
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Beyond worst-case analysis, with or without 
predictions

Andreas MAGGIORI

Thèse n° 9958

2023

Présentée le 15 septembre 2023

Prof. E. Telatar, président du jury
Prof. R. Urbanke, Prof. O. N. A. Svensson, directeurs de thèse
Prof. S. Banerjee, rapporteur
Dr S. Vassilvitskii, rapporteur
Prof. M. Gastpar, rapporteur

Faculté informatique et communications
Laboratoire de théorie des communications
Programme doctoral en informatique et communications 





Remembering that you are going to die is the best way I know
to avoid the trap of thinking you have something to lose.

You are already naked. There is no reason not to follow your heart.
— Steve Jobs

Στη Ζωζώ, για μια ζωή προσφοράς χωρίς να ζητήσει ποτέ τίποτα πίσω...



Acknowledgements

I would like to thank the members of my jury. The private defense took place in the beginning
of August and while walking around Lausanne the Saturday before, I realized that we were
probably the only ones there. Thus, thanks for accepting even if the date was more of a va-
cation date than an exam date and thanks for the interesting discussion we had during my defense.

A big thank you goes to my advisors, Rüdiger and Ola. They gave me freedom to choose the
problems I wanted to work on and guided me whenever I asked for help. Their advising style is
very different: Ola is energetic and fast - very fast. Working with him is something between a
game and a competition to which I still lose but I am getting better at... Rüdiger listens silently,
he asks few or no questions and usually understands more than everyone in the room.

I would like to thank all my collaborators and friends during these years at EPFL, Google and
Berkeley. Exposition to different schools of thought is one of the very few ways I know to really
advance both as a researcher and as a human being.

It would not be true if I said that all these years were fun and games (thank you COVID). The
times were really challenging from all points of view...I would like to thank all my friends in Greece
for the support. With most of them, we are together almost 20 years now; same school, same
neighborhood, same square. If we were a paper we would already have gotten the test-of-time
award (sorry for the joke!).

A special thanks goes to my family: my aunts and uncles, to pillo, to the marmotto and to
papà. Having a failing pillow “no matter what, we love you”, is what lets you fail until you succeed.

Last but not least, a paragraph goes to Alexandra. She is the real hero of the story. More than
ten years, she still bears with me and I hope she will continue to do so for many more years to come.

Loutraki, 18 August 2023 Andreas Maggiori

i





Abstract
In this thesis we design online combinatorial optimization algorithms for beyond worst-case
analysis settings.

In the first part, we discuss the online matching problem and prove that, in the edge arrival
model, no online algorithm can achieve a competitive ratio better than 1/2 + c for any constant
c > 0. This result serves as an illustrative example to showcase the limitations of worst-case
analysis.

The second and third parts introduce the concept of learning-augmented algorithms, which
leverage predictions about the input to enhance their performance. The learning-augmented
algorithms developed in those parts exhibit improved performance when predictions are accurate,
while also demonstrating robustness even in the presence of misleading predictions.

In the second part, we investigate the online speed scheduling problem for energy minimization.
We design an algorithm that incorporates predictions about future requests in a black-box manner
and surpasses known lower-bounds of classical online algorithms when the predictions are accurate,
while still maintaining robustness when predictions are incorrect.

The third part extends the Primal-Dual method from the classical online algorithms setting to
the learning-augmented setting. We apply this technique to various problems, including online
set cover, ski rental, TCP acknowledgment, and Bahncard.

Finally, in the fourth part, we delve into the correlation clustering problem in the online with
recourse model. While the classical online setting is too restrictive and strong impossibility results
make the problem uninteresting, in the recourse model we present an algorithm that achieves a
worst-case logarithmic recourse with constant competitive ratio.

Keywords: online algorithms, matching, competitive analysis, learning-augmented, primal-dual,
scheduling, clustering
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Riassunto
In questa tesi progettiamo algoritmi in linea di ottimizzazione combinatoria per contesti di analisi
oltre il caso peggiore.

Nella prima parte, discutiamo il problema dell’accoppiamento in linea e dimostriamo che, nel
modello di arrivo degli archi, nessun algoritmo in linea può ottenere un rapporto competitivo
migliore di 1/2 + c per qualsiasi costante c > 0. Questo risultato serve come esempio illustrativo
per mostrare le limitazioni dell’analisi nel caso peggiore.

La seconda e terza parte introducono il concetto di algoritmi potenziati dall’apprendimento, che
sfruttano previsioni sui dati in ingresso per migliorare le loro prestazioni. Gli algoritmi potenziati
dall’apprendimento sviluppati in queste parti mostrano prestazioni migliorate quando le previsioni
sono accurate, dimostrando allo stesso tempo robustezza anche in presenza di previsioni fuorvianti.

Nella seconda parte, indaghiamo il problema della pianificazione in linea con un processore a
velocità variabile per la minimizzazione dell’energia. Progettiamo un algoritmo che incorpora
previsioni sulle future richieste senza alcuna ulteriore supposizione e supera i limiti inferiori noti
degli algoritmi in linea classici quando le previsioni sono accurate, mantenendo comunque la
robustezza quando le previsioni sono errate.

La terza parte estende il metodo Primal-Dual dal contesto degli algoritmi in linea classici al
contesto potenziato dall’apprendimento. Applichiamo questa tecnica a vari problemi, tra cui la
copertura degli insiemi in linea, il problema del noleggio degli sci, la conferma TCP e il problema
della Bahncard.

Infine, nella quarta parte, approfondiamo il problema del raggrupamento di correlazione nel
modello in linea con ripensamento. Mentre il contesto in linea classico è troppo restrittivo e dei
risultati di impossibilità rendono il problema poco interessante, nel modello con ripensamento
presentiamo un algoritmo che raggiunge un ripensamento logaritmico nel caso peggiore con un
rapporto competitivo costante.

Parole chiave: algoritmi in linea, accoppiamento, analisi competitiva, potenziamento tramite
l’apprendimento, primal-dual, pianificazione, raggruppamento
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1 Introduction

In this thesis we focus on beyond worst-case analysis frameworks to design algorithms for
combinatorial optimization problems where the input is revealed in an online manner and the
algorithm has to take irrevocable decisions every time a new part of the input is revealed. In the
following we give an overview of the problems which are tackled in this thesis and present our
main contributions.

The first part of the thesis concentrates on the classical online matching problem and serves
as a motivating example on why we should study beyond worst-case analysis frameworks. The
matching problem is a classical problem in combinatorial optimization where one is given a graph
and the goal is to find a maximum matching, i.e., a maximum cardinality set of edges that share
no endpoint. The online maximum matching problem was introduced by Karp, Vazirani and
Vazirani in their seminal paper [61]. In their model the input is a bipartite graph G = (V, U, E)
where V is known in advance, in every round i a new node ui ∈ U arrives revealing at the same
time all the edges incident to it and the algorithm has to decide either to add one of these edges
to the existing matching or discard them forever. The goal is to maintain a matching as large
as possible. To measure the quality of an algorithm we use the notion of competitive ratio, i.e.,
the worst case ratio of the (expected) cost of our algorithm’s solution divided by the (expected)
cost of the optimal solution. Karp, Vazirani and Vazirani in their one-sided node arrival model
designed the famous (1 − 1/e)−competitive Ranking algorithm. While in the one-sided node
arrival model Ranking is optimal it has been a long-standing question whether one can achieve a
competitive ratio better than 1/2 for more general arrival models. We note that a competitive
ratio of 1/2 can be achieved by the trivial Greedy algorithm which adds a newly revealed edge to
the existing matching whenever that is possible. For the less restrictive edge arrival model, i.e.,
in every round a new edge is revealed and the algorithm has to decide either to add it to the
current matching or discard it forever we prove the following:

No online algorithm has a competitive ratio of 1/2 + c for any constant c > 0

Thus, in the edge arrival model, at least in terms of competitive ratio, Greedy is the best we can
hope for. The results of the first part appeared in FOCS 2019 [44] and are based on a joint work
with Buddhima Gamlath, Michael Kapralov, Ola Svensson and David Wajc.

In the second and third part of the thesis, we deviate from the classical online algorithms setting
and consider a model where the performance is still measured in terms of competitive ratio but
we are also given a prediction regarding the true instance. At a high level the goal is to maintain
a solution whose cost is close to the optimum offline if predictions are accurate and at the same

1



Chapter 1 Introduction

time when predictions are misleading to output a solution which is not much worse than what
the best online algorithm with no access to predictions would have achieved. That setting has
been first formalized by Lykouris and Vassilvitskii [72] (see also [73] for an earlier similar setting)
and it is often referred to as learning-augmented algorithms or algorithms with predictions. The
competitive ratio that a learning-augmented algorithm achieves when provided with a perfectly
accurate prediction is called consistency while the competitive ratio which is achieved no matter
the quality of the prediction is referred to as robustness.

In the second part we focus on the learning-augmented problem of online speed scheduling for
energy minimization. In real-world systems, e.g., cloud applications [14, 62], computational power
and resources are scaled dynamically to serve new request loads and at the same time minimize
costs. Motivated by the latter scenario and the fact that requests usually follow patterns, we
studied the classical problem of energy minimization speed scaling [88] in the learning-augmented
setting. In the classical version of the problem, at every new point in time t, wt requests arrive
and we are required to serve them all within some fixed amount of time. In order to satisfy all
the requests in time, the server can dynamically change its processing speed s(t) at the price
of increasing its power consumption which is usually modeled as a super-linear function of the
speed, i.e., s(t)α. In the learning-augmented setting we consider the scenario where all jobs need
to be served within the same amount of time T from their arrival and we have a prediction about
future loads, i.e, w̃1, w̃2, . . . . We design an algorithm with the following guarantees:

For any given ϵ ∈ (0, 1), our algorithm is (1 + ϵ)-consistent and O
(

α
ϵ

)α-robust

The results of the second part appeared in NeurIPS 2020 [8] as a spotlight presentation and are
based on a joint work with Etienne Bamas, Lars Rohwedder and Ola Svensson.

In the third part of the thesis we develop general techniques to design learning-augmented online
algorithms. Indeed we extend the Primal-Dual method [17], which is a powerful technique
used to design online algorithms, into the learning-augmented setting. Using our Primal-Dual
learning-augmented (PDLA) method we design algorithms which incorporate predictions for
problems like the online set cover problem, ski rental, TCP acknowledgment and Bahncard. The
main technical contribution in this part is to show how to translate the advice provided by a
predictor into rates of change of primal and dual variables. The algorithms designed using our
technique overcome known lower bounds of the classical online algorithms literature when the
prediction is accurate while maintaining robustness even when the prediction is misleading. The
main conceptual contribution of this part is:

We extend the Primal-Dual method into the learning-augmented setting for solving problems
that can be formulated as covering problems

The results of the third part appeared in NeurIPS 2020 [9] as an oral presentation and are based
on a joint work with Etienne Bamas and Ola Svensson.

In the fourth part of the thesis we consider the minimization objective of the online correlation
clustering problem. In the offline setting the input is a signed graph where each edge e = (u, v)
has either a ′+′ sign or a ′−′ sign denoting respectively the similarity or dissimilarity of u and v.
The goal is to partition the set of nodes so as to minimize the number of edges with a ′−′ sign
inside the same partition and the number of edges with a ′+′ sign across different partitions. In

2



Introduction Chapter 1

the online setting we consider the node arrival model where each time a new node arrives all its
adjacent edges to previously arrived nodes are revealed. Upon the arrival of a node we need to
irrevocably decide if that node will join one of the already formed clusters or if it will start a
cluster on its own. Unfortunately, in the classical worst-case analysis setting Mathieu et al. [75]
proved that there is no online algorithm with a competitive ratio better that O(n), where n is
the total number of nodes. Consequently, we turn our attention to the less restrictive model of
online correlation clustering with recourse. In the latter model decisions are no longer irrevocable
but come at a large cost, thus the goal is to have an algorithm with a constant competitive ratio
while minimizing the maximum number of cluster re-assignments of a node u, i.e., minimizing
the recourse of node u. We design an algorithm with the following guarantees:

In our algorithm the recourse of every node is O (log n) and its competitive ratio is Θ(1)

The results of the fourth part appeared in ICML 2022 [29] and are based on a joint work with
Vincent Cohen-Addad, Silvio Lattanzi and Nikos Parotsidis.

Outline of the thesis: In Chapter 2 we introduce common notation of the different problems
that this thesis addresses and define the main computational problem that each chapter considers.
We particularly focus on introducing the setting of online learning-augmented algorithms and
the main desiderata of algorithms in that setting. In Part I we discuss related work on the
online matching problem, present the graph construction and hardness proof on getting an
algorithm with competitive ratio larger that 1/2 + c for any constant c > 0 and finally argue
why worst-case analysis is sometimes too restrictive and unrealistic. In the beginning of Part II,
that is Chapter 5, we discuss related work on classical energy minimization scheduling and
learning-augmented scheduling. Subsequently in Chapter 6 we present our main algorithm for
the problem of learning-augmented energy minimization scheduling via speed scaling and prove
its properties. In Chapter 7 we experimentally validate our claims and finally in Chapter 8 and
Chapter 9 we extend our techniques to more general versions of the problem. Part III is devoted
to the Primal-Dual learning-augmented technique (PDLA). In Chapter 10 we introduce the
reader to the Primal-Dual method when used in the classical online setting and discuss related
work. Subsequently in Chapter 11 we apply PDLA to the fractional version of the online set
cover problem. In Chapter 12 we apply our technique to the learning-augmented versions of
the ski rental problem, where we recover the results of [80], the Bahncard problem which is a
generalization of the ski rental problem, and the TCP acknowledgment problem. In Chapter 13
we conduct experiments to strengthen our claims. Part IV is divided in four chapters: Chapter 14
where we discuss related work on the correlation clustering problem, Chapter 15 where we present
our main algorithm along with a proof sketch of its guarantees, Chapter 16 where we present the
full proof of its guarantees, and Chapter 17 where we conduct experiments on both artificial and
real-world datasets. In the final chapter of this thesis, Chapter 18, we present some interesting
open directions in the area of beyond worst-case analysis.
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2 Preliminaries

This chapter is devoted to introduce the classical and learning-augmented online algorithms
settings and formally define the problems considered in this thesis. While the concepts and
properties of online algorithms will not be reiterated, the formal definition of each problem will
be restated in the corresponding chapter. Moreover, when describing the properties of classical
and learning-augmented online algorithms, the notation is designed to be as abstract and general
as possible. However, when focusing on a specific problem, the notation is simplified to ensure
clarity and avoid unnecessary complexity.

We use G = (V, E) to denote a graph where V denotes the set of nodes and E the set of edges.
N = {1, 2, . . . } and Z = {0,−1, 1,−2, 2, . . . } denote the set of natural and integer numbers
respectively. In addition we denote by Z≥0 = {0, 1, 2, . . . } the set containing all positive integers
and 0.

2.1 Online algorithms
In the classical online algorithms setting the input is revealed in an online fashion and the
algorithm is required to take irrevocable decisions without any assumption about the future.
In order to measure performance we will use the competitive analysis framework. To facilitate
description we denote by costALG(I) the cost incurred by algorithm ALG on the online instance
I and by OPT(I) the cost of the offline optimum. For minimization problems we say that ALG
has a competitive ratio of c, or equivalently is c-competitive if costALG(I) ≤ c ·OPT(I) (2.1) for
any input I. We note that in the literature a c-competitive algorithm is sometimes defined using
the equation costALG(I) ≤ c ·OPT(I) + β , ∀I for an arbitrary but constant β. The results of
this thesis do not change qualitatively using the latter definition, and for simplicity, we omit
the additive constant. Along the same lines for maximization problems we say that ALG is
c-competitive if costALG(I) ≥ c ·OPT(I) for any input I. We underline that ALG could be either
deterministic or randomized, where in the latter case costALG(I) denotes the expected cost over
ALG’s internal randomness.

As it is standard in the online algorithms literature on minimization/maximization problems, we
use lower/upper bounds (on c) to refer to hardness results, and upper/lower bounds to refer to
positive results.
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Chapter 2 Preliminaries

2.2 Learning-augmented online algorithms
Although appealing, the no-assumption regime of classical online algorithms comes at a high
cost: Because the algorithm has to be overly prudent and prepare for all possible future events,
i.e., Equation (2.1) needs to be true for all I, the guarantees are often poor. Due to the
success story of machine learning (ML), learning-augmented algorithms suggest incorporating
the predictions provided by ML algorithms in the design of online algorithms and obtain better
guarantees. An obvious caveat of this approach is that ML predictors often come with no
worst-case guarantees and so we would like our algorithm to be robust to misleading predictions
without making any assumption on their quality. Following the terminology defined in [72, 80]
we present the main desirable properties that a learning-augmented algorithm should have (for
simplicity we focus on minimization problems). We denote by Ipred the prediction of the true
instance I. Since Ipred is a source of unreliable information the learning-augmented algorithms
are parametrized by a robustness parameter ϵ ∈ (0, 1), the smaller ϵ is the more we trust the
prediction. Thus, the cost of a learning-augmented algorithm ALG on instance I with prediction
Ipred and robustness parameter ϵ is denoted by costALG(I, Ipred, ϵ). The main properties that
an online learning-augmented algorithm should have are the following:

• Consistency: If the prediction is perfectly accurate, i.e., Ipred = I, then the provable
guarantees should be better than what a pure online algorithm can achieve. Ideally, the
algorithm produces an offline optimal solution or comes close to it. By close to optimal, we
mean that the cost of the algorithm (when the prediction is perfectly accurate) should be
at most C(ϵ) ·OPT(I), where C(ϵ) tends to 1 as ϵ approaches 0.

• Robustness: The competitive ratio of the algorithm should always be bounded even
for arbitrarily bad (adversarial) predictions. Ideally, the competitive ratio is somewhat
comparable to the competitive ratio of algorithms from literature of the pure online case.
Formally, the cost of the algorithm should always be bounded by R(ϵ) ·OPT(I) for some
function R(ϵ).

• Smoothness: A perfect prediction is a strong requirement. The consistency property
should transition smoothly for all ranges of errors, that is, the algorithm’s guarantees
deteriorate smoothly as the prediction error, denoted by err(I, Ipred), increases. Formally,
the cost of the algorithm should always be at most C(ϵ) ·OPT(I) + F (ϵ, err(I, Ipred)) for
some function F such that F (ϵ, 0) = 0 for any ϵ.

2.3 Problem definitions
Online matching under the edge arrival model: In the matching problem we are given a
graph G = (V, E) and the goal is to find a maximum cardinality subset of the edges M ⊂ E such
that no two edges in M share a node. In the online maximum matching problem, the final graph
is unknown, and under the edge arrival model, edges are revealed one by one. An online matching
algorithm must decide immediately and irrevocably whether to match an edge on arrival, or
whether to leave both endpoints free to be possibly matched later.

Learning-augmented energy minimization via speed scaling: We proceed defining
the main algorithmic problem addressed in Part II, the Uniform Speed Scaling problem with

6



Preliminaries Chapter 2

predictions. An instance of the problem can be formally described as a triple I = (w, D, T )
where [0, T ] is a finite time horizon, each time i ∈ {0, . . . , T − D} jobs with a total workload
wi ∈ Z≥0 arrive, which have to be completed by time i + D. To do so, we can adjust the
speed si(t) at which each workload wi is processed for t ∈ [i, i + D]. To finish each job on
time, we require that the amount of work dedicated to job i in the interval [i, i + D] should
be wi. In other words,

∫ i+D

i
si(t) dt = wi. The overall speed of our processing unit at time t

is the sum s(t) =
∑

i si(t), which yields an energy consumption of
∫

s(t)αdt, α > 1, which we
aim to minimize. While in the offline setting, the whole instance is known in advance, in the
learning-augmented online setting only a prediction of the workload vector wpred is given in
advance and at each new time i, the i-th component of the true workload vector, wi gets revealed.
Consequently the predicted instance is Ipred = (wpred, D, T ) and we define the prediction error
as err(I, Ipred) = ||w − wpred||αα =

∑
i |wi − wpred

i |α. Since the prediction error only depends on
the difference between the predicted and true workload vector we will denote it, for simplicity, as
err(w, wpred). The main goal of Part II is to design a consistent, robust and smooth algorithm
under that prediction error.

The Primal-Dual method for learning-augmented algorithms: In Part III the focus
is on extending the Primal-Dual method from the setting of classical online algorithms to the
learning-augmented online setting. It is worth noting that since we do not focus on a specific
problem, but rather on extending a technique and applying it to many different problems we
avoid defining a prediction error, and consequently we focus only on designing consistent and
robust learning-augmented algorithms. The algorithms we design in Part III of this thesis have
guarantees of the form

cost
ALG

(I,A, ϵ) ≤ min {C(ϵ) · S(A, I), R(ϵ) ·OPT(I)}

where S(A, I) denotes the cost of the output solution on input I if the algorithm follows blindly
the prediction A. If A is accurate then S(A, I) = OPT(I) and we recover the consistency bound
of Section 2.2. Note that we change notation substituting Ipred with A to underline that the
prediction might not be viewed as a prediction of the true instance I but rather as a form of
advice.

Online and consistent correlation clustering: In the disagreements minimization version of
the correlation clustering problem the input is a complete signed undirected graph G = (V, E, s)
where each edge e = {u, v} is assigned a sign s(e) ∈ {+,−} and the goal is to find a partition of the
vertices such that the number of ′−′ edges inside the same cluster and ′+′ edges in between clusters
is minimized. For simplicity we denote the set of ′+′ and ′−′ edges by E+ and E− respectively. It
simplifies the notation to represent the solution computed by an algorithm ALG by an assignment
function f : V −→ Z; Using that notation f induces a partition C = {C1, C2, . . . , Ck} such that
two nodes u, v belong to the same partition, i.e., cluster Ci, if and only if f(u) = f(v), or in
other words, they are assigned the same cluster id. The cost of a solution computed by ALG, or
equivalently f or the clustering induced by the latter is equal to:

cost(f) =
∑

{u,v}∈E+

f(u)̸=f(v)

1 +
∑

{u,v}∈E−

f(u)=f(v)

1
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Chapter 2 Preliminaries

In the online setting nodes arrive one at a time, revealing upon arrival all the edges to previously
arrived nodes. An instance of the online correlation clustering problem can be described by a pair
I = (G, σ) where G is the final graph and σ is an order on the vertices of G: σ = ⟨v1, v2, . . . , v|V |⟩.
The solution of an algorithm ALG on an online instance I can be described as a sequence of
assignment functions f1, f2, . . . , f|V |. The recourse of a node u, r(u), that arrived at time t is the
number of times the assignment function sequence changes the cluster id assigned to u. That
is r(u) =

∑
t′>t 1{ft′−1(u) ̸= ft′(u)}. The recourse of an algorithm is the worst case recourse

over all instances I and nodes u. In the classical online setting, since decisions are irrevocable,
the recourse of an algorithm should be 0, however it turns out that this requirement is too
restrictive [75] and one cannot achieve a competitive ratio better than Θ(|V |) in the classical
online setting. Thus, the goal of Part IV is to design a constant-factor approximation algorithm
whose recourse is O (log (|V |)), i.e., its clustering is as consistent as possible.
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Part I

Online matching under the edge arrival
model

The limits of worst-case analysis
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3 Overview and related work

3.1 Introduction
Matching theory has played a prominent role in the area of combinatorial optimization, with many
applications [71, 82]. Moreover, many fundamental techniques and concepts in combinatorial
optimization can trace their origins to its study, including the Primal-Dual framework [64], proofs
of polytopes’ integrality beyond total unimodularity [37], and even the equation of efficiency with
polytime computability [38].

Given the prominence of matching theory in combinatorial optimization, it comes as little surprise
that the maximum matching problem was one of the first problems studied from the point of
view of online algorithms and competitive analysis. In 1990, Karp, Vazirani, and Vazirani [61]
introduced the online matching problem, and studied it under one-sided bipartite arrivals. For such
arrivals, Karp et al. noted that the trivial 1/2-competitive greedy algorithm (which matches any
arriving vertex to an arbitrary unmatched neighbor, if one exists) is optimal among deterministic
algorithms for this problem. More interestingly, they provided an elegant randomized online
algorithm for this problem, called ranking, which achieves an optimal (1 − 1/e) competitive
ratio. (This bound has been re-proven many times over the years [15, 32, 36, 40, 46].) Online
matching and many extensions of this problem under one-sided bipartite vertex arrivals were
widely studied over the years, both under adversarial and stochastic arrival models. See recent
work [24, 53, 54, 55] and the excellent survey of Mehta [77] for further references on this rich
literature.

Despite our increasingly better understanding of one-sided online bipartite matching and its
extensions, the problem of online matching under more general arrival models such as edge
arrivals has remained staunchly defiant, resisting attacks. In particular, the basic question of
whether the trivial 1/2 competitive ratio is optimal for the adversarial edge-arrival model has
remained a tantalizing open question in the online algorithms literature. In this part of the thesis,
we answer this question affirmatively.

3.2 Notation and problem definition
In the matching problem we are given a graph G = (V, E) and the goal is to find a maximum
cardinality subset of the edges M ⊂ E such that no two edges in M share a node. Note that
a matching can be described as a vector belonging to the matching polytope: Pint = {x⃗ | xe ∈
{0, 1} ∀e ∈ E and

∑
e∋v xe ≤ 1 ∀v ∈ V }. Since randomized algorithms induce a fractional

11
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solution for the maximum matching problem we similarly define the fractional matching polytope
as P = {x⃗ ≥ 0⃗ |

∑
e∋v xe ≤ 1 ∀v ∈ V }.

In the online maximum matching problem, the final graph is unknown, and under the edge-arrival
model, edges are revealed one by one. An online matching algorithm must decide immediately
and irrevocably whether to match the edge on arrival, or whether to leave both endpoints free to
be possibly matched later.

3.3 Prior work and our results
On the hardness front, the problem under the edge-arrival model is known to be strictly harder
than the one-sided vertex arrival model of Karp et al. [61], which admits a competitive ratio
of 1 − 1/e ≈ 0.632. In particular, Epstein et al. [39] gave an upper bound of 1

1+ln 2 ≈ 0.591 for
this problem, recently improved by Huang et al. [55] to 2 −

√
2 ≈ 0.585. (Both bounds apply

even to online algorithms with preemption, i.e., allowing edges to be removed from the matching
in favor of a newly-arrived edge.) On the positive side, as pointed out by Buchbinder et al.
[19], the edge-arrival model has been proven challenging, and results beating the 1/2 competitive
ratio were only achieved under various relaxations, including: random order edge-arrival [51],
bounded number of arrival batches [68], on trees, either with or without preemption [19, 84], and
for bounded-degree graphs [19]. The above papers all asked whether there exists a randomized
(1/2 + Ω(1))-competitive algorithm for adversarial edge arrivals (see also Open Question 17 in
Mehta’s survey [77]).

In this part of the thesis, we answer this open question, providing it with a strong negative
answer. In particular, we show that no online algorithm for fractional matching, i.e., an algorithm
which immediately and irrevocably assigns values xe to edge e upon arrival such that x⃗ is in the
fractional matching polytope P is 1/2 + Ω(1) competitive. As any randomized algorithm induces
a fractional algorithm with the same competitive ratio, this rules out any randomized online
matching algorithm which is better than deterministic algorithms.

It is worth noting that in most prior upper bounds in the online literature [39, 40, 55, 61] the core
difficulty of these hard instances is the uncertainty about the “identity” of vertices (in particular,
which vertices will neighbor which vertices in the following arrivals). Our hardness instances
rely on the uncertainty about the “time horizon”. In particular, the underlying graph, vertex
identifiers, and even arrival order are known to the algorithm, but the number of edges of the
graph to be revealed (to arrive) is uncertain. Consequently, a c-competitive algorithm must
accrue high enough value up to each arrival time to guarantee a high competitive ratio at all
points in time. As we shall show, for competitive ratio 1/2 + Ω(1), this goal is at odds with the
fractional matching constraints, and so such a competitive ratio is impossible. In particular,
we provide a family of hard instances and formulate their prefix-competitiveness and matching
constraints as linear constraints to obtain a linear program whose objective value bounds the
optimal competitive ratio. Solving the obtained LP’s dual, we obtain by weak duality the claimed
upper bound on the optimal competitive ratio. See [7, 25, 41] for more examples of the use of LP
duality for proofs of hardness results for online problems, first advocated by [7].

12



4 Counterexample

In this chapter we prove the asymptotic optimality of the greedy algorithm for online matching
under adversarial edge arrivals. As discussed briefly in Section 3.1, our main idea will be to
provide a “prefix hardness” instance, where an underlying input and the arrival order is known
to the online matching algorithm, but the prefix of the input to arrive (or “termination time”)
is not. Consequently, the algorithm must accrue high enough value up to each arrival time, to
guarantee a high competitive ratio at all points in time. As we show, the fractional matching
constraints rule out a competitive ratio of 1/2 + Ω(1) even in this model where the underlying
graph is known.

Theorem 4.1. There exists an infinite family of bipartite graphs with maximum degree n and
edge arrival order for which any online matching algorithm is at best

(
1
2 + 1

2n+2

)
-competitive.

Proof. We will provide a family of graphs for which no fractional online matching algorithm
has better competitive ratio. Since any randomized algorithm induces a fractional matching
algorithm, this immediately implies our claim. The nth graph of the family, Gn = (U, V, E),
consists of a bipartite graph with |U | = |V | = n vertices on either side. We denote by ui ∈ U

and vi ∈ V the ith node on the left and right side of Gn, respectively. Edges are revealed in
n discrete rounds. In round i = 1, 2, . . . , n, the edges of a perfect matching between the first i

left and right vertices arrive in some order, i.e., a matching of u1, u2, . . . , ui and v1, v2, . . . , vi

is revealed. Specifically, edges (uj , vi−j+1) for all i ≥ j arrive. (See Figure 4.1 for example.)
Intuitively, the difficulty for an algorithm attempting to assign high value to the edges of the
optimum offline matching is that the (unique) maximum matching changes every round, and no
edge ever re-enters an optimum matching of a previous round.

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(a) round 1

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(b) round 2

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(c) round 3

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(d) round 4

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(e) round 5

Figure 4.1: G5, together with arrival order. Edges of current (prior) round are solid (dashed).
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Consider some c-competitive fractional algorithm ALG. We call the edge of a vertex w in the
(unique) maximum matching of the subgraph of Gn following round i the ith edge of w. For
i ≥ j, denote by xi,j the value ALG assigns to the ith edge of vertex uj (and of vi−j+1); i.e., to
(uj , vi−j+1). By feasibility of the fractional matching output by ALG, we immediately have that
xi,j ≥ 0 for all i, j, as well as the following matching constraints for uj and vj . (For the latter,
note that the ith edge of vi−j+1 is assigned value xi,j = xi,i−(i−j+1)+1 and so the ith edge of vj

is assigned value xi,i−j+1).

n∑
i=j

xi,j ≤ 1. (uj matching constraint) (4.1)

n∑
i=j

xi,i−j+1 ≤ 1. (vj matching constraint) (4.2)

On the other hand, as ALG is c-competitive, we have that after some kth round – when the
maximum matching has cardinality k – algorithm ALG’s fractional matching must have value
at least c · k. (Else an adversary can stop the input after this round, leaving ALG with a worse
than c-competitive matching.) Consequently, we have the following competitiveness constraints.

k∑
i=1

i∑
j=1

xi,j ≥ c · k ∀k ∈ [n]. (4.3)

Combining constraints (4.1), (4.2) and (4.3) together with the non-negativity of the xi,j yields
the following linear program, LP(n), whose optimal value upper bounds any fractional online
matching algorithm’s competitiveness on Gn, by the above.

maximize c
subject to:

∑n
i=j xi,j ≤ 1 ∀j ∈ [n]∑n
i=j xi,i−j+1 ≤ 1 ∀j ∈ [n]∑k
i=1
∑i

j=1 xi,j ≥ c · k ∀k ∈ [n]
xi,j ≥ 0 ∀i, j ∈ [n].

To bound the optimal value of LP(n), we provide a feasible solution to its LP dual, which we
denote by Dual(n). By weak duality, any dual feasible solution’s value upper bounds the optimal
value of LP(n), which in turn upper bounds the optimal competitive ratio. Using the dual
variables ℓj , rj for the degree constraints of the jth left and right vertices respectively (uj and vj)
and dual variable αk for the competitiveness constraint of the kth round, we get the following
dual linear program. Recall here again that xi,i−j+1 appears in the matching constraint of vj ,
with dual variable rj , and so xi,j = xi,i−(i−j+1)+1 appears in the same constraint for vi−j+1.)

minimize
∑n

j=1 (ℓj + rj)
subject to:

∑n
k=1 k · αk ≥ 1

ℓj + ri−j+1 −
∑n

k=i αk ≥ 0 ∀i ∈ [n], j ∈ [i]
ℓj , rj , αk ≥ 0 ∀j, k ∈ [n].

14
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We provide the following dual solution.

αk = 2
n(n + 1) ∀k ∈ [n]

ℓj = rj =
{

n−2(j−1)
n(n+1) if j ≤ n/2 + 1

0 if n/2 + 1 < j ≤ n.

We start by proving feasibility of this solution. The first constraint is satisfied with equality.
For the second constraint, as

∑n
k=i αk = 2(n−i+1)

n(n+1) it suffices to show that ℓj + ri−j+1 ≥ 2(n−i+1)
n(n+1)

for all i ∈ [n], j ∈ [i]. Note that if j > n/2 + 1, then ℓj = rj = 0 > n−2(j−1)
n(n+1) . So, for all j we

have ℓj = rj ≥ n−2(j−1)
n(n+1) . Consequently, ℓj + ri−j+1 ≥ n−2(j−1)

n(n+1) + n−2(i−j+1−1)
n(n+1) = 2(n−i+1)

n(n+1) for
all i ∈ [n], j ∈ [i]. Non-negativity of the ℓj , rj , αk variables is trivial, and so we conclude that the
above is a feasible dual solution.

It remains to calculate this dual feasible solution’s value. We do so for n even,1 for which

n∑
j=1

(ℓj + rj) = 2 ·
n∑

j=1
ℓj

= 2 ·
n/2+1∑

j=1

n− 2(j − 1)
n(n + 1)

= 1
2 + 1

2n + 2 ,

completing the proof.

Remark Recall that Buchbinder et al. [19] and Lee and Singla [68] presented better-than-1/2-
competitive algorithms for bounded-degree graphs and bounded number of arrival batches. Our
upper bound above shows that a deterioration of the competitive guarantees as the maximum
degree and number of arrival batches increase (as in the algorithms of [19, 68]) is inevitable.

Motivating beyond worst-case analysis The result of this chapter shows that the study of
relaxed variants of online matching under edge arrivals [19, 51, 68, 84] is not only justified by
the difficulty of beating the trivial bound for this problem, but rather by its impossibility. The
classical worst-case analysis framework of online algorithms is sometimes overly pessimistic, indeed
online algorithms in that setting need both to take irrevocable decisions and to prepare against
all possible future events. In the rest of the thesis we concentrate on two different approaches
to overcome the pessimistic nature of classical online algorithms: (1) in Part II and Part III
we exploit the fact that for most problems past data is available and in most cases predictors
help us prepare against future events; and (2) in Part IV we assume that decisions are no longer
irrevocable but can be changed at a high cost.

1A similar bound and calculation for odd n holds. As it is unnecessary to establish the result of this theorem,
we omit it.
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Introduction to learning-
augmented algorithms

The current chapter provides an overview of the nascent area of learning-augmented algorithms
and serves as a shared introduction for both Part II and Part III of this thesis. As already
mentioned in Chapter 2, classical online algorithms tend to be overly cautious which sometimes
causes their performance in real-world situations to be far from what a machine learning (ML)
algorithm would have achieved. Indeed in many practical applications future events follow
patterns which are easily predictable using ML methods. In [72] Lykouris and Vassilvitskii
formalized a general framework for incorporating (ML) predictions into online algorithms and
designed an extension of the marking algorithm to solve the online caching problem when provided
with predictions. While some related approaches were considered before (see e.g. Xu and Xu
[87], Mahdian et al. [73] and Medina and Vassilvitskii [76]), the attention in this subject has
increased substantially in the recent years and [72] was quickly followed by many other papers
studying different learning-augmented online problems such as scheduling [66, 69], caching [5, 81],
ski rental [47, 63, 80, 85], clustering [34] and other problems [52, 79]. The main challenge is to
incorporate the prediction without knowing how the prediction was computed and in particular
without making any assumption on the quality of the prediction. This setting is natural as in
real-world situations, predictions are provided by ML algorithms that rarely come with worst-case
guarantees on their accuracy. Thus, the difficulty in designing a learning-augmented algorithm is
to find a good balance: on the one hand, following blindly the prediction might lead to a very
bad solution if the prediction is misleading. On the other hand if the algorithm does not trust
the prediction at all, it will simply never benefit from an excellent prediction.
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Part II

Learning augmented energy minimization
via speed scaling

Beyond worst-case analysis for energy minimization
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5 Overview and related work

5.1 Introduction
The problem we are considering is motivated by the following scenario. Consider a server that
receives requests in an online fashion. For each request some computational work has to be done
and, as a measure of Quality-of-Service, we require that each request is answered within some
fixed time. In order to satisfy all the requests in time the server can dynamically change its
processor speed at any time. However, the power consumption can be a super-linear function
of the processing speed (more precisely, we model the power consumption as sα where s is the
processing speed and α > 1). Therefore, the problem of minimizing energy becomes non-trivial.
This problem can be considered in the online model where the server has no information about
the future tasks at all. However, this assumption seems unnecessarily restrictive as these requests
tend to follow some patterns that can be predicted. For this reason a good algorithm should
be able to incorporate some given predictions about the future. Similar scenarios appear in
real-world systems as, for instance, in dynamic frequency scaling of CPUs or in autoscaling of
cloud applications [14, 62]. In the case of autoscaling, ML advice is already being incorporated
into online algorithms in practice [14]. However, on the theory side, while the above speed scaling
problem was introduced by Yao et al. [88] in a seminal paper who studied it both in the online and
offline settings (see also [12, 13]), it has not been considered in the learning-augmented setting.

5.2 Model and preliminaries
We define the Uniform Speed Scaling problem, a natural restricted version of the speed scaling
problem [88], where predictions can be integrated naturally. While the restricted version is
our main focus as it allows for cleaner exposition and prediction model, we also show that our
techniques can be adapted to more complex algorithms yielding similar results for the general
problem (see Chapter 9 for further extensions).

