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Abstract

In engineering, oscillatory instabilities and resonances are often considered undesirable flow

features and measures are taken to avoid them. This may include avoiding certain parametric

regions or implementing control and mitigation strategies. However, the examples considered

in this thesis illustrate a different perspective: self-sustained or driven flow oscillations can

be harnessed in the design of a wide spectrum of engineering devices ranging from microflu-

idic circuitry, and bioreactors for cell cultivation, to liquid-based templates for assembling

microscale materials. The key to an effective design of these fluidic devices lies in having an

adequate predictive understanding of the hydrodynamic processes at stake.

Microfluidic oscillators based on interacting jets, sloshing waves and parametric Faraday

waves belong to these flows for which time-oscillations, manifesting spontaneously or as a

consequence of external forcing, can be seen as beneficial. Although the emergence of an

oscillatory response in these systems can be predicted by linear analysis, the observed flow

dynamics and features are typically dependent on the oscillation amplitude through nonlinear

mechanisms and may deviate from the anticipated patterns due to the interaction of multiple

modes.

This thesis uses the tools of global linear stability analysis and asymptotic techniques to

provide a comprehensive theoretical framework that can rationalize some of these oscillatory

dynamics. To achieve this, the work draws upon direct numerical simulations as well as

existing and new dedicated experiments.

In Part I, we describe a microfluidic oscillator based on two laminar impinging jets. After

determining the space of control parameters for which self-sustained oscillations appear,

linear stability and sensitivity analysis are used to identify a shear instability located in the jet’s

interaction region, as the main candidate for the emergence of the oscillatory regime. Further

nonlinear features are also described by means of the multiple-scales weakly nonlinear theory.

In Part II, we study the harmonic and super-harmonic resonant sloshing dynamics in

orbitally-shaken cylindrical reservoirs. We develop amplitude equations models capable of

predicting the wave amplitude saturation and wave patterns associated with various wave

regimes, such as planar, irregular, swirling and counter-swirling motions, experimentally

under elliptic-like shaking conditions.

In Part III, we consider parametric Faraday waves in two different configurations, which

are linked to each other for the importance of the sidewall boundary conditions. First, we

describe the weakly nonlinear coupling of sub-harmonic parametric waves and harmonic

capillary waves produced by an axisymmetric oscillating meniscus. Successively, we propose
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Abstract

a modified gap-averaged Darcy model for Faraday waves in Hele-Shaw cells that translates

into a new damping coefficient, whose complex value is a function of the ratio between the

Stokes boundary layer thickness and the cell’s gap.

To conclude, in Part IV, we develop a mathematical model based on successive linear

eigenmode projections to solve the relaxation dynamics of viscous capillary-gravity waves

subjected to an experimentally inspired nonlinear contact line model that accounts for non-

linear Coulomb solid-like friction. We show that each projection eventually induces a rapid

loss of total energy in the liquid motion and contributes to its nonlinear damping.

Keywords: oscillations, resonance, forcing, stability, amplitude equations, nonlinear dy-

namics, microfluidics, sloshing
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Résumé

En ingénierie, les instabilités oscillatoires et les résonances dans les écoulements sont souvent

perçus comme indésirables. Pour s’en défaire, on peut par exemple éviter certaines régions

paramétriques ou mettre en oeuvre des stratégies de contrôle et d’atténuation. Cependant,

les exemples examinés dans cette thèse illustrent une perspective différente : les oscillations

auto-entretenues ou forcées des écoulements peuvent être exploitées dans de nombreuses

applications, allant des circuits microfluidiques et bioréacteurs pour la culture cellulaire, à

l’assemblage de matériaux à l’échelle microscopique. Pour une conception efficace de ces dis-

positifs fluidiques, une compréhension prédictive de l’hydrodynamique en jeu est nécessaire.

Les jets microfluidiques en interaction, les ondes de balottement et les ondes paramétriques

de Faraday sont associés à des écoulements pour lesquels les oscillations, qui se manifestent

spontanément ou à la suite d’un forçage externe, peuvent être exploitées avantageusement.

Bien que l’apparition d’une réponse oscillatoire dans ces systèmes puisse être prédite par

l’analyse linéaire, la dynamique observée dépend généralement de l’amplitude de l’oscillation

du fait de mécanismes non-linéaires, et peut s’écarter des motifs prédits linéairement en

raison de l’interaction de multiples modes.

Cette thèse utilise des techniques de stabilité linéaire et d’analyse asymptotique pour fournir

un cadre théorique complet qui rationalise certaines de ces dynamiques oscillatoires. Pour ce

faire, le travail s’appuie sur des simulations numériques directes ainsi que sur des expériences

dédiées, existantes et nouvelles.

Dans la Partie I, nous décrivons un oscillateur microfluidique reposant sur l’interaction

de deux jets laminaires. Après avoir déterminé les paramètres de contrôle pour lesquels des

oscillations auto-entretenues apparaissent, nous identifions, par analyse de la stabilité linéaire

et de la sensibilité, une instabilité de cisaillement, située dans la région d’interaction des jets,

comme principale responsable de l’émergence du régime oscillatoire.

Dans la Partie II, nous étudions la dynamique du balottement harmonique et super-

harmonique dans les réservoirs cylindriques agités orbitalement. En particulier, nous dérivons

des équations d’amplitude qui peuvent prédire la saturation et la forme d’onde associées à

différents régimes, notamment planaire, irrégulier, rotatif et contre-rotatif.

Dans la Partie III, nous étudions les ondes de Faraday paramétriques. Tout d’abord, nous

décrivons le couplage non linéaire d’ondes paramétriques sous-harmoniques et d’ondes capil-

laires harmoniques produites par les oscillations d’un ménisque axisymétrique. Ensuite, nous

proposons une modification du modèle de Darcy pour les ondes de Faraday dans les cellules

de Hele-Shaw. Ce modèle aboutit à coefficient d’amortissement dont la valeur complexe est
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Résumé

fonction du rapport entre l’épaisseur de la couche limite de Stokes et celle du récipient.

Pour conclure, dans la Partie IV, nous développons un modèle mathématique basé sur

des projections successives des vecteurs propres du système pour résoudre la dynamique

de relaxation des ondes gravito-capillaires, en utilisant un modèle de ligne de contact non

linéaire qui tient compte du frottement Coulombien le long de la paroi. Nous montrons que

chaque projection induit une perte rapide d’énergie totale dans le mouvement du liquide et

contribue à son amortissement non linéaire.

Mots clés : oscillations, résonance, forçage, stabilité, équations d’amplitude, dynamique

non-linéaire, microfluidique, ballottement
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Riassunto

In molti flussi industriali, instabilità oscillatorie e risonanze sono spesso caratteristiche indesi-

derate, mitigate da specifiche contromisure quali l’esclusione di intere regioni parametriche o

l’implementazione di strategie di controllo. Gli esempi considerati in questa tesi illustrano

una prospettiva diversa: le oscillazioni di flusso autosostenute o alimentate da forzanti esterne

possono essere sfruttate nella progettazione di un ampio spettro di dispositivi ingegneristici

che vanno da circuiti microfluidici, a bioreattori per la coltivazione di cellule, all’assemblaggio

di materiali microstrutturati. La chiave per una progettazione efficace di questi dispositivi

risiede in un’adeguata comprensione dei processi idrodinamici in gioco.

Tra i flussi per i quali le oscillazioni, spontanee o prodotto di una forzante esterna, possono

essere sfruttate vantaggiosamente, annoveriamo quelli generati dall’interazione tra getti mi-

crofluidici, da onde di “sloshing” e da onde parametriche di Faraday. Sebbene la comparsa di

una risposta oscillatoria in questi sistemi possa essere predetta da un’analisi lineare, le reali

dinamiche e caratteristiche di flusso osservate dipendono tipicamente dall’ampiezza delle

oscillazioni attraverso meccanismi non lineari e possono deviare dalle predizioni dei modelli

lineari a causa dell’interazione di più modi globali.

Questa tesi sfrutta tecniche di stabilità lineare e di analisi asintotica per fornire un quadro

teorico completo in grado di razionalizzare alcune di queste dinamiche oscillatorie. A tal fine,

il lavoro trae ispirazione da quanto osservato in simulazioni numeriche ed in esperimenti

dedicati, sia esistenti che nuovi.

Parte I descrive un oscillatore microfluidico basato sull’interazione di due getti laminari. Do-

po aver determinato i parametri di controllo per i quali compaiono oscillazioni autosostenute,

l’analisi di stabilità lineare e la sensitività sono utilizzate per identificare un’instabilità di “ta-

glio” situata nella regione di interazione dei getti, come principale responsabile dell’emergere

del regime oscillatorio.

Parte II studia le dinamiche armoniche e super-armoniche di sloshing in serbatoi cilindrici

agitati orbitalmente. In particolare, deriviamo delle equazioni d’ampiezza in grado di prevede-

re la saturazione e la forma d’onda associata a vari regimi, tra cui planari, irregolari, rotativi e

contro-rotativi.

Parte III considera le onde parametriche di Faraday. In primo luogo, descriviamo l’accoppia-

mento non lineare di onde parametriche sub-armoniche e onde capillari armoniche prodotte

da un menisco asimmetrico oscillante. Successivamente, proponiamo una modifica del mo-

dello mediato di Darcy per onde di Faraday in contenitori di tipo Hele-Shaw. Tale modello si

traduce in un coefficiente di smorzamento, il cui valore complesso è funzione del rapporto tra
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Riassunto

lo spessore dello strato limite di Stokes e quello del contenitore.

Per concludere, Parte IV tratta lo sviluppo di un modello matematico basato su proiezioni

successive degli autovettori di un determinato sistema per risolvere la dinamica di rilassamen-

to viscoso di onde gravito-capillari, sottoposte a un modello di linea di contatto non lineare

che tiene conto dell’attrito solido alla parete. È infine dimostrato che ogni proiezione induce

una rapida perdita di energia totale nel moto del liquido e contribuisce al suo smorzamento

non lineare.

Parole chiave: oscillazioni, risonanza, forzante, stabilità, equazioni dell’ampiezza, dina-

mica nonlineare, microfluidica, “sloshing"
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1 Introduction

1.1 Classification of oscillatory fluid systems via linear stability

The transition from one flow state to another with the appearance of new patterns and un-

steadiness is ubiquitous in fluid mechanics. A few representative examples of interesting

oscillatory flows are shown in figure 1.1, namely (a,b) the famous von Kármán vortex street,

which manifests in the wake of bluff bodies when the flow advection is sufficiently high, (c,d)

a laminar-to-turbulent transition in jet flowing out of a circular nozzle and (e) surface waves

in an agitated glass of water. These examples of oscillations in fluids are not merely academic

but are rather fundamentally relevant to a broad spectrum of industrial applications, e.g. in

the design of turbojet nozzles (d) or in the structural and dynamical analysis of skyscrapers

and tanker ships (f), for which resonant vortex- or sloshing-induced vibrations could lead to

catastrophic failures.

At the core of their fluid dynamic descriptions are the Navier-Stokes equations, which are a

direct consequence of mass conservation and Newton’s second law applied to an incompress-

ible volume of fluid and govern the fluid velocity and pressure fields,
(
u, p

)T ,

∂u

∂t
+ (u ·∇)u =−∇p + 1

Re
∆u, ∇·u = 0, (1.1)

and where Re is the Reynolds number, a nondimensional number that quantifies the relative

importance between flow advection and diffusion. The Navier-Stokes equations, supple-

mented with proper case-dependent initial and boundary conditions, have been demon-

strated capable of successfully englobing and describing the interplay of multiple physical

mechanisms, such as advection, dissipation, external body forces, capillary and geometrical

effects, turbulence, etc., in a large variety of experiments and applications. This incredi-

ble complexity often complicates the understanding of the individual physical mechanisms

behind the transitions between different flow states and patterns and the emergence of un-

steadiness.

For such reasons, one area of fluid mechanics that witnessed explosive growth at the end of

the 20th century and that is still full of life is the study of hydrodynamic instabilities and the

1



Introduction

(d)

(f)
(e)

(a)

(c)

(b)

liquid sloshing

cable vortex

turbojet nozzle

Figure 1.1 – (a) von Kármán vortex street behind a circular solid cylinder (photograph by Jürgen
Wagner: https://commons.wikimedia.org/wiki/File:Karmansche_Wirbelstr_kleine_Re.JPG)
and (b) around industrial cylindrical cables (inset from Seyed-Aghazadeh et al. (2021)). (c)
Smoke visualisation of a jet flow (Huck, 2017) with industrial application in turbojets (d)
(https://defencyclopedia.com/2015/05/13/explained-how-jet-engines-work/). (e) Snapshot
of sloshing waves in a partially filled container with important applications in liquid transport,
i.e., tanker ships’ safety (f) (Credit: alexyz3d/AdobeStock) (inset from Pastoor et al. (2005)).

associated nonlinear phenomena, through linear stability and asymptotic theories.

Stability theory is indisputably the most classical approach to describe instability and state

transitions, e.g. steady-to-unsteady, through bifurcations (Charru, 2011; Chomaz, 2005; Drazin

and Reid, 2004; Huerre and Monkewitz, 1990; Huerre and Rossi, 1998; Schmid et al., 2002;

Theofilis, 2011). The regime transition affecting a flow when a control parameter, such as Re,

is varied, can be investigated by computing the linear stability of a base flow, q0 =
(
u0, p0

)T ,

representing an equilibrium solution of (1.1) for fixed control parameters, to infinitesimal

time-dependent perturbations, i.e. q1 =
(
u1, p1

)
, such that the total flow is decomposed as

q = q0 +q1, with ||q1||¿ ||q0||. After introducing this flow decomposition in (1.1) and, succes-

sively, discretizing the linearized system of governing equations into an algebraic system, one

can adopt the formalism of the dynamical system theory so as to write down the linearised

Navier-Stokes equations in a compact form as

M
dq1

d t
=L q1, (1.2)

where M is a mass matrix and the linearized Navier-Stokes operator L depends on the

equilibrium state q0 computed for a fixed Re.

2



1.1. Classification of oscillatory fluid systems via linear stability

One can seek a linear eigensolution of (1.2) in the standard normal form q1 = q̂1n (x)e(σn+iωn )t ,

where the natural mode q̂1n (x) and its associated eigenvalue λn =σn + iωn , are eigensolutions

of the generalized eigenvalue problem

λnM q̂1n =L q̂1n . (1.3)

Let us suppose that at some threshold value, e.g., of the Reynolds number, Re = Recr , the sys-

tem becomes unstable to infinitesimal perturbations with growth rate, σn = 0, and frequency,

ωn . This is, for instance, the case of the cylinder flow of figure 1.2(a). Then, linear stability

analysis will predict the exact value of Re = Recr at which the instability first manifests. As for

Re > Recr the growth rate is positive, σn > 0, we expect the unstable infinitesimal perturbation

(eigenmode) q̂1n to grow exponentially in time until the system progressively evolves towards

a limit cycle with a large-time finite perturbation amplitude saturated by nonlinear effects,

as depicted in figure 1.2(b). Moreover, if the value of ωn at Recr differs from zero as in the

cylinder flow, then the instability is oscillatory and a steady-to-unsteady regime transition

occurs in the flow via a Hopf bifurcation (Jackson, 1987; Provansal et al., 1987; von Kármán,

1921; Williamson, 1988), found to be supercritical in this case (see figure 1.2(c)).

In the following, three archetypal flow problems are used to categorised unsteady oscillatory

flows into three main families, namely oscillators, amplifiers and resonators, on the basis of

the stability properties of their corresponding linearized Navier-Stokes operator, L .

We will use ωn to denote a natural frequency of the system, ω to indicate the actual fre-

quency of the nonlinear system’s response, whereasΩ= 2π/T will refer to an external driving

frequency of oscillation period T .

σn

(a) (b)

A

Re ReRe
cr Re

cr

UnstableStable

Stable

(c)

Steady 

Unsteady

Figure 1.2 – Sketch of the supercritical Hopf bifurcation and steady-to-unsteady state transition
in the cylinder flow (modified figure from (Mantič-Lugo, 2015)). (a) Sketch of the transition
from stable to unstable given by a positive growth rate σn at the critical Reynolds number
Recr . (b) Sketch of the evolution with Reynolds number Re of the saturated finite amplitude
A of the periodic fluctuations, which is modelled by the Stuart-Landau amplitude equation
(Stuart, 1960). (c) Flow visualization of the steady base flow (bottom) and a time-snapshot of
the unsteady oscillatory regime for Re > Recr (top).
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Figure 1.3 – Oscillators: cylinder flow at Re = 140 (figure modified from Dyke (1982)); (a) linear
stability analysis (LSA) of an unstable base-flow (Re > Recr ) in the cylinder flow showing an
eigenvalue spectrum with a single unstable mode of natural frequency ωn ; (d) Power spectral
density function (PSD) extracted from a signal in the cylinder wake, showing a clear peaked
frequency associated with the von Kàrmàn vortex street (Pier, 2002); (g) Time-dependent
and local signal of the horizontal velocity extracted from a DNS of the cylinder flow at Re =
100 (Mantič-Lugo, 2015), showing the initial exponential growth, ∼ exp(σn t ), as well as the
finite-amplitude saturation to a limit cycle with oscillation frequency ωLC 6=ωn . Amplifiers:
turbulent jet at Re = 10000 (from Dyke (1982)); (b) LSA on the mean flow of a turbulent jet
displaying a flat, stable spectrum (Nichols and Lele, 2010); (e) PSD of signals extracted at
various streamwise locations x in a turbulent jet and showing a broad frequency response to
noise (Bogey et al., 2007). Resonators: sloshing waves in a rectangular cell (Bäuerlein and Avila,
2021); (c) linear spectrum displaying a series of discrete and slightly damped eigenmodes; (f)
PSD experimentally measured for a longitudinal time-periodic container motion of frequency
Ω and showing a main peak at ω/Ω= 1; (h) The linear response peaks around Ω≈ωn with
an amplification ∝ 1/σn . The nonlinear response saturates at lower values and bends the
resonance curve, a feature successfully modelled by the Duffing equation (Duffing, 1918).
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1.1. Classification of oscillatory fluid systems via linear stability

1.1.1 Oscillators

Figure 1.3(a) shows the eigenvalue spectrum obtained by performing the linear stability

analysis (LSA) of a base-state for the famous cylinder flow, already discussed at the end of the

previous section. The spectrum at Re > Recr displays a well-isolated eigenvalue with natural

oscillation frequency ωn and with a positive growth rate σn , meaning that the equilibrium

(steady) solution considered, q0, is unstable. When looking at the power spectral density (PSD)

of a time series extracted from a nonlinear flow field experimentally or numerically computed

(see figure 1.3(d)), a dominant and clear peaked frequency associated with the von Kármán

vortex street, together with a few higher-order harmonics of lower PSD, is well identifiable.

This is a consequence of the presence of an “outstanding" eigenvalue that dictates the long-

term behaviour of an initial small perturbation. More precisely, the unstable eigenmode and

eigenvalue of L describe the initial structure and growth of the perturbation (Theofilis, 2011)

before its amplitude becomes too big and nonlinear interactions come into play (Barkley, 2006;

Sipp and Lebedev, 2007). If the natural frequency, ωn , differs from zero, as in figure 1.3(a),

the flow becomes unsteady and oscillates spontaneously in a self-sustained manner. For this

reason, unstable flows are typically referred to as oscillators (Huerre and Rossi, 1998).

Although oscillations naturally emerge without the need for external driving, the latter can be

applied for control strategies. For instance, in certain cases, the vortex-shedding phenomenon

can cause concerning structural vibrations and drag increases (Choi et al., 2008). When dealing

with fluid-induced vibration issues, it’s crucial to note that unstable flow frequencies can only

really become hazardous when they align with the structural modes. Therefore, adjusting

the flow’s frequency slightly could be a viable solution to resolve the problem. This can be

achieved in open-loop control by imposing to the unstable flow an external harmonic forcing

of frequencyΩ, amplitude f and with a proper spatial structure, q f (x) (Sipp, 2012). Indeed, if

the forcing frequencyΩ is chosen close to the natural frequency ωn , then the flow oscillations

will lock ontoΩ, so as to shift the frequency and move it away from the resonance (see Fauve

(1998), Bender et al. (1999) and Chapter 8 of Charru (2011) for further details on the lock-in

phenomenon).

1.1.2 Amplifiers

In figure 1.3(b) we report the eigenvalue spectrum of an amplifier flow, i.e. a laminar jet of air

flows exiting a circular tube and whose edges, moving downstream, develop axisymmetric

oscillations, rolls up into vortex rings, and then abruptly becomes turbulent. Despite the

fact that the eigenvalue-spectrum is fully stable, the PSD function of a local time-series in

the jet flow, reported figure 1.3(e), shows that small harmonic external excitations result in

a large amplification of the system responses (Crow and Champagne, 1971). Moreover, the

system response has a rather broad or mildly selective frequency selection mechanism, with a

frequency of maximum amplification which does not necessarily match one of the least stable

modes. These features can be better understood by drawing attention to the non-normality of

the linear operator L . A linear operator L is said to be non-normal if it does not commute
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with its adjoint operator, L †, i.e. L L † 6=L †L . It is important to note that the definition of

the adjoint operator is not univocal, but rather depends on the introduction of an arbitrary

inner product, although the latter is very often chosen so as to represent an energy norm for

the system, e.g. the total or kinetic energy. If the operator is non-normal, the eigenmode basis

is not orthogonal. It follows that, even for a stable operator, whose eigenmodes all decay at

large times, small initial perturbations may experience very large transient growth. Strong

non-normality also possibly implies high sensitivity to small operator perturbations and a

large response to harmonic forcing away from eigenfrequencies (Ducimetière et al., 2022a,b;

Trefethen et al., 1993), hence arguing for the importance of sensitivity analysis and flow control

of these systems (Bottaro et al., 2003; Boujo and Gallaire, 2015; Camarri, 2015; Sipp et al., 2010).

In the case of the Navier-Stokes operator, non-normality is generally produced by strong

streamwise advection of the base flow (Chomaz, 2005; Farrell and Ioannou, 1996; Schmid,

2007; Schmid et al., 2002; Trefethen et al., 1993). Therefore, the linear stability analysis, capable

of predicting the instability onset in oscillators with a dominant unstable eigenmode, appears

almost irrelevant in these scenarios and it thus fails in describing the dynamics of strongly

non-normal flows like noise amplifiers.

1.1.3 Resonators

An example of a resonator is represented by sloshing, a term used to denote any motion

of the free liquid surface in a partially filled reservoir subjected to horizontal motions, i.e.

perpendicular to the direction of gravity. Figure 1.3(c) shows the eigenvalue spectrum of a

typical sloshing system. The eigenvalues correspond to the natural sloshing modes, i.e. free

surface capillary-gravity waves, for a container, e.g. rectangular, partially filled with a liquid

and undergoing a longitudinal harmonic motion at a driving frequencyΩ= 2π/T (see also

figure 1.4). In absence of external forcing, the equilibrium or base-state configuration for this

flow is a liquid column stably at rest under the effect of gravity. Thus, similarly to the amplifier

system of figure 1.3(b), the linear spectrum is stable, although the eigenvalues are here well

separated from each other, as a result of the lateral confinement, which, through necessary

boundary conditions, only allows for some specific modal perturbations (Faltinsen and Tim-

okha, 2009; Ibrahim, 2005). In our classification, what fundamentally discerns resonators

from amplifiers is the normal nature of the linearized Navier-Stokes operator. Indeed, for

resonators like that of figure 1.3, the linearized operator L is typically normal, meaning that it

commutes with its adjoint (Viola et al., 2018; Viola and Gallaire, 2018), i.e. L L † =L †L (and

L is said to be self-adjoint). As a consequence, the eigenmode basis is fully orthogonal. These

features have strong implications for the system’s response to perturbations and harmonic

forcing in resonators. Given the stability and self-adjointness of L , the linear evolution of

initial perturbations, which is given by the superposition of eigenvectors, shows a decaying

large-time behaviour without experiencing any transient growth. Furthermore, a sustained

oscillatory response can only be achieved by externally driving the system, e.g. at a forcing

frequencyΩ. If the system is subjected to white noise or, more simply, to a harmonic forcing

of varying frequencyΩ, the maximum amplification is achieved in the neighbourhood of a
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1.1. Classification of oscillatory fluid systems via linear stability

natural frequency, i.e. forΩ≈ωn , with a linear amplitude response ∼ 1/σn (see figure 1.3(h)),

hence showing a very precise frequency selection mechanism, in contradistinction with the

broad frequency response of amplifiers.

Within the family of resonators, we can further distinguish among three sub-classes of oscilla-

tory responses depending on their nature, namely driven oscillations, parametric oscillations

and natural transient oscillations resulting from a non-zero initial condition.

fcos(2̟t/T)

Figure 1.4 – Top: A sketch of the experimental apparatus of Bäuerlein and Avila (2021) and
snapshots of different sloshing states observed. Bottom: Sloshing liquid in a horizontally
oscillated rectangular tank over one oscillation period (Bäuerlein and Avila, 2021). The tank
has a width of w= 500mm, is filled with water to the height h = 400mm and is driven with
the frequency Ω = 2π/T , with T = 0.88s (1/T = 1.13Hz). Nonlinear resonances amplify
periodic surface waves (marked as a red line) and produce oscillations of the liquid’s centre
of mass (indicated by red circles). Stereoscopic particle image velocimetry measurements
of the in-plane velocity (displayed as arrows) show that the maximum velocities are reached
when the surface elevation is lowest. The excitation frequency is close to the first system’s
natural frequency resonance,Ω/ωn = 0.917 (harmonic resonance). The excitation amplitude is
f = aΩ2, with a = ax /w = 0.64 (ax is the peak amplitude of the horizontal tank displacement).

Driven oscillations

When a resonator like the sloshing system of figures 1.3 and 1.4 is externally driven at a

frequencyΩ, the large-time response is generally characterized by a finite amplitude, set by

the saturation resulting from the system’s dissipation and nonlinear mechanisms, and by an

oscillation frequency coinciding with that of the external forcing. Indeed, the PSD function

shows a main peak centred around ω/Ω ≈ 1 and a series of super-harmonics triggered by

7



Introduction

nonlinear effects. The PSD function of figure 1.3(f) is reminiscent of that typical of oscillators

(see figure 1.3(d)), although here, oscillations are not self-sustained but are rather maintained

by the external driving.
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fcos(2̟t/T)

Figure 1.5 – (a) A vertically vibrating liquid layer that spontaneously excites sub-harmonic
surface standing waves (Benjamin and Ursell, 1954; Faraday, 1831; Kumar and Tuckerman,
1994a) (modified figure from Sampara and Gilet (2016)). (b) Power spectral density (PSD)
computed numerically by simulating the response of a liquid layer in a cylindrical container
vertically excited at a frequencyΩ (Bongarzone et al., 2021b). The PSD shows a dominant peak
at ω/Ω= 1/2, thus indicating a sub-harmonic parametric response.

Parametric oscillations

Parametric resonators are systems where an oscillatory system’s response can be induced by

time-modulating one or more internal parameters of the system at some frequencies that

possibly differ from its natural frequencies, Ω 6= ωn . Such a modulation can be achieved

in several ways; a simple archetypal example is given by the parametric pendulum, whose

pivot position is vertically modulated by imposing an external forcing. This translates into a

modulation of the gravity acceleration acting on the system, which can then be parametrically

and resonantly pumped by frequency modulations with ωn/Ω≈ p/2 (p ∈ N ) (Kovacic et al.,

2018a). The strongest amplification is typically achieved forωn/Ω≈ 1/2, and it is referred to as

sub-harmonic resonance. This parametric amplification also occurs in continuous media. For

instance, the flat interface of a liquid contained in a vertically vibrating tank (see figure 1.5(a))

may be parametrically excited, leading to the generation of standing waves oscillating at a

frequency (see figure 1.5(b)) that is half that of the external driving, leading to the so-called

Faraday instability (Benjamin and Ursell, 1954; Faraday, 1831; Kuhlmann and Rath, 1998;

Kumar and Tuckerman, 1994a).

Since the two examples of parametric oscillations mentioned here both involve the use of an

external forcing, the distinction between driven and parametric resonators may still appear

somewhat vague at this stage. Nevertheless, such a distinction becomes much clearer at the

level of the governing equations, particularly by noticing that, while the external forcing in

driven resonators appears as an additive extra term, in parametric resonators the forcing is

multiplicative and it appears in front of one or more state variables. Explicative archetypal

8



1.1. Classification of oscillatory fluid systems via linear stability

examples of this differentiation are offered in the following by the Duffing equation (1.7)

(driven) and by the Mathieu equation (1.15).

Natural oscillations

If, for instance, the external driving is eventually turned off as in figure 1.6(b), the stable nature

of these resonators no more allows for sustained oscillations and the system enters a new

dynamical phase during which it relaxes towards the original equilibrium solution through

natural, free, oscillations. The amplitude response decreases with time and the system, initially

oscillating at the driving frequencyΩ, progressively adjusts its free oscillation frequency, which

will tend to the least damped natural frequency ωn at large times. The relaxation dynamics is

ideally exponential with a decay rate possibly dictated by the damping rate of the least damped

natural mode, i.e. ∼ exp(σn t ) (σn < 0), although nonlinear phenomena, such as friction or

free surface and contact line capillary effects in confined liquid oscillations (see figure 1.6(a)

and Viola (2016)), becoming more and more important as the wave amplitude decreases, may

alter the features of the decaying behaviour. As a side comment, we note that, in order to

observe the natural evolution dynamics, the system does not necessarily have to start from

sustained oscillations; it could start from any initial condition, e.g. an impulsive perturbation.
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Figure 1.6 – (a) Nonlinear friction in sloshing dynamics is induced by one or more layers of
foam placed at the free surface (Zhang et al., 2019). As a consequence, the sloshing wave does
not relax exponentially (Sauret et al., 2015; Viola et al., 2016c). (b) Relaxation dynamics of a
harmonically driven sloshing wave following the suppression of the external driving at time
t = 0 (modified figure from Bäuerlein and Avila (2021)). In the. absence of nonlinear effects,
the relaxation dynamics is exponential, with a decay rate defined by the damping coefficient
σn of the previously excited natural mode. However, nonlinear friction acting at the contact
line may affect the relaxation dynamics provoking the motion arrest at finite times (Cocciaro
et al., 1993; Dollet et al., 2020; Viola et al., 2018) (see purple line in connection with panel (a)).
In both scenarios, the system, initially oscillating non-parametrically at the driving frequency
Ω, progressively adjusts its oscillation frequency, which equals the natural frequency ωn at
large times.
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1.2 Nonlinear effects and envelope equations

The physical problems investigated in this thesis are all attributable to the two categories

of oscillators and resonators, for which linear stability analysis provides relevant and useful

pieces of information about the initial evolution of a perturbation and the response to weak

external forcing. Nevertheless, even when non-normal effects are not important or completely

absent, as for most of the oscillators and resonators, the linear modal behaviour, used for

the classification outlined in the previous section, does not always fully capture the entire

dynamics of the perturbation.

In figure 1.3(g) and (h), we have already anticipated the role that nonlinearities play in the

cylinder flow and for resonantly driven sloshing waves in a rectangular container. For instance,

in an unstable cylinder flow, i.e. Re > Recr , the perturbation, initially oscillating at the natural

frequency ωn , grows exponentially until the amplitude becomes large enough and nonlinear

mechanisms kick in. The oscillation frequency progressively increases, while the perturbation

amplitude saturates and the system eventually settles into a limit cycle, with self-sustained

oscillations atω=ωLC 6=ωn and finite amplitude. The amplitude saturation and the frequency

modulation are direct consequences of nonlinear mechanisms. Similar saturation and fre-

quency detuning effects, as well as other nonlinear effects, happen in sloshing and Faraday

waves, although the wave motion needs to be triggered and permanently sustained by external

driving. We have also shown, in figure 1.6, how some kind of nonlinear effects (sub-linear

(Viola, 2016)), such as capillary-induced friction in confined surface waves, can nonlinearly

damp the oscillations and, becoming particularly effective at small amplitudes, eventually

induce the arrest of the interface motion at finite times.

Generally speaking, a high-fidelity description and prediction of nonlinear phenomena

observed in real-life experiments are only achievable by solving the fully nonlinear governing

equations, which often do not admit closed-form analytical solutions. Accurate approximated

solutions can be computed via direct numerical simulations (DNS), which are, however, com-

putationally costly. Hence, the formalization of reduced models involving lower degrees-of-

freedom, such as envelope (also called amplitude) equations, derived by means of asymptotic

theories and englobing the relevant nonlinear flow features, constitutes an attractive alterna-

tive to DNS whenever applicable, e.g. when nonlinear effects are only weak. With regards to

oscillators and resonators, nonlinearities are generally small close to bifurcation points and

for small external forcing amplitudes.

For example, Provansal et al. (1987) and Dušek et al. (1994) observed that, in the case of the

first instability in the cylinder wake, the complex amplitude of the perturbation, A = |A|e iΦ,

close to the bifurcation (Re ≈ Recr ) is governed by the Stuart-Landau equation (Stuart, 1960),

d A

d t
=λA+ν|A|2 A , (1.4)

which describes the saturation mechanism in this super-critical Hopf bifurcations (Kuznetsov

et al., 1998) (see figure 1.2(b)) as the steady base flow passes from stable to unstable, providing

an estimation of the time evolution of the instability amplitude.
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1.2. Nonlinear effects and envelope equations

The complex coefficients λ=λr + iλi and ν= νr + iνi , originally determined experimentally,

have been computed in a rigorous manner by Sipp and Lebedev (2007) using weakly nonlinear

analysis for the Navier-Stokes equations in the neighbourhood of the critical Reynolds number,

Recr (Stuart, 1958). They showed that the Stuart-Landau equation naturally appears as a

compatibility condition in the asymptotic scheme. In the same spirit, a weakly nonlinear

mode expansion for different flows (precessing vortex breakdown, wakes of disks and spheres)

has been carried out by Meliga et al. (2009a, 2012a).

At the core of these perturbative analyses is the multiple-scales method (Cole, 1968), which

has been widely used to obtain amplitude equations describing the slow dynamics of the

large-scale modulation of a basic structure predetermined by a-priori calculations, e.g. from

global or local linear stability (Newell and Whitehead, 1969; Segel, 1969). The method lies

within the family of asymptotic techniques and it assumes, after non-dimensionalization

of the governing equations, the existence of a small non-dimensional parameter ε¿ 1 in

the underlying problem and that can be taken, for instance, as a measure of the departure

from criticality in terms of control parameters, e.g. Re−1 −Re−1
cr ∼ ε, or as the amplitude of a

small external forcing, f ∼ ε, if any. It is then meaningful to seek for a solution q as a formal

power series in the small parameter, i.e. q = q0 + εq1 + ε2q2 + . . .+ εk qk +O(εk+1), where in

most cases, retaining only the first few terms of the series is sufficient to describe the small ε

behaviour of the actual solution. In fact, the multiple scales approach consists in postulating

that the system’s functions vary on two (or more) temporal and/or spatial scales, so that

some functions, e.g. the perturbation amplitude, depend on time t and space x, only through

the product Ti = εi t and X j = ε j x, e.g. A
(
εt , . . . ,εi t ,εx, . . . ,ε j x

)= A
(
T1, . . . ,Ti ,X1, . . . ,X j

)
, with

i , j < n. Requiring, through the imposition of a solvability condition, the suppression of

unphysical secular terms in the standard expansion eventually fixes the ensuing arbitrariness

by providing a governing equation for A.

As a more general example, the combined introduction of slow time and spatial scales

is the starting point in the derivation of the famous nonlinear Schrödinger equation (NLS)

(Ablowitz et al., 1991; Benjamin and Feir, 1967; Stoker, 1992; Whitham, 1974; Zakharov, 1972),

as an envelope equation for gravity waves that describes the evolution of slowly modulated

wavetrains:
∂A

∂t
−γ∂

2 A

∂x2 = ν|A|2 A, (1.5)

(written in a non-dimensional form and in a coordinate system moving with the group velocity)

with coefficients γ=−iωn/8k2
n , ν=−iωnk2

n/2 and where kn represents the wave number of

the carrier wave, whereas ωn =√
g kn (g : gravity acceleration) is the linear dispersion relation

of gravity waves in the deep water regime (Lamb, 1993). For instance, an important issue in

naval engineering is the phenomenon of rogue waves, extreme events occurring in systems

characterized by the presence of many waves (Onorato et al., 2001); most of the models which

have been developed so far have a weakly nonlinear nature and are based on the NLS. See

Onorato et al. (2013) for a series of representative examples, where the main physical mecha-

nisms at the origin of rogue waves are elucidated.

The NLS appears in different physical contexts, including plasma physics and nonlinear
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optics, since it simply describes the interaction of dispersion and weak nonlinearity. Equa-

tion (1.5) is a special case of an amplitude equation for a conservative system. In the more

common case where dissipation cannot be neglected, the usual amplitude equation is the

so-called complex Ginzburg-Landau equation (Aranson and Kramer, 2002; Godrèche and

Manneville, 1998),
∂A

∂t
−γ∂

2 A

∂x2 =λA+ν|A|2 A, (1.6)

where coefficients γ, λ and ν are not purely imaginary as in (1.5). To give a few examples,

equation (1.6) has been used to describe the Benjamin-Feir phase instabilities, as well as other

symmetry-breaking secondary instabilities of cellular flows, as the Eckhaus and the “zigzag"

instabilities (Godrèche and Manneville, 1998).

1.2.1 Weakly nonlinear analysis via multiple time-scales method

A multiple scales expansion in space is commonly employed in WKBJ approaches (Bender

et al., 1999; Gaster et al., 1985; Huerre and Rossi, 1998; Nayfeh, 2008a) for weakly nonparallel

flows, in which the steady base or mean flow varies slowly on a long length scale when com-

pared to the shorter instability waves (Charru, 2011; Chomaz, 2005; Schmid et al., 2002).

However, in the problems tackled in this thesis, the effect of the geometry and confinement

on the flow is such that the instabilities and the base flow have no separated length scales:

the dynamics of the perturbation result from the interactions of global modes extended over

the whole physical domain and whose spatial structures valid at any spatial location can be

computed by means of linear stability calculations. As a result, no slow spatial scales need to

be introduced, and one only needs to account for slow time modulations of the perturbation

amplitudes, which are governed by nonlinear ODEs, rather than PDEs as in the case of the

nonlinear Schrödinger equation (1.5) or the Ginzburg-Landau equation (1.6).

Since the weakly nonlinear analysis via multiple time-scales method constitutes a funda-

mental theoretical building block of the present work, in the following we provide a quick

overview of the method, using as examples a series of archetypal single-degrees-of-freedom

systems.

Asymptotic solution of the forced Duffing equation

Let us first consider the Duffing equation (Duffing, 1918), a popular single-degrees-of-freedom

system often used to model the nonlinear response of externally driven resonators,

ẍ +2σn ẋ +ω2
n x +βx3 = f cosΩt , (1.7)

where σn is the damping coefficient, β is the nonlinear coefficient, while f and Ω are the

driving amplitude and frequency. In the following, we only consider the limit of small forcing

amplitudes, f = ε f̂ , weak nonlinearities, β= εβ̂ and small damping, σn = εσ̂n , with the auxil-

iary parameters f̂ , β̂ and σ̂n assumed of order ∼ O(1). Most generally speaking, ε represents
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1.2. Nonlinear effects and envelope equations

a small parameter, i.e. 0 < ε¿ 1, which does not necessarily need to be explicitly defined,

but it can rather be considered as an implicit separation of the different orders of magnitude

at play. A straightforward perturbation-series approach to the problem proceeds by writing

x (t ) = x0 (t )+ εx1 (t )+O
(
ε2

)
and substituting this into (1.7). Matching powers of ε gives the

ε0-order equation

ẍ0 +ω2
n x0 = 0 −→ x0 = Ae iωn t + c.c., (1.8)

with c.c. denoting the complex conjugate, and ε-order problem

ẍ1 +ω2
n x1 =−2σ̂n ẋ0 − β̂x3

0 + f̂ cosΩt = f̂

2
e iΩt −2σ̂n iAe iωn t − β̂A3e i3ωn t −3β̂|A|2 Ae iωn t + c.c.,

(1.9)

x1 = A3 β̂

8ω2
n

e i3ωn t −
(
|A|2 3β̂

4ω2
n
+ i

σ̂n

2ω2
n

)
Ae iωn t − f̂

Ω2 −ω2
n

e iΩt + (1.10)

+
[

i|A|2 3β̂

2ωn
− σ̂n

ωn

]
A t e iωn t

︸ ︷︷ ︸
∝t

+c.c.,

where the second-order homogeneous solution in (1.10) has been omitted for brevity.

The most general solution of (1.10) is unbounded due to the linear terms in t (see framed

terms in (1.10)), which are classically referred to as secular terms. In particular, for t = O
(
ε−1

)
,

these terms become O(1) and have the same order of magnitude as the leading-order term, x0.

Because the asymptotic terms have become disordered, the series is no longer an asymptotic

expansion of the solution, i.e. the straightforward perturbation expansion breaks down. Such

a linear growth is obviously a spurious effect since it is clear that (1.7) conserves energy. This

pathological behaviour is resolved by resorting to the multiple scales framework (Godrèche

and Manneville, 1998; Nayfeh, 2008a). Let us introduce explicitly the slow time scale T = εt ,

which leads to

d

d t
= ∂

∂t
+ε ∂

∂T
+O

(
ε2) d 2

d t 2 = ∂2

∂t 2 +2ε
∂2

∂t∂T
+ε2 ∂2

∂T 2 +O
(
ε3) , (1.11)

as if t and T were independent variable. With these definitions, the ε0-order problem remains

unchanged and has solution x0 = A (T )e iωn t + c.c. The only, but fundamental, difference,

consists in assuming that amplitude A (T ) is now a function of the slow time scale, it represents

the slow wave-amplitude modulation of the fast wave oscillations, and it is still undetermined

at this stage of the asymptotic expansion. The ε-order problem is now forced by the following

terms:

∂2x1

∂t 2 +ω2
n x1 =−2

∂2x0

∂t∂T
−2σ̂n

∂x0

∂t
− β̂x3

0 + f̂ cosΩt (1.12)

=
(
−2iωn

∂A

∂T
−2iσ̂nωn A−3β̂|A|2 A+ f̂

2
e iΛ̂T

)
e iωn t + c.c.+NRT,
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where NRT stands for non-resonating terms, meaning terms that are not secular and that are

not necessarily relevant for further analysis (unless one aims at pursuing the expansion to the

next order). In (1.12), we have already considered the most dangerous scenario, in which the

system is driven close to the natural frequency (resonant condition). This has been done by

introducing a small detuning parameter Λ, i.e. Ω=ωn +Λ with Λ= εΛ̂ (and Λ̂∼ O(1), such

thatΩt =ωn t + Λ̂T in (1.12). The arbitrariness introduced by A (T ) is fixed by requiring that

secular terms are not present in the solution (1.10), which implies cancelling out the harmonic

forcing terms in ωn appearing on the right-hand side of (1.12) or (1.9). Such a solvability

condition prescribes the amplitude A (T ) to obey the following ordinary differential equations

∂A

∂T
= 1

ε

d A

d t
= λ̂A+ ν̂|A|2 A+µ f̂

reintroducing the physical−−−−−−−−−−−−−−−−−→
time t by eliminating ε

d A

d t
=λA+ν|A|2 A+µ f , (1.13)

with coefficients λ = ελ̂ = − (σn + i (Ω−ωn)), ν = εν̂ = i3β/2ωn and µ = −i/4ωn and where

the transformation A → Ae iΛ̂T has been used so as to make the amplitude equation au-

tonomous. Note that (1.13) takes the form of a Stuart-Landau equation supplemented with

an external driving term. Hence, the envelope equation (1.13) provides a governing equation

for the perturbation’s amplitude and the leading order solution, x0 = A (t )e i(ωn+Λt ) + c.c. =
2|A (t ) |cos(Ωt +Φ (t )), represents a good approximation of (1.7) valid for small forcing in the

vicinity of the resonance and for weak nonlinearities.

The close-to-resonant asymptotic approximation of the forced Duffing equation has been

widely used in the modelling of resonant sloshing waves, e.g, in rectangular container (Bäuer-

lein and Avila, 2021; Ockendon and Ockendon, 2001, 1973), and it has been shown capable

of describing the finite wave amplitude saturation through hardening- or softening-like be-

haviours. By properly fitting coefficients σn and β from experimental measurements by

Bäuerlein and Avila (2021) (see also figure 1.4), the latter can be compared with the predictions

from approximation (1.13). This is outlined in figure 1.7(a) in terms of non-dimensional steady-

state wave amplitude (large-time dynamics) for different non-dimensional forcing amplitude.

These steady-state solutions can be obtained, e.g., by time-integrating (1.13) for large time

intervals. Alternatively, one can directly seek stationary solutions by setting d A/d t = 0 and

then study their stability to small perturbations in the form A = A0 +εA1e(sr +isi )t , so that the

sign of sr establishes whether the steady solution A0 is stable or unstable.

Mathieu’s equation with nonlinearities

With regard to this thesis, another relevant single-degree-of-freedom system, used to model the

response of parametrically driven resonators, is the parametric pendulum, already introduced

in the previous section. At the linear order, this simple system is described by the Mathieu

equation (Mathieu, 1868)

ẍ +2σn ẋ +ω2
n x = xω2ε f cosΩt . (1.14)

The parametrically unstable regions in the forcing parameter space
(
Ω, f

)
can be computed

by means of the linear Floquet stability theory performed around one of the two possible
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Figure 1.7 – (a) Asymptotic approximation (1.13) is compared with sloshing experiments in a
rectangular container by (Bäuerlein and Avila, 2021). The comparison is outlined in terms of
the non-dimensional steady-state wave amplitude (large-time dynamics) of the wave’s center
of mass for different non-dimensional forcing amplitude, a. Those amplitudes are re-scaled
by the container’s width, w (see figure 1.4). The forcing acceleration is f = c1aΩ2, withΩ the
driving frequency and c1 = 0.3183 a characteristic system parameter. Coefficients σn and ν
are set to 8.4×10−3 and −59.2, respectively. (b) Asymptotic approximation (1.16) is compared
with experiments by (Henderson and Miles, 1990) for single-mode Faraday waves in a small
circular cylinder. The grey-shaded area represents the sub-harmonically unstable region in
the (Ω, a) forcing parameter space (right-y axis), whereas lines correspond to the nonlinear
amplitude saturation (left-y axis). Amplitudes are re-scaled by the container’s radius R. The
forcing acceleration is f = c1aΩ2, with c1 = 1.0291. Coefficients: σn = 0.0157 and β=−6. (c)
Asymptotic approximation (1.18) is compared with the measurements by (Dollet et al., 2020)
of the relaxation dynamics of liquid oscillations in a U-shaped tube. The amplitude is rescaled
by the initial non-dimensional elevation, 2h0/l with l the overall tube length. Coefficients:
σn = 0.06 and ∆= 0.0047. In (a,c), ωn = 1, while ωn = 1.9641 in (b). In (a,b,c) lines indicate
the asymptotic approximations, whereas markers denote experiments. In (a,b), dashed lines
designate unstable steady-state solutions of (1.13) and (1.16). In (a,b,c), parameters σn , β and
∆ are fitted in order to match the experiments.
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equilibrium solutions (Kovacic et al., 2018a). Within such regions the equilibrium solution is

unstable, and the perturbation grows exponentially. The most relevant parametric resonance

is the sub-harmonic one, as it is the one that requires the lowest driving amplitude to be excited.

Yet, equation (1.15) does not tell us anything about nonlinear mechanisms. Nonlinearities

are partially reintroduced by accounting for a cubic term (sin x ≈ x −x3/6+ . . .) (Kovacic et al.,

2018a),

ẍ +2σn ẋ +ω2
n x +βx3 = xω2

n f cosΩt . (1.15)

Without going into the details (the derivation is similar to that for the Duffing equation), an

asymptotic approximation of the fundamental sub-harmonic resonance can be obtained

from (1.15) via multiple time-scales method in the limit of small forcing amplitude, f = ε f̂ ,

weak damping, σn = εσ̂n , weak nonlinearities, β = εβ̂, and assuming a driving frequency

to be Ω = 2ωn +Λ = 2ωn + εΛ̂, i.e. in the neighbourhood of the sub-harmonic resonance.

Note that the introduced auxiliary parameter f̂ , σ̂n , β̂ and Λ̂ are all of order ∼ O(1). The

asymptotic procedure and the imposition of a solvability condition lead to the following

amplitude equation
d A

d t
=λA+ν|A|2 A+µA f , (1.16)

with λ=− (σn + i (Ω−2ωn)/2), ν= i3β/2ωn and µ=−i/4ωn .

The very same amplitude equation, originally derived by symmetry arguments, has been

widely used for modelling the wave amplitude saturation of sub-harmonically unstable Fara-

day standing waves in lab-scale containers (see Douady (1990) and Henderson and Miles

(1990) among many others). After fitting coefficients σn and β from experiments by Hender-

son and Miles (1990) of single-global-mode sub-harmonic Faraday waves in a small circular

cylinder, approximation (1.16) is compared with those measurements in figure 1.7(b). The

comparison is outlined in terms of the stability region associated with the sub-harmonic

parametric resonance (grey-shaded area) and in terms of non-dimensional steady-state wave

amplitude (large-time dynamics) at a fixed non-dimensional forcing amplitude.

Solid friction in free pendulum dynamics

The Duffing equation and the nonlinear Mathieu equation are examples of oscillatory dynam-

ics which experience nonlinear effects for increasing amplitudes. Those effects are responsible

for the saturation mechanism of the perturbation amplitude at large times. On the contrary,

here we propose an example of nonlinearity becoming important for decreasing amplitudes

and that is induced by dry friction in a simple pendulum initially perturbed out of its stable

equilibrium position (Butikov, 2015):

ẍ +2σn ẋ +ω2
n x +∆sgnx = 0, x (0) = xi , ẋ (0) = ẋi (= 0) . (1.17)

Assuming again small linear damping σn = εσ̂n and small friction coefficient ∆= ε∆̂, with σ̂n

and ∆̂ both of order ∼ O(1), an asymptotic approximation can be obtained in the form of an
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amplitude equation following Viola et al. (2018) and Dollet et al. (2020)

d A

d t
=λA+χA/|A| , (1.18)

with λ=−σn and χ=−∆/πωn .

Turning (1.18) into polar coordinates, A = |A|e iΦ, allows one to readily obtain an analytical

solution for the envelope module of x0 = 2|A|cos(ωn t +Φ),

|A (t ) | =
[
− ∆

πσnωn
+

(
x0

2
+ ∆

πσnωn

)
e−σn t

]
. (1.19)

Solution (1.19) suggests that the nonlinear term in (1.18) is such that there exist a finite time,

t = t∗, for which the the motion arrests irreversibly as |A (t = t∗) | becomes zero,

t∗ = 1

σn
log

(
πσnωn x0 +2∆

2∆

)
, (1.20)

a feature that has already been described in figure 1.6. This simple pendulum analogy can

be used to model the nonlinear relaxation dynamics of small amplitude liquid oscillations

induced by contact angle hysteresis (Dollet et al., 2020; Viola et al., 2018). In figure 1.7(c),

after fitting coefficients σn and χ, the asymptotic prediction (1.19) is compared with the

measurements by (Dollet et al., 2020) of the relaxation dynamics of liquid oscillations in a

U-shaped tube and it is indeed shown to be in fairly good agreement.

1.2.2 Generalization to large systems: the emergence of secular terms and the
imposition of a solvability condition via Fredholm alternative1

In the previous section, by considering a few archetypal one-degree-of-freedom systems, we

have discussed the asymptotic breakdown provoked by the emergence of secular terms in the

straightforward weakly nonlinear expansion. Specifically, we have shown how the employment

of the multiple time-scales method, by assuming a slow time amplitude modulation of the

perturbation, naturally leads to the imposition of a solvability condition that eliminates

secular terms and prescribes the perturbation amplitude to obey a given normal form, i.e. an

amplitude equation.

In the following, we briefly discuss how the concepts of the emergence of secular terms and

the imposition of a solvability condition are generalizable to large systems.

To this end, let us seek an asymptotic solution of, e.g., the Navier-Stokes equation (1.1) also

subjected to an external and time-dependent body or boundary force, f (x, t ),

q (x, t ) = q0 (x)+εq1 (x, t )+ε2q2 (x, t )+ . . .+εk qk +O
(
εk+1

)
, ||f (x, t ) || ∼ εk , (1.21)

1Part of these notes was kindly provided by Yves-Marie Ducimetière in personal communication.
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where q0 represents an equilibrium solution (or steady base flow) of (1.1) and where the

amplitude of the external forcing ||f (x, t ) || is assumed small of order εk . With the aim of

giving a pedagogical example, in the following let us consider k = 3. After linearization of

the governing equations around q0, the ε-order problem generally takes the form of a linear

homogeneous problem, such as
∂q1

∂t
=L q1. (1.22)

As already discussed at the beginning of this introduction, one can then seek eigensolutions

of (1.22) in the standard normal form

q1 (x, t ) = A (T ) q̂1n (x)eλn t + c.c., T = ε2t , (1.23)

where q̂1n is the nth eigenmode and λn is the corresponding eigenvalue, solution of the

generalized eigenvalue problem

λn q̂1n =L q̂1n . (1.24)

The formalism of the multiple scales analysis requires the eigenvalue λn = σn + iωn to be

marginally stable (Godrèche and Manneville, 1998). How to relax this constraint to cases

where the growth or decay rate σn is much smaller than ωn is discussed, e.g., in Meliga et al.

(2009a). However, for the sake of simplicity, we assume hereinafter the marginal stability

condition, i.e. σn = 0 and λn = iωn . Note that, in the spirit of the multiple time-scales

method, the perturbation amplitude A (T ) has been assumed to depend on the slow time

scale T , as defined in (1.23); the use of the partial derivative symbol in (1.22) anticipated the

decomposition of the physical time into two different time scales.

Before moving forward, let us also introduce an inner product, e.g. the Hermitian scalar

product < â, b̂ >= âH b̂, with â and b̂ two generic vectors and the superscript H denoting the

Hermitian transpose. With respect to the considered scalar product, we can define an adjoint

operator of L , namely L †,

λ†
m q̂†

1m =L †q̂†
1m , (1.25)

such that q̂†
1m and λ†

m are, respectively, the mth adjoint eigenmode and adjoint eigenvalue.

Particularly, the direct, q̂1n and adjoint, q̂†
1m , eigenmodes form a bi-orthogonal basis, meaning

that < q̂†
1m , q̂1n >= δnm , with δnm the Kronecker delta. Hence, for n = m, < q̂†

1n , q̂1n >= 1 and

λ†
m =λn (=−iωn in the case here considered).

The problem at order ε3 will typically take the form of an inhomogeneous linear problem,

where the right-hand side contains forcing terms produced by the weakly nonlinear inter-

actions of the previous order solutions and by the external body or boundary forces, e.g. a

time-harmonic f (x, t ) = f f̂ (x)e iΩt + c.c., whose amplitude f has been assumed to be small of

order ε3 and whose oscillation frequency is close to the natural frequencyΩ≈ωn ,

∂q3

∂t
−L qk =−∂q1

∂T
+N

(
q0,q1,q2, . . .

)+ f (x, t ) =−∂q1

∂T
+F

(
A, f , . . .

)
. (1.26)

The forcing term F
(

A, f , . . .
)

is generally a function of the perturbation amplitude, forcing

amplitude, etc. We also notice that the right-hand side contains a forcing term associated with
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the slow time derivative of the leading order perturbation q1. Let us suppose now a Fourier

decomposition of the time-dependent forcing term F
(

A, f , . . .
)

into a component gathering

all the resonant terms oscillating at the natural frequency ωn , FRT
(

A, f , . . .
)

and a second

component gathering all the non-resonant terms, FNRT
(

A, f , . . .
)
, which are not relevant for

the further analysis and will be therefore simply ignored, so that (1.26) reduces to

∂qk

∂t
=L qk +

(
−∂q1

∂T
+FRT

(
A, f , . . .

))
, FRT = F̂

(
A, f , . . .

)
e iωn t + c.c., (1.27)

subjected to a certain initial condition, e.g. qk = 0 at t = 0.

In the most general form, the response of the system in time can be written by using the

exponential matrix eL t , such that

q3 (x, t ) = eL t
∫ t

0
e−L s

[(
−∂A

∂T
q̂1n +F̂RT

(
A, f , . . .

))
e iωn s

]
ds = (1.28)

=
(
−∂A

∂T
q̂1n +F̂RT

(
A, f , . . .

))
eL s

∫ t

0
e−L se iωn s ds + c.c.,

The exponential matrix can be decomposed as

eL s =QeDsQ−1, (1.29)

where the matrix Q contains the eigenmodes of L , whereas the diagonal matrix D contains

the corresponding eigenvalues of L , i.e. D = diag
(
iωn ,−iωn ,λl ,λl , . . .

)
(with l 6= n). Hence,

eL t e−L se iωn s = diag
(
e iωn t ,e−iωn (t−2s),eλl (t−s)+iωn s ,eλl (t−s)+iωn s , . . .

)
, (1.30)

Using the decomposition (1.29), one can express∫ t

0
eL t e−L se iωn s ds = (1.31)

=Q



te iωn t 0 0 0 . . .

0 1
i2ωn

(
e iωn t −e−iωn t

)
0 0 . . .

0 0 1
iωn−λl

(
e iωn t −eλl t

)
0 . . .

0 0 0 1
iωn−λl

(
e iωn t −eλl t

)
. . .

...
...

...
...

. . .


Q−1,

so that,

q3 =
(
−∂A

∂T
q̂1n +F̂RT

(
A, f , . . .

))∫ t

0
eL t e−L se iωn s ds + c.c. = (1.32)

=
q̂1n

< q̂†
1n ,

(
− ∂A
∂T q̂1n +F̂RT

(
A, f , . . .

))>
< q̂†

1n , q̂1n >
e iωn t t + c.c.


︸ ︷︷ ︸

secular terms: linearly growing in time ∝ t

+oscillating, (1.33)
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in which we have used the fact that Q = (
q̂1n , q̂1m , . . .

)T and, therefore,

Q−1
(
−∂A

∂T
q̂1n +F̂RT

(
A, f , . . .

))=


<q̂†
1n ,

(− ∂A
∂T q̂1n+F̂RT(A, f ,...)

)>
<q̂†

1n ,q̂1n>
<q̂†

1m ,
(− ∂A

∂T q̂1n+F̂RT(A, f ,...)
)>

<q̂†
1m ,q̂1m>

...

 , (1.34)

since

QQ−1
(
−∂A

∂T
q̂1n +F̂RT

(
A, f , . . .

))=∑
n

q̂1n

< q̂†
1n ,

(
− ∂A
∂T q̂1n +F̂RT

(
A, f , . . .

))>
< q̂†

1n , q̂1n >
= (1.35)

=
(
−∂A

∂T
q̂1n +F̂RT

(
A, f , . . .

))
,

according to the bi-orthogonality property of direct and adjoint modes.

Lastly, from (1.32), it appears clear that avoiding an algebraic growth implies requiring that

< q̂†
1n ,

(
− ∂A
∂T q̂1n +F̂RT

(
A, f , . . .

))>
< q̂†

1n , q̂1n >
= 0. (1.36)

which is equivalent to asking that the forcing term must be orthogonal to the cokernel of

L , or, alternatively said, to the kernel of the adjoint operator L †, as stated by the Fredholm

alternative (Olver, 2014a).

The imposition of a solvability condition through the Fredholm alternative eventually

fixes the arbitrariness introduced by the perturbation amplitude by prescribing a governing

equation for A (T ), which constitutes our final amplitude equation:

∂A

∂T
= 1

ε2

d A

d t
= < q̂†

1n ,F̂RT
(

A, f , . . .
)>

< q̂†
1n , q̂1n >

=⇒ d A

d t
= F

(
A, f , . . .

)
(1.37)

As a side comment, we note that in our starting point (1.22), we have implicitly assumed that

the mass matrix M coincides with the identity matrix I . In general, M 6=I and M enters in

the definition of the inner product, < â,M b̂ >= âH
(
M b̂

)
.

Lastly, it appears now clearer as the single-degree-of-freedom systems previously examined

constitutes the trivial limit of equation (1.36). Indeed, by taking q̂1n = q̂†
1n = 1, equation (1.36)

simply means requiring that the resonant forcing terms are zero, i.e. ∂A
∂T −F̂RT

(
A, f , . . .

)= 0.

1.2.3 In this thesis: derivation of normal form coefficients from first principles

In this section, we have introduced the multiple time-scale method, and we have illustrated,

using a few single-degree-of-freedom archetypal examples, how to derive envelope equations

for these systems. A generalization of the method to large systems has been then briefly

discussed. Throughout this thesis, envelope equations (and their coefficients) for a series
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In this Thesis: Linear Stability and Weakly Nonlinear Effects

Figure 1.8 – Structure of the present document. This thesis is divided into four main parts, each
classified according to the type of the underlying oscillatory system’s response: self-sustained,
externally driven, externally driven, but parametrically and natural. Each chapter is devoted
to the theoretical modelling and further understanding of these complex nonlinear fluid
dynamics using the tools of linear stability and weakly nonlinear theories.

of complex fluidic oscillators and resonators will be formally derived (and computed) from

first principles via weakly nonlinear multiple time-scales analyses of the full hydrodynamic

systems. It will be shown that the weakly nonlinear dynamics of these oscillatory flows,

ranging from self-sustained impinging-jets oscillators to driven sloshing-like resonator, is

well described by slightly different and enriched versions of the envelope equations just

introduced, i.e. (1.4), (1.13), (1.16) and (1.18), hence making possible the identification of the

few degrees-of-freedom that are actually relevant to the overall dynamics.

1.3 Forewords

Despite the main focus on fundamental physics questions, the problems tackled in this thesis

are directly relevant to several industrial applications. While in many engineering problems,

as those of figure 1.1(b,d,f), oscillatory instabilities and resonances are seen as endangering

features to be avoided at all costs, resulting in entire parametric regions to be avoided or in the

need for efficient control and mitigation strategies, the examples discussed in this document,

like many others, illustrate a different view: self-sustained or driven oscillations can be indeed

harnessed for the design of a wide variety of engineering devices, ranging from microfluidic

circuitry (hydrodynamic converters or switching devices), orbital-shaken bioreactors for cell

cultivation and drug production to liquid-based template for the assembly of microscale

materials. A proper predictive understanding and modelling of the hydrodynamic at stake is

therefore essential in the design of all these processes.

With the support of existing and home-made experimental observations and measurements

(see figure 1.9), the present research aims precisely at modelling and providing comprehensive
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theoretical frameworks capable of rationalising some of these complex nonlinear oscillatory

dynamics, most of which have not been fully elucidated yet.

As amplifier-like systems have not been studied in this thesis, let us recall the distinction

made between oscillators and resonators on the basis of the nature of their oscillatory re-

sponses:

• Oscillators:

– Self-sustained

oscillations

• Resonators:

– Driven oscillations

– Parametric oscillations

– Natural oscillations

Keeping in mind the distinction made above, the present document is organised as in

figure 1.8 and figure 1.9. The thesis contains published or submitted material carried out in

collaboration with other experienced researchers and my supervisor, to which I fundamentally

contributed. If a Chapter contains published material where I do not appear as the first author,

my personal contribution is explicitly specified at the beginning of the Chapter.

In the following, a general outline of this thesis with a short description of each part is

provided, whereas more detailed and dedicated introductions are given at the beginning of

each part.

PART I Self-sustained oscillations

Chapters 2-3: Feedback-free fluidic oscillators based on impinging jets

In Chapter 2, we describe a microfluidic oscillator based on facing impinging jets and op-

erating in laminar flow conditions. Using appropriate cross-junction configurations with

two intersecting inlets and outlets, pulsatile liquid flows are experimentally generated at the

microscale from steady and equal inlet flow conditions and without moving parts or external

stimuli. Experiments and DNS are used to determine the region in the control parameter space

(device’s geometry and Reynolds number, Re) where self-sustained oscillations manifest.

To better elucidate the physical mechanism behind these oscillations, in Chapter 3, we

consider a simplified two-dimensional configuration. Advances in the understanding of such

a mechanism are made by performing linear global stability and sensitivity analysis, which

identify the Kelvin–Helmholtz instability, located in the jet’s interaction region, as the main

candidate for the origin of the oscillations observed in fluidic devices. Further interesting

nonlinear flow features, involving symmetry-breaking and subcritical transitions, are also

described by means of the weakly nonlinear theory.
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PART II Driven oscillations

Chapter 4-5-6: Harmonic and super-harmonic sloshing dynamics of orbital-shaken cylin-

drical reservoirs

The container motion along a planar circular trajectory at a constant angular velocity, i.e. cir-

cular shaking, is of interest in several industrial applications, e.g. for fermentation processes

or in the cultivation of stem cells, where good mixing and efficient gas exchange are the main

targets. Under this external forcing condition, the system always responds with a swirling wave

co-directed with the container’s direction of motion. Depending on the driving frequency and

amplitude, the frequency response can be either harmonic or super-harmonic. In Chapter 4,

existing experimental data are used to develop a weakly nonlinear model capable of describing

the fundamental harmonic and super-harmonic resonances in terms of flow patterns and

amplitude response.

From the perspective of hydrodynamic instability, the case of longitudinal container motions,

i.e. longitudinal shaking, appears more interesting. In this configuration, the system exhibits

a richer variety of wave regimes, such as planar, irregular and swirling motions. In Chapter 5,

we extend the weakly nonlinear model previously developed in order to study harmonic and

super-harmonic resonances under these forcing conditions. Our theoretical predictions are

confirmed by dedicated experiments.

Lastly, in Chapter 6, with the main focus on harmonic resonances, we provide an experimen-

tal characterisation of the free liquid surface response for a generic, elliptic periodic container

trajectory, i.e. elliptical shaking, so as to bridge the gap between the two diametrically op-

posed shaking conditions previously discussed. Experiments demonstrate for the first time

the counter-intuitive existence of stable swirling waves travelling in the opposite direction of

the container motion. These findings are then rationalized by using a slight variation of the

theoretical tools developed in Chapters 4 and 5.

PART III Parametric oscillations

Chapter 7-8: Sub-harmonic Faraday waves in circular cylinders and thin annuli

In this Part, we consider the problem of Faraday waves, undoubtedly the most famous paramet-

ric resonator system in fluids. In particular, we tackle two very different system configurations,

but which are linked to each other for the importance of the lateral wall and contact line

boundary conditions.

In Chapter 7, we focus on the problem of the coupling and interaction of parametric waves

and capillary meniscus waves, the latter being typically unwanted. Their suppression of the

latter can be achieved by imposing a contact line pinned at the container brim. However,

tunable meniscus waves are desired in some applications such as those of liquid-based biosen-

sors, where they can be controlled by adjusting the shape of the static meniscus by slightly

under/overfilling the vessel while keeping the contact line fixed at the brim. Considering this

contact line condition in cylindrical containers, we formalize a weakly nonlinear analysis
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which predicts the impact of static contact angle effects on the instability onset of viscous

sub-harmonic Faraday waves. The theory is validated with previous experiments and DNS.

In Chapter 8 we instead consider the case of Faraday waves in Hele-Shaw cells, for which

previous theoretical analyses typically rely on the Darcy approximation based on the parabolic

flow profile assumption in the narrow direction. However, Darcy’s model is known to be

inaccurate whenever inertia is not negligible, e.g. in unsteady flows. In this work, we propose

a revised gap-averaged linear model that accounts for inertial effects induced by the unsteady

terms in the Navier-Stokes equations. The theory also includes a linear law for the dynamic

contact angle that serves to reintroduce the contact line dissipation. The latter is indeed

seen to be a critical contribution to the overall dissipation of the system. The stability of the

system is studied by performing a Floquet analysis, whose predictions compare well with

previous experiments in rectangular Hele-Shaw cells and with new dedicated experiments in

thin annuli.

PART IV Natural oscillations

Chapter 9-10: Nonlinear relaxation dynamics of free surface oscillations due to contact

angle hysteresis

In Chapter 9, we present a physics-inspired mathematical model based on successive linear

eigenmode projections to solve the relaxation (natural dynamics) of small-amplitude and two-

dimensional viscous capillary-gravity waves with a phenomenological and experimentally-

inspired nonlinear contact line model accounting for Coulomb solid-like friction. We show

that each projection eventually induces a rapid loss of total energy in the liquid motion and

contributes to its nonlinear damping. This approach captures the transition from a contact

line stick-slip (or nearly stick-slip) motion to a pinned (or nearly pinned) configuration, as

well as the secondary fluid bulk motion following the arrest of the contact line, overlooked by

previous asymptotic analyses.

In Chapter 10, the projection model formalized in Chapter 9 is applied to the more realistic

case of liquid oscillation in a U-tube configuration. A comparison with existing experiments

proves the predictive power of this method, although a fitting parameter is still required owing

to the lack of information about the actual contact line dynamics.

See figure 1.9 for a visual illustration of the salient points pertaining to each Part.
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Figure 1.9 – Visual illustration of the salient points pertaining to the main Parts of this thesis.
The classification is based on the nature of the fluid oscillations. Sketches, representing the
various geometrical configurations considered, are given on the right, whereas a few examples
of homemade experimental outputs are given on the left. Theoretical models have been built
on the basis of these observations.
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Part IFeedback-free fluidic oscillators based
on impinging jets
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Introduction

Fluidic oscillators are devices that issue an oscillating jet of fluid when supplied with a contin-

uous stream of pressurized gas or liquid; as such, they can be seen as fluidic DC/AC converters.

They started to be studied in the 1960s, as well as other fluidic devices functioning with no

moving parts, such as fluidic logic elements or fluidic amplifiers (Angrist, 1964; Glaettli, 1964;

Tanney, 1970). There are two main types of fluidic oscillators: wall-attachment devices and jet-

interaction devices (see figure I.1). The wall-attachment oscillators are based on the Coandă

effect, where the fluid jet interacts with an adjacent wall, which results in its deflection. The

jet-interaction devices also named "feedback-free" devices are based on the interactions of

two jets inside an interaction chamber having a specific geometry (Raghu, 2001).

Only a few industrial applications of fluidic oscillators have emerged over the years, such

as flow metering (Beale and Lawler, 1974) and windshield washer devices (Stouffer, 1985),

however, with the development of microfluidics and its applications to lab-on-chip devices,

a renewed interest for fluidic devices appeared, and in particular for fluidic devices with no

moving parts, such as static micromixers (Bertsch et al., 2001) or fluidic diodes (Anduze et al.,

2001; Fani et al., 2013; Haward et al., 2016).

Most research work performed so far on microfluidic oscillators operating with liquids aims

either at the study of new types of static micromixers or at the implementation of fluidic

logic circuits. A small number of such fluidic oscillators have been described in the scientific

literature, and implement a variety of working principles.

Notwithstanding active microfluidic oscillators have been studied (Niu and Lee, 2003), here

we mainly focus on passive oscillators, where a constant liquid flow is applied at the inlets and

oscillations are generated by the design of the microfluidic network. One of the most studied

types of microfluidic oscillators is based on the use of fluidic resistors, capacitors and valves,

and uses the analogy between the electrical and fluidic domains, where voltage is replaced

by pressure and electrical current is replaced by hydraulic volume flow. The microfluidic

equivalents of electrical resistors are channels, microfluidic capacitors are chambers with

membranes that store energy by membrane deformation, while equivalents of diodes, and

transistors, are valves of diverse designs that can completely shut off the flow in given con-

ditions. Based on this electronic-fluidic analogy, a fluidic astable multivibrator driven by a

constant pressure flow was described by Lammerink et al. (1995). This concept was further

developed later, taking advantage of the versatility of the microfabrication methods based on

the use of polydimethylsiloxane (PDMS), an elastomeric material that renders the fabrication
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Figure I.1 – (a) A fluidic oscillator based on wall-attachment. The feedback mechanism
is provided by two feedback channels. Four snapshots of the first half of the oscillation
cycle are shown: ϕ denote the corresponding flow phase-angle. Visualization as streamlines
numerically computed (modified figure from Woszidlo et al. (2015)). (b) A fluidic oscillator
based on two jets interacting within a mixing chamber. Four snapshots of the first half of the
oscillation cycle are shown as streamlines numerically computed (modified figure from Tomac
and Gregory (2014)).

of fluidic networks containing membranes very simple. Mosadegh et al. (2010) demonstrated

a microfluidic oscillator and used it to perform flow-switching and clocking functions. Kim

et al. (2011, 2013) fabricated a number of devices based on this type of microfluidic oscillator,
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among which a micromixer and an autonomous pulsed flow generation system capable of

generating on-demand and independently a range of flow rates and a range of flow oscillation

frequencies (Li and Kim, 2017). (Kim et al., 2015) applied it in studying endothelial cell elonga-

tion response to fluidic flow patterns. Devaraju and Unger (2012) also demonstrated a fluidic

oscillator, among many other fluidic logic functions and Nguyen et al. (2012) performed peri-

staltic pumping on chip using a control signal generated on chip through a fluidic oscillator

circuit.

Xia et al. (2012) also developed a micromixer based on a vibrating elastomeric diaphragm

trapped in a two-level cavity. Here, there is no need for a complex fluidic circuit as the de-

formation of the diaphragm directly creates the oscillating liquid flow, but the wear of the

elastomeric material limited the use of this device. Simpler microfluidic oscillators containing

no moving parts, no deformable membranes and no complex fluidic circuit have also been

studied by several authors. These oscillators are based on jets interacting in a simple cavity

and generating an oscillating flow (Gregory et al., 2007; Tomac and Gregory, 2012). Yang

et al. (2007) demonstrated that feedback-driven microfluidic oscillators based on the Coandă

effect can generate an oscillatory liquid flow at small Reynolds numbers. Their design used

a micro-nozzle with a sudden expansion and asymmetric feedback channels and measured

oscillatory frequencies of the flow below 1Hz for Reynolds numbers between 1 and 100. Sim-

ilar oscillator designs were later studied experimentally by Xu and Chu (2015) to develop

feedback micromixers based on the Coandă effect. They demonstrated that there were three

different oscillating mechanisms that resulted in mixing in such structures, depending on

the magnitude of the Reynolds number: vortex mixing, internal recirculation mixing, and

oscillation mixing. Xie and Xu (2017) simulated the fluidic behaviour of such devices using the

Fluent® CFD software.

Finally, Sun et al. (2017); Sun and Sun (2011) studied liquid mixing resulting from a mi-

crofluidic oscillator using an impinging jet on a concave semi-circular surface. This type of

microfluidic oscillator is another example of the use of the Coandă effect. Oscillations were

observed for Reynolds numbers as low as 70, with the frequency of oscillations below 1Hz.

In Chapter 2, we present a microfluidic oscillator that can be classified in the jet-interaction

device category. It has a very simple configuration, i.e. X-shaped cross-junction where two

incoming streams meet head-to-head and exhaust into two outlet channels (see figure I.2). Its

oscillations depend on the jet interactions more than on the shape of the surrounding cavity.

This device is based on facing impinging liquid jets and operates in laminar flow conditions.

Observations of flow patterns obtained with micromixers having geometries similar to the

ones presented in this paper but much larger dimensions were performed by Tesař (2009),

however, the manufacturing method of these devices limited their aspect ratios and allowed to

perform observations of only a limited part of the phenomenon. Impinging self-oscillating jets

have been described in scientific literature by Denshchikov et al. (1978) using facing turbulent

water jets, having dimensions in the centimeter range immersed in a 230L water tank. In a

follow-up paper (Denshchikov et al., 1983), the period of the auto-oscillating phenomenon
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was empirically described by a set of equations. If the phenomena described in this work

show some similarities with the jet configuration presented in (Denshchikov et al., 1978, 1983),

the jets dimensions are orders of magnitude smaller and the flow conditions remain laminar

(Lashgari et al., 2014).

We provide a detailed experimental and numerical description of the self-sustained oscil-

latory regime and we study the evolution of the self–oscillation frequency when the main

geometric parameters of the cavity are changed. Most interestingly, the shedding frequency is

shown to be proportional to the averaged flow velocity imposed at the symmetric inlets and

inversely proportional to the distance between the jets, irrespective of many other parameters,

such as channel width, depth, length, Reynolds number, etc.

Inlet

Outlet

Experimental 

Snapshot

DNS 

Snapshot

(a) (b)

(c) (d)

Figure I.2– (a) Snapshot of the self-sustained oscillatory flow obtained experimentally and
(c) numerically (via DNS) in our flaring X-junction (Center) for a Reynolds number greater
than the critical one, Recr . See also https://doi.org/10.1103/APS.DFD.2019.GFM.V0036 for
a Gallery of Fluid Motion award-winning video). The actual device is shown in (b), while an
example of a computational domain for DNS is illustrated in (d).

By analogy with the cylinder flow discussed in Chapter 1, the oscillatory instability described

in Chapter 2, is experimentally seen to be of supercritical nature with oscillations starting

above a precise instability threshold, i.e. Re > Recr . Although several plausible candidates are

proposed, at this stage no physical mechanism could be precisely identified from which the

self-sustained oscillations would originate, thus calling for a significant interpretation effort.

Furthermore, cross-slot flows are also known to show hysteresis. For instance, Burshtein

et al. (2019) experimentally showed that hysteretic behaviours due to symmetry-breaking

transitions appear in X-junction flows with proper geometrical parameters, for which no

oscillations are observed (see figure I.3). There are similarities in the microchannel geometries

between the case described by Burshtein et al. (2019) and the one presented in this work, with

microchannels crossing at right angle in both cases and liquid flows at relatively low values
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of the Reynolds number. However, in the geometry considered by Burshtein et al. (2019) all

channels have comparable dimensions, whereas here, there are two facing narrow channels

which open into wider channels. Particularly, we observe oscillations only in the cases where

the wider channels have dimensions at least 3 times larger than the narrow channels, which

differs significantly from Burshtein et al. (2019). Such a consideration further underlines the

importance of the distance separating the inlets in cross–slot geometries in the destabilization

mechanism.

x
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(c)
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Re = Recr*
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Re < Recr

Re = Recr

Re > Recr

Symmetry breaking Vorticesmerging

Regainingsymmetry Vortex splitting

Figure I.3– Study of the vortex dynamics and interactions associated with a symmetry-breaking
flow instability at a 4-way intersection (Burshtein et al., 2019). The merging and the splitting of
vortices are connected with the symmetry-breaking transition and are affected by the degree
of vortex confinement, i.e. by the geometry. (a) A schematic diagram of the experimental
setup of Burshtein et al. (2019), which allows a direct observation of the x = 0 plane on an
inverted microscope. Inflow (along y) is indicated by the blue arrows, and outflow (along x)
is indicated by the red arrows. (b) Schematic diagram of a vortex in the cross-slot device for
flow at Re > Recr ; d and w are the channel depth and width, respectively. (c,e) µ-PIV images
of the vorticity field at x = 0: (c) a symmetric flow field with four cells of Dean vortices; (d) an
asymmetric flow field where two intensified Dean vortices have commenced merging; and (e)
a single steady, central streamwise vortex is formed by the merging of the two Dean vortices.

Hence, Chapter 3 aims at answering two main questions arising from different observations

presented in Chapter 2 (Bertsch et al., 2020a,b) and by Burshtein et al. (2019): (i) to identify
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the physical mechanism governing the self-sustained oscillatory regime studied in Bertsch

et al. (2020a); (ii) to investigate the existence of a range of geometrical parameters in which

steady symmetry-breaking conditions could directly interact with this dynamic instability.

With these objectives, we consider a two-dimensional (2D) X-junction with straight lateral

channels and two symmetric inlets, where a fully developed flow is imposed, separated by a

certain distance. Despite the simplistic geometry, a 2D flow not only allows one to perform a

faster computational analysis but also often makes it possible to capture the main physical

features of interest in the 3D problem. Particularly, since the main geometrical parameter,

i.e. the distance between the two jets, is kept in this crude dimensional reduction from 3D

to 2D, we may expect that our 2D analysis reveals the dominant physical mechanism behind

the oscillatory instability observed in 3D. Steady symmetry-breaking instabilities are also

expected in 2D (Liu et al., 2016; Pawlowski et al., 2006), even though their nature differs from

the intrinsically 3D one presented in Burshtein et al. (2019). An exhaustive stability analysis is

here conducted using the tools of the classic linear global stability and sensitivity analysis as

well as the weakly nonlinear theory based on amplitude equations.

Precisely, global stability identifies a region of geometrical and flow parameters where two

unstable global modes become simultaneously unstable. One of the modes is responsible for

the self-oscillations, whereas the other induces a steady symmetry-breaking. The interaction

of such modes is described by means of amplitude equations, whose resulting predictions

are confirmed by DNS. The weakly nonlinear model also predicts an oscillation frequency

that scales like U /s, with U the mean inlet velocity and s the distance between the inlets,

hence confirming the two-dimensional nature of the oscillator-like dynamics. Lastly, the use

of sensitivity analysis helps us in identifying the Kelvin-Helmholtz instability, located in the

jet’s interaction region, as the main candidate for the origin of the oscillations observed in

these jet-interaction fluidic devices.
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2 Feedback-free microfluidic oscillator
with impinging jets

Remark: this chapter is largely inspired by the publication of the same name and by a short

paper associated with a video winner of a 2019 American Physical Society’s Division of Fluid

Dynamics (DFD) Gallery of Fluid Motion Award for work presented at the DFD Gallery of

Fluid Motion, available online at the Gallery of Fluid Motion:

https://doi.org/10.1103/APS.DFD.2019.GFM.V0036

A. Bertsch1, A. Bongarzone2, M. Duchamp1, P. Renaud1, F. Gallaire2

1 Microsystems Laboratory LMIS4, École Polytechnique Fédérale de Lausanne, Lausanne

CH-1015, Switzerland
2 Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne,

Lausanne CH-1015, Switzerland

Physical Review Fluids, 5, 054202 (2020)

Physical Review Fluids, 5, 110505 (2020)

Author’s contributions: following the preliminary experimental campaign by A.B.1, M.D.1

and P.R.1, A.B.1, A.B.2, P.R. and F.G. conceived the project. A.B.2 performed all the numerical

calculations presented in Sections 4, 5 and 6. A.B.1 and A.B.2 wrote the manuscript, with input

from the coauthors.

The present paper describes a microfluidic oscillator based on facing impinging jets and oper-

ating in laminar flow conditions. Using appropriate microchannel configurations, pulsatile

liquid flows are generated at the microscale from steady and equal inlet flow conditions and

without moving parts or external stimuli. An experimental campaign has been carried out,

using oscillator structures manufactured in silicon using conventional microfabrication tech-

niques. This allowed us to study in detail the impact of the main geometric parameters of these

structures on the oscillation frequency. The observed range of regular oscillations was found

to depend on the geometry of the output channels, with highly regular oscillations occurring

over a very large range of Reynolds numbers (Re) when an expansion of the output channel

is added. The evolution of the self-oscillating frequency was shown to be dependent on the
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Chapter 2. Feedback-free microfluidic oscillator with impinging jets

distance separating the impinging jets and on the average speed of the jets. Direct numerical

simulations (DNS) have been performed using a spectral element method. The computed

dye concentration fields and non-dimensional self-oscillation frequencies compare well with

the experiments. The simulations enable a detailed characterization of the self-oscillation

phenomenon in terms of pressure and velocity fields.

2.1 Microfluidic devices, fabrication and experiment description

The oscillator structures presented in the present paper were fabricated using conventional

microfabrication technologies in standard conditions. The fabrication process is very simple

and did not require any particular development. It is based on the use of the Bosch process

to create small components with a high aspect-ratio, but various other microfabrication

processes could have been successfully used for fabricating such simple structures.

A 10cm in diameter double-side polished silicon wafer was first bonded to a glass wafer by

anodic bonding (800V , 420◦C ). The silicon part will be patterned to form the fluidic network,

while the glass layer both supports these structures and will later allow observation using an

inverted optical microscope. When necessary, the thickness of the silicon wafer was reduced

by grinding. The silicon surface of the bonded wafers was then coated with a thick layer of

positive photoresist (AZ9260, 10µm) and patterned by direct writing (MLA150, Heidelberg

Instruments). The patterned silicon was etched using the Bosch process, until the glass layer

is reached (Adixen AMS200, Alcatel Micro Machining Systems). During this step, the full

thickness of the silicon wafer is etched, as well as part of the photoresist masking layer. The

cavities created with the Bosch process will constitute the microchannels, inlets and outlets of

the fluidic network. The remains of the photoresist mask are finally striped using O2 plasma

(10mi n, 500W ) and the wafers are diced into chips. Each of the fabricated chips is closed by a

5mm thick flat slab of polydimethylsiloxane (PDMS) in which inlet and outlet holes are made

using a 0.75mm in diameter puncher. The PDMS cover is placed on top of the silicon surface

of the diced chips after submitting both components to an oxygen plasma, which results in an

adequate bonding of the two components.

A schematic diagram of the design of the fabricated components is presented in figure 2.1.

The liquid enters the device by two inlets and is pushed through long and narrow facing

channels of width w towards a wider transverse channel. The narrow entry channels, whose

lengths are at least 2.3mm each, act as two nozzles separated by a distance s to create two

facing liquid jets when they reach the larger lateral channel. Outlets are provided at both ends

of the large channel, far away from the intersection. The outlet channel extends over the entire

length of the manufactured chip and the liquid exits the chip at a distance of 8mm from the

facing nozzles. Within this geometry, the Reynolds number can be defined as:

Re = ρU w

µ
, (2.1)
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2.1. Microfluidic devices, fabrication and experiment description

Figure 2.1 – Three-dimensional sketch of a general oscillator structure.

where ρ is the fluid density, µ is its dynamic viscosity, U is the average velocity of the liquid

flow at the nozzles. In a certain range of Reynolds numbers, these colliding jets do self-oscillate

transversally into the two output channels. Away from the nozzles, the width of the output

channels quickly increases to a constant value L, in the most general case, but experiments

have also been performed with two simple intersecting straight channels (L = s). When an

expansion of the outlet channel is provided (L 6= s) the full width of the outlet channel is

reached at a distance of 0.75L away from the nozzle, and the wall profile in this area is a

circular arc, tangent to the outlet channel wall and joining the nozzle. The height h of the

walls is constant for the whole device.

The microfluidic devices were placed with their glass side facing down on the stage of an

inverted microscope. Fluidic connections were made through the PDMS top layer by inserting

0.79mm in outer diameter PEEK tubes of equal length in the inlet holes. Deionized water

colored with two different food dyes was pushed through the two inlet tubes using a syringe

pump (PHD2000, Harvard apparatus). The syringe pump accommodated two identical sy-

ringes that were actuated simultaneously. The outlet holes on the PDMS cover were also fitted

with PEEK tubes of identical length, and the liquid flow coming out of them was discarded.

With the syringe pumps used, flow rates up to 20mL/mi n could be obtained in each of the

entry channels, depending on the overall flow resistance of the studied microfluidic device.

During experiments, the flow rates were changed abruptly, without ramps. Experiments were

carried out in which the flow rates were first increased and later decreased, but no hystere-

sis in the evolution of the oscillation frequency with Reynolds was observed. Observations

were made using a 10x microscope objective in bright field conditions, and recorded using a

high-speed camera (Miro M 310, Phantom). The resolution, frame rate and gain of the camera

were chosen for each experiment such that the frequency of the microfluidic oscillators could

be clearly observed and measured using a large number of frames. As the microscope light

source illuminates the complete microchannel height, the recorded light intensity provides a

depth-averaged concentration field.

