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A B S T R A C T

Fields of technology as diverse as microwave filter construction, characterization of
material interfaces with atomic precision, and detection of gravitational waves from
astronomical sources employ mechanical resonators at their core. The utility of me-
chanical resonators can be explained by their sensitivity to a multitude of force fields
and actuation mechanisms, and the existence of extremely precise position measure-
ment techniques.

The possibility of faithful, real-time reconstruction of mechanical motion, especially
when the resonator is monitored interferometrically or with cavity spectroscopy, has
enabled the creation and engineering of quantum states of macroscopic mechanical res-
onators, in the fields of quantum optomechanics, levitodynamics and quantum acous-
todynamics. These experiments must however overcome the large thermal occupation
of mechanical oscillators in typical conditions, due to contact with high-temperature
baths. A fruitful path to counteract the thermal fluctuations governing the motion of
mechanical oscillators has been the engineering of the quality factor (Q) of the me-
chanical mode of interest, which coincides with the control of dissipation and isolation
from its environment. The class of methods termed dissipation dilution, implemented
in strained, high-aspect-ratio nanoresonators, allow the control of the mechanical Q
through mode shape engineering, and underpinned in the last decade an astounding
growth in mechanical coherence levels.

In this thesis, I report on the development of new types of ultracoherent mechanical
resonators leveraging dissipation dilution, united by a a common goal of preparing
quantum states of such resonators at room temperature. We improved the mechani-
cal performance of dissipation-diluted resonators by utilizing single-crystal materials
with high strain and aspect ratio, and investigated the performance of strained silicon
as a material for nanomechanics. Combining soft clamping in phononic crystal (PnC)
structures with the low friction of crystalline materials, we witnessed record-high me-
chanical quality factors beyond 1010 at MHz frequencies, at temperatures around 7K,
corresponding to phonon lifetimes of several hours.

We have also endeavoured towards observing quantum optomechanics at room tem-
perature, by exploiting mechanical resonators with high dissipation dilution. We assem-
bled a room temperature membrane-in-the-middle experiment, where a soft clamped
PnC membrane interacts dispersively with the optical modes of a Fabry-Pérot cavity.
In our first studies of this system, we witnessed an intensity noise mechanism vastly
exceeding the magnitude of quantum noise of the employed light field, and under-
stood it to be due to the sizeable thermal motion of the membrane resonator, distorted
by the nonlinear cavity transduction. We termed this noise source “Thermomechanical
Intermodulation Noise” (TIN), and devised methods to reduce its magnitude below
the vacuum fluctuations of the light field.

The limitations of our room temperature optomechanics experiment could also be
overcome with new types of mechanical resonators. I report on the development of
hierarchical membrane resonators with a partially soft clamped fundamental mode,
exploiting the notion of wave amplitude suppression over a three-beam joint, and PnC
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membrane resonators with density modulation, which offer enticing performance for
ground state cooling from room temperature in our experiment.

Keywords: nanomechanical resonators, dissipation dilution, tensile structures, nanofab-
rication, cavity optomechanics, precision measurements.



R É S U M É

Les résonateurs mécaniques sont au cœur d’applications technologiques aussi diverses
que la construction de filtres micro-ondes, la caractérisation d’interfaces entre maté-
riaux avec une précision atomique et la détection d’ondes gravitationnelles provenant
de sources astronomiques. L’utilité des résonateurs mécaniques s’explique par leur sen-
sibilité à une multitude de champs de force et de mécanismes d’actionnement, ainsi
que par l’existence de techniques de mesure de position extrêmement précises.

La possibilité de reconstruire fidèlement et en temps réel le mouvement mécanique,
en particulier lorsque le résonateur est contrôlé par interférométrie ou par spectrosco-
pie de cavité, a permis la création d’états quantiques artificiels de résonateurs méca-
niques macroscopiques, dans les domaines de l’optomécanique quantique, de la lévito-
dynamique et de l’acoustodynamique quantique. Ces expériences doivent cependant
surmonter l’énorme occupation thermique des oscillateurs mécaniques dans les condi-
tions ambiantes, en raison du contact avec des bains à haute température. Une voie
fructueuse pour contrer les fluctuations thermiques régissant le mouvement des oscil-
lateurs mécaniques a été l’amélioration du facteur de qualité (Q) du mode mécanique
concerné, qui coïncide avec le contrôle de la dissipation et de l’isolation par rapport
à son environnement. La classe de méthodes appelée dilution de dissipation, mise en
œuvre dans des nanorésonateurs sous tension, à rapport de forme élevé, permet le
contrôle du facteur de qualité mécanique par la maîtrise de la forme du mode, et les
niveaux de cohérence quantique démontrés au cours de la dernière décennie ont cru
de manière stupéfiante.

Dans cette thèse, je présente le développement de nouveaux types de résonateurs mé-
caniques ultracohérents tirant parti de la dilution de dissipation, dans le but commun
de préparer des états quantiques de ces résonateurs à température ambiante. Nous
avons amélioré les performances mécaniques des résonateurs à dilution de dissipation
en utilisant des matériaux mono-cristallins avec une tension et un rapport de forme
élevés, et nous avons étudié les performances du silicium déformé en tant que maté-
riau pour la nanomécanique. En combinant le soft clamping dans les structures à cristal
phononique (PnC) avec la faible friction des matériaux cristallins, nous avons observé
des facteurs de qualité mécanique record supérieurs à 1010 aux fréquences MHz, à
des températures d’environ 7K, correspondant à des durées de vie des phonons de
plusieurs heures.

Nous nous sommes également intéressés à l’optomécanique quantique à tempéra-
ture ambiante, exploitant des résonateurs mécaniques à forte dilution de dissipation.
Nous avons réalisé une expérience de membrane-in-the-middle à température ambiante,
dans laquelle une membrane PnC souple interagit de manière dispersive avec les
modes optiques d’une cavité Fabry-Pérot. Nos premières études de ce système ont
révélé un mécanisme de bruit d’intensité dépassant largement l’ampleur du bruit quan-
tique du champ lumineux utilisé, et nous avons découvert qu’il était dû à l’important
mouvement thermique du résonateur de la membrane, déformé par la transduction
non linéaire de la cavité. Nous avons baptisé ce phénomène “bruit d’intermodulation
thermomécanique” (abr. TIN pour “thermal intermodulation noise”) et avons déve-
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loppé des méthodes pour réduire son amplitude en dessous des fluctuations du vide
du champ lumineux.

Les difficultés de notre expérience d’optomécanique à température ambiante pour-
raient également être surmontées grâce à de nouveaux types de résonateurs méca-
niques. Je présente le développement de résonateurs à membrane hiérarchiques avec
un mode fondamental partiellement “soft clamped”, exploitant la notion de suppres-
sion de l’amplitude de l’onde sur une triple jointure, et de résonateurs à membrane
PnC avec modulation de densité, offrant des performances intéressantes pour le re-
froidissement de l’état fondamental à partir de la température ambiante dans notre
expérience.

Mots-clés: résonateurs nanomécaniques, dilution de dissipation, structures sous ten-
sion, nanofabrication, optomécanique en cavité, mesures de précision.
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1
I N T R O D U C T I O N

In 1797, Henry Cavendish was finally able to operate his apparatus to "weigh the
world", i.e., estimate the average density of Earth [1]. At the time, the law of universal
gravitation was not formulated in the same form as it is today, and the gravitational
constant G had not been defined. However, with knowledge of the radius of the Earth
and the gravitational acceleration g, the estimation of the density of Earth also yielded a
well-defined value of the gravitational constant. Cavendish’ instrument was a delicate
torsion balance, a rigid rod with two lead spheres on its ends (each weighing about
730 g), suspended by a slender wire from its center of mass. In the vicinity of the
lead spheres, Cavendish placed a couple of much larger lead balls (weighing about
158 kg), which could be lowered and raised by a pulley to change the distance from
the spheres, imparting a significant gravitational attraction on them (the apparatus is
portrayed in Fig. 1.1). The rod started rotating, until the restoring force from the twisted
suspension wire compensated the gravitational pull. By measuring the equilibrium
deflection, the rotational period of the balance and the distances between masses, the
density of Earth could be readily estimated. The torsion balance of Cavendish is an
example of a mechanical resonator, and it was used to carry out a remarkably sensitive
measurement of force for the time: the magnitude of the attractive force between each
pair of lead spheres was only around 150µN. Torsion balances with optical detection
are still used today for refining the precision of our G measurements, and to probe the
gravitational field generated by ever smaller source masses [2].

While Cavendish’s experiments confirmed and improved the Newtonian theory of
gravitation, more sensitive mechanical sensors also provided crucial experimental ev-
idence supporting its successor, Einstein’s general relativity. Gravitational waves are
emitted, according to general relativity, by source masses with time-varying accelera-
tion, whose motion does not exhibit spherical symmetry. The energy carried by such
waves is immensely large for astronomic sources such as black holes and neutron stars
binary mergers, rendering them observable even when extremely distant from Earth
(as far as 3× 106 light years for neutron star mergers [3]). When a gravitational wave
impinges on an elastic body, it generates measurable, time-varying stress and strain
states [4]. If the displacement of such a test mass can be measured with a sufficient
sensitivity, it can be used as a detector of the arrival of gravitational waves, and to in-
fer the properties of the generating astronomical event. Early attempts and prototypes
tried to exploit the resonant enhancement of the displacement response provided by
a high-Q mechanical oscillator (see Fig. 1.2), but lacked the necessary sensitivity. In
2015, the first direct observations of gravitational waves were made using kilometer-
scale interferometers, where the detection light is circulated in high-finesse cavities
(intracavity circulating power around 2× 105W), in which mirror suspensions provide
the test masses, deforming at the arrival of a gravitational wave. These observatories
are sensitive to minuscule displacements, as small as 2× 10−20m within one second
of integration time [3, 5], in a broad frequency band between 101 and 103 Hz. The
sensitivity band is no longer limited to a single resonance, but building high-Q mirror

1



2 introduction

Figure 1.1: Cross section through the Cavendish apparatus. The mobile lead spheres are
marked with x, while the heavy lead spheres are marked with W. Image adapted
from [1].

suspensions has remained extremely important, in order to reduce the off-resonant
Brownian motion contributing to the displacement noise floor [6].

Another ubiquitous and celebrated example of a precision sensor based on a mechan-
ical resonator is the atomic force microscope (AFM) [8]. An offshoot of the development
of the scanning tunneling microscope, the AFM was invented by Binning in 1986, and
proved to be much more practical and versatile, as it does not require conductive sam-
ples and can be operated at atmospheric pressure and even in liquid environments. As
such, AFMs are now widely commercially available and employed for material growth
characterization, surface science, and nanobiology, among other applications. In an
AFM, a mechanical resonator with a sharp tip (typically a cantilever) is brought in the
vicinity of the surface of a sample to be investigated, and the forces acting between
the surface and the tip deflect and perturb the mechanical parameters of the resonator,
such as its stiffness, which are monitored in real-time with optical detection (based on
deflection or interferometry). By monitoring, for example, the oscillation frequency of
the driving feedback loop as the tip is scanned on the sample surface, a map of the
nanoscale forces is obtained. Atomic resolution with the AFM was achieved soon after
its invention [9], and the extremely sensitive nature of this instrument was highlighted
by achievements such as the detection of the magnetic force exerted by a single elec-
tron spin [10] (in the attonewton range) and the direct imaging of DNA in aqueous
environments [11]. The nature of the interactions probed with atomic force microscopy
is extremely diverse: van der Waals, electrostatic, magnetic and adhesion forces can all
measurably affect the AFM cantilever.

As this short overview aims to highlight, mechanical resonators are particularly at-
tractive for realizing very precise measurements, due to their extreme versatility in
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Figure 1.2: Joseph Weber installing strain gauges on a resonant bar detector for gravitational
waves. Image adapted from [7].

coupling with different force fields. Precision measurements are also valued in applied
quantum mechanics, where mechanical resonators have been employed for their strong
interaction with systems with genuine quantum behaviour, such as superconducting
qubits [12, 13] and atomic clouds [14, 15], realizing hybrid quantum systems. Due to
the same versatility, mechanical resonators are exploited to mediate interactions be-
tween different quantum systems, or to transduce information with high efficiency
and low added noise between different frequency domains. In the quantum mechanics
of open systems, the interaction strength with a measurement field has to be compared
with the coupling rate to the environment, which is typically hot and overflowing with
thermal fluctuations. The theory of decoherence, in fact, shows that a system must
be very well-isolated from the environment in order to prepare states with nonclassi-
cal behaviour, such as those exhibiting Wigner function negativity [16], and to retain
quantum coherence, and entanglement over time. This requirement becomes harder to
fulfill as the system becomes more macroscopic [17]. Mechanical resonators are, how-
ever, particularly attractive for the high degree of isolation from the environment that
they can achieve, which is reflected by the damping rate or, equivalently, by the quality
factor Q = Ωm/Γm (Ωm is the angular eigenfrequency and Γm the damping rate in
angular units). The low dissipation of carefully-manufactured mechanical oscillators
was perfected in the Muscovite research group of Vladimir Braginsky, starting from
the 1960s, that was responsible for astounding progress in the technological aspects
of gravitational wave detectors and precision sensors. For example, in [18], a 13.7 cm-
long cylinder made of crystalline sapphire (high purity Al

2
O

3
), with a fundamental

elongational mode resonating at 38 kHz was reported to have a quality factor of about
3 · 107 at 200K and 5 · 109 at 4K. Such mechanical coherence required great care in
the manufacturing and assembly of the resonator, which was polished, annealed and
chemically etched to reduce its surface losses, and suspended with a silk thread by its
center of mass in a cryogenic vacuum chamber (the residual pressure was smaller than
1× 10−5mbar), to reduce elastic energy radiation and gas damping. Braginsky and
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Figure 1.3: Simplified suspension schematics of the LIGO detector mirrors; the test masses are
suspended by four tensioned fused silica fibers. Image adapted from [21].

his colleagues were also aware that their high-Q mechanical oscillators would behave
quantum mechanically even at relatively high temperatures, and contributed crucially
to the study of the impact of quantum fluctuations of the radiation pressure force of a
light field in continuous displacement measurements of a mechanical oscillators, and
to the development of quantum measurement techniques to circumvent the resulting
sensitivity limitations [19]. These findings laid the foundations for the field of quantum
optomechanics [20].

The previous example of a high-Q sapphire resonator shows that most of our current
knowledge about the microscopic causes of mechanical dissipation was already consol-
idated by the 1970s (the two-level defects model for describing mechanical and electro-
magnetic losses in glasses was proposed in the same decade [22]). A new method for
the enhancement of mechanical quality factors was discovered, however, in the 1990s,
independent of the precise microscopic mechanism that induces friction in the material.
Researchers investigated theoretically and experimentally the Brownian motion of the
mirror suspensions that would become the sensing element for the LIGO gravitational
wave interferometer, i.e. thin steel or fused silica fibers supporting the weight of the
massive cavity end-mirrors (about 40 kg) [23] (see Fig. 1.3). They noticed that some
classes of eigenmodes of the silica fibers, tensioned by the strong gravitational pull,
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would exhibit particularly low mechanical dissipation (and thermomechanical noise),
in particular the ‘violin’ fiber vibrational patterns and, to a greater extent, the ‘pendu-
lum’ resonance of the mirror suspension. Compared to those dictated by the intrinsic
material friction, the dissipation rates were suppressed by about two orders of magni-
tude. This was attributed to the storage of the majority of mechanical energy, during
resonant oscillations, in the lossless gravitational potential, compared to the fraction
stored in the dissipative elastic deformation. In the last 15 years, the phenomenon was
rediscovered independently in the field of nanomechanics, where strings and mem-
branes under high tensile stress due to thin-film synthesis processes were observed to
support similarly long-lived flexural resonances at kHz to MHz frequencies. Due to
the negligible contribution of gravitational potential energy, the dissipation dilution ef-
fect was again scrutinized and a more general criterion for dilution of mechanical loss
was formulated: the phenomenon will exist when there is tension in the mechanical
resonator at rest, and when the vibrational pattern exhibits geometric nonlinearity, i.e.
when the elongation of its elements is quadratic in the amplitude of the mechanical
mode [24], as we will discuss in Chapter 2. The latter condition, in particular, favours
resonators shapes with a high aspect ratio (just like the silica fiber suspensions of Fig.
1.3), a requirement which mechanical resonators can fulfill naturally.

Remarkably, in the last years the implicit dependence of the dilution on the resonator
geometry was exploited to engineer ultracoherent resonators, by tailoring the displace-
ment field curvature of vibrational patterns. The discovery of soft clamping [25, 26], in its
various incarnations, has brought forward a remarkable growth of mechanical quality
factors, with values beyond 109 [27] and 1010 [28] demonstrated at room temperature
and at liquid Helium temperature, reaching and surpassing the performance of macro-
scopic resonators (despite the much more severe surface losses affecting nanomechan-
ical resonators, due to a large surface-to-volume ratio). A multitude of experimental
results in cavity optomechanics have stemmed from these highly-diluted mechanical
resonators, among which are high-fidelity ground state cooling [29], strong-coupled
hybrid atom-mechanical systems [14], and microwave-to-optics converters that permit-
ted optical readout of superconducting qubits [30], with many more applications envi-
sioned by physicists, ranging from dark matter detection [31] to fundamental tests of
the mechanisms underlying wavefunction collapse in quantum mechanics [32].

1.1 this thesis

Within this thesis project, I have contributed to the development of low-dissipation,
highly-diluted nanomechanical resonators for optomechanics experiments, especially
for demonstrations of quantum optomechanics at room temperature, where the oscil-
lator is required to be particularly well-isolated from the sizeable thermal fluctuations
of the hot environment in order for radiation pressure to be the dominant drive of its
dynamics. In Chapter 2 I provide an introduction to the most important parameters
of micromechanical oscillators, to the spectral properties of Brownian motion, to the
known intrinsic and extrinsic mechanical damping sources and an overview of the es-
timation and manipulation of dissipation dilution. The description of the experimental
results of this thesis will start in Chapter 3, reporting on the development of crystalline
nanostrings with phononic crystal (PnC) soft clamping and state-of-the-art mechanical
dissipation at liquid Helium cryogenic temperatures. Chapter 4 will describe our room
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temperature optomechanical system: a membrane-in-the-middle system (MiM) with
an ultracoherent resonator embedded in a high-finesse Fabry-Pérot cavity. I will de-
scribe the details of the apparatus, and report on a strong thermal noise source we
encountered and characterized since the first investigations of our optomechanical cav-
ity – thermomechanical intermodulation noise (TIN). Finally, I will present our recent
efforts in suppressing TIN and results on feedback cooling in the MiM experiment, as
well as the design and fabrication of new membrane resonators that could significantly
simplify the requirements for ground-state cooling from room temperature, i.e. hierar-
chical trampoline resonators and density-modulated phononic crystal membranes.



2
F U N D A M E N TA L S O F N A N O M E C H A N I C A L R E S O N AT O R S

In this chapter, I introduce the language, the observables and the most important fig-
ures of merit pertaining to mechanical resonators, with particular focus on nanome-
chanical structures under high tension. First, the fundamental fields and equations
that describe the vibrations of a bi-dimensional, elastic thin structure will be presented.
I will then introduce the most important parameters for a mechanical resonator, such
as the spring constant and effective mass, used for mapping to a one-dimensional
harmonic oscillator model. I will discuss the Brownian motion induced by the inter-
action of the oscillator with a thermal reservoir, and its formal treatment with the
fluctuation-dissipation theorem. The discussion will then focus on the energy dissipa-
tion mechanisms in mechanical oscillators, and I will introduce the principles and rules
for computing the dissipation dilution for resonators under tension. Finally, I will re-
view some secondary consequences of dissipation dilution, such as the anharmonicity
due to geometric nonlinearity and the resonant frequency fluctuations.

2.1 quantization of the equations of elasticity

2.1.1 Strain, stress and elastic energy

The deformations of a solid-state, continuous body are described by the theory of
elasticity [33]. A displacement field (or deformation field) u⃗ maps the position of the
elements of the body before and after the deformation:

r⃗ ′ = r⃗+ u⃗(⃗r) (2.1)

The distance ds between closely-spaced points in the deformed body can be ex-
pressed in terms of the original coordinates (by a Taylor expansion of u⃗ to the first
order):

ds2 = (dri + dui)(dri + dui)

= dridri +

(
∂ui
∂rj

+
∂uj

∂ri

)
dridrj +

∂uk
∂ri

∂uk
∂rj

dridrj,
(2.2)

where summation over repeated indices is implied (Einstein convention, adopted for
the remainder of this chapter). We can now define a strain tensor, that will provide a
definition of metric in the deformed body:

ϵij =
1

2

(
∂ui
∂rj

+
∂uj

∂ri
+
∂uk
∂ri

∂uk
∂rj

)
, (2.3)

such that ds2 =
(
δij + 2ϵij

)
dridrj (δij is the Kronecker delta). Note that the strain ten-

sor is symmetric by construction (an antisymmetric component would represent rigid

7
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motion, which does not change distances within the body). In equation 2.3, the strain
tensor consists of two contributions: the first summand is linear in the displacement
amplitude, while the second is quadratic,

ϵ
(lin)
ij =

1

2

(
∂ui
∂rj

+
∂uj

∂ri

)
(2.4)

ϵ
(nl)
ij =

1

2

∂uk
∂ri

∂uk
∂rj

(2.5)

The second contribution is called geometrically nonlinear and is simply due to the Eu-
clidean definition of distance. It is generally neglected in the study of small deforma-
tions, but can imply very tangible consequences for vibrations, as we will see in the
treatment of dissipation dilution.

In order to write equations of motion for the reversible deformations of an elastic
body, we need an expression for the elastic energy density, w (the total elastic energy
is obtained by integrating w over the volume of the body). Rigid deformations do not
store elastic energy, therefore the strain tensor is an appropriate variable for construct-
ing the energy. The simplest such scalar, that respects basic assumptions of temporal
and spatial invariance, is:

w =
1

2
Cijklϵijϵkl, (2.6)

where Cijkl is the third-rank stiffness tensor, whose elements have the dimensions
of pressure. Equation 2.6 models the simplest case of physically linear elastic bodies,
which is an appropriate treatment for all the mechanical resonators described in this
thesis. Note however that for some materials, like rubbers or polymers undergoing very
large deformations, the model of 2.6 is no longer sufficient, and more complicated
expressions have to be postulated [34]. Elastic forces within the body are expressed
through the stress tensor (symmetric in turn):

σij =
∂w

∂ϵij
, (2.7)

such that the elastic energy density can be expressed as:

w =
1

2
σijϵij (2.8)

Stress and strain components are linearly related with the elastic energy defined in
2.6, and their dependence determines the elements of the stiffness tensor. This relation
is a generalization of Hooke’s law for continuum elasticity. The stiffness tensor is gen-
erally greatly simplified by symmetries of the solid-state material (e.g., crystal lattice
symmetries, as we will se in Chapter 3). Indeed, for an isotropic material the rela-
tion between stress and strain is determined by just two independent elastic constants,
Young’s modulus E and Poisson’s ratio ν:
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

σ11

σ22

σ33

σ23

σ13

σ12


=

E

(1+ ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2


·



ϵ11

ϵ22

ϵ33

ϵ23

ϵ13

ϵ12


(2.9)

(the stress and strain tensor components have been here collected in a compact vector
form, and their symmetric nature exploited in order to reduce the number of elements).

We consider the vibrations of a solid object with pre-stress, i.e. a body which has
internal strains and stresses at rest. In order to simplify the elastic energy expressions,
we split the stress and strain fields into their static and time-dependent parts:

σij = σ̄ij(⃗r) +∆σij(t, r⃗)

ϵij = ϵ̄ij(⃗r) +∆ϵij(t, r⃗)
(2.10)

Additionally, we explicitly decompose the time-dependent strain field into its linear
and quadratic components, ∆ϵij = ∆ϵ

(lin)
ij + ∆ϵ

(nl)
ij . We insert this expansion in 2.8,

and find the time-varying part of the elastic energy density (the one which governs
vibrational dynamics). Retaining only the terms up to the second order in the displace-
ment gradient, we obtain:

∆w ≈ σ̄ij∆ϵ
(nl)
ij + σ̄ij∆ϵ

(lin)
ij +

1

2
∆σ

(lin)
ij ∆ϵ

(lin)
ij

= σ̄ij∆ϵ
(nl)
ij +

1

2
∆σ

(lin)
ij ∆ϵ

(lin)
ij

= ∆w(nl) +∆w(lin)

(2.11)

where we used the identity σ̄ij∆ϵij = ϵ̄ij∆σij to write the first summand, and, to write
the second equality, we used the equilibrium condition ∂σ̄ij/∂rj = 0, valid for the static
strain tensor [33].

2.1.2 Kirchoff-Love membrane theory

With the expression of elastic energy density of 2.11, we can write a Lagrangian func-
tional L and apply the principle of least action to find the dynamical equations for
the displacement field. This procedure can be used, for example, to derive the wave
equations for excitations travelling within a medium with no pre-stress. However, for
our case of interest, it is more useful to simplify 2.11 by considering a pre-stressed,
high-aspect-ratio plate, i.e. a generic quasi-bidimensional body whose thickness h is
much smaller than its other dimensions (see Fig. 2.1).

For a thin plate, we can parameterize flexure (bending) by a displacement field
uz = ψ(x,y), approximately independent of z, the coordinate running along the plate
thickness. The plate cannot support large forces at its interfaces and, being thin, some
components of the stress tensor will approximately vanish in its interior: ∆σxz =
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Figure 2.1: a, Cross-sectional view of a thin plate undergoing bending, with the neutral plane
marked with a dashed line. b, Top-down view of the plate, with clamped boundaries
marked by hatches.

∆σyz = ∆σzz = 0. Expressing these components with Hooke’s law (2.9), and assuming
an isotropic material, we derive conditions that define the remaining components of
the displacement field:

∂ux

∂z
= −

∂ψ

∂x
∂uy

∂z
= −

∂ψ

∂y

∂ux

∂x
+
∂uy

∂y
= −

ν

1− ν

∂ψ

∂z

(2.12)

Integrating these differential equations and choosing the integration constants such
that strains vanish at the midpoint of the plate z = 0 (neutral plane approximation)
gives all the components of the strain tensor in terms of the displacement ψ:

∆ϵ
(lin)
xx = −z

∂2ψ

∂x2

∆ϵ
(lin)
yy = −z

∂2ψ

∂y2

∆ϵ
(lin)
zz = z

ν

1− ν

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
∆ϵ

(lin)
xy = −z

∂2ψ

∂x∂y

∆ϵ
(lin)
xz = ∆ϵ

(lin)
yz = 0

(2.13)

Notice that strains change sign between the different sides of the plate, as is expected
for bending. Using again 2.9, we can now calculate the linear, time-varying part of the
elastic energy density:

∆w(lin) = z2
E

2(1− ν2)

((
∂2ψ

∂x2
+
∂2ψ

∂y2

)2
+ 2(1− ν)

((
∂2ψ

∂x∂y

)2
−
∂2ψ

∂x2
∂2ψ

∂y2

))
(2.14)
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We can calculate similarly the geometrically-nonlinear dynamic strain components. By
keeping derivatives of ψ up to first order:

∆ϵ
(nl)
xx =

1

2

(
∂ψ

∂x

)2
∆ϵ

(nl)
yy =

1

2

(
∂ψ

∂y

)2
∆ϵ

(nl)
xy =

1

2

∂ψ

∂x

∂ψ

∂y

(2.15)

The remaining components are irrelevant for the purpose of computing the geometrically-
nonlinear component of the elastic energy density, which is expressed as 1:

∆w(nl) =
1

2

(
σ̄xx

(
∂ψ

∂x

)2
+ σ̄yy

(
∂ψ

∂y

)2
+ 2σ̄xy

∂ψ

∂x

∂ψ

∂y

)
(2.16)

With these expressions for the elastic potential energy, we are equipped to derive the
plate equation of motion from the least action principle. First, we write the plate La-
grangian:

L =
ρ

2

(
∂ψ

∂t

)2
−∆w(lin) −∆w(nl), (2.17)

where the first term provides the kinetic energy density, and ρ is the material density
(we neglected the smaller components of the displacement field along x and y). We
then require the action

S =

∫
dt

∫
Ω

dVL, (2.18)

to be stationary, i.e. δS = 0 (here Ω represents the plate spatial domain). The δ symbol
here represents a functional variation in an arbitrary direction, which can be propa-
gated to variations of the displacement field ψ and its time derivative, ψ̇. We split the
different terms of the action integral in order to separately analyze each of them, i.e.
δS =

∫
dt
(
δK− δW(lin) − δW(nl)

)
. For the kinetic energy variation, we obtain:

∫
dt δK = h

∫
dt

∫
Γ

dS ρψ̇δψ̇ =

[∫
Γ

dS ρhψ̇δψ

]t=∞
t=0

−

∫
dt

∫
Γ

dS δψρhψ̈, (2.19)

where the second equation was obtained with an integration by parts, a procedure
which is always necessary in order to express the equations of motion in differential
form and obtain boundary and initial conditions. Moreover, h is the plate thickness,
assumed uniform, and Γ is the plate surface. We similarly vary the linear part of the
elastic energy, which is repeated here, after integration over the z coordinate:

1 The static shear stress σ̄xy is generally negligible in thin film materials used for nanomechanical res-
onators, but can arise after the thin film is patterned and suspended through microfabrication techniques.



12 fundamentals of nanomechanical resonators

∆W(lin) =
D

2

∫
Γ

dS

((
∂2ψ

∂x2
+
∂2ψ

∂y2

)2
+ 2(1− ν)

((
∂2ψ

∂x∂y

)2
−
∂2ψ

∂x2
∂2ψ

∂y2

))
, (2.20)

where the factor D = Eh3

12(1−ν2)
, with units of torque, is called the bending or flexural

rigidity of the plate. We start by differentiating the first integral:

δ

(
1

2

∫
Γ

dS ∇4ψ
)

=

∫
Γ

dS ∇2ψ∇2(δψ)

=

∫
Γ

dS div(∇(δψ)∇2ψ) −
∫
Γ

dS ∇(δψ) · ∇(∇2ψ)

=

∫
∂Γ

dl ∇2ψ∂(δψ)
∂n

−

∫
Γ

dS div(δψ∇(∇2ψ)) +
∫
Γ

dS δψ∇4ψ

=

∫
∂Γ

dl

(
∇2ψ∂(δψ)

∂n
− δψ

∂(∇2ψ)
∂n

)
+

∫
Γ

dS δψ∇4ψ,

(2.21)

where to expand the integrals we used the vector calculus identity div(ab⃗) = a div(b⃗)+
b⃗ · ∇a, and we used the divergence theorem to switch from surface integrals to flux
integrals over the plate boundary ∂Γ (∂/∂n represents the derivative in the normal
direction to the boundary). The second integral of 2.20 can be immediately converted
to a line integral over the plate contour by writing it in terms of the divergence of a
vector field. A straightforward but lengthy calculation gives:

δ

(∫
Γ

dS

(
∂2ψ

∂x∂y

)2
−
∂2ψ

∂x2
∂2ψ

∂y2

)
=∫

∂Γ

dl
∂(δψ)

∂n

(
2sinθcosθ

∂2ψ

∂x∂y
− sin2θ

∂2ψ

∂x2
− cos2θ

∂2ψ

∂y2

)
+∫

∂Γ

dl δψ
∂

∂l

[
sinθcosθ

(
∂2ψ

∂y2
−
∂2ψ

∂x2

)
+
(
1− 2sin2θ

) ∂2ψ
∂x∂y

]
,

(2.22)

where ∂/∂l is a derivative carried out in the direction parallel to the contour and θ
is the angle formed locally between the x axis and the normal to the contour (see the
definition in Fig. 2.1b). Finally, we differentiate the geometrically-nonlinear component
of the elastic strain energy:

∆W(nl) =
h

2

∫
Γ

dS

(
σ̄xx

(
∂ψ

∂x

)2
+ σ̄yy

(
∂ψ

∂y

)2
+ 2σ̄xy

∂ψ

∂x

∂ψ

∂y

)
(2.23)

Applying the same divergence identity and integration by parts rules as in 2.21, we get
the following expression for the energy variation:

δW(nl) = −h

∫
Γ

dS δψ

(
σ̄xx

∂2ψ

∂x2
+ σ̄yy

∂2ψ

∂y2
+ 2σ̄xy

∂2ψ

∂x∂y

)
+

h

∫
∂Γ

dl δψ

(
σ̄xx

∂ψ

∂x
cosθ+ σ̄yy

∂ψ

∂y
sinθ+ σ̄xy

(
∂ψ

∂x
sinθ+

∂ψ

∂y
cosθ

))
,

(2.24)
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where we used ∂σ̄ij/∂rj = 0 for the static stress field to simplify the surface integral.
The sum of the surface integrals in 2.19, 2.21 and 2.24 must vanish for the action

to be stationary. Since the functional variation δψ is arbitrary within the domain, the
following differential equation must hold:

ρ
∂2ψ

∂t2
+
D

h
∇4ψ− σ̄xx

∂2ψ

∂x2
− σ̄yy

∂2ψ

∂y2
− 2σ̄xy

∂2ψ

∂x∂y
= 0, (2.25)

which is the general equation for bending vibrations of a thin, isotropic plate with in-
plane stresses, in the limit of small vibration amplitude (as we neglected terms of third
order and higher in the displacement field gradient in writing the elastic strain energy).
The boundary integrals in 2.19, 2.21, 2.22, 2.24, on the other hand, provide initial and
boundary conditions for the differential problem. We can immediately see that all
the boundary integrals vanish by the choice of displacement fields with a vanishing
amplitude and normal derivative on the plate contours:

ψ|∂Γ =
∂ψ

∂n

∣∣∣∣
∂Γ

= 0 (2.26)

These are clamped boundary conditions for the plate, implying that the displacement
vanishes at the plate edges and is locally horizontal close to them. On the other hand,
the boundary integrals can be nullified by other conditions on the displacement field,
such as those appropriate for simply supported or free edges. Since the analytical
expressions of these boundary conditions are quite cumbersome, we refer to [33] for
explicit expressions.

2.1.3 Modal expansion

We define now an inner product on the plate surface Γ : 2

⟨ϕ,χ⟩ =
∫
Γ

dS ϕ∗χ (2.27)

and rewrite the plate equation of motion as:

ρh
∂2ψ

∂t2
= Ôψ, (2.28)

identifying with Ô the differential operator containing all the spatial derivatives in
2.25:

Ôψ = −D∇4ψ+ hσ̄xx
∂2ψ

∂x2
+ hσ̄yy

∂2ψ

∂y2
+ 2hσ̄xy

∂2ψ

∂x∂y
(2.29)

2 Complex conjugation in the inner product definition is not strictly necessary as we are for the moment
dealing with real functions, but we include it nevertheless in order to maintain the validity of the defini-
tion when we will later consider complex eigenmodes with Euler’s notation.
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12.4 kHz

33.2 kHz 33.2 kHz 41.1 kHz

20.7 kHz 20.7 kHz

Figure 2.2: The six lowest-frequency bending eigenmodes of a tensioned plate, clamped on the
outer rim and free at the inner contour.

Ô is a hermitian operator with the definition of inner product in 2.27, provided that all
displacement fields satisfy the aforementioned boundary conditions on the plate con-
tour 3. Therefore, its eigenfunctions (see an example in Fig. 2.2) form a complete basis
ϕn(x,y) for the set of displacement fields with a fixed choice of boundary conditions,
i.e. we can write any displacement field as:

ψ(x,y, t) = xn(t) ·
∑
n

ϕn(x,y), (2.30)

where the time-dependent amplitudes xn have units of length (and the ϕn are adimen-
sional) 4. The eigenfunctions are also orthogonal, i.e.

∫
Γ dSϕ

∗
nϕm = 0 if m ̸= n. We can

then reduce 2.28 to a single-variable differential equation by inserting the modal expan-
sion of 2.30, multiplying with an arbitrary eigenfunction from the left and integrating
over the plate domain 5. We obtain:

meff,nẍn(t) = −knxn(t), (2.31)

the equation of motion of a simple harmonic oscillator with angular resonant frequency
Ω =

√
kn/meff,n and no dissipation, in which we have identified an effective mass [35]

and spring constant for the eigenmode ϕn, given by the following integral definitions:

3 The proof of this statement is essentially analogous to the integration by parts carried out in 2.21.
4 An expansion in the form of sum over discrete eigenmodes is guaranteed by the finite size of the plate

domain.
5 When this procedure is applied to an expansion over an arbitrary basis, it is termed a “Galerkin method”

for the discretization of the partial differential equations. This method is common in the formulation of
finite element problems.
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meff,n = ρh

∫
Γ

dS |ϕ2n|

kn = −

∫
Γ

dS ϕ∗
nÔϕn = D

∫
Γ

dS ϕ∗
n∇4ϕn−

h

∫
Γ

dS ϕ∗
n

(
σ̄xx

∂2ϕn

∂x2
+ σ̄yy

∂2ϕn

∂y2
+ 2σ̄xy

∂2ϕn

∂x∂y

)
= k

(lin)
n + k

(nl)
n

(2.32)

In the expression of the spring constant we distinguished the two components origi-
nating from linear and nonlinear dynamic strains. Using the same rules of integration
by parts applied when varying the action, we note that k(lin)

n = 2∆W(lin) (ϕn) and
k
(nl)
n = 2∆W(nl) (ϕn), with the expressions of the elastic energy components given in

2.20 and 2.23. We insert the linear expansion of 2.30 in the Lagrangian:

L =

∫h/2
−h/2

dz

∫
Γ

dS L =
ρh

2
⟨ψ̇, ψ̇⟩+ 1

2
⟨ψ, Ôψ⟩ =

∑
n

meff,n

2
ẋ2n(t) −

kn

2
x2n(t) (2.33)

This Lagrangian represents infinite non-interacting harmonic oscillators, each corre-
sponding to one eigenmode of the bidimensional structure. Exploiting the canonic
quantization rules [36], we associate with the conjugated variables xn and meff,nẋn the
operators x̂n and p̂n, such that their commutator at t = 0 is [x̂n(0), p̂n(0)] = i h. Fol-
lowing the treatment of the quantum harmonic oscillator, we can also introduce the
annihilation operator b̂n (and its hermitian-conjugated creation operator, b̂†n):

b̂n(t) =
1

2

(
x̂n(t)

xzpf,n
+ i
p̂n(t)

pzpf,n

)
, (2.34)

with xzpf,n =
√

 h/2meff,nΩn and pzpf,n =
√

 hmeff,nΩn/2. Using these operators we can
express the quantum Hamiltonian of the mechanical resonator as:

Ĥ =
∑
n

p̂2n
m

− L̂ =
∑
n

 hΩn

(
b̂†nb̂n +

1

2

)
, (2.35)

expressed in terms of the number of phonons populating each mechanical mode (the
phonon number operator is n̂n = b̂

†
nb̂n). The  hΩn/2 zero-point energy is given by

vacuum fluctuations, and similarly xzpf, pzpf can be shown to be the root mean square
widths of the vacuum state wavefunction in its position and momentum representa-
tions.

By knowing the frequency eigenvalue and the effective mass of mechanical reso-
nances in the frequency band of interest, one can disregard the distributed nature of
the resonator for many practical aims, and treat it as a collection of independent har-
monic oscillators. One case in which this simplification is crucial is the description and
calculation of thermomechanical noise, which will be summarized in the next section.
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2.2 fluctuations and dissipation

2.2.1 Correlations and spectral densities

We want to consider fluctuations of the observables of an eigenmode of a mechanical
resonator, excited by the interaction with an external environment. The environment
is assumed to have a large heat capacity such that it is not measurably perturbed
by the coupling. In order to deal with time-varying observables, it is conventient to
formulate their quantum mechanical evolution in the Heisenberg picture, i.e. the system
is presumed to remain in the initial state, while operators evolve according to the rule:

X̂(t) = eiĤt/
 hX̂(0)e−iĤt/

 h = Û†(t)X̂(0)Û(t) (2.36)

(valid if the Hamiltonian does not explicitly vary with time), where Ĥ is the Hamilto-
nian and we defined Û, the time evolution operator. This picture is completely equiv-
alent to the more traditional Schrödinger evolution of the wavefunction. Under the
harmonic oscillator Hamiltonian of 2.35, for example, the position and momentum
observables swap every quarter of the mechanical oscillation period:

x̂n(t) = x̂n(0)cos(Ωnt) +
p̂n(0)

meff,nΩn
sin(Ωnt)

p̂n(t) = p̂n(0)cos(Ωnt) −meff,nΩnx̂n(0)sin(Ωnt)
(2.37)

The temporal fluctuations around the expectation value of an observable are ex-
pressed as:

δX̂(t) = X̂(t) − ⟨X̂(t)⟩ = X̂(t) − Tr
(
ρ̂X̂(t)

)
, (2.38)

where ρ̂ is the density matrix representation of the state, which can be pure or mixed.
Fluctuations are more conveniently described in the frequency domain, and in order

to do so we introduce an analogue of the spectral density of a classical random process
for quantum-mechanical observables. With the definition of Fourier transform:

X̂(ω) =

∫∞
−∞ dt X̂(t)eiωt (2.39)

the spectral density is given by:

SXX(ω) = lim
T→∞⟨X̂†

T (ω)X̂T (ω)⟩, (2.40)

where the subscript T indicates that the Fourier transform does not extend between
±∞, but has been limited to a temporal window of duration T between ±T/2 (this def-
inition is rendered necessary to deal with random processes carrying infinite energy).
The Wiener-Khinchin theorem holds like in the case of classical random variables, and
guarantees that the spectral density is the Fourier transform of the process autocorre-
lation (here we assume that processes are stationary, i.e. their moments do not change
with time):
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SXX(ω) =

∫∞
−∞ dt ⟨X̂(t)X̂(0)⟩eiωt =

1

2π

∫∞
−∞ dω ′ ⟨X̂(ω)X̂(ω ′)⟩, (2.41)

where the second equality descends from the definition of Fourier transform and its
inverse. Note that, by the definition of inverse transform, the integral of the spectral
density gives the variance of the fluctuating observable:

Var(δX̂(t)) = ⟨δX̂2(0)⟩ = 1

2π

∫∞
−∞ dω SXX(ω), (2.42)

implying the interpretation of SXX as the power that the random process exerts in a
unitary frequency band.

This definition of spectral density does not always correspond to an experimentally-
observable quantity. An important difference with the case of classical random vari-
ables is that the spectral density is not necessarily symmetric in frequency, i.e. SXX(ω) ̸=
SXX(−ω), irrespective of X̂(t) being an hermitian operator. In order for the spectral den-
sity to be symmetric, the hermitian operator should commute with itself at different
times, i.e.

[
X̂(t), X̂(t ′)

]
= 0, a condition which is not even respected in the case of the

simple harmonic evolution of 2.37. Observable spectra are always symmetric around
the zero frequency, and in order to define quantities that match more closely the empir-
ical observables, a frequency-symmetrized version of the spectral density is sometimes
introduced:

S̄XX(ω) =
1

2
(SXX(ω) + SXX(−ω)) = S̄XX(−ω) (2.43)

In this case, spectral information at positive and negative frequencies is redundant,
and it is customary to define a single-sided spectral density, S̄X(ω) = 2S̄XX(ω) for
ω > 0, such that signal powers obtained by integration are the same when computed
only over positive frequencies.

Despite a frequency-asymmetric spectrum not being directly accessible, frequency
asymmetries can be measured with appropriately-conceived measurement schemes
[37], and they carry an interesting physical meaning. Consider a quantum harmonic os-
cillator coupled linearly to a reservoir with a fluctuating force that induces transitions
between its energy levels, i.e. an interaction described by an interaction Hamiltonian
Ĥbath ∝ x̂F̂. Using time-dependent perturbation theory and the Fermi golden rule, it
can be shown that negative and positive frequency components of the force noise spec-
tral density are proportional to the ascending and descending transition rates between
adjacent eigenstates of the harmonic oscillator ladder [38], i.e.:

γn→n+1
γn+1→n

=
SFF(−Ω)

SFF(Ω)
, (2.44)

with Ω being the oscillator frequency. In particular, in thermal equilibrium detailed
balance imposes that each total transition rate (i.e. weighted by the occupation factor)
between eigenstates is individually balanced by its reverse, such that:
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SFF(−Ω)

SFF(Ω)
=
γn→n+1
γn+1→n

=
Pn+1
Pn

= e−β
 hΩ =

n̄

n̄+ 1
, (2.45)

where we noted with Pn = ⟨n|ρ̂|n⟩ the occupation probability of the eigenstate with n
phonons, with n̄ = ⟨n̂⟩ the average phonon occupation,

n̄ =
1

eβ hΩ − 1
, (2.46)

and with β = (kBT)
−1 the inverse thermal energy, where T is the equilibrium temper-

ature. To write the last two equalities we used Bose-Einstein occupation statistics:

Pn = exp
(
−

 hΩn

kBT

)(
1− exp

(
−

 hΩ

kBT

))
(2.47)

We see that in the case of thermal equilibrium, the frequency asymmetry is simply
given by the Boltzmann factor, and that in the ‘classical’ limit of high temperature,
n̄→ ∞, a symmetric spectral density is recovered.

