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Abstract

We present a framework for performing regression when both covariate and response
are probability distributions on a compact and convex subset of R𝑑 . Our regression
model is based on the theory of optimal transport and links the conditional Fréchet
mean of the response to the covariate via an optimal transport map. We define a
Fréchet-least-squares estimator of this regression map, and establish its consistency
and rate of convergence to the true map under full observation of the regression pairs.

For the specific case when 𝑑 = 1, we obtain additional results: we establish the
minimax rate of estimation of such a regression function, by deriving a lower bound
that matches the convergence rate attained by the Fréchet least squares estimator.
Additionally, we find an upper-bound for the convergence rate of an estimator when
observing only samples from the covariate and response distributions. Also in this
case, the computation of the estimator is shown to reduce to a standard convex opti-
misation problem, and thus our regression model can be implemented with ease. We
illustrate our methodology using real and simulated data.

We explore the problem of defining and fitting models of autoregressive time se-
ries of probability distributions on a compact interval of R. In this context, an order-1
autoregressive model is a Markov chain that specifies a certain structure (regression)
for the one-step conditional Fréchet mean with respect to a natural probability met-
ric. We construct and investigate different models based on iterated random function
systems of optimal transport maps. While the properties and interpretation of these
models depend on how they relate to the iterated transport system, they can all be
analyzed theoretically in a unified way. We present such a theoretical analysis, in-
cluding convergence rates, and illustrate our methodology using real and simulated
data. Our models generalise or extend certain existing models of transportation-based
regression and autoregression, and in doing so also provides some new insights on
those previous models.

Keywords: Distributional Regression, Distributional Time Series, Optimal Transport,
Wasserstein Metric
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Résumé

Nous présentons un cadre pour réaliser une régression lorsque la covariable et la
réponse sont des distributions de probabilité sur un sous-ensemble compact et con-
vexe de R𝑑 . Notre modèle de régression est fondé sur la théorie du transport optimal
et lie la moyenne conditionnelle de Fréchet de la réponse à la covariable à travers une
application de transport optimal. Nous définissons un estimateur des moindres carrés
de Fréchet pour cette application, et nous établissons sa consistance et son taux de
convergence vers la véritable application, sous l’observation complète des paires de
régression.

Dans le cas particulier où 𝑑 = 1, nous obtenons des résultats supplémentaires
: nous établissons le taux d’estimation minimax d’une telle fonction de régression,
en dérivant une borne inférieure qui correspond au taux de convergence atteint par
l’estimateur des moindres carrés de Fréchet. De plus, nous trouvons une borne supérie-
ure pour le taux de convergence d’un estimateur lorsque nous observons uniquement
des échantillons issus des distributions de la covariable et de la réponse. Dans ce cas
également, le calcul de l’estimateur se réduit à un problème d’optimisation convexe
standard, permettant ainsi une mise en œuvre aisée de notre modèle de régression.
Nous illustrons notre méthodologie à l’aide de données réelles et simulées.

Nous explorons le problème de la définition et de l’ajustement de modèles de
séries temporelles autorégressives de distributions de probabilités sur un intervalle
compact de R. Dans ce contexte, un modèle autorégressif d’ordre 1 est une chaı̂ne
de Markov qui spécifie une certaine structure (régression) pour la moyenne con-
ditionnelle de Fréchet à une étape, par rapport à une métrique de probabilité na-
turelle. Nous élaborons et étudions différents modèles basés sur des systèmes de
fonctions aléatoires itérées d’applications de transport optimal. Bien que les pro-
priétés et l’interprétation de ces modèles dépendent de la manière dont ils se rappor-
tent au système de transport itéré, ils peuvent tous être analysés théoriquement de
manière unifiée. Nous présentons une telle analyse théorique, y compris les taux de
convergence, et illustrons notre méthodologie à l’aide de données réelles et simulées.
Nos modèles généralisent ou étendent certains modèles existants de régression et
d’autorégression basés sur le transport, et apportent par conséquent de nouvelles
perspectives sur ces modèles antérieurs.

Mots-clés : Régression distributionnelle, Séries temporelles distributionnelles, Trans-
port optimal, Métrique de Wasserstein
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Chapter 1

Introduction

As datasets continue to grow in size and complexity, traditional statistical methods
that focus on summarizing or aggregating data through scalar or vector values are be-
coming inadequate, as such summarization or aggregation processes inevitably lead
to the loss of essential information. While some preprocessing of data is typically
required, it is essential to preserve the inherent characteristics of the data’s original
structure and create methods specifically tailored to this structure.

Many complex data types, including images, histograms, and point clouds, can
be represented as probability distributions. With the growing prevalence of these
data types across various fields, it has become crucial to develop models capable of
handling data where every single datum is depicted as a probability distribution. This
may involve observing either the entire distribution or samples drawn from the dis-
tributions. The primary focus of this thesis is the development of models tailored for
regression and time series analysis of probability distributions.

Analyzing distributions is a challenging task since they do not reside in a linear
space and are infinite-dimensional. As a result, when distributions constitute the data
itself, standard statistical methods developed either for linear or finite-dimensional
data are not applicable directly. For instance, functional data analysis [34] has been
developed for infinite-dimensional data, but it is primarily limited to data within lin-
ear spaces. Some of the previous methods, apply certain transformations to the data
to map them into a space with linear structure [38, 22, 58, 39]. However, to tackle
this non-linearity, our strategy is to examine the data in its natural metric space and
integrate this geometry into our models.

Optimal transport theory addresses the question of what constitutes a canoni-
cal metric space for distributions by introducing the concept of Wasserstein space
for distributions [55]. This theory provides a foundation for developing new meth-
ods that can effectively model and analyze complex data represented as probability
distributions while preserving their inherent non-linear structure.

In previous methodologies, the emphasis was on the tangent structure within
Wasserstein space [15, 79]. In contrast, the models presented in this thesis adopt a
shape constraint approach and concentrate directly at the level of probability distri-
butions. This method offers a clear and straightforward interpretation by relating
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Chapter 1. Introduction

response and covariate distributions through an optimal transport map and incorpo-
rating specific deformations as additional noise. The specific deformation noise leads
to interpreting the model as specifying the conditional Fréchet mean of the response
given the covariate. Additionally, the regression operator can be understood point-
wise at the level of the original distributions. Particularly in the one-dimensional case,
the model’s effect in mass transportation is equivalent to quantile re-arrangement. By
providing a more direct and interpretable way of modeling the relationship between
probability distributions, the shape constraint method serves as a valuable alternative
to previous methods that rely on the tangent structure of Wasserstein space.

Moving forward, the study of distributional autoregression models is a logical
next step. This addresses scenarios where there’s a dependency between probabil-
ity distributions. By regarding the sequence of probability distributions {`𝑛}𝑁𝑛=1 as
a Markov chain in Wasserstein space, autoregressive relationships can be modeled
through the establishment of a connection between the conditional Fréchet mean
at time 𝑛 + 1 and the chain’s state at time 𝑛. We generalize previous methods of
transportation-based autoregressive models [80] to obtain functional dynamics and
interpretable classes of distributional autoregressions. This is achieved by extend-
ing the functional structure of the regression operator we’ve developed and adopting
previous methods that use a contractive parameter to ensure the stationarity of the
dynamics.

1.1 Structure of the Thesis

Chapter 2 This chapter provides a brief overview of the main concepts and def-
initions of optimal transport theory that is used in this thesis, it continues with a
discussion on some of the potential applications of distribution-on-distribution re-
gression and ends by reviewing some of the previous methods.

Chapter 3 This chapter is based on the published articles [24] and [26]. We in-
troduce a model for performing regression when both covariate and response are
probability distributions on a closed interval of R. After specifying the model and es-
tablishing the identifiability of the regression map, we define a Fréchet-least-squares
estimator of this regression map and establish its consistency and rate of convergence
to the true map under full observation of the regression pairs. Additionally, we show
that our estimator is minimax optimal when the distributions are fully observed. We
illustrate the performance of the model and the estimator through a simulation and
by real data analysis for mortality and quantum dot data.

Chapter 4 This chapter is based on the preprint [27]. It considers the general-
ization of the distribution-on-distribution regression model of Chapter 3 to higher

2



1.1 Structure of the Thesis

dimensions, 𝑑 > 1. Some more restrictive structural assumption needs to be imposed
on the component of the regression model than when 𝑑 = 1. These assumptions lead
to the identifiability of the model and also enable us to use empirical process theory
to derive the rate of convergence of our estimator.

Chapter 5 This chapter is based on the preprint [25]. It develops transportation-
based autoregressive models, examining three distinct notions of autoregression that
capture various distributional time series characteristics. The models are compared
to existing approaches, with stationarity conditions established and identifiability,
consistency, and convergence rates demonstrated. Finally, the chapter highlights the
finite sample performance of the proposed methodology using both simulated and
real data.

Chapter 6 The final chapter outlines some potential directions for research in each
of the last 3 chapters. Additionally, it introduces an alternative model for distribution-
on-distribution regression and provides some preliminary results.
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Chapter 2

Overview

This chapter provides an introduction to optimal transport theory and the problem
of distribution-on-distribution regression, along with a discussion of possible appli-
cations and an overview of previous methods.

2.1 Overview of Optimal Transport

In this section, we give a brief overview of optimal transport theory including some
of the main results and the notation which is used throughout this thesis. We will go
through some definitions and intuitions without going into too much depth or for-
malities. For more background see, e.g. Villani [73], Villani et al. [74], Santambrogio
[64] and Ambrosio et al. [3].

The Monge Problem In 1781, Monge introduced the optimal transport problem,
which addresses a practical question in civil engineering: how to effectively move a
pile of sand to fill a hole of the same total volume. To tackle this problem mathemat-
ically, Monge represented the sand pile and hole as probability measures, `, and a ,
both belonging to the set of Borel probability measures P(X) on a space X which in
this original example we take as R2. The successful transportation of sand requires
finding a map 𝑇 : X → X that ensures the amount of sand arriving at each tar-
get location 𝐵 ⊆ X (measured by a (𝐵)) equals the amount of sand sent to it, i.e.,
a (𝐵) = ` (𝑇 −1(𝐵)). This map 𝑇 is referred to as a transport map, pushing forward `
to a , which is denoted as a = 𝑇#`. The objective is to find the transport map 𝑇 that
minimizes total displacements:

min
𝑇#`=a

∫
∥𝑥 −𝑇 (𝑥)∥ d` (𝑥) .

The Monge problem can be generalized in different ways, the most natural one
being the extension of the ground space X to R𝑑 for any 𝑑 ≥ 1. Furthermore, rather
than minimizing the total displacements, the objective function can be any general
cost function of the form

∫
𝑐 (𝑥,𝑇 (𝑥)) d` (𝑥), where 𝑐 : X×X → R. In this thesis, we

focus on the case where the ground space is R𝑑 and where the cost function is given
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Chapter 2. Overview

by 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥2.
The Monge formulation of optimal transport is a difficult non-linear optimization

problem, and even more troublesome is the fact that this formulation can be ill-posed
since the set of optimal transport maps pushing forward ` to a might be empty: For
instance, in the case where ` is a Dirac at a point 𝑥0 and a is any probability measure
but Dirac, there is no map 𝑇 such that a = 𝑇#` since 𝑇#𝛿𝑥0 = 𝛿𝑇 (𝑥0 ) for any 𝑇 , so
no 𝑇 can exist.

The Kantorovich Problem Kantorovich’s reformulation of the Monge problem in
1942 removed the problems that the latter suffered and guaranteed the existence of
a solution. Kantorovich relaxed the original formulation by allowing mass at a given
point 𝑥 to be split and sent to an infinite number of locations, rather than being sent
to a single location 𝑇 (𝑥). Mathematically speaking, this split of mass is represented
by a transport plan 𝛾 , which is a distribution over R𝑑 ×R𝑑 with marginals a and `. A
transport plan 𝛾 tells us that the amount of mass that should be sent from 𝐴 ⊂ R𝑑 to
𝐵 ⊂ R𝑑 is 𝛾 (𝐴×𝐵). The problem formulated by Kantorovich is as follows: Given two
probability measures ` and a on R𝑑 , the task is to find an optimal transport plan that
minimizes a ground-cost function (assuming the quadratic case for now). That is, we
want to find:

𝑑2W (a, `) := inf
𝛾 ∈Γ (a,` )

∫
Ω
∥𝑥 − 𝑦∥2 d𝛾 (𝑥,𝑦), (2.1)

where Γ(a, `) is the set of transport plans of ` and a . In contrast to the Monge prob-
lem, the Kantorovich problem always has a minimizer (see Theorem 4.1 Villani et al.
[74] for a more general result). Moreover, it takes the form of an infinite dimensional
linear programming.

Wasserstein Distance The optimal transport cost between two distributions as
defined by (2.1), defines a distance between the two distributions (see chapter 6 of
Villani et al. [74]), which is called the Wasserstein distance. Wasserstein space of
distributions over R𝑑 , denoted by W2(R𝑑 ), is a set of probability measures on R𝑑

that have finite second moments and is equipped with the𝑑2W distance1. This distance
makes W2(R𝑑 ) a complete separable metric space.

Wasserstein distance has become a canonical choice for comparing distributions
due to its several desirable properties. For example, it incorporates the geometry
of the underlying space. One way to see this, is that 𝑑2W (𝛿𝑥 , 𝛿𝑦) = ∥𝑥 − 𝑦∥2 and
therefore the mapping 𝑥 → 𝛿𝑥 is an isometric embedding of R𝑑 in W2(R𝑑 ).

Moreover, the Wasserstein distance can be used to compare discrete (e.g., empir-
ical) and continuous distributions.

1The finiteness of second moments guarantees that 𝑑2W (`, a) < ∞ for all `, a ∈ W2 (R𝑑 )
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2.1 Overview of Optimal Transport

Brenier’s Theorem One of the most fundamental results in optimal transport is
Brenier’s Theorem [9] which gives a condition under which the Kantorovich and
Monge problems are equivalent. Specifically, for two measures ` and a in W2(R𝑑 ),
if ` is absolutely continuous with respect to the Lebesgue measure, there exists a
unique and equal solution to both problems. This solution can be characterized as a
deterministic transport map 𝑇 : R𝑑 → R𝑑 , which is `-almost surely the gradient of
a convex function 𝜑 : R𝑑 → R. In other words, the unique optimal way to transport
one distribution to another is by pushing the source distribution forward with the
gradient of a convex function.

An optimal transport map between ` and a is sometimes denoted as𝑇`→a . When
the map 𝑇 can be represented as the gradient of a convex function (i.e., 𝑇 = ∇𝜑), the
convex function 𝜑 is known as the Kantorovich potential of ` and a .

Univariate Case In the special case when X = R, an optimal transport map has
an explicit characterization. Let 𝐹` (𝑥) = ` ((−∞, 𝑥)) be the distribution function of a
measure `. The quantile function of ` is defined as:

𝐹 −1` (𝑡) = sup{𝑡 ∈ R : 𝐹` (𝑥) ≤ 𝑡}, 𝑡 ∈ [0, 1] .

Let `, a ∈ W2(R), then:

𝑑2W (`, a) =
∫ 1

0

��𝐹 −1` (𝑝) − 𝐹 −1a (𝑝)
��2 d𝑝. (2.2)

If the source measure ` is absolutely continuous (i.e. 𝐹` is continuous), then the
optimal map𝑇 between ` and a is a non-decreasing map with the explicit expression

𝑇 = 𝐹 −1a ◦ 𝐹` . (2.3)

Monotonicity of Optimal Maps One of the implications of Brenier’s theorem is
that optimal maps are monotone operators, representing a generalization of the fact
that optimal maps are non-decreasing functions in the univariate case. To see this,
note that the gradient of a convex differentiable function 𝜑 is a monotone operator:

∀(𝑥, 𝑥 ′) ∈ R𝑑 × R𝑑 , ⟨∇𝜑 (𝑥) − ∇𝜑 (𝑥 ′), 𝑥 − 𝑥 ′⟩ ≥ 0.

However, unlike the one-dimensional case, not all monotone operators in higher di-
mensions are gradients of convex functions. For example, a rotation is a monotone
operator that cannot be an optimal map2.

2Let𝐴 be a matrix, then the operator𝐴𝑥 defined by𝐴 is related to a quadratic form𝜑 (𝑥) = ⟨𝐵𝑥, 𝑥⟩/2,
resulting in 𝐴 = ∇𝜑 = (𝐵 + 𝐵⊤)/2. This means 𝐴 should be symmetric.
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Chapter 2. Overview

Couplings It is sometimes useful to interpret the optimal transport problem in
probabilistic terms as the search for an optimal coupling between two distributions.
A coupling of two distributions ` and a is a pair of random variables 𝑋 and 𝑌 with
distributions ` and a respectively. The Wasserstein distance can then be expressed
as:

𝑑2W (`, a) = inf E ∥𝑋 − 𝑌 ∥2 ,

where the pair (𝑋,𝑌 ) spans all possible couplings of ` and a .
A coupling (𝑋,𝑌 ) is called deterministic if there exists a measurable map 𝑇 such

that 𝑌 = 𝑇 (𝑋 ). For instance, if𝑇#` = a and 𝑋 is a random variable with distribution
`, and 𝑌 = 𝑇 (𝑋 ), then 𝑌 is distributed according to a and therefore (𝑋,𝑌 ) is a deter-
ministic coupling and vice versa. Consequently, we can interpret the Monge problem
as finding an optimal deterministic coupling.

It is important to note that, given the definitions of the Wasserstein distance, any
coupling (𝑋,𝑌 ) of ` and a with joint distribution 𝛾 provides an upper bound for the
Wasserstein distance

𝑑2W (`, a) ≤ E(𝑋,𝑌 )∼𝛾 ∥𝑋 − 𝑌 ∥2 .

In this thesis, we sometimes use the fact that for `, a, 𝑏 ∈ W2(R𝑑 ), and for maps𝑇1
and 𝑇2 such that 𝑇1#𝑏 = ` and 𝑇2#𝑏 = a , the following inequality is valid:

𝑑W (`, a) ≤ ∥𝑇1 −𝑇2∥𝐿2 (𝑏 ) . (2.4)

To see this, suppose 𝑍 is a random variable with distribution 𝑏, and 𝑋 = 𝑇1(𝑍 ) and
𝑌 = 𝑇2(𝑍 ), then (𝑋,𝑌 ) is a coupling for (`, a), therefore the inequality holds. The
inequality becomes an equality if and only if, the maps 𝑇1 and 𝑇2 are optimal, i.e.
𝑇1 = 𝑇𝑏→` and 𝑇2 = 𝑇𝑏→a , and the measures `, a, 𝑏 are compatible, meaning that
𝑇`→a ◦𝑇𝑏→` = 𝑇𝑏→a (see Section 2.3.2 of Panaretos and Zemel [55]).

In the special case where 𝑑 = 1, the equality 𝑇`→a ◦ 𝑇𝑏→` = 𝑇𝑏→a always holds.
This is because the optimal maps are characterized by nondecreasing functions, and
the composition of two nondecreasing functions is also nondecreasing (and thus op-
timal). Therefore, we have:

𝑑W (`, a) =
𝑇𝑏→` −𝑇𝑏→a


𝐿2 (𝑏 ) . (2.5)

2.1.1 Statistical Inference in Wasserstein Space

Optimal transport and Wasserstein distance play significant roles in statistics and
machine learning. For an in-depth review of Wasserstein distance applications in
statistical theory and methodology, consult Panaretos and Zemel [54]. A key question
for statisticians is how to accurately estimate optimal transport-related objects, like
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2.1 Overview of Optimal Transport

Wasserstein distance, optimal map, or barycenter, using available data.
In this section we briefly overview three of the problems in statistical optimal

transport that will be important to this thesis, in the following contexts:
(I) Since we typically observe distributions through samples, it is crucial to have

efficient methods for estimating the underlying densities.
(II) The estimation of our regression operator is intricately linked to the estima-

tion of optimal transport maps. Under similar regularity assumptions that aid in
estimating optimal maps, we can estimate our regression parameters.

(III) We will utilize the Fréchet functional to construct a sum-of-squares func-
tional within the context of distribution-on-distribution regression. Additionally, we
will use assumptions from previous studies on the Fréchet mean to determine the rate
of convergence.

(I) Density Estimation in Wasserstein Distance An essential problem involves
estimating the density of a distribution based on independent samples from it while
measuring error using the Wasserstein distance. Given 𝑛 i.i.d. samples from a dis-
tribution ` ∈ P(R𝑑 ), the statistical literature often employs the plug-in approach,
focusing on the empirical distribution `𝑛 . However, it is known that

𝑑2W (`, `𝑛) ∼ 𝑛−2/𝑑 ,

(see Niles-Weed and Berthet [50]). This indicates that achieving a specific precision
requires a sample size exponential in dimension.

One solution is to leverage smoothness assumptions to address the curse of di-
mensionality in this setting [50]. In particular, Niles-Weed and Berthet [50] achieves
a faster rate of convergence for a wavelet density estimator over measures with den-
sities in Besov classes and demonstrates its minimax optimality.

(II) Estimation of Optimal Transport Map Another crucial question in statisti-
cal optimal transport is determining how to estimate the optimal transport map, 𝑇 ,
between two unknown distributions ` and a , based on independent and identically
distributed samples drawn from each distribution.

Several studies [21, 31, 35, 46, 48] have proposed estimators for the map𝑇 by im-
posing smoothness assumptions on the distributions ` and a or the underlying opti-
mal map𝑇 . In particular, Hütter and Rigollet [35] established a minimax lower bound
for the problem when the map𝑇 is in an𝛼-Hölder ball and showed that their estimator
achieves minimax optimality up to a polylogarithmic factor. Manole et al. [46] pro-
posed an estimator that achieves the optimal convergence rate when the sampling
domain is a 𝑑-dimensional torus. However, research into computationally efficient
statistical estimators for optimal maps is less developed in the literature [48].

9



Chapter 2. Overview

The proposed estimator by Hütter and Rigollet [35] cannot be feasibly computed
because it requires projection onto the space of smooth and strongly convex func-
tions, which is NP-hard [48]. The estimator by Manole et al. [46] also requires com-
putation time growing exponentially in 𝑑 . In contrast, Muzellec et al. [48] explored
an alternative estimator that can be computed in polynomial time if the underlying
map is sufficiently smooth, but their estimator does not achieve the minimax optimal
rate.

(III) Wasserstein Fréchet Mean Estimating the mean of a random object is a fun-
damental task in statistics. However, since the Wasserstein space doesn’t have a lin-
ear structure, the usual definition of mean in linear spaces cannot be extended to this
space. Agueh and Carlier [1] introduced the notion of Fréchet mean (or barycenter)
in the Wasserstein space, which relies on the metric structure of the space: For prob-
ability measures `1, · · · , `𝑛 ∈ W2(R𝑑 ) with weights _1, · · · , _𝑛 , a Fréchet mean is a
minimizer of the functional

𝑏 →
𝑛∑︁
𝑖=1

_𝑖𝑑
2
W (𝑏, `𝑖).

The existence of such a minimizer is guaranteed, and it is unique if at least one `𝑖 is
absolutely continuous with respect to the Lebesgue measure.

The notion of Fréchet mean can also be defined at the population level. Let Λ be
a random measure in W2(R𝑑 ), and denote the distribution of Λ as 𝑃 . A Fréchet mean
of Λ is a minimizer of the Fréchet functional

𝐹 (𝑏) = 1

2
E𝑑2W (𝑏,Λ) = 1

2

∫
W2 (Ω)

𝑑2W (𝑏, _) d𝑃 (_) 𝑏 ∈ W2(R𝑑 ) . (2.6)

The Fréchet functional always admits a minimizer and if Λ has a finite Fréchet func-
tional and is absolutely continuous with positive probability, the Fréchet mean is
unique.

Le Gouic and Loubes [41] proved that if a random measure has a finite Fréchet
functional and a unique Fréchet mean, then the empirical Fréchet mean will almost
surely converge to this unique Fréchet mean. For one-dimensional cases, the empir-
ical Fréchet mean converges to the population counterpart at a parametric rate3, as
shown by Panaretos and Zemel [53] and Bigot et al. [8]. Ahidar-Coutrix et al. [2]
and Le Gouic et al. [42] investigated the convergence rate of the empirical Fréchet
mean in certain general geodesic spaces, particularly in the Wasserstein space. A key
component of their study was establishing quadratic growth of the Fréchet functional

3a rate of the form 𝑐/𝑛 based on 𝑛 independent samples
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2.2 Distributional Data Analysis

around its minimizer, which on the Wasserstein space takes the form

𝐹 (𝑏) − 𝐹 (𝑏∗) ≥ 𝐶𝑑2W (𝑏, 𝑏∗),

where𝑏∗ is the minimizer of 𝐹 and𝐶 is a constant. Ahidar-Coutrix et al. [2] illustrated
that specific regularity conditions on the Kantorovich potentials corresponding to
optimal maps between the Fréchet mean and the distributions in the support of 𝑃
guarantee the quadratic growth. Using these conditions, Ahidar-Coutrix et al. [2]
derived an upper bound for the convergence rate of the Fréchet mean. Subsequently,
Le Gouic et al. [42] demonstrated that if Kantorovich potentials are 𝛼-strongly convex
and 𝛽-smooth 4, with 𝛽 − 𝛼 < 1, a parametric convergence rate for the Fréchet mean
can be obtained.

Zemel and Panaretos [78] proposed a gradient descent algorithm to compute the
Fréchet mean, proving its convergence under certain assumptions. Chewi et al. [18],
established the rate of convergence of the gradient descent algorithm when 𝑃 is sup-
ported on Gaussian probability measures.

2.2 Distributional Data Analysis

In this thesis, our main focus is on developing regression methods to estimate the
relationships between two distributions. Additionally, we also investigate different
autoregressive models for distributional time series.

Throughout the upcoming chapters, we will provide precise definitions of these
problems. As for the rest of this chapter, we will discuss scenarios where the objective
is to infer relationships between variables in the form of distributions, to motivate the
problem at hand.

2.2.1 Possible Applications of Distribution-on-Distribution Regression

In the following section, we provide several examples, although not an exhaustive
list, of scenarios in which a distribution-on-distribution regression framework could
be a valuable tool for modeling data.

Setting-dependent observations Multi-dimensional measurements can provide
valuable information about both the distributions of individual variables and the rela-
tionships between them. However, in certain situations, obtaining multi-dimensional
measurements isn’t feasible, and only the marginal distributions of each variable can
be observed.

4A twice differentiable convex function is 𝛼-strongly convex if its Hessian matrix’s eigenvalues are
always at least 𝛼 , and 𝛽-smooth if these eigenvalues are always no more than 𝛽 , for all points 𝑥 ∈ R𝑑 .
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Additionally, we can imagine a situation where the marginal distributions them-
selves are not fixed and depend on a particular setting in data collection, but the
relationship between those marginals is somewhat fixed.

More formally, suppose there are 𝑘 distinct settings, and within each setting, we
have an input variable 𝑋𝑘 and output variable 𝑌𝑘 and we observe independent sam-
ples from them. Here, the distributions of 𝑋𝑘 and 𝑌𝑘 could be influenced by the
specific setting 𝑘 and connected through a regression operator at the distribution
level.

• Light-emitting quantum dots: One example is when the relationship be-
tween input and output measurements of a physical system is not observable. For
instance, measurements of physical quantities may be aggregates of its many con-
stituents, and the individual-to-individual correspondence is lost: In particular, shin-
ing light on a single “quantum dot” of nanometric size and measuring its size-dependent
spectral response might be unfeasible, while it is feasible to do so on a collection of
such dots, therefore only the marginal distributions of sizes and emitted radiation is
observed [63].

Inferring the relationship between two parameters from their marginal densities
without extra assumptions is ill-posed if the density function of each parameter is
fixed. However, it is increasingly the case where the distributions themselves are
not fixed and they are dependent on the experimental setting. For example, different
experimental settings of quantum dot production result in different size distributions
(see Section 3.5). Correct identification of the probabilistic relationship between the
parameters might be possible by combining information from different settings.

•Censored Data: In many cases, it is crucial to establish the connection between
two independent datasets, which is made harder when the relationship between them
is concealed due to privacy concerns. To address such situations, various methods
have been developed. One example is unmatched regression [12, 62, 66] which has
been specifically designed for cases where we have access to independent samples
of input and output variables, each with fixed distributions. However, this approach
may not be suitable when considering multiple settings with varying underlying dis-
tributions, necessitating the development of alternative methods to handle such sce-
narios.

For example, political scientists often aim to estimate the impact of demographic
factors on voting behavior, even though census data and vote counts are collected
separately. Consider a scenario where voting results and population demographics
are available across different regions of a country. The objective would be to explore
the relationship between these variables, acknowledging that the distribution of var-
ious demographic factors varies from region to region.

Another example involves insurance companies seeking to predict the average
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number of doctor visits for specific age groups within a population. Berzel et al. [7]
considered the problem of estimating the conditional distribution of the number of
visits to the doctor in a determined population, based on some demographic factors,
including age. In this study, the data consisted of the age and gender of a group of
people as well as their number of doctor visits during some years. However, we can
consider the situation in which individual clinics may possess data on patient ages
and visit counts but cannot share this information due to privacy concerns. Instead,
they may publish distributions of the number of visits and age distributions of visitors.
It can be assumed that clinics in different locations will have distinct age distributions
for their patients. By combining information from multiple clinics, the goal would
be to establish a regression relationship between the distribution of the number of
doctor visits and age distribution.

In such situations, a distribution-on-distribution regression method may offer a
better data model and yield more accurate results.

Atmospheric Flow We might be interested in understanding how clouds move
and estimating physical variables such as wind and pressure using pictures of cloud
formations at different times. We can represent clouds as continuous distributions of
cloud particles and analyze their shapes and intensities between consecutive images
by applying optimal transport theory. The works of Cullen [20], and Alessio Figalli
provide valuable insights into how particles move optimally in this scenario, and
by solving the optimal transport problem, we can gain insights into these physical
variables.

However, given a single pair of before and after pictures of clouds, we cannot infer
anything about areas that were not covered by clouds at some point. To overcome
this limitation, we can use multiple pairs of cloud images which show particles in
various locations, and assuming that the weather conditions were stationary, we can
use distribution-on-distribution regression to gain insights beyond what we could
learn from a single pair of images. By combining information from multiple pairs
of images, we can leverage the power of optimal transport theory to obtain a robust
estimate of wind direction and enhance our knowledge of atmospheric dynamics.
This might allow us to make more accurate predictions about physical variables such
as wind and pressure, ultimately leading to a more comprehensive understanding of
wind patterns and atmospheric conditions. See Figure 4.1 for a related toy model
demonstration.

Income inequality and life expectancy Studies investigating the effects of in-
come inequality on health have produced varied results across different countries
[44]. While there is substantial evidence linking higher individual income to reduced
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mortality rates [44], the debate continues on how rising inequality impacts mortality
distribution beyond the individual-level relationship [70].

It might be worthwhile to explore the possibility that average life expectancy
depends, not only on an individual’s income level but also on the overall income dis-
tribution in their population. Distribution-on-distribution regression methods could
potentially offer a more accurate explanation of this relationship.

However, the specific approach developed in this thesis might not be the most
suitable for this problem. For example, a population with a bimodal income distribu-
tion could result in a skewed age-at-death distribution towards younger ages com-
pared to a society with a unimodal income distribution and similar average or median
income (see Figure 2.1). Our model, which assumes that the relationship between the
covariate and response distributions is approximately explained via an optimal trans-
port map, might not capture this scenario effectively.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

Income (II)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

Age-at-Death (II)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

Income (I)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

Age-at-Death (I)

Figure 2.1: Two pairs of distributions (I and II) illustrating a possible shortcoming of
optimal transport regression, as the optimal maps associated to each pair are signifi-
cantly different in shape. Units are normalized.

2.2.2 Previous Methods

Various statistical methods for distributional data have been developed (see Petersen
et al. [59] for an excellent review). Specially, various studies develop regression meth-
ods where the predictor is a distribution and the response is a scalar, for example,
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see Chen et al. [15], Póczos et al. [60], Tang et al. [69], Oliva et al. [52], Szabó et al.
[68], Bachoc et al. [6].

Here we provide a summary of past methodologies for regression when both the
predictor and response variables are distributions (hence distribution-on-distribution
regression).

FDA approach Functional data analysis (FDA) is concerned with the analysis of
data that can be represented as objects residing in function spaces of infinite dimen-
sions. Probability density functions can also be treated as functional data, subject to
the constraints that they are nonnegative and have an integral sum of one. Because
of these constraints, directly applying FDA methods to probability distributions may
lead to issues. One solution is to first map probability densities to a Hilbert space of
functions, and then apply FDA methods, such as function-to-function regression, to
the transformed distribution.

It is essential for the mapping between distributions and Hilbert space to be in-
vertible. This is because we often want to interpret the response of the regression
in the original space of distributions. An invertible method called the log quantile
density (LQD) transformation was introduced by Petersen et al. [58]. They utilized
functional regression models with LQD-transformed functions as predictors and ei-
ther LQD-transformed functions or scalars as responses.

However, the LQD transformation has its limitations. It does not consider the
geometry of the probability distribution space, and the resulting transformation map
is not isometric. This leads to deformations that alter the distances between pairs of
objects and can create problems with interpretability. Moreover, the model is only
applicable when the covariate and response distributions are supported on a closed
interval of R.

Kernel Smoothing Oliva et al. [51] applied a Nadaraya-Watson type kernel re-
gression for distribution-on-distribution regression. Specifically, they considered a
situation with a set of distribution pairs (𝑃𝑖 , 𝑄𝑖), where the 𝑃𝑖 are supported on a cube
in R𝑘 , the 𝑄𝑖 are supported on a cube in R𝑙 , and 𝑄𝑖 = 𝑓 (𝑃𝑖), with 𝑓 being a trans-
formation. The distributions 𝑃𝑖 , 𝑄𝑖 are only observed through random finite samples
drawn from each (which is the only source of uncertainty in the observations).

For a new distribution 𝑃0, the response is estimated as a locally weighted average,
using kernels as weights, and is given by:

𝑓 (𝑃0) =
∑︁

𝑄𝑖𝑊 (𝑃𝑖 , 𝑃0), where 𝑊 (𝑃𝑖 , 𝑃0) =
𝐾 (𝑑 (𝑃𝑖 ,𝑃0 )

ℎ
)∑

𝐾 (𝑑 (𝑃 𝑗 ,𝑃0 )
ℎ

)
.