To evaluate the effect of the length of the entry channel on the oscillator behaviour and
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Chapter 2. Feedback-free microfluidic oscillator with impinging jets

Figure 2.2 – Images of the oscillating flow observed for increasing values of the Reynolds
number for h = 525µm, w = 100µm, s = 800µm, L = 800µm: a) Re = 15, no oscilla-
tions. b) Re = 23, F = 27 H z, slow oscillations. c) Re = 31, F = 43 H z, alternating jets.
d) Re = 95, Jets do not cross regularly. See movie S1 in the Supplemental Material at
http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.054202.

make sure that the observed oscillations were not an artefact related to the inlet flow profile,

multiple identical oscillator cavities differing only in the lengths of the inlet channel were

manufactured, with an inlet channel varying between 0.45mm and 8.35mm in the length

and an inlet width of 100µm (a ratio between 4.5 and 83.5 respectively). The evolution of the

frequency with Re was measured in each configuration and showed no difference from chip

to chip, indicating that the oscillator behaviour is not influenced by the inlet channel length,

at least in the geometries investigated in the present paper. This justified conducting all other

experiments with an inlet channel length of 2.3mm.

2.2 Experimental results

2.2.1 Oscillations in simple straight channels and in channels with expansion

Figure. 2.2 shows images extracted from high-speed videos, visualizing the water flow colored

with two food dyes in a structure made of straight channels crossing at right angle. Inlet

channels are w = 100µm in width, the two nozzles are s = 800µm apart, outlet channels are

L = 800µm in width. The height of all channels is h = 525µm. There is no expansion of the

output channels in this design (s = L). For low values of the Reynolds number steady flow

conditions are present (figure 2.2-a), the flow of both dyes is steady and the boundary between

fluids is stable with time. When Re increases and reaches a value of about 20, the two flows

start to oscillate in an antisymmetric way, with both jets first bifurcating in opposite directions,

and later coming back towards one another until they collide and switch sides. Figure. 2.2-b

shows oscillations at Re = 23. They have a low frequency, are very regular temporally and

spread widely in the lateral output channels. For larger values of Re, clear alternating arrow-

shaped jets oscillating very regularly can be observed (figure 2.2-c).

Their oscillating frequency increases with Re. When Re reaches a threshold value of about

Rei r r = 90, the regularity is lost and the flow evolves into a complex, irregular and aperiodic
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2.2. Experimental results

Figure 2.3 – Images of the oscillating flow observed for different values of the Reynolds number
for h = 525µm, w = 100µm, s = 800µm, L = 2000µm: a) Re = 15, no oscillations. b) Re = 23,
F = 32 H z slow oscillations. c) Re = 31, F = 53 H z large oscillations resulting in a stretching
and folding of the liquid flows. d) Re = 158, F = 362 H z, fast oscillations with arrow-shaped
jets, but resulting in an apparently less efficient mixing of the two liquids. See movie S2 in the
Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.054202.

regime (figure 2.2-d). Little mixing occurs between the liquid coming from each of the two

jets, and each output channel contains mostly the liquid originating from one of the jets only.

From time to time oscillations of the jets do occur, but without following a regular temporal

switching pattern.

Figure 2.3 illustrates the evolution of the flow with Re in a configuration that is exactly the same

as the one presented in figure 2.2, except for the exit channels that do present an expansion in

their width: the two nozzles are still 800µm apart, but the width of the exit channel quickly

increases to L = 2mm. For low values of Re, Stokes flow conditions are observed (figure 2.3-a),

with a steady boundary between the flows emerging from each inlet. When Re increases,

symmetric oscillations still start to occur for a value of Re of about 20. Figure 2.3-b shows

oscillations observed for Re = 23. When Re is further increased, the oscillation frequency also

increases. Large oscillations having dimensions similar to the distance between the jets are

observed and result in a stretching and folding of the liquid flows (figure 2.3-c).

Regular oscillations of the two impinging jets were observed until Re = 630, where the

experiment was stopped as the used syringe pumps could not provide a larger flow rate. As

shown in figure 2.3-d , high values of Re induce fast oscillations of the two liquid flows, with

arrow-shaped jets, but the oscillations lateral amplitude reduces. The stretching and folding

of the fluid flow is of lesser magnitude than in the case of figure 2.3-c, as most of the liquid

issued from one nozzle is strongly pushed towards the opposite side of the exit channel. The
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Chapter 2. Feedback-free microfluidic oscillator with impinging jets

Figure 2.4 – Evolution of the oscillation frequency with Re for the four channel designs pre-
sented in the insert, showing the same configuration except for the output channels that
do present different expansions in their widths. For all designs, h = 380µm, w = 100µm,
s = 800µm. The larger the output channel, the larger the range of Re for which oscillations are
stable. The dotted line is drawn only to guide the eye. The red arrows indicate the end of the
stable oscillation regime for each value of the output channel width.

comparison of the oscillations resulting from identical designs with and without expansion in

the exit channel shows that the threshold at which oscillations start in both cases, occurs for

similar values of the Re number. The oscillation frequency observed is slightly higher when

an expansion channel is present. More importantly, the impinging jets oscillate with high

regularity for a much wider range of Reynolds numbers when an expansion of the exit channel

is provided.

Figure 2.4 shows the evolution of the oscillation frequency for four oscillator designs having

the same configuration (h = 380µm, w = 100µm, s = 800µm) except that they present dif-

ferent widths in their output channels, as schematically presented in the figure insert. In all

cases, the value of Re at the threshold for which oscillations start is the same, but the larger

the output channel, the larger the range of Re for which regular operation can be maintained,

i.e. Rei r r increases.

Moreover, the oscillation frequency at a given value of Re is slightly smaller for designs

presenting a smaller width in their output channel. If self-oscillations occur for low values of

Re in simple straight crossing channels of adequate dimensions, providing an expansion in

the output channel allows to stabilize the oscillation mechanism and extends the oscillation

regime over a wider range of Re, with only a minor effect on the frequency of oscillations. The

extension of the oscillation regime between straight channels and channels presenting an

expansion has been observed in all cases, regardless of the height h of the oscillator structure.
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2.2. Experimental results

2.2.2 Flow patterns created in the exit channels

Figure 2.5 shows the liquid flow close to the oscillator and further away laterally in one of the

two output channels for h = 525µm, w = 100µm, s = 400µm, L = 2000µm. For low values

of Re (figure 2.5-a and b), the amplitude of the oscillations is limited and smaller than the

distance s separating the two inlets. As the liquid is pushed in the expanding part of the exit

channels, the pattern of the two fluids resulting from these oscillations is stretched along

the channel width, resulting in temporal alternations of the fluids coming from the inlets.

This appears as regularly spaced blue and red stripes of fluid in figure 2.5-a and b. When

Re increases, the oscillations become arrow-shaped jets of fluid, and the liquid issued from

each nozzle is pushed towards the opposite side of the channel (figure 2.5-c). Further away in

the exit channels, the fluid flow is rearranged but remains segmented in two parts because

of the laminar flow conditions, each part showing a temporal alternation of both fluids with

however unequal ratio with a prevalence in each branch of one fluid with respect to the other,

but not with equal ratios (figure 2.5-d). If the temporal alternation of the fluid observed for

low values of Re provides conditions of interest for microscale fluid mixing, it is not the case

for the conditions created for larger values of Re, where the fluid flow remains segmented and

only a limited mixing of the two fluids is expected in each of its parts. We have not further

investigated the mixing efficiency from a quantitative point of view.

2.2.3 Evolution of the frequency with the oscillator geometry

The three main geometric parameters that may influence the self-oscillation phenomenon are

the width of the jets w , the distance between the jets s and the height of the device h. Figure 2.6-

a shows the evolution of the frequency with Re, for different values of the width of the jet,

all other geometric dimensions being identical across all devices (h = 525µm, s = 500µm,

L = 2000µm). For a given value of the jets width, the oscillation frequency increases with Re,

and at a chosen value of Re, the oscillation frequency increases when the jet width decreases.

The threshold at which the oscillations appear is reached for smaller Re when the width

of the jet is smaller. Colliding jets of identical design, having a width of 300µm were also

tested but oscillations of the fluid flows could not be observed. For the jets width of 150 and

200µm, the range of Re where oscillations occur is limited: in both cases, the threshold where

oscillations start is close to Re = 50, and the flow stops to oscillate and gives way to a stable

flow pattern similar to the one observed by Haward et al. Haward et al. (2016) when another

threshold Re number is reached (in the order of Re = 250 for w = 200µm and Re = 290 for

w = 150µm). For smaller values of the width of the jet, regular and symmetric oscillations

of the two impinging jets were observed until values of Re close to 600. Flow conditions for

larger values of Re could not be investigated as the syringe pumps used could not deliver

larger flow rates. Oscillators having jets width smaller than 50µm were not manufactured in

the frame of this experiment, but other experiments we performed indicate that oscillations

can be expected to occur for much smaller values of the width of the jet.

Figure 2.6-b shows the evolution of the frequency with Re, when the distance between the
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Chapter 2. Feedback-free microfluidic oscillator with impinging jets

Figure 2.5 – Images of the flow close to the oscillator (a and c) and further away laterally
in one of the two output channels (b and d) for h = 525µm, w = 100µm, s = 400µm, L =
2000µm: a) and b) correspond to Re = 35, F = 120H z, a temporal rearrangement of the fluid
is observed. c) and d) correspond to Re = 47, F = 165 H z, next to the oscillator a dead zone
is visible where the fluid is stagnant. Further away, this dead zone gradually disappears but
the fluid flow remains segmented into two parts, each part showing a temporal alternation
of both inlet fluids, but not with equal ratios. See movie S3 in the Supplemental Material at
http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.054202.

jets changes, all other geometric dimensions being identical across all devices (h = 525µm,

w = 100µm, L = 2000µm). For a chosen distance between the impinging jets, the oscillation

frequency increases with Re, and at a chosen value of Re, the oscillation frequency increases

when the distance between jets decreases. When the distance between the jets increases, the

threshold at which the oscillations start, occurs for smaller values of Re. Oscillator geometries

of identical design but having a distance of only 200µm between the jets were also tested,

but oscillations could not be observed with these devices. For a distance between the jets of

300µm, stable oscillations occur only in a limited range of Re, and stop when Re is larger than

250. When the distance between the jets is 2000µm, which corresponds to the full width of

the exit channel, stable oscillations where the impinging jets alternate are also occurring in

a limited range of Re. In this case, s = L, as it was the case in the experiments presented in

figure 2.2 and 2.4, and the reduced range of oscillation frequencies observed is related to the

absence of extension in the output channel as discussed previously.

Figure 2.6-c shows the evolution of the oscillation frequency with Re, when the overall

dimension of the oscillator is changed while keeping constant the ratio s/w . The height

of all oscillators studied here is 525µm. For all oscillators measured, the threshold where

oscillations started was close to Re = 22, and oscillations could be observed when increasing
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2.2. Experimental results

Figure 2.6 – Evolution of the self-oscillation frequency with Re, when geometric parameters are
changed. a) The width of the jets is changed, all other geometric dimensions being constant
(h = 525µm, s = 500µm, L = 2000µm). b) The distance between of the jets is changed, all
other geometric dimensions being constant (h = 525µm, w = 100µm, L = 2000µm). c) The
overall dimension of the oscillator is changed, with the ratio s/w being constant. The height
of the devices is h = 525µm. d) The height h of the devices is changed, all other dimensions
being equal (w = 100µm, s = 800µm, L = 2000µm). The dotted lines are drawn only to guide
the eye.

Re, until the maximal flow rate the syringe pumps could provide was reached. When the

oscillator’s dimensions are smaller, the frequency of the oscillations is higher for any given

value of Re. Impinging jets having the same ratio s/w but an inlet channel of only 10µm in

width were also fabricated. These were very sensitive to the presence of dust particles in the

water flows, but oscillations were observed when using filtered dye solutions. An accurate

value of the oscillation frequency could not be measured, as the oscillations were very fast and

a high-magnification microscope objective was used, which strongly limited the amount of

light available to image the phenomenon with the high-speed camera.

Figure 2.6-d shows the evolution of the oscillation frequency with the height of the fabricated

structures. When performing measurements, oscillations were observed over a large range

of Re for all values of the height of the oscillators tested. However, for the oscillators of

height smaller than 300µm, the impinging jets showed irregular oscillations frequencies, in

particular for values of Re larger than 200. In this case, the jet oscillations superimposed with

a large oscillation of the entire exit channel that occurs at a much lower frequency than the jet
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oscillations.

Figure 2.7 – The frequency multiplied by the spacing between the jets f · s versus the average
speed of the jets, U , for all the data presented in figure 2.6. The blue dotted line is a linear fit of
all data.

Figure 2.7 shows the evolution of the parameter obtained by multiplying the frequency f and

the distance between the jets s versus the average velocity U of the liquid flow at the nozzles

for all measurements previously presented in figure 2.6. A linear dependence is observed,

indicating the importance of the spacing between the jets in the self-oscillation phenomenon.

The linear fit of all data points presented in this figure has a slope of 1/6, which is consistent

with the measurements made by Denshikov et al. on large-scale facing jets in turbulent flow

conditions (Denshikov presented an empirical formula that translates to 1/ f = 6s/U , when

using the notations of the present paper) Denshchikov et al. (1978). Without pretending more,

as a matter of fact, the Strouhal number pertaining to many self-sustained oscillator flows (the

wake of a cylinder for instance) is often found in the range 0.1-0.2.

2.2.4 Second oscillation mode

In the case of oscillator geometries based on large straight output channels (such as the

oscillator of dimensions w = 100µm, s = 2000µm, L = 2000µm, h = 525µm), two oscillation

modes can be observed. The first oscillation mode (figure 2.8-a) is similar to the oscillations

presented previously, the jets first bifurcate in opposite directions and later come back towards
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one another, collide and switch sides. This first oscillation mode occurs for low values of the

Reynolds number (in the case of the oscillator presented in figure 2.8-a, for Re between 20

and 65). For large values of the Reynolds number, a second mode of regular oscillations was

observed (figure 2.8-b), where the jets do not switch sides but bounce against each other at

regular time intervals, each bounce resulting in a complex rotating flow motion at the center

of the channel (in the case of the oscillator presented in figure 2.8-b, this second mode is seen

for Re between 65 and 160). This second oscillation mode has been observed for straight-

channel oscillators where the ratio s/w is larger than 20, and seems to become dominant for

straight-channel oscillators with even larger s/w ratios.

Figure 2.8 – Evolution of the fluid flow during one oscillation. Experimental dyes concentration
fields obtained for an oscillator of dimensions w = 100µm, s = 2000µm, L = 2000µm, h =
525µm. Images are taken at regular time intervals (from left to right, top to bottom). a) Re = 47,
F = 23 H z, the liquid jets collide and switch sides at each oscillation. b) Re = 79, F = 30 H z,
the jets do not switch sides but bounce against each other regularly, each bounce resulting in a
rotating flow motion in the center of the channel. See movie S4 in the Supplemental Material
at http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.054202.
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Chapter 2. Feedback-free microfluidic oscillator with impinging jets

Figure 2.9 – Fully developed velocity profile, having unitary mean velocity, in a rectangular
microchannel, imposed as a boundary condition at the inlets. Non-dimensional values of
the x-coordinate between −0.5 and 0.5 correspond to a 100µm inlet channel width w , while
values of the z-coordinate between 0 to 5.25 corresponds to a microfluidic oscillator of 525µm
in height h.

2.3 Direct numerical simulations

2.3.1 Governing equations

The fluid motion inside the microfluidic oscillator domain, denoted byΩ, is governed by the

unsteady incompressible three-dimensional Navier-Stokes equations,

∇·u = 0 onΩ, (2.2)

∂u

∂t
+u ·∇u =∇p + 1

Re
∇·τ onΩ, (2.3)

where u = {
ux ,uy ,uz

}T is the velocity flow field, Re the Reynolds number and τ= [∇u+∇T u
]

the viscous stress tensor. Equations (2.2)–(2.3) are made non-dimensional by scaling lengths,

velocity components and time respectively with the inlet channel width w , the average fluid

velocity at the inlets U , and the convective time w/U , respectively. The Reynolds number is

thus defined by equation (2.1), while the pressure is scaled by ρU 2.

In addition to the fluid governing equations, we introduce a further advection-diffusion

equation fully decoupled from equations (2.2)–(2.3) and describing the dynamics of a passive

scalar,Φ,
∂Φ

∂t
+u ·∇Φ= 1

Pe
∆Φ, (2.4)
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(analogous to the temperature equation) which allows us to reproduce the two dyes injected

during the experiments. The Péclet number, Pe, appearing in equation (2.4) has been set to

Pe = 100 in order to ensure good numerical stability and get a satisfactory flow visualization at

the same time for all the particular geometries and control parameters, i.e. Re, considered.

The oscillator cavity is assumed to be perfectly rigid, therefore a no-slip boundary condition

for the velocity field, u|∂Ω = 0, is enforced at the solid boundary domain, denoted by ∂Ω. At

the outlets, a traction-free boundary condition is imposed, tn = [−pI+ 1
Re

(∇u+∇T u
)]

, where

I denotes the identity matrix; in general, this boundary condition is used to model flow exits

where details of the flow velocity and pressure are not known a priori; it is an appropriate

boundary condition here, where the exit flow is close to be fully developed. At the inlets, the

experimental constant flow rate is reproduced imposing the typical velocity profile present in

rectangular micro-channels (see the analytical solution described in (Lee et al., 2006)), shown

in figure 2.9. The length of the inlet ducts is such that assumed to be long enough for a fully

developed flow is ensured.

Concerning the passive scalar equation, Dirichlet boundary conditions are imposed at the

two inlets (Φ= 0,1) to reproduce the injection of dyes, while outflow conditions are set at the

outlets; no-flux is allowed through the solid walls.

2.3.2 Numerical procedure for DNS

The open-source code Nek5000 Lottes et al. has been used to perform the direct numerical

simulation. The spatial discretization is based on the spectral element method (SEM). The

three-dimensional geometry is divided into 7 macro boxes (as indicated in figure 2.10); each

Figure 2.10 – Domain’s sub-division in macro boxes labelled by circled numbers: in the
presence of an expansion channel, the mesh is stretched and remapped according to the
prescribed radius of curvature.

macro box is then characterized by an imposed number of hexahedral elements, along the

three Cartesian coordinates x, y and z , within which, the solution is represented in terms

of N-th order Lagrange polynomials interpolants, based on tensor product arrays of Gauss-

Lobatto-Legendre (GLL) quadrature point in each spectral element; the common algebraic

PN /PN−2 scheme is implemented, with N fixed to 7 for velocity and 5 for pressure. In all cases
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numerically examined, the overall length of the full oscillator structure in the x-direction, as

well as the inlet ducts lengths in the y-direction (box 3 and 5), are kept constant and equal

to 80w and 6w , respectively. The inlet channel lengths are fixed to 10w (value in the range

where experimental tests showed insensitivity of the oscillation frequency with Re to the

inlet channel length). All the other characteristic sizes are changed in accordance with the

definition of w , h, s and L associated with the considered microfluidic oscillator geometry.

Macro boxes 2 and 6, originally rectangular, are stretched or not depending on whether or

not the expansion channel is present (s 6= L or s = L). The domain is thus discretized with

a structured multiblock grid consisting of, depending on the geometry analyzed, 32320 (if

s = 8w) or 58880 (if s = 20w) spectral elements. The time-integration is handled with the semi-

implicit method IM/EX, already implemented in Nek5000; the linear terms in equations (2.2)-

(2.3) are treated implicitly adopting a third order backward differentiation formula(BDF3),

whereas the advective nonlinear term in equation (2.3) is estimated using a third order explicit

extrapolation formula (EXT3). The semi-implicit scheme introduces a restriction on the

time step (Karniadakis et al., 1991), therefore an adaptive time-step is set to guarantee the

Courant-Friedrichs-Lewy (CFL) constraint.

2.4 Comparison between experiments and DNS

2.4.1 Dyes, concentration fields

Figure 2.11, 2.12 and 2.13 show the evolution of the dyes concentration field during one

oscillation, with each figure corresponding to the case of an oscillator of specific geometry and

a given flow condition. Figure 2.11 refers to an oscillator geometry made of a simple straight

channel without expansion, similar to the one described in figure 2.2 (w = 100µm, s = 800µm,

L = 800µm, h = 525µm and Re = 60). Figure 2.12 shows an oscillator with an expansion

in the output channel, similar to the one presented in figure 2.3 (oscillator dimensions are

w = 100µm, s = 800µm, L = 2000µm, h = 525µm and Re = 60). Figure 2.13 corresponds to an

oscillator geometry made of a simple straight channel having a large output width (oscillator

dimensions are w = 100µm, s = 2000µm, L = 2000µm, h = 525µm and Re = 50). In all three

figures, images are taken at regular time intervals during one oscillation and compare the

measured and simulated concentration fields. The images obtained experimentally show a

depth-averaged concentration, as they integrate the light passing through the full height of

the microchannels, whereas in the case of the simulation, the images show the concentration

field in the x-y plane of median height (212.5µm from the bottom of the microchannel). All

simulations have been run starting from zero initial conditions.

In all cases, there is a good agreement between the experimental and simulated dyes

concentration fields, with the main flow features being similar for each chosen time step. The

smaller features differ however between experiments and simulations, which may be related

to the fact that the experimental images result from the integration of the light crossing the

full height of the microstructure or to a non-optimal calibration of the Péclet number in the

simulation.
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Figure 2.11 – Evolution of the fluid flow with time during one oscillation. Comparison of
experimental and simulated dye concentration fields in the case of an oscillator of dimensions
w = 100µm, s = 800µm, L = 800µm, h = 525µm at Re = 60. The images are taken at regular
time intervals (from top to bottom, left to right). See movie S5 in the Supplemental Material at
http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.054202.

Figure 2.12 – Comparison of experimental and simulated dye concentration fields in the case of
an oscillator of dimensions w = 100µm, s = 800µm, L = 2000µm, h = 525µm at Re = 60. The
images are taken at regular time intervals (from top to bottom, left to right). See movie S6 in the
Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.054202.
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Chapter 2. Feedback-free microfluidic oscillator with impinging jets

Figure 2.13 – Comparison of experimental and simulated dye concentration fields in the case of
an oscillator of dimensions w = 100µm, s = 2000µm, L = 2000µm, h = 525µm at Re = 50. The
images are taken at regular time intervals (from top to bottom, left to right). See movie S7 in the
Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.054202.

2.4.2 Non-dimensional frequency

In addition to the dyes concentration fields, simulations also provide the non-dimensional

frequency of the self-oscillation phenomenon at the chosen value of the Reynolds number,

expressed by the Strouhal number St = f w
U . Figure 2.14-a-b and c compare the experimen-

tal and simulated values of St , in the case of the three oscillator geometries presented in

figure 2.11, 2.12 and 2.13 respectively. The DNS slightly overestimates the value of the os-

cillation frequency in all cases, however, the results of the simulation are generally close to

the measurements. This little overestimation can be partially attributed to the numerical

inlet velocity profile, which may not exactly represent the experimental profile. In the case of

the oscillator with straight output channels (figure 2.14-a), a deviation between simulations

and experiments can be seen at large values of Re. This is close to the conditions described

in figure 2.2, where the jets stop to alternate regularly and which we linked to the absence

of the expansion in the output channel. In such conditions, the liquid jets strongly interact

with the walls, as the simulated pressure field shows in figure 2.15. This jet-wall interaction

increases with increasing values of Re, and at some point, interferes with the increase of the

self-oscillation frequency, inducing the stop of the alternating motion of the jets observed

experimentally. Apparently, the DNS correctly predicts the interaction of the jets with the

walls, but the ideal conditions described by the simulation do not correctly account for the
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Figure 2.14 – Experimental and numerical non-dimensional oscillation frequency expressed
by the Strouhal number St = f w

U versus the Reynolds number Re. a), b) and c) correspond to
figure 2.11, figure 2.12 and figure 2.13, respectively.

change of frequency occurring experimentally close to this change of flow regime, probably

induced by the small imperfections of the manufactured components and of the dust particles

present in the liquid flows.

Note that this interaction of the jets with the walls does not occur in the case of oscillator

geometries presenting an expansion in the output channel, as the jet’s motion follows the

wall curvature. This could explain the much wider range of stable oscillations, [Rec ,Rei r r ],

observed experimentally for such oscillator geometries.

2.5 Velocity field description

In section 2.4 we provided several comparisons between experimental results and numerical

simulations in terms of dyes concentrations fields and oscillation frequency, showing a good

agreement, which allows us to reasonably use the numerical results in order to investigate the

various velocity fields more in depth.

2.5.1 Steady configuration

As mentioned, all the simulations were started from zero initial conditions, with the inlet

velocity profile of figure 2.9 constantly enforced at the two inlets. After a first transient required

for the flow to invade the whole cavity domain, a stationary configuration firstly manifests

itself. This steady flow is always observed. If the Reynolds number is higher than the instability
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Chapter 2. Feedback-free microfluidic oscillator with impinging jets

Figure 2.15 – a) Simulated dye concentration and b) pressure fields (slice x-y at z = 2.625),
showing the jet interaction with the walls occurring in the case of oscillators having straight
output channels (w = 100µm, s = L = 800µm, h = 525µm at Re = 60). The maximum pressure
is always encountered at the domain’s center, where the two jets face each other. Nevertheless,
in b) we observe two regions of high pressure (highlighted in dashed black lines) occurring
when the jets interact with the solid walls and whose intensity increases as Re in increased.

threshold, it is observed for a certain time interval, after which the self-sustained oscillations

start with the periodic flow configuration discussed in the previous sections. On the contrary,

if Re is set below this threshold, then the flow remains stationary indefinitely.

This stationary configuration is shown in figure 2.16 for the microfluidic oscillator based on

straight output channels (w = 100µm, s = 800µm, L = 800µm, h = 525µm at Re = 32).

From figure 2.16-b we observe two large recirculation regions close to the channel inlets

and resulting from the presence of walls, where a no-slip boundary condition is enforced.

The three-dimensional shape of these recirculation regions can be clearly seen in figure 2.16-

d . Heading towards the channel outlets, the flow approaches a fully developed flow having

substantially null uy and uz velocity components. From figure 2.16-c and d we also note

two regions of vortical motion in the collision region of the jets; this is due to the constant

pressure that the two jets exert against each other; indeed, the pressure field (not represented

in figure 2.16) is characterized by a high-pressure region spatially located where the jets collide.

As the jets face each other, the fluid tends to escape in all directions, thus part of the fluid

escaping along the z-direction meets the lateral solid walls at z = 0 and z = h, which push

back the fluid, leading to this vortical motion.

Figure 2.17 is the equivalent of figure 2.16, but in the case of the oscillator with an expansion

in the output channel (w = 100µm, s = 800µm, L = 2000µm, h = 525µm and at Re = 30).

This configuration is similar to the one presented in figure 2.16 with respect to the value of

Re and the spacing s. Now the presence of an expansion region in the output channel leads to
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Figure 2.16 – a) Dyes concentration and b, c, d , e) stationary velocity field numerically ob-
served before the self-sustained oscillation start in the case of the microfluidic oscillator of
figure 2.11, w = 100µm, s = 800µm, L = 800µm, h = 525µm at Re = 32. b) Filled 2D contour
plot for ux and black arrow for the in-plane velocity vector,

{
ux ,uy

}
. c) Filled 2D contour plot

for uz and black arrow for the in-plane velocity vector, {ux ,uz }. d) Filled 2D contour plot of
the out of plane velocity ux and black arrow for the in-plane velocity vector,

{
uy ,uz

}
. Slices’

sizes are not to scale. Arrows provide a qualitative representation only. e) Filled 2D contour
plot for uy and black arrow for the in-plane velocity vector,

{
uy ,uz

}
. Slice represented in b), c)

and e) correspond to the three main planes of symmetry (indicated in figure).

the formation of two much more elongated recirculation regions along the x-direction, which

follow the curvature of the cavity (figure 2.17-b). Because of the cavity’s curvature, the vertical

velocity within these recirculation regions is larger when compared to figure2.16-b. Planes

x−z at y = 0 for uz and y −z at x = 0 for uy are not shown here since they are qualitatively and

quantitatively close to those of figure 2.16.

2.5.2 Self-oscillating configuration

When the Reynolds number is increased above the instability threshold, i.e. Re > 23 for the

microfluidic oscillator of figure 2.16, the two jets start to oscillate regularly for a wide range

of Re. As already mentioned in section 2.2, the jets regularly collide against each other and

switch sides in a periodic motion. At each collision, a pair of three-dimensional vortices is

emitted and advected towards the channel outlets, as can be observed in figure 2.18-b and c.

The two stable vortical regions represented in figure 2.16 and figure 2.17 are now alternately

pushed up and down owing to the continuous switch of side of the oscillating jets, as show

in figure 2.18-b and d . A qualitatively similar flow evolution in time is recognized for the

microfluidic oscillator with the expansion channel, meaning the physical mechanism which
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Figure 2.17 – a) Dyes concentration and b, c, d , e) stationary velocity field numerically ob-
served before the self-sustained oscillation start in the case of the microfluidic oscillator of
figure 2.12, w = 100µm, s = 800µm, L = 2000µm, h = 525µm at Re = 30. b) Filled 2D contour
plot for ux and black arrow for the in-plane velocity vector,

{
ux ,uy

}
. c) Filled 2D contour plot

of the out of plane velocity ux and black arrow for the in-plane velocity vector,
{
uy ,uz

}
. Slices’

sizes are not to scale. Arrow provides a qualitative representation only.

breaks the symmetry of the stationary configuration and leads to the unsteady periodic motion

is the same, while the expansion channel only contributes to stabilize the regular oscillations

up to a much higher Re.

2.5.3 Perturbation fields

As mentioned in section 2.5.1, the steady configuration, which is linearly stable for Re < Rec ,

is transiently observed even for Re > Rec , before the amplitude of the oscillating perturbation,

which grows exponentially, becomes large enough for the self-sustained oscillations to settle

into a limit cycle. In the spirit of the linear global stability analysis, the total velocity and

pressure fields in the vicinity of the threshold can be decomposed as the sum of a steady base

flow and a time-dependent perturbation field:

u
(
x, y, z, t

)= ub f
(
x, y, z

)+up
(
x, y, z, t

)
, (2.5)

p
(
x, y, z, t

)= pb f
(
x, y, z

)+pp
(
x, y, z, t

)
. (2.6)

The total velocity field, u, and pressure field, p, extracted from the DNS can thus be used to

separate the corresponding perturbation fields, up and pp , from the base-flow fields, ub f and
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Figure 2.18 – Snapshot of a) dyes concentration and b, c, d , e) unsteady velocity field nu-
merically observed once the self-sustained oscillations reached the limit cycle in the case of
the microfluidic oscillator of figure 2.11, w = 100µm, s = 800µm, L = 800µm, h = 525µm
at Re = 60. b) Filled 2D contour plot for ux and black arrow for the in-plane velocity vector,{
ux ,uy

}
. c) Filled 2D contour plot for uz and black arrow for the in-plane velocity vector,

{ux ,uz }. d) Filled 2D contour plot of the out of plane velocity ux and black arrow for the
in-plane velocity vector,

{
uy ,uz

}
. e) Filled 2D contour plot for uy and black arrow for the

in-plane velocity vector,
{
uy ,uz

}
. Slices represented in b), c) and e) correspond to the three

main planes of symmetry (indicated in the figure). Slices’ sizes are not to scale. Arrows provide
a qualitative representation only.

pb f , and highlight where the origin of the regular oscillations is located. Let us consider, i.e.,

the microfluidic geometry of figure 2.16 and 2.18. A series of numerical simulations, starting

from zero initial conditions, were performed in the range Re = 18−25 (the threshold, Rec , for

the case here considered is approximatively 23). Figure 2.19 -a) and b) show the value of the of

the x- an y-velocity components at the coordinate
(
x, y, z

)= (3,0,2.625). Since the oscillating

flow configuration breaks the antisymmetry of the y-velocity component with respect to the

x-z plane in y = 0, the y-component is then monitored (see figure 2.19 -b)) in time to establish

at which Re and time-instant the oscillations start to be visible.

As shown in figure 2.19 -b), the flow does not exhibit any oscillations below Rec , where only

the linearly stable base-flow is observed. For Re = 25 > Rec , oscillations start to grow from zero

with a very small growth rate, given the vicinity of the marginal stability. In such conditions,

the stationary base-flow velocity and pressure fields, ub f and pb f , can be identified where the

perturbation is still very small, i.e., at t = 400, where the order of magnitude of the perturbation

is lower than 10−10. Subtracting this base flow from the total flow, i.e. at t = 1375 in figure 2.19,

allows to isolate the growing perturbation, as presented in figure 2.20.

The analysis of the perturbation velocity fields allows us to locate the origin of the oscillations
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Figure 2.19 – a) Horizontal, ux , and b) vertical, uy , velocity components at (x, y, z) = (3,0,2.625).
The plane x−y at z = h/2 is a plane of antisymmetry for the perpendicular velocity component,
uz |z=h/2 = 0. b) The antisymmetry of uy with respect to the plane x − z at y = 0 is broken for
Re = 25, which is slightly higher than the threshold value, Rec ≈ 23. Note that the resulting
Strouhal number agrees well with the experimental one presented in figure 2.14 -a), even if
the limit cycle has not been reached yet.

in the central region, where the jets collide and curve towards the output channels. Well-

defined counter-rotating vortical structures, whose extension in the z-direction covers the

entire channel height h and which are separated by a wavelength λ suggesting a correlation

with the distance separating the inlets, s, are generated and advected downstream (left and

right) by the base-flow (see figure 2.20-a) and b)). The z-velocity component is significantly

smaller than the other two components in the central region and negligible in the rest of the

domain, as shown in figure 2.20-c) and d).

2.5.4 Discussion

Despite the insight brought by the numerical simulations to visualize the total velocity and

pressure fields, and the perturbation fields, no physical mechanism could be precisely identi-

fied, from which these self-sustained oscillations would originate. Several plausible candidates

can be tentatively identified. Hyperbolic stagnation points and lines are well known to be

unstable (Ortiz and Chomaz, 2011; Sipp et al., 1999), although they often lead to static bifur-

cations (Fani et al., 2013). The existence of recirculation regions is quite similar to sudden

expansion flows which are also known to become statically unstable (Fani et al., 2012). But

these recirculation regions also form an intense shear layer, which could possibly become the
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Figure 2.20 – a)-b) Filled contours of the x and y perturbation velocity components extracted
for t = 1375 in figure 2.19-b) for the microfluidic oscillator with w = 100µm, s = 800µm,
L = 800µm, h = 525µm at Re = 25. The black arrows represent the orientation of the in-plane
velocity vector,

{
ux ,uy

}
. c) Filled contours for uz in the x − z slice at y = 0. Slices’ sizes are

not to scale. Arrows provide a qualitative representation only. d) Filled contours of the out of
plane velocity ux and black arrows for the in-plane velocity vector

{
uy ,uz

}
in the y − z slice at

x = 0.

source of a Kelvin-Helmholtz instability. Indeed, the structure of the perturbation velocity

field in the left and right channels shown in figure 2.20 is typical of sinuous shear instabilities.

In order to translate into a global instability, this shear layer instability would either need to

be of absolute nature, possibly because of the presence of nearby walls, known to enhance

absolute instability in confined shear flows (Biancofiore and Gallaire, 2011; Healey, 2009;

Juniper, 2006; Rees and Juniper, 2010). Even if this shear layer instability were to be convective,

other feedback mechanisms, as the ones investigated in Villermaux (Villermaux et al., 1993;

Villermaux and Hopfinger, 1994) could also ensure the global, sefl-sustained nature of the

observed oscillations. In order to get further insight, an exhaustive stability analysis of the

present flow needs to be conducted, which could locate the wavemaker region and clearly

identify the governing instability mechanisms at stake.

2.6 Comments and conclusions

Pulsatile liquid flows showing a self-oscillatory behaviour were studied at the microscale.

Experimentally, oscillating water jets were generated in microfabricated silicon cavities, from

steady and equal inlet flows and without external stimuli. They were colored and imaged using

a microscope and a high-speed camera. The oscillators we described here can be categorized
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as based on jet interactions: Two facing jets first bifurcate in opposite directions and later come

back towards one another, collide and switch sides, with a very regular temporal periodicity.

Direct numerical simulations were performed to solve the unsteady incompressible three-

dimensional Navier-Stokes equations in the studied geometries, using a spectral element

method. The Nek5000 was used to perform the simulation. Experiments and simulations

show a good agreement for all studied oscillators, for both the dye concentration fields and

the non-dimensional oscillation frequency.

The self-oscillation phenomenon starts at a threshold, in terms of Reynolds number, that

depends on the geometrical parameters of the oscillator cavity. Threshold values close to

Re = 20 were observed for many of the studied geometries.

When the oscillator is based on simple straight crossing channels, the self-oscillation phe-

nomenon can be observed for a limited range of values of the Reynolds number, since when

Re exceeds a second threshold Rei r r , the flows stop to switch sides regularly and periodicity

is lost. The corresponding simulated pressure field evolution shows that the jets strongly

interact with the output channel walls in this case, which induces this change of flow regime.

When the output channel is no longer a simple straight channel but is supplemented by an

expansion, this interaction with the walls is no longer occurring, as the jet’s motion follows the

wall curvature. This leads to a much wider range of stable oscillations. Experimentally, the

impinging jets were observed to switch sides regularly until the pumps used could not deliver

higher flow rates and stalled (for Re = 630).

The evolution of the self-oscillation frequency was studied when the main geometric pa-

rameters of the oscillator cavity were changed. A linear dependence between the average flow

velocity and the parameter obtained by multiplying the oscillation frequency and the distance

between the jets was observed, which underlines the importance of the distance separating

the jets and the jet velocity in the oscillation phenomenon.

The simulated velocity fields for the various studied oscillator cavities provide additional

information on the flow behaviour, showing how vortices evolve in the flow at the onset of

self-oscillations.

Finally, the oscillator cavities we studied can also be classified as “static mixers” as they

provide a rearrangement of the inlet flows without moving parts or external stimuli. For values

of Re close to the onset of the self-oscillation phenomenon, a regular temporal rearrangement

of the inlet flows was observed in the output channels, but for larger values of Re, the fluid

flow in the output channel remains segmented, with only limited mixing. The studied micro-

devices cannot consequently be considered for efficient mixing at the microscale, however,

cavities of adapted geometry can certainly be devised to take advantage of the self-oscillating

phenomenon for the creation of efficient micromixers, these will additionally show a relatively

low power dissipation as the output channels are of large dimensions compared to the input

channels.

As a next step, a thorough linear stability analysis should enable the identification of the

governing destabilization mechanism, and determine if this self-sustained oscillation results

from the instability of the hyperbolic stagnation line, from the symmetry breaking of the

recirculation regions or from the intense shear layers. Additionally, a subsequent weakly
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nonlinear analysis, which we could not explore numerically in this work, so as to maintain a

reasonable computational cost, could confirm the supercritical nature of the bifurcation.

Lastly, since flows in cross-slot geometries are typically known to show hysteretic behavior

for certain combinations of the characteristic geometrical parameters (Burshtein et al., 2019),

a weakly nonlinear analysis could also allow to numerically perform a parametric analysis and

investigate possible interactions of the self-sustained regime with eventual non-oscillating

symmetry breaking conditions, in particular when the gap separating the two facing inlets, s,

and the height, h, approach the inlet width, w .

2.7 Appendix

2.7.1 Self-sustained oscillations in more complex jet networks

In this short Appendix we report the experimental observation of the self-oscillation phe-

nomenon in other geometries involving more complex jet networks, as that presented in

figure 2.21, with three colliding jets. Similarly to the case with two inlets, the three jets oscillate

and switch sides regularly. The physical mechanism at play in the self-sustained oscillations

observed here is still unclear and an in-depth stability analysis needs to be conducted to

elucidate it.

Figure 2.21 – Evolution of the dye concentration fields with time in a micro-oscillator structure
with 3 inlet channels, for Re = 32. The images are taken at regular time intervals during one
oscillation (from left to right, top to bottom). The jets width is 100µm, the three jets are placed
at 120◦ angle on a circle of 800µm in diameter, the output channels width is 2000µm, the
thickness of the device is 525µm. These images are associated with a video winner of the 2019
American Physical Society’s Division of Fluid Dynamics (DFD) Gallery of Fluid Motion Award
for work presented at the DFD Gallery of Fluid Motion. The original video is available online
at the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2019.GFM.V0036.
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3 Impinging planar jets: hysteretic
behaviour and origin of the self-
sustained oscillations

Remark: this chapter is largely inspired by the publication of the same name.

A. Bongarzone1, A. Bertsch2, P. Renaud2, F. Gallaire1

1 Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne,

Lausanne CH-1015, Switzerland
2 Microsystems Laboratory LMIS4, École Polytechnique Fédérale de Lausanne, Lausanne

CH-1015, Switzerland

Journal of Fluid Mechanics, 913, A51 (2021)

The experimental and numerical investigation presented in Chapter 2 (Bertsch et al., 2020a)

describes the self–sustained oscillations induced by the interaction of two impinging jets in

microfluidic devices. While the oscillatory regime induced by interacting jets has been studied

in detail, the physical mechanism behind these oscillations remains still undetermined. In par-

allel, but for a different range of aspect ratios, Burshtein et al. (2019) experimentally found that

hysteretic behaviours due to multiple symmetry–breakings can appear in cross–slot flows. The

present work focuses on two–dimensional oscillators subjected to a fully developed inlet flow,

as in Bertsch et al. (2020a) and in contradistinction with Pawlowski et al. (2006), who focused

on plug inlet flow. The linear global stability analysis performed confirms the existence of an

oscillating global mode, whose spatial structure qualitatively coincides with the one computed

numerically by Bertsch et al. (2020a), suggesting that the physical mechanism from which

the oscillations would originate is predominantly two–dimensional. The mode interaction of

the oscillating mode with a steady symmetry–breaking mode is examined making use of the

weakly nonlinear theory, which shows how the system exhibits hysteresis in a certain range of

aspect ratios. Lastly, sensitivity analysis is exploited to identify the wavemaker associated with

the global modes, whose examination allows us to spot the core of the symmetry–breaking

instability at the stagnation point and to identify the Kelvin–Helmholtz instability, located in

the jets interaction region, as the main candidate for the origin of the oscillations observed in

both two–dimensional and three–dimensional fluidic devices.
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The Chapter is organized as follows. In section 3.1 the flow configuration and the governing

equations describing the fluid motion inside a two–dimensional microfluidic cavity with an

imposed fully developed inlet flow are introduced. In section 3.2 the numerical approaches

adopted are described. In section 3.3 the steady symmetric base–flow is determined, while

the tools of the linear global stability analysis are employed to derive the associated stability

chart, where the two control parameters, Reynolds number and aspect ratio are varied in a

wide range. The nonlinear global mode interaction emerging from the stability analysis is then

discussed in section 3.4 making use of the weakly nonlinear theory and the multiple scale

technique. The resulting bifurcation diagram is validated in section 3.5. Sensitivity analyses are

carried out in section 3.6, which is devoted to the understanding of the physical mechanism

behind the various of instability observed. We finally analyze the effect of a different inlet

velocity profile by applying the weakly nonlinear model to the flow case of plug inlet profiles,

revisiting the analysis of Pawlowski et al. (2006). Conclusions are presented in section 3.8.

3.1 Flow configuration and governing equations

Let us consider the two–dimensional X–junction (also called cross–junction) presented in

figure 3.1. An incompressible fluid with density ρ and dynamic viscosity µ enters the device

through two facing inlets of width w , denoted by ∂Ωi , and it is allowed to flow out along

the two symmetric arms of the main lateral channel. The two symmetric inlets mimic the

action of two inlet channels separated by a distance s to create two facing jets when they

reach the lateral channel. Outlets, ∂Ωo , are provided at both ends of the channel, at a distance

Lout , far away from the intersection. In figure 3.1, Ω denotes the fluid domain, while U is

the average velocity of the fluid at the inlet channels. Taking advantage of the geometric

symmetries of this microfluidic oscillator, the computational domain can be reduced to a

quarter of the full domain, with y– and x–axes of symmetry ∂Ωv and ∂Ωh respectively. Proper

boundary conditions for the fluid problem, listed in sections section 3.3 and section 3.4, are

then imposed at ∂Ωv and ∂Ωh . As sketched in figure 3.1, a fully developed flow is imposed at

the inlets at y =±s/2. This assumption, removing the influence of the inlet channel length,

allows us to reduce the number of geometrical parameters, simplifying the parametric analysis.

The introduction of the following dimensionless variables (the star denotes the dimensional

quantities),

x = x∗

w
, y = y∗

s
, u = u∗

U
, v = v∗

U
, p = p∗

ρU 2 , t = t∗

w/U
. (3.1)

leads to the definition of the aspect ratio AR = s/w and of the nabla operator, ∇AR =
{
∂
∂x , 1

AR
∂
∂y

}T
.

The fluid motion within the microfluidic oscillator cavity,Ω, is governed by the two–dimensional

incompressible Navier–Stokes equations, whose non–dimensional form reads:

∂u

∂t
+ (u ·∇AR )u+∇AR p − 1

Re
∆AR u = 0, (3.2)
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Figure 3.1 – Microfluidic oscillator cavity with straight output channels explored in this work.
Notation: inlet width w , gap size s, overall length 2Lout , walls ∂Ωw , outlets ∂Ωo , x–axis of
symmetry at y = 0, ∂Ωh and y–axis of symmetry at x = 0, ∂Ωv . U denotes the mean value of
the velocity profile imposed at the inlets, ∂Ωi .

∇AR ·u = 0, (3.3)

In (3.2)-(3.3), u = {u, v}T is the velocity field, p is the pressure field and Re = ρU w/µ is the

Reynolds number. The no-slip boundary condition is imposed at the rigid solid wall, ∂Ωw ,

u|∂Ωw = 0, while an outflow boundary condition is imposed at the outlet, ∂Ωo ,
(−pI+ 1

Re ∇AR u
)·

n = 0, where n is the unit normal to ∂Ωo and I is the identity tensor. At the inlet, ∂Ωi , a fully

developed parabolic velocity profile is imposed:

u|∂Ωi =
{

0,−3

2

(
1−4x2)}T

. (3.4)

3.2 Numerical approach

Two different numerical approaches are adopted in the present work. The numerical scheme

used to derive the global stability chart, section 3.3, to analyze the weakly nonlinear global

mode interaction, section 3.4, and to perform sensitivity analysis, section 3.6, is a finite

element method based on the FreeFem++ software (Hecht et al., 2011). The mesh refinement

is controlled by the vertex densities on both external and internal boundaries. Regions, where

the mesh density varies, are depicted in figure 3.2. The unknown velocity and pressure fields{
u, p

}T are spatially discretized using a basis of Taylor–Hood elements (P2, P1). The matrix

inverses are computed using the UMFPACK package (Davis and Duff, 1997). The steady base–

flow is obtained by the classic iterative Newton method, while eigenvalue calculations are

performed using the ARPACK package (Lehoucq et al., 1998). For other details see Meliga

et al. (2009a); Meliga and Gallaire (2011); Meliga et al. (2012a); Sipp and Lebedev (2007). With

reference to figure 3.2, five different meshes, denoted M1–M5, exhibiting different boundary

vertex densities, ni , have been used to assess convergence in the numerical result. In the

following, we will focus on the mesh M5 to present all results. A detailed convergence analysis

of meshes M1–M5 is given in Appendix 3.9.1.
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The results obtained from the weakly nonlinear investigation are then compared to direct

numerical simulations (DNS) in section 3.5. The open–source code Nek5000 (Lottes et al.) has

been used to perform the DNS. The spatial discretization is based on the spectral element

method. The full two-dimensional geometry (without imposing any symmetry conditions) is

divided into macro boxes; each macro box is then characterized by an imposed number of

quadrilateral elements, along the two Cartesian coordinates x and y , within which the solution

is represented in terms of N-th order Lagrange polynomials interpolants, based on tensor

product arrays of Gauss–Lobatto–Legendre (GLL) quadrature point in each spectral element;

the common algebraic PN /PN−2 scheme is implemented, with N fixed to 7 for velocity and

5 for pressure. The domain is thus discretized with a structured multiblock grid consisting

of 4920 spectral elements, which largely guarantees convergence. The time–integration is

handled with the semi-implicit method, already implemented in Nek5000; the linear terms

in equations (3.3)-(3.2) are treated implicitly adopting a third order backward differentiation

formula (BDF3), whereas the advective nonlinear term is estimated using a third order explicit

extrapolation formula (EXT3). The semi-implicit scheme introduces a restriction on the

time step (Karniadakis et al., 1991), therefore an adaptive time-step is set to guarantee the

Courant-Friedrichs-Lewy (CFL) constraint. See Bertsch et al. (2020a) for more details.

Figure 3.2 – Computational domain considered in the global stability analysis, weakly non-
linear study and sensitivity analysis. w = 1, L2 = 5w , L3 = 20w , Lout = 70w and s = 1. The
number of elements per unit length used for the various line with different thicknesses: n1, n2,
n3 and n4.

3.3 Steady base–flow and linear global stability analysis

The flow field q = {
u, p

}T is decomposed in a steady base–flow, q0 = {
u0, p0

}T and a small

perturbation q = {
u1, p1

}T , of infinitesimal amplitude ε.
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3.3.1 Steady base–flow

The base flow, q0 =
{

u0, p0
}T , is sought as a steady solution of the nonlinear Navier–Stokes

equations,

(u0 ·∇AR )u0 +∇AR p0 − 1

Re
∆AR u0 = 0, ∇AR ·u0 = 0, (3.5)

with the boundary conditions,

u0|∂Ωw
= 0,

(
−p0I+ 1

Re
∇AR u0

)
·n

∣∣∣∣
∂Ωo

= 0, u0|∂Ωi
=

{
0,−3

2

(
1−4x2)}T

. (3.6)

The steady base–flow velocity fields, u0
(
x, y

)
and v0

(
x, y

)
, are characterized by the following

symmetry and antisymmetry properties with respect to the y– and x–axes of symmetry, ∂Ωv

and ∂Ωh ,

u0
(
x, y

)= u0
(
x,−y

)=−u0
(−x, y

)
, (3.7)

v0
(
x, y

)=−v0
(
x,−y

)= v0
(−x, y

)
, (3.8)

which translate in the following boundary conditions imposed at ∂Ωh and ∂Ωv :

v0|∂Ωh
= 0,

∂u0

∂y

∣∣∣∣
∂Ωh

= 0, u0|∂Ωv
= 0,

∂v0

∂x

∣∣∣∣
∂Ωv

= 0. (3.9)

An approximate guess solution satisfying the required boundary conditions is first obtained by

solving the associated Stokes problem, where the advective term is neglected. The solution of

the steady nonlinear equation, q0, is then obtained using an iterative Newton method (Barkley,

2006; Barkley et al., 2002). Here the iterative process is carried out until the L2– norm of the

residual of the governing equations for q0 becomes smaller than 1×10−12.

Figure 3.3 shows the symmetric spatial structure of the magnitude of the steady velocity

−25 −20 −15 −10 −5 0 5 10 15 20 25
−3.49

0

3.49

x

y

0

0.5

1

1.5

Figure 3.3 – Steady base–flow for Re = 22.65 and AR = 6.98. Color map: magnitude of the
velocity field. White lines: streamlines associated with the steady base–flow. Red dashed lines:
boundaries of the four symmetric recirculation regions. The solution in the full flow domain is
rebuilt using the symmetry properties. Only the central portion, x ∈ [−25,25], is shown here.

field for Re = 22.65 and AR = 6.98. As observed in figure 3.3, the y–velocity component is

dominant in the central region, near the two inlets. The two facing jets collide and the fluid
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is repulsed and advected downstream, towards the two outlets. A stagnation point is thus

present at x = y = 0 owing to the symmetry properties. We also observe the presence of four

symmetric recirculation regions close to the channel inlets and resulting from the presence

of walls, where a no-slip boundary conditions is enforced. Heading towards the channel

outlets, the flow approaches a fully developed flow. The present base–flow configuration is

qualitatively comparable to the one recently observed in the three–dimensional experimental

and numerical investigations carried out by Bertsch et al. (2020a).

3.3.2 Global eigenmode analysis

At leading order in ε, q1 =
{

u1, p1
}T is an unsteady solution of the linearized Navier–Stokes

equations around the ε0–order solution (steady base–flow):

∂u1

∂t
+ (u0 ·∇AR )u1 + (u1 ·∇AR )u0 +∇AR p1 − 1

Re
∆AR u1 = 0, ∇AR u1 = 0, (3.10)

with the boundary conditions,

u1 ·n|∂Ωw
= 0,

(
−p1I+ 1

Re
∇AR u1

)
·n

∣∣∣∣
∂Ωo

= 0, u1|∂Ωi
= 0. (3.11)

The system can be written in a compact form as:

(B∂t +A )q1 = 0, (3.12)

where the matrices A and B read:

A =
(
CAR (u0, · )− 1

Re∆AR ∇AR

∇T
AR 0

)
, B =

(
I 0

0 0

)
. (3.13)

being I the identity matrix and CAR the ε0–order symmetric advection operator, CAR (a,b) =
(a ·∇AR )b+ (b ·∇AR )a. We thus look for a first order solution which takes the normal mode

form

q1 = q̂1e(σ+iω)t +c.c., (3.14)

where c.c. denotes the complex conjugate. Substituting (3.14) in (3.12) the ε–order system

reduces to the generalized eigenvalue problem:

[(σ+ iω)B+A ] q̂1 = 0. (3.15)

In figure 3.4 the eigenvalues are displayed for different Reynolds numbers and aspect ratio

values. In order to build the full eigenvalue spectrum using the reduced computational

domain, we explored all the possible symmetries and antisymmetries of the perturbation

velocity field u1 by imposing different axis boundary conditions analogous to (3.9). From

the stability chart displayed in the (Re, AR) plane of figure 3.4-(b) it emerges that the steady
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Figure 3.4 – (a) Eigenvalues displayed in the (σ,ω) plane for Re = ReC2 = 22.65 and AR =
ARC2 = 6.98. A pair of complex eigenvalues, denoted by B together with a pure real eigenvalue,
A, are found to be simultaneously marginally stable for the present combination of parameters.
Eigenvalues on the left side of the spectrum are not physical and correspond to spurious
modes, whose presence is due to the influence of outlet boundary conditions. The position
of eigenvalues A, B and C is not affected by Lout in the range Lout ∈ [30,100]. (b) Marginal
stability curves corresponding to the modes A and B and to a second steady mode C as
a function of Re and AR. A codimension–2 point, C2, is found for Re = ReC2 = 22.65 and
AR = ARC2 = 6.98.

base–flow is stable below a critical aspect ratio, whose value is found to be approximately

AR ≈ 1.75 for a Reynolds number Re = 230 (maximum value investigated in the present study).

Analogously, the base–flow is stable below a Reynolds number Re ≈ 8 for an aspect ratio

AR = 70 (maximum value considered here). As depicted in figure 3.4-(b) a codimension–2

point, C2, is found for Re = ReC2 = 22.65 and AR = ARC2 = 6.98, where two different global

modes, mode A, non–oscillating, and mode B , oscillating and characterized by a Strouhal

number StC2 = f w/U =ω/2π= 0.016, are simultaneously marginally stable. This evidence

motivates the weakly nonlinear analysis presented in section 3.4, which aims to investigate

the interaction between modes A and B . The presence of a second steady mode, denoted

by C , is also observed. From the linear analysis, a second codimension–2 point appears

between the oscillating mode B and the second steady mode C , however at a parameter

setting (Re, AR) = (62,4), mode A is far above its threshold, which jeopardizes the use of the

linear and weakly nonlinear stability tools. Further considerations about the effect of the

second steady mode C are provided in Appendix 3.9.2, while hereinafter we will focus on

global modes A and B and their global interactions.

As a side remark to figure 3.4-(b), an extrapolation of the marginal stability curve associated

to mode C suggests that it would cross the curve of mode A for Re > 100. Nevertheless, the

eigenvalue calculation performed in the range Re ∈ [100,230] (not visible in 3.4-(b)), showed

that for Re = 230 and AR = 1.75 the stability boundary is still delimited by mode A (C does

not cross A). Indeed the two curves for modes A and C seem to approach two asymptotes (as

well as the curve for mode B), whose actual existence could be confirmed by higher Reynolds

calculations, which are however beyond the scope of this work.
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Figure 3.5 – Spatial structure of the x– and y–velocity components associated with the direct
global modes A and B at the codimension–2 point, C2 =

(
ReC2 , ARC2

)= (22.65,6.98). (a), (c) x–
and y–velocity fields corresponding to the direct steady mode A. (b), (d) Real part of the x–
and y–velocity fields corresponding to the direct oscillating mode B .

The symmetry properties which characterized the two global modes A and B , reading

u A
1

(
x, y

)=−u A
1

(
x,−y

)=−u A
1

(−x, y
)

, v A
1

(
x, y

)= v A
1

(
x,−y

)= v A
1

(−x, y
)

, (3.16)

uB
1

(
x, y

)=−uB
1

(
x,−y

)= uB
1

(−x, y
)

, vB
1

(
x, y

)= vB
1

(
x,−y

)=−vB
1

(−x, y
)

, (3.17)

lead to the following axis boundary conditions:

u A
1

∣∣
∂Ωh

= 0,
∂v A

1

∂y

∣∣∣∣∣
∂Ωh

= 0, u A
1

∣∣
∂Ωv

= 0,
∂v A

1

∂x

∣∣∣∣∣
∂Ωv

= 0, (3.18)

uB
1

∣∣
∂Ωh

= 0,
∂vB

1

∂y

∣∣∣∣∣
∂Ωh

= 0, vB
1

∣∣
∂Ωv

= 0,
∂uB

1

∂x

∣∣∣∣∣
∂Ωv

= 0. (3.19)

For a given global mode, q̂1, we also compute the corresponding adjoint global mode, q̂†
1,

which will be used in section 3.4 and which satisfies the adjoint eigenvalue problem,[
(σ− iω)B† +A †

]
q̂†

1 = 0. (3.20)

where A † and B† are the adjoint operators of the linear operator A and the mass matrix B,

obtained by integrating by parts system (3.10).

A † =
(
C †

AR (u0, · )− 1
Re∆AR −∇AR

∇T
AR 0

)
, B† =

(
I 0

0 0

)
. (3.21)

Here C †
AR (a,b) is the adjoint advection operator, which is not symmetric and which reads

C †
AR (a,b) =− (a ·∇AR )T b+ (b ·∇AR )a. The adjoint boundary conditions are defined so that all

boundary terms arising from the integration by parts are nil. Thus we obtain,

u†
1

∣∣∣
∂Ωw

= 0, (u0 ·n) û†
1 +

(
p†

1I+ 1

Re
∇u†

1

)
·n

∣∣∣∣
∂Ωo

= 0, u†
1

∣∣∣
∂Ωi

= 0, (3.22)
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Figure 3.6 – Spatial structure of the x– and y–velocity components associated with the direct
and adjoint global modes at the codimension–2 point, C2 =

(
ReC2 , ARC2

)= (22.65,6.98). (a),
(c) x– and y–velocity fields corresponding to the adjoint steady mode A. (b), (d) Real part of
the x–and y–velocity fields corresponding to the adjoint oscillating mode B .

u A†
1

∣∣∣
∂Ωh

= 0,
∂v A†

1

∂y

∣∣∣∣∣
∂Ωh

= 0, u A†
1

∣∣∣
∂Ωv

= 0,
∂v A†

1

∂x

∣∣∣∣∣
∂Ωv

= 0, (3.23)

uB†
1

∣∣∣
∂Ωh

= 0,
∂vB†

1

∂y

∣∣∣∣∣
∂Ωh

= 0, vB†
1

∣∣∣
∂Ωv

= 0,
∂uB†

1

∂x

∣∣∣∣∣
∂Ωv

= 0. (3.24)

We checked a posteriori that both direct and adjoint problems have an identical spectrum and

the direct and adjoint modes satisfy the bi–orthogonality property (see Meliga et al. (2009a)).

Figures 3.5 and 3.6 show the spatial structure of the velocity fields along the x– and y–axis

associated with the direct and adjoint global modes A and B respectively. While the direct

modes are normalized using the value of the y–velocity field, v̂1, in a generic grid point, i.e.(
x, y

)= (0.5,0), the adjoint modes are normalized such that < q̂†
1,Bq̂1 >= 1, where <,> is the

inner product defined by < a,b >= ∫
Ωa∗ ·bdΩ, the star ∗ denotes the complex conjugate and ·

indicates the canonical hermitian scalar product in Cn . This normalization will simplify the

expression of the various coefficients derived in section 3.4. In figure 3.5-(b) and (d) the real

part velocity components of the oscillating mode along the x– and y–axis are represented.

Their spatial structure is qualitatively analogous to the one recently presented in the three–

dimensional study performed by Bertsch et al. (2020a), which confirms that this kind of

instability arises in both the two–dimensional and three–dimensional problems for proper

combinations of control parameters, Re and AR, and which suggests that the same physical

mechanism is behind the origin of the self–sustained oscillations regime. As mentioned by

Bertsch et al. (2020a), the structure of the perturbation velocity fields of mode B in the left

and right output channels and their well defined wave–length is typical of sinuous shear

instabilities, like the famous one characterizing the unsteady flow past a circular cylinder

(Barkley, 2006; Ding and Kawahara, 1999; Sipp and Lebedev, 2007). From the analysis of the

corresponding adjoint mode (see figure 3.6-(b) and (d)), we see that the spatial structure of

the adjoint is localized in the central region, near the two inlets. In classic shear instabilities

of open flow, a downstream localization of the global mode and an upstream localization of

the adjoint global mode resulting from the convective non-normality of the linearized Navier–
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Stokes operator (Chomaz, 2005) is observed. Identifying two downstream directions towards

the outlets and two upstream directions corresponding to the inlets, a similar characteristic

is found. This evidence motivates the detailed investigation, presented in section 3.6, of the

nature of this instability, which, from the knowledge of the authors, remained undetermined

so far.

Concerning the steady global mode A (see figure 3.5-(a) and (c)), it represents a steady

symmetry–breaking condition with respect to the x–axis of symmetry. Given the symmetries

of mode A, this steady instability corresponds to two possible new steady configurations (bi–

stability), symmetric with respect to the x–axis. It leads to a positive off–set of the stagnation

point above the x–axis (respectively a negative off–set below the x–axis) in the y–direction (at

x = 0); the two recirculation regions above (respectively below) the axis become smaller than

the two below (respectively above) the axis. The corresponding adjoint mode (see figure 3.6-(a)

and (c)) maintains a structure similar to the one of the direct mode.

The existence of a steady symmetry–breaking global mode and an oscillating global mode,

which can be unstable in different regions of a stability map is also qualitatively consistent

with the numerical analysis proposed by Pawlowski et al. (2006), who examined the same

2D–configuration with the only difference that a plug inlet profile was considered (see section

section 3.7 for further comments about the influence of a plug inlet velocity profile).

3.4 Weakly nonlinear formulation

3.4.1 Presentation

Since a codimension–2 point, C2 =
(
ReC2 , ARC2

)= (22.65,6.98), is found from the linear stabil-

ity analysis, we present in this section a weakly nonlinear analysis in order to investigate the

mode interaction between the steady mode A and the oscillating mode B . In other words, we

implement an asymptotic expansion where the two modes have the same order of magnitude.

The departure from criticality, in terms of Reynolds number and aspect ratio, is assumed to be

of order ε2. Hence, we introduce the two order one parameters, δ= ε2δ̃ and α= ε2α̃, such that:

1

Re
= 1

ReC2

−ε2δ̃,
1

AR
= 1

ARC2

+ε2α̃. (3.25)

In the spirit of the multiple scale technique, we introduce the slow time scale T = ε2t , being t

the fast time scale defined in (3.1). Hence, the entire flow field is expanded as:

q = {
u, v, p

}T = q0 +εq1 +ε2q2 +ε3q3 +O
(
ε4) , (3.26)

In order to easily write the equations at the various order in ε in a compact form, it is useful to

introduce the following expansion for the nabla operator, ∇:

∇AR =
{
∂

∂x
,

1

AR

∂

∂y

}T

=
{
∂

∂x
,

1

ARC2

∂

∂y

}T

+ε2α̃

{
0,

∂

∂y

}T

=∇ARC2
+ε2α̃∇α+O

(
ε3) . (3.27)
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The definition of the Laplacian follows:

∆AR =∇T
AR∇AR =

(
∇ARC2

+ε2α̃∇α
)T (

∇ARC2
+ε2α̃∇α

)
= (3.28)(

∂2

∂x2 + 1

AR2
C2

∂2

∂y2

)
+ε2 2α̃

ARC2

∂2

∂y2 =∆ARC2
+ε22α̃∆αARC2

+O
(
ε3) .

Substituting the expansions defined above in the governing equations (3.3)–(3.2) with their

boundary conditions, a series of problems at the different orders in ε are obtained.

3.4.2 Order ε0: steady base–flow

At order ε0 the system is represented by the nonlinear equations for the steady symmetric

base–flow (3.5) with boundary conditions (3.6)-(3.9). The solution, computed for ReC2 and

ARC2 via iterative Newton’s method, was described in section 3.3.1.

3.4.3 Order ε: linear global stability

At leading order in ε, the system is represented by the unsteady Navier–Stokes equations

linearized around the base–flow for ReC2 and ARC2 , whose solution has been presented in

section 3.3.2. In this framework, the solution of the leading order system is assumed to be

composed by the sum of the two global modes, A and B ,

q1 = A (T ) q̂A
1 + (

B (T ) q̂B
1 e iωt +c.c.

)
, (3.29)

that destabilized the steady state q0. In equation (3.29), the amplitude A (T ), which varies

with the slow time scale T and the associated normalized eigenfunction are purely real, while

the amplitude B (T ) and eigenfunction for mode B are complex. Introducing (3.29) in the ε–

order system, a generalized eigenvalue problem for mode A and B , whose general form reads

(iωB+A ) q̂1 = 0, is retrieved. We remark that at the codimension–2 point, both modes are

marginally stable, therefore their growth rate are nil, σA =σB = 0 in C2, while the oscillation

frequency of mode B is ω= 0.10157.

3.4.4 Order ε2: base–flow modifications, mean–flow corrections, mode–interaction
and second–harmonic response

At order ε2 we obtain the linearized Navier–Stokes equations applied to q2 =
{

u2, p2
}T :

(B∂t +A )q2 =F 2, (3.30)
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with the boundary conditions

u2|∂Ωw
= 0,

(
−p2I+ 1

ReC2

∇ARC2
u2

)
·n

∣∣∣∣
∂Ωo

= 0, u2|∂Ωi
= 0, (3.31)

and forced by a term F 2 depending only on zero and first–order solutions,

F 2 =
(
−δ̃∆ARC2

u0 + 2α̃
ReC2

∆αARC2
u0 − α̃∇αp0 − α̃

2 Cα (u0,u0)− 1
2CARC2

(u1,u1)

−α̃∇α ·u0

)
, (3.32)

where Cα is the ε2–order symmetric advection operator, Cα (a,b) = (a ·∇α)b+ (b ·∇α)a, while

CARC2
(a,b) =

(
a ·∇ARC2

)
b+

(
b ·∇ARC2

)
a. Terms proportional toδ andα arise from the Reynolds

number and aspect ratio variations with respect to the codimension–2 point definition and

they act on the base–flow. The last term in the y–component of (3.32) is due to the transport

of the first–order solution q1 by itself. Introducing the first–order normal form (3.29) in the

forcing term expressed in (3.32), the different contributions can be individualized:

F 2 = δ̃F̂
δ
2 + α̃F̂

α
2 + A2F̂

A2

2 +|B |2F̂ |B |2
2︸ ︷︷ ︸

F
j
2=

{
F

j
2x ,F j

2y

}T

+
(
B 2F̂

B 2

2 e i2ωt + ABF̂
AB
2 e iωt +c.c.

)
(3.33)

Looking at (3.33), we recognize the second harmonic for mode B , which is pulsating at 2ω 6=ω
and thus it does not resonate and does not need the imposition of any compatibility condition.

In principle, all the other terms could be classified as resonating terms in mode A or B for

which the forced problem results to be singular and hence it is necessary to verify the solvability

condition or Fredholm alternative. However, we can make use of the symmetry properties of

the various forcing terms, as recently proposed in Camarri and Mengali (2019), to show that

some of these conditions are implicitly satisfied. Indeed, the first four forcing terms, having

ω= 0, are characterized by the following symmetries at the x– and y–axis,

F
j

2y

∣∣∣
∂Ωh

= 0,
∂F

j
2x

∂y

∣∣∣∣∣
∂Ωh

= 0, F
j

2x

∣∣∣
∂Ωv

= 0,
∂F

j
2y

∂x

∣∣∣∣∣∣
∂Ωv

= 0, (3.34)

which does not coincide with the axis boundary conditions for mode A given in (3.18). Conse-

quently, the solvability condition for A is naturally satisfied by symmetry properties. The same

argument is applicable to the last terms oscillating in ω, arising from the direct competition of

modes A and B , which is characterized by the symmetries,

F̂ AB
2y

∣∣∣
∂Ωh

= 0,
∂F̂ AB

2x

∂y

∣∣∣∣∣
∂Ωh

= 0, F̂ AB
2y

∣∣∣
∂Ωv

= 0,
∂F̂ AB

2x

∂x

∣∣∣∣∣
∂Ωv

= 0, (3.35)

that differ from the boundary conditions for mode B given in (3.19) and automatically satisfy

the solvability condition. It follows that using the mentioned symmetry considerations, no

solvability condition needs to be imposed at the ε2–order. We thus look for a second–order
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solution having the expression:

q2 = δ̃q̂δ2 + α̃q̂α2 + A2q̂A2

2 +|B |2q̂|B |2
2 +

(
B 2q̂B 2

2 e i2ωt + AB q̂AB
2 e iωt +c.c.

)
(3.36)

where each single response is evaluated by means of a global resolvent technique (Garnaud

et al., 2013; Viola et al., 2016a).

All the second–order responses are displayed in figure 3.7 in terms of their x–velocity com-

ponent. As shown in figure 3.7-( f ) the second harmonic response for the global mode B

is essentially periodic in space with a wavelength twice the one of the direct modes (see

figure 3.5-(b) and (d)), while the interaction between A and B (see figure 3.7-(e)) is nearly

periodic in space with a wavelength close to the one of the direct mode B within a central

region near the jets collision, where the direct mode A mainly acts, and it vanishes far away as

the mode A vanishes too (see figure 3.5-(a) and (c)).
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Figure 3.7 – Second–order responses corresponding respectively to (a)-(b) base–flow modifica-
tions due to Reynolds number and aspect ratio variations with respect to the codimension–2
point, C2, (c)-(d) mean flow correction associated to mode A and B respectively, (e)-( f )
harmonic interaction between the steady mode A and the oscillating mode B and second
harmonic for mode B .

3.4.5 Order ε3: amplitude equations

At the ε3–order we derive the system of amplitude equations which describe the weakly

nonlinear global mode interaction of A and B . The problem at order ε3 is similar to the one

obtained at order ε2, as it indeed appears as a linear system forced by the previous order

solutions, englobed in F3,

(B∂t +A )q3 =F 3, (3.37)

and subjected to the boundary conditions,

u3|∂Ωw
= 0,

(
−p3I+ 1

ReC2

∇ARC2
u3

)
·n

∣∣∣∣
∂Ωo

= 0, u3|∂Ωi
= 0. (3.38)
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The ε3–order forcing term, F 3, by substituting the first– and second–order solutions, reads:

F 3 = (3.39)(
−∂T u1 − δ̃∆ARC2

u1 + 2α̃
ReC2

∆αARC2
u1 − α̃∇αp1 − α̃Cα (u0,u1)−CARC2

(u1,u2)

−α̃∇αu1

)
=

=−∂A

∂T
Bq̂A

1 + A
(
δ̃F̂

δA
3 + α̃F̂

αA
3

)
+ A3F̂

A3

3 + A|B |2F̂ A|B |2
3 + (3.40)

+
{[

−∂B

∂T
Bq̂B

1 +B
(
δ̃F̂

δB
3 + α̃F̂

αB
3

)
+|B |2BF̂

|B |2B
3 + A2BF̂

A2B
3

]
e iωt +c.c.

}
+N.R.T.

where N.R.T. gathers all the non–resonating terms, not relevant for the further analysis and

omitted thereafter. The first term in the y-component of equation (3.39) corresponds to the

slow time evolution of the amplitudes A (T ) and B (T ) with the slow time scale T = ε2t . The

last term is due to the advection of the leading order solution by the second–order solution

and vice versa. All the other terms arise from the Reynolds number and aspect ratio variation

acting on the ε–order solution. As standard in multiple scale analysis, in order to avoid secular

terms and solve the expansion procedure at the third order, a compatibility condition must be

enforced through the Fredholm alternative (Friedrichs, 2012).

The compatibility condition imposes the amplitudes A (T ) and B (T ) to obey the following

relations:
d A

d t
= (

δζA +αηA
)

A−µA A3 −χA A|B |2, (3.41)

dB

d t
= (

δζB +αηB
)

B −µB |B |2B −χB B A2. (3.42)

where the physical time scale t has been reintroduced, δ = ε2δ̃ = 1/ReC2 −1/Re, α = ε2α̃ =
1/AR −1/ARC2 and the various coefficients, whose values are reported in Appendix 3.9.1, are

computed as scalar products between the adjoint global modes q̂†
1 and the resonant forcing

terms F̂
i
3, i.e. for instance,

ζA = < q̂A†
1 ,F̂

δA
3 >

< q̂A†
1 ,Bq̂A

1 >
=< q̂A†

1 ,F̂
δA
3 >, ζB = < q̂B†

1 ,F̂
δB
3 >

< q̂B†
1 ,Bq̂B

1 >
=< q̂B†

1 ,F̂
δB
3 >, (3.43)

since < q̂A†
1 ,Bq̂A

1 >=< q̂B†
1 ,Bq̂B

1 >= 1 due to the normalization introduced in section 3.3.2.

The detailed expression of each normal form coefficient is provided in Appendix A. Equa-

tions (3.41)-(3.42) differ from the classic Stuart–Landau equations, describing the pitchfork

and Hopf bifurcations of single modes, by the two coupling terms, χA A|B |2 and χB B A2, com-

ing from third-order nonlinearities. The structure of system (3.41)-(3.42) is well known in

literature and is analogous to that derived by Meliga et al. (2012a), where a formally equiva-

lent analysis is performed to investigate weakly nonlinear interactions for mode selection in

swirling jets.
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Stability analysis of the amplitude equations

Here we perform the stability analysis of the amplitude equations (3.41)-(3.42). Recalling

that the amplitude A is purely real, as well as all the coefficients associated with its equation,

while amplitude B and the related amplitude equation coefficients are complex so that we

can turn to polar coordinates, i.e. B = |B |e iΦB , and split the modulus and phase parts of

equations (3.41)-(3.42):

d A

d t
= (

δζA +αηA
)

A−µA A3 −χA A|B |2, (3.44)

d |B |
d t

= (
δζBr +αηBr

) |B |−µBr |B |3 −χBr |B |A2, (3.45)

dΦB

d t
= (

δζBi +αηBi
)−µBi |B |2 −χBi A2. (3.46)

System (3.44)–(3.45) presents different possible equilibria (Kuznetsov, 2013). Below the thresh-

old the system is stable and the trivial equilibrium with A = |B | = 0 is retrieved. Two other possi-

ble equilibria correspond to (A 6= 0, |B | = 0) (pitchfork bifurcation for mode A) or (A = 0, |B | 6= 0)

(Hopf bifurcation for mode B). The single mode pitchfork and Hopf bifurcations are easily

found, removing the coupling terms by setting χA = χB = 0 and looking for a stationary

solution of equations (3.44)–(3.45), d A
d t = d |B |

d t = 0. This leads to the classic solutions,

A2 = δζA +αηA

µA
, |B |2 = δζBr +αηBr

µBr
. (3.47)

The non–trivial equilibrium with (A 6= 0, |B | 6= 0) is obtained reintroducing the coupling terms

and investigating the existence of a parameter region in which both mode coexist. Indeed,

looking for a stationary solution d A
d t = d |B |

d t = 0 we obtain the following system,[
µA χA

χBr µBr

]{
A2

|B |2
}
=

{
δζA +αηA

δζBr +αηBr

}
, (3.48)

which admits a physical solution only for Re and AR values for which A2 > 0 and |B |2 > 0.

Solving (3.48), we get:

A2 =
(
δζA +αηA

)
µBr −χA

(
δζBr +αηBr

)
µAµBr −χAχBr

, (3.49)

|B |2 =
(
δζBr +αηBr

)
µA −χBr

(
δζA +αηA

)
µAµBr −χAχBr

. (3.50)

The general relation for the phase of mode B at large time, which varies linearly in time, reads,

ΦB |t→+∞ = [(
δζBi +αηBi

)−µBi |B |2 −χBi A2] t , (3.51)
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meaning that the frequency at large time will saturate to the following prescribed valued,

function of the Reynolds number and aspect ratio variation with respect to the codimension–2

point, C2:

ω|t→+∞ =ωC2 +
[(
δζBi +αηBi

)−µBi |B |2 −χBi A2] . (3.52)
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Figure 3.8 – (a) Weakly nonlinear map predicted by the normal form (3.41)-(3.42) in the
(Re, AR)–plane. Green and blue dotted lines indicate the linear marginal stability curves for
mode A and B respectively, as presented in section 3.3.2. In the black region the steady mode A
prevails, while the oscillating mode B dominates in the wide grey region. A region of hysteresis,
highlighted in light grey shade, is found for AR smaller than ARC2 . (b) Bifurcation diagram as
a function of the Reynolds number for a fixed value of aspect ratio, AR = 6.5 < ARC2 . Dashed
and dot–dashed lines mean unstable branches, while solid lines denote stable branches. The
vertical red dotted lines represents the thresholds for the pitchfork bifurcation of mode A
(PA), the backward bifurcation of mode A (B A) and the secondary Hopf bifurcation of mode B
(SHB). The light gray shaded region corresponds to the hysteresis range of (a). (c) Bifurcation
diagram as a function of the Reynolds number for a fixed value of aspect ratio, AR = 7.5 > ARC2 .
The vertical red dotted lines represents the thresholds for the Hopf bifurcation for mode B .
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3.5. Comparison with direct numerical simulations (DNS)

Combining all these ingredients, the bifurcation diagram proposed in figure 3.8-(a), (b)

and (c) presents a complex series of bifurcations. The stability of the various branches was

numerically assessed by time–marching equations (3.44)-(3.45) using the Matlab function

ode23. As depicted in figure 3.8-(b) for a fixed value of aspect ratio, AR = 6.5 < ARC2 , the steady

mode A bifurcates first at RePA = 23.85 (pitchfork bifurcation PA) breaking the symmetry of

the base–flow with respect to the x–axis, ∂Ωh . The oscillating mode B then bifurcates from

the x–symmetry–breaking pitchfork bifurcation at ReSHB = 24.63 through a secondary Hopf

bifurcation (SHB). Notwithstanding the subcritical nature of this bifurcation, which makes it

unstable, such a bifurcated branch is fundamental for the emergence of the self–sustained

oscillation regime, through a backward bifurcation of mode A (B A) at ReB A = 24.35. The

sub–criticality of the system in the range ReB A < Re < ReSPB leads to an hysteretic behaviour

where either the steady mode A or the oscillating mode B can dominate, depending on

the initial conditions to which the system is subjected. Figure 3.8-(a) shows the full weakly

nonlinear map predicted by the normal form (3.41)-(3.42) in the (Re, AR)–plane around the

codimension-2 point. Lastly, as shown in figure 3.8-(c), above ARC2 only the oscillating mode

B , which settles into a limit cycle via classic Hopf bifurcation (HB), exists. In this range, the

self–sustained oscillations regime is observed above a certain Reynolds number.

3.5 Comparison with direct numerical simulations (DNS)

In this section, the results derived in section 3.4 via weakly nonlinear analysis are compared

with direct numerical simulations (DNS). The full nonlinear unsteady dynamics represented

by the system of governing equations (3.3)-(3.2) with its boundary conditions is solved using

the open–source code Nek5000, as described in section 3.2.

In addition to the fluid governing equations, Nek5000 allows to easily introduce a further

advection-diffusion equation describing the dynamics of a passive scalar,Φ,

∂Φ

∂t
+u ·∇Φ= 1

Pe
∆Φ, (3.53)

which enables us to reproduce the presence of two dyes continuously injected through the

inlets, in order to visualize the instantaneous flow configuration (Bertsch et al., 2020a). The

Péclet number, Pe, appearing in (3.53) has been set to Pe = 100, a value which ensures good

numerical stability and a satisfactory flow visualization at the same time for all the explored

cases. Concerning this passive scalar equation, Dirichlet boundary conditions are imposed at

the two inlets (Φ|y=− s
2
= 0,Φ|y= s

2
= 1) to reproduce the injection of two different dyes, while

outflow conditions are set at the outlets; no–flux is allowed through the solid walls.

3.5.1 Regime comparison

In figure 3.9 the nonlinear map of figure 3.8-(a) for a specific value of aspect ratio in the

region characterized by the hysteretic behaviour, i.e. AR = 6.5, is recalled. Different direct
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numerical simulations, covering the range of Reynolds numbers from the stable region (Re <
RePA = 23.85) to the region dominated by the oscillating mode B (Re > ReSHB = 24.63) were

performed. The investigated cases are indicated in figure 3.9 with symbols. The results

extracted from the DNS are presented in figure 3.10 and 3.11.
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Figure 3.9 – Nonlinear map of figure 3.8-(a) for a specific value of aspect ratio in the region
characterized by the hysteretic behaviour, i.e. AR = 6.5. Cases investigated by performing
direct numerical simulations are indicated by symbols. The red diamond (Re = 24.55) cor-
responds to a case in which the existence of the hysteresis region has been checked using
the same control parameters, AR and Re, but different initial conditions, given by the final
steady state or limit cycle of the two closest simulations, whose Reynolds number have been
increased or decreased respectively, as sketched by the green arrows.
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Figure 3.10 – Snapshots of the flow patterns in terms of dyes concentrations observed at large
time, (a)-(d) once the steady state (stable base–flow or symmetry breaking for mode A) is
reached or, alternatively, (e)-( f ) once the limit cycle for mode B is fully established, for the
various Reynolds numbers indicated by white squares in figure 3.9. The white dashed lines
represent the axes of symmetry characterizing the steady base–flow. The flow configuration
for Re = 24.55 is shown in figure 3.11.

All the numerical simulations displayed in figure 3.10 were started from zero initial conditions.
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Figure 3.11 – Snapshots of the flow patterns in terms of dyes concentrations observed at
large time for AR = 6.5 and the same Reynolds number, Re = 24.55 (hysteresis region), but
with different initial conditions: (a) the new steady state (symmetry–breaking condition)
obtained for Re = 24.4 is used as initial condition; (b) a time-instant of the unsteady solution
corresponding to Re = 24.7 (limit cycle for mode B) is imposed as initial condition. Streamlines
and arrows are used to visualize the velocity fields associated with the steady and oscillating
configurations respectively.

Figure 3.10-(a) shows the steady–state obtained for Re = 22, which confirms that the steady

base–flow is stable for Re < RePA = 23.85, indeed no symmetry breaking can be observed.

For Re = 24, 24.2 and 24.4 (which lies in the hysteresis range) we retrieved that the steady

mode A first bifurcates via a pitchfork bifurcation. The symmetry with respect to the x-

axis is lost, the position of the stagnation point lies below the x-axis of symmetry and the

size of the recirculation regions differs on either side of the x-axis of symmetry ∂Ωh . For

Re > ReSHB = 24.63, i.e. Re = 24.7, 24.84, 25 and 27, only the self–sustained oscillation regime

is observed.

In order to confirm the existence of the hysteretic behaviour found in section 3.4.5, the

solutions obtained at large time for Re = 24.4 (asymmetric steady configuration) and Re = 24.7

(limit cycle for the self–oscillations) are used as initial conditions for two more simulations,

where the Reynolds number is fixed to Re = 24.55 in both cases (filled red diamond and green

arrows in figure 3.9). The results of this numerical procedure are given in figure 3.11. We

clearly see in figure 3.11-(a) and (b) that depending on the initial conditions imposed to the

system, for this fixed value of Re = 24.55 within the hysteresis region, both modes can emerge.

Other simulations (not shown) performed in the upper region of figure 3.8-(a), i.e. for Re = 25

and AR = 7.5 and 8, confirm the supercritical nature of the Hopf bifurcation associated to

mode B (HB).

Next, global linear stability and weakly nonlinear analysis are both compared with the direct

numerical simulations in terms of amplitude of modes A and B and oscillation frequency for

the self–sustained oscillatory regime.
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Figure 3.12 – (a) Oscillation frequency, extracted from the y–velocity component at
(
x, y

)=
(0.5,0), versus Reynolds number for AR = 6.5. The solid black line indicates the weakly nonlin-
ear analysis (WNL). The dotted black line and plus signs represent the linear global stability
analysis (LGS). The dashed black line and circles are associated with the direct numerical
simulations (DNS) performed. (b) Amplitude of modes A and B extracted from DNS and com-
pared with the bifurcation diagram obtained from the WNL analysis for AR = 6.5. Symbols
and green arrows in (b) correspond to the ones introduced in figure 3.9 and are associated to
the DNS presented above.

3.5.2 Frequency comparison

Figure 3.12-(a) shows that, near the threshold, the linear global stability analysis (LGS), the

weakly nonlinear analysis (WNL) and direct numerical simulation (DNS) agree well and

prescribe the correct oscillation frequency. However, if the LGS soon diverges from the DNS, as

extensively described in the literature (Barkley, 2006), the WNL theory, applied to the problem

presented in this work provides a wider range of Reynolds numbers in which the model follows

the DNS trend with a satisfactory agreement, showing an error of 3% for Re = 40 against the

13.2% of the LGS. Additionally, it needs to be underlined that the results shown in this section

refer to an aspect ratio of AR = 6.5, hence a double offset (in terms of Re and AR) with respect

to the codimension–2 point, C2, is considered in the WNL curve of figure 3.12. Indeed, the

precision of the asymptotic expansion prediction increases as |Re −ReC2 | and |AR − ARC2 |
decrease.

3.5.3 Amplitude comparison

In figure 3.12-(b) we compare the amplitude of mode A and B extracted from the DNS with

the ones prescribed by the WNL model. The total flow solutions in the steady and oscillatory

regimes evaluated via weakly nonlinear formulation read:

uA
W N L = u0 + AuA

1 +δuδ2 +αuα2 + A2uA2

2 , (3.54)

uB
W N L = u0 +

(
BuB

1 e iωt + c.c.
)+δuδ2 +αuα2 +|B |2u|B |2

2 +
(
B 2uB 2

2 e i2ωt + c.c.
)

. (3.55)

80



3.5. Comparison with direct numerical simulations (DNS)

Specifying equations (3.54) and (3.55) for the y–velocity components, v A,B
W N L , at the x-axis of

symmetry (y = 0), given the symmetries of the various terms, we have v A (x,0)W N L = Av A
1 (x,0)

and vB (x,0)W N L = (
B vB

1 (x,0)e iωt + c.c.
)
. Selecting then the point x = 0.5, used to normalize

the global modes (v A
1 (0,5,0) = 1 and vB

1 (0.5,0) = 1), we derive the following simple expressions,

v A (0.5,0)W N L = A, (3.56)

vB (0.5,0)W N L = 2|B |cos(ωt +ΦB ), (3.57)

which allows us to easily compare the amplitudes A and |B | from the WNL model with the

ones extracted from the DNS, v (0.5,0)DN S . Figure 3.12-(b) shows not only a qualitative but

also a quantitative agreement between DNS and WNL, which captures well the hysteretic

behaviour of the flow for AR < ARC2 (sufficiently close to ARC2 ).

