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Abstract

In this internship, I explore di�erent optimization algorithms for lensless imaging. Lensless
imaging is a new imaging technique that replaces the lens of a camera with a di�user mask.
This allows for simpler and cheaper camera hardware. However, the reconstruction of the image
from the sensor measurement is a complex ill-posed problem. The goal of this internship is to
improve current reconstruction algorithms for lensless imaging. I �rst implemented unrolled op-
timization as a low computational cost way of increasing reconstruction quality. I also explored
the possibility of using a plug-and-play algorithm for lensless imaging. Then, I introduced a
pre-/post- denoising scheme mixing unrolled optimization and more traditional deep learning
which improved current state-of-the-art result on the Di�userCam Lensless Mir�ickr Dataset.
Finally, I introduce a framework for learning the mask pattern of the lensless camera jointly
with the reconstruction algorithm, allowing for further improvements.
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Chapter 1

Introduction

1.1 History of photography

The origins of photography can be traced back to the concept of the pinhole camera, also
known as the camera obscura. Ancient Chinese philosophers and Arab scholars understood
the basic principles of light passing through a small hole and projecting an inverted image on
a surface opposite to the hole. This principle was further re�ned by Renaissance artists, who
utilized camera obscuras as tools for accurate drawing and perspective. However, it was not
until the early 19th century that advancements in materials and optical understanding led to
the creation of more practical and portable pinhole cameras.

The mid-19th century marked a pivotal shift with the invention of the daguerreotype process
and the introduction of lenses into photography. The integration of lenses improved light
gathering, leading to shorter exposure times and enhanced image clarity. This advancement
laid the foundation for modern photography and initiated a wave of technological innovations
in the �eld.

As photographic technology continued to evolve, the limitations of lensed cameras prompted
researchers and engineers to explore alternative imaging methods. One signi�cant outcome of
these explorations was the emergence of lensless imaging techniques. Unlike traditional cameras
that rely on lenses to focus light onto a photosensitive surface, lensless imaging techniques utilize
di�raction masks to capture and reconstruct images without the need for conventional optics.
This approach allows the complexity and cost of hardware to remain low while keeping light-
gathering capability similar to traditional lensed cameras. These characteristics are summarized
in Table 1.1.

However, lensless imaging forgoes the one-to-one mapping between the scene and sensor that has
been used in both pinhole cameras and traditional cameras. This means that the reconstruction
of the image from the sensor measurement is a complex ill-posed problem. This problem is
usually solved using optimization algorithms with regularization. The goal of this internship is
to explore di�erent optimization algorithms for lensless imaging.

1.2 Lensless Camera

A lensless camera is very similar to a traditional lensed camera, except that the lens is replaced
by a mask (See �gure 1.1). However, this results in a very di�erent image formation process
and changes massively the post-processing pipeline. In lensless imaging, a single point in the
scene can potentially in�uence all the pixels on the sensor. This is in contrast with traditional
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Aspect Pinhole Camera Lensed Camera Lensless Camera

Light Gathering Limited light-gathering Improved light-gathering Comparable to lensed

Longer exposure times Shorter exposure times

Challenging for motion Capable of capturing motion

Image Quality Limited sharpness Sharper images Dependent on the reconstruction

Aesthetics Limitless depth of �eld Adjustable focus Focussing at reconstruction

Distinctive artistic appeal Versatility

Complexity Minimal Complex optics Hardware : Minimal

Software : High

Cost Minimal Higher production cost Minimal

Table 1.1: Pros and Cons of Pinhole, Traditional Lensed, and Lensless Imaging Cameras

Figure 1.1: Lensless camera vs traditional lensed camera. Original image from [1]

lensed cameras where a single point in the scene can only in�uence a single pixel on the sensor.
A simple but accurate model of the image formation process is given in section 1.3.

1.2.1 Mask

There are two main types of masks used in lensless imaging: amplitude, and phase masks:

An amplitude mask is a �ne �lm mask modulating the intensity of the light passing through
it. The pinhole camera can be viewed as a special case of amplitude mask where the mask is
a simple hole. However, the more general framework of amplitude mask allows for a greater
portion of the light to pass through by using multiple "holes" of di�erent sizes and shapes.
This allows for greater light-gathering capabilities and shorter exposure times compared to
pinhole cameras while keeping the same simplicity of hardware. Amplitude masks can be easily
fabricated by printing the pattern on a sheet of transparent plastic for example. An even
more interesting choice is to use the light-modulating portion of an LCD panel to create an
inexpensive and recon�gurable amplitude mask.

Phase masks are more complex to fabricate but allow for greater light-gathering capabilities.
A phase mask is a mask modulating the phase of the light passing through it, similar to a
lens. This means that most of the light passes through the mask onto the sensor. However,
manufacturing them is a bit more challenging. A typical approach is to etch a piece of glass
as in [2], but it can be challenging to accurately produce a given mask. If one is �ne with a
random mask, a cheap alternative is to use the natural thickness variation of any transparent
material. The camera described in [3], shows success with a simple piece of transparent tape.

The design of the mask can have a great impact on the quality of the reconstructed image. In
section 1.3, we describe a general approach able to work with any mask. However, some mask
designs allow for speci�c reconstruction algorithms that can improve the quality or/and speed
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Figure 1.2: On the left: PSF of a simple piece of tape. On the right: PSF of the Di�userCam
Dataset.

of the reconstruction (often with a closed-form solution) [4, 5, 6].