Here, 𝑑 represents a distance measure between distributions, 𝐾 is a nonnegative real-
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valued kernel function, and ℎ is the bandwidth for kernel regression.
The advantage of this regression method is that the predictor and response dis-

tributions are not restricted to R, and the method is non-parametric. A drawback
of this method is its unsuitability for extrapolation, as the response distribution for
any new predictor distribution is a convex combination of response distributions in
the training set. For example, this limitation comes into play when the new input is
concentrated spatially far from the previous samples (see Appendix 2 of Chen et al.
[16]). Additionally, Nadaraya-Watson type estimators rely on tuning parameters and
generally suffer from the curse of dimensionality.

Wasserstein Regression The ideas of modeling distributions within the Wasser-
stein space for regression and autoregression were studied by Chen et al. [15] and
Kokoszka et al. [39]. They used the structure of the tangent space to create a re-
gression operation. This was achieved by using the log transform, which moved the
regressor and response to appropriate tangent spaces. As a result, a (linear) regres-
sion model is established in a familiar framework akin to Hilbert space. This approach
allowed the authors to take advantage of well-known techniques of functional regres-
sion and build a suitable asymptotic theory.

Although this method has the potential to be used when distributions are sup-
ported on compact subsets of R𝑑 for 𝑑 ≥ 1, only the case where 𝑑 = 1 was explored.
In section 3.2.3, we delve into this method more deeply and draw a comparison with
the regression model we propose.
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Chapter 3

Distribution-on-Distribution Regression in One
Dimension

The work in this chapter was done in collaboration with my supervisor Victor Panare-
tos and it is published in two articles [24, 26]. This chapter integrates the content of
these published works, adhering closely to the original text with only slight modi-
fications to avoid redundancies. Moreover, an appendix focused on the analysis of
quantum dot data is included.

3.1 Introduction

Functional data analysis [34] considers statistical inference problems whose sample
and parameter spaces constitute function spaces. This framework encompasses data
that are best viewed as realisations of random processes, and presents challenges aris-
ing from the infinite dimensionality of the function spaces, typically taken to be sepa-
rable Hilbert spaces. On the other hand, non-Euclidean statistics [56] treats inference
problems whose sample and parameter spaces are finite dimensional manifolds. Such
problems present with a different set of challenges, linked with the non-linearity of
the corresponding spaces, which often arises due to non-linear constraints satisfied
by the data/parameters.

When the data/parameters of interest are, in fact, probability distributions, one
has a problem that is simultaneously functional and non-Euclidean: on the one hand
the data can be seen as random processes, and on the other they satisfy non-linear
constraints, such as positivity and integral constraints. Thus, the functional data anal-
ysis of probability distributions features interesting challenges stemming from this
dual nature of the ambient space, for example the finite measurement of intrinsically
infinite dimensional objects, and the lack of a linear structure which is crucial to ba-
sic statistical operations, such as averaging or, more generally, regression toward a
mean. See Petersen et al. [59] for an excellent overview.

One approach to dealing with the non-linear nature of probability distributions
is to apply a suitable transformation and map the problem back to a space with a
linear structure [38, 22, 58, 39]. A seemingly more natural approach is to embrace the
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intrinsic non-linearity, and to analyse the data in their native space, equipped with
a canonical metric structure. In the case of probability distributions, the Wasserstein
metric [54, 55] has been exhibited as a canonical choice [53], primarily because it
captures deformations, which are typically the main form of variation for probability
distributions.

The case of inferring the Fréchet mean of a collection of random elements in the
Wasserstein space is by now well understood [53, 8, 78, 42]. The deep links to convex-
ity and the tangent space structure of the Wasserstein space play an important role in
motivating and deriving the analysis of this case. The next step is to understand the
notion of regression of one probability distribution on another. The first to do so were
Chen et al. [15], and, independently, Zhang et al. [79], the latter paper focussing on
autoregression. They used the tangent space structure to define a regression opera-
tion: using the log transform, the regressor and response are lifted to suitable tangent
spaces, where a (linear) regression model is defined in a more familiar Hilbertian set-
ting [47, 32]. This allows the authors to use the well-developed toolbox of functional
regression, and derive appropriate asymptotic theory.

In this chapter, we propose an alternative notion of distribution-on-distribution
regression, following a different path. Rather than taking a geometrical approach,
via the tangent bundle structure, we follow a shape-constraint approach, namely
exploiting convexity. Our model is defined directly at the level of the probability
distributions, and stipulates that the response distributions are related to the covari-
ate distributions by means of an optimal transport map, and further deformational
noise. A key advantage of this approach is its clean and transparent interpretation,
since the regression operator can be interpreted pointwise at the level of the original
distributions, and its effect consists in mass transportation, or equivalently, quantile
re-arrangement. Further to this, the approach requires minimal regularity conditions,
and does not suffer from ill-posedness issues as inverse problems do. We show that
our estimator is minimax optimal and that computational implementation of the es-
timator reduces to a standard convex optimisation problem. The usefulness of the
approach is exhibited when revisiting the analysis of the mortality data of Chen et al.
[15], where the approach is seen to lead to similar (if more expansive) qualitative
conclusions, but with the advantage of an arguably improved interpretability. Addi-
tionally, we apply our method to the analysis of quantum dot data.

3.2 Distribution-on-Distribution Regression

3.2.1 Fréchet Functionals and Regression Operators

Let Ω,Ω′ ⊆ R and (`, a) be a pair of random elements in W2(Ω) × W2(Ω′) with
joint distribution 𝑃 . Then, similar to a standard nonparametric regression model, we
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can define a regression operator Γ : W2(Ω) → W2(Ω′) as the minimizer of the
conditional Fréchet functional, viewed as a function of `,

argmin
𝑏

∫
W2 (Ω)

𝑑2W (𝑏, a) d𝑃 (a | `) = Γ(`)

assuming that for any `, the Fréchet mean of the conditional law 𝑃 (· | `) of a given
` is unique , which can be enforced by means of regularity assumptions on the pair
(`, a).

The difference between the above formulation and the standard regression formu-
lation is that we have replaced the notion of expectation with a Wasserstein-Fréchet
mean, an approach termed as “Fréchet Regression” by Petersen and Müller [57]. Pos-
tulating a specific form on the regression operator Γ amounts to defining a certain
type of regression model. If Γ is left unconstrained, except for possessing some degree
of regularity, then we would speak of a nonparametric regression model. However,
assumptions on Γ are needed to ensure its identifiability, and simply assuming it is
regular will not suffice in this more general context.

For instance, the approach of Chen et al. [15] and Zhang et al. [79] consists in
constraining Γ to be in a certain sense linear, in that it can be represented as a linear
operator at the level of the tangent bundle. Identifiability, and indeed fitting and
asymptotic theory, can then be derived by appealing to the inclusion of the tangent
spaces in Hilbert spaces.

Here we impose a different constraint on Γ, and consequently define a different
notion of regression. Namely we impose a shape constraint, by assuming that Γ(`) =
𝑇#`, where 𝑇 is an increasing map. This is developed in the next section which
postulates a regression model on the pair (`, a) that guarantees the uniqueness of the
conditional Fréchet mean Γ(`) of a given `, and imposes mild conditions ensuring
the identifiability of Γ.

3.2.2 The Regression Model and the Fréchet-Least-Squares Estimator

Henceforth, we will take the domain Ω to be a compact interval of R. Let {(`𝑖 , a𝑖)}𝑁𝑖=1
be an independent collection of regressor/response pairs in W2(Ω) ×W2(R). Moti-
vated by the discussion in the previous paragraph, we define the regression model

a𝑖 = 𝑇𝜖𝑖#(𝑇0#`𝑖), {`𝑖 , a𝑖}𝑁𝑖=1, (3.1)

where 𝑇0 : Ω → Ω is an unknown optimal map and {𝑇𝜖𝑖 }𝑁𝑖=1 is a collection of inde-
pendent and identically distributed random optimal maps satisfying E{𝑇𝜖𝑖 (𝑥)} = 𝑥

almost everywhere on Ω. These represent the “noise” in our model. The regression
task will be to estimate the unknown 𝑇0 from the observations {`𝑖 , a𝑖}𝑁𝑖=1. To be able
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to do so, we need to ensure that𝑇0 is identifiable, and for this we now introduce some
conditions.

In the spirit of Section 3.2.1, let 𝑃 be the probability law induced on W2(Ω) ×
W2(R) by model (3.1). We denote by 𝑃𝑀 and 𝑃𝑁 the marginal distributions induced
on the typical regressor ` and the typical response a , respectively.

Denote by 𝑄 the measure that is linear average of 𝑃𝑀 , i.e.

𝑄 (𝐴) =
∫
W2 (Ω)

` (𝐴) d𝑃𝑀 (`) .

Define the parameter set of optimal transport maps T as:

T := {𝑇 : Ω → Ω : 0 ≤ 𝑇 ′(𝑥)< ∞ for 𝑄-almost every 𝑥 ∈ Ω}.

Implicit in the definition of T is that its elements are assumed differentiable 𝑄-a.e.
We will also assume:

Assumption 3.2.1. The model (3.1) is induced by by map 𝑇0 that is a detereministic
element of class T .

Assumption 3.2.2. The error maps𝑇𝜖 : Ω → R are i.i.d. non-decreasing random maps
satisfying E(𝑇𝜖𝑖 (𝑥)) = 𝑥 and E(𝑇 2

𝜖 (𝑥)) < ∞ for almost every 𝑥 on Ω.

With these assumptions in place, we can now establish identifiability:

Theorem 3.2.3. Assume that the law 𝑃 induced by model (3.1) satisfies Assumptions
3.2.2 and 3.2.1. Then, the regressor operator Γ(`) = 𝑇0#` in model (3.1) is identifiable
over the parameter class T in the 𝐿2(𝑄) topology. Specifically, for any𝑇 ∈ T such that
∥𝑇 −𝑇0∥𝐿2 (𝑄 ) > 0, it holds that

𝑀 (𝑇 ) > 𝑀 (𝑇0),

where
𝑀 (𝑇 ) := 1

2

∫
W2 (Ω)×W2 (Ω)

𝑑2W (𝑇#`, a) d𝑃 (`, a) . (3.2)

Remark 3.2.4. [Identifiability𝑄-almost everywhere] Theorem 3.2.3 establishes the iden-
tifiability of 𝑇0 up to 𝑄-null sets. Consequently, if the random covariate measure ` is
almost surely supported on a strict subset Ω0 ⊂ Ω, we can identify 𝑇0 on Ω0 (which
coincides with the support of 𝑄) but not on Ω \ Ω0. Of course, if the measure 𝑄 is
equivalent to Lebesgue measure, in the sense of mutual absolute continuity, identifiabil-
ity will also hold Lebesgue almost everywhere on Ω. Additional conditions on the law
of the random covariate measure ` can yield this equivalence. Suppose the covariate
measures have density with respect to the Lebesgue measure. Then a a simple extra con-
dition is to require

∫
W2 (Ω) inf𝑥∈Ω 𝑓` (𝑥) d𝑃𝑀 (`) > 0, yielding that 𝑓𝑄 (𝑥) > 0, where
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3.2 Distribution-on-Distribution Regression

𝑓` and 𝑓𝑄 are the Lebesgue densities of the measures ` and 𝑄 . However this condition
implies that supp(`) = Ω with positive probability, which can be restrictive as we would
like our model to encompass situations where none of the covariate measures are fully
supported on Ω. A considerably weaker condition that guarantees the equivalence of
𝑄 to Lebesgue measure is to require the existence of a cover {𝐸𝑚}𝑚≥1 of Ω such that
𝑃𝑀 {𝐸𝑚 ⊆ supp(𝑓`)} > 0 for all 𝑚 – intuitively, this enables different covariate mea-
sures to give information on 𝑇0 on different subsets of Ω, but requires that they collec-
tively provide information on all of Ω. As an example let Ω = [0, 1] and let ` be defined
as the normalised Lebesgue measure on 𝑆 = [𝑈 ,𝑈 +1/3] mod 1, where𝑈 is a uniform
random variable on [0, 1]. In this case none of the realisations of ` are supported on Ω,
but the “cover condition” is satisfied.

Further to identifiability, the theorem gives a way to estimate 𝑇0 by means of 𝑀-
estimation. We can define an estimator𝑇𝑁 as the minimizer of the sample counterpart
of 𝑀 ,

𝑀𝑁 (𝑇 ) :=
1

2𝑁

𝑁∑︁
𝑖=1

𝑑2W (𝑇#`𝑖 , a𝑖), 𝑇𝑁 := argmin
𝑇 ∈T

𝑀𝑁 (𝑇 ), (3.3)

where (`𝑖 , a𝑖) are independent samples from 𝑃 for 𝑖 = 1, . . . , 𝑁 . In effect this a “Fréchet
least square” estimator. The existence and uniqueness of a minimizer is not a priori
obvious, but we establish both in the next section 3.2.4.

Remark 3.2.5 (Pure Intercept Model). When all the input measures are equal, `1 =

. . . = `𝑁 , our regression model reduces to a “pure intercept model”, which is equivalent
to the problem of estimating a Fréchet mean. To see this, let `0 a fixed measure. From
the assumption that E{𝑇𝜖𝑖 (𝑥)} = 𝑥 a.e., one can deduce that the conditional Fréchet
mean of the measure a , given the measure `0 is equal to a0 = 𝑇0#`0. Estimation of
𝑇0 is then equivalent to estimation of the Fréchet mean a0 of the output measures, since
𝑇0 = 𝑇`0→a0 = 𝐹 −1a0 ◦ 𝐹`0 .

3.2.3 Interpretation and Comparison

It was argued in the introduction that the proposed regression model has the advan-
tage of being easily interpretable, and now we elaborate on this point. The fact that
the regressor operator Γ(`) takes the form

Γ(`) = 𝑇0#`, (3.4)

where 𝑇0 : Ω → Ω is a monotone map, has a simple interpretation in terms of
mass transport: the effect of the Fréchet mean in this regression is to transport the
probability mass assigned by ` on a subinterval (𝑎, 𝑏) ⊂ Ω onto the transformed
subinterval (𝑇0(𝑎),𝑇0(𝑏)). Therefore, the model can be directly interpreted at the
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Chapter 3. Distribution-on-Distribution Regression in One Dimension

level of the quantity that the input/output measures are modelling. In particular, the
model can be interpreted at the level of quantiles. Since

𝐹 −1
𝑇0#`

(𝛼) = (𝑇0 ◦ 𝐹 −1` ) (𝛼) = 𝑇0{𝐹 −1` (𝛼)}, 𝛼 ∈ (0, 1),

we can see that the mean effect of the regression is to move the 𝛼-quantile of `,
say 𝑞𝛼 , to the new location 𝑇0(𝑞𝛼 ). Each response distribution a𝑖 will then further
deviate from its conditional Fréchet mean 𝑇0#`𝑖 by means of a random monotone
“error” map 𝑇𝜖 : Ω → R whose expectation is the identity map,

𝐹 −1a𝑖 (𝛼) = 𝑇𝜖𝑖
[
𝑇0{𝐹 −1` (𝛼)}

]
, 𝛼 ∈ (0, 1) .

This highlights the analogy with a classical regression setup, except that the addition
operation is replaced by the composition operation at the level of quantiles, or equiv-
alently, by the push-forward operation at the level of distributions. In particular, the
assumption that E{𝑇𝜖𝑖 (𝑥)} = 𝑥 is directly analogous to the classical assumption that
the errors have zero mean: one can directly see that E{𝑇𝜖𝑖 (𝑥)} = 𝑥 for almost all
𝑥 ∈ Ω implies that

E{𝐹 −1a𝑖 (𝛼)} = E
(
𝑇𝜖𝑖

[
𝑇0{𝐹 −1` (𝛼)}

] )
= 𝑇0{𝐹 −1` (𝛼)}, 𝛼 ∈ (0, 1) .

Assuming that we have obtained an estimator 𝑇𝑁 of the regression map 𝑇 based
on 𝑁 regressor/response pairs, we can then define the fitted distributions,

â𝑖 = 𝑇𝑁#`𝑖 .

We can also define the 𝑖th residual map𝑇𝑒𝑖 (𝑥) : Ω → Ω as the optimal transport map
𝑇𝑒𝑖 = 𝑇â𝑖→a𝑖 that pushes forward the fitted value â𝑖 to the observed response a𝑖 . The
residual maps can be plotted in a “residual plot” and contrasted to the identity map,
by analogy to the classical regression case. This can help identify outlying observa-
tions, and also to appreciate in what manner the fitted values differ from the observe
values. In particular, it can reveal in which regions of the support of the measures the
model provides a good fit, and where less so. It can also serve to identify clusters of
observations whose residuals are similar, suggesting the potential presence of a latent
indicator variable, i.e. that separate regressions ought to be fit to different groups of
observations. Finally, the residual plot can serve as a diagnostic tool for the validity
of the model. Since the residual map 𝑇𝑒𝑖 can be seen as a proxy for the latent error
map𝑇𝜖𝑖 , deviations of the average of the residual maps from the identity can serve as
a means to diagnose departures from the assumed model. Note that, contrary to clas-
sical regression, where the residuals sum to zero by construction, the residual maps
𝑇𝑒𝑖 are not constrained to have mean equal to the identity.
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3.2 Distribution-on-Distribution Regression

By comparison, Chen et al. [15] introduce (linear) regression in Wasserstein space
by means of a geometric approach, that is in a sense a linear model between tangent
spaces. Namely, for ¯̀ and ā , the Fréchet means of the regressor and response mea-
sures, they postulate a regressor operator of the form

Γ(`) =
{
B(𝑇¯̀→` − 𝐼 ) + 𝐼

}
#ā, (3.5)

where 𝐼 (𝑥) = 𝑥 is the identity map on Ω, and B : 𝐿2( ¯̀) → 𝐿2(ā) is a bounded
linear operator with some assumptions, so that the terms involved be well-defined.
Again, linearity guarantees identifiability. The expression appears convoluted, but
the geometrical interpretation is simple: 𝑇¯̀→` − 𝐼 represents the image of ` under the
log map at ¯̀ (see Section 2.3 of Panaretos and Zemel [55]). Equivalently, 𝑇¯̀→` − 𝐼 is
the lifting of ` to the tangent space Tan¯̀{W2(Ω)} ⊂ 𝐿2( ¯̀) at ¯̀. Once the regressor
` is lifted onto Tan¯̀{W2(Ω)} ⊂ 𝐿2( ¯̀), the action of the regression operator is to
map it to its image in 𝐿2(ā) via the bounded linear operator B : 𝐿2( ¯̀) → 𝐿2(ā),
as in a standard functional linear model. The final step is to push forward ā by this
image plus the identity, i.e. B(𝑇¯̀→` − 𝐼 ) + 𝐼 , which retracts back onto W2(Ω) and
yields a measure (if B(𝑇¯̀→` − 𝐼 ) + 𝐼 is a monotone map, then this is equivalent to
exponentiation, see Section 2.3 of Panaretos and Zemel [55]). The model is most
easily interpretable on the tangent space, where it states that the expected lifting of
the response a𝑖 at ā is related to the lifting of the regressor `𝑖 at ¯̀ by means of the
linear operator B. Similarly, fitted values are defined on the tangent space, and then
can be retracted by the same push-forward operation.

The two approaches do not directly compare, and neither captures the other as
a special case. Similarly, there is no reason to a priori expect that one model would
typically outperform the other in terms of fit, and one can expect this to depend on
the specific data set at hand. Thus, our method should be seen as an alternative rather
than an attempt at an improved or more general version of regression. An apparent
advantage of the regressor function (3.4), however, is an arguably easier and more
direct interpretation of the regression effect, directly at the level regressor/response,
through a monotone re-arrangement of probability mass, as discussed above. Indeed
this allows a direct point-wise interpretation of the regression effect. The regressor
(3.5) on the other hand allows for a traditional (functional) regression interpretation
via the linear operator B, albeit acting on the logarithms of regressor/response, which
makes it harder to interpret the regression effect at the level of the original measures,
since there are two transformations involved, one non-linear and one linear. Similar
points can be made with regards to the residuals and residual plots. Another potential
advantage is at the level of regularity conditions imposed on Γ for the purposes of
theory. Equation (3.5) leads to an inverse problem on the tangent space, as is standard
with functional linear models, and thus requires more delicate technical assumptions
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on the problem, in addition to regularisation. By contrast, the shape-constrained
approach (3.4) only requires monotonicity on the regressor 𝑇0. It also avoids the
instabilities of an inverse problem.

The utility of our model illustrated in Section 3.4, which considers an example
where the age-at-death distribution a𝑖 for country 𝑖 in 2013 serves as a response dis-
tribution, and the age-at-death distribution `𝑖 of the same country in 1983 serves as
the regressor. Interestingly, it leads to similar fits and qualitative conclusions as the
analysis of the same data by Chen et al. [15], while exhibiting a clean and more ex-
pansive interpretation. Indeed, our definition of residual maps help identify effects
related to changes in infant mortality not easily detectable when looking only at the
fitted distributions, and to identify an interesting clustering of observations. See Sec-
tion 3.4 for more details.

3.2.4 Existence and Uniqueness of the Estimator

In this section, we establish the existence and uniqueness of the estimator 𝑇𝑁 . To
show the existence, we use a variant of the Weierstrass theorem, namely Kurdila
and Zabarankin [40, Thm 7.3.6], stated for convenience as Theorem 3.6.1 in the Ap-
pendix. This requires establishing the convexity and Gateaux differentiability of the
functional 𝑀𝑁 , and this we do in the next lemma:

Lemma 3.2.6 (Strict Convexity and Differentiability). Let T be the parameter set and
suppose we have𝑁 independent observations (`𝑖 , a𝑖) that are realizations of 𝑃 . Then both
the empirical functional𝑀𝑁 (𝑇 ) and the population functional𝑀 (𝑇 ) are strictly convex
with respect to 𝑇 ∈ T . Moreover the functionals 𝑀 and 𝑀𝑁 are Gateaux-differentiable
on the set of optimal maps in T with respect to the 𝐿2(𝑄) and 𝐿2(𝑄𝑁 ) distances, respec-
tively. The corresponding derivatives of 𝑀 in the direction [ ∈ 𝐿2(𝑄) is:

𝐷[𝑀 (𝑇 ) =
∫ ∫

Ω
[ (𝑥){𝑇 (𝑥) −𝑇`,a (𝑥)} d` (𝑥) d𝑃 (`, a), (3.6)

and the derivative of 𝑀𝑁 in the direction [ ∈ 𝐿2(𝑄𝑁 ) is

𝐷[𝑀𝑁 (𝑇 ) =
1

𝑁

𝑁∑︁
𝑖=1

∫
Ω
[ (𝑥){𝑇 (𝑥) −𝑇`𝑖 ,a𝑖 (𝑥)} d`𝑖 (𝑥), (3.7)

where 𝑇`,a is the optimal map from ` to a .

Since T is a convex, closed, and bounded subset of 𝐿2(𝑄) functions, we may now
apply the Weierstrass theorem cited above to conclude:
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Proposition 3.2.7 (Existence and Uniqueness of the Estimator). There exists a unique
solution𝑇𝑁 ∈ T to the Fréchet sum-of-squares minimization problem (3.3), with unique-
ness being in the 𝐿2(𝑄𝑁 ) sense.

3.2.5 Consistency and Rate of Convergence

In this section, we establish the asymptotic properties of the proposed estimators
both in the case of the fully observed set of measures {`𝑖 , a𝑖} and the case where one
only indirectly observes input/output distributions through i.i.d. samples from each.
A natural risk function to measure the quality of the estimator is the Fréchet mean
squared error:

𝑅(𝑇 ) := E`∼𝑃𝑀𝑑
2
W (𝑇0#`,𝑇#`) =

∫
W2 (Ω)

𝑑2W (𝑇0#`,𝑇#`) d𝑃𝑀 (`) .

Using the equation (2.5) we can rewrite the above risk as follows:∫
𝑑2W (𝑇0#`,𝑇#`) d𝑃𝑀 (`) =

∫
∥𝑇0 −𝑇 ∥2𝐿2 (` ) d𝑃𝑀 (`)

=

∫ ∫
Ω

��𝑇0(𝑥) −𝑇 (𝑥)��2 d` (𝑥) d𝑃𝑀 (`)

= ∥𝑇0 −𝑇 ∥2𝐿2 (𝑄 )

Thus, we can obtain consistency and convergence rates in Fréchet mean squared
error using the criterion ∥𝑇0 −𝑇𝑁 ∥𝐿2 (𝑄 ) , in particular:

Theorem 3.2.8. In the context of model (3.1), suppose that Assumptions 3.2.1 and 3.2.2
hold true. Then, the estimator𝑇𝑁 defined in (3.3) is a consistent estimator for𝑇0 satisfying

𝑁 1/3 𝑇𝑁 −𝑇

𝐿2 (𝑄 ) = 𝑂P(1) . (3.8)

In many practical applications, one does not have not access to the measures
(`𝑖 , a𝑖). Instead, one has to make do with observing random samples from each `𝑖

and a𝑖 . In this case, a standard approach is to use smoothed proxies in lieu of the un-
observable measures, usually assuming some more regularity. Therefore in this case
we have to assume the input distributions have density with respect to the Lebesgue
measure.

Assumption 3.2.9. Let ` be a measure in the support of 𝑃𝑀 . Then ` is absolutely
continuous with the respect to the Lebesgue measure on Ω.

We also denote by𝑄𝑁 the empirical counterpart of𝑄 , namely𝑄𝑁 (𝐴) = 1
𝑁

∑𝑁
𝑖=1 `𝑖 (𝐴),

where {`𝑖} are independent random measures with law 𝑃𝑀 .
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Also note that in the presence of Assumption 3.2.9, the𝑄-a.e. existence of𝑇 ′ is au-
tomatically guaranteed, since Lebesgue’s theorem on the differentiation of monotone
functions states that a monotone function automatically has a derivative Lebesgue
almost everywhere in the interior of Ω, and Assumption 3.2.9 implies that 𝑄 is dom-
inated by Lebesgue measure.

Let `𝑛𝑖 and a𝑛𝑖 be consistent estimators of `𝑖 and a𝑖 obtained from smoothing a
random sample of size 𝑛 from each respective measure. Given such estimators, define
a new estimator of 𝑇0 as

𝑇𝑛,𝑁 := arg min
𝑇 ∈T𝐵

1

2𝑁

𝑁∑︁
𝑖=1

𝑑2W (𝑇#`𝑛𝑖 , a𝑛𝑖 ), (3.9)

where

T𝐵 := {𝑇 : Ω → Ω : 0 ≤ 𝑇 ′(𝑥) < 𝐵 for 𝑄-almost every 𝑥 ∈ Ω}.

Note that here one can use any estimators of `𝑖 and a𝑖 which are consistent in Wasser-
stein distance, provided `𝑛𝑖 is absolutely continuous.

Then, the rate of convergence of 𝑇𝑛,𝑁 will depend on the rate of convergence of
`𝑛𝑖 and a𝑛𝑖 to `𝑖 and a𝑖 , respectively in the Wasserstein distance:

Theorem 3.2.10. In the context of model (3.1), suppose that Assumptions 3.2.2 and 3.2.9
holds true, and furthermore that there exists a 𝐵 < ∞ such that 𝑇0 ∈ T𝐵 , and 𝑇𝜖 ∈ T𝐵
almost surely. Then, the estimator 𝑇𝑛,𝑁 defined in (3.9) satisfies𝑇𝑛,𝑁 −𝑇0


𝐿2 (𝑄 ) = 𝑂P(𝑁 −1/3) +𝑂P(𝑟𝑛−1/2), (3.10)

where 𝑟−1𝑛 is the rate of convergence in the Wasserstein distance of `𝑛𝑖 to `𝑖 and a𝑛𝑖 to a𝑖 .

Precise values of 𝑟𝑛 can be obtained by choosing specific estimators and imposing
additional regularity on the underlying regressor/response measures. For instance,
one can follow the estimation approach of [50] and obtain the minimax rate of con-
vergence over measures with densities in Besov classes.

Remark 3.2.11. Note that 𝐵 ∈ (0,∞) can be any finite constant, however large. Its
precise value does not influence the rate (3.10) itself, but only the constants. It is therefore
not to be interpreted as a regularisation parameter.

3.2.6 Minimax Lower Bound

We establish the minimax optimality of the estimator 𝑇𝑁 . Since there is no ill-condi-
tioning inherent in the setup of model (3.1), one might hope for a rate of 𝑂 (𝑁 −1/2)
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when the measures are completely observed (as opposed to being sampled from or ob-
served with error). Our purpose is to show that, in the most general case, 𝑂 (𝑁 −1/3)
is the “right rate”, by establishing a link between model (3.1) and classical isotonic
regression. We also discuss additional conditions that could lead to improved rates.

Theorem 3.2.12. In the context of model (3.1) and under Assumptions 3.2.1 and 3.2.2,
it holds that:

inf
𝑇

sup
𝑇0∈T

E

{ 𝑇𝑁 −𝑇0
2
𝐿2 (𝑄 )

}
≥ 𝑁 −2/3,

where the infimum is taken over all measurable functions 𝑇 of the data {(`𝑖 , a𝑖)}𝑁𝑖=1
ranging in T .

Here we are only concerned with the lower bound (with respect to 𝑁 ) when one
observes the covariate/response measures completely, as an indicator of the minimax
estimation rate intrinsic1 to model (3.1).

Corollary 3.2.13. Under the same conditions, the Fréchet-least-squares estimator 𝑇𝑁
attains the lower bound given by Theorem 3.2.12 and the upper bound given by Theorem
3.2.8 and 3.2.12, and consequently is minimax optimal.

The minimax rate obtained here is not directly comparable to rates such as those
obtained in the classic case of functional linear regression ([32] ; see also Cuevas
[19], and Goia and Vieu [29], Aneiros et al. [5] for broader reviews). This is not only
because the nature of the model is intrinsically non-linear, but also because the re-
lationship posited by the model does not lead to an ill-posed inverse problem. They
are also distinct from rates pertaining to fully non-parametric functional regression
(Chagny and Roche [14], Brunel et al. [10]; see also Ling and Vieu [43]). The reason
is that the regression operator, though non-parametrically specified, is constrained
to be monotone. In this sense, the model can be seen as a “shape-constrained non-
parametric functional regression model”. This distinguishes the form of the estima-
tion procedure (e.g. kernel averaging is unsuitable) and affects the minimax rate itself.
In particular, the fact that both response and covariate are distributions play a dis-
tinct role in the analysis – e.g. the use of Dirac deltas to connect to classical isotonic
regression.

3.2.7 Computation

Since the domain Ω is one-dimensional, we have that

𝑑2W (a, `) =
∫ 1

0

��𝐹 −1` (𝑝) − 𝐹 −1a (𝑝)
��2 d𝑝.

1If the covariate/response measures are observed indirectly, additional regularity is asserted on the
covariate/response measures in order to be able to recover them. But such assumptions are extrinsic to
the structure of the model (3.1) itself.
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Furthermore, since the regressors `𝑖 are assumed absolutely continuous (Assump-
tion 3.2.9), we can always write a𝑖 = 𝑇`𝑖→a𝑖#`𝑖 for an optimal map 𝑇`𝑖→a𝑖 . We can
therefore manipulate the Fréchet sum-of-squares and use a Riemann approximation
to write

𝑁∑︁
𝑖=1

𝑑2W (𝑇#`𝑖 , a𝑖) =
𝑁∑︁
𝑖=1

𝑇 ◦ 𝐹 −1`𝑖 − 𝐹 −1a𝑖
2
𝐿2

=

𝑁∑︁
𝑖=1

∫ 1

0

��𝑇 ◦ 𝐹 −1`𝑖 (𝑝) − 𝐹 −1a𝑖 (𝑝)
��2 d𝑝

=

𝑁∑︁
𝑖=1

∫ 1

0

��𝑇 ◦ 𝐹 −1`𝑖 (𝑝) −𝑇`𝑖→a𝑖 ◦ 𝐹 −1`𝑖 (𝑝)
��2 d𝑝

=

𝑁∑︁
𝑖=1

∫
Ω

��𝑇 (𝑥) −𝑇`𝑖→a𝑖 (𝑥)
��2 d`𝑖 (𝑥) (3.11)

≈
𝑁∑︁
𝑖=1

𝑚∑︁
𝑗=1

��𝑇 (𝑥 𝑗 ) −𝑇`𝑖→a𝑖 (𝑥 𝑗 )
��2`𝑖 (𝐼 𝑗 ), (3.12)

for𝑚 user-defined nodes {𝑥 𝑗 }𝑚𝑗=1 in an interval partition {𝐼 𝑗 }𝑚𝑗=1 of Ω. Writing 𝑦𝑖 𝑗 =
𝑇`𝑖→a𝑖 (𝑥 𝑗 ),𝑤𝑖 𝑗 = `𝑖 (𝐼 𝑗 ) and 𝑧 𝑗 = 𝑇 (𝑥 𝑗 ), we reduce the above approximate minimiza-
tion of the Fréchet sum-of-squares to the solution of the following convex optimiza-
tion problem:

minimise 𝑓 (𝑧) =
𝑁∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑤𝑖 𝑗ℎ𝑖 (𝑦𝑖 𝑗 , 𝑧 𝑗 ),

subject to 𝑧1 ≤ 𝑧2 ≤ · · · ≤ 𝑧𝑚,

(3.13)

where ℎ𝑖 (𝑦𝑖 𝑗 , 𝑧 𝑗 ) = |𝑦𝑖 𝑗 − 𝑧 𝑗 |2. The above problem resembles an isotonic regres-
sion problem with repeated measurements, and can be solved via the Pool-Adjacent-
Violater-Algorithm (PAVA) [45], which has a linear time complexity.

Remark 3.2.14. To be strictly faithful to the assumptions of Theorem 3.2.10, the com-
putation could incorporate additional constraints of the form (𝑧𝑖+1 − 𝑧𝑖) ≤ 𝐵(𝑥𝑖+1 − 𝑥𝑖),
as a discretization of 𝑇 ′ ≤ 𝐵. From a practical point of view, though, we always have
(𝑧𝑖+1 − 𝑧𝑖) ≤

(
|Ω |/min1≤ 𝑗≤𝑚 |𝐼 𝑗 |

)
(𝑥𝑖+1 − 𝑥𝑖), since 𝑇 : Ω → Ω is monotone. So

maintaining the original formulation of Section 3.2.7 implicitly corresponds to some
𝐵 > |Ω |/min1≤ 𝑗≤𝑚 |𝐼 𝑗 | in Theorem 3.2.10.
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3.3 Simulated Examples

3.3 Simulated Examples

In this section we illustrate the estimation framework and finite sample performance
of the method by means of some simulations. First we generate random predictors
{`𝑖}𝑁𝑖=1. We consider random distributions that are mixtures of three independent
Beta components. We choose the parameters of the Beta distributions to be uniformly
distributed random variables on [1, 10], with densities

𝑓`𝑖 (𝑥) =
3∑︁
𝑗=1

𝜋 𝑗𝑏𝛼𝑖,𝑗 ,𝛽𝑖,𝑗 (𝑥), 𝛼𝑖, 𝑗 ∼ Uniform[1, 10], 𝛽𝑖, 𝑗 ∼ Uniform[1, 10] .