3.5.4 Evolution of the oscillation frequency with the aspect ratio

A linear dependence of the self–oscillations on the inverse of the spacing between the jets,

s, which highlights the importance of the distance s in the oscillatory phenomenon, was

observed in Bertsch et al. (2020a), who proposed the following scaling law,

f ∼ U

s
, (3.58)

where the slope, derived by fitting the experimental data, was seen to be approximatively 1/6,

which is also consistent with the measurements made by Denshchikov et al. (1978) on large

scale facing jets in turbulent flow conditions. Given the definition of the Strouhal number

introduced in section 3.3.2, St = f w/U , and the aspect ratio AR = s/w , the non–dimensional

form of the scaling law (3.58) reads

StB ∼ 1

AR
, (3.59)

where the subscript B is used to denote the frequency associated with the oscillating mode B . It

follows that in our two–dimensional model, equation (3.58) translates in a linear dependence

of the Strouhal number on 1/AR. Moreover, according to such a law, the variation of St with

Re is not predominant.

In order to verify whether the evolution of the oscillation frequency in our 2D flow behaves

similarly to that of the 3D one studied in Bertsch et al. (2020a), we performed a series of

direct numerical simulations fixing Re, i.e. Re = ReC2 = 22.65, and varying AR (> ARC2 ). A

quantitative comparison of DNS and the WNL model is shown in figure 3.13.

In this context, it is important to note that the parameter 1/AR in (3.59) naturally appears in

the weakly nonlinear formulation, which, indeed, prescribes a linear variation of the dimen-

sionless frequency with 1/AR , as displayed in figure 3.13. DNS results agree well with the WNL

model, which also provides a theoretical expression for the slope m indicated in figure 3.13. In

analogy with Bertsch et al. (2020a) and Denshchikov et al. (1978), we retrieved a factor close to
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Figure 3.13 – Variation of the Strouhal number, StB = f w/U , with the aspect ratio, AR = s/w ,
for a fixed Reynolds number, Re = ReC2 = 22.65. Black solid line: weakly nonlinear analysis
(WNL). Black circles: direct numerical simulation (DNS). Inset: variation of StB with Re for
different AR according to the WNL model. For values of Re smaller than the WNL stability
boundary, the instability does not occur and no oscillations can be observed.

1/6.

Moreover, as shown in the inset of figure 3.13 (see also figure 3.12-(a)), the dependence of

the frequency on the Reynolds number is much weaker (at least in the first range of Re) than

the dependence on AR, which is in agreement with the scaling law (3.59).

3.6 Instability mechanisms: sensitivity analysis

The presence of a stationary
(
y,−y

)
symmetry–breaking bifurcation, as revealed by the exis-

tence of the A mode analyzed in this study bears a certain similarity with sudden expansion

flows, where the origin of the symmetry-breaking instability was found to lie in the recircula-

tion regions (Fani et al., 2012; Lanzerstorfer and Kuhlmann, 2012; Lashgari et al., 2014). The

physical mechanism associated to the symmetry breaking is often referred to as a Coandă

effect, where the shear layers surrounding the recirculation regions are deflected towards one

of the two confining walls.

The present flow however is characterized not only by two, but rather by four symmetric re-

circulation regions surrounding an hyperbolic stagnation point. Note that the existence of four

recirculation regions invariant under two axial symmetries and one central symmetry suggests

also the possibility for an (x,−x) symmetry breaking, akin to the buckling of two colliding jets

at their meeting point. The presence of a hyperbolic stagnation point is also known to give rise

to the so-called hyperbolic instability (Friedlander and Vishik, 1991; Lifschitz and Hameiri,

1991), which was found to contribute in the destabilization of arrays of vortices (Godeferd

et al., 2001; Ortiz and Chomaz, 2011; Sipp et al., 1999). This instability mechanism, which is
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best understood in the short-wave and inviscid asymptotic limits, is however known to give

rise to spanwise disturbances which cannot be active within the present 2D framework.

Turning our attention now to the self–sustained oscillatory global mode B, we note that the

simple scaling of its intrinsic frequency with the physical parameters observed in the three-

dimensional microfluidic experiments and numerical simulations of Bertsch et al. (2020a)

does not yet point clearly to a physical governing mechanism. As tentatively argued in Bertsch

et al. (2020a), the oscillatory nature of this instability suggests the presence of a feedback

mechanism, as the ones investigated in Villermaux et al. (1993); Villermaux and Hopfinger

(1994). This suggests several candidates, such as the presence of a pocket of absolute instabil-

ity, or a global pressure feedback. The perturbation field numerically extracted in Bertsch et al.

(2020a) and qualitatively retrieved in the present study, shows a sinuous structure in the left

and right outlet channels which is reminiscent of two synchronized sinuous shear instabilities.

This suggests that the Kelvin-Helmholtz instability of the confined jet profiles prevailing in the

outlet channels participates in the self-sustained oscillation process.

We have indeed determined the dispersion relation of the streamwise velocity profiles per-

taining at different streamwise stations (x ∈ [1,10]) in the side arm for AR = ARC2 = 6.98 and

Re = ReC2 = 22.65 (see figure 3.15-(b)). We have found that the sinuous mode was indeed

unstable in the region 1 < x < 5 (see Appendix C for more details), while the varicose mode

remained damped. This indicates that in this region, the shear is sufficiently intense for the

Kelvin–Helmholtz instability to overcome the conjugate stabilizing effect of confinement and

viscosity. Additionally, we found that the most unstable wavelength was close to 9, in visual

agreement with figure 3.5-(d), while the associated frequency was 0.1, also in good agreement

with the global mode frequency.

However, in order to translate into a self–sustained global instability, this shear layer insta-

bility would either need to be of absolute nature, possibly because of the presence of nearby

walls, known to enhance absolute instability in confined shear flows (Biancofiore and Gallaire,

2011; Healey, 2009; Juniper, 2006; Rees and Juniper, 2010). As explained in Appendix C, our

calculations however showed that the instability remains convective in the entire unstable

region x ∈ [1,5]. Another source of strong shear is represented by the two facing y-velocity jets

issuing from the inlets (see figure 3.15-(a)). Indeed, even if iso-thermal jets are usually known

to be convectively unstable, the present geometry differs from a classical free jet. The two jets

face each other and collide, slowing down while redirecting fluid towards the outlets. In this

interaction region, the flow is however far from weakly non-parallel and the application of

local stability analysis is therefore questionable.

Global instability of shear flows in open flows has indeed been historically studied under

the parallel flow assumption, where the local linear stability theory is applied to determine

whether the flow is absolutely unstable and hence a global instability is to be expected (Huerre

and Monkewitz, 1985). Further progresses has been made by extending the analysis to spatially

developing (Chomaz et al., 1988; Huerre and Monkewitz, 1990) with the introduction of the

WKBJ approximation for weakly non–parallel flows, which extends the domain of validity

of the local analysis and provides fair agreement when compared with the linear global sta-

bility analysis (Siconolfi et al., 2017; Viola et al., 2016a). Meanwhile, global stability analysis
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(sometimes called bi-global (Theofilis, 2011)) has become increasingly popular in recent years,

thanks to the large memory capabilities of modern computers.

As mentioned above, the flow is strongly nonparallel in both the x– and y–directions in the

central interaction region of the X–junction, which jeopardizes the chances to apply success-

fully a weakly non-parallel approach to determine the physical mechanism governing this

oscillatory instability. We thus propose to follow a different approach to investigate the nature

of the instability.

The approach proposed in this section makes use of the properties of the adjoint eigenfunc-

tions associated with the direct eigenmodes and it is formally known as sensitivity analysis.

Following Giannetti and Luchini (2007), Chomaz (2005) popularized the definition of the

wavemaker region as the region of the flow which is predominantly active in sustaining the

global instability. He demonstrated that the wavemaker region can be identified as the overlap-

ping region between the direct and adjoint global eigenvectors. Giannetti and Luchini (2007)

indeed demonstrated that the concept of wavemaker identifies regions of the flow where

the presence of a local instantaneous feedback produces the strongest drift of the leading

eigenvalue. The wavemaker region has then been successfully used to analyze the canonical

circular cylinder wake flow (Camarri and Iollo, 2010; Giannetti et al., 2019, 2010; Marquet

et al., 2008). Meliga et al. (2009c) applied the theory to the wake of solid disks and spheres,

while Ledda et al. (2018) made use of the wavemaker definition in the understanding of the

suppression of von Kármán vortex streets past porous rectangular cylinders.

Here we apply the theory of sensitivity analysis in order to investigate both the nature of

the steady symmetry–breaking mode and to identify the physical mechanism from which the

self–sustained oscillations originate.

3.6.1 Core of the steady symmetry–breaking instability

As mentioned, the wavemaker region is defined by the overlapping region of the direct and

adjoint global modes. Using the results from the global stability analysis presented in sec-

tion 3.3.2, the direct and adjoint velocity fields for the steady mode A, here analyzed and

shown in figure 3.5 and 3.6, are used to build the wavemaker, defined as the product of the

direct and adjoint velocity magnitudes ||ûA
1 || · ||ûA†

1 ||.
The resulting wavemaker region for Re = 22.65 and AR = 6.98, normalized by its maximum

value, max
(
||ûA

1 || · ||ûA†
1 ||

)
is displayed in figure 3.14, together with streamlines extracted by

the steady base–flow and the edge of the four symmetric recirculation bubbles. The stagnation

point in x = 0 and y = 0 is clearly highlighted by the streamlines. The spatial distribution of

the wavemaker is concentrated in the origin of the fluid domain, perfectly coincident with the

stagnation point. As shown in section 3.5, such instability leads to an offset of the stagnation

point with respect to the x-axis of symmetry. While quite similar to symmetry-breaking bifur-

cations in expansion flows, the physical origin of the A-instability lies therefore probably here

more in the structural instability of the stagnation point than in a Coandă effect where the

side jets are attracted towards one wall. Broadly speaking, as one jet prevails over the other,

the stagnation point is translated in either direction along the y–axis, and the streamlines are
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Figure 3.14 – Structural sensitivity to a local feedback of the steady global mode A for Re =
ReC2 = 22.65 and AR = ARC2 = 6.98. Color map: wavemaker region. Black lines: streamlines
extracted from the steady base–flow, u0. Red dashed lines: recirculation bubble edges.

bent with the dominated jet that has less space to curve towards the outlet channels. The size

of the recirculation regions is readapted to maintain a steady configuration.

Note that a buckling–like instability of the colliding symmetric jets, in analogy with the

classic buckling typical of structural mechanics, would intuitively lead to a steady bending of

the jets which would displace the stagnation point along the y = 0 axis towards a positive or

negative x 6= 0 offset. Whether the second steady mode C can be reasonably interpreted as

such is discussed in Appendix 3.9.2.

3.6.2 Physical mechanism behind the origin of the self-sustained oscillatory mode
B

Structural sensitivity: wavemaker region

Here we apply the same technique to the oscillatory instability. The wavemaker for mode B

is thus given by ||ûB
1 || · ||ûB†

1 ||. Figure 3.15-(c) displays as a color map the wavemaker region

for Re = 22.65 and AR = 6.98, normalized by its maximum value. From the observation of

the wavemaker region, it can be deduced that, as expected, the origin of the oscillations is

located in the central portion of the domain, where the two facing jets strongly interact with

each other. Moreover, the structure of the wavemaker associated with the oscillating global

mode B coincides with all the aspect ratio values which have been checked, i.e. AR ∈ [6,20].

Further progress in understanding the physical mechanism of this instability can be made by

analyzing the vorticity field and the local maximum shear. The local x– and y–velocity profiles,

independently considered as in the standard local and parallel linear theory and shown in

figure 3.15-(a) and (b), have been analyzed and the corresponding loci of maximum shear,

taken section by section, are plotted as red dashed lines in figure 3.15-(c). It is seen that the

local maximum shear related to the local y–velocity profiles follows surprisingly well the region

of maximum values of the wavemaker. Additionally, the wavemaker presents four symmetric

maximum intensity points (white circles in figure 3.15-(c)) which approximately coincide with

the intersections of the local maximum shear for the y– and x–velocity profiles.

As a final comment, we can thus argue that, while the non–parallelism of the flow in the
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Figure 3.15 – Structural sensitivity to a local feedback of the oscillating global mode for Re =
ReC2 = 22.65 and AR = ARC2 = 6.98. (a) and (b) y– and x– base–flow velocity profiles, v0 and
u0, independently considered as in the classic local parallel theory. (c) Color map: wavemaker
region. White circles: maximum value of the normalized wavemaker. Black contours: base–
flow vorticity field. Dashed red line: maximum shear of the y– and x– base–flow velocity
profiles, v0 and u0 displayed in (a) and (b) respectively.

central region precludes the use of the classic local and parallel analysis to compare the present

study and to firmly confirm the Kelvin–Helmholtz mechanism as the origin of the oscillatory

instability, figure 3.15 suggests that the regions of maximum shear and the interaction of

various shear layers play an important role in the physical mechanism engineering the global

self-sustained oscillation.

Sensitivity to base–flow modifications

Let us now consider the sensitivity analysis to arbitrary and small–amplitude base–flow modi-

fications, δu0. In the linear global stability framework, the parameter that defines if a mode

is stable or unstable for a certain combination of control parameters, i.e. Reynolds number,

is the growth rate, σ. We thus focus on the sensitivity of the growth rate associated with the

global mode B , ∇u0σB , which is a real quantity expressed as,

∇u0σB =−Re
((∇u0 · ûB

1

)H · ûB†
1

)
︸ ︷︷ ︸

∇u0,T σB

+Re
(
∇u0 ûB† ·uB∗

1

)
︸ ︷︷ ︸

∇u0,P σB

, (3.60)

where here ℜ stands for the real part of the complex vector field, H designates the transconju-

gate, while the star ∗ denotes the complex conjugate. For a complete and detailed description
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Figure 3.16 – Sensitivity of the growth rate σB to base–flow modification for Re = ReC2 = 22.65
and AR = ARC2 = 6.98. (a) Sensitivity function to modification of the production, ∇u0,PσB . (b)
Sensitivity function to modification of the transport, ∇u0,TσB . Filled contours: magnitude of
the two real vector velocity fields. Red arrows: vector field orientation.

of the method see (Bottaro et al., 2003; Marquet et al., 2008). Two different physical interpreta-

tions are inherent in the two terms appearing on the right-hand side of (3.60) (Marquet et al.,

2008). The first term, denoted by ∇u0,TσB , represents the sensitivity of the growth rate σB to

modifications of the transport since it originates from the transport of the perturbations by

the base–flow, ∇ûB
1 ·u0. The second term, ∇u0,PσB , expresses the sensitivity to production, as

it comes from the production of the perturbation by the base–flow, ∇u0 · ûB
1 (see Marquet et al.

(2008) for further details). An expression analogous to (3.60) can be derived for the sensitivity

of the oscillation frequency, where the imaginary part of the complex vector field is consid-

ered. Marquet et al. (2008) argued that this distinction between transport and production

mechanisms identified from the sensitivity analysis is directly connected to the concept of

convective and absolute instability adopted in the local stability theory, where the competition

of transport and production mechanism defines the global behaviour of the flow (Huerre and

Monkewitz, 1990).

The sensitivity of the growth rate associated with the oscillating global mode B , σB , to

modification of production and transport is shown in figure 3.16-(a) and (b) respectively. The

magnitude of the two different sensitivity fields is similar, meaning that the two mechanisms

are equally important. However, an interesting aspect that can be clearly observed in fig-

ure 3.16 is the decoupling of the directions in which the two mechanisms mainly act. Indeed,

the production mechanism is essentially located in the facing jets and in the y–flow direction

(pointing towards the center), while it vanishes moving away from the jets region. On the

other hand, the transport mechanism, whose maximum intensity is also close to the jet’s

region, mainly acts on the x–direction of the output channels. In other terms, if an increase

of the base–flow velocity in the jets region and oriented in the y–direction is considered, this

modification will contribute to a destabilization via production mechanism (figure 3.16-(a)),

but it will involve the transport mechanism only weakly, since the two directions of action are

almost decoupled. In the same way, considering the x–direction, if one considers a decrease

of the base–flow velocity in the central region (or alternatively an increase in the size of the

recirculation regions), then such a modification will destabilize the flow via transport mecha-
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nism, but it will not play together with the production mechanism because of the mentioned

decoupling.

3.7 Different inlet velocity profiles: plug flow

We conclude our analysis by examining the influence of a different inlet velocity profile, by

specifically focusing on a plug flow, inspired by Pawlowski et al. (2006). In this study, the

authors perform a detailed stability analysis, which provides a wide-ranged stability map

in the (Re, AR)–parameter space. The very same steady symmetry–breaking and oscillatory

instabilities, as well as the existence of a codimension–2 point, were found, suggesting that the

inlet profile does not seem to qualitatively influence the nature of these instabilities. However,

from a more quantitative viewpoint, the instability thresholds are significantly affected when

a fully developed flow is replaced by a plug flow. Interestingly, despite the fact that the overall

nature of the bifurcation nature does not change when varying the inlet profile, Pawlowski

et al. (2006) did not report the presence of any hysteretic behaviour. In the following, we

apply the weakly nonlinear theory outlined in section section 3.4 to the case of the plug inlet

flow studied by Pawlowski et al. (2006) and we briefly discuss their results in relation with our

analysis.

In figure 3.17, we propose a zoom of their stability map in the neighbourhood of the

codimension–2 point. We extracted manually values, shown as white triangles and circles

in figure 3.17 (in both the main figure and inset), from their stability curves (note that their

aspect ratio is defined as 1/AR = w/s). Clearly, the wide range of Re and AR and the large

thickness of the lines displayed in figure 10 of Pawlowski et al. (2006) make the extraction

procedure only approximate. We note that the value of the codimension–2 point reported in

the main text, C2 = (11.2,13.33), by Pawlowski et al. (2006) does not seems to match the value

extracted from their plot, which is instead in fairly good agreement with our calculations, for

which C2 = (20.9,10.53). If our marginal stability curve for mode A (dark green dotted lines

in the inset) matches very well their result, this is not the case for the curve associated to

mode B (blue dotted line in the inset) for AR < ARC2 . Indeed, the white circles are obtained

from the linear stability analysis of the bifurcated steady asymmetric state, while our blue

dotted line is evaluated from the stability of the steady symmetric base–flow. We thus apply

the WNL analysis around C2 and the corresponding weakly nonlinear stability boundaries are

displayed in the inset as black solid lines. First, we notice that the WNL analysis based on the

symmetric base–flow captures their threshold for the unsteady mode B correctly. Furthermore,

analogously to the fully developed flow case, the WNL approach detects a hysteresis region,

not described in Pawlowski et al. (2006). We, therefore, performed DNS to confirm the WNL

prediction.

In figure 3.18 the y–position of the stagnation point normalized by the aspect ratio, y sp /AR

(AR = 8), is used to characterize the bifurcation diagram. As in section 3.4, four regions,

denoted here by numbers, can be identified and the associated phase diagrams (amplitude

of mode |B | vs. A) are shown for completeness, following Kuznetsov (2013). The black solid
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Figure 3.17 – Stability map taken from figure 10 of Pawlowski et al. (2006). White triangles
and circles are the values that we extracted manually from their curves. Inset: our weakly
nonlinear map for the case of a uniform inlet flow, where our definition of AR is adopted in
the y–axis. Dark green and blue dotted lines in the inset indicate the linear marginal stability
curves obtained from our calculation for mode A and B respectively. Black lines in the inset
represent our weakly nonlinear stability boundaries, as described in section 3.4. The light gray
shaded region in the inset corresponds to the hysteresis. The green filled circle indicate the
position of the codimension–2 point reported in Pawlowski et al. (2006), while the red filled
circle is the codimension–2 point obtained from our calculation.

and dashed lines correspond to the stable and unstable branches described in figure 11 of

Pawlowski et al. (2006), while the light gray shaded region is the hysteresis detected by our

WNL model. Symbols correspond to our DNS. Pawlowski et al. (2006) started from Re = 1

and increased Re progressively. The reason they could not detect hysteresis is intrinsic to

their continuation algorithm, which describes the transition from region 2 to region 4 (see

figure 3.18) following the same branch. In other words, their initial conditions in region 3

(hysteresis) are taken from region 2 (steady asymmetric state) and therefore always lie in the

lower right part of the phase diagram 3. Consequently, the final solution converges to the

steady asymmetric configuration A. Indeed, the left upper part of the phase portrait 3 can be

explored only by considering progressive decreases of Re from region 4 (oscillating regime)

to 3, as our DNS, in good agreement with the WNL model prediction, could confirm. Hence,

the WNL model adds new pieces of information, at least in the region of the parameter space

close to the codimension–2 point, to the thorough stability analysis by Pawlowski et al. (2006).

89



Chapter 3. Impinging planar jets: hysteretic behaviour and origin of the self-sustained
oscillations

PB BA SHB

AR = 8

|B| |B| |B| |B|

A A A A

1 2 3 4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
−0.3

−0.2

−0.1

0

0.1

Re

y
sp
/A

R

Stable branch
Unstable branch

Figure 3.18 – Bifurcation diagram: y–position of the stagnation point versus Re. The black solid
and dashed lines correspond to the stable and unstable branches of the bifurcation diagram
shown in figure 11 of Pawlowski et al. (2006), calculated following the path of increasing
Re (AR is fixed to 8). The light gray shade region is the hysteresis predicted by our WNL
model. Symbols indicate the DNS results (see figure 3.12-b) for the notation). A sketch of the
phase portrait is given for each regime: 1 stable symmetric base–flow, 2 steady asymmetric
configuration, 3 hysteresi and 4 oscillating regime.

3.8 Conclusion

In this Chapter we investigated different physical mechanisms arising in a two–dimensional

fluidic oscillator with two impinging jets, in a so–called two–dimensional X–junction. The

tools of the linear global stability analysis were used to identify different global modes, whose

stability properties depend on the two main control parameters, the Reynolds number, Re,

and the aspect ratio, AR. An oscillating mode that produces self–sustained oscillations quali-

tatively analogous to the ones observed in three–dimensional fluidic cavities (Bertsch et al.,

2020a) was retrieved. The origin of such a phenomenon appears therefore as mainly two–

dimensional and due to the interaction of the two facing jets.

In a certain range of aspect ratios, when the gap length, s, separating the two inlets ap-

proaches the inlet width, w , the unsteady mode is seen to globally interact with a steady

symmetry–breaking instability. A weakly nonlinear analysis (WNL), based on the multiple

scale technique and showing how the system may present hysteretic behaviours depending

on the initial conditions, was formalized. The predicted normal form describes the nonlinear

interactions between global modes A (steady) and B (oscillating) and reduces the full dynam-

ics to a low–dimensional model, as typical of WNL formulations. For codimensions larger

than one, as in the present case, which displays a codimension–2 point, the normal form

often predicts the complex system behaviours successfully (Crawford and Knobloch, 1991;

Meliga et al., 2009a; Zhu and Gallaire, 2017). Indeed, a quantitative comparison of our WNL

results against direct numerical simulation (DNS), in terms of oscillation frequency and mode
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amplitudes, confirms the validity of the WNL analysis and, in particular, the existence of a

narrow region of hysteresis for AR < ARC2 and ReB A < Re < ReSHB .

Furthermore, in analogy with the three–dimensional flow studied by Bertsch et al. (2020a),

the oscillation frequency associated with unsteady instability was seen to be inversely propor-

tional to the distance separating the two inlets, s, or, in non–dimensional terms, to the aspect

ratio, AR.

In principle, a steady symmetry–breaking condition, as the one represented by the global

mode A, and the associated hysteresis, similar to that here described in 2D, is expected to be

retrieved in three–dimensional cavities for proper geometrical parameters, i.e. for a size of the

perpendicular z–direction sufficiently larger than the distance s. Nevertheless, the eventual

narrowness of the hysteresis region in the control parameter space could make it hard to be

experimentally detected.

A linear sensitivity analysis and the definition of the wavemaker region were then systemati-

cally applied in order to explore the origin of the various instabilities observed. The core of the

steady instability associated with mode A, which breaks the base–flow symmetry with respect

to the x-axis, was shown to be spotted in the hyperbolic stagnation point. We showed how

the self–sustained oscillatory regime, also observed in three–dimensional flow configurations

(Bertsch et al., 2020a), was relying on shear instabilities. The structural sensitivity of the

unsteady mode and its accurate examination allowed us to identify the Kelvin–Helmholtz

shear instability, located in the jet’s interaction region, as the heart of the physical mechanism

behind the self–sustained oscillatory regime.

Lastly, we examined the effect of a different inlet velocity profile, e.g. a plug flow, in analogy

with Pawlowski et al. (2006). Similarly to the case with a fully developed inlet flow, the weakly

nonlinear analysis could detect hysteresis in a narrow region of the parameter space, whose

existence was not discussed by Pawlowski et al. (2006). The physical nature of the instabilities

remained the same, but their thresholds can differ significantly, calling for a sensitivity analysis

of the inlet velocity profile. Indeed, in many practical situations, the inlet profile is neither

fully developed, nor uniform, but rather lies in an intermediate case.

3.9 Appendix

3.9.1 Convergence analysis for the eigenvalue calculations and the amplitude equa-
tion coefficients

The convergence analysis for the eigenvalue calculations presented in section 3.3 is shown

in table 3.1 for five different meshes M1–M5, which differ by the vertex densities ni in the

various sub-domains displayed in figure 3.2. A similar convergence analysis for the nonlinear

coefficients of the normal form (3.41)-(3.42) derived in section 3.4, is provided in table II. As

shown in table 3.1, mesh M1 is already excellent for the linear eigenvalue problem. Moreover,

the structural sensitivity presented in section 3.6 highlights the fluid domain region in which

all the physical mechanisms occur, suggesting that the length of the computational domain

could be reduced from Lout = 70w up to ≈ 30w , without any influence on the eigenvalue
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Re AR Mesh n1 n2 n3 n4 ntot nd .o. f . Re
(
λA

)
Re

(
λB

)
M1 145 115 75 35 240251 1098685 −2.6e−5 3.3e−6

M2 150 120 80 35 257110 1175053 −2.5e−5 −7.5e−8

22.65 6.98 M3 160 130 85 40 307080 1401813 −2.6e−5 −8.9e−7

M4 175 145 95 45 383395 1747633 −2.6e−5 −3.3e−6

M5 200 160 105 50 475963 2166624 −2.6e−5 −3.3e−6

Table 3.1 – Eigenvalue convergence associated with the computational domain presented in
figure 3.2. Tolerance on the real part of the eigenvalues λA and λB , associated to global modes
A and B , is set to tolRe(λ) = 5e−5. When |Re(λ)| < tolRe(λ), the modes are considered marginally
stable for such combination of Reynolds number, Re, and aspect ratio, AR, which will define
a codimension–2 point

(
ReC2 , ARC2

)
. Mesh M1 ensures the convergence of the eigenvalue

computations in a range of AR and Re explored, however, mesh M5 must be adopted to
guarantee an acceptable convergence in the weakly nonlinear analysis (see Table 2). Lout is
fixed to 70. The imaginary part of λB amounts to 0.10157 for all the meshes reported above.

Mesh ζA ηA µA χA

M1 1.22 -0.257 0.157 1.01
M2 1.22 -0.256 0.157 1.01
M3 1.22 -0.256 0.157 1.01
M4 1.22 -0.257 0.157 1.01
M5 1.22 -0.257 0.157 1.01

ζB ηB µB χB

M1 2.67 + i 0.0499 -0.738 + i 1.00 0.410 + i 0.0014 0.164 - i 0.0963
M2 2.67 + i 0.0438 -0.737 + i 1.00 0.410 + i 0.0014 0.164 - i 0.0963
M3 2.67 + i 0.0505 -0.737 + i 1.00 0.410 + i 0.0014 0.164 - i 0.0963
M4 2.67 + i 0.0489 -0.738 + i 1.00 0.410 + i 0.0014 0.164 - i 0.0963
M5 2.67 + i 0.0490 -0.738 + i 1.00 0.410 + i 0.0014 0.164 - i 0.0963

Table 3.2 – Values of the amplitude equation coefficients for global mode A and B correspond-
ing to the case of a fully developed inlet velocity profile and calculated for different mesh
M1–M5.

calculation (numerically verified). However, the weakly nonlinear problem and the calculation

of the coefficient of the normal form requires a finer mesh and an adequate domain length in

order to get an optimal convergence. Table 2 shows that refining from mesh M4 to M5 the

major relative error (coefficient ηA) is less than 1%. Note that this is the numerical precision of

the calculation performed, which is not linked to the convergence of the asymptotic expansion,

whose precision increases as |Re −ReC2 | and |AR − ARC2 | decrease.

The expression of the various normal form coefficients are provided in the following:

ζA =−< q̂A†
1 ,

(
DARC2

q̂A
1 +CARC2

[
q̂A

1 , q̂δ2
])

>, (3.61)

ζB =−< q̂B†
1 ,

(
DARC2

q̂B
1 +CARC2

[
q̂B

1 , q̂δ2
])

>, (3.62)
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ηA =−< q̂A†
1 ,

(
− 2

ReC2

DαARC2
q̂A

1 +Gαq̂A
1 +Cα

[
q0, q̂A

1

]+CARC2

[
q̂A

1 , q̂α2
])>, (3.63)

ηB =−< q̂B†
1 ,

(
− 2

ReC2

DαARC2
q̂B

1 +Gαq̂B
1 +Cα

[
q0, q̂B

1

]+CARC2

[
q̂B

1 , q̂α2
])>, (3.64)

µA =< q̂A†
1 ,CARC2

[
q̂A

1 , q̂A2

2

]
>, (3.65)

µB =< q̂B†
1 ,

(
CARC2

[
q̂B

1 , q̂|B |2
2

]
+CARC2

[
q̂B∗

1 , q̂B 2

2

])
>, (3.66)

χA =< q̂A†
1 ,

(
CARC2

[
q̂A

1 , q̂|B |2
2

]
+CARC2

[
q̂B∗

1 , q̂AB
2

])
>, (3.67)

χB =< q̂B†
1 ,

(
CARC2

[
q̂B

1 , q̂A2

2

]
+CARC2

[
q̂A

1 , q̂AB
2

])>, (3.68)

where, given two vectors a and b, CARC2
[a,b] =

{
CARC2

(a,b) ,0
}T

, DARC2
a =

{
∆ARC2

a,0
}T

,

Cα [a,b] = {Cα (a,b) ,0}T , DαARC2
a =

{
∆αARC2

a,0
}T

, while Gαq̂A,B
1 =

{
∇αp̂ A,B

1 ,∇T
α ûA,B

1

}T
.

The star ∗ denotes the complex conjugate.

3.9.2 Flow behaviour at higher Reynolds numbers

In section 3.3.2 the existence of a second steady global mode (denoted by C ), which, from

the global stability analysis, appears to be unstable for Re = 41.5, for AR = 6.5 (see figure 3.19-

(c)), was mentioned. When the threshold for mode C is met, global modes A and B are

both unstable. This evidence does not justify either the application of the linear stability

tools or the weakly nonlinear analysis (the corresponding thresholds are too far from each

other). Nevertheless, some information can still be extracted by looking at the DNS results for

higher Reynolds numbers, i.e. Re = 50, and, in particular, at the spatial structure of this mode.

Figure 3.19-(a) shows the flow configuration for Re = 50 and AR = 6.5. As can be observed, in

figure 3.19-(b), where the magnitude of the velocity field is plotted for two symmetric slices at

coordinates x =−5 and x =+5, for such combination of control parameters, the symmetry of

the flow (in terms of field magnitude) with respect to the y–axis is lost.

It can be argued that the cause of such behaviour is the second steady mode, C , which

results to be unstable, with growth rate σC = 0.016 (and frequency ωC = 0), for the DNS

parameters here presented. Figure 3.20-(a) and (b) displays the spatial structure of the x– and

y–velocity components associated with the mode. The eigenfunctions for ûC
1 and v̂C

1 exhibits

the same symmetry properties characterizing the oscillating mode B (see figure 3.5-(b) and

(d)). However, the steady nature of this mode leads to a double steady symmetry–breaking

condition (both axes of symmetry). The associated wavemaker region, computed as described

in section 3.6, is shown in figure 3.20-(c). The overlapping region highlighted by the structural

sensitivity appears to be approximately localized at the boundaries of the recirculation regions.
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Figure 3.19 – Snapshot of the unsteady flow configuration in terms of dyes concentrations
for Re = 50 and AR = 6.5. Two slices, at x =−5 and x =+5 are extracted and used to plot the
magnitude of the velocity field (b). (c) Marginal stability curves for global mode A, B , and C
as a function of Re and AR (as in figure 3.4). LS: Linearly Stable. LU: Linearly Unstable. Red
circle: DNS parameters for the present case.

The nature of this instability could be reasonably classified as a buckling–like instability, where

the symmetric configuration with two facing jets, above a certain critical Reynold number,

which represents a measure of the jet intensities, becomes unstable and the jets tend to bend

towards opposite directions, as clearly shown in figure 3.20-(d). The shape and size of the four

recirculation regions are then readapted to the new steady configurations.

In the recent three–dimensional experimental and numerical investigation proposed by

Bertsch et al. (2020a) for straight output channels, as the two–dimensional one analyzed in the

present study, the self–sustained oscillatory regime, observed in a certain range of Reynolds

numbers, is seen to be strongly altered as Re is increased (Re ≈ 100 or higher). In particular, the

two facing jets tend to suddenly switch left or right (and vice versa) and to keep that position

steadily for a while. Fast oscillations are simultaneously present and sometimes the jets

switch side. The existence of an analogous steady symmetry breaking condition in the three–

dimensional problem is in principle expected and its strong nonlinear interaction with the

self–sustained oscillations for high Reynolds numbers could hypothetically and qualitatively

justify the flow behaviour shown in Bertsch et al. (2020a) (see associated supplemental material

at http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.054202).
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Figure 3.20 – Spatial structure of the x– and y–velocity components associated with the direct
global mode C for Re = 50 and AR = 6.5, for which the base–flow is marginally stable. (a) x–
velocity component. (b) y–velocity component. (c) Color map: structural sensitivity to a
local feedback of the steady global mode C , expressed as ||ûC

1 || · ||ûC †
1 || and normalized by

its maximum value. Black contours: magnitude of the base–flow field. Red dashed lines:
boundaries of the recirculation bubbles. (d) Streamline associated with the sum of the steady
base–flow and the steady unstable mode C . A fictitious amplitude of 0.25 is imposed to the
perturbation in order to get a good visualization of the streamlines modification. Red solid
lines: axes of symmetry.

3.9.3 Temporal linear stability of the local velocity profiles in the lateral channel

The wavemaker analysis proposed in section section 3.6 suggests that the Kelvin–Helmholtz

(KH) mechanism plays an important role in the oscillatory instability. Nevertheless, the KH

instability has an inviscid origin, while the low Reynolds numbers encountered in this flow

suggest that viscous effects could be dominant and consequently that they could inhibit the

KH instability. In this appendix, we propose a temporal linear stability of the local velocity

profiles in the lateral channel (see figure 3.15-(b)), which highlights that the KH mechanism is

actually active in the underlying process.

If we assume that the steady base–flow in the right (or left, symmetric base–flow) output

channel is locally parallel, i.e. we assume that the y–steady base–flow velocity component is

zero and the x–component depends only on y , u0 =
{
u0

(
y
)

,0
}T , then we can tentatively apply

the parallel stability theory. Linearizing the Navier–Stokes equation around the locally parallel

base–flow and using the ansatz, u
(
x, y, t

)= û
(
y
)

e i(kx−λt ) and p
(
x, y, t

)= p̂
(
y
)

e i(kx−λt ), with k
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spatial wavenumber, we obtain the following linear system,

0 = ikû + ∂v̂

∂y
, (3.69)

−iλû =−iku0û − v̂
∂û0

∂y
− ikp̂ + 1

Re

(
−k2 + ∂2

∂y2

)
û, (3.70)

−iλv̂ =−iku0û − ∂p

∂y
+ 1

Re

(
−k2 + ∂2

∂y2

)
v̂ , (3.71)

subjected to no-slip boundary condition at the upper and lower walls. The system above,

formally equivalent to the Orr–Sommerfeld equation expressed in primitive variables, reduces

to a generalized eigenvalue problem in λ (the real wavenumber k is an input), whose temporal

stability associated with the base–flow for each x–slice is studied numerically using a validated

Chebyshev pseudo-spectral code. A one-dimensional grid in the y–direction made of 100

collocation points ensures convergence for the present case. The main results are shown in

figure 3.21. We observe that there exists a spatial region, approximatively between x = 1
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Figure 3.21 – Temporal analysis of the x–velocity profiles shown in figure 3.15-(b) and corre-
sponding to Re = ReC2 = 22.65 and AR = ARC2 = 6.98. Left plot: frequency −ω vs. wavenumber
k. Right plot: growth rate σ vs. wavenumber k. The maximum growth rate is found for x = 2
and corresponds to k ≈ 0.71 (wavelength ≈ 8.8) and to an oscillation frequency ω= 0.101.

and x = 5 in which the local profiles are temporally unstable. Interestingly, the maximum

growth rate, obtained for x = 2, is characterized by a spatial wavenumber k ≈ 0.7, which

corresponds to a wavelength ≈ 9, in good agreement with the one observed in our oscillatory

global mode (see figure 3.5-(d)). Furthermore, the associated oscillation frequency is ω= 0.1,

a value which matches well the global frequency. Lastly, the local temporal analysis predicts a

sinuous mode (not shown here), while varicose modes are always stable, in agreement with
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global observations again.

A similar analysis can be repeated for the jet profiles selected along the y–axis (figure 15-(a)).

These profiles are also found to be temporally unstable, but the interpretation of the results

in terms of wavenumber and frequency is far from being trivial, since the features of the

instability are clearly visible only in the lateral output channels.

We then performed a spatio-temporal instability analysis, where λ and k are both complex

quantities, but we found that the pocket of temporal instability is associated with a convective

instability (results not shown here).

As stated in section 3.6 and highlighted by the wavemaker (figure 15-(c)), the instability

mechanism seems to be intrinsically global and due to the interaction of multiple shear layers

(jets and horizontal flows), which communicate in the central region of the domain, where

the flow is strongly non–parallel. For all these reasons, we believe that the employment of the

classic local theory is not legit in our case. Nevertheless, the temporal analysis proposed in

this appendix, together with consideration about the location of the maximum shear made in

section 3.6, shows that the KH instability is active and that it could play a relevant role in the

instability mechanism, despite the potentially high viscous effects.
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Introduction

Sloshing, i.e., the oscillations of a free liquid surface in partially filled containers, is an im-

portant issue in mechanical and aerospace engineering as well as in daily life. For instance,

casually shaking a glass of water or a cup of coffee may lead to unpleasant liquid spilling

(Mayer and Krechetnikov, 2012) (see figure II.1(a)). Closer to engineering, the total weight of

launch vehicles and road or ship tankers is constituted in a large percentage by the liquids

transported and by fuel. As the sloshing frequencies might be close to the control system

frequencies, possible resonant sloshing dynamics can induce significant displacements of the

vehicle’s center of mass, thus endangering its dynamical stability (Ibrahim, 2005), with critical

consequences on the transport safety and vehicle’s performances (see figure II.1(b).

In some other applications however, enhancement of sloshing waves is seen as beneficial

(see figure II.1(c)): in biology for example, cellular growth takes place in nutritive media placed

into bioreactors (McDaniel and Bailey, 1969; Wurm, 2004). These containers are agitated so as

to mix the liquid, prevent sedimentation and enhance gas transfer, which provides suitable

oxygenation to the growing cell population (Klöckner and Büchs, 2012).

Therefore, a proper predictive understanding and modelling of the sloshing hydrodynamics

at stake is essential in the design process of liquid tanks, so as to implement active control

systems of vehicles and ensure efficient mixing processes.

For moderately large-size containers, sloshing is classically modelled by determining the os-

cillation modes compatible with a given tank shape using potential flow theory supplemented

by viscous dissipation coming from bulk potential flow and Stokes boundary layers along walls

(Faltinsen and Timokha, 2009). More precisely, gravity waves are restricted into modes with

a discrete set of wavenumbers, owing to the action of the container walls. The values of the

associated natural frequencies depend on the geometrical and fluid parameters through the

well-known dispersion relation for capillary-gravity waves (Lamb 1932),

ω2
mn = g kmn

(
1+γk2

mn/ρg
)

tanh(kmnh), (3.72)

where g is the gravitational acceleration, h is the depth of the liquid layer, ρ and γ are the

liquid’s density and surface tension, while kmn is a wavenumber.

Since analytical solutions are limited to regular geometric tank shapes, the case of sloshing

in partially filled cylindrical reservoirs has represented over the last 60 years one of the archety-

pal sloshing systems (Abramson, 1966). In this specific configuration, the wavenumbers
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Figure II.1 – (a) Example of daily-life liquid spilling. (b) Top, sloshing experiments in large-
scale tanks for LNG (liquefied natural gas) carrier (Pastoor et al., 2005). Bottom, a sloshing
test carried out by ESA (European Space Agency) to test the response of a launcher’s liquid
propellants to the violence of take-off, so as to better understand the forces involved and
enhance future launcher performances. (c) Left, stirred tank in operation: gas and chemicals
are injected at the bottom, while the agitation is ensured by the propeller, which also breaks
the largest bubbles. Gas exchange occurs at the interface of the bubbles. Right, orbital-shaken
bioreactor: the motion is imposed at the whole vessel, and transmitted to the liquid by the
walls, with the gas exchange occurring at the free surface (modified figure from Reclari (2013)).
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kmn are given by the nth-roots of the first derivative of the mth-order Bessel function satis-

fying J ′m (Rkmn), with R the container’s radius and the indices (m,n) denoting, respectively,

the number of nodal circles and nodal diameters of the associated eigenmode. The lowest

or first system’s natural frequency has typically (m,n) = (1,1) and it is therefore denoted byω11.

Among all the possible forcing conditions and container trajectories, orbital shaking is

particularly interesting, despite its apparent simplicity. Previous experimental studies have

carefully described the close-to-resonance dynamics for the two limiting cases, namely circular

and purely longitudinal shaking (see figure II.2), casting light on a rich variety of wave regimes,

i.e. planar waves, irregular motion or swirling waves, symmetry-breaking, etc., attracting

interest to dynamicists over the last decades (Hutton, 1963; Miles, 1984c,d; Ockendon and

Ockendon, 1973).

D=2R

h

g

z
y

xO

fixed 

orientation shaking

trajectory

z

x

z

x

z

x

ax cos(Ωt)} a
y 
si

n
(Ω

t)

Circular

Longitudinal

Elliptical

α = ay /ax  

α = 1

α = 0

0<α<1

Figure II.2 – Schematic illustration of possible operating parameters of the shaking config-
urations. Note that the container does not rotate around its own axis, but rather keeps its
orientation fixed. The orbit aspect ratio is defined as α= ay /ax , and it is α 6= 0 for a generic el-
liptic orbit. The two limiting cases correspond toα= 1, rotary shaking, andα= 0, longitudinal
shaking. The external driving is harmonic with angular frequencyΩ= 2π/T .

For circular orbits, the system responds with a swirling wave always co-directed with the

container motion. This well-defined hydrodynamics, often simply modelled by a one-degree-

of-freedom Duffing oscillator (Ockendon and Ockendon, 1973), is advantageously exploited

in the design of bioreactors for bacterial and cellular cultures (McDaniel and Bailey, 1969;

Wurm, 2004), where circular shaking is used as a method to gently mix the liquid content of a

container by its displacement at fixed container orientation along a circular trajectory and

at a constant angular velocity. Particularly, it constitutes an alternative to stirred tanks (see

figure II.1(c)), where the liquid agitation results from a rotating impeller or the rotation of a
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Sub-Harmonic Harmonic Super-Harmonic
ω/Ω 1/2 1 2
ω Ω/2 Ω 2Ω
Ω/ω 2 1 1/2

Table II.1 – Definition of fundamental sub-harmonic, harmonic and super-harmonic res-
onances based on the relation between driving frequency, Ω = 2π/T , and wave oscillation
frequency, ω. The case of sub-harmonic wave responses will be tackled in Part III in the
context of the parametric Faraday instability.

magnetic rod. In these cultivation protocols, cells are in suspension in the extracellular liquid

medium, which serves as buffer for consumables from which they feed and for their secretions.

The motion of the liquid prevents sedimentation and homogenizes the concentration of

dissolved oxygen and nutrients and of secreted proteins and carbon dioxide. Thanks to the

possible gas exchanges at the free surface, oxygen supply from the container bottom can

possibly be circumvented, avoiding the formation of bubbles and thereby the damages that

their collapse can exert on cells (Handa-Corrigan et al., 1989; Kretzmer and Schügerl, 1991;

Papoutsakis, 1991), sparking interest in the development of large-scale, in the hectoliter range,

orbital-shaken bioreactors (Jesus et al., 2004; Liu and Hong, 2001; Muller et al., 2007). It is

therefore not a surprise if a significant body of research on the gas exchange and mixing in

these devices has emerged over the last two decades (Büchs, 2001; Büchs et al., 2000a,b; Maier

et al., 2004; Micheletti et al., 2006; Muller et al., 2005; Tan et al., 2011; Tissot et al., 2010, 2011;

Zhang et al., 2009).

Since the shear stresses and, therefore, the mixing are proportional to the velocity gradients

in the liquid phase, most of the gas exchange phenomena listed above are directly linked to the

liquid motion, with the optimal working conditions essentially dictated by the wave pattern

(Reclari, 2013). For these reasons, at a more fundamental level, the hydrodynamics of these

orbital shaking devices has received recent attention, from both experimental (Bouvard et al.,

2017; Moisy et al., 2018; Reclari et al., 2014) and theoretical (Horstmann et al., 2020; Reclari

et al., 2014) perspectives, predominantly using linear potential flow models. These models

are often complemented with effective viscous damping rates to incorporate the energy

dissipation responsible for the phase-shifts between wave and shaker, which was also seen

to be sometimes responsible for damping-induced symmetry-breaking linear mechanisms

resulting in linear spiral wave patterns (Horstmann et al., 2021, 2020). Previous studies,

reviewed for instance in Ibrahim (2005) or Faltinsen and Timokha (2009), make mostly use of

classical existing theories for general linear and weakly nonlinear sloshing dynamics in the

vicinity of the fundamental harmonic resonance, i.e. when the system is harmonically driven

at a frequency close to the lowest natural frequency, ω11.

However, the seminal work of Reclari (2013) cast light on the importance of super-harmonic

resonances occurring for an excitation frequency far below ω11, which may possibly manifest

with large amplitude responses and wave breaking, hence potentially raising an issue for the

robustness of bioreactors if not accounted for. Among these super-harmonics, the double-

crest (DC) dynamics (as defined by Reclari (2013)) is particularly relevant, as it displays a
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Figure II.3 – Non-dimensional wave amplitude (re-scaled with the container’s radius R) be-
tween the apparition of super-harmonic double-crested waves (at Ω ≈ ω21/2, vertical red
dashed line) and the first system’s natural frequency (ω11) (Reclari, 2013). ds is the orbit of the
container’s trajectory and represents the dimensional forcing amplitude. The black solid lines
correspond to the theoretical predictions given by a linear potential model. The single-crest
(SC) and double-crest (DC) wave shapes, visualized along the wall, i.e. θ ∈ [0,2π] with θ the
azimuthal coordinate, are shown in the two insets (modified figure from Reclari (2013)).

notably large amplitude response, that is strongly favoured by the spatial structure of the

external forcing (see figure II.3). In the following we will refer to this resonance as fundamental

super-harmonic. To avoid confusion with the contradictory terminology in literature, in

table II.1 we define what we mean for fundamental sub-harmonic, harmonic and super-

harmonic resonances.

In order to refine the linear potential model and, specifically, to predict the occurrence

of the super-harmonic wave dynamics observed experimentally (we remark that by super-

harmonic, we mean here a wave of a certain wave frequency ω emerging from an excitation

at Ω = ω/2, with Ω the driving angular frequency), Reclari (2013) and Reclari et al. (2014)

proposed an inviscid weakly nonlinear analysis based on a second order straightforward

asymptotic expansion procedure, which was shown to be capable of capturing the emergence

of the observed resonance. However, their analysis, as typical of straightforward asymptotic

expansions, suffers from secular terms (Castaing, 2005; Nayfeh, 2008a) and, therefore, it still

fails in describing the correct nonlinear behaviour close to both harmonic and super-harmonic

resonances.

With regards to the experiments of Reclari (2013) and Reclari et al. (2014), Timokha and
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Raynovskyy (2017) and Raynovskyy and Timokha (2018a,b) have applied the Narimanov-

Moiseev multimodal sloshing theory (Dodge et al., 1965; Faltinsen, 1974; Lukovsky, 1990;

Moiseev, 1958; Narimanov, 1957; Narimanov et al., 1977). The theory is capable of accurately

describing the nonlinear wave dynamics near the fundamental harmonic resonance when no

secondary resonances occur (Faltinsen et al., 2016, 2005). Despite the fact that the experiments

performed by Reclari (2013) and Reclari et al. (2014) were made for nondimensional fluid

depths H = h/R = 1.04 and 1, which lie slightly beyond the applicability threshold of the

multimodal theory (Hth should be & 1.05 as stated by Raynovskyy and Timokha (2020)) and

imposed by the occurrence of secondary resonances, the authors found a quantitative good

agreement with the experimental observations associated with the hardening-spring type

single-crest swirling.

In the spirit of the aforementioned multimodal theory but with regards to square-base basins,

the resonant amplification of higher order modes for forcing frequency in the vicinity of the

primary resonance (secondary or internal resonances) was investigated by Faltinsen et al.

(2005), who formalized a so-called adaptive asymptotic modal approach capable to improve

the agreements with earlier experiments. A thorough discussion on this regard is also outlined

in chapters 8 and 9 of Faltinsen and Timokha (2009), where the importance of the ratio of

tank liquid depth to tank width on the occurrence of the internal resonance phenomenon

is carefully discussed. Generally speaking, secondary resonance is a broader concept, and

it may occur even far from the primary resonance zone, as in the case of the double-crest

swirling observed in Reclari et al. (2014). To our knowledge, the adaptive modal approach was

never extended to super-harmonic system responses of orbital-shaken circular cylindrical

containers far from the primary resonance.

For these reasons, it appears that a quantitatively accurate model for the prediction of the

super-harmonic double-crest (DC) dynamics observed during the thorough experimental

campaign carried out by Reclari (2013) and Reclari et al. (2014) has not been provided yet.

Chapter 4 is precisely dedicated to the development of a weakly nonlinear analysis based on

the multiple timescale method, which will be seen to successfully capture nonlinear effects for

the main additive harmonic resonances as well as the more subtle additive and multiplicative

resonance governing the super-harmonic double-crest swirling. Amplitude equations are

rigorously derived in an inviscid framework, which once amended with an ad-hoc damping

term as the only tuning parameter, well match the experimental findings of Reclari (2013) and

Reclari et al. (2014). Lastly, the obtained amplitude equations for harmonic single–crest and

super-harmonic double–crest waves are found to be compatible with the two well-known

one-degree-of-freedom (1dof) systems, the Duffing (already introduced in Chapter 1) and the

Helmholtz-Duffing oscillators, respectively.

The study of the double-crest (DC) super-harmonic resonance is extended to longitudinal

shaking in Chapter 5. The latter forcing condition has been analytically and experimentally

studied for decades (Abramson, 1966; Chu, 1968; Hutton, 1963) and it is of interest from the per-

spective of hydrodynamic instabilities due to the occurrence of hysteretic symmetry-breaking

conditions (Miles, 1984a,d). With regards to circular cylindrical containers, particularly rel-
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Figure II.4 – (a) Time evolution of the wave amplitude at a probed location in a circular
container of radius R = 78mm filled with water to a non-dimensional depth h/R ≈ 1.5 and
undergoing a longitudinal motion of non-dimensional amplitude ax /R = 0.0033 and driving
frequency Ω/ω11 = 0.98, with ω11 the lowest system’s natural frequency. The time series
shows a wave envelope modulation occurring on a much larger time scale than the forcing
period T = 2π/Ω. The absence of a steady wave amplitude regime is a clear sign of irregular
motion. (b) Images from Royon-Lebeaud et al. (2007) of a swirling wave in a circular cylinder
of radius R = 150mm filled to a depth h/R ≈ 1.2 and longitudinally forced with ax /R = 0.023
and Ω/ω11 ≈ 1.02. Views are in the direction normal to the tank motion. The ten images
represent slightly more than one wave period. (c) Theoretical (solid lines, from Faltinsen et al.
(2016)) and experimental (circles, from Royon-Lebeaud et al. (2007)) estimates of bounds,
in the forcing parameter space, (Ω/ω11, ax /R), between the frequency ranges where planar,
irregular and swirling waves occur for close-to-resonance longitudinal forcing conditions, i.e.
Ω/ω11 ≈ 1.

evant are the experimental studies by Abramson et al. (1966), Royon-Lebeaud et al. (2007)

and Hopfinger and Baumbach (2009), who detected the stability bounds between harmonic

planar, swirling and irregular waves and whose estimates were later used by Faltinsen et al.

(2016) to validate their theoretical analysis (see figure II.4). However, these works were mostly

focused on the investigation of system responses in the neighbourhood of harmonic reso-

nances, whereas, with the exception of Reclari (2013); Reclari et al. (2014) in the context of

circular sloshing, the literature seems to lack comprehensive experimental and theoretical
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studies dealing with the fundamental secondary super-harmonic resonances (discussed in

Chapter 4) under longitudinal or, more generally, elliptical container excitation.

In this Chapter, we take a first step in this direction by extending to longitudinal planar forcing

the analysis formalized in Chapter 4 for circular container motions. In the spirit of the multiple

timescale method, we develop a weakly nonlinear (WNL) model leading to a system of two

amplitude equations, whose prediction anticipates that a planar wave symmetry-breaking via

stable swirling may also occur under super-harmonic excitation. This finding is confirmed by

our experimental observations, which indeed identify three possible super-harmonic regimes,

i.e. (i) stable planar DC waves, (ii) irregular motion and (iii) stable swirling DC waves, whose

corresponding stability boundaries in the forcing frequency-amplitude plane quantitatively

match the present theoretical estimates.

Chapter 5 ends with a brief demonstration of how a straightforward extension of the present

analysis to a generic container’s elliptic orbit can be readily obtained without any further

calculation. This paves the way for the analysis and experimental investigation of the next

Chapter, which has been stimulated by the surprising fact that no experimental studies de-

voted to the more generic case of elliptic container orbits have been reported so far in the

sloshing literature. Existing theoretical analyses of this forcing condition brought out interest-

ing features of the resonant liquid response that depend on the orbit’s ellipticity. In particular,

the inviscid theory of Faltinsen et al. (2016) suggested the counter-intuitive existence, under

resonant elliptic forcing, of stable swirling waves that propagate in the direction opposite to

the forcing direction. Moreover, the theory anticipated that such counter-waves may exist

even for quasi-circular orbits and travel with a smaller amplitude than co-directed waves. This,

if confirmed, would further enrich the variety of observable dynamical sloshing regimes.

Therefore, Chapter 6 aims at providing a joint experimental and theoretical characteriza-

tion of the free liquid surface response for a generic, elliptic periodic container trajectory, so

as to bridge the gap between the two diametrically opposed shaking conditions previously

discussed. Specifically, with the main focus here on harmonic resonances, we intend to exper-

imentally identify the range of external control parameters, i.e. driving frequency, amplitude

and orbit aspect ratio, for which stable counter-directed swirling waves occur. Our findings

provide the first strong evidence of the existence of a frequency range where stable swirling

can be either co- or counter-directed with respect to the container’s direction of motion. Lastly,

these results are successfully rationalized and predicted by the inviscid asymptotic model

developed in Chapter 5, amended with heuristic damping by analogy with Chapter 4.
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4 An amplitude equation modelling
the double–crest swirling in orbital
shaken cylindrical containers
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The container motion along a planar circular trajectory at a constant angular velocity, i.e. or-

bital shaking, is of interest in several industrial applications, e.g. for fermentation processes or

in cultivation of stem cells, where good mixing and efficient gas exchange are the main targets.

Under these external forcing conditions, the free surface typically exhibits a primary steady

state motion through a single–crest dynamics, whose wave amplitude, as a function of the ex-

ternal forcing parameters, shows a Duffing-like behaviour. However, previous experiments in

lab-scale cylindrical containers have unveiled that, owing to the excitation of super-harmonics,

diverse dynamics are observable in certain driving-frequency ranges. Among these super-

harmonics, the double-crest dynamics is particularly relevant, as it displays a notably large

amplitude response, that is strongly favoured by the spatial structure of the external forcing.

In the inviscid limit and with regards to circular cylindrical containers, we formalize here a

weakly nonlinear analysis via multiple timescale method of the full hydrodynamic sloshing

system, leading to an amplitude equation suitable to describe such a double–crest swirling

motion. The weakly nonlinear prediction is shown to be in fairly good agreement with previ-

ous experiments described in the literature. Lastly, we discuss how an analogous amplitude

equation can be derived by solving asymptotically for the first super-harmonic of the forced

Helmholtz–Duffing equation with small nonlinearities.
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Chapter 4. An amplitude equation modelling the double–crest swirling in orbital shaken
cylindrical containers
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Figure 4.1 – Sketch of a cylindrical container of diameter D = 2R and filled to a depth h. The
gravity acceleration is denoted by g . O′e′x e′y e′z is the Cartesian inertial reference frame, while
Oex ey ez is the Cartesian reference frame moving with the container. The origin of the moving
cylindrical reference frame (r,θ, z) is placed at the container revolution axis and, specifically,
at the unperturbed liquid height, z = 0. The perturbed free surface and contact line elevation
are denoted by η and δ, respectively. ds is the diameter of the circular shaking trajectory,
characterized by a driving angular frequencyΩd .

The chapter is organized as follows. The flow configuration and governing equations are

introduced in §4.1. §4.2 is briefly summarizes the salient points of the asymptotic model

proposed by Reclari et al. (2014), whose limitations motivated the present work. After tackling

the more common case of harmonic single–crest wave in §4.3.1, the weakly nonlinear ampli-

tude equation governing the super-harmonic double–crest wave dynamics is derived in §4.3.2.

Final comments and conclusions are outlined in §4.4.

4.1 Flow configuration and governing equations: potential model

We consider a cylindrical container of diameter D = 2R filled to a depth h with a liquid of

density ρ. The air-liquid surface tension is denoted by γ. The orbital (circular) shaking motion

(see sketch in figure 4.1) can be represented as the combination of two sinusoidal translations

with a π/2 phase shift, thus leading to the following equations of motion for the container axis

intersection with the z = 0 plane, parametrized in cylindrical coordinates (r , θ)

Ẋ0 =
−ds

2 Ωd sin(Ωd t −θ)er

ds
2 Ωd cos(Ωd t −θ)eθ

. (4.1)

110



4.2. Linear solution and second-order straightforward asymptotic expansion

In the classical potential flow limit, i.e. the flow is assumed to be inviscid, irrotational and

incompressible, the motion is described in terms of free surface deformation, η, and a potential

velocity field,Φtot , which is typically separated into a container,Φc , and a fluid component,Φ.

Hence, the liquid motion within the moving container is governed by the Laplace equation,

∆Φ= 1

r

∂Φ

∂r
+ ∂2Φ

∂r 2 + 1

r 2

∂2Φ

∂θ2 + ∂2Φ

∂z2 = 0, (4.2)

subjected to the homogeneous no-penetration condition, ∇Φ ·n = 0, at the solid sidewall and

bottom, and by the dynamic and kinematic free surface boundary conditions at z = η (see

Ibrahim (2005)),
∂Φ

∂t
+ 1

2
∇Φ ·∇Φ+η− κ

(
η
)

Bo
= r f cos(Ωt −θ), (4.3a)

∂η

∂t
+ ∂Φ

∂r

∂η

∂r
+ 1

r 2

∂Φ

∂θ

∂η

∂θ
− ∂Φ

∂z
= 0, (4.3b)

which have been made non-dimensional by using the container’s characteristic length R,

the characteristic velocity
√

g R and the time scale
√

R/g . In (4.3a), κ
(
η
)

denotes the fully

nonlinear curvature, while Bo = ρg R2/γ is the Bond number. The non-dimensional driving

amplitude and angular frequency read f = dsΩ
2
d /

(
2g

)
and,Ω=Ωd /

√
g /R , respectively. When

surface tension is accounted for, an additional contact line boundary condition is required at

z = η and r = 1, typically written as ∂η/∂r = cotϑ, where ϑ is the macroscopic contact angle.

Under the classic free–end edge contact line assumption with ϑ=π/2 adopted here, the latter

dynamic equation simply reduces to ∂η/∂r = 0. This means that the free surface at rest is flat

and that a π/2 static contact angle is maintained when the contact line elevation changes

dynamically.

4.2 Linear solution and second-order straightforward asymptotic

expansion

In order to enlighten the limitations of the expansion procedure developed by Reclari et al.

(2014), which motivates the formalization of the new theoretical framework proposed in the

present work, we briefly recall the salient points. Let us consider the following asymptotic

expansion for the flow quantities,

Φ=Φ0 +εΦ1 +ε2Φ2 +O
(
ε3) , (4.4a)

η= η0 +εη1 +ε2η2 +O
(
ε3) , (4.4b)

together with the further assumption of small driving forcing amplitudes of order O(ε), i.e.

f = εF , with ε a small parameter ε¿ 1 and the auxiliary variable F of order O(1). Solution q0 ={
Φ0,η0

}T represents the rest state, which has a potential velocity field null everywhere,Φ0 = 0,

and a flat interface, η0 = 0, as the contact angle is here assumed to be ϑ=π/2. Substituting
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Chapter 4. An amplitude equation modelling the double–crest swirling in orbital shaken
cylindrical containers

the expansions above in equations (4.2)-(4.3b), a series of systems at the various order in ε

is obtained. At leading order, equations (4.2)-(4.3b) reduce to a forced linear system, whose

matrix compact form reads,

(∂t B−A )q1 =F 1, (4.5)

with q1 =
{
Φ1,η1

}T , F 1 = F {0,r /2}T e i(Ωt−θ) + c.c. = FF̂
F
1 e i(Ωt−θ) + c.c. and

B =
(

0 0

Iη 0

)
,A =

(
∆ 0

0 −Iη+ 1
Bo

∂κ
∂η

)
, (4.6)

where c.c. stands for complex conjugate, ∂κ/∂η represents the first order variation of the

curvature associated with the small perturbation εη1 and Iη is the identity matrix associated

with the interface η. Note that the kinematic condition does not explicitly appear in (4.6), but

it is enforced as a boundary condition at the interface (Viola et al., 2018). In the limit of zero

external forcing, i.e. F = 0, system (4.5) is a linear homogeneous problem which, by seeking

for solutions having the following normal form

q̂mn (r, z)e i(ωmn t−mθ) + c.c., (4.7)

reduces to the classic generalized eigenvalue problem for inviscid capillary–gravity waves

(iωmnB−Am) q̂mn = 0, (4.8)

where indices (m,n) represent the number of nodal circles and nodal diameters, respectively,

with m also commonly known as azimuthal wavenumber. Owing to the normal mode expan-

sion, we note that the operator A depends on the azimuthal wavenumber, m, and, therefore,

we denote it by Am . An exact analytical solution to equation (4.8) can be readily obtained via

a Bessel-Fourier-series representation leading to the well-known dispersion relation (Lamb,

1993)

ω2
mn = (

kmn +k3
mn/Bo

)
tanh(kmn H), (4.9)

with H = h/R and where the wavenumbers kmn is given by the nth-root of the first derivative

of the mth-order Bessel function of the first kind satisfying J ′m (kmn) = 0.

Despite the existence of this analytical solution, in this work we opt for a numerical scheme

based on a discretization technique, where linear operators B and Am are discretized in space

by means of a Chebyshev pseudospectral collocation method with a two-dimensional mapping

implemented in Matlab, which is analogous to that described by Viola et al. (2018). This

numerical technique will enable us to avoid straightforward, but cumbersome calculations,

otherwise required in the development of the rest of this work and, particularly, of section

§4.3.2. One must note that when (4.8) is solved numerically as in the present case, additional

boundary conditions need to be made explicit in order to regularize the problem on the

revolution axis (r = 0), i.e.

m = 0 :
∂η̂mn

∂r
= ∂Φ̂mn

∂r
= 0, (4.10a)
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4.2. Linear solution and second-order straightforward asymptotic expansion

|m| ≥ 1 : η̂mn = Φ̂mn = 0. (4.10b)

It is also useful to note that owing to the symmetries of the problem, system (4.8) is invariant

under the transformation (
q̂mn ,+m, iωmn

)−→ (
q̂mn ,−m, iωmn

)
. (4.11)

Convergence of the numerical solution was checked by computing the first 16 modes

(m = 0,2,3,4 with n = 1,2,3,4), whose corresponding natural frequency values, ωmn , matched

the analytical ones given by (4.9) up to the fourth digit for a computational grid Nr = Nz = 60,

with Nr and Nz the number of radial and axial grid points, respectively.

Let us now reintroduce the forcing term on the r.h.s. of equation (4.5). In contradistinction

with the cases of unidirectional forcing (Miles, 1984a,d), for circular orbits, given the azimuthal

periodicity of the associated forcing, the shaking at linear order is expected to excite non-

axisymmetric modes only and, specifically, those with m = 1. Therefore, the linear response to

the external forcing can be sought as

q1 = F q̂F
1 e i(Ωt−θ) + c.c., (4.12)

with q̂F
1 being the solution of the following forced problem

(iΩB−A1) q̂F
1 = F̂

F
1 . (4.13)

The response structure q̂F
1 is here computed numerically, but, in practice, it is formally equiv-

alent to that obtained analytically by Reclari et al. (2014) by projecting the forcing term F̂ 1

onto the basis formed by the first order Bessel functions of the first kind, except that surface

tension is retained here because of the finite Bond number. Noting that εF = f = dsΩ
2/

(
2g

)
,

in figure 4.2 the linear solution εqF
1 from (4.12) is shown (black solid lines) and compared

with experimental measurements reported by Reclari et al. (2014) in terms of maximum non-

dimensional crest-to-trough contact line amplitudes, δ̃ = δR/D, with δ (θ, t ) = η (r = 1,θ, t ).

Measurements for different values of the non-dimensional shaking diameters, d̃s = ds/D,

are shown. Blue and green markers in figure 4.2 correspond to highly nonlinear scenarios

manifesting a free surface breaking, which will be therefore ignored thereafter. As discussed

by Reclari et al. (2014) and reproduced here, the linear solution describes well the single–crest

(SC) wave dynamics for driving frequencies far enough from harmonic resonances and, partic-

ularly, for small d̃s . However, as typical of undamped forced oscillators, the amplitude of the

inviscid linear response to the external forcing is proportional to ∝ 1/|Ω2 −ω2
1n | and therefore

it naturally diverges close to ω1n , thus failing in predicting the close-to-resonance behaviour,

e.g. for d̃s = 0.02 atΩ≈ω11. Introduction of viscous dissipation would regularize the divergent

behaviour atΩ=ω11, however, in the absence of any nonlinear restoring term, the hardening

nonlinearity displayed in figure 4.2 cannot be retrieved.

Furthermore, in experiments multiple–crested waves were observed at fractions of the natu-

ral frequencies (red markers in figure 4.2), i.e. the system responses with a frequency which is
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Figure 4.2 – Markers correspond to the experimentally measured maximum crest-to-trough
contact line amplitude (non-dimensional), with δ̃ = δR/D = δ/2, reported by Reclari et al.
(2014) for two container diameters, D = 0.144m and D = 0.287m, a non-dimensional depth
H̃ = h/D = 0.52 and five values of d̃s = ds/D, as a function of the non-dimensional shak-
ing frequency Ω normalized by the natural frequency of the first non-axisymmetric mode,
ω11 = 1.3286 (m = 1) on the bottom-x-axis and by that of first non-axisymmetric mode with
m = 2, ω21 = 1.7475, on the top-x-axis (the frequency values correspond to D = 0.287m).
Colors denote different wave conditions. Black solid lines: linear potential model solution,
from (4.12), computed by solving numerically equation (4.13). Red solid lines: weakly nonlin-
ear solution close to theΩ≈ω21/2, obtained by computing (4.17). Note that in order to ease
the comparison with experiments, the non-dimensional δ was rescaled by a factor R/D = 1/2,
as the container diameter D, rather than the container radius R, was used by Reclari et al.
(2014) to make the equations non-dimensional.

n-times (with n positive integer) that of the external forcing. Here we refer to such conditions

as super-harmonic dynamics (note that the terminology subharmonic was used by Reclari

et al. (2014) instead). Among these super-harmonics, the double–crest (DC) wave dynamics,

occurring at a driving frequencyΩ≈ω21/2, was seen to be the most relevant (see figure 4.2),

i.e. the most stable and the one displaying the largest deviation from the linear approximation.

This specific multiple–crest dynamics, which is intrinsically nonlinear, is indeed favoured by

the azimuthal symmetry of the external forcing. Reclari et al. (2014) tentatively described such

double–crest dynamics by pursuing the asymptotic analysis up to the second order in ε, as in

equations (4.4a) and (4.4b), in order to account for second order system weak nonlinearities.

At the second order in ε, one obtains the following forced linear system,

(∂t B−A )q2 =F 2 = F 2
(
F̂

F F
2 e i(2Ωt−2θ) + c.c.

)
+F 2F̂

F F
2 , (4.14)
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4.2. Linear solution and second-order straightforward asymptotic expansion

where F 2 gathers a series of terms produced by the first-order solution through the second-

order system nonlinearities. For the sake of brevity, the explicit expression of these forcing

terms is here omitted (see Appendix 4.5.4 for details). The bar denotes the complex conjugate.

Also, note that amplitude F is actually a real quantity and in the following the superscript F

will be used only to indicate forcing terms produced by the combination of the direct and

complex conjugate contributions of the first order response to the external forcing. The r.h.s.

of equation (4.14) clearly shows how second-order terms naturally induce a super-harmonic

response, whose spatial periodicity is m = 2, hence precisely corresponding to the double–crest

dynamics experimentally observed. The second forcing term on the r.h.s. of (4.14) has ω= 0

and m = 0, i.e. it is steady and axisymmetric. It originates in the leading order contribution in

the time and azimuthally averaged flow, the so-called mean flow. Equation (4.14) was solved

analytically by Reclari et al. (2014) by retaining for convenience only two modes, namely

those with (m,n) = (2,1) and (0,1), expected to be the relevant ones. The numerical scheme

employed in this work allows us to effortlessly account for all the (2,n) and (0,n) modes

simultaneously, as their contribution will be directly encompassed in the spatial function q̂F F
2

and q̂F F
2 , appearing in the second order solution,

q2 =
(
F 2q̂F F

2 e i(2Ωt−2θ) + c.c.
)
+F 2q̂F F

2 , (4.15)

whose contributions are computed by solving the following systems

(i2ΩB−A2) q̂F F
2 = F̂

F F
2 , −A0q̂F F

2 = F̂
F F
2 (4.16)

The total flow field, obtained through the asymptotic model is then given by the sum of the

first and second-order solutions,

q =
(

f q̂F
1 e i(Ωt−θ) + f 2q̂F F

2 e i(2Ωt−2θ) + c.c.
)
+ f 2q̂F F

2 , (4.17)

where, in order to eliminate the implicit small parameter ε, the amplitudes εF and ε2F 2 are re-

cast in terms of the physical amplitudes, f and f 2, respectively. The resulting prediction of the

maximum crest-to-trough contact line amplitude, δ (θ, t ) = η (r = 1,θ, t ) is shown in figure 4.2

for driving frequencies close toΩ/ω21 ≈ 0.5 (see top-x-axis) as red solid lines. Although this

straightforward asymptotic expansion detects the emergence of the super-harmonic double–

crest wave in that frequency window, it completely fails in capturing the correct nonlinear wave

amplitude saturation displaying a hardening behaviour clearly visible in figure 4.2. Once again,

the amplitude of the inviscid second harmonic response is proportional to ∝ 1/|Ω2 −ω2
2n/4|

and the total solution tends to diverge close to the double–crest super-harmonic at ω21/2.

Such a symmetric and, in the absence of dissipation, close-to-resonance divergent behaviour

is actually expected when performing straightforward asymptotic expansions as they typically

suffer from secular (or resonating) terms that must be properly treated (see Castaing (2005)

and Nayfeh (2008a) among many other references).
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4.3 Weakly nonlinear analysis via multiple timescale method

In order to overcome the aforementioned limitations of the straightforward asymptotic ex-

pansion procedure and thus to attempt to bridge the gap between theoretical predictions

and experimental observations, we conduct in this section a weakly nonlinear analysis (WNL)

based on the multiple timescale method. With the aim to derive a weakly nonlinear amplitude

equation governing the double–crest dynamics (DC), we first tackle the simpler problem of

single–crest waves (SC). In both cases, we look for a third-order asymptotic solution to the

system

q = {
Φ,η

}T = εq1 +ε2q2 +ε3q3 +O
(
ε4) , (4.18)

where the zero order solution, q0 = 0, is omitted.

4.3.1 Single–crest dynamics (SC)

In §4.2 the forcing amplitude f was assumed of order ε, thus leading to a linear first-order

problem directly forced by the external shaking, which produces a divergent response close

to harmonic resonances. With regards to single–crest waves and specifically to the harmonic

response at a driving frequency close to that of one of the non-axisymmetric modes, ω1n ,

we assume here a small forcing amplitude of order ε3. This assumption is justified by the

fact that close-to-resonance,Ω≈ω1n , and in the absence of dissipation, even a small forcing

will induce a large system response. The following analysis is therefore expected to hold for

Ω=ω1n +λ, where λ is a small detuning parameter assumed of order ε2. Lastly, in the spirit

of the multiple scale technique, we introduce the slow time scale T2 = ε2t , with t being the

fast time scale at which the free surface oscillates with angular frequency ≈ω1n . Hence, the

following scalings are assumed:

f = ε3F, λ=Ω−ω1n = ε2Λ, T2 = ε2t , (4.19)

with F andΛ of order O(1). We note that the forcing amplitude could be assumed of order ε2

(as the other parameters), however, this complicates unnecessarily the second order problem

without modifying the final amplitude equation, even if the values of its coefficients will end

up being slightly different (up to a order ε).

Although the asymptotic expansion is here pursued up to the third order in ε, the procedure of

the weakly nonlinear analysis is essentially equivalent to that of the straightforward asymptotic

model discussed in §4.2. The major difference lies in the solution form of the leading order

problem that is now a homogenous problem, as in equation (4.8). Given the azimuthal

periodicity of the external forcing, among all possible natural eigenmodes, we assume a

leading order solution as

q1 = A1 (T2) q̂A1
1 e i(ω1n t−θ) + c.c., (4.20)

where q̂A1
1 is the eigenmode (computed by solving (4.8)) associated with (m,n) = (1,n) and

ω1n is the corresponding natural frequency (solution of (4.9)).
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4.3. Weakly nonlinear analysis via multiple timescale method

The complex amplitude A1, function of the slow time scale T2 and still unknown at this

stage of the expansion, describes the slow time amplitude modulation of the oscillating wave

q̂A1
1 and introduces a new arbitrariness in the problem, which must be fixed at a higher order.

Eigen-surface, η̂A1
1 , and eigen-potential field, Φ̂A1

1 , computed for ω1n = ω11, are shown in

figure 4.3(a) and (b), respectively.

By pursuing the expansion to the second order, a linear system forced by the first order

solution and analogous to that of equation (4.14) is obtained (see Reclari (2013) for the full

expansion of the original nonlinear governing equation up to the second order). Nevertheless,

the forcing terms on the r.h.s. are here proportional to A2
1 (super- or second-harmonic) and to

A1 A1 (mean flow). Thus, we seek a second-order solution in the form

q2 = A1 A1q̂A1 A1
2 +

(
A2

1q̂A1 A1
2 e i(2ω1n t−2θ) + c.c.

)
, (4.21)
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Figure 4.3 – (a), (b) and (c): real part of the first, η̂A1
1 , and second order, η̂A1 A1

2 and η̂A1 A1
2 , free

surface deformations computed forω1n =ω11. (d), (e) and (f): imaginary part of the associated

first order, Φ̂A1
1 , and second order, Φ̂A1 A1

2 and Φ̂A1 A1
2 , potential velocity field. Each response is

denoted by its amplitude dependence, εA1, ε2 A1 A1 and ε2 A1 A1. The first order eigenmode
is normalized with the amplitude and phase of the contact line (at r = 1), such that the free
surface, η̂A1

1 is purely real, whereas Φ̂A1
1 is purely imaginary. Note that the second order mean

flow constantly induces an upside down bell-like axisymmetric interface deformation pushing
the free surface downward at the center of the moving container. Calculations are performed
for the case of figure 4.2, i.e. pure water with ρ = 1000m/m3, γ= 0.072N/m, D = 0.287m and
H̃ = h/D = 0.52, for which Bo = 2802.8 and ω11 = 1.3286.
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with q̂A1 A1
2 and q̂A1 A1

2 computed numerically and displayed in figure 4.3(b)-(d) and (c)-(f),

respectively, in terms of second order free surface deformations and potential velocity fields

evaluated for ω1n = ω11. From a numerical perspective, we note that the second-order re-

sponses can be straightforwardly computed as long as the pairs (ω,m) = (2ω1n ,2) and (0,0)

do not correspond to eigenvalues of (4.8), i.e. the second order operators (i2ω1nB−A2) and

−A0 are non-singular and hence invertible.

With regards to figure 4.3, it is interesting to note how the second-order mean flow potential

velocity field is null everywhere. This can be rigorously proven by first noticing that the mean

flow corresponds to a time- and azimuthal-averaged flow, i.e. ∂/∂t = ∂/∂θ = 0. Moreover, in

the inviscid limit, free surface elevation and potential field have a π/2 phase shift, meaning

that the first-order eigenmode can be normalized such that the eigen-surface is purely real,

whereas the eigen-potential is purely imaginary. Under these conditions, the mean flow forc-

ing term on the r.h.s. of the kinematic equation cancels out, so that the associated Laplace

equation appears to be constrained by homogeneous Neumann conditions on all the domain

boundaries, thus prescribing a trivial constant potential field and therefore a null velocity

field. In other words, the second order mean flow system reduces to forced linear meniscus

equation (resulting from (4.3a)) and its conditions at r = 0 and r = 1 (both ∂η̂
A1 A1
2 /∂r = 0),

which prescribes a static mean interface deformation only. Such a result was expected since

the second-order mean flow response represents the Eulerian mean flow, which, together with

the so-called Stokes drift, contributes to the overall Lagrangian mean flow (see Bremer and

Breivik (2018) for a thorough review).

While the Stokes drift is a pure kinematic concept, the Eulerian mean flow, often referred to

as streaming flow (Bouvard et al., 2017), is generally believed to be of viscous origin, although

another appealing interpretation has been recently proposed (Faltinsen and Timokha, 2019).

Sticking to the well-accepted viscous Eulerian mean flow generation mechanism, it is not a

surprise that the absence of viscous boundary layers results in a vanishing Eulerian mean flow.

We now move forward to the ε3–order problem, which is once again a linear problem forced

by combinations of the first and second order solutions as well as by the slow time derivative

of the leading order solution and by the external forcing, which was assumed of order ε3,

(∂t B−Am)q3 =F3 = (4.22)

=−∂T2 A1Bq̂A1
1 e i(ω1n t−θ) +|A1|2 A1F̂

A1 A1 A1

3 e i(ω1n t−θ) +FF̂
F
3 e iΛT2 e i(ω1n t−θ)

+N.R.T.+ c.c.,

with F̂
F
3 = {0,r /2}T and where N.R.T. stands for non-resonating terms, which are not relevant

for further analysis. As standard in multiple scale analysis, the indeterminacy introduced

by the unknown amplitude A1 is resolved by requiring that secular terms do not appear in

the solution to equation (4.22). Secularity results from all resonant forcing terms in F3, i.e.

all terms sharing the same frequency and wavenumber (ω1n ,1) of q1, and in effect all terms

explicitly written in (4.22). It follows that a compatibility condition must be enforced through

the Fredholm alternative (Friedrichs, 2012). Such a compatibility condition imposes the
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4.3. Weakly nonlinear analysis via multiple timescale method

amplitude B = εA1e iλt to obey the following normal form

dB

d t
=−iλB + iµSC f + iνSC |B |2B , (4.23)

where the physical time t = T2/ε2 has been reintroduced and where forcing amplitude and

detuning parameter are recast in terms of their corresponding physical value, f = ε3F and

λ= ε2Λ. Moreover, the small implicit parameter ε is eliminated by defining the total physical

amplitude A = εA1 (Bongarzone et al., 2021a). The subscript SC stands for single–crest (SC).

The various normal form coefficients, which turn out to be real-valued quantities owing to

the absence of dissipation, are computed as scalar products between the adjoint mode, q̂A1†
1 ,

associated with q̂A1
1 , and the third order resonant forcing terms as follows

iµSC = < q̂A1†
1 ,BF̂ F

3 >
< q̂A1†

1 ,Bq̂A1
1 >

=
∫

z=0 r η̂
A1†
1 /2r dr∫

z=0

(
η̂

A1†
1 Φ̂

A1
1 + Φ̂A1†

1 η̂
A1
1

)
r dr

, (4.24a)

iνSC = < q̂A1†
1 ,BF̂

A1 A1 A1

3 >
< q̂A1†

1 ,Bq̂A1
1 >

=
∫

z=0

(
η̂

A1†
1 F̂

A1 A1 A1
3dyn

+ Φ̂A1†
1 F̂

A1 A1 A1
3kin

)
r dr∫

z=0

(
η̂

A1†
1 Φ̂

A1
1 + Φ̂A1†

1 η̂
A1
1

)
r dr

. (4.24b)

Here q̂A1†
1 = q̂

A1

1 , since the inviscid problem is self–adjoint with respect to the Hermitian

scalar product < a,b >= ∫
Σa ·bdV , with a and b two generic vector (see Viola et al. (2018) for

a thorough discussion and derivation of the adjoint problem). For the sake of brevity, the

explicit expression of F̂
A1 A1 A1

3 is omitted, as it only involves straightforward calculations, i.e.

a Taylor expansion of nonlinear governing equations and boundary conditions (4.2)-(4.3b)

around the rest state q0 = 0. Here we simply denote with the subscript d yn and ki n the forcing

components appearing in the dynamic and kinematic boundary condition, respectively.

By turning to polar coordinates, B = |B |e iΘ, splitting the modulus and phase parts of (4.23)

and looking for stationary solution, d/d t = 0 with |B | 6= 0, the following implicit relation is

obtained,

d̃sΩ
2 ∓

(
λ−νSC |B |2) |B |

µSC

= 0, (4.25)

or, in a more common polynomial form,

P (|B |) = |B |3 − λ

νSC

|B |± µSC d̃sΩ
2

νSC

= 0, (4.26)

where f = d̃sΩ
2, λ = (Ω−ω1n) and the ∓ signs correspond to the phases Θ = 0 and π, re-

spectively. The two branches prescribed by (4.25) for |B | as a function of Ω at a fixed non-

dimensional shaking diameter d̃s can be easily computed using the Matlab function fimplicit.

After evaluating the stable and unstable stationary solutions for |B | andΘ, the total single–crest

wave solution is reconstructed as

qSC = {
Φ,η

}T = q1 +q2. (4.27)
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Figure (m,n) H̃ = h/D D [m] ωmn µSC νSC

4(a) (1,1) 0.50 0.287 1.324 0.277 1.526
4(a) (1,2) 0.50 0.287 2.321 0.042 17.025
4(b) (1,1) 0.52 0.287 1.323 0.278 1.485

Table 4.1 – Value of the amplitude equation coefficientsµSC and νSC used to produce figure 4.4.
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Figure 4.4 – Comparison of the WNL prediction for single-crest waves (SC) with experiments
in terms of maximum crest-to-trough contact line amplitude (non-dimensional), ∆δ̃. (a)
Black pentagons correspond to the experimental measurements presented in figure 4.30
of Reclari (2013) (R13) for d̃s = ds/D = 0.01, where the first two non-axisymmetric modes
(m,n) = (1,1) and (1,2) are detected. Dotted black lines: solution of the linear potential model
according to (4.12). Light blue and blue lines: WNL SC prediction (4.27). Unstable branches
are represented as a dashed line. Violet solid lines: theoretical prediction by Raynovskyy
and Timokha (2018a) (R&T18) (see §4.3.1 for further comments). (b) Same as (a) with the
black filled circles corresponding to the measurements of Reclari et al. (2014) (R14) reported
in figure 4.2 for d̃s = 0.02. The values of normal form coefficient µSC and νSC computed
for Ω ≈ ω11 and ω12 (see bottom and top x-axes) are given in table 4.1, together with the
corresponding values of H̃ , D and natural frequencies ωmn used in this calculation.

Experiments vs weakly nonlinear prediction: wave amplitude

In figure 4.4(a) and (b) the weakly nonlinear (WNL) prediction in terms of maximum crest-to-

trough contact line amplitude, ∆δ̃, for SC waves is compared with two sets of experimental

measurements and with the potential linear solution (4.12). In comparison to the linear theory

presented in §4.2, the agreement with experiments improves for different shaking diameters

and for different harmonic resonances, e.g. those associated with modes (m,n) = (1,1) and

(1,2) of figure 4.4(a). The hardening nonlinearity is correctly captured and the amplitude

prediction matches well the measurements until the free surface eventually breaks and the

wave regime leaves the weakly nonlinear regime, hence suggesting the little relevance of
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4.3. Weakly nonlinear analysis via multiple timescale method

dissipative effects attributable to viscosity in this regime.

However, one must note that in this weakly nonlinear approach, the driving frequency is

essentially fixed around that of a unique non-axisymmetric natural mode,Ω≈ω1n . Conse-

quently, when performing the analysis for a mode (1,n), the influence of all other modes is

completely overlooked. In consequence, the accuracy of the asymptotic solution rapidly dete-

riorates moving away from harmonic resonances, when compared to the linear solution (4.12),

which turns out to be more accurate. This is visible looking at the bottom stable branch

in the multi-solution range of figure 4.4(b) or by looking at the driving frequency window

Ω ∈ [0.7ω12,0.9ω12] in figure 4.4(a). In other words, the detuning parameter should be small

in order for the present weakly nonlinear analysis, based on a single-mode expansion, to hold.

In this regard, as no other natural frequencies are encountered forΩ<ω11, an exception is

made for the left branch associated with the harmonic resonance of the first (or fundamen-

tal) non-axisymmetric mode, where an excellent agreement of the single mode prediction,

comparable to that of the linear solution, lasts untilΩ≈ 0.