1.2.2 Reconstruction algorithm

The image measured by the sensor is unexploitable to the human eye. It is a complex pattern
that is the result of the interaction between the scene and the mask. The goal of the reconstruc-
tion algorithm is to recover the image of the scene from the sensor measurement. In the general
case, this is a complex ill-posed problem whose formulation is given in section 1.3. Approaches
to solve this problem are the main focus of this internship.

Reconstruction algorithms need to be able to reconstruct an image close enough to the original
in terms of not only mathematical distance (measured by the PSNR or L2 norm for instance)
but also perceived similarity and quality (measured by LPIPS [7] or SSIM [8]). Moreover, this
must be done in a reasonable amount of time: the reconstruction algorithm must be able to
reconstruct an image in a few seconds to be usable in real-time application. At the resolution
of current cameras (tens of megapixels), this is a very challenging task. The methods presented
here are mainly focused on improving the reconstruction quality with a lesser emphasis on
reconstruction speed.

1.3 Reconstruction

For the following, we will name b the measurements on the sensor and x the image we want
to reconstruct. Under the assumption that the di�user system is linear and shift-invariant, the
e�ect of the di�usion pattern on the measurements is given by the following equation (ignoring
the noise):

b = C (P ∗X) = CHx, (1.1)

where P is the point spread function (PSF) of the system and C is the cropping operator to
the sensor size [9]. Examples of PSF of both the Di�userCam Dataset (see subsection 2.1.1)
and a simple piece of tape are shown in �gure 1.2 If we consider x to be the vectorized image,
then the convolution and cropping operation can be represented as matrix multiplications by
H and C respectively. This model is particularly easy to use as the cropping operation is given
by the sensor dimension and the PSF can easily be simulated or measured (as the image of
a point source on the sensor). Moreover, it is a good approximation of the real system while
being compatible with most optimization algorithms.
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Under a Gaussian noise assumption, the maximum likelihood estimator of x is given by:

x̂ = argmin
x

1

2
||b− CHx||22 (1.2)

Due to the multiplexing characteristic of most lensless camera PSFs, this problem is ill-posed
and regularization is needed. A traditional approach is to use a non-negativity and a sparsity
constraint in the total variation space [9, 10]. This yields the following optimization problem:

x̂ = argmin
x

1

2
||b− CHx||22 +R(x) (1.3)

which can be solve with traditional optimization algorithm such as ADMM [11], whose pseu-
docode is shown in algorithm 2.

1.3.1 FISTA

We use a non-negativity constraint for FISTA. The optimization problem is then:

x̂ = argmin
x≥0

1

2
||b− CHx||22

The FISTA algorithm is an extension of proximal gradient descent that uses a momentum
update to accelerate convergence. The algorithm is given in algorithm 1.

Algorithm 1 FISTA

Require: x0 = s0, γ > 0, and τ1 = 1
for k = 1 to t do

zk ← xk−1 − γ∆g(xk−1) ▷ Data �delity
sk ← proxγh(z

k) ▷ Regularization

τk+1 ←
1+
√

1+4τ2k
2

xk ← sk +
1−τk
τk+1

(sk − sk−1) ▷ FISTA Update

end for

1.3.2 ADMM

We use both the non-negativity constraint and total variation as regularization for ADMM.
The optimization problem is then:

x̂ = argmin
x≥0

1

2
||b− CHx||22 + τTV(x)

The ADMM algorithm is based on augmented Lagrangian methods, the problem is decomposed
into 3 subproblems and their associated dual constraints. The pseudo-code is given in algorithm
2.

1.4 Baseline results

The results from those algorithms are presented in Figure 1.3. In addition to FISTA, results
from ADMM with two sets of parameters (default of LenslessPiCam [3] and those used in
Monakhova et al. [2]), Gradient Descent (or more precisely proximal gradient descent) and
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Algorithm 2 ADMM

Require: τ > 0, µ1 > 0, µ2 > 0, µ3 > 0
for k = 1 to t do

uk+1 ← Tτ/µ2

(
Ψxk + αk

2/µ2

)
▷ Sparsifying soft-threshold

vk+1 ←
(
CTC+ µ1I

)−1 (
αk
1 + µ1Hxk +CTb

)
▷ least-squares update

wk+1 ← max
(
αk
3/µ3 + xk, 0

)
▷ enforce non-negativity

rk ←
((
µ3w

k+1 − αk
3

)
+ΨT

(
µ2u

k+1 − αk
2

)
+HT

(
µ1v

k+1 − αk
1

))
xk+1 ←

(
µ1H

TH+ µ2Ψ
TΨ+ µ3I

)−1
rk ▷ least-squares update

αk+1
1 ← αk

1 + µ1

(
Hxk+1 − vk+1

)
▷ dual for v

αk+1
2 ← αk

2 + µ2

(
Ψxk+1 − uk+1

)
▷ dual for u

αk+1
3 ← αk

3 + µ3

(
xk+1 − wk+1

)
▷ dual for w

end for

Algorithm τ µ1 µ2 µ3

ADMM 0.0001 10−6 10−5 4× 10−5

ADMM_Monakhova 0.002 10−4 10−4 10−4

Table 1.2: Parameters used for each algorithm

Nesterov's accelerated gradient descent are presented. The parameters used for the two versions
of ADMM are given in Table 1.2.

Those algorithms are evaluated across a wide range of metrics:

� LPIPS_Alex [7] is a perceptual metric that tries to measure the perceived distance be-
tween two images. It exploits the intermediate representation of AlexNet [12] and com-
putes the distance using a multi-layer perceptron on those representations. It is supposed
to be more robust to small changes in the image than other perceptual metrics.

� LPIPS_VGG [7] is the same metric as LPIPS_alex but using the intermediate represen-
tation of VGG16 [13]. In practice, we found this metric to be more discriminative than
LPIPS_alex on very similar images.