Problem definition. An instance of the problem can be formally described as a triple I =
(w, D, T ) where [0, T ] is a finite time horizon, each time i ∈ {0, . . . , T − D} jobs with a total
workload wi ∈ Z≥0 arrive, which have to be completed by time i + D. To do so, we can adjust
the speed si(t) at which each workload wi is processed for t ∈ [i, i + D]. Jobs may be processed
in parallel. The overall speed of our processing unit at time t is the sum s(t) =

∑
i si(t), which

yields a power consumption of s(t)α, where α > 1 is a problem specific constant. Since we want
to finish each job on time, we require that the amount of work dedicated to job i in the interval
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[i, i + D] should be wi. In other words,
∫ i+D

i
si(t) dt = wi. In the offline setting, the whole

instance is known in advance, i.e., the vector of workloads w is entirely accessible. In the online
problem, at time i, the algorithm is only aware of all workloads wj with j ≤ i, i.e., the jobs that
were released before time i. As noted by Bansal et al. [12], in the offline setting the problem can
be formulated concisely as the following mathematical program:

Definition 5.1 (Uniform Speed Scaling problem). On input I = (w, D, T ) compute the optimal
solution for

min
∫ T

0
s(t)α

dt s.t. ∀i
∫ i+D

i

si(t) dt = wi, ∀t
∑

i

si(t) = s(t), ∀i∀t si(t) ≥ 0.

In contrast, we refer to the problem of Yao et al. [88] as the General Speed Scaling problem. The
difference is that there the time that the processor is given to complete each job is not necessarily
equal across jobs. More precisely, there we replace w and D by a set of jobs Jj = (rj , dj , wj),
where rj is the time the job becomes available, dj is the deadline by which it must be completed,
and wj is the work to be completed. As a shorthand, we sometimes refer to these two problems
as the uniform deadlines case and the general deadlines case. As mentioned before, Yao et al. [88]
provide a simple optimal greedy algorithm that runs in polynomial time. As for the online setting,
we emphasize that both the general and the uniform speed scaling problem are non-trivial. More
specifically, we prove that no online algorithm can have a competitive ratio better than Ω((6/5)α)
even in the uniform case (see Theorem A.1 in Appendix A.1).

In both problems the processor is allowed to run multiple jobs in parallel. However, we underline
that restricting the problem to the case where the processor is only allowed to run at most one
job at any given point in time is equivalent. Indeed, given a feasible solution s(t) =

∑
i si(t) in

the parallel setting, rescheduling jobs sequentially according to the earliest deadline first (EDF)
policy creates a feasible solution of the same (energy) cost where at each point in time only one
job is processed.

Prediction model and error measure. In the following, we present the model of prediction
we are considering. Recall an instance of the problem is defined as a time horizon [0, T ], a
duration D, and a vector of workloads wi, i = 1, . . . , T −D. A natural prediction is simply to
give the algorithm a predicted instance Ipred = (wpred, T, D) at time t = 0. From now on, we will
refer to the ground truth work vector and predicted work vector as wreal and wpred respectively.
We define the error of the prediction as

err(Ireal, Ipred) = ||wreal − wpred||αα =
∑

i

|wreal
i − wpred

i |α.

We simply write err(wreal, wpred) or err, when D, T , wreal and wpred are clear from the context.
The motivation for using α in the definition of err and not some other constant p comes from
strong impossibility results. Clearly, guarantees for higher values p are weaker than for lower p.
Therefore, we would like to set p as low as possible. However, we show that p needs to be at least
α in order to make a sensible use of a prediction (see Theorem A.5 in Appendix A.2).

In the following, depending of which part of the input D, T, w is clear from the context we will
use either OPT(D, T, w) or OPT(w) or simply OPT to denote the energy cost of the optimal
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offline schedule.

As previously discussed in Chapter 2, learning-augmented algorithms receive as input a robustness
parameter ϵ ∈ (0, 1) which denotes the trust towards the prediction. While for some problems
(see [72]) the robustness and consistency functions may not depend on ϵ, in our problems we prove
that such a dependency is unavoidable. Indeed, no algorithm can be perfectly consistent and
robust at the same time (see Theorem A.4 in Appendix A.2). We also note that the properties of
our algorithms are dependent on the problem parameter α and in Theorem A.1 we prove that
this dependency is necessary.

5.3 Prior work and our results
On the one hand, learning-augmented algorithms is a relatively new research area [47, 52, 63, 66,
69, 72, 76, 80]. On the other hand, the speed scaling problem proposed by Yao et al. in [88] is well
understood in both the offline and online setting. In its full generality, a set of tasks each with
different arrival times, deadlines, and workloads needs to be completed in time while the speed is
scaled in order to minimize energy. In the offline setting Yao et al. proved that the problem can
be solved in polynomial time by a greedy algorithm. In the online setting, in which the jobs are
revealed only at their release time, Yao et al. designed two different algorithms: (1) the Average
Rate heuristic (AVR), for which they proved a bound of 2α−1αα on the competitive ratio. This
analysis was later proved to be asymptotically tight by Bansal et al. [13]. (2) The Optimal
Available heuristic (OA), which was shown to be αα-competitive in [12]. In the same paper,
Bansal et al. proposed a third online algorithm named BKP for which they proved a competitive
ratio asymptotically equivalent to eα. While in these competitive ratios the exponential in α

might not seem satisfying, Bansal et al. also proved that the exponential dependency cannot
be better than eα. A number of variants of the problem have also been considered in the offline
setting (no preemption allowed, precedence constraints, nested jobs and more listed in a recent
survey by Gerards et al. [45]) and under a stochastic optimization point of view (see for instance
[4]). It is important to note that, while in theory the problem is interesting in the general case,
i.e., when α is an input parameter, in practice we usually focus on small values of α such as 2 or 3
since they model certain physical laws (see e.g. Bansal et al. [12]). Although the BKP algorithm
provides the best asymptotic guarantee, OA or AVR often lead to better solutions for small α

and therefore remain relevant.

We initiate the study of the online speed scaling problem in the learning-augmented setting. We
formalize an intuitive and well-founded prediction model for the uniform speed scaling problem.
We show that our problem is non-trivial both in the learning-augmented and in the classical online
setting. In the latter the AVR algorithm was proved to be 2α−1 ·αα-competitive by Yao et al. [88]
with a quite technical proof; we show, with a simple proof, that AVR is in fact 2α-competitive in
the uniform deadlines case and we provide an almost matching lower bound on the competitive
ratio (see Theorem A.2 and Theorem A.3 in Appendix A.1). In the learning-augmented setting
we provide an unconditional lower bound that demonstrates: An algorithm cannot be optimal, if
the prediction is correct, and at the same time retain robustness. We then focus on our main
contribution which is the design and analysis of a simple and efficient algorithm which incorporates
any ML predictor as a black-box without making any further assumption. We achieve this in a
modular way: First, we show that there is a consistent (but not robust) online algorithm. Then
we develop a technique to make any online algorithm (which may use the prediction) robust at

23



Chapter 5 Overview and related work

a small cost. In addition to the theoretical analysis, we also provide an experimental analysis
that supports our claims on both synthetic and real datasets. We further note that it may seem
natural to consider a predictor that is able to renew its prediction over time, e.g., by providing
our algorithm a new prediction at every integral time i. To this end, in Chapter 8, we show how
to naturally extend all our results from the single prediction to the evolving prediction model.

Moreover, in Appendix A.4 we design general methods to allow algorithms to cope with small
perturbations in the prediction.

Although in the main part of this thesis we focus on a restricted case of the speed scaling problem
by Yao et al. [88], where predictions can be integrated naturally. In Appendix A.5 we show that
with more sophisticated algorithms our techniques extend well to the general case.
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6 Main algorithm

In this chapter we develop two modular building blocks to obtain a consistent, smooth, and
robust algorithm. The first block is an algorithm which computes a schedule online taking into
account the prediction for the future. This algorithm is consistent and smooth, but not robust.
Then we describe a generic method on how to robustify an arbitrary online algorithm at a small
cost.

6.1 A consistent and smooth algorithm
In the following we describe a learning-augmented online algorithm, which we call LAS-Trust.

Preparation. We compute an optimal schedule spred for the predicted jobs. An optimal
schedule can always be normalized such that each workload wpred

i is completely scheduled in an
interval [ai, bi] at a uniform speed ci, that is,

spred
i (t) =

{
ci if t ∈ [ai, bi],
0 otherwise.

Furthermore, the intervals [ai, bi] are non-overlapping. For details we refer the reader to the
optimal offline algorithm by Yao et al. [88], which always creates such a schedule.

The online algorithm. At time i we first schedule wreal
i at uniform speed in [ai, bi], but we

cap the speed at ci. If this does not complete the job, that is, wreal
i > ci(bi − ai) = wpred

i , we
uniformly schedule the remaining work in the interval [i, i + D]

More formally,we define si(t) = s′
i(t) + s′′

i (t) where

s′
i(t) =

min
{

wreal
i

bi−ai
, ci

}
if t ∈ [ai, bi],

0 otherwise.

and

s′′
i (t) =

{
1
D max{0, wreal

i − wpred
i } if t ∈ [i, i + D],

0 otherwise.
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Analysis. It is easy to see that the algorithm is consistent: If the prediction of wreal
i is perfect

(wpred
i = wreal

i ), the job will be scheduled at speed ci in the interval [ai, bi]. If all predictions are
perfect, this is exactly the optimal schedule.

Theorem 6.1. For every 0 < δ ≤ 1, the cost of the schedule produced by the algorithm LAS-
Trust is bounded by (1 + δ)α OPT +(24/δ)α · err.

Proof. Define w+
i = max{0, wreal

i − wpred
i } as the additional work at time i as compared to the

predicted work. Likewise, define w−
i = max{0, wpred

i − wreal
i }. We use OPT(w+) and OPT(w−)

to denote the cost of optimal schedules of these workloads w+ and w−, respectively. We will
first relate the energy of the schedule s(t) to the optimal energy for the predicted instance, i.e.,
OPT(wpred). Then we will relate OPT(wpred) to OPT(wreal).

For the former let s′
i and s′′

i be defined as in the algorithm. Observe that s′
i(t) ≤ spred

i (t) for
all i and t. Hence, the energy for the partial schedule s′ (by itself) is at most OPT(wpred).
Furthermore, by definition we have that s′′

i (t) = w+
i /D. In other words, s′′

i is exactly the AVR
schedule on instance (w+, D, T ). By analysis of AVR, we know that the total energy of s′′

i is at
most 2α OPT(w+). Since the energy function is non-linear, we cannot simply add the energy of
both speeds. Instead, we use the following inequality: For all x, y ≥ 0 and 0 < γ ≤ 1, it holds that
(x + y)α ≤ (1 + γ)αxα +

(
2
γ

)α

yα. This follows from a simple case distinction whether y ≤ γx.
Thus, (substituting γ for δ/3) the energy of the schedule s is bounded by∫

(s′(t) + s′′(t))αdt ≤ (1 + δ/3)α

∫
s′

i(t)αdt + (6/δ)α

∫
s′′

i (t)αdt

≤ (1 + δ/3)α OPT(wpred) + (12/δ)α OPT(w+). (6.1)

For the last inequality we used that the competitive ratio of AVR is 2α.

In order to relate OPT(wpred) and OPT(wreal), we argue similarly. Notice that scheduling wreal

optimally (by itself) and then scheduling w− using AVR forms a valid solution for wpred. Hence,

OPT(wpred) ≤ (1 + δ/3)α OPT(wreal) + (12/δ)α OPT(w−).

Inserting this inequality into (6.1) we conclude that the energy of the schedule s is at most

(1 + δ/3)2α OPT(wreal) + (24/δ)α(OPT(w+) + OPT(w−))
≤ (1 + δ)α OPT(wreal) + (24/δ)α · err .

This inequality follows from the fact that the error function ∥·∥α
α is always an upper bound on

the energy of the optimal schedule (by scheduling every job within the next time unit).

6.2 Robustification
In this section, we describe a method Robustify that takes any online algorithm which guarantees
to complete each job in (1− δ)D time, that is, with some slack to its deadline, and turns it into
a robust algorithm without increasing the energy of the schedule produced. Here δ > 0 can be
chosen at will, but it impacts the robustness guarantee. We remark that the slack constraint is
easy to achieve: In Appendix A.3 we prove that decreasing D to (1− δ)D increases the energy
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of the optimum schedule only very mildly. Specifically, if we let OPT(wreal, (1 − δ)D, T ) and
OPT(wreal, D, T ) denote the costs of optimal schedules of workload wreal with durations (1− δ)D
and D, respectively, then:

Claim 6.1. For any instance (wreal, D, T ) we have that

OPT(wreal, (1− δ)D, T ) ≤ 1
(1− δ)α−1 OPT(wreal, D, T ).

Hence, running a consistent algorithm with (1 − δ)D will not increase the cost significantly.
Alternatively, we can run the online algorithm with D, but increase the generated speed function
by 1/(1− δ) and reschedule all jobs using EDF. This also results in a schedule where all jobs are
completed in (1− δ)D time.

For a schedule s of (wreal, (1− δ)D, T ) we define the δ-convolution operator which returns the
schedule s(δ) of the original instance (wreal, D, T ) by

s
(δ)
i (t) = 1

δD

∫ t

t−δD

si(r) dr

for each i ∈ T (letting si(r) = 0 if r < 0). See Figure 6.1 for an illustration. The name comes
from the fact that this operator is the convolution of si(t) with the function f(t) that takes value
1/(δD) if 0 ≤ t ≤ δD and value 0 otherwise.

Next we state three key properties of the convolution operator.

Claim 6.2. If s is a feasible schedule for (wreal, (1− δ)D, T ) then s(δ) is a feasible schedule for
(wreal, D, T ).

Proof. Since s is a feasible schedule for (w, (1− δD), T ), we have that∫ i+D

i

s
(δ)
i (t)dt =

∫ i+D

i

1
δD

(∫ t

t−δD

si(t′)dt′
)

dt =
∫ i+(1−δ)D

i

si(t′)
(∫ t′+δD

t′

1
δD

dt

)
dt′ = wi.

Claim 6.3. The cost of schedule s(δ) is not higher than that of s, that is,∫ T

0
(s(δ)(t))αdt ≤

∫ T

0
(s(t))αdt.

Proof. The proof only uses Jensen’s inequality in the second line and the statement can be
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δD
time

speed

Figure 6.1: A schedule and its convolution.

calculated as follows.∫ T

0

(
s(δ)(t)

)α

dt =
∫ T

0

(
1

δD

∫ t

t−δD

s(t′)dt′
)α

dt

≤
∫ T

0

1
δD

(∫ t

t−δD

(s(t′))αdt′
)

dt

=
∫ T

0
(s(t′))α

(∫ t′+δD

t′

1
δD

dt

)
dt′

=
∫ T

0
(s(t))α

dt

Let sAVR
i (t) denote the speed of workload wreal

i of the Average Rate heuristic, that is, sAVR
i (t) =

wreal
i /D if i ≤ t ≤ i + D and sAVR

i (t) = 0 otherwise. We relate s
(δ)
i (t) to sAVR

i (t).

Claim 6.4. Let s be a feasible schedule for (wreal, (1− δ)D, T ). Then s
(δ)
i (t) ≤ 1

δ sAVR
i (t).

Proof. We have that

s
(δ)
i (t) = 1

δD

∫ t

t−δD

si(t′)dt′ ≤ 1
δD

∫ i+D

i

si(t′)dt′ = wi

δD
= sAVR

i (t)
δ

.

By using that the competitive ratio of Average Rate is at most 2α (see Appendix A.1), we get∫ T

0
(s(δ)(t))αdt ≤

(
1
δ

)α ∫ T

0
(sAVR(t))αdt ≤

(
2
δ

)α

OPT .

We conclude with the following theorem, which follows immediately from the previous claims.

Theorem 6.2. Given an online algorithm that produces a schedule s for (wreal, (1− δ)D, T ), we
can compute online a schedule s(δ) with∫ T

0
(s(δ)(t))αdt ≤ min

{∫ T

0
(s(t))αdt,

(
2
δ

)α

OPT
}

.
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Algorithm 1 Learning Augmented Scheduling (LAS)

Input: T , D, and wpred initially and wreal in an online fashion
Output: A feasible schedule (si)T −D

i=0

Let δ ∈ (0, 1/2) with
(

1+δ
1−δ

)α

= 1 + ϵ.
Compute optimal offline schedule for (wpred, T, (1 − δ)D) where the jobs wpred

i are run at
uniform speeds ci an disjoint intervals [ai, bi] using [88].

while wreal
i do

Let s′
i(t) =

{
min

{
wreal

i

bi−ai
, ci

}
if t ∈ [ai, bi],

0 otherwise.

Let s′′
i (t) =

{
1
D max{0, wreal

i − wpred
i } if t ∈ [i, i + D],

0 otherwise.
Let si(t) = 1

δD

∫ t

t−δD
s′

i(r) + s′′
i (r) dr

end while

6.3 Summary of the algorithm
By combining LAS-Trust and Robustify, we obtain an algorithm LAS (see Algorithm 1)
which has the following properties.

Theorem 6.3. For any given ϵ ∈ (0, 1), algorithm LAS constructs a schedule of cost at most
min

{
(1 + ϵ) OPT +O

(
α
ϵ

)α err, O
(

α
ϵ

)α OPT
}

.

Proof. We choose δ such that ( 1+δ
1−δ )α = 1 + ϵ. Note that δ ≤ ϵ/α. By Claim 6.1 we know that

OPT(wreal, (1− δ)D, T ) ≤
(

1
1− δ

)α

OPT .

Hence, by Theorem 6.1 algorithm LAS-Trust constructs a schedule with cost at most(
1 + δ

1− δ

)α

OPT +O

(
1
δ

)α

err

Finally, we apply Robustify and with Theorem 6.2 obtain a bound of

min
{(

1 + δ

1− δ

)α

OPT +O

(
1
δ

)α

err, O

(
1
δ

)α

OPT
}

≤ min
{

(1 + ϵ) OPT +O
(α

ϵ

)α

err, O
(α

ϵ

)α

OPT
}

.
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7 Experiments

In this chapter, we will test the LAS algorithm on both synthetic and real datasets. We will
calculate the competitive ratios with respect to the offline optimum. In most of our experiments,
we fix α = 3 as this value models the power consumption of modern processors (see Bansal
et al. [12]) and at the end of the chapter we explore the influence of α in the performance of
various algorithms. For each experiment, we compare our LAS algorithm to the three main online
algorithms that exist for this problem which are AVR and OA by Yao et al. [88] and BKP by Bansal
et al. [12]. We note that the code is publicly available at https://github.com/andreasr27/LAS.

Artificial datasets. In the synthetic data case, we will mimic the request pattern of a typical
data center application by simulating a bounded random walk. In the following we write
Z ∼ U{m, M} when sampling an integer uniformly at random in the range [m, M ]. Subsequently,
we fix three integers s, m, M where [m, M ] define the range in which the walk should stay. For
each integral time i we sample Xi ∼ U{−s, s}. Then we set w0 ∼ U{m, M} and wi+1 to be the
median value of the list {m, wi + Xi, M}, that is, if the value wi + Xi remains in the predefined
range we do not change it, otherwise we round it to the closest point in the range. For this
type of ground truth instance we test our algorithm coupled with three different predictors. The
accurate predictor for which we set w̃i ∼ wi + U{−s, s}, the random predictor where we set
w̃i ∼ U{m, M} and the misleading predictor for which w̃i = (M − wi) + m. In each case we
perform 20 experiment runs. The results are summarized in Table 7.1. In the first two cases
(accurate and random predictors) we present the average competitive ratios of every algorithm
over all runs. In contrast, for the last column (misleading predictor) we present the maximum
competitive ratio of each algorithm taken over the 20 runs to highlight the worst case robustness
of LAS. We note that in the first case, where the predictor is relatively accurate but still noisy,
LAS is consistently better than any online algorithm achieving a competitive ratio close to 1 for
small values of ϵ. In the second case, the predictor does not give us useful information about
the future since it is completely uncorrelated with the ground truth instance. In such a case,
LAS experiences a similar performance to the best online algorithms. In the third case, the
predictor tries to mislead our algorithm by creating a prediction which constitutes a symmetric
(around (m + M)/2) random walk with respect to the true instance. When coupled with such a
predictor, as expected, LAS performs worse than the best online algorithm, but it still maintains
an acceptable competitive ratio. Furthermore, augmenting the robustness parameter ϵ, and
thereby trusting less the predictor, improves the competitive ratio in this case.
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Figure 7.1: From top to bottom: The first two graphs show the performance of LAS when ϵ = 0.01
and ϵ = 0.8 with respect to the online algorithms AVR and OA. The bottom graph presents the
prediction error. The timeline was discretized in chunks of ten minutes and D was set to 20.

Table 7.1: Artificial dataset results

Algorithm Accurate Random Misleading

AVR 1.268 1.268 1.383
BKP 7.880 7.880 10.380
OA 1.199 1.199 1.361
LAS, ϵ = 0.8 1.026 1.203 1.750
LAS, ϵ = 0.6 1.022 1.207 1.758
LAS, ϵ = 0.4 1.018 1.213 1.767
LAS, ϵ = 0.2 1.013 1.224 1.769
LAS, ϵ = 0.01 1.008 1.239 1.766

We used m = 20, M = 80, s = 5, T = 220 and D = 20.
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Table 7.2: Real dataset results with different α values

Algorithm α = 3 α = 6 α = 9 α = 12

AVR 1.365 2.942 7.481 21.029
OA 1.245 2.211 4.513 9.938
LAS, ϵ = 0.8 1.113 1.576 2.806 7.204
LAS, ϵ = 0.01 1.116 1.598 2.918 8.055

The timeline was discretized in chunks of ten minutes and D was set to 20.

Real dataset. We provide additional evidence that the LAS algorithm outperforms purely
online algorithms by conducting experiments on the login requests to BrightKite [23], a no longer
functioning social network. We note that this dataset was previously used in the context of
learning-augmented algorithms by Lykouris and Vassilvitskii [72]. In order to emphasize the
fact that even a very simple predictor can improve the scheduling performance drastically, we
will use the arguably most simple predictor possible. We use the access patterns of the previous
day as a prediction for the current day. In Figure 7.1 we compare the performance of the LAS
algorithm for different values of the robustness parameter ϵ with respect to AVR and OA. We
did not include BKP, since its performance is substantially worse than all other algorithms. Note
that our algorithm shows a substantial improvement with respect to both AVR and OA, while
maintaining a low competitive ratio even when the prediction error is high (for instance in the last
days). The first 100 days, where the prediction error is low, by setting ϵ = 0.01 (and trusting more
the prediction) we obtain an average competitive ratio of 1.134, while with ϵ = 0.8 the average
competitive ratio slightly deteriorates to 1.146. However, when the prediction error is high,
setting ϵ = 0.8 is better. On average from the first to the last day of the timeline, the competitive
ratio of AVR and OA is 1.36 and 1.24 respectively, while LAS obtains an average competitive
ratio of 1.116 when ϵ = 0.01 and 1.113 when ϵ = 0.8, thus beating the online algorithms in both
cases.

Finally, we further explore the performance of LAS algorithm for different values of the parameter
α on BrightKite. The results are summarized in Table 7.2. In every column the average competitive
ratios of each algorithm for a fixed α are presented. We note that, as expected, higher values
of α penalize heavily wrong decisions deteriorating the competitive ratios of all algorithms.
Nevertheless, LAS algorithm consistently outperforms AVR and OA for all different values of α.
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8 Extension to evolving predictors

In this chapter, we extend our results to the case where the algorithm is provided several
predictions over time. In particular, we assume that the algorithm is provided a new prediction
at each integral time t. The setting is natural as for a very long timeline, it is intuitive that the
predictor might renew its prediction over time. Since making a mistake in the prediction of a
very far future seems also less hurtful than making a mistake in predicting an immediate future,
we define a generalized error metric incorporating this idea.

Let 0 < λ < 1 be a parameter that describes how fast the confidence in a prediction deteriorates
with the time until the expected arrival of the predicted job. Define the prediction received at
time t as a workload vector wpred(t). Recall we are still considering the uniform deadlines case
hence an instance is defined as a triplet I = (w, D, T ).

We then define the total error of a series of predictions as

err(λ) =
∑

t

∞∑
i=t+1

|wreal
i − wpred

i (t)|α · λi−t.

In the following we reduce the evolving predictions model to the single prediction one.

We would like to prove similar results as in the single prediction setting with respect to err(λ).
In order to do so, we will split the instance into parts of bounded time horizon, solve each one
independently with a single prediction, and show that this also gives a guarantee based on err(λ).
In particular, we will use the algorithm for the single prediction model as a black-box.

The basic idea is as follows. If no job were to arrive for a duration of D, then the instance before
this interval and afterwards can be solved independently. This is because any job in the earlier
instance must finish before any job in the later instance can start. Hence, they cannot interfere.
At random points, we ignore all jobs for a duration of D, thereby split the instance. The ignored
jobs will be scheduled sub-optimally using AVR. If we only do this occasionally, i.e., after every
intervals of length ≫ D, the error we introduce is negligible.

We proceed by defining the splitting procedure formally. Consider the timeline as infinite in
both directions. To split the instance, we define some interval length 2kD, where k ∈ N will be
specified later. We split the infinite timeline into contiguous intervals of length 2kD. Moreover,
we choose an offset x ∈ {0, · · · , k−1} uniformly at random. Using these values, we define intervals
Ii = [2((i− 1)k − x)D, 2(ik − x)D). We will denote by ti = (2(i− 1)k − x)D the start time of
the interval Ii. Consequently, the end of Ii is ti+1.
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In each interval Ii, we solve the instance given by the jobs entirely contained in this interval
using our algorithm with the most recent prediction as of time ti, i.e., wpred(ti), and schedule the
jobs accordingly. We write sALG(i) for this schedule. For the jobs that are overlapping with two
contiguous intervals we schedule them independently using the Average Rate heuristic. The
schedule for the jobs overlapping with intervals Ii and Ii+1 will be referred to as sAVR(i).

It is easy to see that this algorithm is robust: The energy of the produced schedule is

∫ (∑
i

[
sALG(i)(t) + sAVR(i)(t)

])α

dt

≤ 2α

∫ (∑
i

sALG(i)(t)
)α

dt + 2α

∫ (∑
i

sAVR(i)(t)
)α

dt.

Moreover, the first term can be bounded by 2α ·O(α/ϵ)α OPT using Theorem 6.3 and the second
term can be bounded by 2α · 2α OPT because of Theorem A.2. This gives an overall bound of
O(α/ϵ)α on the competitive ratio.

In the rest of the section we focus on the consistency/smoothness guarantee. We first bound the
costs of sALG(i) and sAVR(i) isolated (ignoring potential interferences). Using these bounds, we
derive an overall guarantee for the algorithm’s cost.

Lemma 8.1.

E

(∑
i

∫
sAVR(i)(t)α

)
≤ 2α

k
OPT

Proof. Fix some i > 0 and let us call Oi the job instance consisting of jobs overlapping with both
intervals Ii and Ii+1. By Theorem A.2 the energy used by AVR is at most a 2α-factor from the
optimum schedule. Hence,

∫
sAVR(i)(t)αdt ≤ 2α OPT(Oi).

Now denote by sOPT the speed function of the optimum schedule over the whole instance. Then

OPT(Oi) ≤
∫ ti+D

ti−D

sOPT(t)αdt.

This holds because sOPT processes some work during [ti −D, ti + D] which has to include all of

36



Extension to evolving predictors Chapter 8

Oi. Hence, we have that

E

(∑
i

OPT(Oi)
)

≤ 1
k

k−1∑
x=0

∑
i

∫ 2(ik−x)D+D

2(ik−x)D−D

sOPT(t)αdt

≤ 1
k

∫
sOPT(t)αdt = 1

k
OPT

The second inequality holds, because the integrals are over disjoint ranges. Together, with the
bound on sAVR(i) we get the claimed inequality.

Lemma 8.2.∑
i

∫
sALG(i)(t)αdt ≤ (1 + ϵ) OPT +O

(α

ϵ

)α

· λ−2kD · err(λ) .

Proof. Note that for any i

ti+1∑
t=ti+1

|wreal
t − wpred

t (ti)|α ≤ λ−2kD

ti+1∑
t=ti+1

|wreal
t − wpred

t (ti)|αλt−ti .

Hence,

∑
i

ti+1∑
t=ti

|wreal
t − wpred

t (ti)|α ≤ λ−2kD err(λ) .

Using Theorem 6.3 for each
∫

s
(i)
ALG(t)αdt, we get a bound depending on

∑ti+1
t=ti
|wreal

t −wpred
t (ti)|α.

Summing over i and using the inequality above finishes the proof of the lemma.

We are ready to state the consistency/smoothness guarantee of the splitting algorithm.

Theorem 8.3. With robustness parameter O(ϵ/α) the splitting algorithm produces in expectation
a schedule of cost at most

(1 + ϵ) OPT +O
(α

ϵ

)α

· λ−D/ϵ·O(α/ϵ)α

· err(λ) .

In other words, we get the same guarantee as in the single prediction case, except that the
dependency on the error is larger by a factor of λ−D/ϵ·O(α/ϵ)α . The exponential dependency on
D may seem unsatisfying, but (1) it cannot be avoided (see Theorem A.6) and (2) for moderate
values of λ, e.g. λ = 1− 1/D, this exponential dependency vanishes.

Proof. We will make use of the following inequality: For all a, b ≥ 0 and 0 < δ ≤ 1, it holds that

(a + b)α ≤ (1 + δ)aα +
(

3α

δ

)α

bα.
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This follows from a simple case distinction whether b ≤ a · δ/(2α). In expectation, the cost of the
algorithm is bounded by

E

[∫ (∑
i

[sALG(i)(t) + sAVR(i)(t)]
)α

dt

]

≤ (1 + ϵ)E
[∫ ∑

i

(sALG(i)(t))αdt

]

+
(

3α

ϵ

)α

E

[∫ ∑
i

(sAVR(i)(t))αdt

]

≤ (1 + ϵ)
∫ ∑

i

sALG(i)(t))αdt

+ 1
k

(
6α

ϵ

)α

OPT .

By choosing k = 1/ϵ(6α/ϵ)α the latter term becomes ϵ OPT. With Lemma 8.2 we can bound the
term above by

(1 + ϵ)3 OPT +O
(α

ϵ

)α

· λ−D/ϵ·O(α/ϵ)α

· err(λ) .

Scaling ϵ by a constant yields the claimed guarantee.

We also note that the dependency of Theorem 8.3 on the λ parameter is essentially tight and we
prove the latter in Theorem A.6 of Appendix A.2.

38



9 Further extensions

As already mentioned in Section 5.3 we extend the results presented in this part of the thesis in
two further ways:

1. In Appendix A.5 we consider the General Speed Scheduling problem and show that a
more sophisticated method allows us to robustify any algorithm even in this more general
setting. Hence, for this case we can also obtain an algorithm that is almost optimal in the
consistency case and always robust.

2. In Appendix A.4 we also cope with small perturbations in the prediction. Indeed, the
careful reader may have noted that one can craft instances so that the used error function
err is very sensitive to small shifts in the prediction. An illustrative example is as follows:
Consider a predicted workload wpred defined by wpred

i = 1 for those time steps i that are
divisible by a large constant, say 1000, and let wpred

i = 0 for all other time steps. If the
real instance wreal is a small shift of wpred say wreal

i+1 = wpred
i then the prediction error

err(wreal, wpred) is large although wpred intuitively forms a good prediction of wreal. To
overcome this sensitivity, we first generalize the definition of err to errη which is tolerant
to small shifts in the workload. In particular, errη(wreal, wpred) = 0 for the example given
above. We then give a generic method for transforming an algorithm so as to obtain
guarantees with respect to errη instead of err at a small loss.
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Part III

The Primal-Dual method for
learning-augmented algorithms

General techniques for beyond worst-case analysis
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10 Overview and related work

The goal of this part is to extend the Primal-Dual method from the setting of classical online
algorithms to the online learning-augmented setting. In the current chapter we will present an
overview of the Primal-Dual method for online algorithms and highlight our main contributions.

10.1 The classical Primal-Dual method
The Primal-Dual (PD) method is a very powerful algorithmic technique to design online algorithms.
It was first introduced by Alon et al. [3] to design an online algorithm for the classical online
set cover problem and later extended to many other problems such as weighted caching [10],
revenue maximization in ad-auctions, TCP acknowledgement and ski rental [18]. We mention the
survey of Buchbinder and Naor [17] for more references about this technique. In a few words, the
technique consists in formulating the online problem as a linear program P complemented by
its dual D. Subsequently, the algorithm builds online a feasible fractional solution to both the
primal P and dual D. Every time an update of the primal and dual variables is made, the cost
of the primal increases by some amount ∆P while the cost of the dual increases by some amount
∆D. The competitive ratio of the fractional solution is then obtained by upper bounding the
ratio ∆P

∆D and using weak duality. The integral solution is then obtained by an online rounding
scheme of the fractional solution.

10.2 Our contributions
We show how to extend the Primal-Dual method (when predictions are provided) for solving
problems that can be formulated as covering problems. The algorithms designed using this
technique receive as input a robustness parameter ϵ and incorporate a prediction. If the prediction
is accurate our algorithms can be arbitrarily close to the optimal offline (beating known lower
bounds of the classical online algorithms) while being robust to failures of the predictor. We
first apply our Primal-Dual Learning-Augmented (PDLA) technique to the online version of
the weighted set cover problem, which constitutes the most canonical example of a covering
Linear Program (LP). For that problem we show how we can easily modify the Primal-Dual
algorithm to incorporate predictions. Even though in this case, prediction may not seem very
natural, this result reveals that we can use PDLA to design learning-augmented algorithms
for the large class of problems that can be formulated as a covering LP. We then continue by
addressing problems in which the prediction model is much more natural. Using the PDLA
technique, we first design an algorithm which recovers the results of Purohit et al. [80] for the ski
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rental problem, and we also prove that the consistency-robustness trade-off of that algorithm is
optimal. We additionally design a learning-augmented algorithm for a generalization of the ski
rental, namely the Bahncard problem. Finally, we turn our attention to a problem which arises in
network congestion control, the TCP acknowledgement problem. We design a learning-augmented
algorithm for that problem and conduct experiments which confirm our claims. We note that
the analysis of the algorithms designed using PDLA is (arguably) simple and boils down to (1)
proving robustness with (essentially) the same proof as in the original Primal-Dual technique
and (2) proving consistency using a simple charging argument that, without making use of the
dual, relates the cost incurred by our algorithms to the prediction. In addition to that, using
PDLA, the design of online learning-augmented algorithms is almost automatic. We emphasize
that the preexisting online rounding schemes to obtain an integral solution from a fractional
solution still apply to our learning-augmented algorithms. Hence we focus only on building a
fractional solution and provide appropriate references for the rounding scheme.
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In this chapter we apply PDLA to solve the online weighted set cover problem when provided with
predictions. Set cover is arguably the most canonical example of a covering problem and the frame-
work that we develop readily applies to other covering problems as the ski rental, Bahncard, and
dynamic TCP acknowledgement, which are all problems that can be formulated as covering LPs.

Primal
minimize

∑
S∈F wSxS

subject to:
∑

S∈F(e) xS ≥ 1 ∀e ∈ U
xS ≥ 0 ∀S ∈ F

Dual
maximize

∑
e∈U ye

subject to:
∑

e∈S ye ≤ wS ∀S ∈ F
ye ≥ 0 ∀e ∈ U

Figure 11.1: Primal dual formulation
of weighted set cover

The weighted set cover problem. In this problem,
we are given a universe U = {e1, e2, . . . , en} of n elements
and a family F of m sets over this universe, each set S ∈
F has a weight wS and each element e is covered by any
set in F(e) = {S ∈ F | e ∈ S}. Let d = maxe∈U |F(e)|
denote the maximum number of sets that cover one
element. Our goal is to select sets so as to cover all
elements while minimizing the total weight. In its online
version, elements are given one by one and it is unknown
to the algorithm which elements will arrive and in which
order. When a new element arrives, it is required to
cover it by adding a new set if necessary. Removing a
set from the current solution to decrease its cost is not allowed. Alon et al. [3] first studied the
online version designing an almost optimal O(log n log d)-competitive algorithm. We note that the
O(log n) factor comes from the integrality gap of the linear program formulation of the problem
(Figure 11.1) while the O(log d) is due to the online nature of the problem. Since Alon et al. [3]
designed an online rounding scheme at a multiplicative cost of O(log n), we will focus on building
an increasing fractional solution to the set cover problem (i.e. xS can only increase over time for
all S).

PDLA for weighted set cover. Algorithm 3 takes as input a predicted covering A ⊂ F
and a robustness parameter ϵ ∈ (0, 1]. While an instance I is revealed in an online fashion, an
increasing fractional solution {xS}S∈F ∈ [0, 1]F is built. We do not assume that our prediction
A forms a feasible solution, i.e., it may be that for some element e, F(e) ∩ A = ∅, in that case
we just use the same primal update as the purely online algorithm (ϵ = 1). In addition, we can
assume w.l.o.g. that wS ≥ 1 ∀S ∈ F . Indeed, we can always scale up by the same amount all the
weights of the sets in F so that the latter assumption holds and any solution will increase its cost
by the same multiplicative factor.
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Algorithm Intuition. We first turn our attention to the original online algorithm of Alon et.
al. [3] described in Algorithm 2. To get an intuition assume that wS = 1, ∀S and consider the
very first arrival of an element e. After the first execution of the while loop, e is covered and
xS = 1

|F(e)| ,∀S ∈ F(e). In other words, the online algorithm creates a uniform distribution over
the sets in F(e), reflecting in such a way his unawareness about the future. On the contrary
Algorithm 3 uses the prediction to adjust the increase rate of primal variables, augmenting more
aggressively primal variables of sets which are predicted to be in the optimal offline solution.
Indeed, assuming that A covers element e, after the first execution of the while loop, sets which
belong to A get a value of ϵ

|F(e)| + 1−ϵ
|F(e)∩A| while sets which are not chosen by the prediction get

ϵ
|F(e)| .