2.2.2 Oscillator linearly coupled with a thermal bath

We focus now on the problem of a single harmonic oscillator (with angular frequency
Ωm and effective mass meff), kept in a thermal state by its contact with a bath at tem-
perature T . The equilibrium is maintained by a linear interaction with the bath, i.e.
described by the aforementioned Hamiltonian Ĥbath = X̂iF̂i, with F̂i a stochastic force
induced by the bath and X̂i its conjugated variable. Using perturbative theory, Ryogo
Kubo derived an important result (valid both for quantum and classical mechanics),
that relates the fluctuations induced in an observable by the random force coupled
from the bath to the linear response of the system to a coherent drive [38, 39]. In a ther-
mal state and under linear coupling with the bath, fluctuations in a system observable
X̂j are given by the linear, delayed response

δX̂j(t) =

∫∞
−∞ dt ′ χjk(t− t ′)δF̂k(t ′)

δX̂j(ω) = χjk(ω)δF̂k(ω),
(2.48)

where χjk(t) is the time-domain force susceptibility, that can be computed from the
free-evolution of the system observable:

χjk(t) = −
i
 h
⟨
[
X̂j(t), X̂k(0)

]
⟩Θ(t), (2.49)

where Θ(t) is the Heaviside step function and X̂j(t) is the time evolution induced by
the system Hamiltonian (without bath coupling). χ(t) represents the system response
to an impulsive force applied at t = 0, and by virtue of this theorem, describes also
the incoherent response to fluctuations. As an example, we can compute the harmonic
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oscillator susceptibility to a force coupling with position, Ĥbath = x̂F̂, by inserting the
time evolution x̂(t) from 2.37 in 2.49:

χ(t) := χxx(t) = −Θ(t)
sin(Ωmt)
meffΩm

(2.50)

and Fourier-transform it to obtain the frequency-domain susceptibility:

χ(ω) =
1

meff(Ω2m −ω2)
+ i

π

2meffΩm
(δ(ω−Ωm) − δ(ω+Ωm)) , (2.51)

in which the real part coincides with the susceptibility of a classical harmonic oscillator
with no dissipation, i.e. described by the equation of motion of 2.31 (δ(x) is the Dirac
delta function). The imaginary part is usually associated with dissipation (being time-
delayed with respect to the force), but in this case is simply a consequence of the
causality of the impulse response (χ(t) = 0 if t < 0), or of the Kramers-Kronig relations.

2.2.3 The fluctuation-dissipation theorem

The density matrix of a thermal equilibrium state is given by the canonical ensemble:

ρ̂ =
exp(−βĤ0)

Z
, (2.52)

with Ĥ0 being the system Hamiltonian (e.g. the harmonic oscillator model of 2.35). Z is
the partition function that ensures correct normalization of the state: Z = Tr(exp(−βĤ0)).
Note that this state is mixed (ρ̂2 ̸= ρ̂) and has zero off-diagonal elements in the basis
of Fock states, i.e. it represents a classical mixture with no quantum coherence. Be-
fore proving the fluctuation-dissipation theorem, we state a useful, formal identity on
self-correlations of operators in the thermal state. We consider the correlator of an
observable with itself at a different time,

⟨X̂(0)X̂(t)⟩ = 1

Z
Tr
(

exp−βĤ0X̂(0)X̂(t)
)

=
1

Z
Tr
(
X̂(t)exp−βĤ0X̂(0)

)
=
1

Z
Tr
(

exp−βĤ0
(

expβĤ0X̂(t)exp−βĤ0
)
X̂(0)

)
=
1

Z
Tr
(

exp−βĤ0X̂(t− i hβ)X̂(0)
)
= ⟨X̂(t− i hβ)X̂(0)⟩

,

(2.53)

where we used the cyclic property of the trace to go from the second to the third equal-
ity and the time evolution of operators in the Heisenberg picture (cfr. 2.36) to obtain
the fifth from the fourth equation. In particular, 2.53 implies the following identity after
Fourier-transforming and using the Wiener-Khinchin theorem:

SXX(−ω) = SXX(ω)e−
 hωβ, (2.54)
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that coincides with the detailed balance criterion 2.45, as we are considering a thermal
equilibrium state.

We want to derive a thermal equilibrium relation between the imaginary part of
the susceptibility (providing, as we mentioned, the dissipative response to forces) and
the spectral density of the fluctuations induced by the bath in the observable whose
incoherent response is set by the susceptibility. To do this, we express the imaginary
part of the self-susceptibility (χ(t) := χxx(t), with x being a generic observable coupled
to the thermal bath random force) in the frequency domain:

Im (χ(ω)) =
χ(ω) − χ∗(ω)

2i
−−−−−−→
inverse FT

χ(t) − χ∗(−t)
2i

(2.55)

Using the perturbative expression of susceptibility (2.49), the invariance under time-
translations of the momenta of stationary processes and the properties of hermitian
operators, we obtain a simple expression in terms of correlators:

χ(t) − χ∗(−t)
2i

=
1

2 h

(
Θ(t)(⟨X̂(t)X̂(0)⟩− ⟨X̂(0)X̂(t)⟩) +Θ(−t)(⟨X̂(t)X̂(0)⟩− ⟨X̂(0)X̂(t)⟩)

)
=
1

2 h

(
⟨X̂(t)X̂(0)⟩− ⟨X̂(0)X̂(t)⟩

)
=
1

2 h

(
⟨X̂(t)X̂(0)⟩− ⟨X̂(t− i hβ)X̂(0)⟩

)
,

(2.56)

where we used 2.53 to derive the last equality. Taking the Fourier transform of both
sides, and recalling that the Wiener-Khinchin theorem connects the self-correlation
with the spectral density, we get the desired relationship between the fluctuations of
the observable and the dissipative part of its susceptibility:

SXX(ω) =
2 h

1− e− hωβ
Im (χ(ω)) (2.57)

A more familiar form is obtained by switching to frequency-symmetrized spectra, us-
ing the detailed balance relation 2.54 to expand the negative-frequency part:

S̄XX(ω) =
(
1+ e−β

 hω
) SXX(ω)

2

=  h coth
(

 hω

2kBT

)
Im (χ(ω))

= (2n̄(ω) + 1)  h Im (χ(ω)) ,

(2.58)

with n̄(ω) being the average phonon occupation for an oscillator with frequency ω. In
the limit of high temperature n̄ ≈ kBT/( hω) ≫ 1, 2.58 can be approximated by 6:

S̄XX(ω) =
2kBT

ω
Im (χ(ω)) (2.59)

6 An approximation that is accurate when evaluating fluctuation frequencies below the THz range at T =

300K and up to several GHz at T = 1K.
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δϕ
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Figure 2.3: Johnson noise in an RL circuit. The passive circuit in thermal equilibrium at temper-
ature T is equivalent to a noiseless RL with a noisy current source in parallel with
the resistor.

The opposite limit, β → ∞, implies that the system lies in the vacuum state, i.e. ρ̂ =

|0⟩ ⟨0|. We then obtain the spectral density of zero-point fluctuations:

S̄
zpf
XX(ω) =  h Im (χ(ω)) (2.60)

Finally, to refer the fluctuations of the system observable δX̂(t) to an effective spectrum
of the random force S̄FF, the linear response theory prescribes that 2.58 should simply
be divided by |χ(ω)|2:

S̄FF(ω) = − (2n̄(ω) + 1)  h Im
(
χ(ω)−1

)
(2.61)

The expressions in 2.58, 2.59, 2.61 are the best-known forms of the fluctuation-
dissipation theorem [39, 40]. They hold for classical stochastic processes as well as
in quantum mechanics, and their scope of application goes well beyond the case of
a mechanical resonator mode in thermal equilibrium, that we are mostly interested
in. Consider for example the electric circuit illustrated in Fig. 2.3, where an inductor
is connected in parallel with a resistor. In thermal equilibrium, the environment will
induce voltage and current fluctuations in the inductor through the resistor dissipative
contact, and the noisy resistor can be modelled as an ideal, noiseless resistor with a
stochastic current source in parallel. The conjugate variable of the current is the flux
threaded through the inductor, hence we can write the susceptibility as:

χ = ϕ/I =
RL

R− iωL
(2.62)

So that the inductor flux noise is given by 2.58:

S̄ϕϕ =  h coth
(

 hω

2kBT

)
ωL2/R

1+ω2L2/R2
(2.63)

and the spectral density of the resistor current noise is obtained by considering the
circuit current partition:
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S̄II =

∣∣∣∣R− iωLR

∣∣∣∣2 S̄ϕϕL2 =
 hω

R
coth

(
 hω

2kBT

)
−−−−−−→
kBT≫ hω

2kBT

R
, (2.64)

which is the expression of thermal Johnson current noise in a resistor, derived well
before the fluctuation-dissipation theorem had been formulated in its general form
[41]. Similarly, the theorem explains the connection found by Einstein between the
frictional damping (dissipation) and the diffusion constant (fluctuation) of a particle
undergoing Brownian motion in a viscous medium [42].

2.3 dissipation dilution in resonators with tensile stress

2.3.1 Loss angle and quality factor

The fluctuation-dissipation theorem relates thermomechanical fluctuations with the
damping properties, but our description of a plate mechanical resonator in section
2.1 did not include mechanical dissipation. If the dissipation rate is small compared
to the mechanical frequency (Q ≫ 1), it is appropriate to introduce and compute
it perturbatively, after formally solving the equations of elasticity and obtaining the
displacement, strains and stresses.

The mechanical power dissipated by friction in a vibrating body can be written as:

P = −

∫
dV σ

(diss)
ij

∂ϵij

∂t
, (2.65)

where σ(diss)
ij is a tensor of dissipative stresses. If the material deformations are re-

versible and within the elastic regime, the dissipative stresses only depend on the
dynamic strains and not on the static pre-strain. In order to treat the simplest-possible
case, the stresses are postulated to depend only on the local strain field at the same
point in space7, with a linear relation analogous to a dissipative version of Hooke’s
law. If we introduce a dissipative stiffness tensor ηijkl(t), explicitly time-dependent in
order to model a delayed response to strain, the dissipated power simplifies to:

P(t) = −

∫
dV

∫t
−∞ dτ ηijkl(t− τ)∆ϵ

(lin)
kl (τ)

∂∆ϵ
(lin)
ij (t)

∂t
, (2.66)

where we made the approximation ∆ϵij ≈ ∆ϵ
(lin)
ij , as the linear strain terms are domi-

nant. This expression is more conveniently written in the frequency domain, for vibra-
tions at the frequency ω:

P(ω) = iω

∫
dV ηijkl(ω)∆ϵ

(lin)
kl (ω)∆ϵ

(lin)
ij (ω) (2.67)

7 This assumption is violated for some known mechanical dissipation mechanisms. In thermoelastic damp-
ing, for example, the dissipative stresses are mediated by a temperature field that is generated by expan-
sion and compression, which has a finite extent governed by heat diffusion.
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A great simplification is obtained by assuming a specific form of η(ω): it is suggestive
to model the energy dissipation with an imaginary component of the material stiffness
constants (e.g. the Young’s modulus, in the isotropic case), since in the time domain this
will bring forth a time-delayed response. Limiting ourselves to the isotropic case, we
write the Young’s modulus as E(lossy)(ω) = Ee−iϕ(ω) ≈ E(1− iϕ(ω)). The phase term
ϕ(ω) ≪ 1 is called loss angle in treatments of friction in solids [43] and its introduction
allows an alternative expression of the dissipative stiffness: ηijkl(ω) ≈ −iϕ(ω)Cijkl.
By comparison with 2.11, we can then write the dissipated power in terms of the linear
elastic strain energy:

P(ω) = 2ωϕ(ω)∆W(lin) (2.68)

We want to relate this expression of the dissipated power to an effective damping rate
for the one-dimensional harmonic oscillator model. Using the normal mode expansion
of 2.30, and recalling that the dissipated power for a particle moving in one dimension
is P(t) = −Fẋ, or P(ω) = iωFx, with F a generic dissipative force, we obtain:

F(ω) = −2iϕ(ω)∆W(lin)(ϕn)xn(ω), (2.69)

Note that the energy functional evaluated on a normalized eigenfunction, ∆W(lin)(ϕn),
has dimensions of N/m. We can add the dissipative force to our equation of motion
for the eigenmode amplitude in the frequency domain (we drop the eigenmode index
for brevity) and obtain the familiar form of a damped-driven harmonic oscillator,

(
−meffω

2 + k− iωmeffΓ(ω)
)
x(ω) = Fdrive(ω)

χ(ω) =
1

meff ((Ω2 −ω2) − iωΓ(ω))

(2.70)

The damping rate Γ is expressed by comparison with the previous expression for the
dissipative force:

Γ(ω) =
2ϕ(ω)

meffω
∆W(lin), (2.71)

and the quality factor is evaluated as the ratio of the resonant frequency to the damping
rate:

Q =
Ω

Γ
≈ meffΩ

2

2ϕ(Ω)∆W(lin) =
k(lin) + k(nl)

2ϕ(Ω)∆W(lin) =
1

ϕ(Ω)

∆W(nl) +∆W(lin)

∆W(lin) , (2.72)

where we assumed Γ ≪ Ω, thus ω ≈ Ω to write the second equality. This expression
for Q contains the loss angle, which is a property of the internal friction of the material,
and an enhancement factor in terms of a ratio of geometrically nonlinear and linear
strain energies. It is customary to identify an intrinsic quality factor Qint = ϕ(Ω)−1,
and a dilution factor provided by the coexistence of static stress in the structure and
dynamic nonlinear strain in the vibrational mode, that ensure ∆W(nl) ̸= 0:
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Q = DQ ·Qint, (2.73)

DQ = 1+
∆W(nl)

∆W(lin) = 1+
k(nl)

k(lin) (2.74)

The expression of DQ was obtained for bidimensional, high aspect ratio mechan-
ical resonators, but it is useful to remember that they hold also for generic three-
dimensional elastic bodies [24]. However, DQ is heavily dependent on the resonator
geometry and strained high-aspect-ratio structures were the only ones that so far ex-
hibited measurable and significant dissipation dilution. It is useful to remark the con-
ditions that allowed us to express the quality factor in the simple form of 2.73, as a
direct enhancement over the intrinsic properties of the material:

• Dissipation should be governed by coupling of the linear strains produced during
the dynamic deformation of the material with internal degrees of freedom, and
not by interaction with external entities separated from the mechanical resonator.

• Dissipation manifests locally, as a simple temporal lag between dissipative stresses
and strain at the same location in space, which is set by the loss angle ϕ.

• The oscillation amplitude is small and lies in the linear regime.

• The diluted quality factor should be high, Q≫ 1.

An historical excursus on the discovery of dissipation dilution in nanomechanical
resonators is instructive. Dissipation dilution was first observed in strings of silicon ni-
tride (Si

3
N

4
) in the mid 2000s, when Verbridge et al. measured quality factors (Q) over

one million at room temperature [44, 45], 100 times higher than the expectation from
intrinsic material losses in amorphous media. Similarly, very high Qs were observed
in Si

3
N

4
membranes intended for transmission electron microscopy sample holders

(grids) [46]. Silicon nitride does not a priori appear to be a good material for high-
Q mechanical resonators, as amorphous materials are known to have high intrinsic
mechanical losses (Qint ∼ 103). The appeal of silicon nitride stems from a technical
advantage: thin films can be deposited with high strain through low pressure chemical
vapor deposition (LPCVD). In the context of nanomechanical oscillators it was evident
that strain played a crucial role in the high quality factors that were observed. Nev-
ertheless, the origin of the observed low dissipation was not immediately obvious, as
evidenced by it being described as a ‘crack in the universal dissipation of glasses’ [47].
Later, strain and geometric nonlinearity of deformations were recognized as the cause
of the phenomenon [24, 48]. The first link to the work on mirror suspensions in grav-
itational wave interferometers from Saulson and González [23] was made by Wu and
Yu in 2011 [49] and, around the same time, Unterreithmeier et al. [48] and Schmid et al.
[50] provided a complete theoretical modeling of the dissipation dilution in a doubly-
clamped beam. Yu et al. later extended the theory to the case of a clamped rectangular
membrane [51]. After these findings early in the last decade, it became fully appreci-
ated that dissipation dilution occurs both in macroscopic mirror suspensions and in
nanomechanical resonators.
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Figure 2.4: a, Thermomechanical displacement spectral density S̄xx(f), for different mechani-
cal susceptibility models. The modelled oscillator has meff = 1ng, Ω = 1MHz and
Q = 105, and the temperature is assumed to be T = 300K. b, Effect of the quality
factor on the thermomechanical noise close to resonance. For increasing Q, the res-
onant peak becomes sharper and higher, and the background noise decreases. The
oscillator is assumed to be structurally-damped.

Let us discuss in greater detail the intrinsic friction described by ϕ. In 2.70, a damp-
ing rate Γ that does not depend on frequency implies a frictional force proportional to
velocity, which is analogous to the well known case of drag during motion within a liq-
uid or a gas (viscous damping). From 2.71, we note that this case coincides with a loss
angle proportional to the frequency. While gas or liquid damping is a frequent dissipa-
tion source in mechanical resonators, it does not resemble intrinsic friction occurring
within the material, it cannot be diluted by tension, and indeed a linearly-varying loss
angle is not observed in measurements of mechanical energy lost to friction. Since the
pioneering work of Kimball and Lovell in 1927 [52] 8, it has been observed that the
loss angle of solid-state objects is, to a good approximation, frequency independent
[53], although no clear theoretical explanation has been provided so far. An oscillator
model with ∂ϕ/∂ω ≈ 0 or Γ(ω) = Ω2/(Qω) is said to be affected by structural damping
[6].

The main consequence of the loss angle dependence on frequency is on the spectral
shape of thermomechanical noise: evaluating the high-temperature fluctuation dissipa-
tion relation 2.59 for the damped harmonic oscillator susceptibility of 2.70, we obtain

S̄xx ≈ 2kBTmeffΓ(ω)

m2eff

1

(ω2 −Ω2)2 +ω2Γ2(ω)
= 2kBTmeffΓ(ω) ·

∣∣χ2(ω)
∣∣ (2.75)

and the corresponding well-known equation of thermomechanical force noise coupled
from the environment,

8 The method applied by Kimball and Lovell to measure material friction is particularly clever: a slender
bar of the analyzed material is bent by applying a weight to its end, and set into rotation on its axis at
the desired frequency. Upon rotation, the alternating tension and compression of the material elements
induces frictional forces that manifest with an overall deflection of the bar. Interestingly, the loss angle
correspond exactly to the angle of this deflection from the vertical.
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S̄FF = (2n̄+ 1) hmeffΓ(ω)ω ≈ 2kBTmeffΓ(ω), (2.76)

where the last equality holds for the high temperature, classical limit. The spectrum of
2.75 has a different frequency dependence according to Γ(ω) representing a viscous or
structural damping relation, as represented in Fig. 2.4a for a generic oscillator. Close
to resonance, the lineshape does not exibit a significant difference in the two cases, but
the frequency scaling at low and high frequencies is dramatically different: structural
damping thermal noise rolls off faster (∝ ω−5) beyond the resonant frequency, and
diverges as ∝ ω−1 at low frequency, while for viscous damping the scaling is ∝ ω4

and ∝ ω0 at high and low frequencies. A Lorentzian approximation (dashed black
line), given by:

χ(ω) ≈ 1

2Ωmeff ((ω−Ω) − iΓ/2)
(2.77)

fits well the resonant peak, but fails to describe the off-resonant thermal noise tails;
however it is an appropriate model for most experiments, since typically the sensi-
tivity is insufficient to resolve the off-resonant background. Exceptions are found in
recent works from the LIGO collaboration, where the outstanding interferometric sen-
sitivity allowed the resolution of low frequency thermal noise over many decades in
frequency [54]. The structural damping scaling introduced interesting implications in
quantum optomechanics experiments with extreme optical spring effect, including the
observation of quantum radiation pressure shot noise and feedback cooling to small
phonon occupations of macroscopic mirrors [5, 55, 56].

The divergence of the structurally-damped thermomechanical noise at low frequen-
cies implies an infinite variance of displacement fluctuations (through 2.42), which is
clearly non-physical. This discrepancy is also manifested by considering the impulse
response χ(t), which can be real only if the loss angle is an odd function of frequency,
ϕ(ω) = −ϕ(−ω) [43]. Both anomalies can be reconciled by assuming the loss angle
not to be constant for all frequencies, but to vanish smoothly for ω → 0 (as occurs
for viscous damping). The condition is not stringent, as the low frequency displace-
ment fluctuations become comparable to the contribution of the resonant peak only
when considering ϕ−1 octaves below the resonance [6], so that the deviation from a
frequency-independent loss angle can in reality occur at immeasurably-low frequen-
cies. A first-principles theory of structural damping in the solid state will hopefully
emerge in the future.

The total variance of position fluctuations can be recovered from the integration of
their power spectral density 2.75 over all frequencies [20],

⟨x2⟩ = 1

2π

∫∞
−∞ dω S̄xx(ω) =

kBT

meffΩ2
, (2.78)

where the last equality holds both for viscous damping and for the Lorentzian ap-
proximation of the susceptibility: the fluctuation-dissipation theorem, formulated for
thermal equilibrium, fulfills the equipartition theorem, and in particular the position



2.3 dissipation dilution in resonators with tensile stress 27

variance does not depend on the mechanical damping rate. The way this fact is mani-
fested in the frequency domain is shown in Fig. 2.4b: as the quality factor of the oscil-
lator increases, the thermomechanical peak becomes sharper and taller, in such a way
that the total integral remains the same. Experimentally, resonances with higher qual-
ity factors will be more prominent in the spectral landscape, and their thermal noise
will sooner decay below the sensitivity background of the measurement apparatus.

2.3.2 Dissipation dilution in a square drum

In order to acquire a sense of the magnitude and scaling of dissipation dilution, we
consider a simple but illuminating example: a square, tensioned drum of side length
L and surface L× L [51]. This example is also experimentally relevant: thin film mem-
branes made of transparent, strained Si

3
N

4
and used as sample holders for transmis-

sion electron microscopes were among the first mechanical resonators to be noticed
for their long-lived resonances. Due to their low absorption at optical and near in-
frared wavelengths, they were soon employed for cavity optomechanics experiments
[46], even before an explanation of their anomalously high quality factor was found in
terms of dissipation dilution. These membranes are also commercially available from
companies such as Norcada (https://www.norcada.com).

The static stress field in the thin film is assumed to be homogeneous, and lacking
shear components: σ̄xx = σ̄yy = σ and σ̄xy = 0. The spatial parts of its out-of-plane
flexural eigenmodes are described by the time-independent plate equation (see 2.25):

−
D

h
∇4ϕ+ σ∇2ϕ = Ôϕ = −ρΩ2ϕ, (2.79)

It is useful to write the equation in dimensionless form, by using normalized variables
p = x/L, s = y/L ranging from 0 to 1, such that 2.79 becomes:

λ2

1− ν2
∇4ϕ−∇2ϕ =

ρΩ2L2

σ
ϕ, (2.80)

where differential operators are now expressed in terms of the derivatives with respect

to p and s, and we introduced the strain parameter [24, 57] λ =
√

E
12σ

h
L . Crucially, the

strain parameter controls the shape of the flexural modes: in a high aspect-ratio plate
with significant tension, λ ≪ 1, and the first term of 2.80 can be neglected, except in
regions where the bending is particularly strong and the fourth derivatives are large.
In any case, for a tensioned, high aspect-ratio plate the first term can be considered as
a small perturbation, carrying important consequences as we will see later. Solving the
equation of motion without the first term of 2.80 amounts to finding the eigenfunctions
of the Laplace operator. On a square domain, the method of the separation of variables
can be applied, to find the eigenfunctions vanishing at the plate boundaries:

ϕ
(0)
n,m ≈ sin

(nπx
L

)
sin
(mπy
L

)
(2.81)

With these mode shapes, the corresponding eigenfrequencies are easily obtained with
the integral definitions of spring constant and effective mass in 2.32:

https://www.norcada.com
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Ωn,m =

√
kn,m

meff,n,m
=

√√√√−

∫
dS ϕ

(0)
n,mÔϕ

(0)
n,m

ρh
∫
dS ϕ(0)2

n,m

≈ π

L

√
σ(n2 +m2)

ρ
, (2.82)

We notice that the couples of modes with indices (n,m) and (m,n) are degenerate in
frequency, as expected from the symmetry of the problem.

The mode shapes of 2.81 vanish on the plate boundaries, but they do not respect the
clamped boundary conditions (ϕ|∂Γ = ∂ϕ

∂n

∣∣∣
∂Γ

= 0), which describe most nanomechan-
ical resonators connected to a rigid support, since the normal derivatives are finite at
x = 0,L and y = 0,L. A better approximation is obtained by applying a localized cor-
rection ϕ(1) in the vicinity of each of the four boundaries of the plate, which smoothly
connects to the original mode shapes ϕ(0) and possesses a vanishing first derivative
at the boundary. These corrections will be functions of a single variable, as only the
normal derivatives need to be suppressed. Let us consider, for example, the edge de-
fined by x = 0. In the vicinity of the boundaries, the amplitude of the mode shape is
infinitesimally small, so that the adimensional plate equation 2.80 can be simplified to:

λ2

1− ν2
d4ϕ

dx4
−
d2ϕ

dx2
≈ 0 (2.83)

The general integral of this differential equation is:

ϕ(p) = Ae

√
1−ν2p
λ +Be−

√
1−ν2p
λ +Cp+D (2.84)

We can set A = 0 since it controls a diverging term for x > 0. The remaining integration
constants can be found by imposing that ϕ and dϕ/dp vanish at p = 0, and that
dϕ/dp → ∂ϕ0/∂p|p=0 as p → ∞, providing a smooth connection to the unperturbed
solutions. We find the following expression for the mode shape approximation in the
vicinity of the edge x = 0:

ϕ(x) ≈ ∂ϕ(0)

∂x

∣∣∣∣
x=0

(
x+

λL

1− ν2

(
e−

√
1−ν2x
λL − 1

))
, (2.85)

where the first term in the parentheses is the Taylor approximation of ϕ(0), and we can
identify the second term as the boundary correction. Adding the contribution of the
remaining edges, we obtain the perturbation term 9:

ϕ
(1)
n,m(x,y) =

nπλ

1− ν2

((
e−

√
1−ν2x
λL − 1

)
+ (−1)n+1

(
e−

√
1−ν2(L−x)
λL − 1

))
sin
(mπy
L

)
+

mπλ

1− ν2

((
e−

√
1−ν2y
λL − 1

)
+ (−1)m+1

(
e−

√
1−ν2(L−y)
λL − 1

))
sin
(nπx
L

)
(2.86)

9 This expression of ϕ(1) satisfies the clamped boundary conditions only approximately, in the limit λ≪ 1.
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We notice that the perturbation is truly local to the membrane edges, as the exponential
corrections vanish for distances much larger than λL from the membrane boundaries.
This characteristic length can be well below a micrometer for thin nanomechanical
membranes under tension; for example λL ≈ 5h for the the typical mechanical param-
eters of stoichiometric LPCVD silicon nitride (Si

3
N

4
) thin films.

With this approximated expression of the mode shapes, we can calculate the dilution
factor with the prescription of 2.74, specifically, as a ratio of geometrically nonlinear
and linear strain energies. To simplify calculations, we note that for a clamped plate,
the second integral in the definition of linear elastic energy 2.20 (the one containing
the Gaussian curvature) must be null, as can be seen by applying Green’s theorem [51]
10.

∆W(lin) ≈ D

2

∫
Γ

dx dy
(
∇2ϕ(0)

n,m(x,y)
)2

+
D

2

∫
Γ

dx dy
(
∇2ϕ(1)

n,m(x,y)
)2

≈ D(n2 +m2)π2

8L2

(
π2(n2 +m2) +

2
√
1− ν2

λ

)
,

(2.87)

where the first summand in the parentheses comes from the square curvature integra-
tion over the standing wave (“antinode contribution”) and the second from the inte-
gration over the four high curvature regions at the clamped boundaries (‘’clamping
contribution”). The product term ∝ ∇2ϕ(0) · ∇2ϕ(1) can be neglected, as ∇2ϕ(0) ≈ 0

in the vicinity of the boundaries, where ϕ(1) is appreciable. The geometrically non-
linear contribution is well-approximated by computing the integral of 2.23 over the
unperturbed standing wave profile alone (the boundary correction is negligible, as it
exhibits a vanishing normal derivative):

∆W(nl) ≈ hσ

2

∫
Γ

dx dy

((
∂ϕ(0)

∂x

)2
+

(
∂ϕ(0)

∂y

)2)
=
hσπ2

8
(n2 +m2) (2.88)

Note that the same result is obtained by calculating the kinetic energy,

K ≈ ρhΩ2

2

∫
Γ

dx dy ϕ(0)2 =
hσπ2

8
(n2 +m2), (2.89)

by using the approximate resonance frequencies Ω2 ≈ σ(n2 +m2)π2/(ρL2). This re-
sult, valid in the limit of small strain parameter λ ≪ 1, is consistent with the virial
theorem, that imposes the equality between the average kinetic energy and the average
elastic energy (dominated by the geometrically-nonlinear component), and underlines
that it is possible to obtain the dilution factor also as DQ = K/∆W(lin), a convenient
expression for numerical estimations. The dilution factors are now given by the ratio
of the two energy components:

DQ = 1+
∆W(nl)

∆W(lin) ≈ 1+ (1− ν2)

(n2 +m2)π2λ2 + 2λ
√
1− ν2

≈ 1

2λ ′ + (n2 +m2)π2λ ′2
, (2.90)

10 The following energy expressions have units of Jm−2, since they are calculated using dimensionless
modeshapes. To recover the actual energies of an oscillator’s resonance, it is sufficient to multiply by the
square of the displacement amplitude.
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Figure 2.5: a, Mode shapes of the first four eigenmodes of a tensioned square membrane. The
mechanical and geometrical parameters of the membrane (assumed to be patterned
in thin film Si

3
N

4
) are given in the main text. Note the small hybridization be-

tween the degenerate modes (1,2) and (2,1). b, Dilution factors of the first 150

eigenmodes of the membrane, inferred with a finite element simulation (purple
dots). The dashed green line is the analytical approximation 2.90. The dark and
light green full lines are dilution factor upper bounds computed using only the
linear strain energy localized in 3λL-wide strips adjacent to the membrane bound-
aries or the energy generated in the bulk of the membrane. With these definitions,
DQ = (1/Dbound

Q + 1/Ddistr
Q )−1.

where we have redefined a more convenient strain parameter for the bidimensional
bending case (λ ′ = λ/

√
1− ν2) and, to write the last approximate equality, we have

assumed DQ ≫ 1, which is satisfied for small strain parameters (high tension and
high aspect ratio) and low order resonances. Several conclusions can be inferred from
2.90:

• For high tensile stress and high aspect ratio of the membrane, when λ ′ ≪ 1, the
quality factor can be diluted of many orders of magnitude.

• For low order modes of highly stressed resonators, the first term of the denomi-
nator, coming from the integration of the boundary correction to the mode shape,
is dominant, and DQ ∝ 1/2λ ′. This implies that the boundary curvature contri-
bution, that is established in order to satisfy the clamped boundary conditions,
is much stronger than the distributed curvature contribution.

• For higher order modes, as n or m approach 1/π
√
λ ′, the distributed curvature

term starts to contribute significantly, and for very high order modes the quality
factor will no longer be constant, but will roll off as DQ ∝ Ω−2 (see Fig. 2.5b).
The practical effectiveness of dissipation dilution is in fact limited to relatively
low-order modes, of frequencies up to a few tens of MHz.
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• The dilution factor also provides a small correction to the eigenfrequencies. The
expression of 2.82 was calculated as

√
k(nl)/meff, with the dominant geometrically-

nonlinear component of the spring constant being evaluated using the unper-
turbed mode shape ϕ(0). The first order correction is found by multiplying the
eigenfrequencies with the factor (1+ k(lin)/2k(nl) ≈ (1+ (2DQ)

−1), increasing as
the mode index grows.

A visualization of the contributions to the dilution factor from the boundary regions
and from the membrane bulk, for different flexural eigenmodes is presented in Fig. 2.5,
where the dominant role of the boundary curvature for the low order modes is clear.
The mechanical parameters used for the finite element simulation are E = 250GPa,
ν = 0.23, σ = 1GPa (typical values for thin film Si

3
N

4
grown by low pressure chemical

vapour deposition at temperatures around 800 °C) and the geometry of the membrane
is described by L = 200µm, h = 80nm, giving a strain parameter λ ≈ 1.9× 10−3. In
order to distinguish the boundary and bulk contributions to the dilution factor, I de-
fined partial dilution factors Dbound

Q and Ddistr
Q , calculated with ∆W(lin) evaluated close

to the boundaries (strips of width 3λL around the clamped edges) or in the remainder
of the membrane surface. In this way, the dilution factor DQ = (1/Dbound

Q + 1/Ddistr
Q )−1

is smaller than the smallest of the two contributions, and it is clearly dominated by the
boundary contribution for mode orders N ≪ 70. Here, the cumulative mode number
is defined as N(ω) =

∑
n,m:ω⩽Ωn,m

1 [58].
This derivation carries another important insight: since the largest part of the lossy,

linear elastic energy is associated to the boundary curvature, if the resonator supports
flexural modes whose gradient decays smoothly towards the boundaries, no strong
curvature will be produced, the dominant limit to the dilution factor will be suppressed
and the quality factors will increase drastically compared to the simple standing waves
supported by a uniform plate. The search of such resonator designs and mode shapes
has led to several different classes of resonators exhibiting soft clamping, i.e. a scaling of
dilution factors DQ ∝ λ−2, dominated by the distributed mode shape curvature. The
first example of soft clamping was obtained in membrane resonators via the patterning
of a phononic crystal [25], as will be discussed in the next section.

Analogous expressions can be derived for a unidimensional string resonator with
uniform cross section, under tensile stress, the main practical differences with the
membrane case being in the relaxation of the static stress component transverse to the
string profile and the corresponding reduction of tension due to Poisson’s ratio, and
the much smaller mode density, associated with the reduced dimensionality. The bend-
ing modes of a uniform string are described by the Euler-Bernoulli equation (given
here in the time-independent form),

Eh2

12

d4ϕ

dx4
− σ

d2ϕ

dx2
− ρΩ2ϕ = 0, (2.91)

where σ is the static stress established after Poisson relaxation along the direction of
the string (if the string was initially patterned from a uniformly tensioned thin film, it
is given by σ = σfilm(1− ν)). The same procedure described for the square plate gives
the eigenfrequencies and dilution factors of the uniform nanostring:

Ωn ≈ πn

L

√
σ

ρ
,DQ ≈ 1

2λ+n2π2λ2
(2.92)
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2.3.3 Soft clamping via dispersion engineering and phononic bandgaps
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Figure 2.6: a, Unit cell of the triangular lattice of density modulation. Hatches represents a re-
gion of increased density. b, First Brillouin zone corresponding to the unit cell, with
high symmetry points marked. c, Band diagrams of in-plane (red) and out-of-plane
flexural modes (blue) for increasing periodic density modulation, as parameterised
by g = ρeff/ρ. A bandgap for out-of-plane modes (shaded in grey) emerges for
g ⩾ 2. Simulation parameters: a = 260µm, σ = 1GPa, h = 20nm. The radius of the
circular regions of increased density is r = 0.2a d-e, Traveling waves with ky = 0

for the lowest two out-of-plane bands in the absence of density modulation, marked
with the corresponding symbols on the band diagram in c. The color encodes dis-
placement amplitude. f, Bandgap width normalized to center bandgap frequency
versus density contrast.

A periodic modulation of material properties can drastically change the dispersion of
elastic waves, and even introduce bandgaps, i.e. frequency ranges of forbidden elastic
propagation. Such media are called phononic crystals (PnC), and were proposed and re-
alized just few years after their electromagnetic counterparts, photonic crystals [59, 60].
In microscale devices, aided by developments in microfabrication techniques, phononic
crystals have become an indispensable tool to implement low-mass, high-coherence,
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localized vibrations that can couple strongly to electromagnetic fields, and to engi-
neer spectral environments with low density of vibrational modes [61]. In the research
group of Oskar Painter, the development of optomechanical crystals, i.e. nanoscale
structures that can strongly co-localize optical and mechanical modes, led to a series
of pioneering strides in quantum optomechanics, such as the first demonstration of
ground state cooling of a mechanical mode of a macroscopic resonator [62] and the
observation of quantum correlations created by the optomechanical interaction. Op-
tomechanical crystals grew to be one of the most successful optomechanical platforms,
currently employed for such endeavours as quantum-coherent transduction between
radiofrequency and optical signals [63], implementation of quantum communication
protocols [64] and of quantum memories [65]. Phononic crystals have one important
advantage over their electromagnetic equivalents: since vacuum cannot support elastic
waves, and air presents a massive impedance mismatch with elastic media, scatter-
ing to free-space is much less relevant in phononic crystals than in photonic crystals,
where it is commonly mediated by imperfections that perturb their periodicity. This
makes PnC devices much more robust to fabrication imperfections [26], and implies
that the energy of a vibrational field confined in a PnC bandgap can only escape by
tunneling through a finite-sized crystal or by coupling with a family of modes with no
simultaneous bandgap, which is typically a weak mechanism.

In dissipation-diluted resonators, the aforementioned advantages are combined with
another crucial aspect: the localization of a resonant mode with a mechanical frequency
within an elastic bandgap, induced by the perturbation of the periodic translation sym-
metry of the PnC by the intentional introduction of a defect, leads to a displacement
field envelope that decays exponentially in the PnC regions (as described by an imag-
inary wavevector). This type of displacement pattern approaches the boundaries with
a vanishing gradient, suppressing the boundary contribution to ∆W(lin) of orders of
magnitude, which in turns enhances substantially the dissipation dilution factor. The
application of phononic crystal to high aspect ratio, tensioned mechanical resonators is
more recent [25, 66] and the understanding of their impact on dissipation engineering
inaugurated research on soft clamping techniques [25, 26].

Let us clarify these concepts with a concrete example building on the case of a
tensioned, thin film square membrane. Neglecting the flexural rigidity of the mem-
brane in the limit λ ≪ 1, the dispersion relation of out-of-plane flexural waves is de-

scribed by a simple wave equation, and Ω ∝
√
k2x + k

2
y, with kx,y being the wavevec-

tor. A periodic perturbation of the speed of sound can be introduced, e.g, via mod-
ulation of the material density, for example using compound materials or nanoscale
patterns [67]. The local density can be described as ρeff(x,y) = g(x,y) · ρmaterial, where
g(x,y) is repeating periodically in the plane according to a triangular lattice, whose
unit cell is portrayed in Fig. 2.6a. Eigenfunctions take then the form of Bloch waves,
ϕ(x,y) = u(x,y)ei(kx·x+ky·y), where u is a function with the periodicity of the triangu-
lar lattice. The wave dispersion can be fully described within the first Brillouin zone in
reciprocal space (the reciprocal lattice is also triangular), drawn in b. As shown in Fig.
2.6c, the dispersion relation of flexural modes is perturbed, especially on the bound-
aries of the Brillouin zone, with all flexural bands shifting to lower frequencies due
to the increase in meff and a bandgap opening and gradually increasing in spectral
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width (see Fig. 2.6f) 11. The formation of a bandgap of forbidden elastic wave trans-
mission can be explained by the constructive interference between waves scattered by
the density modulation, for wavevectors lying on the boundaries of the Brillouin zone.
The in-plane vibrational bands (drawn in red), on the other hand, are much less sen-
sitive to the changes in ρeff, and no bandgap is observed at the same frequencies (the
out-of-plane bandgap is more properly described as a quasi-bandgap). The coupling
of in-plane and out-of-plane modes is however very weak, due to the large mismatch
in phase velocities (the stiffness of the plate is much higher for in-plane bending than
out-of-plane bending), and out-of-plane vibrations are effectively suppressed in the
bandgap regions. Note that the band structure presented in Fig. 2.6c can be easily ex-
tended to different unit cell sizes, densities or stress due to the scaling properties of
the wave equation: for examples an isotropic rescaling a → a ′ will shift the out-of-
plane bands to Ω ′ = Ωa/a ′, and a change in stress will similarly shift the bands as
Ω ′ = Ω

√
σ ′/σ

The discussed band structure is a property of an infinite, perfectly periodic medium.
In real structures, vibrational modes with frequencies within the bandgap can exist at
the membrane boundaries or localized to defects in the translation symmetry of the
speed of sound modulation. Suppose one of the regions of high density is missing and
the density there is locally uniform and equal to the lowest value in the unit cell. Finite
element simulations reveal that one or two modes localized to the defect region emerge,
decaying with an exponential envelope in the unperturbed PnC regions (see Fig. 2.7a).
For those modes, the displacement field gradient is strongly suppressed towards the
boundaries and the boundary curvature contribution ∝ λ−1 that dominated in the DQ
expression of 2.90 for the case of a uniform membrane is strongly suppressed, in such
a way that the distributed term ∝ λ−2 prevails. This behaviour is characteristic of a soft
clamped mode, where the clamped boundary conditions no longer strongly influence
the dissipation dilution properties. The aspect ratio and frequency dependence become
even stronger for soft clamped modes, as the ∝ λ−2 term scales rapidly with the mode
order. In order to enhance the quality factor, it is convenient to open a vibrational
bandgap as close to the fundamental mode as possible, but this sets a constraint to the
membrane extent and to the number of unit cells that surround the defect. In this case,
the boundary curvature term could be incompletely suppressed and contribute to the
localized mode DQ, producing a trade-off between boundary and distributed curva-
ture suppression. The trade-off is also manifested when varying ρeff, as shown in Fig.
2.7b, as an increase of the density contrast suppresses more strongly the boundary con-
tribution to DQ but enhances the decay rate of the defect mode exponential envelope
and the distributed curvature associated to it. Note that the maximumDQ = 3.46× 105
for g ≈ 3.9 is about 18 times larger than the dilution factor of the n = m = 1 mode of
a square membrane of the same size. The size scaling is faster than for uniform mem-
branes: enlarging uniformly the membrane extent increases monotonically the quality
factor of the soft clamped mode and reduces its resonant frequency, since DQ ∝ L2

and Ω ∝ L−1.
A general (approximate) upper bound can be found for the DQ of dissipation-

diluted modes of these density-modulated membranes with uniform stress, by consid-

11 Note that the model of [68] cannot properly describe the bandgap width as a function of the speed of
sound contrast in the unit cell, as the bandgap is generally indirect. In other words, the maximum of the
lower band and the minimum of the upper band occur at different propagation directions of Bloch waves.
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b
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Figure 2.7: a, Displacement pattern of a mode localized to a defect in the triangular lattice of
density modulation. b, Effect of varying g on the dilution factor of the localized
mode. Dark green dots: boundary contribution to DQ, light green dots: distributed
contribution, dashed green line: overall DQ. The inset zooms in on the lower region
of the plot shaded in light blue. c, Spectral background in the vicinity of the bandgap
region (shaded in grey) for the PnC membrane. Membrane resonances are marked
with a vertical line, and the displacement patterns of the two localized modes are
provided as insets.

ering the case of an insignificant contribution of the boundary curvature. By remem-
bering that in plates where all the boundaries are subject to clamped conditions the
Gaussian curvature integral is null [51], we can express the lossy linear strain energy
as:

∆W(lin) =
Eh3

24(1− ν2)

∫
Γ

dS
(
∇2ϕ(x,y)

)2
⩾ −

Eh3Ω2

24σ(1− ν2)

∫
Γ

dS ρ(x,y)ϕ(0)∇2ϕ(0)

⩾
Eh3Ω2ρmin

24σ(1− ν2)

∫
Γ

dS

((
∂ϕ(0)

∂x

)2
+

(
∂ϕ(0)

∂y

)2)
≈ Eh2Ω2ρmin

12σ2(1− ν2)
∆W(nl),

(2.93)

where ρmin is the minimum volumetric density found on the membrane surface, ϕ(0)

is the solution of the differential equation that approximates the displacement pattern
far from the boundaries, σ∇2ϕ(0) + ρΩ2ϕ(0) = 0, and the second upper bound was
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obtained using Green’s identity and clamped boundary conditions. In writing the first
inequality, we implicitly neglected the boundary curvature contribution. Using 2.74,
the upper bound to the dilution factor is:

DQ ⩽
12(1− ν2)σ2

Eρminh2Ω2
(2.94)

This bound closely corresponds to the one stated in [24] for soft clamped modes in
nanostrings (where the case of nonuniform static stress through elastic strain engineer-
ing [26] is also considered). Note that this bound is not strictly applicable to the original
soft clamped resonances demonstrated in [25] using periodically-pierced membranes
with stress modulation in lieu of density modulation. The presence of hole boundaries
free to displace implies that the Gaussian curvature integral is nonzero [69] 12 and the
simplifications leading to 2.94 are not valid. Nevertheless, the performance of those
devices is even further from the bound of 2.94 due to the effects of stress redistribution
in a patterned resonator, which lower the diluting nonlinear elastic energy [24].

2.3.4 Dissipation dilution of torsional modes

So far, all the examples of dissipation dilution in strained nanomechanical resonators
we mentioned involved bending modes of high aspect ratio strings or membranes.
It was recently demonstrated that torsional modes of tensioned beams can also exhibit
significant geometric nonlinearity and dissipation dilution [71]. In this case the relevant
aspect ratio governingDQ is not the length of the beam over its thickness but rather the
width over the thickness w/h, explaining why significant dilution of torsional modes
was not observed earlier (nanobeams with w ≫ 1µm and h < 100nm should be
fabricated, and such dimensions imply significant fabrication challenges).

Consider a nanobeam undergoing torsional vibrations, parametrized by a rotation
angle of its cross section θ(x). Let y be the coordinate running along the nanobeam
width, and assume that the angular torsion rate is constant over the longitudinal coor-
dinate x, reaching a maximum torsional angle of θ̄ at one end of the beam. At the edges
of the nanobeam, significant elongation of its longitudinal elements is witnessed, as the
rotation of the cross section implies a displacement uz ≈ yθ. The out-of-plane displace-
ment imposes a longitudinal elongation ∆L ≈ u2z/(2L), resulting in a geometrically-
nonlinear dynamic strain ∆L/L ≈ θ̄2y2/(2L2). Like flexural modes of long beams, a tor-
sional mode of a sufficiently wide beam can store significant geometrically-nonlinear
strain energy, that will dilute the linear dissipation. Furthermore, the torsional mode
patterns can fulfill clamped boundary conditions without incurring in large bound-
ary curvature, implying that the most significant limit to the DQ of flexural modes is
absent, and resulting in the soft clamping geometrical scaling.