� SSIM [8] is a metric that tries to measure the structural similarity between two images.
It is based on the luminance, contrast, and structure of the images.

� PSNR is the peak signal-to-noise ratio between the two images.

� MSE is the mean squared error between the reconstructed image and the ground truth.

� ReconstructionError is the mean squared error between the lensless image and the pro-
jection to lensless space of the reconstructed image.

As seen in �gure 1.3, proximal gradient descent is a lot slower to converge than other metrics, on
all metrics except LPIPS it manages to be competitive with other algorithms given enough time.
More evolved algorithms with a momentum update (FISTA and Nesterov's gradient descent)
are a lot faster to converge and give similar results on most metrics except both LPIPS where
they are noticeably better than other methods. Finally, ADMM gives the best results with
SSIM, PSNR, MSE and ReconstructionError. However, it is noticeably worse than FISTA
and Nesterov gradient descent on both LPIPS metrics. Interestingly, the default parameters
of LenslessPiCam give better results on the non-LPIPS metrics than the parameters used in
Monakhova et al. [2] while converging faster. They are, however, totally outperformed by the
parameters used in Monakhova et al. on both LPIPS metrics.
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Figure 1.3: Results from classical algorithms on the test set.

1.5 State-of-the-art

Image recovery traditionally relies on iterative convex optimization, aiming to minimize a com-
bined loss function [14, 11]. This loss function comprises two components: a data-�delity term
ensuring alignment of the reconstructed image (modi�ed by a known imaging model) with
the actual measurement, and an optional regularization term that incorporates prior knowl-
edge about image attributes to address ill-conditioned challenges. However, these approaches
are susceptible to artifacts arising from model disparities, calibration errors, and subjective
parameter and regularization choices, collectively diminishing image quality. Moreover, these
iterative methods often demand a signi�cant number of iterations, rendering them impractical
for real-time imaging scenarios.
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Recent trends have seen the emergence of deep learning-based methods for image reconstruc-
tion. Utilizing Convolutional Neural Networks (CNNs) [15, 16, 17], these techniques excel in
capturing complex scene statistics. However, they lack integration of physical insights into the
image formation process, rendering them less interpretable, without guaranteed convergence,
and devoid of a systematic approach to incorporate knowledge about the underlying imaging
system physics.

A promising middle ground emerges around unrolled optimization. This novel strategy treats
a �xed number of iterations from a classic algorithm as a deep network. Each iteration takes
on the role of a network layer, permitting the optimization of algorithm parameters that are
di�erentiable with respect to the output, through backpropagation using a speci�ed loss func-
tion. This framework also enables learning from training data [18], as demonstrated in diverse
applications such as image denoising [19, 20], sparse coding [18]. By synergizing the strengths of
deep learning and incorporating physical insights, unrolled optimization enhances both image
quality and reconstruction speed, o�ering a practical solution for everyday imaging challenges,
particularly with lensless cameras [2].

1.6 Objectives of the internship

The initial goals of this internship were:

� Replicating and implementing unrolled optimization [2] into LenslessPiCam.

� Investigating how Plug-and-play methods could be apply to lensless imaging.

� Exploring new ideas for lensless reconstruction.

� Investigate how the mask pattern of the lensless camera can be jointly learned with the
reconstruction algorithm, in the spirit of deep optics.

Before, the internship the usage of a generator as a prior was discussed. But it was abandoned in
favor of exploring new reconstruction algorithms for lensless imaging. Those include Plug-and-
play methods which have never been explored in the context of lensless photography before; and
a pre-/post- denoising scheme built upon unrolled optimization. The results of those methods
are presented in chapter 4 and chapter 5 respectively.
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Chapter 2

Experimental setup

2.1 Dataset

2.1.1 Measured Dataset

For all training on real images(all unless speci�ed otherwise), we used the Di�userCam Lensless
Mir�ickr Dataset introduced by Monakhova et al. [2]. It consists of 25000 pairs of standard
images and their associated lensless image. All images are taken from a screen with a setup
involving both a traditional camera and a lensless camera. A beam splitter is used to ensure
both cameras capture the exact same image (see �gure 2.1). The lensless camera is constructed
by placing a piece of glass with variable thickness (phase mask) in front of the sensor, the PSF
of the system can be found in �gure 1.2.

The dataset contains images of resolution 480 x 270 pixels, already down-sampled from 1920
x 1080 measurements. To reduce the memory requirement for training deep models, we down-
sample the images further to a resolution of 240 x 135 pixels. A fortunate side e�ect is that it
makes the moiré from the screen almost invisible.

The �rst 1000 image pairs from the dataset are taken as a test set, and the 24000 remaining
pairs are used to train the model.

Figure 2.1: Experimental setup for the Di�userCam Lensless Mir�ickr Dataset [2].
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SNR(dB) Loss on simulated Loss on DC SSIM on DC LPIPS (VGG) on DC
00 0.2061 0.3326 0.4489 0.4985
10 0.1344 0.2831 0.6141 0.4215
20 0.0642 0.3251 0.5482 0.4877
40 0.0565 0.3503 0.5241 0.5321

Table 2.1: Unrolled ADMM (20 iter) trained on a simulated dataset and tested on Di�userCam
dataset (DC).

2.1.2 Simulated Dataset

We also use a simulator to create a lensless image corresponding to a given image. The simulator
is based on the approximation presented in section 1.3 but it adds Poisson noise and quanti�es
the result on 8 bits. The simulator is able to convert any traditional single-image dataset to a
dataset of image pairs (lensed and lensless). In practice, we mainly use the CelebA dataset [21]
for this purpose. The CelebA dataset consists of 202599 images of celebrity faces. 10% of those
are used in the test set and the rest in the trainset. The images are downsampled to the PSF
size.

