0.53%, old: -51.08, young: -51.35

AP2_begin_width: 0.0%, old: 1.3, young: 1.3

AP2_peak: -13.66%, old: 62.82, young: 72.75

AP2_width: 3.46%, old: 0.72, young: 0.7

APlast_amp: -6.17%, old: 105.99, young: 112.96

APlast_width: 3.5%, old: 0.79, young: 0.76

ISI_CV: -2.13%, old: 0.57, young: 0.58

ISI_log_slope: -0.57%, old: 0.16, young: 0.17

ISI_log_slope_skip: 0.24%, old: 0.22, young: 0.22

ISI_semilog_slope: 6.44%, old: 0.02, young: 0.02

Spikecount: -8.47%, old: 54, young: 59

Spikecount_stimint: -8.47%, old: 54, young: 59

adaptation_index: 11.23%, old: 0.01, young: 0.01

adaptation_index2: 11.31%, old: 0.01, young: 0.01

amp_drop_first_last: -29.32%, old: 8.64, young: 12.23

amp_drop_first_second: -53.87%, old: 0.49, young: 1.05

amp_drop_second_last: -27.0%, old: 8.16, young: 11.17

decay_time_constant_after_stim: -91.66%, old: 1603.71, young: 19220.41

doublet_ISI: 5.9%, old: 195.7, young: 184.8

inv_fifth_ISI: -6.26%, old: 8.94, young: 9.53

inv_first_ISI: -5.57%, old: 5.11, young: 5.41

inv_fourth_ISI: -6.06%, old: 8.31, young: 8.84

inv_last_ISI: -7.22%, old: 2.09, young: 2.26

inv_second_ISI: -5.68%, old: 6.53, young: 6.92

inv_third_ISI: -5.8%, old: 7.53, young: 7.99

inv_time_to_first_spike: -33.47%, old: 6.0, young: 9.02

irregularity_index: 16.38%, old: 8.87, young: 7.62

max_amp_difference: -16.07%, old: 1.14, young: 1.35

maximum_voltage: -14.23%, old: 63.3, young: 73.81

maximum_voltage_from_voltagebase: -2.75%, old: 141.84, young: 145.86
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mean_AP_amplitude: -6.7%, old: 108.94, young: 116.76

mean_frequency: -8.46%, old: 7.55, young: 8.25

minimum_voltage: 3.33%, old: -85.43, young: -82.68

number_initial_spikes: -10.0%, old: 18, young: 20

steady_state_hyper: 6.37%, old: -85.14, young: -80.05

steady_state_voltage: 8.57%, old: -83.27, young: -76.7

time_to_first_spike: 50.32%, old: 166.7, young: 110.9

time_to_last_spike: -0.02%, old: 7150.2, young: 7151.4

time_to_second_spike: 22.56%, old: 362.4, young: 295.7

trace_check: nan%, old: 0, young: 0

voltage_base: 9.0%, old: -78.54, young: -72.05

Statistical tests for comparison of characteristics of neuronal firing (Figure 3).

AP_amplitude

Levene statistic: 6.605499030481687 p-value: 0.011491236053743635

Levene: different variances (reject H0)

Fligner statistic: 6.630869011027655 p-value: 0.01002263560239055

Fligner: different variances (reject H0)

Wilcoxon-Mann-Whitney U test statistic: 3057.0 p-value: 4.0249411168018834e-17

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)

Kolmogorov-Smirnov statistic: 0.834902699309479 p-value: 6.661338147750939e-16

Kolmogorov-Smirnov: different distributions (reject H0)

AP_amplitude_change

Levene statistic: 3.8760940845777174 p-value: 0.051516931692045034

Levene: same variances (fail to reject H0)

Fligner statistic: 4.545621778929398 p-value: 0.033003033701898096

Fligner: different variances (reject H0)

Wilcoxon-Mann-Whitney U test statistic: 920.0 p-value: 0.0002729809833335603

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)

Kolmogorov-Smirnov statistic: 0.42940793754066364 p-value: 3.8705542437011964e-05

Kolmogorov-Smirnov: different distributions (reject H0)

AP_amplitude_diff

Levene statistic: 6.152257861376695 p-value: 0.014653671953606095
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Levene: different variances (reject H0)

Fligner statistic: 5.75689520557301 p-value: 0.016424069262576897

Fligner: different variances (reject H0)

Wilcoxon-Mann-Whitney U test statistic: 1491.0 p-value: 0.7882208195357832

Wilcoxon-Mann-Whitney U test: same distribution (fail to reject H0)

Kolmogorov-Smirnov statistic: 0.1486662329212752 p-value: 0.5084641118074855

Kolmogorov-Smirnov: same distribution (fail to reject H0)