It is shown in [71] that the following expressions for the torsional elastic energy
components are valid for a uniform nanobeam (in the approximation ν ≈ 0):

12 In that case, the Gauss-Bonnet theorem implies that the linear strain energy component proportional to
the Gaussian curvature is given by the geodesic curvature accumulated at the free membrane edges [70].
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∆W(nl) ≈ σhw3

24

∫
dx

(
dθ

dx

)2
∆W(lin) ≈ Eh3w

24

∫
dx

(
2

(
dθ

dx

)2
+
w2

12

(
d2θ

dx2

)2)
,

(2.95)

where w and h are the nanobeam width and thickness. In the linear strain energy term,
the first integrand is due to shear strains ∆ϵ(lin)

xy produced by torsion, and the second
from normal linear strains ∆ϵ(lin)

xx . Note that these expressions are special cases of the
more general plate elastic energy 2.20, when a deformation field describing torsion is
specified. In numerical simulations, therefore, the plate expressions are adequate also
to compute torsional dissipation dilution.

Taking the energy ratio and assuming the torsional mode shapes θ(x) = sin (nπx/L)

to follow normalized sinusoidal profiles vanishing at the clamping points (that, in con-
trast to flexural modes, do not violate the clamped boundary conditions), the following
DQ expression is found:

DQ ≈ σ

2E

(w
h

)2 1

1+ n2π2

24

(
w
L

)2 , (2.96)

following the soft clamping scaling ∝ (w/h)2 as long as the beam is sufficiently long
and the mechanical frequency sufficiently low to fulfill L≫ nw.

For optomechanics experiments, torsional modes bring an advantage in that they
are sensitively interrogated with optical lever detection methods, that are particularly
simple to implement and do not require interferometric stability [71].

2.3.5 Finite element simulations of strained nanomechanical resonators

A digression is in order to discuss how to numerically compute the dilution factors
from finite element simulations, in the cases where analytical solutions are not avail-
able. The method below was optimized and benchmarked mostly by Sergey A. Fedorov
and me (and initiated by previous doctoral students in our research group).

We use the software package COMSOL Multiphysics and conduct solid mechanics
simulations using the ‘Shell’ interface, which simplifies the differential equations of
solid mechanics by assuming a small plate thickness compared to the lateral dimen-
sions, and a simple form for the variation of the displacement field through the plate
thickness. In this way, the solid mechanics problem becomes largely bidimensional,
and much faster to formulate and solve. Moreover, the interface proved to be more
accurate for extremely large aspect ratio structures (L/h up to 105), and does not re-
quire the creation of large aspect ratio elements along the plate thickness dimension,
which can be tedious and problematic. In case the mechanical resonator contains free
edges, a pre-stressed eigenfrequency study is carried out. This consist of two simu-
lation steps: in the first stationary study, the initial stress field is relaxed to find an
equilibrium configuration (see Fig. 2.8c). The thin film stress is usually chosen as ho-
mogeneous by setting an initial in-plane force of Nxx = Nyy = σh within the node
Linear Elastic material → Initial Stress and Strain. If no free boundaries are
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a

c

b

200 nm

1 mm

Figure 2.8: a, Finite element simulation domain for a density-modulated PnC membrane, with
the color representing the local mass density. b, Enlarged view of the mapped mesh
constructed in the vicinity of a boundary region (marked with the red square in
panel a). The color bar represents the mesh elements quality as conveyed by a nor-
malized skewness parameter. c, Example of output stress field calculated in the first
stationary step of the pre-stressed simulation, for a stress-modulated, pierced PnC
membrane. The color encodes Von Mises stress.

present (like in the case of density-modulated PnC membranes), this step is superflu-
ous. The second simulation step is an eigenfrequency study which employs the results
of the stationary step as an initial condition to find the eigenfrequencies and mode
shapes. For this step we choose the option to ’Include geometric nonlinearity’ (Study
→ Step 2: Eigenfrequency) in order to properly compute the lossless elongation en-
ergy. Clamped boundary conditions u⃗ = ∂u⃗/∂n⃗ = 0 are applied to the appropriate
resonator edges (Shell → Fixed Constraint).

In order to find the correct mode shapes at the resonator boundaries, which can have
a dramatic effect on the computed dilution factors of flexural modes, we make sure to
mesh the boundary region with much smaller elements than the bulk surface of the
mechanical resonator. In practice, we define strips of extent ∼ 4λL ≈

√
4E/3σ · h (λ is

the strain parameter) in the direction normal to the clamped boundaries, that we frag-
ment into high aspect ratio rectangular elements using a Mapped meshing algorithm
(Mesh 1 → Mapped, see Fig. 2.8b). We enforce at least several tens of elements in the
direction orthogonal to the boundary; a good practice is to check all the simulation
results (especially the dilution factors) while tuning the mesh density, ensuring that
they are not very sensitive to changes in mesh element size.

While eigenfrequencies are given immediately by the finite element solver after the
simulation is carried out, we need to compute explicitly the dilution factors. The safest
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method is to make use of the displacement pattern produced by COMSOL and of
the plate strain energy expression in 2.20, containing the second derivatives of the
displacement which are easily extracted in COMSOL. In lieu of the nonlinear strain
energy 2.23, that would require the tedious task of overlapping fields that are output
from different simulation steps (in case of need, this can be carried out using the built-
in function withsol()), we can appeal to the virial theorem and use the kinetic energy,
whose cycle average is equal to the total elastic energy. Diluted quality factors are
obtained as Q = Qint ·

kin_energy
bend_energy , and below we provide for convenience expressions

that can easily be copy-pasted to COMSOL (Derived Values → Global Evaluation).
They make use of the user-defined parameter h_mbr for the plate thickness and the
built-in parameters shell.rho, shell.E, shell.nu, shell.omega defined in the Shell
interface. intop1() is an integration operator (Definitions → Integration 1) over
the whole plate surface.

kin_energy=intop1((h_mbr*shell.rho*shell.omega^2*shell.disp^2)/2)

bend_energy=intop1(shell.E*h_mbr^3*((dtang(dtang(w,x),x)+dtang(dtang(w,y)

,y))^2+2*(1-shell.nu)*(dtang(dtang(w,x),y)^2-dtang(dtang(w,x),x)*dtang(dtang(w,

y),y)))/(24*(1-shell.nu^2)))

(note that the last two summands at the linear strain energy numerator define the
Gaussian curvature integral, and can be omitted in case the resonator geometry only
contains clamped edges). These expressions are valid also for the evaluation of dissi-
pation dilution in modes with torsional character. The effective mass can similarly be
computed from the calculated mode patterns, using the expression:

m_eff=intop1(shell.rho*h_mbr*(shell.disp/maxop1(shell.disp))^2)

There are at least two alternative methods for computing quality factors. The first one
uses the built-in expressions of kinetic energy density and linear strain energy density,
i.e. Q=Q_int*shell.Wk_tot/shell.Ws_tot. The second one relies on the definition of
a complex Young’s modulus E ′ = E(1 − i/Qint) (under Materials → Material →
Young’s modulus and Poisson’s ratio). In this case, the eigenfrequencies returned
by COMSOL will be complex, and the quality factor can be found using the identity
Q = Re(Ω)/2Im(Ω). While in principle valid, the actual results returned using these
methods are less reliable, and more sensitive to the resonator aspect ratio and to the
version of COMSOL Multiphysics employed (i.e. to implementation details) than the
perturbative calculation using the eigenmode displacement patterns.

In the rare case when the simulation geometry is genuinely three-dimensional and
the plate energy and spring constant approximations are not valid, one should use the
generic strain energy expressions in 2.11, as described in [24]. This requires a careful
definition of overlap integrals between the static stress field output from Step 1 and
the dynamic strain field output from Step 2.

2.3.6 Mechanical dissipation sources

In our derivation of dissipation dilution we assumed the existence of a loss angle
ϕ that locally connects the linear strain and the dissipative stresses generated during
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mechanical oscillations. This is an extremely simple description of dissipation that
is sometimes justified empirically. With this approximation, the mechanical quality
factor of a strained resonator is given by 2.73. In order to understand the origin of
ϕ and the limits of applicability of the dissipation dilution picture we provided, it
is useful to study some of the known elastic energy dissipation mechanisms in more
detail. In broad terms, static stress will dilute the damping when it occurs through
intrinsic mechanisms (for example thermoelastic coupling and interaction with two
level systems), i.e. by coupling to degrees of freedom internal to the nanomechanical
resonator. Extrinsic dissipation sources (for example gas damping and phonon leakage
to the resonator environment) do not undergo dissipation dilution as simply, and can
set a harsh limit on the observed quality factors. If one has many independent damping
sources, the damping rates will sum, in such a way that the quality factor will be
limited by the lowest of the single Qs, each of which will be diluted to a variable
degree by stress:

Q−1 =
∑
k

Q−1
k (2.97)

2.3.6.1 Anelastic relaxation

An anelastic solid is a material in which the stress-strain susceptibility can exhibit time-
delayed effects. For example, upon application of a load, there can be an instantaneous
deformation followed by a slower creep, occurring on a finite timescale τσ. A generic
linear time-independent relation of this type is given by the following differential equa-
tion (assuming for simplicity that stress and strain fields are described by scalars) [43]:

σ+ τϵ
∂σ

∂t
= E0

(
ϵ+ τσ

∂ϵ

∂t

)
, (2.98)

where E0 is the steady-state Young’s modulus measured after mechanical transients
have elapsed. In the frequency domain, this equation corresponds to a complex Young’s
modulus:

E ′ = E0
1+ω2τστϵ
1+ω2τ2ϵ

(
1− i

ω(τσ − τϵ)

1+ω2τστϵ

)
(2.99)

Resulting in a frequency-dependent magnitude and loss angle (assuming ϕ ≪ 1) of
the viscous damping type:

ϕ ≈ ω(τσ − τϵ)

1+ω2τστϵ
= ∆

ωτ

1+ω2τ2
, (2.100)

with τ =
√
τστϵ and ∆ = (τσ − τϵ)(τστϵ)

−1/2. This loss angle describes a broad
dissipation peak centered around the mechanical frequency ω = τ−1, the frequency
at which the fields can excite effectively the relaxation mechanism13. A dissipation

13 The frequency dependence in 2.100 is sometimes called a ‘Debye peak’, due to the analogy with the model
formulated by Peter Debye for the response of dielectrics to AC electromagnetic fields.
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peak of this type was found by Zener in his description of thermoelastic damping (see
the next section) [72], and due to its very general character it is commonly found in
experiments. For example, dissipation through coupling with a two level system can
also manifest in a loss angle of the type in 2.100.

Often, the implicit temperature dependence of 2.100 allows the identification of a
Debye peak. In the case that the relaxation process depends on the some microscopic
mechanism acquiring a sufficient energy to surpass a barrier of height Ea in thermal
equilibrium at temperature T , the relaxation time constant will be given by the Arrhe-
nius equation,

τ = τ0e
Ea/(kBT), (2.101)

where kB is Boltzmann’s constant. In this case, the Debye peak can be traced as the tem-
perature of the resonator is varied, and the evaluation of Ea can provide information
about the physical mechanism of relaxation, e.g. the movement of defects or disloca-
tions in the crystalline structure of a solid, or slipping between grain boundaries in
polycrystalline materials [43].

2.3.6.2 Thermoelastic damping

Consider a mechanical object undergoing vibrations that lead to volume expansion or
shrinking of its constituent elements. Volumetric changes are coupled to temperature
changes by the linear expansion coefficient α, through the inverse process of thermal
expansion. If α > 0 (as in the vast majority of cases), a volume expansion will lead to a
decrease in temperature, and a contraction to a temperature increase. In the resonator,
heat fluxes will start flowing from the contracting, hotter regions, to the expanding,
colder regions, and the heat will flow at the cost of dissipating mechanical energy
(see Fig. 2.9a). The temperature and displacement fields become coupled through the
expansion coefficient α, and one can write coupled differential equations for the dis-
placement field and for heat diffusion. Note that thermal expansion can only occur for
such vibrational patterns that induce volumetric changes (i.e., strain fields containing
a volumetric component, in which

∑
j ϵjj ̸= 0). These include flexural modes (in which

the volumetric stress changes sign along the thickness dimension) and longitudinal
modes, but torsional vibrations are purely deviatoric and unaffected by thermoelastic
damping.

The problem of thermoelastic dissipation was first tackled in a series of papers by
Zener [72], who introduced the standard model of the anelastic solid described in
the previous section as a generalization of the thermoelastic damping results. More
recently, in the context of high frequency nanomechanical resonators, the problem was
revisited by Lifshiftz and Roukes [73] who obtained a more general result that closely
matches the Zener expression for low mechanical frequencies. These studies, however,
did not consider the presence of static tension in the resonator and its dilution of
thermoelastic damping. The most complete treatment of this case, to my knowledge, is
contained in the doctoral thesis of Yeghishe Tsaturyan [74], who verified the validity of
the simple dissipation dilution picture starting from the coupled solid mechanics and
thermal diffusion equations in a square plate.
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Figure 2.9: a, Temperature profile developed in the cross-section of a circular membrane un-
dergoing bending oscillations (at 134 kHz), simulated with finite element methods.
Notice how tension lowers the temperature, and compression increases it. Inset:
zoomed-in view of the central antinode region, with black arrows indicating the
heat flux field. b, Modelled Qint (inverse loss angle) versus frequency of the flexural
modes due to thermoelastic damping, for different values of resonator thickness.
Full lines: Zener model 2.107, dashed lines, Lifshitz-Roukes expression 2.106, over-
lapping with the Zener model at low frequencies. The physical parameters used for
the estimations are those of Si

3
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at room temperature.

In a membrane resonator subject to in-plane (uniform) tension and undergoing bend-
ing vibrations, temperature gradients provide two additional terms in the plate equa-
tion of motion (compare with 2.25):

D∇4ψ− σh∇2ψ+∇2MT +NT∇2ψ = −ρh
∂2ψ

∂t2
, (2.102)

NT is an additional in-plane tension force (per unit length) due to thermal expansion,

NT =
Eα

1− ν

∫h/2
−h/2

dz θ(x,y, z, t), (2.103)

where θ = T − T0 is the temperature increment from the temperature T0 established
in static conditions (αθ being the thermal strain component), and MT is a thermal
bending moment (analogous to D∇2ψ), given by:

MT =
Eα

1− ν

∫h/2
−h/2

dz zθ(x,y, z, t) (2.104)

In the regime where the phonon mean free path is smaller than the resonator thickness
(and of all its length scales), a local temperature field can be established, and heat
transport is diffusive. With the contribution of the volumetric heating term due to
material expansion, the heat equation can be written as follows:
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k∇2θ = ρcp
∂θ

∂t
−
EαT0z

1− ν

∂(∇2ψ)
∂t

, (2.105)

where cp is the specific heat capacity, k the thermal conductivity and −z∇2ψ ∼
∑
j ϵjj.

These coupled equations can be solved in the Fourier domain to obtain the temperature
and displacement field of their eigenmodes, depending on a complex thermal wavevec-
tor. Correspondingly, the eigenfrequencies will be complex, and the thermoelastic-
damped quality factor can be evaluated from them as Q = Re(Ω)/2Im(Ω). In the
high-aspect-ratio limit, Tsaturyan finds a result in the form Q = DQ ·Qint, where DQ
is the uniform membrane dilution factor 2.90 and

Q−1
int ≈ ∆E

(
6

ξ2
−
6

ξ3
sinξ+ sinhξ
cosξ+ coshξ

)
, (2.106)

where ∆E = Eα
2T0
ρcP

1+ν
1−ν and ξ =

√
π2Ωτ
2 . ξ2 is a generalized frequency in terms of

the timescale defined by τ = h2ρcP
π2k

, i.e. the characteristic time required for heat to
diffuse between the top and bottom sides of the plate (where the heat gradient is
established in bending vibrations). For silicon nitride, τ ≈ 6.4ps · (h/10nm)2 at room
temperature, hence ξ ≪ 1 for frequencies in the megahertz range. In this limit, 2.106

can be approximated very well with the low-frequency tail of a Debye peak [73], where
τ sets the relaxation timescale, as originally found by Zener:

Q−1
int ≈ ∆E

Ωτ

1+ (Ωτ)2
, (2.107)

whereas in the high frequency limit Ωτ≫ 1 the approximation is slightly worse. These
estimates of thermoelastic damping are plotted in Fig. 2.9b for different values of mem-
brane thickness. We can conclude that thermoelastic damping gets diluted by tension,
despite dissipative stresses being given by a non-local thermal field. The effective loss
angle is in this case averaged over the membrane thickness, and depends on the ther-
mal wavevector.

Despite being an irrelevant loss mechanism for our large aspect-ratio tensioned me-
chanical resonators, the case of thermoelastic damping is instructive to shed light on
the concept of loss angle and on the validity of a complex Young’s modulus with a
theoretically well-founded example. Moreover, thermoelastic damping is an important
mechanical dissipation source in the suspension fibers of gravitational wave interfer-
ometer end-mirrors (with diameters of order ∼ 1mm), where great care is taken to
minimize the effect [75].

2.3.6.3 Interaction with two level systems

In an amorphous solid, the quantum-mechanical ground state of the atomic lattice is
accompanied by a vast number of low-energy excitations with very small energy sep-
arations. These excitations are secondary, local minima of the potential energy land-
scape, that correspond to tiny displacements of an atom or a small group of atoms, as
evidenced by molecular dynamics simulations [76]. The secondary minima are present
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Figure 2.10: a, Schematic illustration of a double well potential and its two lowest energy lev-
els (dashed lines), forming a TLS. The TLS parameters are labelled as in the text.
b, Calculated quality factor contribution due to an ensemble of TLS at variable
temperatures. Curves corresponding to different vibration frequencies are shown
with different colors. The two contributions to the quality factor, resonant and re-
laxation damping, are displayed with a dotted and a dashed line, for the highest
mechanical frequency. The physical constants employed for the calculation (den-
sity and speed of sound) correspond to those of Si

3
N

4
, while the TLS density and

strain coupling parameters are assumed similar to those reported for fused silica.

in extremely large numbers due to the disordered nature of the atomic arrangement,
in contrast to the existence of a well-defined ground state of a crystal, where such
excitations require much larger energy exchanges due to the symmetries of the solid-
state phase. Depending on the temperature and on the excitation frequency, these low-
energy states can exchange energy and perturb an incoming elastic (or even electro-
magnetic) wave, and contribute to the medium dispersion and to the intrinsic friction,
or attenuation that is observed. This interaction is truly local, as the extent of the struc-
tural defects is in the scale of 10−10 m, and within the bulk of amorphous solids,
isotropic and homogeneous, due to the random orientation of such defects. Therefore,
this damping mechanism is prone to an effective description in terms of a material
loss-angle, and can be diluted as usual by the co-existence of stress and geometric
nonlinearity.

The description of the interaction of this multitude of structural defects with elastic
and electromagnetic waves is provided by the standard tunneling model [77], in which
pairs of minima in the configuration space of the atomic arrangement are conceptual-
ized as two-level systems (TLS). The standard tunneling model proved very effective in
describing the acoustic attenuation and the speed of sound dispersion in many glasses
at low temperatures, and its predictions of universal scaling laws for the heat capacity
and thermal conductivity at low temperatures, as well as the the existence of a region
of temperature-independent friction at T ∼ 1K, were repeatedly confirmed by exper-
iments with many amorphous solids [53]. In the standard tunneling model, a single
structural defect in the amorphous state is treated as a double-well potential, i.e. two
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identical harmonic potential wells split by a certain distance in the atomic configu-
rational coordinate q and with an energy difference between the local minima given
by ∆ (see Fig. 2.10a). At low enough temperatures (kBT ≪ E0, with E0/2 the ground
state energy of the single potential well) only the two most tightly bound states will be
significantly populated, corresponding to the lowest energy levels of the isolated left
and right wells. The other energy levels can then be neglected in order to construct a
simple model involving only these two states, and the defect will be treated as a TLS.
In the basis of the ground-state wavefunctions of the isolated wells, the Hamiltonian is
written as:

Ĥ0 =
∆

2
σ̂z +

∆0
2
σ̂x, (2.108)

where σ̂i are the 2× 2 Pauli matrices and ∆0 is a matrix element describing the tran-
sition amplitude between the two states, which depends exponentially on the distance
q between the double-well minima. From the familiar spectrum of the Bloch Hamilto-

nian, the eigenvalues of Ĥ0 are are ±E/2, with E =
√
∆2 +∆20, and the eigenfunctions

are given by superposition of the isolated well wavefunctions with weights determined
by ∆/∆0.

The defect embedded in the solid state is capable of exchanging energy with the
medium excitations, in particular with phonons. Resonant coupling is negligible at
low frequencies (at the temperatures above 10mK which are relevant to most con-
densed matter experiments, the TLSs with 2E/h ≪ 200MHz will be thermally satu-
rated, so that no net energy exchange will occur), but relaxation interactions can occur.
An impinging strain wave will perturb the potential well parameters, in particular the
asymmetry energy ∆, and the population of the TLS states will redistribute to attain
thermal equilibrium for the new energy level separation. This re-distribution draws
energy from the strain field, resulting in an acoustic damping mechanism. Note that
the extent of the TLS is much smaller than the typical acoustic wavelength, so that the
dipole approximation can be employed. In the classical limit of an impinging strain
wave with large amplitude ϵjk = ϵjk(⃗r) (evaluated at the position of the TLS), the
Hamiltonian describing the asymmetry-perturbing interaction between the TLS and
the strain wave can be modelled as [77]:

Ĥint =

(
∆

E
σ̂z +

∆0
E
σ̂x

)
γjkϵjk, (2.109)

expressed in the basis of the eigenstates of 2.108. Here γjk = ∂∆/2∂ϵjk is the strain-
TLS coupling tensor. Through 2.109, the TLS will interact with all the phonons of the
solid state medium, driving transition between the eigenstates of Ĥ0. The relaxation
time τ is defined as the time required for the TLS population difference ⟨σ̂z⟩ to relax
to the equilibrium distribution after having been perturbed by a strain wave, and it
corresponds to the inverse of the sum of the transition rates E+ → E− and E− → E+.
The relaxation rates can be calculated using time-dependent perturbation theory and
Fermi’s golden rule, to obtain [78]:

τ−1 ∝ γ2ED−2∆20 coth
(

E

2kBT

)
, (2.110)
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where D is the mechanical resonator dimensionality14, which influences the observed
relaxation damping rates [78–80] and γ is an effective strain-TLS coupling energy, after
averaging over the random TLS orientation and all possible strain wave polarizations.
The dependence on D arises when accounting for the phonon density of states in
the resonator, and the temperature dependence from the bosonic occupation of those
phonon families.

The relaxation process is governed by the dynamics of the TLS population difference,
s = ⟨σ̂z⟩. In thermal equilibrium, the static population difference s0 is given by Bose-
Einstein statistics:

s0 = −tanh
(

E

2kBT

)
(2.111)

But as the energy level splitting E is perturbed by the strain field, the population
difference will evolve towards a new equilibrium value s̄:

s̄ ≈ s0 +
∂s0
∂E
δE = s0 − sech2

(
E

2kBT

)
δE

2kBT
(2.112)

the extent to which s will be able to relax to s̄ depends on the relaxation time and on
the perturbation frequency. The evolution of the population difference can be modelled
with a first-order differential equation

dδs

dt
= −

δs+ s0 − s̄

τ
, (2.113)

where δs = s− s0. We can apply a Fourier transform to express the response of the
population inversion to the perturbation in the frequency domain:

δs(ω) ≈ −
δE

2kBT
sech2

(
E

2kBT

)
1

1− iωτ
(2.114)

This result, combined with 2.110, lets us directly calculate the damping rate induced
on an elastic wave by the relaxation process of the TLS ensemble. The interaction en-
ergy 2.109, in fact, contains a dissipative part proportional to Im(δs(ω)) that induces
damping on an interacting elastic field at frequency Ω. After integrating over the dis-
tribution of TLS (with variable ∆ and ∆0) interacting with the strain wave, the inverse
quality factor is found as [78]:

Q−1
int,rel ≈

γ2

ρv2kBT

∫∞
0

d∆

∫∞
0

d∆0 h(∆,∆0)
(
∆

E

)2
sech2

(
E

2kBT

)
Ωτ(E,∆)

1+ (Ωτ(E,∆))2
,

(2.115)

14 The dimensionality of a mechanical resonator is reduced along a particular direction when its characteris-
tic length L across that direction is too small to support thermally excited phonons, i.e. L≪ hvmin/(2kBT),
where vmin is the minimum speed of sound among different phonon polarizations (assuming a linear dis-
persion). When L is comparable to the wavelength of thermal phonons, non-integer dimensions can be
observed in the experiment [79].
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where v is an effective speed of sound of the damped elastic wave, ρ is the mass
density and h(∆,∆0)d∆d∆0 is the distribution counting the TLSs per unit volume
with asymmetry within (∆,∆+ d∆) and tunneling energy within (∆0,∆0 + d∆0). In
the standard tunneling model a form h = P/∆0 is postulated, in order to model a
broad distribution of TLS parameters [77]. P is a constant that is usually kept as a
free parameter of the model, to be found by fitting to damping rate data. Note that
in 2.115, each TLS contributes to the damping with a Debye peak at its particular
relaxation rate, and due to the sech2 term, only the TLSs with E ≲ 2kBT are significant
for the relaxation process (since in the others the population inversion will not be
significantly perturbed by small change in well asymmetry). Although 2.115 cannot
be expressed analytically in a closed form, asymptotic values can be found in the low
temperature case (Ωτmin ≫ 1) and in the high temperature case (Ωτmin ≪ 1). In both
cases, the integration in 2.115 can be carried out explicitly in polar coordinates, giving
Q ∝ Ω/TD in the low temperature limit, and a constant Q ≈ 2ρv2

πγ2P
, independent of

the system dimensionality, in the high temperature limit (see Fig. 2.10b). Both limits of
the relaxation damping have been confirmed experimentally in many bulk amorphous
solids (caseD = 3), hence being some of the most successful predictions of the standard
tunneling model [53, 81].

The interaction Hamiltonian 2.109 implies that the TLSs can also induce resonant
damping to the strain field when the their frequencies are matching and the temperature
is such that only the ground state of the TLS is populated, so that phonon absorption
is the dominant process. This implies that resonant damping is relevant only for high
acoustic frequencies and extremely low temperatures [82], i.e. kBT ≲  hΩ (see the
highest frequencies curves in Fig. 2.10b), and that it is a more relevant loss mechanism
for microwave fields such as those in a superconducting cavity or qubit [83, 84]. In the
acoustic case, the inverse quality factor for resonant damping is given by:

Q−1
int,res ≈

πγ2P

ρv2
tanh

(
 hΩ

2kBT

)
, (2.116)

in the weak field limit. Strong fields can saturate the resonant TLSs, resulting in non-
linear damping that decreases at higher powers [82].

As silicon nitride is an amorphous solid, the dissipation behaviour is expected to be
governed by two level systems at low temperatures. Faust et al. [85] conducted damp-
ing measurements on Si

3
N

4
strings with resonant frequencies Ω/2π ∼ 10MHz as a

function of the temperature at T > 4K, and found a behaviour consistent with a single
Debye peak around ∼ 180K and with an ensemble of two level systems for T < 100K
(using the distribution function proposed by Vacher et al. [86]). More recent experi-
ments [87, 88] were carried out in dilution refrigerators (reaching temperatures down
to ≈ 20mK), and a qualitative behaviour suggesting TLS relaxation damping was ob-
served, with a high temperature plateau and a power law scaling for low temperatures,
but without a precise quantitative explanation. As an historical note, it is interesting
to recall that a model, alternative to the dissipation dilution picture, was proposed to
explain the low dissipation in high-stress silicon nitride by assuming that stress can
increase the asymmetry energy ∆ or decrease the strain coupling γjk [49]. This model
would however imply a strong dependence of the low-temperature specific heat and
of the thermal conductivity on the stress, which was not observed in subsequent inves-
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tigations [89]. Interestingly, this finding proves that the TLS bath is not perturbed by
the presence of stress in a solid state structure.

Despite the fact that the TLS ensemble picture finds a clear physical justification in
the case of amorphous solids, dispersion and damping similar to the ones predicted
by the standard tunneling model have been witnessed also in crystalline materials
[79, 90, 91], albeit usually characterized by much smaller densities. This can usually
be explained by the formation of native oxides at the interfaces of the crystals, or by
the presence of thin amorphous-like damage layers near the interfaces, created during
the resonator fabrication process. Usually, TLS ensembles in crystals have narrower
parameters distributions, and h(∆,∆0) can be modified to provide a more accurate
modelling [92]. The low TLS densities in single-crystals explains the extremely high
acoustic quality factors often witnessed at low temperatures [18, 93, 94]. The high
mechanical Qs of single-crystals motivated the development of strained crystalline
materials for nanomechanics and optomechanics in this thesis work, combining the
low loss angle of crystalline material with dissipation dilution. Our investigation will
be discussed in Chapter 3.

2.3.6.4 Surface losses

A common empirical observation in mechanical resonators is that, as the surface-to-
volume ratio increases the acoustic quality factor decreases. This is explained in terms
of an increased friction at the resonator interfaces, which can be induced by formation
of native oxides, contamination, adsorbed gaseous species and damage induced by the
fabrication process [95]. Even in the absence of a microscopic explanation, this sur-
face contribution manifests as an thickness-dependent intrinsic dissipation, as will be
shown below. Such a thickness scaling was observed for unstrained nanomechanical
elements [96] as well as in tensioned Si

3
N

4
resonators [25, 26, 57] where it can par-

tially compensate the DQ thickness dependence. In particular, for resonances where
the elastic energy is dominated by the clamping curvature, DQ ∝ h−1 cancels out
with Qint ∝ h and results in quality factors approximately independent on thin film
thickness.

Once again, we model the local dissipative response with a complex Young’s mod-
ulus, and assume a sharp loss angle increase at the upper and lower interfaces of our
plate resonator:

ϕ(z) = ϕvol + bsurf (δ(z− h/2) + δ(z+ h/2)) (2.117)

(where bsurf has units of length). We insert this inhomogeneous loss angle in the ex-
pression for the dissipated power 2.67 and carry out the integration over z:

P = 2ω

∫h/2
−h/2

dz z2ϕ(z)
E

2(1− ν2)

∫
Γ

dxdy (Sqr. avg. curv.) + 2(1− ν)(Sqr. Gauss. curv.)

= 2ω

(
ϕvol + 6

bsurf

h

)
∆W(lin)

(2.118)

by repeating the same steps that led to the expression of the diluted quality factor,
we obtain again Q = DQ ·Qint, but the intrinsic quality factor is now expressed as
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Qint =
(
Q−1

vol +Q
−1
surf

)−1
, with Qsurf = βh. Note that for a string resonator, where lat-

eral interfaces also present increased mechanical friction, we would get an additional
loss angle contribution, inversely proportional to the beam width but with a different
numerical pre-factor, dictated by the strain distribution in out-of-plane flexural modes.
In general, the calculation above indicates that, in the case of inhomogeneous friction
in the resonator (e.g. multiple materials or bilayer plates), an effective loss angle is
obtained by performing an average over the resonator volume, weighted by the geo-
metrically linear elastic energy density.

For tensile-stressed silicon nitride thin films deposited with PECVD and LPCVD
methods, a study by Villanueva and Schmid [57] showed that a model including a
combination of volume and surface loss correctly explains the observed dependence
of the dissipation on nanomechanical resonator thickness. From fitting damping data
reported in the literature, they obtain Qvol = 28000± 2000 and β = (6± 4) · 1010m−1,
where the error bars represent confidence intervals due to uncertainties in the estima-
tion of DQ. These parameters imply that for h ⩽ 100nm (practically, for any thin film
resonator with large dissipation dilution) the intrinsic quality factor will be dominated
by surface losses and Qint ≈ βh. The dominance of surface losses is also shown by the
large degradation of intrinsic Q observed when a nanometer-thickness layer of oxide
is grown on the interfaces by purposeful exposure of a Si

3
N

4
membrane to oxygen

plasma [97].

2.3.6.5 Gas damping

Low-loss nanomechanical resonators need to be operated in a high vacuum environ-
ment in order not to compromise their quality factors and, subsequently, their force
sensitivity and frequency stability performance [98]. One of the most easily observed
loss channels in mechanical resonators is, in fact, gas damping due to collision with the
molecules of the surrounding fluid, impinging on the surface of the vibrating element.
Due to the vibrational motion, the rate of collisions on the leading face will be higher
than that on the trailing face, leading to viscous dissipation through kinetic energy
transfer to the gas molecules. Gas damping is an example of an extrinsic dissipation
mechanism, as the friction is generated by degrees of freedom external to the mechan-
ical resonator, and as such it is not modelled by a material loss angle and cannot be
diluted by tension.

The correct damping model depends on the density of the medium surrounding the
resonator. A discriminant parameter is the Knudsen number:

Kn = λf/L, (2.119)

where λf is the mean free path of molecules in the surrounding medium, and L a
characteristic length scale of the system (e.g. the resonator size, or the gap between the
resonator and an adjacent body). In our high vacuum experiments, Kn ≫ 1 places the
system in the free molecular flow regime, where the collisions between molecules can be
neglected and the gas can be treated with the tools of statistical physics. This is the
situation we focus on for the calculation below (at atmospheric pressure or in liquids,
where Kn ≪ 1 the fluid surrounding the mechanical resonator must be modelled as a
continuum using the Navier-Stokes equations [99]).
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Consider a surface element dxdy of a plate undergoing bending motion, which
moves through the medium at speed V along the direction z [100]. As the plate hits a
gas molecule, the latter will undergo an almost perfectly elastic collision (due to the
great mass mismatch between the resonator and the molecule), and the magnitude
of its velocity component vz will change depending whether the collision was head-
on (on the leading face of the plate) or rear-end (on the trailing face), as depicted in
Fig. 2.123b. In the approximation of elastic collisions, the magnitude of the molecule
velocity component will be v ′z = vz + 2V after hitting the plate leading face, and v ′z =

vz − 2V after hitting the trailing face (here we neglect the small fraction of molecules
that hit the leading face while moving in the same direction of the plate but slower
than it, since for typical gas molecules statistics and MEMS motional amplitudes and
oscillation frequencies, V ≪ vz). Due to the change of the molecule velocity magnitude,
a small amount of kinetic energy per collision is transferred from the plate to the
molecule and vice-versa. For leading and trailing face collisions, respectively:

∆Elead ≈ 2mvzV + 2mV2

∆Etrail ≈ −2mvzV + 2mV2,
(2.120)

where m is the (average) mass of a gas molecule, and the energy increments were
expressed in the approximation vz ≫ V . The number of collisions in a time interval
dt is also different between the leading and trailing faces of the plate, due to the plate
motion in the medium. They are given by the following expressions:

dNlead = dxdydvznf(vz)(vz + V)dt

dNtrail = dxdydvznf(vz)(vz − V)dt,
(2.121)

where f(vz)dvz is the Maxwell distribution of gas velocities and n = P/(kBT) the
number density of gas molecules (P is the gas pressure). We can then sum and integrate
these contributions to obtain the total kinetic energy lost by collisions with the gas
molecules during an oscillation cycle:

∆E ≈ P

kBT

∫
Γ

dxdy

∫2π/Ω
0

dt

∫∞
0

dvz 8mvzV(x,y, t)2

=
πP

ρhΩ

√
2m

πkBT
⟨K⟩,

(2.122)

where we have used
∫∞
0 dvz vz =

√
kBT/(2πm) for the Maxwell distribution and, in the

last equality, we have introduced the kinetic energy of a uniform plate averaged on an
oscillation cycle, ⟨K⟩ = ρhΩ

∫
Γ dxdy

∫2π/Ω
0 dt V(x,y, t)2. Finally, using the definition

of quality factor and the virial theorem, we obtain the free molecular flow gas damping
expression:

Qgas =
4π⟨K⟩
∆E

≈
√
π

2

√
RT

Mm

ρhΩ

4P
, (2.123)

where R is the gas constant and Mm the molar mass of the gas medium.
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Figure 2.11: a, Elastic collisions between gas molecules in a rarefied phase and an oscillating me-
chanical resonator. b, Experimental verification of gas damping in the free molec-
ular flow regime. Blue dots are data points at varying vacuum chamber pressure,
the light blue line is a fit to a gas damping model saturating to intrinsic damping
at pressures P ≲ 10−6 mbar, and the dashed and dotted black lines are the com-
ponents of the fit model, i.e. intrinsic damping independent of pressure and gas
damping Qgas ∝ P−1.

In case the resonator is suspended in the vicinity of another solid body (as happens
often in microfabricated devices, where the micromechanical element is separated from
its support chip by a thin gap of height g, defined by the thickness of a sacrificial thin
film), the expression 2.123 must be adjusted to take into account an additional damp-
ing term from the molecules that remain ‘trapped’ underneath the bottom surface and
undergo multiple collisions with the resonator before leaving the plate area. This mech-
anism is often called squeeze-film damping, and it provides the following correction to
2.123 (in the free molecular flow regime) [100, 101]:

Qsqz ≈
Qgas

1+βLg
, (2.124)

where L is a characteristic dimension of the resonator and β is a numerical factor
depending on the geometry of the resonator surface (β ≈ 0.02 for a rectangular plate).

A numerical evaluation of 2.123 gives Qgas ≈ 3.7× 108 · Ω
2π·1MHz · h

20nm · 10−6mbar
P ·(

T
300K

)1/2
, assuming the resonator material to be Si

3
N

4
and the residual gas composi-

tion in the vacuum chamber to be similar to air (leading probably to an underestima-
tion ofQgas, as heavier molecules are pumped out more efficiently than the lighter ones
in vacuum systems). It is clear that state-of-the-art dissipation diluted nanomechanical
resonators are then quite sensitive to the residual pressure in the vacuum environment,
and a pressure-dependent quality factor is frequently observed as the chamber is first
pumped down after breaking the vacuum to insert a sample. Figure 2.11b shows the
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effect of gas damping on a Si
3
N

4
soft clamped membrane resonator (with the stress-

modulated design described in [25]), where the quality factor is dominated by intrinsic
loss only for P ≲ 10−6 mbar. Squeeze film damping is likely completely negligible
for the data in Fig. 2.11b, as the substrate material was completely removed below
the membrane resonator (to enable optical transmission). Note that the high pressure
part of the fit model gives a Qgas that is just 6% smaller than the estimation from
2.123 (the thickness of this membrane sample was h ≈ 40nm and the resonant fre-
quency Ω/2π = 853 kHz). Since regulating the pressure level in a vacuum chamber is
relatively easy, gas damping becomes a useful tool to reversibly tune the mechanical
resonator Q in case the experimentalist wants to suppress measurement backaction
effects, as will be described in Chapter 4.

2.3.6.6 Phonon radiation

Elastic waves in solid-state microresonators cannot radiate in vacuum, but they can eas-
ily leak out of the device by exciting propagating waves in the support structure (for
microfabricated devices, a chip made of semiconducting or insulating materials). Since
radiation involves the interaction of the resonator with its environment, this is another
extrinsic loss mechanism that cannot be diluted by tension, although tension plays a
fundamental role in determining the dispersion of sound waves and their impedance
matching with the support material. This source of energy dissipation is named alterna-
tively radiation loss, phonon tunneling loss, anchoring loss or (confusingly) clamping
loss, as the forces imposed at the resonator clamped boundaries play a dominant role.

Phonon radiation is particularly difficult to model accurately. Many theoretical mod-
els with semi-analytical solutions have been proposed. A class of these models com-
putes damping by the forces and torques imposed at the resonator boundaries during
oscillations, that launch waves in the support medium, leaking away part of the reso-
nant mode energy [102]. Dissipation is then calculated as the elastic power radiating in
the far field due to the support response. Other models compute the radiation rate with
a perturbative approach based on Fermi’s golden rule, leveraging overlap integrals be-
tween the resonator and support eigenmodes [103, 104]. This approach gives rise to a
complex menagerie of damping rates, as the strain field polarization determines how
strongly the resonator will be coupled to the support, and symmetries in the mode
pattern and resonator boundaries can lead to interference effects in the far field that
reduce or enhance phonon radiation. An interesting experimental demonstration of
radiative damping was reported by Singh and Purdy, who used highly directional ra-
diation patterns of nanomechanical membranes to sense the temperature of blackbody
absorbers placed at different locations on the chip frame, exploiting their preferential
coupling to different mechanical modes [105].

A significant limitation of these models is that, in order to obtain analytical results,
they assume a support with infinite extent (modelling the support either as a Kirchoff-
Love plate with unlimited lateral dimensions or as an elastic half-space). At frequencies
around 1MHz, typical of our dissipation-diluted oscillators, the wavelength of antisym-
metric Lamb waves in silicon is ≈ 2.5mm [106], comparable to the lateral chip size and
much larger than the chip thickness (typically varying between 200− 800 µm). This im-
plies that the assumption of an infinite, homogeneous support postulated for the ana-
lytical models is inaccurate, and that phonon radiation will be influenced significantly
by reflection from the chip interfaces and by the experimental assembly below the
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Figure 2.12: Finite element simulation of the elastic radiation pattern launched by an oscillating
nanostring (enlarged view to the right) in the supporting silicon chip. The colour
encodes the displacement field magnitude. Notice that the elastic wavelength is
much larger in the chip bulk than in the nanostring resonator. The black contour
indicates the boundary to a perfectly-matched domain, that is used to calculate the
rate of radiative damping in the simulation. The figure is reproduced from [108].

chip (sample holder, clamps, vacuum grease, piezoelectric elements, etc.), with inho-
mogeneous dispersion and friction. Finite elements simulations provide more precise
estimates, but many of the relevant system parameters are usually unknown. In Fig.
2.12 we show an example of such a simulation, where the damping is introduced with
an acoustically-absorbing domain in the far field of the oscillating nanostring. This is
implemented as a perfectly-matched layer (PML), a fictitious anisotropic material whose
elastic absorption coefficient varies radially, and provides a perfect acoustic impedance
matching with the lossless propagation domain [107].

As a consequence of this long-range coupling, it is common to observe, especially
in dissipation-diluted nanomechanical membranes with low intrinsic losses, bending
mode quality factors that are highly sensitive to the clamping conditions of the support,
e.g. the application of pressure to the chip frame to hold it in place, or the use of glues
or epoxies [109]. This also presents a practical constraint for assembling membrane-
in-the-middle (MiM) optomechanical systems, where a membrane resonator is placed
inside a Fabry-Pérot cavity and interacts with the light field confined therein.

Mechanical hybridization is frequently witnessed when a resonator eigenfrequency
matches approximately with a plate resonance of the support chip. In this case, ra-
diative coupling is enhanced and the damping rate becomes even more sensitive to
the loss angle of the support chip material and its surface losses [6]. This was shown
experimentally in [110], where laser heating allowed for a large tuning of membrane
eigenfrequencies through several support resonances, each manifesting as a sharp dis-
sipation peak. The mode density for typical dimensions of chip supports can be very
large at MHz frequencies, thus contributing to a stochastic spread of the quality factors
of different eigenmodes, and a poor experimental reproducibility for different samples
with nominally identical designs. Phonon radiation and the sensitivity to clamping
conditions can be overcome with the use of a low frequency mechanical filter struc-
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ture, which reduces the susceptibility to forces applied to the outer part of the support
[111, 112]. Alternatively, leakage of acoustic energy can be suppressed in a finite fre-
quency band by patterning a phononic crystal shield in the support [61], but this type
of isolating structure is cumbersome to fabricate for low frequency (Ω/2π ≲ 500kHz)
mechanical resonators, as multiple unit cells with a pitch satisfying the Bragg condi-
tion need to surround the resonator on each side, with a total extent easily surpassing
several centimeters. In addition, these isolating structures introduce unwanted thermo-
mechanical noise in optomechanics experiments, associated with their low frequency
resonances [112]. A serendipitous solution was the integration of the phononic crystal
directly in the nanomechanical resonator design, simultaneously shielding a localized
mode from radiation losses and implementing soft clamping in tensioned, high aspect-
ratio devices, as previously described.

2.3.7 Anharmonicity from geometric nonlinearity

Finally, we give a schematic outline of the effect of tension in the mechanical resonator
on the anharmonicity occurring when a mechanical mode is driven to high amplitudes.
When the oscillation amplitude is high, energy terms associated with the geometric
nonlinearity in 2.11 become stronger. In particular, the nonlinear strain components
give rise to a (previously neglected) energy term that is fourth-order in the displace-
ment amplitude. For an isotropic thin plate undergoing bending motion, this term can
be expressed as [69]:

∆W(el) =
Eh

8(1− ν2)

∫
Γ

dxdy

((
∂ψ

∂x

)2
+

(
∂ψ

∂y

)2)2
(2.125)

This quartic potential energy induces an additional restoring force of geometrical ori-
gin, that is due to the elongation of the plate elements as the deflections grow beyond
the linear regime. A rigorous treatment of large oscillations [33] would require mod-
ifying the equations for the flexural vibrations of the plate, but in the case of weak
nonlinearity, it is sufficient to evaluate 2.125 on unperturbed eigenmodes obtained by
solving 2.25 to obtain an evaluation of the anharmonicity induced by the geometric
nonlinearity.