The {𝜋 𝑗 }3𝑗=1 are arbitrary fixed mixture weights in [0, 1], such that
∑3
𝑗=1 𝜋 𝑗 = 1. As for

the noise maps𝑇𝜖𝑖 , we use the class of random optimal maps introduced in Panaretos
and Zemel [53]. Let 𝑘 be an integer and define Z𝑘 : [0, 1] → [0, 1] by

Z0(𝑥) = 𝑥, Z𝑘 (𝑥) = 𝑥 − sin(𝜋𝑘𝑥)
|𝑘 |𝜋 , 𝑘 ∈ 𝑍 \ {0}.

These are strictly increasing smooth functions satisfying Z𝑘 (0) = 0 and Z𝑘 (1) = 1 for
any 𝑘 . These maps can be made random by replacing 𝑘 by an integer-valued random
variable𝐾 . If the distribution of𝐾 is symmetric around zero, then it is straightforward
to see that 𝐸 [Z𝐾 (𝑥)] = 𝑥 , for all 𝑥 ∈ [0, 1], as required in the definition of model (3.1).
We generate a discrete family of random maps by the following procedure, which
is slightly different from the mixture family of maps introduced in [53]: for 𝐽 > 1

let {𝐾 𝑗 } 𝐽𝑗=1 be i.i.d. integer-valued symmetric random variables, and {𝑈 ( 𝑗 ) } 𝐽 −1𝑗=1 be
the order statistics of 𝐽 − 1 i.i.d. uniform random variables on [0, 1], independent of
{𝐾 𝑗 } 𝐽𝑗=1. The random maps are then defined as

𝑇𝜖 (𝑥) =
𝐽 −1∑︁
𝑗=1

𝐼 (𝑈 ( 𝑗 ) ≤ 𝑥 ≤ 𝑈 ( 𝑗+1) )
[
Z𝐾𝑗

(
𝑥 −𝑈 ( 𝑗 )

𝑈 ( 𝑗+1) −𝑈 ( 𝑗 )

) (
𝑈 ( 𝑗+1) −𝑈 ( 𝑗 )

)
+𝑈 ( 𝑗 )

]
.

As for the optimal map 𝑇0 constituting the regression operator, we set 𝑇0 = Z4. After
having generated the random `𝑖 and 𝑇𝜖𝑖 , we generate the response distributions ac-
cording to model (3.1), i.e. a𝑖 = 𝑇𝜖𝑖#𝑇#`𝑖 . Figure 3.1 depicts representative sample
pairs of predictor and response densities.

For estimation, we consider the case where we only observe 𝑛 independent sam-
ples from each pair of distributions (`𝑖 , a𝑖)𝑁𝑖=1. For simplicity, we use kernel density
estimation, rather than the estimators in [50], to obtain the proxies `𝑛𝑖 and a𝑛𝑖 for
the distributions `𝑖 and a𝑖 . Subsequently, for each 𝑖 , we estimate 𝑄𝑛𝑖 , where 𝑄𝑛𝑖 is
the optimal map such that a𝑛𝑖 = 𝑄𝑖#`

𝑛
𝑖 and solve the convex optimisation prob-

lem described in Section 3.2.7 to obtain the estimator 𝑇𝑛,𝑁 . Figure 3.2 contrasts the
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Chapter 3. Distribution-on-Distribution Regression in One Dimension

Figure 3.1: Examples of simulated predictor (blue) and corresponding response (or-
ange) densities.

Figure 3.2: Estimated (yellow) versus true (black) regression map for each of 100 repli-
cations of the combinations of 𝑁 ∈ {10, 100, 1000} and 𝑛 ∈ {10, 100, 1000}.

estimated and true regression maps in each replication, for all nine combinations
𝑁 ∈ {10, 100, 1000} and 𝑛 ∈ {10, 100, 1000}. It is apparent that the dominant source
of error is the bias due to partial observation, i.e. due to observing the measures
through finite samples of size 𝑛. When 𝑛 is moderately large (e.g. 𝑛 = 100) we see
that the agreement between estimated and true map is very good, even for small
values of 𝑁 . To quantitatively summarise the behaviour of the mean squared er-
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3.4 Analysis of Mortality Data

Figure 3.3: Boxplots for the squared 𝐿2 deviation between the true regression map and
the estimated regression maps based on 100 replications for the nine combinations of
𝑁 ∈ {10, 100, 1000} and 𝑛 ∈ {10, 100, 1000}. The𝑦-axis scale is common for different
values of 𝑁 .

ror in 𝑁 , we construct boxplots for the error ∥𝑇𝑛,𝑁 −𝑇0∥𝐿2 in Figure 3.3, each based
on 100 replications for the corresponding combination of 𝑛 ∈ {10, 100, 1000} and
𝑁 ∈ {10, 100, 1000}. The scale used is the same for each value of 𝑛, in order to focus
the behaviour with respect to 𝑁 .

3.4 Analysis of Mortality Data

We consider the age-at-death distributions for 𝑁 = 37 countries in the years 1983
and 2013, obtained from the Human Mortality Database of UC Berkeley and the Max
Planck Institute for Demographic Research 2. Death rates are provided by single
years of age up to 109, with an open age interval for 110+. We use Gaussian kernel
density smoothing, to obtain age-at-death densities from the count data. Denote by `𝑖
the age-at-death distribution for the 𝑖th country at year 1983 and a𝑖 the age-at-death
distribution for the same country at year 2013. We use the distributions `𝑖 and a𝑖 as
predictor and response distributions respectively. We chose these two years to allow
comparison with Chen et al. [15], who illustrate their methodology on the same data
set, and same pair of years.

2openly accessible at www.mortality.org
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Chapter 3. Distribution-on-Distribution Regression in One Dimension

Figure 3.4: Estimated Regression Map for the age-at-death distributional regression
(black) contrasted to the identity (red).

Figure 3.5: Residual maps of all the 37 countries (blue) and their average map (orange).

We fit the model (3.1) by means of the approach described in Section 3.2.7 to ob-
tain the estimated regression map based on the 𝑁 = 37 countries. This is depicted
in Figure 3.4. The map dominates the identity map pointwise, indicating that the re-
gression effect is to transport the mass of the age-at-death distribution to the right at
visually all locations. Said differently, the map indicates an effect of net improvement
in mortality across all ages. The most pronounced such effect is observed in young
ages (between 0-10), where the regression map rises steeply: The proportion of the
population dying at ages 0-10 in 1983 is redistributed approximately over the range
0-30 in 2013. The form of the map restricted to [0, 10] ↦→ [0, 30] is approximately
linear, indicating that this redistribution is achieved by conserving the actual shape
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3.4 Analysis of Mortality Data

Figure 3.6: Distribution-on-distribution regression for the mortality distributions of
Japan, Ukraine, Italy and USA in the year 2013 on those in 1983. Here WD stands
for the Wasserstein distance between the observed and fitted densities at year 2013,
indicating goodness-of-fit.

of the distribution but scaling by a constant. The effect is still visible though less
pronounced in the early adult to middle age range: The proportion of the population
dying at ages between 20 and 60 in 1983 is approximately redistributed over ages
40-60 in 2013. The regression map is approximately parallel to the identity map on
the range 60-80, shifted upwards by about 10 years indicating a translation of that
interval by that amount of years between 1983 and 2013, i.e. the proportion of the
population dying between 60-80 in 1983 has shifted to ages 70-90, but the shape of
the distribution of that proportion over each of these two 20 year periods is approxi-
mately conserved. Overall, the regression map approximately resembles a piecewise
linear map, allowing to interpret it locally by translations and dilations.

It is not easy to directly compare the effects expressed via this estimated regres-
sion map with the effects reflected by the estimated regression coefficient function
𝛽 , that is, the integral kernel of the operator B in Equation (3.5) obtained in Chen
et al. [15, Figure 3], when fitting their model to the same data. This is largely due
to fact that the 𝛽 acts on tangent space elements, and thus is rather subtle to in-
terpret. In interpreting their estimated regression operator, those authors remarked
that the estimated 𝛽 (𝑠, 𝑡) was stratified according to the 𝑠 argument so that, “if the
log-transformed predictor is non-negative or non-positive throughout its domain, then
the fit for the log-transformed response is determined by the comparison of the abso-
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Chapter 3. Distribution-on-Distribution Regression in One Dimension

Figure 3.7: Residual maps 𝑇â𝑖→a𝑖 (blue) vs Identity map (red) for the eight countries
in Figure 3.6.

lute values of the log transformed predictor over the positive and negative strata of the
estimated coefficient 𝛽 (·, 𝑡)”.

Using the estimated map 𝑇𝑁 we can then compute the fitted age-at-death dis-
tributions for the year 2013, namely â𝑖 = 𝑇𝑁#`𝑖 . Figure (3.6) depicts the predictor
and response densities as well as fitted response densities for a sample of 8 different
countries. The first four of these countries (Japan, Ukraine, Italy and USA) were also
selected as representative examples in Chen et al. [15]. All eight countries exhibit a
negatively-skewed age-at-death distribution. Comparing the actual distributions for
the years 1983 and 2013 we can observe the decreasing trend in infant death counts
and peaks shifting to older ages, as dictated by the fitted regression map. Contrast-
ing observed and fitted distributions for 2013 allows for better comparison with the
model output in [15], than does comparing the estimated regression operators.

Indeed, the main observations made in [15] are also apparent from our fitted
model. In the case of our model, besides looking at the shape of the predicted den-
sities, we can also take advantage of the direct interpretability of the residual maps
𝑇𝑒𝑖 = 𝑇â𝑖→a𝑖 , where𝑇â𝑖→a𝑖 is the optimal map between the fitted response â𝑖 and actual
response a𝑖 . The collection of residual maps is plotted in Figure (3.7). It is apparent
that the pointwise variability declines for progressively older ages, illustrating that
it is harder to fit mortality at younger ages. One can then focus on the residual maps
of specific countries. For example, doing so in the case of Japan and Ukraine, we re-
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3.5 Analysis of Mortality Data

produce the observation in [15] that “for Japan, the rightward mortality shift is seen
to be more expressed than suggested by the fitted model, so that longevity extension is
more than is anticipated, while the mortality distribution for Ukraine seems to shift to
the right at a slower pace than the fitted model would suggest”. Similarly, we recover
the same inference as in [15] regarding the US: “while the evolution of the mortal-
ity distributions for Japan and Ukraine can be viewed as mainly a rightward shift over
calendar years, this is not the case for USA, where compared with the fitted response,
the actual rightward shift of the mortality distribution seems to be accelerated for those
above age 75 [note: 65 in our case], and decelerated for those below age 70 [note: 65 in
our case]”. In terms of fit as measured by the Wasserstein distance between response
and fit, both models have a harder time fitting Japan, ours doing slightly worse. On
the flip side, our model fits Italy better, and the US and Ukraine considerably better
(we only contrast countries explicitly mentioned in [15]).

Figure 3.5 features the overlay of all residual maps, in order to explore the good-
ness-of-fit of the model as well as the validity of the model assumptions. As the
figure shows, the mean of residuals almost matches the identity map, which pro-
vides evidence in support of our model specification, in that the residual effects after
correcting for the regression should have mean identity, reflected by the assumption
that 𝐸{𝑇𝜖 (𝑥)} = 𝑥 . Note that, contrary to usual least squares where the residuals have
empirical mean zero, the residual maps need not have mean identity exactly.

Finally, we can scrutinise the individual residual maps for each of the 37 countries
which we plot separately in Figures (3.8a) and (3.8b). The separation into two figures
is deliberate, and is based on an apparent clustering: in Figure (3.8a) one can observe
more of a rightward shift of fitted mortalities compared to the observed moralities for
the countries concerned. This contrasts to countries in Figure (3.8b) which feature
less of a rightward shift than fitted by the model. In a sense, these are clusters of
“underfitted” and “overfitted” observations. Interestingly countries in Figure (3.8a)
belong mostly to Eastern Europe plus Portugal, Spain, Italy, Israel, Japan and Taiwan.
Countries in figure (3.8b) belong to western/northern European countries plus USA,
New Zealand and Australia. Thanks to the pointwise interpretability of the residual
maps, one can notice a particular contrast between these two groups of countries in
terms of their fitted/observed infant mortality rates. This may be related to the fact
that countries in Figure (3.8a) experienced a more pronounced improvement in their
health care systems over the period 1983-2013, compared countries in Figure (3.8b)
where healthcare was of comparably high quality already in 1983. It is interesting
to note that Japan and Taiwan feature residual maps that everywhere dominate the
identity.
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Chapter 3. Distribution-on-Distribution Regression in One Dimension

(a)

(b)

Figure 3.8: Residual maps (blue), the identity map (red) and the Wasserstein distance
between the observed and fitted densities at year 2013 for each country. The countries
are clustered in two groups (a) and (b). The list of abbreviations can be found in Table
3.1 in the Supplement.

3.5 Analysis of Quantum Dot Data

Röding et al. [63] present a method for resolving the relationship between parame-
ters from the observation of their marginal distributions. In their first use case, given
4 pairs of diameter (input) and wavelength (output) distributions of “quantum dot”
experimental setting, they estimate the joint distribution [63, Fig. 1] which we plot
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Figure 3.9: (a) and (b) are the marginal distributions of diameter and wavelength
respectively. (c) is the joint distribution as estimated by [63] and our estimated map.
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as the colormap in Figure (3.9c). Quantum dots are nanometer-sized structures pro-
duced in large quantities which have useful light-emitting properties, for example,
in the production of LEDs [77]. The same batch of quantum dots will have a natural
variability in their shapes and sizes which influence their spectra of emission, that is,
what wavelengths of light are emitted when some external source (electric current,
laser) excites them, and with what intensity are those wavelengths emitted [77].

Given the 4 pairs of distributions shown in Figures (3.9a) and (3.9b), we apply our
regression model to obtain the estimated map as shown in Figure (3.9c). Our map
does not always follow the areas of maximum weight of the joint distribution but
seems to be attracted to them. Note that Röding et al. [63] fitted lognormal distri-
butions to the raw data, while we used a kernel density estimation with bandwidth
determined by Scotts’ rule to obtain the diameter distributions, and we normalized
the raw wavelength intensity data so it is interpretable as a density.

The different treatment of the raw data could be a cause of the extra oscillations
observed in the estimated maps. Regardless of the treatment, we think these oscilla-
tions should reduce if the number of distribution pairs 𝑁 were to increase, as these
oscillations are a result of overfitting for a small 𝑁 .

Let us define the line of average _ given a fixed 𝑑 on the joint distribution as
_̄(𝑑). This line is approximately linear with an apparent change of slope around 𝑑 =

2nm. Even if the input diameter distribution were controlled so as to reach a Dirac
𝛿 (𝑑 − 𝑑0) form, the output wavelength may still be distributed around _̄(𝑑0) due to
other uncontrolled parameters: For example, the exact shape of the quantum dot is a
relevant factor [37], not only its diameter, among other factors. The joint distribution
shows such a finite variation and will show it even for an increasing number of pair
distributions 𝑁 .

It would be interesting to check if the estimated map is related to the average line
_̄(𝑑0) and converges to it for large 𝑁 . In this case, we would be correctly modelling
the deviations from _̄(𝑑) as the gaussian noise of our regression model.

3.6 Proofs

Proof of Lemma 3.2.6. Using the closed form of the Wasserstein distance when 𝑑 = 1

as given by equality (2.2), one can write:

𝑀 (𝑇 ) = 1

2

∫ ∫ 1

0

��𝑇 {𝐹 −1` (𝑝)} − 𝐹 −1a (𝑝)
��2 d𝑝 d𝑃 (`, a) .

The expression above shows that𝑀 is convex with respect to𝑇 since the map 𝑥 → 𝑥2

is convex and also integration preserves convexity. To show the strict convexity we
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3.6 Proofs

should prove that for all 0 < 𝛽 < 1 and all 𝑇1,𝑇2 such that ∥𝑇1 −𝑇2∥2𝐿2 (𝑄 ) > 0,

𝑀
{
𝛽𝑇1 + (1 − 𝛽)𝑇2

}
< 𝛽𝑀 (𝑇1) + (1 − 𝛽)𝑀 (𝑇2).

In fact by expanding the squares in the equality and doing some algebra one can
conclude that the equality happens if and only if ∥𝑇1 −𝑇2∥2𝐿2 (𝑄 ) = 0. Thus 𝑀 , and
similarly 𝑀𝑁 , are strictly convex.

Notice that the domain of definition of 𝑀 can be extended to the space of 𝐿2(𝑄)
functions. Therefore the Gateaux derivative of 𝑀 in the direction of [ ∈ 𝐿2(𝑄) can
be defined as:

𝐷[𝑀 (𝑇 ) = lim
𝜖→0

𝑀 (𝑇 + 𝜖[) −𝑀 (𝑇 )
𝜖

.

Expanding the first term we have:

𝑀 (𝑇 + 𝜖[) = 𝑀 (𝑇 ) + 𝜖
∫ ∫ 1

0

[
𝑇 {𝐹 −1` (𝑝)} − 𝐹 −1a (𝑝)

]
[{𝐹 −1` (𝑝)} d𝑝 d𝑃 (`, a)

+ 𝜖
2

2

∫ ∫ 1

0

��[{𝐹 −1` (𝑝)}
��d𝑥 d𝑃 (`, a)

= 𝑀 (𝑇 ) + 𝜖
∫

⟨𝑇 − 𝐹 −1a ◦ 𝐹`, [⟩𝐿2 (` ) d𝑃 (`, a) +
𝜖2

2

∫
∥[∥2

𝐿2 (` ) d𝑃 (`)

= 𝑀 (𝑇 ) + 𝜖
∫

⟨𝑇 − 𝐹 −1a ◦ 𝐹`, [⟩𝐿2 (` ) d𝑃 (`, a) +
𝜖2

2
∥[∥2

𝐿2 (𝑄 ) .

(3.14)

The last equality is true since

∫
∥[∥2

𝐿2 (` ) d𝑃 (`) =
∫ ∫

Ω
|[ (𝑥) |2 d` (𝑥) d𝑃 (`, a)

=

∫ ∫
Ω
|[ (𝑥) |2 d𝑄 (𝑥)

= ∥[∥2
𝐿2 (𝑄 ) .

Since ∥[∥2
𝐿2 (𝑄 ) < ∞, we can conclude

𝐷[𝑀 (𝑇 ) =
∫

⟨𝑇−𝐹 −1a ◦𝐹`, [⟩𝐿2 (` ) d𝑃 (`, a) =
∫ ∫

Ω
{𝑇 (𝑥)−𝑇`,a (𝑥)}[ (𝑥) d` (𝑥) d𝑃 (`, a),

where 𝑇`,a is the optimal map from ` to a . One can use a similar argument to derive
the derivative of 𝑀𝑁 .

□
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Proof of Theorem 3.2.3. We prove that 𝑇0 is the unique minimizer of the population
functional in T . Suppose a = 𝑇𝜖#(𝑇0#`0) for some fixed measure `0, where by
assumption E{𝑇𝜖 (𝑥)} = 𝑥 almost everywhere. Thus according to Proposition 3.2.11
of [55],𝑇0#`0 is the Fréchet mean of the conditional probability law of a given `0 or
equivalently, for any `0

arg inf𝑏∈W2 (Ω)

∫
W2 (Ω)

𝑑2W (𝑏, a) d𝑃 (a |`0) = 𝑇0#`0,

where 𝑃 is the joint distribution of (`, a) induced by Model (3.1). Now 𝑇0 is a mini-
mizer of the above functional, since for any 𝑇 :

𝑀 (𝑇 ) =
∫

𝑑2W (𝑇#`, a) d𝑃 (`, a)

=

∫ ∫
𝑑2W (𝑇#`0, a) d𝑃 (a |`0) d𝑃 (`0)

≥
∫ ∫

𝑑2W (𝑇0#`0, a) d𝑃 (a |`0) d𝑃 (`0)

=

∫
𝑑2W (𝑇0#`, a) d𝑃 (`, a) .

Also since𝑑2W (𝑇#`, a) is strictly convex w.r.t. 𝑇 ∈ T , and integration preserves strict
convexity, the functional 𝑀 is strictly convex. So 𝑇0 is, in fact, the unique minimizer.

□

To establish Proposition 3.2.7, we will use the following theorem.

Theorem 3.6.1 (Kurdila and Zabarankin [40], Theorem 7.3.6). Let 𝑋 be a reflexive
Banach space and suppose that 𝑓 : 𝑀 ⊆ 𝑋 → R is Gateaux-differentiable on the closed,
convex and bounded subset 𝑀 . If any of the following three conditions holds true,

1. 𝑓 is convex over 𝑀 ,

2. 𝐷𝑓 is monotone over 𝑀 ,

3. 𝐷2 𝑓 is positive over 𝑀 ,

then all three conditions hold, and there exists an 𝑥0 ∈ 𝑋 such that

𝑓 (𝑥0) = inf
𝑥∈𝑀

𝑓 (𝑥) .

Proof of Proposition 3.2.7. The set of maps T is closed, convex and bounded in the
Hilbert space of 𝐿2(𝑄) functions. Thus the existence follows immediately from (3.2.6)
and Theorem 3.6.1. Uniqueness also follows from strict convexity of 𝑀 . □
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To establish the consistency and rate of convergence of our estimator, we will
make use of the theory of 𝑀-estimation. To this aim, we restate some key theorems
from Van Der Vaart and Wellner [72].

Theorem 3.6.2 (Van Der Vaart and Wellner [72], Theorem 3.2.3). Let 𝑀𝑛 be random
functions for positive integer 𝑛, and let𝑀 be a fixed function of \ such that for any 𝜖 > 0

inf
𝑑 (\,\0 )≥𝜖

𝑀 (\ ) > 𝑀 (\0), (3.15)

sup
\

|𝑀𝑛 (\ ) −𝑀 (\ ) | → 0 in probability. (3.16)

Then any sequence of estimators \̂𝑛 with 𝑀𝑛 (\̂𝑛) ≤ 𝑀𝑛 (\0) + 𝑜P(1) converges in prob-
ability to \0.

Theorem 3.6.3 (Van Der Vaart and Wellner [72], Theorem 3.2.5). Let𝑀𝑁 be a stochas-
tic process indexed by a semi-metric space Θ with semi-metric 𝜌 , and let 𝑀 be a deter-
ministic function, such that for every \ in a neighborhood of \0,

𝑀 (\ ) −𝑀 (\0) ≳ 𝜌2(\, \0).

Suppose that, for every 𝑁 and sufficiently small 𝛿 ,

E∗ sup
𝜌2 (\,\0 )<𝛿

√
𝑁

��(𝑀𝑁 −𝑀) (\ ) − (𝑀𝑁 −𝑀) (\0)
�� ≲ 𝜙𝑁 (𝛿),

for functions 𝜙𝑁 such that 𝛿 → 𝜙𝑁 (𝛿)/𝛿𝛼 is decreasing for some 𝛼 < 2 (not depending
on 𝑁 ). Let

𝑟2𝑁𝜙𝑁

(
1

𝑟𝑁

)
≤
√
𝑁, for every 𝑁 .

If the sequence \̂𝑁 satisfies 𝑀𝑁 (\̂𝑁 ) ≤ 𝑀𝑁 (\0) + 𝑂P(𝑟−2𝑁 ), and converges in outer
probability to \0, then 𝑟𝑁 𝜌 (\̂𝑁 , \0) = 𝑂∗

P(1). If the displayed conditions are valid for
every \ and 𝛿 , then the condition that \̂𝑁 is consistent is unnecessary.

Theorem 3.6.4 (Van Der Vaart and Wellner [72], Theorem 2.7.5). The class F of mono-
tone functions 𝑓 : R → [0, 1] satisfies

log𝑁 [ ] (𝜖, ∥.∥𝐿2 (𝑄 ) , F ) ≤ 𝐾

(
1

𝜖

)
,

for every probability measure𝑄 , every 𝑝 ≥ 1, and a constant 𝐾 that depends only on 𝑝 .

Theorem 3.6.5 (Van Der Vaart and Wellner [72], Theorem 3.4.2). Let F be class of
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measurable functions such that 𝑃 𝑓 2 < 𝛿2 and ∥ 𝑓 ∥∞ < 𝑀 for every 𝑓 in F . Then

E sup
𝑓 ∈F

|
√
𝑁 (𝑃 − 𝑃) 𝑓 | ≤ 𝐽[ ] (𝛿, ∥ .∥𝐿2 (𝑃 ) , F )

(
1 +

𝐽[ ] (𝛿, ∥ .∥𝐿2 (𝑃 ) , F )
𝛿2
√
𝑁

𝑀

)
,

where 𝐽[ ] (𝛿, ∥ .∥𝐿2 (𝑃 ) , F ) =
∫ 𝛿
0

√︃
1 + log𝑁 [ ] (𝜖, ∥ .∥𝐿2 (𝑃 ) , F ) d𝜖 .

Proof of Theorem 3.2.8. Recall that, from Lemma 3.2.7, 𝑇𝑁 is the minimizer of the fol-
lowing criterion within the function class T :

𝑀𝑁 (𝑇 ) :=
1

2𝑁

𝑁∑︁
𝑖=1

𝑑2W (𝑇#`𝑖 , a𝑖).

And the “true” optimal map 𝑇0 is the minimizer of the following criterion function,

𝑀 (𝑇 ) := 1

2

∫
𝑑2W (𝑇#`, a) d𝑃 (`, a).

First we obtain an adequate upper bound for the bracketing number of the class of
functions indexed by 𝑇 of the form:

F𝑢 := {𝑓𝑇 (`, a) = 𝑑2W (𝑇#`, a) − 𝑑2W (𝑇0#`, a), s.t. 𝑇 ∈ T and ∥𝑇 −𝑇0∥𝐿2 (𝑄 ) ≤ 𝑢},

where the domain of each function 𝑓𝑇 ∈ F𝑢 is W2(Ω) ×W2(Ω). Let

log𝑁 [ ] (𝜖, ∥.∥𝐿2 (𝑃 ) , F𝑢)

denote the bracketing entropy of the function class F𝑢 . One can directly control this
bracketing entropy by the bracketing entropy of the class of optimal maps T (denote
by log𝑁 [ ] (𝜖, ∥ .∥𝐿2 (𝑄 ) ,T)). First note that ∥𝑇𝜖 − Id∥𝐿2 (` ) is bounded for any ` in the
support of 𝑃𝑀 and therefore for any 𝑇1,𝑇2 ∈ F𝑢 :𝑓𝑇1 − 𝑓𝑇22𝐿2 (𝑃 ) = ∫

|𝑑2W (𝑇1#`, a) − 𝑑2W (𝑇2#`, a) |2 d𝑃 (`, a)

≤ 𝐶
∫

∥𝑇1 −𝑇2∥2𝐿2 (` ) d𝑃𝑀 (`)

≤ 𝐶 ∥𝑇1 −𝑇2∥2𝐿2 (𝑄 ) .

(3.17)

From Lemma 3.6.4, we infer that log𝑁 [ ] (𝜖, ∥ .∥𝐿2 (𝑄 ) ,T) ≤ 𝐾
(
1
𝜖

)
, as optimal maps

are monotone functions. Therefore, by inequality (3.17) we get:

log𝑁 [ ] (𝜖, ∥ .∥𝐿2 (𝑃 ) , F𝑢) ≤ log𝑁 [ ] (𝜖, ∥ .∥𝐿2 (𝑄 ) ,T) ≲
(
1

𝜖

)
.
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The inequality (3.17) also shows that

𝑃 𝑓 2𝑇 ≤ 𝑃 ∥𝑇 −𝑇0∥2𝐿2 (` ) = ∥𝑇 −𝑇0∥2𝐿2 (𝑄 ) ≤ 𝑢
2,

for all 𝑓𝑇 ∈ F𝑢 .
To get the rate of convergence, we first show that 𝑀 (𝑇 ) has quadratic growth

around its minimizer. For any map𝑇 , we can write𝑇 = 𝑇0 +[, where [ = 𝑇 −𝑇0. Thus
the equation (3.14), with 𝜖 = 1 and also the fact 𝐷[𝑀 (𝑇0) = 0 yields

𝑀 (𝑇 ) −𝑀 (𝑇0) =
1

2
∥[∥2

𝐿2 (𝑄 )

=
1

2
∥𝑇 −𝑇0∥2𝐿2 (𝑄 ) .

Next, we find a function 𝜙𝑁 (𝛿) such that

E sup
∥𝑇−𝑇0 ∥𝐿2 (𝑄 ) ≤𝛿,𝑇 ∈T

√
𝑁

���(𝑀𝑁 −𝑀) (𝑇 ) − (𝑀𝑁 −𝑀) (𝑇0)
��� = E sup

𝑓 ∈𝐹𝛿

√
𝑁 | (𝑃𝑁 − 𝑃) 𝑓 |

≤ 𝜙𝑁 (𝛿) .

Since the functions in F𝛿 are uniformly bounded and 𝑃 𝑓 2 ≤ 𝛿2 for all 𝑓 ∈ F𝛿 , the
conditions of Theorem 3.6.5 are satisfied and we can choose

𝜙𝑁 (𝛿) = 𝐽[ ] (𝛿, ∥.∥𝐿2 (𝑃 ) , F𝛿 )
(
1 +

𝐽[ ] (𝛿, ∥.∥𝐿2 (𝑃 ) , F𝛿 )
𝛿2
√
𝑁

𝑐

)
,

where the constant 𝑐 is a uniform upper bound for the functions in class F𝛿 . Since
we noted that log𝑁 [ ] (𝜖, ∥ .∥𝐿2 (𝑃 ) , F𝑢) ≲ 𝜖−1 for any 𝑢 > 0, we can show

𝐽[ ] (𝛿, ∥.∥𝐿2 (𝑃 ) , F ) ≤
∫ 𝛿

0
1 +

√︃
log𝑁 [ ] (𝜖, ∥ .∥𝐿2 (𝑃 ) , F𝛿 ) d𝜖 ≲

√
𝛿.

The above inequality and the required condition 𝜙𝑁 (𝛿) ≤ 𝛿2
𝑁

√
𝑁 gives the bound

𝛿𝑁 = 𝑁 −1/3.
□

To establish the rate of convergence under imperfect observation we will make
use of the following Lemma.

Lemma 3.6.6. Let `𝑛 be a sequence of measures converging in Wasserstein distance to
a measure ` at a rate of convergence 𝑟−1𝑛 and let 𝑇 ∈ T . Then 𝑑2W (𝑇#`𝑛,𝑇#`) ≲ 𝑟−2𝑛 .

Proof. For simplicity and without loss of generality assume that 𝑑2W (`𝑛, `) = 𝑟−2𝑛
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exactly. If 𝑆𝑛 is the optimal map from `𝑛 to `, then∫ ��𝑆𝑛 (𝑥) − 𝑥 ��2𝑑`𝑛 ≤ 𝑟−2𝑛 .

Since 𝑇 is differentiable almost everywhere, and satisfies |𝑇 ′(𝑥) | ≤ 𝐵 for almost all
𝑥 ∈ Ω, then 𝑇 is Lipschitz continuous with Lipschitz constant at most 𝐵. Thus

𝑑2W (𝑇#`𝑛,𝑇#`) ≤
∫ ��𝑇 {𝑆𝑛 (𝑥)} −𝑇 (𝑥)��2𝑑`𝑛

≤ 𝐵2
∫ ��𝑆𝑛 (𝑥) − 𝑥 ��2𝑑`𝑛

≲ 𝑟−2𝑛

(3.18)

□

Proof of Theorem 3.2.10. Define 𝑀𝑛,𝑁 (𝑇 ) := 1
𝑁

∑𝑁
𝑖=1 𝑑

2
W (𝑇#`𝑛𝑖 , a𝑛𝑖 ). For any map 𝑇 ∈

T ,

E|𝑀𝑛,𝑁 (𝑇 ) −𝑀𝑁 (𝑇 ) | = E
��� 1
𝑁

𝑁∑︁
𝑖=1

𝑑2W (𝑇#`𝑛𝑖 , a𝑛𝑖 ) −
1

𝑁

𝑁∑︁
𝑖=1

𝑑2W (𝑇#`𝑖 , a𝑖)
���

≤ E
��𝑑2W (𝑇#`𝑛𝑖 , a𝑛𝑖 ) − 𝑑2W (𝑇#`𝑖 , a𝑖)

��
≤ 2𝐶E

��𝑑W (𝑇#`𝑛𝑖 , a𝑛𝑖 ) − 𝑑W (𝑇#`𝑛𝑖 , a𝑖)
��

+ E
��𝑑W (𝑇#`𝑛𝑖 , a𝑖) − 𝑑W (𝑇#`𝑖 , a𝑖)

��
≤ 2𝐶E𝑑W (a𝑛𝑖 , a𝑖) + E𝑑W (𝑇#`𝑛𝑖 ,𝑇#`𝑖)
≲ 𝑟−1𝑛 (by Lemma 3.6.6),

(3.19)

where 𝐶 = sup`,a 𝑑W (`, a), and 𝑟−1𝑛 is the rate of estimation of an absolutely con-
tinuous measure from 𝑛 samples. Thus the above inequality shows the uniform con-
vergence of 𝑀𝑛,𝑁 to 𝑀𝑁 (at a rate independent of 𝑁 ). Also, since 𝑇𝑁 is the unique
minimizer of 𝑀𝑁 , according to Theorem 3.6.2, 𝑇𝑛,𝑁 is a consistent estimator for 𝑇𝑁 ,
when 𝑁 is fixed.

Now assuming 𝑁 is fixed, we again use Theorem 3.6.3 for functionals 𝑀𝑛,𝑁 and
𝑀𝑁 . Since both functionals are differentiable, the first condition of the Theorem
(quadratic growth) is satisfied. For the second condition we need to find an upper
bound for

E sup
∥𝑇−𝑇𝑁 ∥𝐿2 (𝑄 )<𝛿

√
𝑛
��(𝑀𝑛,𝑁 −𝑀𝑁 ) (𝑇 ) − (𝑀𝑛,𝑁 −𝑀𝑁 ) (𝑇𝑁 )

�� = 𝜙𝑛 (𝛿). (3.20)

According to (3.19), we have 𝜙𝑛 (𝛿𝑛) ≲ 𝑟−1𝑛
√
𝑛. We also need 𝜙𝑛 (𝛿𝑛) ≤

√
𝑛𝛿2𝑛 , thus
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𝛿2𝑛 ∼ 𝑟−1𝑛 . Therefore 𝑇𝑛,𝑁 −𝑇𝑁

𝐿2 (𝑄 ) = 𝛿𝑛 = 𝑟

−1/2
𝑛 ,

and 𝑇𝑛,𝑁 −𝑇0

𝐿2 (𝑄 ) ≤

𝑇𝑛,𝑁 −𝑇𝑁

𝐿2 (𝑄 ) +

𝑇𝑁 −𝑇0

𝐿2 (𝑄 ) ,

thus 𝑇𝑛,𝑁 −𝑇0

𝐿2 (𝑄 ) ≲ 𝑟

−1/2
𝑛 + 𝑁 −1/3.