AP_amplitude_from_voltagebase

Levene statistic: 7.459710428818111 p-value: 0.007341447281952335

Levene: different variances (reject H0)

Fligner statistic: 7.391190337972734 p-value: 0.006554409829916771

Fligner: different variances (reject H0)

Wilcoxon-Mann-Whitney U test statistic: 1862.0 p-value: 0.12275003593521057

Wilcoxon-Mann-Whitney U test: same distribution (fail to reject H0)

Kolmogorov-Smirnov statistic: 0.1864406779661017 p-value: 0.23771345375057895

Kolmogorov-Smirnov: same distribution (fail to reject H0)

AP_begin_voltage

Levene statistic: 0.3716334196659708 p-value: 0.5433611341543954

Levene: same variances (fail to reject H0)

Fligner statistic: 0.3123751596228548 p-value: 0.5762263366963747

Fligner: same variances (fail to reject H0)

Wilcoxon-Mann-Whitney U test statistic: 1226.0 p-value: 0.03514923245426359

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)

Kolmogorov-Smirnov statistic: 0.21876961707470183 p-value: 0.1096654688128944

Kolmogorov-Smirnov: same distribution (fail to reject H0)

AP_height

Levene statistic: 7.459710428818096 p-value: 0.007341447281952389

Levene: different variances (reject H0)

Fligner statistic: 7.391190337972734 p-value: 0.006554409829916771

Fligner: different variances (reject H0)

Wilcoxon-Mann-Whitney U test statistic: 3079.0 p-value: 1.3582777666804203e-17

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)
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Kolmogorov-Smirnov statistic: 0.8549905838041432 p-value: 6.661338147750939e-16

Kolmogorov-Smirnov: different distributions (reject H0)

peak_voltage

Levene statistic: 7.459710428818096 p-value: 0.007341447281952389

Levene: different variances (reject H0)

Fligner statistic: 7.391190337972734 p-value: 0.006554409829916771

Fligner: different variances (reject H0)

Wilcoxon-Mann-Whitney U test statistic: 3079.0 p-value: 1.3582777666804203e-17

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)

Kolmogorov-Smirnov statistic: 0.8549905838041432 p-value: 6.661338147750939e-16

Kolmogorov-Smirnov: different distributions (reject H0)

AP_rise_rate

Levene statistic: 3.2120282887999094 p-value: 0.07582303196261797

Levene: same variances (fail to reject H0)

Fligner statistic: 8.500912633404996 p-value: 0.003549683927627355

Fligner: different variances (reject H0)

Wilcoxon-Mann-Whitney U test statistic: 3008.0 p-value: 4.274566678078413e-16

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)

Kolmogorov-Smirnov statistic: 0.8163841807909604 p-value: 6.661338147750939e-16

Kolmogorov-Smirnov: different distributions (reject H0)

AP_fall_rate

Levene statistic: 3.066184321429485 p-value: 0.08269937892109969

Levene: same variances (fail to reject H0)

Fligner statistic: 6.71176089244189 p-value: 0.0095779100160061

Fligner: different variances (reject H0)

Wilcoxon-Mann-Whitney U test statistic: 442.0 p-value: 3.7647624938176844e-11

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)

Kolmogorov-Smirnov statistic: 0.7052730696798494 p-value: 3.952393967665557e-14

Kolmogorov-Smirnov: different distributions (reject H0)

AP_fall_rate_change

Levene statistic: 0.6190034404678872 p-value: 0.433125124634122
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Levene: same variances (fail to reject H0)

Fligner statistic: 3.187363730600531 p-value: 0.0742095978425819

Fligner: same variances (fail to reject H0)

Wilcoxon-Mann-Whitney U test statistic: 351.0 p-value: 2.5793688476458548e-12

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)

Kolmogorov-Smirnov statistic: 0.8103448275862069 p-value: 1.775156606426841e-20

Kolmogorov-Smirnov: different distributions (reject H0)

AP_peak_upstroke

Levene statistic: 4.408526533521235 p-value: 0.038025854014361024

Levene: different variances (reject H0)

Fligner statistic: 4.601321053363534 p-value: 0.03194732985273627

Fligner: different variances (reject H0)

Wilcoxon-Mann-Whitney U test statistic: 3064.0 p-value: 2.853607187168821e-17

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)

Kolmogorov-Smirnov statistic: 0.7919020715630886 p-value: 6.661338147750939e-16

Kolmogorov-Smirnov: different distributions (reject H0)

AP_peak_downstroke

Levene statistic: 1.2715834062751352 p-value: 0.2619014544184533

Levene: same variances (fail to reject H0)