By performing the mode expansion of section 2.1.3, we obtain a Duffing equation
for the amplitude x of a single mechanical mode (considering for simplicity the case of
viscous damping),

meff
(
ẍ+Ω2ẋ+ Γ ẋ+ γx3

)
= 0, (2.126)

where γ = 4∆W(el)(ϕ)/meff is the Duffing parameter that describes the deviation from
the harmonic regime due to geometric nonlinearities, and ∆W(el)(ϕ) is now evaluated
using the normalized mode shape ϕ(x,y). The study of a weakly-anharmonic Duffing
oscillator shows that the resonance frequency undergoes a shift proportional to the
square of the oscillation amplitude, x0 [113]:

∆Ω = Ω−Ω0 ≈
3γx20
8Ω0

, (2.127)
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where Ω0 is the unperturbed resonance frequency in angular units. To get an idea of
the magnitude of the geometric anharmonicity in tensioned resonators, we can evalu-
ate these expressions for the, now familiar, case of a square membrane. By using the
normalized mode shapes of order (n,m) from 2.81 (high stress regime, λ ′ ≪ 1), we
obtain, for the Duffing parameter:

γn,m ≈ π4E

32ρ(1− ν2)L4
(
(n2 +m2)2 + 8(n4 +m4)

)
, (2.128)

and for the relative frequency shift during oscillations of amplitude x0, by using 2.127:

∆Ωn,m

Ω0,n,m
≈ 9π4

64
λ ′2
(
(n2 +m2) + 8

n4 +m4

n2 +m2

)(x0
h

)2
(2.129)

From the last relation, we notice that, as expected, the effect of geometric nonlin-
earities is appreciable only when the amplitude of oscillations approaches the plate
thickness, x0 ∼ h. Moreover, the Duffing spring hardening is diluted by tension in the
resonator (due to the squared strain parameter at the numerator); i.e. tension increases
the linearity range of the oscillator. The dynamic range of linear vibrations of a mechan-
ical oscillator is usually defined by the onset of bistability at high driven amplitudes
[114], that for a Duffing oscillator is witnessed at the critical amplitude xc, depending
on the oscillator parameters as follows [115]:

x2c =
2
√
3Ω20
9γQ

≈ 8h2

45
√
3π2λ ′2Q

, (2.130)

where the last equality is evaluated in the case of the fundamental bending mode
(n = m = 1). We notice that tension also increases the amplitude dynamic range of the
resonator, as a direct consequence of 2.129, when disregarding the dependence of the
quality factor on λ ′.

This observation has important consequences for applications of mechanical res-
onators as sensors. The sensed variable often induces resonant frequency shifts, that
can be monitored in time (for example, a change of temperature can perturb the res-
onant frequencies by affecting the elastic constants and inducing differential thermal
expansion that modulates the tension). The fundamental limit for detecting small fre-
quency shifts is dictated by thermodynamic fluctuations of the resonant frequency, as
imposed by the fluctuation-dissipation theorem 2.59. The phase noise decreases as the
amplitude of driven motion grows, as thermal fluctuations of a given amplitude in the
motional quadratures will correspond to smaller angular excursion in the quadrature
space. Frequency noise can be written as SΩΩ(ω) = ω2Sφφ(ω) = ω2Sxx(ω)/⟨x20⟩
[117]. Larger oscillation amplitudes allow the resolution of smaller frequency shifts,
until the nonlinear character of the oscillator starts to correlate amplitude and phase
noise, leading to excess frequency noise from the driving mechanism. A higher value
of xc, as allowed by tension, leads potentially to higher frequency sensitivity. We note
that the effect of the quality factor on frequency sensitivity is less straightforward and
depends on the precise experimental conditions, as was recently pointed out [118]. In
mechanical resonators, however, the observed frequency fluctuations are usually much
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a b

Figure 2.13: Thermomechanical motion recorded at room temperature for a perimeter mode of
a polygon resonator, such as those introduced in [27]. A quality factor Q ≈ 6 · 108
was measured for this sample with the ringdown method, corresponding to a
damping rate Γ ≈ 2π · 0.5mHz. The spectra are centered around an offset fre-
quency Ω/2π = 306.3 kHz. a, The light blue curve presents the thermomechanical
motion spectrum (in voltage units, as given from a photocurrent record) computed
over one hour of observation. The spectrum shows a clear upward frequency drift
in time, as is also evident from spectra computed from 7.2 s-long chunks of the
thermomechanical record at the beginning (red) and at the end (dark blue) of
the acquisition time. Consequently, the thermomechanical spectral feature is much
broader than the amplitude damping rate. b, By taking the square magnitude of
the demodulated quadratures and displaying its spectrum, one obtains a much
narrower peak, with a linewidth corresponding to the amplitude damping rate:
X2 + Y2 is insensitive to slow frequency drifts [116]. A Lorentzian fit (light blue)
gives the estimate Γ ≈ 2π · 0.6mHz, in good agreement with the ringdown decay
rate.

higher than the thermodynamic limit, and have been attributed both to intrinsic mecha-
nisms as well as to drifts in external parameters [79, 119, 120]. Experimental evidence of
frequency noise and slow temporal drifts is shown in Fig. 2.13, for a polygon resonator
with the design we introduced in [27]. Some of the studied causes of frequency noise
are processes of absorption and desorption of gas molecules, transition between states
of the TLS population in the resonator, and the variation of tension due to temperature
fluctuations.

The described geometric anharmonicity is certainly the most common and easily-
understood source of nonlinearity observed in mechanical resonators. Other deviations
from the harmonic regime can arise by motion in force fields that vary non-linearly in
space, or by coupling between vibrational motion and electron transport [121, 122].



3
S T R A I N E D S I L I C O N , S O F T C L A M P E D N A N O S T R I N G S

God made the bulk; surfaces were invented by the devil.

— Wolfgang Pauli

Part of this thesis work was devoted to the development of high aspect-ratio strained
nanomechanical resonators in a crystalline material, namely strained silicon (sSi). Most
of the content of this chapter has been published in [28]; my contributions to this work
consisted in designing and fabricating all the employed resonators, developing a new
fabrication process used for suspending high aspect-ratio string resonators, building
the interferometric setup and using it to characterize the resonators (with support from
the co-authors, in particular Diego A. Visani, Sergey A. Fedorov and Nils J. Engelsen),
performing data analysis with support from Diego A. Visani and Nils J. Engelsen, and
writing the manuscript with Nils J. Engelsen (with the supervision of T. J. Kippenberg).
Victor Boureau, an expert electron microscopy scientist at the CIME facility in EPFL,
deserves recognition for acquiring and analyzing all the TEM images and DFEH maps.

As previously discussed, most of the pioneering and state-of-the-art demonstra-
tions of highly dissipation-diluted resonators, and the associated optomechanics ex-
periments, were conducted with the amorphous Si

3
N

4
. This is a thin film material

common in microfabrication technologies, that can be grown with high quality and
high tension (∼ 1GPa) using low pressure chemical vapour deposition (LPCVD), and
presents negligible optical absorption. On the other hand, there has been significant
interest in extending the methods of dissipation dilution to single-crystal materials,
ever since early works with Si

3
N

4
. Amorphous or glassy materials, irrespective of their

precise composition, exhibit universal properties due to the presence of two-level sys-
tems (TLSs), such as high dissipation at low temperatures [53, 77]. TLSs can couple
to the strain field of acoustic vibrations [84], giving rise to acoustic absorption (see
the section 2.3.6.3). In crystalline materials, TLSs only form due to defects and energy
exchanges with TLS ensembles are drastically reduced. Through control of spurious
damping channels, exceptionally low vibrational damping has been demonstrated in
single-crystal resonators [93, 123, 124], where even without dissipation dilution quality
factors Q ∼ 109−1010 were observed.

In nanomechanical resonators, Qint is known to be lower than in macroscopic de-
vices, primarily due to pronounced surface effects such as friction in surface oxides,
adventitious adsorbed layers or reconstructed surfaces [18, 57, 95]. Despite this, the
use of crystalline materials can be highly advantageous: the temperature dependence
of intrinsic mechanical dissipation processes often makes the coupling of phonons to
TLSs the dominant loss mechanism at cryogenic temperatures. Several demonstrations
of dissipation dilution in single crystal materials, such as GaAs [125], SiC [126, 127]
and InGaP [128, 129], have been reported but could not attain lower dissipation than
Si

3
N

4
devices.

In this chapter, I report on our implementation of strained silicon mechanical res-
onators with ultralow dissipation. Strained silicon was developed as material for micro-

57
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Figure 3.1: Scanning transmission electron micrograph of the cross-section of a processed sSOI
sample. The inset shows the strained silicon crystalline lattice, imaged with a higher
magnification.

electronic devices, and has been used to improve the carrier mobility in MOSFETs [130]
and to induce a Pockels coefficient for optical modulation in silicon photonics [131], but
nanomechanical applications of sSi were unexplored. In soft clamped strained silicon
nanostrings, we demonstrated quality factors up to (1.3± 0.2) · 1010 around 1.4MHz
at temperatures of approximately 7K. This represents the highest Q reported for a
mechanical oscillator at liquid He temperatures, exceeded only at mK temperatures
in single-crystal silicon optomechanical cavities (Q = 5 · 1010) [79]. As shown in the
latter work, the Qint of crystalline silicon increases monotonically with decreasing tem-
peratures between 1K − 10mK, and we expect a qualitatively similar improvement of
mechanical friction in strained silicon characterized at millikelvin temperatures.

The chapter will be structured as follows. I will present the results on the investiga-
tion of strained silicon as a material for nanomechanics, starting from the description of
the microfabrication methods we developed, successively detailing the techniques that
can be used to characterize the elastic strain in the nanoscale devices, then presenting
the main results on the cryogenic characterization of the phononic crystal nanostring
samples. I will then discuss the optical interferometer setup we assembled and em-
ployed for acquiring all the data presented in this section. This type of apparatus is
extremely useful for preliminary mechanical characterization before conducting op-
tomechanics experiments, and we routinely employ a few variants of the described
interferometer for the measurement of all the samples fabricated in the Optomechan-
ics team. Finally, I will expose some accessory measurements of the bolometric effect
observed in the sSi strings (optical heating).

3.1 microfabrication of strained silicon nanostrings

We use strained silicon on insulator substrates1, where the strained silicon layer is
grown epitaxially and bonded to a carrier wafer [132]. As in SOI technology, the sSi
layer is conveniently separated from the silicon substrate by a buried oxide layer, fa-

1 sSOI, Soitec SA. To the best of our knowledge, Soitec has interrupted the production of sSOI wafers, and
only some stock wafers remain in their inventory.
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Figure 3.2: Simplified fabrication process, divided into: a device layer patterning, b encapsula-
tion of the nanostrings, c undercut and d release and removal of the encapsulation
layer. False-colour SEM micrographs are shown for each step of the process.

cilitating the fabrication of suspended nanomechanical resonators. The average initial
thicknesses of the sSi and buried oxide films in our samples are, respectively, about
14nm and 145nm. A transmission electron microscope (TEM) cross-sectional image of
the film stack is shown in Figure 3.1.

We developed a fabrication method to suspend high aspect ratio phononic crystal
(PnC) nanostrings [26], outlined in Figure 3.2. Millimeter-scale nanostrings require a
large clearance (> 10µm) from the substrate to be reliably suspended without stiction
and collapse. An added complication is the chemical identity of the substrate and the
device layer, offering no chemical selectivity for undercut steps. To circumvent these
issues, our process includes the deposition of several encapsulation layers and a se-
quence of dry and wet etch steps for suspending the nanostrings (see Figure 3.2). The
process was developed and all the samples were fabricated at the Center of MicroNan-
oTechnology (CMi) at EPFL.

Nanofabrication of the sSi mechanical resonators starts from 300mm-diameter sSOI
wafers. Strained silicon is obtained by heteroepitaxial growth on Si

1–xGex; the crystal
lattice constant mismatch can be tuned by changing the Ge concentration (x), leading
to typical biaxial stress levels in excess of 1GPa. The epitaxially-strained silicon film is
bonded to a silicon carrier wafer capped by an oxide layer, and separated from its orig-
inal substrate by a sequence of ion implantation, thermal treatment and selective etch
of the Si

1–xGex buffer layer [132]. Our wafers consist of a ≈ 800µm-thick Si substrate,
with 145nm SiO

2
and 14nm (nominal thickness) strained silicon thin films on the front

side.
Wafers are resized through laser cutting to a 100mm diameter, suitable for handling

and processing in our clean room. After thoroughly stripping the wafer of the pro-
tective layer of photoresist (with a combination of room temperature acetone and O

2

plasma), we proceed to pattern the sSi layer.

3.1.1 Device layer patterning

The electron beam resist ZEP520A at 50% dilution is employed, spun at a thickness of
roughly 150nm (spin coater rotation frequency of 3000RPM). Since ZEP is a positive
electron beam resist, the patterns are divided into a sleeve region, surrounding the
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a

20 μm

b

20 μm

Figure 3.3: a, Suspended nanostrings without a stress-compensation layer are subject to a com-
pressive load well beyond the critical value for out-of-plane buckling. Green - SiO

2
,

blue - patterned sSi + FOX16 mask. b, The encapsulation layers (dark and light
green) compensate compressive stress; the suspended beam is tensioned and flat.

nanostring edges and discretized with a fine grid, and a bulk region, including larger
patches of the patterns with no common borders with the mechanical resonators. Prox-
imity effect correction is performed to adjust the local exposure dose point by point.
With this procedure, we can achieve line roughness ≲ 10nm, while maintaining a rea-
sonable duration for the exposure job (line edge roughness is measured in a Scanning
Electron Microscope, over a ∼ 5× 5 µm2 field of view, after dry etching the sSi layer,
and we quote here a 3σ confidence interval). The nanobeams are patterned along ⟨110⟩
directions (with a tolerance of approximately ±1°, dominated by the precision of the
reference wafer cut), because this direction makes the stress relaxation upon release
negligible due to a minimal Poisson’s ratio of ν ≈ 0.06 (Young’s modulus E ≈ 169GPa)
[133].

Using ZEP520A as a mask, we pattern the sSi layer with ICP-RIE, using SF
6

+ C
4
F

8

gases. Only a few seconds of exposure to plasma are needed to etch the film, landing
on the SiO

2
underneath. In order to increase reproducibility, we therefore pre-condition

the ICP chamber by exposing a test Si wafer to the same chemistry prior to etching the
actual devices. We then strip the ZEP resist residues before proceeding with the fol-
lowing microfabrication steps. In order to avoid the formation of heavily cross-linked
and burnt resist residues, that are almost impossible to remove, we routinely employ
the following sequence:

• Exposure to O
2

plasma (600W RF power, 400 sccm flow rate) for 30 s to clear the
hardened resist crust formed during dry etching,

• Immersion in hot N-Methyl-2-pyrrolidone (NMP) at 70 °C for 10 minutes to re-
move the bulk of the resist,

• Exposure to O
2

plasma (600W RF power, 400 sccm flow rate) for 3-5minute to
remove the remaining, loose residues of resist.

This procedure is carefully repeated after each etch step, to strip photo- or e-beam
lithography resist masks.
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3.1.2 Dielectric film encapsulation

The goal of the process at this stage is to create sufficient clearance between the sSi
layer and the substrate to suspend mm-scale devices. To achieve this, we encapsulate
the sSi strings in a protective oxide layer, then use deep reactive ion etching (DRIE) and
an isotropic undercut (in a sequence similar to the method described in [26]) with high
oxide chemical selectivity. However, an additional constraint arises: when such a multi-
layer beam is suspended, it will buckle and very commonly collapse or break, due to
the high compressive stress intrinsic to thermal and deposition oxides (see Figure 3.3a).
The solution is to ensure the encapsulating layer has tensile stress and is sufficiently
thick to compensate the compressive stress in the buried oxide underneath (around
−400MPa to − 300MPa)2, as in Figure 3.3b.

In practice, multiple dielectric films are deposited. First, roughly 10nm of SiO
2

is de-
posited through atomic layer deposition (ALD), covering the patterned surface. Then,
hydrogen-rich SixNy is grown through plasma-enhanced chemical vapour deposition
(Oxford PlasmalabSystem100 PECVD with 2% SiH

4
:N

2
and NH

3
as the precursors.

The flow rates were respectively 975 and 30 sccm. The chamber pressure was 800 mtorr
and the reactor temperature was set to 300 °C during the deposition). With 40W of
RF power generating the plasma, the film exhibits strong tensile stress, stable in time,
of approximately +330MPa (characterized through the Stoney wafer bending method
[134]; see Figure 3.4). Its thickness must be sufficient to keep the thickness-averaged
stress positive, i.e.

tSiN >
σSiO2 (1− νSiO2)

σSiN (1− νSiN)
tSiO2, (3.1)

where t is the film thickness and σ,ν are the initial stress (σSiO
2

≈ −360MPa) and Pois-
son’s ratio. We usually deposit an approximately 400nm-thick nitride layer, verifying
the thickness by reflectance spectroscopy.

This stack of dielectric films is patterned through conventional photolithography
and RIE (He + H

2
+ C

4
F

8
plasma precursors), with a rescaled mask which completely

envelopes the nanobeam sidewalls, exposing the Si substrate. To improve the resilience
of the encapsulation layer to the Si undercut process, an additional 30nm film of Al

2
O

3

is deposited by ALD. Another photolithography mask defines the pattern of Al
2
O

3
and

protects the encapsulation structure during a DRIE step (Bosch process, pulsed SF
6

and
C

4
F

8
), which creates a (roughly) 30µm-thick recess into the Si substrate.

A thick, protective layer of photoresist is then spun over the patterned frontside,
and the wafer is diced into chips; the process then continues chip-wise. Samples are
cleaned carefully with a procedure similar to each post-RIE cleaning (taking care not
to use Piranha solution for stripping organic residue: it quickly dissolves Al

2
O

3
).

3.1.3 Plasma undercut

Selective undercut (Figure 3.2c) is carried out with isotropic etching in SF
6

plasma;
for this step the single chips are bonded to a Si carrier wafer in order to homogenize
the etch rate and increase process reproducibility. Importantly, the separate patterning

2 The presence of the sSi layer can be ignored, due to its negligible thickness.
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Figure 3.4: Determination of the intrinsic stress in PECVD SixNy through wafer bow. The wafer
height profile is measured by scanning a laser beam and recording the angular
deflection of the beam reflected off the surface. The magnitude and sign of the
profile curvature permit to reconstruct the biaxial stress. Red circles—wafer profile
before nitride deposition, orange circles—wafer bow after nitride deposition, with
the initial profile subtracted.

of the Al
2
O

3
allows fine control of the geometry of the isotropic undercut process,

preventing the formation of overhang at the string anchoring pads. Overhang at the
clamping points can be detrimental to the purpose of suspending structures with high
dissipation dilution, and the released film can relax its tensile stress by buckling.

3.1.4 Wet release

The strings are now suspended and encapsulated in a rescaled, thicker dielectric beam.
To conclude the process and expose sSi one must remove the encapsulation layers
selectively to Si. For this purpose we employ concentrated HF (10% volume fraction
in water solution). We previously employed buffered HF (BHF, HF 50% : NH

4
F 40%

1:7 volume fraction), but observed a non-negligible attack of the sSi layer, possibly
due to its higher pH [135]. No significant modification of the sSi layer could be no-
ticed when performing the etch in concentrated HF (see Figure 3.5). To ensure the
survival of the fragile suspended samples during wet etch, it was crucial to design
and construct appropriate PTFE3 chip holders that minimize the flow of liquids in the
vicinity of the devices and allow gradual dilution of etchants and solvents, inspired
by the “turbulence-shielding” methods detailed in [136]. One of the “puddle holders”
we designed (Sergey Fedorov, myself and Mohammad Bereyhi, over several genera-
tions with incremental improvements) is shown in Figure 3.6. The design satisfies the
compromise of maintaining gentle liquid flows during the transfers between liquid
etchants, deionized water for neutralization and solvents, while ensuring that acids

3 PTFE has excellent resistance to chemicals, but is somewhat tricky to machine with adequate tolerances.
We are indebted with the staff of the Microtechnology mechanical workshop of EPFL for patiently advis-
ing us and fabricating all our prototypes.
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Figure 3.5: In the left microscope image, the strained silicon layer (yellow) exposed to buffered
HF (HF 50% : NH

4
F 40% 1:7 volume fraction) for 7 minutes presents significant

consumption and damage, manifesting as an inhomogeneous darkening of the thin
film. In the right image, a nanostring exposed to HF (10% volume fraction diluted
in water) for 5 minutes does not present signs of damage.

will not stagnate in closed volumes and can be fully rinsed. In case acids are not prop-
erly rinsed from the holder and the devices, they could damage the CPD tool employed
for sample drying, and macroscopic residues will compromise the devices. Moreover,
the holder ensures that the devices remain submerged in a puddle of stagnant fluid
during movements and transfers, avoiding their exposure to catastrophic surface ten-
sion or hydrodynamic forces, that would cause their collapse or stiction. Employing
such holders increased the survival yield of the strained silicon nanostring samples by
orders of magnitude, and is similarly crucial for the release step of high aspect ratio
near-field optomechanical systems. [137].

In the holder shown in Figure 3.6, the chips sit within cavities on the bottom plate
and are constrained by the thin fingers protruding from the top holder, in such a way
that they are free to move over hundreds of micrometers, and no narrow cavities, diffi-
cult to rinse, are formed. The holder can be displaced by inserting a rod in the central
hole. Transfers between different baths are carried out by repeatedly inserting and re-
tracting the holder through the liquid meniscus with extremely gentle movements. In
this way, the liquids gradually fill the chip cavities by flowing from the gaps between
the top and bottom plate, and slowly replace the previous chemicals. The movement
should be repeated until full neutralization is achieved, which can be verified with a
pH indicator paper.

After the wet etch step, we transfer the samples to an ethanol bath and start the
process of critical point drying (CPD) which removes the liquids while minimizing
stiction forces. The suspended strings can be (optionally) exposed to O

2
plasma for

further cleaning of organic residues. Before the chips are loaded in the vacuum cham-
ber for characterization, they are briefly exposed to vapor HF for a few seconds to
strip the spontaneously-formed native oxide layer and to improve the chemical sta-
bility of surfaces through hydrogen termination [138]. After vapor HF exposure, the
samples are brought to the cryostat vacuum chamber within 20 minutes. An image of
a suspended PnC nanostring sample, obtained by stitching together many scanning
electron micrographs, is shown in Figure 3.7.

We remark that the complex fabrication process, including encapsulation, creation
of a recess and release with wet etching and CPD, was rendered necessary by our
sacrificial oxide layer thickness being fixed to 145nm, too small to provide an adequate
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a

b

Figure 3.6: a, Rendering of the disassembled PTFE chip holder. A chip lies horizontally in the
bottom plate. As the top plate is mated using the cylindrical alignment pins, the
chips are secured (without contact) by thin fingers that align with the chip edges. b,
Drawings of the bottom and top plates (top and side views), with dimensions and
fabrication tolerances quoted in millimeters.

clearance for the undercut of our high aspect ratio devices. In principle, after expitaxial
growth, the sSi layer could be bonded to glass wafers, or wafers with arbitrarily thick
oxide films, as much as several micrometers. In that case, the devices could be simply
undercut via exposure to highly selective, stictionless vapor HF, with minimal risk
of collapse onto the substrate. We were previously able to release strings of lengths
up to 100µm with a simple protocol consisting of electron-beam lithography, pattern
transfer via dry etching and vapor HF release, exploiting the thin sacrificial layer of our



3.2 strain imaging 65

50 μm 

5 μm 

Figure 3.7: False-color SEM micrograph of a high aspect ratio PnC nanostring. Different scale
factors have been applied in the horizontal and vertical directions.

substrates. Longer strings would always get stuck to the substrate during the vapor-
phase undercut.

3.2 strain imaging

3.2.1 Dark field electron holography

We assess the strain in the sSi film after fabrication by imaging a thin cross section
of the chip, cleaved from the PnC nanostring pad, in a transmission electron micro-
scope (TEM)4. A thin cross-sectional slice (∼ 100nm thickness) is carved from the sup-
port pads of the nanobeams, using a focused ion beam (FIB) specimen preparation
technique. The slice can then be observed in the TEM (see Figure 3.1). An electronic
interference method, dark-field electron holography [140], is employed to quantita-
tively map the strain in the crystalline films (Si substrate and bonded sSOI layer), with
nanometer-scale resolution, as displayed in Figure 3.8. From the signal-to-noise ratio
of the strain distribution in the sSi film, we calculate a 95% confidence interval on the
average biaxial strain (0.85± 0.06)% (stress (1.53± 0.11)GPa; 95% confidence interval
on the mean), close to the supplier specification of 1.3GPa. The strain is significantly
higher than the ∼ 0.4% value of stoichiometric Si

3
N

4
on silicon [57], due to a lower

(direction-averaged) Young’s modulus.
In order to acquire the dark-field electron holography strain map, the impinging

electron wave is diffracted by the crystal of the specimen, set in two-beam condition to
enhance the intensity of the (220)-diffracted beam which is selected with an objective
aperture placed in the back-focal-plane of the objective lens of the TEM. Then, an
electron biprism is used to interfere the reference wave emerging from the unstrained
Si substrate (the dark-field image of the substrate) with the wave emerging from the
measurement area (the dark-field image of the sSOI), to generate a hologram. Fourier
processing is used to retrieve the geometric phase encoded in the interference fringes
of the hologram, and the in-plane strain map is calculated from the gradient of the
geometric phase, being proportional to the displacement field of the (220) crystal lattice
planes [139]

Electron holography experiments were performed with a double aberration-corrected
FEI Titan Themis operated at 300 kV. Stacks of 50 holograms of 5 s exposure time were
recorded with a FEI Ceta camera to improve the signal-to-noise ratio of the strain maps
[139]. The biprism bias was 200V, giving a hologram carrier frequency of 0.69nm−1.
The numerical aperture used for the Fourier processing limits the spatial resolution of
the strain map to 2.75nm.

4 All TEM observations and DFEH experiments were conducted in the CIME Interdisciplinary Center for
Electron Microscopy at EPFL, with the support of Dr. Victor Boureau.
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Figure 3.8: ]
a, Color-coded strain map of crystalline silicon, measured with dark-field electron

holography [139]. The noisy maps from the amorphous layers of SiO
2

(bottom region)
and evaporated Pt layer (top region) are desaturated for clarity. b, Distribution of

reconstructed strain values in the sSi layer, centered on the average strain ⟨ϵ⟩ = 0.85%.

10 μm 

Figure 3.9: Raman Stokes spectrum acquired on a string anchoring pad (left). The approximate
location where the Raman spectrum was measured is indicated on the right image
with a dark blue spot.

3.2.2 Raman spectroscopy

Local strain can also be measured in suspended resonators by Raman spectroscopy
[141]. Micro-Raman has been long recognized as a powerful technique to characterize



3.2 strain imaging 67

a

cm-1

b

Figure 3.10: a, Micro Raman map over the unit cell of a corrugated nanostring. The colour
scale represents the central frequency of Raman emission. b, Light green band:
stress profile along a y = 0 cut in the unit cell, reconstructed from h. The width
of the band depicts experimental uncertainties. Dark green line: output of a finite-
element simulation with 1.5GPa initial stress.

the local stress state of crystalline samples, owing to the high spatial resolution achiev-
able with confocal microscopy, and the high resolving power of diffraction gratings,
compared to typical stress-induced Raman shifts [141].

For silicon, tensile (compressive) strain is known to decrease (increase) the Stokes
scattering frequency. When collecting the Stokes signal from the sSOI stack, we ob-
served spectra similar to the one depicted in Figure 3.9, where a red-shifted contri-
bution from the sSi film can be resolved from the more intense peak at 521 cm−1,
scattered by the unstrained substrate. We then collect Raman-scattered light from a
suspended nanostring with nonuniform width and display the spatial variation of the
Stokes frequency in Figure 3.10a: the frequency changes along the longitudinal axis
x, being lower in the thin parts of the unit cell. This occurs due to re-distribution of
stress in a string with nonuniform width [24]. From the Stokes frequency we can es-
timate the uniaxial stress along the unit cell (Figure 3.10b), taking laser heating into
consideration [141, 142], as explained in the following paragraphs. We display a band
of finite width for the reconstructed stress, accounting for uncertainties in the elements
of the stiffness-strain tensor and in the Stokes peak from unstrained silicon. The recon-
structed stress profile agrees fairly well with an initial stress of approximately 1.5GPa,
as displayed in Figure 3.10b.

Reconstruction of the local strain state from the Stokes frequency is aided by the
numerous studies of silicon under different states of stress in the literature of micro-
Raman spectroscopy. The frequencies of long-wavelength optical phonons in Si are
perturbed by strain. In the absence of strain ϵ, the normal modes are degenerate at a
wavenumber of ν0 ≈ 520 cm−1 (ω0 = 2π · 15.6THz); the introduction of strain modifies
the crystal stiffness tensor and perturbs the mode frequencies, breaking their degener-
acy [141]. This influence is generally approximated as a linear dependence; by symme-
tries of the silicon lattice, only three independent elements appear in the stiffness-strain
tensor: p,q and r. These are usually determined experimentally, and different values
have been reported in the literature [142]. We report here the numerical values from
[143]:
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p = −1.3 · ν20
q = −1.9 · ν20 (3.2)

r = −0.66 · ν20

The perturbed normal modes frequencies are obtained by finding the eigenvalues λ
of the matrix:

pϵ11 + q
(
ϵ22 + ϵ33

)
2rϵ12 2rϵ13

2rϵ12 pϵ22 + q
(
ϵ11 + ϵ33

)
2rϵ23

2rϵ13 2rϵ23 pϵ33 + q (ϵ11 + ϵ22)

 , (3.3)

from which the phonon wavenumbers can be computed as ν ≈ ν0 + λ/2ν0. Phonon
polarizations are found as the corresponding eigenvectors. Raman scattering selection
rules impose that only scattering by longitudinal phonons (polarized along z) can be
measured, upon reflection on a (100) surface [144].

A particular strain state is assumed to simplify the eigenvalue equation and extract
a single strain or stress component from the measurement of ∆ν. Importantly, matrix
3.3 is expressed in the reference system [100], [010], [001], so that the strain tensor must
be rotated to the same axes.

We report here the resulting linear relations between stress and Raman shift in the
relevant cases.

• Uniaxial stress directed along [110] or [100]: ∆ν/σ ≈ −2.0 cm−1/GPa

• Biaxial stress, σxx = σyy = σ: ∆ν/σ ≈ −4.1 cm−1/GPa,

confirming the general observation that tensile (compressive) stress leads to a red (blue)
shift in the Raman scattering peak.

In our confocal microscope setup, we excite Raman scattering by focusing a 488nm
laser with typical output power of 10− 50mW on the sample (located at room tempera-
ture and atmospheric pressure), we detect the Stokes peak in reflection and separate it
from the laser line with a diffraction grating with high resolving power. The intensity
and wavenumber of the Stokes peak are recorded by a CCD sensor. When the laser
beam is focused on the suspended string, the spectrum consists of a single Lorentzian,
since the recessed substrate is beyond the depth of focus of the microscope. On the
other hand, when the laser is focused on a region where sSi is not undercut, two con-
tributions can be distinguished: an intense Lorentzian line at ν0 collected from the
unstrained substrate and a redshifted Lorentzian peak from the biaxially-stressed sSi
layer (see Figure 3.9). By extracting ∆ν = ν − ν0 from the fit, the stress magnitude
can be inferred as described above. We measure a Stokes shift from the unstrained
substrate of ν0 = 521 cm−1, at small impinging optical power.

Heating in the sSi layer influences the reconstructed stress magnitude. Silicon ab-
sorbs strongly at the pump laser wavelength, and heating is exacerbated by the poor
thermal conductance of the nanostrings. A temperature increase leads to a redshift
of the phonon frequency, due to anharmonic terms in the potential energy of atomic



3.3 soft clamped pnc nanostrings 69

-15 -5 5 15
x (µm)

512

513

514

515

516

517

518

519

W
av

ev
ec

to
r 

(c
m

-1
)

10 mW
15 mW
17.5 mW
20 mW
Extrapolated

Figure 3.11: Micro-Raman scans along a corrugated beam section are conducted, with variable
laser power. A linear dependence of the Raman scattering wavevector on the power
is observed; the dotted line indicates the extrapolation to zero optical power.

bonds [145], and changes the local strain. We account for this temperature dependence
experimentally, by varying the pump power and extracting, point by point, the Stokes
shift at vanishingly small power via linear extrapolation (see Figure 3.11).

In Figure 3.10b, we account for experimental uncertainties by displaying a plausible
region for the reconstructed stress as a function of position. The light green band is
obtained by varying ν0 between 520.5 and 521.5 cm−1 and ∆ν/σ between −2.0 and
−2.3 cm−1/GPa [143, 146].

3.3 soft clamped pnc nanostrings

The DQ expression for uniform nanostrings of 2.92 can be generalized to strings with
an arbitrary width corrugation, as is derived in [24]:

DQ =
1

2αnλ+βnζ2nλ
2

, (3.4)

where n is the mode order, αn and βn are factors which depend on the width profile
of the string and on the mode shape and ζn is the dimensionless mechanical frequency,
ζ2n = ρL2Ω2n

ϵE . As seen in section 2.3.2, we recall that the dominant λ term in the denomi-
nator of equation 3.4 stems from the displacement field curvature close to the clamping
points of the string, while the λ2 term originates from the curvature maxima associated
with each antinode in the vibrational modeshape.

We apply soft clamping to sSi nanostrings using width corrugations, implementing
a phononic crystal and opening a bandgap around an acoustic wavelength twice as
long as the width modulation period [26] (as portrayed in Figure 3.12b). The width
corrugation profile is illustrated schematically in Figure 3.12a and is implemented with
width modulation wmax/wmin = 2 and unit cell length lUC = 108µm. The transition
between wide and narrow parts of the unit cell is defined by a polynomial curve
extending over 0.1 lUC, with vanishing derivatives up to the third order at both ends.
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wminwmax

a

b c

Figure 3.12: a, Unit cell of the width corrugation profile. b, Vibrational bandstructure aris-
ing from the beam width corrugation. Branches: IP—in-plane flexural, Long.—
longitudinal, OOP—out-of-plane, Tors.—torsional. The OOP bandgap is high-
lighted in gray. c, OOP mode frequencies for strings with varying length of the
center defect region. The length of the strings is about 1.6mm.

The maximum acceptable width corrugation is constrained by buckling of the unit cells
(described in section 3.3.1), that dramatically reduces the DQ. A defect which perturbs
the translational symmetry is introduced by stretching the length of the narrow region
in the string center to ldef. The defect is surrounded on each side by 7 unit cells (see
Figure 3.7).

We characterize the devices in an interferometric setup (described in section 3.7),
and acquire thermomechanical noise spectra to find the out-of-plane (OOP) frequen-
cies of the resonators. The resulting vibrational spectra are compiled in Figure 3.12c,
displaying the OOP flexural modes of soft-clamped nanostrings with L ≈ 1.6mm. To
match the frequencies and the numerical predictions, we assume an initial stress in
the sSi layer around 1.0− 1.2GPa, varying for different chips and fabrication runs. We
speculate that this value, significantly lower than the stress reconstructed via TEM and
Raman methods, might be attributed to the presence of a thin layer of native oxide on
the exposed silicon surfaces, which lowers the effective stress in the string cross-section
[95].

A bandgap manifests around 2.8− 3.2MHz. One or two resonances appear in the
bandgap, corresponding to localized modes; their frequency responds much more sen-
sitively to variations in ldef than those of distributed modes. Such a localized mode,
implemented in a 6.0mm-long nanostring, with 12 unit cells on each side of the defect
(ldef ≈ 2.3lUC ≈ 0.5mm), is displayed in Figure 3.13 and exhibits soft clamping, i.e.
the clamping point curvature is suppressed with respect to a uniform string (see Fig-
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Figure 3.13: a, Three-dimensional vibrational pattern of a soft clamped mode localized with a
PnC. The mode shape was obtained with finite element methods. b, Displacement
field and c, squared curvature of the localized mode of a 6.0mm-long nanostring,
with 12 unit cells on each side of the defect.

ure 3.13c). For the localized mode, αn ≈ 0 in equation 3.4, and one is left with a more
favorable DQ scaling:

DQ ≈ 1

π2 (Ωm/Ω1)
2 λ2

∝ ϵL2

h2
, (3.5)

where Ωm is the localized mode frequency and Ω1 the fundamental mode frequency.
Soft-clamped modes of high aspect ratio strings exhibit an enhanced DQ compared to
distributed modes, far from resonance with the PnC, and their Q scales inversely with
the thickness h, in the common case of surface loss-limited Qint [25, 26].

We experimentally characterize the DQ enhancement resulting from soft clamping
in the 6.0mm nanostring. The measurements are performed at the base temperature
of our cryostat, T ≈ 7K. The PnC localizes a mechanical mode at Ωm/2π = 1.46MHz,
shown in Figure 3.13. We evaluated the damping of OOP modes by resonantly exciting
them and recording ringdown traces upon interruption of the drive (see Figure 3.15;
more details in section 3.7). Since the laser beam increases the sample temperature and
influences the reconstructed damping rates (as will be discussed in the following), we
perform gated detection by periodically blocking the probe laser with a mechanical
shutter. The repetition rate of the gates is much slower than thermal relaxation, which
occurs at timescales below one second5.

The measured Qs are shown in Figure 3.14: modes out of the vibrational bandgap
display a weak dependence on frequency, due to the λ−1 dependence seen in equation
3.4 for hard clamped modes. The mode n = 26 (blue circle), localized to the defect

5 The thermal relaxation time constant could be measured experimentally by observing how fast the nanos-
tring resonant frequencies responded to rapid changes in the 1550nm probe beam power.
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Figure 3.14: Quality factors and frequencies of the flexural modes of the 6.0mm-long nanos-
tring, characterized at 7K. Measurement data are displayed with filled symbols,
while predictions from a model supported by FEM simulations are displayed with
blue empty circles. The mechanical bandgap region is shaded. The triangular and
filled blue circle symbols mark modes analyzed in Figure 3.17.

region, exhibits a Q = (1.3± 0.2) · 1010, more than two orders of magnitude beyond
the Q of distributed modes. The uncertainty corresponds to a 95% confidence interval,
estimated from 7 separate gated ringdowns. The observed Q enhancement from soft
clamping is too large to be explained only by the suppression of the intrinsic loss
produced by the bending curvature around the clamping points. In order to reliably
model the experimental data, we have to assume additional dissipation in the clamping
regions, which can be due to phonon radiation or mechanical losses in the SiO

2
layer

underneath the clamping points. We fit a model with two free parameters (open circles
in Figure 3.14), the first related to the intrinsic dissipation of Si (Qint), and the second
representing dissipation in the boundary regions of the string (affecting mostly the
out-of-bandgap modes). In the presence of an inhomogeneous mechanical loss, Q can
be written as:

Q =
1

1/Dbound
Q ·

(
1/Qint,distr + 1/Qbound

)
+ 1/

(
Ddistr
Q ·Qint,distr

) , (3.6)

where Dbound
Q and Ddistr

Q (the same quantities that are displayed in Figure 2.7b) are
evaluated with the method summarized in section 2.3.5, with the kinetic energy inte-
gral in the numerator extending over the whole string, and the linear elastic energy
integral in the denominator extending in the first case to thin regions close to the
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Figure 3.15: Gated ringdown of the localized mode in Figure 3.14 (filled blue circle). An expo-
nential fit is shown with a dashed red line. The small deviation from exponential
decay around 1.5 hours may be due to alignment drifts in the characterization in-
terferometer.

boundaries, of length a few multiples of λL, and in the second case to the remainder
of the string. With these definitions, DQ = 1/

(
1/Dbound

Q + 1/Ddistr
Q

)
. The precise extent

of the domains is unimportant, as long as Dbound
Q is evaluated over the whole region

of large clamping curvature. We remark that phonon radiation loss would not be di-
luted in the same manner as intrinsic dissipation, but the fit model of 3.6 would still
be valid with the identification Dbound

Q ·Qbound → Qrad. In general, one would expect
radiative losses to depend on eigenmode index and frequency [104], a feature that is
not encountered in the data of Figure 3.14.

From the fit procedure, we obtain Qint,distr = (8± 3) · 103 and Qbound = 3 · 103. We
take Qint,distr as our estimate for the strained silicon Qint at 7K, consistent with previ-
ous observations and surface-dominated mechanical losses [95]. Its confidence interval
is primarily determined by the statistical scatter in Q inferred by ringdown measure-
ments and by the uncertainty of the string thickness.

3.3.1 Buckling in large corrugations

An important design constraint for PnC nanostrings is the insurgence of buckling when
the width modulation is increased beyond a limit value. In practice, the occurrence of
buckling provides an upper bound on the mechanical frequency of modes that can be
localized with high Q, especially when the stress and, correspondingly, the speed of
sound, are enhanced by width tailoring [26].

PnC nanostrings are prone to localized buckling around the transition region of the
width corrugation. This effect is due to the development of compressive stress in the
direction transverse to the string axis, when the string is suspended and the biaxial
stress is relaxed [108]. This phenomenon is particularly relevant for very thin films,
and occurs when the aspect ratio of the unit cell is decreased, i.e. for short and wide
unit cells.
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Figure 3.16: a, Buckling instability contours for unit cells of varying thickness and in-plane di-
mensions. Coloured areas mark instability regions for fixed film thickness. b, Post-
buckling deformation for a unit cell thickness of 5nm and in-plane dimensions
marked with the corresponding symbol in a. c, Stress distribution in the transverse
direction in a 20µm-long, 1µm-wide unit cell. The black lines depict the contours
of zero transverse stress.

In order to design PnC strings that do not exhibit buckling, we performed a finite
element simulation of a single unit cell, with periodic boundary conditions. An eigen-
mode analysis is carried out, and the presence of eigenfrequencies with nonzero imag-
inary parts is interpreted as a manifestation of static instabilities leading to buckling.
The simulation is repeated for different string aspect ratios, and the results are dis-
played in Figure 3.16a: coloured regions represent geometrical domains of instability
for variable film thickness h. The area of instability regions increases as the thickness
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Figure 3.17: Variation of Q with temperature for different modes of a soft-clamped nanostring.
Blue circles: localized mode, triangles: modes with frequencies below the mechani-
cal bandgap. Empty symbols show measurements performed while increasing the
temperature, closed symbols are measured later, as the temperature was decreased.
Different axes are used for the quality factors of out-of-bandgap modes (green) and
the localized mode (blue).

is decreased. The unit cells aspect ratios of all devices presented in the main text are
chosen outside of the buckling region for h = 10nm. The simulation method can be
validated by performing a stationary-state stress relaxation analysis with a small out-
of-plane load applied to the unit cell surface, breaking the symmetry of the model:
when the cell aspect ratio lies inside the coloured regions, the perturbation reveals
the unstable character of the non-buckled solution and produces a visualization of the
buckling mode of the unit cell (see Figure 3.16b).

3.4 quality factor temperature dependence

We characterize the quality factors of several modes of the 6.0mm nanostring as the
sample holder temperature is tuned with a resistive heater. We probe two modes well
below the lower bandgap edge (Ωm/2π ∼ 500, 900kHz) and the localized mode at
Ωm/2π ∼ 1.4MHz, highlighted in Figure 3.14 The results are shown in Figure 3.17.
We initially increase the sample temperature (measured with a thin film resistive ther-
mometer connected to the sample plate) from 7K to 20K (open symbols in Figure 3.17),
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without significant variations of all the Qs. We then heat the sample to 300K and step
down the temperature gradually (closed symbols in Figure 3.17). While the Q of the lo-
calized mode around room temperature is partially limited by gas damping (as shown
in section 3.4.1), we believe this to be negligible at low temperatures, due to lower
pressures attained in cryogenic conditions (< 10−8mbar).

Importantly, as the cryostat base temperature is reached again, we do not recover
the initially observed Qs: the mechanical dissipation is increased by a factor of about
3. This observation corresponds to a gradual sample degradation over several days
(the time required to complete the temperature-dependent measurements) while the
sample was kept cold, which also explains the difference in dissipation of the mea-
surements displayed with star and open circle symbols in Figure 3.17, where the latter
points were acquired approximately four days later. This degradation was reversible:
we could reproduce Q > 1010 multiple times after heating the chip to room tempera-
ture and cooling it back to 7K. On the other hand, the mechanical frequencies drifted
irreversibly to lower values, hinting to stress relaxation or to the growth of native ox-
ide. This reversible increase in mechanical dissipation could be due to slow processes of
condensation on the sample of the residual gases in the cold cryostat, or to gas damp-
ing induced by the rapid variation of hydrogen partial pressure around 10K [147].
This slow degradation reversible upon thermal cycling was not observedwith different
samples in our research group, even though no other sample approached such high
quality factors yet. It is rather common, instead, to witness a degraded mechanical
dissipation just after cooling down the cryostat, which can sometimes be reverted by
thermal cycling to room temperature.

The Q of all modes has a minimum (the dissipation is peaked) around 175K to 180K,
and increases rapidly (but not monotonically) for lower temperatures. A closer exam-
ination of the relevant temperature range (Figure 3.18a) shows that the temperature
of the dissipation peak varies with the mode frequency, suggesting the presence of
thermally-activated defects [43, 148], with activation energy around 0.2 eV, extracted
with a fit to an Arrhenius thermal relaxation model (see equations 2.100 and 2.101),
shown in solid lines in Figure 3.18a. The Q degradation is smaller for the localized
mode, which could indicate a weaker coupling to the defect ensemble. A secondary
dissipation peak is visible for all modes, around 120K. The absence of Q peaks around
125K and 20K, where the linear expansion coefficient of silicon approaches zero ex-
cludes thermoelastic damping as a relevant dissipation source, as expected from the
string dimensions [149] (see also Figure 2.9).

While the Qs of the two out-of-bandgap modes differ less than 15% at any tem-
perature, the ratio of Qs for localized and distributed modes exhibits a complex tem-
perature dependence, shown in Figure 3.18b. Were all modes affected by the same
intrinsic damping mechanisms, the ratio would depend very weakly on the tempera-
ture and approximately correspond to the dilution factor ratio, Dloc

Q /D
oob
Q , displayed

by the green band in Figure 3.18b, where loc identifies the localized mode and oob the
out-of-bandgap modes. The dependence of strain and string dimensions on temper-
ature cannot explain the observed variation. As previously discussed, the PnC must
therefore partially shield the localized mode from additional external loss channels,
especially at cryogenic temperatures. At high temperatures, the DQ ratio approaches
the numerical prediction; the small discrepancy can be explained by the contribution
of gas damping to the dissipation of the localized mode at room temperature.
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Figure 3.18: a, Finer temperature sweep around the region shaded in gray in Fig. 3.17, where
all modes present a dissipation peak. Continuous lines portray the results of simul-
taneous fits to a model of a thermally-activated defect (equations 2.100 and 2.101).
Scaling factors are applied to different series in order to display them on the same
axis. b, Ratio of Qs between the localized mode and the two out-of-bandgap modes,
displayed with the same symbols as in Fig. 3.17. The horizontal band displays an
interval for the ratio of DQs obtained with a finite element simulation. b

3.4.1 Gas damping of the localized mode at room temperature

As mentioned in the previous section, at temperatures T ∼ 300K, we observed a
relevant contribution of gas damping in limiting the quality factor of the localized
mode. As discussed in section 2.3.6.5, the nanostring dissipates its kinetic energy
through random collisions with residual gas molecules in the vacuum chamber. At
room temperature, the lowest attainable pressure in the vacuum chamber was around
p = 2.2× 10−7mbar, where we can estimate Qgas ≈ 1.0 · 109 from equation 2.123. At
this pressure, we measured Q = 0.67 · 109 and therefore concluded our Q was partially
influenced by gas damping. We proceeded to measure the quality factor as a function
of pressure in the chamber and then used a fit of form

Q =
1

1/Qbeam + 1/Qgas
(3.7)
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Figure 3.19: Quality factor of the localized mode at room temperature, as a function of pressure.
Solid line shows fit as described in the text, with 95% confidence intervals shown
by the shaded area.

to extract the quality factor of the beam in the absence of gas damping, Qbeam (see
Figure 3.19).