Comparison with the multimodal theory by Raynovskyy and Timokha (2018a)

The violet solid curves reported in figure 4.4(a) and (b) correspond to the predictions asso-

ciated with the ω11-single-crest swirling from the Narimanov–Moiseev multimodal sloshing

theory employed by Raynovskyy and Timokha (2018a) (R&T18) (only the stable branches are

reported). Their curves have been here carefully reproduced by manually sampling those

reported in figure 3 of R&T18 in the range of frequency available, i.e. Ω/ω11 ∈ [0.8,1.3]. By look-

ing at the upper stable branch, although an increasing discrepancy is observed for increasing

wave amplitudes, one can see that both analyses are in fairly good agreement with experi-

ments and with each other until wave braking eventually occurs. Such a discrepancy could be

tentatively attributed to the different definition of the detuning parameter employed in R&T18,

i.e. ε2ΛR&T 18 =ω2
1n/Ω2 −1. On the other hand, by looking at the lower stable branch, one sees

that, whereas the jump-up frequency according to R&T18 and to the present model essentially

coincide, the discrepancy between the two predictions increases at a larger frequency, i.e.

Ω/ω11 > 1, with the one of R&T18 that is closer to the linear potential model. One should also

note that, in contradistinction with our analysis, that of R&T18 accounts for damping and

predicts the jump-down transition visible in figure 4.4(a). This damping was essentially fitted

from the experimental measurements and, specifically, from the jump-down frequency occur-

ring at a larger frequency, once the wave breaking regime is fully established, i.e. Ω/ω11 = 1.27

for d̃s = 0.01 and Ω/ω11 = 1.45 for d̃s = 0.02 (see figure 4.4). However, experiments suggest

that the damping effect on the curves displayed in figure 4.4 would not be easy to observe,

even for d̃s = 0.01. Indeed, the motion undergoes a single crest wave breaking, thus entering a

fully nonlinear regime, where both our analysis and that of R&T18 lose predictive power. We,

therefore, decided to discard damping while comparing our results with the close-to-harmonic

resonance experiments from Reclari (2013) and Reclari et al. (2014).
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The Duffing oscillator analogy

Mass–spring models are widely employed in several engineering fields, e.g. in aerospace

engineering, for the description of close-to-resonance sloshing motions (Bauer, 1966; Dodge,

2000; Moiseev, 1958), where nonlinearities are of crucial importance. The most popular

driven nonlinear mass-spring model is that developed by Duffing (1918), who added a cubic

nonlinear spring deformation (cubic term) to the classically driven harmonic oscillator

ẍ +2σẋ +x + c3x3 = p cosΩt , (4.28)

where σ is the damping coefficient and where, depending on the sign of c3 the resonance

curve bends and the nonlinear resonance frequency shifts, i.e. it decreases for softening

spring (c3 < 0), whereas it increases for a hardening spring (c3 > 0), thus explaining the

original observation of Duffing on vibration mechanism. Ockendon and Ockendon (1973)

showed via asymptotic expansion of the potential flow solution in the neighbourhood of a

harmonic resonance that for small external forcing amplitudes, sloshing in a two-dimensional

rectangular container responds exactly as an undamped Duffing oscillator (with σ= 0). In

Appendix 4.5.2, we briefly show that, as expected, the same holds for close-to-harmonic-

resonance sloshing in orbital shaken cylindrical containers, whose formal amplitude equation,

starting from the full inviscid hydrodynamic system, was derived in §4.3.1 (see equation (4.23)).

Typically, when the Duffing equation is employed to model close-to-resonance responses in

sloshing dynamics and experimental measurements are available, the nonlinear coefficient is

often computed by fitting the experimental measurements. Recently, with regards to quasi-

two-dimensional rectangular containers laterally excited, Bäuerlein and Avila (2021) have

carried out careful quantitative comparisons between experiments and theoretical predictions

from the damped Duffing equation, showing that their actual sloshing system is remarkably

well described by the forced-damped Duffing oscillator. Nevertheless, for increasing wave

amplitude responses, experiments deviate from the Duffing solution, which is not capable to

predict correctly the phase lag between driving and response, shown to be the key factor for an

accurate estimation of the sloshing amplitude of the maximal nonlinear resonance (Bäuerlein

and Avila, 2021; Cenedese and Haller, 2020). We note that, by analogy with the undamped

Duffing equation, the weakly nonlinear analysis formalized in §4.3.1 exacerbates this aspect,

since, owing to the lack of dissipation, it can only predict the classic phase lag bounds, 0 and

π (see Appendix 4.5.1 for further comments on this regard). Nevertheless, one should notice

that this intrinsic limitation turns to be unimportant in cases as those of figure 4.4, where for

increasing amplitude a wave breaking eventually occurs and the weakly nonlinear theory as

well as the Duffing mechanical analogy no longer apply.

4.3.2 Double–crest dynamics (DC)

We now tackle the double–crest (DC) wave response. Its formalization is slightly more subtle,

as it requires a new reordering of the small control parameter magnitudes as well as an unusual
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4.3. Weakly nonlinear analysis via multiple timescale method

form of the leading order problem, involving both a homogenous and a particular solution. We

remind that the double–crest dynamics in figure 4.2 occurs at a driving frequencyΩ≈ω21/2.

Results at the end of this section will be presented for mode (2,1), for which experiments are

available, however, for the sake of generality, we formalize the analysis for any mode (2,n), i.e.

Ω=ω2n/2+λ, where λ is the small detuning parameter.

Formalism

To determine a suitable scaling for the forcing amplitude f and detuning parameter λ it

is instructive to look at the experimental measurements shown in figure 4.2 for Ω close

to ω21/2. One can see that approaching Ω ≈ ω21/2 from lower frequencies, the double–

crest wave emerges on the top of a single–crest dynamics, with the latter being correctly

described by the linear solution, which still behaves well as ω21/2 is far enough from the

primary harmonic resonance occurring at ω11. It follows that the forcing amplitude f and

detuning λ could be retained at order ε and the first order problem takes the form (4.5), with

F 1 = F {0,r /2}T e i(Ωt−θ) + c.c. = FF̂
F
1 e i(Ωt−θ) + c.c. , with f = εF and λ= εΛ.

Furthermore, in §4.2 we have shown how, close enough to the super-harmonic resonance,

the divergent behaviour is produced by a second order resonating term, which breaks the

straightforward expansion, as ε2–order terms should not become larger than the ε-order ones.

In the following, this asymptotic breakdown is overcome by assuming that the leading order

solution is given by the sum of (i) a particular solution, given by the linear response to the

external forcing computed by solving (4.13), and (ii) a homogeneous solution, represented by

the natural mode (m,n) = (2,n), obtained by solving the generalized eigenvalue problem (4.8),

up to an amplitude to be determined at higher orders. The second-order resonating term will

then require, in the spirit of multiple timescale analysis, an additional second-order solvability

condition, complementing the third-order non-resonance condition already obtained in the

single–crest wave weakly nonlinear model. This suggests that two slow time scales exist,

namely T1 and T2, with T1 one ε–order faster than T2, hence implying that quadratic nonlin-

earities are stronger than cubic ones. To summarize, the fundamental scalings underpinning

the weakly nonlinear multiple scale expansion for double–crest waves are the following:

f = εF, λ=Ω−ω2n/2 = εΛ, T1 = εt , T2 = ε2t , (4.29)

The first order solution reads

q1 = A2 (T1,T2) q̂A2
1 e i(ω2n t−2θ) +F q̂F

1 e i((ω2n /2)t−θ)e iΛT1 + c.c., (4.30)

where the unknown slow time amplitude modulation, A2, is here a function of the two time

scales T1 and T2, while the amplitude of the particular solution simply equals the forcing

amplitude and q̂F
1 is computed from (4.13) forΩ=ω2n/2.
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εA2 εF ε2 A2 A2 ε2ΛF ε2 A2 A2 ε2F F ε2 A2F ε2 A2F
m̆ 2 1 4 1 0 0 3 1
ω̆ ω2n ω2n/2 2ω2n ω2n/2 0 0 3ω2n/2 ω2n/2

Table 4.2 – First order linear solutions and second-order non-resonating forcing terms gathered
by their amplitude dependency and corresponding azimuthal and temporal periodicity (m̆,ω̆).
Six terms have been omitted as they are the complex conjugates of εA2, εF , ε2 A2 A2, ε2ΛF ,
ε2 A2F and ε2 A2F .

The second-order linearized forced problem reads

(∂t B−Am)q2 =F2 =F
i j
2 − ∂A2

∂T1
Bq̂A2

1 e i(ω2n t−2θ) − iΛFBq̂F
1 e i((ω2n /2)t−θ)e iΛT1 + c.c. . (4.31)

The first order solution is made of four different contributions of amplitude A2, A2, F and F ,

therefore it generates 10 different second-order forcing terms, here denoted by F
i j
2 , which

exhibit a certain frequency and azimuthal periodicity, (ω̆,m̆). The additional two forcing

terms stem from the time-derivative of the first order solution (4.30) with respect to the first

order slow time scale T1. In order to interpret the last term in (4.31), it is worth first not-

ing that, while the amplitude of the linear solution (4.12), computed at a generic driving

frequency, grows with Ω as F /|Ω2 −ω2
11| = d̃sΩ

2/|Ω2 −ω2
11| ∝ Ω2/|Ω2 −ω2

11|, in the weakly

nonlinear model for double–crest waves, the amplitude of the particular solution (4.30) is

proportional to F /|ω2
21/4−ω2

11| = d̃sΩ
2/|ω2

21/4−ω2
11| ∝Ω2, since the driving frequency was

frozen atΩ=ω21/2+λ, with the small detuning parameter, λ, contributing to modify its phase,

but not its amplitude. This leads to an increasing discrepancy between (4.12) and the lead-

ing order particular solution (4.30) away from the super-harmonic resonance. The response

to the forcing term proportional to ΛF in (4.31) can be then interpreted as a second-order

correction of the amplitude of the first-order particular solution accounting for a detuning

from the exact resonance through ΛF ∝ d̃sΩ
2 (Ω−ω2n/2) and contributing to improve the

asymptotic approximation in a wider range of driving frequency in the neighborhood of the

super-harmonic frequency.

None of the forcing terms in (4.31) is resonant, as their oscillation frequency and az-

imuthal wavenumber differ from those of the leading order homogeneous solution, except

the term produced by the second–harmonic of the leading order particular solution, i.e.

F F F
2 = F 2F̂

F F
2 e i(ω2n−2θ)e i2ΛT1 + c.c. . To avoid secular terms, a second-order compatibility

condition is imposed, requiring that the following normal form is verified

∂A2

∂T1
= iµDC F 2e i2ΛT1 , (4.32)

with µDC computed as before, i.e.

iµDC =
∫

z=0

(
η̂

A2†
1 F̂ F F

2dyn
+ Φ̂A2†

1 F̂ F F
2kin

)
r dr∫

z=0

(
η̂

A2†
1 Φ̂

A2
1 + Φ̂A2†

1 η̂
A2
1

)
r dr

, (4.33)
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4.3. Weakly nonlinear analysis via multiple timescale method

Taken alone, the dynamics resulting from (4.32) is however of little relevance, since the solution,

i.e. the frequency-response curve, would still diverge (symmetrically) to infinity for ∆ =
Ω−ω2n/2 → 0 in absence of any restoring term, i.e. the nonlinear mechanism responsible for

the finite amplitude saturation, which only comes into play at order ε3. This means that the

expansion must be pursued up to the following order, and thereby that we must solve for the

second-order solution.

By substituting (4.32) in the forcing expression, equation (4.31) can be rearranged as follows

(∂t B−Am)q2 =F
i , j
2N RT

+F
i , j
2RT

= (4.34)

=F
i , j
2N RT

+F 2
(
F̂

F F
2 − iµDC Bq̂A2

1

)
e i(ω2n t−2θ)e i2ΛT1 + c.c. ,

where the subscripts N RT and RT denote non-resonating (whose frequencies and azimuthal

periodicities are gathered in table 6.1) and resonating terms, respectively. Note that the term

proportional toΛF has been included in the non-resonating forcing terms, whereas the reso-

nant term is written explicitly. The compatibility condition is now trivially satisfied, meaning

that the new forcing term is orthogonal to the adjoint mode, q̂A2†
1 = q̂

A2

1 , by construction and

therefore, according to the Fredholm alternative, a non-trivial solution exists. Hence, we seek

a second-order solution having the following form

q2 = A2 A2q̂A2 A2
2 +F 2q̂F F

2 +
+A2

2q̂A2 A2
2 e i(2ω2n t−4θ) +ΛF q̂ΛF

2 e i((ω2n /2)t−θ)e iΛT1 +
+A2F q̂A2F

2 e i((3ω2n /2)t−3θ)e iΛT1 + A2F q̂A2F
2 e i((ω2n /2)t−θ)e−iΛT1 +

+F 2q̂F F
2 e i(ω2n t−2θ)e i2ΛT1 + c.c. . (4.35)

All non-resonant responses in (4.35) are handled similarly, i.e. they are computed in Matlab

by performing a simple matrix inversion using standard LU solvers (as in §§4.2 and 4.3.1).

As anticipated above, although the operator associated with the resonant forcing term, i.e.

(iω2nB−A2), is singular, the value of the normal form coefficient (4.33) ensures that a non-

trivial solution for q̂F F
2 exists. Diverse approaches can be followed to compute this response.

Here such a response is computed by using the pseudoinverse matrix of the singular operator

(Orchini et al., 2016). Another possible approach is given in Appendix A of Meliga et al. (2012b),

where a two-step regularization procedure, involving an intermediate factious solution for

q̂F F
2 is employed. We also note that in (4.35), exactly as in (4.21), a second-order homogeneous

solution has not been accounted for as its introduction would be irrelevant to the final solution.

The first order solutions together with all the non-resonating second-order responses are

shown in the various panels of figure 4.5, where the two leading order contributions, εA2

and εF , corresponding to the double– and single–crest wave, respectively, can be identified.

Moreover, we note that the second order response proportional to ε2ΛF has a spatial structure

similar to that of the leading order response εF , as it represents the second order correction to

the latter caused by small frequency shifts of order ε.
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ε–order solution

(a)

εA2

-1 0 1

ε2–order non-resonant responses

(b)

ε2A2Ā2

-1.35 0 1.68

(c)

ε2A2A2

-1.37 0 1.37

(d)

ε2ΛF

-1.31 0 1.31

(e)

εF

-0.82 0 0.82

(f)

ε2FF̄

-0.55 0 0.38

(g)

ε2A2F

-2 0 2

(h)

ε2A2F̄

-1.34 0 1.34

Figure 4.5 – Real part of the first, (a) η̂A2
1 and (e) η̂F

1 , and non-resonating second order, (b)

η̂
A1 A2
2 , (c) η̂A2 A2

2 , (d) ξ̂Λ1F
2 , (f) η̂F F

2 , (g) η̂A2F
2 and (h) η̂A2F

2 , free surface deformations computed
for ω2n =ω21. The first order eigenmode is normalized with the amplitude and phase of the
contact line (at r = 1), such that the free surface, η̂A2

1 is purely real, whereas Φ̂A2
1 is purely

imaginary. Note that the second order mean flow η̂F F
2 constantly induces an upside down

bell-like an axisymmetric interface deformation pushing the free surface downward at the

center of the moving container, by analogy with the effect produced by η̂A1 A1
2 for SC waves, as

the two responses are essentially equivalent up to a prefactor. Here the mean flow η̂
A2 A2
2 for DC

pushes the interface upward at the wall (same as η̂F F
2 ) and, at the same time, downward in an

annular region at intermediate radial coordinates, without altering the free surface elevation
at the container revolutions axis.

Lastly, at third order in ε, the problem reads

(∂t B−Am)q3 =F 3 = (4.36)

=−∂A2

∂T2
Bq̂A2

1 e i(ω2n t−2θ) − i2ΛF 2Bq̂F F
2 e i(ω2n−2θ)e i2ΛT1 +

+|A2|2 A2F̂
A2 A2 A2

3 e i(ω2n t−2θ) + A2F 2F̂
A2F F
3 e i(ω2n t−2θ) +

+ΛF 2F̂
ΛF F
3 e i(ω2n t−2θ)e i2ΛT1 +N.R.T.+ c.c. ,

where the first two forcing terms arise from the time-derivative of the first order solution with

respect to the second order slow time scale T2 and from that of the second order solution

with respect to the first order slow time scale T1, respectively (see Appendix 4.5.4 for the

full expression of F 2 and F 3). By noticing that the second and last forcing terms share the

same amplitude dependence, i.e. ΛF 2, they can be recast into a single forcing term, say

ΛF 2F̂ΛF F
3 e i(ω2n t−2θ)e i2ΛT1 + c.c. .

Once again, all terms explicitly written in (4.36) are resonant, as they share the same pair
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(ω2n ,2) than the first order homogeneous solution, hence a third order compatibility condition,

leading to the following normal form, must be enforced

∂A2

∂T2
= iζDCΛF 2e i2ΛT1 + iχDC A2F 2 + iνDC |A2|2 A2, (4.37)

with

iζDC =
∫

z=0

(
η̂

A2†
1 F̂ΛF F

3dyn
+ Φ̂A2†

1 F̂ΛF F
3kin

)
r dr∫

z=0

(
η̂

A2†
1 Φ̂

A2
1 + Φ̂A2†

1 η̂
A2
1

)
r dr

, (4.38a)

iχDC =
∫

z=0

(
η̂

A2†
1 F̂

A2F F
3dyn

+ Φ̂A2†
1 F̂

A2F F
3kin

)
r dr∫

z=0

(
η̂

A2†
1 Φ̂

A2
1 + Φ̂A2†

1 η̂
A2
1

)
r dr

, (4.38b)

iνDC =
∫

z=0

(
η̂

A2†
1 F̂

A2 A2 A2
3dyn

+ Φ̂A2†
1 F̂

A2 A2 A2
3kin

)
r dr∫

z=0

(
η̂

A2†
1 Φ̂

A2
1 + Φ̂A2†

1 η̂
A2
1

)
r dr

. (4.38c)

As a last step in the derivation of the final amplitude equation for the double–crest (DC) waves

and in order to eliminate the implicit small parameter ε, we unify (4.32) and (4.37) into a

single equation recast in terms of the physical time t = T1/ε= T2/ε2, physical forcing control

parameters, f = εF , λ= εΛ and total amplitude, A = εA2. This is achieved by summing (4.32)

and (4.37) along with their respective weights ε2 and ε3, thus obtaining

dB

d t
=−i

(
2λ−χDC f 2)B + i

(
ζDCλ+µDC

)
f 2 + iνDC |B |2B , (4.39)

where the change of variable A = Be i2λt has been introduced for convenience. As in §4.3.1,

by turning to polar coordinates, B = |B |e iΘ, splitting the modulus and phase parts of (4.39)

and looking for stationary solution, d/d t = 0 with |B | 6= 0, the following implicit relation is

obtained,

d̃sΩ
2 −

√(
2λ−νDC |B |2) |B |/[

χDC |B |± (
ζDCλ+µDC

)]= 0, (4.40)

where only the real solutions corresponding to f = d̃sΩ
2 > 0 are retained, as the combinations

d̃sΩ
2 < 0 are not physically meaningful.

Although two more terms appear in (4.39) and the dependence on the forcing amplitude is dif-

ferent with respect to the SC case, i.e. f 2 instead of f , thus leading to the square root in (4.40),

amplitude equation (4.39) is reminiscent of that given in (4.23). Indeed, equation (4.39) con-

tains essentially three contributions,

λ↔ (
2λ−χDC f 2) , µSC f ↔ (

ζDCλ+µDC

)
f 2, νSC ↔ νDC , (4.41)

in order, a detuning term (forcing amplitude-dependent), an additive (quadratic) forcing term

(forcing frequency dependent) and the classic cubic restoring term, respectively. Hence, the

same qualitative hardening or softening nonlinear behaviours as well as hysteresis, typical

features of the Duffing-equation, are expected under the hypotheses of the present analysis.
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The total flow solution predicted by the WNL for DC waves and reconstructed as

qDC = {
Φ,η

}T = q1 +q2, (4.42)

is compared in figures 4.6 and 4.7 with experiments from Reclari (2013) and Reclari et al. (2014)

(see also figure 4.2).

Experiments vs weakly nonlinear prediction: wave amplitude

In figures 4.6 and 4.7, the weakly nonlinear (WNL) prediction of double–crest (DC) waves

according to (4.42) (light blue solid and dashed lines) is quantitatively compared with the

experimental measurements from Reclari (2013) and Reclari et al. (2014) in terms of maximum

non-dimensional crest-to-trough contact line amplitude, ∆δ̃, for different values of the shak-

ing diameters, d̃s corresponding to those of figure 4.2 in the frequency window close to ω21/2.

The improvement gained through the formal WNL analysis, when compared with the linear

and straightforward asymptotic models, is striking. The amplitude equation model correctly

predicts the surge of the double-crest swirling and the resulting finite amplitude saturation

via hardening nonlinear mechanism, thus remarkably narrowing the gap with experiments for

all the values of d̃s considered and for different container configurations.

Notwithstanding such an improvement, figure 4.6 highlights the main limitation of the

present amplitude equation model for DC waves. Indeed, one notices that, while at larger

shaking diameters, i.e. d̃s = 0.13 and 0.20, a DC wave first emerges on the top of a single–crest

(SC) dynamics and eventually a double–crest wave breaking occurs at larger frequencies, a

jump-down transition from DC to SC takes place by increasingΩ at lower shaking diameters,

i.e. d̃s = 0.07 and 0.10 for D = 0.144m. This well-known hysteretic behaviour can be reasonably

ascribed to the viscous dissipation of the system. For instance, at sufficiently small shaking di-

ameters, e.g. d̃s ≈ 0.02 (see figure 4.2), the DC dynamics does not manifest at all, as the energy

pumped into the system by the external forcing is likely not sufficient to dominate over the

system viscous dissipation, whose effect also depends on the container diameter, D . Indeed,

figure 4.7 clearly shows that larger diameters, i.e. D = 0.287m, generate less dissipation. It

follows that for larger D , by increasing the driving frequency at a fixed shaking diameter, e.g.

d̃s = 0.10, the free surface is more likely to undergo a wave breaking, rather than a jump-down

transition (see figures 4.6(b) and 4.7(c)). Obviously, the inviscid model employed here is not

capable to predict the so-called jump-down frequency. In Appendix 4.5.1, a heuristic viscous

damping model is introduced to tentatively overcome the beforehand mentioned limitations.

Finally, we note that for frequency moderately far from the super-harmonic resonance, the

agreement of the WNL model with experiments and with the linear solution, which behaves

well away fromΩ≈ω11, progressively deteriorates. This is particularly evident on the lower

stable branch and can be ascribed to the fact that the asymptotic model is essentially formal-

ized for a fixed driving frequency, i.e. Ω≈ω21/2. The second order correction (proportional

toΛF and discussed in §4.3.2) to the leading order particular solution seems to be sufficient

to guarantee a fairly good agreement of the upper stable branch in a relatively wide range of
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4.3. Weakly nonlinear analysis via multiple timescale method

frequencyΩ<ω21/2. However, for the lower stable branch, i.e. Ω>ω21/2, the agreement with

non-breaking-wave experiments sufficiently far from resonance is still relatively poor, despite

the fact that these measurements essentially follow the linear prediction.

(a)
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0.30
0.35
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∆δ̃
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Exp. single–crest (SC) - R14
Exp. double–crest (DC) - R14

(b)
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D = 0.144m
H̃ = 0.52
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d̃s = 0.13
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Figure 4.6 – (a)-(d) Weakly nonlinear (WNL) prediction for double–crest (DC) waves versus
experiments by Reclari et al. (2014) (R14) (reported in figure 4.2) in terms ∆δ̃ for a container
diameter D = 0.144m, H̃ = 0.52 and for various d̃s . Dotted black lines: linear model (4.12). Red
lines: straightforward asymptotic (4.17). Light blue solid and dashed lines: stable and unstable
branches, respectively, predicted by the WNL solution (4.42). The normal form coefficient
values for this configurations are χDC = 2.755, ζDC = 0.150, µDC = 0.129 and νDC = 10.018. Violet
lines: WNL solution (4.45) including the ε3–order correction discussed in §4.3.2.

ε3–order correction to the leading order single-crest particular solution

The last consideration in §4.3.2 suggests that the leading order single-crest solution with its

second order correction is only accurate in a limited range of frequency and higher order terms

should be accounted for in order to better retrieve the linear prediction far from resonance.

On this regard, as the present asymptotic expansion is pursued up to the ε3–order, we note

that the third order forcing contains a term, namely

FΛΛF
3 =−iΛ2FBq̂ΛF

2 e i((ω2n /2)t−θ)e iΛT1 + c.c. , (4.43)

generated by the derivative of the second order solution with respect to the slow time scale

T1. This term is not resonating in e i(ω2n−2θ) and therefore it can be gathered together with

the other third-order non-resonating terms (N.R.T.) in equation (4.36), which in asymptotic
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Figure 4.7 – Same as figure 4.6 (same color convention) but for a container diameter D =
0.287m and H̃ = 0.50 (experiments are reported in figure 4.19 of Reclari (2013) (R13)). Normal
form coefficients: χDC = 2.709, ζDC = 0.169, µDC = 0.134 and νDC = 9.885.

models are typically ignored unless one aims to proceed to higher orders. Nevertheless, such a

forcing term produces a system response,

qΛΛF
3 =Λ2F q̂ΛΛF

3 e i((ω2n /2)t−θ)e iΛT1 + c.c. , (4.44)

which precisely represents the third order frequency correction of the leading order particular

solution and acts similarly to the second order correction qΛF
2 =ΛF q̂ΛF

2 e i((ω2n /2)t−θ)e iΛT1 +c.c.

discussed in §4.3.2.

A better intuition about why this third order correction should improve the prediction farther

away from the super-harmonic resonance is given in the following. As anticipated in §4.3.2,

the first order particular solution simply represents the linear system response to the external

forcing εF cos(Ωt −θ). In general, the resulting amplitude is ∝ εF /
(
Ω2 −ω2

1n

)
, but in our

asymptotic analysis, the leading order forcing frequency is frozen to ω2n/2, which implies

that the first order particular solution has an amplitude fixed to εF /
(
ω2

2n/4−ω2
1n

)
, which does

not account for the frequency detuning. If one replacesΩ=ω2n/2+εΛ in εF /
(
Ω2 −ω2

1n

)
and

takes its Taylor-expansion, the ε2-order term is ∝ ε2FΛ, while the ε3-order term is ∝ ε3FΛ2. It

naturally follows that accounting for this third order correction (4.44) leads to a more accurate

description of the linear response to the external forcing and, therefore, it should give a better

model prediction farther away from resonance, where the double-crest amplitude |B | ≈ 0 and

the non-breaking-wave experiments follow the linear theory.

130



4.3. Weakly nonlinear analysis via multiple timescale method

To conclude, taking the total solution as

qDC = {
Φ,η

}T = q1 +q2 +qΛΛF
3 , (4.45)

is expected to leave the amplitude saturation prediction for the double-crest wave, |B |, un-

altered, as it does not contribute to the amplitude equation solution, and, simultaneously,

to better describe the single-crest swirling farther away from Ω ≈ ω2n/2 (at least where no

breaking waves occur).

The influence of the aforementioned ε3–order corrections to the prediction for DC waves

is shown as violet lines in figure 4.6 and 4.7, where it can be seen that accounting for the

additional term allows one to eventually close the gap with the experiments even farther away

from resonance, hence ensuring to the WNL model a wider frequency range of validity in all

cases examined.

Experiments vs weakly nonlinear prediction: free surface reconstruction

In figure 4.8, the weakly nonlinear (WNL) model prediction for the double–crest waves (DC)

is compared versus the straightforward asymptotic prediction discussed in §4.2 and the

experimental measurements for DC waves from Reclari (2013) and Reclari et al. (2014). The

direct quantitative comparison is here outlined in terms of dimensionless and phase-averaged

wave height measured at the sidewall, δ̃ (θ).

We observe that, if at Ω/ω21 = 0.490 both models match satisfactorily the experimental

points, as soon asΩ/ω21 = 0.5 is approached, the straightforward asymptotic solution diverges

due to the resonant (second order) super-harmonic term, while the WNL solution predicts

correctly the finite amplitude saturation and the emergence of a DC wave on the top of a single–

crest (SC) one. The WNL model for DC waves remains in fairly good agreement even at larger

driving frequency, although the increasing phase-asymmetry between the two local peaks at

θ =π/2 and 3π/2 is not retrieved by the present inviscid asymptotic analysis, where secondary

effects, e.g. the phase shift induced by viscous dissipation and influence of other higher modes,

as well as stronger nonlinear effects for increasing wave amplitudes are overlooked.

For completeness, the three-dimensional free surface, η (r,θ,π/Ω), is reconstructed through

(4.42) and shown in the right-panels of figure 4.8, where, for increasing shaking frequencies,

the nonlinear transition from a nearly single–crest to a double–crest swirling is enlightened.

The Helmholtz–Duffing oscillator analogy

While the Duffing equation is known to capture period–3 and period–1/3 dynamics arising

from the cubic nonlinearity (Jordan and Smith, 1999; Kalmár-Nagy and Balachandran, 2011),

as those observed by Bäuerlein and Avila (2021) and occasionally by Reclari et al. (2014), it

cannot predict the period–halving (the system responds at a frequency which is twice that of

the external forcing) dynamics associated with the super-harmonic resonance investigated in

this work. Therefore, in connection with §4.3.1, here we aim to identify the simplest possible
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Figure 4.8 – Left-panels: comparison of the dimensionless and phase-averaged wave height
measured at the wall, δ̃ (θ,π/Ω), (black circles) with the straightforward asymptotic solution
rebuilt via (3.14) (grey solid line) and the weakly nonlinear (WNL) solution for the double–crest
(DC) wave (4.25). Panels correspond to H̃ = 0.52, d̃s = 0.11 and D = 0.144m. The experimental
measurements, here shown as black circles, are available in Reclari (2013), except for panel
(c), which is provided in Reclari et al. (2014). Note that (b) the nonlinear prediction has a very
large amplitude. Right-panels: corresponding three-dimensional free surface deformation,
η (r,θ,π/Ω), reconstruct via (4.25). The transition from a single-crest to a double-crest swirling
via hardening nonlinearity is visible moving from top to bottom, i.e. for increasing frequency.
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mechanical oscillator that could mimic, at least from a qualitative perspective, the period-1/2

dynamics studied in this work.

The weakly nonlinear analysis (WNL) as well as the straightforward asymptotic model

highlighted the crucial role of quadratic nonlinearities emerging at second order and from

which the double–crest (DC) dynamics stems. At the same time, the WNL model enlightened

that second-order terms only are not sufficient to capture all the dynamics features owing

to the lack of restoring terms and, therefore, cubic nonlinearities must be retained. These

considerations suggest that the DC dynamics could be tentatively described by a driven

oscillator with both quadratic (asymmetric) and cubic (symmetric) nonlinear terms, i.e.

ẍ +2σẋ +x + c2x2 + c3x3 = p cosΩt . (4.46)

Equation (4.46), also commonly known as Helmholtz–Duffing equation, has wide applications

in engineering problems as those related to beams, plates and shells subjected to an initial

static curvature (Askari et al., 2011; Mirzabeigy et al., 2014), whose governing equations are re-

conduced to a second-order nonlinear ordinary equation with quadratic and cubic nonlinear

terms (Alijani et al., 2011; Fallah and Aghdam, 2011; Ke et al., 2010).

Among the diverse asymptotic solutions of (4.46) in different limits (Benedettini and Rega,

1989; Kovacic and Brennan, 2011; Rega, 1995), the most relevant to our work is that of Benedet-

tini and Rega (1989). Within the context of planar nonlinear response of suspended elastic

cables to external excitation, they derived an amplitude equation which concerns with the

first or fundamental super-harmonic excitation, i.e. Ω ≈ 1/2, of (4.46). Their weakly non-

linear approach is detailed in Appendix 4.5.3, with the additional assumption of vanishing

damping σ= 0. Assuming 2Ω= 1+λ= 1+ελ̂, small nonlinearities, c2 = εĉ2 and c3 = ε2ĉ3, and

introducing two slow time scales, one obtains

dD/d t =−i
(
2λ+ c5 f 2)D + i (1−λ)c2 f 2/2− i4c4|D|2D, (4.47)

with C = De i2λt and with the auxiliary coefficients c4 and c5 (both functions of c2 and c3)

defined in Benedettini and Rega (1989). By comparing term by term, the analogy with equa-

tion (4.39) is evident.

To conclude, although the DC dynamics examined in this study is intrinsically related to

the simultaneous interplay of multiple waves, thus making particularly challenging an accu-

rate vis-à-vis quantitative comparison with a single-degree-of-freedom mechanical model,

equation (4.47) seems to suggest that the actual inviscid sloshing dynamics in the DC regime

may be, at least qualitatively, described by the undamped Helmholtz–Duffing equation (4.46)

driven super-harmonically.

4.4 Conclusion

With regards to orbital shaken cylindrical containers and, specifically, to the careful exper-

imental campaign reported in Reclari (2013) and Reclari et al. (2014), a weakly nonlinear
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analysis (WNL) via multiple timescale method was formalized in §4.3 in order to investigate

diverse features of the steady state free surface dynamics and, particularly, the double–crest

(DC) wave dynamics pertaining at half the frequency of the first m = 2 natural mode.

After having discussed the substantial limitations of the straightforward expansion proce-

dure proposed by Reclari et al. (2014) and summarized in §4.2, the WNL analysis was first

formulated under the most common condition of pure harmonic resonance. Despite the

inviscid assumption, the WNL analysis developed for the single–crest (SC) wave dynamics

was shown to be in fairly good agreement with all the experimental measurements. In fact,

the present model correctly describes the close-to-resonance hardening nonlinear behaviour

experimentally observed. The agreement remains sufficiently accurate until the free surface

eventually breaks and a transition to a fully nonlinear regime occurs.

It is well-assessed in the literature that the close-to-harmonic-resonance sloshing dynamics

can be modelled (from both qualitative and quantitative perspectives (Bäuerlein and Avila,

2021)) by a single degree of freedom (1dof) system with a cubic nonlinearity and driven har-

monically, i.e. by the famous Duffing oscillator, as rigorously proved for a two-dimensional

rectangular container laterally excited (Ockendon and Ockendon, 1973). Without surprise,

this was shown to hold for the case of orbital-shaken (circular) cylindrical containers as well.

The WNL analysis was then extended to the more complex case of a double–crest swirling.

The overall agreement with experiments and, especially, the improvements with respect to the

simple straightforward asymptotic model are remarkable in all cases considered, although the

slight asymmetry observed in the reconstruction of the periodic free surface dynamics at the

sidewall was not retrieved in the present model.

To the knowledge of the authors, a formal amplitude equation describing the super-harmonic

DC sloshing dynamics in orbitally shaken containers and coupled with a thorough experi-

mental validation, has not been reported in the literature yet, hence representing the most

significant finding of this work.

Lastly, by analogy with the close-to-harmonic-resonance dynamics for SC waves, for which

the Duffing oscillator represents the suitable mechanical analogy, a one-degree-of-freedom

(1dof) mechanical oscillator having both quadratic and cubic nonlinear terms, commonly

referred to as Helmholtz-Duffing (HD) oscillator, driven super-harmonically, was tentatively

identified as the simplest possible mechanical system that could mimic, at least qualitatively,

the super-harmonic DC sloshing dynamics investigated in this study. The HD equation was

largely adopted in the last few decades within the context of structural analysis, i.e. beams,

plates and shells subjected to an initial static curvature as well as suspended elastic cables

(Benedettini and Rega, 1989; Nayfeh, 1984), and it was here proposed as a direct mechanical

analogy with the present orbital sloshing system.

The main limitation of the models derived in this work is intrinsic to the fundamental

assumption of an inviscid fluid. This precludes one to correctly accounting for the jump-down

transition experimentally observed for DC waves at low shaking amplitudes and, therefore, for

an accurate estimation of the maximum amplitude response when such a transition occurs.

Furthermore, in the absence of viscous boundary layers, the weakly nonlinear time– and

azimuthal–averaged mean flow reduces to a free surface deformation only. This is in stark

134



4.5. Appendix

contrast with the existence of the so-called Eulerian mean flow (Bremer and Breivik, 2018),

also known as viscous streaming flow, typically observed in experiments (Bouvard et al., 2017).

Therefore, the present work overlooks one of the essential points of interest in applications of

orbital shaking. The mean flow, which contributes to efficient mixing, is not captured.

The extension of the asymptotic models developed in this work to a viscous analysis is

desirable, as it would enable one to predict quantitatively these secondary but fundamental

effects for both cases of harmonic and super-harmonic resonances. However, it presently

hinges on the subtle modelling of the moving contact line condition.

4.5 Appendix

4.5.1 Heuristic damping model: jump–down frequency and DC dynamics sup-
pression at low driving amplitudes

In §4.3.2 the weakly nonlinear (WNL) model for double–crest (DC) waves was compared

with experimental measurements from Reclari (2013) and Reclari et al. (2014) in terms non-

dimensional maximum crest-to-trough contact line amplitude,∆δ̃, for different non-dimensional

shaking diameters, d̃s , and container diameters, D (see figures 4.6 and 4.7). We have observed

that at larger shaking amplitudes, d̃s , and for larger container diameter, D, a DC wave first

emerges on the top of a single–crest (SC) wave at Ω ≈ ω21/2 and eventually wave breaking

occurs at larger frequencies. On the contrary, a jump-down transition from DC to SC then

takes place by increasingΩ at lower values of d̃s and/or for smaller D . The latter well-known

hysteretic behaviour can be ascribed to the viscous dissipation of the system, obviously over-

looked by the present inviscid analysis. In this Appendix, viscous dissipation is tentatively

reintroduced by employing a simple heuristic viscous damping model, as described in the

following.

The viscous dissipation essentially arises at three locations, (i) at the solid tank boundary

layers, i.e. bottom and sidewall, (ii) in the fluid bulk and (iii) at the free surface, the latter

being typically negligible for ideal surface waves (in absence of any form of contamination). A

well-known formula for the prediction of the viscous damping coefficient of capillary–gravity

waves in upright cylindrical containers was provided by Case and Parkinson (1957) and Miles

(1967). Such an estimation is computed according to the following formula

σ= 2k2
mn

Re
+

(ωmn

2Re

)1/2 kmn

sinh(2kmn H)
+

(ωmn

2Re

)1/2
[

1

2

1+ (m/kmn)

1− (m/kmn)
− kmn H

sinh(2kmn H)

]
, (4.48)

where the first term represents the bulk dissipation, whereas the second and third terms

are related to the dissipation occurring at the solid bottom and sidewall, respectively. In

equation (4.48), H = h/R is the non-dimensional fluid depth, kmn is the non-dimensional

wavenumber associated with mode (m,n), ωmn is the corresponding natural frequency obey-

ing to the dispersion relation (4.9) and Re = g 1/2R3/2/ν is the Reynolds number (ν denotes the

kinematic viscosity of the fluid). In §4.3.2 an amplitude equation, governing the dynamics of
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Figure 4.9 – (a) Same case of figure 4.6-(a) with d̃s = 0.07. (b) same as (a), but for d̃s = 0.02
(from figure 4.2), value at which the double–crest dynamics does not manifest. Solid and
dashed lines correspond to stable and unstable branches, respectively, computed via the
weakly nonlinear analysis in the inviscid case and for different values of damping coefficient,
with σ given by (4.48). Markers correspond to the experimental points shown in figure 4.2 and
are extracted from Reclari et al. (2014).

a natural mode (2,n) (which leads the DC wave dynamics observed close toΩ≈ω21/2), was

derived. For mode (2,1) in the conditions of figure 4.6, i.e. pure water with ρ = 1000kg/m3,

γ= 0.072N/m, ν= 1×10−6 m2/s, D = 0.144m (for which the Bond number is Bo = 705.6) and

H = 1.04 = 2H̃ , the values Re = 60480, k21 = 3.0542 and ω21 = 1.7561 give a non-dimensional

viscous damping coefficient σ = 0.0051, mostly produced by the sidewall boundary layer.

Typically, as in the present case and as supported by experimental (Cocciaro et al., 1993) and

numerical (Viola et al., 2018) evidence, the viscous damping rate can be interpreted as a slow

damping process over a faster time scale represented by the wave oscillation. Under this

hypothesis, which translates in the assumption of a viscous damping coefficient of order ε2

within the present WNL framework, the damping coefficient can be added a posteriori, i.e. in

a phenomenological way, to the final inviscid amplitude equation from (4.39), leading to

dB

d t
=−[

σ+ i
(
2λ−χDC f 2)]B + i

(
ζDCλ+µDC

)
f 2 + iνDC |B |2B. (4.49)

The stationary form of (4.49) can be rearranged in the following implicit form

(
2λ−νDC |B |2 −χDC f 2) |B |±

√
f 4

(
ζDCλ+µDC

)2 − (σ|B |)2 = 0, (4.50)

which can be solved using the Matlab function fimplicit. The effect of viscous dissipation

on the DC regime is investigated in figure 4.9 for two representative values of the shaking

diameter.

The case of figure 4.9(a) shows that the so-called jump-down frequency is somewhere in
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between Ω ∈ [0.675,0.685]. The damping value produced by (4.48) appears to be too small

to match the experimental jump-down frequency, hence we tentatively added a prefactor in

order to fit the measurements. It turns out that a prefactor of 1.35 is sufficient to provide a

fairly good prediction of the jump-down frequency. We note that prediction (4.48) does not

involve any dissipation mechanism associated with the contact line, i.e. contact line hysteresis

(Bongarzone et al., 2021c; Cocciaro et al., 1993; Dussan, 1979; Hocking, 1987; Keulegan, 1959;

Kidambi, 2009a; Miles, 1967; Viola et al., 2018; Viola and Gallaire, 2018) or possible surface

contamination (Henderson and Miles, 1990, 1994). Indeed, depending on the configuration,

contact line dynamics may rule the overall dissipation, with a measured damping coefficient

up to 10-20 times larger (Benjamin and Ursell, 1954; Hocking, 1987; Kidambi, 2009a) than that

predicted by (4.48). Comparison of the theoretical damping coefficient value with that mea-

sured in moving contact line experiments, due to unavoidable sources of uncertainty in the

meniscus dynamics, have always been mostly qualitative, rather than quantitative, requiring

often the use of fitting parameters. For instance, in their predictive theory for single-mode

Faraday experiments, Henderson and Miles (1990) used an effective fluid viscosity 3 times

larger than the actual one. Recently, Bäuerlein and Avila (2021) have measured the damping

coefficient of the first anti-symmetric sloshing mode in a quasi-two-dimensional rectangular

container, which was seen to be approximately 1.5 larger than that predicted by the theory

(Faltinsen and Timokha, 2009).

Even in absence of strong contact line dissipation, free surface contamination may strongly

contribute to the overall damping coefficient. Henderson and Miles (1990) have considered a

fully contaminated free surface, which can be modelled by a surface film that is free to move

vertically but cannot stretch horizontally. They have also derived an analytical expression

for the associated damping, which reads (ωmn/2Re)1/2 kmn cosh2 kmn H/sinh2kmn H . If such

a contribution was accounted for in (4.48), it would produce a value of 0.0109, which is ap-

proximately twice the damping obtained without contamination (and would correspond to

the green lines in figure 4.9(a) for 2σ). The need for a prefactor of 1.35 in figure 4.9(a), which

approximately corresponds to a fictitious fluid with a dynamic viscosity 1.8 times larger, is

therefore not surprising when the damping is computed via (4.48) and contact line dissipation

as well as free surface contamination are neglected.

We remark that the reasonings outlined in this Appendix in order to elucidate the effect of

viscosity are in fact only qualitative. Many aspects are ignored in the present inviscid analysis

with phenomenological damping, two of which are commented in the following.

Prediction (4.48) is only valid for free capillary–gravity waves, whereas dissipation rates of

forced wave motions are generally more complex. In particular, the double-crest wave evolves

out of a non-resonant forced single-crest swirling motion. A proper viscous WNL analysis

would produce complex eigenmodes and responses (due to the phase shift owing to viscosity)

and hence complex-valued normal form coefficients. For instance, among these coefficients,

the imaginary part of νDC (or νSC ) multiplied by |B |2 in (4.49), could be interpreted as a sort of

nonlinear damping (Douady, 1990),
(
σ− Im[ν] |B |2), whose contribution to the overall dissi-

pation mechanisms is expected to increase at larger wave amplitudes, hence influencing the

location of the jump-down frequency (note that −Im[ν] can be > 0). Moreover, the imaginary
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part of χ f 2 in DC-waves would contribute to the overall damping,
(
σ+ Im

[
χ
]

f 2 − Im[ν] |B |2),

by introducing a further effect, proportional to f 2, that finds its origin in the fact that the

double-crest wave emerges at second order owing to nonlinear square terms in the first order

non-resonant SC-motion.

In contradistinction with the case of a pinned (or fixed) contact line, a formal viscous analysis

undertaking the case of a moving contact line would require the introduction of a slip length

model in order to regularize the well-known contact line stress-singularity (Davis, 1974; Huh

and Scriven, 1971; Lauga et al., 2007; Navier, 1823; Viola and Gallaire, 2018).

Most importantly, the inviscid WNL model is not capable to describe the continuous modu-

lation of the phase lag between the external forcing and the wave amplitude response, which

has been recently demonstrated by Bäuerlein and Avila (2021) (for uni-directional sloshing

waves in three-dimensional rectangular container) to be of crucial importance in the correct

prediction of the jump-down frequency, otherwise often inaccurate, even when the considered

damping coefficient is that measured experimentally. In principle, a formal viscous analysis,

as briefly introduced above, is expected to correctly capture such a phase lag.

Another interesting case, that is worth to be commented, is that shown in figure 4.9(b). At

a shaking diameter d̃s = 0.02 (the lowest reported in figure 4.2), the DC dynamics was not

observed at all. This is in conflict with the inviscid straightforward asymptotic analysis, which

always prescribes a divergent behaviour close to the dominant super-harmonic,Ω≈ω21/2,

even for vanishing d̃s . However, as soon as viscous dissipation is introduced, the energy

pumped into the system is not sufficient to overcome dissipative effects and DC waves are

essentially suppressed, with a system response that follows satisfactorily the linear solution

(see figure 4.2) showing a single–crest dynamics ranging over the whole frequency window,

Ω/ω11 ∈ [0,1], in agreement with experimental evidences.

4.5.2 Asymptotic harmonic solution of the undamped Duffing equation

By analogy with the weakly nonlinear analysis for harmonic single–crest wave dynamics

presented in §4.3.1, we look for an asymptotic solution of the undamped Duffing equation

ẍ +x + c3x3 = p cosΩt , (4.51)

having the form x = x0 +εx1. Additionally, as standard in asymptotic solutions of the Duffing

equation, we assume a small external forcing amplitude, p = εp̂ and detuning from the exact

resonance, i.e. Ω= 1+λ= 1+ελ̂, small nonlinearities through c3 = εĉ3 and the existence of a

characteristic slow time scale t̂1 = εt . Under these assumptions, the ε0–order homogeneous

solutions simply reads

x0 =C
(
t̂1

)
e it + c.c. . (4.52)

with C
(
t̂1

)
to be determined at next order. At order ε one can readily verify that, in order to

avoid secular terms, a solvability condition must be satisfied. Such a condition leads to the
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very classical amplitude equation

dD/d t =−iλD + i (−1/4) p + i (3c3/2) |D|2D, (4.53)

where the change of variable C = De iλt was introduced and each quantity was recast in terms

of the corresponding physical value (to eliminate the implicit small parameter ε).

By noticing that

−1/4 ↔ µSC , 3c3/2 ↔ νSC , (4.54)

one immediately recognizes that equation (4.23) has indeed the same structure of the formal

amplitude equation (4.53), thus suggesting that the continuous sloshing system and the one-

degree-of-freedom (1dof) Duffing system, under the specific conditions listed above, behave

essentially in the same way.

4.5.3 Asymptotic super-harmonic solution of the undamped Helmholtz–Duffing
equation

In this Appendix, although with the additional assumption of vanishing damping, we briefly

summarize the super-harmonic weakly nonlinear solution of the Helmholtz–Duffing equation,

ẍ +x + c2x2 + c3x3 = p cosΩt , (4.55)

derived by Benedettini and Rega (1989) and introduced in §4.3.1.

We look for an asymptotic solution of the form x = x0 +εx1 +ε2x2, to equation (4.55) with

σ= 0 (undamped oscillator), 2Ω= 1+λ= 1+ελ̂ and with small nonlinearities through c2 = εĉ2

and c3 = ε2ĉ3 (with the cubic term one order smaller than the quadratic one). The existence

of two slow time scales is hypothesized, t̂1 = εt and t̂2 = ε2t . Under these assumptions, the

solution of the ε0–order forced linear problem reads

x1 =C
(
t̂1, t̂2

)
e it + f e i(1/2)t e i

(
λ̂/2

)
t̂1 + c.c., (4.56)

with f = (2/3) p and C
(
t̂1, t̂2

)
to be determined at next order. At orders ε and ε2, resonating

terms produced by the weak quadratic and cubic nonlinearities, respectively, arise, thus

requiring the imposition of two solvability conditions prescribing that amplitude C
(
t̂
)

must

obey to the following normal forms

ε1 : dC /d t̂1 = i (c2/2) f 2e iλ̂t̂1 , (4.57a)

ε2 : dC /d t̂2 =−i λ̂ (c2/4)e iλ̂t̂1 − ic5 f 2 A− i4c4|C |2C , (4.57b)

with the full expression of the auxiliary coefficients c4 and c5 (both functions of c2 and c3),

given in Benedettini and Rega (1989). Combining (4.57a) and (4.57b) into a single amplitude
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equation (by summing the two expressions by their respective weights, i.e. ε and ε2, and

reintroducing the physical quantities in order to eliminate the dependence on the implicit

small parameter ε), one obtains

dD/d t =−i
(
λ+ c5 f 2)D + i (1−λ/2)c2 f 2/2− i4c4|D|2D, (4.58)

with C = De iλt . Note that the procedure used in the perturbation analysis above and outlined

in Benedettini and Rega (1989) is in fact equivalent to that followed in Nayfeh (1984) for

treating the same second-order super-harmonic resonance in a more general case of a two-

term excitation. By comparing the various terms of (4.58) with those of (4.39), the analogy

is evident, thus suggesting that the actual inviscid sloshing dynamics in the double–crest

wave regime may be, at least qualitatively, described by the undamped Helmholtz–Duffing

equation (4.46) driven super-harmonically.

4.5.4 ε2 and ε3–order dynamic and kinematic equations

For completeness, in this Appendix we provide the second and third-order asymptotic expan-

sions of the free surface boundary conditions with regards to the most complex formulation

presented in this Chapter, i.e. that related to the double-crest (DC) swirling. At second-order,

the dynamic and kinematic equations evaluated at z = η0 = 0 read, respectively

∂Φ2

∂t
+η2 − 1

Bo

∂κ

∂η

(
η2

)=−∂Φ1

∂T1
−η1

∂

∂z

∂Φ1

∂t
− 1

2
∇Φ1 ·∇Φ1 + 1

Bo

1

2

∂2κ

∂η2

(
η1

)2 =F2dyn , (4.59)

∂η2

∂t
− ∂Φ2

∂z
=−∂η1

∂T1
−∇Φ1 ·∇η1 +η1

∂

∂z

∂Φ1

∂z
=F2kin , (4.60)

where ∇η= {
∂η/∂r,r−1∂η/∂θ,0

}T
, ∂κ/∂η represents the first order variation of the curvature,

∂κ

∂η
= ∂2

∂r 2 + 1

r

∂

∂r
+ 1

r 2

∂2

∂θ2 , (4.61)

and it is applied to η2, while ∂2κ/∂η2 is its second order variation applied to
(
η1

)2. However,

as the system is expanded around z = η0 = 0, it turns out that ∂2κ/∂η2 = 0.

By pursuing the expansion up to the third order in ε, one obtains

∂Φ3

∂t
+η3 − 1

Bo

∂κ

∂η

(
η3

)=−∂Φ1

∂T2
− ∂Φ2

∂T1
−η1

∂

∂z

∂Φ1

∂T1
− (4.62)

−η2
∂

∂z

∂Φ1

∂t
−η1

∂

∂z

∂Φ2

∂t
− 1

2

(
η1

)2 ∂2

∂z2

∂Φ1

∂t
−∇Φ1 ·∇Φ2 −η1∇Φ1 · ∂

∂z
∇Φ1 +

+ 1

Bo

1

2

∂2κ

∂η2

(
2η1η2

)+ 1

Bo

1

6

∂3κ

∂η3

(
η1

)3 =F3dyn ,
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∂η3

∂t
− ∂Φ3

∂z
=−∂η1

∂T2
− ∂η2

∂T1
−∇Φ1 ·∇η2 −∇Φ2 ·∇η1 −η1∇η1 · ∂

∂z
∇Φ1 + (4.63)

+η2
∂

∂z

∂Φ1

∂z
+η1

∂

∂z

∂Φ2

∂z
+ 1

2

(
η1

)2 ∂2

∂z2

∂Φ1

∂z
=F3kin ,

with ∂3κ/∂η3 ( 6= 0) the third order variation of the curvature, whose explicit expression is here

omitted for the sake of brevity, applied to
(
η1

)3.

Note that the second order in the straightforward asymptotic model is retrieved by retaining

the ε2–order system only and imposing ∂/∂T1 = ∂/∂T2 = 0. On the other hand, the equa-

tions above reduce to the second and third-order problem in the single-crest (SC) swirling

formulation when ∂/∂T1 = 0 and the external forcing term, r F cos(Ωt −θ), appears on the

right-hand-side of equation (4.62). At each order in ε, by substituting the previous order

solutions, it is possible to explicitly separate the various forcing contributions by their tem-

poral and azimuthal periodicities, thus leading to expressions (4.14) for the straightforward

model, (4.22) for the single-crest model and (4.34), (4.36) for the double-crest one.

For the calculation of the amplitude equation coefficients at ε3–order, only resonant terms

matter. These terms, with their corresponding amplitudes, are proportional to e i(ω1n t−θ) for SC

waves and to e i(iω2n t−2θ) for DC waves (or, more generally, proportional to e i(ωmn t−mθ)). As an

example, in the following, we provide the expression of F̂ A A A
3,kin used in (4.24b) (with A = A1)

and in (4.38c) (with A = A2) and which, together with F̂ A A A
3,dyn, represents the most involved

third order resonant forcing term:

F̂ A A A
3,kin =−∇Φ̂A

1 ·∇η̂A A
2 −∇Φ̂A

1 ·∇η̂A A
2 −∇Φ̂A A

2 ·∇η̂A
1 −∇Φ̂A A

2 ·∇η̂A
1 − (4.64)

−η̂A
1 ∇η̂A

1 · ∂
∂z

∇Φ̂A
1 − η̂A

1 ∇η̂A
1 · ∂
∂z

∇Φ̂A
1 − η̂A

1 ∇η̂A
1 · ∂
∂z

∇Φ̂A
1 +

+η̂A A
2

∂

∂z

∂Φ̂A
1

∂z
+ η̂A A

2
∂

∂z

∂Φ̂A
1

∂z
+ η̂A

1
∂

∂z

∂Φ̂A A
2

∂z
+ η̂A

1

∂

∂z

∂Φ̂A A
2

∂z
+

+(
η̂A

1 η̂
A
1

) 1

2

∂2

∂z2

∂Φ̂A
1

∂z
+

(
η̂A

1 η̂
A
1

) 1

2

∂2

∂z2

∂Φ̂A
1

∂z
+

(
η̂A

1 η̂
A
1

) 1

2

∂2

∂z2

∂Φ̂A
1

∂z

The expression of F̂ A A A
3,dyn (not reported here for the sake of brevity) is computed analogously.

The extraction of resonant terms, especially those appearing at third-order, involves tedious

calculations due to several possible combinations of the previous-order solutions. Neverthe-

less, the procedure is straightforward and systematic, so that tools of symbolic calculus, e.g.

the software Wolfram Mathematica, which was indeed used in this work, can be employed to

ease such a procedure.
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waves in longitudinally forced circular
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Remark: this chapter is largely inspired by the publication of the same name.

A. Marcotte1, F. Gallaire1, A. Bongarzone1

1 Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne,

Lausanne CH-1015, Switzerland

Journal of Fluid Mechanics, 966, A41 (2023)

Author’s contributions: A.B. and F.G. created the research plan. A.B. formulated analytical

and numerical models. A.M. and A.B. led model solutions. A.M. designed and performed
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inputs from F.G..

Resonant sloshing in circular cylinders was studied by Faltinsen et al. (2016), whose theory

was used to describe steady-state resonant waves due to time-harmonic container’s elliptic

orbits. In the limit of longitudinal container motions, a symmetry-breaking of the planar

wave solution occurs, with clockwise and anti-clockwise swirling equally likely. In addition

to this primary harmonic dynamics, previous experiments have unveiled that diverse super-

harmonic dynamics are observable far from primary resonances. Among these, the so-called

double-crest (DC) dynamics, first observed by Reclari et al. (2014) for rotary sloshing, is partic-

ularly relevant, as its manifestation is the most favoured by the spatial structure of the external

driving. Following Bongarzone et al. (2022a), in this work, we develop a weakly nonlinear

(WNL) analysis to describe the system response to super-harmonic longitudinal forcing. The

resulting system of amplitude equations predicts that a planar wave symmetry-breaking via

stable swirling may also occur under super-harmonic excitation. This finding is confirmed

by our experimental observations, which identify three possible super-harmonic regimes,

i.e. (i) stable planar DC waves, (ii) irregular motion and (iii) stable swirling DC waves, whose

corresponding stability boundaries in the forcing frequency-amplitude plane quantitatively

match the present theoretical estimates.
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Figure 5.1 – Sketch of a cylindrical container of diameter D = 2R and filled to a depth h. The
gravity acceleration is denoted by g . O′e′x e′y e′z is the Cartesian inertial reference frame, while
Oex ey ez is the Cartesian reference frame moving with the container. The origin of the moving
cylindrical reference frame (r,θ, z) is placed at the container revolution axis and, specifically,
at the unperturbed liquid height, z = 0. The perturbed free surface and contact line elevation
are denoted by η and δ, respectively. āx is the amplitudes of the longitudinal periodic forcing
of driving angular frequency Ω̄.

The Chapter is organized as follows. The flow configuration and governing equations

are given in §5.1. In §5.2 we briefly introduce the classical linear potential model together

with a short description of the numerical method employed in this work. By analogy with

Bongarzone et al. (2022a), in §5.3, we first tackle the simpler case of harmonic single-crest

(SC) wave. The WNL system of amplitude equations governing the double-crest (DC) wave

dynamics under super-harmonic longitudinal forcing, which represents the core of this study,

is then formalized in §5.4. The experimental apparatus, procedure and findings are described

in §5.5, where a thorough quantitative comparison with the present theoretical estimates

is carried out. Final comments and conclusions are outlined in §5.6. Lastly, Appendix 5.7.2

complements the theoretical model by briefly showing how a straightforward extension of

the present analysis to generic container’s elliptic orbits can be readily obtained without any

further calculation, hence paving the way for further analyses and experimental investigations.

5.1 Flow configuration and governing equations

We consider a cylindrical container of diameter D = 2R filled to a depth h with a liquid of

density ρ. The air-liquid surface tension is denoted by γ, whereas the gravity acceleration is

denoted by g . O′e′x e′y e′z is the Cartesian inertial reference frame, while Oex ey ez is the Cartesian

reference frame moving with the container. The origin of the moving cylindrical reference

frame (r,θ, z) is placed at the container revolution axis and, specifically, at the unperturbed

liquid height, z = 0 (see figure 1). A longitudinal shaking in the horizontal plane, e.g. along the
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x-axis, can be represented by the following equations describing the motion velocity of the

container axis intersection with the z = 0 plane, parametrised in polar coordinates (r , θ),

Ẋ0 =
 − āxΩ̄sin

(
Ω̄t

)
cosθer

āxΩ̄sin
(
Ω̄t

)
sinθeθ

, (5.1)

with āx the dimensional forcing amplitude and Ω̄ the dimensional driving angular frequency.

In the potential flow limit, the liquid motion within the moving container is governed by the

Laplace equation, subjected to the homogeneous no-penetration condition at the solid lateral

wall and bottom,

∆Φ= 0, ∇Φ ·n = 0, (5.2)

and by the dynamic and kinematic boundary conditions at the free surface z = η (r,θ) (Faltin-

sen and Timokha, 2009; Ibrahim, 2005),

∂Φ

∂t
+ 1

2
∇Φ ·∇Φ+η− κ

(
η
)

Bo
= r f cos(Ωt )cosθ, (5.3a)

∂η

∂t
+∇Φ ·∇η− ∂Φ

∂z
= 0. (5.3b)

which have been made non-dimensional by using the container’s characteristic length R, the

velocity
√

g R and the time scale
√

R/g . In (5.3a), κ
(
η
)

denotes the fully nonlinear curvature,

while Bo = ρg R2/γ is the Bond number. As soon as the Bond number is sufficiently large, i.e.

Bo ∼ 103 (Bouvard et al., 2017), surface tension effects are almost negligible (fully negligible

for Bo & 104, except in the neighbourhood of the contact line (Faltinsen et al., 2016)). In the

following, we assume large Bond numbers and accordingly, the curvature term in (5.3a) is

neglected. The non-dimensional driving acceleration along the x-axis reads f = axΩ
2, with

ax = āx /R andΩ= Ω̄/
√

g /R. Lastly, the non-dimensional fluid depth is H = h/R.

5.2 Linear potential model

Far from resonances and in the limit of small forcing amplitudes, the linear theory is expected

to provide a good approximation of the harmonic system response. Let us consider small

perturbations of a base-state q0,

q (r,θ, z, t ) = {
Φ (r,θ, z, t ) ,η (r,θ, t )

}T = q0 +εq′ = ε{Φ′,η′
}T +O

(
ε2) , (5.4)

together with the assumption of small driving forcing amplitudes of order O(ε), i.e. f = εF ,

with ε a small parameter ε¿ 1 and with the auxiliary variable F of order O(1).

In the following, we assume that the dynamic contact line freely slides along the lateral

wall with a constant slope while keeping a contact angle equal to a static value of 90◦. The

latter hypothesis implicitly assumes the absence of a static meniscus so that the base-state

configuration is q0 =
{
Φ0,η0

}T = 0, i.e. the fluid is at rest with a flat static interface.
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At order ε, equations (5.2)-(5.3b) reduce to a forced linear system, whose matrix compact

form reads,

(∂t B−A )q′ =F ′, (5.5)

with F ′ = FF̂
(1

2 e i(Ωt−θ) + 1
2 e i(Ωt+θ)

)+ c.c., F̂ = {
0, r

2

}T and

B =
(

0 0

Iη 0

)
, A =

(
∆ 0

0 −Iη

)
, (5.6)

where c.c. stands for complex conjugate and Iη is the identity matrix associated with the

interface η. Note that the kinematic condition does not explicitly appear in (5.6), but it is

enforced as a boundary condition at the interface (Viola et al., 2018). We then seek a standing

wave solution in the form

q′ (r,θ, z, t ) = F q̂ (r, z)

(
1

2
e i(Ωt−θ) + 1

2
e i(Ωt+θ)

)
+ c.c., (5.7)

where q̂ is straightforwardly computed by solving the system

(iΩB−Am=1) q̂ = F̂ , (5.8)

Note that, due to the normal mode ansatz (5.7), the linear operator Am depends on the az-

imuthal wavenumber m, here m = 1. Even though an exact analytical solution to equation (5.8)

can be readily obtained via a Bessel-Fourier-series representation, in this work, as in Bongar-

zone et al. (2022a), we opt for a numerical scheme based on a discretization technique, where

linear operators B and Am are discretized in space by means of a Chebyshev pseudo-spectral

collocation method with a two-dimensional mapping implemented in Matlab, which is anal-

ogous to that described by Viola et al. (2018) and Bongarzone et al. (2021c). The numerical

scheme requires explicit boundary conditions at r = 0 in order to regularize the problem on

the revolution axis (r = 0), i.e.

m = 0 :
∂η̂

∂r
= ∂Φ̂

∂r
= 0, (5.9a)

m ≥ 1 : η̂= Φ̂= 0. (5.9b)

The numerical convergence of the results presented throughout the work is achieved using a

computational grid Nr = Nz ≤ 40, with Nr and Nz the number of radial and axial collocation

grid points, respectively. Due to the low computational cost, we used Nr = Nz = 60.

We recall the well-known dispersion relation for inviscid gravity waves (Lamb, 1993),

ω2
mn = kmn tanh(kmn H), (5.10)

where the wavenumber kmn is given by the nth-root of the first derivative of the mth-order

Bessel function of the first kind satisfying J ′m (kmn) = 0. By denoting the eigenvector associated

with the natural frequencyωmn as q̂mn , solution of the homogeneous version of equation (5.8)

forΩ=ωmn , it is useful for the rest of the analysis to note that owing to the symmetries of the
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problem, the system admits the following invariant transformation(
q̂mn ,+m, iωmn

)−→ (
q̂mn ,−m, iωmn

)
. (5.11)

Such an invariance suggests that the spatial structure, q̂ (r, z), of the system response to an

external forcing with temporal and azimuthal periodicity (Ω,m) is the same of that computed

for (Ω,−m), so that the linear solution form (5.7) holds true.

5.3 Harmonic single-crest (SC) resonance

With the aim to derive a weakly nonlinear (WNL) system of amplitude equations governing

the super-harmonic double-crest dynamics (DC) under longitudinal excitation, we first tackle

the simpler problem of harmonic single-crest waves (SC). We look for a third-order asymptotic

solution for the system

q = {
Φ,η

}T = εq1 +ε2q2 +ε3q3 +O
(
ε4) , (5.12)

where the zero order solution, q0 = 0, associated with the rest state, is omitted.

With regards to SC waves and, specifically, to the harmonic response at a driving frequency

close to the natural frequency of one of the non-axisymmetric m =±1 modes, ω1n , we assume

here a small forcing amplitude of order ε3. This assumption is justified by the fact that close

to resonance,Ω≈ω1n , and in the absence of dissipation, even a small forcing will induce a

large system response. Hence, the analysis is expected to hold forΩ=ω1n +λ, where λ is a

small detuning parameter assumed of order ε2. In the spirit of the multiple scale technique,

we introduce the slow time scale T2 = ε2t , with t being the fast time scale. Hence, the following

scalings are assumed:

f = ε3F, Ω=ω1n +ε2Λ, T2 = ε2t , (5.13)

with the auxiliary parameters, F andΛ, of order O(1).

Given the azimuthal periodicity of the external forcing, i.e. m =±1, we assume a leading

order solution as the sum of two counter-propagating travelling waves,

q1 = A1 (T2) q̂A1
1 e i(ω1n t−θ) +B1 (T2) q̂B1

1 e i(ω1n t+θ) + c.c., (5.14)

where q̂A1
1 = q̂B1

1 (owing to (5.11)) is the eigenmode computed by solving (5.8) for its homo-

geneous solution atΩ=ω1n , where ω1n is given by (5.10). The complex amplitudes A1 and

B1, functions of the slow time scale T2 and still undetermined at this stage of the expansion,

describe the slow time amplitude modulation of the two oscillating waves and must be deter-

mined at a higher order.

By pursuing the expansion to the second order, one obtains a linear system forced by combi-

nations of the first-order solutions. These forcing terms are proportional to A2
1 and B 2

1 (second

harmonics), to |A1|2 and |B1|2 (steady and axisymmetric mean flow corrections) and to A1B1
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and A1B 1 (cross-quadratic interactions),

(∂t B−Am)q2 =F2 =
(
|A1|2F̂ A1 Ā1

2 +|B1|21F̂
B1B̄1

2

)
+

(
A2

1F̂
A1 A1

2 e i2(ω1n t−θ) +B 2
1F̂

B1B1

2 e i2(ω1n t+θ) + c.c.
)

+
(

A1B1F̂
A1B1

2 e i2ω1n t + A1B 1F̂
A1B 1

2 e−i2θ+ c.c.

)
. (5.15)

Thus, we seek a second-order solution of the form

q2 = |A1|2q̂A1 Ā1
2 +|B1|2q̂B1B̄1

2 +
(

A2
1q̂A1 A1

2 e i2(ω1n t−θ) +B 2
1 q̂B1B1

2 e i2(ω1n t+θ) + c.c.
)

+
(

A1B1q̂A1B1
2 e i2ω1n t + A1B 1q̂A1B 1

2 e−i2θ+ c.c.
)

. (5.16)

Given the invariant transformation (5.11), only some of these second-order responses need to

be computed explicitly, as, e.g., q̂A1 Ā1
2 = q̂B1B̄1

2 and q̂A1 A1
2 = q̂B1B1

2 .

We now move forward to the ε3–order problem, which is once again a linear problem

forced by combinations of the first (5.14) and second order solutions (5.16), produced by

third order non-linearities such as (∇Φ1 ·∇Φ2 +∇Φ2 ·∇Φ1)/2 in the dynamic condition or

∇Φ1 ·∇η2 +∇Φ2 ·∇η1 in the kinematic equation, as well as by the slow time-T2 derivative of

the leading order solution and by the external forcing, which was assumed of order ε3,

(∂t B−Am)q3 =F 3 =−∂A1

∂T2
Bq̂A1

1 e i(ω1n t−θ) − ∂B1

∂T2
Bq̂B1

1 e i(ω1n t+θ) (5.17)

+|A1|2 A1F̂
|A1|2 A1

3 e i(ω1n t−θ) +|B1|2B1F̂
|B1|2B1

3 e i(ω1n t+θ)

+|B1|2 A1F̂
|B1|2 A1

3 e i(ω1n t−θ) +|A1|2B1F̂
|A1|2B1

3 e i(ω1n t+θ)

+1

2
FF̂

F
3 e i(ω1n t−θ)e iΛT2 + 1

2
FF̂

F
3 e i(ω1n t+θ)e iΛT2

+N.R.T.+ c.c.,

with F̂
F
3 = {0,r /2}T and where N.R.T. stands for non-resonating terms. These terms are not

strictly relevant for further analysis and can therefore be neglected. Amplitudes equations

for A1 and B1 are obtained by requiring that secular terms do not appear in the solution to

equation (5.17), where secularity results from all resonant forcing terms in F 3 (see Appendix D

of Bongarzone et al. (2022a) for its explicit expression), i.e. all terms sharing the same frequency

and wavenumber of q1, e.g. (ω,m) = (ω1n ,±1), and in effect all terms explicitly written in (5.17).

It follows that a compatibility condition must be enforced through the Fredholm alternative

(Friedrichs, 2012; Olver, 2014b), which imposes the amplitudes A = εA1e−iλt and B = εB1e−iλt

to obey the following normal form

d A

d t
=−iλA+ i

µSC

2
f + iνSC |A|2 A+ iξSC |B |2 A, (5.18a)

dB

d t
=−iλB + i

µSC

2
f + iνSC |B |2B + iξSC |A|2B , (5.18b)
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where the physical time t = T2/ε2 has been reintroduced and where forcing amplitude and

detuning parameter are recast in terms of their corresponding physical values, f = ε3F and

λ= ε2Λ=Ω−ω1n , so as to eliminate the small implicit parameter ε (Bongarzone et al., 2021a,

2022b). The subscript SC stands for single–crest (SC). The various normal form coefficients,

which turn out to be real-valued quantities due to the absence of dissipation, are computed

as scalar products between the adjoint mode, q̂A1†
1 = q̂B1†

1 , associated with q̂A1
1 = q̂B1

1 , and

the third order resonant forcing terms (see Appendix 5.7.1 and Bongarzone et al. (2022a) for

further details).

Once stable stationary solutions are computed, A and B are replaced in expressions (5.14)

and (5.16) and the total harmonic SC wave solution is reconstructed as

qSC = {
Φ,η

}T = εq1 +ε2q2. (5.19)

To this end, it is first convenient to express equations (5.18a)-(5.18b) in polar coordinates,

i.e. by defining A = |A|e iΦA and B = |B |e iΦB , and then to introduce the following change of

variables, |a| = |A|+|B | and |b| = |A|−|B |. By looking for periodic solutions with stationary am-

plitudes |A|, |B | 6= 0, one can sum and subtract equations (5.18a) and (5.18b), hence obtaining,

f = axΩ
2 =±|a|

(
λ−

(
νSC +ξSC

4

)
|a|2 −

(
3νSC −ξSC

4

)
|b|2

)
1

µSC

, (5.20a)

0 = |b|
(
λ−

(
νSC +ξSC

4

)
|b|2 −

(
3νSC −ξSC

4

)
|a|2

)
. (5.20b)

As expected, equation (5.20b) suggests that two possible solutions exist. The planar (or

standing) wave solution is retrieved for

|b| = |A|− |B | = 0 →|A| = |B |, (5.21a)

axΩ
2 =±|a|

(
λ−

(
νSC +ξSC

4

)
|a|2

)
1

µSC

, (5.21b)

whereas the swirling wave solution is found when |b| 6= 0 and

|b|2 =
(
λ−

(
3νSC −ξSC

4

)
|a|2

)(
4

νSC +ξSC

)
, (5.22a)

axΩ
2 =±2|a|

(
ξSC −νSC

νSC +ξSC

)(
λ−νSC |a|2

) 1

µSC

. (5.22b)

The various branches prescribed by (5.21b) and (5.22a)-(5.22b) for |a| and |b| as a function of

τ=Ω/ω1n and at a fixed non-dimensional shaking amplitude ax are here computed by means

of the Matlab function fimplicit.

From (5.18a)-(5.18b) expressed in polar coordinates, one finds that the stationary module

equations read µSC f sinΦA/2 = 0 and µSC f sinΦB /2 = 0, hence implying sinΦA = sinΦB = 0.

We therefore note that four possible combinations of stationary phases,ΦA andΦB ∈ [0,2π],
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Figure 5.2 – Estimates of bounds, in the (Ω/ω11, ax )-plane, between the frequency ranges
where planar, irregular and swirling waves occur when the container undergoes a longitudinal
and harmonic motion. Filled markers: experiments by Royon-Lebeaud et al. (2007). Black
dashed lines: theoretical prediction by Faltinsen et al. (2016), whose theoretical curves have
been here reproduced by manually sampling those reported in their original figure 8(a).

are in principle admitted, i.e. (i) ΦA =ΦB = 0, (ii) ΦA =ΦB = π, (iii) ΦA = 0, ΦB = π and (iv)

ΦA =π, ΦB = 0. However, (iii) and (iv) are totally equivalent to (i) and (ii), respectively, with

amplitudes |a|→ |b| and |b|→ |a|. Therefore, only combinations (i)ΦA =ΦB =Φ= 0 and (ii)

Φ=π, which produce the ± sign in (5.20a), are retained.

5.3.1 Comparison with existing experiments and theoretical predictions

In figure 5.2 we reproduce figure 8 of Faltinsen et al. (2016), which shows the estimates of

bounds between the frequency ranges where harmonic planar, irregular and swirling waves

occur. The outcomes of the present analysis are consistent with those of Faltinsen et al. (2016)

and with the experimental measurements by Royon-Lebeaud et al. (2007). The values of the

normal form coefficients µSC , νSC and ξSC reported in table 5.1 of Appendix 5.7.1 confirm that

the stability boundaries vary weakly with the liquid depth, as stated by Faltinsen et al. (2016)

for non-dimensional fluid depths H & 1.05, but strongly depend on the forcing amplitude,

with the frequency range for irregular and swirling waves widening for increasing forcing am-

plitudes. In this context, irregular means that both the planar and the swirling wave solutions

are unstable, hence one could expect irregular and chaotic patterns with a switching between

planar and swirling motion. The green-shaded region corresponds to stable single-crest (SC)

swirling waves, while the light purple-shaded region corresponds to the multi-solution regime,
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Figure 5.3 – Non-dimensional maximum steady-state wave elevation, maxt ,θ=0,π/2 η, (the
maximum is taken from values at two probes located at

(
x, y

)= (0.875,0) and (0,0.875)) versus
the forcing frequency Ω/ω11 and for different x-longitudinal shaking amplitudes, ax : (a)
0.0033, 0.0066, 0.0133 and 0.0266; (b) 0.023 and 0.045. Markers are associated with two
experimental series by Royon-Lebeaud et al. (2007) (experimental data from their original
figures 2 (now (a)) and 7 (now (b)). Filled circles correspond to measurements done for the
planar regime, whereas filled squares indicate swirling. The black dashed lines represent the
stable branches predicted by Faltinsen et al. (2016). Their curves have been here carefully
reproduced by manually sampling those reported in their original figure 10 in the range of
frequency available, i.e. Ω/ω11 ∈ [0.7,1.2]. Colored solid lines correspond to the present
theoretical predictions for stable branches.

where both stable swirling SC and planar SC wave motions are possible depending on the

initial transient, i.e. on the initial conditions, as typical of hysteretic systems.

In figure 5.3(a) and (b) the non-dimensional maximum steady-state wave elevation, com-

puted by reconstructing the total flow solution in accordance with (5.19), is compared with the

theoretical estimations by Faltinsen et al. (2016) (black dashed lines) from their figure 8 and

with the corresponding experimental measurements by Royon-Lebeaud et al. (2007) (colored

filled markers). The agreement between the present model and experiments is fairly good and

consistent with predictions by Faltinsen et al. (2016). The larger disagreement between theory

and experiments at smaller forcing amplitudes was tentatively attributed by Faltinsen et al.

(2016) to the fact that the actual elevation of these wave amplitudes was approximately 1mm

and may therefore be more difficult to measure with sufficient accuracy.

A comparable mismatch is here retrieved. As a side comment, we note that, within the

present inviscid framework, the lower left stable planar branch,Ω/ω11 < 1, is obtained for a

phaseΦ= 0, which implies a fluid motion in phase with the container motion, whereas the

lower right planar branch,Ω/ω11 > 1, has a phaseΦ=π, hence implying a phase opposition.

The stable swirling branch is characterized byΦ= 0. This is consistent with previous studies

(Royon-Lebeaud et al., 2007).
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5.3.2 Discussion: present analysis vs. the Narimanov-Moiseev multimodal the-
ory

In this section, the present model for harmonic resonances has been compared with the

Narimanov-Moiseev multimodal theory employed by Faltinsen et al. (2016) and has been

shown to provide very consistent and close predictions. Before moving to the next section, it

is therefore worth pointing out the methodological analogies and differences as well as the

pros and cons of the two approaches.

Adopting a variational formulation (Miles, 1976) and assuming an incompressible and

irrotational flow, the multimodal method reduces the hydrodynamic sloshing system to a

modal system of nonlinearly coupled ordinary differential equations written in terms of the

so-called generalised coordinates (Faltinsen and Timokha, 2009). This projection step uses a

Fourier-type representation of the time-dependent surface elevation and potential velocity

field. Because the resulting coefficients in the equation system are derived analytically and

only ODEs must be numerically time-integrated, numerical errors are negligible with small

CPU time relative to that for CFD methods based on the governing equations of the full hydro-

dynamic sloshing system.

For theoretical modelling purposes, postulating proper asymptotic relations between these

generalised coordinates simplifies the system to a weakly nonlinear form. Specifically, in the

case of harmonic resonances, the Narimanov-Moiseev asymptotic relations assume a leading

dynamics of order ∼ ε, a frequency detuning ∼ ε2, a forcing amplitude ∼ ε3 and a slow time

scale ∼ ε2. As surface tension effects are neglected and the contact line is assumed to freely

sleep along the sidewall with a constant and zero slope, the Fourier basis (Bessel functions for

circular cylinders) also coincides with the actual natural sloshing modes.

Under these assumptions, although we do not go through this initial projection step, the

present model and the Narimanov-Moiseev multimodal theory are essentially equivalent. The

ε-order leading dynamics (5.14) is indeed written in terms of natural sloshing modes (here

computed numerically) and the same asymptotic scaling is adopted (see (5.13)).

Nevertheless, the reintroduction of surface tension in the multimodal theory can be chal-

lenging. In particular, it is not clear yet how to account for static meniscus and contact line

dynamics (Raynovskyy and Timokha, 2020). Moreover, in these cases, the element of the

Fourier basis (Bessel-)functions no more coincide with the actual natural sloshing modes.

The numerical nature of our approach, based on primitive equations, not only allows us

to reintroduce straightforwardly surface tension (see Bongarzone et al. (2022a)) but also to

possibly account (asymptotically) for static meniscus effects and contact angle dynamics

while keeping the leading order dynamics expressed in terms of exact (up to a numerical con-

vergence error) linear natural modes computed numerically. This has been shown possible in

a series of works by some of the authors (Bongarzone et al., 2022b, 2021c; Viola et al., 2018;

Viola and Gallaire, 2018) and makes the present approach in this sense more versatile to study

the sloshing problem under non-ideal sidewall conditions.

Most important for the following analysis, is the case of the resonant amplification of higher-

order modes. Below a critical liquid depth, typically Hcr ≈ 1.05 for circular cylinders, such
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5.4. Super-harmonic double-crest (DC) resonance

amplification (secondary or internal resonances) can happen in the vicinity of the primary

resonance. These cases, which require a reordering of the asymptotic scaling, can still be

tackled in the framework of the multimodal theory by employing the so-called adaptive modal

approach (see chapters 7–9 of Faltinsen and Timokha (2009) and Raynovskyy and Timokha

(2020)). However, secondary resonances may also occur more broadly even far from the

primary resonance zone and for H > Hcr , as in the case of the DC super-harmonic reso-

nance. To the authors’ knowledge, even though its formalization appears possible, no variant

of the abovementioned adaptive modal approach capable of dealing with super-harmonic

resonances far from the primary one has been reported yet. The WNL analysis of the next

section proposes an asymptotic reordering allowing one to deal with the specific case of

super-harmonic DC resonances (Bongarzone et al., 2022a).

5.4 Super-harmonic double-crest (DC) resonance

We now tackle the double–crest (DC) wave response to longitudinal shaking, whose investi-

gation represents the core of the present work. We remind that the double-crest dynamics

occurs at a driving frequencyΩ≈ω2n/2 (see figure 4 of Reclari et al. (2014)). For the sake of

generality, the following analysis is therefore formalized for any mode (2,n), i.e. Ω=ω2n/2+λ,

where λ is the small detuning parameter.

By analogy with Bongarzone et al. (2022a), the leading order solution is here assumed to

be given by the sum of a particular solution, given by the linear response to the external

forcing, computed by solving (5.8) with Ω = ω2n/2 and m = ±1, and a homogeneous solu-

tion, represented by the two natural modes for (m,n) = (±2,n) associated with ω2n , up to

their amplitudes to be determined at higher orders. At second order, quadratic terms in

(Ω,m) = (ω2n/2,±1) will produce resonant terms in (ω2n ,±2). These ε2–order resonating

terms will then require, in the spirit of multiple timescale analysis, an additional second-order

solvability condition, hence suggesting that two slow time scales exist, namely T1 and T2. Thus,

the asymptotic scalings of the weakly nonlinear expansion for double-crest (DC) waves are

the following:

f = εF, Ω=ω2n/2+εΛ, T1 = εt , T2 = ε2t , (5.23)

with a first-order solution reading

q1 = A2 (T1,T2) q̂A2
1 e i(ω2n t−2θ) +B2 (T1,T2) q̂B2

1 e i(ω2n t+2θ)

+1

2
F q̂F

1 e i((ω2n /2)t−θ)e iΛT1 + 1

2
F q̂F

1 e i((ω2n /2)t+θ)e iΛT1 + c.c. . (5.24)

In (5.24), q̂A2
1 = q̂B2

1 , whereas A2 and B2 are the unknown slow time amplitude modulations,

here functions of the two time scales T1 and T2. The second-order linearized forced problem
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(a) (b) (c)

Figure 5.4 – Spatial structures of the first order contributions (a) qF
1 (r, z)e i cosθ (single-crest

SC) and (b) q̂A2
1 cos2θ = q̂B2

1 cos2θ (double-crest DC) appearing in (5.24) and computed for
t = 0 and T1 = 0. (c) Superposition of (a) and (b). Here the corresponding amplitudes have
been arbitrarily chosen for visualization purposes, but we note that, while amplitude A2 and
B2 still need to be determined, the amplitude of the single-crest solution (a) is univocally
defined once the amplitude, F , and the oscillation frequency, Ω, of the external driving are
prescribed.

reads

(∂t B−Am)q2 =F 2 =F
i j
2 −

(
∂A2

∂T1
Bq̂A2

1 e i(ω2n t−2θ) + ∂B2

∂T1
Bq̂B2

1 e i(ω2n t+2θ) + c.c.

)
−iΛF

(
1

2
Bq̂F

1 e i((ω2n /2)t−θ)e iΛT1 + 1

2
Bq̂F

1 e i((ω2n /2)t+θ)e iΛT1 + c.c.

)
. (5.25)

The first order solution is indeed made of 8 different contributions (including the complex

conjugates) and it generates, in total, 36 different second-order forcing terms, here implic-

itly gathered in F
i j
2 , each characterized by a certain oscillation frequency and azimuthal

periodicity. For the sake of brevity, indices
(
i , j

)
are used to remind one that each forcing

is proportional to a quadratic combination of leading order amplitudes. These indices can

assume the following values: i , j = A2,B2,F, A2,B 2,F . For instance, the quadratic interaction of

A2 (T1,T2) q̂A2
1 e i(ω2n t−2θ) with itself will have indices

(
i = A2, j = A2

)
and will produce a forcing

term proportional to A2
2, i.e F

A2 A2
2 . The additional eight forcing terms, with their complex

conjugates, appearing in (5.25) stem from the time derivative of the first-order solution (5.24)

with respect to the first-order slow time scale T1. None of the forcing terms in (5.25) is resonant,

as their oscillation frequency or azimuthal wavenumber differ from those of the leading order

homogeneous solution, except the two terms produced by the second–harmonic of the leading

order particular solution, i.e. F F F
2 = 1

4 F 2F̂
F F
2 e i(ω2n t−2θ)e i2ΛT1 + 1

4 F 2F̂
F F
2 e i(ω2n t+2θ)e i2ΛT1 +c.c. .

To avoid secular terms, a second-order compatibility condition is thus imposed, requiring that

the following normal form equations are verified

∂A2

∂T1
= i

µDC

4
F 2e i2ΛT1 ,

∂B2

∂T1
= i

µDC

4
F 2e i2ΛT1 . (5.26)

Taken alone, the dynamics resulting from system (5.26) is still of little relevance, since it can be

shown that the wave amplitudes A2 and B2 scale like ∼ 1
Λ , hence diverging symmetrically to
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infinity forΛ→ 0 (Ω→ω2n/2) in absence of any restoring term, i.e. the nonlinear mechanism

responsible for the finite amplitude saturation, which only comes into play at order ε3. The

expansion must be therefore pursued up to the next order, and thereby one must solve for the

second-order solution (Fujimura, 1989, 1991).

By substituting (5.24) and (5.26) in the forcing expression, equation (5.25) can be rewritten

as

(∂t B−Am)q2 =F
i j
2N RT

+F
i j
2RT

=F
i j
2N RT

+ c.c.+ (5.27)

1

4
F 2

(
F̂

F F
2 − iµDC Bq̂A2

1

)
e i(ω2n t−2θ)e i2ΛT1 + c.c.+

1

4
F 2

(
F̂

F F
2 − iµDC Bq̂B2

1

)
e i(ω2n t+2θ)e i2ΛT1 + c.c.,

where the subscripts N RT and RT denote non-resonating and resonating terms, respectively.