□

Before proving Theorem 3.2.12, we restate Fano’s method in the format that we
use to prove the theorem 3.2.12, which is taken from [75].

Given a class of distributions P, we let \ denote a functional on the space P that
is a mapping from a distribution P to a parameter \ (P) taking values on some space
Ω. Let 𝜌 : Ω × Ω → [0,∞) be a given metric. Also let Φ : [0,∞] → [0,∞) be an
increasing function. Then we define the 𝜌-minimax risk for the estimation of \ as:

𝔐(\ (P);Φ ◦ 𝜌) := inf
\̂

sup
P∈P

E
[
Φ
(
𝜌 (\̂ , \ (P))

) ]
.

The following theorem (proposition 15.2 [75]) gives a lower bound on the mini-
max error.

Theorem 3.6.7. (Generalized Fano’s inequality) Let {\1, · · · , \𝑀 } be a 2𝛿-separated set
in the 𝜌 semi-metric on Θ(P), and suppose that 𝐽 is uniformly distributed over the index
set {1, · · · , 𝑀}, and (𝑍 |𝐽 = 𝑗) ∼ 𝑃\ 𝑗 . Then for any increasing function Φ : [0,∞] →
[0,∞), the minimax risk is lower bounded as

𝔐(\ (P);Φ ◦ 𝜌) ≥ Φ(𝛿)
{
1 − 𝐼 (𝑍 ; 𝐽 ) + log 2

log𝑀

}
, (3.21)

where 𝐼 (𝑍 ; 𝐽 ) is the mutual information between 𝑍 and 𝐽 .

In order to find an upper-bound for the mutual information in the inequality 3.21,
we use lemma 15.5 of [75] which we restate here:

Lemma 3.6.8. (Yang-Barron method) Let 𝑁𝐾𝐿 (𝜖;P) denote the 𝜖-covering number of
P in the square-root KL divergence. Then the mutual information is upper bounded as

𝐼 (𝑍 ; 𝐽 ) ≤ inf
𝜖>0

{𝜖2 + log𝑁𝐾𝐿 (𝜖;P)}. (3.22)

Proof of Theorem 3.2.12. The idea will be to imbed the setting of isotonic regression
within the setting of the current estimation problem. We will then use Fano’s method
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(Theorem 15.2. and Lemma 15.5 from [75]) as restated above for our purposes, fol-
lowing the usual path for establishing the isotonic rate.

First and without loss of generality, we assume that Ω = [0, 1]. Suppose 𝑃𝑀 is
supported on the set of measures 𝑆 := {𝛿𝑥 s.t. 𝑥 ∈ [0, 1]}, where 𝛿𝑥 is a point mass
at 𝑥 ∈ [0, 1]. Suppose also that d𝑃𝑀 (𝛿𝑥 ) = d𝑝 (𝑥), where 𝑝 is a distribution on [0, 1]
with bounded density. Note that in this setting, we can see that the distribution 𝑝 is
equal to 𝑄 (defined in the first section).

Further let 𝜎2 > 0 and suppose that given 𝑥 ∈ [0, 1] the marginal distribution of
the real-valued random variable 𝑇𝜖 (𝑥) is centered Gaussian with variance 𝜎2, i.e.

𝑇𝜖 (𝑥) ∼ 𝑁 (𝑥, 𝜎2), ∀𝑥 ∈ [0, 1] .

To see that such family of random maps exists, take each random map to be 𝑇𝜖 (𝑥) =
𝐼 (𝑥) +𝜎𝑍 where 𝐼 (𝑥) = 𝑥 is the identity map and 𝑍 ∼ 𝑁 (0, 1) is a standard Gaussian.
By construction such maps are increasing and their marginal distribution at any fixed
point is a Gaussian.

In the setting we have constructed, both predictor and response distributions are
supported on a single point (Dirac measures). We can thus conveniently represent
them by identifying them with their singleton support. More precisely we represent
each pair of predictor/response distributions (`𝑖 , a𝑖) via their support (𝑋𝑖 , 𝑌𝑖). There-
fore, we assume that we observe the collection {(𝑋𝑖 , 𝑌𝑖)}𝑁𝑖=1, where 𝑋𝑖 ∈ [0, 1] and
are i.i.d. samples from distribution 𝑝 , and 𝑌𝑖 are i.i.d. samples from the distribution
𝑁 (𝑇0(𝑋𝑖), 𝜎2), i.e. the marginal distribution of 𝑌𝑖 given 𝑋𝑖 = 𝑥 is 𝑁 (𝑇0(𝑥), 𝜎2). The
estimation of the true map𝑇0 in this setting is now equivalent to the estimation of an
isotonic regression map from the sample pairs {(𝑋𝑖 , 𝑌𝑖)}𝑁𝑖=1.

Note that any map 𝑇 , induces a probability distribution P𝑇 (𝑋,𝑌 ) ∈ P(R2), and
denote by P𝑁

𝑇
the distribution induced on {(𝑋𝑖 , 𝑌𝑖)}𝑁𝑖=1. Let P𝑇 denote the following

family of distributions on R2𝑁 of the form

P𝑇 = {P𝑁𝑇 , 𝑠 .𝑡 . 𝑇 ∈ T }.

We want to find an upper-bound for the 𝜖-covering number of P𝑇 in the square
root 𝐾𝐿 divergence [75], denoted by 𝑁𝐾𝐿 (𝜖;P𝑇 ). Since for all 𝑇 ∈ T we can write
P(𝑋,𝑌 ) = 𝑝 (𝑋 )P𝑇 (𝑌 |𝑋 ), we only need to control the 𝜖-covering number of the con-
ditional distributions P(𝑌 |𝑋 ).

The idea is to show 𝑁𝐾𝐿 (𝜖;P𝑇 ) can be upper-bounded using the bracketing en-
tropy of the set T , denoted by log𝑁 [ ] (𝜖, ∥ .∥𝐿2 (𝑄 ) ,T). First note that according to
[72, Thm 2.7.5], we have the following upper-bound for the bracketing entropy of the
set T :

log𝑁 [ ] (𝜖, ∥ .∥𝐿2 (𝑄 ) ,T) ≤ 𝐾

(
1

𝜖

)
.
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Country List Figure (3.8a)
Country Name Country Code
Estonia EST
Slovakia SVK
Bulgaria BGR
Hungary HUN
Czechia CZE
Lithuania LTU
East Germany DEUTE
Latvia LVA
Belarus BLR
Ukraine UKR
Israel ISR
Slovenia SVN
Poland POL
Spain ESP
Italy ITA
Portugal PRT
Russia RUS
Japan JPN
Taiwan TWN
Greece GRC

Country List Figure (3.8b)
Country Name Country Code
Australia AUS
West Germany DEUTW
Austria AUT
Netherlands NLD
Iceland ISL
Ireland IRL
Belgium BEL
France FRATNP
Finland FIN
New Zealand NZL-NP
Switzerland CHE
Sweden SWE
Norway NOR
U.K. GBR-NP
U.S.A. USA
Denmark DNK
Luxemburg LUX

Table 3.1: Country abbreviations used in Figures 3.8a and 3.8b

Since P(𝑌 |𝑋 ) is a Gaussian distribution, for any two maps 𝑇1 and 𝑇2, we can control

𝐾𝐿(P𝑁𝑇1 | |P
𝑁
𝑇2
) ≤ 𝑁

2𝜎2
∥𝑇1 −𝑇2∥2𝐿2 (𝑝 ) =

𝑁

2𝜎2
∥𝑇1 −𝑇2∥2𝐿2 (𝑄 ) ,

so we conclude that log𝑁𝐾𝐿 (𝜖;P𝑇 ) is no larger than log𝑁 [ ] (T , 𝜎
√
2√
𝑁
𝜖, ∥.∥𝐿2 (𝑄 ) ) ≲

√
𝑁
𝜎𝜖

.
Now we can take any𝛿-packing on the setT . We know log𝑀 (T , 𝛿, ∥.∥𝐿2 (𝑄 ) ) ≍ 1

𝛿
,

where 𝑀 (T , 𝛿, ∥ .∥𝐿2 (𝑄 ) ) is the 𝛿-packing number of the set T . Take Φ(𝛿) = 𝛿2, then
using Theorem 3.6.7 and Lemma 3.6.8 (Appendix) we can write

𝔐(\ (P); ∥.∥𝐿2 (𝑄 ) ) ≥
𝛿

2

(
1 −

log𝑁 [ ] (T , 𝜎
√
2√
𝑁
𝜖, ∥.∥𝐿2 (𝑄 ) ) + 𝜖2 + log 2

log𝑀 (T , 𝛿, ∥.∥𝐿2 (𝑄 ) )

)
.

Finally choosing 𝜖−2
𝑁

≍ 𝛿𝑁 ≍ 𝑁 −1/3 yields the desired rate.
□
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Chapter 4

Distribution-on-Distribution Regression in
Higher Dimension

The work in this chapter was done in collaboration with my supervisor Victor Panare-
tos and is publicly available as a preprint [27]. This chapter follows the priprint with
slight changes.

4.1 Introduction

So far, distributional regression in the Wasserstein space has been confined to mea-
sures on the real line due to the geometrical, computational, and statistical complexi-
ties associated with higher dimensions. These complexities include the lack of closed-
form solutions for optimal transport maps, the positive curvature of the space, and
the curse of dimensionality. Despite these challenges, at least in principle, both the
Wasserstein regression framework developed by Chen et al. [15], which uses the tan-
gent structure of the Wasserstein space to develop a tangential Hilbert-type linear
model, and the shape-constraint approach introduced in Chapter 3, have the poten-
tial to be studied in higher dimensions.

In this Chapter, we consider the distributional regression problem in higher di-
mensions, focussing on the shape-contraint approach, in light of its leaner techni-
cal assumptions and greater statistical interpretability. We incorporate and adapt
concepts and techniques from prior studies in higher dimensional statistical optimal
transport. Specifically, we employ strategies that address the curse of dimensionality
in estimating optimal transport maps by imposing regularity conditions borrowed
from [31, 35]. And, we draw from previous work on imposing geometric and shape
constraints to derive the rate of convergence of Fréchet mean [2, 18]. We thus es-
tablish identifiability of the monotone map model in higher dimensions, introduce a
regularised Fréchet-least-squares estimator, and establish its consistency and rate of
convergence.
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4.2 The Model and its Identifiability

Let Ω be a subset of R𝑑 that is compact, convex, and with a non-empty interior. Let
(`, a) be a pair of random elements in W2(Ω) × W2(Ω) with a joint distribution
denoted by 𝑃 . Similar to Chapter 3, we define a regression operator, Γ : W2(Ω) →
W2(Ω), characterized as the minimizer of the conditional Fréchet functional as a
function of `:

argmin
𝑏

∫
W2 (Ω)

𝑑2W (𝑏, a) d𝑃 (a | `) = Γ(`) .

It is implicitly assumed that the Fréchet mean of the conditional probability distribu-
tion 𝑃 (· | `) of a given ` is unique for any `. This uniqueness can be ensured through
suitable regularity assumptions on the pair (`, a). A regression model consists in
positing a specific structure for Γ(`). The identifiability of such a model will typi-
cally require additional assumptions on the pair (`, a).

We consider generalizing the regression model (3.1), which is defined for distri-
butions on R: We assume that Γ(`) = 𝑇0#`, where 𝑇0 is an optimal map, and the
response distribution a further deviates from its conditional Fréchet mean 𝑇0#` by
means of a random optimal map perturbation (with Bochner mean identity).

More explicitly, we consider the regression model

a𝑖 = 𝑇𝜖𝑖#(𝑇0#`𝑖), {`𝑖 , a𝑖}𝑁𝑖=1, (4.1)

where {`𝑖 , a𝑖}𝑁𝑖=1 are probability distributions on Ω, 𝑇0 : Ω → Ω is an unknown
transport map and the {𝑇𝜖𝑖 }𝑁𝑖=1 are independent and identically distributed random
optimal transport maps with E(𝑇𝜖𝑖 ) = id, representing the noise in our model. The
regression task is to estimate the unknown map 𝑇0 from the observations {`𝑖 , a𝑖}𝑁𝑖=1.

Let 𝑃 denote the joint distribution on W2(Ω) ×W2(Ω) induced by model (4.1).
We denote by 𝑃𝑀 the induced marginal distribution of ` and will be assuming that it
is supported on regular measures:

Assumption 4.2.1. Let ` be a measure in the support of 𝑃𝑀 . Then ` is absolutely
continuous with respect to the Lebesgue measure.

The linear average (Bochner mean) of 𝑃𝑀 , will be denoted as

𝑄 (𝐴) =
∫
W2 (Ω)

` (𝐴) d𝑃𝑀 (`) .

Recall that a twice differentiable function 𝜑 : R𝑑 → R is 𝛼-strongly convex and 𝐿-
smooth if at any point 𝑥 ∈ R𝑑 , its Hessian matrix is positive definite with its smallest
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eigenvalue being no less than 𝛼 and no greater than 𝐿:

𝛼𝐼 ⪯ ∇2𝜑 (𝑥) ⪯ 𝐿𝐼, ∀𝑥 ∈ R𝑑 ,

where 𝐴 ⪯ 𝐵 signifies that the difference 𝐵 − 𝐴 between two matrices is positive
semi-definite.

Consider the following sets of potential functions:

Φ𝛼 := {𝜑 : such that 𝛼𝐼 ⪯ ∇2𝜑 (𝑥) ⪯ 𝐿𝐼 } for 𝐿 > 𝛼 ≥ 0,

Φ := ∪𝛼>0Φ𝛼 .

Throughout the chapter, we suppose 𝐿 is fixed and known. Next, we define the fol-
lowing set of optimal maps:

T := {𝑇 : Ω → Ω : 𝑇 = ∇𝜑, for some 𝜑 ∈ Φ}.

We will require the following regularity of the optimal maps involved in the model,
in order to ensure idenfitiability:

Assumption 4.2.2. The map 𝑇0 belongs to the class T .

Assumption 4.2.3. The maps 𝑇𝜖𝑖 are i.i.d random elements in T , with E(𝑇𝜖𝑖 ) = id.

With these assumptions and definitions in place, we can now establish identifiability:

Theorem 4.2.4. (Identifiability) Assume that the law 𝑃 induced by model (4.1) satisfies
Assumptions 4.2.1, 4.2.2, and 4.2.3. Then, the regressor operator Γ(`) = 𝑇0#` in the
model (4.1) is identifiable over the class of maps 𝑇 ∈ T , up to 𝑄-null sets. Specifically,
for any map 𝑇 ∈ T such that ∥𝑇 −𝑇0∥𝐿2 (𝑄 ) > 0, it holds that

𝑀 (𝑇 ) > 𝑀 (𝑇0),

where for any 𝑇 ∈ T ,

𝑀 (𝑇 ) := 1

2

∫
W2 (Ω)×W2 (Ω)

𝑑2W (𝑇#`, a) d𝑃 (`, a) . (4.2)

Remark 4.2.5 (Identifiability 𝑄-almost everywhere). Theorem 4.2.4 establishes that
𝑇0 is identifiable, up to 𝑄-null sets, and this holds true under minimal conditions on the
input measures `. The intuition behind this form of identifiability is similar to the one
provided in Remark 3.2.4 for the case of one dimension: If the measure𝑄 is supported on
a subset Ω0 ⊂ Ω, the map 𝑇0 cannot be identified on Ω \ Ω0. But, if the measure 𝑄 is
mutually absolutely continuous with the Lebesgue measure, then identifiability is also
true almost everywhere on Ω with respect to Lebesgue measure.
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Chapter 4. Distribution-on-Distribution Regression in Higher Dimension

This equivalence can be achieved by enforcing additional conditions on the law of
random covariate measures `. One straightforward condition is to require that the input
measures, `, have a bounded density from below with positive probability. However, this
implies that the support of ` equals Ω with positive probability, which may be restrictive
since we want our model to include scenarios where none of the covariate measures have
the full support on Ω.

A weaker condition to ensure the equivalence of 𝑄 with the Lebesgue measure is
to assume the existence of a cover {𝐸𝑚}𝑚≥1 of Ω such that the probability 𝑃𝑀 {𝐸𝑚 ⊆
supp(𝑓`)} > 0 is greater than zero for all 𝑚. This condition suggests that different
covariate measures can provide information about 𝑇0 on different subsets of Ω, but col-
lectively, they must provide information about all of Ω. Consider an example where Ω

is the 𝑑-dimensional unit cube and ` is defined as the normalized Lebesgue measure on
𝑆 =

(
[𝑈1,𝑈1 + 1/3] mod 1

)
× · · · ×

(
[𝑈𝑑 ,𝑈𝑑 + 1/3] mod 1

)
. Here, {𝑈𝑖}𝑑𝑖=1 are inde-

pendent uniform random variables on [0, 1]. In this scenario, none of the ` realizations
are supported on Ω, yet the “cover condition” is met. This remark directly extends the
analogous observations in the one-dimensional case.

Figure 4.1 illustrates the output of Model (4.1) when 𝑑 = 2. In the first plot of
each column, blue dots represent samples from a covariate distribution `. The black
dots are sampled from the (conditional Fréchet mean) distribution 𝑇0#`. The flow
curves depict the effect of𝑇0 − id, with the colour indicating its magnitude. Then, we
examine 4 different random maps 𝑇𝜖 . In the next 4 plots, we observe samples from
the response distribution a = 𝑇𝜖#𝑇0#`, represented by red dots. In each plot, the
flow curves represent 𝑇𝜖 − id.

4.3 Statistical Analysis

To obtain a consistent estimator and derive its rate of convergence, we use empir-
ical process theory. This requires us to make additional regularity assumptions on
the model. We consider the case where the true map 𝑇0 satisfies a Hölder condition
(defined below).

Definition 4.3.1. (Hölder Space) For any vector 𝒌 ∈ N𝑑 with coordinates (𝑘1, · · · , 𝑘𝑑 )
write |𝒌 | = ∑𝑑

𝑖=1 𝑘𝑖 and define the differential operator

𝐷𝒌 =
𝜕 |𝒌 |

𝜕𝑥
𝑘1
1 · · · 𝜕𝑥𝑘𝑑

𝑑

.

For any real number 𝛽 > 0, we define the Hölder norm of smoothness 𝛽 of a ⌊𝛽⌋-

52



4.3 Statistical Analysis
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Figure 4.1: Illustration of Model (4.1) for 𝑑 = 2, showing samples from ` (blue),𝑇0#`
(black), and a = 𝑇𝜖#𝑇0#` (red) for four different realisations of the error map, along
with corresponding flow curves. 53
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times differentiable function 𝑓 : Ω → R as

∥ 𝑓 ∥𝐶𝛽 := max
|𝒌 | ≤ ⌊𝛽 ⌋

sup
𝑥

|𝐷𝒌 𝑓 (𝑥) | + max
|𝒌 |=⌊𝛽 ⌋

sup
𝑥≠𝑦

|𝐷𝒌 𝑓 (𝑥) − 𝐷𝒌 𝑓 (𝑦) |
∥𝑥 − 𝑦∥𝛽−⌊𝛽 ⌋

. (4.3)

The Hölder ball of smoothness 𝛽 and radius 𝐿 > 0, denoted by𝐶𝛽
𝑅
(Ω), is then defined as

the class of ⌊𝛽⌋-times continuously differentiable functions with Hölder norm bounded
by the radius 𝐿:

𝐶
𝛽

𝑅
(Ω) := {𝑓 ∈ 𝐶 ⌊𝛽 ⌋ (Ω) : ∥ 𝑓 ∥𝐶𝛽 ≤ 𝑅}.

We might occasionally drop the argument Ω when the underlying space can be
understood from the context. Now consider the following sets of maps:

T𝛽,𝛾,𝑅 := {𝑇 : 𝑇 = ∇𝜑, 𝜑 ∈ Φ ∩𝐶𝛽+𝛾
𝑅

∥ .∥
𝐶𝛽

}

T𝛽,𝑅 := {𝑇 : 𝑇 = ∇𝜑, 𝜑 ∈ Φ0 ∩𝐶𝛽𝑅}.

It holds that T𝛽,𝛾,𝑅 ⊂ T𝛽,3𝑅 (by way of Lemma 4.5.4 in Section 4.5). Our assumption
now is:

Assumption 4.3.2. The map𝑇0 belongs to the set T𝛽,𝛾,𝑅 , where 𝛽 , 𝛾 , and 𝑅 are positive
constants and ⌊𝛽 + 𝛾⌋ = ⌊𝛽⌋.

Remark 4.3.3. The 𝛽-Hölder function classes appear frequently in optimization and
such regularity assumption is standard in non-parametric regression. In statistical op-
timal transport theory (see e.g. [31, 35]) similar assumptions are imposed to estimate
optimal transport maps when observing samples from distributions.

Our objective is to obtain an estimator, denoted by𝑇𝑁,(𝛽,𝛾,𝑅) , of the unknown map
𝑇0. To do so, we define 𝑇𝑁,(𝛽,𝛾,𝑅) as the constrained minimizer of the sample version
of the functional 𝑀 ,

𝑇𝑁,(𝛽,𝛾,𝑅) := argmin
𝑇 ∈T𝛽,𝛾,𝑅

𝑀𝑁 (𝑇 ), 𝑀𝑁 (𝑇 ) :=
1

2𝑁

𝑁∑︁
𝑖=1

𝑑2W (𝑇#`𝑖 , a𝑖), (4.4)

Here, (`𝑖 , a𝑖) are independent samples drawn from 𝑃 for 𝑖 = 1, . . . , 𝑁 . The constraint
amounts to the requirement that 𝑇 ∈ T𝛽,𝛾,𝑅 . The minimizer might not be unique. We
can take any of the minimizers of (4.4) as𝑇𝑁,(𝛽,𝛾,𝑅) . But it will exist in T𝛽,3𝑅 , provided
𝛽 > 2:

Theorem 4.3.4. The minimization problem (4.4) has a solution in T𝛽,3𝑅 when 𝛽 > 2.

Remark 4.3.5. The functional 𝑑2W (𝑇#`, a) is not necessarily convex with respect to𝑇 ,
meaning that we cannot expect 𝑑2W ( [𝑎𝑇1 + (1 − 𝑎)𝑇2]#`, a) ≤ 𝑎𝑑2W (𝑇1#`, a) + (1 −
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4.3 Statistical Analysis

𝑎)𝑑2W (𝑇2#`, a). The reason is that the Wasserstein distance is not necessarily convex
with respect to geodesics. And, if we set𝑇2 as the identity function, [𝑎𝑇1 + (1−𝑎)𝐼𝑑]#`
represent the geodesic between ` and𝑇1#`. Under this scenario, selecting𝑇1, ` and a as
per example 9.1.5 of [3] results in the violation of the inequality.

Nevertheless, when a is close to ` we can show convexity. Denote by𝑇`→a the optimal
transport from ` to a . Suppose 𝑇`→a is gradient of a _-strongly convex function. Then
based on Theorem 6 of Manole et al. [46] and inequality (2.4), we have:

𝑑2W ( [𝑎𝑇1 + (1 − 𝑎)𝑇2]#`, a) ≤
𝑎𝑇1 + (1 − 𝑎)𝑇2 −𝑇`→a

2
𝐿2 (` )

≤ _2𝑑2W ( [𝑎𝑇1 + (1 − 𝑎)𝑇2]#`, a),
(4.5)

and similarly

𝑎𝑑2W (𝑇1#`, a) + (1 − 𝑎)𝑑2W (𝑇2#`, a) ≤ 𝑎
𝑇1 −𝑇`→a

2
𝐿2 (` ) + (1 − 𝑎)

𝑇2 −𝑇`→a

2
𝐿2 (` )

≤ 𝑎_2𝑑2W (𝑇1#`, a) + (1 − 𝑎)_2𝑑2W (𝑇2#`, a).
(4.6)

Also, by strict convexity of squared norm we have𝑎𝑇1 + (1 − 𝑎)𝑇2 −𝑇`→a

2
𝐿2 (` ) < 𝑎

𝑇1 −𝑇`→a

2
𝐿2 (` ) + (1 − 𝑎)

𝑇2 −𝑇`→a

2
𝐿2 (` ) .

(4.7)

As we observe from the above equation, the middle value in inequality (4.5) is strictly
smaller than the middle value in inequality (4.6). Moreover, if _ approaches 1, both
inequalities’ right-hand sides converge to their respective left-hand sides. Consequently,
for small values of _, the left-hand side of (4.5) is majorised by the left-hand side of
(4.6), which establishes convexity. It is worth mentioning that when _ approaches 1,
𝑇`→a converges to the identity map, and a converges to `, providing a perspective on
why convexity occurs when a is close to `.

To evaluate the estimator’s quality, we will use the Fréchet mean squared error,
which is the natural risk function in this context:

𝑅(𝑇 ) := E`∼𝑃𝑀𝑑
2
W (𝑇0#`,𝑇#`) =

∫
𝑑2W (𝑇0#`,𝑇#`) d𝑃𝑀 (`) .

The value on the right-hand side defines a semi-metric on the set of maps T . More
specifically, for any two maps 𝑇1,𝑇2 ∈ T , we can define

𝜌 (𝑇1,𝑇2) =
[ ∫

𝑑2W (𝑇1#`,𝑇2#`) d𝑃𝑀 (`)
]1/2

.

55
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Lemma 4.3.6 (Semi-metric property of 𝜌). The map 𝜌 (·, ·) satisfies all the properties
of a metric, except that there may exist pairs 𝑇1 ≠ 𝑇2 such that 𝜌 (𝑇1,𝑇2) = 0.

Since W2(R𝑑 ) is non-negatively curved (equation (2.4)), for any two maps𝑇1,𝑇2 ∈ T
we have

𝜌2(𝑇1,𝑇2) =
∫

𝑑2W (𝑇1#`,𝑇2#`) d𝑃𝑀 (`)

≤
∫

∥𝑇1 −𝑇2∥2𝐿2 (` ) d𝑃𝑀 (`)

=

∫ ∫
| (𝑇1 −𝑇2) (𝑥) |2 d` (𝑥) d𝑃𝑀 (`)

= ∥𝑇1 −𝑇2∥2𝐿2 (𝑄 ) ,

(4.8)

with equality when 𝑑 = 1. We use this to derive an upper bound for the rate of
convergence of 𝑇𝑁 with respect to semi-metric 𝜌 .

Theorem 4.3.7. (Rate of Convergence) Suppose the Assumptions 4.2.1, 4.2.2, 4.2.3 and
4.3.2 are satisfied with some 𝛽 > max{𝑑2 , 2} and 𝛾, 𝑅 > 0. Then

𝑁
𝛽

2𝛽+𝑑 𝜌 (𝑇𝑁,(𝛽,𝛾,𝑅) ,𝑇0) = 𝑂P(1) .

In particular, for 𝑑 > 4, and depending on 𝑑
2 < 𝛽 < ∞, the rate is between 𝑁 −1/4 and

𝑁 −1/2.

Remark 4.3.8 (The case 𝑑 = 1). In chapter 3, we showed the Fréchet least square esti-
mator achieves a convergence rate of 𝑁 −1/3 using the 𝐿2(𝑄)-norm, and also we demon-
strated that this rate is minimax optimal. It’s worth noting that, for 𝑑 = 1, the 𝐿2(𝑄)-
norm is equivalent to the semi-metric 𝜌 under the assumption that𝑇0 is a non-decreasing
map. As a result, we can compare their rates with the one provided by Theorem 4.3.7.
When 𝑑 = 1, Theorem 4.3.7 suggests that the convergence rate lies between 𝑁 −2/5 and
𝑁 −1/2, depending on the assumed degree of smoothness (2 < 𝛽 ≤ ∞). The faster con-
vergence rate is a result of the additional smoothness assumption, and thus, there is no
inconsistency between the two results.

4.4 Differentiability

In this section, we establish an additional result about Gateaux-differentiability of the
functional 𝑀 and 𝑀𝑁 . While this result does not contribute directly to the technical
results in this chapter, it might be relevant for computation of the estimator.

Lemma 4.4.1. For any 𝛼 > 0, the functionals𝑀 and𝑀𝑁 are Gateaux-differentiable at
any maps in T and there exist couplings 𝛾`,a ∈ Γ(`, a) and 𝛾`𝑖 ,a𝑖 ∈ Γ(`𝑖 , a𝑖) such that:
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𝐷[𝑀 (𝑇 ) =
∫ ∫

< [ (𝑥),𝑇 (𝑥) − 𝑦 > d𝛾`,a (𝑥,𝑦) d𝑃 (`, a),

𝑑2W (𝑇#`, a) =
∫

|𝑇 (𝑥) − 𝑦 |2 d𝛾`,a (𝑥,𝑦)
(4.9)

and

𝐷[𝑀𝑁 (𝑇 ) =
1

𝑁

𝑁∑︁
𝑖=1

∫
< [ (𝑥),𝑇 (𝑥) − 𝑦 > d𝛾`𝑖 ,a𝑖 (𝑥,𝑦),

𝑑2W (𝑇#`𝑖 , a𝑖) =
∫

|𝑇 (𝑥) − 𝑦 |2 d𝛾`𝑖 ,a𝑖 (𝑥,𝑦).
(4.10)

4.5 Proofs

In the next statement, we restate a Theorem from Ponomarev [61] that will be used
to prove Lemma 4.5.2.

Theorem 4.5.1. (Theorem 3 of Ponomarev [61]) When 𝑓 : Ω ⊂ R𝑑 → R𝑑 is continuous
and almost everywhere differentiable, the following properties are equivalent:

• rank{𝑓 ′(𝑥)} = 𝑑 for almost all 𝑥 ∈ Ω,

• the 𝑓 -preimage of any set of measure zero is set of measure zero, i.e. if 𝐸 ⊂ R𝑑

such that _(𝐸) = 0 then _(𝑓 −1(𝐸)) = 0.

Lemma 4.5.2. 𝑇#` is absolutely continuous, when ` is absolutely continuous and𝑇 ∈
T .

Proof. We need to show that if𝐴 is a measurable set with Lebesgue measure _(𝐴) = 0,
then 𝑇#` (𝐴) = 0. We begin by noting that 𝑇 ∈ T implies the Jacobian of 𝑇 is
full rank. Using Theorem 4.5.1, we conclude that _(𝑇 −1(𝐴)) = 0. Next, recall that
𝑇#` (𝐴) = ` (𝑇 −1(𝐴)). Since ` is absolutely continuous and _(𝑇 −1(𝐴)) = 0, it follows
that ` (𝑇 −1(𝐴)) = 0. Therefore, we have 𝑇#` (𝐴) = ` (𝑇 −1(𝐴)) = 0, as desired. □

Our argument for the identifiability of 𝑇0 relies on a result from Chewi et al.
[18], which was originally employed to establish quadratic growth of the Fréchet
functional (2.6) around its minimiser. In addition to identifiability, this finding is also
applied to exhibit the quadratic growth of functional𝑀 around its minimizer, crucial
for determining the convergence rate of our proposed estimator. We will start by
revisiting the notion of variance inequality, introduced by Ahidar-Coutrix et al. [2].
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A distribution 𝑃 conforms to a variance inequality with a positive constant 𝐶𝑣𝑎𝑟 , if
for any absolutely continuous measure 𝑏 ∈ W2(R𝑑 ), the following inequality holds:

𝐹 (𝑏) − 𝐹 (𝑏∗) ≥ 𝐶𝑣𝑎𝑟

2
𝑑2W (𝑏, 𝑏∗),

where𝑏∗ is the minimizer of 𝐹 defined by equation (2.6). Now we restate the following
result from Chewi et al. [18]:

Theorem 4.5.3. (Theorem 6 of Chewi et al. [18]) Let 𝑃 be the law of a random measure
in W2,ac(Ω) with barycenter𝑏∗ ∈ W2,ac(Ω). Assume there exists a measurable map𝜑 :

W2,ac(Ω)×R𝑑 → R such that for 𝑃-almost all `, 𝜑` is an optimal Kantorovich potential
for 𝑏∗ to ` and is 𝛼 (𝑇𝑏∗→`)-strongly convex, where 𝑇𝑏∗→` = ∇𝜑` is the corresponding
optimal map. Moreover, assume that for almost all 𝑥 ∈ R𝑑

E`∼𝑃 [𝜑` (𝑥)] =
1

2
∥𝑥 ∥2 . (4.11)

Then, 𝑃 satisfies a variance inequality for all 𝑏 ∈ W2,ac(Ω) with constant

𝐶𝑣𝑎𝑟 =

∫
𝛼 (𝑇𝑏∗→`) d𝑃 (`).

Proof of Theorem 4.2.4. To prove that 𝑇0 is the unique minimizer of the population
functional in T up to 𝑄-null sets, fix a measure `0 in the support of 𝑃𝑀 , and let a
be a random measure such that a = 𝑇𝜖#(𝑇0#`0) (where we recall that E(𝑇𝜖 ) = id).
According to Lemma 4.5.2, 𝑇0#`0 is absolutely continuous, since `0 is absolutely
continuous, and𝑇0 ∈ T𝛼 . Similarly, we can argue that a is also absolutely continuous
because𝑇𝜖 ∈ T . Therefore according to Proposition 3.2.7 of Panaretos and Zemel [55],
for any `0, the induced random measure a has a unique Fréchet mean. By Theorem
4.2.4 of Panaretos and Zemel [55] we conclude this unique Fréchet mean is 𝑇0#`0.
Therefore, for any `0,

arg inf𝑏∈W2 (Ω)

∫
W2 (Ω)

𝑑2W (𝑏, a) d𝑃 (a |`0) = 𝑇0#`0,

where 𝑃 is the joint distribution of (`, a) induced by Model (4.1). Now we show that
𝑇0 is a minimiser of 𝑀 :
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𝑀 (𝑇 ) =
∫

𝑑2W (𝑇#`, a) d𝑃 (`, a)

=

∫ ∫
𝑑2W (𝑇#`0, a) d𝑃 (a |`0) d𝑃 (`0)

≥
∫ ∫

𝑑2W (𝑇0#`0, a) d𝑃 (a |`0) d𝑃 (`0)

=

∫
𝑑2W (𝑇0#`, a) d𝑃 (`, a) .