To test the e�ectiveness of this simulated dataset, we train unrolled ADMM (see section 3.2)
on the Simulated dataset (using Di�userCam PSF) and evaluate it on the Di�userCam dataset.
The results with di�erent signal-to-noise ratio (SNR) are presented in Table 2.1. In this exper-
iment an older version of the loss is used where the LPIPS distance is multiplied by a factor
of 0.6. This shouldn't a�ect the results. What we see is that the best result on the test set is
obtained for a signal-to-noise ratio of 10. However, even at this value, the loss on the test set
is more the double the loss on the trainset. This shows that our simple simulation isn't a very
good representation of the real world. What isn't sure is if it is because of our simple noise
model or because the hypothesis of section 1.3 doesn't hold in practice.

2.2 Training setup

All experiments are run on a Dell Precision 5820 Tower X-Series (08B1) machine with an
Intel i9-10900X CPU and two NVIDIA RTX A5000 GPUs. PyTorch [22] is used for dataset
preparation and training. All models are trained for 50 epochs (unless speci�ed otherwise) on
the 24000 image pairs with a batch size of 8. The Adam optimizer [23] is used with a learning
rate of 10−5. The loss function is the sum of the MSE and the LPIPS [7] distance (using the
VGG version) between the output of the model and the ground truth image:

L (y, ŷ) = LMSE (y, ŷ) + LLPIPS (y, ŷ)

The code source including both the models and training code is accessible on GitHub as part
of the LenslessPiCam project [3].
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Chapter 3

Unrolled optimization

Unrolled optimization is a well-known technique to speed up classical algorithms at the cost
of limiting them to a speci�c domain while also needing a training step to �nd the parameters
of the unrolled algorithm (this requires a dataset containing ground truth). The idea of using
unrolled optimization for lensless reconstruction is not new. Monakhova et al. [2] already
applied an unrolled version of ADMM with 5 iterations with massive success. They found that
the unrolled version of ADMM with 5 iterations gives similar results to classical ADMM with
100 iterations while being 20 times faster. They also found that the unrolled version of ADMM
with 5 iterations give better result than classical ADMM with 100 iterations.

As this was done at the beginning of my internship, my goal with unrolled optimization was to
reproduce the results obtained by Monakhova et al. in an open-source way (while Monakhova
et al. published part of their code, it did not include training). Moreover, in their paper,
Monakhova et al. only experimented with ADMM while unrolled could apply to any other
algorithm. As a way to check the performance on a more simple algorithm, I also implemented
unrolled FISTA.

The main idea behind unrolled algorithms is to realize that each iteration of an algorithm
can be seen as a layer of a deep neural like network. The parameters of each layer are the
parameters of the algorithm (step size, regularization parameter, etc.) and the input of the
layer is the current state of the algorithm after the previous iteration. The output of the layer
is the next state of the algorithm. This transforms very little for the algorithm except that
parameters vary per iteration. A description of both unrolled FISTA and unrolled ADMM are
given in algorithm 3 and 4 respectively.

If the unrolled algorithm is di�erentiable then it becomes possible to train the algorithm to �nd
the best parameters for each layer. This can be done by backpropagation as usually done in
Deep Learning. As long as the algorithm is implemented in a framework supporting autograd
(Pytorch in our case), this can be done with very little e�ort. However, since our data �delity
term includes both Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT),
proper support for this algorithm in PyTorch is only possible since version 1.8 released in 20211.

The main challenge is then to construct a dataset of lensed images as well as their corresponding
lensless measurements. In the case of lensless imaging, Monakhova et al. [2] already captured a
dataset (called Di�userCam) of 25000 images by taking photos of a screen with both a lensed and
lensless camera. While the resulting dataset isn't perfect (artifacts from the screen are visible

1https://pytorch.org/blog/the-torch.�t-module-accelerated-fast-fourier-transforms-with-autograd-in-
pyTorch/
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on lensed images and some images are overexposed), they found that their algorithm was still
able to generalize to real data. More detail about the dataset is given in subsection 2.1.1.

3.1 Unrolled FISTA

Algorithm 3 Unrolled FISTA

Require: x0 = s0, {γk}k≥0, and {τk}k≥0

for k = 1 to t do
zk ← xk−1 − γk∆g(xk−1) ▷ Data �delity
sk ← proxγkh(z

k) ▷ Regularization

xk ← sk +
1−τk
τk+1

(sk − sk−1) ▷ FISTA Update

end for

Figure 3.1: Results from unrolled FISTA trained on Di�userCam.

Implementation-wise, the PyTorch library allows for automatized di�erentiation of all the op-
erations used in the algorithm. The only di�culty in the implementation is to ensure proper
support for operation on a batch of images to speed up training (by 4 times compared to a
naive implementation with a batch of a single image).

Moreover, because of the computational cost of the FFT and IFFT used to convolve with the
PSF, each layer of the algorithm is a lot more costly than a simple convolution layer with a small
kernel(in both time but also memory). This limit severely, the resolution of the image that can
be used during training. Working directly on HD images is out of the question. Even the low
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default resolution of the Di�userCam dataset (see subsection 2.1.1) can be challenging to �t
in VRAM (GPU memory) for the deepest version of the unrolled algorithm. Therefore, all the
results presented here are measured on a down-sampled version of the image (around 100×200).
This di�culty is present for the training of all algorithms based on unrolled (chapter 3 and also
chapter 5).