We continue by exposing our main conceptual contribution, and to that end, we introduce some
auxiliary notation:

1. S(A, I) equals the cost of the (possibly partial) covering if prediction A is followed blindly.

2. Cnc equals the cost of optimally covering elements which are not covered by the prediction.

3. costPDLA(I,A, ϵ) equals the cost of the covering solution calculated by Algorithm 3.

Theorem 11.1. The cost of the fractional solution output by Algorithm 3 satisfies

cost
PDLA

(I,A, ϵ) ≤ min
{

O

(
1

1− ϵ

)
· S(A, I) + O(log (d)) · Cnc, O

(
log
(

d

ϵ

))
·OPT(I)

}

Theorem 11.1 states that Algorithm 3 has consistency O
(

1
1−ϵ

)
and robustness O

(
log
(

d
ϵ

))
. We

note that similar bounds could be achieved by simpler algorithms (see Theorem 1 in [72]). Thus,
the main contribution of Algorithm 3 is conceptual, i.e., the Primal-Dual method for covering
problems can be extended to the learning-augmenting setting. In Chapter 12 we substantiate our
claim by applying the same ideas to more covering problems.

As already mentioned in Chapter 2, it is worth noting that in this part of the thesis we do not
focus on defining a specific error metric for the prediction A, consequently the smoothness of
Algorithm 3 is implicit in the definition of S(A, I).

To prove the robustness of Algorithm 3 we start by arguing that the dual constraints are only
violated by a multiplicative factor of O

(
log
(

d
ϵ

))
. Thus, scaling down the dual solution of

Algorithm 3 by O
(
log
(

d
ϵ

))
creates a feasible dual solution which will permit us to use weak

duality.

Note that whenever |F(e)∩A| = 0, Algorithm 3 updates the primal variables as the purely online
Algorithm 2. With that in mind, we make the exposition more clear by defining (1−ϵ)·1{S∈A}

wS ·|F(e)∩A| = 0,
if |F(e) ∩ A| = 0 and 1{S ∈ A} = 0.

Lemma 11.2. Let y be the dual solution built by Algorithm 3. Then y
Θ(log(d/ϵ)) is a feasible

solution to the dual problem.

Proof. The proof essentially follows the same path as in [17]. The only constraints that can
be violated are of the form

∑
e∈S ye ≤ wS for some S ∈ F . Consider one such constraint. At
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Algorithm 2 Primal Dual Method for
Online Weighted Set Cover [3].

Initialize: xS ← 0, ye ← 0 ∀S, e
for all element e that just arrived do

while
∑

S∈F(e) xS < 1 do
/* Primal Update
for all S ∈ F(e) do

xS ← xS

(
1 + 1

wS

)
+ 1

wS |F(e)|
end for
/* Dual Update
ye ← ye + 1

end while
end for

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒

Algorithm 3 PDLA for Online Weighted
Set Cover.

Input: ϵ, A
Initialize: xS ← 0, ye ← 0 ∀S, e
for all element e that just arrived do

while
∑

S∈F(e) xS < 1 do
for all S ∈ F(e) do

if |F(e) ∩ A| ≥ 1 then
/* Primal Update (more aggressive if
1{S ∈ A} = 1 )
xS ← xS

(
1 + 1

wS

)
+ ϵ

wS ·|F(e)| + (1−ϵ)·1{S∈A}
wS ·|F(e)∩A|

else
/* e is not covered by the prediction
xS ← xS ·

(
1 + 1

wS

)
+ 1

wS ·|F(e)|
end if

end for
/* Dual Update
ye ← ye + 1

end while
end for

every update of the primal variable xS the sum
∑

e∈S ye increases by 1, since the dual variable
corresponding to the newly arrived element increases by 1 . We prove by induction on the number

of such updates that at any point in time xS ≥ ϵ
d

((
1 + 1

wS

)∑
e∈S

ye

− 1
)

. Indeed, when no

update concerning S is done we have that xS = 0 and
∑

e∈S ye = 0. Suppose this is true after
k updates of the variable xS , i.e.

∑
e∈S ye = k. Now, assume that a newly arrived element

e∗ ∈ S provokes a primal update from xold
S to xnew

S and increases its dual value by one, i.e.
ynew

e∗ = yold
e∗ + 1. Then we always have:

xnew
S ≥xold

S ·
(

1 + 1
wS

)
+ min

{
1

|F(e)| · wS
,

ϵ

|F(e)| · wS
+ (1− ϵ) · 1{S ∈ A}
|F(e) ∩ A| · wS

}
≥

≥xold
S ·

(
1 + 1

wS

)
+ ϵ

d · wS

Thus, by the induction hypothesis

xnew
S ≥ ϵ

d

((
1 + 1

wS

)∑
e∈S\{e∗}

ye+yold
e∗

− 1
)
·
(

1 + 1
wS

)
+ ϵ

d · wS

= ϵ

d

((
1 + 1

wS

)∑
e∈S\{e∗}

ye+ynew
e∗

− 1
)

= ϵ

d

((
1 + 1

wS

)∑
e∈S

ye

− 1
)

Moreover, since wS ≥ 1, we have that (1 + 1/ws)ws ≥ 2, thus:

xS ≥
ϵ

d

(1 + 1
wS

)wS ·

∑
e∈S

ye

wS

− 1

 ≥ ϵ

d

(
2

∑
e∈S

ye

wS − 1
)
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We continue by upper bounding the value of xS . Note that once xS ≥ 1, no more primal updates
can happen, therefore whenever an update is made we have xS < 1 just before the update. Thus:

xnew
S ≤ xold

S ·
(

1 + 1
wS

)
+ max

{
ϵ

wS · |F(e)| + (1− ϵ) · 1{S ∈ A}
wS · |F(e) ∩ A| ,

1
wS · |F(e)|

}
≤ xold

S · 2 + 1 ≤ 3

Combining the lower and upper bound on xS we get that:

∑
e∈S

ye ≤ log
(

3d

ϵ
+ 1
)
· wS = O(log (d/ϵ)) · wS

which concludes the proof.

Lemma 11.3 (Robustness). The competitive ratio is always bounded by O
(
log
(

d
ϵ

))
Proof. We denote as before by xold

S and xnew
S the primal variables before and after the update

respectively. Each time the while loop is executed we have that
∑

S∈F(e) xold
S < 1 and the increase

in the dual is ∆D = 1. Denote by δxS = xnew
S − xold

S the increase of a variable for a specific set
S. If an element is covered by the prediction then it holds that:

∆P =
∑

S∈F(e)

wS · δxS =
∑

S∈F(e)∩A

wS · δxS +
∑

S∈F(e)\F(e)∩A

wS · δxS =

=
∑

S∈F(e)

(
xold

S + ϵ

|F(e)|

)
+

∑
S∈F(e)∩A

(1− ϵ)
|F(e) ∩ A| =

∑
S∈F(e)

xold
S + ϵ + 1− ϵ ≤ 2

By repeating the same calculation we get that if an element is uncovered by the prediction then:

∆P =
∑

S∈F(e)

wS · δxS =
∑

S∈F(e)

(
xold

S + 1
|F(e)|

)
=

∑
S∈F(e)

xold
S + 1 ≤ 2

Overall we have that:

1. At any iteration ∆P
∆D ≤ 2.

2. The final primal solution is feasible.

3. By Lemma 11.2, denoting y the final dual solution, y
Θ(log(d/ϵ) is feasible.

Thus, by weak duality we get that the competitive ratio of Algorithm 3 is upper bounded by
2 ·O(log (d/ϵ)) = O(log (d/ϵ))).

Lemma 11.4 (Consistency). costPDLA(I,A, ϵ) ≤ O
(

1
1−ϵ

)
· S(A, I) + O(log (d)) · Cnc

Proof. We split the analysis in two parts. First, we look at the case when an element which
is uncovered by the prediction arrives. In this case Algorithm 3 emulates the pure online
algorithm (ϵ = 1). More precisely, by the same calculations as before, we can show that ync

the solution of the dual problem restricted to the uncovered elements satisfy the property that
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ync

O(log d) is feasible. Therefore for those elements by Lemma 11.3 the cost of Algorithm 3 is
upper bounded by O(log d) · Cnc. We turn our attention to the more interesting case where the
prediction covers an element. In this case, after the execution of the while loop we decompose
the primal increase into two parts. ∆Pc which denotes the increase due to sets S chosen by A
(1{S ∈ A} = 1) and ∆Pu which denotes the increase due to sets S not chosen by the prediction
(1{S ∈ A} = 0), thus we have ∆P = ∆Pc + ∆Pu. Let c = {S ∈ F(e) : 1{S ∈ A} = 1} and
u = {S ∈ F(e) : 1{S ∈ A} = 0}. We then have:

∆Pc =
∑
S∈c

xS + ϵ · |c|
|c|+ |u| + 1− ϵ ≥ ϵ

d
+ 1− ϵ

∆Pu =
∑
S∈u

xS + ϵ · |u|
|c|+ |u| ≤ 1 + ϵ

since , |c|
|c|+|u| ≥

1
d and |u|

|c|+|u| ≤ 1. Combining the two bounds we get that ∆Pu ≤ 1+ϵ
ϵ
d +1−ϵ ·∆Pc

and consequently:

∆P ≤
(

1 + 1 + ϵ
ϵ
d + 1− ϵ

)
∆Pc = O

(
1

1− ϵ

)
∆Pc

Since the cost increase ∆Pc is caused by sets which are selected by the prediction, we can charge
this cost to the corresponding increase of S(A, I) losing only a multiplicative O(1) factor. By
combining the two cases we conclude the proof.

49





12 PDLA in action

12.1 The ski rental problem

Primal
minimize B · x+

∑
j∈[N ] fj

subject to: x+ fj ≥ 1 ∀j ∈ [N ]
x, fj ≥ 0 ∀j ∈ [N ]

Dual
maximize

∑
j∈[N ] yj

subject to:
∑

j∈[N ] yj ≤ B

1 ≥ yj ≥ 0 ∀j ∈ [N ]

Figure 12.1: Primal dual formulation
of the ski rental problem.

As another application of PDLA we design a learning-
augmented algorithm for one of the simplest and well
studied online problems, the ski rental problem. In
this problem, every new day, one has to decide whether
to rent skis for this day, which costs 1 dollar or to
buy skis for the rest of the vacation at a cost of B

dollars. In its offline version the total number of vacation
days, N , is known in advance and the problem becomes
trivial. From the primal dual formulation of the problem
(Figure 12.1) it is clear that if B < N , the optimal
strategy is to buy the skis at day one while if B ≥ N the
optimal strategy is to always rent. In the online setting
the difficulty relies in the fact that we do not know N in
advance. A deterministic 2-competitive online algorithm
has been known for a long time [58] and a randomized

e
e−1 ≈ 1.58-competitive algorithm was also designed later [59]. Both competitive ratios are known
to be optimal for deterministic and randomized algorithms respectively. This problem was already
studied in various learning-augmented settings [47, 63, 80, 85]. Our approach recovers, using the
primal-dual method, the results of [80]. As in [80] our prediction A will be the total number of
vacation days Npred.

PDLA for ski rental: To simplify the description, we denote an instance of the problem
as I = (N, B) and define the function e(z) = (1 + 1/B)z·B. Note that if B → ∞, then e(z)
approaches ez hence the choice of notation. In an integral solution, the variable x is 1 to indicate
that the skis are bought and 0 otherwise. In the same spirit fj indicates whether we rent on day
j or not. Buchbinder et al. [18] showed how to easily turn a fractional monotone solution (i.e. it
is not permitted to decrease a variable) to an online randomized algorithm of expected cost equal
to the cost of the fractional solution. Hence we focus only on building online a fractional solution.
Algorithm 4 is due to [18] and uses the Primal-Dual method to solve the problem. Each new day
j a new constraint x + fj ≥ 1 is revealed. To satisfy this constraint, the algorithm updates the
primal and dual variables while trying to maintain (1) the ratio ∆P/∆D as small as possible and
(2) the primal and dual solutions feasible. As in the online weighted set cover problem, the key
idea for extending Algorithm 4 to the learning-augmented Algorithm 5 is to use the prediction
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Npred in order to adjust the rate at which each variable is increased. Thus, when Npred > B we
increase the buying variable more aggressively than the pure online algorithm. Here, the cost of
following blindly the prediction Npred is S(Npred, I) = B · 1{Npred > B}+ N · 1{Npred ≤ B}.

Algorithm 4 Primal-Dual for Ski
Rental [18].

Initialize: x← 0, fj ← 0, ∀j
c← e(1), c′ ← 1
for each new day j s.t. x + fj < 1 do

/* Primal Update

fj ← 1− x

x← (1 + 1
B )x + 1

(c−1)·B
/* Dual Update

yj ← c′

end for

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒

Algorithm 5 PDLA for Ski Rental.
Input: ϵ, Npred

Initialize: x← 0, fj ← 0, ∀j
if Npred ≥ B then

/* Prediction suggests buying

c← e(ϵ), c′ ← 1
else

/* Prediction suggests renting

c← e(1/ϵ), c′ ← ϵ

end if
for each new day j s.t. x + fj < 1 do

/* Primal Update

fj ← 1− x

x← (1 + 1
B )x + 1

(c−1)·B
/* Dual Update

yj ← c′

end for

In the following we assume that either ϵB or B/ϵ is an integer (depending on whether c equals
e(ϵ) or e(1/ϵ) respectively in Algorithm 5). Our results do not change qualitatively by rounding
up to the closest integer.

Theorem 12.1 (PDLA for ski rental). For any ϵ ∈ (0, 1], the cost of PDLA for ski rental is
bounded as follows

cost
PDLA

(I, Npred, ϵ) ≤ min
{

ϵ

1− e(−ϵ) · S(Npred, I), 1
1− e(−ϵ) ·OPT(I)

}

Theorem 12.1 is proved using similar arguments to the proof of Theorem 11.1 for the weighted set
cover problem. The robustness bound follows essentially using the same proof as for the original
analysis of Algorithm 4 in [18] and for the consistency bound we just calculate the total primal
increase. We first prove an easy lemma about the feasibility of the dual solution.

Lemma 12.2. Let y be the dual solution built by Algorithm 5. Then y is a feasible solution
(assuming B

ϵ is integral if the prediction suggests to rent).

Proof. To see this, note that the only constraint that might by violated is the constraint∑
j∈[N ] yj ≤ B. Denote by S the value of the sum

∑
j∈[N ] yj . Note that once x ≥ 1, the

value of S will never change anymore. The value of S increases by 1 for every big update and
by ϵ for every small update. In the case Npred > B, the algorithm always does big updates (the
prediction suggest to buy). We claim that at most ⌈ϵB⌉ big updates can be made before x ≥ 1.
We denote x(k) the value of x after k updates. We then prove by induction that x(k) ≥ e(k/B)−1

e(ϵ)−1
(recall that e(z) = (1 + 1/B)z·B ≈ ez). Clearly, if k = 0, we have x(0) ≥ 0. Now assume this is
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the case for k updates we then have

x(k + 1) =
(

1 + 1
B

)
· x(k) + 1

(e(ϵ)− 1) ·B

≥
(

1 + 1
B

)
· e(k/B)− 1

e(ϵ)− 1 + 1
(e(ϵ)− 1) ·B

= (1 + 1/B) · (e(k/B)− 1) + 1/B

e(ϵ)− 1

= e((k + 1)/B)− 1
e(ϵ)− 1

which ends the induction. Hence at most ⌈ϵB⌉ ≤ B big updates can be made before x ≥ 1.
This implies that S ≤ B at the end of the algorithm. In the case where Npred ≤ B, we prove
in exactly the same way that at most

⌈
B
ϵ

⌉
updates are performed before x ≥ 1. Hence we have

that S ≤ ϵ ·
⌈

B
ϵ

⌉
. By assumption, we have that B/ϵ is an integer hence S ≤ 1 and y is again

feasible.

We can now prove Theorem 12.1

Proof. We prove first the robustness bound. By Lemma 12.2, we know that the dual solution is
feasible. Hence what remains to prove is to upper bound the ratio ∆P

∆D and use weak duality. In
the case of a big update we have

∆P

∆D
= ∆P = 1 + 1

e(ϵ)− 1 = 1
1− e(−ϵ)

In the case of a small update we have

∆P

∆D
= ∆P

ϵ
= 1

ϵ
· 1

1− e(−1/ϵ) ≤
1

1− e(−ϵ)

where the last inequality comes from Lemma B.1 inequality (B.1). By weak duality, we have the
robustness bound.

To prove consistency, we have two cases. If Npred ≤ B, then Algorithm 5 does at most N updates,
each of cost at most 1

1−e(−1/ϵ) while the prediction A pays a cost of N . Noting again that, by
Lemma B.1, 1

1−e(−1/ϵ) ≤
ϵ

1−e(−ϵ) ends the proof of consistency in this case. The other case is
different. As in the proof of Lemma 12.2, we still have that x(k) ≥ e(k/B)−1

e(ϵ)−1 hence at most
⌈ϵB⌉ ≤ B updates are done by Algorithm 5, each of cost at most 1

1−e(−ϵ) hence a total cost of at
most

⌈ϵB⌉
1− e(−ϵ)

Since we assume in this case that ϵB is integral and that the prediction A pays a cost of B, the
competitive ratio is indeed ϵ

1−e(−ϵ)

In addition to recovering the positive results of [80], we additionally show in Lemma 12.3 that
this consistency-robustness trade-off is optimal.

53



Chapter 12 PDLA in action

Lemma 12.3. Any ϵ
1−e−ϵ -consistent learning-augmented algorithm for ski rental has robustness

R(ϵ) ≥ 1
1−e−ϵ

Proof. For simplicity, we will consider the ski rental problem in the continuous case which
corresponds to the behaviour of the discrete version when B −→ ∞. In this problem, the cost
of buying is 1 and a randomized algorithm has to define a (buying) probability distribution
{pt}t≥0. Moreover, consider the case where the true number of vacation days tend ∈ [0, 1]∪ (2,∞).
In such a case we can assume w.l.o.g. that pt = 0,∀t > 1. Indeed moving buying probability
mass from any pt, t > 1 to p1 does not increase the cost of the randomized algorithm. Assume
now that the prediction suggests us that the end of vacations is at t̂end > 2, thus the optimal
offline solution, if the prediction is correct, is to buy the skis in the beginning for a total cost
of 1. Since the algorithm has to define a probability distribution in [0, 1], {pt} needs to satisfy
the equality constraint

∫ 1
0 ptdt = 1. Moreover, note that when the prediction is correct, i.e.

tend > 2, the LA algorithm suffers an expected cost of
∫ 1

0 (t + 1)ptdt while the optimum offline
has a cost of 1. Thus the consistency requirement forces the distribution to satisfy the inequality∫ 1

0 (t + 1)ptdt ≤ ϵ
1−e−ϵ . Now assume that the best possible LA algorithm is c-robust. If tend ≤ 1

then the LA algorithm’s cost is
∫ tend

0 (t + 1)ptdt + tend
∫ 1

tend
ptdt while the optimum offline cost is

tend. Thus, due to c-robustness we have that for every t′ ∈ [0, 1],
∫ t′

0 (t + 1)ptdt + t′ ∫ 1
t′ ptdt ≤ ct′.

We calculate the best possible robustness c with the following LP:

Figure 12.2: Primal Robustness for ski rental problem.

Primal
minimize c

subject to:
∫ 1

0 ptdt = 1∫ 1
0 (t + 1)ptdt ≤ ϵ

1−e−ϵ∫ t′

0 (t + 1)ptdt + t′ ∫ 1
t′ ptdt ≤ ct′ ∀t′ ∈ [0, 1]

pt ≥ 0 ∀t′ ∈ [0, 1]

To lower bound the best possible robustness c we will present a feasible solution to the dual
of Figure 12.2. The dual variables ϵd and ϵc correspond respectively to the first and second
primal constraints in Figure 12.2. The dual variables ϵt, ∀t ∈ [0, 1] correspond to the robustness
constraints described in the third line of the primal.

The corresponding dual is:

Figure 12.3: Dual Robustness for ski rental problem.

Dual
maximize ϵd − ϵc · ϵ

1−e−ϵ

subject to:
∫ 1

0 tϵtdt ≤ 1
ϵd − (t′ + 1)ϵc ≤

∫ t′

0 tϵtdt + (t′ + 1)
∫ 1

t′ ϵtdt ∀t′ ∈ [0, 1]
ϵc, ϵt ≥ 0 ∀t ∈ [0, 1]

Let K = 1
1−ϵe−ϵ−e−ϵ . Then, ϵt = K · e−t · 1{t ≤ ϵ} , ϵd = K and ϵc = K · e−ϵ.
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We first prove that this dual solution is feasible. For the first constraint notice that∫ 1

0
tϵtdt = K ·

∫ ϵ

0
te−tdt = K ·

(
1− (ϵ + 1)e−ϵ

)
= 1

For the second type of constraint first in the case t′ > ϵ we get∫ t′

0
tϵtdt + (t′ + 1)

∫ 1

t′
ϵtdt =

∫ ϵ

0
tϵtdt = 1

and we note that

ϵd − (t′ + 1)ϵc ≤ ϵd − (ϵ + 1)ϵc = K ·
(
1− (ϵ + 1)e−ϵ

)
= 1

hence these constraints are satisfied.

In the second case t′ ≤ ϵ, we have that

∫ t′

0
tϵtdt + (t′ + 1)

∫ 1

t′
ϵtdt = K ·

(∫ t′

0
te−tdt + (t′ + 1)

∫ ϵ

t′
e−tdt

)
= K ·

(
1− (t′ + 1)e−t′

+ (t′ + 1)(e−t′
− e−ϵ)

)
= K ·

(
1− (t′ + 1)e−ϵ

)
= ϵd − (t′ + 1)ϵc

which proves that these constraints are also satisfied. Hence this dual solution is feasible. Finally
note that the cost of this dual solution is

ϵd − ϵc ·
ϵ

1− e−ϵ
= K ·

(
1− ϵ

1− e−ϵ
· e−ϵ

)
= K · 1− e−ϵ − ϵe−ϵ

1− e−ϵ
= 1

1− e−ϵ

By weak duality, we conclude that the best robustness cannot be better than 1
1−e−ϵ
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12.2 Dynamic TCP acknowledgement

Primal
minimize

∑
t∈T xt +

∑
j∈M

∑
t|t≥t(j)

1
dfjt

subject to: fjt +
∑t

k=t(j) xk ≥ 1 ∀j, t ≥ t(j)

fjt ≥ 0 ∀j, t ≥ t(j)
xt ≥ 0 ∀t ∈ T

Dual
maximize

∑
j∈M

∑
t|t≥t(j) yjt

subject to:
∑

j|t≥t(j)
∑

t′≥t yjt ≤ 1 ∀t ∈ T

0 ≤ yjt ≤ 1
d ∀j, t ≥ t(j)

Figure 12.4: Primal dual formulation of the TCP
acknowledgement problem

In this section, we continue by applying PDLA
to a classic network congestion problem of the
Transmission Control Protocol (TCP). During
a TCP interaction, a server receives a stream
of packets and replies back to the sender ac-
knowledging that each packet arrived correctly.
Instead of sending an acknowledgement for
each packet separately, the server can choose
to delay its response and acknowledge multi-
ple packets simultaneously via a single TCP
response. Of course, in this scenario there is
an additional cost incurred due to the delayed
packets, which is the total latency incurred by
those packets. Thus, on one hand sending too
many acknowledgments (acks) overloads the
network, on the other hand sending one ack
for all the packets slows down the TCP interaction. Hence a good trade-off has to be achieved
and the objective function which we aim to minimize will be the sum of the total number of
acknowledgements plus the total latency. The problem was first modeled by Dooly et al. [35],
where they showed how to solve the offline problem optimally in quadratic time along with a
deterministic 2-competitive online algorithm. Karlin et al. [60] provided the first e

e−1 -competitive
randomized algorithm which was later shown to be optimal by Seiden in [83]. The problem
was later solved using the primal-dual method by Buchbinder et al. [18] who also obtained an

e
e−1 -competitive algorithm. Figure 12.4 presents the primal-dual formulation of the problem.
In this formulation each packet j arrives at time t(j) and is acknowledged by the first ack sent
after t(j). Here, variable xt corresponds to sending an ack at time t and fjt is set to one (in the
integral solution) if packet j was not acknowledged by time t. The time granularity is controlled
by the parameter d and each additional time unit of latency comes at a cost of 1/d. As in the ski
rental problem, there is no integrality gap and a fractional monotone solution can be converted
to a randomized algorithm in a lossless manner (see [18] for more details).

PDLA for TCP ack: Our prediction consists in a collection of times A in which the prediction
suggests sending an ack. Let α(t) be the next time t′ ≥ t when prediction sends an ack. With
this definition each packet j, if the prediction is followed blindly, is acknowledged at time α(t(j))
incurring a latency cost of (α(t(j))− t(j)) · 1

d . In the same spirit as for the ski rental problem
we adapt the pure online Algorithm 6 into the learning-augmented Algorithm 7. Algorithm 7
adjusts the rate at which we increase the primal and dual variables according to the prediction
A. Thus if a packet j at time t is “uncovered” (

∑t
k=t(j) xk + fjt < 1) by our fractional solution

and “covered” by A (α(t(j)) ≤ t) we increase xt at a faster rate. To simplify the description of
Algorithm 7 we define e(z) = (1 + 1

d )z·d. To get to the continuous time case, we will take the
limit d→∞ so the reader should think intuitively as e(z) ≈ ez. In addition, we will call big and
small updates, the updates where z is set to ϵ and 1/ϵ respectively.

We continue by presenting the guarantees of Algorithm 7 together with their proof. As before, I
denotes the TCP ack problem instance which is revealed in an online fashion.
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Algorithm 6 Primal-Dual method for
TCP acknowledgement [18].

Initialize: x← 0, y ← 0
for all times t do

for all packages j such that∑t
k=t(j) xk < 1 do
c←− e(1), c′ ←− 1/d
/* Primal Update
fjt ← 1−

∑t
k=t(j) xk

xt ← xt + 1
d ·
(∑t

k=t(j) xk + 1
c−1

)
/* Dual Update
yjt ← c′

end for
end for

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒

Algorithm 7 PDLA for TCP acknowledge-
ment

Input: ϵ, A
Initialize: x← 0, y ← 0
for all times t do

for all packages j such that
∑t

k=t(j) xk < 1 do
if t ≥ α(t(j)) then

/* Prediction already acknowledged packet j

c←− e(ϵ), c′ ←− 1/d
else

/* Prediction did not acknowledge packet j yet
c←− e(1/ϵ), c′ ←− ϵ/d

end if
/* Primal Update
fjt ← 1−

∑t

k=t(j) xk

xt ← xt + 1
d
·
(∑t

k=t(j) xk + 1
c−1

)
/* Dual Update
yjt ← c′

end for
end for

Theorem 12.4 (PDLA for TCP ack). For any prediction A, any instance I of the TCP ack
problem, any parameter ϵ ∈ (0, 1], and d→∞: Algorithm 7 outputs a fractional solution of cost
at most cPDLA(I,A, ϵ) ≤ min

{
ϵ

1−e−ϵ · S(A, I), 1
1−e−ϵ ·OPT(I)

}
We first analyze the consistency of Algorithm 7. To this end, denote by nA the number of
acknowledgements sent by A and by latency (A) the latency paid by the prediction A.

Lemma 12.5. For any ϵ ∈ (0, 1], d > 0,

cost
PDLA

(I,A, ϵ) ≤ nA ·
1
d
· ⌈ϵd⌉

1− e(−ϵ) + latency(A) · 1
1− e(−1/ϵ)

Proof. We will use a charging argument to analyze the performance of Algorithm 7. Note that
for a small update, the increase in cost of the fractional solution is

∆P = 1
d

1−
t∑

k=t(j)

xk

+ 1
d
·

 t∑
k=t(j)

xk + 1
e(1/ϵ)− 1

 = 1
d
· 1

1− e(−1/ϵ)

However, for every small update that is made, it must be that the prediction A pays a latency of at
least 1

d . Hence the total cost of small updates made by Algorithm 7 is at most latency(A)· 1
1−e(−1/ϵ) .

Secondly we bound the total cost of big updates of our algorithm. Let t0 be a time at which
A sends an acknowledgment. Let Y be the set of big updates made because of jobs j that are
acknowledged at time t0 by A (these big updates are hence made at some time t ≥ t0). We claim
that |Y | ≤ ⌈ϵd⌉.
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To prove this denote by S(l) the value of
∑+∞

k=t0
xk after l such big updates (there might be small

updates influencing this value but only to make it bigger). Notice that once
∑+∞

k=t0
xk ≥ 1 there

is no remaining update in Y . We prove by induction that

S(l) ≥ (1 + 1/d)l − 1
(1 + 1/d)ϵd − 1

This is clear for l = 0 as S(0) ≥ 0. Now assume this is the case for some value l and apply a big
update at time t for job j to get

S(l + 1) = S(l) + 1
d
·

 t∑
k=t(j)

xk + 1
e(ϵ)− 1


≥ S(l) · (1 + 1/d) + 1

d(e(ϵ)− 1)

= (1 + 1/d)l+1 − 1− 1/d

(1 + 1/d)ϵd − 1 + 1/d

(e(ϵ)− 1)

= (1 + 1/d)l+1 − 1− 1/d

(1 + 1/d)ϵd − 1 + 1/d

(1 + 1/d)ϵd − 1

= (1 + 1/d)l+1 − 1
(1 + 1/d)ϵd − 1

Where the second inequality comes from noting that since we are considering an update due to
a request j acknowledged at time t0 by the predicted solution, it must be that t(j) ≤ t0 and∑t

k=t(j) xk ≥
∑t

k=t0
xk. Hence we get that S (⌈ϵd⌉) ≥ 1 which implies that |Y | ≤ ⌈ϵd⌉.

By a similar calculation as for the small update case, we have that the cost of a big update is

∆P = 1
d
· 1

1− e(−ϵ)

Hence the total cost of these updates in Y is charged to the acknowledgement that A pays at
time t0 to finish the proof.

Taking the limit d→ +∞, noting that S(A, I) = nA + latency(A) and using Equation (B.1) from
Lemma B.1 we get the following corollary:

Corollary 12.1. For any ϵ ∈ (0, 1] and taking d→ +∞, we have that

cost
PDLA

(I,A, ϵ) ≤ nA ·
ϵ

1− e−ϵ
+ latency(A) · 1

1− e−1/ϵ
≤ ϵ

1− e−ϵ
· S(A, I)

We then prove robustness of Algorithm 7 with the following lemmas.

Lemma 12.6. Let y be the dual solution produced by Algorithm 7. Then y
1+1/d is feasible.
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Proof. Notice that the constraints of the second type (i.e. 0 ≤ yjt ≤ 1/d) are always satisfied
since 0 < ϵ ≤ 1. We now check that the second constraints are almost satisfied (within some
factor (1 + 1/d)). Fix a time t ∈ T and consider the corresponding constraint:∑

j|t≥t(j)

∑
t′≥t

yjt ≤ 1

Note that for a small update for some job j such that t(j) ≤ t the sum above increases by ϵ/d

while it increases by 1/d for a big update. Notice that once we have that
∑

t′≥t xt′ ≥ 1, no more
such update will be performed. Denote by S the value of this sum.

Notice that for a big update, the sum S becomes
(
1 + 1

d

)
· S + 1

d((1+1/d)ϵd−1) . Similarly, for a
small updates it becomes

(
1 + 1

d

)
· S + 1

d((1+1/d)d/ϵ−1) .

Hence, if we denote by s the number of small updates in this sum and by b the number of big
updates, by Lemma B.2 we have that if ϵs + b ≥ d then

∑
t′≥t xt′ ≥ 1. This directly implies that

the value of
∑

j|t≥t(j)
∑

t′≥t yjt is at most 1 + 1/d at the end of the algorithm (each update in
the dual is of value at most 1/d).

Therefore scaling down all yjt by a multiplicative factor of 1 + 1/d yields a feasible solution to
the dual.

Lemma 12.7. For d→ +∞, Algorithm 7 outputs a solution of cost at most 1
1−e−ϵ ·OPT(I)

Proof. We first compare the increase ∆P in the primal value to the increase ∆D in the dual
value at every update. We claim that for every update we have

∆P

∆D
≤ 1

1− e(−ϵ)

In the case of a big update we directly have ∆P = 1
d

(
1 + 1

e(ϵ)−1

)
= 1

d ·
1

1−e(−ϵ) and ∆D = 1
d .

In the case of a small update we have ∆D = ϵ
d and ∆P = 1

d

(
1 + 1

e(1/ϵ)−1

)
= 1

d ·
1

1−e(−1/ϵ) and
we conclude applying Lemma B.1 (inequality (B.2)) that we always have

∆P

∆D
≤ 1

1− e(−ϵ)

By lemma 12.6, y
1+1/d is a feasible solution. Hence taking d→ +∞ together with the previous

remark and weak duality we get the result.

Combining Corollary 12.1 and Lemma 12.7 yields Theorem 12.4.

59



Chapter 12 PDLA in action

12.3 The Bahncard problem
To further emphasize the generality of PDLA , we apply the same ideas to a generalization of
the ski rental problem, namely, the Bahncard problem [43]. This problem models a situation
where a tourist travels every day multiple trips. Before any new trip, the tourist has two choices,
either to buy a ticket for that particular trip at a cost of 1 or buy a discount card, at a cost of B,
that allows to buy tickets at a cheaper price of β < 1. The discount card remains valid during T

days. Note that ski rental is modeled by taking β = 0 and T −→∞. Karlin et al. [60] designed an
optimal randomized online algorithm of competitive ratio e

e−1+β when B −→∞.

PDLA for the Bahncard problem: In the learning-augmented version of the problem we
are given a prediction A which consists in a collection of times where we are advised to acquire
the discount card. Using PDLA, we design a learning-augmented algorithm for the Bahncard
problem with the guarantees of Theorem 12.8. An interesting feature of our algorithm is that,
as for the TCP ack problem, it does not need to be given the full prediction in advance. If
Bahncards are bought by the prediction A at a set of times {t1, t2, . . . , tk}, the algorithm does
not need to know before time ti that the Bahncard i is bought. For instance we could think of
the prediction of an employee of the station giving short-term advice to a traveller every time he
shows up at the station.

Theorem 12.8. [PDLA for the Bahncard problem] For any ϵ ∈ (0, 1], any β ∈ [0, 1] and
B

1−β −→∞, we have the following guarantees on any instance I and prediction A

cost
PDLA

(I,A, ϵ) ≤ min
{

ϵ

1− β + ϵβ
· eϵ − β

eϵ − 1 · S(A, I), eϵ − β

eϵ − 1 ·OPT(I)
}

We now give the primal dual formulation of the Bahncard problem along with its corresponding
learning-augmented algorithm. We mention that, to the best of our knowledge, no online algorithm
using the Primal-Dual method was designed before. Hence the primal-dual formulation (Figure
12.5) of the problem is new. In an integral solution, we would have xt = 1 if the solution buys a
Bahncard at time t and xt = 0 otherwise. Then fj represents the fractional amount of trip j

done at time t(j) that is bought at full price and dj the amount of the trip bought at discounted
price. The first natural constraint is the one that says that each trip should be paid entirely
either in discounted or full price, i.e. dj + fj ≥ 1. We then have the constraint

∑t(j)
t=t(j)−T xt ≥ dj

that says that to be able to buy a ticket at discounted price, at least one Bahncard must have
been bought in the last T time steps.

Figure 12.5: Primal dual formulation of the Bahncard problem.

Primal Dual
minimize B ·

∑
t∈T xt +

∑
j∈M βdj + fj maximize

∑
j∈M cj

subject to: dj + fj ≥ 1 ∀j subject to: cj ≤ 1 ∀j∑t(j)
t=t(j)−T xt ≥ dj ∀j cj − bj ≤ β ∀j
xt ≥ 0 ∀t ∈ T

∑
j:t(j)−T ≤t≤t(j) bj ≤ B ∀t ∈ T

dj , fj ≥ 0 ∀j cj , bj ≥ 0 ∀j

Following the same idea as for the ski rental and the TCP ack problem, we will guide the
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updates in the primal-dual algorithm with the advice provided. We define a function e(z) =(
1 + 1−β

B

)z·(B/(1−β))
. Again for B

1−β →∞, the reader should think intuitively of e(z) as ez. The
parameter z will then take values either ϵ or 1/ϵ depending on if we want to do a big or small
update in the primal. As for ski rental, when we do a small update, we will need to scale down
the dual update by a factor of ϵ to maintain feasibility of the dual solution.

The rule to decide if an update should be big or small is the following: if the prediction A bought
a Bahncard less than T time steps in the past (i.e. if the predicted solution has currently a valid
Bahncard) the update should be big. Otherwise the update should be cautious. In Algorithm 8,
we denote by lA(t) the latest time before time t at which the prediction A bought a Bahncard.
We use the convention that lA(t) = −∞ if no Bahncard was bought before time t. Of course
in this problem it is possible that trips show up while the fractional solution already has a full
Bahncard available (i.e.

∑t(j)
t=t(j)−T xt ≥ 1). In this case there is no point in buying more fractions

of a Bahncard and the algorithm will do what we call a minimal update.

Algorithm 8 PDLA for the Bahncard problem
Input: ϵ, A
Initialize: x, d, f ← 0, c, b← 0
for all trip j do

if
∑t(j)

t=t(j)−T xt ≥ 1 then
dj ← 1
cj ← β

end if
if
∑t(j)

t=t(j)−T xt < 1 then
if t(j) ≤ lA(t(j)) + T then

dj ←
∑t(j)

t=t(j)−T xt

fj ← 1− dj

xt(j) ← xt(j) + 1−β
B ·

(∑t(j)
t=t(j)−T xt + 1

e(ϵ)−1

)
bj ← 1− β

cj ← bj + β

end if
if t(j) > lA(t(j)) + T then

dj ←
∑t(j)

t=t(j)−T xt

fj ← 1− dj

xt(j) ← xt(j) + 1−β
B ·

(∑t(j)
t=t(j)−T xt + 1

e(1/ϵ)−1

)
bj ← ϵ(1− β)
cj ← bj + β

end if
end if

end for

We first prove that the dual built by the algorithm is almost feasible.

Lemma 12.9. Let (c, b) be the dual solution built by Algorithm 8, then (c,b)
1+(1−β)/B is feasible.