Fligner statistic: 1.6194972442709932 p-value: 0.2031619039342202

Fligner: same variances (fail to reject H0)

Wilcoxon-Mann-Whitney U test statistic: 239.0 p-value: 7.258645224012553e-15

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)

Kolmogorov-Smirnov statistic: 0.834902699309479 p-value: 6.661338147750939e-16

Kolmogorov-Smirnov: different distributions (reject H0)

spike_half_width

Levene statistic: 0.8356847163178224 p-value: 0.36261535212273177

Levene: same variances (fail to reject H0)

Fligner statistic: 0.9340883843599507 p-value: 0.3338028095263355

Fligner: same variances (fail to reject H0)

Wilcoxon-Mann-Whitney U test statistic: 716.0 p-value: 4.7016301099113494e-07

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)
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Kolmogorov-Smirnov statistic: 0.5266792215944758 p-value: 1.0318489573890588e-07

Kolmogorov-Smirnov: different distributions (reject H0)

spike_width2

Levene statistic: 0.4059195398968852 p-value: 0.5253838004179687

Levene: same variances (fail to reject H0)

Fligner statistic: 0.8000585301188278 p-value: 0.3710758705566992

Fligner: same variances (fail to reject H0)

Wilcoxon-Mann-Whitney U test statistic: 728.0 p-value: 1.8132084872745687e-06

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)

Kolmogorov-Smirnov statistic: 0.4362394274560833 p-value: 2.7784173407874313e-05

Kolmogorov-Smirnov: different distributions (reject H0)

depolarized_base

Levene statistic: 0.21330792406056287 p-value: 0.6451074156436485

Levene: same variances (fail to reject H0)

Fligner statistic: 0.5099912340048506 p-value: 0.47514265083983753

Fligner: same variances (fail to reject H0)

Wilcoxon-Mann-Whitney U test statistic: 1622.0 p-value: 0.617871778194361

Wilcoxon-Mann-Whitney U test: same distribution (fail to reject H0)

Kolmogorov-Smirnov statistic: 0.1724137931034483 p-value: 0.3298788555460255

Kolmogorov-Smirnov: same distribution (fail to reject H0)

AHP_depth

Levene statistic: 0.08022401294287185 p-value: 0.7775216314033404

Levene: same variances (fail to reject H0)

Fligner statistic: 0.10770161746045517 p-value: 0.7427761389915951

Fligner: same variances (fail to reject H0)

Wilcoxon-Mann-Whitney U test statistic: 271.0 p-value: 3.055267399749676e-14

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)

Kolmogorov-Smirnov statistic: 0.8518518518518519 p-value: 6.661338147750939e-16

Kolmogorov-Smirnov: different distributions (reject H0)

AHP_depth_abs

Levene statistic: 0.08022401294287124 p-value: 0.7775216314033404
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Levene: same variances (fail to reject H0)

Fligner statistic: 0.10770132317169079 p-value: 0.7427764779807888

Fligner: same variances (fail to reject H0)

Wilcoxon-Mann-Whitney U test statistic: 1510.0 p-value: 0.6353512902776368

Wilcoxon-Mann-Whitney U test: same distribution (fail to reject H0)

Kolmogorov-Smirnov statistic: 0.12962962962962962 p-value: 0.6655913571840438

Kolmogorov-Smirnov: same distribution (fail to reject H0)

AHP_depth_from_peak

Levene statistic: 1.3399447901571637 p-value: 0.24952849723117262

Levene: same variances (fail to reject H0)

Fligner statistic: 2.424339978036405 p-value: 0.1194635491567324

Fligner: same variances (fail to reject H0)

Wilcoxon-Mann-Whitney U test statistic: 2893.0 p-value: 8.049943715324859e-14

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)

Kolmogorov-Smirnov statistic: 0.7777777777777778 p-value: 6.661338147750939e-16

Kolmogorov-Smirnov: different distributions (reject H0)

AHP_slow_time

Levene statistic: 0.2773733483050493 p-value: 0.5995181094433077

Levene: same variances (fail to reject H0)

Fligner statistic: 0.3607862611307999 p-value: 0.5480698901731853

Fligner: same variances (fail to reject H0)

Wilcoxon-Mann-Whitney U test statistic: 1598.0 p-value: 0.48348010610693026

Wilcoxon-Mann-Whitney U test: same distribution (fail to reject H0)

Kolmogorov-Smirnov statistic: 0.22604588394062078 p-value: 0.10176313080703958

Kolmogorov-Smirnov: same distribution (fail to reject H0)

ISI_values

Levene statistic: 0.02132078025677348 p-value: 0.8841831976486665

Levene: same variances (fail to reject H0)

Fligner statistic: 0.07623370008066287 p-value: 0.7824677972955265

Fligner: same variances (fail to reject H0)

Wilcoxon-Mann-Whitney U test statistic: 1117.0 p-value: 0.027011518317369983

Wilcoxon-Mann-Whitney U test: different distributions (reject H0)
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Kolmogorov-Smirnov statistic: 0.3684210526315789 p-value: 0.0007881130606729458

Kolmogorov-Smirnov: different distributions (reject H0)

Supplementary Information File 3.