The results of unrolled FISTA are presented in Figure 3.1. Unrolled FISTA performs only
marginally better if not worse than traditional FISTA on most metrics. This result shows how
well-optimized FISTA is and how hard it is to improve directly on it. However, compared to
the other method explored during this internship, unrolled FISTA is limited by its very simple
non-negativity constraint and lack of a better regularization.

3.2 Unrolled ADMM

Algorithm 4 Unrolled ADMM

Require: {τk}k≥0, {µk
1}k≥0, {µk

2}k≥0, {µk
3}k≥0

for k = 1 to t do
uk+1 ← Tτk/µk

2

(
Ψxk + αk

2/µ
k
2

)
▷ Sparsifying soft-threshold

vk+1 ←
(
CTC+ µk

1I
)−1 (

αk
1 + µk

1Hxk +CTb
)

▷ least-squares update
wk+1 ← max

(
αk
3/µ

k
3 + xk, 0

)
▷ enforce non-negativity

rk ←
((
µk
3w

k+1 − αk
3

)
+ΨT

(
µk
2u

k+1 − αk
2

)
+HT

(
µk
1v

k+1 − αk
1

))
xk+1 ←

(
µk
1H

TH+ µk
2Ψ

TΨ+ µk
3I
)−1

rk ▷ least-squares update

αk+1
1 ← αk

1 + µk
1

(
Hxk+1 − vk+1

)
▷ dual for v

αk+1
2 ← αk

2 + µk
2

(
Ψxk+1 − uk+1

)
▷ dual for u

αk+1
3 ← αk

3 + µk
3

(
xk+1 − wk+1

)
▷ dual for w

end for

Once again, the implementation is very easy from a theoretical point of view. The only di�er-
ence with classical ADMM is that µ1, µ2, µ3, and τ are now learnable parameters with di�erent
values for each iteration of the algorithm. The only real di�culty is to ensure proper support
for batchs of images. This is even more true here as the algorithm is a lot more complex than
unrolled FISTA, particularly for the total variation and its adjoint.

However, the results are a lot more interesting compared to unrolled FISTA (see Figure 3.2).
Unrolled ADMM is able to outperform classical ADMM on the similarity metrics (LPIPS and
SSIM) by an impressive margin at the cost of a small increase in MSE and an important increase
in reconstruction error. This is expected considering that the training process doesn't take into
account the reconstruction error at all. Figure 3.3 show some examples of the result of unrolled
ADMM compared to classical ADMM with 20 iterations. The images obtained with Unrolled
ADMM are a lot sharper and with more details compared to ADMM. This is particularly clear
on top of the cake where the �oral motifs are visible only in the unrolled version. However,
unrolled ADMM also introduces some artifacts in the image in the form of horizontal or vertical
lines.

When compared to the result from Monakhova et al., my implementation of unrolled ADMM
is better on all metrics except LPIPS with 5 iterations (same number of iterations as they
use). However, we see massive gains when increasing the number of iterations to 20 and 50.
This allows us to outperform their result on all metrics. Since Monakhova et al. didn't clearly
publish the loss use during training, we can expect most of the di�erence to be the result of a
bigger emphasis on the LPIPS distance in the loss.
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Figure 3.2: Results from unrolled ADMM trained on Di�userCam.

Original image Lensless measurement ADMM (20 iter)
Unrolled ADMM (20

iter)

Figure 3.3: Result of unrolled ADMM compared to ADMM
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Chapter 4

Plug-and-play method

A recent class of algorithm that has shown great success in inverse problems is the Plug-and-play
method [24]. The main idea is to replace the proximal operator of the regularization (Tτ/µ2 in
algorithm 2) by a denoiser. The resulting algorithm doesn't necessarily solve an optimization
problem anymore, however, this approach has been shown to give good results in practice.
Usually, neural denoisers that are able to constrain the solution to a space much closer to the
natural image space, are used.

While Plug-and-play approach has been used in the context of coherent di�ractive imaging for
microscopie [25], we are not aware of any work that uses this approach in the context of natural
light lensless photography.

4.1 FISTA Plug-and-play

The implementation of FISTA Plug-and-play is relatively simple. The proximal operator of
the regularization is replaced by a DRUNet denoiser [26] (An alternative with BM3D was also
explored but abandoned because of the long computation time). There is no need to make sure
the algorithm is di�erentiable since no training is required.

The only di�culty is to estimate the best value of the noise to be used. We tried both a
constant noise value for all iterations as well as an exponentially decreasing noise value. After
searching for optimal start and stop values (only for the exponentially decreasing variant), we
found that the best results were obtained with a constant noise value of 0.01. The results are
presented in Figure 4.1.

Algorithm 5 FISTAPnP

Require: x0 = s0, γ > 0, and τ1 = 1
for k = 1 to t do

zk ← xk−1 − γ∆g(xk−1) ▷ Data �delity
sk ← Dσ(z

k) ▷ Regularization

τk+1 ←
1+
√

1+4τ2k
2

xk ← sk +
1−τk
τk+1

(sk − sk−1) ▷ FISTA Update

end for

The results are really underwhelming, The Plug-and-play approach is only slightly better than
FISTA for less than 40 iterations before completely falling o�. Moreover, this small gain in
performance comes at the cost of a massive increase in computation time, from 48ms per image
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Figure 4.1: Results of Plug-and-play FISTA evaluated on Di�userCam.

to 1s per image at 100 iterations. This is due to the fact that the denoiser is a lot more costly
than the proximal operator of the regularization.