Note that the term proportional to ΛF in (5.25) has been included in the non-resonating

forcing terms, while resonant terms are written explicitly. The compatibility condition is

now satisfied, meaning that the new resonant forcing term is orthogonal to the adjoint mode,

q̂A2†
1 = q̂

A2

1 , by construction so that, according to the Fredholm alternative, a non-trivial unique

solution can be computed. Hence, we can write the second order solution as

q2 =
(
|A2|2q̂A2 Ā2

2 + 1

4
|F |2q̂F F̄

2

)
+ (5.28)(

A2
2q̂A2 A2

2 e i(2ω2n t−4θ) + 1

2
ΛF q̂ΛF

2 e i((ω2n /2)t−θ)e iΛT1 + c.c.

)
+(

1

2
A2F q̂A2F

2 e i((3ω2n /2)t−3θ)e iΛT1 + 1

2
A2F q̂A2F

2 e i((ω2n /2)t−θ)e−iΛT1 + c.c.

)
+(

|B2|2q̂B2B̄2
2 + 1

4
|F |2q̂F F̄

2

)
+(

B 2
2 q̂B2B2

2 e i(2ω2n t+4θ) + 1

2
ΛF q̂ΛF

2 e i((ω2n /2)t+θ)e iΛT1 + c.c.

)
+(

1

2
B2F q̂B2F

2 e i((3ω2n /2)t+3θ)e iΛT1 + 1

2
B2F q̂B2F

2 e i((ω2n /2)t+θ)e−iΛT1 + c.c.

)
+(

A2B2q̂A2B2
2 e i2ω2n t + A2B 2q̂A2B 2

2 e−i4θ+ c.c.
)
+(

1

4
F 2q̂F F

2 e iω2n t e i2ΛT1 + 1

4
F F q̂F F

2 e−i2θ+ c.c.

)
+(

1

2
A2F q̂A2F

2 e i((3ω2n /2)t−θ)e iΛT1 + 1

2
A2F q̂A2F

2 e i((ω2n /2)t−3θ)e−iΛT1 + c.c.

)
+(

1

2
B2F q̂B2F

2 e i((3ω2n /2)t+θ)e iΛT1 + 1

2
B2F q̂B2F

2 e i((ω2n /2)t+3θ)e−iΛT1 + c.c.

)
+(

1

4
F 2q̂F F

2 e i(ω2n t−2θ)e i2ΛT1 + 1

4
F 2q̂F F

2 e i(ω2n t+2θ)e i2ΛT1 + c.c.

)
.

All non-resonant responses in (5.28) are handled similarly, i.e. they are computed in Matlab

by performing a simple matrix inversion using standard LU solvers. Although the operator

associated with the resonant forcing term, i.e. (iω2nB−A2), is singular, the value of the normal
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form coefficient µDC ensures that a non-trivial solution for q̂F 2

2 exists. Diverse approaches can

be followed to compute this response, which was here computed by using the pseudo-inverse

matrix of the singular operator (Orchini et al., 2016) obtained via the built-in Matlab function

pinv. We also recall that due to the invariant transformation (5.11) only some of the spatial

structures appearing in (5.28) need to be computed. Lastly, at third order in ε, the problem

reads

(∂t B−Am)q3 =F 3 (5.29)

=−∂A2

∂T2
Bq̂A2

1 e i(ω2n t−2θ) − ∂B2

∂T2
Bq̂B2

1 e i(ω2n t+2θ)

−i
1

4
2ΛF 2Bq̂F 2

2 e i(ω2n t−2θ)e i2ΛT1 − i
1

4
2ΛF 2Bq̂F 2

2 e i(ω2n t+2θ)e i2ΛT1

+|A2|2 A2F̂
|A2|2 A2

3 e i(ω2n t−2θ) +|B2|2B2F̂
|B2|2B2

3 e i(ω2n t+2θ)

+|B2|2 A2F̂
|B2|2 A2

3 e i(ω2n t−2θ) +|A2|2B2F̂
|A2|2B2

3 e i(ω2n t+2θ)

+1

4
F 2 A2F̂

|F |2 A2

3 e i(ω2n t−2θ) + 1

4
F 2B2F̂

|F |2B2

3 e i(ω2n t+2θ)

+1

4
ΛF 2F̂

ΛF 2

3 e i(ω2n t−2θ)e i2ΛT1 + 1

4
ΛF 2F̂

ΛF 2

3 e i(ω2n t+2θ)e i2ΛT1 +N.R.T.+ c.c. ,

where the first two forcing terms arise from the time-derivative of the first-order solution with

respect to the second-order slow time scale T2 and from that of the second-order solution

with respect to the first-order slow time scale T1, respectively (see Appendix D of Bongarzone

et al. (2022a) for the full expression of F 2 and F 3). Once again, all terms explicitly written

in (5.29) are resonant, as they share the same pair (ω2n ,±2) than the first order homogeneous

solutions, hence a third order compatibility condition, leading to the following normal form,

must be enforced

∂A2

∂T2
= i

ζDC

4
ΛF 2e i2ΛT1 + i

χDC

4
A2F 2 + iνDC |A2|2 A2 + iξDC |B2|2 A2, (5.30a)

∂B2

∂T2
= i

ζDC

4
ΛF 2e i2ΛT1 + i

χDC

4
B2F 2 + iνDC |B2|2B2 + iξDC |A2|2B2. (5.30b)

where the coefficients are defined in Appendix 5.7.1.

As a last step in the derivation of the final amplitude equation for the double–crest (DC) waves

and in order to eliminate the implicit small parameter ε, we unify systems (5.26) and (5.30a)-

(5.30b) into a single system of equations recast in terms of the physical time t = T1/ε= T2/ε2,

physical forcing control parameters, f = εF , λ= εΛ and total amplitudes, A = εA2e−i2λt and

B = εB2e−i2λt . This is achieved by summing (5.26) to (5.30a) and (5.30b) along with their

respective weights ε2 and ε3, thus obtaining

d A

d t
=−i

(
2λ− χDC

4
f 2

)
A+ i

(
ζDCλ+µDC

)
4

f 2 + iνDC |A|2 A+ iξDC |B |2 A, (5.31a)
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dB

d t
=−i

(
2λ− χDC

4
f 2

)
B + i

(
ζDCλ+µDC

)
4

f 2 + iνDC |B |2B + iξDC |A|2B. (5.31b)

We note that no second order homogeneous solutions, e.g. proportional to amplitudes

C2 (T1,T2) and D2 (T1,T2), have been accounted for in (5.28), as their presence will produce two

resonant third order terms, ∂C2
∂T1

Bq̂C2
2 e i(ω2n t−2θ) (q̂C2

2 = q̂A2
2 ) and ∂D2

∂T1
Bq̂D2

2 e i(ω2n t+2θ) (q̂C2
2 = q̂A2

2 ),

that can be incorporated in the final amplitude equations (5.31a)-(5.31b) by simply defining

A = ε (A2 +εC2)e−i2λt and B = ε (B2 +εD2)e−i2λt .

As in §5.3, we first turn to polar coordinates, A = |A|e iΦA and B = |B |e iΦA , and we split the

modulus and phase parts of (5.31a)-(5.31b). We then look for stationary solutions, d/d t =
0 with |A|, |B | 6= 0 (ΦA = ΦB = Φ = 0,π, see § 5.3). By summing and subtracting (5.31a)

and (5.31b), after introducing the auxiliary amplitudes |a| = |A|+ |B | and |b| = |A|− |B |, the

following implicit relations are obtained,

f 2 = |a|
(
2λ− νDC +ξDC

4
|a|2 − 3νDC −ξDC

4
|b|2

)
4(|a|χDC ±2
(
ζDCλ+µDC

)) , (5.32a)

0 = |b|
(
χDC

4
f 2 −

(
2λ− νDC +ξDC

4
|b|2 − 3νDC −ξDC

4
|a|2

))
, (5.32b)

with f = axΩ
2 and λ=Ω−ω2n/2. By analogy with harmonic forcing conditions, two possible

(super-harmonic) solutions exist, i.e. a planar wave solution for |b| = 0,

f =
√

|a|
(
2λ− νDC +ξDC

4
|a|2

)
4(|a|χDC ±2
(
ζDCλ+µDC

)) , (5.33)

and a swirling solution for |b| 6= 0 defined by,

|b|2 =
(
2λ− χDC

4
f 2 − 3νDC −ξDC

4
|a|2

)(
4

νDC +ξDC

)
, (5.34a)

f =
√√√√√2|a|

(
ξDC −νDC

νDC +ξDC

)(
2λ−νDC |a|2

) 4(
2|a|

(
ξDC −νDC

)(
νDC +ξDC

)χDC ±2
(
ζDCλ+µDC

)) , (5.34b)

where only real solutions corresponding to f = axΩ
2 > 0 are retained, as the combinations

axΩ
2 < 0 are not physically meaningful.

The stability of such stationary solutions ys = (|A|,ΦA , |B |,ΦB ) is computed by introducing

small amplitude and phase perturbations (¿ 1) with the ansatz yp (t ) = (|Ap |,ΦA,p , |Bp |,ΦB ,p
)

e st

in (5.31a)-(5.31b), which are then linearized around y0, hence obtaining at first order an eigen-

value problem in the complex eigenvalue s = sR + isI . For each (|A|,ΦA , |B |,ΦB ) one obtains

four eigenvalues s and if the real part sR of at least one of these eigenvalues is positive, then

that configuration is deemed as unstable. An analogous procedure has been followed for the

case of harmonic resonances discussed in §5.3.
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Once the various branches for |a| and |b| as a function of τ = Ω/ω2n and at a fixed non-

dimensional shaking amplitude ax are computed and their stability is determined, amplitudes

A and B are substituted in (5.24) and (5.28), so that the total flow solution predicted by the

WNL for DC waves is reconstructed as

qDC = {
Φ,η

}T = εq1 +ε2q2. (5.35)

As discussed in Bongarzone et al. (2022a) for circular sloshing, although the quantitative

dependence on the external control parameters, i.e. driving amplitude and frequency, is

different with respect to the SC case, e.g. f 2 instead of f , system (5.31a)-(5.31b) is essentially

analogous to that given in (5.18a)-(5.18b). Indeed, equations (5.31a)-(5.31b) contain four

main contributions,

λ↔
(
2λ− χDC

4
f 2

)
, µSC f ↔ ζDCλ+µDC

4
f 2, νSC ↔ νDC , ξSC ↔ ξDC , (5.36)

corresponding respectively to a detuning term (forcing amplitude-dependent), an additive

(quadratic) forcing term (driving frequency dependent), the classic cubic restoring term and,

lastly, the cubic term dictating the nonlinear interaction between the two counter-propagating

travelling waves. For these reasons, figure 5.5 shows the nonlinear amplitude saturation for

|a| = |A|+ |B | and |b| = |A|− |B | which are reminiscent of those commented and displayed by

Faltinsen et al. (2016) in their figure 7 with regard to harmonic system responses, although the

phases associated to each super-harmonic branch are π-shifted with respect to their harmonic

analogous.

A more detailed description of the bifurcation diagrams shown in figure 5.5(a) and (b) is

given in Faltinsen et al. (2016). Here we limit to note that the branching diagrams contain

three bifurcation points, namely U (turning point), H (Hopf bifurcation) and P (Poincaré

bifurcation, (Miles, 1984d)), whose positions determine the frequency ranges where stable

planar (standing), swirling or irregular waves are theoretically expected. By keeping track of the

position of these three bifurcations points in the (Ω/ω21, |a|)-plane as the forcing amplitude,

ax , is varied, one can draw a super-harmonic stability chart in the (Ω/ω21, ax )-plane similar to

that of figure 5.3 for harmonic resonances and which is shown in figure 5.6.

The first striking difference with respect to the harmonic stability chart of figure 5.2 is the

opposite curvature of the stability boundaries between the various super-harmonic regimes.

As mentioned above, this is due to the quantitative dependence of the additive forcing term in

system (5.31a)-(5.31b) on the driving amplitude, which is here quadratic in f , thus leading to

the square root in equations (5.33) (planar DC) and (5.34b) (swirling DC).

Furthermore, there is a substantial difference in terms of free surface patterns. As suggested

by the form of the first order solution (5.24), the leading order dynamics, governing the

super-harmonic system response to longitudinal forcing, results from a superposition of a

stable planar (or standing) single-crest (SC) wave, oscillating harmonically at a frequency

ωSC =Ω≈ω2n/2 and generated by the two m =±1 counter-rotating travelling waves of equal

amplitudes, and a super-harmonic double-crest (DC) wave dynamics oscillating at a frequency
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of approximately ωDC = 2Ω≈ω2n (period-halving). We can also relate the SC wave frequency

to its own natural frequency by writing ωSC =Ω≈ 1
2

√
k2n tanhk2n H
k1n tanhk1n Hω1n , which is ≈ 0.657ω1n (in

deep water) for n = 1 and approaches 0.5ω1n for large n, hence showing that the DC resonance

always occurs far from the primary harmonic resonance.

When the amplitudes of the two travelling waves with m = ±2 are equal, i.e. |A| = |B | (or

|b| = 0), the DC dynamics manifests itself via planar motion and the global solution takes the

form of a planar wave (planar SC+DC, light blue shaded region in figure 5.6). On the contrary,

when |A| 6= |B | 6= 0, one of the two m =±2 waves dominates over the other and a stable swirling

motion, responsible of the system symmetry-breaking, is established. In this case, the total

solution is given by the sum of a harmonic planar SC wave and a super-harmonic swirling

DC wave (swirling DC+planar SC, green shaded region in figure 5.6). The white-dotted region

and the light red shaded regions in figure 5.6 correspond, respectively, to the super-harmonic

irregular motion regime (see §5.5 for further details) and to the multi-solution range where

both types of motion are possible depending on the initial conditions, i.e. to the region of

hysteresis.
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Figure 5.5 – Typical response curve for a and b for a fluid depth H = 1.5 with longitudinal super-
harmonic forcing of amplitude ax = 0.2. Panel (a) shows a projection of the three-dimensional
branch structure (Ω/ω21, |a|, |b|) in the (Ω/ω21, |a|)–plane, whereas panel (b) shows the same
projection, but on the (Ω/ω21, |b|)–plane. Black solid lines mark stable steady-state planar
waves, whereas light blue solid lines indicate stable steady-state swirling waves. Dashed
lines denote the corresponding unstable branches. U: turning point. H: Hopf bifurcation. P:
Poincaré bifurcation. For completeness, the phase valuesΦA =ΦB =Φ= 0 or π associated to
each branch are reported in panel (a).

5.5 Experiments

In this section, we present our experimental set-up dedicated to the generation and charac-

terization of sloshing waves under longitudinal super-harmonic forcing with driving (dimen-
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Figure 5.6 – Estimates of bounds, in the (Ω/ω21, ax )-plane, between the frequency ranges
where planar, irregular and swirling waves occur when the container undergoes a longitudinal
and super-harmonic motion at a forcing frequencyΩ≈ω21/2. In this range of frequency, the
theory predicts the superposition of an unconditionally stable planar single-crest (SC) wave
(m =±1) oscillating harmonically with the driving frequency and a super-harmonic double-
crest (DC) dynamics (m =±2), which can manifest itself via planar, swirling or irregular wave
motions. The stability boundaries (black solid lines) were computed for a fluid depth H = 1.5,
as in Royon-Lebeaud et al. (2007). The corresponding values of the normal form coefficients
appearing in (5.31a)-(5.31b) are given in table 5.1.

sionless) frequency Ω≈ω21/2. The bounds between the different regimes for the resulting

super-harmonic wave are experimentally retrieved as a function of the driving amplitude and

frequency, and compared to the theoretical estimates. Finally, we measure the wave amplitude

saturation in the vicinity of the super-harmonic resonance and compare it with the theoretical

weakly nonlinear prediction (5.35).

5.5.1 Experimental set-up

The experimental set-up used to generate the sloshing waves in the cylindrical container and

to observe the resulting free-surface motion is shown in figure 5.7. A Plexiglas cylindrical con-

tainer of height 50 cm and inner diameter D = 2R = 17.2 cm, partially filled with a column of

distilled water of height h = 11 cm, is fixed on a single-axis linear motion actuator (AEROTECH

PRO165LM). Sloshing waves are generated by imposing to the container a longitudinal sinu-
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X0(t) = ax cos(⌦t)ex
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Figure 5.7 – Experimental apparatus.

soidal forcing of angular frequency Ω̄ and amplitude āx .

The motion of the fluid free surface is recorded with a digital camera (NIKON D850) coupled

with a Nikon 60mm f/2.8D lens and operated in slow motion mode, allowing for an acquisition

frequency of 120 frames per second. The optical axis of the camera is aligned with the con-

tainer motion axis. A LED panel (not depicted in Figure 5.7) placed behind the tank provides

back illumination of the fluid-free surface for a better optical contrast.

The actuation of the moving stage as well as the camera triggering for movie recording

are set and controlled via a home-made Labview program. In a typical experiment, the con-

tainer undergoes a harmonic motion of fixed amplitude in the range 4 mm ≤ āx ≤ 34 mm (i.e.

ax = āx /R ∈ [0.05,0.40]), while a sweep in forcing frequency is implemented within the inter-

val Ω̄/2π ∈ [1.35 Hz, 1.58 Hz] corresponding to the dimensionless rangeΩ/ω21 ∈ [0.45,0.53].

Each frequency step lasts 100 oscillation periods while the frequency increment between two

consecutive steps is typically of 10 mHz. Along the sweeping, a movie is recorded for each

(āx ,Ω̄) set of parameters. To ensure that the steady-state amplitude regime is established at

each step in the recorded free-surface dynamics, the camera is triggered only after a certain

number of cycles, typically 50, see Appendix 5.7.3.

5.5.2 Analysis of the free-surface dynamics

Qualitative observations

While operating a sweep in forcing frequency at fixed forcing amplitude, we observe in the

vicinity of the super-harmonic resonance three different kinds of motion, namely planar, ir-

regular and swirling ones, whose occurrence depends on the forcing amplitude and frequency,
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Figure 5.8 – Images of the fluid-free surface while the container is subjected to a longitudinal
harmonic forcing of amplitude ax = āx /R ≈ 0.23 at various driving angular frequencies Ω
close to ω21/2. The fluid-free surface is observed in the direction aligned with the container
motion. For each driving frequency (a), (b) and (c), the time interval between two snapshots
is about T /4, with T = 2π/Ω the corresponding oscillation period. On each snapshot, the
vertical middle axis is represented by a red dotted line. For a forcing frequencyΩ≈ 0.48ω21 (a)
andΩ≈ 0.52ω21 (c) the free-surface image at each time t is mirror-symmetric with respect to
the middle vertical axis, a signature of a planar wave regime, while the symmetry is broken for
Ω≈ 0.50ω21 (c) revealing a swirling wave.

see for instance the snapshots displayed on figure 5.8.

For a given (and large enough) amplitude and starting from a frequency higher than a

certain amplitude-dependent thresholdΩP (ax ), the free surface responds to the longitudinal

harmonic forcing by displaying a planar dynamics such as shown in figure 5.8(c). When the

critical frequency Ω = ΩP (ax ) is reached, the motion bifurcates to a swirling wave, which

propagates along the container wall with a stationary amplitude, see figure 5.8(b). The wave

can rotate either clockwise or anti-clockwise (both rotation directions were observed during

the experiments). When the forcing frequency is further decreased below a critical frequency

Ω=ΩH (ax ) ≈ω21/2 <ΩP (ax ), the free surface exhibits an irregular dynamics, characterized

by a switching between planar and swirling motion (not shown in figure 5.8). For forcing

frequencies lower than a certain thresholdΩ<ΩU (ax ), the free surface motion stabilizes into

a steady planar wave such as shown on figure 5.8(a).

All together, these observations are qualitatively consistent with the outcomes of the weakly

nonlinear analysis of Section 5.4, that predicts the existence of three different dynamical
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regimes -namely planar, irregular and swirling motion-, for a longitudinal forcing frequency

in the vicinity of ω21/2. One of the main purposes of the present experimental investigation

is to determine the amplitude-dependent frequency bounds of these different regimes and

to compare them to our theoretical prediction of the positions of the bifurcation points U

(turning point), H (Hopf bifurcation) and P (Poincaré bifurcation) (see figures 5.5 and 5.6).
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Figure 5.9 – General procedure for the analysis of the free surface dynamics. (a) On each frame,
the edges of the container are detected (black dotted lines) and the vertical Z (t) axis is set
as the middle line between these two edges, while the scale of the horizontal direction Y (t)
is fixed by the distance between both edges. (b) Schematic of the container illustrating the
link between the Cartesian coordinate system (Y (t), Z (t)) attached to each frame, and the
cylindrical coordinates in the referential frame of the container. (c) Left, the intensity profile
along a vertical line of coordinate (Y (t ) = y) with y ∈ [−R,R] is then measured on each frame
t and plot as a function of time (here for y = 0). The position of the front contact line at the
azimuthal coordinate θ = arcsin(y/R) = 0 as a function of time is highlighted in red. Right,
frames from which the intensity profiles at times ti and t j on the left-hand side image, along
the line (Y (t ) = 0) (represented by a red dotted line), are extracted. At ti , the wave is climbing
the front wall of the container (with respect to the camera position) whereas at t j , it reaches
the back of the tank.
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Chapter 5. Super-harmonically resonant swirling waves in longitudinally forced circular
cylinders

Procedure

Since the camera optical axis is aligned with the direction of the container motion, we note

that a planar wave is characterized by its symmetry with respect to the vertical middle axis of

the container image, whereas a swirling wave breaks this symmetry while travelling clockwise

or anti-clockwise along the container walls, see figure 5.8.

We take benefit of these observations to build a more quantitative description of the free-

surface dynamics, with the aim of identifying the various types of sloshing waves in the

vicinity of the super-harmonic resonance. This can be done by exploiting the symmetry

properties of the image of the free surface response with respect to the vertical middle axis of

the container image, and by characterizing the regularity of these waves as a function of the

forcing parameters, so as to identify the irregular regime.

To do so, the time evolution of the free surface dynamics is extracted from the movies along

vertical directions that are mirror-symmetric with respect to the vertical middle axis of the

container image. Comparing the resulting temporal signals with each other allows one to

discriminate between planar and swirling motions and to study the wave regularity.

The first step is to attach to each frame t of a given movie, a Cartesian reference frame

(Y (t ), Z (t )), such that Y (t ) = 0 corresponds to the vertical middle axis of the container image,

and that Y (t) = R represents the right-hand-side edge of the container image. To this end,

the edges of the container are automatically detected in a dedicated Matlab program. The

vertical Z (t) axis (Y (t) = 0) on the frame corresponding to time t is then set as the middle

line between these two edges, while the distance between both edges sets the scale of the

horizontal direction Y . Note that we neglect the 4 mm thickness of the container wall.

A direction y ∈ [−R,R] is then chosen to extract from each frame corresponding to time ti ,

the intensity profile Iti (y) along the vertical line Y (ti ) = y . The resulting intensity profiles are

then plotted as a function of time to build an image I (y) composed as I
(
y
)= [It1 (y), It2 (y), ...]

such as displayed in figure 5.9(c).

We note that at each time t , the intensity profile It (y) contains the intersection of the

front contact line image with the vertical axis (Y (t) = y), that corresponds to the point of

coordinates (R,θ,η(R,θ, t)) in the moving cylindrical frame of reference of the container,

where θ = arcsin(y/R) (see figure 5.9(b)). As a consequence, the final image I (y) also contains

the dynamics of the front contact line in the azimuthal direction θ.

The resulting image I (y) exhibits a periodic dark pattern that represents the free surface

response to the harmonic forcing, see an example in figure 5.9(c) in which y = 0. Indeed, on

each frame of the movie, the free surface appears as the darkest feature, so that the intensity

profile along a given line (Y (t) = y) actually represents the vertical extension of the free

surface at time t along this direction, which is maximal whenever the sloshing wave reaches its

maximal elevation maxt η(R,θ, t ) along the azimuthal direction θ = arcsin(y/R) (in the front of

the container with respect to the camera position, corresponding to θ ∈]−π/2,π/2[) or along

θ =π−arcsin(y/R) (in the back of the container). Furthermore, when the contact line reaches

its maximal elevation in the front of the container, the free surface is imaged from below, so

that it appears darker than when the maximal elevation is reached in the back, where the free
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surface is imaged from above, see the snapshots in figure 5.9(c). These observations allow us

to identify in the image I (y) the position as a function of time of the front contact line η(R,θ, t ),

with θ = arcsin(y/R), as highlighted in red in figure 5.9(c), and following the method detailed

in Appendix 5.7.4.

Note that this procedure does not give a quantitative access to the actual amplitude of the

front contact line oscillations, since the intensity profiles Iti (y) constituting the image I (y)

are simply juxtaposed with each other without rescaling the pixel width along the vertical

direction. However, the position extracted from I (y) of the image of the points of coordinates

η(R,±θ, t) as a function of time still encloses the symmetry properties of the free surface

response, its regularity as well as its frequency content, which are the only quantities needed

in order to identify the wave regimes.

5.5.3 Regularity and frequency content of the free surface response

The resulting image I (y) is then revealing of the free surface dynamics η(r,θ, t ) and in particu-

lar of its dynamics at the front wall η(r = R,θ = arcsin(y/R), t ). Figure 5.10(a)-(d) displays I (0)

for various forcing frequencies close to the super-harmonic resonance, at the same forcing

amplitude. These images reveal that depending on the forcing frequency, the free surface

oscillations (dark periodic pattern) can be either regular (a), (c) and (d) -i.e. the oscillations are

enclosed into an envelope of constant amplitude- or irregular (b) with a temporal modulation

of the amplitude envelope. Therefore, the profiles I (0) allow us to characterize the regularity of

the sloshing wave, and in particular to identify the irregular regime. The latter will be described

in more detail in Section 5.5.6, but such details are not needed for the identification of the

irregular regime bounds, for which the analysis of the regularity property of the I (0)-pattern is

sufficient. Therefore in the following, we will focus on the regular planar and swirling motions,

that cannot be unambiguously distinguished from each other on the basis of the profiles I (0).

Figure 5.10(e)-(h) displays the (normalized) power spectral densities of the front contact

line dynamics η(R,θ = 0, t ) extracted from the profiles I (0) (a)-(d). It appears that in all cases,

the energy of the sloshing wave is massively distributed to its first (harmonic) and second

(super-harmonic) components, while the contribution of higher modes is fairly negligible.

This incidentally implies that the symmetry properties of a regular wave are directly linked to

the symmetry properties of these two first oscillation modes.

In other words, a planar dynamics should necessarily consist of the superposition of two pla-

nar waves: a planar single-crest (SC) wave harmonically oscillating with the driving frequency

Ω and one super-harmonic planar double-crest (DC) wave oscillating at ωDC = 2Ω≈ω21. On

the other hand, a swirling dynamics must contain at least one symmetry-breaking (swirling)

component that, as predicted by the present weakly nonlinear analysis, should correspond to

the super-harmonic ω21 component.
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Chapter 5. Super-harmonically resonant swirling waves in longitudinally forced circular
cylinders
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Figure 5.10 – Panels (a) to (d): intensity profiles as a function of time along the vertical middle
axis (Y = 0) -denoted I (0)- for various forcing frequencies Ω in the vicinity of the super-
harmonic resonance Ω ≈ ω21/2 at same forcing amplitude āx /R ≈ 0.23. In each case, the
profile I (0) is extracted from a movie whose recording has been started after about 50 oscilla-
tion cycles following each change in forcing frequency, thus ensuring that initial transients
are filtered out (see also Appendix 5.7.3). Panels (e) to (h) Power spectral densities (PSD)
-normalized by the maximal peak amplitude- corresponding to the front contact line dynamics
as extracted from the profiles I (0) displayed in panels (a) to (d).

5.5.4 Symmetry properties of the regular regimes: planar versus swirling waves

We now focus on the regular regimes, namely the steady planar and swirling motions. As

stated before, the profiles I (0) cannot discriminate between a planar and a swirling dynamics

and instead only contain information on their regularity and their frequency content. To

distinguish a planar from a swirling motion, we then compare the profiles along two (Y 6= 0)-

166



5.5. Experiments

(a)
<latexit sha1_base64="QHM2b7+hqyxsYNDyGdKn4tKrRZw="></latexit><latexit sha1_base64="QHM2b7+hqyxsYNDyGdKn4tKrRZw="></latexit><latexit sha1_base64="QHM2b7+hqyxsYNDyGdKn4tKrRZw="></latexit><latexit sha1_base64="QHM2b7+hqyxsYNDyGdKn4tKrRZw="></latexit>

(b)
<latexit sha1_base64="h4NEYpRZn3+T8Qcb2UOds6gRJpA="></latexit><latexit sha1_base64="h4NEYpRZn3+T8Qcb2UOds6gRJpA="></latexit><latexit sha1_base64="h4NEYpRZn3+T8Qcb2UOds6gRJpA="></latexit><latexit sha1_base64="h4NEYpRZn3+T8Qcb2UOds6gRJpA="></latexit>

(c)
<latexit sha1_base64="Q1e3JIWs3Qh6Npds/C4p72F8Hnw="></latexit><latexit sha1_base64="Q1e3JIWs3Qh6Npds/C4p72F8Hnw="></latexit><latexit sha1_base64="Q1e3JIWs3Qh6Npds/C4p72F8Hnw="></latexit><latexit sha1_base64="Q1e3JIWs3Qh6Npds/C4p72F8Hnw="></latexit>

(d)
<latexit sha1_base64="KpIUTvp3rPKg6KWm+M7Nigsd2LE="></latexit><latexit sha1_base64="KpIUTvp3rPKg6KWm+M7Nigsd2LE="></latexit><latexit sha1_base64="KpIUTvp3rPKg6KWm+M7Nigsd2LE="></latexit><latexit sha1_base64="KpIUTvp3rPKg6KWm+M7Nigsd2LE="></latexit>

(e)
<latexit sha1_base64="ptab8nH93QA3wxIoM3NppvPjjag="></latexit><latexit sha1_base64="ptab8nH93QA3wxIoM3NppvPjjag="></latexit><latexit sha1_base64="ptab8nH93QA3wxIoM3NppvPjjag="></latexit><latexit sha1_base64="ptab8nH93QA3wxIoM3NppvPjjag="></latexit>

(f)
<latexit sha1_base64="VmwpVaE3w31XD6b4zSns74BT9Ho="></latexit><latexit sha1_base64="VmwpVaE3w31XD6b4zSns74BT9Ho="></latexit><latexit sha1_base64="VmwpVaE3w31XD6b4zSns74BT9Ho=">AAACzXicjVHLTsJAFD3UF+ILdemmkZjghrTGRJdEN+7ERMAIxLRlwAl9ZTo1EsStP+BWf8v4B/oX3hlLohKj07Q9c+49Z+be68Y+T6RlveaMmdm5+YX8YmFpeWV1rbi+0UiiVHis7kV+JC5cJ2E+D1ldcumzi1gwJ3B91nQHxyrevGEi4VF4Locx6wROP+Q97jmSqMu2ZLdyVO7tjq+KJati6WVOAzsDJWSrFhVf0EYXETykCMAQQhL24SChpwUbFmLiOhgRJwhxHWcYo0DalLIYZTjEDujbp10rY0PaK89Eqz06xadXkNLEDmkiyhOE1WmmjqfaWbG/eY+0p7rbkP5u5hUQK3FN7F+6SeZ/daoWiR4OdQ2caoo1o6rzMpdUd0Xd3PxSlSSHmDiFuxQXhD2tnPTZ1JpE16566+j4m85UrNp7WW6Kd3VLGrD9c5zToLFXsa2KfbZfqh5lo85jC9so0zwPUMUJaqiTd4hHPOHZODVS4864/0w1cplmE9+W8fABwreTLw==</latexit><latexit sha1_base64="VmwpVaE3w31XD6b4zSns74BT9Ho="></latexit>

⌦/!21 ⇡ 0.48
<latexit sha1_base64="KquZ0CdjAspaYSJPdT6zN4JT/o4="></latexit><latexit sha1_base64="KquZ0CdjAspaYSJPdT6zN4JT/o4=">AAAC5HicjVHLSsNAFD3GV62vqksXBovgqiZF0GXRjTsVbBWslEmc1tAkEyYTsZQu3bkTt/6AW/0W8Q/0L7wzpuAD0QmZOXPuPWfmzvWSMEiV47yMWKNj4xOThani9Mzs3HxpYbGRikz6vO6LUMgTj6U8DGJeV4EK+UkiOYu8kB973V0dP77kMg1EfKR6CT+LWCcO2oHPFFGt0kpzP+IdttEUemn1q+7AbrIkkeLKdiqb261S2ak4Ztg/gZuDMvJxIErPaOIcAj4yROCIoQiHYEjpO4ULBwlxZ+gTJwkFJs4xQJG0GWVxymDEdmnu0O40Z2Paa8/UqH06JaRfktLGGmkE5UnC+jTbxDPjrNnfvPvGU9+tR6uXe0XEKlwQ+5dumPlfna5FoY1tU0NANSWG0dX5uUtmXkXf3P5UlSKHhDiNzykuCftGOXxn22hSU7t+W2biryZTs3rv57kZ3vQtqcHu93b+BI1qxXUq7uFmubaTt7qAZaxinfq5hRr2cIA6eV/jAY94strWjXVr3X2kWiO5ZglfhnX/Dhk+mvU=</latexit><latexit sha1_base64="KquZ0CdjAspaYSJPdT6zN4JT/o4="></latexit><latexit sha1_base64="KquZ0CdjAspaYSJPdT6zN4JT/o4="></latexit>

⌦/!21 ⇡ 0.50
<latexit sha1_base64="9E5qeVEgjcYQnQRCuvEcWhi7Qpg=">AAAC5HicjVG7TsMwFD0Nr/IuMDIQUSExlaQCwYhgYaNItCC1qHKCWyKSOHIcRFUxsrEhVn6AFb4F8QfwF1ybIAEVAkexj8+959jX10vCIFWO81KwhoZHRseK4xOTU9Mzs6W5+UYqMunzui9CIY89lvIwiHldBSrkx4nkLPJCfuSd7+r40QWXaSDiQ9VL+EnEunHQCXymiGqXllr7Ee+ytZbQS7tfda/sFksSKS5tp7LhtEtlp+KYYQ8CNwdl5KMmSs9o4RQCPjJE4IihCIdgSOlrwoWDhLgT9ImThAIT57jCBGkzyuKUwYg9p7lLu2bOxrTXnqlR+3RKSL8kpY0V0gjKk4T1abaJZ8ZZs795942nvluPVi/3iohVOCP2L91n5n91uhaFDrZMDQHVlBhGV+fnLpl5FX1z+0tVihwS4jQ+pbgk7Bvl5zvbRpOa2vXbMhN/NZma1Xs/z83wpm9JDXZ/tnMQNKoV16m4B+vl7Z281UUsYhmr1M9NbGMPNdTJ+xoPeMST1bFurFvr7iPVKuSaBXwb1v07CJ+a7g==</latexit><latexit sha1_base64="9E5qeVEgjcYQnQRCuvEcWhi7Qpg="></latexit><latexit sha1_base64="9E5qeVEgjcYQnQRCuvEcWhi7Qpg="></latexit><latexit sha1_base64="9E5qeVEgjcYQnQRCuvEcWhi7Qpg="></latexit>

t = 0
<latexit sha1_base64="gm8zwkHBNwmDJVZztHONESkwKb4="></latexit><latexit sha1_base64="gm8zwkHBNwmDJVZztHONESkwKb4="></latexit><latexit sha1_base64="gm8zwkHBNwmDJVZztHONESkwKb4="></latexit><latexit sha1_base64="gm8zwkHBNwmDJVZztHONESkwKb4="></latexit>

t = 0
<latexit sha1_base64="gm8zwkHBNwmDJVZztHONESkwKb4="></latexit><latexit sha1_base64="gm8zwkHBNwmDJVZztHONESkwKb4="></latexit><latexit sha1_base64="gm8zwkHBNwmDJVZztHONESkwKb4="></latexit><latexit sha1_base64="gm8zwkHBNwmDJVZztHONESkwKb4="></latexit>

t = 0
<latexit sha1_base64="gm8zwkHBNwmDJVZztHONESkwKb4="></latexit><latexit sha1_base64="gm8zwkHBNwmDJVZztHONESkwKb4="></latexit><latexit sha1_base64="gm8zwkHBNwmDJVZztHONESkwKb4=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdKMU3HRZ0T6gFkmm0xqaF5OJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePw2DTDrOa8Gam19YXCoul1ZW19Y3yptbrSzJBeNNloSJ6PhexsMg5k0ZyJB3UsG9yA952x+dqXj7lossSOJLOU55L/KGcTAImCeJupAnznW54lQdvexZ4BpQgVmNpPyCK/SRgCFHBI4YknAIDxk9XbhwkBLXw4Q4QSjQcY57lEibUxanDI/YEX2HtOsaNqa98sy0mtEpIb2ClDb2SJNQniCsTrN1PNfOiv3Ne6I91d3G9PeNV0SsxA2xf+mmmf/VqVokBjjWNQRUU6oZVR0zLrnuirq5/aUqSQ4pcQr3KS4IM62c9tnWmkzXrnrr6fibzlSs2jOTm+Nd3ZIG7P4c5yxoHVRdp+qeH1Zqp2bURexgF/s0zyPUUEcDTfIe4hFPeLbqVmzl1t1nqlUwmm18W9bDB6/+j/Y=</latexit><latexit sha1_base64="gm8zwkHBNwmDJVZztHONESkwKb4="></latexit> t = T/4

<latexit sha1_base64="Aw0FebW034Eo26pmB4jtqhrsOQA="></latexit><latexit sha1_base64="Aw0FebW034Eo26pmB4jtqhrsOQA="></latexit><latexit sha1_base64="Aw0FebW034Eo26pmB4jtqhrsOQA="></latexit><latexit sha1_base64="Aw0FebW034Eo26pmB4jtqhrsOQA="></latexit>

t = T/4
<latexit sha1_base64="Aw0FebW034Eo26pmB4jtqhrsOQA="></latexit><latexit sha1_base64="Aw0FebW034Eo26pmB4jtqhrsOQA="></latexit><latexit sha1_base64="Aw0FebW034Eo26pmB4jtqhrsOQA="></latexit><latexit sha1_base64="Aw0FebW034Eo26pmB4jtqhrsOQA="></latexit>

t = T/4
<latexit sha1_base64="Aw0FebW034Eo26pmB4jtqhrsOQA="></latexit><latexit sha1_base64="Aw0FebW034Eo26pmB4jtqhrsOQA="></latexit><latexit sha1_base64="Aw0FebW034Eo26pmB4jtqhrsOQA="></latexit><latexit sha1_base64="Aw0FebW034Eo26pmB4jtqhrsOQA="></latexit>

t = T/2
<latexit sha1_base64="Q1gAsWXC63rTikU+q5VuQa/w6f0="></latexit><latexit sha1_base64="Q1gAsWXC63rTikU+q5VuQa/w6f0="></latexit><latexit sha1_base64="Q1gAsWXC63rTikU+q5VuQa/w6f0="></latexit><latexit sha1_base64="Q1gAsWXC63rTikU+q5VuQa/w6f0="></latexit>

t = T/2
<latexit sha1_base64="Q1gAsWXC63rTikU+q5VuQa/w6f0="></latexit><latexit sha1_base64="Q1gAsWXC63rTikU+q5VuQa/w6f0="></latexit><latexit sha1_base64="Q1gAsWXC63rTikU+q5VuQa/w6f0="></latexit><latexit sha1_base64="Q1gAsWXC63rTikU+q5VuQa/w6f0="></latexit>

t = T/2
<latexit sha1_base64="Q1gAsWXC63rTikU+q5VuQa/w6f0="></latexit><latexit sha1_base64="Q1gAsWXC63rTikU+q5VuQa/w6f0="></latexit><latexit sha1_base64="Q1gAsWXC63rTikU+q5VuQa/w6f0="></latexit><latexit sha1_base64="Q1gAsWXC63rTikU+q5VuQa/w6f0="></latexit>

t = 3T/4
<latexit sha1_base64="FhmkUDKhVkEHlFaQ+iG5TPKttbQ="></latexit><latexit sha1_base64="FhmkUDKhVkEHlFaQ+iG5TPKttbQ="></latexit><latexit sha1_base64="FhmkUDKhVkEHlFaQ+iG5TPKttbQ=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRMt6EYpuBHcVOgLapEkndbYNImTiViLK3/Arf6Y+Af6F94Zp6AW0QlJzpx7z5m597px4CfCsl4zxtT0zOxcdj63sLi0vJJfXasnUco9VvOiIOJN10lY4IesJnwRsGbMmTNwA9Zw+8cy3rhhPPGjsCqGMWsPnF7od33PEUTVxeFedad0kS9YRUstcxLYGhSgVyXKv+AcHUTwkGIAhhCCcAAHCT0t2LAQE9fGiDhOyFdxhnvkSJtSFqMMh9g+fXu0a2k2pL30TJTao1MCejkpTWyRJqI8TlieZqp4qpwl+5v3SHnKuw3p72qvAbECl8T+pRtn/lcnaxHo4kDV4FNNsWJkdZ52SVVX5M3NL1UJcoiJk7hDcU7YU8pxn02lSVTtsreOir+pTMnKvadzU7zLW9KA7Z/jnAT13aJtFe2zUqF8pEedxQY2sU3z3EcZJ6igRt5XeMQTno1T49q4Ne4+U42M1qzj2zIePgDesZDO</latexit><latexit sha1_base64="FhmkUDKhVkEHlFaQ+iG5TPKttbQ="></latexit>

t = 3T/4
<latexit sha1_base64="FhmkUDKhVkEHlFaQ+iG5TPKttbQ="></latexit><latexit sha1_base64="FhmkUDKhVkEHlFaQ+iG5TPKttbQ="></latexit><latexit sha1_base64="FhmkUDKhVkEHlFaQ+iG5TPKttbQ="></latexit><latexit sha1_base64="FhmkUDKhVkEHlFaQ+iG5TPKttbQ="></latexit>

t = 3T/4
<latexit sha1_base64="FhmkUDKhVkEHlFaQ+iG5TPKttbQ="></latexit><latexit sha1_base64="FhmkUDKhVkEHlFaQ+iG5TPKttbQ="></latexit><latexit sha1_base64="FhmkUDKhVkEHlFaQ+iG5TPKttbQ="></latexit><latexit sha1_base64="FhmkUDKhVkEHlFaQ+iG5TPKttbQ="></latexit>

⌦/!21 ⇡ 0.52
<latexit sha1_base64="0YVDcmN/PwJptVB38pUAN9osans=">AAAC5XicjVHLSsNAFD2N7/qqunQzWARXNSmKLotu3KlgVbBSJnGswSQTJhOxlG7duRO3/oBb/RXxD/QvvDNG8IHohCRnzr3nzNx7/TQKM+26zyVnYHBoeGR0rDw+MTk1XZmZ3c9krgLRDGQk1aHPMxGFiWjqUEfiMFWCx34kDvzzTRM/uBAqC2Wyp7upOI55JwlPw4BrotoV1tqORYezZdaSBrR7da/f4mmq5CVza6v1dqXq1ly72E/gFaCKYu3IyhNaOIFEgBwxBBJowhE4MnqO4MFFStwxesQpQqGNC/RRJm1OWYIyOLHn9O3Q7qhgE9obz8yqAzololeRkmGRNJLyFGFzGrPx3Dob9jfvnvU0d+vS3y+8YmI1zoj9S/eR+V+dqUXjFOu2hpBqSi1jqgsKl9x2xdycfapKk0NKnMEnFFeEA6v86DOzmszWbnrLbfzFZhrW7IMiN8eruSUN2Ps+zp9gv17z3Jq3u1JtbBSjHsU8FrBE81xDA1vYQZO8r3CPBzw6HefauXFu31OdUqGZw5fl3L0BgiCbGg==</latexit><latexit sha1_base64="0YVDcmN/PwJptVB38pUAN9osans="></latexit><latexit sha1_base64="0YVDcmN/PwJptVB38pUAN9osans="></latexit><latexit sha1_base64="0YVDcmN/PwJptVB38pUAN9osans="></latexit>

Figure 5.11 – Symmetry properties of the stationary waves. (a), (c) and (e): images of the fluid-
free surface while the container is subjected to a longitudinal harmonic forcing of amplitude
āx /R ≈ 0.23 at various driving angular frequencies Ω close to ω21/2: (a) Ω ≈ 0.48ω21, (c)
Ω≈ 0.50ω21 and (e) Ω≈ 0.52ω21 (same forcing parameters as in figure 5.10(a), (c) and (d)).
For each driving frequency (a, c, e), the time interval between two snapshots is about T /4,
with T = 2π/Ω the corresponding oscillation period. On each snapshot, the vertical axes
(Y = R/2) and (Y =−R/2) are represented by a blue and red dotted line, respectively. For a
forcing frequencyΩ= 0.48ω21 (a) andΩ= 0.52ω21 (e) the free-surface image at each time t
is mirror-symmetric with respect to the middle vertical axis, while the symmetry is broken
forΩ= 0.50ω21. (b), (d) and (f): superposition of the intensity profiles as a function of time
along the vertical axis (Y = R/2) and (Y =−R/2) -denoted I (R/2) (in blue) and I (−R/2) (in
red) respectively-, for the same forcing parameters as in figure 5.10(a), (c), and (e). The grey
regions show where I (R/2) and I (−R/2) have the same intensities.
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directions that are symmetric with respect to the vertical middle axis of the container image.

Figure 5.11(b), (d) and (f) show composite images, each produced using the Matlab function

imshowpair applied to the pair I (R/2) and I (−R/2), for three different forcing frequencies

that both result in a regular motion (same forcing parameters as in figure 5.10(a), (c), and (d)).

Briefly, imshowpair(Iα, Iβ) creates from a pair of grayscale images Iα and Iβ, a RGB image

where each pixel is represented by a RGB triplet, the R-intensity being the intensity of the

corresponding pixel in Iα, and the G- and B-intensities being equal to the intensity of the

corresponding pixel in Iβ. A pixel where Iα and Iβ have the same intensity will be represented

by a RGB triplet of the forme [a, a, a], where a ∈ [0,255], i.e. will appear as grey. On the

contrary, if this pixel has a much larger intensity on Iα (resp. on Iβ) than it has on Iβ (resp.

on Iα), it will appear in red (resp. in cyan) on the resulting composite image. The composite

images displayed in Figure 5.11(b), (d) and (f) thus highlight in each case the differences

between I (R/2) and I (−R/2). They are then a direct signature of the symmetry of the free-

surface dynamics with respect to the vertical middle axis (Y = 0), and reveal two different

kinds of motion, (i) a planar motion, for which I (R/2) and I (−R/2) perfectly overlap with

each other due to the mirror-symmetry of the wave, and (ii) a circular motion, characterized

by a symmetry-breaking between the right and left hand-side free-surface dynamics: the

maximum of the wave along θ = arcsin(1/2) =π/6 is indeed phase-shifted with respect to the

maximum of the wave along θ =−π/6, thus revealing a travelling wave propagating along the

wall of the container.

To determine which ω-component is responsible for the symmetry-breaking induced by

the swirling motion, we extract from I (R/2) and I (−R/2) the position of the front contact line

as a function of time η(R,θ, t) where θ =±π/6, see figure 5.12(b), (e). This makes it possible

to compute the power spectrum of both signals, as well as the phase difference between

the phase angle of their components that oscillate at the frequencies corresponding to their

spectrum’s first and second peaks (see figure 5.12(c-f)). A planar wave oscillating at a frequency

ω is then characterized by theω-components of η(R,π/6, t ) and of η(R,−π/6, t ) being in phase

with each other, while a swirling wave is characterized by a mπ/3-phase shift between the

ω-components of these signals, where m denotes the azimuthal wavenumber of the swirling

wave (m = 1 for a harmonically oscillating single-crest wave, m = 2 for a super-harmonic

double-crest wave).

The Fourier analysis of the signals η(R,π/6, t) and η(R,−π/6, t) reveals that for forcing

frequenciesΩ close to ω21/2, the free surface motion mostly results from the combination of

a single-crest wave harmonically oscillating at the forcing frequency ωSC =Ω ≈ω21/2, and

of a super-harmonic double-crest wave oscillating at a frequency ωDC = 2Ω ≈ ω21. From

figure 5.12(c) and (f), it is clear that the single-crest wave is a planar wave for both planar

(figure 5.12(c)) and swirling (figure 5.12(f)) dynamics, as revealed by the vanishing phase-shift

between the harmonic components of η(R,π/6, t) and η(R,−π/6, t) in both cases. On the

other hand, the phase shift between the super-harmonic components is zero in the case of the

planar dynamics, and close to 2π/3 in the case of the swirling dynamics.
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Figure 5.12 – Analysis of the steady-state free-surface dynamics under a harmonic forcing of
amplitude ax = 0.23 and frequency (a)-(c)Ω/ω21 ≈ 0.48 and (d)-(f)Ω/ω21 ≈ 0.50. (a) and (d)
Image of the free surface with vertical lines intersecting the image of the front contact line at
the points of coordinates (R,π/6,η(R,π/6, t)) (blue arrows) and (R,−π/6,η(R,−π/6, t)) (red
arrows) in the moving reference frame of the container. (b) and (e) Normalized elevation of
the front contact line η̃(R,π/6, t) (blue dots) and η̃(R,−π/6, t) (red dots) extracted from the
corresponding profiles I (R/2) and I (−R/2) (not shown here). The η̃-functions are defined
according to η̃(R,θ, t) = (

η(R,θ, t )−σ)
/δ, where σ= (

mint (η(R,θ, t )+maxt (η(R,θ, t )
)

/2 and
δ= maxt (η(R,θ, t))−mint (η(R,θ, t)). (c) and (f) Left, Power spectral densities of η̃(R,π/6, t)
(blue dots) and of η̃(R,−π/6, t ) (red dots). Right, Absolute value of the phase shift between the
components of η̃(R,π/6, t ) and of η̃(R,−π/6, t ) oscillating at the frequencies corresponding to
the first peak (ω=Ω) and to the second peak (ω= 2Ω) of the power spectra.
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These observations are general to the whole range of forcing frequencies and amplitudes

investigated along this study: in the vicinity of the super-harmonic resonance, the single-crest

wave is always a planar wave, as revealed by the vanishing phase-shift between the harmonic

components of η(R,π/6, t) and η(R,−π/6, t) for both planar and swirling dynamics (this is

also true in the case of the irregular regime, see later Section 5.5.6). In the case of a regular

dynamics, the double-crest wave is either a planar (for vanishing phase-shift between the

corresponding components) or a swirling wave (characterized by a 2π/3 phase-shift between

the ω21-component of the right and left-hand-side signals), depending on the exact ratio

betweenΩ and ω21, as well as on the forcing amplitude āx /R.

5.5.5 Experimental estimate of regime bounds

From the above analysis, it appears that consistently with the predictions provided by our

theoretical weakly nonlinear analysis, the sloshing waves resulting from the longitudinal

super-harmonic forcing of the container at a frequencyΩ≈ω21, consist in the superposition

of a planar single-crest wave, harmonically oscillating with the forcing at ω = Ω, and of a

double-crest wave, that can exhibit either a planar, irregular or swirling dynamics.

Having identified the three different regimes for the free-surface dynamics in the vicinity of

the super-harmonic resonance, we can now experimentally determine their stability regions

in the (Ω/ω21, ax ) space. To do so, we fix the forcing amplitude while operating a frequency

sweep from high to low frequencies, within the rangeΩ/ω21 ∈ [0.45,0.53], by frequency decre-

ments of 10 mHz. Note that a downward frequency sweep ensures to recover the stability

bound between the super-harmonic planar and swirling regimes, as the transition in this

direction occurs exactly at the threshold frequencyΩP (ax ) below which the super-harmonic

planar motion becomes unstable. On the contrary, since the super-harmonic swirling wave is

still stable for frequencies larger than ΩP (ax ) (hysteresis), an upward frequency sweep will

maintain the system’s response on the swirling branch, thus it is not suitable to experimentally

detect the bifurcation point P.

The downward frequency sweep also enables one to detect the bounds that separate the

irregular regime from steady planar (Ω=ΩU (ax )) and swirling motions (Ω=ΩH (ax )).

This procedure is applied for various forcing amplitudes ax ∈ [0.05,0.4], enabling us to

build the stability regions diagram displayed on figure 5.13. All together, the experimental

measurements are in very good quantitative agreement with the theoretical regime bounds

for ax > 0.15, below which the super-harmonic irregular and swirling regimes appear to be

suppressed by dissipative mechanisms, e.g. viscous dissipation occurring in the fluid bulk,

sidewall and free surface boundary layers (Bongarzone et al., 2022b; Case and Parkinson,

1957; Miles, 1967; Raynovskyy and Timokha, 2020) as well as in the neighbourhood of the

moving contact line (Cocciaro et al., 1993; Dussan, 1979; Hocking, 1987; Keulegan, 1959; Vi-

ola and Gallaire, 2018). This last contribution is likely to be important since no particular

precautions, such as wall treatment or pre-wetting, have been taken in order to minimize

contact angle hysteresis. Below this threshold amplitude, experiments have shown a vanishing

super-harmonic contribution to the dynamics, with a harmonic planar motion produced by
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Figure 5.13 – Estimates of regime bounds in the (Ω/ω21, ax )-plane for a container of diameter
D = 0.172m, filled to a depth H = 1.3, driven longitudinally and super-harmonically at a
frequencyΩ≈ω21/2: comparison between the theoretical predictions (solid lines) and experi-
mental measurements (markers). Grey thick solid lines: present theoretical predictions. Black
empty squares: super-harmonic planar motion. Black crosses: irregular regime. Black-filled
circles: super-harmonic swirling motion.

the single-crest wave only and well described by the potential linear model, thus suggesting

that the double-crest wave has been entirely killed by dissipative mechanism. Note that such a

suppression of the DC dynamics at low forcing amplitude is reminiscent of what was observed

by Reclari et al. (2014) for circular shaking.

5.5.6 Irregular regime

In this section, we provide a more thorough description of the irregular regime. When fixing

the forcing frequency slightly below ω21/2 and progressively increasing the forcing amplitude,

the free-surface response is first very regular and displays a planar dynamics for low enough

forcing amplitudes. Above a threshold amplitude, the dynamics becomes irregular and at large

enough amplitudes, the response is again regular but consists of a swirling motion. Figure

5.14(a) displays the free surface response along the vertical middle axis Y = 0 for increasing

forcing amplitudes at a fixed forcing frequencyΩ≈ 0.496ω21. The regular regimes (top and

bottom panels) are characterized by a constant amplitude of the free surface oscillations. In

contrast, the oscillations of the free surface for intermediate forcing amplitudes (second and
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Figure 5.14 – (a) Intensity profiles I (0) for various forcing amplitudes and same forcing fre-
quencyΩ≈ 0.496ω21. The surface oscillations are enclosed into an envelope, plotted in black
on top of the images. (b) Left, Frequency of the main peak in the envelope’s power spectrum
(non-dimensionalized by Ω/2π) as a function ax , for same Ω ≈ 0.496ω21, and for upwards
(white markers) and downwards (black markers) amplitude sweeps. When the envelope is a
straight line (as here for ax < 0.15, which corresponds to regular planar dynamics), the power
spectrum is flat and we set the corresponding frequency equal to zero. For ax ≈ 0.40, the power
spectrum of the envelope is dominated by a low amplitude and small frequency noise, causing
a brutal decrease of the “burst” frequency, thus indicating a transition from irregular to regular
swirling motion. Right, Power spectra of the envelope for ax ≈ 0.12, ax ≈ 0.23 and ax ≈ 0.40.
(c) Correlation between I (R/2) and I (−R/2) versus time, for the same set of forcing parameters
as in (a). (d) Left, Superposition of I (R/2) (blue) and I (−R/2) (red) and right, front contact line
position η(R,±π/6, t ) as a function of time extracted from I (−R/2) (red curve) and from I (R/2)
(blue curve). The signals presented in (d) are taken from the full signals used to compute
their correlation in (c) for ax ≈ 0.23, over the time ranges highlighted in blue and denoted as
(1) (maximum of correlation) and as (2) (minimum of correlation). (e)-(f) Normalized power
spectra of η(R,−π/6, t ) (red curve) and of η(R,π/6, t ) (blue curve), and absolute value of the
phase-shift between their harmonic and super-harmonic components, where the dynamics of
η(R,±π/6, t ) is considered over (e): time range (1) and (f): time range (2).
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third panels) are enclosed into a quasi-periodic envelope, whose frequency linearly increases

with the forcing amplitude (see figure 5.14(b), and Appendix 5.7.4 for the methodology used

to compute the envelope). This is very reminiscent of the observations by Royon-Lebeaud

et al. (2007) of the irregular regime present in the vicinity of the harmonic resonance under

longitudinal forcing. Note that these features are also quantitatively recovered by proceeding

with a downward amplitude sweep. In particular, upward and downward forcing amplitude

sweeps provide the same threshold amplitudes between planar and irregular dynamics, and

between irregular and swirling regimes. Furthermore, the frequency of the main peak in the

power spectrum of the amplitude envelope seems to be a robust feature that does not depend

on the sweep direction, see Figure 5.14(b).

To gain more insight into this irregular dynamics, we compute at each time ti the spatial

correlation between Iti (R/2) and Iti (−R/2), which we refer to as corr(ti )

corr(ti ) =
∑

n

(
Iti ,n(R/2)− I ti (R/2)

)(
Iti ,n(−R/2)− I ti (−R/2)

)
√∑

n

(
Iti ,n(R/2)− I ti (R/2)

)2 ∑
n

(
Iti ,n(−R/2)− I ti (−R/2)

)2
, (5.37)

where n ∈ [1, N ], with N the number of pixels in the vertical direction, and I ti (y) represents

the mean of the N-element vector Iti (y). A high and constant correlation is a sign of a steady

planar motion, while a low but still constant correlation is characteristic of the steady swirling

regime. At intermediary forcing amplitudes -i.e. in the irregular regime- the correlation is a

quasi-periodic function of time, with the same quasi-period as the envelope, see figure 5.14(c).

A comparison between I (R/2) and I (−R/2) on time ranges corresponding to the maximum

and minimum of the correlation function reveals that in the time interval where the signals are

highly correlated, the motion is planar-like (although irregular), while in the time range where

they are poorly correlated, the maxima of the right and left-hand-side signals are phase-shifted

with respect to each other, thus reflecting the presence of a swirling wave, see figure 5.14(d).

This is further confirmed by the power spectra of the front contact line dynamics along

the azimuthal directions θ =±π/6, extracted from I (R/2) and I (−R/2), on time ranges where

these signals are highly correlated and where they are poorly correlated, see figure 5.14(e-f). In

both cases, the sloshing wave contains a planar single-crest wave, as revealed by the vanishing

phase-shift between the harmonic components of η(R,π/6, t) and η(R,−π/6, t). The wave

also contains a super-harmonic component, that is responsible for the switching between

a planar-like motion (vanishing phase-shift between the ω21-components of the η(R,π/6, t )

and η(R,−π/6, t ) signals, figure 5.14(e)) and a swirling dynamics (rotating, symmetry-breaking

wave that is super-harmonically oscillating at ω≈ω21, figure 5.14(f)).

This is again very similar to the features of the irregular regime in the vicinity of the harmonic

resonance described by Royon-Lebeaud et al. (2007) that relate the “bursts” in the free-surface

oscillation amplitude to the quasi-periodic occurrence of a swirling wave. However, in the

case of super-harmonic resonance, the irregular regime consists here of the superposition of a

stable planar single-crest wave and of super-harmonic double-crest dynamics. The latter is

responsible for the irregularity of the total dynamics, by quasi-periodically switching between
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Figure 5.15 – Quantitative comparison with experimental measurements in terms of finite
amplitude saturation for various non-dimensional forcing amplitudes, ax . Black-dotted lines:
linear potential solution according to (5.7) and (5.8). Light blue solid lines: stable planar and
swirling branches predicted by the present weakly nonlinear (WNL) model according to (5.35).
Markers: experimental measurements. Black empty squares correspond to planar motion
whereas black-filled circles refer to swirling dynamics.

super-harmonic planar and swirling motion.

5.5.7 Wave amplitude saturation: theoretical predictions versus experiments

In this last section, we provide a more quantitative comparison in terms of wave ampli-

tude saturation between the theoretical predictions according to (5.35) and the experimental

measurements. On this point, the dimensional wave amplitude, ∆δ̄= maxθ,t η (r = R,θ, t )−
minθ,t η (r = R,θ, t ), is experimentally measured by fixing the forcing amplitude while oper-

ating a frequency sweep in two directions. A backward sweep is used so as to follow the

right lower planar branch until the sub-critical jump-up transition to swirling (P: Poincaré

bifurcation) occurs (Ω=ΩP (ax )). On the other hand, an upward sweep is performed in order

to maintain a stable super-harmonic swirling response from bifurcation point H (Ω=ΩH (ax ))

and beyond the threshold frequencyΩ=ΩP (ax ), above which the super-harmonic planar and

swirling motions are both stable solutions (right region in the stability chart of figure 5.13).

For each set of forcing parameters (ax ,Ω/ω21), the height in pixel of the wave crest (resp.
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trough) on the front wall is manually extracted from the corresponding movies and is com-

pared, in the same frame it is extracted from, to the height of the fluid at rest (flagged by a

black mark on the container, also used as a scale) to obtain the maximal (resp. minimal) front

contact line elevation maxθ,t η (r = R,θ, t ) (resp. minθ,t η (r = R,θ, t )). This value is converted

into meters using the conversion factor provided by the black scale. The resulting amplitude

∆δ is then averaged over 3 to 5 cycles of oscillations and finally normalized by the container

radius R.

The experimental dimensionless wave amplitude ∆δ = ∆δ̄/R as a function of the forcing

frequency for various forcing amplitudes is displayed in figure 5.15 together with the theo-

retical weakly nonlinear prediction (5.35) (light blue solid lines) and with the linear potential

solution (5.7) for comparison (black dashed line).

The experimental data associated with the two planar branches compare generally well with

the present weakly nonlinear prediction, although the WNL theory slightly underestimates

the wave amplitude in the swirling regime. We recall from §5.4 that, at leading order, the

wave solution in these two branches is made by the superposition of two planar waves, i.e. a

harmonic planar single-crest component, oscillating in space and time as cos(Ωt )cosθ, and a

super-harmonic planar double-crest component, characterized by cos(2Ωt +Φ)cos2θ, with

a phase Φ = π in the left branch and Φ = 0 in the right one. The information on the phase

Φ is not directly discernible from the amplitude plot of figure 5.15, but it is contained in the

snapshots sequence reported in figure 5.11(a) for Ω/ω21 < 0.5 and (e) for Ω/ω21 > 0.5. Due

to the temporal periodicity of the single-crest wave, snapshots taken at t = T /4 =π/2Ω and

t = 3T /4 = 3π/2Ω represent temporal nodes for the harmonic component, so that, as a first-

order approximation, only the double-crest component, whose azimuthal spatial structure

reads cos(π+Φ)cos2θ, is instantaneously left. It is then clear that forΩ/ω21 < 0.5 andΦ=π,

the free surface maximum is reached at the azimuthal coordinates θ = 0 and π, whereas the

minimum is at θ =±π/2 (vice versa for Ω/ω21 > 0.5 and Φ= 0). This produces the concave

and convex shapes in the instantaneous free surface displayed in figure 5.11(a) and (e), respec-

tively.

Consistently with the stability chart in figure 5.13 obtained through a backward frequency

sweep, the threshold frequencyΩH (ax ), at which the swirling branch becomes stable from

lower driving frequencyΩ, is correctly detected. Furthermore, the upward sweep allows us to

detect also the jump-down transition from the swirling to the lower right planar branch.

The occurrence of the jump-down transition was to be expected as it is produced by dissipa-

tive mechanisms (see also §5.5.5), which are overlooked by the present inviscid analysis. The

associated damping, which is a function of the wave amplitude and of the forcing acceleration

amplitude (see Raynovskyy and Timokha (2018b),Raynovskyy and Timokha (2020) and the

discussion in Appendix A of Bongarzone et al. (2022a)), is responsible for the modulation

in the phase lag between the external driving and the wave response, which was shown by

Bäuerlein and Avila (2021) (for unidirectional sloshing waves in a rectangular container) to be

of crucial importance for a correct prediction of the jump-down frequency.

The damping coefficient could be tentatively fitted from experiments and phenomenolog-

ically introduced a posteriori in amplitude equations (5.31a)-(5.31b) as done in Appendix A
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of Bongarzone et al. (2022a). Nevertheless, the jump-down transition in the cases examined

in this section (see figure 5.15) was seen to be extremely sensitive to the frequency sweeping

rate. A decrease in the frequency step increment from 5 mHz to 1 mHz (used to produce

the swirling branch in figure 5.15) was observed to give different jump-down frequencies.

This is also expected as it is known from the literature that in the multi-solution range, the

characteristic of the response mainly depends on the sweep rate (Bourquard and Noiray, 2019;

Park et al., 2011; Yu et al., 2020). Since we did not try frequency increments smaller than 1

mHz, the jump-down frequency predictions as shown in figure 5.15 are not entirely reliable

for fitting the damping at stake in the experiments.

In spite of such limitations, the weakly nonlinear model is seen to describe fairly well the

experimental swirling branch until the measured jump-down frequency. A relatively small

departure of the swirling response from the theoretical prediction is typically observed at

larger driving amplitude for increasing wave frequency. In agreement with previous studies

(Bäuerlein and Avila, 2021; Dodge et al., 1965; Ibrahim, 2005), our experiments reveal that this

is due to the progressive steepening and broadening of the wave crest and troughs, respectively,

in the vicinity of the container wall. This nonlinear mechanism eventually becomes strong

enough for the weakly nonlinear model to lose accuracy.

5.6 Conclusion

In this work, the behaviour of sloshing waves in a cylindrical container submitted to longitu-

dinal periodic forcing with driving amplitude ax and angular frequencyΩwas investigated.

While previous studies of this forcing condition and geometry mostly focused on the investiga-

tion of the free surface response in the vicinity of harmonic resonance, i.e. Ω/ω1n ≈ 1, the core

of the present work was dedicated to the most relevant secondary super-harmonic resonances

Ω/ω2n ≈ 1/2, characterized by the occurrence of a double-crest (DC) dynamics oscillating at a

frequency ω= 2Ω≈ω2n .

Such a super-harmonic resonance was first experimentally observed by Reclari (2013) and

Reclari et al. (2014) for circular container motions, but its investigation under different forcing

conditions, e.g. longitudinal forcing, seemed to be still unreported.

With the aim to take a further step in this direction, a weakly nonlinear analysis (WNL) via

multiple timescale method together with a dedicated experimental campaign were imple-

mented in order to account for the steady-state free surface dynamics, and for the symmetry-

breaking due to the emergence of a double crest swirling wave in the vicinity of the super-

harmonic resonance.

In a similar fashion to Bongarzone et al. (2022a), the WNL analysis was first formalized to

tackle the simpler case of harmonic resonances. The outcomes of the model were compared

to previous experimental measurements and to former theoretical predictions based on the

Narimanov–Moiseev multimodal sloshing theory (Faltinsen et al., 2016; Raynovskyy and Tim-

okha, 2020). All together, our analysis addressing the single-crest (SC) wave dynamics was

shown to be consistent with the previously reported experimental and theoretical results. In
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particular, the WNL model successfully captured the regime bounds between single-crest

planar, swirling and irregular waves, and correctly described the close-to-resonance nonlinear

behaviour, thus validating the relevance of this theoretical approach.

The WNL analysis was then extended to the more complex case of the super-harmonic

resonance. A dedicated lab-scale experiment was set up to observe and characterise the super-

harmonic response to longitudinal forcing. In remarkable agreement with the outcomes of

the WNL model, the experimental investigation showed that the free surface dynamics in

the vicinity of the super-harmonic resonance results from the superposition of a permanent,

first-order forced harmonic planar single-crest wave, and of a super-harmonic double-crest

wave that can exhibit either a planar, irregular or swirling dynamics, the latter being responsi-

ble for a symmetry-breaking in the system’s response through equally probable clockwise or

anti-clockwise swirling waves. The bounds in the (ax ,Ω/ω21) plane between the three different

regimes were experimentally retrieved and were shown to be in very good quantitative agree-

ment with the WNL predictions, at least above a threshold forcing amplitude, below which the

swirling and irregular dynamics appear to be suppressed by dissipative mechanisms, which

are not accounted for by the present inviscid analysis. Finally, the predicted wave amplitude

saturation, computed by reconstructing the total flow solution, was compared to the exper-

imentally measured steady-state wave amplitude and was shown to correctly describe the

stable planar and swirling branches in the neighbourhood of the super-harmonic resonance.

The fairly good agreement between the theoretical predictions and the experimental find-

ings validates the relevance of the WNL approach to successfully describe the sloshing wave

dynamics resulting from nonlinear harmonic and super-harmonic interactions. As discussed

in Appendix 5.7.2, this analysis is not restricted to longitudinal forcing, but can be straightfor-

wardly generalized without any further calculation to any elliptic trajectory, hence recovering

the limit of circular sloshing investigated in Bongarzone et al. (2022a). In this respect, the

theory of Faltinsen et al. (2016) for elliptical container motions interestingly predicts the occur-

rence of counter-rotating swirling waves, i.e. propagating in the direction opposed to that of

the container motion. The qualitative analogy between the harmonic and super-harmonic sys-

tem behaviour outlined in this Chapter would suggest that such counter-propagating swirling

waves could also be triggered by exciting the system in the vicinity of the super-harmonic

double-crest resonance, thus calling for new experimental campaigns.

5.7 Appendix

5.7.1 Computation of the normal form coefficients

The normal form coefficients appearing in (5.18a)-(5.18b) for the harmonic single-crest (SC)

dynamics are computed as follows

iISC µSC =< q̂A1†
1 ,F̂

F
3 >=

∫ 1

0
(r /2) η̂

A1†
1 r dr, (5.38a)
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H = h/R µSC νSC ξSC

1.10 -0.279 1.414 -7.487
1.20 -0.280 1.407 -7.914
1.30 -0.281 1.406 -8.101
1.40 -0.282 1.407 -8.211
1.50 -0.283 1.409 -8.281
1.60 -0.283 1.410 -8.328
1.70 -0.283 1.411 -8.359
1.80 -0.284 1.412 -8.381
1.90 -0.284 1.412 -8.395
2.00 -0.284 1.413 -8.405

H = h/R µDC νDC ξDC ζDC χ− χ+
1.10 0.118 9.821 -32.077 0.104 2.697 -3.257
1.20 0.108 9.812 -32.110 0.067 2.692 -3.159
1.30 0.101 9.813 -32.128 0.046 2.687 -3.089
1.40 0.096 9.812 -32.138 0.035 2.682 -3.040
1.50 0.093 9.811 -32.143 0.029 2.678 -3.006
1.60 0.091 9.811 -32.146 0.028 2.675 -2.982
1.70 0.089 9.810 -32.148 0.029 2.673 -2.965
1.80 0.089 9.810 -32.149 0.032 2.672 -2.953
1.90 0.088 9.810 -32.149 0.035 2.671 -2.945
2.00 0.087 9.810 -32.150 0.040 2.670 -2.940

Table 5.1 – Value of the normal form coefficients appearing in (5.18a)-(5.18b) (SC) and
in (5.31a)-(5.31b) (DC) computed at different fluid depths H = h/R and associated with mode
(m,n) = (1,1). Note that in (5.31a)-(5.31b), χDC =χ− +χ+ .

iISC νSC =< q̂A1†
1 ,F̂

|A1|2 A1

3 >=
∫ 1

0

(
η̂

A1†
1 F̂

|A1|2 A1
3dyn

+ Φ̂A1†

1 F̂
|A1|2 A1
3kin

)
r dr, (5.38b)

iISC ξSC =< q̂A1†
1 ,F̂

|B1|2 A1

3 >=
∫ 1

0

(
η̂

A1†
1 F̂

|B1|2 A1
3dyn

+ Φ̂A1†

1 F̂
|B1|2 A1
3kin

)
r dr. (5.38c)

where ISC =< q̂A1†
1 ,Bq̂A1

1 >= ∫ 1
0

(
η̂

A1†
1 Φ̂

A1
1 + Φ̂A1†

1 η̂
A1
1

)
r dr . Here

(
q̂A1†

1 , q̂B1†
1

)
=

(
q̂

A1

1 , q̂
B1

1

)
, since

the inviscid problem is self–adjoint with respect to the Hermitian scalar product < a,b >=∫
Σa ·bdV , with a and b two generic vector (see Viola et al. (2018) for a thorough discussion

and derivation of the adjoint problem).

Expressions (5.38a) and (5.38b) were already given in Bongarzone et al. (2022a). The left-

hand side of those expressions was typed mistakenly, as the mass matrix B should not appear

in their numerators. The present version is instead written down correctly.

For the calculation of the amplitude equation coefficients at ε3 order, only resonant terms

matter. These terms, with their corresponding amplitudes, are proportional to e i((ω1n t±θ) for

SC waves and to e i(ω2n t±2θ) for DC waves. As an example, the expression of F̂
|A|2 A
3ki n

, with A = A1

for SC waves and A = A2 for DC waves, is given in Appendix D of Bongarzone et al. (2022a).
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The extraction of resonant terms was performed by using tools of symbolic calculus, e.g. the

software Wolfram Mathematica.

Analogously, the normal form coefficients appearing in (5.31a)-(5.31b) for the super-harmonic

double-crest (DC) dynamics are calculated as

iIDC µDC =
∫ 1

0

(
η̂

A2†
1 F̂ F 2

2dyn
+ Φ̂A2†

1 F̂ F 2

2kin

)
r dr, (5.39a)

iIDC ζDC =
∫ 1

0

(
η̂

A2†
1 F̂ΛF 2

3dyn
+ Φ̂A2†

1 F̂ΛF 2

3kin

)
r dr, (5.39b)

iIDC χDC =
∫ 1

0

(
η̂

A2†
1 F̂

A2|F |2
3dyn

+ Φ̂A2†

1 F̂
A2|F |2

3kin

)
r dr, (5.39c)

iIDC νDC =
∫ 1

0

(
η̂

A2†
1 F̂

|A2|2 A2
3dyn

+ Φ̂A2†

1 F̂
|A2|2 A2
3kin

)
r dr, (5.39d)

iIDC ξDC =
∫ 1

0

(
η̂

A2†
1 F̂

|B2|2 A2
3dyn

+ Φ̂A2†

1 F̂
|B2|2 A2
3kin

)
r dr, (5.39e)

with IDC =< q̂A2†
1 ,Bq̂A2

1 >= ∫ 1
0

(
η̂

A2†
1 Φ̂

A2
1 + Φ̂A2†

1 η̂
A2
1

)
r dr . The integrals are all evaluated at the

free surface z = 0.

We note that the value of the normal form coefficientχDC contains two different contributions.

Indeed, it could be conveniently rewritten as χDC =χ− +χ+ , with the value of χ− and χ+ given

in table 5.1. χ− precisely corresponds to the coefficient χDC computed in Bongarzone et al.

(2022a) and, by adopting the present formalism, e.g. for mode A2 (same for mode B2), it is

produced by the interaction of the second order responses

(1/2) A2F q̂A2F
2 e i((3ω2n /2)t−3θ)e iΛT1 + (1/2) A2F q̂A2F

2 e i((ω2n /2)t−θ)e−iΛT1 , (5.40)

in equation (5.28) with the complex conjugate of the leading order particular solution charac-

terized by m =−1 in (5.24). On the contrary, the contribution χ+ is the result of the interaction

between the second-order responses

(1/2) A2F q̂A2F
2 e i((3ω2n /2)t−θ)e iΛT1 + (1/2) A2F q̂A2F

2 e i((ω2n /2)t−3θ)e−iΛT1 , (5.41)

in equation (5.28) and the complex conjugate of the leading order particular solution for

m =+1 in (5.24).

5.7.2 Generalization to elliptic orbits

In this appendix, we show how the analysis outlined in this Chapter for longitudinal container

motions can be straightforwardly generalized to any elliptic-like shaking. For elliptical orbits

179



Chapter 5. Super-harmonically resonant swirling waves in longitudinally forced circular
cylinders

in the horizontal
(
x, y

)
–plane, equations (5.1) are modified as follows

Ẋ0 =


(−axΩsin(Ωt )cosθ+ayΩcos(Ωt )sinθ
)

er(
axΩsin(Ωt )sinθ+ayΩcos(Ωt )sinθ

)
eθ

, (5.42)

with ax and ay the non-dimensional major- and minor-axis forcing amplitude components,

respectively, and Ω the non-dimensional driving angular frequency. Under these forcing

conditions, the unsteady and forced Bernoulli’s equation at z = η reads

∂Φ

∂t
+ 1

2
∇Φ ·∇Φ+η= r

(
fx cos(Ωt )cosθ+ fy sin(Ωt )sinθ

)
, (5.43)

where fx = axΩ
2 and fy = ayΩ

2. By introducing the aspect ratio α = ay /ax = fy / fx , so that

fx = f and fy =α f , equation (5.43) can be conveniently rewritten as

∂Φ

∂t
+ 1

2
∇Φ ·∇Φ+η= r

f

2

((
1+α

2

)
e i(Ωt−θ) +

(
1−α

2

)
e i(Ωt+θ)

)
+ c.c. . (5.44)

A value 0 <α< 1 implies elliptic orbits, whereas the two limit cases with α= 0 (ax 6= 0, ay = 0)

and α= 1 (ax = ay 6= 0) correspond, respectively, to longitudinal, as in the present work, and

circular (Bongarzone et al., 2022a), shaking conditions. For the convenience of notation, we

also introduce the auxiliary variables

α− =
1+α

2
, α+ =

1−α
2

, (5.45)

with 1/2 ≤ α− ≤ 1 and 0 ≤ α+ ≤ 1/2. By accounting for the two auxiliary aspect ratios, α−
and α+ in the expression of the forcing term, the whole derivation can be repeated, hence

leading, without any further computation, to the following system of amplitude equations for

harmonic single-crest (SC) waves

d A

d t
=−iλA+ iµSCα− f + iνSC |A|2 A+ iξSC |B |2 A, (5.46a)

dB

d t
=−iλB + iµSCα+ f + iνSC |B |2B + iξSC |A|2B. (5.46b)

and for super-harmonic double-crest (DC) waves

d A

d t
=−i

(
2λ− (

α2
−χ− +α2

+χ+
)

f 2) A+ i
(
ζDCλ+µDC

)
α2

− f 2

+iνDC |A|2 A+ iξDC |B |2 A, (5.47a)

dB

d t
=−i

(
2λ− (

α2
+χ+ +α2

−χ−
)

f 2)B + i
(
ζDCλ+µDC

)
α2

+ f 2

+iνDC |B |2B + iξDC |A|2B , (5.47b)
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Figure 5.16 – Intensity profile along the middle axis of the container as a function of time. The
free surface, initially at rest (t < 0) is submitted to forced harmonic oscillations from t = 0.

with the values of the normal form coefficients still given in table 5.1.

We note that in the limit of α= 0 (longitudinal), α− =α+ = 1/2 and equations (5.18a)-(5.18b)

and (5.31a)-(5.31b) are retrieved. On the contrary, in the limit ofα= 1 (circular), one hasα− = 1

and α+ = 0, so that equations (5.46a) and (5.47a) corresponds to equations (4.6) and (4.22) of

Bongarzone et al. (2022a), with A 6= 0 and B = 0 the only possible stable stationary solution

for (5.47a) and (5.47b).

5.7.3 Estimation of the duration of the transient regime

In this study, we only consider the permanent response of the free surface to forced oscillations.

To ensure we discard the transient regime in our analysis of the free surface dynamics, we

first obtained an estimation of the transient time by recording for various forcing amplitudes

āx and angular frequencies Ω̄, the full dynamics of the free-surface, initially at rest and then

put into oscillations. The temporal evolution of the intensity profile along the middle axis of

the container extracted from our movies, is a direct signature of the variation in time of the

sloshing wave amplitude, and reveals that for all (āx , Ω̄) set of parameters investigated, the

free-surface dynamics can be safely considered as having reached a steady-state after typically

50 cycles of oscillations, see figure 5.16.

5.7.4 Extracting the contact line dynamics from the intensity profiles

Here we present the general methodology to extract, from the intensity profiles, the front

contact line position as a function of time. First, we binarize the intensity profiles, so as to

isolate the periodic pattern due to the free surface motion from the rest of the image (see

figure 5.17(a)). Then the vertical positions of the first and last non-zero pixel of each column

in the binarized intensity profile are retrieved at each time step, thus providing the top and

bottom envelopes of the intensity profile, see figure 5.17(b). The front contact line position

periodically coincides with the elevation of the lower or of the upper envelope of the pattern.

By detecting the local minima of the distance between the top and bottom envelopes as a
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Figure 5.17 – (a) Binarized intensity profile from figure 5.9(c). (b) Upper and lower envelopes
of the binarized profile. (c) Distance (in pixel) between the upper and lower envelope as a
function of time. The local minima (highlighted by blue dots) correspond to the time steps
where the back and front contact line have similar elevations. (d) Upper and lower envelopes
of the binarized profile (black) and front contact line position as a function of time (red dotted
line).

function of time (see figure 5.17(c)), we identify the time instants at which the front and back

contact lines have similar elevations, which corresponds for the front contact line position to a

switch from the lower to the upper envelope, or vice-versa. The front contact line dynamics is

then obtained by extracting from the bottom and top envelopes the time series corresponding

to the front contact line position, see figure 5.17(d). The exact position of the front contact

line at intermediary time steps where the distance between the lower and upper envelopes

is minimal cannot be precisely detected, so that the successive time series are connected

through a simple linear interpolation. Note that this procedure does not affect the frequency

content of the dynamics.

Lastly, to compute the amplitude envelope of the front contact line oscillations, such as

displayed in figure 5.14(a), we use the Matlab function islocalmax (resp. islocalmin), that

extracts the local maxima (resp. minima) from the front contact line profile, thus providing

the position of the top (resp. bottom) amplitude envelope.

5.7.5 Can the asymptotic WNL model predict the irregular regime?

This Appendix is devoted to verifying whether the asymptotic weakly nonlinear model could

be used to better grasp the features of the irregular regimes. In the latter regime, no stable
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Figure 5.18 – Left: frequency of the main peak in the power spectrum of the envelope (non-
dimensionalized by the forcing frequencyΩ/2π) as a function of the non-dimensional forcing
amplitude ax and for same forcing angular frequencyΩ= 0.496ω21. The white squares and
black circles correspond to the experimental points reported in figure 5.14 and are obtained,
respectively, for an upward and downward forcing-amplitude sweep. Right: prediction from
the WNL model for a damping coefficient σ= 0.01 (red crosses) and σ= 0.015 (blue crosses).
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Figure 5.19 – Predicted WNL time-series corresponding to the contact line elevation at an
azimuthal coordinate θ = 0 and constructed according to equation 5.2 of the manuscript for
three different forcing amplitudes ax . Amplitudes A(t ) = |A(t )|e iΦA (t ) and B(t ) = |B(t )|e iΦB (t )

are computed by time-integrating the complex system of equations (5.31a)-(5.31b) with an
additional damping σ = 0.015. The time integration is performed via the built-in Matlab
function ode23.

stationary amplitude solutions are found. Nevertheless, one can still solve the system of

amplitude equations in time assigning some initial conditions so as to observe the transient

and, more interestingly, the large time dynamics.
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When time-integrating the inviscid system of amplitude equations (5.31a)-(5.31b), a subtle

technical issue arises. In the absence of any form of dissipation, what we define as stable

stationary-amplitude solutions (computed by cancelling out the terms d A/d t and dB/d t in

equations (5.31a)-(5.31b)) are actually only marginally stable, meaning that a small perturba-

tion of these states will neither grow nor decay in time. Since the real system is dissipative, the

large-time solutions always tend to the marginally stable states, as external small perturbations

are damped down. Hence, to obtain, for instance, the stable stationary states of figure 5.5(a)

by time-marching the coupled amplitude equations, one needs to introduce a small damping

factor so as to damp down perturbations (due to initial conditions for instance). This can be

done by adding a small dissipative term to equations (5.31a)-(5.31b), i.e. d A/d t =−σA+ . . .

and dB/d t =−σB + . . ., and waiting for a sufficiently long time. We can then run in time the

modified system of equations in the range of parameters corresponding to the irregular regime

and monitor the statistical properties of the resulting signal.

In figure 5.19 we report three time-series obtained at three different non-dimensional forcing

amplitudes ax and at a driving frequencyΩ= 0.496ω21 (as in figure 5.14). We can clearly spot

an envelope modulation enclosing the fast wave oscillations. The frequency of the main peak

in the PSD associated with these envelope signals can be then compared with the experimental

values reported in figure 5.18 of this document.

The agreement is qualitatively good and a similar linear trend is retrieved using the WNL

model, meaning that the simple system of two complex amplitude equations can reproduce

the main features of the full system dynamics even in the irregular regime.

However, this analysis requires the time-marching of the equations (5.31a)-(5.31b), the ad

hoc introduction of a damping coefficient and it provides outputs which depend on the value

of the latter coefficient (see Right panel of figure 5.18). Further investigations in this direction

could require alone a dedicated theoretical study.
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We study the free surface response in a cylindrical container undergoing an elliptic periodic

orbit. For small forcing amplitudes and deep liquid layers, we quantify the effect of the

orbit’s aspect ratio on the surface dynamics in the vicinity of the fluid system’s lowest natural

frequency ω0. We provide experimental evidence of the existence of a frequency range where

stable swirling can be either co- or counter-directed with respect to the container’s direction

of motion. Our findings are successfully predicted by an inviscid asymptotic model, amended

with heuristic damping.

In the general introduction to Part II, we have mentioned how the problem of liquid sloshing

pertains to many aspects of daily life, ranging from mundane wine tasting to more pragmatic

issues such as liquid spilling (Mayer and Krechetnikov, 2012) and transport safety (Faltinsen

and Timokha, 2009). With regards to orbital sloshing in partially filled circular cylinders, we

have described how previous experimental studies have investigated the close-to-resonance

dynamics for either circular (in Chapter 4) or purely longitudinal (in Chapter 5) shaking,

casting light on a rich variety of wave regimes attracting interest to dynamicists over the last

decades (Hutton, 1963; Miles, 1984c,d; Ockendon and Ockendon, 1973). These fascinating

and complex features are briefly recalled below. For circular orbits, the system responds with
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a swirling wave always co-directed with the container motion (Reclari et al., 2014). This well-

defined hydrodynamics, often simply modelled by a one-degree-of-freedom Duffing oscillator

(Bongarzone et al., 2022a; Ockendon and Ockendon, 1973), is advantageously exploited, for

example in biology, in the design of bioreactors, where the container is shaken so as to mix the

liquid, prevent sedimentation and enhance gas transfer, hence providing suitable oxygenation

to the growing cell population (Klöckner and Büchs, 2012). In the case of longitudinal forcing,

the standing wave solution may undergo close-to-resonance a symmetry-breaking, with clock-

and anti-clockwise swirling waves equally probable, or completely lose regularity showing

an irregular and chaotic alternation of planar and swirling motions (Hutton, 1963; Royon-

Lebeaud et al., 2007). Such a configuration finds a close mechanical analogy in the resonant

motion of a forced spherical pendulum (Miles, 1984d), a four degrees-of-freedom system that

has been widely studied in the context of order-to-chaos transitions (Miles, 1984c; Tritton,

1986) for its similarities with the Lorentz’s problem (Lorenz, 1963).