We will show that 𝑇0 is the unique minimizer up to 𝐿2(𝑄)-norm. We apply Theorem
4.5.3 in the following way: Fix a measure `0 in the support of 𝑃𝑀 . As we stated,𝑇0#`0
is the conditional Fréchet mean of the random measurea given `0 (i.e. the baruycentre
of the law 𝑃 (a |`0)). Define a mapping 𝜑 : W2,ac(Ω) × R𝑑 → R such that 𝜑a |`0 is
equal to the Kantorovich potential of the optimal map 𝑇𝜖 , where we abuse notation
for tidiness and write a |`0 ≡ 𝑇𝜖#𝑇0#`0 (the existence of such map 𝑇𝜖 is guaranteed
by the model assumptions). The mapping𝜑 satisfies the assumptions of Theorem 4.5.3
because the Kantorovich potential of 𝑇𝜖 is indeed an optimal Kantorovich potential
from 𝑇0#`0 to a |`0 and each 𝑇𝜖 is the gradient of an 𝛼-strongly convex function
by assumption 4.2.3. Furthermore, based on the same assumption, E(𝑇𝜖 ) = id, and
as a result, equation (4.11) holds. We can deduce that the mapping 𝜑a |`0 is 𝛼 (𝑇𝜖 )-
strongly convex. We can also observe that the value E𝛼 (𝑇𝜖 ) no longer depends on `0.
Additionally, we can deduce E𝛼 (𝑇𝜖 ) > 0 since each map 𝑇𝜖 is strongly convex.

Collecting and combining the statements above, we can apply Theorem 4.5.3 and
show that for any 𝑇 ∈ T :

𝑀 (𝑇 ) −𝑀 (𝑇0) =
1

2

∫ ∫
[𝑑2W (𝑇#`0, a) − 𝑑2W (𝑇0#`0, a)] d𝑃 (a |`0) d𝑃𝑀 (`0)

≥ E𝛼 (𝑇𝜖 )
2

∫
𝑑2W (𝑇#`0,𝑇0#`0) d𝑃𝑀 (`0) .

(4.12)

Consequently, if for some 𝑇 we have that 𝑀 (𝑇 ) = 𝑀 (𝑇0), inequality (4.12) implies
that

𝑃𝑀 {` such that 𝑑2W (𝑇#`,𝑇0#`) = 0} = 1.

Since both 𝑇0 and 𝑇 are optimal maps, whenever 𝑑2W (𝑇#`,𝑇0#`) = 0 we can infer
that ∥𝑇 −𝑇0∥2𝐿2 (` ) = 0. Therefore

𝑃𝑀 {` such that ∥𝑇 −𝑇0∥2𝐿2 (` ) = 0} = 1,
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which is equivalent to ∥𝑇 −𝑇0∥2𝐿2 (𝑄 ) = 0. Therefore,𝑇0 is the unique minimizer of𝑀
up to 𝐿2(𝑄)-norm, and hence identifiable up to 𝑄-null sets.

□

Lemma 4.5.4. If 𝛽,𝛾 > 0 are such that ⌊𝛽 + 𝛾⌋ = ⌊𝛽⌋, then for any 𝑓 ∈ 𝐶𝛽+𝛾 we have

∥ 𝑓 ∥𝐶𝛽 ≤ 3 ∥ 𝑓 ∥𝐶𝛽+𝛾 .

Proof. Recall that

∥ 𝑓 ∥𝐶𝛽 := max
|𝒌 | ≤ ⌊𝛽 ⌋

𝐷𝒌

∞
+ max

|𝒌 |=⌊𝛽 ⌋
sup
𝑥≠𝑦

|𝐷𝒌 𝑓 (𝑥) − 𝐷𝒌 𝑓 (𝑦) |
∥𝑥 − 𝑦∥𝛽−⌊𝛽 ⌋

. (4.13)

First, let’s compare the expressions for ∥ 𝑓 ∥𝐶𝛽 and ∥ 𝑓 ∥𝐶𝛽+𝛾 . For a function 𝑔, we have

sup
𝑥,𝑦∈Ω,𝑥≠𝑦

|𝑔(𝑥) − 𝑔(𝑦) |
∥𝑥 − 𝑦∥𝛽−𝑏

≤ sup
𝑥,𝑦∈Ω, |𝑥−𝑦 |<1

|𝑔(𝑥) − 𝑔(𝑦) |
∥𝑥 − 𝑦∥𝛽−𝑏

+ sup
𝑥,𝑦∈Ω, |𝑥−𝑦 | ≥1

|𝑔(𝑥) − 𝑔(𝑦) |
∥𝑥 − 𝑦∥𝛽−𝑏

.

When ∥𝑥 − 𝑦∥ ≥ 1, we have ∥𝑥 − 𝑦∥𝛽−𝑏 ≥ 1, therefore

sup
𝑥,𝑦∈Ω, |𝑥−𝑦 | ≥1

|𝑔(𝑥) − 𝑔(𝑦) |
∥𝑥 − 𝑦∥𝛽−𝑏

≤ sup
𝑥,𝑦∈Ω, |𝑥−𝑦 | ≥1

|𝑔(𝑥) − 𝑔(𝑦) | ≤ 2∥𝑔∥∞,

but whenever ∥𝑥 − 𝑦∥ < 1, we have ∥𝑥 − 𝑦∥𝛾 < 1, therefore ∥𝑥 − 𝑦∥𝛽+𝛾−𝑏 ≤ ∥𝑥 − 𝑦∥𝛽−𝑏 ,
so we obtain,

sup
𝑥,𝑦∈Ω, |𝑥−𝑦 |<1

|𝑔(𝑥) − 𝑔(𝑦) |
∥𝑥 − 𝑦∥𝛽−𝑏

≤ sup
𝑥,𝑦∈Ω, |𝑥−𝑦 |<1

|𝑔(𝑥) − 𝑔(𝑦) |
∥𝑥 − 𝑦∥𝛽+𝛾−𝑏

≤ sup
𝑥,𝑦∈Ω,𝑥≠𝑦

|𝑔(𝑥) − 𝑔(𝑦) |
∥𝑥 − 𝑦∥𝛽+𝛾−𝑏

.

It follows that

sup
𝑥,𝑦∈Ω,𝑥≠𝑦

|𝑔(𝑥) − 𝑔(𝑦) |
∥𝑥 − 𝑦∥𝛽−𝑏

≤ 2 ∥𝑔∥∞ + sup
𝑥,𝑦∈Ω,𝑥≠𝑦

|𝑔(𝑥) − 𝑔(𝑦) |
∥𝑥 − 𝑦∥𝛽+𝛾−𝑏

. (4.14)

Moreover, as ⌊𝛽 + 𝛾⌋ = ⌊𝛽⌋ = 𝑏, we have

max
|𝒌 | ≤ ⌊𝛽+𝛾 ⌋

𝐷𝒌 𝑓


∞
= max

|𝒌 | ≤ ⌊𝛽 ⌋

𝐷𝒌 𝑓


∞
≥ max

|𝒃 |=𝑏

𝐷𝒃 𝑓


∞
. (4.15)

Therefore, using inequality (4.15), and inequality (4.14) for a function 𝑔 of the
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form 𝐷𝒃 𝑓 , where 𝒃 is a vector such that |𝒃 | = 𝑏, we obtain

∥ 𝑓 ∥𝐶𝛽 = max
|𝒌 | ≤ ⌊𝛽 ⌋

𝐷𝒌 𝑓


∞
+max

|𝒃 |=𝑏
sup
𝑥≠𝑦

|𝐷𝒃 𝑓 (𝑥) − 𝐷𝒃 𝑓 (𝑦) |
∥𝑥 − 𝑦∥𝛽−𝑏

≤ max
|𝒌 | ≤ ⌊𝛽+𝛾 ⌋

𝐷𝒌 𝑓


∞
+max

|𝒃 |=𝑏

[
2
𝐷𝒃 𝑓


∞
+ sup
𝑥,𝑦∈Ω,𝑥≠𝑦

|𝐷𝒃 𝑓 (𝑥) − 𝐷𝒃 𝑓 (𝑦) |
∥𝑥 − 𝑦∥𝛽+𝛾−𝑏

]
≤ 3 ∥ 𝑓 ∥𝐶𝛽+𝛾 .

(4.16)

□

Proof of Theorem 4.3.4. Suppose we have a sequence {𝑇𝑛 ∈ T𝛽,𝛾,𝑅} that converges to
a minimizer of 𝑀𝑁 . Let us consider the corresponding sequence of convex potential
functions, {

𝜑𝑛 : 𝑇𝑛 = ∇𝜑𝑛, 𝜑𝑛 ∈ Φ ∩𝐶𝛽+𝛾
𝑅

∥ .∥
𝐶𝛽

}
.

Since𝐶𝛽+𝛾
𝑅

is precompact in𝐶𝛽 (as shown in Lemma 6.33 of Gilbarg et al. [28]), there
exists a subsequence 𝜑𝑛𝑘 converging to a function 𝜑 in 𝐶𝛽 . Moreover, since 𝛽 > 2,
and convergence in 𝛽-Hölder norm implies convergence of second-order derivatives,
and since {𝜑𝑛} ⊂ Φ, we conclude 𝜑 ∈ Φ0.

Since the norm ∥·∥𝐶𝛽 is continuous with respect to its own induced topology, and
∥𝜑𝑛 ∥𝐶𝛽 ≤ 3 ∥𝜑𝑛 ∥𝐶𝛽+𝛾 ≤ 3𝑅, we can also infer that ∥𝜑 ∥𝐶𝛽 ≤ 3𝑅.

Next, let’s consider the map 𝑇 = ∇𝜑 which consequently is in T𝛽,3𝑅 . Given that
the functional𝑀 is continuous in𝑇 and with respect to 𝐿2(𝑄)-topology (which can be
deduced using the triangle inequality and inequality (4.8)), and since convergence in
Hölder norm is stronger than convergence in 𝐿2(𝑄), we can conclude that the initial
sequence of maps minimizing 𝑀𝑁 , converges to 𝑇 .

□

Proof of Lemma 4.3.6. It is trivial that 𝜌 (𝑇,𝑇 ) = 0 for any 𝑇 . We can show that 𝜌
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satisfies the triangle inequality as follows:(
𝜌 (𝑇1,𝑇2) + 𝜌 (𝑇2,𝑇3)

)2
= 𝜌 (𝑇1,𝑇2)2 + 𝜌 (𝑇2,𝑇3)2 + 2𝜌 (𝑇1,𝑇2)𝜌 (𝑇2,𝑇3)
= 𝜌 (𝑇1,𝑇2)2 + 𝜌 (𝑇2,𝑇3)2

+ 2
[ ∫

𝑑2W (𝑇1#`,𝑇2#`) d𝑃𝑀 (`)
]1/2 [ ∫

𝑑2W (𝑇1#`,𝑇2#`) d𝑃𝑀 (`)
]1/2

≥ 𝜌 (𝑇1,𝑇2)2 + 𝜌 (𝑇2,𝑇3)2

+ 2

∫
𝑑W (𝑇1#`,𝑇2#`)𝑑W (𝑇1#`,𝑇2#`) d𝑃𝑀 (`) (Cauchy Schwarz)

=

∫
𝑑2W (𝑇1#`,𝑇2#`) + 𝑑2W (𝑇2#`,𝑇3#`) + 2𝑑W (𝑇1#`,𝑇2#`)𝑑W (𝑇1#`,𝑇2#`) d𝑃𝑀 (`)

≥
∫

𝑑2W (𝑇1#`,𝑇3#`) d𝑃𝑀 (`)

= 𝜌2(𝑇1,𝑇3),

□

To derive the convergence rate for the estimator, we will make use of some theo-
rems from M-estimation [72]. For the reader’s convenience, we will first restate these
theorems (with minor modifications to more easily relate to our context). Further-
more, we restate a theorem from Gunsilius [31] that will be essential for determining
the rate.

Lemma 4.5.5 (Bracketing Entropy of Hölder Class, Corollary 2.7.4 [72] ). Let Ω be
a bounded, convex subset of R𝑑 with a nonempty interior. There exists a constant 𝐾 ,
depending only on 𝛽 , vol(Ω), 𝑟 and 𝜌 such that,

log𝑁 [ ] (𝜖,𝐶𝛽𝑅 (Ω), 𝐿
𝑟 (𝑄)) ≤ 𝐾𝑅𝑑/𝛽𝜖−𝑑/𝛽 ,

for every 𝑟 ≥ 1,𝜖 > 0, and probability measure 𝑄 on R𝑑 .

Lemma 4.5.6. (Lemma 5 of Gunsilius [31]) Let 𝜑1, 𝜑2 be proper strictly convex and
bounded potential functions on every compact subset of Ω0 with Lipschitz-continuous
gradients ∇𝜑1 and ∇𝜑2 satisfying ∇𝜑1(Ω0) = ∇𝜑2(Ω0). Then it holds for all 𝑥 ∈ Ω0

∥∇𝜑1(𝑥) − ∇𝜑2(𝑥)∥2 ≤ 𝑐 (1 +max{𝐿1, 𝐿2})2 |𝜑1(𝑥) − 𝜑2(𝑥) |

where 0 ≤ 𝐿1, 𝐿2 < +∞ are the Lipschitz constants of ∇𝜑1 and ∇𝜑2 , respectively,
𝑐 < +∞ is a constant.

Proof of Theorem 4.3.7. By observing that the right-hand side of inequality (4.12) is
equal to 𝛼

2 𝜌 (𝑇,𝑇0), it follows that the functional𝑀 demonstrates quadratic growth in
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the vicinity of its minimizer 𝑇0 with respect to the semi-metric 𝜌 . Therefore we can
use the empirical process approach to obtain an upper bound for the rate of conver-
gence.

First, we find a function 𝜙𝑁 (𝛿) such that

E sup
𝜌 (𝑇,𝑇0 )≤𝛿,𝑇 ∈T𝛽,𝛾,𝑅

√
𝑁

���(𝑀𝑁 −𝑀) (𝑇 ) − (𝑀𝑁 −𝑀) (𝑇0)
��� ≤ 𝜙𝑁 (𝛿).

Given that T𝛽,𝛾,𝑅 ⊂ T𝛽,3𝑅 according to Lemma 4.5.4, we can instead find 𝜙𝑁 (𝛿) such
that

𝐸 sup
𝜌 (𝑇,𝑇0 )≤𝛿,𝑇 ∈T𝛽,3𝑅

√
𝑁

���(𝑀𝑁 −𝑀) (𝑇 ) − (𝑀𝑁 −𝑀) (𝑇0)
��� ≤ 𝜙𝑁 (𝛿) . (4.17)

We define a class of functions indexed by 𝑇 as follows:

F𝑢 := {𝑓𝑇 (`, a) = 𝑑2W (𝑇#`, a) − 𝑑2W (𝑇0#`, a), s.t. 𝑇 ∈ T𝛽,3𝑅 and 𝜌 (𝑇,𝑇0) ≤ 𝑢},

with the domain of each function 𝑓𝑇 ∈ F𝑢 being W2(Ω) ×W2(Ω). We can see that
(4.17) is equivalent to

E sup
𝑓 ∈F𝛿

√
𝑁 | (𝑃𝑁 − 𝑃) 𝑓 | ≤ 𝜙𝑁 (𝛿) .

Denote by log𝑁 [ ] (𝜖, F𝑢, 𝐿2(𝑃)), the bracketing number of F𝑢 . We find an upper
bound for this bracketing entropy using the bracketing entropy of the class of func-
tions 𝐶𝛽3𝑅 . To do this, note that any 𝑓𝑇 ∈ F𝑢 is induced by a map 𝑇 such that 𝑇 = ∇𝜑 ,
for a convex function 𝜑 ∈ 𝐶𝛽3𝑅 . Thus, for any 𝑓𝑇1, 𝑓𝑇2 ∈ F𝑢 , we have:𝑓𝑇1 − 𝑓𝑇22𝐿2 (𝑃 ) ≤ ∫

|𝑓𝑇1 (`, a) − 𝑓𝑇2 (`, a) |2 d𝑃 (`, a)

≤
∫

|𝑑2W (𝑇1#`, a) − 𝑑2W (𝑇2#`, a) |2 d𝑃 (`, a)

≤ 4diam(Ω)2
∫

∥𝑇1 −𝑇2∥2𝐿2 (` ) d𝑃𝑀 (`)

≤ 4diam(Ω)2 ∥𝑇1 −𝑇2∥2𝐿2 (𝑄 )

≤ 4diam(Ω)2𝐶′ ∥𝜑1 − 𝜑2∥𝐿1 (𝑄 ) .

(4.18)

To see why the last inequality holds, note that any 𝑇 ∈ T𝛽,3𝑅 is the gradient of an
𝐿-smooth convex function, making it 𝐿-Lipschitz. Therefore, by applying Lemma
4.5.6 (our re-statement of [31, Lemma 5]), we can establish that for 𝑇1,𝑇2 ∈ T𝛽,3𝑅
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with corresponding potential functions 𝜑1, 𝜑2, the inequality ∥𝑇1 −𝑇2∥2𝐿2 (𝑄 ) ≤ 𝑐 (1 +
𝐿)2 ∥𝜑1 − 𝜑2∥𝐿1 (𝑄 ) holds for some constant 𝑐 .

Using inequality (4.18) and Lemma 4.5.5, we obtain

log𝑁 [ ] (𝜖, F𝑢, 𝐿2(𝑃)) ≲ log𝑁 [ ] (𝜖/(4diam(Ω)2𝐶′),𝐶𝛽3𝐿 (Ω), 𝐿
1(𝑄)) ≲

(
1

𝜖

)𝑑/𝛽
.

By inequality (4.18), we can also show that

𝑃 𝑓 2𝑇 ≤ 𝑃 ∥𝑇 −𝑇0∥2𝐿2 (` ) = ∥𝑇 −𝑇0∥2𝐿2 (𝑄 ) ≤ 𝑢
2,

for all 𝑓𝑇 ∈ F𝑢 .
Given that the functions in F𝛿 are uniformly bounded over (`, a) and𝑇 , and 𝑃 𝑓 2 ≤

𝛿2 for all 𝑓 ∈ F𝛿 , the conditions of Theorem 3.6.5 are satisfied. This being the case,
we can choose:

𝜙𝑁 (𝛿) = 𝐽[ ] (𝛿, F𝛿 , 𝐿2(𝑃))
(
1 +

𝐽[ ] (𝛿, F𝛿 , 𝐿2(𝑃))
𝛿2
√
𝑁

𝑐

)
,

where the constant 𝑐 = 2diam(Ω)2 is a uniform upper bound for the functions in the
class F𝛿 . Using Lemma 4.5.5 and when 𝛽 > 𝑑

2 , we can write

𝐽[ ] (𝛿, F𝛿 , 𝐿2(𝑃)) :=
∫ 𝛿

0

√︃
1 + log𝑁 [ ] (𝜖, F𝛿 , 𝐿2(𝑃)) d𝜖

≲

∫ 𝛿

0

√︄
1 +𝐶

(
1

𝜖

)𝑑/𝛽
d𝜖

≲ 𝛿 +
∫ 𝛿

0

√︄(
1

𝜖

) (𝑑/𝛽 )
d𝜖 since

√
1 + 𝑎 ≤ 1 +

√
𝑎 for 𝑎 ≥ 0

≲ 𝛿 + 1

1 − 𝑑
2𝛽

𝛿
(1− 𝑑

2𝛽 )

≲ 𝛿1−
𝑑
2𝛽 .

(4.19)

Now, we can apply Theorem 3.6.3 to conclude the proof. The rate of convergence 𝑟𝑁
is obtained by the requirement 𝑟2

𝑁
𝜙𝑁

(
1
𝑟𝑁

)
≲
√
𝑁 . This gives us the rate 𝑟𝑁 = 𝑁

𝛽

2𝛽+𝑑

when 𝛽 > 𝑑
2 .

□

Proof of Lemma 4.4.1. Let𝑇 ∈ T and take any continuous function [ with domain Ω.
For 𝜖 > 0 sufficiently small, 𝑇 + 𝜖[ is also in T . If it exists, the Gateaux derivative of
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𝑑2W (𝑇#`, a) is

𝐷[𝑑
2
W (𝑇#`, a) = lim

𝜖→0

𝑑2W ((𝑇 + 𝜖[)#`, a) − 𝑑2W (𝑇#`, a)
𝜖

.

In the following, we show that 𝐷[𝑑2W (𝑇#`, a) exists and we calculate the limit.
To do so, we will construct a coupling 𝛾 between ` and a with the property that
𝑑2W (𝑇#`, a) =

∫
|𝑇 (𝑥) − 𝑦 |2 d𝛾 (𝑥,𝑦). To this aim, let 𝑆 be an optimal map such that

𝑆#(𝑇#`) = a . According to Brenier’s theorem, such an optimal map exists and is
unique if𝑇#` is absolutely continuous. Since𝑇 ∈ T and ` is absolutely continuous,
according to Lemma 4.5.2, so is 𝑇#`. Let 𝑋 ∼ ` and define 𝑍 = 𝑇 (𝑋 ) and 𝑌 = 𝑆 (𝑍 ).
Denote by 𝛾 the induced joint distribution of the pair (𝑋,𝑌 ). Note that

𝑑2W (𝑇#`, a) = E ∥𝑍 − 𝑆 (𝑍 )∥2 = E ∥𝑍 − 𝑌 ∥2 = E ∥𝑇 (𝑋 ) − 𝑌 ∥2 =
∫

|𝑇 (𝑥)−𝑦 |2 d𝛾 (𝑥,𝑦) .

Note that from the construction we can infer that 𝛾 = (id, 𝑆 ◦ 𝑇 )#` and thus the
coupling 𝛾 is independent of the random variable 𝑋 . Thus:

𝑑2W ((𝑇 + 𝜖[)#`, a) ≤
∫

| (𝑇 + 𝜖[) (𝑥) − 𝑦 |2 d𝛾 (𝑥,𝑦)

=

∫
( |𝑇 (𝑥) − 𝑦 |2 + 2𝜖 ⟨[ (𝑥),𝑇 (𝑥) − 𝑦⟩) d𝛾 (𝑥,𝑦) + 𝑜 (𝜖2)

= 𝑑2W (𝑇#`, a) + 2𝜖

∫
⟨[ (𝑥),𝑇 (𝑥) − 𝑦⟩ d𝛾 (𝑥,𝑦) + 𝑜 (𝜖2),

and therefore

lim
𝜖↓0

𝑑2W ((𝑇 + 𝜖[)#`, a) − 𝑑2W (𝑇#`, a)
𝜖

≤ 2

∫
⟨[ (𝑥),𝑇 (𝑥) − 𝑦⟩ d𝛾 (𝑥,𝑦) .

Now define 𝛾𝜖 using the same procedure as above, but such that 𝛾 couples ` and
a while satisfying 𝑑2W ((𝑇 + 𝜖[)#`, a) =

∫
|𝑇 (𝑥) + 𝜖[ (𝑥) − 𝑦 |2 d𝛾𝜖 (𝑥,𝑦). Therefore

similar to above we can see that 𝛾𝜖 = (id, (𝑆𝜖 ◦ (𝑇 + 𝜖[))#`, where 𝑆𝜖 is the optimal
map between (𝑇 + 𝜖[)#` and a . Thus

𝑑2W ((𝑇 + 𝜖[)#`, a) =
∫

| (𝑇 + 𝜖[) (𝑥) − 𝑦 |2 d𝛾𝜖 (𝑥,𝑦)

=

∫
( |𝑇 (𝑥) − 𝑦 |2 + 2𝜖 ⟨[ (𝑥),𝑇 (𝑥) − 𝑦⟩) d𝛾𝜖 (𝑥,𝑦) + 𝑜 (𝜖2)

≥ 𝑑2W (𝑇#`, a) + 2𝜖

∫
⟨[ (𝑥),𝑇 (𝑥) − 𝑦⟩ d𝛾𝜖 (𝑥,𝑦) + 𝑜 (𝜖2),
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and

lim
𝜖↓0

𝑑2W ((𝑇 + 𝜖[)#`, a) − 𝑑2W (𝑇#`, a)
𝜖

≥ lim inf
𝜖↓0

2

∫
⟨[ (𝑥),𝑇 (𝑥) − 𝑦⟩ d𝛾𝜖 (𝑥,𝑦) .

To prove the existence of the limit, it is enough to show the integral with respect
to 𝛾𝜖 converges to the integral with respect to 𝛾 . We show the convergence of 𝛾𝜖 to 𝛾
in the Wasserstein metric. Using the inequality (2.4) one can control the Wasserstein
distance between the two measures by controlling ∥𝑆𝜖 ◦ (𝑇 + 𝜖[) − 𝑆 ◦𝑇 ∥2

𝐿2 (` ) . First
note that as 𝜖 converges to zero, (𝑇 + 𝜖[)#` converges to 𝑇#`, and again using the
inequality (2.4) one can control the Wasserstein distance between the two measures
by ∥𝜖[∥2

𝐿2 (` ) . As convergence in the Wasserstein distance results in narrow conver-
gence, one can show that 𝑆𝜖 converges to 𝑆 using Theorem 1.7.7 in Panaretos & Zemel
[55]. By Lemma 4.5.2, (𝑇 +𝜖[)#` and𝑇#` are absolutely continuous, thus using The-
orem 5.20 in Villani [74] 𝑆𝜖 and 𝑆 are continuous. Therefore 𝑆𝜖 ◦ (𝑇 +𝜖[) → 𝑆 ◦𝑇 and
we can conclude 𝛾𝜖 → 𝛾 . Additionally, 𝑇 is bounded and continuous, therefore we
can conclude the integral with respect to 𝛾𝜖 converges to the integral with respect to
𝛾 . The two inequalities prove the existence of the derivative and:

𝐷[𝑑
2
W (𝑇#`, a) = lim

𝜖→0

𝑑2W ((𝑇 + 𝜖[)#`, a) − 𝑑2W (𝑇#`, a)
𝜖

= 2

∫
⟨[ (𝑥),𝑇 (𝑥)−𝑦⟩ d𝛾 (𝑥,𝑦) .

Thus

𝐷[𝑀𝑁 (𝑇 ) =
1

𝑁

𝑁∑︁
𝑖=1

∫
⟨[ (𝑥),𝑇 (𝑥) − 𝑦⟩ d𝛾`𝑖 ,a𝑖 (𝑥,𝑦)

for 𝛾`𝑖 ,a𝑖 ∈ Γ(`𝑖 , a𝑖) s.t. 𝑑2W (𝑇#`𝑖 , a𝑖) =
∫

|𝑇 (𝑥) − 𝑦 |2 d𝛾`𝑖 ,a𝑖 (𝑥,𝑦),
(4.20)

and

𝐷[𝑀 (𝑇 ) =
∫ ∫

< [ (𝑥),𝑇 (𝑥) − 𝑦 > d𝛾`,a (𝑥,𝑦) d𝑃 (`, a)

for 𝛾`,a ∈ Γ(`, a) s.t. 𝑑2W (𝑇#`𝑖 , a𝑖) =
∫

|𝑇 (𝑥) − 𝑦 |2 d𝛾`,a (𝑥,𝑦).
(4.21)

□

4.6 Generating random convex functions

The purpose of this section is to briefly discuss how one might numerically generate
random functions 𝜑 (𝑥,𝑦) that are convex on a domain 𝑈 = [𝑥0, 𝑥1]2 and average to

66



4.6 Generating random convex functions

(𝑥2 + 𝑦2)/2 (therefore their gradient is an optimal map and their average is the id

map, as required in our Model). This can be easily done with linear maps, but we are
interested in more variability and complex maps. To this aim, we take functions of
the form

𝜑 =
𝑥2 + 𝑦2

2
+

𝐷∑︁
𝑑=2

𝑑∑︁
𝑘=0

1

𝑘!(𝑑 − 𝑘)!

[
𝑎𝑑,𝑘𝑥

𝑘𝑦𝑑−𝑘 + 𝑏𝑑,𝑘𝑥1/𝑘𝑦1/(𝑑−𝑘 )
]
, (4.22)

where 𝑎𝑑,𝑘 and 𝑏𝑑,𝑘 are random coefficients. To avoid the singularity of the second
term, we take (𝑥0, 𝑥1) = (0.5, 1.5). We require that E[∇𝜑] = (𝑥,𝑦)⊤ which implies
E[𝑎𝑑,𝑘 ] = E[𝑏𝑑,𝑘 ] = 0. Our considerations in this section being practical, we shall
probe for convexity numerically and approximately (at least in probability). Namely,
we set 𝐷 = 8 and we take the coefficients 𝑎𝑑,𝑘 and 𝑏𝑑,𝑘 to be independent random
variables with a centred normal distribution of variance 𝜎2. Using the sympy library
of Python, we explicitly calculate the expectation of the determinant of the Hessian
matrix, and we calculate the minimum in the domain at (1.5, 1.5), specifically

min
𝑥,𝑦∈𝑈

E
[
det(∇2𝜑)

]
≈ 1 − 11𝜎2. (4.23)

Similarly, we estimate the maximum variance of the Hessian determinant to be at
most

Var
[
det(∇2𝜑)

]
≲ 10𝜎2, (4.24)

for small enough 𝜎 . Assuming the determinant follows a normal distribution, the
probability of generating a non-convex function P

{
det(∇2𝜑) < 0

}
decreases expo-

nentially below 𝜎 ≲ 0.2, being around 0.1 for 𝜎 = 0.15 and ∼ 10−25 for 𝜎 = 0.03,
which is the parameter used to generate the noise maps in Fig. 4.1. A way to limit
the probability of generating a non-convex function even further could be to use a
distribution with support on a finite domain like a beta distribution adjusted to the
domain𝑈 , instead of a normal distribution.
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Chapter 5

Autoregressive Models via Iterated
Transportation

The work in this chapter was done in collaboration with my supervisor Victor Panare-
tos and is publicly available as a preprint [25]. This chapter follows the priprint with
slight changes.

5.1 Introduction

Distributional autoregression is a natural next-step for distributional regression mod-
els – indeed, it is arguably the setting where most distributional regression data sets
arise. Rather than i.i.d. covariate/response distributions, one observes a dependent
sequence of probability distributions {`𝑛}𝑁𝑛=1. When viewed as a Markov chain in
the Wasserstein space, this sequence can be modeled autoregressively by specify-
ing a relationship between the conditional Fréchet mean at time 𝑛 + 1 and the chain
at time 𝑛. Once again, this can be done geometrically (as indeed was already ex-
plored in [15] and [79]), or by way of optimal transport maps, with similar advan-
tages/disadvantages.

A first contribution based directly on transport maps was made in Zhu and Müller
[80], where random perturbations of the identity were iteratively contracted/composed
to form a time-dependent sequence. This was subsequently used either as “incre-
ments” between consecutive distributions or as “deviations” from the marginal Fréchet
mean, to produce autoregressive models. Key in this approach was the use of iter-
ated random function systems and a canny definition of a contraction operation on
the space of transport maps, allowing to mimic the contractive effect of a correla-
tion operator in usual autoregression. Jiang [36] subsequently generalised this ap-
proach to autoregressive modeling to the case of vector-valued distributional chains,
i.e. time-evolving vectors with distributions as coordinates.

A salient limitation of this approach is that the entire dynamics of the process re-
duce to a single scalar quantity |𝛼 | ≤ 1, regulating the “strength” of the contraction.
While this resembles real-valued autoregressive processes, it is likely too rigid in a
functional context (or even a multivariate context), and can have undesirable con-
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sequences when asserting stationarity (see Section 5.2.3 for a more extensive discus-
sion). Ideally, a genuinely functional model would allow for a functional specification
of the dynamics, thus capable of expressing more complex dependencies. In response
to this drawback, Zhu and Müller [80] also defined a model where the scalar contrac-
tion coefficient is replaced by a functional contraction coefficient, contracting variably
across the domain. This comes with the caveat of a more complicated theory, includ-
ing cumbersome technical assumptions, as well as a more involved interpretation.

The purpose of this Chapter is to introduce and develop transportation-based au-
toregressive models with genuinely functional dynamics, yielding easily interpretable
yet rich classes of distributional autoregressions. To do so, we extend to the autore-
gressive case the functional structure of the model in Chapter 3, where the regression
operator is a monotone rearrangement, making use of the scalar “contractive effect”
introduced by Zhu and Müller [80] – intuitively, we posit a model where the shape of
the dynamics is captured by a monotone map, modulated by a contractive parameter
𝛼 regulating the degree of non-degeneracy of the model. In its simplest form, this
approach can be interpreted as positing that

`𝑛+1 = \𝑛#[𝛼`𝑛], 𝑛 ∈ Z,

for i.i.d. random increasing maps \𝑛 with E[\𝑛 (𝑥)] = 𝑆 (𝑥); 𝑆 a deterministic mono-
tone map; and `𝑛 ↦→ [𝛼`𝑛] a barycentric contraction operation, suitably defined at
the level of quantile functions (see Equation (5.1) for a precise definition). Intuitively,
the model suggests that step 𝑛 + 1 in the chain is obtained by pushing forward the
𝑛th step (“shrunken” slightly to allow for temporal stationarity) via a random pertur-
bation of the deterministic deformation 𝑆 . This is a direct autoregressive extension of
the model in Chapter 3, employing the contractive device of Zhu and Müller [80] to
assure temporal stability in law. However, more modeling possibilities are available
in our approach, and this is just the motivating one (see Section 5.2.2).

The rest of the Chapter is organised as follows. We first revisit the problem of
defining iterated random function systems of increasing maps. In particular, Sec-
tion 5.2.1 presents a functional extension of the iterated system employed in Zhu and
Müller [80]. This extension is then used in Section 5.2.2 in order to define three dif-
ferent possible notions of autoregression – in each case, the iterated transport map
system serves to model a different characteristic of the distributional time series (e.g.
the increments, the quantiles, or the generalised quantiles). We compare the resulting
models to existing approaches in Section 5.2.3 and determine conditions for station-
arity in Section 5.2.4. We then show in Section 5.2.5 that all three models can be fitted
and analysed using the same estimation theory – albeit applied to optimal maps that
represent a different characteristic in each case. In particular, we establish identifia-
bility, consistency, and rates of convergence. Finally, the finite sample performance
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of our methodology is illustrated on some simulated and real data (Sections 5.3 and
5.4). The proofs are collected in a separate Section, and we conclude with a discussion
of some further possible generalisations.