The top-scoring TF was ESRRA (estrogen-related receptor alpha). This TF regulates expression of

multiple metabolism-related genes, including those of mitochondrial function, biogenesis and turnover,

as well as lipid catabolism (Tripathi et al., 2020). It is also linked to autophagy and NF-kB

inflammatory response via Sirt1 signaling (Cantó et al., 2009; Yuk et al., 2015; Kim et al., 2018;

Suresh et al., 2018). Mitochondrial dysfunction and autophagy impairments are consistently among the

hallmarks of aging (López-Otín et al., 2013, 2023; Mattson and Arumugam, 2018). Notably, ESRRA

expression is downregulated in aging according to various studies (Schaum et al., 2020; Tripathi et al.,

2020).

The second-scoring TF was Nkx2-5 (NK2 homeobox 5), which is highly conserved among species and

mostly studied in development and cardiac function (Takeda et al., 2009). Reduction of Nkx2-5

cardiac expression has been reported in aging (Volkova et al., 2005).

The third-ranked TF was the evolutionary conserved energy sensor NFE2L1 (nuclear factor erythroid

2-related factor 1, also called Nrf1 or nuclear respiratory factor 1). It is one of the key regulators of

redox signaling and homeostasis. Dysfunction of this TF is associated with glucose metabolism

reprogramming via AMPK signaling (Yang et al., 2021). NFE2L1 also upregulates expression of

proteasomal genes in an ERK-signaling dependent manner (Zhang et al., 2021b), which is suggested to

contribute to the development of neurodegenerative diseases (Lee et al., 2011).

The next TF was ZBED1 (zinc finger BED domain-containing protein 1). It acts as a small

ubiquitin-like modifier (SUMO) ligase by SUMOylating Mi2-alpha during nucleosome remodeling

and deacetylation (Yamashita et al., 2016).

The fifth TF, THAP4 (nitrobindin), detoxifies reactive nitrogen and oxygen species and scavenges

peroxynitrite (De Simone et al., 2018).

The next TF was PREB (prolactin regulatory element binding). Interestingly, it has been reported as

one of the links between aging and Alzheimer’s disease (Zhou et al., 2019).
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The next TF was HIF1A (hypoxia inducible factor 1), which serves as a key regulator of the hypoxia

response at both cellular and system scale. The role of HIF1a in brain aging and neurodegenerative

diseases is convoluted, multifaceted and incompletely understood. On one hand, HIF1a promotes

erythropoiesis, angiogenesis and exerts neuroprotection (Majmundar et al., 2010; Burtscher et al.,

2021). On the other hand, there are contradictory reports on either the detrimental (Sun et al., 2006;

March-Diaz et al., 2021; Lee et al., 2023) or protective (Ashok et al., 2017) role of HIF1a in

neurodegeneration, Alzheimer’s disease in particular. To add the complexity, HIF1a is involved in

inflammatory response and metabolism regulation (McGettrick and O’Neill, 2020; Taylor and Scholz,

2022). Even though mechanisms of HIF1a are so multifaceted, therapeutic potential of this TF has

been recognized (Lee et al., 2019; Luo et al., 2022).

The next TF was MYRFL (myelin regulatory factor-like protein). Its biological function (and that of

some other myelin regulatory factors, such as MYRF) is poorly understood, which is surprising given

the importance of myelin for neuronal health (Huang et al., 2021).

The next TF was ZNF878 (zinc finger protein 878), which is one of the hundreds in the rapidly

evolved KRAB-domain containing family (Shen et al., 2021).

The last out of top-10 TFs was SALL3 (spalt-like transcription factor 3). It modulates DNA

methyltransferase activity and influences human induced pluripotent stem cell differentiation (Kuroda

et al., 2019).

We further searched the STRING database (Szklarczyk et al., 2019) for the protein-protein

associations of the top TF ESRRA (Fig. 5c), following which we performed a literature search for the

top-10 proteins from this search: Hif1a, Sirt1, Hdac8, Ppargc1a, Ppargc1b, Mef2c, Nrip1, Ncoa1,

Tfam, Perm1. Interestingly, numerous reports attribute roles in aging and neurodegeneration to these

proteins as detailed below.