Surprisingly however, no experimental studies devoted to the more generic case of elliptic

orbits have been reported so far in the sloshing literature. Yet, existing theoretical analyses of

this forcing condition brought out interesting features of the resonant liquid response that

depend on the orbit’s ellipticity. In particular, a recent inviscid theory (Faltinsen et al., 2016)

suggested the counter-intuitive existence, under resonant elliptic forcing, of stable swirling

waves that propagate in the direction opposite to the forcing direction. Moreover, the theory

anticipated that such counter-waves may exist even for quasi-circular orbits and travel with a

smaller amplitude than co-directed waves. This, if confirmed, would further enrich the variety

of observable dynamical sloshing regimes and possibly open a new room in this rich dynamic

system field.

For moderately large-size containers, the use of inviscid hydrodynamic models is well

accepted (Ibrahim, 2005), but in real sloshing problems, waves are always subjected to a

non-vanishing viscous dissipation. Hence, the counter-swirling wave predicted by the inviscid

model (Faltinsen et al., 2016), being intrinsically disfavored by the forcing direction, is likely to

be more sensitive to damping than co-swirling solutions, and it is currently unclear whether

such a solution can actually arise in a real-life lab-experiment.

In this Chapter, we aim to provide a joint experimental and theoretical characterization

of the free liquid surface response for a generic, elliptic periodic container trajectory, so as

to bridge the gap between the two diametrically opposed shaking conditions previously dis-

cussed. Specifically, we intend to identify the range of external control parameters, i.e. driving

frequency, amplitude and orbit aspect ratio, for which stable counter-directed swirling waves

do occur, and assess the extent of the forcing regime where inviscid models break down.
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Figure 6.1 – (a) Experimental setup. Sloshing waves are generated by the container elliptic tra-
jectory, achieved by imposing along the x and y axes two sinusoidal forcing of driving angular
frequencyΩ and amplitudes ax and ay . δ (θ, t ) denotes the free surface elevation measured
at the sidewall, r = R. (b) Sketch illustrating the extraction from the frame corresponding to
time-instant ti of the intensity profiles along the vertical middle axis of the container image
(labelled as Iti (0)) and along the vertical axes located at coordinates ∓R/2.

6.1 Experimental setup and procedure

In our experimental campaign, we used a Plexiglas circular cylindrical container of total

height 50cm and internal radius R = 0.086m, filled to a depth h = 0.15m with water: density

ρ = 1000kg m−3, surface tension γ= 0.0725N m−1 and dynamic viscosity µ= 0.001kg m−1 s−1.

The gravity acceleration is denoted by g (see figure 6.1(a)). The container is fixed on a double-

axes linear motion actuator (Aerotech pro165LM + pro225LM), which imposes along the x

and y axes two sinusoidal forcings of angular frequency Ω and amplitudes ax and ay , that

are π/2-phase shifted with respect to each other. The fluid motion is recorded with a digital

camera (Nikon D850) coupled with a Nikon 60mm f/2.8D lens and operated in slow mode

with an acquisition frequency of 120fps. The camera’s optical axis is aligned with the x-axis.

A LED panel is placed behind the container so as to provide a back illumination for better

optical contrast.

In the moving reference frame, any planar elliptic-like shaking can be represented by the

following equations describing the motion acceleration of the container axis parametrized in

polar coordinates (r , θ),

d2X0

dt 2 =


(− fx cosΩt cosθ− fy sinΩt sinθ
)

er ,(
fx cosΩt sinθ− fy sinΩt sinθ

)
eθ,

(6.1)
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where fx = f = axΩ
2/R and fy =α f = ayΩ

2/R are the non-dimensional major- and minor-

axis driving acceleration components, respectively, andΩ=Ω/
√

g /R the non-dimensional

driving angular frequency. The bar symbol refers to the dimensional quantities. Note that

the minor-to-major-axis component ratio, α= ay /ax = fy / fx , has been introduced. A value

0 <α< 1 refers to elliptic orbits, whereas the two limiting cases α= 0 and α= 1 correspond,

respectively, to longitudinal and circular shaking conditions.

With this experimental campaign we intend to study the free surface response in the vicinity

of the lowest natural frequency ω0 =ω0/
√

g /R =p
k tanh(kh/R) = 1.3547 (with wavenumber

k = 1.8412) (Lamb, 1993), for varying orbit’s aspect ratios α and forcing amplitudes ax . In

particular, we aim at recovering the whole set of stationary wave amplitude solutions, i.e.

co- and counter-swirling waves, and at studying how their stability depends on the forcing

parameters. If co- and counter-swirling waves happen to be coexisting stable solutions for a

certain combination of control parameters, then a co-directed swirling motion will very likely

be naturally favoured by the forcing direction and will therefore spontaneously arise from the

time-harmonic forcing. On the other hand, triggering counter-swirling would require escaping

the basin of attraction of the co-swirling wave solution, which is only possible by introducing

a sufficient flow perturbation. The experimental procedure described in the following is thus

suitably designed so as to reveal steady-state counter-directed waves, whenever this dynamics

is a stable admissible solution.

In a typical experiment, the amplitude ax ∈ [1,3] mm and ellipticity α ∈ [0.1,0.95] are fixed,

while frequencies are swept up- and downward within the (dimensionless) range Ω/ω0 ∈
[0.82,1.21]. The increment between two consecutive steps in the frequency sweep is 0.0217.

Each frequency step consists of two parts: the container undergoes first a harmonic elliptic

forcing that is in the anti-clockwise direction for 150 oscillation periods and then in the

clockwise direction for another 150 oscillation periods. Two movies are then recorded at

each step so as to monitor the free surface response to both clockwise and anti-clockwise

forcing. Switching the direction of the tank’s trajectory in the second phase of the experimental

procedure induces a flow perturbation that is enough to produce a counter-directed wave if

the latter is an admissible stable configuration for the system. For each frequency step and

container direction, the camera is triggered only after 100 cycles so that it only records the

last 50 oscillation periods. Preliminary longer measurements performed for a few forcing

parameters sampled within our experimental range showed that the transient regime typically

lasts less than 100 cycles. Successively, we made sure that every movie recorded after 100

oscillation periods indeed corresponds to stationary wave amplitude regimes, except when

the system exhibits the irregular dynamics described later in the section.

6.1.1 Analysis of the free-surface response

The procedure to analyze the free surface response is extensively described in Chapter 5

and illustrated here in figure 6.1(b). Briefly, we build from each movie an image I (y) =
[It1 (y), It2 (y), ...] where Iti (y) is the intensity profile along the vertical axis Y (ti ) = y on the

frame i corresponding to time ti , with Y (ti ) = 0 being the vertical middle axis between the
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Figure 6.2 – (a)-(d) Intensity profiles as a function of time along the middle vertical axis I (0)
for ellipticity α = 0.5, amplitude ax = 1.5mm and frequency (a)-(b) Ω/ω0 ≈ 0.95 or (c)-(d)
Ω/ω0 ≈ 1.04. The intensity profiles (b) and (d) are obtained from the binarization of (a) and (c)
so as to filter out the signal of weaker intensity coming from the back contact line whenever
the elevation of the front contact line is minimal. The oscillations of the front contact line are
then enclosed into a top-bottom envelope, plotted in red in panel (d).

edges of the container image (represented by Y (ti ) = R and Y (ti ) =−R). The resulting image,

as illustrated in figure 6.2, displays a periodic dark pattern that represents the free surface

response to the harmonic forcing. The free surface appears as the darkest feature on each

frame so that the intensity profile along a vertical line at a given time ti represents the vertical

extension of the free surface in this direction.

The usefulness of the resulting image I (y) is threefold: (i) it allows the detection of irregular

dynamics. This corresponds to the absence of any stable wave amplitude for a given set of

forcing parameters and is easily identified by the time-varying envelope modulating the free

surface oscillations, see figure 6.2(a). (ii) For a regular response, I (0) enables one to measure

the amplitude of the front contact line in the azimuthal direction θ = 0. (iii) The comparison of

the profiles along two vertical directions that are mirror-symmetric with respect to the vertical

middle axis, e.g. I (−R/2) and I (R/2), makes it possible to determine the propagation direction

of the wave and to compare it with the container’s motion direction.

6.1.2 Detecting the irregular regime

Figure 6.2 displays two intensity profiles as a function of time along the vertical middle axis

(Y = 0) for the same forcing amplitude ax and ellipticityα but for two different forcing frequen-

ciesΩ/ω0. Those images show that depending on the forcing parameters, the amplitude of

the free surface oscillations can be either irregular, figure 6.2(a)-(b), or stationary, figure 6.2(c)-

(d). In the analysis of the close-to-resonance dynamics, we, therefore, use the profile I (0) to

identify the irregular regime.
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6.1.3 Measuring the wave amplitude

The intensity profile I (0) also provides the amplitude δ(θ = 0, t ) of the swirling wave at the front

wall of the container, i.e. at the azimuthal coordinate θ = 0, such as defined in figure 6.1(b).

Indeed, due to the backlighting, the intensity signal corresponding to the front contact line

appears darker than the one due to the back contact line, so that pieces of information

associated with the latter can be filtered out by a proper thresholding of profile I (0). On the

resulting binarized image, the maximal and minimal heights of the final periodic pattern

correspond then to the peaks and troughs of the swirling wave at the front wall along θ = 0.

The amplitude of the wave (in pixel) is thus experimentally retrieved as half the difference

between the height of the top and of the bottom envelopes enclosing its oscillations, displayed

in figure 6.2(d) as red lines, and converted into millimeters by using a scale put on the front

wall of the container. Note that in this procedure, we neglect the variation of the pixel size

that can occur along the container motion, the camera being fixed. This is justified by the

very small forcing amplitude (1mm ≤ ax ≤ 3mm) with respect to the distance between the

camera and the front wall of the container (1m). The error related to the variation of the pixel

size is therefore of the order of 0.1%, i.e. negligible compared to the typical dispersion of our

measurements.
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Figure 6.3 – Superposition of the intensity profiles as a function of time along the vertical axis
(Y = R/2) and (Y =−R/2), denoted I (R/2) (in blue) and I (−R/2) (in red) respectively, for a
harmonic forcing of frequency Ω/ω0 ≈ 1.04, amplitude ax = 1.5mm, and (a)-(b) ellipticity
α= 0.50 and (c)-(d) α= 0.95. The container moves either in the anti-clockwise direction ((a)
and (c)) or in the clockwise direction ((b) and (d)).

6.1.4 Identifying the swirling direction

To detect the direction of propagation of the wave, we compare for each movie the intensity

profiles along two vertical directions that are mirror-symmetric with respect to the vertical

middle axis of the container. figure 6.3 shows composite images that each consists in the
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Figure 6.4 – Free surface snapshots corresponding to the case of figure 6.3(a)-(b) with α= 0.50.
Direction of the container motion: left, anti-clockwise; right, clockwise (follow the black
arrows). The white arrows indicate the direction of the wave rotation. A visual indication of
the different wave amplitudes is provided by the black double-sided arrows.

superposition of I (R/2) and I (−R/2) into a composite RGB image, where grey areas correspond

to pixels where I (R/2) and I (−R/2) have the same intensity, while red (resp. blue) areas

correspond to the part of I (−R/2) (resp. I (R/2)) that do not overlap with I (R/2) (resp. I (−R/2)).

Thus, a red (resp. blue) peak preceding a blue (resp. red) peak corresponds to a wave travelling

from the left (resp. right) to the right-hand (resp. left-hand) side of the front wall of the

container, i.e. in the anti-clockwise (resp. clockwise) direction. The propagation direction

of the wave can then be determined and compared to the direction of the container motion.

In figure 6.3, the dynamics associated with two different aspect ratios α = 0.5 and α = 0.95

(quasi-circular orbit) are compared for the same forcing frequency and amplitude. For each α,

the right and left-hand-side signals I (R/2) and I (−R/2) are superposed to each other for two

motion configurations, namely an anti-clockwise followed by a clockwise container trajectory.

In the case of the anti-clockwise tank’s motion, figure 6.3(a)-(b), the swirling wave travels in the
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same direction as the container, but the change of container’s motion direction induces a flow

perturbation sufficient to produce a robust counter-directed wave, if the latter corresponds

to a system’s stable solution. We indeed observe in the case of α= 0.5 that the wave, though

of smaller amplitude, is still travelling from the left to the right-hand-side of the container’s

front wall despite the reverse of direction in the tank trajectory. This appears glaringly in

figure 6.4, where the two series of free surface snapshots show how the wave’s direction of

rotation remains unchanged despite the reversal of the container’s direction of motion. On

the contrary, figure 6.3(c)-(d), the wave switches direction for the large ellipticity α= 0.95 and

is therefore co-directed with the forcing for both container motion directions. These results

provide the first experimental evidence for the existence of counter-swirling solutions and

validate this procedure as suitable to trigger and identify stable counter-directed waves.

6.2 Inviscid asymptotic model

To assess the extent of the validity of an inviscid hydrodynamic model to predict resonant

counter-swirling in a lab-scale experiment, in this section we compare our experimental

results with the theoretical estimates provided by the asymptotic model formalized in Chapter

5 and recalled in the following. This weakly nonlinear model has been extensively compared

Faltinsen et al. (2016) for both purely longitudinal (Marcotte et al., 2023a) and circular (Bon-

garzone et al., 2022a) shaking conditions, and it has been shown to provide consistent results.

See Chapter 5 for a discussion on the methodological analogies and differences as well as on

the pros and cons of the present approach versus the Narimanov-Moiseev multimodal theory

employed in Faltinsen et al. (2016).

6.2.1 Governing equations

In the potential flow limit, i.e. the flow is assumed inviscid, irrotational and incompressible,

the liquid motion is governed by the Laplace equation, subjected to the homogeneous no-

penetration condition at the solid lateral wall, r = R, and bottom z =−h,

∆Φ= 0, ∇Φ ·n = 0, (6.2)

and by the kinematic and dynamic boundary conditions at the free surface z = η (r,θ, t )

(Faltinsen and Timokha, 2009; Ibrahim, 2005),

∂η

∂t
+∇Φ ·∇η− ∂Φ

∂z
= 0. (6.3a)

∂Φ

∂t
+ 1

2
∇Φ ·∇Φ+η= r

(
fx cos(Ωt )cosθ+ fy sin(Ωt )sinθ

)
, (6.3b)

made non-dimensional using the characteristic length R and velocity
√

g R. Φ (r,θ, z, t ) and

η (r,θ, t ) denote potential velocity field and free surface elevation, respectively. Note that, as in
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Faltinsen et al. (2016) and Marcotte et al. (2023a), surface tension effects have been neglected.

By recalling the definition of the orbit aspect ratio, α = ay /ax = fy / fx , so that fx = f and

fy =α f , equation (6.3b) can be conveniently rewritten as

∂Φ

∂t
+ 1

2
∇Φ ·∇Φ+η= r

f

2

(
αA e i(Ωt−θ) +αB e i(Ωt+θ)

)
+ c.c. , (6.4)

with c.c. denoting the complex conjugate and with αA = (1+α)/2 and αB = (1−α)/2 two

auxiliary orbit parameter.

6.2.2 Multiple time-scales weakly nonlinear analysis

The weakly nonlinear multiple timescale analysis formalized in Chapter 5 is based on the

following asymptotic expansion for the flow quantities,

q (r,θ, z, t ) = {
Φ,η

}T = q0 +εq1 +ε2q2 +ε3q3 +O
(
ε4) , (6.5)

and on the assumption of a small forcing amplitude of order f = ε3F , which is justified by

the fact that close to the resonance Ω ≈ω0, even a small forcing will induce a large system

response. We then allow for a small frequency detuning with respect to the first system’s

natural frequency, ω0, such that Ω =ω0 +λ, with λ= ε2Λ, ε a small parameter ¿ 1 and the

new auxiliary parameters F andΛ assumed of order O(1). Note that the ε0-order solution, q0

represents the rest state, for whichΦ0 and η0 are simply zero.

Given the azimuthal periodicity of the forcing term on the right-hand-side of (6.4), i.e. m =±1

(with m a so-called azimuthal wavenumber), we postulate a leading order solution as the sum

of two counter-propagating travelling waves

q1 (r,θ, z, t ) = A1 (T2) q̂A1
1 (r, z)e i(ω0t−θ) +B1 (T2) q̂B1

1 (r, z)e i(ω0t+θ) + c.c. . (6.6)

with c.c. denoting the complex conjugate. As typical of multiple timescale analyses (Nayfeh,

2008b; Whitham, 1974), the complex amplitudes A1 and B1, functions of the slow time scale

T2 = ε2t and still undetermined at this stage of the expansion, describe the slow time amplitude

modulation of the two oscillating waves and must be determined at a higher order of the

asymptotic expansion.

The natural frequency ω0 and structure q̂A1
1 (and q̂B1

1 ) assume the meaning of eigenvalue

and associated eigenmode of the leading order linearized sloshing operator, whose matrix

compact form can be written as (iω0B−Am=±1) q̂A1,B1
1 = 0 (see Viola and Gallaire (2018),

Bongarzone et al. (2022a) and Marcotte et al. (2023a) for the expression of B and Am). As

in Bongarzone et al. (2022a), those matrices are numerically discretized in space by means

of a Gauss-Lobatto-Chebyshev pseudo-spectral collocation method with a two-dimensional

mapping implemented in Matlab, which is analogous to the method described in Viola and

Gallaire (2018) and Bongarzone et al. (2021c).

By pursuing the expansion to the second order in ε, one obtains a linear system forced by

second-order non-linear terms produced by combinations of the two leading order waves
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Figure 6.5 – (a) First-order and (b)-(e) second-order free surface deformations. Top: top-view
of the full surface deformations, reconstructed according to the corresponding azimuthal
periodicity and shown for t = 0, i.e. η̂A1,B1

1 (r )cosmθ. Bottom: interface as a function of the

radial coordinate only and at θ = 0, e.g. η̂A1,B1
1 (r ). The first-order solution is normalized with

the amplitude and phase of the contact line elevation (at r = 1), such that the free surface
η

A1,B1
1 is purely real, whereas the potential velocity field Φ̂A1,B1

1 is purely imaginary. Note
that, owing to the symmetries of the problem, the system admits the following invariant

transformation:
(
q̂,+m, iω0

)−→ (
q̂,−m, iω0

)
, so that η̂A1

1 = η̂B1
1 , η̂|A1|2

2 = η̂|B1|2
2 and η̂

A2
1

2 = η̂B 2
1

2 . In
other words, only part of the first and second-order responses need to be computed explicitly.

through, e.g., ∇Φ1 ·∇Φ1/2 in the dynamic condition and ∇Φ1 ·∇η1 in the kinematic equation.

These forcing terms, F̂
i j
2 , are proportional to A2

1 and B 2
1 (second harmonics), to |A1|2 and

|B1|2 (steady and axisymmetric mean flow corrections) and to A1B1 and A1B 1 (cross-quadratic

interactions), and therefore they call for a second-order solution in the form

q2 = |A1|2q̂A1 Ā1
2 +|B1|2q̂B1B̄1

2 +
(

A2
1q̂A1 A1

2 e i2(ω0t−θ) +B 2
1 q̂B1B1

2 e i2(ω0t+θ) + c.c.
)

(6.7)

+
(

A1B1q̂A1B1
2 e i2ω0t + A1B 1q̂A1B 1

2 e−i2θ+ c.c.
)

.

None of the associated forcing terms being resonant, each spatial structure, q̂i j
2 (r, z) can

be computed numerically as described in Bongarzone et al. (2022a) by simply inverting the

corresponding linear operator, e.g.

q̂A1 A1
2 = (−A0)−1 F̂

A1 A1

2 , q̂A1 A1
2 = (i2ω0B−A−2)−1 F̂

A1 A1

2 , (6.8)

q̂A1B1
2 = (i2ω0 −A0)−1 F̂

A1B1

2 , q̂A1B 1
2 = (−A−2)−1 F̂

A1B 1

2 .

The resulting structures are shown in figure 6.5 in terms of free surface deformations.

We now move forward to the ε3–order problem, which is once again a linear problem forced

by combinations of the first (6.6) and second order (6.7) solutions, produced by third order

non-linearities through, e.g., (∇Φ1 ·∇Φ2 +∇Φ2 ·∇Φ1)/2 in the dynamic condition or ∇Φ1 ·
∇η2 +∇Φ2 · ∇η1 in the kinematic equation, as well as by the slow time-T2 derivative of the
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leading order solution and by the external forcing, which was assumed of order ε3:

(∂t B−Am)q3 =F 3 =−∂A1

∂T2
Bq̂A1

1 e i(ω0t−θ) − ∂B1

∂T2
Bq̂B1

1 e i(ω0t+θ) (6.9)

+|A1|2 A1F̂
|A1|2 A1

3 e i(ω0t−θ) +|B1|2B1F̂
|B1|2B1

3 e i(ω0t+θ)

+|B1|2 A1F̂
|B1|2 A1

3 e i(ω0t−θ) +|A1|2B1F̂
|A1|2B1

3 e i(ω0t+θ)

+αA FF̂
F
3 e i(ω0t−θ)e iΛT2 +αB FF̂

F
3 e i(ω0t+θ)e iΛT2

+N.R.T.+ c.c.,

with F̂
F
3 = {0,r /2}T and where N.R.T. stands for non-resonating terms. The latter terms are

not strictly relevant for further analysis and can therefore be neglected. The arbitrariness on

amplitudes A1 and B1 is fixed by requiring that secular terms do not appear in the solution

to equation (6.9), where secularity results from all resonant forcing terms in F 3 (see Chapter

4 for its explicit expression), i.e. all terms sharing the same frequency and wavenumber

of q1, e.g. (ω0,m =±1), and in effect, all terms explicitly written in (6.9). It follows that a

compatibility condition must be enforced through the Fredholm alternative (Friedrichs, 2012),

which imposes the amplitudes A = εA1e−iλt and B = εB1e−iλt to obey the following normal

form
dA

dt
=−iλA+ iαAµ f + iν|A|2 A+ iξ|B |2 A, (6.10a)

dB

dt
=−iλB + iαBµ f + iν|B |2B + iξ|A|2B , (6.10b)

where the physical time t = T2/ε2 has been reintroduced and where forcing amplitude and

detuning parameter are recast in terms of their corresponding physical values, f = ε3F and

λ= ε2Λ=Ω−ω0, so as to eliminate the small implicit parameter ε (Bongarzone et al., 2021a,

2022b).

The values of the normal form coefficients µ, ν and ξ as a function of the non-dimensional

fluid depth, H = h/R, are reported in Appendix 6.5.1. These coefficients, which turn out to

be real-valued quantities due to the absence of dissipation, are computed as scalar products

between the adjoint mode,
(
q̂A1†

1 , q̂B1†
1

)
, associated with

(
q̂A1

1 , q̂B1
1

)
, and the third order resonant

forcing terms:

iI µ=< q̂A1†
1 ,F̂

F
3 >=

∫ 1

0
(r /2) η̂

A1†
1 r dr, (6.11a)

iI ν=< q̂A1†
1 ,F̂

|A1|2 A1

3 >=
∫ 1

0

(
η̂

A1†
1 F̂

|A1|2 A1
3dyn

+ Φ̂A1†

1 F̂
|A1|2 A1
3kin

)
r dr, (6.11b)

iI ξ=< q̂A1†
1 ,F̂

|B1|2 A1

3 >=
∫ 1

0

(
η̂

A1†
1 F̂

|B1|2 A1
3dyn

+ Φ̂A1†

1 F̂
|B1|2 A1
3kin

)
r dr, (6.11c)

where

I =< q̂A1†
1 ,Bq̂A1

1 >=
∫ 1

0

(
η̂

A1†
1 Φ̂

A1
1 + Φ̂A1†

1 η̂
A1
1

)
r dr. (6.12)
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Here
(
q̂A1†

1 , q̂B1†
1

)
=

(
q̂

A1

1 , q̂
B1

1

)
, since the inviscid problem is self-adjoint with respect to the

Hermitian scalar product < a,b >= ∫
V a ·bdV , with a and b two generic vectors (see Viola et al.

(2018) for a thorough discussion and derivation of the adjoint problem).

For the sake of brevity, we do not report the expression of the various forcing terms. As an

example, the full expression of F̂
|A1|2 A1
3ki n

is given in Chapter 4. The other forcing terms are

calculated analogously.

6.2.3 Phenomenological damping coefficient

Consistently with the inviscid analysis of Faltinsen et al. (2016), the system of amplitude

equations (6.10a)-(6.10b) unrealistically predicts counter-waves for α→ 1 (Faltinsen et al.,

2016; Raynovskyy and Timokha, 2020), while the condition α= 1 gives only co-directed waves

(Raynovskyy and Timokha, 2018b; Reclari et al., 2014) (see Appendix 6.5.2 for further details)

This implies that the response curve branching is not a continuous function of α, which is

in contradiction with our experimental evidence reported in the next section. By analogy

with Raynovskyy and Timokha (2020), we, therefore, introduce in equations (6.10a)-(6.10b) a

heuristic damping coefficient, σ, that serves to regularize the limit for α→ 1.

The value of σ is estimated according to the well-known expression (Case and Parkinson, 1957;

Henderson and Miles, 1990; Miles, 1967)

σ= 2k2

Re︸︷︷︸
bulk

+
√

ω0

2Re

(
k cosh2 kH

sinh2kH

)
︸ ︷︷ ︸

surf. contamination

+
√

ω0

2Re

 k

sinh2kH︸ ︷︷ ︸
bottom

+ 1

2

1+ (1/k)2

1− (1/k)2 − kH

sinh2kH︸ ︷︷ ︸
sidewall

 . (6.13)

The damping associated with lowest natural frequency, ω0 = ω0/
√

g /R = p
k tanh(kH) =

1.3547 (with wavenumber k = 1.8412) (Lamb, 1993), in a container of diameter D = 2R =
0.172m filled to a depth H = h/R = 1.744 with distilled water, i.e. ρ = 1000kg/m3, µ =
0.001kg/ms andγ= 0.072N/m, for which Re = ρ

√
g R3/µ= 78952 (Reynolds number), amounts

to σ= 0.0055. Typically the viscous damping rate can be interpreted as a slow damping pro-

cess (Cocciaro et al., 1993; Viola and Gallaire, 2018), i.e. 1/σ ≈ 180, over a faster time scale

represented by the wave oscillation, i.e. 1/ω0 ≈ 0.5. When this hypothesis holds, as in the

present experimental study, the damping coefficient is assumed to be small of order ε2, such

that damping terms as −σA and −σB , both of order ∼ O
(
ε3

)
(A,B ∼ O(ε)), can be phenomeno-

logically added a posteriori to the final inviscid amplitude equations.

Before moving forward, it is worth noticing that expression (6.13) englobes different effects,

i.e. viscous dissipation occurring in the Stokes boundary layers (at the solid lateral and bot-

tom wall), bulk dissipation and possible sources of dissipation associated with free surface

contamination effects (Case and Parkinson, 1957; Henderson and Miles, 1994), but it does not

account for any form of dissipation induced by contact angle dynamics (Bongarzone et al.,

2021c; Dollet et al., 2020; Dussan, 1979; Hocking, 1987; Keulegan, 1959), by wave breaking

and overturning (Raynovskyy and Timokha, 2020) or by Prandtl mass-transport phenomena
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(Faltinsen and Timokha, 2019; Hutton, 1964).

Moreover, as pointed out in Chapter 4, prediction (6.13) is only valid for small-amplitude

capillary-gravity waves, whereas the dissipation rates of forced wave motions are generally

more complex, i.e. it is typically a function of the wave amplitude (Raynovskyy and Timo-

kha, 2020). A more rigorous viscous analysis would indeed produce complex eigenfunctions

and, therefore, complex-valued normal form coefficients (Bongarzone et al., 2022b), e.g.

ν= Re[ν]+ i Im[ν] (same for ξ), so that the effective damping will be asymptotically propor-

tional to the square of the wave amplitude through the cubic term in the amplitude equation,

i.e.
(
σ+ Im[ν] |A|2 + Im[ξ] |B |2) for amplitude A and

(
σ+ Im[ν] |B |2 + Im[ξ] |A|2) for ampli-

tude B .

For these reasons, we do not expect the heuristic damping model to provide an accurate

estimation of the actual amplitude-dependent dissipation of the system, crucial for a correct

prediction of the phase-lag between forcing and the system response (Bäuerlein and Avila,

2021). However, accounting for a damping coefficient σ in equations (6.14a)-(6.14b) is essen-

tial in order to regularize the weakly nonlinear model prediction as the orbit aspect ratio α

approaches 1, i.g. for circular orbits.

6.2.4 Lowest order asymptotic solution

In conclusion, after accounting for the small damping terms −σA and −σB , the lowest order

asymptotic solution governing the close-to-resonance interaction of the two m =±1 counter-

propagating waves is ruled by the following system of complex amplitude equations

dA

dt
=− (σ+ iλ) A+ iµαA f + iν|A|2 A+ iξ|B |2 A, (6.14a)

dB

dt
=− (σ+ iλ)B + iµαB f + iν|B |2B + iξ|A|2B. (6.14b)

The leading order free surface deformation writes

η (r,θ, t ) = η̂A1,B1
1 (r )

(
Ae i(Ωt−θ) +Be i(Ωt+θ)

)
+ c.c. . (6.15)

Given the choice of the mode normalization, for which η̂A1,B1
1 (r = 1) = 1, we can express the

dimensionless contact line elevation, δ (θ, t )/R, at any azimuthal coordinate, e.g. at θ = 0, as

δ (0, t )/R = (A+B)e iΩt + c.c. (6.16)

This quantity will be used in the next section for comparison with the experimental measure-

ments of the stable stationary wave amplitudes. The stationary solutions and their stability

can be computed and predicted from (6.14a)-(6.14b) as explained in Appendix 6.5.2.
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6.3 Comparison with experiments

We now compare, in figure 6.6, our measurements to the asymptotic model (6.14a)-(6.14b).

It is important to note that the comparison is outlined only in terms of steady-state wave

amplitude. In other words, the experimental transient dynamics following the reverse of the

container’s direction of motion is ignored and, more generally, the specific structure of such

an initial perturbation does not enter the theoretical model, as we only look for large time

stationary solutions of equations (6.14a)-(6.14b) with d/d t = 0.

Figure 6.6 shows that at small ellipticity, e.g. α close to 0.10, the amplitude response curve is

similar to that induced by a purely longitudinal forcing (Marcotte et al., 2023a; Royon-Lebeaud

et al., 2007) except that the planar wave solution no longer exists, owing to the preferential

direction of motion, and that the co- and counter-rotating waves are no more equally probable,

with the counter-wave exhibiting a slightly lower amplitude. By increasing the value of α,

the counter-wave displays a decreasing amplitude and the range of frequency for which

irregular motion occurs shrinks down and ultimately vanishes (Faltinsen et al., 2016). For

longitudinal sloshing, irregular motions are the result of an irregular alternation of planar

and swirling dynamics (Royon-Lebeaud et al., 2007). In the context discussed here, irregular

means that both the co- and counter-swirling solutions are unstable and the system exhibits

irregular and chaotic patterns switching between co- and, at a small ellipticity, counter-

swirling dynamics alternating transient intervals of nearly-planar motions. As α approaches 1,

the admissible frequency range associated with counter-waves reduces and it is eventually

suppressed, whereas the frequency range associated with co-directed swirling widens and

covers all of the frequency range at α= 0.95, i.e. approaching the limiting case of a circular

trajectory (α= 1) (Bongarzone et al., 2022a; Reclari et al., 2014). We also observe a decrease in

the wave amplitude at ax = 3mm for α≥ 0.5, occurring just before the jump-down frequency

(see grey boxes in figure 6.6) and which can be tentatively attributed to highly nonlinear effects,

e.g wave breaking leading to the atomization of the wave crests, overlooked by the weakly

nonlinear model.

The experimental steady-state wave amplitudes are in good quantitative agreement with the

theoretical predictions for all ax and α values explored, hence proving the validity of the

inviscid analysis in our regime of operation. The only major limitation of the asymptotic

analysis is intrinsic to the use of a simple phenomenological damping. As the latter does not

depend on the wave amplitude, it cannot accurately predict the phase-lag between forcing and

the system response (Bäuerlein and Avila, 2021). This translates into an imprecise estimation

of the jump-down frequency occurring above resonance and of the frequency range associated

with the counter-swirling, which appears slightly overestimated.

6.4 Conclusion

In this work, we have investigated the sloshing dynamics in the vicinity of the first harmonic

resonance for container elliptic orbits. The amplitude-response curves at different forcing

amplitudes were examined versus the orbit’s aspect ratio. We have reported for the first time
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Figure 6.6 – Non-dimensional wave amplitude, ∆δ = (maxt δ (0, t )−mint δ (0, t ))/2R versus
Ω/ω0 for different values of ax (rows) and α (columns). Markers: experiments (black for co-
and red for counter-waves). The typical dispersion in the measurements is well represented
by the size of the markers. Curves: stable branches predicted by the present WNL theory (solid
for co- and dashed for counter-waves). Vertical dotted lines indicate frequency values at which
experiments have shown irregular motion. Unstable branches are not displayed for the sake
of clarity.
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experimental evidence of the existence of a frequency range where stable swirling can be

counter-directed with respect to the container’s direction of motion. Particularly, our exper-

iments demonstrated the existence of a significant frequency range associated with stable

counter-swirling up to surprisingly high orbit aspect ratios.

Our findings have been rationalised by the asymptotic model formalized in Chapter 5 sup-

plemented with a heuristic damping coefficient, which shows how the close-to-resonant

sloshing dynamics for any container’s elliptic-like orbit is well represented by four degrees

of freedom only. This suggests that generalising the resonantly forced spherical pendulum

(Miles, 1984c) could provide a suitable mechanical analogy for this entire family of sloshing

dynamics, thus offering additional room in this archetypical low degrees-of-freedom class of

dynamical systems.

We have discussed how the phenomenological damping is sufficient to resolve the singular

limiting behaviour for α→ 1, but its simplistic estimation does not allow for an accurate

prediction of the jump-down frequency and of the frequency range associated with counter-

swirling. The adequate embedding of dissipative viscous effects is a long-standing problem

in the hydrodynamics community and still represents a current key challenge in modelling

sloshing dynamics. The use of machine learning algorithms has been recently suggested as

a pursuable approach (Miliaiev and Timokha, 2023), but their use obviously requires the a

priori knowledge of an experimental dataset for training. Therefore, future perspectives of this

work could include the extension of the weakly nonlinear model to a viscous framework in the

same spirit as Bongarzone et al. (2022b). Although the latter presently hinges on the subtle

modelling of the moving contact line dynamics, such an extension is desirable, as it would

enable one to better quantify the overall system dissipation and also to predict the viscous

streaming experimentally observed in orbitally shaken containers (Bouvard et al., 2017).

6.5 Appendix

6.5.1 Values of the normal form coefficients

In table 6.1 we report the values of the normal form coefficients,µ, ν and ξ appearing in (6.14a)-

(6.14b) as a function of the non-dimensional fluid depth H = h/R. Note that our experiments

have been performed at a fluid depth H = 1.744.

For completeness we also report the value of the system’s lowest natural frequency ω0, which

satisfies the well-known dispersion relation for gravity waves ω0 =ω0/
√

g /R =p
k tanh(kH)

(with k = 1.8412) Lamb (1993). We do not report the value of the damping coefficient σ as a

function of H , since for H ≥ 1 the fluid depth does not significantly affect its value estimated

according to (6.13).
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H = h/R 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.744
µ -0.279 -0.280 -0.281 -0.282 -0.283 -0.283 -0.283 -0.283
ν 1.414 1.407 1.406 1.407 1.409 1.410 1.411 1.412
ξ -7.487 -7.914 -8.101 -8.211 -8.281 -8.328 -8.359 -8.369
ω0 1.334 1.341 1.346 1.349 1.352 1.353 1.354 1.355

Table 6.1 – Value of the normal form coefficients appearing in (6.14a)-(6.14b) computed at
different non-dimensional fluid depths H = h/R (as reported in table 1 of Marcotte et al.
(2023a)) and associated with the lowest natural frequency mode. The subscript SC was used
in Bongarzone et al. (2022a) and Marcotte et al. (2023a) to indicate the shape of the associated
free surface response close to harmonic resonance, initially denominated single-crest (SC)
by Reclari et al. (2014). Here the subscript SC has been omitted, but in practice, µ, ν and ξ

coincide with µSC , νSC and ξSC in Marcotte et al. (2023a). For completeness, we also report the
value of the system’s lowest natural frequency ω0. The bold values correspond to those used in
the main document for comparison with experiments.

6.5.2 Stationary wave amplitude solutions and their stability

By turning (6.14a)-(6.14b) into polar coordinates, i.e. A = |A|e iΦA and B = |B |e iΦB , we can split

real and imaginary parts, hence obtaining

d|A|
dt

=−σ|A|+αAµ f sinΦA , (6.17a)

|A|dΦA

dt
=−λ|A|+αAµ f cosΦA +ν|A|3 +ξ|B |2|A|, (6.17b)

d|B |
dt

=−σ|B |+αBµ f sinΦB , (6.17c)

|B |dΦB

dt
=−λ|B |+αBµ f cosΦB +ν|B |3 +ξ|A|2|B |. (6.17d)

Let us then decompose amplitudes and phases as the sum of stationary values plus time-

dependent small perturbations of order ε¿ 1.

y (t ) =


|A| (t )

ΦA (t )

|B | (t )

ΦB (t )

=


a0

φA,0

b0

φB ,0

+ε


a1 (t )

φA,1 (t )

b1 (t )

φB ,1 (t )

= y0 +εy1 (t ) = y0 +ε
(
ŷ1e st +c.c.

)
, (6.18)

with s = sR + isI ∈C an eigenvalue and c.c. denoting the complex conjugate part of the small

linear perturbation. The substitution of (6.18) in (6.17a)-(6.17d) and the linearization around

y0, lead to two problems at order ε0 and ε, respectively. As the nonlinear system of equations at

order ε0 does not admit an analytical solution, we apply a numerical procedure after rewriting
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Chapter 6. Swirling against the forcing: evidence of stable counter-directed sloshing
waves in orbital-shaken reservoirs

the problem in the form:

F = 0 =



αAµ f sinφA,0 −σa0,

αAµ f cosφA,0 −a0
(
λ−νa2

0 −ξb2
0

)
,

αBµ f sinφB ,0 −σb0,

αBµ f cosφB ,0 −b0
(
λ−νb2

0 −ξa2
0

)
.

(6.19)

System (6.19) is then solved in Matlab function using the built-in function fsolve and pre-

scribing some initial guesses (ig) for
(
ai g

0 ,φi g
A,0,bi g

0 ,φi g
B ,0

)
. In practice, we provide in input the

external control parameters, Ω, ax = ax /R and α, whereas the associated combination of

stationary amplitudes and phases,
(
a0,φA,0,b0,φB ,0

)
are computed as outputs.

In the following we study the stability properties of these steady-state amplitude and phase

solutions. Given the ansatz y1 (t ) = ŷ1e st +c.c., at order ε the linearized and unsteady system,

describing the evolution of small amplitude perturbations around the stationary states can be

written in a matrix form as

sMŷ1 = Kŷ1, (6.20)

with matrices M and K reading

M =


1 0 0 0

0 a0 0 0

0 0 1 0

0 0 0 b0

 , K =


K11 K12 0 0

K21 K22 K24 0

0 0 K33 K34

K41 0 K43 K44

 , (6.21)

ŷ1 =
(
â1, φ̂A,1, b̂1, φ̂B ,1

)T
and

K11 =−σ, K33 =−σ, (6.22a)

K12 =αAµ f cosφA,0, K34 =αBµ f cosφB ,0, (6.22b)

K21 =−λ+3νa2
0 +ξb2

0, K43 =−λ+3νb2
0 +ξa2

0, (6.22c)

K22 =−αAµ f sinφA,0, K44 =−αBµ f sinφB ,0, (6.22d)

K24 = 2ξa0b0, K41 = 2ξa0b0, (6.22e)

We proceed as follows. For each
(
a0,φA,0,b0,φB ,0

)
, solution of (6.19), we obtain four eigenval-

ues s. If the real part of at least one of these eigenvalues is positive, then that configuration,

associated with the set of external parameters (Ω, ax ,α), is labelled as unstable.
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6.5. Appendix
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Figure 6.7 – Close-to-resonance branching diagram illustrated in terms of dimensionless wave
amplitude,∆δ, versus the rescaled forcing frequencyΩ/ω0 and for ax = 3mm. (a)α= 0.99 and
σ= 0; (b) α= 1 and σ= 0; (c) α= 0.99 as in (a), but σ= 0.0055 as prescribed by equation (6.13).
Panel (c) shows how accounting for a small damping coefficient is sufficient to suppress the
counter-directed swirling branch for α= 0.99, hence regularizing the branching diagram in
the limit of α→ 1 clearly highlighted by panels (a) and (b) for σ= 0.

6.5.3 Bifurcation diagram for α→ 1

In this Appendix, we illustrate the role of the phenomenological damping coefficient on

the branching diagram in the limit of α→ 1. Indeed, we have observed in our experiments

that for increasing α, the frequency range associated with the existence of a stable counter-

swirling wave progressively shrinks until it eventually disappears (for āx = 3 mm, this occurs

between α= 0.85 and α= 0.95). However, as discussed in §6.2.3, the inviscid model predicts

an extended branch associated with stable counter-directed waves for any α< 1, e.g. α= 0.99

(see figure 6.7(a) of this document), and no branch at all for α exactly equal to 1 (figure 6.7(b)),

thus indicating that the response curves branching is not a continuous function of α. Instead,

accounting for a damping coefficient, σ, allows for a continuous shrinking of the counter-

directed wave branch, that eventually disappears (figure 6.7(c)), in qualitative agreement with

our experimental observations.
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Introduction

Orderly and intricate structures often emerge from basic building blocks in nature, such as

the crystallization of water molecules into snowflakes or the self-assembly of nucleotides

into complex DNA structures. Sand also piles into patterns of ripples or stripes in the desert,

showcasing a more diligent and efficient creation process than many human approaches that

require piece-by-piece construction.

The assembling of microscale materials has been receiving increasing attention due to

high demands in engineering architectures and systems across various fields such as tissue

engineering (Athanasiou et al., 2013; Gurkan et al., 2012), microelectromechanical systems

(Knuesel and Jacobs, 2010; Stauth and Parviz, 2006), and micro-photonics (Lu et al., 2001).

For instance, tissue engineering is particularly interesting as it involves organizing cells into

repeating units with well-defined 3D architectures to achieve tissue-specific functions neces-

sary for various applications.

In the context of microscale technologies, several methods are nowadays available for creat-

ing various structures using microscale materials. Among those, Chen et al. (2014) presented a

highly adaptable and biocompatible method for generating a wide range of structures using

microscale materials (see figure III.1). By leveraging the topography of liquid surfaces created

by standing waves, they could direct the assembly of a large number of microscale materials

into various ordered and symmetric structures. This liquid-based template can be dynami-

cally reconfigured in a very short time (in the order of a few seconds) and allows for scalable

and parallel assembly. Moreover, they demonstrated that the assembled structures can be

immobilized through chemical- and photo-crosslinking for subsequent use.

In this technique, standing wave patterns are generated by imposing to a partially filled

container a vertical harmonic forcing, with an amplitude above a critical threshold, so as to

trigger parametric Faraday waves (see also Chapter 1). It is therefore crucial to characterize

and predict the hydrodynamics at stake and, particularly, the instability onset of these waves.

In the following, we give an overview of the origin of the Faraday instability. Specifically,

we discuss the classical theoretical frameworks typically employed in the prediction and

characterization of such standing wave patterns, with a particular focus on some important

limitations and oversimplifications of these models. The latter will indeed motivate the studies

carried out in Chapters 7 and 8.
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Sample Loading Self-Assembly
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Figure III.1 – Dynamical reconfigurability of liquid-based templated assembly (figure modified
from (Chen et al., 2014)). (a) Chamber shape effect on the assembly: circular (top) versus
squared (bottom) vessels. (b) A schematic of dynamic reconfiguration of the assembled
structures: (fA, aA) and (fB, aB) are vibrational frequencies and accelerations for the formation
of structures A and B, respectively. (c) Photo crosslinking of the assembled structure. Once the
hydrogels were assembled, crosslinking was performed to immobilize the assembled pattern.
Scale bars: 4 mm.

When a vessel containing liquid undergoes periodic vertical oscillations, the free liquid

surface may be parametrically destabilized with the excitation of standing waves depending

on the combination of forcing amplitude and frequency. The threshold at which the instability

appears is a function of the corresponding mode dissipation and the excited wavelength is

generally specified by the wave whose natural frequency is half that of the parametric excita-

tion, as first noticed by Faraday (1831), who observed experimentally that the resonance was

typically of sub-harmonic nature. This observation was later confirmed by Rayleigh (1883a,b),

in contrast with Matthiessen (1868, 1870), who observed synchronous vibrations of the free

surface with the vertical shaking. The pioneering work of Benjamin and Ursell (1954) gave

momentum to the theoretical investigations of the Faraday instability. Using first principles,

Benjamin and Ursell (1954) determined the linear stability of the flat free surface of an ideal

fluid within a vertically vibrating container displaying a sliding contact line which intersects

orthogonally the container sidewalls. The stability is governed by a system of uncoupled

Mathieu equations (see Chapter 1), which predict that standing capillary-gravity waves appear
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inside the so-called Faraday tongues in the driving frequency-amplitude space, with the wave

response that can be sub-harmonic, harmonic or super-harmonic, hence reconciling previous

observations.

Dissipation in absence of walls

The effect of viscous dissipation, taken to be linear and sufficiently small, was initially intro-

duced heuristically (Lamb, 1993; Landau and Lifshitz, 1959) in the inviscid solution, resulting

in a semi-phenomenological damped Mathieu equation, which was later proven by the viscous

linear Floquet theory of Kumar and Tuckerman (1994b) to be inaccurate, even at small viscosi-

ties. An improved version of the damped Mathieu equation, accounting in a more rigorous

manner for the dissipation taking place in the free surface and bottom boundary layer, was

proposed by Müller et al. (1997), who also noticed in their experiments that the fluid depth can

affect the Faraday threshold, with harmonic responses most likely to be triggered for thin fluid

layers. The viscous theory of Kumar and Tuckerman (1994b), formulated for a horizontally

infinite domain, was found to give good agreement with the small-depth large-aspect-ratio

experiments of Edwards and Fauve (1994), where the influence of lateral walls was negligi-

ble. If indeed, at large excitation frequencies, where the excited wavelength is much smaller

than the container characteristic length, the accessible range of spatial wavenumber is nearly

continuous, in the low-frequency regime of single-mode excitation the mode quantization

owing to the container sidewall becomes a dominant factor, leading to a discrete spectrum of

resonances.

Mobile contact lines

A generalization of the viscous Floquet theory to spatially finite systems can be readily obtained

by analogy with the inviscid formulation of Benjamin and Ursell (1954), as Batson et al. (2013)

recently proposed (see figure III.2(a)). It has however intrinsic limitations as it relies on ideal

lateral wall conditions, i.e. the unperturbed free surface is assumed to be flat, the contact line

is ideally free to slip with a constant zero slope and the stress-free sidewall boundary condition

is required for mathematical tractability, since it allows for convenient Bessel-eigenfunctions

representation. With the noticeable exception of the sophisticated experiments by Batson et al.

(2013) and Ward et al. (2019) using a gliding liquid coating, these assumptions, by overlooking

the contact line dynamics, lead in most experimental cases to a considerable underestimation

of the actual overall dissipation, resulting in many cases in an inaccurate prediction of the

linear Faraday thresholds in small-container experiments (Benjamin and Ursell, 1954; Ciliberto

and Gollub, 1985; Das and Hopfinger, 2008; Dodge et al., 1965; Henderson and Miles, 1990;

Tipton and Mullin, 2004). The complexity lies primarily in the region of the moving contact

line, where molecular, boundary layer and macroscopic scales are intrinsically connected.

Despite the significant efforts devoted by several authors to its theoretical understanding (Case

and Parkinson, 1957; Cocciaro et al., 1993, 1991; Davis, 1974; Hocking, 1987; Jiang et al., 2004;

Keulegan, 1959; Miles, 1967, 1990, 1991; Perlin and Schultz, 2000; Ting and Perlin, 1995), the
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Figure III.2 – (a) Stability map in the driving parameter space computed via Floquet analysis
by Batson et al. (2013) for a bi-layer fluid system in a small cylindrical container and assuming
ideal sidewall conditions: flat static surface and stress-free sidewall, i.e. the viscous boundary
layer at the lateral wall is neglected and the static contact angle is ideally assumed θs = 90◦.
The insets show few free surface shapes. (b) A way to eliminate the static meniscus is to
fill the container up to the rim (brimful). This configuration also allows one to control the
shape and size of the meniscus by slightly underfilling or overfilling the container (nearly-
brimful condition, θs 6= 90◦). An oscillating meniscus emits meniscus waves, which have a
zero threshold, oscillate harmonically with the forcing and appears as concentric ripples.
For forcing amplitudes f above the Faraday threshold, fth , those waves interact with the
parametric waves and produce new patterns.
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comparison with moving-contact-line experiments, due to unavoidable sources of uncertainty

in the meniscus dynamics, remained mostly qualitative, rather than quantitative, requiring

often the use of fitting parameters, e.g. a larger effective fluid viscosity (Henderson and Miles,

1990).

Pinned contact lines

A natural means to get rid of the extra dissipation produced by the contact line dynamics

is to simply pin the free surface at the edge of the sidewall, i.e. the container is filled to

the brim (brimful condition), as shown in figure III.2(b)). In such a condition, the overall

dissipation is ruled by that occurring in the fluid bulk and in the Stokes boundary layers at

the bottom and at the solid lateral walls, where the fluid obeys the classic no-slip boundary

condition, relaxing the stress-singularity at the contact line (Davis, 1974; Huh and Scriven,

1971; Lauga et al., 2007; Miles, 1990; Navier, 1823; Ting and Perlin, 1995). Even in the inviscid

context, the problem of a pinned contact line boundary condition is well-posed, as shown

by the seminal works of Benjamin and Scott (1979) and Graham-Eagle (1983), who first

solved the resulting dispersion relation for inviscid capillary-gravity waves with a free surface

pinned at the container brim using a variational approach and a suitable Lagrange multiplier.

Since then, several semi-analytical techniques, often combining an inviscid solution with

boundary layer approximations and asymptotic expansions accounting for viscous dissipation,

have been therefore developed to solve the pinned contact line problem, for example in

cylindrical containers (Henderson and Miles, 1994; Kidambi, 2009b; Martel et al., 1998; Miles

and Henderson, 1998; Nicolás, 2002, 2005). The resulting predictions of natural frequencies

and damping coefficients of these capillary-gravity waves, in contradistinction with the case

of a moving contact line, showed a remarkable agreement with experimental measurements

(Henderson and Miles, 1994; Howell et al., 2000).

Ubiquity of Meniscus waves

Within the framework of the Faraday instabilities, this pinned contact line condition can be

reached by carefully filling up the vessel to the brimful condition, as done by Douady (1990)

and Edwards and Fauve (1994), among others. Nevertheless, as noticed by Bechhoefer et al.

(1995), these delicate experimental conditions are not always perfectly achieved, leading to the

presence of a minute meniscus. As mentioned for instance by Douady (1990), the meniscus

cannot remain steady upon the oscillating vertical motion of the vessel, which results in the

emission of travelling waves from the sidewall to the interior. Irrespective of the pinned or

free-edge nature of the contact line, these so-called meniscus waves are synchronized with the

excitation frequency. They are not generated by the parametric resonance, but rather by the

modulation of the gravitational acceleration resulting in an oscillating capillary length. They

do not need to overcome a minimal threshold in forcing amplitude to appear, are therefore

observable in the whole driving frequency-amplitude space and are well described by a purely

linear response, i.e. at sufficiently small forcing amplitude, the meniscus-wave amplitude is
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lc ≈ ( γ/ρg )1/2

f cos(Ωt)

Meniscus 
Waves

oscillating capillary length

oscillating 
meniscus

(a) (b)

Figure III.3 – (a) A meniscus, the typical length of which is the capillary length lc =
(
γ/ρg

)1/2,
with γ the liquid surface tension, ρ the liquid density and g the gravity acceleration, is always
excited by a vertical oscillation. When the cell goes up, the effective gravity is increased and
the meniscus length decreases. So it emits a surface wave in order to preserve the mass. For
a vertical oscillation of the vessel, the meniscus thus produces an isochronous wave. (b)
Photograph of a wave emitted by the meniscus of an oil layer of depth h = 2mm, in a square
cell 80×80×5mm2, at a forcing frequency of 20Hz, visualized by the vertical reflection of a
light beam. The waves are clearly generated from the boundaries and quickly damped so that
the center of the cell is still flat. Without any meniscus, the surface remains flat even during
vertical oscillation (Douady, 1990).

proportional to the external forcing amplitude.

As stated by Douady (1990), edge waves constitute a new time-dependent base state on which

the instability of parametric waves may develop, possibly blurring the experimental detec-

tion of the true Faraday thresholds (see figure III.3). This has led researchers to attempt to

suppress edge waves by selecting large-aspect-ratio containers where sidewall effects are neg-

ligible, using sloping sides or shelf conditions to mitigate edge waves by impedance matching

(Bechhoefer et al., 1995), or employing highly viscous fluid which damps out these waves

(Bechhoefer et al., 1995; Douady, 1990).

With interests in pattern formation, pure meniscus-waves-patterns were investigated for

themselves by Torres et al. (1995), while complex patterns originated by the coupling of

meniscus and Faraday waves were recently described by Shao et al. (2021a,b) for small circular-

cylinder experiments. A discussion about harmonic Faraday waves disturbed by harmonic

meniscus waves is also outlined in Batson et al. (2013), where the presence of edge waves in

a small circular-cylinder-bilayer experiment leads to an imperfect bifurcation diagram, also

referred to as a tailing effect by Virnig et al. (1988), who analyzed sub-harmonic responses

only. Interestingly, in some cases, e.g. liquid-based biosensors for DNA detection (Picard and

Davoust, 2007), tunable small-amplitude stationary waves as meniscus waves are actually

desired and preferred to saturated larger-amplitude Faraday waves. In such applications, a

starting brimful condition, having a contact line fixed at the brim, is ideal since the effective

static contact angle at the wall and hence the size and shape of the static meniscus, which will

emit edge waves under vertical excitations, can be adjusted simply by increasing or decreasing
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the bulk volume (nearly–brimful condition, see figure III.2(b)).

Although the non-conventional eigenvalue problem for natural frequencies and damping

coefficients of pinned-contact-line capillary-gravity waves was tackled by several authors

mentioned above and in spite of the vastness of literature focused on Faraday waves, there is a

lack of a comprehensive theoretical framework for the investigation of such a configuration

within the context of Faraday instability.

An important exception is the work of Kidambi (2013). Assuming inviscid Faraday waves in

a brimful cylinder with an ideally flat static free surface, he represented the problem using

appropriate modal solutions followed by a projection on a test function space and showed

that pinned contact line condition resulted in an infinite system of coupled Mathieu equa-

tions, unlike the classic case of an ideal moving contact line (Benjamin and Ursell, 1954).

Nevertheless, viscosity, crucial for an accurate prediction of the Faraday threshold and the

associated emergence of the standing wave pattern, was not included in the analysis, nor

was the presence of a static meniscus and its consequent emission of meniscus waves. Some

attempts to include meniscus modifications to the Faraday thresholds have been made by

several authors by including periodic inhomogeneities (Ito et al., 1999; Tipton, 2003) and

phenomenological terms (Lam and Caps, 2011) to an ad hoc damped Mathieu equation.

Following this literature survey, the purpose of Chapter 7 is to take one more step in the

direction undertaken by Kidambi (2013), by rigorously accounting for (i) viscous damping,

(ii) a pinned contact line and (iii) the presence of a static meniscus at rest. As mentioned

above, a contact angle different from 90 degrees not only results in a static meniscus but also

induces the emission of meniscus waves as the static meniscus shape is no longer a solution

to the forced problem, even below the Faraday threshold. A Floquet-inspired linear theory à

la Kumar and Tuckerman (1994b) cannot be pursued, as perturbations develop around an

oscillating base flow. In contrast, we propose to use the weakly nonlinear approach (WNL) to

approximate the linear Faraday bifurcations, although it is expected to involve cumbersome

calculations.

Weakly nonlinear analysis

Weakly nonlinear analyses (Chen and Vinals, 1999; Douady, 1990; Henderson and Miles, 1990;

Jian and Xuequan, 2005; Meron and Procaccia, 1986; Miles, 1984b; Milner, 1991; Nagata, 1989;

Nayfeh, 1987; Rajchenbach and Clamond, 2015a; Skeldon and Guidoboni, 2007; Zhang and

Vinals, 1997) have indeed been widely used in the context of Faraday instabilities to study

the wave amplitude saturation via super and subcritical bifurcations, as well as to investigate

pattern and quasi-pattern formation (Edwards and Fauve, 1994; Stuart and Fauve, 1993) or

spatiotemporal chaos (Ciliberto and Gollub, 1985; Gluckman et al., 1993), arising when two

modes with nearly the same frequency share the same unstable region in the parameter space

and strongly interact. In contradistinction to these previous studies, the presence of a static

meniscus calls for a WNL approach not only to estimate the wave amplitude saturation in
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the weakly nonlinear regime but also to predict the Faraday threshold. Hence, with regard to

cylindrical straight-sidewalls and sharp-edged containers, as the one considered by Shao et al.

(2021b), we derive a WNL model capable of simultaneously accounting for viscous dissipation,

static meniscus and meniscus waves, thus allowing us to predict their influence on the linear

Faraday threshold for standing capillary-gravity waves with pinned contact line as well as

their saturation to finite amplitude. Following the recent experimental evidence of Shao et al.

(2021b), we focus on single-mode sub-harmonic resonances. To this end, the full system of

equations governing the fluid motion is solved asymptotically by means of the method of

multiple timescales, involving a series of linear problems, which are solved numerically. The

theoretical model results in a final amplitude equation for the wave amplitude, B , whose form

corresponds to that derived by Douady (1990) using symmetry arguments solely and keeping

low order terms only,

dB

d t
=− (σ+ iΛ/2)B +ζF B∗+ν|B |2B.

where σ is the damping coefficient, Λ is the frequency-detuning parameter and the star

symbol denotes the complex conjugate. This equation correctly predicts the existence of a

so-called sub-harmonic Faraday tongue in the driving frequency-amplitude (i.e. theΩd -Fd )

plane. Within the tongue, the forced response driven atΩd is linearly unstable and a solution

oscillating ω (which is sufficiently close toΩd /2) emerges. The equation above is indeed valid

whatever the shape of the static surface, mode structure and the boundary condition are, but

the normal form coefficients ζ and ν, which account for the effect of the static contact angle

and which are complex values owing to the presence of viscosity, are here formally determined

in closed form from first principles and computed numerically.

Faraday waves in Hele-Shaw cells

When it comes to Faraday waves in Hele-Shaw cells, it is even more crucial to pay close

attention to the treatment of the sidewall and contact line conditions, as these factors play a

dominant role in this configuration.

Recent Hele-Shaw cell experiments have enriched the knowledge of Faraday waves (Faraday,

1831). Researchers have uncovered a new type of highly localized standing waves, referred

to as oscillons, that are both steep and solitary-like in nature (Rajchenbach et al., 2011) (see

figure III.4(a,b)). These findings have spurred further experimentations with Hele-Shaw cells

filled with one or more liquid layers, using a variety of fluids, ranging from silicone oil, and

water-ethanol mixtures to pure ethanol (Li et al., 2018b) (figure III.4(c)). Through these experi-

ments, new combined structures produced by triadic interactions of oscillons were discovered

by Li et al. (2014) (figure III.4(d,e)). Additionally, another new family of waves was observed

in a cell filled solely with pure ethanol and at extremely shallow liquid depths (Li et al., 2016,

2015) (figure III.4(f)).
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Figure III.4 – (a) Even and (b) odd standing solitary waves. Driving frequency, 11Hz; vibration
amplitude, 4.1mm; the wave amplitudes are of the order of 1.2cm (Rajchenbach et al., 2011).
(c) The wave profile of two coupled Faraday waves observed in a two layers system of pure
ethanol (depth d1 = 4mm) and silicone oil (depth d2 = 8mm) in the case of a forcing frequency
of 18Hz and acceleration 16m/s2 (Li et al., 2018b). (c,d) High localization of oscillons. Experi-
ments were performed in 15% ethanol-water solution at a frequency of 18Hz, an acceleration
amplitude of 20.503m/s2, and a fluid depth of 2cm. The right oscillon preserves the same
structure in the (d) and (e). The left oscillon is single-peaked in the (d) but becomes double-
peaked in the (e) by additional disturbance of the free surface (Li et al., 2014). (a)-(e) are
experimental time snapshots. (f) Snapshots of the Faraday wave profiles in extreme shallow
depth (2mm) and observed for absolute ethanol at a forcing frequency of 18Hz and forcing
acceleration 19.80m/s2 (Li et al., 2015). In the various sub-panels, T denotes the wave period.

These findings represent a new contribution to the understanding of the wave behaviour

in Hele-Shaw configurations. In this regard, it becomes therefore essential to have a reliable

stability theory that can explain and predict the instability onset for the emergence of initial

wave patterns.

Notwithstanding two-dimensional direct numerical simulations (Périnet et al., 2016; Ubal

et al., 2003) have qualitatively reproduced standing wave patterns reminiscent of those ob-

served experimentally (Li et al., 2014), ignoring the effect of internal wall attenuation leads to

an oversimplified model that is not capable of quantitatively predicting the instability regions

(Benjamin and Ursell, 1954; Kumar and Tuckerman, 1994a) and is not suitable for modelling

Hele-Shaw flows. On the other hand, when attempting to perform three-dimensional sim-

ulations of fluid motions within a Hele-Shaw cell, one of the primary challenges that arises

is the high computational cost associated with this task. Due to the small dimension in the

narrow direction, the grid cell size must be set even smaller in order to accurately capture the
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shear dissipation that occurs within the boundary layer. As a result, the computational cost of

performing such simulations rapidly increases.

To overcome these challenges and arrive at a more accurate yet efficient approach for re-

solving the fluid dynamics within this system, researchers have largely invoked the use of

Darcy’s law to treat the confined fluid between two vertical walls as though it were flowing

through a porous medium. When gap-averaging the linearized Navier-Stokes equation, this

approximation, which assumes a steady parabolic flow in the short dimension, translates

into a real-valued damping coefficient σ ∈ R that scales as 12ν/b2, with ν the fluid kinematic

viscosity and b the cell’s gap-size, and which represents the boundary layer dissipation at the

lateral walls. However, Darcy’s model is known to be inaccurate when unsteady and convec-

tive inertias, e.g. through the advection of momentum, are not negligible, such as in waves

(Kalogirou et al., 2016). It is not mathematically straightforward to consistently reintroduce

convective terms in the gap-averaged Hele-Shaw equations (Plouraboué and Hinch, 2002;

Ruyer-Quil, 2001).

Li et al. (2019) applied a Kelvin-Helmholtz-Darcy theory proposed by Gondret and Rabaud

(1997) to reintroduce advection and obtain the nonlinear gap-averaged Navier-Stokes equa-

tions, which have been then implemented in the open-source code developed by (Popinet,

2003, 2009) to simulate Faraday waves in a Hele-Shaw cell. Although this gap-averaged model

has been compared to several experiments showing fairly good agreements, the surface ten-

sion term is still two-dimensional, as the out-of-plane interface shape is not directly taken into

account. This simplified treatment overlooks the contact line dynamics and may sometimes

lead to miscalculations. Advances in this direction were made by Li et al. (2018a), who found

that the out-of-plane capillary forces or curvature should be retained in order to improve the

description of the wave dynamics, as experimental evidence suggests. By employing a more

sophisticated model, coming from molecular kinetics theory (Blake, 1993, 2006; Hamraoui

et al., 2000), to include the capillary contact line motion arising from the small scale of the

gap-size between the two walls of a Hele-Shaw cell, they derived a novel dispersion relation,

which indeed better predicts the observed instability onset.

Unfortunately, they couldn’t exactly predict the exact instability thresholds as some dis-

crepancies were still found. This mismatch was tentatively attributed to factors that are not

accounted for in the gap-averaged model, such as the extra dissipation on the lateral walls

in the elongated direction. Of course, a lab-scale experiment using a rectangular cell cannot

entirely replace an infinite-length model, but if the container is sufficiently long, then this extra

dissipation should be negligible. Other candidates were identified in the phenomenological

contact line model or free surface contaminations.

If these factors can certainly be sources of discrepancies, our guess is that something more

profound could be at the origin of the discordance between theory and experiments in the

first place.

Despite the use of the Darcy approximation is well-assessed in the literature, the choice of a

steady Poiseuille flow to build up the gap-averaged model appears in fundamental contrast

with the unsteady nature of oscillatory Hele-Shaw flows, such as Faraday waves. At low enough

oscillation frequency ω or for sufficiently viscous fluids, the thickness of the oscillating Stokes

216



boundary layer, δ′ =p
2ν/ω, becomes comparable to the cell gap, b, i.e. 2δ′/b ≈ 1: the Stokes

layers over the lateral solid faces of the cell merge and eventually invade the entire fluid bulk.

In such scenarios, the Poiseuille profile gives an adequate flow description, but this requisite

is rarely met in the above-cited experimental campaigns. It appears, thus, very natural to ask

oneself whether a more appropriate description of the oscillating boundary layer impacts the

prediction of stability boundaries.
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Figure III.5 – Womersley velocity profiles (modified figure from San and Staples (2012)) in a
cell of width b and for different Womersley number W o = b

p
2/δ′. δ′ =p

2ν/ω denotes the
Stokes boundary layer thickness and is a function of the fluid kinematic viscosity ν and the
characteristic oscillation frequency of the flow ω. For W o ≤ 2, viscous forces dominate the
flow, and the pulse is considered quasi-static with a parabolic profile. For W o ≥ 2 the inertial
forces are dominant in the central core, whereas viscous forces dominate near the boundary
layer. Thus, the velocity profile gets flattened, and the phase between the pressure and velocity
gets shifted towards the core, with a complete phase opposition in the limit of a plug flow.

The study reported in Chapter 8 is precisely devoted to answering this question by proposing

a revised gap-averaged Floquet analysis, based on the classical Womersley-like solution for

the pulsating flow in a channel (Womersley, 1955) (see figure III.5).

Following the approach taken by Viola et al. (2017), we examine the impact of inertial effects

on the instability threshold of Faraday waves in Hele-Shaw cells, with a focus on the unsteady

term of the Navier-Stokes equations. This scenario corresponds to a pulsatile flow where the

fluid’s motion reduces to a two-dimensional oscillating Poiseuille flow and it seems better

suited than the steady Poiseuille profile to investigate the stability properties of the system.

When gap-averaging the linearized Navier-Stokes equation, this results in a modified damping

coefficient, a function of the ratio between the Stokes boundary layer thickness and the cell’s

gap, and whose complex value will depend on the frequency of the wave response specific to

each unstable parametric region.
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First, we consider the case of horizontally infinite rectangular Hele-Shaw cells by also account-

ing for the same dynamic contact angle model employed by Li et al. (2019), so as to quantify

the predictive improvement brought by the present theory. A vis-à-vis comparison with ex-

periments by Li et al. (2019) points out how the standard Darcy model often underestimates

the Faraday threshold, whereas the present theory can explain and close the gap with these

experiments.

The analysis is then extended to the case of thin annuli. This less common configuration has

already been used to investigate oscillatory phase modulation of parametrically forced surface

waves (Douady et al., 1989) and drift instability of cellular patterns (Fauve et al., 1991). For

our interest, an annular cell is convenient as it naturally filters out the extra dissipation that

could take place on the lateral boundary layer in the elongated direction, hence allowing us

to reduce the sources of extra uncontrolled dissipation and perform a cleaner comparison

with experiments. Our homemade experiments for this configuration highlight how Darcy’s

theory overlooks a frequency detuning that is essential to correctly predict the locations of

the Faraday’s tongues in the frequency spectrum. These findings are well rationalized and

captured by the present model.
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7 Sub-harmonic parametric instability
in nearly-brimful circular-cylinders: a
weakly nonlinear analysis

Remark: this chapter is largely inspired by the publication of the same name.

A. Bongarzone1, F. Viola2, S. Camarri3, F. Gallaire1

1 Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne,

Lausanne CH-1015, Switzerland
2 Gran Sasso Science Institute, Viale F. Crispi, 7, 67100 L’Aquila, Italy

3Dept. of Industrial and Civil Engineering, Università di Pisa, Pisa, Italy

Journal of Fluid Mechanics, 947, A24 (2022)

In lab-scale Faraday experiments, meniscus waves respond harmonically to small-amplitude

forcing without threshold, hence potentially cloaking the instability onset of parametric waves.

Their suppression can be achieved by imposing a contact line pinned at the container brim

with static contact angle θs = 90◦ (brimful condition). However, tunable meniscus waves

are desired in some applications as those of liquid-based biosensors, where they can be

controlled adjusting the shape of the static meniscus by slightly under/over-filling the vessel

(θs 6= 90◦) while keeping the contact line fixed at the brim. Here, we refer to this wetting

condition as nearly-brimful. Although classic inviscid theories based on Floquet analysis have

been reformulated for the case of a pinned contact line (Kidambi, 2013), accounting for (i)

viscous dissipation and (ii) static contact angle effects, including meniscus waves, makes such

analyses practically intractable and a comprehensive theoretical framework is still lacking.

Aiming at filling this gap, in this work we formalize a weakly nonlinear analysis via multiple

timescale method capable to predict the impact of (i) and (ii) on the instability onset of

viscous sub-harmonic standing waves in both brimful and nearly-brimful circular-cylinders.

Notwithstanding that the form of the resulting amplitude equation is in fact analogous to

that obtained by symmetry arguments (Douady, 1990), the normal form coefficients are here

computed numerically from first principles, thus allowing us to rationalize and systematically

quantify the modifications on the Faraday tongues and on the associated bifurcation diagrams

induced by the interaction of meniscus and sub-harmonic parametric waves.

The Chapter is organized as follows. In §7.1 the flow configuration and governing equations
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Chapter 7. Sub-harmonic parametric instability in nearly-brimful circular-cylinders: a
weakly nonlinear analysis
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Figure 7.1 – Sketch of a straight-sidewalls sharp-edged cylindrical container of radius R and
filled to a depth h with a liquid of density ρ and dynamic viscosity µ. The air-liquid surface
tension is denoted by γ. (a) The free surface, η, is represented in a generic static configuration
characterized by a static contact angle θs . (b) Generic dynamic configuration under the
external vertical periodic forcing of amplitude Fd and angular frequency Ωd . The contact
line is pinned and the dynamic angle, oscillating around its static value, θs , is denoted by θ.
(r z)-plane: reference working plane.

are introduced, while the numerical methods and tools employed in the work are presented in

§7.2. In §7.3 we formulate a linear eigenvalue problem for the damping and natural frequency

of viscous capillary-gravity waves with pinned contact line, whose numerical solution is

compared with several previous experiments and theories in Appendix 7.7.1. The WNL model

for sub-harmonic Faraday resonances is formalized in §7.4. A vis-à-vis comparison with recent

experiments by Shao et al. (2021b) with a pure brimful configuration are discussed before

moving to a systematic investigation of meniscus effects. Lastly, for validation purposes, in

§7.5 the modified bifurcation diagram presented in §7.4 is compared for a specific case, i.e.

pure axisymmetric dynamics, with fully nonlinear direct numerical simulation (DNS). Final

comments and conclusions are outlined in §7.6.

7.1 Flow Configuration and governing equations

We consider a cylindrical vessel of radius R and filled to a depth h with a liquid of density ρ and

dynamic viscosity µ (see figure 7.1). The vessel undergoes a vertical periodic acceleration Fd =
AdΩ

2
d , where Ad andΩd = 2π fd are the driving amplitude and angular frequency, respectively.

In a non-inertial reference frame, the fluid experiences a vertical acceleration due to the

unsteady apparent gravitational acceleration gapp (t ) = g
[
1− (

Fd /g
)

cosΩd t
]
. The viscous

fluid motion is thus governed by the incompressible Navier-Stokes equations,

∇·u = 0 ,
∂u

∂t
+ (u ·∇)u+∇p − 1

Re
∆u =−

(
1− Fd

g
cosΩd t

)
êz , (7.1)

where u
(
r,φ, z, t

)= {
ur

(
r,φ, z, t

)
,uφ

(
r,φ, z, t

)
,uz

(
r,φ, z, t

)}T is the velocity field and p
(
r,φ, z, t

)
is the pressure field. Equations (7.1) are made non-dimensional by using the container’s char-

acteristic length R, the characteristic velocity
√

g R and the time scale
√

R/g . The pressure
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7.2. Numerical methods and tools

gauge is set to ρg R. Consequently, the Reynolds number is defined as Re = ρg 1/2R3/2/µ

and the term on the r.h.s. represents the time-modulation of the non-dimensional gravity

acceleration. The domains of validity for r, φ and z are, respectively, r ∈ [0,1], φ ∈ [0,2π] and

z ∈ [−h/R,η
]
, with η

(
r,φ, t

)
the interface coordinate. Then, at z = η we impose the kinematic

and dynamic boundary conditions (b.c.),

∂η

∂t
+ ur |η

∂η

∂r
+

uφ
∣∣
η

r

∂η

∂φ
− uz |η = 0, (7.2a)

− p
∣∣
ηn

(
η
)+ 1

Re

(∇u+∇T u
)∣∣
η ·n

(
η
)= 1

Bo
κ

(
η
)

n
(
η
)

, (7.2b)

where κ
(
η
)

is the free surface curvature, n
(
η
)

is unit vector locally normal to the interface

and Bo is the Bond number defined as Bo = ρg R2/γ, with γ air-liquid surface tension. At the

solid bottom, z =−h/R =−H and sidewall, r = 1, we impose the no-slip b.c., u = 0. Lastly, the

dynamic pinned (or fixed) contact line condition is enforced as

∂η

∂t

∣∣∣∣
r=1

= 0. (7.3)

7.2 Numerical methods and tools

Different numerical approaches are adopted in the present Chapter. The numerical scheme

used in the eigenvalue calculation, §7.3, and in the weakly nonlinear analysis, §7.4, is a

staggered Chebyshev-Chebyshev collocation method implemented in Matlab. The three

velocity components are discretized using a Gauss-Lobatto-Chebyshev (GLC) grid, whereas the

pressure is staggered on Gauss-Chebyshev (GC) grid. Accordingly, the momentum equation

is collocated at the GLC nodes and the pressure is interpolated from the GC to the GLC grid,

while the continuity equation is collocated at the GC nodes and the velocity components are

interpolated from the GLC to the GC grid. This results in the classical PN -PN−2 formulation,

which automatically suppresses spurious pressure modes in the discretized problem (Viola

et al., 2016b; Viola and Gallaire, 2018). A two-dimensional mapping is then used to map the

computational space onto the physical space, which has, in general, a curved boundary due

to the presence of concave or convex static meniscus. Lastly, the partial derivatives in the

computational space are mapped onto the derivatives in the physical space, which depend on

the mapping function. For other details see Heinrichs (2004), Canuto et al. (2007), Sommariva

(2013) and Viola et al. (2018).

Mesh convergence was tested for different refinements, starting from a grid size of Nr =
Nz = 20 up to Nr = Nz = 90 with a progressive increment of 10 GLC nodes in both directions.

Nr and Nz denotes here the number of radial and axial nodes, respectively. A mesh size of

Nr = Nz = 40 was seen to be sufficient to ensure a convergence of the natural frequencies and

damping coefficients, §7.7.1, up to the third digit. However, a mesh Nr = Nz = 80 was required

to ensure the same convergence for the normal form coefficients in the weakly nonlinear
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model, §7.4.

The weakly nonlinear model presented in §7.4 involves a third-order asymptotic expansion

of the full hydrodynamic system introduced in §7.1, that turns out to be very tedious to derive

analytically. Therefore, the linearization and expansion procedures have been fully automated

using the software Wolfram Mathematica, a powerful tool for symbolic calculus, which has

been then integrated within the main Matlab code. The Mathematica codes are provided

in the supplementary material available at link https://doi.org/10.1017/jfm.2022.600 as a

support to the reader.

In §7.5, the results obtained from the weakly nonlinear analysis are compared and validated

for a specific case, i.e. axisymmetric dynamics, with axisymmetric and fully nonlinear direct

numerical simulations (DNS), which have been performed using the finite-element software

COMSOL Multiphysics v5.6. Further details about the specific DNS setting will be given in

§7.5.

7.3 Natural oscillations with pinned contact line and static menis-

cus

Assuming at first the case with zero external forcing, in this section we provide the frame-

work for the numerical study of the damping coefficients and natural frequencies of viscous

capillary-gravity waves with fixed contact line and in the presence of a static meniscus. The

flow field q
(
r,φ, z, t

)= {
u

(
r,φ, z, t

)
, p

(
r,φ, z, t

)}T and the interface η
(
r,φ, t

)
are decomposed

in a static axisymmetric base flow, q0 (z) = {
0, p0 (z)

}T and η0 (r ), and a small perturbation,

q1
(
r,φ, z, t

) = {
u1

(
r,φ, z, t

)
, p1

(
r,φ, z, t

)}T and η1
(
r,φ, z, t

)
, of infinitesimal amplitude ε, i.e.

q = q0 +εq1 and η= η0 +εη1.

7.3.1 Static meniscus

At rest, the velocity field u0 is null everywhere and the pressure is hydrostatic, i.e. p0 = −z.

Therefore, the static configuration is obtained by solving the nonlinear equation associated

with the shape of the axisymmetric static meniscus, η0 (r ),

η0 −
κ

(
η0

)
Bo

= 0. (7.4)

with κ
(
η0

) = (
η0,r r +η0,r

(
1+η2

0,r

)
/r

)(
1+η2

0,r

)−3/2
. At the centerline, r = 0, the regularity

condition η0,r = 0 holds owing to axisymmetry. The shape of the meniscus is obtained by

imposing the geometric relation at the contact line, r = 1,

∂η0

∂r

∣∣∣∣
r=1

= cotθs , (7.5)
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7.3. Natural oscillations with pinned contact line and static meniscus

where θs is a prescribed static contact angle (see also figure 7.1(a)). When θs is set to π/2, then

the static interface appears flat.

7.3.2 Linear eigenvalue problem

Governing equations (7.1) and their boundary conditions (7.2) are then linearized around the

static base flow. It follows that at order ε the velocity and pressure fields satisfy the Stokes

equations

∇·u1 = 0,
∂u1

∂t
+∇p1 − 1

Re
∆u1 = 0, (7.6)

with the linearized kinematic and dynamic free surface boundary conditions (at z = η0)

∂η1

∂t
+ ur,1

∣∣
η0

∂η0

∂r
− uz,1

∣∣
η0

= 0, (7.7)

− p1
∣∣
η0

n
(
η0

)+η1n
(
η0

)+ 1

Re

(∇u1 +∇T u1
)∣∣
η0
·n

(
η0

)= 1

Bo

∂κ
(
η
)

∂η

∣∣∣∣
η0

η1n
(
η0

)
, (7.8)

where n
(
η0

)= {−η0,r ,0,1
}T

(
1+η2

0,r

)−1/2
and

∂κ
(
η
)

∂η

∣∣∣∣
η0

η1 =
(
1+η2

0,r

)
−3rη0,rη0,r r(

1+η2
0,r

)5/2

1

r

∂η1

∂r
+ 1(

1+η2
0,r

)3/2

∂2η1

∂r 2 + 1(
1+η2

0,r

)1/2

1

r 2

∂2η1

∂φ2 (7.9)

is the first order variation of the curvature associated with the small perturbation εη1. The

azimuthal coordinate is denoted by φ. The no-slip boundary condition is imposed at the solid

walls, u1 = 0, while the pinned contact line condition is enforced at the contact line, z = η0

and r = 1,
∂η1

∂t

∣∣∣∣
r=1

= 0. (7.10)

Hence, the linear system can be written in compact form as

(B∂t −A )q1 = 0, with B =
(

I 0

0 0

)
, A =

(
Re−1∆ −∇
∇T 0

)
. (7.11)

We note that the kinematic and the dynamic b.c.s (7.7) and (7.8) do not explicitly appear

in (7.11), but they are imposed as conditions at the interface (Viola and Gallaire, 2018). More

precisely, in the numerical scheme, the kinematic condition governing the state variable

η is implemented as an additional equation dynamically coupled with u1 and p1 in (7.11)

(this is better clarified in Appendix B of Bongarzone et al. (2021c)), whereas the three stress

components of the dynamic condition are enforced as standard boundary conditions in the

corresponding components of the momentum equation. The solution can be then expanded
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in terms of normal modes in time and in the azimuthal direction as

q1
(
r,φ, z, t

)= q̂1 (r, z)eλt e imφ+ c.c. (7.12)

= {
û1r (r, z) , û1φ (r, z) , û1z (r, z) , p̂1 (r, z)

}T eλt e imφ+ c.c.,

η1
(
r,φ, t

)= η̂1 (r )eλt e imφ+ c.c. . (7.13)

Substituting the normal form (7.12)-(7.13) in system (7.11), we obtain a generalized linear

eigenvalue problem,

(λB−Am) q̂1 = 0, (7.14)

where the linear operator Am depends on the azimuthal wavenumber m and q̂1 is the global

mode associated with the eigenvalue λ=−σ+ iω, with σ and ω the damping coefficient and

the natural frequency, respectively, of the (m,n) global mode. Here the indices (m,n) represent

the number of nodal circles and nodal diameters, respectively. Owing to the normal mode

expansion (7.12), we notice that the operator Am is complex since φ derivatives produce im

terms. A complete expansion of the complex operator can be found in Meliga et al. (2009b)

and Viola and Gallaire (2018).

In order to regularize the problem at the axis, depending on the selected azimuthal wavenum-

ber m, different regularity conditions must be imposed at r = 0 (Liu and Liu, 2012; Viola and

Gallaire, 2018),

|m| = 0: û1r = û1φ = ∂û1z

∂r
= ∂p̂1

∂r
= 0, (7.15a)

|m| = 1:
∂û1r

∂r
= ∂û1φ

∂r
= û1z = p̂1 = 0, (7.15b)

|m| > 0: û1r = û1φ = û1z = p̂1 = 0. (7.15c)

Lastly, owing to the symmetries of the problem, system (7.14) with its boundary conditions is

invariant under the(
û1r , û1φ, û1z , p̂1, η̂1,+m,−σ+ iω

)→ (
û1r ,−û1φ, û1z , p̂1, η̂1,−m,−σ+ iω

)
, (7.16)

transformation, so in this section, §7.3, we consider only the case with m > 0. Furthermore,

the following relations hold(
q̂1, η̂1,+m,−σ+ iω

)→ (
q̂∗

1 , η̂∗1 ,−m,−σ− iω
)

, (7.17)

(
q̂1, η̂1,−m,−σ+ iω

)→ (
q̂∗

1 , η̂∗1 ,+m,−σ− iω
)

, (7.18)

(where the star designates the complex conjugate), i.e. the eigenvalues are complex conjugates

and all spectra (±m) in the (σ,ω)-plane are symmetric with respect to the real axis (ω = 0),

but the complex conjugates of the corresponding eigenvectors, except for the axisymmetric
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7.4. Weakly-nonlinear model for sub-harmonic Faraday thresholds with contact angle
effects

Literature survey meniscus-free (θs = 90◦) Acr. with-meniscus (θs 6= 90◦) Acr.

Experimental Henderson & Miles (1994) HM94 Cocciaro et al. (1993) C93
campaigns Howell et al. (2000) H2000 Picard & Davoust (2007) PD07

Henderson & Miles (1994) HM94
Viscous Marte et al. (1998) M98
analyses Miles & Henderson (1998) MH98 Kidambi (2009b) K09

Nicolás (2002) N02
Kidambi (2009b) K09

Graham-Eagle (1983) GE83
Inviscid Henderson & Miles (1994) HM94
analyses Kidambi (2013) K13 Nicolás (2005) N05

Shao et al. (2021b) S21

Table 7.1 – Literature survey on the natural frequencies and damping coefficients of small-
amplitude capillary-gravity waves in lab-scale upright cylindrical containers with pinned
contact line and in both meniscus-free and with-meniscus configurations. The present work
lies within the conditions highlighted by the shaded frames. The case examined by K13 and
S21 will be discussed afterwards in §7.4 within the context of sub-harmonic Faraday waves.

dynamics (m = 0), are not eigenmodes of the same spectrum. The damping coefficients

and natural frequencies of viscous capillary-gravity waves with fixed contact line in both the

meniscus-free and with-meniscus configuration are thus computed by solving numerically

the generalized eigenvalue problem (7.14), as described in §7.2.

With regard to the literature survey outlined in table 7.1, in Appendix 7.7.1 we propose a thor-

ough validation of our numerical tools via comparison with several pre-existing experiments

and theoretical/semi-analytical predictions focusing on both brimful and nearly-brimful

circular-cylinders.

7.4 Weakly-nonlinear model for sub-harmonic Faraday thresholds

with contact angle effects

In this section, the numerical tools presented and validated in §7.3 are employed to formalize a

weakly nonlinear model accounting for contact angle effects, i.e. static meniscus and harmonic

meniscus capillary waves, on the sub-harmonic Faraday instability with pinned contact line.

7.4.1 Presentation

Here, the full system (7.1)-(7.3) is solved through a weakly nonlinear (WNL) analysis based

on the multiple scale method that is valid in the regime of small perturbations of the static

configuration and small external control parameters, namely the driving amplitude and

detuning from the parametric resonance. Let us thus introduce the following asymptotic
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expansion for the flow quantities,

q = {
u, p

}T = q0 +εq1 +ε2q2 +ε3q3 +O
(
ε4) , (7.19)

η= η0 +εη1 +ε2η2 +ε3η3 +O
(
ε4) . (7.20)

In the spirit of the multiple scale technique, we introduce the slow time scale T = ε2t , with t

being the fast time scale at which the free surface oscillates. For sub-harmonic resonances the

system is expected to respond with a frequency equal to half the driving frequency. In order to

determine the boundaries of the instability tongues, we assume the external forcing angular

frequency to be Ωd = 2ω+Λ, where ω is the natural frequency associated with the generic

(m,n) capillary-gravity wave considered andΛ is the detuning parameter. As, by construction,

the WNL analysis is valid close to the instability threshold only, we assume a departure from

criticality to be of order ε2. In terms of control parameters, this assumption translates to the

following scalings for the external forcing amplitude, Fd /g , and detuningΛ,

Fd /g = F = ε2F̂ , Λ= ε2Λ̂. (7.21)

It should be noted that the presence of viscosity leads to a damped ε-order solution q1 (as

discussed in §7.3), whereas standard multiple scale methods apply to marginally stable sys-

tems (Nayfeh, 2008a). Nevertheless, as the Reynolds number is typically high enough, the

damping coefficient results in a slow damping process over fast wave oscillations (see §7.3). In

such a regime, a multiple scale analysis can still be applied by postulating that the damping

coefficient of the (m,n) wave is of order ε2, i.e. σ= ε2σ̂, therefore the (m,n) eigenvalue reads

λ=−ε2σ̂+iω. A simple way to account for this second order departure from neutrality consists

in replacing the leading order operator Am = Am (Re) defined in (7.14), for which q̂1 is not

neutral, but rather stable, by the shifted operator (Meliga et al., 2009b), Ãm = Am + ε2Sm ,

where Sm is the shift operator defined as Sm q̂1 =−σ̂q̂1. The shifted operator Ãm is character-

ized by the same spectra of Am , except that the (m,n) eigenmode q̂1 associated with σ̂ is now

marginally stable, and hence the WNL formalism can be applied. For a thorough discussion

about the formalism of the shift operator see Meliga et al. (2009b, 2012b). Although a different

approach to account for a damped first-order solution was followed by Viola and Gallaire

(2018), leading to a different (but equivalent) asymptotic expansion, we use in this Chapter

the shift operator approach.