At lower temperatures, the contribution of the gas damping rate was found to be
negligible, due to significant cryopumping in the vacuum chamber (see section 3.7.1).

3.5 quality factors of additional samples

In addition to the PnC device that we described in the previous sections, we fabri-
cated multiple chips with 6.0mm-long strings, each containing 25 samples with a vari-
able number of unit cells. A large variance of quality factors was observed, indicating
probable contamination issues arising from the fabrication process. For example, on
the same chip containing the string analyzed in Figure 3.14, we characterized about
10 released nanostrings supporting soft-clamped modes (a 40% yield of devices that
survived the last release step). The quality factors at room temperature ranged from
> 108 for 3 devices, to low enough that the linewidth could be resolved on our spec-
trum analyzer (Q < 106). On a similar chip, we observed a second string with the same
design as the one presented in the main text and comparable mechanical parameters:
Ωm/2π = 1.45MHz and Q ≈ 6.4 · 108 at room temperature (limited by gas damping,
as discussed in the previous section), and ≈ 6.3 · 109 at 6.7K.

We additionally fabricated 6.0mm-long strain engineered samples [26], with a width
tapering ratio of 3/1 between anchoring points and central defect, supporting a mode
at 1.0MHz localized by 9 unit cells on each side of the defect. This particular set of
nanostrings appeared, however, to be affected by contamination-induced mechanical
dissipation, much larger than the intrinsic loss in strained silicon, and we could not
identify any sample with a quality factor on par with the simpler PnC strings. Due
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a
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Figure 3.20: a, Quality factors of flexural mechanical resonances of a 3.2mm-long PnC string
with 10 unit cells per side. Open circles represent a numerical model accounting
for dissipation dilution via FEM. b, Quality factor versus number of unit cells per
side of the defect, for a set of 4.2mm-long strings. The devices were characterized
at room temperature and at the cryostat base temperature; different temperatures
are distinguished by the colors of the dots. Error bars represent 95% confidence
intervals on Q, estimated from 5 repeated measurements.

to the large scatter of mechanical Q, on this chip, we do not believe this reduced
performance to be due to design flaws.

Shorter devices exhibited generally a higher dissipation, as expected from the soft
clamping scaling. In Figure 3.20a, we present a measurement of the quality factors
for multiple mechanical modes of a 3.2mm-long PnC string, analogous to Figure 3.14,
with 10 unit cells on each side of the defect. The characterization was repeated at room
temperature and at 5.6K, and the data was fitted with the DQ computed by finite
elements simulation. For the cryogenic measurement, as in Figure 3.14, an additional
boundary loss contribution was included to improve the agreement of model and data,
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Figure 3.21: a, Relative variation of resonance frequencies of multiple modes with the heater
temperature, referred to the maximum measured frequency. The red dashed line
is a fit to the curve a− bTexp (−T0/T) [150]. b, Relative variation as a function of
the impinging optical power, at T = 10K. The red dashed line is a linear fit.

allowing the inference of Qint ≈ 1.4 · 103, significantly lower than for the 6mm device
(Qint = (8± 3) · 103).

A batch of 4.2mm-long PnC strings showed a good yield of devices with high-Q
localized modes, with quality factors between 108 and 4 · 108 at room temperature (11

strings out of the 25 originally patterned on the chip). However, the improvement at
liquid Helium temperatures was lower than for previously-discussed devices, suggest-
ing a different dominant dissipation mechanism. The number of unit cells was varied
for these samples as well; by keeping the overall string length constant, we could lo-
calize mechanical modes between 1.3MHz to 2.1MHz. No strong correlation between
the number of unit cells and the Q of the localized mode was observed, as displayed in
Figure 3.20b: likely acoustic radiation is an irrelevant loss mechanism for these strings.
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3.6 optical heating

With all the characterized strained silicon nanostrings, we noticed significant heating
effects, which manifested in marked resonant frequency shifts when the power of the
1550nm optical probe used for characterization was varied. This is not surprising: de-
spite the lack of direct optical absorption from silicon at 1550nm, a small heating from
defect states and surface adsorbates, or two-photon absorption, can result in a signifi-
cant temperature increase due to the poor thermal conductance of the high-aspect-ratio
nanostrings. We attempted to elucidate the origin of optical heating by acquiring spec-
tra at variable powers and temperatures, using the same sample of Figure 3.14 and
Figure 3.17.

The eigenfrequencies of the nanostrings can be computed with a perturbative ap-
proach [151], starting from the solutions u of the Euler-Bernoulli equation (generalizing
equation 2.91 for a variable string cross section):

d2

dx2

(
EI(x)

d2u

dx2

)
− T

d2u

dx2
+ ρl(x)

d2u

dt2
= 0, (3.8)

where u is the displacement pattern of flexural modes, I(x) = w(x)h3/12 is the bending
stiffness, w(x) is the nanobeam width, T is the static tension force (constant along the
nanobeam profile), ρl = ρw(x)h is the linear mass density, ρ is the volume density of
silicon, and x is the string longitudinal coordinate, running from 0 to L.

The equation can be rewritten in terms of a normalized coordinate s = x/L, running
from 0 to 1:

λ2σavg
d2

ds2

(
ϵ(s)v(s)

d2u

ds2

)
− σavg

d2u

ds2
+ ρ(s)v(s)L2

d2u

dt2
= 0, (3.9)

where σavg = T/ (w0h) is the stress along x averaged over the nanostring, w0 =
1
L

∫L
0 w(x)dx is the average string width, v(s) = w(s)/w0 is a normalized width profile,

and a potential position dependence was made explicit in the density and Young’s
modulus, ρ = ρ(s) and E = E0 · ϵ(s) . λ =

√
E0

12σavg

h
L is the usual strain parameter.

Following a procedure analogous to the mode expansion of section 2.1.3, we can
separate u in a product of space- and time- dependent parts, u(s, t) = U(s) · q(t), and
write a harmonic oscillator equation for q by multiplying the previous equation by
U(s) and integrating over s, using the clamped boundary conditions U(0) = U(1) = 0

and U ′(0) = U ′(1) = 0. The spring constant k of the oscillator is subdivided in two
series components, k(lin), associated with the bending stiffness, and k(nl), related to the
tension in the string. The spring constant and effective mass meff of the oscillator are:

k(lin) =
λ2σavgw0h

L

∫1
0

ϵ(s)v(s)
(
U ′′(s)

)2
ds (3.10)

k(nl) =
σavgw0h

L

∫1
0

(
U ′(s)

)2
ds (3.11)

meff = hw0L

∫1
0

ρ(s)v(s)U2(s)ds (3.12)

(3.13)
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Since λ ≪ 1 for high aspect ratio strings under tension, we can neglect k(lin) in the
following steps. Eigenfrequencies are obtained as Ωm ≈

√
k(nl)/meff.

We consider now the effect of a small variation in the physical properties of the
string due to a non-uniform temperature profile θ(s) [152]. Small relative variations in
Ωm are given by:

∆Ωm

Ωm
≈ ∆k(nl)

2k(nl) −
∆meff

2meff
=
∆σavg

2σavg
−
∆L

L
−

∫1
0 ∆ρ(θ(s))v(s)U

2(s)ds

2 ·
∫1
0 ρ(s)v(s)U

2(s)ds
(3.14)

Note that an explicit dependence on the mode profile U(s) is retained only through
the variation of mass density (generally due to thermal expansion).

Using equation 3.14, we interpret now the variation of resonant frequencies of a
6mm-long PnC nanostring with temperature, obtained by resolving thermomechanical
peaks with a spectrum analyzer. We monitor the 5 lowest-order flexural resonances of
the nanostring and a higher order mode with Ωm/2π ≈ 1.1MHz. The temperature
was tuned from 10K to 110K with a resistive heater fixed on the cryogenic mount. We
notice in Figure 3.21a that the relative frequencies decrease at a rate around −77ppm/K
beyond ∼ 40K, and saturate at lower temperatures. The trend is similar to the predicted
variation of Young’s modulus at low temperatures [149, 150], but it could also indicate
a poor thermalization of the string to the sample plate at the lowest temperatures.
Moreover, the magnitude of ∆Ωm/Ωm is more than one order of magnitude larger
than the thermal expansion coefficient and has the opposite sign; hence we conclude
that the stress variation (due to the change of Young’s modulus or thermal strain) is
the dominant effect in equation 3.14 in our temperature range. The presence of native
oxide on the exposed surfaces of the string, however, may also influence the observed
variation.

Absorption of 1550nm light has a similar effect on the string resonances, that drift
towards lower frequencies as the optical power is increased. This effect is displayed
in Figure 3.21b, where the sample mount temperature is kept at 10K and power is
measured at the microscope objective output. Note that in Figure 3.21a, we accounted
for the power dependence by recording at each temperature the value of the resonant
frequencies as the optical power was varied, and extrapolating to vanishing power.
As before, we do not observe any modeshape dependence of the relative frequency
variation, suggesting that the last term in equation 3.14 does not relevantly contribute.
The temperature profile in the nanostring is now expected to be strongly peaked at the
laser position, due to strong variation of the conductivity with temperature.

We conclude therefore that absorption of 1550nm light, through two-photon pro-
cesses or defect states, significantly heats up the Si nanostring. However, ∆Ωm/Ωm
in Figure 3.21a and b cannot be directly compared to infer the absorption-induced
heating. When optical power is absorbed locally, a large temperature difference is es-
tablished between the string and the substrate chip, probably leading to stronger vari-
ations of σavg compared to the case of a uniform string and substrate temperature. In
fact, stress is often observed to depend on temperature through thermal expansion
mismatch between the device and substrate materials [134].

When the laser power is stepped or the shutter is opened, resonant frequencies are
observed to relax at characteristic times below 1 s. This justifies the use of the gated
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a b

Figure 3.22: a, Temperature probe records at various locations in the cryostat during a
cooldown. The full lines correspond to a successful cooldown, while dashed lines
display temperature records acquired during a run when the He capillary clogged
and the chamber could not reach base temperature. b, Long-term drift of the base
temperature during the 10 days following the successful cooldown in a.

ringdown technique to characterize mechanical damping, and the assumption that the
string temperature is close to the temperature of the cryostat.

3.7 characterization methods

In this part of the chapter, I take a brief digression to delve into details about the exper-
imental methods used to characterize the sSi devices. Specifically, I will describe the
Helium cryostat where the measurements are carried out, the optical interferometer
that allows a sensitive displacement detection of the mechanical resonators, how to cal-
ibrate trajectories in displacement units and how to acquire ringdown measurements
in order to extract the devices dissipation properties.

3.7.1 Low-vibration cryostat

In order to observe ultralow dissipation in strained silicon resonators, operation at
cryogenic temperatures around the liquefaction point of Helium was essential (T ≈
5− 10K). Many physics experiments, from superfluidity to quantum optomechanics,
can only be conducted at such temperatures, where thermal excitations are drastically
reduced. In optomechanics, it is frequently required to reduce the enormous thermal
occupation and thermal decoherence rates affecting mechanical resonators at room
temperature, in order to observe minute radiation pressure effects leading to quan-
tum correlations. When working with high-Q mechanical resonators, moreover, gas
damping represents often a major source of dissipation, as described in section 2.3.6.5.
Cryogenic cooling offers the possibility of reducing this damping source, since residual
gas species will freeze on the walls of the cryostat chamber (with the exception of He
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and H
2

in trace amounts) and the pressure will be significantly reduced. This effect is
sometimes called ‘cryopumping’.

In our laboratory, a closed-cycle He cryostat by ColdEdge (coldedgetech.com) was
designed and commissioned by Sergey Fedorov and Nils Engelsen. It allows contin-
uous operation around 5 − 7K at vacuum pressures P < 5 × 10−9mbar (the upper
bound is provided by a pressure gauge mounted tens of centimeters away from the
cold head). The first stage of cooling is provided by a Grifford-McMahon cryocooler
(manufactured by Sumitomo) extracting heat by cycling compression and expansion of
Helium, by means of a compressor. Closed-cycle cryocoolers are experimentally con-
venient, as they recuperate their working fluid and do not require periodic refilling.
On the other hand, their pulsed operation notoriously generates substantial vibrations
(with a repetition rate ∼ 1Hz). These perturbations can disrupt the operation of optical
interferometers located in the vicinity, and excite mechanical resonators in optome-
chanics experiments [153, 154] In our cryostat, this limitation is overcome with two
layers of mechanical isolation. The second stage of cooling is in fact implemented by
circulating He gas in a separate circuit, where it is initially cooled by exchanging heat
with the cryocooler. Mechanical isolation is obtained by avoiding direct contact: heat is
transmitted through a gap filled with buffer He gas. The Helium gas line is embedded
in a flexible connector that routes it to the vacuum chamber, thus providing another
stage of mechanical isolation. The flexible connector is commercialized as ‘Stinger’ by
ColdEdge. Moreover, the cryocooler is located in an acoustic enclosure, whose walls
are padded with acoustic foam.

Finally, He gas passes through a thin capillary and undergoes Joule-Thomson ex-
pansion6 at the cold tip, in contact with the experimental assembly, further dropping
the temperature from ≈ 7 to 5K. The cooldown requires overall slightly more than 12

hours from the moment the cryocooler is started, as is shown by the temperature logs
in Figure 3.22a. The base temperature can be maintained for several weeks, during
which it slowly raises of a few Kelvins (see Fig. 3.22b). This behaviour is attributed to
gradual ‘clogging’ of the capillary where Helium is circulated, and can be reverted by
cycling all the cryostat stages to room temperature.

3.7.2 Optical interferometer

Mechanical motion can be measured very sensitively in an optical interferometer, with
spectral imprecision levels typically on the order of ∼ 10 fm Hz−1/2 for a few milliwatts
of optical power impinging on the resonator. The measurement apparatus is typically
a heterodyne or homodyne interferometer, where a signal beam reflected from the
microresonator is combined on a beam splitter with a local oscillator with or without
a frequency offset. When the measurement background is dominated by shot noise
of the light field and the contribution of less fundamental noise channels, such as
electronic noise of the photodetector or further in the measurement chain, is negligible,
the imprecision level in displacement units (i.e., the displacement sensitivity) can be
estimated by:

6 The cooling or heating of a non-ideal gas (finite thermal expansion coefficient) as it is expands irreversibly
by flowing through a small orifice.

https://www.coldedgetech.com/
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a

b

Figure 3.23: a, Displacement sensitivity of a Mach-Zehnder interferometer as a function of the
position of the mechanical resonator. Full lines with different colors indicate dif-
ferent power ratios between the signal and local oscillator fields. The dashed red
curve shows the interference fringes corresponding to the mechanical resonator
position. For the calculation, the signal beam power is kept fixed to 100µW and
the LO power is varied between 1µW and 100mW. A detection efficiency η = 0.1
is assumed. b, Optimal position of the resonator to minimize the displacement im-
precision, as a function of the ratio of powers between the two fields.

S
imp
x =

2Φ

(dΦ/dx)2
, (3.15)

where Φ represents the photon flux impinging on the photodetector. Consider a ho-
modyne Michelson or Mach-Zehnder interferometer, that is path-stabilized so that the
phase relation between the two interfering fields is fixed. The electromagnetic field
that interacts with (reflects on) the mechanical resonator and carries displacement in-
formation is usually called ‘signal’ field, and the other field, typically much more in-
tense, is called ‘local oscillator’. Suppose they respectively carry optical powers Ps and
PLO = Ps/p. I assume that the phase difference between the two branches is simply
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Figure 3.24: Simplified scheme of the mechanical characterization setup. ECDL: external cav-
ity diode laser. IS: intensity stabilizer. PBS: polarizing beam splitter. BS: 50 − 50
beam splitter. AOM: acousto-optic modulator. λ/2 and λ/4: half-wave and quarter-
wave plate. PI: proportional-integral feedback controller. PZT: piezoelectric actua-
tor. ESA: electrical spectrum analyzer.

2kx (with k the wavevector of the light in vacuum), that is the one accumulated by
reflection upon a moving mirror.

It is easy to compute the interference fringes, as a function of the displacement x,
after the combiner beam splitter:

Pd =
Ps + PLO

2
+
√
PsPLO · sin (2kx) , (3.16)

which let us express the shot-noise dominated imprecision level in homodyne detec-
tion, by using equation 3.15 [155]:

S
imp
x =

 hcλ

4πηP

1+ p+ 2
√
p · sin(2kx)

2p · cos2(2kx)
, (3.17)

where c is the speed of light, λ is the optical wavelength of the interferometer, and I
have identified P = PLO for brevity. A factor η < 1 takes into account the imperfect de-
tection efficiency (optical losses, quantum efficiency of the detector). As expected, the
imprecision scales inversely with optical power [156], and it can reach extremely low



3.7 characterization methods 87

ba

High vacuum chamber

Pressure gauge

Feedthrough

20x objective

Fiber collimator

ECDLDouble AOM

Balanced photodetector

Optical isolator

Intensity stabilizer

Chamber loading armLoadlock

Gate valve to ion pump

Shutter

Figure 3.25: a, Photograph of the interferometric setup sketched in Figure 3.24, with the main
elements labeled. b, Photograph of the vacuum chamber and of the optics that
focus the signal beam on the device under test in the chamber.

values with intense optical fields injected in the interferometer, even without an opti-
cal cavity [157]. Moreover, equation 3.17 reveals that the displacement sensitivity varies
according to the phase difference between the two interfering fields, as expected (see
Figure 3.23a): when the average displacement is such that the interference is perfectly
destructive or constructive, the interferometer does not provide any displacement sen-
sitivity to first order in the displacement amplitude. The optimal quadrature angle
for the lowest displacement imprecision depends on the ratio between the two field
powers, as shown in Fig. 3.23b. When the LO power is much smaller or much larger
than the signal power, the optimum sensitivity occurs at x = λ/4 (fields in quadrature),
but when the two powers are comparable, the optimum moves towards destructive
interference, reaching x = 3λ/8 for PLO ≈ Ps.

The sensitivity achieved in an optical interferometer is more than sufficient to resolve
the thermomechanical motion of nanomechanical oscillators around resonance. From
the shot noise-limited imprecision in equation 3.17 and the fluctuation-dissipation re-
lation equation 2.75, we can compute the maximum signal-to-noise ratio (SNR) of the
thermomechanical peak over the detection background:

SNR =
Sth
x (Ωm)

S
imp,min
x

≈ 16πkBT

meff

ηPs
 hcλ

Q

Ω3m
(3.18)

For example, a mechanical mode characterized by meff = 10ng, Ωm = 2π · 1MHz
and Q = 105, analyzed with a signal beam power of Ps = 1mW and a detection
efficiency of η = 0.1 is resolved with SNR ≈ 45dB at the resonant frequency. Equation
3.18 also reflects a strong frequency dependence, that makes it challenging to resolve
thermomechanical noise beyond ∼ 10MHz with a simple interferometer. In practice, it
is feasible to achieve the SNR limit of 3.18 within a range of optical powers, but the
observed SNR can be degraded by the photodetector electronic noise, laser noises or
electromagnetic interference around the apparatus.
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In our laboratory, we built several homodyne interferometers for basic mechanical
characterization, with minor technical differences. The one used for the measurement
of sSi devices employs a wavelength of 1550nm, where the linear absorption of silicon
is negligible. Here, however, I will describe the 780nm apparatus that we use most
frequently for rapidly characterizing mechanical resonators, as it is the most practical
one among the various implementations we constructed over the years. sSi nanostrings
could only be characterized with very low incident power in that interferometer, as the
combination of optical absorption and low thermal conductance usually leads to a
rapid temperature increase and sample destruction. The apparatus implements a bal-
anced Mach-Zehnder homodyne interferometer (see Fig. 3.24), where 10mW to 20mW
of light at ∼ 780nm from an external cavity diode laser (New Focus) are injected. Low-
frequency amplitude fluctuations are suppressed with an liquid crystal intensity stabi-
lizer (Thorlabs LCC3112H/M) at the interferometer input, before the light is split into
a signal and a local oscillator path with a polarizing beam splitter. In the signal arm of
the interferometer, the light beam is focused through a microscope objective with 20×
magnification on the sample under examination, and a small fraction (0.1− 10%) of the
impinging optical power is collected in reflection and steered on a beam splitter where
it interferes with a stronger local oscillator beam (PLO ≈ 1mW to 5mW). In order to
observe any displacement signal, the spatial and angular overlap, as well as the light
polarization, of the local oscillator and the signal beam need to be closely matched. It
is useful to monitor the fringe visibility during alignment, by adding a small frequency
offset between the signal and local oscillator beams with the pair of acousto-optic mod-
ulators, and compare it with the theoretical visibility Vmax from equation 3.16:

V =
Pmax − Pmin

PLO + Ps

Vmax =
2
√
PLOPS

PLO + Ps

(3.19)

Any mismatch in the polarization, alignment and optical mode shape (in amplitude
and spatial phase profile) will degrade the observed visibility from Vmax

7. For this
purpose, before overlapping the beams on the beam splitter, it is useful to inject them
in single-mode fibers that provide spatial filtering (as can be seen in the photograph in
Figure 3.25a). The optical paths from the free-space collimators at the fiber outputs and
the beam splitter should be roughly equidistant, in order to match the Gaussian beams
divergence. A good target for the measured visibility is > 90% of the one predicted
from the beam powers.

After the beams are overlapped, they are directed to the two detectors in a balanced
photodiode pair, where photocurrents proportional to the impinging powers are gener-
ated, and their difference is converted to a voltage with an integrated transimpedance
amplifier. Balanced detection has several advantages:

• The dynamic range is increased with respect to a single detector, as the subtrac-
tion of the DC signal avoids amplifier saturation.

7 For our laser sources, usually the coherence length is much larger than the difference in propagation
lengths. In case this condition is violated by using a large-linewidth laser source, V could be further
degraded.
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• Laser amplitude fluctuations are common-mode: they subtract at the photodetec-
tor, and are strongly suppressed.

• Laser phase fluctuations can only get completely suppressed if the optical path
lengths of the two beams between the splitting and recombination points are
perfectly matched. Different frequency components of the fluctuations, in fact,
accumulate different phases for a given delay in the arrival time, giving an in-
complete cancellation when the photocurrents are subtracted. If we indicate the
laser phase noise spectrum with SΘ(ω), it can be shown that the resulting noise
in the voltage photodetection spectrum will be approximately proportional to
[158]:

SV ∝ SΘ(ω) · sin2
(ωτ
2

)
, (3.20)

(in the limit of a length imbalance much shorter than the laser coherence length),
where τ is the time delay accumulated between the two beams before the recom-
bination. In order to effectively suppress laser phase noise at high frequencies,
the experimenter must carefully length-balance the interferometer: for example,
to suppress noise at 1MHz by 60dB, the length imbalance should be ≲ 10 cm.

Since we use diode lasers, whose phase noise can be significantly higher than the
shot noise, we always length-balance the interferometer arms. A convenient way to
balance the lengths is to splice or cut appropriately a length of optical fiber, as done
in the setup of Fig. 3.25a for the local oscillator beam. In free-space, we implemented
an analogous method using a retroreflector installed on a cage mount, that can be
translated without changing significantly the angular alignment of the reflected beam.
It is possible to monitor the length imbalance by modulating the laser frequency: if
the angular frequency is swept linearly in time at a rate dωl/dt, we will observe time-
varying interference fringes imprinted on the photodetector signal:

V ∝
√
PsPLO · sin

(
⟨n⟩∆L
c

dωl
dt

· t+ ⟨n⟩ωl∆L
c

)
, (3.21)

whose frequency depends on the length imbalance ∆L (⟨n⟩ is the length-averaged re-
fractive index of the interferometer optical paths). The fringe frequency can be moni-
tored on an oscilloscope or a spectrum analyzer, and gradually minimized by cutting
appropriate lengths of fiber.

The low frequency fluctuations of the interferometer path length difference are sta-
bilized by means of two cascaded acousto-optic modulators (Brimrose; see Fig. 3.24)
the first shifts the frequency of the local oscillator beam by +100MHz, while the sec-
ond shifts it back by −100MHz, with a small frequency offset controlled using the
low-frequency signal from the balanced photodetector couple as an error signal, and
a proportional feedback controller. With this arrangement, the phase difference can be
tuned finely with practically unlimited actuation range. The phase difference is stabi-
lized close to phase quadrature (the inflection point of the fringes). This quadrature
corresponds usually (but not always, as discussed in section 3.7.4) to the largest trans-
duction of mechanical displacement.
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The samples are housed in a high vacuum chamber (see Fig. 3.25b) pumped with an
ion pump, capable of reaching pressures below 10−8mbar, sufficient to suppress gas
damping for high-Q resonant frequencies Ωm/2π ≳ 100 kHz. The chip sample holder
is mounted on 3-axis Attocube nanopositioners, that allow fine alignment between the
device under test and the laser probe. A piezoelectric plate, used to resonantly actuate
the devices, is connected to the sample mount. The vacuum chamber is equipped with
a loadlock, separated by a valve from the main chamber, and a loading arm (visible
in Fig. 3.25a). In order to insert or swap samples, it is sufficient to vent and pump the
loadlock; this is much more rapid than breaking the vacuum in the vacuum chamber
and allows to reach lower base pressures. This feature makes the vacuum chamber
particularly useful for quick characterization of many nanomechanics chips. More in-
formation on the design of the vacuum chamber is provided in the doctoral thesis of
Amir H. Ghadimi [159], who assembled it with the help of Mohammad Bereyhi.

3.7.3 Ringdown characterization

Despite the simplicity of resolving thermomechanical noise, for high-Q dissipation-
diluted samples (Q ≳ 106) the damping rate cannot simply be inferred from the
linewidth of the noise peak. Typically their linewidths are below the resolution limit of
a real-time spectrum analyzer, and, even tracking the displacement for longer times, of-
ten produces spectra dominated by frequency fluctuations and drift (see Figure 2.13a).
The preferable methods are to fit the X2 + Y2 Brownian spectrum, as in Figure 2.13b,
or observing the free-decay amplitude ringdown. The latter is the most practical and
widely used technique.

Ringdown measurements in the interferometer setup are initiated by exciting a me-
chanical resonance with the piezoelectric plate or with an intensity-modulated auxil-
iary laser8. After the mode frequency is identified from the thermomechanical spec-
trum, a driving tone is generated with an MFLI lock-in amplifier (Zürich Instruments),
and either swept manually around resonance, or locked to it by means of a digital
phase-locked-loop (PLL, implemented in the MFLI software). When the driven ampli-
tude has surpassed the thermomechanical noise of one or two decades, we abruptly
switch off the mechanical excitation and we record the slowly-decaying amplitude of
the displacement signal, obtained by demodulating the photocurrent signal at the ex-
citation frequency with the MFLI. A demodulation bandwidth exceeding 100Hz is
employed, to mitigate the effect of mechanical frequency drifts, induced e.g. by tem-
perature or optical power fluctuations. Some examples of ringdown traces can be seen
in Figure 3.15 and 3.28. As detailed in section 3.7.5, gated measurements are often per-
formed in order to minimize the influence of optical backaction of the probing beam;
to this end, a mechanical shutter inserted at the output of the laser, is actuated period-
ically.

8 The latter method was the preferred one for the characterization of sSi nanostrings. The high absorption
of silicon at 800nm was exploited in order to generate a bolometric resonant force.
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3.7.4 Displacement calibration with interferometric nonlinearity

Measurement records from the optical interferometer are produced in electrical units
(typically voltage readings from the photodiode transimpedance amplifier). A calibra-
tion procedure of time- or frequency-domain interferometric displacement traces from
voltage to displacement units is often necessary to make these measurements easier to
compare, and compute derived quantities. In order to obtain such a calibration, the ex-
perimenter can sweep the interferometer phase by scanning, for example, the position
of a mirror or the laser frequency and measure the voltage excursion corresponding
to the peak-to-peak amplitude of an interferometric fringe, Vpp. Knowing that such a
voltage corresponds to a path-length change of λ/2, it is readily possible to convert a
measured spectrum to displacement units by applying the following conversion rule
[160]:

Sx(ω) =

(
λ

2πVpp

)2
× SV(ω), (3.22)

obtained by assuming that the interferometer is operating at the maximum displace-
ment sensitivity point. However, this technique is only valid when all the photons in
the signal beam have interacted with the mechanical resonator, and fails when it is
mixed with spurious reflections. In the reality of the experiment, this condition is not
trivial to satisfy, because reflections of a similar magnitude as the sample reflection are
easily generated, for example from the recessed chip substrate, several tens of microm-
eters below the microresonator, from glass-air interfaces in the optical setup or from
imperfect fiber connectors.

As our micromechanical devices typically exhibit such spurious reflections (with the
exception of membrane samples, which are suspended over an optically-transmitting
window that perforates the chip substrate), we devised an alternative method that
exploits interferometric nonlinearity to calibrate mechanical motion [27] Such a method
was mentioned before in the literature [161], but without reporting the implementation
details. Since interference fringes are sinusoidal, an interferometer linearly transduces
mechanical motion only when displacement amplitudes are low. When the amplitude
becomes comparable with the optical wavelength, however, the optical intensity trans-
duction is distorted, and sidebands are generated at higher harmonics of the vibra-
tional frequency. If the wavelength is known, the amplitude of these sidebands can be
fitted to reconstruct the displacement amplitude corresponding to the observed level
of harmonic distortion; effectively, the optical wavelength is used as a ruler against
which the mechanical displacement is compared. This method is robust against the
presence of spurious reflections, requiring only that the local oscillator beam is much
more intense than them.

In order to observe interferometric nonlinearity, one mode of the mechanical res-
onator under test is driven harmonically to large amplitudes (x0 ≫ 10nm)); the lower
the resonant frequency and the higher its quality factor, the stronger it can be excited
for a fixed driving power. In principle, the resonator could also be driven off-resonance
to achieve displacement calibration, but it would be challenging to obtain the required
motional amplitudes. Piezoelectric or radiation pressure actuation are both suitable in
order to achieve large oscillation amplitudes. First, the resonant frequency is identi-
fied with good accuracy (< 100Hz) from the thermomechanical noise spectrum. Then,
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a b

Figure 3.26: a, Driven motional spectrum of a polygon mechanical resonator, exhibiting inter-
ferometric nonlinearity. The oscillation amplitude is around 170nm. Harmonics of
the driven mode at 304 kHz are highlighted in red. b, Sideband powers (dots) nor-
malized by Pn(φ0) and fit to Bessel functions of the first kind as a function of the
modulation index β (colored lines).

the mode is excited to an intermediate amplitude level by manually tuning the fre-
quency of the driving tone (typically generated with a Zürich Instruments UHFLI or
MFLI lock-in amplifier) to bring it into resonance. When the oscillation amplitude is
high enough, the displacement signal-to-noise ratio (SNR) of mechanical motion is
sufficient to switch the UHFLI oscillator to phase-locked-loop (PLL) tuning, using the
mechanical record to provide an error signal for the regulation of the driving tone
frequency and phase. At this stage, the PLL phase setpoint must generally be chosen
empirically, in order to provide mechanical excitation rather than damping. With the
PLL on, the driving tone can track resonance drifts and fluctuations, and bring the
oscillation amplitude to large, stable values (with a response time determined by the
mechanical damping rate).

At this point, multiple harmonics of the resonant mode should be visible in the spec-
trum of mechanical motion (acquired either with the FFT feature of the UHFLI or with
a Spectrum Analyzer), as displayed in Fig. 3.26a. Their relative powers can be related to
the oscillation amplitude by expressing the output voltage of the balanced photodiode
as: V = V0 sin (ϕ(t) +φ0) + Vext, where ϕ(t) = β · cos (Ωmt) is the phase accumu-
lated due to harmonic displacement of the resonator, Ωm is the mechanical frequency,
β = 4πx0/λ is the phase modulation index, φ0 is the interferometer quadrature an-
gle and Vext encompasses additional interference terms which are not associated with
reflection from the mechanical resonator. Exploiting the Jacobi-Anger identity, we can
write the phase modulation spectrum of that signal:

SV(ω) = 2V20

∞∑
n=1

Pn(φ0)J
2
n(β)L (ω−nΩm) + SV , ext(ω), (3.23)
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Figure 3.27: MATLAB app for fitting interferometric nonlinearity and obtaining displacement
calibration.

Pn(φ0) =

cos2(φ0), if n is odd

sin2(φ0), if n is even
(3.24)

where L is a unit-normalized sharply-peaked function, whose lineshape depends on
the mechanical damping, on the noise of the driving oscillator and on the spectrum
analyzer bandwidth, and Jn is the Bessel function of the first kind of order n. Using
this relation, one can integrate the spectral density below each visible harmonic of the
driven motion and fit the sideband powers using An = 2V20Pn(φ0)J

2
n(β), in order to

extract V0, x0 and φ0. An example of a successful fit is shown in Fig. 3.26b, where
powers are divided by Pn(φ0) in order to show odd and even Bessel functions with
a shared vertical axis. The spectrum (in the linear transduction regime) can then be
converted to displacement units with the calibration factor (analogous to equation
3.22):

Sx =

(
λ

4πV0 · cos(φ0)

)2
× SV (3.25)

I wrote MATLAB code for such a fitting routine for driven motion spectra, which can
be found in a repository for the Instrument Control MATLAB suite developed in our
Optomechanics team (https://github.com/engelsen/Instrument-control) (see Fig.
3.27). The routine takes as inputs the optical wavelength and motional frequency (if no
frequency is provided, it tries to infer it from the spectral harmonics) and returns the fit
parameters, a spectral calibration factor and a confidence interval associated with the fit
uncertainty (if at least five sidebands are detected). Note that at least three sidebands
should be visible in the driven motion spectrum for a well-defined fit procedure; if
fewer than three sidebands are recognised, the fit routine will return an error.

https://github.com/engelsen/Instrument-control
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A common cause of failure for this fitting procedure is photodiode saturation at very
large AC voltage swings, which induces harmonic distortion of its own. This is usually
recognized by an inaccurate fit result, and is easily fixed, for example by lowering the
local oscillator intensity.

Once the calibration factor is obtained, a simple method to check whether the result
is accurate is to acquire a Brownian motion spectrum of the mechanical resonance
(after letting it thermalize for a time larger than the mechanical damping timescale).
The area under a well-calibrated thermomechanical peak should correspond to that
given by the equipartition relation 2.78, reproduced here for convenience:

⟨x2⟩ = kBT

meffΩ2m
, (3.26)

where T is the bath temperature and meff the mode effective mass. An estimate of the
effective mass is typically available from a finite element simulation of the mechanical
resonator, and it can be compared against that obtained from equation 3.26 For very
high-Q modes (Q > 108), the integration time required to average over the Brown-
ian motion is prohibitively large, and T can be affected by laser backaction effects. In
that case, the mode can be mildly cold-damped with an actuator and a feedback loop
using the displacement record to generate a delayed, dissipative force. The effective
linewidth can easily be broadened by cold damping to values around Γeff/2π ∼ 1Hz.
When the oscillator is still in the classical regime and no squashing effect from the
finite displacement imprecision is noticeable, the effective temperature can be deter-
mined: Teff = T

Γm
Γm+Γeff

[20]. The intrinsic linewidth Γm can be determined by a separate
ringdown measurement. The effective mass can then be similarly reconstructed from
the equipartition relation, this time using the effective temperature 3.26.

3.7.5 Light-induced damping and antidamping

The laser probe that is used for the mechanical quality factor characterization in the
setup can exert backaction on vibrational modes and affect the observed energy decay
rates. This effect has to be avoided in order to extract intrinsic mechanical properties.
The magnitude and the sign of the optically induced damping depend sensitively on
the sample type and the position of the laser spot. In many cases, the optical damping
is negligible, while sometimes it is strong enough to self-excite resonator modes under
continuous illumination. sSi nanostrings exhibited relatively strong optical damping
and antidamping rates, whose magnitude could easily become comparable to the mi-
nuscule intrinsic linewidth, as can be observed in Fig. 3.28.

To eliminate the effects of optical damping, we gate the ringdown measurements,
by keeping the sample illuminated by the probe light only during short intervals of
time. The total duration of time over which the probe light is on relative to the en-
tire measurement time is typically between 0.1% and 1% in our measurements. We
refer to this ratio as duty cycle. While characterizing a resonant mode, the absence of
optical backaction can be confirmed by measuring with different duty cycles and/or
laser beam positions on the sample, and checking whether the inferred linewidth is
consistent within experimental errors.

An example of particularly strong optical backaction is illustrated in Figure 3.29.
Panel a shows two ringdown measurements of the fundamental mode of a trampo-
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Figure 3.28: Comparison of ringdowns with continuous and gated acquisition. The probe laser,
with an impinging power ≳ 1mW, induces, in the continuous ringdown (green
line), additional optical damping, leading to a faster amplitude decay rate than the
one set by the intrinsic dissipation of the nanostring. For the gated ringdown (blue
dots), the measurement duty cycle (ratio of gate duration over the time interval
between successive gates) is 10%, and the gate repetition rate is 1/20 s. In both
ringdowns, nonlinear damping is observed at the highest amplitudes [69], and
exponential fits (dashed lines) are performed only within the linear decay regions.
The data were acquired at T ≈ 10K for the 6.0mm sSi nanostring of Figure 3.17.

line resonator with branching tethers (a membrane design described in Chapter 4),
performed with the 780nm probe beam directed at the resonator central pad. The dis-
played measurements made at two different gate duty cycles had decay rates differing
of a factor of 2.5. A deviation from exponential decay manifests at high amplitudes,
close to the trace beginning. This is due to the strong phase modulation imparted
on the probe upon reflection from the trampoline, whose oscillation amplitude ap-
proaches the wavelength, as described in section 3.7.4. In these traces, therefore, only
the linear amplitude decay regime was fit, with a simple exponential model.

When the duty cycle grows beyond ≈ 2%, the mode becomes self-excited, as shown
by a close-up plot of one of the measurement intervals in Figure 3.29b. The optical
damping rate inferred from these data is Γopt = −2π × 48.4mHz at the continuous
optical power of around 100µW, more than an order of magnitude larger than the
intrinsic damping rate of the sample (see Figure 3.29c). In gated measurements, the
optical antidamping was reduced proportionally to the duty cycle, which is shown
by the data in Figure 3.29c. While Figure 3.29 presents an extreme example of optical
backaction, usually such effects can be reduced or eliminated entirely by directing the
laser beam to a position of the device where the mode amplitude is lower.

Our main observations on optical (anti)damping in interferometric detection can be
summarized as follows:
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50 μm

a

b c

Figure 3.29: Optical antidamping of a trampoline resonator. a, Ringdown traces with different
gate duration, exhibiting different optical antidamping rates. Gray points corre-
spond to the noise background and the rising/falling edges of the gates, and are
excluded from the fits. b, Homodyne signal within the gate indicated with a black
arrow in panel a. The positive slope of the voltage within the gate implies anti-
damping. c, Extracted net damping rate as a function of gate duty cycle. A linear
fit used to extract the optical antidamping rate yields Γopt ≈ 2π× (−61.7mHz) (in
fair agreement with the growth of the displacement signal within a single gate,
shown in panel b) and an intrinsic dissipation rate of Γm ≈ 2π× 1.3mHz.

• Optical (anti)damping manifests as a correction to the intrinsic linewidth, there-
fore, for a fixed Q, it is stronger at lower frequencies.

• The magnitude of optical (anti)damping is much higher when the resonator is
suspended in the vicinity of a substrate, compared to the case when the substrate
is completely removed in microfabrication.

• The magnitude of optical (anti)damping depends linearly on the impinging power,
as shown in Fig. 3.29c.

• The sign and magnitude of the optical damping are wavelength-dependent.
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z

Figure 3.30: Schematic illustration of a mechanical resonator oscillating in an optical standing
wave, generated by a reflection of the laser probe.

• The magnitude of optical (anti)damping can also depend on the distance between
the sample and the laser beam focusing element, as shown in [26].

A model that could explain these observations is the photothermal backaction picture
of [162] (see also a recent work with Si

3
N

4
trampoline membranes, [163]). Suppose an

optical standing wave is formed by reflection from the substrate below the resonator
(see Figure 3.30), such that the optical power can be written as:

P(z) = P0(1+ R) + 2
√
RP0 · cos(2kz−φ), (3.27)

(neglecting the beam’s finite extent and diffraction), with R the substrate reflectance
and φ the phase shift acquired upon reflection. The resonator oscillates in the standing
wave, sampling different optical intensities as it moves. The optical field can act on
the mechanical motion through different effects, of which likely the most relevant is
the bolometric backaction [164]. A small optical absorption in the nanomechanical de-
vice will increase the temperature, affect the film stress and modulate the mechanical
frequencies through thermal expansion. If θ = T − T0 is the increase of temperature av-
eraged over the resonator volume, the mechanical frequencies will shift as (see section
2.3.6.2):

∆Ω ≈ −EαΩ

2σ(1− ν)
θ, (3.28)

where α is the thermal expansion coefficient and σ the static stress in the thin film.
The average temperature change over time can be modelled with a simple first order
differential equation that takes into account optical absorption through the absorption
coefficient µa and linear heat dissipation through Newton’s law with a heat transfer
coefficient κ:
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θ̇ = −
κ

ρch
θ+

µa

ρc
· P(z), (3.29)

where ρ is the material density and c the specific heat capacity. The mechanical dis-
placement follows harmonic oscillator evolution, but with a resonant frequency vary-
ing in time through the temperature dynamics:

z̈+ Γ ż+Ω

(
1+ 2

∆Ω [θ(t)]

Ω

)
(z− zeq) = δFth/meff, , (3.30)

where δFth is the stochastic thermomechanical force. Equations 3.29 and 3.30 form a sys-
tem of coupled nonlinear differential equations, that can produce damping, antidamp-
ing and limit cycle oscillations of z. For example, if the beam oscillates around a node
or antinode of the optical standing wave, zeq = (nπ/2+φ/4π) ·λ a resonance frequency
modulation at 2Ω (with amplitude ∆Ω0) will be generated, producing parametric driv-
ing or damping [165]. If the modulation is weak, the induced optical (anti)damping will
be Γopt ≈ ±∆Ω0.

This model is not straightforward to validate quantitatively, because of the addi-
tional optical interactions that may complicate the picture (radiation pressure, dielec-
trophoretic force) and the unknown values of the absorption coefficient and of thermal
transport parameters in low-dimensional devices.

3.8 outlook for ssi nanomechanics

In conclusion, in this chapter I have reported the development of strained silicon crys-
talline nanomechanical resonators with Q > 1010, one order of magnitude beyond
previous implementations in Si

3
N

4
at liquid Helium temperatures [29, 58]. The built-in

mechanical isolation of the soft clamped modes in this work eliminates many spurious
loss mechanisms and provides access to the intrinsic material damping of silicon. The
highest observed Q is due to a combination of ultrahigh dilution factor, Dloc

Q ≈ 2 · 106,
and a suppressed intrinsic loss of single-crystal silicon in a cryogenic environment.

When considering future investigations and applications of strained silicon, the
high yield stress of crystalline materials seems particularly attractive for implement-
ing strain engineered resonators [26, 166], and the low intrinsic loss of silicon may
be combined with other mode-shape engineering techniques [27, 58, 108] to decrease
damping even further. In addition, surface passivation techniques could be employed
to diminish the effect of native oxide formation on dissipation [95]. At millikelvin tem-
peratures, thermal transport in strings with low dimensionality might be particularly
unconventional, and laser heating could be probed by examining the mechanical prop-
erties of the strings. The exceptionally high Q may also lend itself to force sensing,
including recently-proposed searches for dark matter particles [167].

Although we constrained ourselves to the sSOI wafer stack, with fixed layer thick-
nesses, for this initial exploration of sSi nanomechanics, in future implementations we
envision a simpler fabrication process by using a thicker oxide sacrificial layer. Carry-
ing out high temperature oxidation of silicon in the presence of water vapour, SiO

2

sacrificial layers thicker than 5µm can be grown, which provide a large enough clear-
ance to avoid stiction to the substrate in microfabrication, especially using vapour HF
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for gas-phase undercut. Since Soitec SA stopped commercialization of sSOI substrates,
the silicon-on-insulator process should be reproduced, including the wafer bonding of
sSi to the oxidized silicon substrate. The epitaxial growth of sSi on SiGe substrates is
offered by commercial foundries.

The temperature scaling of dissipation in strained silicon at millikelvin temperatures
could be very appealing, owing to low densities of TLSs. For example, Fig. 2.10 indi-
cates that a 1MHz resonance, dominated by TLS relaxation damping, would see a
rapid increase in its quality factor at temperatures below 100mK. In light of recent
demonstrations in unstrained optomechanical crystals of Qint = 5 · 1010 [79], soft-
clamped strained silicon devices might achieve Q > 1012, and even probe the exis-
tence of novel mechanical dissipation mechanisms. These temperatures can be reached
in a different type of cryostat, a dilution refrigerator. Optical measurements would be
hindered by the lower cooling power available at base temperature in a dilution re-
frigerator; nevertheless gated ringdowns would allow the complete thermalization of
the samples between intervals of optical observation. High-aspect-ratio mechanical res-
onators were observed to reach thermal equilibrium at temperatures down to ∼ 30mK
in dilution refrigerators, with a sufficiently low laser probe power [168, 169]. The acous-
tic isolation provided by PnC structures would aid cryogenic operation, as the samples
are protected from the strong, repetitive vibrations generated at the 4K pre-cooling
stage.