Hif1a is a common hit in the top-10 of STRING associations and ChEA3 enrichment with its

implications in brain aging and neurodegeneration described above.

Sirt1 is a NAD+-dependent deacetylase, a member of the sirtuin family of proteins. It is largely studied

for its role in aging, longevity, apoptosis, stress resistance, inflammation, linking nutrition and

chromatin regulation, energy homeostasis and caloric restriction (Rodgers et al., 2005; Guarente, 2006;
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Milne et al., 2007; Cantó et al., 2009; Finkel et al., 2009; Bishop et al., 2010; Ledford, 2010; Gut and

Verdin, 2013; O’Neill and Hardie, 2013; Ng et al., 2015; Shin et al., 2016; Satoh et al., 2017; Katsyuba

et al., 2018; Yang et al., 2018).

Another protein found in STRING associations of ESRRA is HDAC8 (histone deacetylase 8), closely

related to the sirtuins signaling. It is largely recognised as a promising drug target in several disorders

(Chakrabarti et al., 2015; Mormino et al., 2021; Zhao et al., 2021; Emmons et al., 2022).

Another protein in our list, Ppargc1a (peroxisome proliferator-activated receptor gamma coactivator

1-alpha, also called PGC-1alpha), is an important regulator of energy metabolism and is implicated in

aging (Rodgers et al., 2005; Anderson and Prolla, 2009; Garcia et al., 2018). It is associated with

Parkinson’s (Li et al., 2022) and Huntington’s diseases (Cui et al., 2006).

Closely related to PGC-1alpha is the other protein on our list, Ppargc1b (peroxisome

proliferator-activated receptor gamma coactivator 1-alpha, also called PGC-1beta), which is also

involved in energy metabolism regulation, but less well studied and is an active area of research

(Thiepold et al., 2017; Thibonnier et al., 2020).

The next protein on our list is Tfam (mitochondrial transcription factor 1), which is regulated by

PGC-1alpha and is implicated in brain aging and neurodegeneration (Grimm and Eckert, 2017; Kang

et al., 2018).

Another protein on the list is Perm1 (PGC-1 And ERR-Induced Regulator In Muscle Protein 1) is

mostly studied in cardiac mitochondrial metabolism regulation (Huang et al., 2022).

The next on the list is Nrip1 (nuclear receptor interacting protein 1). It is an oxidative metabolism

regulator and a potential therapeutic target in Down syndrome (Izzo et al., 2014).

The other protein on the list is Ncoa1 (nuclear receptor coactivator 1), which is involved in hormonal

regulation, learning, memory and neurogenesis (Nishihara et al., 2007; Sun and Xu, 2020).

Next, brain-expressed Mef2c (myocyte enhancer factor 2C) is a TF downregulated in aging in an

interferon signaling-dependent way (Deczkowska et al., 2017). Furthermore, therapeutic potential of

this TF in neurodegeneration and aging has been recently shown with its effects in promoting

cognitive resilience (Barker et al., 2021).
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To sum up, our identified anti-aging targets largely align with the literature data on therapeutics for

healthy aging (Campisi et al., 2019), but also suggest a role of a few poorly studied TFs in the brain

energy metabolism aging and provide the insights on the links between molecular mechanisms

implicated in aging and neurodegeneration.

Supplementary Information File 4.

This information will be available after peer-reviewed publication.

Supplementary Information File 5.

This information will be available after peer-reviewed publication.

Supplementary Information File 6.

This information will be available after peer-reviewed publication.

Supplementary Information File 7.

Mapping of model variables indexes to descriptive names and Bigg nomenclature (King

et al., 2016) (where available).