Proof. Note that the constraints cj ≤ 1 and cj − bj ≤ β are clearly maintained by Algorithm 8.
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And scaling down both c and b by some factor bigger than 1 will not alter their feasibility. Hence
we focus only on the constraints of the form

∑
j:t(j)−T ≤t≤t(j) bj ≤ B for a fixed time t. Note that

during a minimal update, the value of bj is not changed hence only small or big updates can
alter the value of the sum

∑
j:t(j)−T ≤t≤t(j) bj . Similarly as for proofs in ski rental, denote by b

the number of big updates that are counted in this sum and by s the number of small updates in
this sum.

We first notice that once we have that
∑t+T

t′=t xt′ ≥ 1, no updates that alter the constraint∑
j:t(j)−T ≤t≤t(j) bj can happen. To see this, note that upon arrival of a trip j between time t

and t + T , we have
∑t(j)

t=t(j)−T xt ≥
∑t(j)

t′=t xt′ =
∑t+T

t′=t xt′ .

Denote by S the value of the sum
∑t+T

t′=t xt′ . Note that for a big update, we have that the value
of the sum S is increased to at least S ·

(
1 + 1−β

B

)
+ 1−β

B · 1
e(ϵ)−1 . Similarly for a small update

the new value of the sum is at least S ·
(

1 + 1−β
B

)
+ 1−β

B · 1
e(1/ϵ)−1 . Hence we can apply directly

Lemma B.2 with d = B
1−β to conclude that once b + ϵs ≥ B

1−β , we have that S ≥ 1.

Since for a big update, the sum
∑

j:t(j)−T ≤t≤t(j) bj increases by 1− β and by ϵ(1− β) for a small
update we can see that the first time the constraint

∑
j:t(j)−T ≤t≤t(j) bj ≤ B is violated, we have

S ≥ 1. Now since each update in the sum
∑

j:t(j)−T ≤t≤t(j) bj is of value at most 1− β we can
conclude that at the end of the algorithm, we have

∑
j:t(j)−T ≤t≤t(j) bj ≤ B + 1 − β hence the

conclusion.

We then prove robustness of Algorithm 8 by the following lemma.

Lemma 12.10 (Robustness). For any ϵ ∈ (0, 1] and any β ∈ [0, 1], PDLA for the Bahncard
problem is (e(ϵ)−β)·(1+(1−β)/B)

e(ϵ)−1 -robust.

Proof. Algorithm 8 makes 3 possible types of updates. For a minimal update, we have ∆P =
∆D = β. For a small update we have

∆P = (1− β) ·

 t(j)∑
t=t(j)−T

xt + 1
e(1/ϵ)− 1

+ β ·
t(j)∑

t=t(j)−T

xt + 1−
t(j)∑

t=t(j)−T

xt

= 1 + 1− β

e(1/ϵ)− 1 = e(1/ϵ)− β

e(1/ϵ)− 1

and
∆D = ϵ(1− β) + β = β(1− ϵ) + ϵ

hence the ratio is
∆P

∆D
= 1

β(1− ϵ) + ϵ
· e(1/ϵ)− β

e(1/ϵ)− 1
Similarly in the case of a big update we have

∆P = e(ϵ)− β

e(ϵ)− 1
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and ∆D = 1 which gives a ratio of
∆P

∆D
= e(ϵ)− β

e(ϵ)− 1
We can conclude by Lemma B.1 (inequality (B.6)) that the ratio of primal cost increase vs dual
cost increase is always bounded by

∆P

∆D
≤ e(ϵ)− β

e(ϵ)− 1
Using Lemma 12.9 along with weak duality is enough to conclude that the cost of the fractional
solution built by the algorithm is bounded as follows

cost
PDLA

(I,A, ϵ) ≤ (e(ϵ)− β) · (1 + (1− β)/B)
e(ϵ)− 1 ·OPT(I)

which ends the proof.

For consistency, we analyze the algorithm’s cost in two parts. When the heuristic algorithm A
buys its ith Bahncard at some time ti, define the interval Ii = [ti, ti + T ] which represents the set
of times during which this specific Bahncard is valid. This creates a family of intervals I1, . . . Ik

if A buys k Bahncards. Note that we can assume that all these intervals are disjoint since if the
prediction A suggests to buy a new Bahncard before the previous one expires, it is always better
to postpone this buy to the end of the validity of the current Bahncard.

Lemma 12.11. Denote by (∆P )Ii
the increase in the primal cost of Algorithm 8 during interval

Ii and by cost(A)Ii
what prediction A pays during this same interval Ii (including the buy of the

Bahncard at the beginning of the interval Ii). Then, for all i we have

(∆P )Ii

cost(A)Ii

≤

⌈
ϵ · B

1−β

⌉
B + β ·

⌈
ϵ · B

1−β

⌉ · e(ϵ)− β

e(ϵ)− 1

Proof. Assume that m trips are requested during this interval Ii. Then we first have that
cost(A)Ii = B + βm (A buys a Bahncard then pays a discounted price for every trip in the
interval Ii).

As for Algorithm 8, for each trip j, we are possibly in the first two cases: either
∑t(j)

t=t(j)−T xt ≥ 1
in which case the increase in the primal is ∆P = β or in the second case in which case the increase
in the primal is

∆P = (1− β) ·

 t(j)∑
t=t(j)−T

xt + 1
e(ϵ)− 1

+ β ·
t(j)∑

t=t(j)−T

xt + 1−
t(j)∑

t=t(j)−T

xt = 1 + 1− β

e(ϵ)− 1

We claim that the updates of the second case can happen at most
⌈
ϵ · B

1−β

⌉
times during interval

Ii. To see this, denote by S(l) the value of
∑

t′≥ti
xt′ after l big updates in interval Ii. Note that

once
∑

t′≥ti
xt′ ≥ 1, big updates cannot happen anymore. Hence all we need to prove is that

S
(⌈

ϵ · B
1−β

⌉)
≥ 1.
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We prove by induction that
S(k) ≥ e(k · (1− β)/B)− 1

e(ϵ)− 1

This is indeed true for k = 0 as S(0) is the value of
∑

t′≥ti
xt′ before any big update was made in

Ii hence S(0) ≥ 0. Now assume this is the case for some k and compute

S(k + 1) ≥
(

1 + 1− β

B

)
· S(k) + 1− β

B
· 1

e(ϵ)− 1

≥

(
1 + 1−β

B

)
· (e(k · (1− β)/B)− 1) + 1−β

B

e(ϵ)− 1

≥ e((k + 1) · (1− β)/B)− 1
e(ϵ)− 1

which concludes the induction.

Hence on interval Ii, the total increase in the cost of the solution can be bounded as follows

(∆P )Ii
≤ min

{⌈
ϵ · B

1− β

⌉
, m

}
·
(

1 + 1− β

e(ϵ)− 1

)
+ max

{
0,

(
m−

⌈
ϵ · B

1− β

⌉)}
· β

One can see that the worst case possible for the ratio (∆P )Ii

cost(A)Ii

is obtained for m =
⌈
ϵ · B

1−β

⌉
and is bounded by

(∆P )Ii

cost(A)Ii

≤

⌈
ϵ · B

1−β

⌉
·
(

1 + 1−β
e(ϵ)−1

)
B + β ·

⌈
ϵ · B

1−β

⌉ =

⌈
ϵ · B

1−β

⌉
B + β ·

⌈
ϵ · B

1−β

⌉ · e(ϵ)− β

e(ϵ)− 1

We then consider times t that do not belong to any interval Ii. More precisely, we upper bound
the value (∆P )j that is the increase in cost of the primal solution due to trip j such that t(j)
does not belong to any interval Ii. Note that in this case the prediction always pays a cost of 1.

Lemma 12.12. For any trip j such that t(j) /∈
⋃

i Ii, we have that

(∆P )j ≤
e(1/ϵ)− β

e(1/ϵ)− 1

Proof. Note that Algorithm 8 pays either the cost of a small update which is e(1/ϵ)−β
e(1/ϵ)−1 or the cost

of a minimal update which is β.

For simplicity and better readability, the main theorem regarding the Bahncard problem is
formulated for B

1−β →∞.
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Theorem 12.8. [PDLA for the Bahncard problem] For any ϵ ∈ (0, 1], any β ∈ [0, 1] and
B

1−β −→∞, we have the following guarantees on any instance I and prediction A

cost
PDLA

(I,A, ϵ) ≤ min
{

ϵ

1− β + ϵβ
· eϵ − β

eϵ − 1 · S(A, I), eϵ − β

eϵ − 1 ·OPT(I)
}

Proof. By taking the limit in Lemma 12.10, we see that the cost of the solution output by
Algorithm 8 is at most eϵ−β

eϵ−1 ·OPT which proves the second bound in the theorem.

For the first bound, note that we can write the final cost of the solution as

costPDLA(A, I, ϵ) = ∆P =
∑

i

(∆P )Ii
+

∑
j:t(j)/∈

⋃
i

Ii

(∆P )j

By taking the limit in Lemma 12.11 we get that∑
i

(∆P )Ii
≤ ϵ

1− β + βϵ
· eϵ − β

eϵ − 1 ·
∑

i

cost(A)Ii

and by taking the limit in Lemma 12.12, we get that

∑
j:t(j)/∈

⋃
i

Ii

(∆P )j ≤
e1/ϵ − β

e1/ϵ − 1 ·
∑

j:t(j)/∈
⋃

i
Ii

cost(A)j

By using Lemma B.1 (inequality (B.5)), we see that

max
{

ϵ

1− β + βϵ
· eϵ − β

eϵ − 1 ,
e1/ϵ − β

e1/ϵ − 1

}
= ϵ

1− β + βϵ
· eϵ − β

eϵ − 1

which ends the proof.

We finish this section by proving that a fractional solution can be rounded online into a randomized
integral solution. The expected cost of the rounded instance will be equal to the cost of the
fractional solution. Even if the rounding is very similar to the existing rounding of Buchbinder
et al. [18] for ski rental or TCP acknowledgement, we still include it here for completeness as the
Bahncard problem was never solved in a primal-dual way. The argument is summarized in the
following lemma.

Lemma 12.13. Given a fractional solution (x, d, f) to the Bahncard problem, it can be rounded
online into an integral solution of expected cost equal to the fractional cost of (x, d, f).

Proof. Choose some real number p uniformly at random in the interval [0, 1]. Then arrange the
variables xt on the real line (i.e. iteratively as follows, each time t takes an interval It of length
xt right after the interval taken by xt−1). Then buy a Bahncard at every time t such that the
interval corresponding to time t contains the real number p + k for some integer k. We check first
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that the expected buying cost is

B ·
∑

t

E (1p+k∈It
) = B ·

∑
t

xt

Next, to compute the total expected price of the tickets, notice that if a ticket was bought in the
previous T time steps, we can pay a discounted price, otherwise we need to pay the full price of
1. For a trip j, the probability that a ticket was bought in the previous T time steps is at least∑t(j)

t=t(j)−T xt. Hence with probability at least
∑t(j)

t=t(j)−T xt ≥ dj we pay a price of β and with
probability 1− dj ≤ fj we pay a price of 1 which ends the proof.
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13 Experiments

In this chapter, we present experimental results that confirm the theoretical analysis of Algorithm
7 for the TCP acknowledgement problem. The code is publicly available at https://github.
com/etienne4/PDLA. We experiment on various types of distribution for packet arrival inputs.
Historically, the distribution of TCP packets was often assumed to follow some Poisson distribution
([74, 86]). However, it was later shown than this assumption was not always representative of
the reality. In particular real-world distributions often exhibit a heavy tail (i.e. there is still
a significant probability of seeing a huge amount of packets arriving at some time). To better
integrate the latter property into models, heavy tailed distributions such as the Pareto distribution
are often suggested (see for instance [48, 78]). This motivates our choice of distributions for
random packet arrival instances. We will experiment on Poisson distribution, Pareto distribution
and a custom distribution that we introduce and seems to generate the most challenging instances
for our algorithms.

Input distributions. In all our instances, we set the subdivision parameter d to 100 which
means that every second is split into 100 time units. Then we define an array of length 1000
where the i-th entry defines how many requests arrive at the i-th time step. Each entry in the
array is drawn independently from the others from a distribution D. In the case of a Poisson
distribution, we set D = P(1) (the Poisson distribution of mean 1). For the Pareto distribution,
we choose D to be the Lomax distribution (which is a special case of Pareto distribution) with
shape parameter set to 2 [30]. Finally, we define the iterated Poisson distribution as follows. Fix
an integer n > 0 and µ > 0. Draw X1 ∼ P(µ). Then for i from 2 to n draw Xi ∼ P (Xi−1). The
final value returned is Xn. This distribution, while still having an expectation of µ, appears to
generate more spikes than the classical Poisson distribution. The interest of this distribution in
our case is that it generates more challenging instances than the other two (i.e., the competitive
ratios of the online algorithms are closer to the worst-case bounds). In our experiments, we
choose µ = 1 and n = 10. Note that for all these distributions, the expected value for each
entry is 1. Plots of typical instances under these laws can be seen in Figure 13.1, Figure 13.2
and Figure 13.3.

Noisy prediction. The prediction A is produced as follows. We perturb the real instances with
noise, then compute an optimal solution on this perturbed instance and use this as a prediction.
More precisely, we introduce a replacement rate p ∈ [0, 1]. Then we go through the instance
generated according to some distribution D and for each each entry at index 1 ≤ i ≤ 1000, with
probability p we set this entry to 0 (i.e. we delete this entry) and with probability p we add
to this entry a random variable Y ∼ D. Both operations, adding and deleting, are performed
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Figure 13.1: Typical instance under Poisson distribution
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Figure 13.2: Typical instance under Pareto distribution
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Figure 13.3: Typical instance under iterated Poisson distribution
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independently of each other. We then test Algorithm 7 with 4 different values of the robustness
parameter ϵ ∈ {1, 0.8, 0.6, 0.4}.

Results. The plots in Figure 13.4 present the average competitive ratios of Algorithm 7 over
10 experiments for each distribution and each value of ϵ. As expected, with a perfect prediction,
setting a lower ϵ will yield a much better solution while setting ϵ = 1 simply means that we run the
pure online algorithm of Buchbinder et al. [18] (that achieves the best possible competitive ratio
for the pure online problem). On the most challenging instances generated by the iterated Poisson
distribution (Figure 13.4c), even with a replacement rate of 1 where the prediction is simply an
instance totally uncorrelated to the real instance, our algorithm maintains good guarantees for
small values of ϵ. We note that in all the experiments the competitive ratios achieved by Algorithm
7 are better than the robustness guarantees of Theorem 12.4, which are {1.58, 1.68, 2.21, 3.03} for
ϵ ∈ {1, 0.8, 0.6, 0.4} respectively. In addition to that, all the competitive ratios degrade smoothly
as the error increases which confirms our earlier discussion about smoothness.
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(c) Iterated Poisson distribution

Figure 13.4: Competitive ratios under various distributions and replacement rates from 0 to 1
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14 Overview and related work

14.1 Introduction
Clustering is a fundamental problem in unsupervised learning. In clustering one is interested
in partitioning the input elements so that similar elements are grouped together and different
elements are assigned to different clusters. A natural way to capture this notion is the classic
correlation clustering problem. Thanks to its simple and elegant formulation, the correlation
clustering problem received a lot of attention from the theory and applied communities and it has
found many practical applications including finding clustering ensembles [16], duplicate detection
[6], community mining [22], disambiguation tasks [57], automated labelling [1, 20] and many
more.

Formally, in the correlation clustering problem [11] we receive as input a weighted graph, where
positive edges represent similarities between nodes and negative edges represent dissimilarities
between them. The goal is to find a partitioning of the input graph so that the sum of the weights
of the negative edges inside clusters and the positive edges between clusters is minimized. The
problem is NP-hard and several approximation algorithms have been proposed for it.

For arbitrary weights a O(log n) approximation algorithm is known [31]. While, when we focus on
the cases where all edges have weights in {−1, +1} for a long time the best known algorithm [21]
had an approximation guarantee of 2.06 until a recent breakthrough [26] where Cohen-Addad et
al. designed a 1.94 + ϵ-approximation algorithm 1.

Since real world datasets continuously evolve in time, the design of approximation algorithms
that maintain a good solution over time is becoming a central question in machine learning.
Unfortunately, classic approximation algorithms often are either unpractical or they return very
unstable solutions on dynamic datasets. In particular, the clustering returned by the algorithm
may drastically change over time, potentially leading to inconsistent decisions. For this reason
a lot of attention has been devoted in the past few years in designing efficient and consistent
clustering algorithms for evolving datasets [27, 42, 49, 56, 65]. In this part of the thesis, we
study the correlation clustering problem in the online setting. In this setting, nodes arrive one at
the time and with them also their clustering preferences to the previously disclosed nodes are
revealed, or in other words the set of positive and negative edges to the nodes that have already
arrived. The algorithm has to assign a cluster to every node at its arrival and this assignment
cannot change in the course of the algorithm.

1Note also that there is also a version of the problem [11] where the objective is to maximize the number of
positive edges whose both endpoints are in the same cluster plus the number of negative edges across clusters.
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Unfortunately this setting is too restrictive and in fact it has been shown [75] that any algorithm
for the online correlation clustering problem has at least Ω(n) competitive ratio. Intuitively, this
is true because if the first edge that is revealed is a positive edge then one cannot distinguish
the case that this edge is part of a large clique or is the only bridge between two cliques. To get
beyond this negative result, the problem has been studied in settings where the arrival order of
vertices is not completely adversarial. When vertices arrive in a random order Ailon et al. [2]
show that the Pivot algorithm is 3-competitive and in the semi-online model [67] where a random
fraction of the instance is revealed in advance and Pivot still obtains a constant approximation.
One main shortcoming of these results is that they make a strong assumption on the arrival order
and for that reason they may not provide any guarantee in real world scenarios.

To overcome this limitation, in this thesis we consider the correlation clustering problem in the
online model with recourse. In this model, nodes and edges are still revealed in an online fashion
but the algorithm can re-assign nodes to different clusters after each arrival. The goal in this
setting is to minimize the number of cluster re-assignments executed by the algorithm while
still maintaining a constant factor approximation. From a practical perspective, this setting is
interesting because it captures well the cases where changing the clustering assignment is possible
but expensive. This is for example the case when the output clustering is used as input in a
machine learning pipeline and so re-assigning points requires re-training. From a theoretical
perspective, this setting allows us to study formally the trade-off between stability of the solution
and quality of approximation. For these reasons other classic clustering problems were studied in
this setting [27, 42, 49, 65].

14.2 Our contributions
Our first contribution is to design an algorithm that has logarithmic recourse per node and that
maintains a constant approximation to the correlation clustering problem at any point in time.
Our algorithm is different from previous algorithms for correlation clustering in the online setting
and draws inspiration from a recent result in the setting of parallel algorithms for correlation
clustering [28]. From a very high level perspective the main idea behind the algorithm is to track
the dense structure in the graph in an approximate sense by carefully designing lazy updates of
the clustering.

We then present a lower bound showing that any algorithm that maintains a constant approxima-
tion to the optimal solution has to incur at least logarithmic recourse per node.

Finally, we complement our theoretical results with an experimental analysis showing that our
algorithm produces at the same time solutions that are stable and of high-quality. In particular,
when compared with the Pivot algorithm, suggested by previous work [2, 67] in the classical
online setting, we notice that our algorithm produces solutions that are substantially more stable
and of higher quality.

14.3 Problem definition
For completeness we repeat the notation which was introduced in Chapter 2. The disagreements
minimization version of the correlation clustering problem receives as input a complete signed
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undirected graph G = (V, E, s) where each edge e = {u, v} is assigned a sign s(e) ∈ {+,−} and
the goal is to find a partition of the vertexes such that the number of ′−′ edges inside the same
cluster and ′+′ edges in between clusters is minimized. For simplicity we denote the set of ′+′

and ′−′ edges by E+ and E− respectively. It is convenient to represent a solution to the problem,
namely a clustering of the vertices of the graph, using an assignment function f : V −→ Z; Then,
the clustering induced by f is a partition of the nodes C = {C1, C2, . . . , Ck} such that two nodes
u, v belong to the same partition, i.e., cluster Ci, if and only if f(u) = f(v), or in other words,
they are assigned the same cluster id. Given a partition function f and a clustering C induced by
f we slightly abuse notation and denote by f(C) the common cluster id of all nodes in cluster
C ∈ C. Hence, the cost of an algorithm ALG which computes an assignment function f or the
clustering induced by the latter is equal to:

cost(f) =
∑

{u,v}∈E+

f(u)̸=f(v)

1 +
∑

{u,v}∈E−

f(u)=f(v)

1

In the online setting nodes arrive one at a time, revealing upon arrival all the edges to previously
arrived nodes. An instance of the online correlation clustering problem can be described by a pair
I = (G, σ) where G is the final graph and σ is an order on the vertices of G: σ = ⟨v1, v2, . . . , v|V |⟩.
For any 0 ≤ t ≤ |V |, let Vt = ⟨v1, v2, . . . , vt⟩ be the set of the first t nodes in the order σ. We
refer to these nodes as the nodes that have arrived until time t, and we refer to vt as the node
arriving at time t. We let Gt be the signed subgraph of G induced by Vt with the sign induced by
s on the edges whose both endpoints are in Vt. We also denote by fOP T

t an assignment function
which induces an optimal correlation clustering solution for graph Gt. Note that the solution of
an algorithm ALG on an online instance I can be described as a sequence of assignment functions
f1, f2, . . . , f|V |, denoted for simplicity by f1,2,...,|V |. The recourse of a node u, r(u), that arrived
at time t is the number of times the assignment function sequence changes the cluster id assigned
to u. That is r(u) =

∑
t′>t 1{ft′−1(u) ̸= ft′(u)}. The recourse of an algorithm is the worst case

recourse over all instances I and nodes u.

In the classical online setting decisions are irrevocable and the recourse of an algorithm should
be 0, however due to strong impossibility results [75] it turns out that one cannot achieve at the
same time a competitive ratio of O(|V |) and 0 recourse. Thus, the goal of this part is to design
an algorithm with O (log (|V |)) recourse which maintains a constant factor approximate solution
at all times, i.e., an algorithm which computes f1,2,...,|V | such that cost(ft) ≤ Θ(1) · cost(fOP T

t ),
∀t ∈ {1, 2, . . . , |V |} for all instances . Despite the fact that we are not in the classical online
setting we will slightly abuse notation and say that such an algorithm is a constant competitive
algorithm.
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The goal of this chapter is to present our algorithm along with a proof sketch of its guarantees.
The full proofs are quite technical and we present them in Chapter 16, hence the proof sketch
of this chapter serves as a warm-up which will hopefully give the reader a clear intuition of our
algorithm. At the end of the chapter we also prove that these guarantees are tight up to constant
factors.

15.1 The Agreement algorithm
Our algorithm uses as a subroutine the static algorithm introduced in [28]; we refer to this algo-
rithm as the Agreement algorithm. The latter algorithm achieves a constant factor approximation
for the correlation clustering problem by partitioning the graph so that all non-trivial clusters
are dense, i.e., any node u with positive degree d has at least (1− ϵ)d ′+′ edges to nodes of the
same cluster. At a high level, the Agreement algorithm uses a filtering procedure which ensures
that two nodes with similar ′+′ neighborhoods will end in the same cluster. As the Agreement
algorithm is a central ingredient of our algorithm and our analysis depends on its properties,
we present it in Algorithm 9. In the following, NG′(u) depending of whether G′ is a signed or
unsigned graph will either denote the positive neighborhood or just the neighborhood of node
u respectively. Given a signed graph Gt, the Agreement algorithm is executed on the graph
G = (V (Gt), E+(Gt)) and makes use of the following definitions.

Definition 15.1. Two nodes u, v are in ϵ-agreement in G if

|NG(u)△NG(v)| < ϵ max{|NG(u)|, |NG(v)|}

where the symbol △ denotes the symmetric difference of two sets.

Definition 15.2. A node u is light if it is in ϵ-agreement with less than an ϵ fraction of its
neighborhood.

15.2 Online Agreement algorithm
Before we describe our algorithm, we introduce some notation. Let Ct be the clustering of Gt

induced by the assignment function ft. A cluster is called singleton if it contains a single node.
We denote by S(Ct) the set of nodes that belong to a singleton cluster in Ct. Respectively, we use
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Algorithm 9 Agreement
1: Input: A signed graph G′, and a parameter ϵ
2: Output: A clustering C of G′

3: Initialize: G←− E+(G′), Ĝ←− E+(G′)
4: Step 1: Remove all edges of Ĝ whose endpoints are not in ϵ-agreement in G.
5: Step 2: Remove all edges of Ĝ whose endpoints are both light.
6: Step 3: Compute the connected components C̃ of Ĝ.
7: return C̃

H(Ct) to denote the set of nodes that belong to a non-singleton cluster in Ct. At a high-level
our algorithm performs lazy cluster-assignment updates. Namely, at each time t, our algorithm
re-runs the Agreement algorithm (which produces an O(1)-approximate solution for graph Gt)
and only updates the cluster ids of the vertices that joined a different (non-singleton) cluster at
time t compared to the clustering at time t− 1. A final rule changes the ids of clusters that have
grown in size by a constant factor. We use C̃t to refer to the clustering produced by running the
Agreement algorithm on Gt, and f̃t to refer to the assignment function that induces C̃t. Similarly,
we use f̃t(C) to refer to the unique cluster id of a cluster C ∈ C̃t.

Evolving clusters: We keep track of clusters that evolve over time. Each evolving cluster is
associated with a unique cluster id. The life-cycle of a cluster starts whenever a cluster id is seen
for the first time, and it ends whenever no node uses the cluster id anymore. We monitor the
growth of each evolving cluster using the following definition.

Definition 15.3 (Origin cluster). Let ID be a cluster id that is used by the assignment function
ft, and let tmin be the minimum t for which ID is used by ftmin . The origin cluster of ID,
denoted by Origin(ID), is the cluster with id ID in the clustering induced by ftmin

.

Once a cluster C ∈ Ct becomes a constant factor larger in size compared to the origin cluster
with the same id, we assign a fresh id to C ∩H(C̃t) (hence making C ∩H(C̃t) the origin cluster
of that fresh id). We do this so that we can later bound the competitive ratio of the clusters that
we output.

Algorithm description: Our Online Agreement (Agree-On) algorithm is described in details
in Algorithm 10. At a high-level, the algorithm has three main phases which are executed for
every node-arrival.

• Offline re-clustering phase: We run the Agreement algorithm on Gt. Let C̃t be the resulting
clustering and f̃t be the assignment function inducing C̃t.

• Initial assignment phase: This phase combines C̃t−1, C̃t as well as the previously maintained
clustering Ct−1 to produce Ct. First, it assigns a new unique id to the newly arrived node
vt, if {vt} is a singleton cluster of C̃t. Then it applies the following three rules to set the ids
of all nodes (except possibly vt):

– Rule 1: For each non-singleton cluster C ∈ C̃t if there exists a non-singleton intersecting
cluster C ′ ∈ C̃t−1 then assign the cluster id of ft−1(C ′) to all nodes in C. This essentially
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identifies C and C ′ to be part of the same evolving cluster. We exploit structural
properties to show that any non-singleton cluster C ∈ C̃t intersects at most one
non-singleton cluster C ′ ∈ C̃t−1.

– Rule 2: For each non-singleton cluster C ∈ C̃t that consists entirely of nodes that
were in singleton clusters of C̃t−1 (but not necessarily in singleton clusters of Ct−1),
and potentially the newly arrived node, do the following. If there is a cluster C ′ ∈ Ct−1
containing the majority of the nodes in C, then C gets the same cluster id as C ′;
otherwise C receives a new unique cluster id and C becomes the origin cluster of that
id.

– Rule 3: ensures that each singleton cluster in C̃t retains its previous cluster id.

At the end of this phase, for each non-singleton cluster C ∈ C̃t we have assigned the id
of a cluster C ′ ∈ Ct to all nodes in C. This assignment induces a mapping from ids of
non-singleton clusters C ∈ C̃t to ids of non-singleton clusters C ′ ∈ Ct; we represent this
mapping using the assignment function ϕt.

• Assignment refinement phase: After forming an initial clustering of Ct, this phase identifies
clusters C ∈ C̃t that are significantly larger compared to the size of their origin cluster with
id ϕt(f̃t(C)). Such clusters become new origin clusters and receive a new unique cluster id.

The crux of our algorithm is the combination of the notion of origin clusters together with f̃t,
f̃t−1, and ft−1. Before presenting some useful structural properties of our algorithm, we show that
the algorithm is well defined; that is, we argue that for any time t, Ct indeed forms a partition of
Vt. We start from the fact that C̃t is a partition of Vt. Each non-singleton cluster of C ∈ C̃t is
assigned an id by either Rule 1 or Rule 2, since C consists of nodes that form singleton clusters
of C̃t−1 and at most one non-singleton cluster C ′ ∈ C̃t−1 intersecting C. All singleton clusters of
C̃t are assigned an id by Rule 3; if vt is a singleton cluster in C̃t, then it is assigned an id right
before the main loop of the algorithm.

In Chapter 16 we prove several properties of our algorithm with respect to the assignment
functions f̃t, ft. We mention these properties here so that the proof sketch is clear.

1. Let C be a non-trivial cluster of C̃t. Then, at time t all nodes of C are assigned the same
cluster id in ft. This is ensured by Rule 1 and Rule 2.

2. Let C, C ′ be two non-trivial clusters of C̃t. Then, ft assigns to all nodes in cluster C a
cluster id that is distinct from the one assigned to the nodes in C ′.

3. Let C be a non-trivial cluster of C̃t, we denote by SC
t = {v ∈ S(C̃t) : ft(v) = ft(C)} the set

of nodes which do not belong to C but are clustered together with C in Ct. Note that for
every node u for which it holds ft(u) = ft(C) belongs to C ∪ SC

t .

15.3 Proof sketch
To simplify our proof sketch we make the following simplifying assumption regarding the structure
of C̃t.

Assumption 15.1. Let C ∈ C̃t be a non-trivial cluster and let u ∈ C. Node u has, in Gt, at
least (1− ϵ)|C| positive edges to nodes in C and at most ϵ|C| positive edges to nodes outside C.
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Algorithm 10 Online Agreement (Agree-On)
1: Input: An online instance I = (G, σ), a parameter ϵ
2: Output: An assignment function sequence f1,2,...,|V |
3: Initialization: G−1 ←− ∅, IDnext ←− 0
4: on arrival of vt do
5: Gt ←− Gt−1 ∪ {vt}
6: C̃t ←− Agreement(Gt, ϵ)
7: if vt ∈ S(C̃t) then
8: Origin(IDnext)←− {vt}
9: IDnext ←− IDnext + 1

10: end if
11: for all C ∈ C̃t s.t. |C| > 1 do
12: //* Rule 1:
13: if ∃ C ′ ∈ C̃t−1 s.t. C ∩ C ′ ̸= ∅, |C ′| > 1 then
14: for u ∈ C do ft(u)←− ft−1(C ′) endfor
15: end if
16: //* Rule 2:
17: if C \ vt ⊆ S(C̃t−1) then
18: if ∃C ′ ∈ Ct−1 s.t. |C ′ ∩ C| > |C|/2 then
19: for u ∈ C do ft(u)←− ft−1(C ′) endfor
20: else
21: for u ∈ C do ft(u)←− IDnext endfor
22: Origin(IDnext)←− C
23: IDnext ←− IDnext + 1
24: end if
25: end if
26: end for
27: //* Rule 3:
28: for all u ∈ S(C̃t) \ vt do ft(u)←− ft−1(u) endfor
29: //* Store ϕt

30: for all C ∈ C̃t s.t. |C| > 1 do
31: ϕt(f̃t(C))←− ft(C)
32: end for
33: //* Assignment refinement phase
34: Let C′ be the current clustering induced by ft.
35: for all C ∈ C̃t s.t. |C| > 1 do
36: Let C ′ ∈ C′ be the cluster s.t. C ⊆ C ′.
37: if |C| ≥ (3/2)|Origin(ft(C ′))| then
38: for u ∈ S(C̃t) do ft(u)←− IDnext endfor
39: IDnext ←− IDnext + 1
40: Origin(IDnext)←− C
41: end if
42: end for
43: end on

Bounding the competitive ratio: We give an overview on how we prove that cost(ft) ≤
Θ(cost(fOP T

t )). We do this by proving cost(ft) ≤ Θ(cost(f̃t)), which combined with the fact that
cost(f̃t) ≤ Θ(cost(fOP T

t )) implies the constant competitive ratio of our algorithm.

For convenience, we use E+(X, Y ) (resp., E−(X, Y )) to denote the edges in E+(Gt) ∩ (X × Y )
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(resp., E−(Gt) ∩ (X × Y )).

The proof consists of two parts. First, we prove that the cost incurred on ft by the edges on
nodes in S(f̃t) is bounded by Θ(cost(fOP T

t )). Then, we move to showing that the cost incurred
on ft by the edges on nodes in H(f̃t) is also Θ(cost(fOP T

t )).

We first sketch the first part of the proof. Notice that the cost incurred on ft for the edges of a
node u ∈ S(f̃t) is only larger than the cost incurred on f̃t for the edges of u if ft clusters u in a
non-singleton cluster C. Fix a cluster C ∈ Ct. We bound |E−(C, C)| by Θ(|E+(S(f̃t) ∩ C, Vt)|).
To do so, we prove that C is not much larger than its origin cluster and that further it holds
that |E+(u, C)| ≥ Θ(|C|) for each u ∈ S(f̃t) ∩ C. The latter is proved by using properties of the
clusters generated by the Agreement algorithm.

Now we move to sketching the second part of the proof. Let C1, C2, . . . , Ck be the set of non-
singleton clusters of C̃t, then ft and f̃t disagree exactly on SC1

t , SC2
t , . . . , SCk

t . Fix a specific pair
C, SC

t , and note that for this pair:

1. f̃t pays |E+(C ∪ SC
t , Vt \ C ∪ SC

t )|+ |E+(C, SC
t )|+ |E−(C, C)|.

2. ft pays |E+(C ∪ SC
t , Vt \ C ∪ SC

t )|+ |E−(C, SC
t )|+ |E−(SC

t , SC
t )|

Combining this, with the first part of the proof, we get that cost(ft) is at most: ∑
C∈C̃t:|C|>1

|E−(C, SC
t )|+ |E−(SC

t , SC
t )|

+ Θ(cost(f̃t))

≤

 ∑
C∈C̃t:|C|>1

|SC
t ||C|+ |SC

t |2

+ Θ(cost(f̃t))

and,

cost(f̃t) ≥
∑

C∈C̃t:|C|>1

|E+(C, SC
t )|

To conclude, we are left to argue that |SC
t ||C| + |SC

t |2 = Θ(|E+(C, SC
t )|) for any non-trivial

cluster C ∈ C̃t.

Let C ∈ C̃t be a cluster whose nodes get assigned cluster id after f̃t(C).

Note that the assignment refinement phase, takes an initial version of Ct and if there is a cluster
C ∈ C̃t that is significantly larger than Origin(ft(C)), then all nodes in C receive a new cluster
id in Ct and the origin cluster of the newly formed cluster is set to be C. At a high level the
assignment refinement phase, forces a cluster of ft to remain as similar as possible to its origin
cluster. For simplicity here we make the following assumption.

Assumption 15.2. Let C ′ ∈ C̃t′ and C ∈ C̃t be two non-singleton clusters, for t′ < t. If
they are part of the same evolving cluster (i.e., if ϕt′(f̃t′(C ′)) = ϕt(f̃t(C))), then |C ′ ∩ C| ≥
(1/2) max{|C ′|, |C|}.
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We start by lower bounding the number of positive edges between nodes in SC
t and nodes in

C, i.e., |E+(C, SC
t )|. Note that any node u ∈ SC

t must have been part of a non-trivial cluster
C ′ ∈ C̃t′ s.t. ϕt′(f̃t′(C ′)) = ϕt(f̃t(C)), for some time t′ < t. Hence, from Assumption 15.2 we
get that |C ∩ C ′| ≥ (1/2) max{|C|, |C ′|}. Moreover, from Assumption 15.1 we know that node u

has at least (1− ϵ)|C ′| positive edges inside C ′. Combining the latter two facts we can conclude
that node u has at least (1/2 − ϵ)|C| edges shared with nodes in C. Thus, |E+(C, SC

t )| ≥
|SC

t |(1/2− ϵ)|C|. Combining the latter with the trivial upper bound |E+(C, SC
t )| ≤ |SC

t ||C| we
get that |E+(C, SC

t )| = Θ(1)|SC
t ||C|.

To conclude the proof it suffices to show that |SC
t | = Θ(1)|C|. From Assumption 15.1 we have

that positive edges between nodes in C and nodes outside C are at most ϵ|C|2. On the other
hand, we just argued that |E+(C, SC

t )| ≤ Θ(1)|SC
t ||C|. By combining these two facts we get that

Θ(1)|SC
t ||C| < ϵ|C|2 and consequently |SC

t | ≤ Θ(1)|C|.

Bounding the recourse: At a high level, the recourse is at most O(log|V |) because, roughly
speaking, whenever a node changes cluster id then the size of the origin cluster corresponding
to the new cluster id is a multiplicative factor larger than the size of the origin cluster which
corresponds to the old cluster id. The proof of the latter is given in Section 16.4.

15.4 Lower bound
In this section we present an online correlation clustering instance where any algorithm that
achieves constant competitive ratio requires Ω(log|V |) recourse, in the worst case.

Let c ≥ 1 be a constant. Initially our instance reveals two nodes u, v with a positive edge between
them. The rest of the node arrival sequence works in logarithmically many phases. Our instance
forces any c-competitive algorithm ALG to behave as follows. At odd phases ALG clusters u, v

together while at even phases it clusters u, v separately. Let r be the total number of phases,
then note that such a construction forces either u or v to have a recourse of at least r/4.

Lemma 15.3. Let c ≥ 1 be a constant. Any online algorithm for the correlation clustering
problem with a competitive ratio smaller than c has a recourse of Ω(log|V |).

Proof. For a simpler description, we are using an unsigned graph to describe our construction.
The actual signed instance is constructed by replacing every existing edge with a ′+′ edge and
every missing edge between two already revealed nodes with a ′−′ edge.