5.2 Autoregressive Models via Iterated Transportation

5.2.1 Random Iterated Transport

Our definition of autoregressive models for distributions will hinge on appropriately
defined iterated random systems of transport maps (following the approach of Zhu
and Müller [80], to whom we compare below). This is a special case of a framework for
studying questions about Markov chains via iterated random functions, going back to
at least Diaconis and Freedman [23]. They define an iterated random function system
on a state space T as

𝑇𝑖 = 𝑓 (𝑇𝑖−1 ; \𝑖)

for a family of transformations {𝑓 ( · ; \ ) : \ ∈ Θ} acting on T , and random elements
\𝑖 in some parameter space Θ, independent of𝑇𝑖 ∈ T . By suitable choice of the family
𝑓 ( · ; \ ) and some distribution on Θ they show how a plethora of Markov chains can
be cast in this light.

Let Ω = [𝜔0, 𝜔1] be a closed interval of R. In our case, the state space T will be
the set of optimal transport maps

T := {𝑇 : Ω → Ω |𝑇 (𝜔1) = 𝜔1,𝑇 (𝜔2) = 𝜔2,𝑇 is strictly increasing and continuous},

viewed as a closed and complete subset of the Lebesgue space 𝐿𝑝 (Ω) equipped with
the corresponding 𝑝-distance ∥ · ∥𝑝 , for some 1 ≤ 𝑝 < ∞ (we will mostly focus on
𝑝 = 2). And, the question is how to define 𝑓 and \𝑖 to generate an iterated random
system that is sufficiently rich to serve as a basis for interesting autoregressive mod-
els, yet remains tractable and admits a non-degenerate stationary solution. Naively,
one might simply posit that Θ = T and 𝑓 (𝑇 ;\ ) = \ ◦ 𝑇 , as increasing maps form a
transformation group under composition. However, 𝑓 (.;\ ) needs to be a contraction
“on average” (in a precise sense) for the Diaconis and Freedman [23] results to be
applicable.

This motivates forms of 𝑓 that are “contractive compositions”. To this aim, given
|𝛼 | ≤ 1, define the 𝛼-contraction of an optimal transport map to be the operator
𝑇 ↦→ [𝛼𝑇 ] defined pointwise via

[𝛼𝑇 ] (𝑥) =


𝑥 + 𝛼 (𝑇 (𝑥) − 𝑥) 0 < 𝛼 ≤ 1

𝑥 𝛼 = 0

𝑥 + 𝛼 (𝑥 −𝑇 −1(𝑥)) −1 ≤ 𝛼 < 0.

(5.1)
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This definition is due to Zhu and Müller [80], under slightly different terminol-
ogy/notation, and mimics the operation of contracting an unconstrained function by
a scalar, but conforming to the constraints elicited by working in T . Notice that
𝑇 ↦→ [𝛼𝑇 ] is indeed a contraction on T with respect to 𝐿1 norm, with the identity as
its fixed point – any other fixed point must equal the identity almost everywhere by
the Banach fixed-point theorem.

Finally, given |𝛼 | < 1 and \ ∈ T we can now make precise the notion of 𝑓 being
a “contractive composition” map by defining

𝑓 (𝑇 ;\ ) = \ ◦ [𝛼𝑇 ] .

To define an iterated random system, it suffices to put a probability distribution𝑄 on
T , and make i.i.d. draws \𝑖 ∼ 𝑄 yielding

𝑇𝑖 = 𝑓 (𝑇𝑖−1;\𝑖) . (5.2)

Our proposal is to draw i.i.d. elements of T with a specified expectation 𝑆 ∈ T ,
say \𝑖 = 𝑇𝜖𝑖 ◦ 𝑆, for {𝑇𝜖𝑖 }𝑁𝑖=1 a collection of independent and identically distributed
random optimal maps satisfying E{𝑇𝜖𝑖 (𝑥)} = 𝑥 almost everywhere on Ω. Explicitly,
our iteration is now

𝑇𝑖 = 𝑓 (𝑇𝑖−1;𝑇𝜖𝑖 ◦ 𝑆︸︷︷︸
\𝑖

) = 𝑇𝜖𝑖 ◦ 𝑆︸︷︷︸
\𝑖

◦ [𝛼𝑇𝑖−1] . (5.3)

The degrees of freedom in this iteration are the choice of 𝑆 ∈ T and 𝛼 ∈ [−1, 1]. In
a statistical setting, these would be the targets of estimation. This definition extends
the iteration of Zhu and Müller [80] where 𝑆 was a priori fixed to be the identity.
Our extension seems natural and conceptually straightforward: it iterates contracted
composition with perturbations of an arbitrary element of the transformation group,
rather than with perturbations of the neutral element. Yet, it substantially compli-
cates the subsequent probabilistic analysis and estimation theory. In exchange, we
get a richer class of autoregressive models that exhibit advantages in the context of
modeling and data analysis. We elaborate on the relationship and the nature of the ex-
tension in a subsequent paragraph. We then show that the iteration admits a unique
stationary solution (under some additional assumptions). First, though, we explore
how such an iterated random system of optimal maps could be used as a basis for
distributional autoregression.
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5.2.2 Autoregressive Models

The main purpose of a random iteration (5.2) is the construction of a Markov chain
model for a dependent sequence of probability distributions `𝑖 ∈ W2(Ω), that will
always be taken to possess a continuous cumulative distribution function. The models
we seek are of autoregressive type, and so should ultimately be interpretable as a
structural specification of the one-step conditional mean. Given stationary random
sequence {𝑇𝑖} of optimal maps, there appear to be (at least) three different ways of
doing so, by relating the 𝑇𝑖 to some suitable feature of {`𝑖}:

(I) Modeling the “increments” 𝑇 `𝑖`𝑖−1 := 𝐹 −1`𝑖 ◦ 𝐹`𝑖−1 as being equal to 𝑇𝑖 (we call
these increments, as 𝑇 `𝑖`𝑖−1 is the optimal map pushing `𝑖−1 forward to `𝑖 ), or
equivalently modeling the quantiles as

𝐹 −1`𝑖 := 𝑇𝑖 ◦ 𝐹 −1`𝑖−1 .

When {𝑇𝑖} is stationary, this yields a process with stationary increments, but
the process could be non-stationary (if so, it’s interesting to understand if there
is “drift”). This chain corresponds to specifying that the (usual) conditional
expectation of 𝐹 −1`𝑖 given 𝐹 −1`𝑖−1 as

E[𝐹 −1`𝑖 |𝐹 −1`𝑖−1] = E{𝑇𝑖} ◦ 𝐹 −1`𝑖−1 = E{𝑓 (𝑇𝑖−1;\𝑖)} ◦ 𝐹 −1`𝑖−1 = E{\𝑖 ◦ [𝛼𝑇𝑖−1]} ◦ 𝐹 −1`𝑖−1 .

The form of E[𝑇𝑖] will depend on the stationary solution of 𝑇𝑖 = 𝑓 (𝑇𝑖−1;\𝑖).

(UQ) Modeling the (uniform) quantiles 𝐹 −1`𝑖 as being equal to 𝑇𝑖 ,

𝐹 −1`𝑖 := 𝑇𝑖 .

This automatically yields a stationary process when {𝑇𝑖} is stationary, directly
interpretable at the level of quantiles, and corresponds to specifying the (usual)
conditional expectation of 𝐹 −1`𝑖 given 𝐹 −1`𝑖−1 as

E[𝐹 −1`𝑖 |𝐹 −1`𝑖−1] = (E\𝑖) ◦ [𝛼𝐹 −1`𝑖−1] = 𝑆 ◦ [𝛼𝐹 −1`𝑖−1] = 𝑓 (𝐹
−1
`𝑖−1 ; 𝑆) .

This model corresponds to an autoregressive extension of model (3.1).

(GQ) Modeling the generalised quantiles [17] or `-quantiles 𝐹 −1`𝑖 ◦ 𝐹` with respect to
some measure ` as being equal to 𝑇𝑖 . This also immediately yields stationarity
and (under regularity conditions) is equivalent to stating `𝑖 = 𝑇𝑖#`, in effect
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modeling the `𝑖 as serially dependent “perturbations” of a fixed `. This cor-
responds to specifying the (usual) conditional expectation of 𝐹 −1`𝑖 given 𝐹 −1`𝑖−1
as

E[𝐹 −1`𝑖 |𝐹 −1`𝑖−1] = (E\𝑖) ◦ [𝛼 [𝐹 −1`𝑖−1 ◦ 𝐹`]] = 𝑆 ◦ [𝛼 [𝐹 −1`𝑖−1 ◦ 𝐹`]] = 𝑓 (𝐹
−1
`𝑖−1 ◦ 𝐹` ; 𝑆).

Note that setting 𝛼 = 1 in (UQ) yields the same model as setting 𝛼 = 0 in (I), in-
terpretable as a random walk, and this we shall revisit. In Section 5.4 we will focus on
(UQ) and (I) to model sequential distributional data and discuss the merits/drawbacks
of each approach. Model (GQ) can actually be seen to be a variant of the model (UQ)
albeit under a modification of the definition of the contraction operator itself – see
Section (5.5.2), and especially Remark (5.5.11) for an equivalent characterization of
the model (GQ)

5.2.3 Comparison with Related Work

Our iteration (5.3) represents a generalization of the iteration in Zhu and Müller [80],
by combining their notion of 𝛼-contraction (which they call distributional scalar mul-
tiplication), with the functional structure of the model (3.1). Specifically, Zhu and
Müller [80] considered autoregressive models for distributional time series, based on
the iterative system of optimal transport maps

𝑇𝑖 = 𝑇𝜖𝑖 ◦ [𝛼𝑇𝑖−1] . (5.4)

This is a special case of our system (5.3) when 𝑆 is fixed to be the identity map id(𝑥) =
𝑥 . Their clever 𝛼-contraction, combined with classical results on iterated random
function theory, allows one to deduce the existence of a unique stationary solution
to the iteration (5.4) thanks to the contracting effect of 𝛼 for −1 < 𝛼 < 1 (and some
additional technical assumptions).
However, basing a distributional autoregressive model on this system is restrictive in
two important ways:

1. As a stochastic model, the system (5.4) is parametric and univariate: the only
unknown is the scalar coefficient 𝛼 ∈ (−1, 1). Correspondingly, when bas-
ing our model on that iteration (with any of the three interpretations specified
in the previous section), the temporal dependence of `𝑖 on `𝑖−1 will be com-
pletely specified up to an unknown scalar parameter. This is reminiscent of
autoregressive models on the real line but is arguably overly restrictive in a
functional data analysis (or even multivariate analysis) setting, where the tem-
poral dependence is very likely more complex. A genuinely functional model
would replace the scalar coefficient with a suitable functional coefficient, e.g. a
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non-linear operator.

2. If a stationary solution to system (5.4) exists, then it must satisfy E(𝑇𝑖) = id. To
see this, recall the definition of the scalar multiplication (5.1) and observe that

E[𝑇𝑖] = E[𝑇𝑖+1] = E[E[𝑇𝑖+1 |𝑇𝑖]] = E[𝛼𝑇𝑖] .

This is consequential if using the sequence 𝑇𝑖 to induce a distributional time
series {`𝑖}. In the (I) model, where 𝑇𝑖 models the increments between con-
secutive `𝑖 , this implies that the conditional Fréchet mean (in the Wasserstein
metric) of `𝑖 given `𝑖−1 is exactly equal to `𝑖−1, a sort of ‘Fréchet martingale’.
Effectively this trivializes the regressor relationship to be an identity – there is
no modeling flexibility for the conditional mean, only the conditional variance
(via 𝛼). In the (UQ) model, where 𝑇𝑖 ≡ 𝐹 −1`𝑖 is taken as the quantile function of
`𝑖 , the fact that E(𝑇𝑖) = id implies that the distributional autoregression model
can only admit the uniform distribution as its Fréchet mean (with respect to
the Wasserstein metric). There is no flexibility in the modeling of the marginal
mean.

By contrast, models based on our system (5.3) are genuinely functional, since on
account of the unknown transport map 𝑆 . Furthermore, our model can accommodate
any distribution as its Fréchet mean: given any optimal map𝑇 ∈ T , there exist 𝑆 and
𝛼 such that E(𝑇𝑖) = 𝑇 .

The optimal map interpretation of our system (5.3) is an auto-regressive modifica-
tion of the distributional optimal transport regression model (3.1). By direct analogy,
an autoregressive model (optimal map interpretation) for a time series of distributions
{`𝑖} would be defined as

`𝑖 = 𝑇𝜖𝑖#(𝑆#`𝑖−1),

which is equivalent to model (5.3) when 𝛼 = 0 and when we interpret𝑇𝑖 such that `𝑖 =
𝑇𝑖#`𝑖−1, i.e. the optimal map interpretation. If we take the quantile interpretation,
the two models are again related for 𝛼 = 1 since model (5.3) is equivalent to

𝐹 −1𝑖 = 𝑇𝜖𝑖 ◦ 𝑆 ◦ 𝐹 −1𝑖−1.

However, assuming the noise maps 𝑇𝜖𝑖 are close to identity, one observes that
the series of CDFs 𝐹 −1𝑖 would stabilize around a step function where the position of
the jumps coincide with fixed points of the map 𝑆 , and therefore the distribution `𝑖
would oscillate around a mixture of Dirac measures. This is where we combine the
functional structure of model (3.1) with the scalar “contractive effect” introduced by
Zhu and Müller [80] – intuitively, the magnitude of𝛼 regulates the non-degeneracy of
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the model. The next Section demonstrates that this combined extension does indeed
yield a unique stationary solution.

5.2.4 Existence of Unique Stationary Solution

We now turn to establish the existence of a unique stationary solution for the system
(5.3). We will use the results of Wu and Shao [76], extending to our iteration (5.3) the
steps follows by Zhu and Müller [80] in the context of iteration (5.4). Let {𝑇𝜖𝑖 }𝑁𝑖=1 be a
collection of independent and identically distributed random optimal maps satisfying
E{𝑇𝜖𝑖 (𝑥)} = 𝑥 almost everywhere on Ω. Define Φ𝑖 , Φ̃𝑖,𝑚 : T → T by

Φ𝑖 (𝑇 ) = 𝑓 (𝑇 ;𝑇𝜖𝑖 ◦ 𝑆) = 𝑇𝜖𝑖 ◦ 𝑆 ◦ [𝛼𝑇 ]
Φ̃𝑖,𝑚 (𝑇 ) = Φ𝑖 ◦ Φ𝑖−1 ◦ · · · ◦ Φ𝑖−𝑚+1(𝑇 ) .

(5.5)

The following assumption stipulates

Assumption 5.2.1. (Moment Contracting Condition [76]) Suppose there exists [ >

0, 𝑄0 ∈ T ,𝐶 > 0 and 𝑟 ∈ (0, 1) such that

E
Φ̃𝑖,𝑚 (𝑄0) − Φ̃𝑖,𝑚 (𝑇 )

[
2
≤ 𝐶𝑟𝑚 ∥𝑄0 −𝑇 ∥[2 (5.6)

holds for all 𝑖 ∈ Z,𝑚 ∈ N and all 𝑇 ∈ T .

Lemma 5.2.2. Assume the parameters of the model (5.3) satisfy the Assumption 5.2.1.
Then for all 𝑇 ∈ T , 𝑇𝑖 := lim𝑚→∞ Φ̃𝑖,𝑚 (𝑇 ) ∈ T exists almost surely and does not
depend on𝑇 . In addition,𝑇𝑖 is a stationary solution to the following system of stochastic
transport equations:

𝑇𝑖 = 𝑇𝜖𝑖 ◦ 𝑆 ◦ [𝛼𝑇𝑖−1], 𝑖 ∈ Z,

and is unique almost surely.

Remark 5.2.3. Zhu and Müller [80] proposed a specific parameter condition for their
model that ensures Assumption 5.2.1 is satisfied. We provide a similar sufficient condition
for the parameters of Model (5.3) that also guarantees the satisfaction of Assumption
5.2.1. Let 𝐿𝜖 be constant such that E|𝑇𝜖 (𝑥) − 𝑇𝜖 (𝑦) |2 ≤ 𝐿2𝜖 |𝑥 − 𝑦 |2. Assuming 𝛼 ≥ 0,
if |𝑆 (𝑥) − 𝑆 (𝑦) | ≤ 𝐿𝑆 |𝑥 − 𝑦 | and 𝛼𝐿𝑆𝐿𝜖 < 1, then Model (5.3) satisfies Assumption
5.2.1 with [ = 2 and 𝑟 =

√
𝛼𝐿𝑆𝐿𝜖 . Similarly, if 𝛼 < 0, suppose the aforementioned

conditions are met and define T𝑙,𝑢 = {𝑇 ∈ T : 0 < 𝐿𝑙 ≤ 𝑇 ′ ≤ 𝐿𝑢 < ∞} and assume
{𝑇𝑖} ⊂ T𝑙,𝑢 ⊂ T (see Lemma 5.5.1). Then Model (5.3) also satisfies Assumption 5.2.1
with [ = 2 and 𝑟 =

√
𝛼𝐿𝑆𝐿𝜖 .
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5.2 Autoregressive Models via Iterated Transportation

5.2.5 Estimation and Statistical Analysis

We consider a time series of continuous distributions `𝑖 ∈ W2(Ω) and correspond-
ing time series 𝑇𝑖 ∈ T , which are related by one of the models from section 3.2.
Although the methods to obtain 𝑇𝑖 may differ for each model, we can always obtain
𝑇𝑖 by observing `𝑖 . Our analysis is thus applicable to all three models studied, but
in each different model, the 𝑇𝑖 will represent a different feature of the distributional
time series. For the remainder of our analysis, we assume that𝑇𝑖 is a (the) stationary
solution obtained from system (5.3).

As discussed in Section 5.2.3, when 𝑆 is fixed a priori to be the identity, our iter-
ation (5.3) will reduce to that of Zhu and Müller [80]. In this simplified setting, Zhu
and Müller [80] use the fact that 𝛼 is the minimizer of E ∥𝑇𝑖+1 − [𝛼𝑇𝑖] ∥22 to obtain a
closed form expression for 𝛼 as∫

Ω
E[(𝑇𝑖+1(𝑥) − 𝑥) (𝑇𝑖 (𝑥) − 𝑥)] d𝑥∫

Ω
E[(𝑇𝑖 (𝑥) − 𝑥)2] d𝑥

when 𝛼 ∈ [0, 1) or ∫
Ω

E[(𝑇𝑖+1(𝑥) − 𝑥) (𝑥 −𝑇 −1
𝑖 (𝑥))] d𝑥∫

Ω
E[(𝑥 −𝑇 −1

𝑖 (𝑥))2] d𝑥

when 𝛼 ∈ (−1, 0). These show that 𝛼 can be interpreted as the autocorrelation coef-
ficient, and can be estimated by its empirical version, which allows for a straightfor-
ward path to consistency and parametric rates of convergence.

However, our more general iteration (5.3), involves an arbitrary non-decreasing
map 𝑆 that also needs to be estimated. Consequently, not only are there no closed
forms for the estimands (𝛼, 𝑆) but the estimation problem becomes distinctly non-
linear.

To motivate our estimators, we note that if 𝑆 were known, then 𝛼 could be es-
timated by non-linear least squares, as the minimiser of 1

𝑁

∑𝑁
𝑖=1 ∥𝑆 ◦ [𝛼𝑇𝑖−1] −𝑇𝑖 ∥22.

On the other hand, if 𝛼 were known, then a natural candidate to estimate 𝑆 would be
the ergodic average

𝑆𝑁,𝛼 :=
1

𝑁

𝑁∑︁
𝑗=1

𝑇𝑗 ◦ [𝛼𝑇𝑗−1]−1.

This is because the definition of the iteration 𝑇𝑗 = 𝑓 (𝑇𝑗−1;𝑇𝜖𝑖 ◦ 𝑆) = 𝑇𝜖𝑖 ◦ 𝑆 ◦ [𝛼𝑇𝑗−1],
combined with the assumption that E[𝑇𝜖 𝑗 (𝑥)] = 𝑥 , yields that

E{𝑇𝑗 ◦ [𝛼𝑇𝑗−1]−1} = E{𝑇𝜖 𝑗 ◦ 𝑆} = 𝑆.
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Since 𝑆𝑁,𝛼 is available in closed form for any choice of 𝛼 , this suggests plugging the
expression 𝑆𝑁,𝛼 for 𝑆 into the sum of squares, to obtain an objective that depends
only on 𝛼 . Minimising the said objective over 𝛼 one obtains an estimator 𝛼 , which
automatically induces an estimator of 𝑆 in the form of 𝑆𝑁,𝛼 .

Formally, we define the estimators (𝛼𝑁 , 𝑆𝑁,𝛼𝑁 ) of (𝛼, 𝑆) as follows:

𝛼𝑁 B argmin
𝛼
𝑀𝑁 (𝛼), (5.7)

where

𝑀𝑁 (𝛼) B
1

𝑁

𝑁∑︁
𝑖=1

𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝑁,𝛼 )

𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆) B ∥𝑆 ◦ [𝛼𝑇𝑖−1] −𝑇𝑖 ∥22

𝑆𝑁,𝛼 B
1

𝑁

𝑁∑︁
𝑗=1

𝑇𝑗 ◦ [𝛼𝑇𝑗−1]−1.

(5.8)

To analyse the behaviour of our estimators, we also define the following popula-
tion quantities:

𝑆𝛼 B E[𝑇𝑗 ◦ [𝛼𝑇𝑗−1]−1]
𝑀 (𝛼) B E𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝛼 ) .

(5.9)

The left-hand sides do not depend on 𝑗 due to stationarity, which will be assumed
throughout.

For the sake of clarity, we will henceforth denote the true parameters of the model
using boldface fonts, namely as (𝜶 , S).

Theorem 5.2.4. If the true parameters of the model are (𝜶 , S), then 𝑆𝜶 = S.

Proof. For the true 𝜶 , we have

𝑆𝜶 = E[𝑇𝑗 ◦ [𝜶𝑇𝑗−1]−1]
= E[𝑇𝜖 𝑗 ◦ S ◦ [𝜶𝑇𝑗−1] ◦ [𝜶𝑇𝑗−1]−1]
= E[𝑇𝜖 𝑗 ◦ S] = S

(5.10)

□

We show the consistency of the estimators (𝛼𝑁 , 𝑆𝑁,𝛼𝑁 ) in the following 4 steps
corresponding to the lemmas 5.2.5, 5.2.7, 5.2.8 and Theorem 5.2.9 respectively:

• 𝜶 is the unique minimizer of 𝑀 (𝛼).
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• 𝑆𝑁,𝛼 converges uniformly (with respect to 𝛼) in probability to 𝑆𝛼 in 𝐿2.

• 𝑀𝑁 (𝛼) converges uniformly in probability to 𝑀 (𝛼).

• we conclude the consistency (and identifiability) using the M-estimation the-
ory.

Lemma 5.2.5. (Unique Minimizer of 𝑀 (𝛼)) For any 𝛼 ≠ 𝜶 we have

𝑀 (𝜶 ) = E𝑔𝜶 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝜶 ) < E𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝛼 ) = 𝑀 (𝛼),

where 𝜶 is the true 𝛼 .

Now we show that 𝑆𝑁,𝛼 converges to 𝑆𝛼 in probability for any 𝛼 and also prove a
central limit theorem (CLT) for 𝑆𝑁,𝛼 .

If 𝛼 = 𝜶 , then it is straightforward to argue that 𝑆𝑁,𝜶 converges to 𝑆𝜶 : first note
that for any 𝑥 ∈ [0, 1], the strong law of large numbers yields that

𝑆𝑁,𝜶 (𝑥) =
1

𝑁

𝑁∑︁
𝑗=1

𝑇𝑗 ◦ [𝜶𝑇𝑗−1]−1(𝑥) =
1

𝑁

𝑁∑︁
𝑗=1

𝑇𝜖 𝑗 ◦ S(𝑥) → E[𝑇𝜖 𝑗 ◦ S] (𝑥) = S(𝑥).

Therefore the terms in the expression are independent and identically distributed
with mean S. From Theorem 5.2.4, we know that the true S = 𝑆𝜶 . Therefore in this
case that 𝛼 = 𝜶 , 𝑆𝑁,𝛼 converges in probability to 𝑆𝜶 = S. However, in general, when
𝛼 ≠ 𝜶 the terms 𝑇𝑗 ◦ [𝛼𝑇𝑗−1]−1 are not independent for different 𝑗 . Therefore, we
first show that since {𝑇𝑗 } satisfies the moment generating condition, we can quantify
the dependency between the terms in the sequence 𝑇𝑗 ◦ [𝛼𝑇𝑗−1]−1 and apply CLT
methods developed for functional time series.

Lemma 5.2.6. A sequence {𝑇𝑛}∞𝑖=−∞ that satisfies the geometric moment contracting
condition (5.2.1) for [ ≥ 2, also satisfies the conditions (1.1),(1.2),(2.1) and (2.2) of
Horváth et al. [33]. Namely, assume

𝑇𝑛 = 𝑓 (𝜖𝑛, 𝜖𝑛−1, · · · ),

where {𝜖′𝑖 } is an independent copy of {𝜖𝑖} defined in the same probability space. Then,
letting

𝑇 ′
𝑛,𝑚 = 𝑓 (𝜖𝑛, 𝜖𝑛−1, · · · , 𝜖𝑛−𝑚+1, 𝜖

′
𝑛−𝑚, · · · ), (5.11)
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for any 0 < 𝛿 < 1 we have

∞∑︁
𝑚=1

(E
𝑇𝑛 −𝑇 ′

𝑛,𝑚

2
2
)1/2 < ∞. (5.12)

Lemma 5.2.7. (Central limit for 𝑆𝑁,𝛼 ) Suppose the parameters of the iteration (5.3)
satisfy the Assumption 5.2.1. Then for any 𝛼 , there is a Gaussian process Γ𝛼 such that

√
𝑁 (𝑆𝑁,𝛼 − 𝑆𝛼 )

𝑑→ Γ𝛼 , in 𝐿2.

Also,
sup
𝛼

𝑆𝑁,𝛼 − 𝑆𝛼

2
= 𝑜P(1)

Lemma 5.2.8. Suppose the parameters of the iteration (5.3) satisfy the Assumption
5.2.1. Then for any 𝛼 , there is a 𝜎𝛼 ≥ 0 such that

√
𝑁 [𝑀𝑁 (𝛼) −𝑀 (𝛼)] → 𝑁 (0, 𝜎2𝛼 ) .

Moreover,
sup
𝛼

|𝑀𝑁 (𝛼) −𝑀 (𝛼) | = 𝑜P(1).

Theorem 5.2.9. (Identifiability and Consistency) Under Assumption 5.2.1, the param-
eters of the iteration (5.3) are identifiable and (𝛼𝑁 , 𝑆𝑁,𝛼𝑁 ) are consistent estimators for
(𝜶 , S).

Theorem 5.2.10. (Rate of Convergence) Let T𝑙,𝑢 = {𝑇 ∈ T : 0 < 𝐿𝑙 ≤ 𝑇 ′ ≤ 𝐿𝑢 < ∞}
and suppose {𝑇𝑖} ⊂ T𝑙,𝑢 ⊂ T . Under Assumption 5.2.1 and twice differentiability of the
𝑇𝑖 , we have

𝑁
1
2 |𝛼𝑁 − 𝜶 | = 𝑂P(1),

𝑁
1
2

𝑆𝑁,𝛼𝑁 − S

2
= 𝑂P(1).

5.3 Simulation Experiments

In this section, we probe the behaviour of our models, and the finite sample perfor-
mance of our estimation framework, via simulation. To generate the noise maps 𝑇𝜖𝑖 ,
we use the class of random optimal maps introduced in Section 3.3.

Each plot in Figure 5.1 corresponds to a time series simulation with a different
combination of S and 𝜶 . Each column corresponds to a different value of 𝜶 ∈
{−0.9,−0.5, 0, 0.5, 0.9} from left to right. In the three top rows, S is chosen to be
Z𝐾 (see Section 3.3 for the definition) for 𝐾 = {−6,−4,−2} from top to bottom. In
row four, S is the average of Z1 and an instance of𝑇𝜖 . Rows five and six exemplify the
method on non-differentiable and discontinuous maps S respectively.
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Plots that fall within the bounding red rectangle correspond to settings where
our theory is guaranteed to apply. Plots outside of that rectangle are not guaranteed
to be covered by our theory: they either distinctly violate our assumptions (such as
the last row where the true map is not continuous, as required) or we cannot confirm
whether the assumption 5.2.1 holds true. Starting from the identity map, we generate
a time series with 300 iterations and discard the first 100 maps of the series. The
remaining 200 maps {𝑇𝑖} are shown in light blue, the true map S is in dark blue, and
the estimated map is in orange. For each time series, we show the estimated 𝛼 and
the error between the estimator and true map in ∥ .∥2-norm.

As expected from Remark 5.2.3, smaller values of |𝜶 | lead to time series which
apparently oscillate around the mean of the stationary time series, which in turn leads
to the convergence of our estimator with respect to the true map. In particular, good
agreement is seen between the estimator and true map for values of |𝜶 | up to 0.5 at
least, only noticeably failing for 𝜶 = 0.5 in the discontinuous map case (where our
theoretical guarantee does not apply due to the discontinuity).

Larger values of |𝜶 | can still lead to similar stationary state time series (some-
times even outside of the red rectangle, where our theoretical guarantees apply) but
with naturally larger oscillations. Still, a good agreement between the estimator and
ground truth is observed. This can depend on the choice of map S and the precise
value of 𝜶 . For instance, in the third, fourth, and fifth rows, when 𝜶 = −0.9. In
the remaining rows of the first column, the stationary state behavior changes to a
period-two time series (with noise) where the maps oscillate alternatively between
two maps related by inversion (recall that negative values of 𝜶 imply an inversion of
the map𝑇𝑖−1 at each time step). Nevertheless, the estimator is able to capture features
of the S map that are not visible in the time series itself: notably, the discontinuous
step in row six is present in the estimated map.

In the other extreme of 𝜶 = 0.9, the time series maps are close to step-like func-
tions with some variation in the step height. The maps are in fact still oscillating
around the mean of the stationary time series that is very close to the step-like map
S∞, which is the mean of the solution to the model (5.3) when𝛼 → 1, that is𝑇𝑠 = S◦𝑇𝑠 .
However, the performance of the estimator is the worst in this limit.

Do note that the family of maps Z𝐾 (𝑥) is not symmetric with respect to inversion
in the sense that the derivative of Z𝐾 (𝑥) is 0 at some fixed points (Z𝐾 (𝑥) = 𝑥 ) but
is never infinite, and therefore the random maps 𝑇𝜖 , which are derived from Z𝐾 (𝑥),
are biased in this way. For this reason, the vertical variance observed in most maps
is much more pronounced than the horizontal one, which is very clear in the case
𝜶 = 0.9.
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Figure 5.1: Estimated map (orange) versus the true map (blue) for different combinations
of 𝜶 and S. The light blue line represents the simulated time series, while the green line
represents the id map. Each column corresponds to a different value of 𝜶 , ranging from
−0.9 on the left to 0.9 on the right. The top three rows show results for S = Z𝐾 where 𝐾
is chosen from {−6,−4,−2} from top to bottom. In the fourth row, S is the average of Z1
and an instance of𝑇𝜖 . The fifth and sixth rows demonstrate the method on non-differentiable
and discontinuous maps, respectively. The cases within the red rectangle are covered by our
theoretical guarantees.
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5.4 Illustrative Data Analysis

In this section, we consider the distribution of minimum daily temperatures recorded
in the summer of the years from 1960 to 2020 from several airports in the USA (avail-
able at www.ncei.noaa.gov). That is, the years are taken as the time index, and
for any given time index we observe a distribution over the temperature scale (rep-
resenting the distribution of minimal temperatures over that year’s summer). Thus,
each airport gives rise to a distributional time series. This data set has been also anal-
ysed by Zhu and Müller [80] to demonstrate their own distributional autoregressive
model, which allows for constructive comparison.

We examine the daily minimum temperature for June, July, August, and Septem-
ber from 1960 to 2020 in four locations: Chicago O’Hare International Airport, At-
lanta Hartsfield-Jackson International Airport, Phoenix Airport, and New Orleans
Airport. The corresponding distributions are displayed in Figure 5.2.
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Figure 5.2: Time series of distribution of daily minimum temperature in summer from 1960 to
2020 at Chicago Ohare international airport, Atlanta Hartsfield Jackson international airport,
Phoenix airport, and New Orleans airport. The shading reflects the time index: the fainter
the curve, the earlier in time it corresponds to.

The map sequence elicited by adopting the increment model (Model (I)) is shown
in Figure 5.3a. These maps are obtained by calculating the optimal maps between
consecutive annual temperature distributions for each location. These maps exhibit
oscillations around the identity, except in the subdomains corresponding to extreme
temperature values. In the lower extreme, the maps impose a cutoff on the lower end
of the support of the temperature distribution, while the higher end is pushed towards
higher values and eventually reaches the extreme of the support. This implies that
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extreme temperatures are increasing, indicating that the coldest and hottest nights in
summer are becoming hotter.

Figure 5.3b presents the estimates of 𝑆 obtained using Model (I), where the esti-
mated 𝛼 was found to be 0 up to three decimal points for all airports. This suggests
that the optimal maps 𝑇𝑖 are independent from each other and, on average, they are
equal to the estimated maps 𝑆 presented. The estimated 𝑆 maps are very similar across
all airports, effectively being the identity map in the middle portion of the support
and above the identity at the extreme points.
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Figure 5.3: (a): Time series {𝑇𝑖 } (blue) based on model (I) and identity map (orange) for the
four locations. (b): Estimated map 𝑆 (blue) and identity map (orange). Faint blue shading
corresponds to early years, and bold shading to later years.

Examining the maps generated by fitting Model (I), i.e. computing the optimal
maps between consecutive annual distributions in Figure 5.3a, we can observe an
increasing trend in the cutoff value of the lower endpoint over time. This implies that
the time series of optimal maps may not be stationary. Of course, the 𝑆 maps are not
able to capture the overall increase in the cutoff value of the lower end over time:
the plateaus of the 𝑆 maps are just the averages of the optimal maps 𝑇𝑖 and don’t
show this trend. Indeed, a problem of modeling such data is that the system may be
dynamically evolving due to factors like global warming, and it is not obvious a priori
if stationary regimes exist that can be captured by our models.

However, using the uniform quantile model (Model (UQ)), the resulting maps
are more interpretable and reveal more refined dynamics beyond the cutoffs at the
extremes. To obtain these maps, we fitted iteration (5.3) to the time series of quantile
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functions of the temperature distributions. The quantile functions are shown in figure
5.4a. The resulting estimated maps 𝑆 are in figure 5.4b, and the estimated 𝛼 for the
four airports are {0.39, 0.80, 0.89, 0.89}. All the maps show a cutoff at the lower end
and a fixed point in the second half of the support where the derivative is smaller
than 1. The fixed point implies a point of stability, and the derivative means there is
a trend towards a concentration of weight around this point, that is, if we start the
time series at a Gaussian-like distribution of mean different from the 𝑆 fixed point, the
distributions in the time series will progress towards Gaussian-like distributions of
mean approaching the fixed point. Again, the model may be failing to capture a trend
of ever-increasing temperature, or it may be implying a stabilization at temperatures
given by the fixed points, which will become the new norm.
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Figure 5.4: (a): Time series of quantile functions (blue) based on model (UQ) and identity
map (orange) for the four locations. (b): Estimated map 𝑆 (blue) and identity map (orange).
Faint blue shading corresponds to early years, and bold shading to later years.