4.2 ADMM Plug-and-play

The implementation of ADMM Plug-and-play is a bit more complicated than FISTA. The
proximal operator of the regularization is replaced by a DRUNet denoiser [26], however, this
raises the question of how it should be incorporated into the dual update system. Our imple-
mentation removes the associated dual variable as described in algorithm 6. This is, however,
quite a liberal way of inserting the denoiser. A more conservative way would be to replace the
proximal operator of the regularization with the denoiser and keep the dual variable, but we
found this approach to be less performant.

We used a similar approach to estimate the best value of the noise to be used. We tried both
a constant noise value for all iterations as well as an exponentially decreasing noise value. We
obtained the best result with a constant noise value of 10. The results are presented in Figure
4.2.

The results here are a lot more interesting. For less than 40 iterations, ADMM Plug-and-play
is able to outperform traditional ADMM on LPIPS. However, this once again comes at the cost
of longer inference time (from 50ms to 6s for 100 iterations).

Figure 4.3 illustrates the e�ect of Plug-and-play on ADMM. For 20 iterations the resulting
image is a lot sharper than the one from traditional ADMM. However, the denoiser struggles
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Algorithm 6 ADMMPnP

Require: τ > 0, µ1 > 0, µ2 > 0, µ3 > 0
for k = 1 to t do

uk+1 ← Dσ

(
xk

)
▷ Sparsifying soft-threshold

vk+1 ←
(
CTC+ µ1I

)−1 (
αk
1 + µ1Hxk +CTb

)
▷ least-squares update

wk+1 ← max
(
αk
3/µ3 + xk, 0

)
▷ enforce non-negativity

rk ←
((
µ3w

k+1 − αk
3

)
+ µ2u

k+1 +HT
(
µ1v

k+1 − αk
1

))
xk+1 ←

(
µ1H

TH+ µ2I + µ3I
)−1

rk ▷ least-squares update

αk+1
1 ← αk

1 + µ1

(
Hxk+1 − vk+1

)
▷ dual for v

αk+1
3 ← αk

3 + µ3

(
xk+1 − wk+1

)
▷ dual for w

end for

Figure 4.2: Results of Plug-and-play ADMM evaluated on Di�userCam.

to remove the noise associated with the reconstruction algorithm, and the resulting image still
has a considerable amount of artifacts from the reconstruction. For 100 iterations, the resulting
image is almost pointillist. The image seems to have been oversharpen by the denoiser and the
resulting image is a lot worse than the one from traditional ADMM. We try to reduce this e�ect
by using a partial update scheme or lower noise level as input to the denoiser without much
success. More advanced regularization techniques such as Regularization by Denoising [27]
could help solve this problem but were not tested.

While PnP is on all metrics worse than unrolledADMM (see 3.2), it still brings a massive
perceptual improvement compared to ADMM alone which seems hard to measure even with
similarity metrics like LPIPS. This naturally raises the question of whether or not this approach

17



could be compatible with unrolled to bring even bigger improvement. However, this combined
approach would need the DRUNet model to be loaded in memory once for each iteration of
the algorithm, making it prohibitively expensive. As an alternative, we propose a pre- and
post-denoising scheme that only use two DRUNet-like model for the reconstruction.

Original image ADMM (20 iter)
Plug-and-play ADMM

(20 iter)
Plug-and-play ADMM

(100 iter)

Figure 4.3: Result of Plug-and-play ADMM compare to traditional ADMM
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Chapter 5

Pre/post-denoising

Previous works [2, 10] show that the combination of an inversion "layer" based on traditional
algorithms before a deep convolutional network is bene�cial. We go one step further and
propose a dual denoising approach(Figure 5.1) with a pre-denoiser to reduce the measurement
noise and handle the unique artifact of the lensless system and, a post-denoiser to reduce the
artifact from the reconstruction algorithm. To achieve optimal results, the post-denoiser should
be able to correct the color balance, sharpen the image, and more.

Both denoisers have a very challenging task. The pre-denoiser works with a well-known noise
(sensor noise), but measurements lack any of the structure usually used by most denoisers.
On the contrary, the post-denoiser works in the well-known space of natural images, but the
artifacts from the reconstruction algorithm are complex with very high spatial coherency. Our
solution to this problem is to train both denoisers and the reconstruction algorithm end-to-end
as a single entity. The training process follows the parameter described in chapter 2.

Figure 5.1: Proposed denoising pipeline

5.1 Models

All models use unrolled ADMM as the central algorithm with 5 to 20 iterations( see section 3.2).
The main tradeo� here is of quality to execution time. While our results show that the quality
of the reconstructed images increases with the number of iterations, the execution time of the
reconstruction algorithm is the main bottleneck of the whole pipeline. This is due to the high
cost of the convolution in the forward operator.

The denoiser networks are U-Net with d residual blocks between each down- and up-sampling
layer. There are three down-sampling layers using stride convolution with a stride of two and
three up-sampling layers using transposed convolution. The number of channels is 64 for the
�rst layer and is doubled at each down-sampling layer. For d = 4, the resulting architecture
is identical to the one of DRUNet [26](see �gure 5.2). The number of parameters is around
d × 107 for each denoiser network. We found that while increasing the size of the denoiser
networks improves massively the quality of the reconstruction at the cost of a small increase in
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Figure 5.2: DRUNet architecture [26]

Reconstruction algorithm Pre-denoiser Post-denoiser PSNR LPIPS(Vgg) MSE
ADMM (100 iter) None None 14.95 0.4618 0.0423

Unrolled ADMM (5 iter) None None 12.93 0.4833 0.0517
Unrolled ADMM (20 iter) None None 13.11 0.4541 0.0495
PnP ADMM (20 iter) None None 12.8 0.486 0.0691