4
M E M B R A N E - I N - T H E - M I D D L E O P T O M E C H A N I C S

[...] theories don’t prove nothing, they only give you a place to rest on, a spell,
when you are tuckered out butting around and around and trying to find
out something there ain’t no way to find out [...] There’s another trouble

about theories: there’s always a hole in them somewheres, sure,
if you look close enough.

— Mark Twain (Tom Sawyer Abroad)

The major part of this thesis work was dedicated to realizing a cavity optomechan-
ical system that could operate in the quantum regime at room temperature. In the
quantum regime, the product between imprecision noise and force fluctuations (as de-
scribed in the next section) approaches the Heisenberg inequality lower bound. As the
quantitative description of decoherence implies [17], this regime becomes more and
more difficult to access as the oscillators grow larger in mass, and their environment
gets hotter and noisier. In spite of these difficulties, the last five years have seen a num-
ber of experiments operating close to, or within, the quantum regime for larger and
larger resonators [5, 29, 170], or at ever higher temperatures [5, 171–173]. The challenge
of preparing quantum mechanical states of macroscopic resonators is of sheer scientific
interest by itself, as they probe the limits of applicability of quantum mechanics and
the existence of fundamental mechanisms of ‘loss of coherence’ as quantum super-
positions grow larger [174]. Another motivation for preparing macroscopic objects in
quantum states is to test experimentally some theoretical predictions of interplay be-
tween gravity and quantum mechanics [175, 176].

We strive to enter the quantum regime of cavity optomechanics at room temperature
with a membrane-in-the-middle (MiM) system, one of the best-studied and advanced
optomechanical platforms [29, 46, 109, 177]. The protagonist of these experiments is a
dissipation-diluted nanomechanical membrane of the type described in chapter 2. Over
the years of development of the MiM platform by the optomechanics community, such
resonators have evolved hand-in-hand with the evolution of dissipation dilution tech-
niques. The mechanical modes of interest have changed from a distributed standing
waves extended to the whole membrane surface, to the soft clamped modes confined
by a defect within a phononic crystal. The effective mass of the latter resonances is of
the order of several nanograms, comparable to the mass of a glass bead with a radius
of ∼ 8µm, and many orders of magnitude beyond the scales of atoms, molecules, and
even levitated nanoparticles. The mass of an object is, in fact, not the most appropriate
predictor of the occurrence of quantum mechanical behaviour. The energy dissipation
rate gives a better indication of the decoherence of a quantum mechanical object, and
provides an approximate quantification of the vague notion of ‘isolation from the en-
vironment’. Dissipation dilution has proven to be an invaluable tool in engineering
extremely well-isolated nanomechanical oscillators, allowing the interaction with an
optical probe to surpass the strength of the fluctuations imposed by the thermal envi-
ronment.

101
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In this chapter, after a brief introduction to cavity optomechanics, I will present our
experimental efforts with the room-temperature MiM system. I will detail the fabri-
cation process of soft clamped Si

3
N

4
membranes, and describe the first experimental

challenge we faced in the operation of the room-temperature experiment. Quantum
optomechanics requires quantum-limited displacement detection, and in the first MiM
experiments we noticed an amplitude noise orders of magnitude higher than the quan-
tum limit (shot noise) imprinted on the laser field output from the optical cavity. We
termed this noise thermal intermodulation noise and described quantitatively how it orig-
inates from the cavity nonlinear transduction. We also developed and implemented
methods for for circumventing it experimentally. These findings have been published
in [178]. In this work, the experiments and the theoretical explanation have been car-
ried out by Sergey Fedorov, while I contributed with the development and fabrication
of the membrane samples, the design of the optical cavity, and aided the numerical
modelling, together with Amirali Arabmoheghi. Nils Engelsen supervised every stage
of the work.

Thermal intermodulation noise arises from the multimode nature of the optomechan-
ical cavity. Engineering resonators with sparser mechanical spectra dramatically im-
pacts intermodulation noise, potentially relegating it to a negligible magnitude. Aware
of this fact, we designed a different class of trampoline nanomechanical resonators
for the MiM experiment, where soft clamping was implemented for the lowest order
modes. Our experimental investigation of these dissipation-diluted devices, that ap-
pear as a hierarchical network of nanostrings, is published in [58]. This work was a col-
laborative effort of many researchers, as it involves trampoline devices with a large pad
for placement in a MiM cavity, as well as fractal-like nanostrings. Sergey Fedorov con-
ceived the idea of dissipation-dilution in fractal-like nanostrings, and the trampoline
devices were designed by him and me. The samples were fabricated by Robin Groth,
Mohammad Bereyhi (fractal-like strings) and I (trampoline membranes), and charac-
terized by all of us, with the help of Amirali Arabmoheghi and Nils Engelsen. Tobias
Kippenberg supervised the work at every stage and provided the funding sources for
the fabrication and experiments. I will briefly summarize this class of resonators in this
chapter, for what concerns the MiM experiment.

In the last part of the chapter I will expose our latest experimental advances, includ-
ing the development of a fabrication process for density-modulated PnC membranes
(inspired by the work of Høj et al. [67]) with lower dissipation rates, the reduction of
the thermomechanical noise of the cavity mirrors, and the operation in the quantum
regime CQ ∼ 1 at room temperature. In the latter developments, the contributions of
Guanhao Huang and Nils Engelsen have been indispensable.

4.1 rudiments of cavity optomechanics

The most common and easily-implemented cavity optomechanical interaction is the
dispersive coupling condition, i.e. the regime in which the motion of a mechanical os-
cillator perturbs the resonant frequency ωc of an optical cavity [20] We focus here on
the case of a single mechanical resonator interacting with a single optical cavity mode.
The dispersive interaction is described by the frequency pull parameter (also called
optomechanical coupling strength) G, that gives the cavity frequency shift per unit
displacement of the mechanical oscillator:



4.1 rudiments of cavity optomechanics 103

G = −
dωc

dx
(4.1)

The simplest case of dispersive coupling is that of a Fabry-Pérot cavity with one mov-
able mirror. Suppose the length of this cavity is L. Since the resonant frequencies of
the longitudinal modes supported by the cavity are ωc,n = nπc/L, the frequency pull
factor corresponding to the longitudinal motion of the end-mirror is simply G = ωc/L.

The Hamiltonian describing the dynamics of an optical and a mechanical mode and
their dispersive coupling is then (neglecting the zero-point energy):

Ĥ =  hωcâ
†â+  hΩb̂†b̂−  hg0â

†â
(
b̂+ b̂†

)
+ Ĥc,ext + Ĥc,0 + Ĥm,ext, (4.2)

where â, b̂ are the annihilation operators for the optical cavity and the mechanical
mode, Ω is the mechanical resonant frequency, Ĥc and Ĥm are coupling terms with the
environment and the input ports of the cavity, and g0 = Gxxpf is the vacuum optome-
chanical coupling rate. The equations of motion for the optical and mechanical oscillators
in the Heisenberg picture are obtained by evaluating the commutation of the relevant
operators with the Hamiltonian, ˙̂O = i

[
Ĥ, Ô

]
/ h. Let us express the evolution of â and

x̂ = xzpf
(
b̂+ b̂†

)
:

˙̂a = −

(
i

(
ωc − g0

x̂

xzpf

)
+
κ

2

)
â+

√
κ0â0 +

√
κ1âin,1 +

√
κ2âin,2

meff( ¨̂x+ Γ ˙̂x+Ω2x̂) = F̂th(t) +  hGâ†â

(4.3)

These are called quantum Langevin equations of single-mode cavity optomechanics. Here,
κ is the cavity linewidth (energy dissipation rate), κ = κ0 + κ1 + κ2. κ is decomposed
in an intrinsic decay rate, associated with the fraction of the cavity field that is lost and
becomes inaccessible to the observer, â0, and external decay rates κ1,2, that connect
the intracavity field to the output ports of the cavity. âin,(1,2) represent the input fields
at ports 1 and 2

1, and the output fields leaking from 1 and 2 can be collected by the
experimenter and carry information on the intracavity field and on the mechanical
oscillator. The relationship between the input and output fields at any cavity port
is given by the input-output theory: âout,i = âin,i −

√
κiâ [179]. The fluctuation and

dissipation terms are derived by considering a linear coupling with a bath (the same
as in chapter 2), embedded in the Hamiltonians Hc,m. Due to the immensely different
excitation numbers at the mechanical and optical cavity frequencies, these manifest as
thermal fluctuations F̂th or vacuum fluctuations â02.

The quantum Langevin equations 4.3 are nonlinear. In order to describe many basic
predictions of cavity optomechanics, it is sufficient to consider a linearized regime,
where we are interested in small fluctuations of the optical and mechanical variables
around the steady state values (the latter being approximated by complex numbers in
lieu of operator quantities). The description of fluctuations can be obtained through

1 Here I consider a double-sided cavity in order to maintain a picture consistent with a Fabry-Pérot res-
onator.

2 For the input field, excess fluctuations can arise from laser technical noise beyond shot noise.
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the substitutions3 â → ā + â, x̂ → x̄ + x̂ (with ā ≫ 1), such that we can write the
linearized equations of motion:

˙̂a ≈ −
(
iω ′
c +

κ

2

)
â+ ig

x̂

xzpf
+
√
κ0â0 +

√
κ1âin,1 +

√
κ2âin,2

meff( ¨̂x+ Γ ˙̂x+Ω2x̂) ≈ F̂th(t) +  h
g

xzpf

(
â+ â†

)
,

(4.4)

Here, g = g0ā = g0
√
nc is the field-enhanced optomechanical coupling rate, amplified

by the presence of an average number of photons nc = ⟨â†â⟩ within the cavity, and
ω ′
c is the cavity resonant frequency including a small optomechanical dispersive shift.

Moreover, to write 4.4, I have defined the phase of the intracavity field as the reference,
arg(ā) = 0. This definition is innocuous in the case of a single cavity mode.

Finally, we can write frequency-domain relations by moving to a frame rotating at
the frequency of the intracavity field ωl, with the transformation â → âe−iωlt, and
performing a Fourier transform of 4.4. We obtain:

χ−1o (ω) · â(ω) = ig
x̂(ω)

xzpf
+
√
κ0â0(ω) +

√
κ1âin,1(ω) +

√
κ2âin,2(ω)

χ−1m (ω) · x̂(ω) = F̂th(ω) +

√
2 hg

xzpf
X̂(ω),

(4.5)

The optical and mechanical susceptibilities have appeared in 4.5:

χo(ω) =
1

−i(∆+ω) + κ
2

χm(ω) =
1

meff ((Ω2 −ω2) − iΓω)

(4.6)

Furthermore, we have introduced the detuning ∆ = ωl −ωc between the intracavity
field and the cavity resonance, and the optical field amplitude and phase quadratures,
X̂ = (â+ â†)/

√
2 and Ŷ = −i(â− â†)/

√
2, analogous to the position and momentum of

the mechanical oscillator.

4.1.1 Dynamic backaction

In the equations of motion 4.5, the mechanical motion imparts a phase modulation
on the intracavity field, and the field couples back to mechanical motion by exerting
a force proportional to its amplitude quadrature. We can substitute â(ω) in the equa-
tion of motion for x̂(ω) (remembering that X̂(ω) =

(
â(ω) + â†(−ω)

)
/
√
2) to obtain a

closed form expression for the displacement fluctuations in the frequency domain. The
fluctuations then take the form:

χ−1eff (ω) · x̂(ω) = F̂th(ω) + F̂ba(ω), (4.7)

3 I keep the same symbols for the fields in 4.3 and their fluctuations in the following, for lightness of
notation.
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where χ−1eff is the mechanical susceptibility modified by the optomechanical interaction,
satisfying:

χ−1eff (ω) = χ−1m (ω) + 2meffΩg
2

[
1

(∆+ω) + iκ2
+

1

(∆−ω) − iκ2

]
(4.8)

This perturbation of the oscillator linear response from radiation pressure is called dy-
namic backaction (DBA), as it is induced by an autonomous feedback mechanism in-
volving the optical cavity. In general, the oscillator lineshape will be modified by DBA,
but if the interaction strength is moderate (g≪ κ), the effect of DBA can be described
by a shift in resonant frequency (optical spring) and a broadening or sharpening of
the linewidth (optical damping), proportional to the intracavity photon number. In our
cavity optomechanics experiments, the situation of interest is that of a cavity response
faster than the mechanical frequency, also known as the unresolved sidebands regime
or Doppler regime: κ ≫ Ω. In this limit, the resonant frequency and damping rate
modified by the optomechanical interaction are approximated as follows:

Ωeff ≈ Ω

√
1+

4g2

Ω

∆

∆2 + κ2/4
≈ Ω+ 2g2

∆

∆2 + κ2/4

Γeff ≈ Γ − 4g2Ω
∆κ

(∆2 + κ2/4)
2

(4.9)

Equation 4.9 shows how the mechanical susceptibility is only modified for off-resonant
pumping, ∆ ̸= 0. In particular, a red-detuned field (∆ < 0) will soften the spring con-
stant and broaden the linewidth, and vice versa for a blue-detuned field. It can be
shown that blue-detuned pumping leads to a parametric instability of the mechanical
oscillator [180, 181] as Γeff ≈ 0, and that red-detuned pumping has the additional effect
of cooling the mechanical oscillator, effectively coupling it to the zero-temperature bath
of the laser field vacuum fluctuations [20]. In the resolved sideband regime (κ ≲ Ω)
red-detuned pumping with a sufficiently low-noise field can prepare the mechanical
oscillator in the ground state, as has been shown using optical and microwave super-
conducting cavities [62, 182–184].

4.1.2 Displacement measurement in cavity optomechanics

We now focus on the case of resonant probing, ∆ = 0, where the oscillator parameters
are not modified by DBA and the mechanical displacement can be tracked faithfully.
The second effect of the optomechanical interaction on the oscillator’s motion in 4.7
is the appearance of a radiation pressure force term, governed by the intracavity am-
plitude fluctuations. For the case of probing on the cavity resonance, this stochastic
backaction force can be written, in the frequency domain, as:

F̂ba(ω) =
2
√
2 hg

xzpf
√
κ
(
1− i2ωκ

) (√η0X̂0(ω) +
√
η1X̂in,1(ω) +

√
η2X̂in,2(ω)

)
, (4.10)

where ηi = κi/κ ⩽ 1. The complex factor at the denominator accounts for the low-
pass filter behaviour of the cavity, that does not efficiently transduce fluctuations at
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frequencies ω ≳ κ/2. Using equation 2.41, we can calculate the spectral density of the
radiation pressure backaction force heating the oscillator at ∆ = 0. We assume that all
the input fluctuations are in the vacuum state, such that SXX = 1/2; this descends from
the autocorrelation properties of vacuum fields:

⟨â†0(t)â0(0)⟩ = 0

⟨â0(t)â†0(0)⟩ = δ(t)

⟨â0(t)â0(0)⟩ = ⟨â†0(t)â
†
0(0)⟩ = 0

(4.11)

Any excess amplitude noise on the input field will increase the backaction force driv-
ing the oscillator. Since the input fields are uncorrelated, the backaction force spectral
density is:

Sba
FF(ω) =

 h2CΓ

x2zpf
· 1(
1+ 4ω2

κ2

) , (4.12)

where I have defined the (field-enhanced) cooperativity:

C =
4g2

κΓ
=
4g20nc

κΓ
(4.13)

At ∆ = 0, the oscillator displacement is imprinted on the phase quadrature of the
field leaking out of the cavity4. We assume that only the output field from port 2 is
collected, and its phase quadrature is measured with a phase-sensitive photodetection
scheme (for example, homodyne detection). The input-output relation implies that:

âout = âin,2 −
√
κ2â (4.14)

Combining equations 4.14 and 4.5 we obtain an expression for the output field’s phase
quadrature:

Ŷout(ω) =
1

1− i2ωκ

[(
1− 2η2 − i

2ω

κ

)
Ŷin,2 − 2

√
η0η2Ŷin,0 − 2

√
η1η2Ŷin,1 −

2
√
2η2g√
κxzpf

x̂

]
=

= −
1

1− i2ωκ

2
√
2η2g√
κxzpf

(x̂+ x̂imp),

(4.15)

where the phase quadrature is not simply proportional to x̂, but presents an additional
background noise x̂imp transduced by the vacuum fluctuations in the phase quadra-
tures of the cavity input fields. The spectral density of this position-referred imprecision
noise is:

4 At finite detuning, the displacement is maximally coupled to a different quadrature of the output field,
rotated by ≈ atan(2∆/κ) from the phase quadrature.
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S
imp
xx (ω) =

x2zpf

CΓ
· 1

4η2
·
(
1+

4ω2

κ2

)
, (4.16)

where the growth for large ω is due to the lack of sensitivity to fluctuations outside
of the cavity bandwidth. The product of the displacement imprecision and radiation
pressure backaction spectral density then satisfies:

S
imp
xx · Sba

FF =
 h2

4η2
⩾

 h2

4
, (4.17)

which is one formulation of Heisenberg’s uncertainty principle [20]: by increasing the
cooperativity we are tracking more precisely the mechanical motion, at the cost of in-
creasing the perturbation imparted by radiation pressure quantum noise. How closely
the lower bound in 4.17 is met depends on the detection efficiency of the displacement
measurement, on the presence of excess noises in the optical fields and on the exis-
tence of excess mechanical oscillator heating beyond radiation pressure backaction, for
example from optical absorption [29, 185].

Imprecision and backaction fluctuations impose excess noise contributions, the first
apparent and the second concrete, in the reconstruction of mechanical displacement.
The overall spectrum of mechanical motion reconstructed at the cavity output (associ-
ated with a measurement variable ŷ = x̂+ x̂imp) can be written as:

Syy(ω) = Sth
xx(ω) + S

imp
xx (ω) + |χm(ω)|2Sba

FF(ω) = Sth
xx(ω) + Sadd

xx (ω) (4.18)

we can choose the optimal input power to the cavity by minimizing Sadd
xx (ω) with

respect to the cooperativity; at the optimum, the contributions of backaction and im-
precision are perfectly balanced (see Figure 4.1). The minimum added noise at optimal
C is given by:

Sadd
xx (ω) ⩾

 h
√
η2

|χm(ω)| ⩾  h|χm(ω)| := SSQL
xx (ω) (4.19)

This lower bound is called the standard quantum limit of optomechanical displacement
detection, and is depicted in yellow in Figure 4.1b. Evaluating SSQL

xx at the mechanical
resonance gives SSQL

xx (Ω) = 2x2zpf/Γ . By comparison with the fluctuation-dissipation
relation of equation 2.58,

Sth
xx(Ω) =

4x2zpf

Γ

(
n̄+

1

2

)
, (4.20)

we can see that the effects of optomechanical displacement measurement add a noise
equivalent to at least half a phonon on mechanical resonance.

In many optomechanics experiments, displacement sensing at the SQL is not di-
rectly accessible, because the added noise is overwhelmed by thermomechanical noise
at any feasible intracavity power. This limitation is particularly stringent for room tem-
perature experiments, where the oscillator’s thermal occupation is usually very high
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Figure 4.1: a, Displacement sensitivity on mechanical resonance as a function of the cooper-
ativity, decomposed in the noise contributions from imprecision, backaction and
thermomechanical motion. The thermal occupation of the oscillator is ≈ 6 · 106. b,
Frequency-resolved displacement noise, corresponding to the cooperativity marked
with a gray circle in the left panel (Cq = 2). Spectra are normalized to the peak
of the SQL spectrum, that is shown in yellow. The oscillator is assumed to have
Q = 3 · 108. As in the left panel, the imprecision spectrum is shown in blue, the
thermal noise in deep orange and the radiation pressure backaction in red.

(≈ 6 · 106 for a harmonic oscillator at 1MHz). In order to perform quantum-limited po-
sition measurements of an oscillator undergoing thermal fluctuations, it is necessary
that a major part of the oscillator’s motion is excited by the backaction force vacuum
noise:

Sba
FF

Sth
FF

≈ C

n̄
· 1

1+ 4ω2

κ2

:=
Cq

1+ 4ω2

κ2

⩾ 1, (4.21)

where the ratio was calculated in the high temperature limit n̄ ≫ 1, and I have intro-
duced the quantum cooperativity Cq = 4g20nc/ (κΓn̄). The condition 4.21 is a prerequisite
for many quantum optomechanics experiments. Due to the dominance of thermal fluc-
tuations, radiation pressure shot noise at large intracavity powers was observed only
quite recently [186, 187], and to the best of my knowledge, only in a single experi-
ment employing a nanomechanical object at room temperature [54]. State-of-the-art ex-
periments have now closely approached the SQL sensitivity limit [29], and employed
quantum correlations to surpass it [188, 189].

4.1.3 Ponderomotive squeezing

The optomechanical interaction creates correlations between the quadratures of the
cavity field. As we have seen above, the amplitude quadrature of the cavity field gen-
erates radiation pressure shot noise, that induces (delayed) fluctuating motion in the
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mechanical oscillator. In turn, the mechanical displacement is imprinted on the phase
quadrature of the optical field, establishing a coupling between amplitude and phase.
This is equivalent to what occurs in an optical medium with the Kerr effect, where
four-wave mixing generates correlations that can lead to squeezing below the vacuum
fluctuations of the optical field [190, 191]. In cavity optomechanics, ponderomotive squeez-
ing is mediated by the mechanical susceptibility, and produced at frequencies close to
resonance. Once again, ponderomotive squeezing is challenging to observe in the pres-
ence of large thermal noise, typically requiring Cq ≳ 1 in order to be detected [177,
192–194].

In the case of pure phase quadrature detection described in the previous section (see
equation 4.15), correlations do not manifest in the photodetection record. In order to
observe quantum correlations and squeezing, mixed quadratures lying between the
amplitude and phase of the output field should be detected. This can be done by either
using a pump field detuned from resonance, ∆ ̸= 0 with direct photodetection at the
cavity output port, or a resonant field, ∆ = 0, probed by homodyne detection. We
will now focus on the latter case for analytical simplicity. For the same reason, we will
restrict the calculations to the fast cavity limit, κ≫ ω.

The detected quadrature is rotated of an angle θ from the amplitude quadrature, by
means of interference with a local oscillator:

X̂θout = X̂out · cosθ+ Ŷout · sinθ (4.22)

The spectral density of this quadrature contains a cross-correlation term between the
amplitude and phase of the output field:

Sθ,out
XX = Sout

XX · cos2θ+ Sout
YY · sin2θ+ S̄out

XY · sin2θ, (4.23)

that can be computed from the expression of the output field phase 4.15 and ampli-
tude quadratures. Since X̂out is in the vacuum state, the field quadrature fluctuations
spectrum can be expressed as:

Sθ,out
XX ≈ 1

2
+
2η2CΓ

x2zpf

(
Sxx(ω) · sin2θ+

 hη2
2

Re (χm(ω)) · sin2θ
)

, (4.24)

where Sxx(ω) is the oscillator’s displacement noise, comprising thermal and back-
action contributions, and the first term represents the shot noise (imprecision) back-
ground. For θ ̸= 0,π/2 and in a limited frequency band close to resonance, the term
in parentheses can be negative, and the fluctuations dip below the shot noise level, im-
plying that the output field is squeezed. Note that the same ponderomotive radiation
pressure correlations producing squeezing also reduce the displacement noise below
the standard quantum limit in so-called variational measurements [188, 189, 195].

4.1.4 Feedback cooling

As mentioned in section 4.1.1, the cavity dynamics can be exploited in the resolved
sideband regime in order to efficiently cool the mechanical oscillator. In the case when
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the cavity response is much faster than the oscillator’s frequency, κ ≫ Ω, which is
the regime of our MiM experiment, red-detuned cooling is less effective and does
not permit cooling of the oscillator to the ground state. On the other hand, another
technique is available in this regime, where the oscillator’s motion is tracked faith-
fully: measurement-based feedback cooling (also known as cold damping) [29, 185, 196,
197]. Feedback cooling consists of synthesizing a feedback force from the measure-
ment record of thermal and backaction-induced motion, 90° out of phase with the
oscillator’s displacement, in order to provide viscous damping. The feedback force is
then applied to the oscillator through an external actuator, which can be for example
a piezoelectric element or the radiation pressure of an auxiliary laser beam. By in-
creasing the feedback cooling strength, the oscillator is gradually damped and cooled,
eventually reaching the ground state if the thermal motion can be resolved with suffi-
cient precision. This technique typically requires tracking the oscillator displacement
with a cooperativity well-beyond the standard quantum limit, but radiation pressure
heating does not impose any limit: the optomechanical backaction can be cancelled by
the feedback force, as long as the intracavity power does not increase the thermal bath
temperature through direct optical absorption.

A feedback force leading to oscillator cooling can be obtained with different control
laws, but the simplest one to treat analytically is the case of a pure derivative con-
troller. In this idealized scenario, the actuator imposes an additional force term on the
oscillator, given, in the frequency domain, by [185]:

F̂fb(ω) = imeffωgΓ ·
(
x̂+ x̂imp

)
, (4.25)

where g is a dimensionless gain parameter, proportional to the control effort of the
feedback loop. At steady state, the effects of this force are a modification of the oscilla-
tor susceptibility to χeff(ω), where the linewidth is increased by damping:

χeff(ω) =
1

meff (Ω2 −ω2 − iΓ(1+ g)ω)
(4.26)

and the introduction of additional force noise, given by the finite imprecision in the
displacement record. The vacuum noise in photodetection results in force fluctuations
that can heat up the oscillator at sufficiently large gains (g). Their spectral density is
given by:

S
fb,imp
FF (ω) = m2effg

2Γ2ω2 · Simp
xx (ω) (4.27)
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The average phonon occupation of the oscillator can be obtained with the equipartition
relation 2.78 applied to the oscillator’s position fluctuations5:

n̄ =
1

2

(∫∞
−∞

dωSxx(ω)

2πx2zpf
− 1

)

=
1

4πx2zpf

(∫∞
−∞ dω|χeff(ω)|2

(
Sth
FF(ω) + Sba

FF(ω) +m2effg
2Γ2ω2S

imp
xx (ω)

))
−
1

2

(4.28)

The three terms within the integral on the right hand side of 4.28 establish a trade-off
between cold damping of thermal and backaction fluctuations and heating by displace-
ment imprecision. An optimal gain can be found that minimizes the occupation for a
given displacement sensitivity. The minimum occupation corresponds to [185]:

n̄min ≈ 1

2

(√
1

η

(
1+

1

Cq

)
− 1

)
, (4.29)

where η is an overall measurement efficiency that includes not only the coupling ef-
ficiency as in 4.16, but also the efficiency of the subsequent detection apparatus, e.g.
finite homodyne visibility, finite quantum efficiency of the photodetector, thermal noise
in the photodetector and signal amplifiers, etc. The phonon occupation of 4.29 corre-
sponds to the occupation of the quantum state conditioned by the measurement record
[29, 199], showing that the derivative filter is nearly an ideal control law for feedback
cooling. Optimal filter responses can also be constructed with the theory of optimal
control [200, 201], but so far have not shown a significant advantage over the deriva-
tive control law in improving the phonon occupation realized in experiments.

4.2 mim dispersive optomechanics

The hamiltonian model of 4.2 is rather abstract and suitable to describe most cavity
optomechanical systems, if one is not interested in the a priori calculation of the system
interaction rates. For the case of a dielectric membrane with low optical losses inserted
inside a Fabry-Pérot cavity, the dispersive optomechanics hamiltonian has been derived
as a particular case of the radiation pressure interaction between a dielectric slab and a
cavity field [202]. With this analysis, the frequency pull factor can be calculated numer-
ically, and analytically under some approximations. G can be expressed as a product
of a longitudinal and a transverse profile, with respect to the membrane position:

G =
ωc

L
·Λ(z) ·Θ(x,y), (4.30)

where z is a coordinate running along the cavity axis, L is the cavity length, and x,y
are coordinates in the transverse plane (parallel to the mirror surface). Note that, as

5 Strictly speaking, the derivative control law 4.25 stabilizes the oscillator to a state in which the variance
of the position is not equal to the variance of momentum fluctuations [198]. However, in experimental
reality, the control law cannot have an infinite bandwidth as for an idealized derivative filter. In this limit
the use of the equipartition law is appropriate.
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seen before, ωc/L is the frequency pull factor for longitudinal motion of an end-mirror
of the Fabry-Pérot cavity. The longitudinal profile is quasi-periodic in the membrane
equilibrium position z (for a small excursion compared to the cavity length), and, when
the membrane is placed in the vicinity of the cavity beam waist, is given by [203]:

Λ(z) ≈ 2|r|sin(2kz)√
1− |r|2cos2(2kz)

, (4.31)

where r is the membrane reflection coefficient and the wavevector k takes discrete val-
ues determined by the optical resonances. The transverse profile is the overlap integral
between the mechanical mode shape and the intracavity optical intensity:

Θ(x,y) =
∫
Γ

dpds ϕ(p, s)I(p− x, s− y), (4.32)

where both the mechanical displacement ψ and the optical intensity I are normalized,
such that Θ ⩽ 1. In the case of a TEM00 cavity mode and the simple tensioned square
membrane of chapter 2, the overlap integrals for flexural modes indexed by (n,m) are
given by [193]:

Θ(n,m)(x,y) = exp
(
−
w2

8

(
n2π2

B2
+
m2π2

B2

))
sin
(nπx
B

)
sin
(nπx
B

)
, (4.33)

where B is the membrane side length and w is the cavity beam waist at the membrane
location. The Gaussian term induces a sharp cutoff of the optomechanical coupling rate
for higher frequency mechanical modes, as the acoustic wavelength becomes smaller
than the beam waist, and the sinusoidal terms reflect the vanishing of the “scatter-
ing amplitude” for membrane modes antisymmetric with respect to the probe field
location. The longitudinal modulation expressed by 4.31 implies that, for a chosen me-
chanical mode, the optomechanical coupling rate varies strongly for different cavity
resonances, being maximized when the membrane is located halfway between a node
and an antinode of the cavity field. At these positions, |G| = 2|r|ωc

L · |Θ|. Note that the
frequency pull factor can be substantially larger when the membrane is placed close to
one of the cavity mirrors [204], but this regime was not explored in our experiments.

The presence of the membrane also modifies the optical cavity damping rate κ, as
discussed in [70, 203]. The modulation can be understood with the formation of two
“sub-cavities” with different free spectral ranges, coupled by transmission through
the membrane; the intracavity field experiences different mirror losses for different
resonances. In experiments, the presence of additional damping sources complicates
the picture, e.g. angular tilts of the membrane with respect to the cavity field, pho-
ton scattering from the edges of patterned membranes, and optical absorption by the
membrane. The latter contribution is usually very small in the case of stoichiometric
Si

3
N

4
[203].

4.3 design and assembly of the fabry-pérot cavity

We now proceed to the description of our experimental apparatus in practice. The fore-
most task for the realization of a MiM experiment is the design of the Fabry-Pérot
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Figure 4.2: a, Cavity finesse, b, Coupling rate from curved mirror η2 = κ2/κ and c, Power trans-
mission versus wavelength for a symmetric cavity with 29 dielectric film layers on
both the flat and the curved mirror. The different curves in a,b are plotted assuming
added optical losses from mirror surfaces roughness with RMS amplitude between
0.1− 0.4nm. The orange dashed curve in c corresponds to the scattering loss from a
surface with RMS roughness of 0.2nm. d-f, Similar calculations for an asymmetric
cavity with 35 and 25 layers.

cavity. The reflectivity of the end mirrors must be appropriately selected in order to
achieve as high as possible a finesse F = 2π/(total loss per round trip), which increases
the cooperativity of the system. At the same time, the cavity loss rate due to mirror
transmission should be higher than the loss rate induced by the membrane, in order
to retain an acceptable detection efficiency. The mirror reflectivities should preferably
be asymmetric, since then one of the fields leaking out of the cavity will contain most
of the mechanical information and the detection of this single field will provide high-
efficiency displacement records. The mirror peak reflectivity and its reflection band-
width can be tuned over a large range by employing dielectric Bragg mirrors, whose
fabrication has reached levels of perfection sufficient to routinely achieve F > 105. In
collaboration with the coating supplier FiveNine Optics, we have realized different
types of coating on planar and curved substrates. The planar substrates implement
the input mirror in our cavity, and were fabricated by ion beam sputtering alternating
Ta

2
O

5
and SiO

2
dielectric layers on a borosilicate glass, superpolished wafer (Ohara

https://www.fivenineoptics.com/
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GmbH) with a thickness of 1mm. The roughness after the polishing process was spec-
ified below 0.2nm by the manufacturer (in terms of an average of the absolute value
of the profile deviations from the mean). After the coating run, we diced the wafers
into squares of 9.9× 9.9mm for convenience of cavity assembly. For maximizing the
reflectance, the coating film thicknesses are fixed to λ0/4nL,H, with λ0 = 850nm be-
ing the center wavelength of the coating and nL,H the refractive index of the dielectric
films at 850nm, corresponding to nL ≈ 1.45 for SiO

2
and nH ≈ 2.06 for Ta

2
O

5
. The

output mirror was realized with the sputtering of the same type of coatings on top
of fused silica cylindrical substrates with a concave surface (radius of curvature 5 cm,
mirror thickness 4mm and diameter 7.75mm), provided by FiveNine Optics. Finally,
a simple anti-reflection coating (single layer) was sputtered on the opposite surface of
either mirror.

The optical properties of the dielectric mirrors and of the empty cavity can be cal-
culated with a simple transfer matrix model, by associating to each dielectric layer a
matrix that connects the electric field and magnetic field amplitudes at the outer and
inner interface [205]:

(
Ej

Hj

)
= Mj ·

(
Ej−1

Hj−1

)
(4.34)

For orthogonal incidence6, the polarization is irrelevant. If the film thickness is chosen
as λ0/4nj, the transfer matrix is then given by:

Mj(λ) =

 cos
(
π
2
λ0
λ

)
iZ0sin

(
π
2
λ0
λ

)
/nj

injsin
(
π
2
λ0
λ

)
/Z0 cos

(
π
2
λ0
λ

)
,

 (4.35)

with Z0 =
√
µ0/ϵ0 being the vacuum impedance. The overall transfer matrix of the

coating is simply the matrix product of the individual layer matrices. If the coating is
realized with an odd number N of sputtered films:

M = (MH ·ML)
N−1
2 ·MH (4.36)

and the mirror reflection coefficient can be calculated using the formula:

rm =
m11/Z0 +nsm12/Z

2
0 −m21 −nsm22/Z0

m11/Z0 +nsm12/Z
2
0 +m21 +nsm22/Z0

, (4.37)

where the mij are matrix elements of M, and ns is the substrate refractive index
(ns ≈ nL for fused silica). The results of this numerical modelling approach is shown in
Fig. 4.2, where the finesse, the coupling efficiency from of the output coupler η2 = κ2/κ
and the mirrors’ power transmission are displayed. The calculation is repeated for the

6 This condition is well satisfied in our Fabry-Pérot cavity, where the TEM00 modes do not contain compo-
nents with large transverse wavevectors. This is due to the fact that the cavity length is much shorter than
the top mirror’s radius of curvature, L≪ RM.
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Figure 4.3: Schematic illustration of the compact MiM assembly.

two generations of MiM cavities we realized in the lab: the first, used for the exper-
iments in [178], a symmetric cavity with a 29-layer coating on each mirror, and the
current one an overcoupled cavity with 35 layers on the input and 25 layers on the out-
put mirror. The modelled finesse agrees well with experimental characterization. In Fig.
4.2, I also added an intrinsic loss term of ∼ (4πσ/λ)2, modelling the scattering from mir-
ror interfaces with an RMS roughness of σ, for reasonable roughness values quoted by
the substrate suppliers. The intrinsic losses introduced by membrane clipping and tilt
are more difficult to estimate and keep under control, so we always preferred to choose
conservative mirror transmission values in order to realize reasonably-overcoupled cav-
ities. The trends of Figure 4.2 hint at one practical advantage of the dielectric mirrors:
for experiments in which a lower finesse is required, it is sufficient to seek cavity res-
onances detuned from the coating center wavelength. Around ∼ 810nm, the finesse
is reduced by a factor of about 2, but the coupling rate through the output mirror
is retained. This can be useful for multimode optomechanics experiments, as will be
discussed in the following.

The MiM cavity assembly is quite simple, and inspired by previous experiments in
the research group of Albert Schliesser [29, 193]. After carefully cleaning the mirror
surfaces and the backside of the membrane chip with lint-free swabs and an adhesive
gel-pack (for collecting dust particles), the cavity is assembled by stacking vertically
the flat mirror, the membrane chip and the curved mirror on top of the membrane
chip. The top mirror diameter DM = 7.75mm is smaller than the chip side length
(8.75mm), but larger than the membrane window frame size. Alignment of the cavity
mode to the membrane PnC defect is achieved by gently translating the curved mirror
on top of the membrane chip with tweezers, while monitoring the cavity reflection and
imaging the mode waist in a dedicated setup. After good alignment has been achieved,
the assembly is gradually clamped with a steel spring pushing on the top mirror, and
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transferred to the experiment vacuum chamber. More details can be found in the thesis
of Sergey Fedorov [70], and a schematic illustration of the cavity geometry is shown
in Figure 4.3. The length of our MiM cavity is determined both by the membrane chip
thickness hchip and by the radius of curvature of the top mirror, RM (see Fig. 4.3 for a
definition of the geometric parameters):

L = hchip + RM −
√
R2M −D2M/4 ≈ hchip +

D2M
8RM

(4.38)

The total cavity length was L ≈ 0.35mm for the experiments reported in [178] and
L ≈ 0.68mm in its more recent incarnation. The reason for the increased length was
the switch to thicker silicon substrates in order to facilitate the membrane fabrication,
from hchip = 200µm to hchip = 525µm. The average free spectral range7 correspond-
ingly changed from about 1.0nm to 0.53nm. We found both values suitable for the
experiment, in which we need to select the optomechanical coupling rate by pump-
ing different TEM00 resonances with a widely-tunable Ti:Sapph laser (Matisse, Sirah),
emitting between 780nm to 900nm. In a planar-concave Fabry-Pérot cavity the beam
waist is located on the flat mirror surface. Neglecting the presence of the membrane,
we estimate the cavity waist (e−2 intensity radius) to bew0 ≈ 29µm for the shorter and
w0 ≈ 37µm for the longer cavities, at 850nm. The beam waist does not change signifi-
cantly along the cavity, that is much shorter than the Rayleigh distance. The membrane
designs are carefully checked so that, at the PnC defect location, the beam intercepts an
unpatterned membrane area much larger than w0, in order not to introduce significant
optical scattering losses with the thin film edges.

4.4 stress-modulated pnc membranes

The earliest membrane samples we fabricated for our room temperature MiM experi-
ment were inspired by the soft clamped PnC devices first presented in [25]. By etching
a periodic array of circular holes, arranged in a honeycomb lattice, in a high aspect ra-
tio Si

3
N

4
membrane, the film stress acquires a spatial modulation, and a quasi-bandgap

for flexural modes is opened close to the acoustic resonant frequency, in an analogous
way to the density-modulated membranes introduced in Chapter 2. A defect in the
PnC pattern is created by removing one of the holes, and by translating and/or de-
forming the neighbouring ones. For an appropriate defect geometry, one or more soft
clamped modes with high quality factors will be hosted within the bandgap.

In contrast with the devices presented in [25], we maintained the same PnC honey-
comb hole pattern but tweaked the defect design. Our main goals were hosting a single
mode in the quasi-bandgap, and lowering the effective mass in order to improve the
optomechanical coupling rate, g0. The designs we conceived and fabricated are shown
in Figure 4.4: we call them respectively trampoline defect (4.4a) and triangular defect (4.4b)
membranes. They both feature a single flexural mode confined in the bandgap, a lower
effective mass compared to the earliest PnC soft clamped membranes [25] (but similar
to the device of [29, 188]), and a comparable quality factor (the dissipation-diluted Q is

7 The presence of the membrane inside the cavity modulates the FSR, but on average the FSR corresponds
to that of the empty cavity.
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Figure 4.4: a, Trampoline defect membrane, PnC hole arrangement close to the defect. The hole
radius r and unit cell pitch a are marked. c, FEM simulation of a soft clamped mode
hosted by a PnC membrane with a trampoline defect. b and d, similar illustrations
for a PnC triangular defect membrane. The simulated geometry has a lower number
of unit cells compared to that of c.

quite robust to the defect geometry). The simulated parameters of our designs are sum-
marized in Table 1, for a unit cell pitch a = 230µm that corresponds to the formation of
an acoustic bandgap around ∼ 1MHz. Different mechanical frequencies were achieved
by fabricating a membrane resonator with a uniformly-scaled pattern, as explained
in section 2.3.3. The mechanical parameters of the trampoline defect membrane’s soft
clamped mode are slightly more favourable, but the triangular defect membrane offers
a larger unpatterned area for interaction with the cavity mode (rclear is the radius of
the largest circle that can be inscribed in the membrane defect), and its soft clamped
mode is almost perfectly located at the bandgap center. This can be appreciated from
the thermomechanical spectra of the membrane devices, shown in Figure 4.5. The tri-
angular defect PnC membrane thus produces a better approximation of single-mode
optomechanics, and the thermal motion of neighbouring out-of-bandgap modes pol-
lutes the frequency environment of the soft clamped mode less. The “spectral isolation”
parameter in Table 1 refers to the frequency separation between the soft clamped mode
and the closest flexural mode.

An important consideration for the design of PnC membrane resonators is the po-
tential presence of flexural edge modes, localized by the phononic crystal close to the
membrane edges (see Figure 4.6a). These edge modes are not soft clamped, typically ex-
hibit a particularly low Q and have resonant frequencies close to or within the acoustic
bandgap. They can occasionally be observed in cavity-enhanced displacement records
(even if the optical mode is intercepting the defect, at the membrane center), and are
deemed capable of hybridizing with the soft clamped mode and substantially degrade
its mechanical Q [206]. They can be rendered innocuous, being shifted to very high fre-
quencies, by an appropriate PnC patterning which extends all the way to the device’s
edges. In microfabrication, this requirement translates to achieving a good front-to-
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Design a (µm) h (nm) Dimensions rclear (µm) Ω/2π (MHz)

Trampoline 230 20 2.8× 3.1mm 33 0.962

Triangular 230 20 3.0× 2.9mm 56 1.048

Design Q meff (ng)
√
SF,th(aN Hz−1/2) Spectral isol. (kHz)

Trampoline 2.2 · 108 1.4 25 29

Triangular 1.9 · 108 1.9 33 84

Table 1: Simulated geometric and mechanical parameters for the membranes in Figure 4.4. The
thermomechanical force noise density SF,th is computed for a temperature of 300K.
Finite elements simulation methods are discussed in section 2.3.5.

Figure 4.5: Thermomechanical spectra of our PnC membrane designs (a = 230µm for both
devices): top figure, triangular defect membrane; bottom figure, trampoline defect
membrane. The data is acquired in the setup described in section 3.7.2 with the
laser probe focused on the membrane defect. The peak at 1MHz in both spectra
(inside the hatched box) does not correspond to mechanical motion, but is phase
noise associated with electromagnetic pickup. The acoustic bandgap is shaded in
light blue.

back lithography alignment precision (≲ 10µm). I found the edge hole pattern illus-
trated in Fig. 4.6b to be suitable for the suppression of edge modes. The sharp corners
of the semicircular holes have been smoothed, because they have been observed to
produce local tears and defects in the suspended membrane devices, probably due to
high stress concentration in the corners.

4.4.1 Microfabrication walk-through

The fabrication process has been described in the original work that introduced soft
clamping in Si

3
N

4
membranes [25]. We initially reproduced it, and later adapted it

to facilitate the step of separation into individual chips by the use of a dicing saw,
yielding cleaner microresonators ready for insertion in the optical cavity. Here I will
shortly review the key points of microfabrication. This information was previously
published as a short technical article on the nanofab-net.org open access repository
[207].

https://nanofab-net.org
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a b

Figure 4.6: a, Simulated displacement profile of an edge mode at the lower bandgap edge. b
Hole pattern that prevents edge mode localization (magnified in the lower box).

Figure 4.7: Simplified fabrication process of Si
3
N

4
membrane resonators. 1 – Si

3
N

4
LPCVD, 2

– Frontside layer lithography, 3 – Frontside layer dry etching, 4 – backside layer
lithography, 5 – Backside layer dry etching, 6 – Partial KOH undercut and chip
separation 7 – Membrane release with KOH etching. The curved arrows indicate
that the wafer is flipped for processing on the opposite face.

Membrane samples are fabricated on 100mm silicon wafers. Stoichiometric, high
stress Si

3
N

4
is grown by low pressure chemical vapor deposition (LPCVD) on both

sides of a 200µm or 525µm-thick silicon wafer, with (100) surface orientation8. The
initial deposition stress is estimated a posteriori from the observation of membrane
resonant frequencies, and varies in the range 900-1100MPa, changing slightly with
deposition run. The fabrication process relies on bulk wet etching of silicon in KOH
through the whole wafer thickness, to create openings for optical access to the mem-
branes samples [25, 208–210]. The extremely high selectivity of Si

3
N

4
to Si during KOH

etching allows the use of the backside nitride layer as a mask, to define the outline of
the membranes on the frontside.
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4.4.1.1 Device layer and membrane windows patterning

Initially, the frontside nitride (Si
3
N

4
) layer is patterned with h-line UV photolithogra-

phy (our photoresist of choice is MicroChemicals AZ ECI3007, ∼ 600nm-thick) and
CHF

3
/SF

6
-based reactive ion etching (RIE) (steps 2-3 of figure 4.7). For devices with

particularly thin features and where the dimensional control is crucial, such as the
membranes presented in [58], we use ebeam lithography instead, with positive-tone,
∼ 150nm-thick ZEP520A as the mask. In the frontside mask, alignment markers should
be included in regions optically accessible to the exposure tool used for backside align-
ment. I use 8 alignment crosses in the wafer peripheral regions to ensure a precise
translation and rotation compensation over the majority of the wafer surface.