Finally, substituting the asymptotic expansions and scalings above in the governing equa-

tions (7.1)-(7.3) with their boundary conditions, a series of problems at the different orders in

ε are obtained.

As anticipated in §7.2, when contact angle effects are included in the analysis, i.e. the initial

static interface is not flat, the third order asymptotic expansion of the full viscous hydro-

dynamic system introduced in §7.1 turns out to be very complex to be derived analytically.

Particularly tedious is the dynamic boundary condition, as it involves free surface boundary

terms, which, within the linearization process, must be flattened at the static interface, η0,
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as well as the full nonlinear curvature. In order to overcome these practical difficulties, the

linearization and expansion procedures have been fully automated using symbolic calcu-

lus within the software Wolfram Mathematica, which has been then integrated within the

main code implemented in Matlab. The corresponding Mathematica codes are provided as

supplementary material available at the link: https://doi.org/10.1017/jfm.2022.600.

7.4.2 Order ε0: static meniscus

At order ε0 the system reduces to the nonlinear equation associated with the shape of the

axisymmetric static meniscus. The velocity field is null, u0 = 0 and the pressure is hydrostatic,

p0 =−z. As described in §7.3.1, the static interface, η0 (r ), is obtained by prescribing a static

contact angle, θs , which enters through the geometrical relation (7.5) imposed at the contact

line.

ε2 A+
1 A+∗

1 A−
1 A−∗

1 F̂ A+
1 A+

1 A−
1 A−

1 A+
1 A−

1 A+
1 A−∗

1
mi j 0 0 0 2m -2m 0 2m
ωi j 0 0 2ω 2ω 2ω 2ω 0

Table 7.2 – Second order nonlinear forcing terms gathered by their amplitude dependency,
and corresponding azimuthal and temporal periodicity

(
mi j ,ωi j

)
. Seven terms have been

omitted as they are the complex conjugates.

7.4.3 Order ε: capillary-gravity waves

At leading order in ε the system is represented by the unsteady Stokes equations (7.6), together

with the kinematic and dynamic boundary conditions (7.7)-(7.8), linearized around the static

base flow q0 =
{

u0, p0
}T = {0,−z}T and η0, and subjected to the no-slip b.c. at the solid walls,

regularity conditions at the axis (7.15a)-(7.15c), and to the pinned contact line condition (7.10):

(
B∂t − Ãm

)
q1 = 0. (7.22)

Within the framework of the Faraday instability, we are interested in a standing waveform

of the solution, which can be seen as a result of the balance of two counter-rotating waves.

Hence, we seek a first-order solution in the form

q1 = A+
1 (T ) q̂A+

1 e i(ωt+mφ) + A−
1 (T ) q̂A−

1 e i(ωt−mφ) + c.c., (7.23)

η1 = A+
1 (T ) η̂A+

1 e i(ωt+mφ) + A−
1 (T ) η̂A−

1 e i(ωt−mφ) + c.c., (7.24)

(η1 takes the same form) that destabilizes the static configuration. A single azimuthal wavenum-

ber m is considered at a time. In (7.23) A+
1 and A−

1 , unknown at this stage of the expansion,

are the complex amplitudes of the oscillating mode q̂A+
1 and q̂A−

1 respectively and they are

functions of the slow time scale T . The eigensolution of (7.22) has been widely discussed in

§7.3 for m > 0. We note in addition that the eigenmode for the −m perturbation is similar to
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that of the +m perturbation, more precisely, it oscillates with the same frequency ω, but it has

the opposite pitch and it rotates in the opposite direction.

7.4.4 Order ε2: meniscus waves, second-harmonics and mean-flow corrections

At order ε2 we obtain the linearized Stokes equations and boundary conditions applied to

q2 =
{

u2, p2
}T and η2, (

B∂t − Ãm
)

q2 =F 2, (7.25)

and forced by a term F 2 depending only on zero-, first-order solutions and on the external

forcing

F 2 = |A+
1 |2F̂

A+A+∗

2 +|A−
1 |2F̂

A−A−∗

2 +
(
F̂F̂

F̂
2 e i(2ωt+Λ̂T ) + c.c.

)
+ (7.26)

+
(

A+2

1 F̂
A+A+
2 e i(2ωt+2mφ) + A−2

1 F̂
A−A−
2 e i(2ωt−2mφ) + c.c.

)
+

+
(

A+
1 A−

1 F̂
A+A−
2 e i2ωt + A+

1 A−∗
1 F̂

A+A−∗

2 e i2mφ+ c.c.

)
.

All terms contributing to the forcing vector F 2 were extracted using symbolic calculus in

Wolfram Mathematica (see supplementary material). The first order solution is made of four

different contributions of amplitude A+
1 , A+∗

1 , A−
1 and A−∗

1 , therefore it generates 10 different

second-order forcing terms, F̂
i j
2 e i(ωi j t+mi jφ), which exhibits a certain frequency and spatial

periodicity, gathered in table 7.2. The two additional terms, F̂
F̂
2 , appearing in the forcing

expression (7.26), come from the spatially uniform axisymmetric external forcing typical of

Faraday waves, whose amplitude was assumed to be of order ε2. All these forcing terms

are non-resonant, as their oscillation frequencies and their spatial symmetries, through the

azimuthal wavenumber, differ from those of the leading order solution (see table 7.2). Hence

no solvability conditions are required at the present order (Meliga et al., 2009b). We can thus

seek for a second-order solution as the superposition of the second-order response to the

external forcing, q̂F̂
2 , and 10 responses q̂i j

2 to each single forcing terms,

q 2 = |A+
1 |2q̂A+A+∗

2 +|A−
1 |2q̂A−A−∗

2 +
(
F̂ q̂F̂

2 e i(2ωt+Λ̂T ) + c.c.
)
+ (7.27)

+
(

A+2

1 q̂A+2

2 e i(2ωt+2mφ) + A−2

1 q̂A−2

2 e i(2ωt−2mφ) + c.c.
)
+

+
(

A+
1 A−

1 q̂A+A−
2 e i2ωt + A+

1 A−∗
1 q̂A+A−∗

2 e i2mφ+ c.c.
)

,

(the same form is assumed for η2) each of which is computed as a solution of a linear forced

problem (
iωi j B− Ãmi j

)
q̂i j

2 = F̂
i j
2 , (7.28)

with mi j and ωi j for
(
i , j

)
from table 7.2 and which can be inverted (non-singular operator) as

long as any of the combinations
(
mi j ,ωi j

)
is not an eigenvalue (none of them has mi j =±m).

As an example, the ε-order eigensurface and some of the various second-order surfaces are
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Figure 7.2 – (a)-(f) Top: real part of the free surface elevation, Re
(
η̂
)

associated with (a) mode
(1,2) and with (b)-(f) some of the corresponding second-order responses for different values
of the static contact angle, θs . The ε-order solution is normalized such that the phase of
the interface at the contact line in φ = 0 is zero and the corresponding slope is one, i.e.
q̂1 → q̂1e−iarctan[η̂1(r=1,0)]/

(
∂η̂1 (r,0)/∂r

∣∣
r=1

)
. Bottom: free surface visualization in terms of

the absolute value of the real part of the interface slope at θs = 45◦. The colormaps were
individually saturated for visualization purposes only. (g)-(m) Same as (a)-(f), but for mode
(3,2). (n)-(s) Same as (a)-(f), but for the axisymmetric mode (0,2). Parameter setting: R =
0.035 m, h = 0.022 m, ρ = 997 kg m−3, µ= 0.001 kg m−1 s−1, γ= 0.072 N m−1, for which Bo =
166.2 and Re = 20437, and a static contact angle θs = 45◦. The light red boxes highlight the
second-order response to the external forcing, i.e. second-order harmonic meniscus waves.

shown in figure 7.2 for three different waves, i.e. (m,n) = (1,2), (3,2) and (0,2). Owing to the

symmetries of the system (given in equation (7.16)), some of the second-order responses

corresponding to the generic (m,n) wave have the same solution with opposite azimuthal

velocity, therefore in figure 7.2 we show only the solutions with different surface shapes.

Furthermore, as can be deduced from figure 7.2(n)-(s), in the axisymmetric case (0,n) all

the responses are axisymmetric with zero azimuthal velocity, thus some of the second order

responses share exactly the same solution. In this case, indeed, the second order solution
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could be formulated a priori as the sum of three terms only, whose amplitudes are proportional

to F̂ , A2
1 (second harmonic) and |A1|2 (mean flow correction), respectively.

Of particular interest is the second-order response to the external forcing, whose interface

shape is highlighted by the red boxes in figure 7.2. With the present scaling, the forcing enters

at second order in the z-component of the momentum equation (see equation (7.1)). If the

initial static interface is assumed to be flat (θs = 90◦), then the response
(
q̂F̂

2 , η̂F̂
2

)
, translates

into a harmonic hydrostatic pressure modulation only, with a free surface remaining flat, i.e.

ûF̂
2 = 0 and η̂F̂

2 = 0, a case classically analyzed in the literature. On the other hand, as shown

in figure 7.2(c), (i) and (p), if a static contact angle θs 6= 90◦ is considered, then the ε0-order

static meniscus induces at order ε2 axisymmetric meniscus capillary waves travelling from

the sidewall to the interior and reflected back, which oscillates harmonically with the external

forcing and with an amplitude proportional to the external forcing amplitude. In the present

WNL analysis, these meniscus waves, which appear as concentric ripples (see figure 7.2(c),

(i) and (p)), as typically observed in experiments (Batson et al., 2013; Shao et al., 2021a,b),

will couple at third order with the first order solution and will contribute to modify both

the linear stability boundaries associated with the sub-harmonic Faraday tongues as well as

the bifurcation diagram, i.e. wave amplitude saturation to finite amplitude. Furthermore,

figure 7.2 clearly shows that a static contact angle θs 6= 90, depending on its value (here only

values of θs < 90◦ have been considered), modifies not only the damping coefficients and

frequencies of the leading order wave (see also figure 7.11 and 7.12), but also its spatial shape

and, as consequence, all the associated second-order responses, whose modifications may

have a significant influence on the corresponding saturation to a finite amplitude.

7.4.5 Order ε3: amplitude equation for standing waves

Lastly, at the ε3-order we derive an amplitude equation for standing waves with a pinned

contact line accounting for weakly nonlinear modifications of the sub-harmonic Faraday

threshold owing to contact angle effects. The problem at order ε3 is similar to the one obtained

at order ε2, as it appears as a linear system,(
B∂t − Ãm

)
q3 =F 3, (7.29)

forced by combinations of the previous order solutions encompassed in F 3, that contains

several nonlinear terms of various space and time periodicities and which we denote as

F̂
i j
3 e i(ωt+mφ). Since many of these terms are resonant, as standard in multiple scale analysis,

in order to avoid secular terms and solve the expansion procedure at the third order, a compat-

ibility condition must be enforced through the Fredholm alternative (Friedrichs, 2012). Such a

compatibility condition imposes the amplitudes A+
1 and A−

1 to obey the following relation

d A±

d t
=−σA±+ζF A∓∗

e iΛt/2 +ν1|A±|2 A±+ν2|A∓|2 A±, (7.30)

230



7.4. Weakly-nonlinear model for sub-harmonic Faraday thresholds with contact angle
effects

where the physical time t = T /ε2 has been reintroduced and where σ = ε2σ̂, F = Fd /g =
ε2F̂ and Λ = ε2Λ̂. By considering the expansion q = q0 + εA1q̂1 . . ., the small parameter ε is

eliminated by defining the amplitude A = εA1, so that everything is recast in terms of actual

physical quantities (Bongarzone et al., 2021a, 2022a). The various coefficients are computed as

scalar products between the adjoint global modes and the resonant forcing terms F̂
i j
3 , whose

analytically complex expressions have been extracted from the third order forcing using the

symbolic calculus tools of Wolfram Mathematica. For instance, the complex coefficient ζ is

evaluated as

ζ=
∫

V û†∗A+
1 · F̂ F̂ A−∗

3,N S r dr dz +∫
η0

û†∗A+
1 · F̂ F̂ A−∗

3,D r dr +∫
η0
ξ†∗A+

F̂ F̂ A−∗
3,K r dr∫

V û†∗A+
1 · ûA+

1 r dr dz +∫
η0
ξ†∗A+

η̂A+
1 r dr

(7.31)

where V denotes the fluid bulk domain, the dagger symbol refers to the adjoint eigenmode, ξ=[
−η0,r

Re

(
∂û1z
∂r + ∂û1r

∂z

)
+

(
−p̂1 + 2

Re
∂û1z
∂z

)]
(see also Viola and Gallaire (2018)) and the subscripts N S ,

D and K designate the forcing components of F̂
F̂ A−∗

3 appearing in the ε3-order Navier-Stokes

equations, dynamic boundary condition and kinematic boundary condition, respectively.

Analogous expressions hold for ν1 and ν2 by replacing F̂
F̂ A−∗

3 with F̂
A+A+∗ A+
3 and F̂

A−A−∗ A+
3 ,

respectively. We notice that the adjoint eigenvector appearing in (7.31) does not need to be

independently calculated. Indeed, Viola and Gallaire (2018) demonstrated that the linear

operator B and Am (the same applies to the shifted operator Ãm) are self-adjoint, i.e. B† =B

and A †
m =Am , with the adjoint eigenvalue being the complex conjugate of the direct one, λ† =

λ∗. Then, from (7.16), (7.17) and (7.18), it follows that for the couple (m,−σ+ iω) associated

with a direct mode, we have the relation(
û∗

1r ,−û∗
1φ, û∗

1z , p̂∗
1 , η̂∗1

)
→

(
û†

1r , û†
1φ, û†

1z , p̂†
1, η̂†

1

)
, (7.32)

which directly provides the desired adjoint mode without any further calculation. We also

underline that due to the symmetry of the solution, the same value of ζ is obtained if one

makes use of the scalar product between the adjoint mode for A−
1 and the forcing term F̂

F̂ A+∗

3

(same for ν1 and ν2).

As anticipated before, the standing wave solution corresponds to the superposition of

two balanced counter-rotating waves of the same amplitude A+ = A− = A. It follows that

system (7.30) reduces to the single amplitude equation

dB

d t
=− (σ+ iΛ/2)B +ζF B∗+ν|B |2B , (7.33)

where the change of variable A = B iΛ/2 has been introduced and where the complex coefficient

ν is taken as the sum of ν1 and ν2. The form of (7.33) is totally equivalent to the normal form

postulated by Douady (1990), using symmetry arguments only, and reported in this thesis in

the introduction of Part III. Its structure indeed does not depend on the boundary conditions

and on the mode shape, nevertheless, its coefficients do. In the present work these complex

coefficients, ζ and ν, as well as the frequency and damping of the wave, ω and σ, are formally

computed by taking into account the full hydrodynamic system, whose solution is exact
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at numerical convergence. The damping coefficient must be small enough, but its value is

numerically computed, rather than estimated heuristically. Most importantly, ζ and ν, through

the WNL formulation presented above, encompass in a formal manner, although within the

assumptions of validity of a single-mode WNL theory, the effect of the static contact angle and

of the coupling with harmonic meniscus waves (MW) on the sub-harmonic Faraday threshold

of standing viscous capillary-gravity waves with pinned contact line.

7.4.6 Linear stability of the amplitude equation: sub-harmonic Faraday tongues

Here we perform the stability analysis of the amplitude equation (7.33), which prescribes

the marginal stability boundaries, typically known as Faraday’s tongues. By turning to polar

coordinates

B = |B |e iΦ, − (σ+ iΛ/2) = c1e iϕ1 , ζ= c2e iϕ2 , ν= c3e iϕ3 , (7.34)

splitting the modulus and phase parts of (7.33) and introducing the change of variable Θ=
Φ−ϕ2/2, we obtain the following system

d |B |
d t

= c1 cos
(
ϕ1

)|B |+ c2 cos(2Θ)F |B |+ c3 cos
(
ϕ3

)|B |3, (7.35)

dΘ

d t
= c1 sin

(
ϕ1

)− c2 sin(2Θ)F + c3 sin
(
ϕ3

)|B |2. (7.36)

Equation (7.35) admits two possible equilibria (d/d t = 0), having |B | = 0 and |B | 6= 0, respec-

tively. We first focus on the stability of the trivial stationary solution, |B | = 0. By eliminating

Θ from (7.35)-(7.36), the linear threshold or marginal stability boundaries (sub-harmonic

Faraday tongues) are readily obtained (Douady, 1990; Rajchenbach and Clamond, 2015a),

F L
th = (

Fd /g
)L

th = c1/c2 −→ F L
th =±|ζ|−1

√
σ2 + (Ωd /2−ω)2, (7.37)

where the relationΛ=Ωd −2ω has been reintroduced and which predicts the lowest threshold,

F L
th,mi n =σ/|ζ|, atΩd = 2ω. The forcing amplitude at which the instability appears is therefore

proportional to its dissipation, ∼σ (note that this is true only for sub-harmonic resonances,

e.g. the threshold for harmonic tongues is expected to scale as ∼ σ1/2, see Rajchenbach

and Clamond (2015a)). Moreover, F L
th depends on the coefficient ζ, which is produced by the

interaction of the first order response, proportional to the amplitude A±, with the second order

response to the external forcing, proportional to F̂ . Therefore, contact angle modifications of

the leading order solution and harmonic meniscus waves (see figure 7.2) enter directly in the

calculation of ζ, whose value contributes to the definition of the marginal stability boundaries.

Presence of a static meniscus, as widely discussed in §7.3, also modifies the natural frequency

ω and the damping σ. Lastly, it is important to note that within the sub-harmonic tongue

(linearly unstable) the signal is periodic with a frequency equal to half the driving frequency,

Ωd /2, whereas out of the tongue (linearly stable) it is periodic with frequencyΩd , owing to the
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Figure 7.3 – Inviscid stability plots associated with modes (1,1) and (1,2) for two different
Bond numbers, i.e. Bo = 1000 and 100, and for a depth h/R = H = 1. The gray-shaded
regions have not been reproduced in this work, but rather they have been simply taken from
figure 10 of K13. Sub-harmonic tongues are denoted by the subscript sh . For computational
reasons, the instability regions (grey shaded) were obtained in K13 by truncating the number
of basis function NK 13 to 2, although convergence of the natural frequencies was achieved
by taking NK 13 = 30, as stated by K13 in his table 1 (with a systematic underestimation of
approximately 5%). The vertical black dash-dot lines correspond to the converged results
reported in table 1 of K13. The blue solid lines correspond to the present numerical prediction
computed through (7.37) for Re = 106, while the colored dash-dot lines denote the present
Faraday tongues shifted by 5%. Black and colored lines have been added on top of the original
figure from K13.

presence of harmonic meniscus waves.

Brimful condition: validation with the inviscid analysis by K13 for θs = 90◦

The most comprehensive investigation of Faraday thresholds with pinned contact line that

the authors are aware of is that of K13 (see table 7.1), who considered the case of a perfect

brimful condition (meniscus-free) in the inviscid limit. Unlike the classic case of an ideal

moving contact line, K13 showed that the pinned contact line problem can be recast into an

infinite system of coupled Mathieu equations taking the following form

d 2y

dτ2 + (P −2Q cos2τ)y = 0, (7.38)

where matrices P and Q, obtained via projection onto the test function space, are in general

not diagonal (for a free contact line P and Q are diagonal, so that (7.38) reduces to (2.14)

of Benjamin and Ursell (1954), i.e. uncoupled Mathieu equations). Three different methods
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(Nayfeh and Mook, 1995) can be used to solve (7.38) , namely, (i) the mapping at a period

(given by the Floquet theory), (ii) the Hill’s infinite determinant method (used by Kumar

and Tuckerman (1994b)) and (iii) the multiple scale method. The first two techniques were

used in K13 and, particularly, the first one was employed in order to describe the so-called

combination resonance tongues (indicated by the black arrows in figure 7.3), which are not

studied in the present work focused on sub-harmonic tongues only (see K13 for a thorough

discussion). The disadvantage of the multiple-scale method is that generally, it is not suitable

for the exploration of a large part of the parameter space, however, as anticipated in the

introduction, the application of the first two techniques is challenging when the initial free

surface is not assumed to be flat. Here we use the inviscid results provided by K13 to validate

the present WNL model for the prediction of sub-harmonic instability onset in the limit of

high Reynolds numbers (e.g. Re is assumed to be ∼ 106 in the present viscous analysis).

A quantitative comparison of the prediction of sub-harmonic Faraday thresholds with results

by K13 is shown in figure 7.3 for θs = 90◦, h/R = H = 1, for two different Bond numbers

and for two non-axisymmetric modes, i.e. (1,1) and (1,2). For computational reasons, the

instability regions (grey shaded) computed by K13 were obtained by truncating the number

of basis function NK 13 to 2, although convergence of the natural frequencies was achieved

by taking NK 13 = 30, as stated by K13 in his table 1, causing a systematic underestimation of

approximately 5%. The vertical black dash-dot lines, corresponding to the converged natural

frequencies reported in table 1 for NK 13 = 30, agree perfectly with the present prediction,

which prescribes the correct slope of the right and left marginal stability boundaries (blue

solid lines). If the present prediction is shifted by -5% (orange dash-dot lines), the results

match. We can hence conclude that the present model is congruent with the analysis by K13

and it prescribes correctly the sub-harmonic Faraday tongues for a pinned contact line case

in the limit of validity of the WNL model, i.e. small external forcing amplitude and small

detuning.

Brimful condition: comparison with recent experiments by S21 for θs = 90◦

From the knowledge of the authors, no systematic calculations of the linear sub-harmonic

Faraday tongues for a pinned contact line and including viscous dissipation are reported in the

literature. With regard to small circular-cylinder experiments, this configuration was recently

studied by Shao et al. (2021b) (S21). By properly filling the container they could reproduce

an initially flat static free surface, which remains stable and flat below the Faraday threshold

and thereby they could derive experimentally the boundaries of the unstable regions. Their

experimental measurements (extracted from figure 4 of S21) are illustrated in figure 7.4(a), as

colored filled circles, together with our numerical prediction from (7.37) (colored solid lines).

Shao et al. (2021b) also employed a Rayleigh-Ritz approach (Bostwick and Steen, 2009) to

estimate numerically the natural frequency in the inviscid limit and this result, which showed

a good agreement with their experiments, is reported for completeness in figure 7.4(a) as

vertical black dash-dot lines.

The present numerical analysis for θs = 90◦ predicts the occurrence of the same sub-
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(m,n) λ90◦
ζ90◦

σ/|ζ|90◦
λ45◦

ζ45◦
σ/|ζ|45◦

(2,1) -0.007+i1.98 -0.005-i0.41 0.016 -0.009+i1.91 -0.006-i0.39 0.022
(0,1) -0.003+i2.17 -0.003-i0.46 0.008 -0.004+i2.12 -0.107-i0.33 0.012
(3,1) -0.008+i2.44 -0.007-i0.47 0.017 -0.011+i2.37 -0.010-i0.47 0.023
(1,2) -0.005+i2.69 -0.003-i0.52 0.010 -0.006+i2.62 -0.006-i0.52 0.012
(4,1) -0.010+i2.86 -0.008-i0.52 0.019 -0.014+i2.78 -0.020-i0.65 0.021
(2,2) -0.008+i3.16 -0.003-i0.56 0.014 -0.009+i3.08 -0.006-i0.59 0.015
(0,2) -0.007+i3.24 -0.003-i0.56 0.012 -0.008+i3.16 -0.008-i0.61 0.013
(5,1) -0.012+i3.28 -0.010-i0.55 0.022 -0.017+i3.18 -0.014-i0.52 0.032
(3,2) -0.010+i3.63 -0.003-i0.58 0.018 -0.012+i3.53 -0.003-i0.66 0.018
(6,1) -0.014+i3.69 -0.010-i0.57 0.025 -0.020+i3.58 -0.015-i0.60 0.034

Table 7.3 – Nondimensional natural frequencies, damping coefficients (λ is the eigenvalue
λ=−σ+ iω) and complex normal form coefficient ζ= ζR + iζI for both θs = 90◦ and θs = 45◦,
associated with the modes shown in figure 7.4 and computed for R = 0.034925 m, h = 0.022 m,
ρ = 1000 kg m−3, µ = 0.001 kg m−1 s−1 and γ = 0.072 N m−1, for which Bo = 165.5 and Re =
20371. The number of points in the radial and axial directions for the GLC grid used is this
calculation is Nr = Nz = 80, for which convergence up to the third digit is achieved.

harmonic single-mode instabilities in the selected frequency window. In agreement with

experimental observations, the viscous WNL analysis prescribes a minimum onset acceler-

ation that is nearly constant for all (m,n)-modes in the range fd ∈ [10,20] Hz with a discrete

spectrum of sub-harmonic resonances. Moreover, the WNL model predicts correctly the

coefficient ζ, which prescribes the slope of the transition curves for all tongues.

All the experimental frequencies are slightly larger than the ones predicted here and this shift

is roughly of the order of +1% for all measurements. It is difficult to attribute a positive +1%

shift to a specific cause, especially because the pinned contact line configuration is known

to produce the largest frequencies among the possible contact line boundary conditions, e.g.

a free contact line. The presence of free surface contamination (surface film) is expected

to slightly increase the rigidity of the free surface, leading to higher resonance frequencies,

but also to larger damping coefficients, which reduce the frequencies (Henderson and Miles,

1990, 1994; Miles, 1967). However, any evidence of surface contamination is reported in S21.

In the present case, such a slight systematic mismatch is more likely to be caused by little

incongruities between numerics and experiments. For instance, in this case, the Bond number

is relatively low, Bo = 165.5, so that little variations in the value of the surface tension or,

alternatively, geometrical tolerances on the container radius could contribute to shift the

tongues slightly.

In S21 the authors report the nominal container radius R = 0.035. We have written to the

authors, who have kindly provided us with the technical drawing of their cylindrical container.

The actual nominal (inner) radius is R = 0.034925m. Unfortunately, the tolerance on the inner

radius is not specified. Nevertheless, given the tolerances specified by the manufacturer on

the outer radius, i.e. ±0.000254m, it is natural to assume at least the same value for the inner

one. In figure 7.4(a) the sub-harmonic tongues computed for the nominal radius are shown as
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Figure 7.4 – (a) Colored solid lines: boundaries of the sub-harmonic Faraday tongues predicted
by (7.37) in the forcing acceleration amplitude-forcing frequency dimensional space,

(
fd ,Fd

)
.

Here the static contact angle was set to θs = 90◦. The colored filled circles correspond to the
original experimental values extracted from figure 4 of S21 for different waves (m,n). The black
dash-dot lines correspond to their inviscid numerical calculation. Parameters: R = 0.034925 m,
h = 0.022 m, ρ = 1000 kg m−3, µ= 0.001 kg m−1 s−1 and γ= 0.072 N m−1, for which Bo = 165.5
and Re = 20371. Colored bands: marginal stability boundaries computed for a container
radius R = (0.034925−0.000254) m (right boundary) and R = (0.034925+0.000254) m (left
boundary). (b) Modification of the linearly unstable regions due to contact angle effects, where
the results for three values of θs , including 90◦ (black dotted lines) as in (a), are compared for a
nominal radius R = 0.035 m.

colored solid lines, whereas the colored bands are associated with the geometrical tolerance

on the container radius. One can see that a value of R = 0.034925−0.000254 = 0.034671m

(right boundaries) is sufficient to produce a +1% frequency shift so to achieve a fairly good

agreement with the experimental measurements. For completeness, the values of the damp-

ing coefficients, natural frequencies and of the normal form coefficient ζ for two different

static contact angles used in figure 7.4 are given in table 7.3.

Nearly-brimful condition: static contact angle effects and meniscus waves modifications

When the value of the prescribed static contact angle is θs 6= 90◦, then the initial static free

surface is not flat, but rather concave (θs < 90◦) or convex (θs > 90◦), and its effects on Faraday

waves can be studied by exploiting the present WNL analysis.
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In §7.3 we discussed how the static meniscus modifies the natural frequencies and damping

coefficients in a non-trivial way depending on the wavenumber of the mode, on the Bond and

Reynolds number and on the fluid depth (Kidambi, 2009b) (K09). Moreover, under vertical

oscillations, the meniscus emits axisymmetric travelling waves (see figure 7.2(c), (i) and (p)),

which, with the WNL scaling adopted in this work, are coupled at third order with the sub-

harmonic parametric waves and hence contribute to alter the instability regions.

With regard to the same configuration of figure 7.4(a) (Shao et al., 2021b), in figure 7.4(b)

we examine the influence of these capillary effects on the linear Faraday thresholds. For this

configuration the natural frequencies are found to have a maximum for θs ≈ 90◦ (similarly

to figure 7.11(b) (Picard and Davoust, 2007) (PD07). This suggests that the little shift (+1%)

in the experimental measurements reported in figure 7.4(a) is not due to an uncontrolled

nearly-brimful condition. When the static contact angle θs is decreased the meniscus intro-

duces a negative shift in all resonances. This translates into a negative shift of all Faraday’s

tongues in the
(

fd ,Fd
)
-plane, which also shows a slightly higher onset acceleration owing

to an increase of the dissipation occurring in the meniscus region (in spite of the fact that

the natural frequencies are lower). For θs > 90◦, e.g. 100◦, the onset is slightly lowered (slight

decrease of the dissipation occurring in the meniscus region, in agreement with experimental

observation by Henderson et al. (1992)). As a result of the mode shape modification by contact

angle effects (see figure 7.2(a), (g) and (n)) and of the third order coupling with harmonic

meniscus waves, the slope of the transition curves is also altered, but only slightly. In other

words, harmonic meniscus waves do not affect significantly the linear instability onsets of

these sub-harmonic resonances. This observation is in agreement with Batson et al. (2013),

who noticed that a significant meniscus modification is more likely to occur for harmonic

Faraday waves and particularly for axisymmetric (0,n) modes. This is somewhat intuitive as

meniscus waves, being axisymmetric and having zero thresholds, are essentially indistinguish-

able from harmonic axisymmetric parametric waves when the driving angular frequency is

Ωd =ω0n .

Notwithstanding that the coupling between meniscus and sub-harmonic-parametric waves

is only weak, the shift in frequency may lead to a reorganization of the discrete spectrum. This

is observable in figure 7.4(b) for modes (0,2) and (5,1). Decreasing θs , the region associated

with mode (5,1) progressively lies within that of mode (0,2) and possibly disappears. Having a

higher onset acceleration is less likely to be detected. This reorganization is expected to be

more pronounced for higher frequency modes, where, for a fixed Bond number, the character-

istic mode wavelength becomes comparable and eventually smaller than the characteristic

meniscus length, i.e. the (static) capillary length lc ∼ 1/
p

Bo, thus enhancing contact angle

effects.

Lastly, it should be noted that although parametric waves are linearly stable for all θs outside

the Faraday’s tongues, the free surface (which is maintained flat when θs = 90◦) appears as

the superposition of the static meniscus and harmonic meniscus waves, whose amplitude

(for a fixed frequency) is proportional to the forcing amplitude, giving rise to an imperfect

bifurcation diagram that shows a tailing effect and that will be examined in the following.
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7.4.7 Weakly nonlinear threshold and bifurcation diagram

In this paragraph, we focus on the stability of the non-trivial equilibrium, |B | 6= 0, of sys-

tem (7.35)-(7.36). Again, for stationary solutions, we find by eliminatingΘ that

c3|B |2 =−c1 cos
(
ϕ1 −ϕ3

)±√
c2

2F 2 − c2
1 sin2

(
ϕ1 −ϕ3

)
, (7.39)

with physical real solutions for F ≥ c1
c2
|sin

(
ϕ1 −ϕ3

)|. This well-known result prescribes either

a supercritical or a subcritical transition when the marginal stability boundaries are crossed,

i.e. by changing forcing frequency and amplitude. The location of the hysteresis depends on

the sign of the nonlinear coefficient ν (Kovacic et al., 2018b), which assumes the meaning of

a nonlinear detuning, while the boundary of the hysteresis region in the parameter space is

defined by the nonlinear threshold

F N L
th = c1/c2|sin

(
ϕ1 −ϕ2

)|, (7.40)

In figure 7.5 the nonlinear wave amplitude saturation, for a fixed external acceleration

amplitude, Fd , and for a varying excitation frequency,Ωd , is shown for two different modes,

(0,2) and (3,2), and for different static contact angle values. The linear acceleration threshold

(Faraday’s tongue) is plotted versus a normalized driving frequency in order to better compare

the difference between the two cases with θs = 90◦ (flat static surface, brimful condition) and

45◦ (static meniscus and meniscus waves, nearly-brimful condition). As previously discussed,

contact angle modifications on the linear thresholds are only weak. When a concave (θs < 90◦)

static meniscus is considered, the damping is generally higher, the shape of the mode is,

however, modified, leading to a slightly different value of the complex linear coefficient ζ

(see table 7.3), which also encompasses the second order coupling between parametric and

meniscus waves. As a consequence, the minimum onset acceleration, given by the ratio σ/|ζ|,
is often comparable.

Supercritical and subcritical bifurcations of Faraday waves have been widely discussed in

the literature (see for instance Douady (1990); Rajchenbach and Clamond (2015a) among

other references), hence we limit here to recall that if cos
(
ϕ1 −ϕ3

) > 0, or alternatively Λ=
Ωd −2ω > −2σνR /νI , then the bifurcation is supercritical, while if cos

(
ϕ1 −ϕ3

) < 0, or Λ =
Ωd −2ω<−2σνR /νI , the transition is subcritical, the sign of νI determines whether hysteresis

occurs on the left-side or on the right-side. The inferior boundary of the hysteresis region

in the (Ωd ,Fd )-plane is defined by equation (7.40). In other words, the ratio νR /νI , through

the relation ϕ3 = tan−1 (νI /νR ), determines the importance of the subcritical region in the

parameter space (Douady, 1990; Gu and Sethna, 1987; Hsu, 1977; Meron, 1987; Nayfeh and

Mook, 1995).

We underline that the amplitude equation coefficients setting the nonlinear threshold and

the bifurcation diagram are not calibrated from experimental data, but their values are here

computed numerically from first principles through our WNL analysis.

238



7.4. Weakly-nonlinear model for sub-harmonic Faraday thresholds with contact angle
effects

Wave amplitude increase and sub-criticality suppression

0.96 1 1.04
0

0.5

1

1.5

2
(a)

(0, 2)

F
a
ra
d
ay

to
n
g
u
e

Ωd/2ω

F
d
(m

s−
2
)

0.96 1 1.04
0

0.5

1

1.5

2
(b)

(3, 2)

F
a
ra
d
ay

to
n
g
u
e

Ωd/2ω

F
d
(m

s−
2
)

-0.25

0

0.25

0.5

0.75

|B|

θs

90◦

45◦

0.96 1 1.04
-0.25

0

0.25

0.5

0.75

|B|

θs

90◦

75◦

60◦

56◦

45◦

Figure 7.5 – Linear acceleration threshold (Faraday tongue) (left-y-axis, thin solid lines) and
saturated wave amplitude, |B |, (right-y-axis, thick solid lines) for a fixed acceleration amplitude
Fd = 0.5 m s−2, while the driving frequency is varied. Stable branches for |B | are shown
as solid lines, while unstable branches are shown as dashed lines. Two different modes
corresponding, namely (a) (m,n) = (3,2) and (b) (0,2), are shown. Different static contact
angles are considered. The frequency is normalized with twice the natural frequency of the
corresponding excited mode so that the lowest linear threshold occurs for Ωd /2ω = 1 for
all θs . At convergence (GLC grid Nr = Nz = 80), the complex nonlinear amplitude equation
coefficient, ν= νR + iνI , for mode (0,2) (subplot (b)), assumed the values, ν90◦ =−0.0909−
i1.9094 and ν45◦ = −0.0184− i0.5617. Geometrical and physical parameters are set as in
figure 7.2.

We now discuss contact angle modifications on the nonlinear wave amplitude saturation

in comparison with the results for the classic case with θs = 90◦ (flat static interface). A

first striking result is shown in figure 7.5(a) for the second axisymmetric mode (0,2), which

displays the bifurcation diagram (in the right y-axis) computed by sweeping the external

forcing frequency at a fixed forcing amplitude, i.e. Fd = 0.5 m s−2 (left y-axis). Figure 7.5(a)

shows that, despite contact angle effects do not alter substantially the sub-harmonic Faraday

tongue (the unstable region is slightly wider), presence of the meniscus waves, from which

the parametric wave bifurcates, can strongly increase the wave amplitude response (up to

three times in this case). The magnitude of such an increase is found to be maximum for

axisymmetric waves. Again, this can be intuitively explained by considering that axisymmetric

parametric and meniscus waves share the same spatial symmetries, despite their different

nature, i.e. sub-harmonic versus harmonic responses. Therefore, axisymmetric parametric

waves, which emerge on top of meniscus waves, appear to be nonlinearly more destabilized

by the latter when compared to other modes.

The second interesting result is shown in figure 7.5(b). In some cases, as for example for

mode (3,2), we observe an inversion of the bifurcation diagram, caused by the change of

sign of the nonlinear coefficient, ν, as the static contact angle is varied from 90◦ to 45◦ (same

extrema of figure 7.5(a)). This is mathematically not paradoxical as one more independent
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parameter, i.e. the contact angle θs , is added to the overall parameter space. The increase of

the wave amplitude response with a decrease of θs is accompanied by a progressive reduction

of the region of hysteresis, until a threshold value, θth
s (= 56◦ for the case of figure 7.5(b)), is

reached. Eventually, the direction of the bifurcation reverses and the size of the hysteresis

region starts to increase again. At the threshold value, θth
s , corresponding to figure 7.5(b), the

nonlinear coefficient ν takes the value ν=−0.0729+ i0.0083, yielding a large ratio νR /νI in

absolute value, for which the phase ϕ3 is nearly −π, thus meaning that the sub-criticality is

totally suppressed and the bifurcation is always supercritical for each combination of external

control parameters in (Ωd ,Fd )-plane (Douady, 1990). From the knowledge of the authors, such

a contact-angle-related behaviour has not been reported in the literature yet, thus suggesting

a pursuable direction that future lab-scale and controlled experiments could undertake.

The imperfect bifurcation diagram: tailing effect
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Figure 7.6 – Bifurcation diagram associated with (m,n) = (0,2) (see also figure 7.5(a)) and for
a static contact angle θs = 45◦. Here the dimensional centerline amplitude (axisymmetric
dynamic) is reconstructed by summing the various order solutions, i.e. η= η0 +η1 +η2 and
it is plotted versus the external forcing acceleration for a fixed excitation angular frequency,
while different colors correspond to different forcing frequencies. The tailing effect (imperfect
bifurcation diagram) produced by the presence of harmonic meniscus waves and indicated
by the black thin solid line (the amplitude of meniscus waves grows linearly with Fd , inde-
pendently of the parameter combination (Ωd ,Fd )), is well visible in the right-inset. Colored
solid lines are used for stable branches, while colored dashed lines for the unstable ones. The
hysteretic loop is indicated by the green arrows. The centerline amplitude is simply computed
as max

t
η (r = 0, t )/2−min

t
η (r = 0, t )/2.

As shown in figure 7.5, the linear threshold given by (7.37) prescribes a stable solution outside

the sub-harmonic Faraday tongues (see figure 7.4) with a stationary mode amplitude |B | = 0.

Nevertheless, we remind the reader that the total solution, e.g. in terms of free surface

elevation, is given by the sum of the solutions at the various orders in ε, i.e. η= η0 +η1 (B)+
η2

(
Fd ,B 2, |B |2). In particular, meniscus waves, whose amplitude is proportional to the external

acceleration amplitude, Fd , are contained in the second-order response η2. If one considers

an axisymmetric dynamics, e.g. (0,2), the amplitude of the centerline elevation is a suitable

quantity to monitor the free surface stability and thus to depict a comprehensive bifurcation

diagram. This is done in figure 7.6, where such a bifurcation diagram for (0,2) is reported
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for different excitation angular frequencies in a range which gathers both supercritical and

subcritical bifurcations. Figure 7.6 clearly shows that, when a nearly-brimful condition is

considered, e.g. θs < 90◦, the sub-harmonic parametric waves, stable outside the Faraday

tongues, do not bifurcate from the rest state (as for θs = 90◦), but rather from the meniscus

waves solution (∝ Fd ), oscillating harmonically with the driving frequency. This produces a so-

called imperfect bifurcation diagram, which displays a tailing effect (highlighted by the black

thin solid line) (Virnig et al., 1988). The bifurcation diagram of figure 7.6 is also reminiscent of

that presented by Batson et al. (2013), although they focus on harmonic parametric waves.

7.5 Validation with axisymmetric direct numerical simulations
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Figure 7.7 – (a) Faraday tongue (black solid line) for the axisymmetric mode (0,2) and for a static
contact angle θs = 45◦. Forcing frequency and amplitude in the (Ωd ,Fd )-space, corresponding
to the DNS points in (b), are indicated by colored filled markers. Note that the frequency in
the x-axis is normalized using the natural frequency ω= 3.16 computed for θs = 45◦. The grey
arrows denote the direction followed in the continuation procedure for DNS. For completeness,
the Faraday tongue for θs = 90◦ is reported as grey dashed line. (b) Associated bifurcation
digram: WNL prediction (lines) versus DNS (markers). The unstable branch is displayed as
colored dashed lines. The black solid line indicating the slope of the meniscus wave response
is also given to guide the eyes. The centerline amplitude is computed as max

t
η (r = 0, t )/2−

min
t
η (r = 0, t )/2.

In this section, with the purpose of partially validating the weakly nonlinear analysis, we

perform nonlinear direct numerical simulations (DNS) associated with the system of equa-

tions (7.1)-(7.3) and, specifically, with the axisymmetric dynamics (m,n) = (0,2), already

discussed in §7.4. Indeed, differently from non-axisymmetric modes (m,n) that would require

computationally demanding full three-dimensional DNS, axisymmetric (0,n) modes can be

solved through axisymmetric DNS, thus reducing the computational burden. To this end, the

built-in package for laminar flow with a moving interface and automatic remeshing imple-

mented in the finite-element software COMSOL Multiphysics v5.6. were employed. In the

underlying problem, we adopted a hybrid quadrilateral-triangular mesh. Specifically, trian-

gular elements were used in the interior, where little deformations occur, while quadrilateral
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elements were adopted in the neighbourhood of the free surface (larger mesh deformation),

sidewalls and bottom, where, in addition, boundary layer refinements were used to properly

account for the viscous dissipation taking place in the oscillating Stokes boundary layers (see

also figure 7.12). Globally, the grid is made of approximately 60000 mesh elements. P1-P1

elements (default), stabilized with a streamline diffusion scheme (SUPG, Streamline Upwind

Petrov-Galerkin), were used, leading to roughly 230000 degrees of freedom, for which conver-

gence was tested. Time integration is handled with a mixed-order backward differentiation

formula (BDF1/BDF2) with adaptive time-step and the system at each time-step is solved via

robust direct method MUMPS (MUltifrontal Massively Parallel sparse direct Solver) coupled

with an inner iterative Newton solver.

By simulating an axisymmetric dynamics only, all the other non-axisymmetric instabilities

are artificially filtered out, i.e. the Faraday tongues for (0,n) are isolated, enabling a direct

comparison of DNS with the single standing-wave expansion adopted in §7.4. Although such

a simplification is not realistic, as often multiple tongues may share nearly the same region

of instability and the associated parametric waves may therefore interact nonlinearly, it is

extremely convenient for validation purposes and it enables us to easily highlight the various

effects, i.e. contact angle and meniscus waves modifications of the Faraday threshold, tackled

in in §7.4.

7.5.1 Procedure

To start, the shape of the static meniscus, computed in Matlab by solving Eq. (7.4) with its

boundary conditions (prescribing a static contact angle value, e.g. θs = 45◦) was loaded in

COMSOL Multiphysics and the static domain was meshed. First, simulations were initialized

for time t = 0 with a BDF1 scheme giving a zero velocity field and hydrostatic pressure p =−z

as initial conditions. A body forcing, corresponding to the non-dimensional time-dependent

gravity acceleration, −1+ (
Fd /g

)
cosΩd t , was assigned. The starting point of the grey arrows

in figure 7.7(b) indicates the combination of external control parameter (Ωd ,Fd ) (colored

markers), chosen to initiate the simulations, as described above. Once the stationary state

for these initial DNS was established, a continuation procedure (directions of the arrows), by

slightly adjusting the external amplitude acceleration and angular frequency, was adopted

in order to speed up the computations for all the other combinations of parameters here

considered (see figure 7.7).

7.5.2 Amplitude saturation and free surface reconstruction: WNL vs. DNS

The WNL prediction (7.39) for the finite amplitude saturation is compared with DNS in fig-

ure 7.7. The selected combinations of control parameters, i.e. (Ωd ,Fd ), for DNS calculations

are indicated by colored markers in figure 7.7(a), where the grey arrows display the direction

followed in the continuation procedure. Once the stationary state is established, i.e. the wave

amplitude saturates, and being the underlying dynamics axisymmetric, the centerline free
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Figure 7.8 – WNL (black) versus DNS (red) below Faraday threshold (outside the Faraday’s
tongue) for Ωd /ω45◦ = 0.9804 and Fd = 0.85 m s−2 (see figure 7.7). (a) Free surface shape
computed when the centerline elevation is maximum. For completeness, the shape of the
static meniscus for θs = 45◦ is reported as a black dotted line. (b) Corresponding frequency
spectrum: power spectral density (PSD) versus the dimensional oscillation frequency of the
system response.

surface elevation is used as a reference measure of the free surface destabilization and of its

saturation to finite amplitude. The DNS results are therefore compared with the WNL predic-

tion, where the centerline dynamics is reconstructed by evaluating η= η0 +η1 +η2 in r = 0 for

any time. The resulting amplitude comparison is shown in figure 7.7(b). At small forcing am-

plitude below the Faraday threshold (see also figure 7.7(b)), only harmonic travelling meniscus

waves, whose amplitude is proportional to Fd , are observed in the DNS, consistently with the

WNL model (straight line in figure 7.7(b)). In this small amplitude regime, the WNL model

and DNS are in fairly good agreement in terms of free surface dynamics (see figures 7.8(a)

and (b)). The frequency spectrum in figure 7.8(b) clearly highlights the harmonic nature of

these zero-threshold meniscus waves, directly forced by the container sidewalls as soon as the

vertical excitation starts. By increasing the external acceleration amplitude Fd , the stability

boundary (Faraday tongue in figure 7.7(a)) is eventually crossed and the parametric wave

emerges on the top of edge waves, i.e. it bifurcates from the new stable and harmonically

oscillating configuration. Employing a continuation technique by progressively increasing/de-

creasing the forcing amplitude at different driving frequencies, several DNS were performed

in both the supercritical and subcritical regime (respectively filled colored circles and trian-

gles in figure 7.7). The agreement between DNS and WNL prediction in terms of amplitude

saturation is found to be fairly good. Moreover, as figure 7.7(a) shows, DNS are consistent

with the frequency shift caused by the presence of the static meniscus for θs = 45◦. As an

example, the fully nonlinear free surface dynamics obtained from DNS forΩd /ω45◦ = 1.0054

and Fd = 0.675 m s−2 is compared with the WNL reconstruction in figure 7.9(a)-(c) for three

different time-instants, while the corresponding centerline elevation and frequency spectrum

are provided in figure 7.9(g) and (h), respectively. The WNL model is in agreement with the

DNS, which consistently predicts the excitation of a dominant sub-harmonic parametric wave

(0,2), coupled with smaller amplitude harmonic meniscus waves as well as with higher order
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Figure 7.9 – WNL (black) versus DNS (red) above Faraday threshold (within the Faraday tongue)
forΩd /ω45◦ = 1.0054 and Fd = 0.675 m s−2 (see figure 7.7). (a)-(c) Comparison in terms of free
surface reconstruction for three different time instants: (a) when the centerline elevation is
maximum, (b) when it is zero and equal to the static meniscus position and (c) when it is
minimum. For completeness, the shape of the static meniscus for θs = 45◦ is reported as a
black dotted line. (d)-(f) Full three-dimensional visualization extracted from the DNS. (g)
Centerline elevation versus time associated with (a), (b) and (c). t0 is an arbitrary time-instant.
The constant value of the static meniscus elevation at r = 0 is shown as a black dotted line.
(h) Frequency spectrum computed from the time series shown in (g): power spectral density
(PSD) versus the dimensional oscillation frequency of the system response.

harmonics (only second harmonics are included in the asymptotic expansion up to the third

order in ε).

As a final comment to this section, while not the purpose of the present analysis, few DNS

were performed at higher external acceleration amplitudes, in the parameter region far from

the hypotheses of validity of the WNL theory. For the case of figure 7.7(b), preliminary obser-

vations revealed that DNS tends to diverge when the centerline elevation approaches a value

of approximately 5mm, suggesting a potential transition to a highly nonlinear wave-breaking

condition and eventually to a finite-time singularity with intense jet formation (Basak et al.,

2021). See also Das and Hopfinger (2008) for a detailed investigation of the occurrence of such

a phenomenon in Faraday experiments.
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7.6 Conclusion

In this Chapter, we considered sub-harmonic parametric resonances of standing viscous

capillary-gravity waves in straight-wall circular-cylindrical containers with brimful (flat static

interface) or nearly-brimful (curved meniscus) conditions. We formalized a numerically-based

weakly nonlinear expansion (in the spirit of the multiple timescale method) that provides

an amplitude equation for the prediction of sub-harmonic Faraday thresholds, which corre-

sponds to the classic one widely discussed by Douady (1990) and other authors using symmetry

arguments solely. However, in this work amplitude equation (7.33) has been derived from first

principles and the values of the complex normal form coefficients have not a heuristic (or

fitting-based) nature, but rather they are obtained in closed form and evaluated numerically.

While a simplified version of the underlying fluid problem, i.e. ideal inviscid fluid and

perfect brimful conditions (θs = 90◦, meniscus-free), was investigated by Kidambi (2013), the

present work accounts for (i) viscous dissipation and (ii) static contact angle effects, including

harmonic travelling meniscus waves, i.e. nearly-brimful conditions, realistic features which

are typically encountered in real Faraday experiments.

The numerical inviscid analysis by Kidambi (2013) and the recent experimental study by

Shao et al. (2021b) were used to validate the WNL model in the simpler case of an initially

flat static surface, i.e. meniscus-free configuration with a static contact angle θs = 90◦ (see

figure 7.4(a)). The agreement with experiments by Shao et al. (2021b) was found to be fairly

good in the whole frequency window examined. Starting from the reference brimful condition,

we progressively introduced in the analysis contact angle effects, simulating the under-filling

(or over-filling) of the container. The presence of a static meniscus was shown to determine

a negative (at least in the cases examined) frequency shift of all the sub-harmonic Faraday

tongues and to slightly increase (or decrease) the minimum onset forcing amplitude, as a

consequence of a slightly higher (lower) dissipation in the meniscus region, as expected

from previous studies. In addition, contact angle modifications, altering the position of the

resonances, can induce a reorganization of the frequency spectrum, with some instabilities

overlapping with other unstable regions, hence making them less likely to be detected, (see

figure 7.4(b)).

The salient point of the present work is the introduction of harmonic meniscus or edge

waves emitted by the oscillating static meniscus under the vertical external excitation, widely

discussed in the literature, but mostly from an experimental perspective only. In the adopted

asymptotic scaling, these directly forced waves appear at ε2 and they are coupled at order ε3

with the parametric waves, thus influencing not only the wave amplitude saturation, but also

the marginal stability boundaries (through a modification of the slope of transition curves)

as well as the solution outside the instability regions. If, indeed, for θs = 90◦ no meniscus is

present and the sub-harmonic parametric waves bifurcate from the flat surface state, when

θs 6= 90◦, the instability emerges on the top of a still stable, but stationary oscillating free

surface, i.e. edge or meniscus waves. This translates in the so-called imperfect bifurcation

diagram shown in figure 7.6, which displays a tailing effect owing to meniscus waves, whose

amplitude is proportional to the external acceleration amplitude. In this regard, we note the
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analogy with previous experimental observations (Batson et al., 2013), although for different

fluid systems and contact line conditions. One of the major influences of contact angle effects

on the wave amplitude response was found to occur for axisymmetric sub-harmonic waves.

Intuitively, this was explained by considering that harmonic meniscus waves, being directly

forced by the spatially uniform forcing, are axisymmetric by construction, therefore axisym-

metric parametric waves, although of different nature, are more likely to be destabilized by

edge waves, as they share the same spatial symmetries. This effect is expected to be dominant

for harmonic axisymmetric parametric waves, as proven experimentally by Batson et al. (2013).

Furthermore, the existence of a harmonic meniscus wave state, from which the parametric

waves bifurcate (rather than the flat interface rest state), has been observed in some cases

(see figure 7.5(b)) to induce a change of sign of the direction in the bifurcation diagram as the

contact angle is varied. Specifically, in some cases the present analysis predicts the existence

of a static contact angle for which the bifurcation is always supercritical no matter what the

combination of external forcing amplitude and frequency be, thus leading to a suppression of

the sub-criticality of the system. This does not seem to have been reported in the literature

and it could be checked in future experiments.

Lastly in §7.5, with the purpose of validation only, the single-mode WNL model, in the

specific case of an axisymmetric dynamics, was compared with fully nonlinear axisymmetric

direct numerical simulations, which revealed a good agreement, proving (at least partially)

the correctness of the WNL prediction when contact angle effects were introduced.

To conclude, we add that the numerical tools developed in this work could enable us to ex-

plore different geometries, to revisit previous experiments with different contact line boundary

conditions, e.g. the more involved sliding contact line condition, although those require the

regularization of the well-known contact line stress-singularity, most likely via phenomenologi-

cal slip length models (Miles, 1990; Ting and Perlin, 1995)), to introduce in the latter dynamical

contact angle effects (Viola et al., 2018; Viola and Gallaire, 2018) and to explore different fluid

systems of interest, e.g. multilayer configurations as those investigated by Batson et al. (2013).

Moreover, with the aim of quantifying contact angle effects on the Faraday thresholds, the

ad hoc asymptotic scaling for sub-harmonic parametric resonances defined in the present

weakly nonlinear analysis could be modified so as to tackle other types of resonances, such

as harmonic and super-harmonic parametric waves, combination resonances (see Kidambi

(2013)), internal resonances (Faltinsen et al., 2016; Miles, 1984b; Miles and Henderson, 1990;

Nayfeh, 1987) as well as secondary-drift instabilities triggered by pure viscous modes, which

may break the symmetry of non-axisymmetric standing waves (Fauve et al., 1991; Knobloch

et al., 2002; Martel and Knobloch, 1997; Martel et al., 2000; Périnet et al., 2017; Vega et al.,

2001). Some of these directions are being pursued and will be reported elsewhere.
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7.7 Appendix

7.7.1 Damping and frequency of capillary-gravity waves in brimful and nearly-
brimful circular-cylinders

With regard to the literature survey outlined in table 7.1, in this appendix, we study the

damping and natural frequencies of viscous capillary-gravity waves with fixed contact line and

we compare our numerical results with existing experiments and with previous theoretical

and numerical predictions.

Flat static free surface: θs = 90◦

Let us start by considering the case of a flat static interface, i.e. the static contact angle is set to

θs = 90◦, for which η0 (r ) = 0, i.e. perfect brimful condition.

Experiments and theories by HM94, MH98 and M98

We consider here the experimental measurements by HM94 for the first six modes in a brimful,

sharp-edged cylinder in the absence of free surface contamination. The corresponding geo-

metrical and fluid properties are reported in the caption of table 7.4, while the eigen-surfaces

associated with the first six modes, computed by solving numerically the eigenvalue prob-

lem (7.14), are shown in figure 7.10.

In table 7.4, the experimental damping coefficients and angular frequencies measured by

HM94 are compared with their own viscous theoretical predictions, with the prediction of M98

for the very same case and with our numerical results. If the frequency prediction of HM94 is

in good agreement with their own experiments, a significant mismatch is found in terms of the

damping coefficient. However, this discrepancy is strongly reduced in the prediction of M98,

which is in agreement with our numerical results. By analogy with M98, the theory proposed in

HM94 was supplemented in MH98 by a calculation of the interior damping (based on Lamb’s

dissipation integral for an irrotational flow (Lamb, 1993)), which yields results (here omitted

for the sake of brevity) of comparable accuracy with M98 and with the present predictions. We

note that the predicted frequencies in both M98 and the present study are always within 0.3%

of the experimental values.
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Figure 7.10 – Shape of the eigen-surfaces associated with the six global modes considered in
table 7.4 and denoted by the indices (m,n). The magnitude of the eigen-surface slope is plotted.
The eigenmodes are normalized such that the phase of the interface at the contact line inφ= 0
is zero and the corresponding slope is one, i.e. q̂1 → q̂1e−iarctan[η̂1(r=1,0)]/

(
∂η̂1 (r,0)/∂r

∣∣
r=1

)
.

247



Chapter 7. Sub-harmonic parametric instability in nearly-brimful circular-cylinders: a
weakly nonlinear analysis

Exp. HM94 Theory HM94 Theory M98 Present Num.
(m,n) fE (Hz) ∆E (−) fT ∆T ∆E /∆T fT ∆T ∆E /∆T f ∆ ∆E /∆
(1,1) 4.65 1.4 4.66 1.13 1.2 4.67 1.37 1.02 4.66 1.36 1.03
(2,1) 6.32 1.8 6.32 1.24 1.4 6.34 1.75 1.03 6.34 1.74 1.03
(0,1) 6.84 1.2 6.73 0.44 2.7 6.85 0.95 1.26 6.85 0.93 1.29
(3,1) 7.80 2.2 7.79 1.29 1.7 7.82 2.11 1.04 7.82 2.08 1.06
(4,1) 9.26 2.4 9.24 1.32 1.8 9.27 2.47 0.97 9.27 2.42 0.99
(1,2) 8.57 1.5 8.57 0.48 3.1 8.59 1.45 1.03 8.59 1.43 1.05

Table 7.4 – Experimental frequency and damping by HM94, their theoretical prediction and
the theoretical prediction by M98 are compared with the present numerical results. Geomet-
rical and fluid properties: R = 0.02766 m, h = 0.038 m, ρ = 1000 kg m−3, µ= 0.001 kg m−1 s−1,
γ = 0.0724 N m−1, for which Re = 14401 and Bo = 103.6, and a static angle θs = 90◦. The
dimensionless damping coefficient σ is rescaled according to HM94, i.e. ∆ = 4

p
Re/2ωσ,

where σ and ω for the present numerical results (last three columns) are those computed
by solving (7.14). The dimensional frequency is readily obtained as f = (ω/2π)

√
g /R. The

number of points in the radial and axial directions for the GLC grid used in this calculation is
Nr = Nz = 40, for which convergence is achieved.

Experiments and theories by H2000, M98, N02 and K09

Table 7.5 provides a comparison of the present results with the experimental measurements

of H2000, the asymptotic calculations of M98, the theoretical predictions of N02 and the

calculations of K09.

All the theoretical methods accurately predict the natural frequencies, even at low Re, as the

viscous correction is very small. However, in terms of damping, it is seen that the asymptotic

model of M98 is increasingly inaccurate for decreasing Re. For the present case, our numerical

calculations place in between N02 and K09, with frequency predictions within 0.7% of the

experimental values.

Exp. H2000 Theory M98 Theory N02 Num. K09 Present Num.
Re fE (−) ∆E (−) fT / fE ∆T /∆E fT / fE ∆T /∆E fN / fE ∆N /∆E f / fE ∆/∆E

13 077 2.079 0.005 1.004 0.98 1.005 0.91 1.005 0.92 1.005 0.91
6 423 2.075 0.009 1.005 0.98 1.007 0.94 1.007 0.95 1.007 0.95
2 621 2.075 0.018 1.005 1.04 1.006 0.97 1.006 0.97 1.006 0.97
1 317 2.072 0.033 1.006 1.06 1.006 0.94 1.006 0.95 1.006 0.95
575 2.066 0.066 1.008 1.13 1.005 0.98 1.006 0.98 1.005 0.98
270 2.059 0.127 1.010 1.19 1.001 0.98 1.001 0.98 1.001 0.98

Table 7.5 – Dimensionless damping and frequency of the first axisymmetric mode (0,1) for
different Re. Nondimensional parameters: R = 1, h/R = 1.379, Bo = 365 and θs = 90◦. Here the
dimensionless natural frequency and damping correspond to f =ω and ∆=σ in our notation.
The number of points in the radial and axial directions for the GLC grid used in this calculation
is Nr = Nz = 40, for which convergence is achieved. Comparisons outlined in this table (except
for the last column) are provided in table 2 of K09.
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Presence of static meniscus: θs 6= 90◦

We now analyze the case of an initially non-flat static interface, i.e. θs 6= 90◦, for which η0 (r ) 6= 0

(nearly-brimful condition), and its effect on the natural frequencies and damping coefficients

of viscous capillary-gravity waves with a pinned contact line.

Experiments by C93 and calculations by N05 and K09

C93 measured the frequency and damping rate of the first non-axisymmetric mode (m,n) =
(1,1) in a cylindrical container where the static free surface had an effective static contact angle

θs = 62◦. They identified two different regimes, namely, a higher and a smaller amplitude

regime. In the latter, the contact line was observed to remain pinned. N05 and K09 have

computed the damping and frequency for this case and a comparison with our numerical

analysis is reported in table 7.6. We note that the prediction of N05 is close to the experimental

values, however, such a prediction is based on an asymptotic representation of the static

meniscus, while in the present calculation, as well as the one proposed by K09, it is computed

numerically. Moreover, the damping prediction by N05 relies on HM94 and M98 theories,

since its starting point is an inviscid analysis. Our result seems to be slightly closer to the

experimental values than the one of K09, although both are in fairly good agreement.

Exp. C93 Theory N05 Num. K09 Present Num.
fE (Hz) ∆E (mHz) fT ∆T ∆E /∆T fN ∆N ∆E /∆N f ∆ ∆E /∆

3.22 15±2 3.22 14.6 0.977 3.23 16.3 1.085 3.23 15.4 1.027

Table 7.6 – Dimensional frequency and damping of the first non-axisymmetric mode (1,1).
Parameter setting: R = 0.05025 m, h = 0.13 m, ρ = 1000 kg m−3, µ = 0.00099 kg m−1 s−1, γ =
0.0724 N m−1 and θs = 62◦, for which Re = 35628.103 and Bo = 346.363. Here f = (ω/2π)

√
g /R

and ∆=σ√
g /R . The number of points in the radial and axial directions for the GLC grid used

is this calculation is Nr = Nz = 40, for which convergence is achieved.

Experiments by PD07 and theory by N05

PD07 presented a liquid surface biosensor for DNA detection based on resonant meniscus

capillary waves. In their experimental setting, the contact line is pinned at the brim, so that

the static contact angle can be modified by controlling the bulk volume. As their setup was

developed to make use exclusively of axisymmetric stationary meniscus waves, by exciting the

container below the Faraday threshold they could measure the amplitude spectra for a series

of effective contact angles in a frequency window centered around one particular natural

frequency (that of mode (m,n) = (0,10)), highlighting two main phenomena attributable to

contact angle effects, namely a decrease of the resonance frequency and a strong increase of

the wave amplitude with the curvature of the meniscus, the latter being typical of a meniscus

waves response. The experimental values were found to be in qualitative agreement with the

inviscid prediction of N05, according to which the frequency has a maximum for θs = 90◦

(the maximum experimental frequency is found for θs ∈ [90,100]). The frequency shift as a

function of the static contact angle measured by PD07 is shown in figure 7.11 together with
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our numerical prediction for this specific case. Even in this case, our frequency prediction lies

within 0.3% of the experimental values.

0.3%

70 80 90 100 110 120 13049
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Figure 7.11 – Comparison of the experimentally measured natural frequency for mode (0,10)
(filled white circles, extracted from figure 5 of PD07) versus static contact angle with the
inviscid estimation of N05 (black solid line) and our numerical results (black crosses). The
black dashed line indicates the flat case with θs = 90◦. Parameter setting: pure water, clean
surface, h = 0.045 m and R = 0.025 m, for which h/R = 1.8, Bo = 86.3 and Re = 10855. The
number of points in the radial and axial directions for the GLC grid used in this calculation is
Nr = Nz = 40, for which convergence is achieved.

Numerical study by K09

As mentioned in the introduction, an important combined theoretical and numerical work

accounting for contact angle effects on the damping and frequency of viscous capillary-gravity

waves is that of K09. In figure 7.12 our predictions are compared with Kidambi’s results for

the first non-axisymmetric mode (1,1) and for two different combinations of nondimensional

physical parameters. Our solution is found to be in good agreement with that of K09 for a

wide range of static contact angles. In particular, the predicted frequencies are within 0.4%

of each other. Different peculiar behaviours are observed as the contact angle and the other

physical parameters are varied. K09 found that at shallow depths the presence of a static

meniscus leads to an increase of the natural frequency irrespective of the static contact angle,

while at large depths the frequency shows a maximum in the neighbourhood of θs = 90◦, in

agreement with N05, with the experimental observations pointed out by PD07, and with the

present study.

Comments

Although the frequency predictions are in excellent agreement with experimental measure-

ments (usually well within 1%), we observe that the estimation of the damping coefficient

is more sensitive to the various methods of calculation proposed in the literature. This is

due to the fact that most of the existing theories are based on semi-analytical asymptotic

expressions and boundary layer approximations with a leading order solution formulated in

the inviscid framework (HM94,M98,MH98,N02,N05), as originally introduced by Benjamin

and Scott (1979) and Graham-Eagle (1983). However, despite the sources of dissipation being

several and hard to accurately quantify, especially with asymptotic approaches, the pinned

contact line problem allows one to drastically reduce uncertainties related to contact line
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Figure 7.12 – (a) Damping and (b) frequency of the first asymmetric mode (1,1) as a function
of the static contact angle. White filled squares and circles: numerical results of K09. Black
crosses: present numerical results. The Bond number is fixed to Bo = 365. The number of
points in the radial and axial directions for the GLC grid used is this calculation is Nr = Nz = 40,
for which convergence is achieved. (c) Eigen-velocity field for h/R = H = 0.231, Re = 13077.02
and θs = 45◦ at t = and φ= 0.

dynamics, thus leading in general to better agreements with experiments. Little uncertainties

can still be present in experiments, where free surface contamination is not fully controlled.

A wide majority of studies, both experimental and numerical (or semi-analytic), have been

focused on the classic case of a flat static free surface, with the exceptions of those by N05

and K09. Particularly K09, in the spirit of N02, projected the governing equations onto an

appropriate basis and formulated a nonlinear eigenvalue problem (solved numerically with an

iterative method) for the damping and frequency of viscous capillary-gravity waves with fixed

contact line, which formally includes both static meniscus effects and viscous dissipation.

We underline that, unlike the previous analyses by K09, in the present work, through a

fully numerical discretization technique, the problem of viscous capillary-gravity waves with

pinned contact line is formulated as a classic generalized linear eigenvalue problem, which

can be solved numerically with standard techniques. Hence, the numerical method used in

this work allows one to directly solve capillary-gravity waves in brimful and nearly-brimful

conditions accounting for contact angle effects and viscous dissipation without any simplifi-

cation or assumption, i.e. the numerical solution at convergence is supposed to be accurate.

7.7.2 Values of the nonlinear normal form coefficient ν

For completeness, the value of the nonlinear normal form coefficient ν associated with all

modes in figure 7.4 is reported in table 7.7 for different static contact angle, θs , i.e. 90◦, 75◦, 60◦

and 45◦. By looking at the imaginary part, νI , one can see that an inversion of the bifurcation

direction occurs for modes (4,1), (3,2) and (6,1) for a static contact angle between θs = 60◦

and 45◦.
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(m,n) ν90◦
ν75◦

ν60◦
ν45◦

(2,1) - 0.004 - i 0.438 - 0.004 - i 0.318 - 0.004 - i 0.182 - 0.005 - i 0.081
(0,1) - 0.029 - i 0.948 - 0.0230 - i 0.708 - 0.039 - i 0.415 - 0.049 - i 0.297
(3,1) - 0.002 - i 0.760 - 0.001 - i 0.512 - 0.005 - i 0.246 - 0.007 - i 0.086
(1,2) - 0.017 - i 1.156 - 0.014 - i 0.798 - 0.011 - i 0.394 - 0.008 - i 0.139
(4,1) - 0.023 - i 0.994 - 0.037 - i 0.560 - 0.046 - i 0.115 - 0.056 + i 0.118
(2,2) - 0.033 - i 1.378 - 0.031 - i 0.888 - 0.021 - i 0.370 - 0.010 - i 0.084
(0,2) - 0.091 - i 1.909 - 0.077 - i 1.458 - 0.046 - i 1.116 - 0.018 - i 0.562
(5,1) - 0.001 - i 1.548 - 0.009 - i 1.070 - 0.013 - i 0.497 - 0.010 - i 0.144
(3,2) - 0.091 - i 1.304 - 0.099 - i 0.647 - 0.080 - i 0.074 - 0.046 + i 0.128
(6,1) - 0.016 - i 1.765 - 0.025 - i 1.084 - 0.024 - i 0.360 - 0.016 + i 0.009

Table 7.7 – Nonlinear coefficient, ν= νR + iνI , associated with the modes shown in figure 7.4
and computed for different values of the static contact angle, i.e. θs = 90◦, 75◦, 60◦ and 45◦.
These coefficients were computed using a grid with Nr = Nz = 80 GLC nodes, for which
convergence up to the third digit was achieved.
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Existing theoretical analyses of Faraday waves in Hele-Shaw cells rely on the Darcy approxima-

tion and assume a parabolic flow profile in the narrow direction. However, Darcy’s model is

known to be inaccurate when convective and unsteady inertias are important. In this work,

we propose a novel gap-averaged Floquet theory accounting for inertial effects induced by the

unsteady terms in the Navier-Stokes equations, a scenario that corresponds to a pulsatile flow

where the fluid motion reduces to a two-dimensional oscillating Poiseuille flow, similarly to

the Womersley flow in arteries. When gap-averaging the linearized Navier-Stokes equation,

this results in a modified damping coefficient, which is a function of the ratio between the

Stokes boundary layer thickness and the cell’s gap, and whose complex value depends on the

frequency of the wave response specific to each unstable parametric region. We first revisit

the standard case of horizontally infinite rectangular Hele-Shaw cells by also accounting for a

dynamic contact angle model. A comparison with existing experiments shows the predictive

improvement brought by the present theory and points out how the standard gap-averaged

model often underestimates the Faraday threshold. The analysis is then extended to the less

conventional case of thin annuli. A series of dedicated experiments for this configuration high-

lights how Darcy’s thin-gap approximation overlooks a frequency detuning that is essential to

correctly predict the locations of the Faraday tongues in the frequency-amplitude parameter

plane. These findings are well rationalized and captured by the present model.

The Chapter is organized as follows. In §8.1 we revisit the classical case of horizontally infinite

rectangular Hele-Shaw cells. The present model is compared with theoretical predictions

from the standard Darcy theory and with existing experiments. The case of thin annuli is

then considered. The model for the latter unusual configuration is formulated in §8.2 and
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h

z'

G(t') = g - aΩ cos(Ωt')2

θ
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G(t') = g - aΩ cos(Ωt')2

l=2�/k

(a) (b)
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φ'
r'

R-b/2
R+b/2

b/l<<1 b/R<<1

Figure 8.1 – (a) Sketch of Faraday waves in a rectangular Hele-Shaw cell of width b and length
l filled to a depth h with a liquid. Here b denotes the gap size of the Hele-Shaw cell, l is the
wavelength of a certain wave, such that b/l ¿ 1, and θ is the dynamic contact angle of the
liquid on the lateral walls. The vessel undergoes a vertical sinusoidal oscillation of amplitude
a and angular frequencyΩ. The free surface elevation is denoted by η′

(
x ′). (b) Same as (a),

but in an annular Hele-Shaw cell with internal and external radii, respectively, R −b/2 and
R +b/2. Here, b/R ¿ 1 and the free surface elevation is a function of the azimuthal coordinate
ϕ′, i.e. η′

(
ϕ′).

compared with homemade experiments in §8.3. Conclusions are outlined in §8.4.

8.1 Horizontally infinite Hele-Shaw cells

Let us begin by considering the case of a horizontally infinite Hele-Shaw cell of width b

filled to a depth h with an incompressible fluid of density ρ, dynamic viscosity µ (kinematic

viscosity ν=µ/ρ) and liquid-air surface tension γ (see also sketch in figure 8.1(a)). The vessel

undergoes a vertical sinusoidal oscillation of amplitude a and angular frequency Ω. In a

frame of reference which moves with the oscillating container, the free liquid interface is flat

and stationary for small forcing amplitudes, and the oscillation is equivalent to a temporally

modulated gravitational acceleration, G
(
t ′

)= g −aΩ2 cosΩt ′. The equation of motion for the

fluid bulk are

ρ

(
∂U′

∂t ′
+U′ ·∇′U′

)
=−∇′P ′+µ∇′2U′−ρG (t )ez , ∇′ ·U′ = 0. (8.1)
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Linearizing about the rest state U′ = 0 and P ′ (z ′, t ′
)=−ρG

(
t ′

)
z ′, the equations for the pertur-

bation velocity, u′ (x ′, y ′, z ′, t ′
)= {

u′, v ′, w ′}T , and pressure, p ′ (x ′, y ′, z ′, t ′
)
, fields, associated

with a certain perturbation’s wavelength l = 2π/k (k, wavenumber), read

ρ
∂u′

∂t ′
=−∇′p ′+µ∇2u′, ∇′ ·u′ = 0. (8.2)

Assuming that bk ¿ 1, then the velocity along the narrow y ′-dimension v ′ ¿ u′, w ′ and,

by employing the Hele-Shaw approximation as in, for instance, Viola et al. (2017), one can

simplify the linearized Navier-Stokes equations as follows:

∂u′

∂x ′ +
∂v ′

∂y ′ +
∂w ′

∂z ′ = 0, (8.3a)

ρ
∂u′

∂t ′
=−∂p ′

∂x ′ +µ
∂2u′

∂y ′2 , ρ
∂w ′

∂t ′
=−∂p ′

∂z ′ +µ
∂2w ′

∂y ′2 ,
∂p ′

∂y ′ = 0. (8.3b)

Equations (8.3a)-(8.3b) are made dimensionless using k−1 for the directions x ′ and z ′, and b

for y ′. The forcing amplitude and frequency provide a scale aΩ for the in-plane xz-velocity

components, whereas the continuity equation imposes the transverse component v ′ to scale

as v ′ ∼ bkaΩ¿ aΩ ∼ u′, due to the strong confinement in the y-direction (bk ¿ 1). With

these choices, dimensionless spatial scales, velocity components and pressure write:

x = x ′k, y = y ′

b
, z = z ′k, u = u′

aΩ
, v = v ′

bkaΩ
, w = w ′

aΩ
, p = kp ′

ρaΩ2 , t =Ωt ′. (8.4)

The first two equations in (8.3b) in non-dimensional form are

∂u

∂t
=−∂p

∂x
+ δ2

St

2

∂2u

∂y2 ,
∂w

∂t
=−∂p

∂z
+ δ2

St

2

∂2w

∂y2 , (8.5)

where δSt = δ′St /b and with δ′St = p
2ν/Ω denoting the thickness of the oscillating Stokes

boundary layer. The ratio
p

2/δSt is also commonly referred to as the Womersley number,

W o = b
p
Ω/ν (San and Staples, 2012; Womersley, 1955).

8.1.1 Floquet analysis of the gap-averaged equations

Given its periodic nature, the stability of the base flow, represented by a time-periodic mod-

ulation of the hydrostatic pressure, can be investigated via Floquet analysis. We therefore

introduce the following Floquet ansatz (Kumar and Tuckerman, 1994a)

u
(
x, y, z, t

)= eµF t
+∞∑

n=−∞
ũn

(
x, y, z

)
e i(n+α/Ω)t = eµF t

+∞∑
n=−∞

ũn
(
x, y, z

)
e iξn t , (8.6a)

p (x, z, t ) = eµF t
+∞∑

n=−∞
p̃n (x, z)e i(n+α/Ω)t = eµF t

+∞∑
n=−∞

p̃n (x, z)e iξn t , (8.6b)

255



Chapter 8. A revised gap-averaged Floquet analysis of Faraday waves in Hele-Shaw cells

where µF is the real part of the non-dimensional Floquet exponent and represents the growth

rate of the perturbation. We have rewritten (n +α/Ω) = ξn to better explicit the parametric

nature of the oscillation frequency of the wave response. In the following, we will focus on

the condition for marginal stability (boundaries of the Faraday’s tongues), which require the

growth rate µF = 0. In addition, values of α= 0 andΩ/2 correspond, respectively, to harmonic

and sub-harmonic parametric resonances (Kumar and Tuckerman, 1994a). This implies that

ξn is a parameter whose value is either n, for harmonics, or n+1/2, for sub-harmonics, with n

an integer n = 0,1,2, . . . specific to each Fourier component in (8.6a)-(8.6b).

By injecting the ansatzs (8.6a)-(8.6b) in (8.5), we find that each component of the Fourier

series must satisfy

∀n : iξnũn =−∂p̃n

∂x
+ δ2

St

2

∂2ũn

∂y2 , iξn w̃n =−∂p̃n

∂z
+ δ2

St

2

∂2w̃n

∂y2 , (8.7)

which, along with the no-slip condition at y =±1/2, correspond to a two-dimensional pulsatile

Poiseuille flow with solution

ũn = i

ξn

∂p̃n

∂x
Fn

(
y
)

, w̃n = i

ξn

∂p̃n

∂z
Fn

(
y
)

, Fn
(
y
)= (

1− cosh(1+ i) y/δn

cosh(1+ i)/2δn

)
, (8.8)

and where δn = δSt /
√
ξn , is a rescaled Stokes boundary layer thickness specific to the nth

Fourier component. The function Fn
(
y
)

is displayed in figure 8.2(b), which depicts how a

decrease in the value of δn starting from large values corresponds to a progressive transition

from a fully developed flow profile to a plug flow connected to thin boundary layers.

The gap-averaged velocity along the y-direction satisfies a Darcy-like equation,

< ũn >=
∫ 1/2

−1/2
ũn dy = iβn

ξn
∇p̃n , βn = 1− 2δn

1+ i
tanh

1+ i

2δn
. (8.9)

In order to obtain a governing equation for the pressure p̃n , we average the continuity equation

and we impose the impermeability condition for the spanwise velocity, v = 0 at y =±1/2,

∂< ũn >
∂x

+
∫ 1/2

−1/2

∂ṽn

∂y
dy︸ ︷︷ ︸

ṽn (1/2)−ṽn (−1/2)=0

+∂< w̃n >
∂z

=∇· < ũn >= 0, (8.10)

Since < ũn >= i
(
βn/ξn

)∇p̃n , the pressure field p̃n must obey the Laplace equation

∇2p̃n = ∂2p̃n

∂x2 + ∂2p̃n

∂z2 = 0. (8.11)

It is now useful to expand each Fourier component p̃n (x, z) in the infinite x-direction as sin x

such that the y-average implies,

p̃n (x, z) = p̂n (z)sin x, (8.12a)
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< ũn >= ûn = iβn

ξn
p̂n cos x, < w̃n >= ŵn = iβn

ξn

∂p̂n

∂z
sin x. (8.12b)

Replacing (8.12a) in (8.11) leads to (
∂2

∂z2 −1

)
p̂n = 0, (8.13)

which admits the solution form

p̂n = c1 cosh z + c2 sinh z. (8.14)

The presence of a solid bottom imposes that ŵn = 0 and, therefore, that ∂p̂n/∂z = 0, at a

non-dimensional fluid depth z =−hk, hence giving

p̂n = c1 [cosh z + tanhkh sinh z] . (8.15)

Let us now invoke the linearized kinematic boundary condition

∂η

∂t
= w. (8.16)

Note that free surface elevation, η′
(
x ′, y ′, t ′

)
, has been rescaled by the forcing amplitude a, i.e.

η′/a = η, and represents the projection of the bottom of the transverse concave meniscus on

the xz-plane of figure 8.1(a). Moreover, by recalling the Floquet ansatzs (8.6a)-(8.6b) (with

µF = 0), here specified for the interface, we get an equation for each Fourier component n,

η=
+∞∑

n=−∞
η̃ne iξn t −→ ∀n : iξn η̃n = w̃n . (8.17)

Expanding η̃n in the x-direction as sin x and averaging in y , i.e. < η̃n >= η̂n sin x, leads to

iξn η̂n = ŵn = iβn

ξn

∂p̂n

∂z

∣∣∣∣
z=0

= iβn

ξn
c1 tanhkh −→ c1 =

ξ2
n

βn

η̂n

tanhkh
. (8.18)

Lastly, we consider the linearized dynamic condition (or linearized normal stress), evaluated

at z ′ = η′ and where the term associated with the curvature of the free surface appears,

−p ′+ρG
(
t ′

)
η′+2µ

∂w ′

∂z ′ −γ
∂κ′

∂η′

∣∣∣∣η′ = 0. (8.19)

In (8.19), ∂κ′/∂η′ represents the first-order variation of the curvature associated with the

small perturbation η′. Capillary force in the x-direction is only important at large enough

wavenumbers, although the associated term can be retained in the analysis in order to retrieve

the dispersion relation for capillary-gravity waves (Li et al., 2019). On the other hand, the

small gap of Hele-Shaw cells is such that surface tension effects in the narrow y-direction are

strongly exacerbated. In general, the curvature can be divided into two parts (Chuoke et al.,
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1959; Saffman and Taylor, 1958):

κ′
(
η′

)= ∂

∂x ′

 ∂x ′η′√
1+ (

∂x ′η′
)2

+ 2

b
cosθ, (8.20)

where the first term indicates the principal radius of curvature and the second term repre-

sents the out-of-plane curvature of the meniscus (see figure 8.1(a)). A common treatment of

Hele-Shaw cells assumes the out-of-plane interface shape to be semicircular (Afkhami and

Renardy, 2013; McLean and Saffman, 1981; Park and Homsy, 1984; Saffman and Taylor, 1958).

Nevertheless, laboratory observations have unveiled that liquid oscillations in Hele-Shaw

cells experience an up-and-down driving force with θ constantly changing (Jiang et al., 2004),

hence giving rise to a dynamic contact angle. Here, as in Li et al. (2019), we use the following

model (Hamraoui et al., 2000) to evaluate the cosine of the dynamic contact angle θ as

cosθ = 1− M

µ
C a = 1− M w ′

γ
(8.21)

where C a = µw ′/γ is the Capillary number defined using the vertical contact line velocity

w ′ = ∂η′/∂t ′. The friction coefficient M , sometimes referred to as mobility parameter M (Xia

and Steen, 2018), can be interpreted in the framework of molecular kinetics theory (Blake,

1993, 2006; Hocking, 1987; Johansson and Hess, 2018; Voinov, 1976). Here, we simply view

this coefficient as a constant phenomenological parameter that defines the energy dissipation

rate per unit length of the contact line and, as in Li et al. (2019), we directly use the values

employed by Hamraoui et al. (2000).

By combining equations (8.20)-(8.21) and taking their first-order curvature variation applied

to the small perturbation, one can express

−γ ∂κ
′

∂η′

∣∣∣∣η′ =−γ∂
2η′

∂x ′2 + 2M

b

∂η′

∂t ′
. (8.22)

After turning to non-dimensional quantities using the scaling in (8.4), equations (8.19) reads

−Ω2p + gη− γ

ρ
k2 ∂

2η

∂x2 + 2M

ρb
Ω
∂η

∂t
= aΩ2 cos tη, (8.23)

where the viscous stress term has been eliminated, as it is negligible compared to the others.

With introduction of the Floquet ansatz (8.6b)-(8.17) and by recalling the x-expansion of the

interface and pressure as sin x, the averaged normal stress equations become

∀n : −Ω2p̂n + i (ξnΩ)
2M

ρb
η̂n +

(
1+ γ

ρg
k2

)
g η̂n = aΩ2

2g
g

(
η̂n−1 + η̂n+1

)
. (8.24)

where the decomposition cosΩt ′ =
(
e iΩt ′ +e−iΩt ′

)
/2 = (

e it +e−it
)

/2 has also been used. Equa-

tions (8.15) and (8.18) are finally used to express the dynamic equation as a function of the
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non-dimensional averaged interface only,

− (ξnΩ)2

βn
η̂n + i (ξnΩ)

2M

ρb
k tanhkhη̂n + (1+Γ) g k tanhkh η̂n = g k tanhkh

2
f
(
η̂n−1 + η̂n+1

)
,

(8.25)

with the auxiliary variables f = aΩ2/g and Γ= γk2/ρg , such that (1+Γ) g k tanhkh =ω2
0, the

well-known dispersion relation for capillary-gravity waves (Lamb, 1993).

As in the present form the interpretation of coefficient βn does not appear straightforward, it

is useful to define the damping coefficients

σn =σBL +σC L , σBL =χn
ν

b2 , σC L = 2M

ρb
k tanhkh, (8.26a)

where χn is used to help rewriting 1
βn

= 1− i
δ2

n
2 χn ,

χn = i
2

δ2
n

(
1−βn

βn

)
= 12

 i

6δ2
n

 2δn
1+i tanh 1+i

2δn

1− 2δn
1+i tanh 1+i

2δn

 . (8.26b)

These auxiliary definitions allows one to express (8.25) as

− (ξnΩ)2 η̂n + i (ξnΩ)σn η̂n +ω2
0η̂n = ω2

0

2(1+Γ)
f
[
η̂n+1 + η̂n−1

)
]. (8.27)

or, equivalently,

2(1+Γ)

ω2
0

[− (nΩ+α)2 + i (nΩ+α)σn +ω2
0

]
η̂n = f

[
η̂n+1 + η̂n−1

]
. (8.28)

Subscripts BL and C L in (8.26a) denote, respectively, the boundary layers and contact line

contributions to the total damping coefficient σn .

At the end of this mathematical derivation, a useful result is the modified damping coefficient

σn . Since the boundary layer contribution, σBL depends on the nth Fourier component,

the overall damping, σn , is mode dependent and its value is different for each specific nth

parametric resonant tongue considered. This is in stark contrast with the standard Darcy

approximation, where σBL is the same for each resonance and amounts to 12ν/b2. In our

model, the case of α= 0 with n = 0 constitutes a peculiar case, as ξn = ξ0 = 0 and δ0 →+∞. In

such a situation, F0
(
y
)

tends to the steady Poiseuille profile, so that we take χ0 = 12.