#idx id u_ + bigg_id (if available) +

compartment_id

descriptive name

1 K_x_n u_k_m_n Potassium ion in neuronal mito.

matrix

2 Mg_x_n u_mg2_m_n Magnesium ion in neuronal mito.

matrix

3 NADHmito_n u_nadh_m_n NADH in neuronal mito.

4 QH2mito_n u_q10h2_m_n Reduced ubiquinol in neuronal

mito. matrix
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5 CytCredmito_

n

u_focytC_m_n Reduced cytochrome c in neuronal

mito. matrix

6 O2_n u_o2_c_n Oxygen in neuronal cytosol

7 ATPmito_n u_atp_m_n Free ATP in neuronal mito. matrix

8 ADPmito_n u_adp_m_n Free ADP in neuronal mito. matrix

9 ATP_mx_n u_notBigg_ATP_mx_m_n Magnesium-bound ATP in

neuronal mito. matrix

10 ADP_mx_n u_notBigg_ADP_mx_m_n Magnesium-bound ADP in

neuronal mito. matrix

11 Pimito_n u_pi_m_n Phosphate in neuronal mito. matrix

12 ATP_i_n u_atp_i_n Free ATP in neuronal mito. IMS

13 ADP_i_n u_adp_i_n Free ADP in neuronal mito. IMS

14 ATP_mi_n u_notBigg_ATP_mi_i_n Magnesium-bound ATP in

neuronal mito. IMS

15 ADP_mi_n u_notBigg_ADP_mi_i_n Magnesium-bound ADP in

neuronal mito. IMS

16 Pi_i_n u_pi_i_n Phosphate in neuronal mito. IMS

17 MitoMembrP

otent_n

u_notBigg_MitoMembrPote

nt_m_n

Neuronal mitochondrial membrane

potential

18 ATP_n u_atp_c_n ATP in neuronal cytosol

19 FUMmito_n u_fum_m_n Fumarate in neuronal mito.

20 MALmito_n u_mal_L_m_n L-Malate in neuronal mito.

21 OXAmito_n u_oaa_m_n Oxaloacetate in neuronal mito.

22 SUCmito_n u_succ_m_n Succinate in neuronal mito.

23 SUCCOAmit

o_n

u_succoa_m_n Succinyl-CoA in neuronal mito.

24 CoAmito_n u_coa_m_n Coenzyme A in neuronal mito.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.30.555341doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.30.555341
http://creativecommons.org/licenses/by/4.0/


25 AKGmito_n u_akg_m_n Alpha-ketoglutarate in neuronal

mito.

26 ISOCITmito_

n

u_icit_m_n Isocitrate in neuronal mito.

27 CITmito_n u_cit_m_n Citrate in neuronal mito.

28 AcCoAmito_

n

u_accoa_m_n Acetyl-CoA in neuronal mito.

29 AcAc_n u_acac_c_n Acetoacetate in neuron (only mito.,

no cytosolic AcAc in the model)

30 AcAcCoA_n u_aacoa_m_n Acetoacetyl-CoA in neuronal mito.

31 PYRmito_n u_pyr_m_n Pyruvate in neuronal mito.

32 bHB_n u_bhb_c_n beta-Hydroxybutyrate in neuronal

cytosol

33 bHB_ecs u_bhb_e_e beta-Hydroxybutyrate in

extracellular space

34 bHB_b u_bhb_b_b beta-Hydroxybutyrate in capillaries

35 GLUmito_n u_glu_L_m_n L-Glutamate in neuronal mito.

36 GLU_n u_glu_L_c_n L-Glutamate in neuronal cytosol

37 NADH_n u_nadh_c_n NADH in neuronal cytosol

38 K_x_a u_k_m_a Potassium ion in astrocytic mito.

matrix

39 Mg_x_a u_mg2_m_a Magnesium ion in astrocytic mito.

matrix

40 NADHmito_a u_nadh_m_a NADH in astrocytic mito.

41 QH2mito_a u_q10h2_m_a Reduced ubiquinol in astrocytic

mito. matrix

42 CytCredmito_

a

u_focytC_m_a Reduced cytochrome c in

astrocytic mito. matrix

43 O2_a u_o2_c_a Oxygen in astrocytic cytosol
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44 ATPmito_a u_atp_m_a Free ATP in astrocytic mito. matrix

45 ADPmito_a u_adp_m_a Free ADP in astrocytic mito.

matrix

46 ATP_mx_a u_notBigg_ATP_mx_m_a Magnesium-bound ATP in

astrocytic mito. matrix

47 ADP_mx_a u_notBigg_ADP_mx_m_a Magnesium-bound ADP in

astrocytic mito. matrix

48 Pimito_a u_pi_m_a Phosphate in astrocytic mito.

matrix

49 ATP_i_a u_atp_i_a Free ATP in astrocytic mito. IMS

50 ADP_i_a u_adp_i_a Free ADP in astrocytic mito. IMS

51 ATP_mi_a u_notBigg_ATP_mi_i_a Magnesium-bound ATP in

astrocytic mito. IMS

52 ADP_mi_a u_notBigg_ADP_mi_i_a Magnesium-bound ADP in

astrocytic mito. IMS

53 Pi_i_a u_pi_i_a Phosphate in astrocytic mito. IMS

54 MitoMembrP

otent_a

u_notBigg_MitoMembrPote

nt_m_a

Astrocytic mitochondrial

membrane potential

55 ATP_a u_atp_c_a ATP in astrocytic cytosol

56 FUMmito_a u_fum_m_a Fumarate in astrocytic mito.

57 MALmito_a u_mal_L_m_a L-Malate in astrocytic mito.

58 OXAmito_a u_oaa_m_a Oxaloacetate in astrocytic mito.

59 SUCmito_a u_succ_m_a Succinate in astrocytic mito.

60 SUCCOAmit

o_a

u_succoa_m_a Succinyl-CoA in astrocytic mito.