A careful removal of the spent photoresist is important, in order to avoid the forma-
tion of very hard-to-clean organic residues. We found a good procedure to be a short
exposure to O

2
plasma (600W RF power, 30 seconds duration), followed by immersion

in 70 °C N-Methyl-2-Pyrrolidone (NMP) for at least 10 minutes, and then a final expo-
sure to O

2
plasma, for 3-5 minutes, to incinerate loose residues of the resist mask. This

procedure is carefully repeated for each resist strip step, and after each we characterize
the surface cleanliness with a scanning electron microscope.

The frontside nitride layer is then protected by spinning a ∼ 3µm layer of positive-
tone photoresist (MicroChemicals AZ ECI3027), prior to flipping the wafer and begin-
ning the patterning of membrane windows on the backside nitride layer (steps 4-5). We
noticed a reduction in the occurrence of local defects and increased overall membrane
yield when the unreleased membranes on the frontside were protected from contact
with hot plates, spin-coaters and plasma etchers chucks, and this observation justifies
the use of a protection layer. Alternatively, a couple micrometers of amorphous silicon
(aSi) could be deposited by PECVD for the frontside protection. The advantages of
such a protection layer are that it would get removed without effort by KOH exposure
in step 7, and that it does not present the risk of contamination of the wafer chucks
in the clean room tools, unlike a photoresist film. However, in our PECVD tool the
deposition of a thick aSi film is problematic, so I have not investigated this alternative
in depth.

The backside layer is then patterned with membrane windows, in a completely anal-
ogous way. The exposure step is done with an MLA150 laser writer, that features a set
of optics dedicated to alignment with reference markers on the wafer backside. The
critical dimension of this step is extremely large, so that practically any exposure tool
with backside alignment capabilities should be suitable. It is crucial to remember to flip
the backside mask design, to ensure a correct front-to-back alignment, and to obtain a
precise alignment with the frontside markers, in order to avoid the generation of unde-
sired, unpatterned membrane strips that can support the edge modes described in the
previous section. Moreover, the membrane windows should be resized of an amount
depending on the wafer thickness, to account for the slope of slow-etching planes in
KOH. In fact, KOH etches silicon anisotropically, with the ⟨111⟩ planes being attacked
particularly slowly (likely due to a high atomic packing density). As a consequence,
rectangular windows in the Si

3
N

4
mask result in cavities in the shape of truncated

pyramids forming during wet etching, with a base angle of acos(1/
√
3) = 54.74° (see

8 We purchase LPCVD coating services from Hahn-Schickard-Gesellschaft für angewandte Forschung e.V.
We observed particularly low mechanical intrinsic losses in their Si

3
N

4
thin films [58].
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Figure 4.8: Truncated pyramid holes formed by KOH wet etching under square apertures. This
hole arrangement represents an identifier pattern, resistant to exposure to KOH, for
a membrane chip.

Figure 4.9: SEM micrograph of a PnC sample after partial double-sided undercut. Triangular
prisms of silicon following [111] crystallographic directions are obtained as a result
of anisotropic KOH etch below the PnC holes.

Figure 4.8). To compensate for the anisotropic etching, the backside rectangular mask
should simply be larger of an amount

√
2hchip in both dimensions, compared to the

desired window size on the frontside.

4.4.1.2 KOH deep etching

After stripping the photoresist and checking the surface quality on the device layer, the
wafer is installed in a chemically-resistant PEEK holder9 for the first wet etching step
in KOH 40% at ≈ 70 °C (step 6 in Figure 4.7). The holder clamps the wafer along its rim,
sealing off the wafer frontside with a rubber O-ring, while exposing the backside to

9 Single IL wafer holder by AMMT GmbH.
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chemical etching by KOH. This procedure is necessary to ensure that PnC membranes
are suspended correctly: we noticed that releasing PnC samples by etching from both
sides of the wafer produced a large number of defects in the phononic crystal, probably
due to the particular dynamics of undercut and stress relaxation in the film (see the
SEM micrograph of a broken membrane in Figure 4.9). Instead, splitting the process in
two steps works very well: the first etch from the backside should end 30-40µm short of
suspending the Si

3
N

4
film (etched depth can be measured with an optical microscope

with a high magnification objective and using a large aperture; the displacement of the
stage between the positions where the surface and the bottom of the pit are in focus
provides a good estimate of the etched depth), and the membrane release is performed
as the last step, after the wafer has been separated into chips with a dicing saw.

The best practice for wet etching is to clean beakers and holders with IPA and fiber-
less cloths prior to the process. The concentration of KOH is regulated with the help of
a buoyant density meter at room temperature, then the solution is heated to the desired
temperature and we wait for the hotplate to stabilize; the temperature will overshoot
significantly then drop down when the holder is inserted. We start a timer for the etch
process when we see tiny H

2
bubbles being produced at the exposed Si surfaces, which

indicate that the Si native oxide has been stripped and the chemical reaction with sil-
icon has started. A magnetic bar is used to stir the KOH bath and homogenize the
temperature profile in the beaker, during the whole deep etch process.

The wafer is etched until 30-40µm of silicon remains (the etch rate along ⟨100⟩ direc-
tions is about 28µm h−1 at this temperature), leaving the membrane samples robust
enough to endure the subsequent fabrication steps. The PEEK holder mounts a light-
bulb in a waterproof space behind the wafer, that can be used to check for light trans-
mission from the remaining silicon membrane, occurring when ≲ 20µm of silicon are
remaining. In my experience, it is best to stop the etching shortly before or just as soon
as light starts to be transmitted from the silicon membranes, to maintain a better struc-
tural integrity. The wafer is then removed from the KOH bath and the PTFE holder,
rinsed and cleaned in HCl 20% at 55 °C for about 1 hour. This cleaning step removes
some scattered contamination generally observed after KOH etching, probably due to
iron oxide particles suspended in the KOH solution [211].

4.4.1.3 Chip-scale undercut

After the partial silicon etching, the wafer frontside is coated with thick, protective
photoresist (AZ ECI3027, thickness ∼ 3µm, with HMDS adhesion promoter and soft
bake at 90 °C) and the wafer is separated into 8.75mm × 8.75mm chips using a dicing
saw (the blades we use cut lines with a width of 30µm or 200µm). The remainder of
the process is carried on chip-wise. The photoresist is cleaned off the chips by means of
hot solvents and O

2
plasma, and the membrane release is completed by exposing chips

to KOH from both sides (step 7; see Figure 4.10)10. The temperature of the solution is
lowered (≈ 55 °C, etch rate ∼ 13µm h−1), to mitigate the perturbation of fragile samples
by buoyant H

2
bubbles, a byproduct of the etching reaction. The reaction rate and H

2

production rate scale, in fact, exponentially with the solution temperature. After the

10 The survival yield of the delicate tensioned structures depends on their design and on the remaining Si
thickness before this step. Both stress-modulated PnC membranes and the polygon resonators of [27] can
be suspended successfully only if the silicon thickness is reduced to ≲ 40µm during the first backside
etch step.
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Teflon holder

DI water beakers

Temperature probe

Hotplate

a b

Figure 4.10: a, Membrane release step in hot KOH. The puddle holder shown in Figure 3.6
is employed. b, Close-up of the membrane chips immersed in KOH. The bubbles
lining the PTFE surfaces are byproducts of the silicon chemical etch.

undercut is completed, the samples are carefully rinsed, cleaned again in HCl and
transferred to an ethanol bath. Rinsing should be thorough, especially when using
a chip holder which constrains the flow in the orthogonal direction, but movements
and transfers should be extremely gentle while the samples are immersed in liquids.
The more delicate the samples, the gentler the displacements should be, in terms of
mounting conditions, steadiness of movements, control of bath perturbations and all
factors that can influence sample survival. Trampolines and strings are much more
fragile than PnC and unpatterned membranes, for a fixed aspect ratio. A good rinsing
procedure is slowly moving the chip holder up and down, crossing the interface of the
DI water bath a couple of times. This should be repeated 3-4 times, each time using
a fresh de-ionized water bath. To ensure that no traces of acids or bases are left after
the rinsing step, the pH of the bath can be measured with an indicator strip. Since
the puddle holder of Fig. 3.6 presents narrow volumes that can be tricky to purge from
acid/bases residues, for samples that are relatively robust to surface tension forces (like
the PnC membranes), it is much more practical to utilize a holder where the chips are
sitting vertically into slits with thickness of a couple millimeters, and where the liquids
are completely flushed during the holder transfers. As the last step, the sample holder
is moved to the chamber of a critical point dryer (CPD) filled with ethanol, in order to
delicately dry the suspended devices. CPD is not strictly required, since stiction does
not affect membrane samples where the substrate is completely undercut, but it is
still useful: if done properly, it can be gentler and cleaner than manual drying. Before
running the CPD cycle, we make sure that the samples are immersed sufficiently long
in ethanol to let the liquid diffuse in the proximity of the chips. The membrane samples
can then be examined with an optical microscope to check for visual defects (see Fig.
4.11), and brought to the setup shown in section 3.7.2 for mechanical characterization.

Further insight on the wet release of high aspect ratio membranes can be gained
by reading [212], where the authors reported on the fabrication methods of extremely
large Si

3
N

4
membranes for applications as mask pellicles in EUV lithography.
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Figure 4.11: Optical microscope image of a suspended triangular-defect PnC membrane, at the
end of the fabrication process.

4.5 observation of thermal intermodulation noise

The first experiments with our MiM cavity at room temperature led to the unexpected
observation of substantial amplitude noise in the transmission spectra of the optome-
chanical cavity, that was clearly related to mechanical displacement. In particular, for
the PnC soft clamped membranes described in the previous section, the amplitude
noise was characterized by a flat and almost featureless background at the bandgap
frequencies, several orders of magnitude beyond the vacuum fluctuations of the laser
field. This was not explained by the naïve, linearized theory of cavity optomechanics
(see section 4.1), where thermomechanical motion is presumed to be imprinted only
on the phase fluctuations of the cavity field. We understood this noise process as be-
ing related to the optical cavity nonlinearity, and provided a quantitative analysis of
its magnitude, finding an excellent agreement with our model. Although quadratic
transduction was observed in different optomechanical cavities [213, 214], it was never
reported in MiM systems, where the large density of highly-coupled modes unexpect-
edly results in a massive amplitude noise, that imposes significant constraints to quan-
tum optomechanics. I will present here a summary of our findings [178].

The conventional framework in which optical measurements are described assumes
linear transduction of cavity frequency fluctuations into the optical field, justified by
the frequency excursions being small compared to the cavity linewidth. However, the
nonlinearity of transduction is inherently present in any cavity. It gives rise to qual-
itatively new effects and results in the conversion of Gaussian fluctuations of cavity
frequency into non-Gaussian fluctuations of the optical field. When a cavity is coupled
to a quantum system, this phenomenon has been proposed for performing nonlinear



4.5 observation of thermal intermodulation noise 125

quantum measurements [213–215], which cannot be described within the leading or-
der perturbation theory [38]. At the same time the nonlinear conversion of thermal
frequency fluctuations can impose qualitatively new constraints on a broad range of
precision experiments, which to date have not been analyzed.

We will show that nonlinear modulation of the optical field by thermal frequency
fluctuations can manifest as a broadband added noise in detection, whose bandwidth
is limited by the cavity decay rate. We refer to this noise as thermal intermodulation noise
(TIN), since it mixes different Fourier components of cavity frequency fluctuations.
This noise dominates when the linearly transduced thermal fluctuations are small, such
as when detecting the intensity of near-resonant optical probe. As it is the leading-
order contribution, TIN it is not necessarily negligible even when the nonlinearity of
cavity transduction is small.

Using a Si
3
N

4
membrane resonator hosting a high-Q and low mass soft clamped

mode, we operate at a nominal Cq ≈ 1, i.e. in the regime where the linear measure-
ment quantum backaction (arising from radiation pressure quantum fluctuations) is
expected to overwhelm the thermal motion. This regime is required for a range of
quantum enhanced measurement protocols [189, 216] and for generation of optical
squeezed states [177, 192]. Yet, the nonlinearity of our cavity prevents the observation
of quantum correlations between the field quadratures, and manifests itself in TIN
significantly above the shot noise level. Surprisingly, we find that TIN dominates the
fluctuations of the intensity of the optical field even when the thermally induced fre-
quency fluctuations are substantially smaller than the cavity linewidth. Since TIN is a
coherent effect, it only requires the knowledge of spectrum of cavity frequency fluctu-
ations to be modeled, and our experimental data is well matched by a model with no
free parameters.

We show that for a particular “magic" detuning from the cavity TIN is fully can-
celled in direct detection. Our observations, while made for an optomechanical system,
are broadly applicable, irrespective of the underlying thermal noise source. Thermal
intermodulation noise can be of relevance to any cavity-based measurement scheme at
finite temperature.

4.5.1 Theory of TIN

We begin by presenting the theory of thermal intermodulation noise in the classical
regime with the assumption that the cavity frequency fluctuations are slow compared
to the optical decay rate. We concentrate on the lowest-order, i.e. quadratic, nonlinearity
of the cavity detuning transduction. We consider (as in our experimental setup) an
optical cavity with two ports, which is driven by a laser coupled to port one. The
output from port two is directly detected on a photodiode. In the classical regime,
i.e. neglecting vacuum fluctuations and treating the fields as complex numbers, the
amplitude of the intracavity optical field, a, and the output field sout,2 can be found
from the input-output relations:

ȧ(t) =
(
i∆(t) −

κ

2

)
a(t) +

√
κ1 sin,1, (4.39)

sout,2(t) = −
√
κ2a(t), (4.40)
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where sin,1 is the constant coherent drive amplitude, ∆(t) = ωl −ωc(t) is the laser
detuning from the cavity resonance, modulated by the cavity frequency noise, and
κ1,2 are the external coupling rates of ports one and two (κ1 = κ2 in our case) and
κ = κ1 + κ2. In the fast cavity limit, when the optical field adiabatically follows ∆(t),
the intracavity field is found as:

a(t) = 2

√
η1
κ
L(ν(t)) sin,1, (4.41)

where we introduced for brevity the normalized detuning ν = 2∆/κ, the cavity decay
ratios η1,2 = κ1,2/κ and Lorentzian susceptibility

L(ν) =
1

1− iν
. (4.42)

Expanding L in equation 4.41 over small detuning fluctuations δν around the mean
value ν0 up to second order we find the intracavity field as:

a = 2

√
η1
κ
L(ν0)(1+ iL(ν0)δν− L(ν0)

2δν2)sin,1. (4.43)

According to equation 4.43, the intracavity field is modulated by the cavity frequency
excursion, δν, and the frequency excursions squared, δν2. By contrast, in the linearized
optomechanical equation of motion 4.4, only the first two terms in the right hand side
parentheses in equation 4.43 are retained. If δν(t) is a stationary Gaussian noise pro-
cess, like typical thermal noises, the linear and quadratic contributions are uncorre-
lated (despite clearly not being independent). This is due to the fact that odd-order
correlations vanish for Gaussian noise,

⟨δν(t)2δν(t+ τ)⟩ = 0, (4.44)

where ⟨...⟩ is the time average, for an arbitrary time delay τ. Next, we consider the pho-
todetected signal, which, up to a conversion factor, equals the intensity of the output
light and is found to be

I(t) = |sout,2(t)|
2 ∝ |L(ν0)|

2

(
1−

2ν0

1+ ν20
δν(t) +

3ν20 − 1

(1+ ν20)
2
δν(t)2

)
. (4.45)

Notice that δν(t) and δν(t)2 can be distinguished by their detuning dependence [217].
The linearly transduced fluctuations vanish on resonance (ν0 = 0), where ∂|L|2/∂ν = 0.
Similarly, when ∂2|L|2/∂ν2 = 0, the quadratic frequency fluctuations vanish, and thus
also the thermal intermodulation noise. We refer to the corresponding detuning values,

ν0 = ±1/
√
3,∆0 ≈ ±0.29 · κ (4.46)

as “magic”. In the following experiments, we perform measurements at ν0 = −1/
√
3

and ν0 = 0 to independently characterize the spectra of δν(t) and δν(t)2, respectively.
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The total spectrum of the detected signal, I(t), is an incoherent sum of the linear
term given by,

Sνν[ω] =

∫∞
−∞⟨δν(t)δν(t+ τ)⟩eiωτdτ, (4.47)

and the quadratic term, which for Gaussian noise can be found using Wick’s theorem
[218]

⟨δν(t)2δν(t+ τ)2⟩ = ⟨δν(t)2⟩2 + 2⟨δν(t)δν(t+ τ)⟩2, (4.48)

as

S
(2)
νν [ω] =

∫∞
−∞⟨δν(t)2δν(t+ τ)2⟩eiωτdτ =

= 2π⟨δν2⟩2δ[ω] + 2 · 1
2π

∫∞
−∞ Sνν[ω ′]Sνν[ω−ω ′]dω ′,

(4.49)

where δ[ω] is the Dirac delta function.

4.5.2 Brownian intermodulation noise

In an optomechanical cavity, the dominant source of cavity frequency fluctuations is
the Brownian motion of mechanical modes coupled to the cavity,

δν(t) = 2
G

κ
x(t), (4.50)

where G = −∂ωc/∂x is the linear optomechanical coupling constant, and x is the
total resonator displacement, i.e. the sum of independent contributions xn of different
mechanical modes. The spectrum of the Brownian frequency noise is then found to be:

Sνν[ω] =
4G2

κ2

∑
n

Sxx,n[ω], (4.51)

where Sxx,n[ω] are the displacement spectra of individual mechanical modes. The ther-
momechanical frequency noise given by equation 4.51 produces TIN which contains
peaks at sums and differences of mechanical resonance frequencies and a broadband
background due to the off-resonant components of thermal noise. The magnitude of
the intermodulation noise is related to the quadratic spectrum of the total mechanical
displacement, S(2)xx , as:

S
(2)
νν =

16G4

κ4

∑
n

S
(2)
xx,n[ω] (4.52)

,
as will be discussed in the next section.

A reservation needs to be made: the theory presented in section 4.5.1 is only strictly
applicable to an optomechanical cavity when the input power is sufficiently low, such



128 membrane-in-the-middle optomechanics

that the driving of mechanical motion by radiation pressure fluctuations created by
the intermodulation noise is negligible; otherwise the fluctuations of x(t) and δν(t)

may deviate from purely Gaussian and correlations exist between δν(t) and δν(t)2.
On a practical level, this reservation has minor significance for our experiment. On the
other hand, the presence of linear dynamical backaction does not change the results of
section 4.5.1 but does modify Sxx.

Thermal intermodulation noise can preclude the observation of linear quantum cor-
relations, which are induced by the vacuum fluctuations of radiation pressure between
the quadratures of light and manifest as ponderomotive squeezing [177, 192], Raman
sideband asymmetry [219] and the cancellation of shot noise in force measurements
[188, 189, 216]. The observation of quantum correlations typically requires selecting a
mechanical mode with high quality factor,Q, a spectral neighbourhood free from other
modes, and a high optomechanical coupling rate. If TIN is taken into account, simply
increasing the quantum cooperativity is not sufficient, and the following condition also
needs to be satisfied:

Cq

(g0
κ

)2
Γn̄
S
(2)
xx [ω]

x4zpf
≪ 1. (4.53)

From the condition given by equation 4.53, one can immediately observe that by re-
ducing the mechanical dissipation and g0/κ, one can keep the quantum cooperativity
constant while lowering the intermodulation noise. The engineering of the mode spec-
trum to reduce S(2)xx at the desired frequency might also be a fruitful approach. One
way to accomplish this would be selectively coupling the cavity to only one high-Q
mechanical mode so that S(2)xx is peaked at twice the mechanical resonance frequency
and has most of its power outside a detection band centered on the mechanical res-
onance frequency. Selectively coupling to modes of solid-state mechanical resonators,
however, is experimentally challenging, especially at low frequencies (MHz-range and
below). The selectivity can be improved by working with the fundamental resonator
mode, which has the largest RMS thermal displacement fluctuations and therefore
dominates S(2)xx .

4.5.3 Experimental observation with uniform membranes

We first characterize the TIN in cavities with 20nm-thick Si
3
N

4
uniform square mem-

branes of different sizes. In this experiment, the MiM cavity consists of two dielectric
mirrors with 100 ppm transmission and a 200µm-thick silicon membrane chip, which
is sandwiched directly between the mirrors. The total length of the cavity is around
350µm, the cavity beam waist for the TEM00 mode is about 35µm. The MIM cavity
is placed in a vacuum chamber at room temperature and probed using a Ti:Sapph
laser or a tunable external cavity diode laser at a wavelength around 840nm, close
to the maximum reflectivity wavelength of the mirrors (see Figure 4.2). The Ti:Sapph
laser was used in all the thermal noise measurements, whereas the diode laser, whose
emission frequency can be tuned more rapidly, was used for characterization of opti-
cal linewidths. The optomechanical cooperativity was kept low in order to eliminate
dynamical backaction of the light; this is achieved by increasing the pressure in the
vacuum chamber and keeping the mechanical modes gas damped to Q ∼ 103. The
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Figure 4.12: MiM cavity reflection signal as the laser is scanned over two resonances, with low
(left) and high (right) optomechanical coupling. TIN is proportional to (g0/κ)

4 (see
Figure 4.14), and induces large noise in the transmission signal from the highly-
coupled resonance. The cavity is built around a 2mm square Si

3
N

4
membrane.

reflection signals of two resonances of a MiM cavity, obtained by sweeping the laser
wavelength over the resonance, containing a membrane with a side length of 2mm
are presented in Figure 4.12. The resonances have similar optical linewidths (about
15MHz), but their optomechanical coupling is different by a factor of ten. The reso-
nance with high coupling (g0/2π = 150 Hz) shows clear signatures of thermal noise.
For this resonance the total RMS thermal frequency fluctuations are expected to be
around 2 MHz, which is still well below the cavity linewidth, κ/2π = 16 MHz. The
detuning scan rates are approximately 1 THz/s for both plots in Figure 4.12.

Thermal fluctuations of the reflection signal are clearly observed in the right panel
of Figure 4.12 even when the laser is resonant with the cavity. This is not expected
in linear optomechanics, where the mechanical motion only modulates the phase of
a resonant laser probe. Typical spectra of the detected noise are shown in Figure 4.13

for a cavity with a different, 1mm, square membrane. With the laser detuned from
the cavity resonance (close to the “magic" detuning, ν0 ≈ −1/

√
3), the transmission

signal is dominated by the Brownian motion of membrane modes transduced by the
cavity (shown in Figure 4.13a) and by the extraneous thermal noise from the mirrors
(i.e. Brownian motion of the mirrors’ flexural modes [173, 203]), in agreement with the
prediction of linear optomechanics. The magnitude of thermomechanical noise is grad-
ually reduced at high frequencies due to the averaging of membrane mode profiles
[193, 203] over the cavity waist, until it meets shot noise at around 15 MHz. With the
laser on resonance, from linear optomechanics it is expected that the output signal is
shot noise limited. However, the experimental signal (shown in Figure 4.13b) contains
a large amount of thermal noise—at an input power of 5µW the classical relative inten-
sity noise (RIN) exceeds the shot noise level by about 25 dB at MHz frequencies. The
spectrum of the resonant RIN is different from the spectrum of detuning fluctuations,
owing to the nonlinear origin of the noise. At high frequency, the RIN level approaches
shot noise.

An unambiguous proof of the intermodulation origin of the resonant intensity noise
is obtained by examining the scaling of the noise level with G/κ. In thermal equilib-
rium, the spectral density of frequency fluctuations, δν(t), created by a particular mem-
brane is proportional to (G/κ)2, and therefore the spectral density of intermodulation
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Figure 4.13: a, Detuning noise of a MiM cavity with a 1 mm square membrane, κ/2π = 26.6
MHz and g0/2π = 330 Hz for the fundamental mode, measured at the laser de-
tuning 2∆/κ ≈ −1/
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in a but at ∆ = 0. The dashed line indicates for both plots the level of vacuum
fluctuations, in terms of cavity frequency noise or RIN, respectively.
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Figure 4.14: a, Dependence of the average RIN in a 0.6− 1.6MHz band on g0/κ. b, Dependence
of resonant relative intensity noise (RIN), averaged over 0.6−1.6MHz, on the input
power. Parameters: κ/2π = 9.9 MHz, g0/2π = 84 Hz for the fundamental mode.
The interval of ± one standard deviation around the mean is shaded gray.

noise is expected to be proportional to (G/κ)4. We confirm this scaling by measuring
the resonant intensity noise for different optical resonances of a cavity with a 2mm



4.5 observation of thermal intermodulation noise 131

membrane and present in Figure 4.14a the average noise magnitude as a function of
g0/κ, where g0 is the optomechanical coupling of the fundamental mode. By perform-
ing a sweep of the input laser power on one of the resonances of the same cavity we
show (see Figure 4.14b) that the resonant intensity noise level is power-independent
and therefore the noise is not related to radiation pressure effects.

The TIN observed in our experiments agrees well with our theoretical model. By first
calculating the spectrum of linear detuning fluctuations according to equation 4.51 and
then applying the convolution formula from equation 4.49 as follows, we can accurately
reproduce the observed noise. The spectrum of the linear fluctuations, Sνν[ω], is a
linear combination of thermomechanical motion of each mode, due to the fact that
the Brownian motions of different modes are statistically independent. For an accurate
modelling, we must take into account the position dependence of the frequency pull
factor G (see section 4.2). The transverse factor Θ(n,m) determines a different weight
of different mechanical modes for both the linear and quadratic detuning fluctuations
[193]. In the experiment, we calibrate the fundamental mode optomechanical coupling
rate, and we can use G(1,1) to simply express the contribution of higher order modes:

Sνν[ω] =
4G2(1,1)

κ2

∑
n,m

(
Θ(n,m)

Θ(1,1)

)2
Sxx,(n,m)[ω]. (4.54)

The frequency dependence of Θ(n,m), explicitly written down in equation 4.33, induces
a cutoff in the detuning fluctuation spectra, when the acoustic wavelength becomes
smaller than the cavity waist. Sxx,n[ω] is given by the fluctuation-dissipation theorem,
in the high temperature limit (see equation 2.59):

Sxx,(n,m)[ω] =
2kT

ω
Im{χ(n,m)[ω]} (4.55)

where χ(n,m)[ω] is the susceptibility of mode (n,m). Recalling the results of section
2.3.2 a thin, high stress square membrane of side length L, supports flexural modes
whose displacement is approximately given by products of sine waves (see section
2.3.2)11:

ϕ(n,m) = sin
(nπx
L

)
sin
(mπy
L

)
, (4.56)

with the mode frequencies Ω(n,m) =
π
L

√
σ(n2+m2)

ρ . The effective mass for all modes is
given by meff = ρL

2h/4, a quarter of the total mass of the membrane. For these exper-
iments, the membrane is surrounded by a low vacuum environment: damping is pre-
dominantly viscous, with a constant damping rate given by Γ(n,m)) = Ω(n,m)/Q(n,m).
Piecing it all together, the susceptibility of the mode (n,m) is given by

χ(n,m)[ω] =
1

meff

(
Ω2(n,m) −ω

2 − iΓ(n,m)ω
) . (4.57)

11 Non-flexural membrane modes present negligible optomechanical coupling and can be ignored for the
modeling of linear and quadratic fluctuations.
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Figure 4.15: Comparison of theoretical and experimental frequency and resonant intensity
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Once computed the linear fluctuation spectrum, the quadratic fluctuations of ν can
be calculated using the convolution integral of equation 4.49:

S
(2)
νν [ω] =

1

π

∫∞
−∞ Sνν[ω ′]Sνν[ω−ω ′]dω ′, (4.58)

where we have dropped the DC term which is irrelevant to the numerical model. Fi-
nally the total photocurrent spectrum is obtained from equation 4.45.

In Figure 4.15, we compare the measured detuning and intensity noise spectra with
the theoretical model. While this model is not detailed enough to reproduce all the
noise features, it accurately reproduces the overall magnitude and the broadband en-
velope of the intermodulation noise observed in the experiment.

4.5.4 TIN with a soft clamped PnC membrane

Next, we describe our observation of thermal intermodulation noise with a PnC mem-
brane hosting a ultracoherent, soft clamped mode. Owing to their high Q and low
effective mass, which result in low thermal force noise, SF,th = 4kBTmeffΓ , these modes
are promising for quantum optomechanics experiments [29], especially at room tem-
perature [173], where the thermal fluctuations are preponderant. On the other hand,
the high number of membrane modes probed by the optical cavity and the large Brown-
ian motion amplitude at room temperature produce strong intensity fluctuations above
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Figure 4.16: Measurement of the frequency spectrum and detuning dependence of TIN with a
phononic crystal membrane. a Blue—photocurrent noise spectrum detected with
the cavity-laser detuning set to 2∆/κ ≈ −0.3, red—shot noise level. The shaded
region shows the noise averaging band for the plot in b. The inset shows an optical
cavity mode (imaged at λ ≈ 780 nm) overlapping with the PnC membrane defect.
b Variation of the relative intensity noise at bandgap frequencies with cavity-laser
detuning. Red circles—experimental measurements, blue line—fit, orange line—
cavity phase noise inferred from the fit, shaded blue region—independently cali-
brated cavity noise, with uncertainty given by the selection of the averaging band.

the quantum noise. For the measurements shown in this section, the pressure in the
vacuum chamber was restored to ≈ 5× 10−7mbar, in order to operate at high vacuum
cooperativity C0. PnC membranes introduce slightly higher optical losses to MiM res-
onances, compared to unpatterned rectangular membranes, with a magnitude depend-
ing on the specific optical mode.

The phononic bandgap isolates soft clamped modes from the thermomechanical
noise created by the rest of the membrane spectrum. Nevertheless, when a PnC mem-
brane is incorporated in a MiM cavity the entire multitude of membrane modes con-
tributes to the TIN even within bandgap frequencies, as TIN is produced by a nonlinear
process. Figure 4.16a shows the spectrum of light transmitted through a resonance of
a membrane-in-the-middle cavity with g0/2π = 0.9 kHz for the soft clamped mode,
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κ/2π = 34 MHz and C0 = 2.5. The noise at bandgap frequencies is dominated by TIN,
which exceeds the shot noise by four orders of magnitude. The spectrum also shows a
dispersive feature in the middle of the bandgap, which is a signature of classical corre-
lations due to the intracavity TIN exciting the localized mechanical mode (the classical
analogue of the ponderomotive squeezing described in section 4.1.3). The mechanical
resonator in this case is a ≈ 2mm, triangular-defect, square PnC membrane with the
patterning shown in Fig. 4.11, but made of 40nm-thick Si

3
N

4
. The membrane has a sin-

gle soft clamped mode with Q = 4.1 · 107 at 1.55MHz, as characterized immediately
before inserting the membrane in the cavity assembly. The input power in the mea-
surement was 100µW after correcting for spatial mode matching, which corresponds
to a nominal Cq ≈ 1. The shot noise level was calibrated in a separate measurement by
directing an independent laser beam on the detector.

We then present in Figure 4.16b the dependence of the bandgap noise level on the
laser detuning, measured on a different optical resonance of the same MiM cavity and
at lower input power. The measurement shows that the in-bandgap excess noise is
dominated by TIN at all detunings except for the immediate vicinity of the “magic"
detuning ν0 = −1/

√
3. Around ν0 = −1/

√
3 the excess noise is consistent with the

mirror noise of an empty cavity. In the measurement in Figure 4.16b, g0/2π = 360 Hz
for the localized mode, κ/2π = 24.8 MHz and the input power was 30µW. The total
noise level is well fitted by our model that includes both Sνν and S(2)νν contributions to
the detected signal and accounts for the radiation pressure cooling (see section 4.1.1),
as we now describe. From equation 4.45, the spectrum of intensity fluctuations of the
output light is given by:

SII[ω] ∝
4ν20

(1+ ν20)
2
Sνν[ω] +

(3ν20 − 1)
2

(1+ ν20)
4
S
(2)
νν [ω]. (4.59)

In an optomechanical cavity operated at high input power Sνν and S(2)νν in general are
detuning-dependent because of the laser cooling/amplification of mechanical motion.

In order to find the precise dependence of SII on ∆ some specific assumptions need
to be made about the operating regime and the frequency of interest. In Fig. 4.16b, the
noise level is estimated at the bandgap frequency (see the shaded gray band in Fig.
4.16a) and therefore only the mirror noise is expected to contribute to Sνν. The me-
chanical modes of the mirrors are relatively weakly coupled to the intracavity light and
therefore the dynamical backaction for them can be neglected, resulting in detuning-
independent Sνν. The intermodulation noise contribution, on the contrary, is signifi-
cantly affected by laser cooling. It is natural to suggest (and it is advocated for by the
very good agreement of our conclusions with experimental data) that TIN at bandgap
frequencies is dominated by the mixing products of resonant and off-resonant parts
of the membrane thermomechanical spectrum. Dynamical backaction reduces the me-
chanical spectral density on resonance ∝ 1/ΓDBA, where ΓDBA is the optical damping
rate (see equation 4.9) and ΓDBA ≫ Γm is assumed. On the other hand, DBA does not
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affect the off-resonant spectral density. In the unresolved-sideband regime, which is
typically well fulfilled in our measurements, the optical damping rate is given by12:

ΓDBA = −32
Ωm

κ

(
2g0
κ

)2
ν0

(1+ ν20)
3
η1|sin,1|

2, (4.60)

and under our assumptions the spectral density of quadratic frequency fluctuations at
PnC bandgap frequencies follows the detuning dependence of 1/ΓDBA,

S
(2)
νν ∝

(1+ ν20)
3

|ν0|
, (4.61)

for ν0 < 0.
Motivated by this consideration, the experimental data in Figure 4.16b is fitted with

the model:

SII ∝
4ν20

(1+ ν20)
2
C1 +

1

|ν0|

(3ν20 − 1)
2

1+ ν20
C2, (4.62)

where C1 and C2 are free parameters. It should be stressed that although S(2)νν is glob-
ally related to Sνν via convolution, there is, in general, no relation between the two
spectra at one given frequency, and therefore two independent parameters are required
to reproduce the detuning dependence of SII. As shown by the fit result, represented
with the blue curve in Figure 4.16b, the model very well reproduces the observed vari-
ation of output noise with detuning and the value of C1 found from the fit is indeed
consistent with independently measured mirror noise, as shown in Figure 4.17.

The intensity of the detected light in our measurement is proportional to the intensity
of the intracavity field. Therefore, the suppression of TIN at the magic detuning nec-
essarily implies the suppression of the corresponding radiation pressure noise, which
otherwise can lead to classical heating of the mechanical oscillator and thereby limit
the true quantum cooperativity, i.e. the contribution of radiation pressure shot noise to
the oscillator heating.

4.6 membranes with a soft clamped fundamental mode

PnC soft clamped membranes, by design, support a multitude of flexural modes below
the bandgap frequencies: in order to provide a reasonable suppression of the displace-
ment field before the clamped edges, the membrane must comprise at least several unit
cells in each direction. In a MiM cavity, as we have seen, the low order flexural modes
can display a frequency pull factor as high as the soft clamped mode, thus inducing
strong intermodulation noise on the cavity field, at room temperature.

Alternative designs of the mechanical resonator can dramatically influence the mag-
nitude of intermodulation noise, and even render it negligible at all relevant optical
intensities. The PnC string resonators of chapter 3, for example, exhibit a mode density

12 This DBA damping rate expression can be obtained from equation 4.9 by making explicit the detuning
dependence of the photon number in g: g2 = (2g20/κ)

2η1|sin,1|
2/(1+ ν2).
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Figure 4.17: Red trace, spectrum of thermal detuning fluctuations at ∼ 1.5MHz due to the
mirror noise, measured for an empty Fabry-Pérot cavity with the same length
(assembled with a perforated silicon chip as a spacer), but without a membrane.
Blue trace, thermal detuning spectrum of the MiM cavity, corresponding to the
2∆/κ ≈ −0.51 point in Figure 4.16.
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Figure 4.18: a, False-color SEM image of suspended PnC nanostrings, with the substrate com-
pletely removed. The string width increases from right to left in the image. Unit
cell buckling (see Figure 3.16) is avoided by “joining” multiple strings in the width
direction. The irregular surface visible below the strings in grayscale is carbon tape
used for mounting the chip on the SEM sample holder. b, Imaging of an optical
cavity mode centered on one of the nanostrings (courtesy of Sergey Fedorov). Sig-
nificant optical losses are observed, which are clearly related to the diffraction from
the string visible in the image.

linear with frequency, and are predicted not to generate significant intermodulation
noise at room temperature. However, it is not trivial to integrate them in a Fabry-Pérot
cavity, as the beam waist needs to be much smaller than their transverse width in
order to retain a decent optomechanical coupling and not to introduce large optical
dissipation. Our attempts at building this type of "string-in-the-middle" cavities (see
Fig. 4.18) did not produce spectacular optomechanical parameters, and a sizeable dis-
sipative coupling (dκ/dx) was observed for the in-plane mode close in frequency to
the localized out-of-plane mode. However, we did not dedicate an intense effort to the
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×1000

Figure 4.19: Simulated cavity-transduced (the mechanical peaks are weighted by Θ2n) thermo-
mechanical displacement of a uniform membrane (red) and of a trampoline res-
onator (blue) with matched fundamental frequency. The uniform membrane spec-
trum has been shifted down by 10−3 for clarity, and the Q of all the mechanical
modes has been arbitrarily fixed to 2000 to facilitate the numerical evaluations.

development of this system, which remains, on paper, interesting. Other groups have
achieved interesting regimes using similar optomechanical platforms [169]. Tensioned
trampoline resonators [208, 209, 220, 221] are more interesting resonators for the MiM
paradigm, as they possess a pad that facilitates integration with an optical cavity, and
a vibrational spectrum that is very similar to that of a pair of crossed strings [126] (see
the comparison between trampoline and square membrane thermomechanical spectra
in Figure 4.19). In this type of devices, the highest-cooperativity mode is the funda-
mental out-of-plane oscillation, exhibiting a displacement extremum at the location of
the pad. These modes possess high quality factors, roughly equivalent to the Q of the
fundamental mode of a string whose length is equal to twice the trampoline tether’s
length. The fundamental mode, is also well-isolated in frequency from the higher order
bending modes, without the need of an acoustic bandgap. However, these modes are
not soft clamped, and there is room for optimization of their mechanical damping.

In the course of this thesis work, we have shown how to soft clamp the fundamental
mode of a trampoline and significantly increase its quality factor, by constructing hi-
erarchical networks of tethers. This builds on a previous theory work [222], where we
showed that the displacement gradient of a flexural mode is suppressed over a three-
beam joint and fractal-like strings can exhibit enhanced quality factors. I will present
two trampoline designs with ultrahighQ for the fundamental mode: a trampoline with
branching tethers, a direct extension of the fractal-like string idea, and the “steering
wheel” trampoline, that is easier to fabricate in practice. I will also discuss the pit-
falls in their nanomechanical design. These resonators exhibit a clear interest for cavity
optomechanics, but they are not straightforward to integrate in a high-performance
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Figure 4.20: a Two branching points of a binary-tree resonator, with the branching angle θ, the
segment widths wn and lengths ln labelled. The dashed blue contour is employed
to derive the transformation of the displacement derivative. b, Illustration of the
effect of the three-beam branch on the displacement derivative when the structure
is deformed out of the xy plane. The dashed rectangles indicate the structure an-
choring pads.

MiM cavity. Their fundamental mode, in fact, is very susceptible to anchoring losses
(see section 2.3.6.6), in contrast with PnC-localized resonances, that are intrinsically
well-isolated from the substrate. Applying pressure to the chip boundaries in order
assemble a stable cavity will invariably result in mechanical Q degradation, and this
needs to be overcome with appropriate assembly techniques or acoustic isolation struc-
tures in the membrane substrate [111, 112]. Recently, researchers at McGill university
devised a method of clamping a trampoline resonator chip without spoiling its me-
chanical quality (at the level of Q ∼ 2 · 107), by loading it using sapphire hemispheres
that apply a point contact to appropriate locations on the chip surface [223].

4.6.1 Displacement gradient suppression over a three-beam branch

As seen in section 2.3.2, the dissipation dilution of a tensioned membrane or string
flexural mode crucially depends on the displacement gradient as the standing wave ap-
proaches the clamping points. The displacement gradient close to the clamping region
determines the boundary curvature (see equation 2.85), which dominates the linear
lossy energy, and soft clamping techniques suppress it by engineering the resonator
shape. An interesting situation in which suppression of the flexural mode gradient oc-
curs is when a string flexural mode propagates over a branch point. In order to show
this, we consider a junction of three beams with rectangular cross section, highlighted
by the blue contour in Figure 4.20a. The dynamic equation for the two-dimensional
profile of out-of-plane vibrations u(x,y) is given by [33]:

−
∂

∂xi

(
σij

∂u

∂xj

)
= Ω2ρu, (4.63)

which generalizes equation 2.79 to the case of a strong but inhomogeneous stress field:
the components of the stress tensor σij are functions of x and y. By integrating both
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sides of equation 4.63 over the infinitesimally small area of the contour and transform-
ing the divergence into a boundary integral we find

∮
dsi

(
σij

∂u

∂xj

)
= 2w2σ2u

′
2 −w1σ1u

′
1 = 0, (4.64)

where u ′
1 and u ′

2 are the amplitude gradients in the directions of axes x1 and x2,
respectively. We assumed that the mode branches symmetrically and correspondingly
doubled the contribution of u ′

2. Next, the balance of static tensile forces requires

w1σ1 = 2w2σ2 cos(θ). (4.65)

Combining equations 4.64 and 4.65 we find

u ′
2 = u

′
1 cos(θ). (4.66)

Equation 4.66 shows that the mode gradient is reduced by a factor of cos(θ) after prop-
agating over a branch point. This is schematically illustrated in Fig. 4.20b Although the
reduction in principle can be arbitrarily large if θ is close to π/2, the improvement in
dissipation dilution provided by a single branch point is fairly limited. The reason is an
associated increase in the distributed lossy energy caused by the torsional deformation
of the beams. As seen in section 2.3.4, torsion carries a contribution to the linear elastic
energy13:

∆W(lin) ≈ Eh3w

12

∫
dx

(
dτ(x)

dx

)2
, (4.67)

where τ(x) is the cross-section rotation angle and x is a longitudinal coordinate running
along the beam segments. The equilibrium of force moments at the junctions define the
boundary conditions for the torsion angles. At the beginning of the segment, the angle
is set by the previous segment as τn = u ′

n−1(ln−1) sin(θ). If the aspect ratio of the
segment is high (which we assume in the following), the transition from τn to zero
happens linearly and τ ′ = τn/ln.

Nevertheless, cascading multiple branchings and forming a binary-tree structure can
greatly reduce the overall lossy energy, and realize soft clamping for the low order flex-
ural modes; an SEM image of such a nanomechanical resonator is shown in Figure 4.21.
Exhaustive details on the modelling of dissipation in binary-tree strings are provided
in [222].

4.6.2 Trampoline membranes with branching tethers

The design concept of cascaded branching can be applied to the tethers of a trampoline
resonator, to enhance the quality factor of its fundamental mode. We implemented two
designs: the first one consists of two orthogonal binary trees combined with a pad, as

13 The geometrically-nonlinear energy component can be neglected if the widths of the binary-tree string
segments close to the antinodes is small enough.
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200 μm

Figure 4.21: Scanning electron micrograph of a binary-tree beam with three branching levels,
courtesy of Mohammad Bereyhi.

shown in Figure 4.22a; the second design, which we term a “steering wheel” mem-
brane, can be produced from the first one by pairwise joining half of the segments at
the 2nd branching generation (Figure 4.22b). Steering wheels are particularly simple
to fabricate (their fabrication follows the process described in section 4.4.1), but have
effectively only one generation of branchings, limiting the achievable dissipation dilu-
tion levels. Interestingly, similar geometries were obtained in [224] through a topology
optimization algorithm, and experimentally demonstrated in [225]. Integration of the
self-similar trampolines with a backside window is possible but makes the last steps
of the fabrication process a little more sensitive; for this reason, in the device displayed
in Figure 4.22a, the silicon substrate is still present below the trampoline. In both our
membrane designs, the junctions are not exactly self-similar, and the width profiles of
their segments are fine-tuned to optimize quality factors while maintaining constant
stress. In the fabricated devices, the pad size varies between 35 and 85µm. We also
show in Figure 4.22c a self-similar trampoline device with a backside window opened
through the chip thickness. This requires a careful timing of the chip-scale KOH etch-
ing step in order not to create undesired overhang at the clamping points. The trampo-
line in Figure 4.22c exhibited a low quality factor: its particular design was formulated
when we were not fully aware of the buckling constraints outlined in the next section,
and exhibited pronounced static deformation in the largest branches. Correspondingly,
the measured Q of ∼ 9× 106 was more than an order of magnitude lower than the
numerical dissipation dilution prediction.

The fundamental modes of our trampolines are partially soft clamped, which can
be seen from the suppression of mode gradients towards the peripheral clamping
points in Figure 4.23c and d. The experimental results for devices with lateral extent
between 0.5mm and 2mm are summarized in Figure 4.24. We observed quality fac-
tors of fundamental trampoline modes as high as Q = 2.3× 108 at Ωm/2π = 100kHz
and Q = 1.7 × 107 at Ωm/2π = 470 kHz. We remark that the self-similar trampo-
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Figure 4.22: Trampoline membranes with partial soft clamping. a, Scanning electron micro-
graph of a trampoline resonator with branching tethers. The silicon substrate is
recessed by about 80µm below the trampoline. b, Optical microscope image of a
steering wheel membrane, enclosed in a square frame of about 2.2mm side length.
The silicon substrate is completely removed below the sample. c, A trampoline
resonator with branching tethers, with the underlying substrate removed by deep
etching, to create an optical window. The membrane thickness is 20nm, while the
chip is about 200µm-thick.
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Figure 4.23: a-b, FEM-simulated displacement profiles of the trampoline and steering wheel
fundamental modes. c-d, Displacement profile (green) and its first derivative (blue)
evaluated along the red paths highlighted in a and b. The red dashed line indicates
the step-like gradient suppression after a bifurcation, by a factor of cos(θ) (cfr.
equation 4.66).