Unrolled ADMM (20 iter) None Fine-tuned DRUNet (d = 4) 22.80 0.1979 0.0053
Unrolled ADMM (20 iter) UNetRes (d = 2) None 17.42 0.2887 0.0187
Unrolled ADMM (20 iter) UNetRes (d = 2) UNetRes (d = 2) 24.50 0.1675 0.0036
Unrolled ADMM (5 iter) UNetRes (d = 2) Fine-tuned DRUNet (d = 4) 24.77 0.1231 0.0034
Unrolled ADMM (20 iter) UNetRes (d = 2) Fine-tuned DRUNet (d = 4) 25.64 0.1106 0.0028

Table 5.1: Result of di�erent model on the test set.

execution time, this doesn't work past a certain point (maybe due to our limited dataset). We
were not able to train a denoiser network with more than 2 residual blocks (except while using
�netuning).

5.2 Results

Table 5.1 summarized the results obtained with di�erent models, and Figure 5.4 compares
reconstructions of a few of the approaches on images from the test set. The best result is
obtained with a UNetRes with d = 2 as a pre-denoiser (20M parameters) and a full DRUNet
�ne-tuned as post denoiser (40M parameters). This approach brings an improvement of 12dB
of PSNR and 4x of LPIPS compared to a simple unrolled ADMM with no pre- or post-denoiser
(third row in Table 5.1 and second row in Figure 5.4). Even compared to just unrolled ADMM
with a post-denoiser (architecture similar to Le-ADMM-U proposed in [2]) the improvement
are massive with better colors and more detail (see Figure 5.4). The result of the best model
on a few examples from the test set are shown in Figure 5.3 with the intermediary output of
the di�erent stage.

Our experiment shows that for a similar number of parameters, using a mixed approach with
both a pre-denoiser and a post-denoiser performed better than using all those parameters as
a post-denoiser as proposed in [2]. This is very apparent in Figure 5.4. The model using
two UNetRes (d=2) is not only able to reconstruct the colors more accurately but also able
to reconstruct more detail (particularly visible on the hand). Figure 5.3 shows that the pre-
denoiser is not just denoising the image, even adding in new artifacts in the result of unrolled
ADMM. However, those are a lot more structured and easier to remove for the post-denoiser.
Moreover, we can see that there is a massive color shift in the images after the reconstruction
algorithm. This is surprising as we have a di�erent PSF for each color channel, however as
shown in �gure 1.2, the PSF for each color channel are very similar. It seems that in practice,
with this PSF, there is little distinction made between the di�erent color channels.
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Original image
Lensless

measurement
Image after
pre-denoiser

Image after
reconstruction
algorithm

Final image after
post-denoiser

Figure 5.3: Result of unrolled ADMM with a UNetRes with 20M parameters as pre-denoiser
and a full DRUNet �ne-tunned as post-denoiser.

As expected, an increase in the size of the three parameters (number of iterations, number
of parameters in the pre-processor, and number of parameters in the post-processor) results
in a direct improvement of the image quality metrics. Despite our limited training set size,
�ne-tuning a DRUNet denoiser [26] (already trained on natural images) as the post-processor
allows us to use a bigger network and hence obtain a noticeable improvement in performance.
An alternate approach to improving the reconstruction without requiring signi�cantly more
data is to increase the number of unrolled iterations of ADMM.
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Original image

Unrolled ADMM (20

iter)

UNetRes (d=2)

Unrolled ADMM (20

iter)

Unrolled ADMM (20

iter)

Drunet

UNetRes (d=2)

Unrolled ADMM (20

iter)

UNetRes (d=2)

UNetRes (d=2)

Unrolled ADMM (20

iter)

Drunet

Figure 5.4: Comparative result of di�erent combinations of pre-/post-denoiser.
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Chapter 6

Learning the PSF

During the last few weeks of my internship, I developed a framework allowing to optimize the
PSF. However, the space of acceptable PSF is limited by the type of mask and the manufac-
turability of those masks. The main di�culty is to limit the search space in a way that allows
easy optimization through gradient descent.

The idea is to parametrize the mask with parameters θmask such that the PSF can be computed
through a di�erentiable function f :

P = f(θmask) (6.1)

f is supposed to compute the propagation of the light from a single point source through the
mask. θmask is then optimized using gradient descent using the loss function described in 2.2.
To favor sparsity, L1 regularization can be used on θmask. Conditions can easily be imposed
on θmask using a projected gradient schema. Figure 6.1 show how this learnable mask can
be integrated with the di�erent reconstruction algorithm. Using a measure dataset such as
the Di�userCam Lensless Mir�ickr Dataset, it is possible to �nd the optimal mask for the
reconstruction algorithm, this is explored in section 6.1. However, it is possible to go even
further using a simulated dataset and optimize the PSF from both capture and reconstruction.
This is explored in section 6.2. For both cases, f is the identity function, meaning that we are
directly learning the PSF with for sole constraint that P ∈ [0, 1]n,m,3.

Figure 6.1: Trainable mask
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Original PSF
Recovered PSF without L1

regularization
Recovered PSF with L1

regularization

Figure 6.2: Result of PSF recovery from Di�userCam.

PSF PSNR LPIPS MSE
Original PSF 13.11 0.4541 0.04955

Recovered PSF without L1 regularization 12.61 0.5893 0.05570
Recovered PSF with L1 regularization 14.98 0.5947 0.03252

Table 6.1: Comparison of di�erent PSF recovery from Di�userCam.

6.1 PSF from measurement

In the simplest form, it is possible to train a mask (or PSF in this case) from an existing
dataset. This means, only the gradient from the reconstruction algorithm is used to optimize
the PSF. Ideally, the result should be the original PSF of the dataset.