Even if the model is possibly misspecified, the estimated maps 𝑆 are still able to
condense several features of the time series of distributions. Namely, the reduction
of extreme cold events and the progression toward higher modal temperatures which
may or may not be static.

There is an interesting observation to be made given that the estimated 𝛼 when
fitting the intercept model (I) is numerically 0 while it is in (0,1) when fitting the quan-
tile model (UQ). Specifically, in combination, these results suggest that the quantile
model is, in a certain sense, a better fit to the data. The reasoning is as follows. Recall
that the increment model (I) with 𝛼 = 0 is equivalent to the quantile model (UQ)
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when 𝛼 = 1, and corresponds to “trivial dynamics” (random walk). Therefore, when-
ever fitting model (I) results in an estimated 𝛼 that is nearly zero, then the best fitting
model of type (I) is in fact a (UQ) model. In which case we have evidence to prefer
a (UQ) modeling approach instead, which will correspond to non-trivial dynamics.
Conversely, if fitting model (UQ) yields an estimated 𝛼 near 1, it may be preferable
to use model (I) instead.

5.5 Proofs

Proof of Lemma 5.2.2. The proof is directly analogous to that of Theorem 2 in Wu and
Shao [76] and theorem 1 in Zhu and Müller [80]. □

Proof of Lemma 5.2.5. We prove the theorem in the following 4 steps:

1. Given a function 𝑓 ∈ 𝐿2, and a random function 𝜖 such that E(𝜖) = id, we can
show that

argmin
ℎ

E𝜖 ∥ℎ − 𝜖 ◦ 𝑓 ∥22 = 𝑓 .

To do so, we can apply Fubini’s theorem and rewrite the expression as follows:∫ ∫
|ℎ(𝑥) − 𝜖 (𝑓 (𝑥)) |2 d𝑥 d𝜖 =

∫ ∫
|ℎ(𝑥) − 𝜖 (𝑓 (𝑥)) |2 d𝜖 d𝑥

Since E𝜖 [𝜖 (𝑓 (𝑥))] = 𝑓 (𝑥) for any 𝑥 , the minimizer of the inner integral on the
left-hand side is ℎ(𝑥) = E[𝜖 (𝑓 (𝑥))] = 𝑓 (𝑥).

2. We will now demonstrate that for any fixed𝑇𝑖 and𝑇𝑖−1, as well as for all 𝛼 , the
following inequality holds:

E𝜖 [𝑔𝜶 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝜶 )] ≤ E𝜖 [𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝛼 )] .

Let us define 𝑓 (𝛼,𝑇 ) = 𝑆𝛼 ◦ [𝛼𝑇 ]. Note that for all indices 𝑖 , we have

𝑔𝛼 (𝑇𝑖 ,𝑇𝑖−1, 𝑆𝛼 ) =
𝑆𝛼 ◦ [𝛼𝑇𝑖−1] −𝑇𝜖𝑖 ◦ 𝑆𝜶 ◦ [𝜶𝑇𝑖−1]

2
2

=
𝑓 (𝛼,𝑇𝑖−1) −𝑇𝜖𝑖 ◦ 𝑓 (𝜶 ,𝑇𝑖−1)22 . (5.13)

Using the result from part 1 and the equation (5.13), we can conclude that if
there exists an𝛼 such that 𝑓 (𝛼,𝑇𝑖−1) minimizes the expression E𝜖 [𝑔𝜶 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝜶 )]
in equation 5.13, then we must have 𝑓 (𝛼,𝑇𝑖−1) = 𝑓 (𝜶 ,𝑇𝑖−1). Therefore, we ob-
tain the desired inequality.
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3. We now aim to prove that for any 𝛼 , we have

E[𝑔𝜶 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝜶 )] ≤ E[𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝛼 )] .

We start by denoting by 𝜋 the marginal distribution of 𝑇𝑖 , and 𝑄 the marginal
distribution of the pair (𝑇𝑖−1,𝑇𝑖). Then, we can express the expectation of
𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝛼 ) as follows:

E𝑄 [𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝛼 )] = E𝜋 [E𝜖𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝛼 ) |𝑇𝑖−1] .

By using part 2 of the proof, we know that 𝜶 is a minimizer for the inner
expectation of the right-hand side, i.e.,

E𝜖 {𝑔𝜶 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝜶 ) |𝑇𝑖−1} ≤ E𝜖 {𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝛼 ) |𝑇𝑖−1},

and this for all 𝑇𝑖−1. Therefore, taking the expectation over 𝑇𝑖−1, we get

E𝑄 [𝑔𝜶 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝜶 )] ≤ E𝑄 [𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝛼 )] .

4. Finally we can conclude that 𝜶 is the unique minimizer of 𝑀 (𝛼). Suppose
there exists an 𝛼 such that E[𝑔𝜶 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝜶 )] = E[𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝛼 )]. Using
parts 2 and 3, we can deduce that for each fixed 𝑇𝑖 ,𝑇𝑖−1, E𝜖 [𝑔𝜶 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝜶 )] =
E𝜖 [𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝛼 )]. Then using equation 5.13 we can conclude that, for all in-
dices 𝑗 ,

𝑆𝛼 ◦ [𝛼𝑇𝑗 ] = 𝑆𝜶 ◦ [𝜶𝑇𝑗 ] .

If 𝑆𝛼 ◦ 𝛼𝑇𝑗 = 𝑆𝜶 ◦ [𝜶𝑇𝑗 ] for all 𝑗 , we can deduce 𝑆𝛼 = 𝑆𝜶 ◦ [𝜶𝑇𝑗 ] ◦ [𝛼𝑇𝑗 ]−1
for all 𝑗 . However, note that while 𝑆𝛼 is deterministic, the right-hand side is
deterministic (and not random) if and only if 𝛼 = 𝜶 . This is because if 𝛼 ≠ 𝜶 ,
then the right-hand side depends on 𝑇𝑗 , which is a random variable.

□

Lemma 5.5.1. For any 𝑇, 𝑆 ∈ T we have
𝑇 −1 − 𝑆−1


2
≲

√︁
∥𝑇 − 𝑆 ∥2. Moreover, let

T𝑙,𝑢 = {𝑇 ∈ T : 0 < 𝐿𝑙 ≤ 𝑇 ′ ≤ 𝐿𝑢 < ∞}. For any 𝑇, 𝑆 ∈ T𝑙,𝑢 ⊂ T we have𝑇 −1 − 𝑆−1

2
≲ ∥𝑇 − 𝑆 ∥2. In summary, there exists𝑏 ∈ [ 12 , 1] such that

𝑇 −1 − 𝑆−1

2
≲

∥𝑇 − 𝑆 ∥𝑏2 for any 𝑇, 𝑆 ∈ T .

Proof. Let𝑇, 𝑆 ∈ T . For some constant𝐶′, we have:
𝑇 −1 − 𝑆−1


2
≤ 𝐶′ 𝑇 −1 − 𝑆−1


1
,

because the functions are bounded. Moreover,
𝑇 −1 − 𝑆−1


1
= ∥𝑇 − 𝑆 ∥1. And, finally,

by applying the Cauchy-Schwarz inequality, we get ∥𝑇 − 𝑆 ∥1 ≤ 𝐶
√︁
∥𝑇 − 𝑆 ∥2, where

𝐶 is a constant. Therefore, we conclude
𝑇 −1 − 𝑆−1


2
≤ 𝐶

√︁
∥𝑇 − 𝑆 ∥2.
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When 𝑇, 𝑆 ∈ T𝑙,𝑢 we can write𝑇 −1 − 𝑆−1
2
2
=

∫ 1

0
|𝑇 −1(𝑥) − 𝑆−1(𝑥) |2 d𝑥

=

∫ 1

0
|𝑇 −1 ◦ 𝑆 (𝑦) − 𝑦 |2𝑆 ′(𝑦) d𝑦 (𝑆−1(𝑥) = 𝑦)

≤ 𝐿𝑢

∫
|𝑇 −1 ◦ 𝑆 (𝑦) − 𝑦 |2 d𝑦

≤ 𝐿𝑢

∫
|𝑧 − 𝑆−1 ◦𝑇 (𝑧) |2 1

𝑆 ′(𝑆−1 ◦𝑇 (𝑧))𝑇
′(𝑧) d𝑧 (𝑇 −1 ◦ 𝑆 (𝑦) = 𝑧)

≤ 𝐿𝑢
𝐿𝑢

𝐿𝑙

∫
|𝑧 − 𝑆−1 ◦𝑇 (𝑧) |2 d𝑧

≤ 𝐿𝑢
𝐿𝑢

𝐿𝑙

1

𝐿𝑙

∫
|𝑆 (𝑧) −𝑇 (𝑧) |2 d𝑧 (∀𝑥,𝑦 |𝑥 − 𝑦 | ≤ 1

𝐿𝑙
|𝑆 (𝑥) − 𝑆 (𝑦) |)

≤ 𝐿2𝑢

𝐿2
𝑙

∥𝑆 −𝑇 ∥22 .

(5.14)

□

Lemma 5.5.2. There exists a constant 1
2 ≤ 𝑏 ≤ 1 such that the following inequalities

hold: 𝑆𝛼1 − 𝑆𝛼22 ≲ |𝛼1 − 𝛼2 |𝑏,

and 𝑆𝑁,𝛼1 − 𝑆𝑁,𝛼22 ≲ |𝛼1 − 𝛼2 |𝑏,

and
𝑔𝛼1 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝑁,𝛼1) − 𝑔𝛼2 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝑁,𝛼2) ≤ 𝐶 (𝑇𝑖) |𝛼1 − 𝛼2 |𝑏,

where 1
𝑛

∑
𝑖 E[𝐶 (𝑇𝑖)] = 𝑂 (1).

Define T𝑙,𝑢 = {𝑇 ∈ T : 0 < 𝐿𝑙 ≤ 𝑇 ′ ≤ 𝐿𝑢 < ∞}. If {𝑇𝑖} ⊂ T𝑙,𝑢 , then 𝑏 = 1 in the
above inequalities.

Proof. To begin with, it should be noted that given any two real numbers 𝛼1, 𝛼2 ∈
(−1, 1) with the same sign, and for any given map𝑇 , we have the following inequality:

∥ [𝛼1𝑇 ] − [𝛼2𝑇 ] ∥2 ≤ 𝐶 |𝛼1 − 𝛼2 |,

where 𝐶 is a constant. In fact, it suffices to consider the definition of [𝛼𝑇 ] for the
cases when 𝛼 ≥ 0 and 𝛼 < 0 separately. Using Lemma 5.5.1 we can write that for
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some 1
2 ≤ 𝑏 ≤ 1,𝑆𝛼1 − 𝑆𝛼22 = E[𝑇𝑗 ◦ [𝛼1𝑇𝑗−1]−1] − E[𝑇𝑗 ◦ [𝛼2𝑇𝑗−1]−1]


2

≤ 𝐿𝐶′ |𝛼1 − 𝛼2 |𝑏,
(5.15)

where 𝐿 is the common Lipschitz constant for all 𝑇𝑗 . Similarly𝑆𝑁,𝛼1 − 𝑆𝑁,𝛼22 ≤ 𝐿 |𝛼1 − 𝛼2 |𝑏,

We now proceed to show that both 𝑆𝑁,𝛼 and 𝑆𝛼 are Lipschitz functions of 𝑥 . To
do this, we observe that the inverse of a Lipschitz function is Lipschitz, and also the
composition of two Lipschitz functions is Lipschitz. Since all𝑇𝑗 are Lipschitz and 𝑆𝑁,𝛼
and 𝑆𝛼 are defined as compositions, they are also Lipschitz with respect to 𝑥 .

We will now show that 𝑔 is Lipschitz function of 𝛼 :

𝑔𝛼1 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝑁,𝛼1) − 𝑔𝛼2 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝑁,𝛼2)

=
𝑆𝑁,𝛼1 ◦ [𝛼1𝑇𝑖] −𝑇𝑖+1

2 − 𝑆𝑁,𝛼2 ◦ [𝛼2𝑇𝑖] −𝑇𝑖+1
2
2

≲
𝑆𝑁,𝛼1 ◦ [𝛼1𝑇𝑖] − 𝑆𝑁,𝛼2 ◦ [𝛼2𝑇𝑖]


2

≲
𝑆𝑁,𝛼1 ◦ [𝛼1𝑇𝑖] − 𝑆𝑁,𝛼1 ◦ [𝛼2𝑇𝑖]


2

+
𝑆𝑁,𝛼1 ◦ [𝛼2𝑇𝑖] − 𝑆𝑁,𝛼2 ◦ [𝛼2𝑇𝑖]


2

≤ 𝐷 (𝑇𝑖) |𝛼1 − 𝛼2 | +𝐶 (𝑇𝑖) |𝛼1 − 𝛼2 |𝑏

≲ 𝐶 (𝑇𝑖) |𝛼1 − 𝛼2 |𝑏

(5.16)

where𝐷 (𝑇𝑖) and𝐶 (𝑇𝑖) are constants that depend on𝑇𝑖 and
∑
𝑖 E[𝐶 (𝑇𝑖)]/𝑛 = 𝑂 (1). □

Proof of Lemma 5.2.6. Let𝑇𝑛−𝑚 = 𝑓 (𝜖𝑛−𝑚, 𝜖𝑛−𝑚−1, · · · , ) and𝑇 ′
𝑛−𝑚 = 𝑓 (𝜖′𝑛−𝑚, 𝜖′𝑛−𝑚−1, · · · , ).

Thus we can write 𝑇𝑛 = Φ𝑛,𝑚 (𝑇𝑛−𝑚) and 𝑇 ′
𝑛,𝑚 = Φ𝑛,𝑚 (𝑇 ′

𝑛−𝑚).
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∞∑︁
𝑚=1

(E
𝑇𝑛 −𝑇 ′

𝑛,𝑚

2
2
)1/2 =

∞∑︁
𝑚=1

(E
Φ𝑛,𝑚 (𝑇𝑛−𝑚) − Φ𝑛,𝑚 (𝑇 ′

𝑛−𝑚)
2
2
)1/2

≤
∞∑︁
𝑚=1

(E
Φ𝑛,𝑚 (𝑇𝑛−𝑚) − Φ𝑛,𝑚 (𝑄0)

2
2
)1/2

+ (E
Φ𝑛,𝑚 (𝑇 ′

𝑛−𝑚) − Φ𝑛,𝑚 (𝑄0)
2
2
)1/2

(Lyapunov’s inequality) ≤
∞∑︁
𝑚=1

(E
Φ𝑛,𝑚 (𝑇𝑛−𝑚) − Φ𝑛,𝑚 (𝑄0)

[
2
)1/[

+ (E
Φ𝑛,𝑚 (𝑇 ′

𝑛−𝑚) − Φ𝑛,𝑚 (𝑄0)
[
2
)1/[

(Assumption 5.2.1) ≤
∞∑︁
𝑚=1

𝐶𝑟𝑚/[ (∥𝑇𝑛−𝑚 −𝑄0∥2 ∨
𝑇 ′
𝑛−𝑚 −𝑄0


2
)

< ∞

(5.17)

□

The following statement is virtually obvious, but is used multiple times in the
proofs below and so is most easily quoted directly:

Lemma 5.5.3. Let {𝑋𝑖} be a sequence of random variables, and suppose that 𝑊𝑛 :=
√
𝑛( 1

𝑛

∑𝑛
𝑖=1𝑋𝑖 − `) 𝑑→ 𝑊 for some (almost surely finite) random variable 𝑊 . Then,

1
𝑛

∑𝑛
𝑖=1𝑋𝑖 converges in probability to `.

Proof. By Slutsky’s Theorem, we get 𝑛−1/2𝑊𝑛

𝑑→ 0, which also implies convergence
in probability to zero. □

Proof of Lemma 5.2.7. We start by using Lemma 5.2.6 to conclude that the series {𝑇𝑖 −
E𝑇𝑖}∞𝑖=−∞ satisfies the assumptions (1.1),(1.2),(2.1) and (2.2) of Horváth et al. [33]. From
this, we can argue that the series {𝑇𝑗 ◦ [𝛼𝑇𝑗−1]−1−E𝑇𝑗 ◦ [𝛼𝑇𝑗−1]−1}∞𝑖=−∞ also satisfies
those assumptions and therefore we obtain the following central limit theorem for
𝑆𝑁,𝛼 : for any 𝛼 , there is a Gaussian process Γ𝛼 such that

√
𝑁 (𝑆𝑁,𝛼 − 𝑆𝛼 )

𝑑→ Γ𝛼 , in 𝐿2.

Using the central limit theorem and Lemma 5.5.3, we can infer the convergence in
probability of 𝑆𝑁,𝛼 to 𝑆𝛼 for any𝛼 (in 𝐿2). Since both 𝑆𝛼 and 𝑆𝑁,𝛼 are globally Lipschitz
with respect to 𝛼 , in the sense of Lemma 5.5.2, we can use Corollary 3.1 of Newey
[49] to obtain uniform convergence in probability:

sup
𝛼

𝑆𝑁,𝛼 − 𝑆𝛼

2
→ 0 in probability.
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□

5.5.1 Overview of Wu and Shao [76]

In their work, Wu and Shao [76] investigated the properties of nonlinear time series
expressed in terms of iterated random functions and established a central limit the-
orem for additive functionals of such systems. The construction involves a sequence
of functions of the form 𝑋𝑛 (𝑥) = 𝐹\𝑛 ◦ 𝐹\𝑛−1 ◦ · · · 𝐹\1 (𝑥). The authors assume that
𝑋𝑛 satisfies a geometric moment condition, which requires the existence of 𝛽 > 0,
𝐶 = 𝐶 (𝛼) > 0, and 𝑟 = 𝑟 (𝛼) ∈ (0, 1) such that, for all 𝑛 ∈ 𝑁 ,

E{𝜌 (𝑋𝑛 (𝑋 ′
0), 𝑋𝑛 (𝑋0))𝛽 } ≤ 𝐶𝑟𝑛 . (5.18)

In addition, they define the 𝑙-dimensional vector 𝑌𝑖 = (𝑋𝑖−𝑙+1, 𝑋𝑖−𝑙+2, · · · , 𝑋𝑖) and
for any 𝛿 > 0, they introduce the functional Δ𝑔 (𝛿) as

Δ𝑔 (𝛿) = sup{
[𝑔(𝑌 ) − 𝑔(𝑌1)]1𝜌 (𝑌,𝑌1 ) ≤ 𝛿 : 𝑌,𝑌1 are identically distributed},

Where 𝜌 (., .) is the product metric and is defined as

𝜌 (𝑧, 𝑧′) =

√√√
𝑙∑︁
𝑖=1

𝜌 (𝑧𝑖 , 𝑧′𝑖 )2 for 𝑧 = (𝑧1, · · · , 𝑧𝑙 ), 𝑧′ = (𝑧′1, · · · , 𝑧′𝑙 ) .

Finally, the functional 𝑆𝑛,𝑙 (𝑔) =
∑𝑛
𝑖=1 𝑔(𝑋𝑖−𝑙+1, 𝑋𝑖−𝑙+2, · · · , 𝑋𝑖) is defined. The authors

establish the following central limit theorem for this functional:

Theorem 5.5.4. (Wu and Shao [76, Theorem 3]) Assume that (5.18) holds, that 𝑋1 ∼ 𝜋 ,
𝐸{𝑔(𝑌1)} = 0, and 𝐸{|𝑔(𝑌1) |𝑝 } < ∞ for some 𝑝 > 2, and that∫ 1

0

Δ𝑔 (𝑡)
𝑡

< ∞. (5.19)

Then there exists a 𝜎𝑔 ≥ 0 such that, for 𝜋-almost 𝑥 , {𝑆 ⌊𝑛𝑢 ⌋,𝑙 (𝑔)/
√
𝑛, 0 ≤ 𝑢 ≤ 1}

conditional on 𝑋0 = 𝑥 , converges to 𝜎𝑔𝐵, where 𝐵 is a standard Brownian motion.

A function that satisfies (5.19) is referred to as stochastic Dini continuous. Using
Theorem 5.5.4 to derive a central limit theorem for 𝑀𝑁 poses a problem: Theorem
5.5.4 uses fixed-length sub-sequences of the time series, i.e., (𝑋𝑖−𝑙+1, 𝑋𝑖−𝑙+2, · · · , 𝑋𝑖),
as arguments for the function 𝑔, however the arguments of the function 𝑔 that ap-
pears in the expression of 𝑀𝑁 in 5.7, include not only (𝑇𝑖−1,𝑇𝑖), but also 𝑆𝑁,𝛼 , thus
making it dependent on the entire time series. Therefore, Theorem 5.5.4 cannot be
applied directly, and a modified version is required. We present a modified version of
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Theorem 5.5.4 that is specifically tailored for functions of finite dimensional random
variables, followed by another modification that is suitable for functionals of infinite
dimensional variables.

Corollary 5.5.5. (Modified version of Wu and Shao [76, Theorem 3] for finite dimen-
sional arguments) Suppose 𝑍𝑛 is a measurable function of (𝑋1, 𝑋2, · · · , 𝑋𝑛) such that
𝑍𝑛 converges in probability to some constant `. Let 𝑌𝑖 = (𝑋𝑖−𝑙+1, 𝑋𝑖−𝑙+2, · · · , 𝑋𝑖), and
assume that 𝑔(𝑌𝑖 , `) is differentiable with respect to its second argument and that both
𝑔(𝑌𝑖 , `) and the derivative of 𝑔(𝑌𝑖 , `) with respect to its second argument satisfy the
conditions of Theorem 5.5.4. Then there exists 𝜎𝑔 ≥ 0 such that

𝑆𝑛√
𝑛
→ 𝑁 (0, 𝜎2𝑔 ),

where 𝑆𝑛 =
∑𝑛
𝑖=1 𝑔(𝑌𝑖 , 𝑍𝑛).

Proof. By Taylor expansion, we write

𝑔(𝑌𝑖 , 𝑍𝑛) = 𝑔(𝑌𝑖 , `) + 𝑔 (0,1) (𝑌𝑖 , `) (𝑍𝑛 − `) + higher order terms.

Since 𝑔 (0,1) (𝑌𝑖 , `) is only a function of 𝑌𝑖 and of a constant `, by Theorem 5.5.4 we
have

1
√
𝑛

𝑛∑︁
𝑖=1

[
𝑔 (0,1) (𝑌𝑖 , `) − E𝑔 (0,1) (𝑌, `)

]
→ 𝑁 (0, 𝜎2𝑔′),

where 𝑌 𝐷∼ 𝑌𝑖 . This implies that if 𝑁 𝐷∼ 𝑁 (0, 𝜎2
𝑔′),we then have

1
√
𝑛
𝑆𝑛 = [ 1

√
𝑛

𝑛∑︁
𝑖=1

𝑔(𝑌𝑖 , `)] + (𝑁 +
√
𝑛E𝑔 (0,1) (𝑌, `)) (𝑍𝑛 − `)

=
1
√
𝑛

𝑛∑︁
𝑖=1

[𝑔(𝑌𝑖 , `) + E𝑔 (0,1) (𝑌, `) (𝑍𝑖 − `)] + 𝑁 (𝑍𝑛 − `).
(5.20)

Since 𝑁 (𝑍𝑛 − `) = 𝑜P(1), applying Theorem 5.5.4 we get

1
√
𝑛

𝑛∑︁
𝑖=1

[𝑔(𝑌𝑖 , `) + E𝑔 (0,1) (𝑌, `) (𝑍𝑖 − `)] → 𝑁 (0, 𝜎2𝑔 )

□

Corollary 5.5.6. (Modified version of Wu and Shao [76, Theorem 3] for infinite dimen-
sional arguments) Suppose 𝑍𝑛 is a measurable function of (𝑋1, 𝑋2, · · · , 𝑋𝑛) such that
𝑍𝑛 converges in probability to some constant `. Let 𝑌𝑖 = (𝑋𝑖−𝑙+1, 𝑋𝑖−𝑙+2, · · · , 𝑋𝑖), and
assume that 𝑔(𝑌𝑖 , `) is Fréchet differentiable with respect to its second argument, and
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that both 𝑔(𝑌, `) and the Fréchet derivative of 𝑔 with respect to its second argument
satisfy the conditions of Theorem 5.5.4. Then there exists 𝜎𝑔 ≥ 0 such that

𝑆𝑛√
𝑛
→ 𝑁 (0, 𝜎2𝑔 ),

where 𝑆𝑛 =
∑𝑛
𝑖=1 𝑔(𝑌𝑖 , 𝑍𝑛).

Remark 5.5.7. The proof of this Corollary can be understood by following the same
steps as in the proof of Corollary 5.5.5, without the added technical complexities that
arise when dealing with the Fréchet derivative.

Proof of Corollary 5.5.6. Let𝐷𝑔 (𝑌𝑖 , 𝑢, 𝑣) denote the Fréchet derivative of𝑔with respect
to its second argument at 𝑢 in the direction 𝑣 . Assume 𝑍𝑛 = ` + 𝑣𝑛 , and apply the
Taylor formula for the Fréchet derivative (Kurdila and Zabarankin [40]) to get

𝑔(𝑌𝑖 , 𝑍𝑛) = 𝑔(𝑌𝑖 , `) + 𝐷𝑔 (𝑌𝑖 , `, 𝑣𝑛) + 𝑅(𝑌𝑖 , `, 𝑣𝑛),

where
lim

∥𝑣𝑛 ∥→0

|𝑅(𝑌𝑖 , `, 𝑣𝑛) |
∥𝑣𝑛 ∥

= 0.

Note that we can identify the Fréchet derivative with a bounded linear operator
as

𝐷𝑔 (𝑌𝑖 , `, 𝑣𝑛) = ⟨𝐷𝑔 (𝑌𝑖 , `), 𝑣𝑛⟩.

Furthermore, as the Fréchet derivative is also stochastic Dini continuous, we can
apply Theorem 5.5.4 to obtain

1
√
𝑛

𝑛∑︁
𝑖=1

[
⟨𝐷𝑔 (𝑌𝑖 , `), 𝑣𝑛⟩ − E⟨𝐷𝑔 (𝑌, `), 𝑣𝑛⟩

]
→ 𝑁 (0, 𝜎2𝑔′),

where 𝑌 𝐷∼ 𝑌𝑖 .
This implies that if 𝑁 𝐷∼ 𝑁 (0, 𝜎2

𝑔′), using the fact that the mapping 𝐷𝑔 (𝑌𝑖 , `, .) is
linear, we get:

𝑆𝑛√
𝑛
=

1
√
𝑛

𝑛∑︁
𝑖=1

[𝑔(𝑌𝑖 , `) + 𝐷𝑔 (𝑌𝑖 , `, 𝑍𝑛 − `)]

=
1
√
𝑛

𝑛∑︁
𝑖=1

[𝑔(𝑌𝑖 , `) + ⟨𝐷𝑔 (𝑌𝑖 , `), 𝑍𝑛 − `⟩]

=
1
√
𝑛

𝑛∑︁
𝑖=1

[𝑔(𝑌𝑖 , `)] + ⟨𝑁 × id+
√
𝑛E𝐷𝑔 (𝑌, `), 𝑍𝑛 − `⟩
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=
1
√
𝑛

𝑛∑︁
𝑖=1

[𝑔(𝑌𝑖 , `) + ⟨E𝐷𝑔 (𝑌, `), 𝑍𝑖 − `⟩] + 𝑁 ⟨id, 𝑍𝑛 − `⟩ (5.21)

Since 𝑁 ⟨id, 𝑍𝑛 − `⟩ = 𝑜𝑃 (1), and E⟨E𝐷𝑔 (𝑌, `), 𝑍𝑖 − `⟩ = 0, we can apply Theorem
5.5.4 and conclude 𝑆𝑛√

𝑛
→ 𝑁 (0, 𝜎2) for some 𝜎 . □

Lemma 5.5.8. The function 𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆) = ∥𝑆 ◦ [𝛼𝑇𝑖−1] −𝑇𝑖 ∥22 is Fréchet differen-
tiable with respect to 𝑆 and satisfies the Taylor formula

𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆 + 𝑣) = 𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆) + 𝐷𝑔 (𝑇𝑖−1,𝑇𝑖 , 𝑆, 𝑣) + 𝑅(𝑇𝑖−1,𝑇𝑖 , 𝑆, 𝑣),

where 𝐷𝑔 (𝑇𝑖−1,𝑇𝑖 , 𝑆, 𝑣) is the Fréchet derivative of 𝑔𝛼 with respect to 𝑆 in the direction 𝑣 ,
and

lim
∥𝑣 ∥→0

|𝑅(𝑇𝑖−1,𝑇𝑖 , 𝑆, 𝑣) |
∥𝑣 ∥ = 0.

Furthermore, the mapping 𝐷𝑔 (𝑇𝑖−1,𝑇𝑖 , `, .) is both linear and bounded.

Proof. To begin, we show that 𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆) is Gateaux differentiable.

lim
𝜖→0

𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆 + 𝜖𝑣) − 𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆)
𝜖

= lim
𝜖→0

∥(𝑆 + 𝜖𝑣) ◦ [𝛼𝑇𝑖−1] −𝑇𝑖 ∥22 − ∥𝑆 ◦ [𝛼𝑇𝑖−1] −𝑇𝑖 ∥22
𝜖

= lim
𝜖→0

𝜖2 ∥𝑣 ◦ [𝛼𝑇𝑖−1] ∥22 + 𝜖 ⟨𝑣 ◦ 𝛼𝑇𝑖−1, 𝑆 ◦ [𝛼𝑇𝑖−1] −𝑇𝑖⟩
𝜖

= ⟨𝑣 ◦ [𝛼𝑇𝑖−1], 𝑆 ◦ [𝛼𝑇𝑖−1] −𝑇𝑖⟩
= 𝐷𝑔 ((𝑇𝑖 ,𝑇𝑖−1), 𝑆, 𝑣).

(5.22)

As the above expression is linear and bounded with respect to 𝑣 , it serves as the
Gateaux differential. As 𝐷𝑔 (𝑇𝑖−1,𝑇𝑖 , 𝑆) is Gateaux differentiable for every 𝑇 and the
mapping 𝑇 → 𝐷𝑔 (𝑇𝑖−1,𝑇𝑖 , 𝑆) is continuous, Corollary 4.1.1. of [40] guarantees that
𝐷𝑔 is also the Fréchet derivative. □

Lemma 5.5.9. The stochastic Dini continuity condition (5.19) is satisfied by the function
𝑔𝛼 .

Proof. We want to show
∫ 1

0

Δ𝑔 (𝑡 )
𝑡

< ∞, where

Δ𝑔 (𝛿) = sup
{ [𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆) − 𝑔𝛼 (𝑇 ′

𝑖−1,𝑇
′
𝑖 , 𝑆)]1𝜌 ( (𝑇𝑖−1,𝑇𝑖 ),(𝑇 ′

𝑖−1,𝑇
′
𝑖
) )≤𝛿


: 𝑇𝑖 ,𝑇

′
𝑖 are identically distributed

}
.

(5.23)

and 𝜌 ((𝑇1,𝑇2), (𝑇 ′
1,𝑇

′
2)) =

√︃𝑇1 −𝑇 ′
1

2
2
+

𝑇2 −𝑇 ′
2

2
2
.
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First, recall that 𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆) = ∥𝑆 ◦ [𝛼𝑇𝑖−1] −𝑇𝑖 ∥22. When 𝛼 ≥ 0, we have[𝛼𝑇𝑖−1] − [𝛼𝑇 ′
𝑖−1]


2
≤ 𝛼

𝑇𝑖−1 −𝑇 ′
𝑖−1


2
. When 𝛼 < 0, we can use Lemma 5.5.1 to

conclude that
[𝛼𝑇𝑖−1] − [𝛼𝑇 ′

𝑖−1]

2
≤ 𝛼

𝑇𝑖−1 −𝑇 ′
𝑖−1

𝑏
2

for some 𝑏 ≥ 1
2 . As 𝑆 is Lip-

schitz, we can deduce that Δ𝑔 (𝑡) ≤ 𝐶𝛼𝑡𝑏 , for some 𝑏 > 0. Therefore the integral is
finite. □

Proof of Theorem 5.2.8. From Lemma 5.2.7, we see that 𝑆𝑁,𝛼 converges in probability
to 𝑆𝛼 and we also obtained a central limit theorem for 𝑆𝑁,𝛼 . Then Lemma 5.5.8 and
5.5.9 show that 𝑔𝛼 is Fréchet differentiable and stochastically Dini continuous, which
are sufficient conditions for Corollary 5.5.6 to be applicable, and yield a central limit
theorem for 𝑀𝑁 (𝛼) = 1

𝑁

∑𝑁
𝑖=1 𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆𝑁,𝛼 ) :

√
𝑁 [𝑀𝑁 (𝛼) −𝑀 (𝛼)] → 𝑁 (0, 𝜎2𝛼 ) .

Thus for any 𝛼 , 𝑀𝑁 (𝛼) converges in probability to 𝑀 (𝛼). By applying Corollary
3.1 from Newey [49] and utilizing Lemma 5.5.2, which establishes that 𝑔𝛼 satisfies
Lipschitz continuity with respect to 𝛼 , we can achieve uniform convergence in prob-
ability of 𝑀𝑁 to 𝑀 with respect to 𝛼 :

sup
𝛼

|𝑀𝑁 (𝛼) −𝑀 (𝛼) | → 0 in probability.

□

Proof of Theorem 5.2.9 (Consistency). Lemma 5.2.8 implies that𝑀𝑁 converges uniformly
in probability to 𝑀 with respect to 𝛼 , and Lemma 5.2.5 shows that 𝜶 is the unique
minimizer of 𝑀 . By applying Van Der Vaart and Wellner [72, Theorem 3.2.3], we can
conclude that the estimator 𝛼𝑁 = argmin𝛼 𝑀𝑁 (𝛼) converges to the true parameter
argmin𝛼 𝑀 (𝛼) = 𝜶 . □

Lemma 5.5.10. Let T𝑙,𝑢 = {𝑇 ∈ T : 0 < 𝐿𝑙 ≤ 𝑇 ′ ≤ 𝐿𝑢 < ∞} and suppose {𝑇𝑖} ⊂ T𝑙,𝑢 .
Then

E|𝑀 ′
𝑁 (𝜶 ) | ≲ 1

√
𝑁
.