Figure 4.24: Measured quality factors of self-similar and steering wheel trampolines. Squares
represent trampolines with branching tethers, while circles corresponds to steering
wheels. Colors differentiate distinct designs. Measurements of individual devices
are displayed with filled symbols, while open symbols portray the Q factors pre-
dicted with a finite element model.

line membrane exhibited a Q about 3.5 times lower than the finite element prediction
(red symbols in Figure 4.24), potentially due to out-of-plane static deformations that
we observed in the suspended device, as we will discuss in the next section. These
dissipation dilution levels are a factor of three beyond those of the original trampo-
line designs [208] at the same frequencies. Trampolines with branching tethers, with
a smaller pad (about 35µm) and lower effective mass (260pg) than steering wheels,
exhibit

√
SF ≈ 3.7 aN/Hz1/2 at room temperature.
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Figure 4.25: Thermomechanical noise spectrum of a trampoline with branching tethers. The
gray line is the power spectral density of the homodyne record, where we highlight
in blue the Brownian motion peaks of the trampoline resonator. The insets display
the displacement patterns of modes S1, T3 and S7.

In Figure 4.25 we display a thermomechanical noise spectrum recorded by shining
the probe laser on the pad of a trampoline membrane with branching tethers. Reso-
nance peaks were distinguished from spurious noise peaks by comparison with a sim-
ilar spectrum obtained by reflecting the probe off the chip surface, and are highlighted
in blue. The trace is normalized to the level of shot noise.

The low-frequency spectrum of the trampoline with branching tethers presents flex-
ural mode families similar to those of regular trampoline membranes. We adopt the
notation of [208]: ‘S’ indicates symmetric displacement patterns, with an antinode at
the location of the pad, ‘T’, modes where one tether vibrates out of the plane, with
a node at the pad, and the second undergoes torsion, and ‘A’, modes where the two
tethers undergo flexural displacement with a π phase shift. ‘T’ modes always appear
in degenerate pairs, and ‘A’ modes at a slightly higher frequency. The interferometer
is most sensitive to out-of-plane motion, and purely torsional and in-plane flexural
resonances could not be detected.

4.6.2.1 Buckling and static deformations

As the structure of the tensioned trampoline membranes with branching tethers is
quite complex, compressive stress along some directions can develop locally, especially
close to the three-beam branches. This gives rise to the same buckling instability that
was described for the sSi nanostring unit cells (see section 3.3.1), and we observed
this phenomenon from the very first fabricated structures, that could develop wrinkles
or out-of-plane twisting and deformation after the undercut process. In many cases,
buckling can be avoided with judicious design of the tether profile, as we will discuss
next.
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In Figure 4.26a, an example static deformation pattern is portrayed, which occurred
in a steering wheel membrane close to its clamping point. A FEM simulation of the
static stress distribution in the same structure is presented in Figure 4.26b, which
shows that the buckling is co-localized with regions of compressive principal stress.
To obtain the color map in the figure, we decompose the simulated in-plane stress
tensor into its principal components (i.e. its eigenvalues) and display the smallest one.
Wherever one principal stress is negative, there is compression along some direction,
which can trigger buckling. In the region where buckling is observed in the real device,
the simulated minimum principal stress dips to ≈ −30MPa.

Our strategies to avoid buckling in trampoline membranes were a) to ensure that
the structures are stress-preserving [222], i.e. that the forces acting on each junction
point are balanced prior to suspension, and b) to taper wide segments, which helped
maintain their transverse stress above zero (compare the steering wheel trampoline
tether profiles in Fig. 4.26a-b with those in Fig. 4.22b). Buckling is also expected to be
less significant for films thicker than 20nm.

Another type of static deformation that was observed in our tensile resonators is
twisting of film segments. An example is portrayed in Figure 4.26c for the outer-most
generation of segments of a trampoline membrane with branching tethers. The sample
topography has been obtained through a confocal microscope profilometer. We con-
jecture that potential causes for this phenomenon could be the inhomogeneity of the
film stress in the vertical direction, or the non-uniformity of the height of the silicon
wafer. We expect that these undesired static deformations would also be reduced by
increasing the film thickness.

4.7 density-modulated pnc membranes

Since the integration of the hierarchical trampoline membranes in a Fabry-Pérot cavity
is not trivial, we have devoted more energy to a second approach for room tempera-
ture quantum optomechanics. We decided to restrict operation of the MiM cavity to
the magic detuning, ∆ ≈ −0.29κ, where intermodulation noise is well-controlled, and
develop the density modulated PnC membranes pioneered by the group of Ulrik An-
dersen at DTU [67] and described in the second chapter (see section 2.3.3). In these
resonators, the Si

3
N

4
membrane film is not patterned, and rather the effective density

is modulated by the fabrication of nanoscale pillars on top of it. These devices present
a couple of important improvements on the stress-modulated PnC membranes intro-
duced earlier in this chapter:

• The membrane stress is not relaxed from the initial value achieved with LPCVD,
bringing a precious increase of a factor of 2-3 in the mechanical quality fac-
tors, and a corresponding optomechanical cooperativity improvement. The DTU
group reports quality factors as high as 9.1 · 108 at room temperature, that com-
pare favourably with maximum Q ∼ 2− 3 · 108 achievable with stress modulation
at similar frequencies.

• The 2D geometry, without the narrow features induced by the etch pattern, in-
creases thermal conduction and heat dissipation. This could lead to better ther-
malization of the resonant modes in the presence of an intense laser field, and
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Figure 4.26: Buckling in a steering wheel resonator. a, The branch connecting the membrane
to the silicon frame is visibly wrinkled (in the region circled with a dashed line),
while wider tethers are bent in the transverse direction, as can be seen by the
tether shifting out of the focal plane of the microscope. b, Minimal principal stress
component from a FEM simulation of the membrane in a. The area where buck-
ling is most prominent exhibits large compressive stress in the direction transverse
to the branch. White contours encircle the regions with compressive stress below
−10MPa. c, Profilometry of a trampoline membrane sample exhibiting static tor-
sion in the branches closest to the clamping points. Inset: rotation of the beam
surface normal along the black dashed path.
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200 µm
2 µm

a b

Figure 4.27: a, SEM micrograph of the defect region of a PnC membrane fabricated following
the method of [67]. The inset shows the individual SixNy pillars composing the
high-density regions. b, Thermal instability of a MiM cavity built around a mem-
brane fabricated using that method. The trace shows the transmission signal of
the cavity when the laser wavelength is kept at a fixed detuning from the original
resonance. The membrane temperature dynamics bring the cavity periodically on-
and off-resonance, driving in turn the membrane temperature [226].

weaker photothermal effects [226, 227], that often limit optomechanics experi-
ments.

• The acoustic bandgap width, governed by the density contrast, can be much
larger than for stress-modulated PnC devices. This is advantageous for experi-
ments such as feedback cooling, where spectral isolation of the high C0 mode
from “spectator” membrane modes is important to avoid driving of the oscillator
with uncorrelated thermal fluctuations.

In the last period of this thesis work, I developed a fabrication technique for density-
modulated PnC devices. The method detailed in [67], with nanopillars made out SixNy,
is remarkably simple, but does not allow a fine control of the nanopillar dimensions,
due to the pillars being subject to multiple isotropic etching steps. This hinders the
experimental control on the effective density ρeff, and severely limits the fabrication of
pillars of arbitrary shapes. Moreover, when we tried to reproduce the resonators in [67],
we indeed measured high quality factors, but we observed photothermal bistability at
low input power, when they were embedded in the MiM cavity (see Figure 4.27b),
limiting the optical power that could be injected. From the measurement of different
PnC membranes, we conjecture that the photothermal effect manifests when plasma-
enhanced, chemical-vapor-deposited (PECVD) SixNy is grown directly on the Si

3
N

4

membrane. PECVD SixNy is known to have a larger optical absorption than LPCVD-
grown Si

3
N

4
[228], and the absorption coefficient is related to the specific plasma gener-

ation parameters and to the substrate temperature during deposition. Apparently, our
PECVD SixNy (grown with the same recipe as in section 3.1) modifies the chemistry of
the underlying Si

3
N

4
in such a way that it induces optical absorption even when the

PECVD film is removed.
For these reasons, we have decided to pursue a different fabrication process, where

amorphous silicon (aSi) pillars are grown and defined lithographically on the Si
3
N

4
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Figure 4.28: Losses induced by bending of nanopillars used to modulate ρeff. a-c, Q of a uni-
form pillar array with infinite extent, as a function of the frequency of the acoustic
flexural wave and of the pillar diameter. The pillar separation apil is increased
between the different panels, and the pillar thickness hpil is kept constant. d, Vi-
sualization of the linear elastic energy density, that is associated with mechanical
dissipation, close to the nanopillar. The largest contribution to dissipation is seen to
occur close to the nanopillar base. e, Effect of an undercut at the pillar base on the
pillar Q. For this simulation, the pillar has a diameter of 600nm and a thickness of
1000nm, and the separation between nearest-neighbours pillars is fixed to 1.5µm.
The undercut layer is hardly visible in the illustration, as it is only 6nm-thick.
The pillar array’s Q (ochre dots) is seen to drop sharply when the first flexural
resonance frequency (blue dots, the inset illustrates the displacement field) of the
nanopillar approaches the acoustic excitation frequency, marked by a horizontal
dashed line.

membrane, and are not subject to isotropic etches. The complexity of this method is
higher, but it appears to overcome the limitations of the original process. Although
we have not yet reproduced the dissipation results of [67], our preliminary results are
encouraging and we observed quality factors up to Q ∼ 2 · 108, on par with the best
stress-modulated membranes.

4.7.1 Design principles

The nanopillars can locally load the membrane to realize a density modulation, but
they also introduce additional mechanical dissipation. When a bending wave impinges
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on the pillar, it induces deformation carrying linear strain energy without a significant
geometrically-nonlinear contribution. The pillars will thus reduce the dissipation di-
lution of the Si

3
N

4
membrane, of an amount that depends sensitively on the pillars’

geometrical dimensions and on the elastic frequency of the flexural mode. The lower
the elastic frequency and the smaller the pillars, the lower the susceptibility of the
pillar displacement, and the lower will be the added dissipation induced by the indi-
vidual pillars. The pillar damping contribution can be dominant, or sufficiently low
that it is negligible compared to the finite dissipation dilution of the soft clamped
mode, depending on the oscillation frequency and on the pillars’ geometry [67].

We investigated this damping contribution with 3D finite element simulations of a
single nanopillar. From now on, we assume that the pillars are arranged in a triangular
lattice with a lattice constant apil (separation between the nearest neighbours), and we
identify the pillar diameter and height (thickness) with dpil, hpil. The effective density
in the circular regions patterned with the nanopillars is then:

ρeff = ρ

(
1+

π

2
√
3

ρpilhpil

ρh

(
dpil

apil

)2)
, (4.68)

where h and ρ are the thickness and density of the membrane film (Si
3
N

4
). The pe-

riodicity of the pillar array is embedded in the simulation by restricting the domain
to an hexagon-shaped unit cell (see Figure 4.28d) with Floquet boundary conditions
(u⃗(⃗x+ R⃗) = u⃗(⃗x)e−ik⃗·R⃗) on opposite sides of the hexagon. Due to the unit cell sym-
metry, the direction of the flexural wave is not important, but the magnitude of the
elastic wavevector defining the boundary conditions, k, is chosen in order to produce
a flexural eigenmode at the mechanical frequency of interest (kapil ≪ 1):

k ≈ Ω
√
ρeff

σ
, (4.69)

where σ is the membrane deposition stress. The model is then solved for its first eigen-
mode, which represents the pillar displacement upon the arrival of the flexural wave.
The dissipation dilution of an infinite pillar lattice is evaluated as detailed in section
2.3.5, where the linear elastic energy is obtained either using its full expression (equa-
tion 2.11) [24] or the simplified plate formula 2.14

14. The energy evaluated with the
two methods differs by less than 10%, despite the nonuniform thickness in the pillar
regions. The results of the computation of the infinitely-extended pillar lattice’s qual-
ity factor are shown in Figure 4.28a-c, for a fixed pillar thickness of hpil = 600nm and
variable pillar separations, diameters and mechanical frequencies. The method was
also benchmarked by verifying that when the pillar thickness is set to 0, the extracted
quality factor is given by the “clampless” expression of equation 2.94. Note that the
aSi loss angle is an unknown parameter in the FEM simulations, that we arbitrarily set
by choosing Qint,aSi = 10000. The results in Fig. 4.28a-c do not depend sensitively on
Qint,aSi; nevertheless one should treat them as a rough estimation of the pillar damping
contribution.

14 Note that COMSOL does not properly calculate the linear elastic energy using equation 2.11, in case
pre-stress is added to the pillar domain. The problem seems to be related with the evaluation of overlap
integrals between the static and dynamic solution steps.
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Figure 4.29: Effect of tuning the radius of the high density regions closest to the PnC defect. The
density modulation is set to g = 4.2 in all the circular regions for this simulation.
Left graph: change of the soft clamped mode frequency (blue dots) as the radius is
tuned. The 12 membrane modes closest in frequency are plotted with dashed black
lines; as rdef decreases and the confinement is reduced, more localized modes are
pulled in the bandgap (shaded in light blue). Right graph: DQ (orange dots) and
energy participation ratio (red dots) of the high-ρeff, pillar-containing regions for
the soft clamped mode, as rdef is varied.

Another pillar geometry that is experimentally relevant is the case of a cylindrical
pillar with a thin undercut layer formed at the base. As we will see, this is a possible
outcome of the nanopillar microfabrication, in case the pillar is grown on top of an
etch-stop layer with a different chemical identity. In this scenario, the frequency of
the first bending mode of the nanopillars is decreased, as shown by the blue dots
in Figure 4.28e, and the pillar motion can start to hybridize with the soft clamped
membrane mode. This induces a large reduction in the overall quality factor when
the undercut covers a significant portion of the pillar base (see the yellow dots in
Figure 4.28e). Note that the undercut is not visible in the figure inset, as it is carved in a
layer of only 6nm at the pillar base, which is similar to the fabricated pillar geometrical
parameters. A more striking example of undercut at the pillar base is portrayed in the
nanopillar cross-section of Fig. 4.31.

In real density-modulated PnC devices, the nanopillar lattice does not cover the full
membrane but is limited to the periodic circular regions of high density (see Fig. 2.6)
To compute the actual damping contribution due to the pillars, it is then necessary
to weigh the quality factor calculated as before with a participation ratio of the linear
elastic energy developed in the high-ρeff regions. The overall dissipation limit is then
estimated using the following formula:

Qpillar bend = Qsingle pillar/phd

phd =

∫
hd dS

((
∂2ψ
∂x2

+ ∂2ψ
∂y2

)2
+ 2(1− ν)

((
∂2ψ
∂x∂y

)2
− ∂2ψ
∂x2

∂2ψ
∂y2

))
∫
Γ dS

((
∂2ψ
∂x2

+ ∂2ψ
∂y2

)2
+ 2(1− ν)

((
∂2ψ
∂x∂y

)2
− ∂2ψ
∂x2

∂2ψ
∂y2

)) ,
(4.70)
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aSi
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LPCVD Si3N4

HfO2

PECVD SixNy
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Figure 4.30: Simplified fabrication process for density-modulated membrane resonators. The
features are not drawn to scale. 1 – Etch stop layer growth. 2 – aSi pillar layer
growth. 3 – Electron beam lithography and pillar pattern transfer with RIE. 4 –
Growth of PECVD nitride encapsulation layer. 5 – Chip separation and KOH mem-
brane release. 6 – Removal of the encapsulation layer in buffered HF.

where the integral at the numerator of the participation ratio phd is computed only in
the high-density regions, while the one at the denominator is extended to the whole
membrane surface. The energy participation ratio depends sensitively on the defect ge-
ometry; an example is shown in Figure 4.29, where the soft clamped mode properties
are tuned by changing the radius of the high-density regions closest to the defect (see
the inset in the left graph). Shrinking the closest high-density regions reduces the par-
ticipation ratio (as shown in the right graph), reducing the pillar bending contribution
to Q, but it also has the effect of “pulling” further localized modes from the frequency
bands below the bandgap, thus diminishing the spectral isolation of the target reso-
nances. Interestingly, both the DQ and meff are not significantly affected by the defect
geometry tuning, varying by less than 5% and 10% respectively in the explored range
of radii.

Finally, we note that if the membrane edges are terminated within the density mod-
ulation regions, edge modes will not appear at bandgap frequencies and the spectral
isolation of the soft clamped modes will improve. This is more easily obtained than for
stress-modulated PnC membranes, where the backside alignment tolerances are more
demanding if the creation of an unpatterned membrane strip needs to be avoided.

4.7.2 Microfabrication process

We detail here the fabrication process of amorphous silicon (aSi) nanopillars on a high
aspect ratio Si

3
N

4
membrane. As previously mentioned, this method has some ad-

vantages over the original density-modulated PnC samples [67], where the pillars are
made of PECVD silicon nitride. However, the process becomes a little more laborious,
due to the need of protecting the pillars during the membrane undercut. The aSi pillars
and the substrate have a very similar chemical composition, and they will be dissolved
during the KOH undercut if left exposed to the etchant. Building on the expertise ac-
quired in the fabrication of sSi nanostrings (see chapter 3), we devised a PECVD SixNy
encapsulation layer for the protection of aSi pillars, that can be removed selectively to
the pillars and to the membrane as the last step of microfabrication.
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4.7.2.1 Nanopillars definition

In our PnC membranes, we target pillar diameters between dpil = 300nm to 800nm
and nearest-neighbour distances between apil = 1.0µm to 2.0µm. Features with such
critical dimensions can be patterned in our cleanroom using deep ultraviolet (DUV)
photolithography, with a KrF laser source at 248nm, or using electron beam lithog-
raphy. We chose to use electron beam lithography for the highest versatility in pro-
totyping, as this technique does not require the prior fabrication of a photomask. In
the future, we plan to switch to stepper DUV lithography, that would reduce sub-
stantially the exposure time. Dry etching is an excellent method to transfer the mask
pattern to the underlying film, maintaining smooth and vertical sidewalls and keep-
ing the pattern dimensions faithful to the original design. However, there are few dry
etching recipes with a good selectivity between Si

3
N

4
and Si, with the exception of

processes taking place at cryogenic conditions [229], which in our cleanroom are not
supported. As soon as the ∼ 20nm Si

3
N

4
membrane is uncovered, it would rapidly

get consumed by the etchants. One solution is to stop the dry etching step just short
of uncovering the Si

3
N

4
layer, and finishing with a high-selectivity step such as wet

etching [67]. Unfortunately, wet etching is typically isotropic, and would shrink the
pillar dimensions from the design values, bringing forth issues in the reproducibility
and control of the effective density and pillar damping. We decided instead to em-
ploy an etch-stop layer, much more selective to dry etching than Si

3
N

4
, on top of the

membrane film, that allows for adequate overetching and process tolerances. Such an
etch-stop material is not difficult to find: for SF

6
-based processes, oxides such as SiO

2
,

Al
2
O

3
or HfO

2
(hafnium oxide) have been tested and found to provide a suitable se-

lectivity. However, another important requirement is that no significant undercut in
the etch-stop layer is created in subsequent steps of microfabrication (see the geometry
of the pillar stem in Figure 4.31). As previously mentioned, undercut can reduce the
frequency of the pillar bending resonances dramatically, thus increasing the pillar dis-
sipation at MHz frequencies. HfO

2
proved to satisfy this need, as a very thin layer with

thickness < 5nm can completely block the dry etching step for a sufficient amount of
time, and it is dissolved slowly in many acid and basic solutions. We measured an etch
rate of atomic-layer-deposited HfO

2
in HF 1% of ∼ 2nm/min, comparable with that of

stoichiometric Si
3
N

4
, and 1-2 orders of magnitude lower than that of SiO

2
and Al

2
O

3
.

The process starts with (100)-oriented silicon wafers on which a ∼ 20nm layer of stoi-
chiometric, high stress Si

3
N

4
has been grown via LPCVD. After cleaning and dehydrat-

ing the wafer with an O
2

plasma, we proceed with atomic layer deposition (ALD) of a
∼ 6nm HfO

2
etch-stop film (step 1 in Figure 4.30). The growth takes place with a reactor

temperature of 200 °C, using H
2
O and Tetrakis(ethylmethylamido)hafnium (TEMAHf)

as precursors. TEMAHf is pre-heated to 80 °C before starting the deposition process.
About 60 precursor injection cycles are needed to grow a film of the desired thick-
ness. After checking the thickness of the HfO

2
layer with a spectroscopic ellipsometer,

we proceed with the deposition of the aSi pillar layer. We employ a plasma-enhanced
chemical vapor deposition (PECVD) tool (Oxford PlasmaLabSystem 100), where silane
(SiH

4
) is the only precursor; at high temperatures and in the presence of a plasma,

silane can decompose into silicon and volatile hydrogen, and deposit on the hot wafer
(step 2 of Figure 4.30). The chamber temperature is set to 300 °C during the deposition,
and a 2% SiH

4
:N

2
mixture is flowed in the chamber at 1000 sccm; plasma is generated
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200 nm

Figure 4.31: False-colored SEM micrograph of a nanopillar cross section. The different layers
are color-coded as in Figure 4.30: violet – Si

3
N

4
, cyan – SiO

2
, gray – amorphous Si,

lavender – PECVD SixNy. The pillar is covered by a layer of photoresist.

using 30W of RF power. The pressure in the chamber is kept around 1500mtorr during
the process. The typical pillar thickness we target is ≈ 600nm, that requires around 23

minutes of PECVD growth. We noticed that the aSi deposition process tends to greatly
contaminate the chamber walls, and if the tool has been used many times without
cleaning, the plasma ignition can fail during the process (easily noticeable by the fad-
ing of the plasma “glow”). Therefore, we usually run a chamber cleaning process just
before starting the aSi growth, using a CF

4
/N

2
O plasma chemistry specifically tailored

for etching the residues grown on the chamber walls.
We proceed then to define the nanopillars pattern with electron beam lithography.

We spin-coat flowable oxide FOx16 resist (a formulation of HSQ) at 2000RPM, result-
ing in a mask layer around 800nm-thick. This thickness is more than sufficient to
pattern the aSi layer, and in the future it could be slightly reduced in case the litho-
graphic requirements become more demanding. FOx is exposed with a dose of about
1400µC/cm2 and developed with TMAH25% (2 minutes of immersion with agitation).
Before the e-beam writing, the pattern is corrected for proximity effects in electron
beam exposure (using the BEAMER software by GenISys), that would lead to nonuni-
formity within the pillar lattice regions. The pattern is transferred to the aSi layer with
reactive ion etching (step 3 in Figure 4.30), using a recipe with SF

6
and C

4
F

8
gases

flowed simultaneously in the plasma chamber, where the wafer is kept at 20 °C. The
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Figure 4.32: SEM micrograph of nanopillars covered with a PECVD SixNy film.

etch is monitored in situ using a 670nm laser beam reflected from the thin film stack:
as the aSi layer is gradually thinned down, fringes are observed, due to thin film inter-
ference between the beams reflected from the top and bottom surfaces. For a starting
thickness of ∼ 600nm, about 5.5 - 6 interference fringes are observed before the HfO

2

layer is exposed, which is clearly visible from the sudden dip of the interference signal
slope. We let the dry etching process run for about 30 s after the endpoint to ensure
that the pillars are fully defined on the whole wafer15, then we stop the process. Finally,
we remove the FOx mask and the residual etch-stop layer by dipping the wafer in HF
1% for about 3.5min, and confirm that the Si

3
N

4
membrane has been uncovered by

recording ellipsometer traces.

4.7.2.2 Nanopillars encapsulation

After patterning the pillars, we encapsulate them in a dielectric layer to protect them
during the silicon deep etching step (step 4 in Figure 4.30). The requirements are sim-
ilar as for the fabrication of sSi nanostrings (see section 3.1): we need a layer that can
conformally cover the pillar topography, without defects or pinholes and with tensile
deposition strain, such that it does not destructively buckle as it is suspended. Given
our positive experience with sSi, we employed the same type of PECVD SixNy. We
first grow a thin (∼ 20nm), protective layer of Al

2
O

3
with ALD, to shield the mem-

brane layer from plasma bombardment during PECVD. Then, approximately 125nm
of SixNy are grown in our Oxford PlasmalabSystem100 PECVD with 2% SiH

4
:N

2
and

NH
3

as the precursors. The flow rates are set to 975 and 30 sccm. The chamber pres-
sure is 800 mtorr and the reactor temperature is kept to 300 °C during the deposition).

15 With some RIE recipes, overetching after reaching the etch-stop layer leads to “notching”, i.e. formation
of an undercut at the pillar base as the plasma ions start to be deflected horizontally. Our selected dry
etching process does not exhibit this behaviour.
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2 mm 25 µm 1µm

Figure 4.33: A density-modulated PnC membrane shown at different scales: full membrane
chip, high-ρeff region and single nanopillars. The three pictures were acquired
respectively with a macro lens on a digital camera, with an optical microscope in
dark field, and in a scanning electron microscope.

40W of RF power excite the plasma during deposition, and the deposited layer has
been characterized to have a tensile stress of ∼ +300MPa at room temperature. The
layer conformally covers the membrane and pillars, with a lower deposition rate on
the sidewalls compared to the horizontal surfaces (see Figure 4.31). This PECVD layer
has proved to perfectly seal the nanopillars and withstand several hours of immersion
in hot KOH without significant consumption. An SEM image of the sealed nanopillars
is shown in Fig. 4.32.

4.7.2.3 Membrane release and encapsulation removal

At this point the process proceeds analogously to that of conventional stress-modulated
PnC membranes (see section 4.4.1). A thick (∼ 3µm) layer of positive tone photoresist
is spun on the frontside for protection during the backside lithography process, that
we perform with an MLA150 laser writer. Membrane windows must be, once again,
appropriately resized in order to account for the KOH slow-etching ⟨111⟩ planes. After
the resist mask and protection layer removal with NMP and O

2
plasma, we deep-etch

with KOH from the membrane windows while keeping the frontside protected, by in-
stalling the wafer in the watertight PEEK holder where only the backside is exposed.
KOH40% at 70 °C is employed, and the etch is interrupted when about 30-40µm of sili-
con remains. The wafer is then rinsed and cleaned with hot HCl of the residues formed
during KOH etching. Then, the wafer is separated into individual dies before conclud-
ing the process. A protective layer of positive-tone resist is coated on the frontside
before cutting the wafer with a dicing saw, and the process continues chipwise. Chips
are again cleaned with NMP and O

2
plasma (paying attention not to use Piranha solu-

tion for organic cleaning, as it attacks the Al
2
O

3
layer), and the deep-etch is concluded

with a second immersion in KOH 40% at a lower temperature of 55 °C (step 5 in Fig-
ure 4.30), followed as usual by cleaning in HCl. From the end of the KOH etching
step, the composite membranes are suspended, and great care must be adopted in dis-
placing and immersing the samples in liquid; nevertheless, the presence of a relatively
thick PECVD nitride layer ensures that the survival yield is quite high after this step
(> 90%). We dry the samples by moving them to an ultrapure isopropyl alcohol (IPA)
bath after water rinsing. IPA has a low surface tension and a high vapour pressure,
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Figure 4.34: Density-modulated membranes characterization data. The quality factor is plotted
against the nanopillar diameter, inferred from SEM-measurements or estimated.

therefore it can be easily dried off the membranes after a few minutes of immersion,
with the help of a (cautiously operated) N

2
gun.

Finally, the PECVD nitride and Al
2
O

3
layers can be removed selectively with wet

etching in buffered HF (BHF; step 6 in Figure 4.30). The etch rates of the encapsula-
tion layers in BHF are orders of magnitude higher than the etch rate of stoichiometric
Si

3
N

4
and HfO

2
, therefore even though the membrane backside is exposed, the mem-

brane thinning during this step remains limited (few nanometers). In this step, a large
or complete pillar undercut can be created, if the etch stop layer is not selected care-
fully (see Figure 4.31). Chips are loaded in a Teflon carrier where they are vertically
mounted, and immersed for about 3min 20 s in BHF 7:1. It is crucial not to overetch
more than necessary to fully remove the encapsulation films: membranes become ex-
tremely fragile and the survival yield drops sharply when their thickness is reduced
below ∼ 15nm. The etch rate of stoichiometric Si

3
N

4
in BHF 7:1 is around 1nm/min.

The membranes are then carefully rinsed, transferred in an ethanol bath and dried in a
critical point dryer, where the liquids can be evacuated gently and with little contami-
nation. The survival yield is slightly lower than for stress-modulated PnC membranes,
probably due to the Si

3
N

4
thinning during the process. A photograph of a chip with

a suspended density-modulated PnC membrane is shown in Fig. 4.33, where multiple
close-ups at different scales show the regions of density modulation and the individual
pillars.

4.7.3 Mechanical characterization

The mechanical characterization of membrane resonators, before inserting the samples
in the MiM assembly, was performed in the interferometric setup described in section
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Figure 4.35: Thermomechanical spectrum of a density-modulated PnC membrane (a = 260µm,
g ∼ 5.0). The data is acquired in the setup described in section 3.7 with the laser
probe focused either close to the membrane edge (red trace) or at the PnC defect
(blue trace). The localized mode coincides with the peak at 1.136MHz, that is only
visible in the trace acquired on the PnC defect. The peak at 1MHz in both spectra
(inside the hatched box) does not correspond to mechanical motion, but is phase
noise associated with electromagnetic pickup. The acoustic bandgap is shaded in
light blue.

3.7.2. A compilation of the measured quality factors is shown in Figure 4.34, where
only data points with Q > 107 are shown (in resonators with highly degraded Q,
intrinsic dissipation is typically not dominant). The quality factor is displayed against
the pillar diameter, that was measured directly by SEM imaging of the suspended
samples (small differences from the design values can occur due to process drifts in
e-beam lithography). The number of points is modest due to the limited amount of
fabricated membrane wafers, for time constraints. Initially, SiO

2
and Al

2
O

3
etch-stop

layers were employed (red dots in Figure 4.34), and the measured quality factors were
much lower than expected from naïve simulations of the pillar damping. We then
formulated the hypothesis that a large pillar undercut, introduced in the last step
of microfabrication, could increase sharply the pillar damping, and opted for ALD
HfO

2
as the etch-stop layer (blue dots in Figure 4.34), where undercut is generated

much more slowly. Despite just a single wafer being fabricated, the change immediately
brought a more than five-fold increase in the observed quality factors, confirming the
hypothesis of the additional pillar dissipation being due to the undercut at the pillar
base.

Note that it cannot be excluded that the Q improvement is associated with a lower
intrinsic friction in the HfO

2
film with respect to SiO

2
and Al

2
O

3
(most of the linear

strain energy is concentrated at the pillar base, see Figure 4.28d), but from the mechan-
ical characterization of non-strained HfO

2
resonators fabricated with our ALD tool, it

appears that the intrinsic dissipation is comparable with that of SiO
2

[230].
Thermomechanical spectra from one of the first fabricated membranes are shown in

Figure 4.35. The soft clamped mode is visible at 1.136MHz in the spectrum acquired
on the PnC defect (blue trace). Note that the acoustic bandgap (shaded in light blue),
with an extent of ∼ 450 kHz, is much larger than that created in stress-modulated PnC
devices (cfr. Fig. 4.5).
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Figure 4.36: Vibrational noise of PnC cavity mirrors. a, Room temperature frequency noise ob-
served at the output of an empty cavity (red line) compared with frequency noise
of the cavity formed by PnC mirrors (blue trace). Shot noise of the output field has
been subtracted by both traces. The conversion to mirror displacement is shown
on the right vertical axis. The bandgap region common to both mirrors is shaded
in light blue. b and c, Photographs of the PnC mirrors, showing the square ar-
rangement of cut lines. The cuts extend approximately through 90% of the mirror
thicknesses. d and e, Simulated band structures of the bottom and top mirrors. The
acoustic bandgaps are shaded in light blue as in a.

4.8 outlook for mim optomechanics

In conclusion, I have reported in this chapter on the development of a MiM system
based on ultracoherent Si

3
N

4
soft clamped membranes. I have described our novel

membrane designs with a single localized mode within the acoustic bandgap and re-
duced effective mass, with quality factors up to ∼ 3 · 108. I presented as well different
membrane designs we devised in order to mitigate some of the experimental challenges
we faced, such as trampoline membranes with a soft clamped fundamental mode, and
density-modulated PnC membranes. I discussed the main experimental challenge we
faced during operation of the MiM cavity at room temperature, i.e. thermal intermodu-
lation noise (TIN), a major deviation from the predictions of linearized optomechanics,
and the strategy to reduce it, by operating the MiM cavity at a specific, ‘magic’ detun-
ing. I will now shortly present some of the most recent developments in the experiment
and some future related directions that could be explored.

4.8.1 Room temperature ponderomotive squeezing

Using a density-modulated PnC membrane and working at magic detuning for TIN
suppression, we could recently observe ponderomotive squeezing at room temperature
in our MiM system (see section 4.1.3). Since at the magic detuning the output spectrum
was dominated by the mirror substrates’ vibrational noise (see Figure 4.16b), we had to
devise a method to reduce it below the vacuum fluctuations. We did so by fabricating
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Figure 4.37: Room temperature ponderomotive squeezing observed at an angle θ = 15.3° from
the amplitude quadrature. The green trace shows the homodyne spectrum: squeez-
ing is generated at the right side of the soft clamped mode of a density-modulated
membrane, and extends almost through the whole bandgap. The mode shows a no-
ticeable optical damping due to the high intracavity power and operation at magic
detuning (∆ ≈ −κ/2

√
3). The orange trace is the shot noise level, and the blue trace

shows the contribution of photodetector electronic noise (acquired with the laser
beam blocked). The dashed black line is a fit to the predicted spectrum expression.
The inset zooms on the region of maximum squeezing, displaying spectra in linear
scale.

PnC structures directly within the cavity mirrors, by cutting lines though the glass
substrates with a dicing saw, in a square lattice (see Figure 4.36). Surprisingly, this PnC
was sufficient to open a bandgap for flexural vibrations at ∼ 1MHz, and the cut lines
did not degrade the cavity finesse (the cavity beam waist is much smaller than the PnC
lattice constant). By performing homodyne detection with a single-detector scheme,
we could cancel the majority of TIN from the photodetection record, and we observed
squeezing down to ∼ 1.1dB below the shot noise level, at a quadrature rotated of about
θ = 15° from amplitude (see Figure 4.37). The experiment was mainly carried out by
Guanhao Huang and me; more details will be provided in an upcoming article.

For the squeezing experiment we operated the MiM cavity at a quantum cooperativ-
ity Cq ≈ 1.1, and we were even able to stably run the experiment with optical powers
a few times higher (typically limited by the photothermal instability of some spectator
membrane modes) without significant increase of the imprecision noise background.
This suggests that we should be close to reaching the regime in which feedback cooling
to the ground state of the membrane’s soft clamped mode is possible (see 4.1.4), espe-
cially with a future density-modulated membrane device with higher Q and a larger
acoustic bandgap. This will be required as the feedback-cooled linewidth approaches
the bandgap extent, which will happen when cooling close to the ground state.
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Figure 4.38: Optical resonance in nanopillar metasurfaces. a, Sketch of the ellipse-pair arrange-
ment, with labels indicating the main geometrical parameters. b, SEM micrograph
of a pillar lattice on top of a suspended membrane. c, FEM simulation of the electric
field magnitude in the quasi-BIC state supported by the pillar lattice. d, Transmit-
tance spectra (colored dots) of an infinitely-extended array of pillars, for different
values of the axes tilt angle θ. The different transmittance curves are offset by a
constant amount, to improve clarity. The full black lines are fits with a Fano res-
onance model [234]. e, Extracted resonance quality factors from the fits of d. The
dashed black line is a fit to the model Q0/sin2θ.

4.8.2 Tailoring the optical properties of a PnC membrane with photonic structures

Even if the density modulation profile of a PnC membrane is fixed, the experimenter
has a lot of freedom in the design of the single nanopillars that make up the high-g
regions at the nanoscale. The pillars are much smaller than the acoustic wavelength
and roughly commensurate with optical or infrared wavelengths. This suggests the
possibility of tailoring the membrane reflectivity by an appropriate choice of the pillar
arrangement, with the goals of manipulating the radiation pressure backaction exerted
on the membrane, enhancing its g0 when integrated in a cavity (see section 4.2), or
inducing a particular light polarization response. These ideas are not new in the field
of cavity optomechanics, where photonic crystals have been defined into Si

3
N

4
mem-

branes to boost the optomechanical coupling rate in MiM experiments [209, 231, 232]
or even to directly embed the cavity mirror onto the mechanical resonator [210, 233].

With density-modulated PnC membranes, the goal of tailoring the optical reflectance
and creating photonic resonances may be obtained without compromising the mechan-
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Da (nm) Db (nm) d (nm) w (nm) l (nm) hpil (nm) h (nm) λ (nm)

528 280 528 1056 1120 580 30 1580-1600

Table 2: Geometrical parameters of a periodic lattice of aSi elliptical pillars supporting a quasi-
BIC resonance at λ ∼ 1600nm. h is the thickness of the supporting Si

3
N

4
membrane.

ical quality factor. Dielectric pillars on a thin transparent slab are one of the most com-
mon geometries that realize metasurfaces with high-optical-Q resonances. A very com-
mon approach is starting with a periodic lattice of pillars that supports a symmetry-
protected photonic bound state in the continuum (BIC) [235] and introducing a small
geometrical asymmetry that induces a suitable coupling rate with free space [234]. The
amorphous silicon elliptical pillar array shown in Figure 4.38 is an example of such a
metasurface: when the adjacent ellipses axes are parallel, the structure supports a BIC
at a wavelength of ∼ 1600nm, which becomes a leaky Fano resonance as the axes are
tilted by a small asymmetry angle θ. Correspondingly, the simulated transmission from
pillars with growing asymmetry angles becomes broader as the external coupling rate
increases (see Figure 4.38d). The geometrical parameters of the pillar lattice supporting
the quasi-BIC resonance are given in Table 2, and they correspond to a density modu-
lation of g ≈ 3.7. Note that silicon is transparent at wavelengths around ∼ 1550nm, so
that the intrinsic damping of the metasurface’s optical resonances should be acceptable.
Density-modulated PnC membranes with elliptical nanopillars (in the high-g regions
closest to the PnC defect) have been fabricated, as shown in Figure 4.38b, but we must
still proceed to their experimental characterization.



5
C O N C L U D I N G R E M A R K S

During the past years, in our research team we exploited the effect of dissipation dilu-
tion to enhance the isolation from the thermal environment of high-aspect-ratio beam
and membrane resonators. This led to record quality factors of MHz modes in crys-
talline silicon nanobeams, especially at liquid Helium temperatures, and supported the
development of a state of the art membrane-in-the-middle cavity. Recent developments
of the membrane resonator, of the cavity mirrors and of the homodyne detection con-
figuration brought the experiment in the regime where quantum backaction influences
the oscillator motion at room temperature, an experimental setting whose exploration
has just recently started [54, 171].

Many open questions are being considered and investigated by researchers in the
field. The dissipation dilution bound of 2.94 has been saturated by PnC structures
[24], with lower frequency soft clamping approaches being limited instead by torsional
losses [27]. Equation 2.94 predicts however a severe drop of the dilution factor as the
mechanical frequency increases. For many experiments in the quantum regime, me-
chanical resonances at GHz frequencies are necessary [12, 13, 63, 236], in order to
prepare the mechanical system in the ground state at the cryogenic temperatures of
a dilution refrigerator (fulfilling kBT ≪  hΩ), and to interact resonantly with super-
conducting qubits. Extending dissipation dilution to such GHz modes would present
a breakthrough in the field, improving the performance of these hybrid quantum sys-
tems. One approach could be the implementation of dissipation-diluted resonators
in single-layer or few-layers materials, such as graphene, with a naturally-increased
aspect ratio. This endeavour seems challenging, due to technical difficulties in deposit-
ing high-quality layers on large surfaces, and to the lack of established microfabrication
methods. In my opinion, a more interesting path could come from the field of acous-
tic metamaterials [237], where a manipulation of the elastic wave dispersion can be
achieved with sub-wavelength structures. Fruitful investigations could include, for ex-
ample, the suppression of the bending stiffness or the enhancement of the speed of
sound (entailing reduced distributed curvature losses) in artificially-structured media
[238].

Another open problem is the existence of bulk or surface acoustic waves with signifi-
cant dissipation dilution. So far all of the known examples of dissipation dilution were
demonstrated in high aspect ratio structures, but it would be greatly advantageous
to enhance the mechanical quality factors of the natural vibrations of bulk materials.
Sergey Fedorov proved in his thesis [70] that the only continuum mechanics displace-
ment fields with vanishing linear strains are infinitesimal rotations, which do not seem
practical to implement. This does not exclude, naturally, the existence of other acous-
tic wave solutions in bulk media with a sizeable geometrically-nonlinear strain energy,
and a significant contribution of tension to the spring constant, especially when artifi-
cial dispersion engineering techniques are employed.

161





A
A P P E N D I X : C AV I T Y- L E S S L A S E R C O O L I N G I N A C RY O G E N I C
E N V I R O N M E N T

Soft clamped perimeter modes of nanomechanical polygon resonators exhibited qual-
ity factors up to 3.6 · 109 at room temperature and effective masses on the order
of 10 − 100pg, corresponding to zero-point displacement fluctuations around xzpf ∼

10− 100 fm [27]. The remarkable thermal decoherence time and the large amplitude of
zero-point motion offer a feasible path towards quantum control of perimeter modes
with simple interferometric displacement detection techniques (described in chapter
3). An order-of-magnitude estimation of the displacement sensitivity at the standard
quantum limit (see section 4.1) for such modes gives in fact a value around 1pm/

√
Hz,

which can easily be achieved and surpassed with common interferometric schemes and
reasonable optical powers (see Fig. 3.23). The interaction of such beam-like mechanical
resonators with an optical cavity is typically achieved by near-field coupling [172] or
with the use of fiber cavities with tight optical confinement [239], but both methods
incur into significant sample design, fabrication and experimental challenges, some of
which were presented in chapter 4. Reaching the regime where quantum backaction
of radiation pressure is a relevant agent of the mechanical displacement with simple
interferometric detection would represent a major experimental advance. In the past,
in fact, these displacement sensitivity levels were thought extremely challenging to
approach without the finesse enhancement offered by an optical cavity [160].

As a proof-of-principle experiment, we plan to carry out feedback cooling of the
perimeter mode of a polygon resonator starting from temperatures of ∼ 8K, achievable
in our cryostat. At such temperatures, the thermal phonon occupation of a 350 kHz
mode would be around 5 · 105 (assuming no excess optical heating takes place), im-
plying that the interferometer sensitivity must be lower than that at the SQL by about
28dB in displacement units to permit ground state cooling (see section 4.1.4). This sen-
sitivity is almost achieved with the best imprecision levels that have been measured
in our interferometric apparatus, and could be surpassed with future experimental
improvements. We estimated displacement noise backgrounds down to approximately
20 fm/

√
Hz at 200 kHz for impinging powers of a few mW, using the scheme described

in section 3.7.4 for the calibration. In Figure A.1a, I display the achievable phonon occu-
pation with ideal feedback cooling against the imprecision noise limiting the interfer-
ometric displacement sensing. For the best imprecision levels that were characterized
experimentally, cooling to occupations n̄th ∼ 101, where sideband asymmetry is read-
ily observable, should be possible. Further improvements of the cooling performance
could arise due to the expected growth of mechanical quality factors at cryogenic tem-
peratures.

There remain several experimental challenges to be overcome in order to demon-
strate ground state cooling. The spurious reflection from the chip substrate underneath
the polygon resonators contaminates the displacement record with additional phase
noise, which can be significant when considering that the substrate reflection is much
more intense than the reflection from the resonator. The magnitude of this reflection
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200 nm

a b

c d

Figure A.1: a, Blue trace: estimated final occupation in a cavity-less feedback cooling experi-
ment, assuming a beam of optical power 5mW impinging on a polygon mechanical
resonator, with a varying detection efficiency for the reflected light. The mechanical
mode parameters are those characteristic of a polygon resonator, with temperature
of 10K, mechanical frequency of 250 kHz, quality factor of 3 · 109 and effective mass
of 150pg. The orange trace represents the corresponding imprecision level of shot
noise in the interferometer. b, Results of a feedback cooling trial conducted at room
temperature, where the phonon occupation is reduced from about 2 · 107 to 5300.
g is an electronic gain parameter governing the strength of the piezoelectric feed-
back. c, Geometry of a modified polygon resonator with interior branches, with
higher spectral isolation for the perimeter mode. d, Perimeter mode supported by
the structure in c.

can be reduced by decreasing the depth of focus (increasing the numerical aperture)
of the lens used to collect light from the resonator, or by removing the substrate be-
low the resonator during the microfabrication process. Moreover, laser amplitude and
phase noise at frequencies around 300 kHz could be reduced by exchanging our 850nm
ECDL for a 1064nm Nd:YAG source or a 1550nm fiber laser. Finally, perimeter modes
in polygonal networks of strings are located very close in frequency to several other
in-plane modes [27], which complicates the design of the feedback filter. Despite the
very weak interaction with the laser probe, in-plane modes can easily become unstable
by actuation with a naive filter, requiring a more cumbersome design that has to be
implemented digitally, using e.g. an FPGA board [29], and can impose limitations to
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the maximum applicable gain. The poor spectral isolation can be circumvented using
a more advanced polygon resonator design. The structure shown in Fig A.1c, where
the inclusion of additional branches inside the polygon increases greatly the effective
stiffness of in-plane eigenmodes, exhibits a spectral isolation of about 14% of the me-
chanical frequency (519 kHz). This compares favourably against the thermal decoher-
ence rate of a perimeter mode thermalized at 8K, of about Γth ∼ 2π · 40Hz, and against
the spectral isolation of the original polygons, of about 1 kHz [27].
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