We use two main gadgets: 1) cliques Cs
u,v of size s whose nodes are connected to both u and v,

and 2) cliques Cs
u (resp., Cs

v) of size s whose nodes are all connected to u (resp., v). We note
that different cliques share no edge between them.

Initially, our adversarial node arrival sequence reveals the two base nodes. At that point any
algorithm with a bounded competitive ratio connects the two nodes since the optimum solution
has cost 0.

In phase 0, our adversarial sequence reveals a pair of cliques C2c
u , C2c

v . Note that the optimal
solution clusters u with C2c

u in a single cluster and v with C2c
v in a second cluster, achieving a
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total cost of 1 (the positive edge between the base nodes). Any solution that clusters u, v together
costs at least 2c as any splitting of the two clusters leaves at least 2c − 1 inter-clusters edges
while merging the two clusters costs Ω(c2). Thus, any algorithm with a competitive ratio less
than c splits the nodes u, v to two clusters.

In phase 1, our sequence reveals a clique C
(2c)3

u,v . The optimal solution costs 2 · 2c and is achieved
by clustering u, v, C

(2c)3

u,v in the same cluster and each other clique into a separate cluster. Notice
that any splitting of the cluster C

(2c)3

u,v leaves at least (2c)3 − 1 inter-clusters edges. Hence, any
c-competitive online algorithm clusters u, v together with clique C

(2c)3

u,v , otherwise it costs at least
(2c)3 − 1 > c · 4c = c · cost(fOP T ).

Following the same pattern, at even phases i our sequence reveals the pair of cliques C
(2c)3i

u and
C

(2c)3i

v forcing any c-competitive algorithm to cluster u and v separately, while at odd phases i

our sequence reveals the clique C
(2c)3i

u,v forcing any c-competitive algorithm to cluster u and v

together.

We next prove the claim for even and odd phases separately. First, assume i is even. At the end
of phase i, the optimum solution clusters v with C

(2c)3i

v in a single cluster, u with C
(2c)3i

u into a
second cluster, and every other clique into a separate cluster on its own. The above clustering
has a cost of 2 ·

(
((2c)3 + (2c)6 + · · ·+ (2c)3(i−1)). Any algorithm where u, v are in the same

cluster has a cost of (2c)3i > c · 2 ·
(
((2c)3 + (2c)6 + · · ·+ (2c)3(i−1)) ≥ c · cost(fOP T ). Thus, any

c-competitive online algorithm assigns u and v to different clusters.

Next, assume i is odd. At the end of phase i, the optimum solution is formed by clustering u,
v, and C

(2c)3i

u,v together and every other clique into a separate cluster on its own. The above
clustering has a cost of 2 ·

(
((2c)3 + (2c)6 + · · ·+ (2c)3(i−1)). Any algorithm where u, v are in

different clusters has a cost of (2c)3i > c · 2 ·
(
((2c)3 + (2c)6 + · · ·+ (2c)3(i−1)) ≥ c · cost(fOP T ).

Thus, any c-competitive online algorithm clusters u and v together.

Let r be the number of phases . Given that every 2 phases, u, v are clustered together and then
separately again, at least one of u, v needs to increase its recourse by at least 1. Thus, after r

rounds, one of u, v incurs a recourse of at least r/4.

To end the proof let the last phase r be an odd round, then the total number of nodes is
|V | = 2 + 2 · 2c + (2c)3 + 2 · (2c)6 + (2c)9 + ... + (2c)3r < 2 · (2c)3r+1 < (2c)3r+2. Thus,
r = Ω(log|V |/ log c) which concludes the proof.
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16 Main proof

This chapter is devoted in proving that the Online Agreement algorithm has a constant competitive
ratio and achieves a logarithmic (in the number of nodes) recourse. In all the subsequent sections
we will convert, for simplicity, a complete undirected signed graph G′ = (V, E′, s) into a non-signed
undirected graph G = (V, E) where for each pair of nodes {u, v} there is an edge between them
in G if and only if s ({u, v}) =′ +′. Thus the absence of an edge between two nodes corresponds
to a negative edge in the original signed graph and the presence of an edge to a positive edge in
the original graph. Note that the correlation clustering cost of an assignment function f and the
clustering C induced by f becomes:

cost(f) =
∑

{u,v}∈E
f(u)̸=f(v)

1 +
∑

{u,v}̸∈E
f(u)=f(v)

1

16.1 Properties of the Agreement algorithm
In this section we redefine the Agreement algorithm 9 presented in Chapter 15 in order to take
as input a non-signed graph instead of a signed one. Thus, when we refer to the Agreement
algorithm we will refer to Algorithm 11.

Algorithm 11 Agreement
1: Input: A graph G, and a parameter ϵ
2: Output: A clustering C of G
3: Initialize: Ĝ←− G

4: Step 1: Remove all edges of Ĝ whose endpoints are not in ϵ-agreement in G.
5: Step 2: Remove all edges of Ĝ whose endpoints are both light.
6: Step 3: Compute the connected components C of Ĝ.
7: return C

In addition, we will restate some useful definitions and lemmas from [28] regarding the Agreement
algorithm and prove some additional structural properties of the clustering produced by the
latter. For simplicity, we set both parameters λ, β of the Agreement algorithm to be λ = β = ϵ.
We will denote the clustering computed by the Agreement algorithm on a graph G as C̃ and by f̃

the assignment function that induces the latter clustering1.

1Note that a clustering may be induced by many different assignment functions, but two different clusterings
cannot be induced by the same assignment function.
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A cluster C ∈ C̃ will be called non-trivial/non-singleton if |C| ≥ 2 and singleton/trivial otherwise.
In addition, we will denote by fOPT the assignment function that induces the optimal correlation
clustering solution OPT of a graph G.

As a direct consequence of Definition 15.1 and Definition 15.2 we have that:

Proposition 16.1. If u, v are in ϵ-agreement then |NG(u)∩NG(v)| ≥ (1−ϵ)max{|NG(u)|, |NG(v)|}

Note that the latter proposition also implies that nodes which are in ϵ-agreement have similar
degrees.

Proposition 16.2. If u, v are in ϵ-agreement then (1− ϵ)|NG(u)| ≤ |NG(v)| ≤ |NG(u)|
1−ϵ

An important property of clustering C̃ which will permit us to bound the approximation ratio
of our solution, is that its cost constitutes a constant factor approximation to the cost of the
optimal correlation clustering. That is:

Lemma 16.1 (rephrased from [28]). Let C̃ = Agreement(G, ϵ) then for ϵ small enough cost(f̃) ≤
Θ(1) cost(fOPT).

The following lemmas prove that the non-trivial clusters of C̃ form dense subgraphs in the initial
graph G with a small number of outgoing edges.

Lemma 16.3 (rephrased from [28]). Let C be a non-trivial cluster of C̃ and u a node which
belongs to C. Then |NG(u) ∩ C| ≥ (1− 9ϵ)|C|.

Lemma 16.4 (rephrased from [28]). Let C be a non-trivial cluster of C̃ and u, v two nodes which
belong to C. Then u and v are in an 5ϵ-agreement. If, in addition, there exists a node w ∈ C

such that both u, v are in ϵ-agreement with w then u and v are in an 3ϵ-agreement.

Note that by combining the latter Lemma 16.4 with Propositions 16.1 and 16.2 we can conclude
that nodes in the same cluster C ∈ C̃ have similar neighborhoods.

While Lemma 16.3 proves that the size of the intersection of a node’s neighborhood NG(u) with
the cluster C to which it belongs is lower bounded by (1 −Θ(ϵ))|C| the following lemma also
proves that it is lower bounded by (1−Θ(ϵ))|NG(u)|.

Lemma 16.2. Let C be a non-trivial cluster of C̃ then for a small enough constant ϵ it holds
that:

1. If |C| ≥ 10 then every node in C has at least a (1− 3ϵ)-fraction of its edges in G to nodes
in C.

2. If |C| < 10 then nodes in C form a clique with no outgoing edges in G.

Proof. In this proof, we will heavily rely on the structure of Ĝ, the intermediate graph used by
the Agreement algorithm. To that end, note that any cluster C ∈ C̃ corresponds to a connected
component of Ĝ. In addition, note that to derive Ĝ from G the Agreement algorithm deletes
edges between light nodes, thus any non-trivial cluster of C̃ (which corresponds to a connected
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component of Ĝ) contains at least one heavy node and any light node is connected in Ĝ (and
consequently in ϵ-agreement) with at least one heavy node of the same cluster. We prove the first
part of the lemma by distinguishing between two cases, i.e. if u is heavy or if u is a light node.
If u is a heavy node of C then by definition u is in ϵ-agreement with at least an (1− ϵ) fraction
of its neighborhood. Consequently, since edges between a heavy and a light node are not deleted,
|NG(u) ∩ C| ≥ (1− ϵ)|NG(u)|.
If u is light then let v ∈ NĜ(u) ∩ C be a heavy neighboring node with whom u is in ϵ-agreement.
Since u and v are in an ϵ-agreement from Proposition 16.1 we get that:

|NG(u) ∩NG(v)| ≥ (1− ϵ) max{|NG(u)|, |NG(v)|} ⇒ (1)
|(NG(u) ∩ C) ∩ (NG(v) ∩ C)|+ |(NG(u) \ C) ∩ (NG(v) \ C)| ≥ (1− ϵ) max{|NG(u)|, |NG(v)|} ⇒ (2)
|(NG(u) ∩ C) ∩ (NG(v) ∩ C)| ≥ (1− ϵ) max{|NG(u)|, |NG(v)|} − |(NG(u) \ C) ∩ (NG(v) \ C)| ⇒ (3)
|NG(u) ∩ C| ≥ (1− ϵ) max{|NG(u)|, |NG(v)|} − |NG(v) \ C| ⇒ (4)
|NG(u) ∩ C| ≥ (1− ϵ) max{|NG(u)|, |NG(v)|} − ϵ|NG(v)| ⇒ (5)

|NG(u) ∩ C| ≥ (1− ϵ)|NG(u)| − ϵ

1− ϵ
|NG(u)| ⇒ (6)

|NG(u) ∩ C| ≥ (1− 3ϵ)|NG(u)| (7)

Where:

1. from line (4) to line (5) we used the fact that node v is heavy , hence the set of nodes with
which v is not in ϵ-agreement (a) is a superset of NG(v) ∩ C; and (b) is at most ϵ|NG(v)|;

2. from line (5) to line (6) we used that since u, v are in ϵ-agreement, from proposition 16.2
we get that NG(v) ≤ NG(u)

1−ϵ ; and

3. from line (6) to line (7) we use that (1− ϵ− ϵ
1−ϵ ) > (1− 3ϵ) holds for ϵ small enough.

We proceed into proving the second part of the lemma. Note that from the first part of the
lemma we get that for every node u ∈ C, |NG(u)| ≤ |C|

1−3ϵ . In order to prove that C forms a
clique, assume towards a contradiction that there exist two nodes u, v ∈ C such that there is no
edge (u, v) in G. W.l.o.g. we can assume that u, v have a common neighbor in Ĝ (otherwise no
pair of nodes which belong to C would have a common neighbor and C would be empty) and
consequently from lemma 16.4 they are in an 3ϵ-agreement. Thus, we get:

|NG(u)△NG(v)| ≤ 3ϵ max{|NG(u)|, |NG(v)|} ≤ 3ϵ
|C|

1− 3ϵ
< 1 (16.1)

which is a contradiction for all ϵ < 1/31 whenever |C| ≤ 9.
Now, it remains to prove that whenever |C| ≤ 9 there is no outgoing edge in G from a node in
C to a node which is not in C. By using NG(u) ≤ |C|

1−3ϵ we can deduce that whenever |C| ≤ 9
and ϵ < 1/31 we have |NG(u)| = |C|. The latter together with the fact that any two nodes
u, v ∈ C have an edge between them is enough to deduce that NG(u) = C and C has no outgoing
edges.

At that point it is important to recapitulate all the lemmas concerning non-trivial clusters of C̃
and their consequences. To that end, let u, v be two nodes which belong to the same non-trivial
cluster C of C̃, then for ϵ small enough the following properties hold.
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Property 1 |NG(u) ∩ C| ≥ (1− 3ϵ)|NG(u)|

Property 2 |NG(u) \ C| < 3ϵ|NG(u)|

Property 3 |C| ≥ (1− 3ϵ)|NG(u)|

Property 4 |NG(u) ∩ C| ≥ (1− 9ϵ)|C|

Property 5 |C \NG(u)| < 9ϵ|C|

Property 6 |NG(u)| ≥ (1− 9ϵ)|C|

Property 7 |NG(u) ∩NG(v)| ≥ (1− 5ϵ) max{|NG(u)|, |NG(v)|}

Property 8 |NG(v)|(1− 5ϵ) ≤ |NG(u)| ≤ |NG(v)|
1−5ϵ

Property 9 |C \NG(u)| < 9ϵ|C| < 9ϵ
1−9ϵ |NG(u)|

Property 10 |NG(u) \ C| < 3ϵ|NG(u)| < 3ϵ
1−3ϵ |C|

Property 11 NG(u) ∩NG(v) ̸= ∅

Note that Properties 2, 3, 5, 6, 9, 10, 11 are straightforward consequences of Properties 1, 4, 7, 8
which are stated in the lemmas and propositions of this section.

16.2 Dynamic analysis of the clustering sequence C̃1, C̃2, . . .

The Agreement algorithm computes at any new arrival of a node ut a clustering C̃t of graph Gt.
In the subsequent sections we will bound the competitive ratio of our solution and the worst
case recourse of any node. To bound the competitive ratio we prove that our solution at time t,
induced by the assignment function ft, is close to the solution C̃t induced by f̃t. To bound the
recourse we will ensure that for any node u most of the time it holds that ft(u) = ft−1(u). Thus
it is clear that for the latter two facts to be approximately true we need f̃t ≈ f̃t−1 which, at a
high level, is equivalent to prove that the structure of C̃t is similar to the structure of C̃t−1. The
current section is devoted to prove the latter. At an intuitive level the lemmas presented in this
section prove that:

1. A node which belongs to a non-trivial cluster of C̃t−1 will either belong to the same non-
trivial cluster in C̃t or it will form a trivial cluster in C̃t. Thus, a node cannot change
non-trivial clusters in consecutive rounds.

2. Two non-trivial clusters of C̃t−1 cannot merge in C̃t.

3. A cluster in C̃t−1 cannot split in two or more non-trivial clusters in C̃t.

Lemma 16.3. Let ϵ be a small enough constant and C and C ′ be non-trivial clusters of C̃t−1
and u, v two nodes in C, C ′ respectively. In C̃t, u and v cannot belong to the same cluster.

Proof. Assume towards a contradiction that u, v belong to the same cluster of C̃t. Then both C and
C ′ should have been large clusters with more than 9 nodes, as otherwise from Lemma 16.2 we have
that in Gt, u and v have at most 1 common neighbor (the newly arrived node). This, contradicts
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Property 7 since |NGt
(u) ∩NGt

(v)| ≥ (1− 5ϵ) max{|NGt
(u)|, |NGt

(v)|} ≥ (1− 5ϵ) · 2 > 1 for ϵ

small enough.
Thus, both C and C ′ have at least 10 nodes each. Given that C ∩ C ′ = ∅, we can upper
bound |NGt−1(u) ∩NGt−1(v)| by |NGt−1(u) \ C| + |NGt−1(v) \ C ′| which (by Property 2) is
less than 3ϵ(|NGt−1(u)| + |NGt−1(v)|) < 6ϵ max{|NGt−1(u)|, |NGt−1(v)|}. In addition, we have
|NGt

(u) ∩ NGt
(v)| ≤ |NGt−1(u) ∩ NGt−1(v)| + 1 and by Property 7 |NGt

(u) ∩ NGt
(v)| ≥ (1 −

5ϵ) max{|NGt
(u)|, |NGt

(v)|}, By combining the upper and lower bounds on |NGt
(u) ∩NGt

(v)|
we get that (1− 11ϵ) max{|NGt(u)|, |NGt(v)|} < 1 which is false for ϵ small enough.

Lemma 16.4. Let ϵ be a small enough constant and let C be a cluster in C̃t−1 and vt the newly
arrived node at time t, then for any two distinct non-trivial clusters C1 and C2 in C̃t either
C1 ∩ C = ∅ or C2 ∩ C = ∅.

Proof. If C is singleton, the statement is trivially true as C1 ∩ C2 = ∅. Next, we assume the
contrary. Towards a contradiction assume that C1 ∩ C ̸= ∅ and C2 ∩ C ̸= ∅. Let u ∈ C ∩ C1
and v ∈ C ∩ C2. Then, by Property 11 u and v have a common neighbor in Gt−1 and,
hence, both clusters C1 and C2 of C̃t have an outgoing edge from C1 and C2, respectively,
in Gt. By Lemma 16.2, we conclude that |C1| ≥ 10, |C2| ≥ 10. Since C1 ∩ C2 = ∅ we can
bound |NGt(u) ∩ NGt(v)| by |NGt(u) \ C1| + |NGt(v) \ C2| which (by Property 2) is at most
3ϵ(|NGt

(u)|+ |NGt
(v)|) < 6ϵ max{|NGt

(u)|, |NGt
(v)|} ≤ 6ϵ max{|NGt−1(u)|, |NGt−1(v)|}+ 6ϵ.

At the same time |NGt−1(u) ∩NGt−1(v)| ≥ (1− 5ϵ) max{|NGt−1(u)|, |NGt−1(v)|} from Property
7. By noting that |NGt(u) ∩NGt(v)| ≥ |NGt−1(u) ∩NGt−1(v)| we get:

6ϵ ≥ (1− 11ϵ) max{|NGt−1(u)|, |NGt−1(v)|}

which is false for ϵ small enough.

Lemma 16.5. Let ϵ be a small enough constant and let C ′, C be two clusters in C̃t−1, C̃t

respectively. If C ∩ C ′ ̸= ∅ then |C| < 2|C ′|.

Proof. Let u ∈ C ∩ C ′. Note that |NGt
(u)| ≤ |NGt−1(u)|+ 1. In addition, from Property 3 we

get that |NGt−1(u)| ≤ |C ′|/(1− 3ϵ) and from Property 6 we get that |NGt
(u)]| ≥ (1− 9ϵ)|C|. By

combining the latter inequalities we get that (1− 9ϵ)|C| ≤ |C ′|/(1− 3ϵ) + 1, from which we can
conclude that |C| < 2|C ′| for ϵ small enough.

Proposition 16.5. Let ϵ be a small enough constant, let C ′, C be two non-trivial clusters in
C̃t−1 and C̃t, respectively, and vt the newly arrived node at time t. Then, if C ∩ C ′ ≠ ∅ we have
that all nodes in C \ (C ′ ∪ {vt}) form trivial clusters in C̃t−1 and |C \ C ′| ≤ |C|/2.

Proof. Note that if |C| has size 2 the lemma follow trivially, so we assume that |C| ≥ 3.

The fact that all nodes in C \ (C ′ ∪ {vt}) form trivial clusters in C̃t is a direct consequence of
Lemma 16.3, since nodes from two different non-trivial clusters of C̃t−1 cannot be in agreement
in the same cluster of C̃t. To prove that |C \ C ′| ≤ |C|/2 we argue that the intersection of C, C ′

must be large, i.e., it suffices to argue that |C ∩ C ′| > |C|/2.

Let u ∈ C ∩ C ′. Then from Property 1 we have that |NGt−1(u) ∩ C ′| ≥ (1− 3ϵ)|NGt−1(u)| and
|NGt(u) ∩ C| ≥ (1 − 3ϵ)|NGt(u)|. In addition, note that NGt−1(u) ∩ C ′ = NGt(u) ∩ C ′, hence
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|NGt
(u) ∩ C ′| ≥ (1− 3ϵ)|NGt−1(u)| ≥ (1− 3ϵ)(|NGt

(u)| − 1). By combing these inequalities we
get: |NGt

(u) ∩ C ∩ C ′| ≥ (1− 6ϵ)|NGt
(u)| − 1 + 3ϵ ≥ (1− 9ϵ)(1− 6ϵ)|C| − 1 + 3ϵ > |C|/2 where

in the second inequality we used Property 6 and in the last inequality the fact that |C| ≥ 3 and
that the inequality (1− 9ϵ)(1− 6ϵ)x− 1 + 3ϵ > x/2 is true for x ≥ 3 and ϵ small enough.

16.3 Bounding the competitive ratio
In this section we prove that the Online Agreement algorithm is a constant competitive algorithm.
Before proceeding to the proof, we repeat some auxiliary notation and definitions. We denote
by C̃t the clustering computed by the Agreement algorithm and by Ct the clustering solution
computed by the Online Agreement algorithm at time t. In addition, we denote by ft, f̃t the
assignment functions which induce the clusterings Ct, C̃t, respectively. With a slight abuse of
notation we denote by ft(S), f̃t(S) the common cluster id assigned to a set of nodes S by the
respective assignment functions. Let C be a clustering. We use S(C), H(C) to denote the set of
nodes that belong to trivial and non-trivial, respectively, clusters of C.

As underlined in Chapter 15, a crucial definition which permits us to keep track of the growth of
an evolving cluster is the origin cluster definition which we repeat for completeness:

Definition 15.3 (Origin cluster). Let ID be a cluster id that is used by the assignment function
ft, and let tmin be the minimum t for which ID is used by ftmin

. The origin cluster of ID,
denoted by Origin(ID), is the cluster with id ID in the clustering induced by ftmin

.

An important observation is that, by construction, for any cluster C ′ ∈ C̃t the function ft
2 assigns

the same cluster id to all nodes in C ′. In addition, note that ft may assign the latter cluster id,
i.e., ft(C ′), also to nodes which form trivial clusters in C̃t, i.e., nodes in S(C̃t). For that reason,
for a cluster C ′ ∈ C̃t we denote the set of nodes in S(C̃t) to which ft assigns cluster id ft(C ′) as
SC′

t , that is:

SC′

t = {u ∈ S(C̃t) : ft(u) = ft(C ′)}

We mention the following trivial proposition, which is implied by the Assignment refinement
phase of Online Agreement, as it is heavily used in all of our lemmas.

Proposition 16.6. Let C ′ be a cluster of C̃t. Then |C ′| < (3/2)|Origin(ft(C ′))|.

In the following, we prove that any non-singleton cluster contains most of the nodes of its
corresponding origin cluster.

Lemma 16.6. Let ϵ be a small enough constant and C ′ a non-trivial cluster of C̃t such that
Origin(ft(C ′)) ∩ C ′ ̸= ∅. Then |Origin(ft(C ′)) ∩ C ′| > (1− 20ϵ)|Origin(ft(C ′))|.

Proof. For simplicity, let C = Origin(ft(C ′)) and assume w.l.o.g. that C was formed at some
time t0 < t (otherwise the lemma follows trivially since C = C ′). Let x ∈ C ∩ C ′. Since x ∈ C,
Property 4 gives that |NGt0

(x) ∩C| ≥ (1− 9ϵ)|C|. Thus, at time t the edges of x outside C ′, i.e.,

2note that also the function f̃t assigns the same cluster id to all nodes in C′.
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|NGt
(x)\C ′| are at least (1−9ϵ)|C|−|C∩C ′|. From Property 2 we get |NGt

(x)\C ′| < 3ϵ|NGt
(x)|.

By combining the lower and upper bound we get the following inequality:

(1− 9ϵ)|C| − |C ∩ C ′| < 3ϵ|NGt(x)| ⇒
(1− 9ϵ)|C| − |C ∩ C ′|

3ϵ
< |NGt(x)|

From Proposition 16.6 we know that |C ′| < 3/2|C| and from Property 3 we get that (1 −
3ϵ)|NGt

(x)| ≤ |C ′|. Thus:

(1− 3ϵ)|NGt
(x)| < 3/2|C| ⇒

|NGt
(x)| < 3|C|

2(1− 3ϵ)

Combining the lower and upper bound on NGt
(x) we get:

|C ∩ C ′| > |C|
(

1− 9ϵ− 9ϵ

2(1− 3ϵ)

)
> (1− 20ϵ)|C|

for ϵ small enough.

Lemma 16.7. Le ϵ be a small enough constant and C ′ a non-trivial cluster of C̃t. Then
Origin(ft(C ′)) ∩ C ′ ̸= ∅.

Proof. For simplicity, let C = Origin(ft(C ′)) and assume w.l.o.g. that C was formed at some
time t0 < t (otherwise the lemma follows trivially since C = C ′). Assume towards contradiction
that C ′ is the first such cluster which does not intersect with C = Origin(ft(C ′)) . Since
ft(C ′) = ft0(C) there exists a node u ∈ C ′ and a cluster C ′′ of C̃t′ for t′ ∈ [t0, t) such that
C ′′ ∩ C ̸= ∅, u ∈ C ′′ and ft′(C ′′) = ft0(C). Indeed if such a node u and cluster C ′′ do not
exist then ft(C ′) ̸= ft0(C) because we assumed that C ′ is the first cluster s.t. C ′ ∩ C = ∅ and
ft(C ′) = ft0(C), and moreover, in order for C ′ to be assigned the same cluster id as C it should
intersect a non-singleton cluster of C̃t−1 which has the same cluster id as C.

We lower bound the number of edges u has towards nodes of C. To that end, note that at time
t′ from Property 4 it holds that |NGt′ (u) ∩ C ′′| ≥ (1− 9ϵ)|C ′′|. In addition to that, due to the
Lemma 16.6 we have that |C ∩ C ′′| ≥ (1− 20ϵ)|C| > (1− 20ϵ) 2

3 |C
′′| > |C′′|

2 , where the second
inequality comes from the fact that |C ′′| < 3/2|C| and the third inequality is true for ϵ small
enough. By combining the last two inequalities we get:

|NGt′ (u) ∩ (C ′′ ∩ C)| ≥ |C ′′ ∩ C| − |(C ′′ ∩ C) \NGt′ (u)| (1)
≥ |C ′′ ∩ C| − |C ′′ \NGt′ (u)| (2)
≥ |C ′′|/2− 9ϵ|C ′′| (3)
> |C ′′|/3 (4)

≥ (1− 20ϵ)
3 |C| (5)

≥ |C|6 (6)

Where:
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1. from line (3) to line (4) (1/2− 9ϵ) > 1/3 is true for ϵ small enough;

2. from line (4) to line (5) we used Lemma 16.6; and

3. from line (5) to line (6) (1−20ϵ)
3 ≥ 1

6 is true for ϵ small enough.

Consequently at time t, since C ′∩C = ∅, |NGt
(u)\C ′| ≥ |NGt

(u)∩C| ≥ |NGt
(u)∩(C ′′∩C)| > |C|

6 .
By combining the latter with |NGt

(u) \ C ′| < 3ϵ
1−3ϵ |C

′| from Property 10 we get

|C ′| > 1− 3ϵ

18ϵ
|C| > 3

2 |C|

for ϵ small enough.

However, because of Proposition 16.6, we get that |C ′| < 3
2 |C|, which is a contradiction. This

concludes the proof.

Note that by combining the two latter Lemmas 16.6 and 16.7 we can deduce that an origin
cluster which gets assigned by an assignment function ft′ cluster id s has a large intersection
with a cluster of C̃t whose nodes get assigned cluster id s by an assignment function ft for t > t′.
Formally:

Corollary 16.7. Le ϵ be a small enough constant and C ′ a non-trivial cluster of C̃t. Then
|Origin(ft(C ′)) ∩ C ′| > (1− 20ϵ)|Origin(ft(C ′))|.

Using Corollary 16.7 we can deduce that there cannot be two clusters C1, C2 of C̃t whose nodes
get assigned the same cluster id by ft.

Lemma 16.8. Le ϵ be a small enough constant and C ′, C ′′ be two non-trivial clusters of C̃t.
Then ft(C ′) ̸= ft(C ′′).

Proof. Towards a contradiction assume that nodes in C ′, C ′′ get assigned the same cluster id s

by ft and let C = Origin(s). Then from Corollary 16.7 we have that |C ∩ C ′| > (1 − 20ϵ)|C|,
|C ∩C ′′| > (1− 20ϵ)|C|. In addition, C ′, C ′′ are different clusters of the same clustering C̃t, hence
they should not intersect, that is C ′∩C ′′ = ∅. Thus, we have |C| ≥ |C∩C ′|+|C∩C ′′| > (2−40ϵ)|C|
which is false for ϵ small enough.

An important quantity we need to bound is the number of nodes which belong to trivial clusters
of C̃t and get assigned by ft the same cluster id as nodes which belong to non-trivial clusters of
C̃t. To that end, Corollary 16.7 is crucial. The following lemmas bound the latter quantity.

Lemma 16.9. Let ϵ be a small enough constant, C ′ a non-trivial cluster of C̃t and C the origin
cluster which corresponds to cluster id ft(C ′), that is C = Origin(ft(C ′)). Then every node
u ∈ SC′

t has at least 2|C|/9 edges to nodes of C and the total number of edges between nodes in
SC′

t and C ∩ C ′ is at least |SC′
t ||C|
10 >

|SC′
t ||C′|

15 .

Proof. Let t0 ≤ t be the time when the origin cluster C was formed. By Corollary 16.7 we know
that |C ∩C ′| > (1− 20ϵ)|C| and since by Proposition 16.6 it holds that |C ′| < 3/2|C| we get that
|C ∩ C ′| > |C ′|/2 for ϵ small enough.
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Let x ∈ SC′

t . Since ft(x) = ft0(C) there exists t′ ∈ [t0, t] and a cluster C ′′ of C̃t′ such that: (1)
ft′(C ′′) = ft0(C); and (2) x ∈ C ′′. Again by the Corollary 16.7 we get that |C ∩ C ′′| ≥ |C ′′|/2
for ϵ small enough. Since x ∈ C ′′ we also have |NGt′ (x) ∩ C ′′| ≥ (1− 9ϵ)|C ′′|. By combining the
two latter inequalities we get that:

|NGt′ (x) ∩ (C ′′ ∩ C)| ≥ |C ′′ ∩ C| − |(C ′′ ∩ C) \NGt′ (x)| (1)
≥ |C ′′ ∩ C| − |C ′′ \NGt′ (x)| (2)
≥ |C ′′|/2− 9ϵ|C ′′| (3)
> |C ′′|/3 (4)
> 2|C|/9 (5)

Where:

1. from line (3) to line (4) we used the fact that (1/2− 9ϵ) > 1/3 holds for ϵ small enough; and

2. from line (4) to line (5) we used the fact that |C ′′| < 3/2|C| holds by Proposition 16.6.

Consequently, every node of SC′

t has at least 2|C|/9 edges to nodes of C. Using the latter we can
deduce that the total number of edges between nodes of SC′

t and C ∩ C ′ is at least:

|SC′

t |
2
9 |C| − |C \ C ′||SC′

t | > |SC′

t |
2
9 |C| − 20ϵ|C||SC′

t | = |SC′

t ||C|
(

2
9 − 20ϵ

)
≥ |S

C′

t ||C|
10

Where:

1. the first inequality comes from Corollary 16.7; and

2. the last inequality holds since ( 2
9 − 20ϵ) ≥ 1

10 for ϵ small enough.

To conclude the lemma just note that by Proposition 16.6 |C ′| < 3/2|C| and consequently
|SC′

t ||C|
10 >

|SC′
t ||C′|

15 .

Lemma 16.10. Let ϵ be a small enough constant and C ′ a non-trivial cluster of C̃t. Then
|SC′

t | < 100ϵ|C ′|.

Proof. Let C be the origin cluster corresponding to cluster id ft(C ′), that is C = Origin(ft(C ′)).
By Lemma 16.9 we know that the total number of edges between nodes of SC′

t and C∩C ′ is at least
|SC′

t ||C|
10 . Thus, by averaging there is a node r ∈ C ∩ C ′ with at least |SC′

t ||C|
10|C∩C′| >

|SC′
t ||C|

10|C| >
|SC′

t |
10

edges to nodes of SC′

t . Thus, for that node r it holds that:

1. |NGt(r) \ C ′| > |SC′
t |

10 ; and
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2. |NGt
(r) \ C ′| < 3ϵ

1−3ϵ |C
′| from Property 10

By combining these two bounds we conclude that |SC′

t | < 30ϵ
1−3ϵ |C

′| < 100ϵ|C ′| for ϵ small
enough.

Before stating the main theorem of this section, we underline that by fOPT
t we denote the

assignment function which induces the optimal correlation clustering solution for graph Gt.

Theorem 16.8. The Online Agreement algorithm is a constant competitive ratio algorithm, that
is, for any time t

cost(ft) ≤ Θ(1) · cost(fOPT
t )

Proof. Fix a time t, from Lemma 16.1 we have that the cost of clustering C̃t is a constant
factor approximation to the cost of the optimal correlation clustering solution for graph Gt.
Thus to prove the theorem it suffices to prove that the cost of our solution is a constant factor
approximation to the cost of C̃t. W.l.o.g. we assume that cost(f̃t) < cost(ft), otherwise the
theorem becomes trivial.

First, note that for any non-trivial cluster C of C̃t both ft and f̃t cluster all nodes of C together.
Now, fix a node u which forms a trivial cluster in C̃t. While f̃t clusters u as a singleton cluster
ft may cluster u in a larger cluster. We concentrate on the case where ft clusters u in a larger
cluster C∗, as this is the case where the cost of the two assignment functions may differ. Both
assignment functions maintain, at all time, the following invariant: if two nodes v, v′ belong to
different non-trivial clusters of C̃t then they are assigned to different clusters in Ct. Thus, C∗ may
contain the nodes of at most one non-trivial cluster of C̃t.

We start by arguing that if C∗ ⊆ S(C̃t) we can safely charge the cost that ft pays for clustering
all nodes of C∗ together to what f̃t pays for clustering them apart. To argue the latter, it
suffices to prove that |(u, v) ̸∈ E : u ∈ C∗, v ∈ C∗| ≤ Θ(1)|(u, v) ∈ E : u ∈ C∗, v ∈ V |. To
that end, note that C∗ ⊆ C ′ ∪ SC′

t′ for some t′ < t and non-trivial cluster C ′ ∈ C̃t′ . W.l.o.g.
assume t′ is the last time the latter holds and let C be the origin cluster corresponding to
ft′(C ′). Then, by Lemma 16.9 any node in C∗ has at least 2|C|/9 edges to nodes in C, hence
|(u, v) ∈ E : u ∈ C∗, v ∈ C∗| ≥ |C∗| · 2|C|/9 = Θ(1)|C||C∗|. At the same time we have that
|(u, v) ̸∈ E : u ∈ C∗, v ∈ C∗| ≤ |C∗|2 ≤ |C∗|(|C ′|+ |SC′

t′ |) ≤ |C∗|(|C ′|+ 100ϵ|C ′|) = Θ(1)|C∗||C|,
where we used Lemma 16.10 and the fact that C is the origin cluster of C ′. Thus, for the rest of
the proof we can assume that C∗ ̸⊆ S(C̃t) by loosing only a constant factor in the approximation
guarantees.

Since C∗ = C ∪ SC
t for some non-trivial cluster C ∈ C̃t, we have that under the assignment

function ft all nodes in C ∪ SC
t are clustered together while under the assignment function f̃t

nodes in C are clustered together and each node in SC
t is clustered as a singleton. To relate the

two costs cost(f̃t), cost(ft) we define the following sets of pairs of nodes and assume that pair of
nodes are not ordered so that they are not double counted:

• PCS(C) = {(u, v) ∈ E : u ∈ C, v ∈ SC
t }.

• NCS(C) = {(u, v) ̸∈ E : u ∈ C, v ∈ SC
t }
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• PSS(C) = {(u, v) ∈ E : u ∈ SC
t , v ∈ SC

t }

• NSS(C) = {(u, v) ̸∈ E : u ∈ SC
t , v ∈ SC

t }

• PV S(C) = {(u, v) ∈ E : u ∈ Vt \ (C ∪ SC
t ), v ∈ SC

t }

• NV S(C) = {(u, v) ̸∈ E : u ∈ Vt \ (C ∪ SC
t ), v ∈ SC

t }

• PCC(C) = {(u, v) ∈ E : u ∈ C, v ∈ C}

• NCC(C) = {(u, v) ̸∈ E : u ∈ C, v ∈ C}

Note that: (1) pairs of nodes in sets PCS(C), PSS(C) contribute to cost(f̃t) but not to cost(ft);
(2) pairs of nodes in sets NCS(C), NSS(C) contribute to cost(ft) but not to cost(f̃t); (3) pairs
of nodes in PV S(C) and NCC(C) contribute to both costs; and (4) pairs of nodes in NV S(C)
and PCC(C) do not contribute to none of the two costs. In addition, we have that for every two
different clusters C, C ′ ∈ C̃t by Lemma 16.8 the sets SC

t , SC′

t do not intersect, hence the difference
of the two costs can be rewritten as:

cost(ft)− cost(f̃t) =
∑

C∈C̃t:|C|>1

(|NCS(C)|+ |NSS(C)| − |PCS(C)| − |PSS(C)|)

≤
∑

C∈C̃t:|C|>1

(|NCS(C)|+ |NSS(C)|)

We are left to prove that |NCS(C)| ≤ Θ(1)|PCS(C)| and |NSS(C)| ≤ Θ(1)|PCS(C)| for every
C ∈ C̃t. This way we deduce that cost(ft) − cost(f̃t) ≤ Θ(1)

∑
C∈C̃t:|C|>1|PCS(C)|. Note that

the latter suffices to prove the Lemma since cost(f̃t) ≥
∑

C∈C̃t:|C|>1|PCS(C)|.

We lower bound the size of PCS(C) by |SC
t ||C|
15 using3 Lemma 16.9. In addition from the

definition of set NCS(C) we can upper bound its size by |SC
t ||C|, hence, deduce that |NCS(C)| ≤

15|PCS(C)| . Finally, note that for set NSS(C) we have:

|NSS(C)| ≤ |SC
t |2 < 100ϵ|SC

t ||C| ≤ 100ϵ|PSC(C)|

where the first inequality comes from the definition of set NSS(C), the second inequality from
Lemma 16.10 and the third inequality from the lower bound on the size of PSC(C). This
concludes the proof.