To test this algorithm, we use the Di�userCam dataset and unrolled ADMM with 20 iterations.
Training is done for 50 epochs with ADAM optimizer [23] and a learning rate of 0.001 for
the mask. The PSF is randomly initialized with a uniform value in [0, 1]n,m,3. We do not
use LPIPS in the loss as we struggle to obtain any result when using it. The results are
shown in �gure 6.2 with and without L1 regularization for the PSF. Even after 50 epochs, the
recovered PSF without regularization is still very noisy (although the original PSF started to
emerge). The regularized PSF is a lot closer to the original. Interestingly, it also gives a better
reconstruction result (see table 6.1) according to PSNR and MSE. However, the LPIPS (which
we didn't optimize for) is a lot worse, and, in practice, this results in a more blurry and noisy
reconstructed image.

Another option is to start from the correct PSF and to �ne-tune it to improve the reconstruc-
tion. We use the same reconstruction algorithm as before but with LPIPS in the loss (as it
doesn't cause any problem for �ne-tuning) and only �ne-tuned for 10 epochs. The resulting
PSF is shown in �gure 6.3. While the PSF �ne-tuned without L1 regularization has accumu-
lated a lot of noise, the one with L1 regularization has stayed close to the original PSF. The
results in Table 6.2 show that both �ne-tuned PSFs give a better PSNR and MSE than the
original PSF. However, only the PSF �ne-tuned with a regularizer improves the LPIPS. The
improvement is massive with 2dB of PSNR and 0.08 of LPIPS. Considering the low number of
parameters (32 400), this is an impressive result.

PSF PSNR LPIPS MSE
Original PSF 13.11 0.4541 0.04955

Fine-tuned PSF without L1 regularization 15.31 0.5556 0.03017
Fine-tuned PSF with L1 regularization 15.31 0.3759 0.03060

Table 6.2: Comparison of di�erent PSF �ne-tuned from Di�userCam.
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Original PSF
�ne-tuned PSF without L1

regularization
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regularization

Figure 6.3: Result of �netuning a PSF for Di�userCam.

6.2 Learning an optimal PSF

Another possibility o�ered by this trainable mask framework is to optimize the mask for both
the measurement and the reconstruction. This work is still in a very early stage. We directly
learn the PSF without any of the constraints from chapter 6 using unrolled ADDM with 20
iterations as the reconstruction algorithm using a di�erentiable simulated dataset obtained from
the CelebA dataset. Considering the result obtained in section 6.1, we use L1 regularization
for all the experiments. We found that using a di�erent PSF for each color channel always
results in a single color dominating the output. Therefore, we use a single-channel PSF which
is applied similarly to all color channels.

The results are shown in table 6.3. While the idea is interesting, this very simple implementation
clearly doesn't work. The optimized PSF is worse than the Di�userCam PSF on all metrics.
The optimized PSF for a noise level of 10dB is shown in Figure 6.4. Just from the regular
structure, one would expect this PSF to give subpar results. Clearly, more work needs to be
done to constrain the mask and better guide the optimization towards better results.

PSF Simulation SNR PSNR LPIPS(VGG) MSE
Di�userCam PSF 10dB 13.11 0.4541 0.04284
Optimized PSF 10dB 10.27 0.6220 0.09685

Di�userCam PSF 40dB 21.84 0.1283 0.006606
Optimized PSF 40dB 21.20 0.1561 0.007693

Table 6.3: Performance of the optimized PSF for di�erent noise levels.
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Figure 6.4: Optimized PSF for a noise level of 10dB.
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Chapter 7

Conclusion

During my internship, I worked on multiple reconstruction algorithms for lensless imaging.
Those include the unrolled versions of both ADMM and FISTA that are able to generalize to
arbitrary numbers of iterations (With a good scaling of the quality), a Plug-and-play version
of ADMM with visible improvement of the perceived quality at the cost of a much longer
algorithm, and a pre-/post-denoiser architecture which achieve state-of-the-art result on all
metrics, often giving result indistinguishable from the ground truth. All those algorithms have
been made open source as part of the LenslessPiCam project 1 [3].

I also worked on a framework allowing to optimize the mask or the PSF of the system. This
framework is able to optimize the PSF for either or both the measurement and the reconstruc-
tion. This has shown promising results while �ne-tuning the PSF to increase reconstruction
quality. However, the optimization of the PSF from scratch is still in a very early stage and
more work on the constraints and optimization are needed to obtain good results. Moreover,
the simulation framework currently used for optimizing with respect to the measurement has
been shown to generalize poorly to real measurement. This puts into question the real-world
performance of any optimization with respect to the measurement.

The main challenge that should be addressed for lensless imaging in the future is scaling to
higher resolutions. Even on a high-end GPU, the unrolled algorithm (with or without pre-
and post-denoiser) takes around 50ms on a 240x135 image. This is already too slow for real-
time applications and is expected to grow linearly with the number of pixels. This renders
HD reconstruction on the camera itself unpractical even for modern high-end smartphones.
Moreover, from my limited experiment, I found that the reconstruction quality tends to decrease
as the resolution of the reconstructed image increases. This may be due to the artifacts resulting
from the Di�userCam dataset capture setup being more visible at higher resolution, or it might
arise from a potential inherent inability of lensless cameras to capture information with high
frequencies (even with a high-resolution measurement). If it is the second, one could expect
the PSF to be the reason, and more work on the mask itself would be needed to improve the
reconstruction quality at high resolution.

1https://github.com/LCAV/LenslessPiCam
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