Proof. Note that

𝑀 ′
𝑁 (𝛼) =

1

𝑁

𝑁∑︁
𝑗=1

𝜕𝑔𝛼 (𝑇𝑗−1,𝑇𝑗 , 𝑆𝑁,𝛼 )
𝜕𝛼

,

and

𝜕𝑔𝛼 (𝑇𝑗−1,𝑇𝑗 , 𝑆𝑁,𝛼 )
𝜕𝛼

=
𝜕
𝑆𝑁,𝛼 ◦ [𝛼𝑇𝑗−1] −𝑇𝑗

2
2

𝜕𝛼

=

∫
2|𝑆𝑁,𝛼 ◦ [𝛼𝑇𝑗−1] (𝑥) −𝑇𝑗 (𝑥) | ×

𝜕

𝜕𝛼
𝑆𝑁,𝛼 ◦ [𝛼𝑇𝑗 ] (𝑥) d𝑥
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The expression |𝑆𝑁,𝛼 ◦ [𝛼𝑇𝑗−1] (𝑥)−𝑇𝑗 (𝑥) | can be uniformly bounded. In what follows
we will explicitly calculate 𝜕

𝜕𝛼
𝑆𝑁,𝛼 ◦ [𝛼𝑇𝑗 ] (𝑥) for a fixed 𝑗 . The calculation is tedious

but elementary. To calculate the derivative we use the following fact: if 𝑓 (𝛼, 𝑥) =

𝐶 (𝛼,𝑦 (𝑥, 𝛼)), then

𝜕𝑓

𝜕𝛼
=
𝜕𝐶 (𝛼,𝑦 (𝑥, 𝛼 ′))

𝜕𝛼
|𝛼 ′=𝛼 + 𝜕𝐶 (𝛼,𝑦)

𝜕𝑦
× 𝜕𝑦 (𝑥, 𝛼)

𝜕𝛼
.

Using the above equation we can write:

𝜕

𝜕𝛼
𝑆𝑁,𝛼 ◦ [𝛼𝑇𝑗 ] (𝑥) =

𝜕

𝜕𝛼
𝑆𝑁,𝛼 ( [𝛼 ′𝑇𝑗 ] (𝑥)) |𝛼 ′=𝛼 +

𝜕𝑆𝑁,𝛼 ( [𝛼𝑇𝑗 ] (𝑥))
𝜕( [𝛼𝑇𝑗 ] (𝑥))

×
𝜕[𝛼𝑇𝑗 ] (𝑥)

𝜕𝛼

=
𝜕𝑆𝑁,𝛼 (𝑦)
𝜕𝛼

|𝑦=[𝛼𝑇𝑗 ] (𝑥 ) +
𝜕𝑆𝑁,𝛼 (𝑦)

𝜕𝑦
|𝑦=[𝛼𝑇𝑗 ] (𝑥 ) ×

𝜕[𝛼𝑇𝑗 ] (𝑥)
𝜕𝛼

.

(5.24)

First, we derive the first term on the LHS of (5.24):

𝜕𝑆𝑁,𝛼 (𝑦)
𝜕𝛼

=

𝑁∑︁
𝑖=1

𝜕

𝜕𝛼
𝑇𝑖 ◦ [𝛼𝑇𝑖−1]−1(𝑦)

If we consider one of the terms in this summation we have

𝜕

𝜕𝛼
𝑇𝑖 ◦ [𝛼𝑇𝑖−1]−1(𝑦) =

𝜕𝑇𝑖 ( [𝛼𝑇𝑖−1]−1(𝑦))
𝜕[𝛼𝑇𝑖−1]−1(𝑦)

× 𝜕[𝛼𝑇𝑖−1]−1(𝑦)
𝜕𝛼

= 𝑇 ′
𝑖 (𝑧𝑖) |𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦) ×

𝜕

𝜕𝛼
[𝛼𝑇𝑖−1]−1(𝑦)

(5.25)

Now to calculate 𝜕
𝜕𝛼

[𝛼𝑇𝑖−1]−1(𝑦) note that:

0 =
𝜕

𝜕𝛼
𝑦 =

𝜕

𝜕𝛼
[𝛼𝑇𝑖−1] ( [𝛼𝑇𝑖−1]−1(𝑦))

=
𝜕

𝜕𝛼
[𝛼𝑇𝑖−1] ( [𝛼 ′𝑇𝑖−1]−1(𝑦)) |𝛼 ′=𝛼 + 𝜕[𝛼𝑇𝑖−1] ( [𝛼𝑇𝑖−1]

−1(𝑦))
𝜕[𝛼𝑇𝑖−1]−1(𝑦)

× 𝜕[𝛼𝑇𝑖−1]−1(𝑦)
𝜕𝛼

=
𝜕

𝜕𝛼
[𝛼𝑇𝑖−1] (𝑧𝑖) |𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦) +

𝜕[𝛼𝑇𝑖−1] (𝑧𝑖)
𝜕𝑧𝑖

|𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦) ×
𝜕[𝛼𝑇𝑖−1]−1(𝑦)

𝜕𝛼

(5.26)
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Thus

𝜕[𝛼𝑇𝑖−1]−1(𝑦)
𝜕𝛼

= (−1) × 𝜕

𝜕𝛼
[𝛼𝑇𝑖−1] (𝑧𝑖) |𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦) ×

1
𝜕[𝛼𝑇𝑖−1 ] (𝑧𝑖 )

𝜕𝑧𝑖
|𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦)

=


(𝑧𝑖 −𝑇𝑖−1(𝑧𝑖)) × 1

𝛼 (𝑇 ′
𝑖−1 (𝑧𝑖 )−1)+1

���
𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦)

, for 0 < 𝛼 ≤ 1

(𝑇 −1
𝑖−1(𝑧𝑖) − 𝑧𝑖) ×

1
𝛼 (1−(𝑇 −1

𝑖−1 ) ′ (𝑧𝑖 ) )+1

���
𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦)

, for − 1 ≤ 𝛼 < 0,

(5.27)

And we can conclude that

𝜕

𝜕𝛼
𝑇𝑖◦[𝛼𝑇𝑖−1]−1(𝑦)

= 𝑇 ′
𝑖 (𝑧𝑖) ×


(𝑧𝑖 −𝑇𝑖−1(𝑧𝑖)) × 1

𝛼 (𝑇 ′
𝑖−1 (𝑧𝑖 )−1)+1

���
𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦)

, for 0 < 𝛼 ≤ 1

(𝑇 −1
𝑖−1(𝑧𝑖) − 𝑧𝑖) ×

1
𝛼 (1−(𝑇 −1

𝑖−1 ) ′ (𝑧𝑖 ) )+1

���
𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦)

, for − 1 ≤ 𝛼 < 0

(5.28)

With this, we have all the needed terms to calculate the left terms of (5.24). Now we
calculate the right term of (5.24):

𝜕𝑆𝑁,𝛼 (𝑦)
𝜕𝑦

=
1

𝑁

𝑁∑︁
𝑖=1

𝜕

𝜕𝑦
𝑇𝑖 ◦ [𝛼𝑇𝑖−1]−1(𝑦)

=
1

𝑁

𝑁∑︁
𝑖=1

𝑇 ′
𝑖 (𝑧𝑖) |𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦) ×

1
𝜕[𝛼𝑇𝑖−1 ] (𝑧𝑖 )

𝜕𝑧𝑖
|𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦)

=


1
𝑁

∑𝑁
𝑖=1𝑇

′
𝑖 (𝑧𝑖) × 1

𝛼 (𝑇 ′
𝑖−1 (𝑧𝑖 )−1)+1

���
𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦)

, for 0 < 𝛼 ≤ 1

1
𝑁

∑𝑁
𝑖=1𝑇

′
𝑖 (𝑧𝑖) × 1

𝛼 (1−(𝑇 −1
𝑖−1 ) ′ (𝑧𝑖 ) )+1

���
𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦)

, for − 1 ≤ 𝛼 < 0

(5.29)

By plugging all the terms calculated above in (5.24) we get

𝜕

𝜕𝛼
𝑆𝑁,𝛼 ◦ [𝛼𝑇𝑗 ] (𝑥)

=


1
𝑁

∑𝑁
𝑖=1𝑇

′
𝑖 (𝑧𝑖) ×

𝑧𝑖−𝑇𝑖−1 (𝑧𝑖 )+𝑇𝑗 (𝑥 )−𝑥
𝛼 (𝑇 ′

𝑖−1 (𝑧𝑖 )−1)+1

���
𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦)

, for 0 < 𝛼 ≤ 1

1
𝑁

∑𝑁
𝑖=1𝑇

′
𝑖 (𝑧𝑖) ×

𝑇 −1
𝑖−1 (𝑧𝑖 )−𝑧𝑖+𝑥−𝑇

−1
𝑗 (𝑥 )

𝛼 (1−(𝑇 −1
𝑖−1 ) ′ (𝑧𝑖 ) )+1

���
𝑧𝑖=[𝛼𝑇𝑖−1 ]−1 (𝑦)

, for − 1 ≤ 𝛼 < 0,

(5.30)

where 𝑦 = [𝛼𝑇𝑗 ] (𝑥) .

The differentiability of 𝑀𝑁 with respect to 𝛼 follows from the equation above.
Similarly, if we replace 𝑆𝑁,𝛼 with 𝑆𝛼 , the summations can be replaced by an integral,
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and we can see that 𝑀 is also differentiable with respect to 𝛼 . Let

𝑔′(𝑇𝑗−1,𝑇𝑗 , 𝑆𝑁,𝛼 , 𝛼) =
𝜕𝑔𝛼 (𝑇𝑗−1,𝑇𝑗 , 𝑆𝑁,𝛼 )

𝜕𝛼
, 𝑔′(𝑇𝑗−1,𝑇𝑗 , 𝑆𝛼 , 𝛼) =

𝜕𝑔𝛼 (𝑇𝑗−1,𝑇𝑗 , 𝑆𝛼 )
𝜕𝛼

.

Since 𝜶 is the minimizer of 𝑀 , we must have E𝑔′(𝑇𝑗−1,𝑇𝑗 , 𝑆𝛼 , 𝛼) |𝛼=𝜶 = 𝑀 ′(𝜶 ) = 0.
Additionally, We can argue 𝑔′ is stochastically Dini-continuous when {𝑇𝑖} ⊂ T𝑙,𝑢
(similar to the arguments in the proof of Lemma 5.5.9). Therefore the assumptions of
Corollary 5.5.6 (CLT) are satisfied for 𝑔′, and we have E|𝑀 ′

𝑁
(𝜶 ) | ≲ 1√

𝑁
. □

Proof of Theorem 5.2.10 (Convergence Rate). Using Theorem 3.6.3, we can obtain a rate
of convergence for our estimator. First, it should be noted that the functional 𝑀 is
twice differentiable with respect to 𝛼 since it is a composition of twice differentiable
functions. As 𝜶 is the unique minimizer of𝑀 , its first derivative vanishes at 𝜶 , which
implies that 𝑀 has quadratic growth around 𝜶 . Next, we need to find a function
𝜙𝑁 (𝛿) such that

E sup
|𝛼−𝜶 | ≤𝛿

√
𝑁

���(𝑀𝑁 −𝑀) (𝛼) − (𝑀𝑁 −𝑀) (𝜶 )
��� ≤ 𝜙𝑁 (𝛿) . (5.31)

Taylor expanding, we can write:

(𝑀𝑁 −𝑀) (𝛼) = (𝑀𝑁 −𝑀) (𝜶 ) + (𝑀𝑁 −𝑀)′(𝜶 ) × (𝛼 − 𝜶 ) + higher order terms
(5.32)

Since 𝜶 is the minimiser of𝑀 , yielding𝑀 ′(𝜶 ) = 0, we only need to calculate𝑀 ′
𝑁
(𝜶 ).

But by Lemma 5.5.10 we can see that

E|𝑀 ′
𝑁 (𝜶 ) | ≲ 1

√
𝑁
.

By plugging the inequality into the expression (5.31) we obtain

E
√
𝑁

���(𝑀𝑁 −𝑀) (𝛼) − (𝑀𝑁 −𝑀) (𝜶 )
��� ≤ |𝛼 − 𝜶 |.

And, we conclude 𝜙𝑁 (𝛿) = 𝛿 and the rate of convergence for 𝛼𝑁 is 𝑁 − 1
2 . Using

Lemma 5.5.1 we can see𝑆𝑁,𝛼𝑁 − S

2
≤

𝑆𝑁,𝛼𝑁 − 𝑆𝑁,𝜶

2
+

𝑆𝑁,𝜶 − S

2
≲ 𝑁 − 𝑏

2 + 𝑁 − 1
2 ≲ 𝑁 − 𝑏

2 ,

and since {𝑇𝑖} ⊂ T𝑙,𝑢 , 𝑏 = 1 according to Lemma 5.5.1.
□
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5.5.2 Generalization of Iterated System (5.4)

The definition of the iterated system (5.3) is based on the contraction of maps around
the identity map. It extends system (5.4) by introducing the map 𝑆 . However, we
could alternatively generalise (5.4) by introducing 𝑆 not at the level of the iteration
itself, but rather at the level of the contraction itself: contracting around an arbitrary
map 𝑆 , instead of the identity. Specifically, define the 𝛼-contraction of a map𝑇 around
an arbitrary map 𝑆 as follows:

𝛼 [𝑇, 𝑆] (𝑥) :=


𝑆 (𝑥) + 𝛼 (𝑇 (𝑥) − 𝑆 (𝑥)) 0 < 𝛼 ≤ 1

𝑆 (𝑥) 𝛼 = 0

𝑆 (𝑥) + 𝛼 (𝑆 (𝑥) −𝑇 −1(𝑥)) −1 ≤ 𝛼 < 0.

(5.33)

With this definition, the original contraction operation (5.1) now corresponds to
𝛼 [𝑇, id], for id(𝑥) = 𝑥 the identity map. Definition (5.33) directly leads to the fol-
lowing extension of system (5.4)

𝑇𝑖 = 𝑇𝜖𝑖 ◦ 𝛼 [𝑇𝑖−1, 𝑆], (5.34)

where {𝑇𝜖𝑖 }𝑁𝑖=1 is again a collection of independent and identically distributed random
optimal maps satisfying E{𝑇𝜖𝑖 (𝑥)} = 𝑥 almost everywhere on Ω. Compared to system
(5.3),

𝑇𝑖 = 𝑇𝜖𝑖 ◦ 𝑆 ◦ 𝛼 [𝑇𝑖−1, id] .

this system interjects 𝑆 at the level of the contraction and not at the level of the
random perturbation (note that for identifiability reasons it does not make sense to
do both). Of course, either is more general than system (5.4)

𝑇𝑖 = 𝑇𝜖𝑖 ◦ 𝛼 [𝑇𝑖−1, id] .

Remark 5.5.11. Suppose we use the contraction definition (5.33), and define the itera-
tion (5.34). Then, the quantile model (UQ) with 𝑆 = 𝐹 −1` (i.e. where we contract around
the quantile function of a measure `) is equivalent to the generalised quantile model
(GQ) with 𝑆 = id; that is, they produce the same stationary time series. To demonstrate
this equivalence, consider the model (GQ) with 𝑆 = id. We then have:

E(𝐹 −1`𝑖 ◦ 𝐹` (𝑥) |𝐹 −1`𝑖−1 ◦ 𝐹`) = E(𝐹 −1`𝑖 |𝐹 −1`𝑖−1 ◦ 𝐹`) ◦ 𝐹` (𝑥) = 𝑥 + 𝛼 (𝐹 −1`𝑖−1 (𝐹` (𝑥)) − 𝑥)

Thus,
E(𝐹 −1`𝑖 |𝐹 −1`𝑖−1 ◦ 𝐹`) = 𝐹

−1
` (𝑥) + 𝛼 (𝐹 −1`𝑖−1 (𝑥) − 𝐹

−1
` (𝑥)),

which is equal to the conditional expectation of E(𝐹 −1`𝑖 |𝐹 −1`𝑖−1) when we use model (5.33)
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for 𝐹 −1`𝑖 and contract around 𝑆 = 𝐹 −1` .

Remark 5.5.12. Note that 𝛼 [𝑇, 𝑆] = 𝑇 when 𝛼 = 1, and 𝛼 [𝑇, 𝑆] = 𝑇 −1 when 𝛼 = −1.
Therefore in either of these cases, the time series 𝑇𝑖 does not provide any information
about 𝑆 and it would impossible to estimate the map 𝑆 . Therefore we assume−1 < 𝛼 < 1.
This is in contrast with system (5.3), where consistent estimation is possible for all values
of 0 ≤ 𝛼 ≤ 1,

If a stationary solution to system (5.34) exists, then

E[𝑇𝑖] = E[𝑇𝑖+1] = E[𝐸 [𝑇𝑖+1 |𝑇𝑖]] = E[𝛼 [𝑇𝑖 , 𝑆]],

and therefore E[𝑇𝑖] = 𝑆 , when −1 < 𝛼 < 1.
We define the estimators (𝛼𝑁 , 𝑆𝑁 ) of (𝛼, 𝑆) as follows:

𝛼𝑁 B argmin
𝛼
𝑀𝑁 (𝛼),

where

𝑀𝑁 (𝛼) B
1

𝑁

𝑁∑︁
𝑖=1

𝑔(𝑇𝑖−1,𝑇𝑖 , 𝑆𝑁 )

𝑔𝛼 (𝑇𝑖−1,𝑇𝑖 , 𝑆) B ∥𝛼 [𝑇𝑖−1, 𝑆] −𝑇𝑖 ∥22

𝑆𝑁 B
1

𝑁

𝑁∑︁
𝑗=1

𝑇𝑗

It is worth noting that unlike in system (5.3), where the estimation of the map 𝑆
depends on the estimator of 𝛼 , in this system, the estimator of the map 𝑆 is simply
the average of the maps 𝑇𝑖 . Consequently, the statistical analysis of the estimators is
somewhat easier in this case. Similar procedures to those used for model (5.3) can be
used to demonstrate the existence of a unique stationary solution, the consistency of
the estimator, and obtain the rate of convergence.

Assuming that system (5.34) satisfies the moment contracting condition 5.2.1, a
unique stationary solution for this system exists, and E[𝑇𝑖] = 𝑆 , as in the previous
case. We can then use Lemma 5.2.6 to obtain the central limit theorem (CLT) for 𝑆𝑁
and show that 𝑆𝑁 converges in probability to the true 𝑆 .

It is worth noting that the Lipschitz continuity property of the new function 𝑔
with respect to 𝛼 can be shown using the fact that ∥𝛼1 [𝑇, 𝑆] − 𝛼2 [𝑇, 𝑆]∥2 ≲ |𝛼1−𝛼2 |.
Using this property and following a similar proof technique as in Theorem 5.2.10, we
can argue that the rate of convergence is 𝑁 −1/2.

Remark 5.5.13. Once again we can use the system (5.34) to construct a Markov chain
model for a dependent sequence of probability distributions `𝑖 ∈ W2(Ω) by either in-
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terpreting the maps as consecutive optimal maps between a time series of probability
distributions or directly using the maps to model the quantile functions. While using
system (5.3), the increment interpretation using 𝛼 = 0 is equivalent to quantile interpre-
tation using 𝛼 = 1, a similar straightforward relationship does not appear to exist when
using system (5.34).
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Chapter 6

Outlook

In this thesis, we have explored several aspects of distributional regression and au-
toregression. However, there are still many questions and potential directions for
future work that have not been addressed in this thesis. In this chapter, we outline
some of the potential inquiries stemming from chapters 3,4 and 5, that could be fur-
ther examined. Additionally, we introduce an alternative model for distributional
regression and present some preliminary results.

Chapter 3

Convergence Rate For fully observed distributions, we derived the 𝑁 −1/3 rate
without imposing extra regularity conditions on the covariate measures and demon-
strated its minimax optimality. It remains an open question how the rate would be
affected by imposing additional constraints on the input measures, such as absolute
continuity. Can a faster optimal rate than 𝑁 −1/3 be achieved? Is the current esti-
mator able to reach the optimal rate under these conditions? If not, can an optimal
estimator be identified?

We could begin by examining specific situations. For instance, when all input
measures are the same, the estimator 𝑇𝑁 is equal to 1

𝑁

∑𝑁
𝑖=1𝑇𝑖 and converges at a

rate of 𝑁 −1/2. If the input measures differ but all fully supported on Ω, the estimator
1
𝑁

∑𝑁
𝑖=1𝑇𝑖 also converges at a rate of 𝑁 −1/2. What about our estimator, which is equal

to 𝑇𝑁 = argmin𝑇
1
𝑁

∑𝑁
𝑖=1 ∥𝑇 −𝑇𝑖 ∥2𝐿2 (`𝑖 ) according to equation (3.11)?

Incorporating Additional Covariates When analyzing mortality data with our
model, we observed noticeable differences in the residual maps between Eastern Eu-
ropean and Western European countries. It seems plausible that a more accurate
model for this problem would not treat the optimal map in the regression operator
as fixed, but rather allow it to depend on another covariate, such as GDP.

Consequently, another question to explore is how to extend the model to include
extra covariates, such as a scalar covariate. We can consider the situation where
we want to incorporate a scalar covariate 𝑐 . We can define a regression operator
Γ : W2(Ω) × R → W2(R) as the minimizer of the conditional Fréchet functional,
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considered as a function of both ` and 𝑐 ,

argmin
𝑏

∫
W2 (Ω)

𝑑2W (𝑏, a) d𝑃 (a | `, 𝑐) = Γ(`, 𝑐),

and we can impose Γ(`) = 𝑇𝑐#`, where 𝑇𝑐 is an increasing map that depends on
the covariate 𝑐 . We could consider a specific partial ordering ⪯ of the optimal maps
and stipulate that if 𝑐 < 𝑐′, then 𝑇𝑐 ⪯ 𝑇𝑐′ . Since optimal maps are non-decreasing
functions when 𝑑 = 1, we can consider them as quantile functions and choose ⪯ to
be a certain partial ordering of distributions.

A similar problem is considered in the machine learning community by Bunne
et al. [11]. This paper considers a setting where a data set of the form {𝑐𝑖 , (`𝑖 , a𝑖)} is
observed, where `𝑖 and a𝑖 are distributions and 𝑐𝑖 is a scalar. And the goal is to learn
a mapping 𝑇\ such that for any 𝑐 , 𝑇\ (𝑐) is an optimal map and 𝑇\ (𝑐𝑖)#`𝑖 is close
to a𝑖 for each 𝑖 . They use a particular neural network architecture to parameterize
the optimal map 𝑇\ (based on the paper by Amos et al. [4]) which guarantees that
𝑇\ is the gradient of a convex function. The focus of the paper is not on developing
a model or methodology with theoretical guarantees but rather developing certain
computational techniques for a similar problem.

Chapter 4

Computational Method The proposed estimator minimizes 𝑀𝑁 over a set of op-
timal maps with certain smoothness. A major challenge in our theoretical framework
is to numerically compute the proposed infinite-dimensional estimator. Are there ef-
ficient computational methods, possibly using its directional derivative for gradient
descent to find the minimizer? Another possibility is to apply ideas from the machine
learning community such as Amos et al. [4], Bunne et al. [11] and parameterize the
optimal map 𝑇 as a neural network with a specific architecture such that the output
of the network is the gradient of a convex function of (some of) the inputs.

Minimax Optimality We demonstrated the minimax optimality of our estimator
for 𝑑 = 1 using Fano’s method, so another direction could be determining if the esti-
mator is minimax optimal for 𝑑 > 1, possibly starting by examining the applicability
of Fano’s method.

Fano’s method is based on reducing the problem to multiple hypothesis testing
and identifying a set of optimal maps {𝑇1, · · · ,𝑇𝑚} that are sufficiently separated yet
challenging to distinguish given the samples. More formally, let’s consider a map 𝑇 ,
and denote by 𝑃𝑇 the distribution induced on the response variable. Suppose an index
𝐽 is uniformly drawn at random from {1, · · · ,𝑚}, and a sample 𝑍 is generated from
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𝑃𝑇𝐽 . Fano’s method provides a lower bound on the estimation error in terms of an
upper bound on the mutual information between 𝑍 and 𝐽 (see Theorem 3.6.7). One
approach is to use the following inequality:

𝐼 (𝑍 ; 𝐽 ) ≤ 1

𝑚2

𝑚∑︁
𝑗,𝑘=1

𝐾𝐿(P𝑇𝑗 | |P𝑇𝑘 ),

(see inequality 15.34 of Wainwright [75]). Typically, an upper bound on the mutual
information is derived by finding an upper bound on such KL divergence quantities
or by bounding the KL divergence with other divergences or distances.

However, recall that the response variable in our regression model is a distribu-
tion itself, so 𝑃𝑇 is a distribution in W2(W2(R𝑑 )) and finding KL divergence between
such distributions could be challenging. It might be possible to find an upper bound
for the Wasserstein distance 𝑑W (𝑃𝑇1, 𝑃𝑇2), but typically, such an upper bound cannot
be used to find an upper bound for KL-divergence. It is generally easier to find an
upper bound for Wasserstein distance rather than a lower bound.

In this specific situation, determining minimax optimality using Fano’s method
might be difficult due to the complexity of the problem and the nature of the in-
duced distributions being in W2(W2(R𝑑 )). It may be necessary to explore alterna-
tive methods or develop new techniques tailored to this problem’s unique structure
that establish the minimax optimality of the existing rate.

Adaptive Approach We have examined an estimator that minimizes the func-
tional 𝑀𝑁 within a particular Hölder ball, dependent on 𝛽 , 𝛾 , and 𝑅. This proposed
estimator calls for knowledge of these parameters. Could there exist an estimator
that doesn’t require such information and might provide a rate that adapts to the real
intrinsic smoothness of the parameters?

I hypothesize that, under the same conditions as Theorem 4.3.7, specifically As-
sumptions 4.2.1, 4.2.2, 4.2.3, and 4.3.2, the following estimator would also be consis-
tent:

𝑇𝑁 := argmin
𝑇 ∈T

𝑀𝑁 (𝑇 ) . (6.1)

This estimator’s definition no longer hinges on the knowledge of the true smooth-
ness parameters. However, this might result in a slower convergence rate.

A possible strategy for determining the rate of this estimator might involve ini-
tially creating an approximation of𝑇𝑁 by convolution of𝑇𝑁 with a kernel [𝜖𝑁 , where
𝜖𝑁 is a bandwidth that depends on the sample size 𝑁 . It can be demonstrated that this
approximation sits within the Hölder ball𝐶𝛽

𝑅
for any given 𝛽 and an adequately large

radius 𝑅 that depends on 𝜖𝑁 . By obtaining some bounds on the growth rate of 𝑅, we
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can compute the metric entropy of the class 𝐶𝛽
𝑅

. Thus, by using a method analogous
to the one we employed to derive the rate of convergence of our estimator, we can
establish the rate of convergence for the approximation of 𝑇𝑁 . This could then be
used to define upper bounds for the estimator rate of 𝑇𝑁 .

Chapter 5

Higher-Dimensional Extensions Our autoregression models were based on the
iterated random function system (5.3). That system relies on compositions of optimal
maps being optimal for 𝑑 = 1, and hence it is not applicable to higher dimensions.
Are there any alternative approaches?

Potential avenues of research could involve constructing iterated random func-
tions of optimal maps, by exploring transformations on the space of optimal maps
that preserve optimality. Considering transformations of convex functions first, we
can construct transformations for optimal maps, given their characterization as the
gradient of convex functions.

Alternative Model for Distribution-on-Distribution Regression

In this section, we examine a model where the noise component is a random opera-
tor acting on the space of distributions, characterized as a Markov kernel. Similar to
Model (4.1), where the specific form of the noise component leads to interpreting the
model as specifying the conditional Fréchet mean of the response distribution, the
form of the noise component in this model leads to interpreting the model as speci-
fying a conditional weak barycenter (or weak Fréchet mean), which is introduced by
[13].

We briefly discuss some preliminary results on the identifiability of the model
parameters and the estimation procedure.

Markov Regression

A Markov kernel from R𝑑 to R𝑑 is a map of the form ^ : (𝑥, 𝐵) → ^ (𝑥, 𝐵) such ^ (𝑥, .)
is a probability measure for all 𝑥 ∈ R𝑑 and ^ (., 𝐵) : R𝑑 → R is measurable for every
Borel set 𝐵 ⊂ R𝑑 .

Given a Markov kernel ^ and a probability distribution ` on the same measurable
space, the Markov operator 𝑀^ induced by ^ is defined as:

(𝑀^`) (𝐴) =
∫

^ (𝑥,𝐴) d` (𝑥),
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where 𝐴 is a measurable set.
We consider a specific set of Markov kernels called Dilatations. A dilatation 𝑝 is

a Markov kernel such that
∫
𝑦 d𝑝 (𝑥,𝑦) = 𝑥 for all 𝑥 . We use Dilatations to model the

noise which leads to the following model for distribution-to-distribution regression:

a𝑖 = 𝑀𝑝𝜖 (𝑇0#`𝑖), (6.2)

where 𝑇0 is an optimal transport map, and 𝑀𝑝𝜖 is the Markov kernel induces by a
random dilatation 𝑝𝜖 . This model is equivalent to a𝑖 = 𝑀^𝜖 `𝑖 , where 𝑀^𝜖 is a Markov
operator induced by a random Markov kernel ^𝜖 , such that

∫
𝑦 d^𝜖 (𝑥,𝑦) = 𝑇0(𝑥) for

all 𝜖 .

Remark 6.0.1. The Model (6.2) implies the existence of a coupling (𝑋,𝑌 ) of (`, a),
where E[𝑌 |𝑋 ] = 𝑇0(𝑋 ) and (𝐸 [𝑌 |𝑋 ), 𝑌 ) forms a martingale. This coupling is called a
mixture of Brenier and Strassen as described by [30].

Let’s recall the definition of the convex ordering of distributions. For two distribu-
tions `, a ∈ P(R𝑑 ), we say ` is dominated by a in the convex order if

∫
𝜓 d` ≤

∫
𝜓 da

for all convex functions𝜓 : R𝑑 → R. This is denoted by ` ⪯𝑐 a .
Strassen’s theorem (Theorem 8 in Strassen [67]) establishes the following: ` ⪯𝑐 a

if and only if there exists a dilatation 𝑝 such that a = 𝑀𝑝`. From Strassen’s theorem
and Theorem 2 of Cazelles et al. [13], we can deduce that for any fixed measure `,
𝑇0#` is a weak Barycenter of the random measure 𝑀𝑝𝜖 (𝑇0#`).

Before stating a theorem for identifiability of 𝑇0, we mention a Lemma:

Lemma 6.0.2. The convex functions uniquely determine a measure with compact sup-
port Ω, in the sense that if ∫

Ω
𝜑 (𝑥) d` (𝑥) =

∫
Ω
𝜑 (𝑥) da (𝑥),

for all convex functions 𝜑 : R𝑑 → 𝑅, then ` = a . (see [71] for a proof)

Theorem 6.0.3. (Identifiability) Assuming the kernel 𝑝𝜖 is equal to the identity kernel
id(𝑥, .) = 𝑥 with positive probability, the map 𝑇0 can be identified up to the measure 𝑄 .

Proof. First note that for any fixed measure `, 𝑇0#` ⪯𝑐 a , where a = 𝑀𝑝𝜖 (𝑇0#`).
Also, since 𝑝𝜖 is equal to the identity kernel id(𝑥, .) = 𝑥 with positive probability, it
means that 𝑇0#` = a , with positive probability. Now if any other map 𝑇 , satisfies
these two conditions, we can infer that 𝑇#` ⪯𝑐 𝑇0#` and 𝑇0#` ⪯𝑐 𝑇#`. Therefore
for any convex function, the integral of this convex function with respect to measures
𝑇0#` and 𝑇#` are equal. By Lemma 6.0.2, convex functions uniquely determined a
measure, hence 𝑇0#` = 𝑇#`. Therefore, we can infer that ∥𝑇 −𝑇0∥𝐿2 (` ) = 0 for any
covariate measure ` and hence ∥𝑇 −𝑇0∥𝐿2 (𝑄 ) . □
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Remark 6.0.4. (Ideas for the estimator) We consider an estimator𝑇𝑁 such that𝑇𝑁#`𝑖 ⪯𝑐
a𝑖 . Note that such a map always exists, as 𝑇0 is a solution by the model assumption.

In the following, we will show that when 𝑑 = 1, an estimator𝑇𝑁 can be computed
using linear programming solvers.

Lemma 6.0.5. (Theorem 3.A.5 of [65]) When 𝑑 = 1, ` ⪯𝑐 a if and only if the corre-
sponding distributions have the same mean and∫ 1

𝑝

𝐹 −1(𝑢) d𝑢 ≤
∫ 1

𝑝

𝐺−1(𝑢) d𝑢,

for all 𝑝 ∈ [0, 1], where 𝐹 −1(𝑢) and 𝐺−1(𝑢) are quantile functions of ` and a respec-
tively.

Remark 6.0.6. From Lemma 6.0.5 we deduce that when 𝑑 = 1,𝑇#` ⪯𝑐 a is equivalent
to distributions 𝑇#` and a have the same mean and:∫ 1

𝑝

𝑇 (𝐹 −1(𝑢)) d𝑢 ≤
∫ 1

𝑝

𝐺−1(𝑢) d𝑢,

for all 𝑝 ∈ [0, 1].
Since

∫ 1

𝑝
𝑇 (𝐹 −1(𝑢)) d𝑢 =

∫ 1

𝐹 −1 (𝑝 ) 𝑇 (𝑦) 𝑓 (𝑦) d𝑦, from the previous inequality we de-
duce that for all 𝑝 ∈ [0, 1]:∫ 1

𝐹 −1 (𝑝 )
𝑇 (𝑦) 𝑓 (𝑦) d𝑦 ≤

∫ 1

𝑝

𝐺−1(𝑢) d𝑢.

Moreover, 𝑇#` and a having the same mean is equivalent to∫ 1

0
𝑓 (𝑦)𝑇 (𝑦) d𝑦 =

∫ 1

0
𝑥𝑔(𝑥) d𝑥,

Since these two conditions depend linearly on 𝑇 , the computation of the estimator 𝑇𝑁 ,
can be done by a linear programming solver.
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NY, 55(58-63):94, 2015.

[65] Moshe Shaked and J George Shanthikumar. Stochastic orders. Springer, 2007.

[66] Martin Slawski and Bodhisattva Sen. Permuted and unlinked monotone regres-
sion in R𝑑 : an approach based on mixture modeling and optimal transport. arXiv
preprint arXiv:2201.03528, 2022.

[67] Volker Strassen. The existence of probability measures with given marginals.
The Annals of Mathematical Statistics, 36(2):423–439, 1965.
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