61 CoAmito_a u_coa_m_a Coenzyme A in astrocytic mito.

62 AKGmito_a u_akg_m_a Alpha-ketoglutarate in astrocytic

mito.
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63 ISOCITmito_

a

u_icit_m_a Isocitrate in astrocytic mito.

64 CITmito_a u_cit_m_a Citrate in astrocytic mito.

65 AcCoAmito_a u_accoa_m_a Acetyl-CoA in astrocytic mito.

66 PYRmito_a u_pyr_m_a Pyruvate in astrocytic mito.

67 GLN_n u_gln_L_c_n Glutamine in neuron

68 GLN_out u_gln_L_e_e Glutamine in extracellular space

69 GLN_a u_gln_L_c_a Glutamine in astrocytic cytosol

70 GLUT_a u_glu_L_c_a Glutamate in astrocytic cytosol

71 Va u_notBigg_Va_c_a Astrocytic membrane potential

72 Na_a u_na1_c_a Sodium ion in astrocytic cytosol

73 K_a u_k_c_a Potassium ion in astrocytic cytosol

74 K_out u_k_e_e Potassium ion in extracellular

space

75 GLUT_syn u_glu_L_syn_syn Synaptic glutamate

76 VNeu u_notBigg_VNeu_c_n Neuronal membrane potential

77 Na_n u_na1_c_n Sodium ion in neuronal cytosol

78 h u_notBigg_hgate_c_n Gating variable h of

Hodgkin-Huxley model in neuron

79 n u_notBigg_ngate_c_n Gating variable n of

Hodgkin-Huxley model in neuron

80 Ca_n u_ca2_c_n Calcium in neuronal cytosol

81 pgate u_notBigg_pgate_c_n Gating variable of M-current in

neuron

82 nBK_a u_notBigg_nBK_c_a Gating variable of BK channels in

astrocyte

83 mGluRbound

Ratio_a

u_notBigg_mGluRboundRati

o_c_a

Ratio of bound metabotropic

glutamate receptors in astrocyte
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84 IP3_a u_notBigg_IP3_c_a IP3 in astrocytic cytosol

85 hIP3Ca_a u_notBigg_hIP3Ca_c_a Gating variable of IP3-dependent

calcium flow in astrocytic cytosol

86 Ca_a u_ca2_c_a Calcium in astrocytic cytosol

87 sTRP_a u_notBigg_sTRP_c_a Astrocytic TRPV4 channel open

probability

88 vV u_notBigg_vV_b_b Venous volume

89 EET_a u_notBigg_EET_c_a Epoxyeicosatrienoic acid

90 ddHb u_notBigg_ddHb_b_b Deoxyhemoglobin

91 O2cap u_o2_b_b Oxygen in capillaries

92 Glc_b u_glc_D_b_b D-Glucose in capillaries

93 Glc_t_t u_glc_D_ecsEndothelium_ec

sEndothelium

D-Glucose in endothelium

94 Glc_ecsBA u_glc_D_ecsBA_ecsBA D-Glucose in basal lamina

95 Glc_a u_glc_D_c_a D-Glucose in astrocytic cytosol

96 Glc_ecsAN u_glc_D_ecsAN_ecsAN D-Glucose in interstitial space

97 Glc_n u_glc_D_c_n D-Glucose in neuronal cytosol

98 G6P_n u_g6p_c_n D-Glucose 6-phosphate in neuronal

cytosol

99 G6P_a u_g6p_c_a D-Glucose 6-phosphate in

astrocytic cytosol

100 F6P_n u_f6p_c_n D-Fructose 6-phosphate in

neuronal cytosol

101 F6P_a u_f6p_c_a D-Fructose 6-phosphate in

astrocytic cytosol

102 FBP_n u_fdp_c_n D-Fructose 1,6-bisphosphate in

neuronal cytosol

103 FBP_a u_fdp_c_a D-Fructose 1,6-bisphosphate in

astrocytic cytosol
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104 f26bp_a u_f26bp_c_a D-Fructose 2,6-bisphosphate in