16.4 Bounding the worst-case recourse
In this section we bound the worst case recourse of any node by O(log(n)) where n is the
number of nodes in the final graph. To do the latter we prove that whenever a node changes
from a non-trivial cluster C ′

1 ∈ C̃t1 whose nodes get assigned cluster id s1 by ft1 to another
non-trivial cluster C ′

2 ∈ C̃t2 whose nodes get assigned cluster id s2 by ft2 then the origin cluster
corresponding to the new cluster id is bigger than the one corresponding to the old cluster id
by a multiplicative term. Since the maximum size of an origin cluster is n, changing non–trivial

3Note that cluster C corresponds to cluster C′ in Lemma 16.9

95



Chapter 16 Main proof

clusters and consequently changing the origin cluster corresponding to the assigned cluster id can
happen at most log(n) times.

We will first prove that if two origin clusters are “close” in size then they cannot be intersecting.

Lemma 16.11. Let ϵ be a small enough constant and let C1, C2 be two origin clusters with
cluster ids s1, s2 formed at different times t1, t2 respectively with t1 < t2. If |C2| < 5/4|C1| then
C1 ∩ C2 = ∅.

Proof. Towards a contradiction assume that C1 ∩ C2 ≠ ∅ and let u ∈ C1 ∩ C2. As a first step
of the proof we will argue that since C1 ∩ C2 is non-empty then |C1 ∩ C2| must be large. Since
u ∈ C1 ∩C2 from Property 4 we have that |NGt1(u)∩C1| > (1− 9ϵ)|C1|. Thus, |NGt2

(u) \C2| ≥
(1 − 9ϵ)|C1| − |C1 ∩ C2|. Combining the latter with the upper bound on |NGt2

(u) \ C2| from
Property 10 we get:

(1− 9ϵ)|C1| − |C1 ∩ C2| <
3ϵ

1− 3ϵ
|C2| ⇒ (1)

(1− 9ϵ)|C1| −
3ϵ

1− 3ϵ
|C2| < |C1 ∩ C2| ⇒ (2)

(1− 9ϵ)|C1| −
15ϵ

4(1− 3ϵ) |C1| < |C1 ∩ C2| ⇒ (3)

(1− 20ϵ)|C1| < |C1 ∩ C2| (4)

Where:

1. from line (2) to line (3) we used that |C2| < 5/4|C1|; and

2. from line (3) to line (4) we used that (1−9ϵ)− 15ϵ
4(1−3ϵ) > (1−20ϵ) is true for ϵ small enough.

Now, we will argue that at time t2−1 there should be a node v ∈ C1∩C2 such that ft2−1(v) ̸= s1.

Let vt2 be the newly arrived node at time t2 and note that because of lemma 16.3, C2 is formed
either:

Case 1: exclusively from nodes in S(C̃t2−1) ∪ {vt2} (by using Rule 2); or

Case 2: by a subset of nodes C ′ ̸= ∅ in a non-trivial cluster C ′′ ∈ C̃t2−1 and nodes in
S(C̃t2−1) ∪ {vt2}.

We will continue by proving that in neither of these two cases all nodes in C1 ∩ C2 can have the
same cluster id s1 at time t2 − 1.

Before doing so, note that by combining (1 − 20ϵ)|C1| < |C1 ∩ C2| and |C2| < 5/4|C1| we can
deduce that (4/5)(1 − 20ϵ)|C2| < |C1 ∩ C2| and consequently |C1 ∩ C2| > |C2|/2 for ϵ small
enough.

In Case 1 where C2 is formed exclusively by nodes in S(C̃t2−1) ∪ {vt2}, if all nodes v ∈ C1 ∩ C2
have a cluster id s1 at time t2 − 1 then, since |C1 ∩ C2| > |C2|/2 by Rule 2 of Algorithm 10 the
new cluster would have had s1, and not s2, as a cluster id before the Assignment refinement
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phase. In addition, since |C2| < 5/4|C1| < 3/2|C1| the assignment function ft2 will still assign
s1 after the Assignment refinement phase, which is a contradiction. Thus, in this case all
nodes in C1 ∩ C2 cannot have the same cluster id s1 at time t2 − 1.

In Case 2 note that all nodes in C ′ at time t2 − 1 have a cluster id different from s1, otherwise
ft2 would have assigned cluster id s1 to all nodes in C2 before the Assignment refinement
phase and also after the Assignment refinement phase since |C2| < 5/4|C1| < 3/2|C1|. Thus,
since in Case 2 C ′ is non-empty,

• either C1∩C2∩C ′ is non-empty, and consequently there is a node in C1∩C2 ⊇ C1∩C2∩C ′,
whose cluster id at time t2 − 1 is different from s1; or

• C1 ∩ C2 ∩ C ′ is empty and all nodes in C1 ∩ C2 form trivial clusters in C̃t2−1. In that case,
as in Case 1 there should be a node in C1 ∩C2 whose id at time t2 − 1 is different than s1,
otherwise Algorithm 10 would have assigned the same cluster id s1 to C2.

Consequently, there exists a node v ∈ C1 ∩ C2 such that ft2−1(v) ̸= s1.

Since there exists a node v ∈ C1 ∩ C2 such that ft2−1(v) ̸= s1, w.l.o.g. we can assume that v

was the last node to change cluster id before time t2. Let C ′′′ ∈ C̃t′ be last non-trivial cluster to
which v belonged for t′ ∈ (t1, t2 − 1) before changing cluster id. We proceed by bounding the size
of C ′′′. From Property 3 |NGt2

(v)| ≤ |C2|
1−3ϵ < 5

4
1

1−3ϵ |C1|, hence |NGt2
(v)| < 5

4
1

1−3ϵ |C1|. At the
same time from Property 6 |NGt2

(v)| ≥ |NGt′ (v)| > (1− 9ϵ)|C ′′′|, thus

|C ′′′| < 1
1− 9ϵ

5
4

1
1− 3ϵ

|C1| <
4
3 |C1|

for ϵ small enough. Now using the same arguments as in the beginning of the proof where we
lower bounded the size of C1 ∩ C2 we can argue that |C ′′′ ∩ C1| > (1 − 20ϵ)|C1| for ϵ small
enough. Consequently, because w.l.o.g. we assumed that v is the last node of C1 ∩ C2 to change
cluster id, we have that ft2−1(w) = ft′(C ′′′),∀w ∈ C1 ∩ C2 ∩ C ′′′. In addition note that from
|C1 ∩ C2| > (1− 20ϵ)|C1| and |C ′′′ ∩ C1| > (1− 20ϵ)|C1| we can deduce:

|C1 ∩ C2 ∩ C ′′′| > (1− 40ϵ)|C1| >
4
5(1− 40ϵ)|C2| >

|C2|
2

where the last inequality holds for ϵ small enough.

Let C ′′′′ be the origin cluster corresponding to ft′(C ′′′). From corollary 16.7 we know that
|C ′′′′| < |C′′′|

(1−20ϵ) . Combining that with |C1 ∩ C2 ∩ C ′′′| > 4
5 (1− 40ϵ)|C2| ⇒ 5

4(1−40ϵ) |C
′′′| > |C2|.

We conclude that |C2| < (3/2)|C ′′′′|.

Again, we will continue the proof by distinguishing between two cases:

Case 1: where C2 is formed exclusively by nodes in S(C̃t2−1) ∪ {vt2}; and

Case 2: where C2 is formed by a subset of nodes C ′ ≠ ∅ in a non-trivial cluster C ′′ ∈ C̃t2−1
and nodes in S(C̃t2−1) ∪ {vt2}.

In Case 1 we have that C2 is formed by nodes in S(C̃t2−1) ∪ {vt} where at least half of the
nodes have cluster id ft′(C ′′′) at time t2 − 1. By Rule 2 all nodes in C2 get as a cluster id
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ft′(C ′′′) before the Assignment refinement phase and remain with that cluster id also after
the Assignment refinement phase since |C2| < (3/2)|C ′′′′|. Thus all nodes in C2 get cluster
id ft′(C ′′′) and C2 is not an origin cluster in that case, which is a contradiction.

In Case 2, we can argue again that nodes in C ′ cannot have as a cluster id ft′(C ′′′) since
|C2| < (3/2)|C ′′′′| and C2 would not be an origin cluster. Thus, all nodes of C2 whose cluster id
is ft′(C ′′′) at time t2 − 1 form trivial clusters in C̃t2−1. From proposition 16.5 such nodes are at
most |C2|/2 which contradicts the fact that |C1 ∩ C2 ∩ C ′′′| > |C2|

2 .

Which leads to a contradiction. The lemma follows.

We continue by proving that if a node gets a new cluster id by changing non-trivial cluster, then
its new cluster must be larger than the old one by a at least a constant multiplicative factor.

Lemma 16.12. Let node v be a node which belongs to a non-trivial cluster C ′
1 ∈ C̃t1 and to a

non-trivial cluster C ′
2 ∈ C̃t2 for t1 < t2. If ft1(C ′

1) ̸= ft2(C ′
2) then denote by C1 and C2 the origin

clusters corresponding to cluster ids ft1(C ′
1) and ft2(C ′

2) respectively. Then |C2| > (5/4)|C1|.

Proof. Towards a contradiction assume that |C2| < 5/4|C1|.

From lemma 16.6 we have that |C1∩C ′
1| ≥ (1−20ϵ)|C1| and from Proposition 16.6 we also have that

|C ′
1| < (3/2)|C1|. Combining the latter two inequalities we get |C1∩C ′

1| ≥
|C′

1|
2 for ϵ small enough.

Note that |NGt1
(v)∩(C ′

1∩C1)| ≥ |NGt1
(v)∩C ′

1|−|C ′
1\C1| ≥ (1−9ϵ)|C ′

1|−|C ′
1|/2 > |C ′

1|/3 > |C1|/4
where: (1) in the second inequality we used Property 6 and the fact that |C1 ∩ C ′

1| > |C ′
1|/2; (2)

in the third inequality we used that (1− 9ϵ− 1/2) > 1/3 for ϵ small enough; and (3) in the last
inequality we used that |C1| < |C′

1|
1−20ϵ from lemma 16.6 and (1− 20ϵ)/3 > 1/4 for ϵ small enough.

We will continue by upper bounding |NGt2
(v) \ C2|. To that end from lemma 16.6 and following

the same reasoning as we did to bound |C1 ∩ C ′
1| we get that |C2 ∩ C ′

2| ≥ |C ′
2|/2. In addition:

|NGt2
(v) \ C2| ≤ |NGt2

(v) \ C2 ∩ C ′
2| ≤ |NGt2

(v) \ C ′
2|+ |C ′

2 \ C2| ≤
3ϵ

1− 3ϵ
|C ′

2|+ |C ′
2|/2 <

<

(
3ϵ

1− 3ϵ
+ 1

2

)
|C2|

1− 20ϵ

Where in the third inequality we used Property 10 and in the last lemma 16.6.

From lemma 16.11 we have that C1 ∩ C2 = ∅ and NGt1
(v) ⊆ NGt2

(v) so |NGt1
(v) ∩ C1| ≤

|NGt2
(v) \ C2|. Combining the lower and upper bound of the latter two quantities, for ϵ small

enough we end up in a contradiction.

|C1|/4 <

(
3ϵ

1− 3ϵ
+ 1

2

)
|C2|

1− 20ϵ
⇒ |C2| > 5/4|C1|

Which leads to a contradiction.

We are now ready to bound the recourse of our algorithm.

Theorem 16.9. The Online Agreement algorithm has a worst case recourse of O(log n), that is:

r(u) = O(log n),∀v ∈ V
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Proof. Fix a node u and assume that at time t node u belongs to a non-trivial cluster C ∈ C̃t with
cluster id s assigned by ft. Note that node u will get assigned a new cluster id by an assignment
function ft′′ whenever one of the following scenarios happen:

1. node u forms a trivial cluster in C̃t′ for t′ > t and at a later time t′′ > t′ enters a non-trivial
cluster in C̃t′′ with a different cluster id s′; and

2. node u forms a trivial cluster in C̃t′ for t′ > t and at a later time t′′ > t′ its cluster id
changes to s′ by the Assignment refinement phase.

Note that (1) can happen at most O(log n) times due to lemma 16.12 and each time it happens
the recourse of u increases by 1. In addition, note that after (2) happens there are two possibilities;
either u remains in a trivial cluster and it never changes its cluster id again or it enters a new
non-trivial cluster with cluster id s′′. The former can happen at most once and increases the
recourse by 1, while the latter increases the recourse by 2 and by lemma 16.12 can happen at
most O(log n) times. Thus the overall recourse of u is O(log n).
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17 Experiments

17.1 Datasets
Our study includes four graphs that are formed by user-to-user interactions. Specifically, we
consider a Social network (musae-facebook), an email network (email-Enron), a collaboration
network (ca-AstroPh), and a paper citation network (cit-HepTh). All but the cit-HepTh datasets
are static undirected graphs. cit-HepTh has timestamps on the nodes indicating a natural arrival
order and since it is directed, we transform it to an undirected graph by ignoring edge directions.
In all of our datasets we removed all parallel-edges. Our datasets are obtained from SNAP [70]
and their basic characteristics are summarized in Table 17.1.

17.2 Baselines
Pivot. As one of the baselines, we consider the 3-approximate pivoting algorithm introduced
by Ailon et al. [2]. We refer to this algorithm as Pivot. In the offline model, Pivot works
as follows. First, it creates a random order of the nodes, marks all nodes as unclustered, and
then iterates over the nodes in the aforementioned random order. If the current node v is still
unclustered, then v forms a cluster together with all of its unclustered neighbors and they are
marked as clustered.

The naive way to use Pivot in the online setting is to re-run it from scratch following every
node arrival, each time with a fresh random order. However, we re-use the same random order of
the previously arrived nodes, which leads to an improved practical performance both in terms of
recourse and running time. That is, whenever a new node arrives it is inserted in the preexisting
random order at a random position (the relative order of the previously arrived nodes remains
unchanged). We call the latter order the new random order. It is not hard to verify that all
clustering choices of the algorithm regarding nodes which precede the newly arrived node in the
new random order remain the same compared to the execution of the algorithm in the previous

#nodes #edges online?
musae-facebook 22,470 171,002 no

email-Enron 36,692 183,831 no
ca-AstroPh 18,772 198,110 no
cit-HepTh 27,770 352,807 yes

Table 17.1: Basic characteristics of our datasets.
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iterations (before the arrival of the last node). Thus, we only simulate the algorithm starting
from visiting the index of the newly arrived node in the new random order onward.

Agree-Off. This baseline reruns the Agreement algorithm following each node arrival. In our
experiments we set both parameters β and λ of [28] equal to 0.2, as this setting exhibited the
best behavior in [28].

Greedy recourse minimization. For the baselines we assume that there is no consistent
cluster id assignment to the clusters produced after each node arrival, and hence, measuring
recourse as per our definition would give an unfair advantage to our (more designated) algorithm.
To have a fair comparison, we measure recourse independently of the actual cluster ids that each
algorithm assigns. That is, given two clusterings Ct−1, Ct from consecutive runs of some algorithm
we reassign the cluster ids of Ct such that we minimize the number of nodes that have distinct
cluster ids in Ct−1 and Ct. Specifically, we construct a bipartite graph B = (U ∪ V, E) where
each node of U (resp., V ) represents a cluster Cu ∈ Ct−1 (resp., Cv ∈ Ct), and there is an edge
(u, v) ∈ E ∩ {U × V } with weight w if Cu overlaps with Cv on w nodes (if Cu and Cv do not
overlap then there is no edge (u, v)). To re-assign the ids of the clusters in Ct, we run the greedy
1/2-approximate maximum bipartite matching on B, and each cluster C ∈ Ct that is matched
with a cluster C ′ ∈ Ct gets the same cluster id as C; if C ′ remains unmatched then it receives a
new unique cluster id 1. Finally, the recourse is computed by counting the number of nodes with
distinct cluster ids in Ct−1 and Ct. We apply this post-processing to all algorithms (including
ours).

17.3 Setup

Our code is written in C++ and is available online2. We run our experiments on a e2-standard-16
Google Cloud instance, with 16 cores, 2.20GHz Intel(R) Xeon(R) processor, and 64 GiB main
memory.

For the datasets email-Enron, ca-AstroPh, musae-facebook, we use a random arrival order, as the
nodes are not timestamped. For the dataset cit-HepTh, we consider the arrival order implied by
the timestamps on the nodes. Once a node v arrives, it reveals only its edges to the previously
arrived nodes (the remaining edges are revealed once the other endpoint of each such edge arrives).

17.4 Results
Solution quality. Figure 17.1 shows the cost of the cluster produced by each of the algorithms
that we consider throughout the sequence of node arrivals, on all datasets. In all datasets but
ca-AstroPh, after a few node arrivals, the Agree-Off and Agree-On perform significantly
better than Pivot. The latter implies that the solution calculated by Agree-On is at most a
3-approximation of the offline optimum.

1Although one can solve the maximum bipartite matching exactly, this task is expensive and orthogonal to our
study.

2https://github.com/google-research/google-research/tree/master/online_correlation_clustering
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(a) Cost cit-HepTh. (b) Recourse, cit-HepTh. (c) Runtime, cit-HepTh.

(d) Cost, email-Enron. (e) Recourse, email-Enron. (f) Runtime, email-Enron.

(g) Cost, ca-AstroPh. (h) Recourse, ca-AstroPh. (i) Runtime, ca-AstroPh.

(j) Cost, musae-facebook (k) Recourse, musae-facebook. (l) Runtime, musae-facebook.

Figure 17.1: Comparison of our algorithm, Agree-On, with the two baselines Pivot and
Agree-Off for the datasets cit-HepTh, email-Enron, ca-AstroPh, and musae-facebook. The first
column compares the cost of the solution produced by each algorithm, the second and third
column contain respectively the cumulative recourse and total run time of each algorithm in
log-scale.
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(a) cit-HepTh (b) email-Enron

(c) ca-AstroPh (d) musae-facebook

Figure 17.2: The quality of the clustering produced by the different algorithms relatively to
Singletons for the datasets cit-HepTh, email-Enron, ca-AstroPh, and musae-facebook.

.
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Pivot Agree-Off Agree-On
email-Enron 14 3 1
ca-AstroPh 10 2 1

musae-facebook 10 3 1
cit-HepTh 13 5 1

Table 17.2: The maximum recourse per node over the whole sequence of node arrivals, for the
four datasets that we considered.

While not immediately visible from the plots, Agree-On performs slightly better than Agree-
Off in all datasets. This is due to the fact that once a set of nodes C is clustered together at
time t1, Agree-On keeps the nodes in C clustered together at times t > t1 even if the nodes in C

obtain many outgoing edges from C, whereas Agree-Off would split C under such a scenario.

Our datasets are sparse throughout the arrival sequence. Sparse graphs tend to not have a good
correlation clustering structure, and often the clustering that consists of only singleton clusters is a
competitive solution; we denote such a solution as Singletons. We illustrate this in Figure 17.2,
where we present the cost function relatively to Singletons. After a small number of node
arrivals, Pivot performs clearly worse than Singletons, while Agree-Off and Agree-On
always perform better or equally well compare to Singletons. These findings are not surprising.
On the one hand, Pivot is more likely to create clusters with very small density which results to
a lot of negative intra-cluster edges. On the other hand, Agree-Off (and hence Agree-On)
creates singleton clusters if the graph contains no clear clustering structure; which implies that
Agree-Off produces a clustering that is never worse than the one produced by Singletons.
Unlike the case of our particular datasets, Agree-Off (and consequently Agree-On) often
produces many medium-sized clusters on sparse graphs3 [28] implying performance significantly
better that Singletons.

We would like to underline that the best algorithms in terms of approximation guarantees for
the correlation clustering problem are a 2.06-approximation LP-based variation of Pivot in [21]
and a 1.94 + ϵ-approximation algorithm based on O(1/ϵ2) rounds of the Sherali-Adams hierarchy
in [26]. However, these algorithms due to their high computational cost become quickly infeasible
to run even for graphs where the number of nodes is one or two orders of magnitude smaller
than the ones we use in our experiments. Thus, the state-of-the-art algorithm for the correlation
clustering problem both in terms of practical performance and provable guarantees is Pivot, and
we successfully compare against it.

Recourse. Table 17.2 shows the maximum recourse of a node, for each dataset. Both Agree-
Off and Agree-On perform significantly better than Pivot, while Agree-On never changes
the cluster id of a node twice. Recall that the greedy reassignment post-processing benefits all
algorithms.

Next, we investigate the total recourse that each algorithm incurs over the whole node-arrival
sequence, i.e., the sum of the recourse of each node. The cummulative recourse plots for all
datasets are in the second column of Figure 17.1. Agree-On consistently incurs 1-2 order of
magnitude less recourse compared to Pivot, and up to an order of magnitude less recourse
compared to Agree-Off.

3Unfortunately, it was not reasonable to run the whole arrival sequence on the same datasets, due to their size.
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Running time. For simplicity the version of Agree-On described in Algorithm 10 computes
the clustering C̃t by naively rerunning the Agreement algorithm on the graph Gt. However, we
can easily use most of the prior information to compute the clustering C̃t without rerunning the
Agreement algorithm from scratch. To this end, note that for any node u ∈ Gt \ {vt} its degree
can be updated in O(1) by checking if u and the newly arrived node vt share an edge. Moreover
let u, v ∈ Gt−1 be two nodes which share an edge, then the size of the symmetric difference of
their neighborhoods can be updated in O(1) by checking if the newly arrived node is the neighbor
of exactly one of them. Thus, all ϵ−agreements between nodes u, v ∈ Gt−1 can be updated in
linear time. In addition, checking the ϵ−agreement between two nodes u, v without any prior
information takes time O(min{du, dv}). Consequently we can check the ϵ−agreement between the
newly arrived node and all its neighbors in time O(d2

vt
). Finally, Lines 7− 43 of Agree-On for

each new node arrival can be easily implemented in linear time. Overall, a careful implementation
of Agree-On would yield to an algorithm whose complexity for the whole arrival sequence is
O(
∑

u d2
u) + n · O(n + m) = O(nm) (matching Pivot’s complexity) instead of O(n2m) from a

naive implementation of the pseudocode.

As expected, in terms of running time, Agree-Off performs comparably to Pivot as shown in
the third column of Figure 17.1. On the other hand, due to the required post-processing (Lines
7− 43 of the pseudocode) following the computation made by Agree-Off, Agree-On performs
less than 2× slower compared to Agree-Off and Pivot. Since the latter post-processing requires
linear time, this seems to imply that in practice all these three algorithms require O(n) time per
node arrival. This is in contrast to their trivial worst-case performance of O(

∑
v∈V d2(v)) time

for Agree-Off and O(m) time for Pivot, per update.
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18 Conclusion

This thesis concentrated on beyond worst-case analysis. After Part I which served as a motivation
for why we do need a beyond worst-case analysis framework, Part II and Part III were devoted
to learning-augmented online algorithms and Part IV to online clustering with recourse.

One promising direction would be to generalize the techniques of Part II and design general
methods for power management using machine learning predictions. Indeed, in the classical
online speed scaling problem Gupta et al. [50] propose an optimal online algorithm which they
analyze using a primal-dual technique tailored to the non-linear optimization objective. Thus, an
interesting open direction would be to translate the primal-dual analysis and techniques of [50]
into the learning-augmented setting so as to handle more general power management problems.

Another interesting direction in the field of learning-augmented algorithms is to use machine
learning predictions to improve the runtime of classical algorithms. In [33] the authors show how
to speed up the Hungarian algorithm which is a classical primal-dual algorithm for computing
a maximum weight matching in a bipartite graph. Although [33] considers a specific problem
and speeds up a specific algorithm for that problem, it shows at a conceptual level how machine
learning predictions can be used to guide an algorithm to find an optimal solution faster in a
robust way. There are general algorithmic primitives which can be used to solve a large class of
problems. Can we incorporate machine learning predictions in those primitives and speed up the
algorithms’ runtime?

Finally, in learning-augmented algorithms, predictions have been used in two ways: (1) estimating
problem parameters which permit us to take better decisions [33]; or (2) the prediction itself gives
us a hint about the optimal solution [72]. To the best of our knowledge the interplay between
different types of prediction is unexplored and the closest work to that line of thought [47] studies
how to combine multiple machine learning predictors of the same type. An interesting direction
would be to understand the interplay between different forms of advice. What are the limits of a
specific type of advice? Can different forms of advice provide complementary information? The
high-level goal would be to find a problem and two natural types of prediction where each type,
individually, is not enough to get guarantees that are better than the worst-case of classical online
algorithms. However, when both predictions are combined, the improvement is significant.
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A Extensions and deferred proofs of
Part II

A.1 Pure online algorithms for uniform deadlines
Since most related results concern the general speed scaling problem, we give some insights about
the uniform speed scaling problem in the online setting without predictions. We first give a lower
bound on the competitive ratio for any online algorithm for the simplest case where D = 2 and
then provide an almost tight analysis of the competitive ratio of AVR.

Theorem A.1. There is no (randomized) online algorithm with an (expected) competitive ratio
better than Ω ((6/5)α).

Proof. Consider D = 2 and two instances J1 and J2. Instance J1 consists of only one job that is
released at time 0 with workload 1 and J2 consists of the same first job with a second job which
starts at time 1 with workload 2.

In both instances, the optimal schedule runs with uniform speed at all time. In the first instance,
it runs the single job for 2 units of time at speed 1/2. The energy-cost is therefore 1/2α−1. In
the second instance, it first runs the first job at speed 1 for one unit of time and then the second
job at speed 1 for 2 units of time. Hence, it has an energy-cost of 3.

Now consider an online algorithm. Before time 1 both instances are identical and the algorithm
therefore behaves the same. In particular, it has to decide how much work of job 1 to process
between time 0 and 1. Let us fix some γ ≥ 0 as a threshold for the amount of work dedicated to
job 1 by the algorithm before time 1. We have the following two cases depending on the instance.

1. If the algorithm processes more that γ units of work on job 1 before time 1 then for instance
J1 the energy cost is at least γα. Hence the competitive ratio is at least γα · 2α−1.

2. On the contrary, if the algorithm works less than γ units of work before the release of the
second job then in instance J2 the algorithm has to complete at least 3− γ units of work
between time 1 and 3. Hence, its competitive ratio is at least 2/3 · ((3− γ)/2)α.

Choosing γ such that these two competitive ratios are equal gives γ = 3
31/α41−1/α+1 and yields a

lower bound on the competitive ratio of at least:

2α−1
(

3
31/α41−1/α + 1

)α

.
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This term asymptotically approaches 1/2 · (6/5)α and this already proves the theorem for
deterministic algorithms. More precisely, it proves that any deterministic algorithm has a
competitive ratio of at least Ω ((6/5)α) on at least one of the two instances J1 or J2. Hence, by
defining a probability distribution over inputs such that p(J1) = p(J2) = 1

2 and applying Yao’s
minimax principle we get that the expected competitive ratio of any randomized online algorithm
is at least

(1/2) · 2α−1
(

3
31/α41−1/α + 1

)α

.

which again gives Ω ((6/5)α) as lower bound, this time against randomized algorithms.

We now turn ourselves to the more specific case of the AVR algorithm with the following two
results. We recall that the AVR algorithm was shown to be 2α−1 · αα-competitive by Yao et al.
[88] in the general deadlines case. In the case of uniform deadlines, the competitive ratio of AVR
is actually much better and proofs are much less technical than the original analysis of Yao et al.
Recall that for each job i with workload wi, release i, and deadline i + D ; AVR defines a speed
si(t) = wi/D if t ∈ [i, i + D] and 0 otherwise.

Theorem A.2. AVR is 2α-competitive for the uniform speed scaling problem.

Proof. Let (w, D, T ) be a job instance and sOPT be the speed function of the optimal schedule
for this instance. Let sAVR be the speed function produced by the Average Rate heuristic on
the same instance. It suffices to show that for any time t we have

sAVR(t) ≤ 2 · sOPT(t).

Fix some t. We assume w.l.o.g. that the optimal schedule runs each job j isolated for a total time
of p∗

j . By optimality of the schedule, the speed during this time is uniform, i.e., exactly wj/p∗
j .

Denote by jt the job that is processed in the optimal schedule at time t.

Let j be some job with j ≤ t ≤ j + D. It must be that
wj

p∗
j

≤ wjt

p∗
jt

= sOPT(t). (A.1)

Note that all jobs j with j ≤ t ≤ j + D are processed completely between t − D and t + D.
Therefore,∑

j:j≤t≤j+D

p∗
j ≤ 2D.

With (A.1) it follows that∑
j:j≤t≤j+D

wj ≤ sOPT(t)
∑

j:j≤t≤j+D

p∗
j ≤ 2D · sOPT(t).
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We conclude that

sAVR(t) =
∑

j:j≤t≤j+D

wj

D
≤ 2 · sOPT(t).

Next, we show that our upper bound on the exponential dependency in α of the competitive
ratio for AVR (in Theorem A.2) is tight for the uniform deadlines case.

Theorem A.3. Asymptotically (α approaches ∞), the competitive ratio of the AVR algorithm
for the uniform deadlines case is at least

2α

eα

Proof. Assume α > 2 and consider a two-job instance with one job arriving at time 0 of workload
1 and one job arriving at time (1 − 2/α)D with workload 1. One can check that the optimal
schedule runs at constant speed throughout the whole instance for a total energy of(

2
(2− 2/α)D

)α

· (2− 2/α)D.

On the other hand, on interval [(1 − 2/α)D, D], AVR runs at speed 2/D. This implies the
following lower bound on the competitive ratio:

(2/D)α · (2/α)D(
2

(2−2/α)D

)α

· (2− 2/α)D
= 2α

α

(
1− 1

α

)α−1

which approaches to 2α/(eα) as α tends to infinity.

A.2 Impossibility results for learning-augmented speed scal-
ing

This section is devoted to prove some impossibility results about learning augmented algorithms
in the context of speed scaling. We first prove that our trade-offs between consistency and
robustness are essentially optimal. Again, we describe an instance as a triple (w, D, T ).

Theorem A.4. Assume a deterministic learning-augmented algorithm is (1 + ϵ/3)α−1-consistent
for any α ≥ 1 and any small enough constant ϵ > 0 (independently of D). Then the worst case
competitive ratio of this algorithm cannot be better than Ω

( 1
ϵ

)α−1.

Proof. Fix D big enough so that ⌈ϵD⌉ ≤ 2 · (ϵD). Consider two different job instances J1 and J2:
J1 contains only one job of workload 1 released at time 0 and J2 contains an additional job of
workload 1/ϵ released at time ⌈ϵD⌉. On the first instance, the optimal cost is 1/Dα−1 while the
optimum energy cost for J2 is (1/⌈ϵD⌉)α−1 + D/(ϵD)α ≤ (1/ϵ)α · ((1 + ϵ)/Dα−1).

Assume the algorithm is given the job of workload 1 released at time 0 and additionally the
prediction consists of one job of workload 1/ϵ released at time ⌈ϵD⌉. Note that until time ⌈ϵD⌉
the algorithm cannot tell the difference between instances J1 and J2.
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Depending on how much the algorithm works before time ⌈ϵD⌉, we distinguish the following
cases.

1. If the algorithm works more that 1/2 then the energy spent by the algorithm until time
⌈ϵD⌉ is at least

(1/2)α/(⌈ϵD⌉)α−1 = Ω
(

1
ϵD

)α−1
.

2. However, if it works less than 1/2 then on instance J2, a total work of at least (1/ϵ+1−1/2) =
(1/2 + 1/ϵ) remains to be done in D time units. Hence the energy consumption on instance
J2 is at least

(1/2 + 1/ϵ)α

Dα−1 .

If the algorithm is (1 + ϵ/3)α−1-consistent, then it must be that the algorithm works more that
1/2 before time ⌈ϵD⌉ otherwise, by the second case of the analysis, the competitive ratio is at
least

(1/2 + 1/ϵ)α

(1/ϵ)α(1 + ϵ) = (1 + ϵ/2)α

1 + ϵ
> (1 + ϵ/3)α−1,

where the last inequality holds for α > 4 and ϵ small enough.

However it means that if the algorithm was running on instance J1 (i.e. the prediction is incorrect)
then by the first case the approximation ratio is at least Ω

( 1
ϵ

)α−1.

We then argue that one cannot hope to rely on some lp norm for p < α to measure error.

Theorem A.5. Fix some α and D and let p such that p < α. Suppose there is an algorithm
which on some prediction wpred computes a solution of value at most

C ·OPT +C ′ · ∥w − wpred∥p
p.

Here C and C ′ are constants that can be chosen as an arbitrary function of α and D.

Then it also exists an algorithm for the online problem (without predictions) which is (C + ϵ)-
competitive for every ϵ > 0.

In other words, predictions do not help, if we choose p < α.

Proof. In the online algorithm we use the prediction-based algorithm AP as a black box. We set
the prediction w̃ to all 0. We forward each job to AP , but scale its work by a large factor M . It
is obvious that by scaling the optimum of the instance increases exactly by a factor Mα. The
error in the prediction, however, increases less:

∥M · w −M · wpred∥p
p = Mp · ∥w − wpred∥p

p.
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We run the jobs as AP does, but scale them down by M again. Thus, we get a schedule of value

M−α(Mα ·C ·OPT +Mp ·C ′ · ∥w −wpred∥p
p) = C ·OPT +Mp−α ·C ′ · ∥w −wpred∥p

p. (A.2)

Now if we choose M large enough, the second term in (A.2) becomes insignificant. First, we
relate the prediction error to the optimum. First note that

OPT ≥ (1/Dα) · ||w||αα

since the optimum solution cannot be less expensive than running all jobs i disjointly at speed
wi/D for time D. Second note that ∥w∥p

p ≤ ||w||αα since |x|p ≤ |x|α for any x ≥ 1 (recall that we
assumed our workloads to be integral). Hence we get that,

∥w − wpred∥p
p = ∥w∥p

p ≤ Dα ·OPT .

Choosing M sufficiently large gives Mp−αC ′Dα < ϵ, which implies that (A.2) is at most (C +
ϵ) OPT.

We terminate this section by proving an impossibility result regarding the evolving prediction
model of Chapter 8. Indeed, we prove that the dependence on the λ parameter in Theorem 8.3 is
essentially tight. For completeness we repeat the error definition in that model:

err(λ) =
∑

t

∞∑
i=t+1

|wreal
i − wpred

i (t)|α · λi−t.

In the following we allow the parameter λ to be a function of D and we write λ(D).

Theorem A.6. Let err (λ) the error in the evolving prediction model be defined with some
0 < λ(D) < 1 that can depend on D. Suppose there is an algorithm which computes a solution of
value at most

C ·OPT +C ′(D) · err(λ),

where C is independent of D and C ′(D) = o
(

1−λ(D)D

λ(D)D · 1
Dα

)
. Then there also exists an algorithm

for the online problem (without predictions) which is (C + ϵ)-competitive for every ϵ > 0.

In particular, note that for λ independent of D, it shows that an exponential dependency in D is
needed in C ′(D) as we get in Theorem 8.3.

Proof. The structure of the proof is similar to that of Theorem A.5. We pass an instance to the
assumed algorithm, but set the prediction to all 0. Unlike the previous proof, we keep the same
workloads when passing the jobs, but subdivide D in to D · k time steps where k will be specified
later. This will decrease the cost of every solution by kα.

Take an instance with interval length D. Like in the proof of Theorem A.5 we have that

∥wreal∥α
α ≤ Dα ·OPT .
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Consider the error parameter err(λ)′ for the instance with D′ = D · k. We observe that

err(λ)′ =
∑

t

∞∑
i=t+1

|wreal
k·i |α · λ(D′)k(i−t)

≤ ||wreal||αα ·
∞∑

i=1
λ(D′)k·i

≤ ||wreal||αα
λ(D′)k

1− λ(D′)k

≤ Dα λ(D′)k

1− λ(D′)k
·OPT

Hence, by definition the algorithm produces a solution of cost

C ·OPT /kα + C ′(D′) err(λ)′ ≤ (C/kα + Dα λ(D′)k

1− λ(D′)k
C ′(D′)) ·OPT

for the subdivided instance. Transferring it to the original instance, we get a cost of

(C + kαDα λ(D′)k

1− λ(D′)k
C ′(D′)) ·OPT

Therefore, if kα λ(D·k)k

1−λ(D·k)k C ′(D · k) tends to 0 as k grows, for any ϵ > 0, we can fix k big enough
so that the cost of the algorithm is at most (C + ϵ) OPT.

A.3 A shrinking lemma
Recall that by applying the earliest-deadline-first policy, we can normalize every schedule to run
at most one job at each time. We say, it is run isolated. Moreover, if a job is run isolated, it is
always better to run it at a uniform speed (by convexity of x 7→ xα on x ≥ 0). Hence, an optimal
schedule can be characterized solely by the total time pj each job is run. Given such pj we will
give a necessary and sufficient condition of when a schedule that runs each job isolated for pj

time exists. Note that we assume we are in the general deadline case, each job j comes with a
release rj and deadline dj and the EDF policy might cause some jobs to be preempted.

Lemma A.7. Let there be a set of n jobs with release times rj and deadlines dj for each job
j. Let pj denote the total duration that j should be processed. Scheduling the jobs isolated
earliest-deadline-first, with the constraint to never run a job before its release time, will complete
every job j before time dj if and only if for every interval [t, t′] it holds that∑

j:t≤rj ,dj≤t′

pj ≤ t′ − t (A.3)

Proof. For the one direction, let t, t′ such that Equation (A.3) is not fulfilled. Since the jobs with
t ≤ rj cannot be processed before t, the last such job j′ to be completed must finish after

t +
∑

j:t≤rj ,dj≤t′

pj > t + t′ − t = t′ ≥ dj′
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For the other direction, we will schedule the jobs earliest-deadline-first and argue that if the
schedule completes some job after its deadline, then Equation (A.3) is not satisfied for some
interval [t, t′].

To this end, let j′ be the first job that finishes strictly after dj′ and consider the interval
I0 = [rj′ , dj′ ]. We now define the following operator that transforms our interval I0 into an
interval I1. Consider tinf to be the smallest release time among all jobs that are processed in
interval I0 and define I1 = [tinf, dj′ ]. We apply iteratively this operation to obtain interval Ik+1
from interval Ik. We claim the following properties that we prove by induction.