astrocytic cytosol

105 GLY_a u_glycogen_c_a Glycogen in astrocytic cytosol

106 G1P_a u_g1p_c_a D-Glucose 1-phosphate in

astrocytic cytosol

107 GAP_n u_g3p_c_n Glyceraldehyde 3-phosphate in

neuronal cytosol

108 GAP_a u_g3p_c_a Glyceraldehyde 3-phosphate in

astrocytic cytosol

109 DHAP_n u_dhap_c_n Dihydroxyacetone phosphate in

neuronal cytosol

110 DHAP_a u_dhap_c_a Dihydroxyacetone phosphate in

astrocytic cytosol

111 BPG13_n u_13dpg_c_n 3-Phospho-D-glyceroyl phosphate

in neuronal cytosol

112 BPG13_a u_13dpg_c_a 3-Phospho-D-glyceroyl phosphate

in astrocytic cytosol

113 NADH_a u_nadh_c_a NADH in astrocytic cytosol

114 PG3_n u_3pg_c_n 3-Phospho-D-glycerate in neuronal

cytosol

115 PG3_a u_3pg_c_a 3-Phospho-D-glycerate in

astrocytic cytosol

116 PG2_n u_2pg_c_n D-Glycerate 2-phosphate in

neuronal cytosol

117 PG2_a u_2pg_c_a D-Glycerate 2-phosphate in

astrocytic cytosol

118 PEP_n u_pep_c_n Phosphoenolpyruvate in neuronal

cytosol

119 PEP_a u_pep_c_a Phosphoenolpyruvate in astrocytic

cytosol
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120 Pyr_n u_pyr_c_n Pyruvate in neuronal cytosol

121 Pyr_a u_pyr_c_a Pyruvate in astrocytic cytosol

122 Lac_b u_lac_L_b_b L-Lactate in capillaries

123 Lac_ecs u_lac_L_e_e L-Lactate in extracellular space

124 Lac_a u_lac_L_c_a L-Lactate in astrocytic cytosol

125 Lac_n u_lac_L_c_n L-Lactate in neuronal cytosol

126 NADPH_n u_nadph_c_n NADPH in neuronal cytosol

127 NADPH_a u_nadph_c_a NADPH in astrocytic cytosol

128 GL6P_n u_6pgl_c_n 6-phospho-D-glucono-1,5-lactone

in neuronal cytosol

129 GL6P_a u_6pgl_c_a 6-phospho-D-glucono-1,5-lactone

in astrocytic cytosol

130 GO6P_n u_6pgc_c_n 6-Phospho-D-gluconate in

neuronal cytosol

131 GO6P_a u_6pgc_c_a 6-Phospho-D-gluconate in

astrocytic cytosol

132 RU5P_n u_ru5p_D_c_n D-Ribulose 5-phosphate in

neuronal cytosol

133 RU5P_a u_ru5p_D_c_a D-Ribulose 5-phosphate in

astrocytic cytosol

134 R5P_n u_r5p_c_n D-Ribose 5-phosphate in neuronal

cytosol

135 R5P_a u_r5p_c_a D-Ribose 5-phosphate in astrocytic

cytosol

136 X5P_n u_xu5p_D_c_n D-Xylulose 5-phosphate in

neuronal cytosol

137 X5P_a u_xu5p_D_c_a D-Xylulose 5-phosphate in

astrocytic cytosol
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138 S7P_n u_s7p_c_n Sedoheptulose 7-phosphate in

neuronal cytosol

139 S7P_a u_s7p_c_a Sedoheptulose 7-phosphate in

astrocytic cytosol

140 E4P_n u_e4p_c_n D-Erythrose 4-phosphate in

neuronal cytosol

141 E4P_a u_e4p_c_a D-Erythrose 4-phosphate in

astrocytic cytosol

142 GSH_n u_gthrd_c_n Reduced glutathione in neuronal

cytosol

143 GSH_a u_gthrd_c_a Reduced glutathione in astrocytic

cytosol

144 GSSG_n u_gthox_c_n Oxidized glutathione in neuronal

cytosol

145 GSSG_a u_gthox_c_a Oxidized glutathione in astrocytic

cytosol

146 PCr_n u_pcreat_c_n Phosphocreatine in neuronal

cytosol

147 PCr_a u_pcreat_c_a Phosphocreatine in astrocytic

cytosol

148 cAMP_a u_camp_c_a Cyclic AMP in astrocytic cytosol

149 NE_neuromo

d

u_nrpphr_e_e Norepinephrine in extracellular

space

150 GPa_a u_notBigg_GPa_c_a Active glycogen phosphorylase in

astrocytic cytosol

151 GPb_a u_notBigg_GPb_c_a Inactive glycogen phosphorylase in

astrocytic cytosol
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