1. For any k ≥ 0, the machine is never idle in interval Ik.

2. For any k ≥ 0, all jobs that are processed in Ik have a deadline ≤ dj′ .

For I0 = [rj′ , dj′ ], since job j′ is not finished by time dj′ it must be that the machine is never idle
in that interval. Additionally, if a job is processed in this interval, it must be that its deadline is
earlier that dj′ since we process in EDF order. Assume both items hold for Ik and then consider
Ik+1 that we denote by [ak+1, dj′ ]. By construction, there is a job denoted jk+1 released at
time ak+1 that is not finished by time ak. Therefore the machine cannot be idle at any time in
[ak+1, ak] hence at any time in Ik+1 by the induction hypothesis. Furthermore, consider a job
processed in Ik+1 \ Ik. It must be that its deadline is earlier that the deadline of job jk+1. But
job jk+1 is processed in interval Ik which implies that its deadline is earlier than dj′ and ends
the induction.

Denote by k′ the first index such that Ik′ = Ik′+1. We define I∞ = Ik′ . By construction, it must
be that all jobs processed in I∞ have release time in I∞ and by induction the machine is never
idle in this interval and all jobs processed in I∞ have deadline in I∞.

Since job j′ is not finished by time dj′ and by the previous remarks we have that∑
j:rj ,dj∈I∞

pj > |I∞|

which yields a counter example to (A.3).

We can now prove two shrinking lemmas that are needed in the procedure Robustify and its
generalization to general deadlines.

Lemma A.8. Let 0 ≤ µ < 1. For any instance I consider the instance I ′ where the deadline of
job j is set to d′

j = rj + (1− µ)(dj − rj) (i.e. we shrink each job by a (1− µ) factor). Then

OPT(I ′) ≤ OPT(I)
(1− µ)α−1

Additionally, assuming 0 ≤ µ < 1/2, consider the instance I ′′ where the deadline of job j is set
to d′′

j = rj + (1− µ)(dj − rj) and the release time is set to r′′
j = rj + µ(dj − rj). Then

OPT(I ′′) ≤ OPT(I)
(1− 2µ)α−1
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Proof. W.l.o.g. we can assume that the optimal schedule s for I runs each job isolated and at a
uniform speed. By optimality of the schedule and convexity, each job j must be run at a constant
speed sj for a total duration of pj . Consider the first case and define a speed s′

j = sj

1−µ for all j

(hence the total processing time becomes p′
j = (1− µ) · pj).

Assume now in the new instance I ′ we run jobs earliest-deadline-first with the constraint that no
job is run before its release time (with the processing times p′

j). We will prove using Lemma A.7
that all deadlines are satisfied. Consider now an interval [t, t′] we then have that∑

j:t≤rj ,d′
j
≤t′

p′
j = (1− µ) ·

∑
j:t≤rj ,d′

j
≤t′

pj ≤ (1− µ) ·
∑

j:t≤rj ,dj≤ t′−µt
1−µ

pj

where the last inequality comes from the fact that t′ ≥ d′
j = dj − µ(dj − rj) which implies that

dj ≤ t′−µrj

1−µ ≤ t′−µt
1−µ by using rj ≥ t. By Lemma A.7 and the fact that s is a feasible schedule for

I we have that∑
j:t≤rj ,d′

j
≤t′

p′
j ≤ (1− µ) ·

(
t′ − µt

1− µ
− t

)
= (1− µ) · t′ − t

1− µ
= t′ − t

which implies by Lemma A.7 that running all jobs EDF with processing time p′
j satisfies all

deadlines d′
j . Now notice the cost of this schedule is at most 1

(1−µ)α−1 times the original schedule
s which ends the proof (each job is ran 1

1−µ times faster but for a time (1− µ) times shorter).

The proof of the second case is similar. Note that for any [t, t′], if

d′′
j = rj + (1− µ)(dj − rj) = (1− µ)dj + µrj ≤ t′

r′′
j = rj + µ(dj − rj) = (1− µ)rj + µdj ≥ t

then we have

(1− µ)dj ≤ t′ − µrj ≤ t′ − µ

1− µ
(t− µdj)

⇐⇒ (1− µ)dj −
µ2

1− µ
dj ≤ t′ − µ

1− µ
· t

⇐⇒ dj((1− µ)2 − µ2) ≤ (1− µ)t′ − µt

⇐⇒ dj ≤
(1− µ)t′ − µt

1− 2µ

Similarly, we have

(1− µ)rj ≥ t− µdj ≥ t− µ

1− µ
(t′ − µrj)

⇐⇒ (1− µ)rj −
µ2

1− µ
rj ≥ t− µ

1− µ
· t′

⇐⇒ rj ≥
(1− µ)t− µt′

1− 2µ

Notice that (1−µ)t′−µt
1−2µ − (1−µ)t−µt′

1−2µ = t′−t
1−2µ
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Therefore, if we set the speed that each job s′′
j is processed to s′′

j = sj

1−2µ then we have a processing
time p′′

j = (1− 2µ) · pj and we can write∑
j:t≤r′′

j
,d′′

j
≤t′

p′′
j = (1− 2µ) ·

∑
j:t≤r′′

j
,d′′

j
≤t′

pj

≤ (1− 2µ) ·
∑

j: (1−µ)t−µt′
1−2µ ≤rj ,dj≤ (1−µ)t′−µt

1−2µ

pj

≤ (1− 2µ) · t′ − t

1− 2µ
= t′ − t

by Lemma A.7. Hence we can conclude similarly as in the previous case.

A.4 Making an algorithm noise tolerant
The idea for achieving noise tolerance is that by Lemma A.8 we know that if we delay each
job’s arrival slightly (e.g., by ηD) we can still obtain a near optimal solution. This gives us
time to reassign arriving jobs within a small interval in order to make the input more similar
to the prediction. We first, in Appendix A.4.1, generalize the error function err to a more noise
tolerant error function errη. We then, in Appendix A.4.2, give a general procedure for making an
algorithm noise tolerant (see Theorem A.9).

A.4.1 Noise tolerant measure of error

For motivation, recall the example given in the main body. Specifically, consider a predicted
workload wpred defined by wpred

i = 1 for those time steps i that are divisible by a large constant,
say 1000, and let wpred

i = 0 for all other time steps. If the real instance wreal is a small shift
of wpred say wreal

i+1 = wpred
i then the prediction error err(wreal, wpred) is large although wpred

intuitively forms a good prediction of wreal. To overcome this sensitivity to noise, we generalize
the definition of err.

For two workload vectors w, w′, and a parameter η ≥ 0, we say that w is in the η-neighborhood
of w′, denoted by w ∈ Nη(w′), if w can be obtained from w′ by moving the workload at most ηD

time steps forward or backward in time. Formally w ∈ N(w′) if there exists a solution {xij} to
the following system of linear equations1:

wi =
i+ηD∑

j=i−ηD

xij ∀i

w′
j =

j+ηD∑
i=j−ηD

xij ∀j

The concept of η-neighborhood is inspired by the notion of earth mover’s distance but is adapted
to our setting. Intuitively, the variable xij denotes how much of the load wi has been moved to
time unit j in order to obtain w′. Also note that it is a symmetric and reflexive relation, i.e., if

1To simplify notation, we assume that ηD evaluates to an integer and we have extended the vectors w and w′

to take value 0 outside the range [0, T − D].

117



Chapter A Extensions and deferred proofs of Part II

w ∈ Nη(w′) then w′ ∈ Nη(w) and w ∈ Nη(w).

We now generalize the measure of prediction error as follows. For a parameter η ≥ 0, an instance
wreal, and a prediction wpred, we define the η-prediction error, denoted by errη, as

errη(wreal, wpred) = min
w∈Nη(wpred)

err(wreal, w) .

Note that by symmetry we have that errη(wreal, wpred) = errη(wpred, wreal). Furthermore, we
have that errη = err if η = 0 but it may be much smaller for η > 0. To see this, consider the
vectors wpred and wreal

i = wpred
i+1 given in the motivational example above. While err(wpred, wreal)

is large, we have errη(wpred, wreal) = 0 for any η with ηD ≥ 1. Indeed the definition of errη

is exactly so as to allow for a certain amount of noise (calibrated by the parameter η) in the
prediction.

A.4.2 Noise tolerant procedure

We give a general procedure for making an algorithm A noise tolerant under the mild condition
that A is monotone: we say that an algorithm is monotone if given a predictor wpred and duration
D, the cost of scheduling a workload w is at least as large as that of scheduling a workload w′

if w ≥ w′ (coordinate-wise). That increasing the workload should only increase the cost of a
schedule is a natural condition that in particular all our algorithms satisfy.

Theorem A.9. Suppose there is a monotone learning-augmented online algorithm A for the
uniform speed scaling problem, that given prediction wpred, computes a schedule of an instance
wreal of value at most

min{C ·OPT +C ′ err(wreal, wpred), C ′′ OPT} .

Then, for every η ≥ 0, ζ > 0 there is a learning-augmented online algorithm Noise-Robust(A),
that given prediction wpred, computes a schedule of wreal of value at most ((1 + η)(1 + ζ))O(α)

times

min{C ·OPT +(1/ζ)O(α)(C + C ′) errη(wreal, wpred), C ′′ OPT} .

The pseudo-code of the online algorithm Noise-Robust(A), obtained from A, is given in Algo-
rithm 12.

The algorithm constructs a vector wonline ∈ Nη(wreal) while trying to minimize err(wonline, wpred).
Each component wonline

i will be finalized at time i + ηD. Hence, we forward the jobs to A with a
delay of ηD.

The vector is constructed as follows. Suppose a job wreal
i arrives. The algorithm first (see

Steps 4-15) greedily assigns the workload to the time steps j = i− ηD, i− ηD + 1, . . . , i + ηD

from left-to-right subject to the constraint that no time step receives a workload higher than
(1 + ζ)wpred

j . If not all workload of wreal
i was assigned in this way, then the overflow is assigned

uniformly to the time steps from i − ηD to i + ηD (Steps 17-20). Since each wonline
j can only

receive workloads during time steps j − ηD, . . . , j + ηD, it will be finalized at time j + ηD. Thus,
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Algorithm 12 Noise-Robust(A)
Require: Algorithm A, prediction wpred, and η ≥ 0, ζ > 0

1: Initialize A with prediction wpred
i = (1 + ζ)wpred

i−ηD and duration (1− 2η)D
2: Let wonline and wreal be workload vectors, initialized to 0
3: on time step i do
4: W ← wreal

i

5: for j ∈ {i− ηD, . . . , i + ηD} do
6: if wonline

j + W ≤ (1 + ζ)wpred
j then

7: xij ←W
8: W ← 0
9: wonline

j ← wonline
j + W

10: else if wonline
j < (1 + ζ)wpred

j then
11: xij ← (1 + ζ)wpred

j − wonline
j

12: W ←W − xij

13: wonline
j ← (1 + ζ)wpred

j

14: end if
15: end for
16: // Distribute remaining workload W evenly
17: for j ∈ {i− ηD, . . . , i + ηD} do
18: xij ← xij + W/(2ηD + 1)
19: wonline

j ← wonline
j + W/(2ηD + 1)

20: end for
21: wreal

i ← wonline
i−ηD

22: Feed the job with workload wreal
i to A

23: end on

at time i we can safely forward wonline
i−ηD to the algorithm A. Hence, we set the workload of the

algorithm’s instance to wreal
i = wonline

i−ηD (Steps 21-22). This shift together with the fact that a
job wreal

i may be assigned to wonline
i+ηD , i.e., ηD time steps forward in time, is the reason why we

run each job with an interval of length (1− 2η)D. Shrinking the interval of each job allows to
make this shift and reassignment while still guaranteeing that each job is finished by its original
deadline.

For an example, consider Figure A.1. Here we assume that ηD = 1 and for illustrative purposes
that ζ = 0. At time 0, a workload wreal

0 = 1 is released. The algorithm Noise-Robust(A)
then greedily constructs wonline by filling the available slots in wpred

−1 , wpred
0 , and wpred

1 . Since
wpred

0 = 3, it fits all of the workload of wreal
0 at time 0. Similarly the workloads wreal

2 and wreal
3

both fit under the capacity given by wpred. Now consider the workload wreal
4 = 2 released at time

4. At this point, the available workload at time 2 is fully occupied and one there is one unit of
workload left at time 3. Hence, Noise-Robust(A) will first assign the one unit of wreal

4 to the
third time slot and then split the remaining unit of workload unit uniformly across the time steps
3, 4, 5. The obtained vector wonline is depicted on the right of Figure A.1. The workload wonline

is then fed online to the algorithm A (giving a schedule of wonline and thus of wreal) so that at
time i, A receives the job wreal

i = wonline
i+ηD = wonline

i+1 with a deadline of i + (1− 2η)D = i + D − 2.
This deadline is chosen so as to guarantee that a job is finished by A within its original deadline.
Indeed, by this selection, the last part of the job wreal

4 that was assigned to wonline
5 is guaranteed

to finish by time 6 + D − 2 = 4 + D which is its original deadline.
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i

wpred
i

1

2

3

0 1 2 3 4 5 i

wreal
i

1

2

3

0 1 2 3 4 5 i

wonline
i

1

2

3

0 1 2 3 4 5

Figure A.1: An example of the construction of the vector wonline from wreal and wpred.

Having described the algorithm, we proceed to analyze its guarantees which will prove Theo-
rem A.9.

Analysis. We start by analyzing the noise tolerance of Noise-Robust(A).

Lemma A.10. The schedule computed by Noise-Robust(A) has cost at most (1+O(η))αC ′′ OPT.

Proof. Let OPT and OPT′ denote the cost of an optimum schedule of the original instance wreal

with duration D and the instance wreal with duration (1 − 2η)D fed to A, respectively. The
lemma then follows by showing that

OPT′ ≤ (1 + O(η))α OPT .

To show this inequality, consider an optimal schedule s of wreal subject to the constraint that
every job wreal

i is scheduled within the time interval [i + 2ηD, i + (1− 2η)D]. By Lemma A.8, we
have that the cost of this schedule is at most (1 + O(η))α OPT. The statement therefore follows
by arguing that s also gives a feasible schedule of wreal with duration (1− 2η)D. To see this note
that Noise-Robust(A) moves the workload wreal

i to a subset of wreal
i , wreal

i+1, . . . , wreal
i+2ηD. All of

these jobs are allowed to be processed during [i + 2ηD, i + (1− 2η)D]. It follows that the part of
these jobs that corresponds to wreal

i can be processed in the computed schedule s (whenever it
processes wreal

i ) since s process that job in the time interval [i + 2ηD, i + (1− 2η)D]. By doing
this “reverse-mapping” for every job, we can thus use s as a schedule for the instance wreal with
duration (1− 2η)D.

We now proceed to analyze the consistency and smoothness. The following lemma is the main
technical part of the analysis. We use the common notation (a)+ for max{a, 0}.

Lemma A.11. The workload vector wonline produced by Noise-Robust(A) satisfies

∑
i

[(
wonline

i − (1 + ζ)wpred
i

)+
]α

≤ O(1/ζ)3α · min
w∈Nη(wreal)

∑
i

[(
wi − wpred

i

)+
]α

.

The more technical proof of this lemma is given in Appendix A.4.2. Here, we explain how it
implies the consistency and smoothness bounds of Theorem A.9. For a workload vector w, we
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use the notation OPT(w) and OPT′(w) to denote the cost of an optimal schedule of workload w

with duration D and (1− 2η)D, respectively. Now let ŵonline be the workload vector defined by

ŵonline
i = max{wonline

i , (1 + ζ)wpred
i } .

We analyze the cost of the schedule produced by A for ŵonline (shifted by ηD). This also bounds
the cost of running A with wreal: Since A is monotone, the cost of the schedule computed for the
workload ŵonline (shifted by ηD) can only be greater than that computed for wreal which equals
wonline (shifted by ηD). Furthermore, we have by Lemma A.11 that

err(ŵonline, (1 + ζ)wpred) =
∑

i

[(
wonline

i − (1 + ζ)wpred
i

)+
]α

(A.4)

≤ O(1/ζ)3αerrη(wreal, wpred) .

It follows by the assumptions on A that the schedule computed by Noise-Robust(A) has cost
at most

C ·OPT′(ŵonline) + C ′ · err(ŵonline, (1 + ζ)wpred)
≤ C ·OPT′(ŵonline) + O(1/ζ)3α · C ′ · errη(wreal, wpred) .

The following lemma implies the consistency and smoothness, as stated in Theorem A.9, by
relating OPT′(ŵonline) with the cost OPT = OPT(wreal).

Lemma A.12. We have

OPT′(ŵonline) ≤ ((1 + η)(1 + ζ))O(α) (OPT(wreal) + O(1/ζ)4α errη(wreal, wpred)
)

.

Proof. By the exact same arguments as in the proof of Theorem 6.1, we have that for any η′ > 0

OPT′(ŵonline) ≤ (1 + η′)α OPT′((1 + ζ)wpred) + O(1/η′)α err(ŵonline, (1 + ζ)wpred)
≤ (1 + η′)α OPT′((1 + ζ)wpred) + O(1/η′)αO(1/ζ)3α errη(wreal, wpred) ,

where we used (A.4) for the second inequality.

By Lemma A.8, we have that decreasing the duration by a factor (1− 2η) only increases the cost
by factor (1 + O(η))α and so OPT′((1 + ζ)wpred) ≤ (1 + O(η))α OPT((1 + ζ)wpred). Furthermore,
as a schedule for a workload wpred gives a schedule for (1 + ζ)wpred by increasing the speed by a
factor (1 + ζ), we get

OPT′((1 + ζ)wpred) ≤ (1 + O(η))α(1 + ζ)α OPT(wpred) .

Hence, by choosing η′ = ζ,

OPT′(ŵonline) ≤ (1 + O(η))α(1 + ζ)2α OPT(wpred) + O(1/ζ)4α errη(wreal, wpred).

It remains to upper bound OPT(wpred) by OPT(wreal). Let w = argminw∈Nη(wpred) err(w, wreal)
and so errη(wreal, wpred) = err(wreal, w). By again applying the arguments of Theorem 6.1, we
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have for any η′ > 0

OPT(w) ≤ (1 + η′)α OPT(wreal) + O(1/η′)α err(wreal, w) .

Now consider an optimal schedule of w subject to that for every time t the job wt is scheduled
within the interval [t + ηD, t + (1− η)D]. By Lemma A.8, we have that this schedule has cost at
most (1 + O(η))α OPT(w). Observe that this schedule for w also defines a feasible schedule for
wpred since the time of any job is shifted by at most ηD in w. Hence, by again selecting η′ = ζ,

OPT(wpred) ≤ (1 + O(η))α OPT(w)
≤ (1 + O(η))α

(
(1 + ζ)α OPT(wreal) + O(1/ζ)α errη(wreal, wpred)

)
Finally, by combining all inequalities, we get

OPT′(ŵonline) ≤ (1 + O(η))2α
(
(1 + ζ)3α OPT(wreal) + O(1/ζ)4α errη(wreal, wpred)

)

Proof of Lemma A.11

The lemma is trivially true if there were no jobs that had remaining workloads to be assigned
uniformly, i.e., if we always have W = 0 at Step 16 of Noise-Robust(A). So suppose that there
was at least one such job and consider the directed bipartite graph G with bipartitions A and B

defined as follows:

• A contains a vertex for each component of wreal and B contains one for each component of
wonline. In other words, A and B contain one vertex for each time unit.

• There is an arc from i ∈ A to j ∈ B if |i − j| ≤ ηD, that is, if wreal
i could potentially be

assigned to wonline
j .

• There is an arc from j ∈ B to i ∈ A if part of the workload of wreal
i was assigned to wonline

j

by Noise-Robust(A), i.e., if xij > 0.

Now let t be the last time step such that the online algorithm had to assign the remaining workload
of wreal

t uniformly. So, by selection, t + ηD is the last time step so that wonline
t+ηD > (1 + ζ)wpred

t+ηD.
For k ≥ 0, define the sets

Ak = {i ∈ A : the shortest path from t to i has length 2k in G},
Bk = {j ∈ B : the shortest path from t to j has length 2k + 1 in G}.

Here t stands for the corresponding vertex in A. The set Ak consists of those time steps, for which
the corresponding jobs in wreal have been moved in wonline to the time slots in Bk−1 but not to
any time slot in Bk−2, Bk−3, . . . , B0; and Bk are all the time slots where the jobs corresponding
to Ak could have been assigned (but no job in Ak−1, Ak−2, . . . , A0 could have been assigned). By
the selection of t, and the construction of wonline, these sets satisfy the following two properties:

Claim A.1. The sets (Ak, Bk)k≥0 satisfy
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• For any time step j ∈
⋃

k Bk we have wonline
j ≥ (1 + ζ)wpred

j .

• For any two time steps ik ∈ Ak and iℓ ∈ Aℓ with k > ℓ, we have ik − iℓ ≤ 2ηD(k − ℓ + 2).

Proof of claim. In the proof of the claim we use the notation ℓ(Ak) and ℓ(Bk) to denote the
left-most (earliest) time step in Ak and Bk, respectively. The proof is by induction on k ≥ 0 with
the following induction hypothesis (IH):

1. For any time step j ∈ Bk we have wonline
j ≥ (1 + ζ)wpred

j .

2. B0 = {t − ηD, . . . , t + ηD} and for any (non-empty) Bk with k > 1 we have Bk =
{ℓ(Bk), . . . , ℓ(Bk−1)− 1} and ℓ(Bk)− ℓ(Bk−1) ≤ 2ηD.

The first part of IH immediately implies the first part of the claim. The second part implies the
second part of the claim as follows: Any time step in Aℓ has a time step in Bℓ that differs by at
most ηD. Similarly, for any time step in Ak there is a time step in Bk−1 at distance at most ηD.
Now by the second part of the induction hypothesis, the distance between these time steps in
Bk−1 and Bℓ is at most (k − ℓ + 1)2ηD.

We complete the proof by verifying the inductive hypothesis. For the base case when k = 0, we
have B0 = {t− ηD, . . . , t + ηD} by definition since A0 = {t}. We also have that the first part of
IH holds by the definition of Noise-Robust(A) and the fact that the overflow of job wreal(t)
was uniformly assigned to these time steps.

For the inductive step, consider a time step i ∈ Ak. By definition wreal
i was assigned to a time

step in Bk−1 but to no time step in Bk−2∪ . . .∪B0. Now suppose toward contradiction that there
is a time step j ∈ Ak−1 such that j < i. But then by the greedy strategy of Noise-Robust(A)
(jobs are assigned left-to-right), we reach the contradiction that wreal

i must have been assigned to
a time step in Bk−2 ∪ . . . ∪B0 if k ≥ 2 since then wreal

j is assigned to a time step in Bk−2. For
k = 1, we have j = t and so all time steps in B0 were full (with respect to capacity (1 + ζ)wpred)
after t was processed. Hence, in this case, wreal

i could only be assigned to a time step in B0 if it it
had overflow that was uniformly assigned by Noise-Robust(A), which contradicts the selection
of t.

We thus have that each time step in Ak is smaller than the earliest time step in Ak−1. It follows that
Bk = {ℓ(Bk), . . . , ℓ(Bk−1)− 1} where ℓ(Bk) = ℓ(Ak)− ηD. The bound ℓ(Bk)− ℓ(Bk−1) ≤ 2ηD

then follows since, by definition, {ℓ(Ak) − ηD, . . . , ℓ(Ak) + ηD} must intersect Bk−1. This
completes the inductive step for the second part of IH. For the first part, note that the job wreal

ℓ(Ak)
was also assigned to Bk−1 by Noise-Robust(A). By the greedy left-to-right strategy, this only
happens if the capacity of all time steps Bk is saturated.

Now let p be the smallest index such that wreal(Ap+1) + wreal(Ap+2) ≤ ζ ′∑p
i=0 wreal(Ai) where

we select ζ ′ = ζ/10. We have

p+1∑
i=0

wreal(Ai) ≥
p∑

i=0
wonline(Bi) ≥ (1 + ζ)

p∑
i=0

wpred(Bi) (A.5)

123



Chapter A Extensions and deferred proofs of Part II

where the first inequality holds by the definition of the sets and the second is by the first part of
the above claim. In addition, by the selection of p,

p∑
i=0

wreal(Ai) ≥ (1− ζ ′)
p+2∑
i=0

wreal(Ai) . (A.6)

Now let q = max{p− 4/(ζ ′)2, 0}. We claim the following inequality

p∑
i=q

wreal(Ai) ≥ (1− ζ ′)
p∑

i=0
wreal(Ai) . (A.7)

The inequality is trivially true if q = 0. Otherwise, we have by the selection of p,

p∑
i=q

wreal(Ai) = (1− ζ ′)
p∑

i=q

wreal(Ai) + ζ ′
p∑

i=q

wreal(Ai)

≥ (1− ζ ′)
p∑

i=q

wreal(Ai) + (p− q)
2 (ζ ′)2

q−1∑
i=0

wreal(Ai)

≥ (1− ζ ′)
p∑

i=q

wreal(Ai) + 2
q−1∑
i=0

wreal(Ai)

and so (A.7) holds.

We are now ready to complete the proof of the lemma. Let w∗ be a minimizer of the right-hand-side,
i.e.,

w∗ = argmin
w∈Nη(wreal)

∑
i

[(
wi − wpred

i

)+
]α

Divide the time steps of the instance into T1, Bp+1, T2 and T3 where T1 contains all time steps
earlier than ℓ(Bp+1), T2 contains the time steps in ∪p

i=0Bi, and T3 contains the remaining time
steps, i.e., those after t + ηD. By the selection of t, we have wonline

i ≤ (1 + ζ)wpred
i for all i ∈ T3.

We thus have that
∑

i

[(
wonline

i − (1 + ζ)wpred
i

)+
]α

equals

∑
i∈T1

[(
wonline

i − (1 + ζ)wpred
i

)+
]α

+
∑

i∈Bp+1∪T2

[(
wonline

i − (1 + ζ)wpred
i

)+
]α

.

We start by analyzing the second sum. The only jobs in wreal that contribute to the workload
of wonline at the time steps in Bp+1 ∪ T2 are by definition those corresponding to time steps in
A0 ∪ . . . ∪Ap+2. In the worst case, we have that wpred is 0 during these time steps and that the
jobs in wreal are uniformly assigned to the same 2ηD + 1 time steps. This gives us the upper
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bound:

∑
i∈Bp+1∪T2

[(
wonline

i − (1 + ζ)wpred
i

)+
]α

≤

(∑p+2
i=0 wreal(Ai)
2ηD + 1

)α

· (2ηD + 1)

≤ (1 + ζ ′)α

(∑p
i=0 wreal(Ai)

2ηD

)α

2ηD .

At the same time, combining (A.5) (A.6), and (A.7) give us

p∑
i=q

wreal(Ai) ≥ (1− ζ ′)2(1 + ζ)
p∑

i=0
wpred(Bi) ≥ (1 + ζ/2)

p∑
i=0

wpred(Bi) .

By definition, the jobs in wreal corresponding to time steps ∪p
k=qAk can only be assigned to

wonline during time steps T2 = ∪p
k=0Bk. Therefore, as the difference between the largest time and

smallest time in ∪p
k=qAk is at most 2ηD(p− q + 2) (second statement of the above claim) and

thus the workload of those time steps can be assigned to at most 2ηD(p− q + 4) time steps, we
have

∑
i∈T2

[(
w∗

i − wpred
i

)+
]α

≥

(∑p
i=q wreal(Ai)−

∑p
i=0 wpred(Bi)

(p− q + 4) · 2ηD

)α

· (p− q + 4) · 2ηD

≥
(
c · ζ3)α

(∑p
i=0 wreal(Ai)

2ηD

)α

· 2ηD

for an absolute constant c. It follows that∑
i∈Bp+1∪T2

[(
wonline

i − (1 + ζ)wpred
i

)+
]α

≤
(

1 + ζ ′

cζ3

)α ∑
i∈T2

[(
w∗

i − wpred
i

)+
]α

.

We have thus upper bounded the sum on the left over time steps in Bp+1 ∪ T2 by the sum on the
right over only time steps in T2. Since Noise-Robust(A) does not assign the workload wreal

i for
i ∈ T1 to wonline on any of the time steps in T2, we can repeatedly apply the arguments on the
time steps in T1 to show

∑
i∈T1

[(
wonline

i − (1 + ζ)wpred
i

)+
]α

≤
(

1 + ζ ′

cζ3

)α ∑
i∈T1∪Bp+1

[(
w∗

i − wpred
i

)+
]α

,

yielding the statement of the lemma.

A.5 Robustify for general deadlines
In this Appendix, we discuss generalizations of our techniques to general deadlines. Recall that
an instance with general deadlines is defined by a set J of jobs Jj = (rj , dj , wj), where rj is the
time the job becomes available, dj is the deadline by which it must be completed, and wj is the
work to be completed. For δ > 0, we use the notation J δ to denote the instance obtained from
J by shrinking the duration of each job by a factor (1− δ). That is, for each job (rj , dj , wj) ∈ J ,
J δ contains the job (rj , rj + (1− δ)(dj − rj), wj).
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Our main result in this appendix generalizes Robustify to general deadlines.

Theorem A.13. For any δ > 0, given an online algorithm for general deadlines that produces a
schedule for J δ of cost C, we can compute online a schedule for J of cost at most

min
{(

1
1− δ

)α−1
C, (2α/δ2)α/2 ·OPT

}
,

where OPT denotes the cost of an optimal schedule of J .

Since it is easy to design a consistent algorithm by just blindly following the prediction, we have
the following corollary.

Corollary A.2. There exists a learning augmented online algorithm for the General Speed Scaling
problem, parameterized by ε > 0, with the following guarantees:

• Consistency: If the prediction is accurate, then the cost of the returned schedule is at most
(1 + ε) OPT .

• Robustness: Irrespective of the prediction, the cost of the returned schedule is at most
O(α3/ε2)α ·OPT.

Proof of Corollary. Consider the algorithm that blindly follows the prediction to do an optimal
schedule of J δ when in the consistent case. That is, given the prediction of J , it schedules all
jobs that agrees with the prediction according to the optimal schedule of the predicted J δ; the
workload of the remaining jobs j that were wrongly predicted is scheduled uniformly during
their duration from release time rj to deadline dj . In the consistent case, when the prediction is
accurate, the cost of the computed schedule equals thus the cost OPT(Jδ) of an optimal schedule
of Jδ. Furthermore, we have by Lemma A.8

OPT(J δ) ≤
(

1
1− δ

)α−1
OPT ,

where OPT denotes the cost of an optimal schedule to J . Applying Theorem A.13 on this
algorithm we thus obtain an algorithm that is also robust. Specifically, we obtain an algorithm
with the following guarantees:

• If prediction is accurate, then the computed schedule has cost at most
(

1
1−δ

)2(α−1)
·OPT.

• The cost of the computed schedule is always at most (2α/δ2)α/2 ·OPT.

The corollary thus follows by selecting δ = Θ(ε/α) so that 1/(1− δ)2(α−1) = 1 + ε.

We proceed by proving the main theorem of this appendix, Theorem A.13.
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The procedure General-Robustify. We describe the procedure General-Robustify that
generalizes Robustify to general deadlines. Its analysis then implies Theorem A.13. Let A
denote the online algorithm of Theorem A.13 that produces a schedule of J δ of cost C. To
simplify the description of General-Robustify, we fix ∆ > 0 and assume that the schedule s

output by A only changes at times that are multiples of ∆. This is without loss of generality
as we can let ∆ tend to 0. To simplify our calculations, we further assume that δ(dj − rj)/∆
evaluates to an integer for all jobs (rj , dj , wj) ∈ J .

The time line is thus partitioned into time intervals of length ∆ so that in each time interval
either no job is processed by s or exactly one job is processed at constant speed by s. We denote
by s(t) the speed at which s processes the job j(t) during the t:th time interval, where we let
s(t) = 0 and j(t) = ⊥ if no job was processed by s (during this time interval).

To describe the schedule computed by General-Robustify, we further divide each time interval
into a base part of length (1− δ)∆ and an auxiliary part of length δ∆. In the t:th time interval,
General-Robustify schedules job j(t) at a certain speed sbase(t) during the base part, and
a subset J (t) ⊆ J of the jobs is scheduled during the auxiliary part, each i ∈ J(t) at a speed
saux

i (t). These quantities are computed by General-Robustify online at the start of the t:th
time interval as follows:

• Let saux(t) =
∑

i∈J (t) saux
i (t) be the current speed of the auxiliary part and let Dj(t) =

dj(t) − rj(t) be the duration of job j(t).

• If s(t)/(1− δ) ≤ saux(t), then set sbase(t) = s(t)/(1− δ).

• Otherwise, set sbase(t) so that

(1− δ)∆sbase(t) +
(
sbase(t)− saux(t)

)
δ2Dj(t) = s(t)∆ (A.8)

and add j(t) to J(t), J(t+1), . . . , J(t+δDj(t)/∆−1) with all auxiliary speeds saux
j(t)(t), saux

j(t)(t+
1), . . . , saux

j(t)(t + δDj(t)/∆− 1) set to sbase(t)− saux(t).

This completes the formal description of General-Robustify. Before proceeding to its analysis,
which implies Theorem A.13, we explain the example depicted in Figure A.2. Schedule s,
illustrated on the left, schedules a blue, red, and green job during the first, second, and third
time interval, respectively. We have that δ/∆ times the duration of the blue job and the red job
are 3 and 4, respectively. General-Robustify now produces the schedule on the right where
the auxiliary parts are indicated by the horizontal stripes. When the the blue job is scheduled it
is partitioned among the base part of the first interval and evenly among the auxiliary parts of
the first, second and third intervals so that the speed at the first interval is the same in the base
part and auxiliary part. Similarly, when the red job is scheduled, General-Robustify splits it
among the base part of the second interval and evenly among the auxiliary part of the second,
third, fourth and fifth intervals so that the speed during the base part equals the speed at the
auxiliary part during the second interval. Finally, the green job is processed at a small speed and
is thus only scheduled in the base part of the third interval (with a speed increased by a factor
1/(1− δ)).

Analysis. We show that General-Robustify satisfies the guarantees stipulated by Theo-
rem A.13. We first argue that General-Robustify produces a feasible schedule to J . During
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Schedule by A

∆ 2∆ 3∆ 4∆ 5∆
time

speed

Schedule by General-Robustify

∆ 2∆ 3∆ 4∆ 5∆
time

speed

Figure A.2: Given the schedule on the left, General-Robustify produces the schedule on the
right.

the t:th interval, the schedule s computed by A processes ∆ · s(t) work of job j(t). We argue
that General-Robustify processes the same amount of work from this time interval. At the
time when this interval is considered by General-Robustify, there are two cases:

• If s(t)/(1 − δ) ≤ saux(t) then sbase(t) = s(t)/(1 − δ) so General-Robustify processes
(1− δ)∆s(t)/(1− δ) = s(t)∆ work of j(t) during the base part of the t:th time interval.

• Otherwise, we have that General-Robustify processes (1− δ)∆sbase(t) of j(t) during
the base part of the t:th time interval and δ∆

(
sbase(t)− saux(t)

)
during the auxiliary part

of each of the δDj(t)/∆ time intervals t, t + 1, . . . , t + δDj(t)/∆− 1. By the selection (A.8),
it thus follows that General-Robustify processes all work s(t)∆ from this time interval.
in this case as well.

The schedule of General-Robustify thus completely processes every job. Furthermore, since
each job is delayed at most δDj(t) time steps we have that it is a feasible schedule to J since we
started with a schedule for J δ, which completes each job j by time rj + (1− δ)Dj . It remains to
prove the robustness and consistency guarantees of Theorem A.13

Lemma A.14 (Robustness). General-Robustify computes a schedule of cost at most (2α/δ2)α/2·
OPT.

Proof. By the definition of the algorithm we have, for each time interval, that the speed of the
base part is at most the speed of the auxiliary part. Letting sbase(t) and saux(t) denote the speed
of the base and auxiliary part of the t:th time interval, we thus have∑

t

(
(1− δ)sbase(t)α + δsaux(t)α

)
≤
∑

t

saux(t)α .

Now we have that the part of a job j that is processed during the auxiliary part of a time interval
has been uniformly assigned to at least δ2Dj time steps. It follows that the speed at any auxiliary
time interval is at most 1/δ2 times the speed at that time of the Average Rate heuristic (AVR).
The lemma now follows since that heuristic is known [88] to have competitive ratio at most
(2α)α/2.
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Lemma A.15 (Consistency). General-Robustify computes a schedule of cost at most(
1

1−δ

)α−1
· C where C denotes the cost of the schedule s computed by A.

Proof. For t ≥ 0, let h(t) be the schedule that processes the workload during the first t time
intervals as in the schedule computed by General-Robustify, and the workload of the remaining
time intervals is processed during the base part of that time interval by increasing the speed by
a factor 1/(1− δ). Hence, h(0) is the schedule that processes the workload of all time intervals
during the base part at a speed up of 1/(1 − δ), and h(∞) equals the schedule produced by
General-Robustify. By definition, the cost of h(0) equals

(
1

1−δ

)α

(1− δ) ·C and so the lemma
follows by observing that for every t ≥ 1 the cost of h(t) is at most the cost of h(t−1). To see this
consider the two cases of General-Robustify when considering the t:th time interval:

• If s(t)/(1− δ) ≤ saux(t) then General-Robustify processes all the workload during the
base part at a speed of sbase(t) = s(t)/(1− δ). Hence, in this case, the schedules h(t) and
h(t−1) processes the workload of the t:th time interval identically and so they have equal
costs.

• Otherwise, General-Robustify partitions the workload of the t:th time interval among
the base part of the t:th interval and δDj(t)/∆ many auxiliary parts so that the speed at
each of these parts is strictly less than s(t)/(1− δ). Hence, since h(t) processes the workload
of the t:th time interval at a lower speed than h(t−1) we have that its cost is strictly lower
if α > 1 (and the cost is equal if α = 1).
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A few inequalities that are used in Part III.

Lemma B.1. For any d > 0, any 0 < ϵ ≤ 1, and any β ∈ [0, 1], we have:

ϵ

1− e−ϵ
≥ 1

1− e−1/ϵ
(B.1)

ϵ

1− (1 + 1/d)−ϵd
≥ 1

1− (1 + 1/d)−d/ϵ
(B.2)

1
eϵ − 1 ≥

1−ϵ
ϵ · e

1/ϵ + 1
e1/ϵ − 1 (B.3)

1
(1 + 1/d)ϵd − 1 ≥

1−ϵ
ϵ · (1 + 1/d)d/ϵ + 1
(1 + 1/d)d/ϵ − 1 (B.4)

ϵ

1− β + βϵ
· eϵ − β

eϵ − 1 ≥
e1/ϵ − β

e1/ϵ − 1 (B.5)

(ϵ + β − βϵ) · eϵ − β

eϵ − 1 ≥
e1/ϵ − β

e1/ϵ − 1 (B.6)

Proof. Since the formal proof of (B.1) and (B.3) seems to require heavy calculations and they
are easy to check on computer we will only give a proof by a plot (see Figures B.1a and B.1b).
For B.1b, note that (B.3) ⇐⇒ 1

eϵ−1 −
1−ϵ

ϵ −
1
ϵ ·

e−1/ϵ

1−e−1/ϵ ≥ 0.
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Figure B.1: Plots for (B.1) and (B.3)

We now prove that inequality (B.1) implies inequality (B.2). For this end notice that we can
write (1 + 1/d)d = ex for some x ∈ (0, 1) since (1 + 1/d)d ∈ (1, e) for all d > 0. We prove that for
any x ∈ (0, 1]

ϵ
(
1− e−x/ϵ

)
1− e−xϵ

≥
ϵ
(
1− e−1/ϵ

)
1− e−ϵ

which will imply our claim since by inequality (B.1) the right hand side is bigger than 1. First
note this is equivalent to prove that

gϵ(x) = (1− e−ϵ) · (1− e−x/ϵ)− (1− e−1/ϵ) · (1− e−xϵ) ≥ 0

Taking the derivative of gϵ(x) we obtain

g′
ϵ(x) = 1− e−ϵ

ϵ
· e−x/ϵ − ϵ(1− e−1/ϵ) · e−xϵ

hence we can write

g′
ϵ(x) ≥ 0 ⇐⇒ ex(ϵ−1/ϵ) ≥ ϵ2 · 1− e−1/ϵ

1− e−ϵ

Notice that the left hand side in this inequality is decreasing because ϵ ∈ (0, 1]. Also notice that
gϵ(0) = gϵ(1) = 0. These two facts together imply that gϵ is first increasing for x ∈ (0, c] then
decreasing for x ∈ (c, 1] for some unknown c. In particular, we indeed have that gϵ(x) ≥ 0 which
ends the proof of inequality (B.2).

Similarly, we prove that inequality (B.3) implies inequality (B.4). Again we write (1 + 1/d)d = ex

for some x ∈ (0, 1). We first rewrite inequality (B.4).
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(B.4) ⇐⇒ 1
eϵx − 1 ≥

1−ϵ
ϵ · e

x/ϵ + 1
ex/ϵ − 1

⇐⇒ 1
eϵx − 1 ≥

1−ϵ
ϵ · (ex/ϵ − 1) + 1

ϵ

ex/ϵ − 1
⇐⇒ ϵ(ex/ϵ − 1) ≥ (1− ϵ)(ex/ϵ − 1)(eϵx − 1) + (eϵx − 1)
⇐⇒ ϵ(ex/ϵ − 1)− (1− ϵ)(ex/ϵ − 1)(eϵx − 1)− (eϵx − 1) ≥ 0

Define the following function hϵ(x) = ϵ(ex/ϵ − 1)− (1− ϵ)(ex/ϵ − 1)(eϵx − 1)− (eϵx − 1). One can
first compute:

h′
ϵ(x) = ex/ϵ − (1− ϵ) ·

(
ϵeϵx(ex/ϵ − 1) + 1

ϵ
ex/ϵ(eϵx − 1)

)
− ϵeϵx

= ex/ϵ − ϵeϵx − (1− ϵ) ·
(

(ϵ + 1/ϵ)ex(ϵ+1/ϵ) − ϵeϵx − 1
ϵ

ex/ϵ

)
= ex/ϵ ·

(
1 + 1− ϵ

ϵ

)
+ eϵx · (−ϵ + ϵ(1− ϵ))− ex(ϵ+1/ϵ) · (1− ϵ) ·

(
ϵ + 1

ϵ

)
= ex/ϵ

ϵ
− ϵ2eϵx − ex(ϵ+1/ϵ)

ϵ
· (1− ϵ) · (ϵ2 + 1)

Hence we can rewrite

h′
ϵ(x) ≥ 0 ⇐⇒ ex/ϵ

ϵ
− ϵ2eϵx − ex(ϵ+1/ϵ)

ϵ
· (1− ϵ) · (ϵ2 + 1) ≥ 0

⇐⇒ ex/ϵ − ϵ3eϵx − ex(ϵ+1/ϵ) · (1− ϵ) · (ϵ2 + 1) ≥ 0
⇐⇒ 1− ϵ3ex(ϵ−1/ϵ) − exϵ · (1− ϵ) · (ϵ2 + 1) ≥ 0

Let us define iϵ(x) = 1− ϵ3ex(ϵ−1/ϵ) − exϵ · (1− ϵ) · (ϵ2 + 1) and we derive

i′
ϵ(x) = −ϵ3 · (ϵ− 1/ϵ) · ex(ϵ−1/ϵ) − ϵeϵx · (1− ϵ) · (ϵ2 + 1)

We can now notice that

i′
ϵ(x) ≥ 0 ⇐⇒ −ϵ3 · (ϵ− 1/ϵ) · ex(ϵ−1/ϵ) − ϵeϵx · (1− ϵ) · (ϵ2 + 1) ≥ 0

⇐⇒ −ϵ3 · (ϵ− 1/ϵ) · e−x/ϵ − ϵ(1− ϵ) · (ϵ2 + 1) ≥ 0
⇐⇒ ϵ3 · (1/ϵ− ϵ) · e−x/ϵ − ϵ(1− ϵ) · (ϵ2 + 1) ≥ 0

Since the left hand side is decreasing as x increases we only need to check one extreme value
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which is i′
ϵ(0). We write

i′
ϵ(0) ≤ 0 ⇐⇒ ϵ3 · (1/ϵ− ϵ)− ϵ · (1− ϵ) · (ϵ2 + 1) ≤ 0

⇐⇒ ϵ2 − ϵ4 − (ϵ3 + ϵ− ϵ4 − ϵ2) ≤ 0
⇐⇒ −ϵ3 + 2ϵ2 − ϵ ≤ 0
⇐⇒ −ϵ · (ϵ− 1)2 ≤ 0

hence we always have i′
ϵ(0) ≤ 0.

Therefore we get that i′
ϵ(x) ≤ 0 for all x and ϵ. Note that iϵ(0) = 1 − ϵ3 − (1 − ϵ)(ϵ2 + 1) =

1− ϵ3 − ϵ2 − 1 + ϵ3 + ϵ = ϵ− ϵ2 ≥ 0. Therefore we get that hϵ is first positive on some interval
[0, c] and then negative for x ∈ [c,∞). Therefore hϵ is first increasing then decreasing. Notice
that hϵ(0) = 0 and hϵ(1) ≥ 0 by inequality (B.3). Hence inequality (B.4) is true for all x ∈ [0, 1]
which concludes the proof.

Finally, the proof of (B.5) and (B.6) are quicker and similar. Note that

(B.5) ⇐⇒ ϵ · eϵ − β

eϵ − 1 ≥ (1− β + βϵ) · e1/ϵ − β

e1/ϵ − 1

which is equivalent to a polynomial (in β) of degree 2 being positive. The leading coefficient of
this polynomial P is negative and we notice that P (1) = 0 and that P (0) ≥ 0 by (B.1). All these
facts together imply that P (β) ≥ 0 for all β ∈ [0, 1]. The proof of (B.6) is similar.

Lemma B.2. Let 0 < ϵ ≤ 1, d > 0 and define the following functions (x ∈ R):

f(x) =
(

1 + 1
d

)
· x + 1

d ((1 + 1/d)ϵd − 1)

g(x) =
(

1 + 1
d

)
· x + 1

d
(
(1 + 1/d)d/ϵ − 1

)
Given S ≥ 0 and a word w ∈ {a, b}∗ we define a sequence Sw recursively as follows:

Sw.y =


S if w.y = ϵ

f(Sw) if y = a

g(Sw) if y = b

Then for any w ∈ {a, b}∗ such that |w|a + ϵ|w|b ≥ d we have that Sw ≥ 1.

Proof. Let w′ = b . . . ba . . . a = b|w|ba|w|a be the word made of |w|b consecutive bs followed by |w|a
consecutive as. Then we claim that Sw′ ≤ Sw. This directly follows from the fact that for any
real number x, f(g(x)) ≤ g(f(x)). Noticing this, we can swap positions between an a followed by
a b and reducing the final value. We keep doing this until all the bs in w end up in front position.

134



Deferred proofs of Part III Chapter B

With standard computations one can check that

Sb|w|b = S · (1 + 1/d)|w|b + (1 + 1/d)|w|b − 1
(1 + 1/d)d/ϵ − 1

For ease of notation define S′ = Sb|w|b . Using the assumption that |w|a + ϵ|w|b ≥ d and that
S ≥ 0 we get that

S′ ≥ (1 + 1/d)(d−|w|a)/ϵ − 1
(1 + 1/d)d/ϵ − 1

Again using standard calculations we get that

Sw′ ≥ S′ · (1 + 1/d)|w|a + (1 + 1/d)|w|a − 1
(1 + 1/d)ϵd − 1

which implies

Sw′ ≥ (1 + 1/d)(d−|w|a)/ϵ − 1
(1 + 1/d)d/ϵ − 1 · (1 + 1/d)|w|a + (1 + 1/d)|w|a − 1

(1 + 1/d)ϵd − 1

Define h(x) = (1+1/d)(d−x)/ϵ−1
(1+1/d)d/ϵ−1 · (1 + 1/d)x + (1+1/d)x−1

(1+1/d)ϵd−1 . We finish the proof by proving that for
any 0 < ϵ ≤ 1, any d > 0 and any x ≥ 0, we have that h(x) ≥ 1.

Note that h(0) = 1 and that

h′(x) = ln(1 + 1/d) ·
(

(1 + 1/d)x

(1 + 1/d)ϵd − 1 −
1− ϵ

ϵ
· (1 + 1/d)(d−(1−ϵ)x)/ϵ

(1 + 1/d)d/ϵ − 1 − (1 + 1/d)x

(1 + 1/d)d/ϵ − 1

)

To study the sign of h′(x) we can drop the ln(1 + 1/d) and write

h′(x) ≥ 0 ⇐⇒ (1 + 1/d)x

(1 + 1/d)ϵd − 1 −
1− ϵ

ϵ
· (1 + 1/d)(d−(1−ϵ)x)/ϵ

(1 + 1/d)d/ϵ − 1 − (1 + 1/d)x

(1 + 1/d)d/ϵ − 1 ≥ 0

⇐⇒ 1
(1 + 1/d)ϵd − 1 −

1− ϵ

ϵ
· (1 + 1/d)(d−x)/ϵ

(1 + 1/d)d/ϵ − 1 −
1

(1 + 1/d)d/ϵ − 1 ≥ 0

Clearly the last term is increasing as x increases hence we can limit ourselves to prove that
h′(0) ≥ 0 which we can rewrite
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h′(0) ≥ 0 ⇐⇒ 1
(1 + 1/d)ϵd − 1 −

1− ϵ

ϵ
· (1 + 1/d)d/ϵ

(1 + 1/d)d/ϵ − 1 −
1

(1 + 1/d)d/ϵ − 1 ≥ 0

⇐⇒ 1
(1 + 1/d)ϵd − 1 ≥

1−ϵ
ϵ · (1 + 1/d)d/ϵ + 1
(1 + 1/d)d/ϵ − 1

Which holds by equation (5) of Lemma B.1.

136



Bibliography

[1] Rakesh Agrawal, Alan Halverson, Krishnaram Kenthapadi, Nina Mishra, and Panayiotis
Tsaparas. Generating labels from clicks. In Proceedings of the 2nd ACM International
Conference on Web Search and Data Mining, pages 172–181, 2009.

[2] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. Journal of the ACM (JACM), 55(5), 2008. URL https://doi.org/10.
1145/1411509.1411513.

[3] Noga Alon, Baruch Awerbuch, and Yossi Azar. The online set cover problem. In Proceedings
of the 35th Annual ACM Symposium on Theory of Computing (STOC), page 100–105, 2003.
URL https://doi.org/10.1145/780542.780558.

[4] Lachlan LH Andrew, Minghong Lin, and Adam Wierman. Optimality, fairness, and robustness
in speed scaling designs. In Proceedings of the ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, pages 37–48, 2010.

[5] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon.
Online metric algorithms with untrusted predictions. In Proceedings of the 37th International
Conference on Machine Learning (ICML), volume 119, pages 345–355, 2020. URL https:
//proceedings.mlr.press/v119/antoniadis20a.html.

[6] Arvind Arasu, Christopher Ré, and Dan Suciu. Large-scale deduplication with constraints
using dedupalog. In Proceedings of the 25th International Conference on Data Engineering,
pages 952–963, 2009.

[7] Yossi Azar, Ilan Reuven Cohen, and Alan Roytman. Online lower bounds via duality. In
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1038–1050, 2017.

[8] Etienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning augmented
energy minimization via speed scaling. In Proceedings of the 34th Annual Conference on
Neural Information Processing Systems (NeurIPS), pages 15350–15359, 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/af94ed0d6f5acc95f97170e3685f16c0-Paper.pdf.

[9] Etienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. In Proceedings of the 34th Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 20083–20094, 2020. URL https://proceedings.neurips.
cc/paper/2020/file/e834cb114d33f729dbc9c7fb0c6bb607-Paper.pdf.

[10] N. Bansal, N. Buchbinder, and J. Naor. A primal-dual randomized algorithm for weighted
paging. In Proceedings of the 48th Symposium on Foundations of Computer Science (FOCS),
pages 507–517, 2007.

137

https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1145/780542.780558
https://proceedings.mlr.press/v119/antoniadis20a.html
https://proceedings.mlr.press/v119/antoniadis20a.html
https://proceedings.neurips.cc/paper/2020/file/af94ed0d6f5acc95f97170e3685f16c0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/af94ed0d6f5acc95f97170e3685f16c0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e834cb114d33f729dbc9c7fb0c6bb607-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e834cb114d33f729dbc9c7fb0c6bb607-Paper.pdf


Chapter B BIBLIOGRAPHY

[11] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning,
56(1):89–113, 2004.

[12] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and
temperature. Journal of the ACM (JACM), 54(1):3:1–3:39, 2007. URL https://doi.org/10.
1145/1206035.1206038.

[13] Nikhil Bansal, David P. Bunde, Ho-Leung Chan, and Kirk Pruhs. Average rate speed scaling.
In Proceedings of the 8th Latin American Theoretical Informatics Symposium (LATIN),
pages 240–251, 2008. URL https://doi.org/10.1007/978-3-540-78773-0_21.

[14] Jeff Barr. New–predictive scaling for ec2, powered by machine learn-
ing. AWS News Blog, 2018. URL https://aws.amazon.com/blogs/aws/
new-predictive-scaling-for-ec2-powered-by-machine-learning/.

[15] Benjamin Birnbaum and Claire Mathieu. On-line bipartite matching made simple. ACM
SIGACT News, 39(1):80–87, 2008.

[16] Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. Overlapping correlation clustering.
Knowledge and information systems, 35(1):1–32, 2013.

[17] Niv Buchbinder and Joseph (Seffi) Naor. The design of competitive online algorithms via a
primal: Dual approach. Foundations and Trends® in Theoretical Computer Science, 3(2–3):
93–263, 2009. URL https://doi.org/10.1561/0400000024.

[18] Niv Buchbinder, Kamal Jain, and Joseph (Seffi) Naor. Online primal-dual algorithms for
maximizing ad-auctions revenue. In Proceedings of the 15th Annual European Symposium on
Algorithms (ESA), pages 253–264, 2007.

[19] Niv Buchbinder, Danny Segev, and Yevgeny Tkach. Online algorithms for maximum
cardinality matching with edge arrivals. Algorithmica, pages 1–19, 2018.

[20] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic approach to
webpage segmentation. In Proceedings of the 17th International World Wide Web Conference
(WWW), pages 377–386, 2008.

[21] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near
optimal lp rounding algorithm for correlation clustering on complete and complete k-partite
graphs. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing
(STOC), pages 219–228, 2015.

[22] Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering sparse graphs. In Proceedings of
the 25th Annual Conference on Neural Information Processing Systems (NeurIPS), pages
2204–2212, 2012.

[23] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. Friendship and mobility: User movement
in location-based social networks. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, page 1082–1090, 2011. URL https:
//doi.org/10.1145/2020408.2020579.

[24] Ilan Reuven Cohen and David Wajc. Randomized online matching in regular graphs. In
Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 960–979, 2018.

138

https://doi.org/10.1145/1206035.1206038
https://doi.org/10.1145/1206035.1206038
https://doi.org/10.1007/978-3-540-78773-0_21
https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/
https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/
https://doi.org/10.1561/0400000024
https://doi.org/10.1145/2020408.2020579
https://doi.org/10.1145/2020408.2020579


BIBLIOGRAPHY Chapter B

[25] Ilan Reuven Cohen, Binghui Peng, and David Wajc. Tight bounds for online edge coloring.
In Proceedings of the 60th Symposium on Foundations of Computer Science (FOCS), 2019.

[26] V. Cohen-Addad, E. Lee, and A. Newman. Correlation clustering with sherali-adams. In
Proceedings of the 363rd Symposium on Foundations of Computer Science (FOCS), pages
651–661, 2022. URL https://doi.ieeecomputersociety.org/10.1109/FOCS54457.2022.00068.

[27] Vincent Cohen-Addad, Niklas Hjuler, Nikos Parotsidis, David Saulpic, and Chris
Schwiegelshohn. Fully dynamic consistent facility location. In Proceedings of the 33rd
Annual Conference on Neural Information Processing Systems (NeurIPS), 2019.

[28] Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos
Parotsidis, and Jakub Tarnawski. Correlation clustering in constant many parallel rounds.
In Proceedings of the 38th International Conference on Machine Learning (ICML), volume
139, pages 2069–2078, 2021.

[29] Vincent Cohen-Addad, Silvio Lattanzi, Andreas Maggiori, and Nikos Parotsidis. Online
and consistent correlation clustering. In Proceedings of the 39th International Conference
on Machine Learning (ICML), pages 4157–4179, 2022. URL https://proceedings.mlr.press/
v162/cohen-addad22a.html.

[30] Wikipedia contributors. Lomax distribution, 2004. URL https://en.wikipedia.org/wiki/
Lomax_distribution.

[31] Erik D Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering
in general weighted graphs. Theoretical Computer Science, 361(2-3):172–187, 2006.

[32] Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Randomized primal-dual analysis
of ranking for online bipartite matching. In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 101–107, 2013.

[33] Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii.
Faster matchings via learned duals. In Proceedings of the 35th Annual Conference on Neural
Information Processing Systems (NeurIPS), 2021. URL https://openreview.net/forum?id=
kB8eks2Edt8.

[34] Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning space partitions for
nearest neighbor search. In Proceedings of the 8th International Conference on Machine
Learning (ICML), 2020. URL https://www.microsoft.com/en-us/research/publication/
learning-space-partitions-for-nearest-neighbor-search/.

[35] Daniel R Dooly, Sally A Goldman, and Stephen D Scott. Tcp dynamic acknowledgment
delay (extended abstract) theory and practice. In Proceedings of the 30th Annual ACM
Symposium on Theory of Computing (STOC), pages 389–398, 1998.

[36] Alon Eden, Michal Feldman, Amos Fiat, and Kineret Segal. An economic-based analysis of
ranking for online bipartite matching. In Proceedings of 2021 Symposium on Simplicity in
Algorithms (SOSA), pages 107–110, 2021.

[37] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research
of the National Bureau of Standards B, 69(125-130):55–56, 1965.

[38] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,
1965.

139

https://doi.ieeecomputersociety.org/10.1109/FOCS54457.2022.00068
https://proceedings.mlr.press/v162/cohen-addad22a.html
https://proceedings.mlr.press/v162/cohen-addad22a.html
https://en.wikipedia.org/wiki/Lomax_distribution
https://en.wikipedia.org/wiki/Lomax_distribution
https://openreview.net/forum?id=kB8eks2Edt8
https://openreview.net/forum?id=kB8eks2Edt8
https://www.microsoft.com/en-us/research/publication/learning-space-partitions-for-nearest-neighbor-search/
https://www.microsoft.com/en-us/research/publication/learning-space-partitions-for-nearest-neighbor-search/


Chapter B BIBLIOGRAPHY

[39] Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann. Improved bounds for online
preemptive matching. In Proceedings of the 30th International Symposium on Theoretical
Aspects of Computer Science (STACS), pages 389–399, 2013.

[40] Uriel Feige. Tighter bounds for online bipartite matching. arXiv preprint arXiv:1812.11774,
2018.

[41] Björn Feldkord, Matthias Feldotto, Anupam Gupta, Guru Guruganesh, Amit Kumar, Sören
Riechers, and David Wajc. Fully-dynamic bin packing with little repacking. In Proceedings
of the 45th International Colloquium on Automata, Languages and Programming (ICALP),
pages 51:1–51:24, 2018.

[42] Hendrik Fichtenberger, Silvio Lattanzi, Ashkan Norouzi-Fard, and Ola Svensson. Consistent
k-clustering for general metrics. In Proceedings of the 32nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 2660–2678. SIAM, 2021.

[43] Rudolf Fleischer. On the bahncard problem. Theoretical Computer Science, 268(1):161 –
174, 2001. URL http://www.sciencedirect.com/science/article/pii/S0304397500002668.

[44] Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and David
Wajc. Online matching with general arrivals. In Proceedings of the 60th Sympo-
sium on Foundations of Computer Science (FOCS), pages 26–37, 2019. URL https:
//conferences.computer.org/focs/2019/pdfs/FOCS2019-7pBwCpNH4Mz2L4MJWVl6Xp/
1pIEyZQDr2HASYIBeX3I8P/5NPI01irVYpRREDDAIQhYj.pdf.

[45] Marco E. T. Gerards, Johann L. Hurink, and Philip K. F. Hölzenspies. A survey of offline
algorithms for energy minimization under deadline constraints. Journal of Scheduling, 19(1):
3–19, 2016. URL https://doi.org/10.1007/s10951-015-0463-8.

[46] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In Proceedings of the 19th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 982–991, 2008.

[47] Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert
advice. In Proceedings of the 36th International Conference on Machine Learning (ICML),
pages 2319–2327, 2019. URL http://proceedings.mlr.press/v97/gollapudi19a.html.

[48] Weibo Gong, Yong Liu, Vishal Misra, and Don Towsley. On the tails of web file size
distributions. In Proceedings of the 39th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2001.

[49] Xiangyu Guo, Janardhan Kulkarni, Shi Li, and Jiayi Xian. Consistent k-median: Sim-
pler, better and robust. In Proceedings of the 24th International Conference on Artificial
Intelligence and Statistics, pages 1135–1143, 2021.

[50] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Online primal-dual for non-
linear optimization with applications to speed scaling. In Proceedings of the 10th Workshop
on Approximation and Online Algorithms (WAOA), pages 173–186, 2012.

[51] Guru Prashanth Guruganesh and Sahil Singla. Online matroid intersection: Beating half
for random arrival. In Proceedings of the 19th Conference on Integer Programming and
Combinatorial Optimization (IPCO), pages 241–253, 2017.

140

http://www.sciencedirect.com/science/article/pii/S0304397500002668
https://conferences.computer.org/focs/2019/pdfs/FOCS2019-7pBwCpNH4Mz2L4MJWVl6Xp/1pIEyZQDr2HASYIBeX3I8P/5NPI01irVYpRREDDAIQhYj.pdf
https://conferences.computer.org/focs/2019/pdfs/FOCS2019-7pBwCpNH4Mz2L4MJWVl6Xp/1pIEyZQDr2HASYIBeX3I8P/5NPI01irVYpRREDDAIQhYj.pdf
https://conferences.computer.org/focs/2019/pdfs/FOCS2019-7pBwCpNH4Mz2L4MJWVl6Xp/1pIEyZQDr2HASYIBeX3I8P/5NPI01irVYpRREDDAIQhYj.pdf
https://doi.org/10.1007/s10951-015-0463-8
http://proceedings.mlr.press/v97/gollapudi19a.html


BIBLIOGRAPHY Chapter B

[52] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency
estimation algorithms. In Proceedings of the 7th International Conference on Learning
Representations (ICLR), 2019. URL https://openreview.net/forum?id=r1lohoCqY7.

[53] Zhiyi Huang, Ning Kang, Zhihao Gavin Tang, Xiaowei Wu, Yuhao Zhang, and Xue Zhu.
How to match when all vertices arrive online. In Proceedings of the 50th Annual ACM
Symposium on Theory of Computing (STOC), pages 17–29, 2018.

[54] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. Online vertex-weighted
bipartite matching: Beating 1-1/e with random arrivals. In Proceedings of the 45th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP), pages 1070–1081,
2018.

[55] Zhiyi Huang, Binghui Peng, Zhihao Gavin Tang, Runzhou Tao, Xiaowei Wu, and Yuhao
Zhang. Tight competitive ratios of classic matching algorithms in the fully online model. In
Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2875–2886, 2019.

[56] Mohammad Reza Karimi Jaghargh, Andreas Krause, Silvio Lattanzi, and Sergei Vassilvtiskii.
Consistent online optimization: Convex and submodular. In Proceedings of the 22nd
International Conference on Artificial Intelligence and Statistics, pages 2241–2250, 2019.

[57] Dmitri V Kalashnikov, Zhaoqi Chen, Sharad Mehrotra, and Rabia Nuray-Turan. Web people
search via connection analysis. IEEE Transactions on Knowledge and Data Engineering, 20
(11):1550–1565, 2008.

[58] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy caching.
In Proceedings of the 27th Symposium on Foundations of Computer Science (FOCS), pages
244–254, 1986.

[59] Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan Owicki. Competitive
randomized algorithms for non-uniform problems. In Proceedings of the 1st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), page 301–309, 1990.

[60] Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic tcp acknowledgement and
other stories about e/(e-1). In Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing (STOC), page 502–509, 2001. URL https://doi.org/10.1145/380752.380845.

[61] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for
on-line bipartite matching. In Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing (STOC), pages 352–358, 1990.

[62] Craig Kitterman. Autoscaling windows azure applications. Microsoft Azure Blog, 2013. URL
https://azure.microsoft.com/de-de/blog/autoscaling-windows-azure-applications/.

[63] Rohan Kodialam. Optimal algorithms for ski rental with soft machine-learned predictions.
CoRR, 2019. URL http://arxiv.org/abs/1903.00092.

[64] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[65] Silvio Lattanzi and Sergei Vassilvitskii. Consistent k-clustering. In Proceedings of the 34th
International Conference on Machine Learning (ICML), pages 1975–1984, 2017.

141

https://openreview.net/forum?id=r1lohoCqY7
https://doi.org/10.1145/380752.380845
https://azure.microsoft.com/de-de/blog/autoscaling-windows-azure-applications/
http://arxiv.org/abs/1903.00092


Chapter B BIBLIOGRAPHY

[66] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online
scheduling via learned weights. In Proceedings of the 31st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1859–1877, 2020. URL https://doi.org/10.1137/1.
9781611975994.114.

[67] Silvio Lattanzi, Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang, and Rudy Zhou.
Robust online correlation clustering. In Proceedings of the 34th Annual Conference on Neural
Information Processing Systems (NeurIPS), 2021.

[68] Euiwoong Lee and Sahil Singla. Maximum matching in the online batch-arrival model. In
Proceedings of the 19th Conference on Integer Programming and Combinatorial Optimization
(IPCO), pages 355–367, 2017.

[69] Russell Lee, Mohammad H. Hajiesmaili, and Jian Li. Learning-assisted competitive algorithms
for peak-aware energy scheduling. CoRR, 2019. URL http://arxiv.org/abs/1911.07972.

[70] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, 2014.

[71] László Lovász and Michael D Plummer. Matching theory, volume 367. American Mathematical
Society, 2009.

[72] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
In Proceedings of the 35th International Conference on Machine Learning (ICML), pages
3302–3311, 2018. URL http://proceedings.mlr.press/v80/lykouris18a.html.

[73] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Online optimization with
uncertain information. ACM Transactions on Algorithms, 8(1), 2012. URL https://doi.org/
10.1145/2071379.2071381.

[74] M. Marathe and W. Hawe. Predicted capacity of ethernet in a university environment. In
Proceedings of Southcon, pages 1–10, 1982.

[75] Claire Mathieu, Ocan Sankur, and Warren Schudy. Online correlation clustering. In
Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science
(STACS), pages 573–584, 2010.

[76] Andres Muñoz Medina and Sergei Vassilvitskii. Revenue optimization with approximate
bid predictions. In Proceedings of the 30th Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 1858–1866, 2017. URL http://papers.nips.cc/paper/
6782-revenue-optimization-with-approximate-bid-predictions.

[77] Aranyak Mehta. Online matching and ad allocation. Foundations and Trends® in Theoretical
Computer Science, 8(4):265–368, 2013.

[78] Michael Mitzenmacher. Dynamic models for file sizes and double pareto distributions. Internet
Mathematics, 1(3):305–333, 2003. URL https://projecteuclid.org:443/euclid.im/1109190964.

[79] Michael Mitzenmacher. A model for learned bloom filters and optimizing by sand-
wiching. In Proceedings of the 31st Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 464–473, 2018. URL http://papers.nips.cc/paper/
7328-a-model-for-learned-bloom-filters-and-optimizing-by-sandwiching.pdf.

142

https://doi.org/10.1137/1.9781611975994.114
https://doi.org/10.1137/1.9781611975994.114
http://arxiv.org/abs/1911.07972
http://snap.stanford.edu/data
http://proceedings.mlr.press/v80/lykouris18a.html
https://doi.org/10.1145/2071379.2071381
https://doi.org/10.1145/2071379.2071381
http://papers.nips.cc/paper/6782-revenue-optimization-with-approximate-bid-predictions
http://papers.nips.cc/paper/6782-revenue-optimization-with-approximate-bid-predictions
https://projecteuclid.org:443/euclid.im/1109190964
http://papers.nips.cc/paper/7328-a-model-for-learned-bloom-filters-and-optimizing-by-sandwiching.pdf
http://papers.nips.cc/paper/7328-a-model-for-learned-bloom-filters-and-optimizing-by-sandwiching.pdf


BIBLIOGRAPHY Chapter B

[80] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML
predictions. In Proceedings of the 31st Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 9684–9693, 2018. URL http://papers.nips.cc/paper/
8174-improving-online-algorithms-via-ml-predictions.

[81] Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
page 1834–1845, 2020.

[82] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer Science & Business Media, 2003.

[83] Steven S. Seiden. A guessing game and randomized online algorithms. In Proceedings of the
32nd Annual ACM Symposium on Theory of Computing (STOC), page 592–601, 2000. URL
https://doi.org/10.1145/335305.335385.

[84] Sumedh Tirodkar and Sundar Vishwanathan. Maximum matching on trees in the online pre-
emptive and the incremental dynamic graph models. In Proceedings of the 23rd International
Computing and Combinatorics Conference (COCOON), pages 504–515, 2017.

[85] Shufan Wang, Jian Li, and Shiqiang Wang. Online Algorithms for Multi-shop Ski Rental
with Machine Learned Advice. In Proceedings of the 34th Annual Conference on Neural
Information Processing Systems (NeurIPS), 2020.

[86] Michael Wilson. A historical view of network traffic models. http://www.cse.wustl.edu/
~jain/cse567-06/traffic_models2.htm, 2006.

[87] Yinfeng Xu and Weijun Xu. Competitive algorithms for online leasing problem in probabilistic
environments. In Proceedings of the International Symposium on Neural Networks, Part II,
pages 725–730, 2004. URL https://doi.org/10.1007/978-3-540-28648-6_116.

[88] F. Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model for reduced CPU
energy. In Proceedings of the 36th Symposium on Foundations of Computer Science (FOCS),
pages 374–382, 1995. URL https://doi.org/10.1109/SFCS.1995.492493.

143

http://papers.nips.cc/paper/8174-improving-online-algorithms-via-ml-predictions
http://papers.nips.cc/paper/8174-improving-online-algorithms-via-ml-predictions
https://doi.org/10.1145/335305.335385
http://www.cse.wustl.edu/~jain/cse567-06/traffic_models2.htm
http://www.cse.wustl.edu/~jain/cse567-06/traffic_models2.htm
https://doi.org/10.1007/978-3-540-28648-6_116
https://doi.org/10.1109/SFCS.1995.492493




Andreas Maggiori
Contact Information
Address: Chemin de la Raye 7, Ecublens 1024, Switzerland
email: andreas.maggiori@gmail.com

Education
09/2018-present École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

PhD in Computer Science
Advisors: Rüdiger Urbanke and Ola Svensson

09/2011-10/2017 National Technical University of Athens, Greece
Diploma (5-year joint degree; 300 ECTS),
Electrical and Computer Engineering (ECE)
Grade: 9.12 / 10 (approx. best 3%)

Thesis: Using Machine Learning Techniques to Infer
Players’ Valuations in Online Ad Auctions

Advisor: Dimitris Fotakis

01/2016-06/2016 Universidad Carlos III Madrid, Spain
Erasmus Exchange Student Program

09/2005-06/2011 Lycée Léonin Nea Smirni, Greece
High School
Grade: 19.5 / 20 - Excellent

Professional Experience
05/2022-08/2022 Research Intern, Google Zurich
07/2021-10/2021 Research Intern, Google Zurich

Long term Research Visits
09/2022-12/2022 Simons Institute for the Theory of Computing , UC Berkeley

Visiting graduate student for the program Data-Driven Decision Processes

Research Interests
I am broadly interested in combinatorial optimization, online algorithms, machine learning and
their intersection.

Currently, I am focusing on Learning Augmented (Online) Algorithms, where (informally) the goal
is to design algorithms which provably outperform classical online algorithms when an accu-
rate prediction about the future is available, while maintaining robustness against adversarial
predictions.

Publications
Authors (as customary in theory) are in alphabetical order.

1. Online and Consistent Correlation Clustering
ICML 2022
V. Cohen-Addad, S. Lattanzi, A. Maggiori, N. Parotsidis

2. An Improved Analysis of Greedy for Online Steiner Forest
SODA 2022
É. Bamas, M. Drygala, A. Maggiori

145



3. The Primal-Dual method for Learning Augmented Algorithms
NeurIPS 2020 (oral talk)
É. Bamas, A. Maggiori, O. Svensson

4. Learning Augmented Energy Minimization via Speed Scaling
NeurIPS 2020 (spotlight presentation)
É. Bamas, A. Maggiori, L. Rohwedder, O. Svensson

5. Online Matching with General Arrivals FOCS 2019
B. Gamlath, M. Kapralov, A. Maggiori, O. Svensson, D. Wajc

Computer Skills
Programming Languages (Excellent): Python, C++, SQL
Programming Languages (Familiar with): C, SML/NJ, Prolog, MATLAB, Bash
ML Frameworks (Familiar with): PyTorch

Teaching Experience
I organized a study-group on how continuous optimization methods can be used to tackle com-
binatorial problems. The website of the study-group with notes and recorded lectures can be
found here: https://www.epfl.ch/schools/ic/ipg/convexity-and-optimization-2020/.

I co-organized the ALPS (ALgorithms with PredictionS) workshop at EPFL in May 2022, along with
Etienne Bamas and Adam Polak.

I am/was teaching assistant for the following courses:

• NTUA: Algorithms and Complexity, Discrete Mathematics

• EPFL: Theory of Computation, Machine Learning, Learning Theory, Algorithms, Advanced
Probability and Applications, Foundations of Data Science

Awards
2017: 1st in the NTUA hub at Google Hashcode programming competition

(170 in the world) with the team Veni Vidi Vsync
2013: Bronze medal at SEEMOUS (South Eastern European Mathematical Olympiad for

University Students) competition
2010: Bronze medal on Euclid phase of high school mathematics competition

organized by the Hellenic Mathematical Society
2010 Finalist in the Physics high school competition

organized by the Union of Greek Physicists
2008, 2010: Twice finalist in the Archimedes high school mathematics competition

organized by the Hellenic Mathematical Society

Languages
Greek: Mothertongue
Italian: Mothertongue
English: Professional working proficiency (C2, Certificate of Proficiency, Michigan)
French: Professional working proficiency (C2, Certificate of Sorbonne)
Spanish: Elementary proficiency (B2, Diploma Instituto Cervantes)

References
Ola Svensson: ola.svensson@epfl.ch

Rüdiger Urbanke: rudiger.urbanke@epfl.ch
Silvio Lattanzi: silviol@google.com

Vincent Cohen-Addad: cohenaddad@google.com
Nikos Parotsidis: nikosp@google.com

146


	Acknowledgements
	Abstract (English/Italiano)
	Introduction
	Preliminaries
	Online algorithms
	Learning-augmented online algorithms
	Problem definitions

	I Online matching under the edge arrival model
	Overview and related work
	Introduction
	Notation and problem definition
	Prior work and our results

	Counterexample
	Introduction to learning-augmented algorithms

	II Learning-augmented energy minimization via speed scaling
	Overview and related work
	Introduction
	Model and preliminaries
	Prior work and our results

	Main algorithm
	A consistent and smooth algorithm
	Robustification
	Summary of the algorithm

	Experiments
	Extension to evolving predictors
	Further extensions

	III The Primal-Dual method for learning-augmented algorithms
	Overview and related work
	The classical Primal-Dual method
	Our contributions

	Online set cover with predictions
	PDLA in action
	The ski rental problem
	Dynamic TCP acknowledgement
	The Bahncard problem

	Experiments

	IV Online and consistent correlation clustering
	Overview and related work
	Introduction
	Our contributions
	Problem definition

	Main algorithm
	The Agreement algorithm
	Online Agreement algorithm
	Proof sketch
	Lower bound

	Main proof
	Properties of the Agreement algorithm
	Dynamic analysis of the clustering sequence 
	Bounding the competitive ratio
	Bounding the worst-case recourse

	Experiments
	Datasets
	Baselines
	Setup
	Results


	Conclusion
	Extensions and deferred proofs of 
	Pure online algorithms for uniform deadlines
	Impossibility results for learning-augmented speed scaling
	A shrinking lemma
	Making an algorithm noise tolerant
	Noise tolerant measure of error
	Noise tolerant procedure

	Robustify for general deadlines

	Deferred proofs of 
	Bibliography
	Curriculum Vitae