Similarly to Kumar and Tuckerman (1994a), equation (8.28) is rewritten as

An η̂n = f
[
η̂n+1 + η̂n−1

]
, (8.29)

with

An = 2(1+Γ)

ω2
0

(− (nΩ+α)2 + i (nΩ+α)σn +ω2
0

)= Ar
n + iAi

n ∈C (8.30)
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Figure 8.2 – (a) Real and imaginary parts of the complex auxiliary coefficient χ=χr +iχi versus
twice the non-dimensional Stokes boundary layer thickness δ. The horizontal black dotted
line indicates the constant value 12 given by the Darcy approximation. (b) Normalized profile
F

(
y
)

(Womersley profile) for different δ= b−1
√

2ν/ξΩ, whose values are specified by the filled
circles in (a) with matching colors. The Poiseuille profile is also reported for completeness.
In drawing these figures we let the oscillation frequency of the wave, ξΩ, free to assume any
value, but we recall that the parameter ξ can only assume discrete values, and so do χ and
F

(
y
)
.

The non-dimensional amplitude of the external forcing, f = aΩ2/g appears linearly, there-

fore (8.29) can be considered to be a generalized eigenvalue problem

Aη̂= f Bη̂, (8.31)

with eigenvalues f and eigenvectors whose components are the real and imaginary parts of

η̂n . See Kumar and Tuckerman (1994a) for the structure of matrices A and B.

For one frequency forcing we use a truncation number N = 10, which produces 2(N +1)×
2(N +1) = 22×22 matrices. Eigen-problem (8.31) is then solved in Matlab using the built-in

function eigs. For a fixed forcing frequency Ω and wavenumber k, the eigenvalue with the

smallest real part will define the instability threshold.

Figure 8.3 shows the results of this procedure for one of the configurations considered by Li

et al. (2019) and neglecting the dissipation associated with the contact line motion, i.e. M = 0.

In each panel, associated with a fixed forcing frequency, the black regions correspond to the

unstable Faraday tongues computed using σBL = 12ν/b2 as given by Darcy’s approximation,

whereas the red regions are the unstable tongues computed with the modified σBL =χnν/b2.

At a forcing frequency 4Hz the first sub-harmonic tongues computed using the two models

essentially overlap. Yet, successive resonances display an increasing departure from Darcy’s

model due to the newly introduced complex coefficient σn . Particularly, the real part of χn is

responsible for the higher onset acceleration, while the imaginary part is expected to act as a

detuning term, which shifts the resonant wavenumbers k.
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Figure 8.3 – Faraday tongues computed via Floquet analysis at different fixed driving frequen-
cies,Ω/2π (reported on the top of each panel). Black regions correspond to the unstable Fara-
day tongues computed using σBL = 12ν/b2 as in the standard Darcy approximation, whereas
red regions are the unstable tongues computed with the present modified σBL = χnν/b2.
For this example, we consider ethanol 99.7% (see table 8.1) in a Hele-Shaw cell of gap size
b = 2mm filled to a depth h = 60mm. f denotes the non-dimensional forcing acceleration,
f = aΩ2/g , with dimensional forcing amplitude a and angular frequency Ω. For plotting,
we define a small scale-separation parameter ε= kb/2π and we arbitrarily set its maximum
acceptable value to 0.2. Contact line dissipation is not included, i.e. M =σC L = 0. SH stands
for sub-harmonic, whereas H stands for harmonic.

8.1.2 Asymptotic approximations

The main result of this analysis consists in the derivation of the modified damping coefficient

σn = σn,r + iσn,i associated with each parametric resonance. Aiming at better elucidating

how this modified complex damping influences the stability properties of the system, we

would like to derive in this section an asymptotic approximation, valid in the limit of small

forcing amplitudes, damping and detuning, of the first sub-harmonic (SH1) and harmonic

(H1) Faraday tongues.

Unfortunately, the dependence of σn on the parametric resonance considered and, more

specifically, on the nth Fourier component, does not allow one to directly convert the gov-

erning equations (8.27), expressed in a discrete frequency domain, back into the continuous

temporal domain. By keeping this in mind, we can still imagine fixing the value of σn to that

261



Chapter 8. A revised gap-averaged Floquet analysis of Faraday waves in Hele-Shaw cells

corresponding to the parametric resonance of interest, e.g. σ0 (with n = 0 and ξ0Ω =Ω/2)

for SH1 or σ1 (with n = 1 and ξ1Ω=Ω) for H1. By considering then that for the SH1 and H1

tongues, the system responds in time as exp(iΩt/2) and exp(iΩt ), respectively, we can recast,

for these two specific cases, equations (8.27) into a damped Mathieu equation (Benjamin and

Ursell, 1954; Kumar and Tuckerman, 1994a; Müller et al., 1997)

∂2η̂

∂t ′2
+ σ̂n

∂η̂

∂t ′
+ω2

0

(
1− f

1+Γ cosΩt ′
)
η̂= 0. (8.32)

with either σ̂n = σ0 (SH1) or σ̂n = σ1 (H1) and where one can recognize that − (ξnΩ)2 η̂↔
∂2η̂/∂t ′2 and i(ξnΩ) η̂↔ ∂η̂/∂t ′. Asymptotic approximations can be then computed by ex-

panding asymptotically the interface as η̂ = η̂0 + εη̂1 + ε2η̂2 + . . ., with ε a small parameter

¿ 1.

First sub-harmonic tongue

As anticipated above, when looking at the first or fundamental sub-harmonic tongue (SH1),

one should take σ̂n → σ0 (with ξ0Ω=Ω/2), which is assumed small of order ε. The forcing

amplitude f is assumed of order ε as well. Furthermore, a small detuning ∼ ε, such that

Ω= 2ω0 +ελ, is also considered, and, in the spirit of the multiple timescale analysis, a slow

time scale T = εt ′ (Nayfeh, 2008a) is introduced. At leading order, the solution reads η̂0 =
A (T )e iω0t ′ +c.c., with c.c. denoting the complex conjugate part. At the second order in ε, the

imposition of a solvability condition necessary to avoid secular terms prescribes the amplitude

B (T ) = A (T )e−iλT /2 to obey the following amplitude equation

dB

dT
=−σ0

2
B − i

λ

2
B − i

ω0

4(1+Γ)
f B . (8.33)

Turning to polar coordinates, i.e. B = |B |e iΦ, keeping in mind that σ0 =σ0,r + iσ0,i and looking

for stationary solutions with |B | 6= 0 (we skip the straightforward mathematical steps), one

ends up with the following approximation for the marginal stability boundaries associated

with the first sub-harmonic Faraday tongue

(
Ω+σ0,i

2ω0
−1

)
=± 1

4(1+Γ)

√√√√ f 2 −
4σ2

0,r (1+Γ)2

ω2
0

, (8.34)

whose onset acceleration value, min f1SH , for a fixed driving frequencyΩ/2π, amounts to

min fSH1 = 2σ0,r

√
1+Γ

g k tanhkh
≈ 2σ0,r

√
1

g

(
1

k
+ γ

ρg
k

)
, (8.35)

Note that the final approximation on the right-hand-side of (8.35) only holds if kh À 1, so

that tanhkh ≈ 1 (deep water regime). Given that χ0,r > 12 and χ0,i > 0 always, the asymptotic

approximation (8.35), in its range of validity, suggests that Darcy’s model underestimates
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8.1. Horizontally infinite Hele-Shaw cells

the sub-harmonic stability threshold. Moreover, from (8.34), the critical wavenumber k,

associated with min fSH1, would correspond to that prescribed by the Darcy approximation

but at an effective forcing frequencyΩ+σ0,i = 2ω0 instead of atΩ= 2ω0. This explains why

the modified tongues appear shifted towards higher wavenumbers. These observations are

well visible in figure 8.4.

SH1 H1

kb/2π

f

18 [Hz]
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Figure 8.4 – First sub-harmonic and harmonic Faraday tongues at a driving frquency
1/T = 18Hz for the same configuration of figure 8.3. Black and red regions show unstable
tongues computed via Floquet analysis by using, respectively, σBL = 12ν/b2 and the modified
σBL = χ1ν/b2 from the present model. Dashed and solid light-blue lines correspond to the
asymptotic approximations according to (8.34) and (8.37).

First harmonic tongue

By analogy with §8.1.2, an analytical approximation of the first harmonic tongue (H1) can be

provided. In the same spirit of Rajchenbach and Clamond (2015b), we adapt the asymptotic

scaling such that f is still of order ε, but T = ε2, σ̂n =σ1 ∼ ε2 (with ξ1Ω=Ω) andΩ=ω0 +ε2λ.

Pursuing the expansion up to ε2-order, with η̂0 = A (T )e iω0t ′ +c.c. and B (T ) = A (T )e−iλT , will

provide the amplitude equation

dB

dT
=−σ1

2
B − iλB − i

ω0

8(1+Γ)2 f 2B + i
ω0

12(1+Γ)2 f 2B. (8.36)

The approximation for the marginal stability boundaries derived from (8.36) takes the form

(
Ω+σ1,i /2

ω0
−1

)
= f 2

12(1+Γ)2 ± 1

8(1+Γ)2

√
f 4 −

(
4σ1,r (1+Γ)2

ω0

)2

(8.37)

with a minimum onset acceleration, min f1H

min fH = 2
p
σ1,r

(
(1+Γ)3

g k tanhkh

)1/4

≈ 2
p
σ1,r

1

g 1/4

(
1

k1/3
+ γ

ρg
k5/3

)3/4

, (8.38)
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and where, as before, the final approximation on the right-hand side is only valid in the deep

water regime. Similarly to the sub-harmonic case, the critical wavenumber k corresponds to

that prescribed by the Darcy approximation but at an effective forcing frequencyΩ+σ1,i /2 =
ω0 instead of atΩ=ω0 and the onset acceleration is larger than that predicted from the Darcy

approximation (as χ1,r > 12).

8.1.3 Comparison with experiments by Li et al. (2019)

Liquid µ [mPa s] ρ
[
kg/m3

]
γ [N/m] M [Pa s]

ethanol 99.7% 1.096 785 0.0218 0.04
ethanol 70.0% 2.159 835 0.0234 0.0485
ethanol 50.0% 2.362 926 0.0296 0.07

Table 8.1 – Characteristic fluid parameters for the three ethanol-water mixtures considered in
this study. Data for the pure ethanol and ethanol-water mixture (50%) are taken from Li et al.
(2019). The value of the friction parameter M for ethanol-70% is fitted from the experimental
measurements reported in §8.3, but lies well within the range of values used by Li et al. (2019)
and agrees with the linear trend displayed in figure 5 of Hamraoui et al. (2000).
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Figure 8.5 – Sub-harmonic instability onset, min f , versus driving frequency,Ω/2π. Compari-
son between theoretical data (empty squares: standard Darcy model, σBL = 12ν/b2; colored
triangles: present model, σBL =χnν/b2) and experimental measurements by Li et al. (2019).
The values of the mobility parameter M here employed are reported in the figure.

Results presented so far were produced by assuming the absence of contact line dissipation,

i.e. coefficient M was set to M = 0, so that σC L = 0. In this section, we reintroduce such a

dissipative contribution and we compare our theoretical predictions with a set of experimen-

tal measurements reported by Li et al. (2019), using the values they have proposed for M.

This comparison, shown in figure 8.5, is outlined in terms of non-dimensional minimum

onset acceleration, min f = min fSH1, versus driving frequency. These authors performed

experiments in two different Hele-Shaw cells of length l = 300mm, fluid depth h = 60mm

and gap-size b = 2mm or b = 5mm. Two fluids, whose properties are reported in table 8.1,

were used: ethanol 99.7% and ethanol 50%. The empty squares in figure 8.5 are computed
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via Floquet stability analysis (8.31) using the Darcy approximation for σBL = 12ν/b2 and

correspond to the theoretical prediction by Li et al. (2019), while the colored triangles are

computed using the present theory, with the corrected σBL = χnν/b2. Although the trend

is approximately the same, the Darcy approximation underestimates the onset acceleration

with respect to the present model, which overall compares better with the experimental mea-

surements (black-filled circles). Some disagreement still exists, especially at smaller cell gaps,

i.e. b = 2mm, where surface tension effects are even larger. This is likely attributable to an

imperfect phenomenological contact line model (Bongarzone et al., 2022b, 2021c), whose def-

inition falls beyond the scope of this work. Yet, this comparison shows how the modifications

introduced by the present model contribute to closing the gap between theoretical Faraday

onset estimates and these experiments.

8.2 The case of thin annuli

We now consider the case of a thin annular container, whose nominal radius is R and the actual

inner and outer radii are R −b/2 and R +b/2, respectively (see the sketch in figure 8.1(b)).

In the limit of b/R ¿ 1, the wall curvature is negligible and the annular container can be

considered a Hele-Shaw cell. The following change of variable for the radial coordinate,

r ′ = R + y ′ = R
(
1+ y ′/R

)
with y ′ ∈ [−b/2,b/2], will be useful in the rest of the analysis. As

in §8.1, we first linearize around the rest state. Successively, we introduce the following

non-dimensional quantities,

r = r ′

R
, y = y ′

b
, z = z ′

R
, u =

u′
ϕ

aΩ
, v = u′

r

aΩ (b/R)
, w = u′

z

aΩ
, p = p ′

ρRaΩ2 . (8.39)

It follows that, at leading order, r = 1 + yb/R ∼ 1 −→ 1/r = 1/
(
1+ yb/R

) ∼ 1 but ∂/∂r =
(R/b)∂/∂y ∼ (b/R)−1 À 1. With this scaling and introducing the Floquet ansatzs (8.6a)-(8.6b),

one obtains the following simplified governing equations,

∂ũn

∂ϕ
+ ∂ṽn

∂y
+ ∂w̃n

∂z
= 0, (8.40a)

iũn =− 1

ξn

∂p̃n

∂ϕ
+ δ2

n

2

∂2ũn

∂y2 , iw̃n =− 1

ξn

∂p̃n

∂z
+ δ2

n

2

∂2w̃n

∂y2 or ũn = i

ξn
∇p̃nFn

(
y
)

, (8.40b)

which are fully equivalent to those for the case of conventional rectangular cells if the trans-

formation ϕ→ x is introduced. Averaging the continuity equation with the imposition of the

no-penetration condition at y =∓1/2, v (∓1/2), eventually leads to

∇2p̃n = ∂2p̃n

∂z2 + ∂2p̃n

∂ϕ2 , (8.41)
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identically to (8.11). Expanding p̃n in the azimuthal direction as p̃n = p̂n sinmϕ, with m the

azimuthal wavenumber, provides(
∂2

∂z2 −m2
)

p̂n = 0 −→ p̂n = c1 coshmz + c2 sinhmz, (8.42)

and the no-penetration condition at the solid bottom located at z = −h/R, ŵn = ∂z p̂n = 0,

prescribes

p̂n = c1 (coshmz + tanhmh/R sinhmz) . (8.43)

Although so far the theory for the rectangular and the annular cases is basically the same, here

it is crucial to observe that the axisymmetric container geometry translates into a periodicity

condition:

sin(−mπ) = sin(mπ) −→ sinmπ= 0, (8.44)

which always imposes the azimuthal wavenumber to be an integer. In other words, in con-

tradistinction with the case of §8.1, where the absence of lateral wall ideally allows for any

wavenumber k, here we have m = 0,1,2,3, . . . ∈N.

By repeating the calculations outlined in §8.1, one ends up with the same equation (8.28) (and

subsequent (8.29)-(8.31)), but where ω0 obeys to the quantized dispersion relation

ω2
0 =

(
g

R
m + γ

ρR3 m3
)

tanhm
h

R
= (1+Γ)

g

R
m tanhm

h

R
. (8.45)

with Γ = γm2/ρg R2. In this context, a representation of Faraday’s tongues in the forcing

frequency-amplitude plane appears most natural, as each parametric tongue will correspond

to a fixed wavenumber m. Consequently, instead of fixing Ω and varying the wavenumber,

here we solve (8.31) by fixing m and varyingΩ.

8.2.1 Floquet analysis and asymptotic approximation

The results from this procedure are reported in figure 8.6, where, as in figure 8.3, the black

regions correspond to the unstable tongues obtained according to the standard gap-averaged

Darcy model, while the red ones are computed using the present theory with the corrected gap-

averaged σBL =χnν/b2. The Faraday threshold is represented in terms of forcing acceleration

(panels (a) and (b)) and forcing amplitude (panels (c) and (d)). Note the prediction reported

in panels (c) and (d) are equivalent to those reported in panels (a) and (b) with the ordinate

rescaled by a factorΩ2/g . In figure 8.6(a)-(c) no contact line model is included, whereas in

(b)-(d) a mobility parameter M = 0.0485 is accounted for. The use of this specific value for M

will be clarified in the next section when comparing the theory with dedicated experiments.

The regions with the lowest thresholds in each panel are sub-harmonic tongues associated

with modes from m = 1 to 14.

In general, the present model gives a higher instability threshold, consistent with the results

reported in the previous section. However, the tongues are here shifted to the left.

266



8.2. The case of thin annuli

m=1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a)

f
=

aΩ
2 /

g

M = 0

(b)

M = 0.0485

(c)

driving frequency [Hz]

a
[m

m
]

(d)

driving frequency [Hz]

0

0.2

0.4

0.6

0.8

4 6 8 10 12 14 16 18 20
0

0.25
0.5

0.75
1

1.25
1.5

1.75

4 6 8 10 12 14 16 18 20

Figure 8.6 – Faraday tongues computed via Floquet analysis (8.31) at different fixed azimuthal
wavenumber m and varying the driving frequency,Ω/2/π. (a)-(b) Faraday thresholds in terms
of forcing acceleration f = aΩ2/g ; (c)-(d) Threshold in terms of forcing amplitude a. Black
regions correspond to the unstable Faraday tongues computed using σBL = 12ν/b2, whereas
red regions are the unstable tongues computed with the present modified σBL =χnν/b2. The
fluid parameters used here correspond to those given in table 8.1 for ethanol 70%. The gap-size
is set to b = 7mm, the fluid depth to h = 65mm and the nominal radius to R = 44mm. Contact
line dissipation is included in (b) and (d) by accounting for a mobility coefficient M = 0.0485.
The regions with the lowest thresholds in each panel are sub-harmonic tongues associated
with modes from m = 1 to 14.

The asymptotic approximation for the sub-harmonic onset acceleration, adapted to this case

from (8.34) yields:

fSH1 = 2

√√√√(1+Γ)
σ2

0,r(
g /R

)
m tanhmh/R

+4(1+Γ)2
(
Ω+σ0,i

2ω0
−1

)2

, (8.46)

with

min fSH1 = 2σ0,r
1+Γ
ω0

= 2σ0,r

√
1+Γ(

g /R
)

m tanhmh/R
≈ 2σ0,r

√
R

g

(
1

m
+ γ

ρg R2 m

)
, (8.47)

helps us indeed in rationalizing the influence of the modified complex damping coefficient.

This apparent opposite correction is a natural consequence of the different representations:

varying wavenumber at a fixed forcing frequency (as in figure 8.3) versus varying forcing

frequency at a fixed wavenumber (figure 8.6). Such a behaviour is clarified by the asymptotic

relation (8.46) and, particularly by the term
(
Ω+σ0,i

2ω0
−1

)
. In §8.1, the analysis is based on a fixed

forcing frequency, while the wavenumber k and, hence, the natural frequency ω0, are let free

to vary. The first sub-harmonic Faraday tongue occurs whenΩ+σ0,i ≈ 2ω0. SinceΩ is fixed

and σ0,i > 0,Ω+σ0,i >Ω such that ω0 and therefore k have to increase in order to satisfy the
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relation. On the other hand, if the wavenumber m and, hence, ω0 are fixed as in this section,

then 2ω0 −σ0,i < 2ω0 and the forcing frequency around which the sub-harmonic resonance is

centered, decreases of a contribution σ0,i , which introduces a frequency detuning responsible

for the negative frequency shift displayed in figure 8.6.

8.2.2 Discussion on the system’s spatial quantization

A first aspect that needs to be better discussed is the frequency-dependence of the damping

coefficient σn associated with each Faraday’s tongue. In the case of horizontally infinite cells,

the most natural description for investigating the system’s stability properties is in the
(
k, f

)
plane for a fixed forcing angular frequencyΩ (Kumar and Tuckerman, 1994a). According to

our model, the oscillating system’s response occurring within each tongue is characterized

by a Stokes boundary layer thickness δn = p
2ν/(nΩ+α)/b. For instance, let us consider

sub-harmonic resonances with α=Ω/2. AsΩ is fixed (see any sub-panel of figure 8.3), each

unstable region sees a constant δn (with n = 0,1,2, . . .) and hence a constant damping σn .

On the other hand, in the case of quantized wavenumber as for the annular cell of §8.2,

the most suitable description is in the driving frequency-driving amplitude plane at fixed

wavenumber m (see figure 8.6) (Batson et al., 2013). In this description, each sub-harmonic

(α=Ω/2) or harmonic (α=Ω) nth tongue associated with a wavenumber m, sees a δn , and

thus a σn , changing withΩ along the tongue itself.

8.3 Experiments

In a real lab-scale experiment, the horizontal size of rectangular cells is never actually infinite

due to the presence of lateral walls in the elongated direction. In such a case however, the

solution form (8.9) prevents the no-slip condition for the in-plane xz-velocity components

to be imposed (Viola et al., 2017). This always translates into a theoretical underestimation

of the overall damping of the system in rectangular Hele-Shaw cells, although the sidewall

contribution is expected to be negligible for sufficiently long cells.

On the other hand, the case of a thin annulus, by naturally filtering out this extra dissipation

owing to the periodicity condition, offers a prototype configuration that can potentially allow

one to better quantify the correction introduced by the present gap-averaged model when

compared to dedicated experiments.

8.3.1 Setup

The experimental apparatus, shown in figure 8.7, consists in a Plexiglas annular container of

height 100mm, nominal radius R = 44mm and gap-size b = 7mm, which is then filled to a

depth h = 65mm with ethanol 70% (see table 8.1 for the fluid properties). An air conditioning

268



8.3. Experiments
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STI CCS PRIMA
R-b
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Figure 8.7 – Photo of the experimental setup

system helps in maintaining the temperature of the room at around 22◦. The container is

mounted on a loudspeaker VISATON TIW 360 8Ω placed on a flat table and connected to a

wave generator TEKTRONIX AFG 1022, whose output signal is amplified using a wideband

amplifier THURKBY THANDER WA301. The motion of the free surface is recorded with a digi-

tal camera NIKON D850 coupled with a 60mm f/2.8D lens and operated in slow motion mode,

allowing for an acquisition frequency of 120 frames per second. A LED panel placed behind

the apparatus provides back illumination of the fluid interface for better optimal contrast.

The wave generator imposes a sinusoidal alternating voltage, v = (
Vpp /2

)
cos

(
Ωt ′

)
, withΩ the

angular frequency and V pp the full peak-to-peak voltage. The response of the loudspeaker

to this input translates into a vertical harmonic motion of the container, a cos
(
Ωt ′

)
, whose

amplitude, a [mm], is measured with a chromatic confocal displacement sensor STI CCS

PRIMA/CLS-MG20. This optical pen, which is placed around 2cm (within the admissible

working range of 2.5cm) above the container and points at the top flat surface of the outer

container’s wall, can detect the time-varying distance between the fixed sensor and the oscil-

lating container’s surface with a sampling rate in the order of kHz and a precision of ±1µm.

Therefore, the pen can be used to obtain a very precise real-time value of a as the voltage

amplitude V pp and the frequencyΩ are adjusted.

8.3.2 Identification of the accessible experimental range

Such a simple setup, however, put some constraints on the explorable experimental frequency

range.

(i) First, we need to ensure that the loudspeaker’s output translates into a vertical container’s
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Figure 8.8 – Top: vertical container displacement a versus time at different forcing frequencies.
The black curves are the measured signal, while the green dash-dotted curves are sinusoidal
fitting. Below a forcing frequency of 8 Hz, the loudspeaker’s output begins to depart from a
sinusoidal signal. Bottom: same as in figure 8.6(d): sub-harmonic Faraday tongues computed
by accounting for contact line dissipation with a mobility parameter M = 0.0485. The light
blue curve here superposed corresponds to the maximal vertical displacement a achievable
with our setup. With this constraint, Faraday waves are expected to be observable only in the
frequency range highlighted in blue.

displacement following a sinusoidal time signal. To this end, the optical sensor is used to

measure the container motion at different driving frequencies. These time signals are then

fitted with a sinusoidal law. Figure 8.8 shows how below a forcing frequency of 8 Hz, the

loudspeaker’s output begins to depart from a sinusoidal signal. This check imposes a first

lower bound on the explorable frequency range.

(ii) In addition, as Faraday waves only appear above a threshold amplitude, it is convenient to

measure a priori the maximal vertical displacement a achievable. The loudspeaker response

curve is reported in the bottom part of figure 8.8. A superposition of this curve with the

predicted Faraday’s tongues immediately identifies the experimental frequency range within

which the maximal achievable a is larger than the predicted Faraday threshold so that standing

waves are expected to emerge in our experiments. Assuming the herein proposed gap-averaged

model (red regions) to give a good prediction of the actual instability onset, the experimental

range explored in the next section is limited to approximately ∈ [10.2,15.6] Hz.
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8.3.3 Procedure

(b)(a)

Figure 8.9 – Free surface shape at a forcing frequency 1/T = 11.7Hz and corresponding to:
(a) the lowest forcing amplitude value, a = 0.4693mm, for which the m = 6 standing wave
is present (the figure shows a temporal snapshot); (b) the largest forcing amplitude value,
a = 0.4158mm, for which the surface becomes flat and stable again. Despite the small forcing
amplitude variation, the change in amplitude is large enough to allow for a visual inspection
of the instability threshold with sufficient accuracy.

Given the constraints discussed in §8.3.2, experiments have been carried out in a frequency

range between 10.2 Hz and 15.6 Hz with a frequency step of 0.1 Hz. For each fixed forcing

frequency, the Faraday threshold is determined as follows: the forcing amplitude a is set to

the maximal value achievable by the loudspeaker, so as to quickly trigger the emergence of

the unstable Faraday wave. The amplitude is then progressively decreased until the wave

disappears and the surface becomes flat again.

More precisely, a first quick pass across the threshold is made to determine an estimate of the

sought amplitude. A second pass is then made by starting again from the maximum amplitude

and decreasing it. When we approach the value determined during the first pass, we perform

finer amplitude decrements, and we wait several minutes between each amplitude change

to ensure that the wave stably persists. We eventually identify two values: the last amplitude

where the instabilities were present (see figure 8.9(a)) and the first one where the surface

becomes flat again (see figure 8.9(b)). Two more runs following an identical procedure are

then performed to verify the values previously found. Lastly, an average between the smallest

unstable amplitude and the largest stable one gives us the desired threshold.

Once the threshold amplitude value is found for the considered frequency, the output of the

wave generator is switched off, the frequency is changed, and the steps presented above are

repeated again for the new frequency. In this way we always start from a stable configuration,

hence limiting the possibility of nonlinear interaction between different modes.

For each forcing frequency, the two limiting amplitude values, identified as described above,

are used to define the error bars reported in figure 8.10. Those error bars must also account

for the optical pen’s measurement error (0.1µm), as well as the non-uniformity of the output

signal. By looking at the measured average, minimum, and maximum amplitude values in

the temporal output signal, it is noteworthy that the average value typically deviates from the

minimum and maximum by around 10µm. Consequently, we incorporate in the error bars

this additional 10µm of uncertainty in the value of a. The uncertainty in the frequency of the

output signal is not included in the definition of the error bars, as it is extremely small, on the

order of 0.001 Hz.
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Figure 8.10 – Experiments (empty circles) are compared to the theoretically predicted sub-
harmonic Faraday threshold computed via Floquet analysis (8.31) for different fixed azimuthal
wavenumber m and according to the standard (black solid lines) and revised (red regions)
gap-averaged models. The tongues are computed by including contact line dissipation with a
value of M equal to 0.0485 as in figures 8.6(b)-(d) and 8.8. As explained in §8.3.3, the vertical
error bars indicate the amplitude range between the smallest measured forcing amplitude at
which the instability was detected and the largest one at which the surface remains stable and
flat. These two limiting values are successively corrected by accounting for the optical pen’s
measurement error and the non-uniformity of the output signal of the loudspeaker.

8.3.4 Instability onset and wave patterns

The experimentally detected threshold at each measured frequency is reported in figure 8.10

in terms of forcing acceleration f and amplitude a. Once again, the black unstable regions

are calculated according to the standard gap-averaged model with σBL = 12ν/b2, whereas red

regions are the unstable tongues computed using the modified damping σBL =χnν/b2. Both

scenarios include contact line dissipation σC L = (
2M/ρb

)
(m/R) tanh(mh/R), with a value of

M equal to 0.0485 for ethanol 70%. Although, at first, this value has been simply selected in

order to fit well our experimental measurements, it is in perfect agreement with the linear

relation linking M to the liquid’s surface tension reported in figure 5 of Hamraoui et al. (2000)

and used by Li et al. (2019) (see table 8.1).

As figure 8.10 strikingly shows, the present theoretical thresholds match well our experimental

measurements. On the contrary, the poor description of the oscillating boundary layer in
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t=0 and 2T t=T

m
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m
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 =
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m
 =
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Figure 8.11 – Snapshots of the wave patterns experimentally observed within the sub-harmonic
Faraday tongues associated with the azimuthal wavenumbers m = 5,6,7,8 and 9. T is the
forcing period, which is approximately half the oscillation period of the wave response. These
patterns appear for: (m = 5) 1/T = 10.6Hz, a = 0.8mm; (m = 6) 1/T = 11.6Hz, a = 1.1mm;
(m = 7) 1/T = 12.7Hz, a = 0.9mm; (m = 8), 1/T = 13.7Hz, a = 0.6mm; (m = 9) 1/T = 14.8Hz,
a = 0.4mm. These forcing amplitudes are the maximal achievable at their corresponding
frequencies (see figure 8.8 for the associated operating points). The number of peaks is easily
countable by visual inspection of two time snapshots of the oscillating pattern extracted at
t = 0,T and t = T /2. This provides a simple criterion for the identification of the resonant
wavenumber m. See also supplementary movies 1-5 at: LINK. 273
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the classical Darcy model translates into a lack of viscous dissipation. The arbitrary choice

of a higher fitting parameter M value, e.g. M ≈ 0.09 would increase contact line dissipation

and compensate for the underestimated Stokes boundary layer one, hence bringing these

predictions much closer to experiments; however, such a value would lie well beyond the typi-

cal values reported in the literature. Furthermore, the real damping coefficient σBL = 12ν/b2

given by the Darcy theory does not account for the frequency detuning displayed by experi-

ments. This frequency shift is instead well captured by the imaginary part of the new damping

σBL =χnν/b2 (with χn =χn,r + iχn,i ).

Within the experimental frequency range considered, five different standing waves, corre-

sponding to m = 5,6,7,8 and 9, have emerged. The identification of the wavenumber m has

been simply performed by visual inspection of the free surface patterns reported in figure 8.11.

Indeed, by looking at a time snapshot, it is possible to count the various wave peaks along the

azimuthal direction.

When looking at figure 8.10, it is worth commenting that on the left sides of the marginal sta-

bility boundaries associated with modes m = 5 and 6 we still have a little discrepancy between

experiments and the model. Particularly, the experimental thresholds are slightly lower than

the predicted ones. A possible explanation can be given by noticing that our experimental

protocol is agnostic to the possibility of subcritical bifurcations and hysteresis, while such

behaviour has been predicted by Douady (1990).

As a last comment, one has to keep in mind that the Hele-Shaw approximation remains good

only if the wavelength, 2πR/m does not become too small, i.e. comparable to the cell’s gap, b.

In other words, one must check that the ratio mb/2πR is of the order of the small separation-

of-scale parameter, ε. For the largest wavenumber observed in our experiments, m = 9, the

ratio mb/2πR amounts to 0.23, which is not exactly small. Yet, the Hele-Shaw approximation

is seen to remain fairly good.

8.3.5 Contact angle variation and thin film deposition

Before concluding, it is worth commenting on why the use of dynamic contact angle model (8.21)

is justifiable and seen to give good estimates of the Faraday thresholds.

Existing lab experiments have revealed that liquid oscillations in Hele-Shaw cells constantly ex-

perience an up-and-down driving force with an apparent contact angle θ constantly changing

(Jiang et al., 2004). Our experiments are consistent with such evidence. In figure 8.12 we report

seven snapshots, (i)-(vii), covering one oscillation period, T , for the container motion. These

snapshots illustrate a zoom of the dynamic meniscus profile and show how the macroscopic

contact angle changes in time during the second half of the advancing cycle (i)-(v) and the

first half of the receding cycle (vi)-(x), hence highlighting the importance of the out-of-plane

meniscus curvature variations. Thus, on the basis of our observations, it seemed appropriate

to introduce in the theory a contact angle model so as to justify this associated additional

dissipation, which would be neglected by assuming M = 0. The model used in this study, and

already implemented by Li et al. (2019), is very simple; it assumes the cosine of the dynamic

contact angle to linearly depend on the contact line speed through the capillary number C a
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(i) (ii) (iii) (iv) (v)

(x) (ix) (viii) (vii) (vi)

Figure 8.12 – Zoom of the meniscus dynamics recorded at a driving frequency 11.6Hz and
amplitude a = 1.2mm for m = 6. Seven snapshots, (i)-(vii), covering one oscillation period, T ,
for the container motion are illustrated. These snapshots show how the meniscus profile and
the macroscopic contact angle change in time during the second half of the advancing cycle
and the first half of the receding cycle, hence highlighting the importance of the out-of-plane
curvature or capillary effects. See also supplementary movie 6 at: LINK.

(Hamraoui et al., 2000). Accounting for such a model is shown, both in Li et al. (2019) and in

this study, to supplement the theoretical predictions by a sufficient extra dissipation suitable

to match experimental measurements.

This dissipation eventually reduces to a simple damping coefficientσC L as it is of linear nature.

A unique constant value of the mobility parameter M is sufficient to fit all our experimental

measurements at once, suggesting that the meniscus dynamics is not significantly affected by

the evolution of the wave in the azimuthal direction, i.e. by the wavenumber, and M can be

seen as an intrinsic property of the liquid-substrate interface.

Several studies have discussed the dependence of the system’s dissipation on the substrate

material (Cocciaro et al., 1993; Dussan, 1979; Eral et al., 2013; Huh and Scriven, 1971; Ting and

Perlin, 1995; Viola et al., 2018; Viola and Gallaire, 2018; Xia and Steen, 2018). These authors,

among others, have unveiled and rationalized interesting features such as solid-like friction

induced by contact angle hysteresis. This strongly nonlinear contact line behaviour does

not seem to be present in our experiments. This can be tentatively explained by looking at

figure 8.13. These snapshots illustrate how the contact line constantly flows over a wetted

substrate, due to the presence of a stable thin film deposited and alimented at each oscillation

cycle. This feature has been also recently described by Dollet et al. (2020), who showed that

the relaxation dynamics of liquid oscillation in a U-shaped tube filled with ethanol, due to the

presence of a similar thin film, obey an exponential law that can be well-fitted by introducing

a simple linear damping, as done in this work.
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(i) (ii) (iii)

Figure 8.13 – These three snapshots correspond to snapshots (ii), (iii) and (iv) of figure 8.12
and show, using a different light contrast, how the contact line constantly moves over a wetted
substrate due to the presence of a stable thin film deposited and alimented at each cycle.

8.4 Conclusions

Previous theoretical analyses for Faraday waves in Hele-Shaw cells have so far relied on the

Darcy approximation, which is based on the parabolic flow profile assumption in the narrow

direction and that translates into a real-valued damping coefficient σBL = 12ν/b2, with ν the

fluid kinematic viscosity and b the cell’s gap-size, that englobes the dissipation originated

from the Stokes boundary layers over the two lateral walls. However, Darcy’s model is known

to be inaccurate whenever inertia is not negligible, e.g. in unsteady flows such as oscillating

standing or travelling waves.

In this work, we have proposed a gap-averaged linear model that accounts for inertial effects

induced by the unsteady terms in the Navier-Stokes equations, amounting to a pulsatile

flow where the fluid motion reduces to a two-dimensional oscillating flow, reminiscent of

the Womersley flow in cylindrical pipes. When gap-averaging the linearized Navier-Stokes

equation, this results in a modified damping coefficient, σBL =χnν/b2, with χn =χn,r + iχn,i

complex-valued, which is a function of the ratio between the Stokes boundary layer thickness

and the cell’s gap-size, and whose value depends on the frequency of the system’s response

specific to each unstable parametric Faraday tongue.

After having revisited the ideal case of infinitely long rectangular Hele-Shaw cells, for which we

have found a good agreement against the experiments by Li et al. (2019), we have considered

the case of Faraday waves in thin annuli. This annular geometry, owing to the periodicity

condition, naturally filters out the additional, although small, dissipation coming from the

lateral wall in the elongated direction of finite-size lab-scale Hele-Shaw cells. Hence, a thin

annulus offers a prototype configuration that can allow one to better quantify the correction

introduced by the present gap-averaged theory when compared to dedicated experiments and

to the standard gap-averaged Darcy model.

A series of homemade experiments for the latter configuration has proven that Darcy’s model

typically underestimates the Faraday threshold, as χn,r > 12, and overlooks a frequency de-

tuning introduced by χn,i > 0, which appears essential to correctly predict the location of

the Faraday’s tongue in the frequency spectrum. The frequency-dependent gap-averaged

model proposed here successfully predicts these features and brings the Faraday thresholds

estimated theoretically closer to the ones measured.
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Furthermore, a close look at the experimentally observed meniscus and contact angle dynam-

ics clearly highlighted the importance of the out-of-plane curvature, whose contribution has

been neglected so far in the literature, with the exception of Li et al. (2019). This evidence

justifies the employment of a dynamical contact angle model to recover the extra contact line

dissipation and close the gap with experimental measurements.

A natural extension of this work is to examine the existence of a drift instability at higher

forcing amplitudes.
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Part IVNonlinear relaxation dynamics of free
surface oscillations due to contact

angle hysteresis
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Introduction

In Part II, we have tackled several aspects of sloshing, an archetypal resonator system in fluid

mechanics which sometimes represents a critical issue in mechanical engineering and daily

life. It is therefore crucial to understand its associated damping. Indeed, the latter plays a

fundamental role in the mitigation of the wave amplitude response in resonant conditions.

We have mentioned how originally the eigenfrequencies of standing capillary-gravity waves

in closed basins were derived in the potential flow limit (Lamb, 1993), while the linear viscous

dissipation at the free surface, at the solid walls and in the bulk for low-viscosity fluids was

typically accounted for by a boundary layer approximation (Case and Parkinson, 1957; Miles,

1967; Ursell, 1952). This classic theoretical approach, which has been used in Part II, is

built on the simplifying assumption that the free liquid surface, η, intersects the lateral wall

orthogonally and the contact line can freely slip at a velocity ∂η/∂t (∼U ) and with a constant

zero slope,
∂η

∂n
= 0 free-end edge condition,

where ∂/∂n is the spatial derivative in the direction normal to the lateral wall. Chapters 4, 5 and

6, have proven these hypotheses reasonable for the modelling of gravity-dominated waves in

moderately large-size containers, although some mismatch between theory and experiments

is still present. Such a mismatch was partially attributed to additional dissipations sources

acting at the moving contact line, whose dynamics is the central topic of this Part IV.

The classical assumption of a free-end edge condition has been relaxed in Part III, where two

other scenarios have been studied within the framework of the Faraday instability in small-size

partially filled containers. In Chapter 7, we have considered a diametrically opposed boundary

condition, namely a pinned-end edge, according to which the contact line is fixed,

∂η

∂t
= 0 pinned-end edge condition,

while the slope, ∂η/∂n, is let free to vary (Benjamin and Scott, 1979; Graham-Eagle, 1983). In

this case, theoretical predictions have provided an estimation of the sub-harmonic Faraday

threshold in good agreement with experimental measurements. Indeed, with the contact

line being fixed, the system’s dissipation can be estimated accurately, since no extra and

undetermined dissipation is generated by the contact line.

In Chapter 8, the instability onset of Faraday waves in Hele-Shaw cells and with a moving
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Figure IV.1 – (a) Advancing, θa , and receding, θr , contact angles in a droplet sliding down
with velocity U over a dry substrate (partial wetting). (d) Contact angles in an expanding
and contracting liquid droplet. Both (a) and (d) are examples of uni-directional flows. The
dynamic contact angle is seen experimentally to depend on the capillary number, C a =µU /γ,
as reported by (b) Snoeijer and Andreotti (2013) and (c) Rio et al. (2005). The dependence
of the contact angle, θ, on the capillary number, C a, is modelled in the literature by the (e)
de Gennes (Gennes, 1985) and (f) Cox-Voinov (Cox, 1986; Voinov, 1976) models. (g) Contact
angle dynamics in a vertically vibrating droplet and in (j) sloshing waves (snapshots over a
period) (Viola, 2016). For these oscillatory flows, experiments by (h) Xia and Steen (2018)
and (l) Cocciaro et al. (1993) suggest as suitable phenomenological contact angle laws the (i)
nonlinear Dussan model (Dussan, 1979; Jiang et al., 2004), sometimes simply approximated
by the (m) Hocking linear law (Hocking, 1987) supplemented with hysteresis.
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contact line has been estimated by introducing, in the same spirit of Li et al. (2019), an

intermediate boundary condition that assumes a linear relation between the contact line

speed and slope, ∂η/∂n ∝ ∂η/∂t (Hocking, 1987), with a proportionality constant, sometimes

referred to as mobility parameter M (Xia and Steen, 2018), that in our study has been kept

constant in time. We note that, according to the linear relation,

∂η

∂n
= M

∂η

∂t
mixed condition,

the limiting values M → 0 and M →∞ would correspond, respectively, to free-end and pinned-

end edge contact line conditions. The agreement with experiments was found to be fairly

good, although this proportionality constant was used as a fitting parameter.

With these simple contact line models, the damping of the system is assumed to have linear

origins. Nevertheless, these assumptions altogether, by overlooking the actual nonlinear con-

tact line dynamics, have led to a considerable underestimation of the actual overall dissipation

in most of the small-size lab-scale experiments (Benjamin and Ursell, 1954; Henderson and

Miles, 1990), for which the complexity of the region in the neighbourhood of the moving con-

tact line, where molecular, boundary layer and macroscopic scales are intrinsically connected,

is of extreme importance.

In order to understand and quantify better, at least from a macroscopic perspective, this extra

dissipation, it is necessary to look more carefully at the dynamics of the oscillating contact line

and at its wetting conditions, a long-standing problem in fluid mechanics that dates back to

Navier Navier (1823) (see also Davis (1974); Eggers (2005); Eral et al. (2013); Huh and Scriven

(1971); Keulegan (1959); Lauga et al. (2007); Miles (1990); Ting and Perlin (1995)).

When a liquid meniscus flows over a dry solid substrate, there is a triple-phase interface (air-

liquid-solid), which experiences a complex nonlinear dynamics. For instance, let us consider

two scenarios of uni-directional flows: a droplet sliding down with velocity U on an inclined

dry plate in partial wetting conditions (see figure IV.1(a)); an expanding or contracting (at

velocity U ) liquid droplet (see figure IV.1(d)). Experimental observations (Dussan, 1979; Grand

et al., 2005; Rio et al., 2005) have shown that the dynamic advancing, θa , and receding, θr ,

contact angles deviate from their static values depending on the velocity of displacement of

the advancing or receding meniscus. Moreover, there exists a range θ ∈ [θr ,θa] within which

the contact line seems to remain stationary. The existence of such a static range, defined

as contact angle hysteresis, plays a critical role in the nonlinear damping and dynamics of

capillary-gravity waves.

Several models have been suggested to explain the relation between the dynamic contact

angles, θ, and the capillary number defined by the drop velocity, U , i.e. C a = µU /γ, with γ

and µ, the air-liquid surface tension and dynamic viscosity, respectively. One such model for

these uni-directional flows has been established by Gennes (1985), who extended to partial

wetting conditions the Tanner law, originally derived in total wetting. This law connects the

dynamic contact angles θ and the static (equilibrium) angle θs with the capillary number C a.

More precisely, the force required to draw the liquid is represented by γ (cosθs −cosθ), while

the viscous force is proportional to µUθ−1 log
(
lmacr o /lmi cr o

)
. Here, lmacr o denotes a macroscopic
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characteristic length and lmi cr o is a microscopic cut-off length, which is necessary to prevent

stress singularity, as pointed out by Snoeijer and Andreotti (2013). For small values of static

and dynamic contact angles, the equation θ
(
θ2 −θ2

s

)=±6C a log
(
lmacr o /lmi cr o

)
holds true, with

the ± signs that distinguish between the advancing and receding motion of the contact line.

Cox (1986) and Voinov (1976) arrived at a similar but different relation by solving lubri-

cation equations for slightly curved air-liquid interfaces. Like the approach of de Gennes,

their solution is truncated at both molecular and macroscopic scales, giving the law θ3 −θ3
s =

±9C a log
(
lmacr o /lmi cr o

)
.

In the study by Grand et al. (2005), it was noted that while certain models accurately depict

the contact line dynamics observed in experiments, they fail to account for wetting hysteresis.

As a result, when comparing these models to experimental data, the static contact angle θs

is substituted with the limit static angle θa for the advancing branch and θr for the receding

branch. Figure IV.1(e,f) displays the resulting θ (C a) dependence for the de Gennes (e) and

Cox-Voinov models (f), both of which incorporate a static hysteresis range ∆.

For oscillatory flows, the contact angle laws proposed in the literature share the same

qualitative features as those derived for uni-directional flows, such as the de Gennes or the

Cox-Voinov ones, but are described by quantitatively different relations. As this thesis focuses

on oscillatory flows, the bottom part of figure IV.1 gives a brief overview of famous contact

line models which have been used in this context. For instance, the contact angle dynamics

observed for vertical vibrating sessile drops (figure IV.1(g)) or during the relaxation of sloshing

waves (figure IV.1(j)) are seen to obey the nonlinear (cubic) Dussan model, (θ−θs)3 ∼C a (see

figure IV.1(h,i)), and are sometimes well approximated by a modified Hocking’s law (supple-

mented with hysteresis, see figure IV.1(l,m)).

Furthermore, the rich dynamics of an oscillatory meniscus shows some interesting features

that the next two Chapters of this thesis aim at reproducing and predicting. Those features are

described in detail in figure IV.2. In a study conducted by Noblin et al. (2004), they investigated

the behaviour of a water droplet on a solid surface with a finite contact angle hysteresis under

vertical vibration (see figure IV.1(g)). The results showed two distinct types of oscillations.

At low forcing amplitude, the contact line remains pinned (see figure IV.2(a)) and the drop

displays eigenmodes at different resonance frequencies. At higher amplitudes, the contact line

starts to move, remaining circular but with a radius oscillating at the excitation frequency. This

transition between the two regimes occurs when the variations of the contact angle exceed

the hysteresis range. They also observed a decrease in the resonance frequencies at larger

vibration amplitudes for which the contact line is mobile. These features were attributed to

the hysteresis acting as solid-like friction on the oscillations, leading to a stick-slip regime at

intermediate amplitude (Dollet et al., 2020).

In his seminal works, Cocciaro et al. (1993, 1991) thoroughly characterized the contact angle

dynamics during the natural (free-of-forcing) relaxation phase of the fundamental asymmet-

ric sloshing mode in a small circular cylindrical container. Two different damping regimes

were observed, corresponding to higher and smaller wave amplitude oscillations (see fig-

ure IV.2(b,c)). First, the contact line slides over the solid substrate experiencing progressive

stick-slip transitions under the effect of the dynamic wall friction. In this phase, the damping
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Figure IV.2 – (a) Transition between stick and stick-slip motions in a water sessile drop de-
posited on a vertically vibrating substrate characterized by a finite contact angle hysteresis
(∆≈ 10−15 degrees) (Noblin et al., 2004). Lower curves are contact angle variations versus
time, the dashed line represents θs . Higher curves are the contact line position around the
starting position before vibrations. The six curves for different non-dimensional acceleration
amplitudes f /g are joined together in the same plot for comparison. The driving frequency is
1/T = 9Hz. (b) Experimental contact angle dependence on the capillary number as measured
by Cocciaro et al. (1993) during the natural relaxation dynamics of water oscillations in a
cylindrical container initially perturbed using a loudspeaker, so as to induce the liquid motion.
(c) Associated damping rate versus the amplitude of the angle measured at the container axis.
The vertical dashed line indicates the value for which the contact line irreversibly pins.

increases considerably as the wave amplitude decreases, until it reaches a maximum value,

after which it starts to decrease, and the small amplitude regime is established. A finite time

of arrest for the contact line is found: the interface irreversibly pins and the following pure

bulk motion is seen to decay exponentially owing to the linear viscous dissipation acting in

the fluid bulk and in the Stokes boundary layers. The natural oscillations frequency initially

matches the value associated with a free-end eigenmode, it increases during the decay, and it

eventually tends to the value associated with a pinned-end eigenmode.

As an alternative to computationally expensive fully nonlinear direct numerical simulations

(see (Amberg, 2022; Ludwicki et al., 2022) among others), different theoretical frameworks,

attempting to rationalize the nonlinear dependence of the damping rate on the oscillation

amplitude, have been recently proposed (Viola et al., 2018; Viola and Gallaire, 2018). These
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works are based on an asymptotic formulation of the full hydrodynamic problem, which is

tackled in the spirit of the weakly nonlinear and multiple timescale approach Stuart (1960),

under precise assumptions and range of validity. The asymptotic analysis is found to be able

to quantitatively predict the nonlinear trend of the damping in the higher amplitudes regime

and the existence of a finite-time of arrest for the contact line, in agreement with experiments

(Cocciaro et al., 1993; Dollet et al., 2020). However, it fails in capturing the transient stick-

slip motion and, most importantly, the transition to the small amplitude regime, when the

interface pins but the fluid bulk keeps oscillating with a smaller amplitude motion following a

purely pinned dynamics.

The purpose of Chapter 9 is to provide a different theoretical approach, which overcomes the

limitations of these asymptotic analyses, thus successfully solving the overall flow dynamics

and enabling us to extract and highlight realistic flow features, yet keeping a low computational

cost. To this end, we consider viscous liquid oscillations in an idealized two-dimensional

container and subjected to an experimentally inspired nonlinear contact line model, to which

the contact line is forced to obey. Using a piecewise time splitting of the nonlinear contact line

law, we formalize a mathematical model based on successive projections between different

sets of linear eigenmodes pertaining to each linear split-piece composing the contact line law.

This procedure allows us to formally account for all the nonlinear features of small-amplitude

capillary-gravity waves induced by a nonlinear contact line law acting at the lateral wall of

a rectangular basin and, in particular, to correctly solve the transition from a contact line

stick-slip (or nearly stick-slip) regime to the pinned (or nearly pinned) one. Indeed, each

projection, corresponding to each stick-slip transition, eventually induces a rapid loss of total

energy in the liquid motion and contributes to its nonlinear damping.

The projection method formalized in Chapter 9 for an idealized two-dimensional flow con-

figuration with triple contact points (rather than lines), is extended in Chapter 10 to describe

the more realistic situation of liquid oscillations in a U-shaped tube, as experimentally inves-

tigated by Dollet et al. (2020). A thorough quantitative comparison with these experiments

shows that the projection method correctly captures the final stick-slip-to-stick transition, as

well as the secondary fluid bulk motion following the arrest of the contact line, overlooked by

previous asymptotic analyses.
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9 Relaxation of capillary-gravity waves
due to contact line nonlinearity: a
projection method

Remark: this Chapter is largely inspired by the publication of the same name.

A. Bongarzone1, F. Viola2, F. Gallaire1

1 Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne,

Lausanne CH-1015, Switzerland
2 Gran Sasso Science Institute, Viale F. Crispi, 7, 67100 L’Aquila, Italy

Chaos, 31, 123124 (2021)

The comprehension of the role of wetting properties in the damping of liquid oscillations

in confined basins is a long-standing problem in the hydrodynamics field and for which

renewed interest has emerged in recent years. A series of careful lab-scale experiments have

revealed that the damping of liquid natural small oscillations varies nonlinearly with the

oscillation amplitude, in contrast with previous theoretical predictions (Case and Parkinson,

1957; Lamb, 1993; Miles, 1967; Ursell, 1952), which prescribe a constant and unique value

for the damping rate, thus indicating a dependence on the contact line behaviour and hence

on the solid substrate material. This effect has been tentatively attributed to a source of

dissipation localized in the proximity of the air-liquid-solid triple line, which, during the

dynamics, may exhibit a complex hysteretic behaviour under the effect of solid-like wall

friction. In this Chapter, assuming that the contact line behaves according to experimentally-

inspired phenomenological laws, we formalize a mathematical method based on successive

linear eigenmode projections for solving numerically the nonlinear fluid motion in the limit

of small oscillation amplitudes. We show that each projection eventually induces a rapid loss

of total energy in the liquid motion and contributes to its nonlinear damping. Particularly, this

approach captures the transition from a contact line stick-slip (or nearly stick-slip) motion to a

pinned (or nearly pinned) configuration, as well as the secondary fluid bulk motion following

the arrest of the contact line, overlooked by previous asymptotic analyses.
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h
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∂Ω
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Figure 9.1 – Sketch of a two-dimensional rectangular container of width 2l and filled to a depth
h (e.g. h/l = 3, nearly deep water regime, without loss of generality) with a liquid of density
ρ and dynamic viscosity µ. The air-liquid surface tension is γ. The origin of the Cartesian
coordinate system is fixed at the center of the free liquid surface at rest, while the bottom is
placed at z = −h. θ is the contact angle. The dashed-dotted line is the geometrical axis of
symmetry. Ω denotes the bulk domain, ∂Ω its solid boundaries and η denotes here the moving
interface.

The Chapter is organized as follows. The flow configuration analyzed in this work and

the physical model governing the problem are introduced in §9.1. For completeness, the

key points of the weakly nonlinear formulation applied to the present case are synthetically

re-proposed and commented in §9.2. The novel projection method is introduced and carefully

described in §9.3, where quantitative and qualitative comparisons with the weakly nonlinear

model and previous experiments are made. Lastly, the extension of the method to more

sophisticated contact line dynamics is discussed in §9.4. Final conclusions and comments are

outlined in §9.5.

9.1 Flow configuration and governing equations

The viscous fluid motion within the two-dimensional vessel is governed by the incompressible

Navier-Stokes equations,

∇·u = 0,
∂u

∂t
+ (u ·∇)u+∇p − 1

Re
∆u =−1êz , (9.1)

which are made nondimensional by using the container’s characteristic length l and the veloc-

ity
√

g l (see figure. 9.1). Consequently, the Reynolds number is defined as Re = ρg 1/2l 3/2/µ

and the term −1êz is the nondimensional gravity acceleration. At the free surface, z = η
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kinematic and dynamic boundary conditions hold

D
(
η− z

)
Dt

= ∂η

∂t
+u

∂η

∂x
−w = 0, (9.2a)

[
−pI+ 1

Re

(∇u+∇T u
)− 1

Bo
κ

(
η
)

I
]
·n = 0, (9.2b)

where D/Dt is the material derivative, u = {u, w}T is the velocity vector, κ is the free surface

curvature, κ
(
η
)= ∂xxη

(
1+∂xη

2
)−3/2

, and n = (
1+∂xη

2
)−1/2 {−∂xη,1

}T is unit vector normal

to the interface. The Bond number is defined as Bo = ρg l 2/γ, with γ designating the air-liquid

surface tension. At the bottom wall the no-slip condition applies

u = {u, w}T = 0 at z =−h

l
. (9.3)

At the lateral walls a slip length model is adopted, thus assuming that the fluid speed relative

to the solid wall is proportional to the viscous stress (Lauga et al., 2007; Navier, 1823) and that,

together with no-penetration condition, provides the boundary conditions

u = 0, w + ls
∂w

∂x
= 0 at x =±1. (9.4)

Such a condition is indeed needed in order to regularize the stress singularity at the moving

contact line (Davis, 1974; Huh and Scriven, 1971).

Lastly, at the contact line, z = η and x =±1, we include a phenomenological contact line law,

which describes the nonlinear contact angle dynamic as a function of the contact line speed,

∂η

∂x
=±cotθ, θ−θs =F

(
∂η

∂t

)
. (9.5)

Relevant nonlinear laws, F
(
∂η
∂t

)
, will be introduced in the next section §9.2.

It was hypothesized that a phenomenological macroscopic slip length appearing in equa-

tion (9.4) is not constant in space, but rather a function of the position along the lateral wall

and that it vanishes at a certain distance away from the contact line, where the flow obeys the

no-slip condition (Miles, 1990; Ting and Perlin, 1995). However, in order to avoid the resulting

dynamical coupling of the slip length ls and the contact line motion, and since the dissipation

at the wall in the contact line region (accounted for by the contact line model) dominates

over that taking place at the lateral walls (Hocking, 1987), we assume here a slip length ls À 1,

constant in time and space along the lateral wall, so that equation (9.4) for w reduces to a

stress-free wall boundary condition. This simplistic assumption, which neglects the viscous

boundary layer at the lateral walls, will result in an underestimation of the overall damping

rate, but it will significantly simplify the mathematical treatment of the lateral boundaries.

Finally, it is important to note that the simultaneous application of stress-free wall conditions

and a pinned contact line does not result in any inconsistency (Benjamin and Scott, 1979;

Graham-Eagle, 1983), in marked contrast to the combination of no-slip wall conditions and a
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free-edge contact line.

Although a perfect slip condition is assumed at the lateral wall and albeit the overall dissi-

pation is mainly ascribed to the nonlinear contact line dynamics, the role of the small linear

viscous dissipation occurring in the fluid bulk and solid bottom is of crucial importance

in avoiding the accumulation of energy in high frequencies in the forthcoming projection

method, thus precluding the use of a simpler potential model.

Further details are given in Appendix 9.6.3.

9.2 Asymptotic formulation

The system of governing equations and boundary conditions introduced in §9.1 is nonlinear

owing to the nonlinear contact angle law. Henceforth, we consider the following two experi-

mentally based contact line laws from the literature (Cocciaro et al., 1993; Dussan, 1979; Jiang

et al., 2004) (see figure 9.2),

θa

θr

θs∆

θ(a)

∂tη

θ
(d

eg
)

θ

θs

(b)

∂tη

Figure 9.2 – (a) Hocking’s linear law (Hocking, 1987) plus hysteresis range (Dussan, 1979; Young
and Davis, 1987). (b) Jiang et al. cubic model, obtained in the framework of unidirectional
flow over a flat plate at low Reynolds number (Jiang et al., 2004).

θ−θs =


αC a ∂η

∂t + ∆
2 sgn

(
∂η
∂t

)
Hocking+hyst.

βC a1/3
(
∂η
∂t

)1/3
Jiang et al.

(9.6)

with the capillary number defined as C a =µ√
g l /γ and ∂η/∂t is the non-dimensional contact

line speed.

To avoid misleading interpretations, we specify that in the following the terminology “Hock-

ing’s law plus hysteresis” (or Hocking+hyst.) refers to a combination of the original Hocking’s

linear law (without static hysteresis) supplemented with a static hysteresis range, ∆, as in Dus-
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san (1979).

Given the contact line nonlinearity, one possible approach to tackle the problem is asymp-

totic theory. In this section, we briefly repropose a weakly nonlinear (WNL) formulation, based

on a multiple timescale expansion and valid in the limit of small contact line parameters,

which aims to incorporate as much as possible, the features of the contact line dynamics

(Viola et al., 2018; Viola and Gallaire, 2018). We draw the reader’s attention to the fact that the

nomenclature adopted hereinafter relies on that used in the authors’ earlier works (Viola et al.,

2018; Viola and Gallaire, 2018), the limitations of which motivated the present study.

9.2.1 Presentation

Let us introduce the following asymptotic expansion for the flow quantities,

q = {
u, p,η

}T = q0 +εq1 +ε2q2 +O
(
ε3) , (9.7a)

(the same expansion holds for the contact angle θ). Under the assumption of small viscous

effects (Re À 1) and introducing the following scalings for the slow time, damping coefficient

and contact line parameters,

T = εt︸ ︷︷ ︸
slow time scale

, σV = εσ̂V︸ ︷︷ ︸
viscous damping

, ∆= ε2∆̂︸ ︷︷ ︸
nonlinear range

, αC a = εα̂︸ ︷︷ ︸
Hocking’s linear variation

, βC a1/3 = ε5/3β̂︸ ︷︷ ︸
Jiang et al. cubic law

, (9.7b)

with ε¿ 1 small parameter, the contact line nonlinearities are retained only as a weakly nonlin-

ear correction (order ε2) of an ε-order dynamics representing an oscillatory small perturbation

of the static flow configuration. Substituting the expansions above in the governing equations

and boundary conditions, a series of systems are obtained at the various order in ε. We note

that the small parameter ε is not explicitly defined here, but rather it only serves to separate

different order of magnitudes of the problem and it will be eliminated afterwards by recasting

all quantities in terms of their corresponding physical values (Bongarzone et al., 2021a; Meliga

et al., 2009b; Viola et al., 2018; Viola and Gallaire, 2018).

At order ε0, the nonlinear problem associated with the static shape of the interface is ob-

tained. Although the procedure in principle applies to any static contact angle θs , we consider

the simplest case θ0 = θs = π/2, so that the fluid at rest (u0 = 0, p0 = −z) has a flat static

interface η0 = 0. Note that the static contact angle θs represents the macroscopic contact

angle measured with the fluid at rest before imposing any initial perturbation. At order ε, the

linear eigenvalue problem for viscous capillary-gravity waves is retrieved. The contact line

boundary condition reads ∂xη1 = 0 (θ1 = 0), thus retrieving the classic free-end edge condition.

Assuming a single mode expansion, the marginally stable first-order dynamics is described by

equation (9.8),

q1 (x, z, t ) = A1 (T ) q̂1 (x, z)e iωt +c.c., (9.8)

where q̂1 (x, z) a viscous free-end edge eigenmode (set by the initial condition) and ω its

corresponding eigenfrequency. We note that in a two-dimensional framework, the eigenmodes
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are represented by symmetric or anti-symmetric waves with respect to the container axis

placed at x = 0. In the following, we arbitrarily consider the fundamental anti-symmetric

(first or lowest oscillation frequency) mode, but the very same single mode analysis applies

to any eigenfunction. We also note that the viscous damping coefficient of the eigenmode

σV has been assumed of order ε and therefore only enters at the next order. This assumption

only serves to apply the formalism of the multiple scale analysis, which classically applies

to marginally stable system (Nayfeh, 2008a). As the Reynolds is typically high enough, the

damping coefficient results in a slow damping process over fast wave oscillations and hence it

can be directly englobed in the final amplitude equation. A possible way to account for such a

first-order departure from marginal stability is discussed in Viola and Gallaire (2018). Another

option, which leads to the same final results for this specific problem, but that is formally more

general, is represented by the shift operator technique proposed in Meliga et al. (2009b). Here

we opt for the second option. See Meliga et al. (2009b) for a thorough discussion in this regard.

A (T ) is the mode amplitude, unknown at this stage, and allowed to vary on the slow time

scale T = εt . In the spirit of multiple scale expansion, the resonating effect of secular terms on

the asymptotic solution is avoided at order ε2 by imposing a compatibility condition, which

prescribes an amplitude equation for A, slow amplitude modulation of the first order motion.

The contact line dissipation enters at this order and, together with the viscous dissipation in

the bulk, is incorporated in the structure of the amplitude equations (9.9) (according to the

two contact line models introduced in equation (9.6)),

d A1

dT
+ σ̂V A1 =


−ζ̂H A1 − χ̂H

A1
|A1| Hocking+hyst.

−χ̂J
A1

|A1|2/3 Jiang et al.

(9.9)

with σV = εσ̂V the linear viscous damping coefficient, computed numerically as a solution

of the ε-order eigenvalue problem. The r.h.s. of equation 9.9 clearly highlights the contact

line terms contributing to the overall dissipation, namely the ones proportional to ζ̂H and χ̂J ,

which represent the dissipation induced by the linear (Hocking) or cubic (Jiang et al.) variation

of the angle with the contact line speed, while the second term in the Hocking’s model plus

hysteresis range, χ̂H , reproduces the dissipation associated with the contact angle hysteresis.

Coefficients ζH = εζ̂H , χH = ε2χ̂H read

ζH = λ2 sinθsαC aκ

Bo
, χH = λ2 sinθs∆κ

|λ|πBo |η̂1
∣∣

x=1

. (9.10)

with κ defined in Viola and Gallaire (2018) and with the complex eigenvalue λ ≈ iω as σV

is of order ε. The expression of χJ = ε5/3χ̂J is given in the Appendix B of Viola and Gallaire

(2018). For a thorough description of the weakly nonlinear formulation, the derivation of

the amplitude equation coefficients and the numerical scheme used in this work (based on

a Chebyshev collocation method solved in Matlab) see Viola et al. (2018); Viola and Gallaire

(2018). Henceforward, we will focus on the simpler Hocking’s model plus hysteresis. The more

sophisticated extension of the projection approach proposed in §9.3 to any nonlinear contact
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line function, including the Jiang et al. cubic model, will be discussed in §9.4.

9.2.2 Time of arrest and nonlinear damping

The amplitude A, obtained for the Hocking’s law plus hysteresis, is first calculated solving (9.9)

(see Viola and Gallaire (2018)) yielding (after eliminating ε by recasting each variable in terms

of the corresponding total physical quantity, e.g. the physical time t = T /ε, the total amplitude

A = εA1 and the initial condition A0 = εa0)

|A (t ) | =
[

A0 +
χH(

ζH +σV

)]
e−

(
ζH +σV

)
t − χH(

ζH +σV

) , (9.11)

and then substituted in equation (9.8), which describes the time evolution of the first order

dynamics, as displayed in figure 9.3 in terms of contact line elevation.

The associated damping rate can be then obtained as the logarithmic decrement of the
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Figure 9.3 – Contact line elevation (black solid line), e (t ) = η
∣∣

x=1, modulated by the slow time
amplitude (red solid line) versus time and corresponding to the dominant (first) free-end
edge anti-symmetric natural mode. We assumed pure water in a container of width l = 5cm
for which Bo = 336, Re = 30 717 and C a = 0.011. The chosen contact line parameters for
the Hocking law are θs = π/2, α= 77rad with ∆= 20◦. The initial contact line elevation and
speed are set to 0 and 0.1, respectively. The initial absolute value and phase of the complex
amplitude A, A0 and Φ0, respectively, follow. t∗ denotes the time of arrest (vertical red dashed
line) prescribed by the WNL model.

amplitude |A (t ) | in time. However, we introduce here a different measure based on the

gravitational potential energy density of the system, Epg , which is in general a more suitable

quantity to describe the overall system dynamics (and it will be used in the next section §9.3).
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Since Epg = ∫
z=η0

η2 dx ∼ |A|2, the damping rate is expressed as

DREpg =− d

d t

[
log

(
|A (t ) |2

A2
0

)]
=− 2

|A (t ) |
d |A (t ) |

d t
= 2

(
σV +ζHr

)+2
χHr

|A (t ) | , (9.12)

(the subscript r stands for real part) and is presented in figure 9.4. The value of the nondi-
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Figure 9.4 – Non-dimensional damping rate versus non-dimensional time, obtained for the
same parameter setting of figure 9.3. The vertical lines indicate the time of arrest, t∗, for the
contact line and, in this context, the total motion.

mensional oscillation frequency, ω, and the viscous damping coefficient, σV , corresponding

to the dominant (first) antisymmetric wave with free-end edge contact line condition, plotted

in figure 9.3, are respectively 1.258 and 1.16×10−4, while the damping coefficient associated

with the Hocking’s linear law is ζHr = 4×10−3, hence
(
σV +ζHr

) ≈ ζHr . The value of χHr is

8.3×10−4.

9.2.3 Comments

The weakly nonlinear analysis from Viola et al. (2018); Viola and Gallaire (2018), and re-

proposed in this section, partially accounts for dissipative effects acting at the sliding contact

line using asymptotic theory and reveals the strong influence of the nonlinear contact line

dynamics on the damping of capillary-gravity waves in confined basins. Given that the linear

viscous dissipation taking place in the fluid bulk and at the solid bottom, σV , is negligible

compared to ζHr , equation 9.12 suggests that there exist two main dissipation sources, a first

one due to the linear contact angle variation with the contact line speed, ζHr , and another due

to hysteresis occurring at a zero speed, χHr /|A (t ) |. The latter contribution depends on the sign

of the contact line speed only and, therefore, it may be interpreted as a Coulomb-like friction

force, responsible for the predominantly linear decay and thus for the arrest of the motion

at a finite time. In fact, the damping rate is found to depend on the initial condition and on

the wave amplitude variation in time (Cocciaro et al., 1993; Dollet et al., 2020; Keulegan, 1959;

Viola et al., 2018; Viola and Gallaire, 2018). More precisely, as the amplitude decreases, the

damping rate increases and eventually diverges in a finite time leading to the finite-time arrest

of the contact line (see figure 9.4) for |A (t = t∗) | = 0. Nevertheless, the weakly nonlinear theory
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fails in capturing the transition to the smaller amplitude regime observed in Cocciaro et al.

(1993); Dollet et al. (2020), when the contact line is pinned and the fluid bulk keeps oscillating

with pinned-end edge dynamics. This limitation is intrinsic to the asymptotic formulation,

which only predicts the evolution of the amplitude of a leading order free-end edge mode.

Consequently, it prescribes the arrest of the total fluid motion once the contact line is pinned

at t = t∗, thus overlooking the remaining bulk oscillations submitted to a finite, and small,

damping rate. Furthermore, even during the initial higher amplitude sloshing motion, the

contact line exhibits periodic stick-slip transitions, which are not captured with a weakly

nonlinear approach. In other words, the asymptotic model neglects the slowing increasing

fraction of the time period during which the contact angle changes while the contact line is at

rest (pinned fraction of liquid motion).

9.3 Projection Method

In §9.2, we brought to light the main limitations of the weakly nonlinear analysis, which, by

construction, introduces the contact line dissipation only at higher orders and is unable to

capture the slip-sticking regime observed in the experiments. In this section, we propose and

formalize a different mathematical approach based on a sequential eigenfunction projection

aiming at overcoming these limitations and at providing a more complete and realistic char-

acterization of the liquid motion. To this end, we first introduce here the projection method

in its simplest formulation considering as contact line boundary condition the Hocking’s

model plus hysteresis of figure 9.2-(a), with the angle varying linearly for a non-zero contact

line speed. Subsequently, the projection approach is compared with the asymptotic model.

The results of the analysis are then discussed in the light of previous laboratory experiments

(Cocciaro et al., 1993) (in a cylindrical container) before generalizing the method to solve the

nonlinear Jiang et al. law in §9.4.

9.3.1 Application to the Hocking’s law plus hysteresis

Formalism

In contradistinction with the weakly nonlinear approach where the nonlinearities enter at

second order, the contact line model is accounted for at first order, thus solving a nonlinear

problem. In practice, the total flow field is expanded as

qtot = q0 +εq+O
(
ε2) , (9.13)

with the rest state q0 =
{

u0 = 0, p0 =−z,η0 = 0
}T , θ0 = θs =π/2, and with the only assumption

of small hysteresis of order ε, i.e. ∆ = ε∆̂. Note that the viscous damping coefficient is not

required to be small. In this limit of small perturbation, the only nonlinearity appearing in

the system is attributed to the contact line dynamics through the geometrical relation (9.40e).

When the contact line motion is schematized using the Hocking’s law plus hysteresis range, we
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can identify two well-distinct phases of the dynamics, one in which the angle varies linearly

with a slope α as a function of the contact line speed (Hocking’s linear law) and one in which

the contact line is pinned at a certain elevation and with zero velocity (static hysteresis). We

denote these two phases as free and pinned phases, respectively. Hence, we can write two

different boundary conditions associated with the two phases (e.g. at the contact line, z = 0,

x = 1),
∂η f

∂x

∣∣∣∣
x=1

+αC a
∂η f

∂t

∣∣∣∣
x=1︸ ︷︷ ︸

free-phase l.h.s.

= −θ±︸︷︷︸
free-phase r.h.s.

, (9.14)

∂ηp

∂t

∣∣∣∣
x=1

= 0 −→ ηp
∣∣

x=1︸ ︷︷ ︸
pinned-phase l.h.s.

= const.︸ ︷︷ ︸
pinned-phase r.h.s.

, (9.15)

where subscripts f and p stand for free-phase and pinned-phase respectively and θ± =±∆̂/2

for a symmetric hysteresis range centered around θs . In other words, the free-phase has a

non-homogenous Robin boundary condition at the contact line, while the pinned-phase has

a non-homogeneous Dirichlet condition. In both phases, the solution is thus rewritten as the

sum of a homogeneous solution (generalized eigenvalue problem) and a static (∂tη= 0,u = 0)

particular solution, which must satisfy the following static equation (linearized meniscus

equation) and boundary conditions,

η fs −
1

Bo

∂2η fs

∂x2 = p fs = const. with
∂η fs

∂x

∣∣∣∣
x=1

=−1, (9.16)

ηps =
η fs

F0
with F0 = η fs

∣∣
x=1 , (9.17)

where s denotes the static particular solution, ∂xxη represents the ε-order curvature operator,

linearized around η0 = 0 for the present case with θs = π/2 (owing to the expansion (9.13))

and the minus sign in equations (9.14) and (9.16) comes from the linearization of cotθ in

equation (9.40e) at x = 1. The constant on the r.h.s. of equation (9.16) (different from that

of equation (9.15)), which is trivially zero for an anti-symmetric wave dynamics, is instead

computed by imposing the mass conservation constraint,
∫

z=η0
η fs dx = 0, when the symmetric

dynamics is considered. For the convenience of notation, instead of imposing −θ± in the

r.h.s. of the boundary condition to equation (9.16) at x = 1, we impose −1, and we kept θ±

explicit in front of q fs , state vector of the particular solution associated with the free-phase.

qps is its analogous in the pinned-phase. The two particular solutions, q fs and qps , up to their

associated constant, θ± and e f p , are displayed in figure 9.5)-(a) and (b). The solution in the

two phases is thus expressed as follows:

q f = θ±q fs +
(

N f∑
n=1

A fn q̂ fn eλ fn (t−T f ) + c.c.

)
, (9.18a)
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qp = e f p qps +
(

Np∑
m=1

Bpm q̂pm eλpm (t−Tp ) + c.c.

)
, (9.18b)

where N f and Np are the truncation numbers of the series representing the homogeneous

solutions, q̂ fn , q̂pm and λ fn , λpm are the eigenmodes and eigenvalues obtained solving numer-

ically the corresponding generalized eigenvalue problem (see figure 9.5-(c)-(j)), A fn and Bpm

are the complex amplitude coefficients associated with each mode. Without loss of gener-

ality, we consider N f = Np = N in the following. Importantly, during this pinned-phase, the

non-zero static solution (see equation (9.17)) allows the interface to transiently oscillate with a

contact line elevation fixed to the value assumed at the transition from the previous free-phase

to the next pinned-phase, e f p . Figure 9.5 gathers all the ingredients needed to formalize the

projection scheme and we can now proceed in the description of its practical application to

temporal flow evolution. A convergence analysis for a test case of eigenvalue calculation is

given in Appendix 9.6.1.

Temporal evolution description

Let us initialize the dynamics starting from the free-phase (advancing, θ+ or receding, θ−,

path) assigning arbitrary values to the complex amplitudes A fn = A0
fn

for t = T f = 0. The

system will then evolve following the dynamics described by equation (9.18a). By virtue of the

mode normalization introduced in figure 9.5-(c)-(f), for which η fn

∣∣
x=1 = 1 and η fs

∣∣
x=1 = F0,

the contact line elevation, η
∣∣

x=1 = e, and speed, ∂t η
∣∣

x=1 = ė, in this phase read

e = θ±F0 +
(

N∑
n=1

A fn eλ fn (t−T f ) + c.c.

)
, (9.19a)

ė =
(

N∑
n=1

λ fn A fn eλ fn (t−T f ) + c.c.

)
. (9.19b)

The second equation (9.19b) provides a criterion for the transition to the pinned-phase. In-

deed, letting evolving in time equation (9.19b) until ė = 0, we can compute the time Tp at which

the transition from the free-phase to the pinned-phase occurs. At the transition, t = Tp , the

physical condition is the continuity of the whole set of flow quantities, q f
(
t = Tp

)= qp
(
t = Tp

)
,

which translates into the following equivalence

e f p qps +
(

N∑
m=1

Bpm q̂pm + c.c.

)
= θ±q fs +

(
N∑

n=1
A fn q̂ fn eλ fn∆T f p + c.c.

)
,

with ∆T f p = Tp −T f . Noting that the contact line elevation at the transition time is,

e f p = θ±F0 +
(

N∑
n=1

A fn eλ fn∆T f p + c.c.

)
, (9.20)
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Figure 9.5 – (a)-(b) Static particular solutions for the anti-symmetric free and pinned dynamics
respectively. Note that the radial values of the two particular solutions are plotted up to
their corresponding constants, θ± and e f p , respectively, which will be determined by the
time-marching of the projection algorithm. (c)-(f) Eigensurface associated with the first four
anti-symmetric modes corresponding to the free-dynamics. Only half domain, x ∈ [0,1], is
shown. The modes are normalized with the phase of the interface at the contact line and
its absolute value so that the contact line elevation is 1. (g)-(j) Eigensurface associated with
the first four anti-symmetric modes corresponding to the pinned-dynamics. The modes are
normalized with the phase of the interface at the contact line and its slope so that the slope in
x = 1 is 1. As in figure 9.3, we assumed pure water in a container of width l = 5cm for which
Bo = 336, Re = 30 717 and C a = 0.011. The static angle is θs = π/2 and the slope α is set to
77rad. The linear eigenfrequency and damping associated with each mode are denoted by
ω and σ, respectively. Note that, despite the lower frequencies, the damping associated with
the free-modes, which englobe part of the contact line dissipation due to the linear variation
of the angle (Hocking’s linear law), is higher than the one for pinned modes, where only the
viscous bulk dissipation is present (we recall that the viscous boundary layers at the lateral
walls are neglected by imposing a stress-free condition, see also supplementary notes at the
end of this Chapter).

and q fs = F0qps , equation (9.20) is rewritten as

N∑
m=1

Bpm q̂pm + c.c =
N∑

n=1
A fn

(
q̂ fn −qps

)
eλ fn∆T f p + c.c.︸ ︷︷ ︸

f f p

. (9.21)

where the pinned static particular solution is subtracted from the r.h.s. In other words,

once the particular solution is subtracted from the r.h.s., the field f f p satisfies the boundary
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Figure 9.6 – (a) Contact line elevation versus time. The blue and green colors indicate the
free and pinned phases, respectively. Parameters are set as in figure 9.3, with a static hys-
teresis range ∆ = 20◦. We initialize the problem setting the complex amplitude of the first
antisymmetric mode in order to have an initial contact line elevation and speed equal to 0 and
0.1, respectively. t∗W N L and t∗PRO J denote the final time of arrest for the contact line resulting
from the weakly nonlinear calculation (WNL) and from the projection scheme (PROJ). (b)
Different contributions to the instantaneous total energy of the system (log scale) versus time
(linear scale). Only the total energy is displayed (red solid line) for the WNL model. The black
dashed-dotted line represents the final exponential decaying following the pinning of the
contact line. The series associated with each phase are truncated to N = 30. The time step used
to advance the algorithm in time was set to ∆t = 0.005. The filled circles in (a) correspond to a
sampling period of 0.05. See also Integral Multimedia Movie 1 for a full free-surface dynamic
representation. Multimedia view: https://doi.org/10.1063/5.0055898.1.

conditions of the linear problem for the pinned-phase, therefore f f p can be represented as a

linear combination of modes pertaining to the pinned-phase. The unknown amplitudes Bpm

are thus obtained by applying a projection step. To this end, let us introduce the following

weighted scalar product

< w,v >E=
∫
Ω

uwuv dΩ+
∫

z=0

(
ηwηv + 1

Bo

∂ηw

∂x

∂ηv

∂x

)
dx, (9.22)

where v = {
uv, pv,ηv

}T and w = {
uw, pw,ηw

}T are two generic vectors, the bar designates the

complex conjugate,Ω denotes the fluid bulk domain (dΩ=dxdz) and the subscript E stands for
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energy. It follows that the energy norm of a generic vector v is given by

< v,v >E= ||v||2E =
∫
Ω

uvuv dΩ︸ ︷︷ ︸
∼ E v

k

+
∫

z=0
ηvηv dx︸ ︷︷ ︸

∼ E v
pg

+ 1

Bo

∫
z=0

∂ηv

∂x

∂ηv

∂x
dx︸ ︷︷ ︸

∼ E v
ps

(9.23)

One can recognize that the three integrals in equation (9.34) represent a measure of the total

energy density, given by the sum of kinetic, gravitational potential and surface potential energy

densities, respectively, stored in v. Invoking the concept of adjoint modes, solutions of the

adjoint linearized problem, it can be demonstrated that the direct modes, q̂i , and the adjoint

modes, q̂†
j , form a bi-orthogonal basis with respect to the scalar product (9.34). Moreover,

the adjoint modes can be normalized such that < q̂†
j , q̂i >E= δi j , with δi j the Kronecker delta.

Further insights about the derivation of the adjoint problem and the demonstration of the

bi-orthogonality condition with respect to (9.34) are given in the supplementary notes.

Hence, we can project the known vector f f p onto the pinned basis and the amplitude

coefficients Bpm are obtained as

Bpm =< q̂†
pm

, f f p >E . (9.24)

where q̂†
pm

is the adjoint mode that is bi-orthogonal to the direct mode basis, which is made

of pairs of complex conjugate eigenvectors, q̂pm and q̂pm
, associated with pairs of complex

conjugate eigenvalues, λpm and λpm (see also supplementary notes).

At this point the system is in the pinned-phase and its time evolution is described by

equation (9.18b). The contact line elevation is fixed to e f p and contact angle varies within the

prescribed hysteresis range. Given the eigenmode normalization used for ηpm (see figure 9.5-

(g)-(j)), the contact angle variation can be expressed as,

θ = e f p /F0 +
(

N∑
m=1

Bpm eλpm (t−Tp ) + c.c.

)
. (9.25)

The transition to the next free-phase will occur at t = T f , when θ = θ∓ (the sign depends on

the semi-cycle considered), so that

N∑
n=1

A fn q̂ fn + c.c. =
N∑

m=1
Bpm

(
q̂pm −q fs

)
eλpm∆Tp f + c.c.︸ ︷︷ ︸

fp f

. (9.26)

Analogously to (9.24), we now project the known vector fp f onto the free-basis, obtaining

A fn =< q̂†
fn

, fp f >E . (9.27)

Essentially, we let the system evolve in time applying a projection step at each transition.

During the evolution, the system dissipates energy and eventually, after a certain number of

cycles, it gets trapped in the pinned-phase, the contact line arrests and the motion decays
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exponentially to its equilibrium state under the effect of the viscous bulk dissipation only.

9.3.2 Results and discussion

In this paragraph, the relevant results are discussed. In figure 9.6-(a) (Multimedia view) the

contact line elevation is plotted versus time. First, we observe that the actual final time of

arrest for the contact line is higher than the one predicted by the weakly nonlinear model.

Furthermore, the projection scheme is able to describe the transient stick-slip contact line

motion. Indeed, the blue and green colors correspond to the time spent by the contact line in

the free-phase and pinned-phase, respectively. During the dynamics, the contact line slides

over the solid substrate, is subjected to dynamic friction (linear contact angle variation in the

free-phase), and transiently sticks when it reaches zero speed (hysteresis range), until the bulk

inertia dominates again over the static friction and the triple line de-pins.

As shown in figure 9.6-(b), during the motion the system dissipates energy, consequently the

time spent in the pinned-phase becomes larger and larger and eventually the inertia is not

enough to overcome the static friction. The final pinned dynamics is therefore established at

t = t∗PRO J . As the lower inset in figure 9.6-(a) reveals, the contact line does not arrest at the zero

equilibrium position but rather at a turning position (compatible with the prescribed hysteresis

range), i.e. e
(
t = t∗PRO J

)
6= 0, θ

(
t = t∗PRO J

)
6= θs , thus meaning that some little potential energy

will be still present in the system at the end of the dynamics, in analogy with dynamical

systems subjected to dry friction.

One of the main limitations of the weakly nonlinear model is enlightened in figure 9.6-(b).

Although the asymptotic analysis captures the initial nonlinear decaying trend of total energy

density, computed as

E ti
tot =

∫
Ω

u2
ti

dΩ+
∫

z=η0

[
η2

ti
+ 1

Bo

(
∂ηti

∂x

)2
]

dx, (9.28)

(ti designates the i -th time instant) it predicts the total arrest of the motion at t = t∗W N L and

thus it fails in capturing the transition to the final pinned dynamics, where the fluid bulk keeps

oscillating with smaller amplitudes and with a fixed contact line elevation. As a consequence,

the total energy in this final state is not zero yet, but rather decays exponentially due to viscous

bulk dissipation (the linear trend in figure 9.6-(b) for t > t∗PRO J , black dashed-dotted line), as

correctly captured by the projection method.

As time progresses, note that the fraction of time spent in the pinned-phase (in green)

increases while the time spent in the free-phase (in blue) decreases, resulting in a slow modu-

lation of the instantaneous damping rate and instantaneous frequency see figure 9.7, as also

observed in experiments (Cocciaro et al., 1993). In particular, in the higher amplitude regime,

the damping rate increases as the wave amplitude decreases until reaching a maximum value,

after which it decreases to a nearly constant value. Interestingly, despite the lack of quantita-

tive accuracy of the weakly nonlinear calculation, the predicted time of arrest t∗W N L , seems to

coincide with the maximum of the damping rate. Indeed, the time t = t∗W N L , when the contact
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Figure 9.7 – (a) Nondimensional damping rate and (b) frequency modulation versus time. The
damping rate is computed as the logarithmic decrement of the potential energy amplitude,
shown in Fig. 9.6. The frequency is computed from the potential energy evaluating the period
from peak to peak and the resulting value (triangle in (b)) is then roughly assigned to the
mid-point of the corresponding time interval.

line is still oscillating, but with smaller amplitude, approximately predicts the beginning of the

transition to the final pinned state, which will become fully established only at t = t∗PRO J .

Once the pinned dynamic lasts the whole oscillating period, the damping rate is approx-

imately constant and equal to the viscous damping coefficient of the first antisymmetric

pinned mode (see figure 9.5-(g)). Concerning the frequency modulation in time, the weakly

nonlinear theory gives an incorrect behaviour, with an abrupt and non-physical increase

at t = t∗W N L , corresponding to the finite time singularity. On the contrary, the projection

scheme enables us to describe a smooth saturation from the characteristic value of the first

antisymmetric free-mode, used to initialize the dynamics, to a final value, reached at t = t∗PRO J

and corresponding to the natural oscillation frequency of the first pinned-mode.

Lastly, figure 9.8 provides a deeper insight on how the projection procedure works, showing

the normalized mode amplitudes in the case reported in figure 9.6, with the series (9.18a)-

(9.18b) truncated at N = 30 and starting, as initial condition, from a non zero amplitude of the

first antisymmetric free-mode only, i.e. Ai .c.
fn=1

. It follows that all the other mode amplitudes,

A fn , are initially zero, as visible in the inset in the bottom-left corner of figure 9.6 ( f i .c.#1, where

the superscript i .c. stands for initial condition). At the first transition, mode fn=1 is projected

onto the pinned eigenmode basis (p#2), thereby exciting a certain number of pinned modes.

In practice, at each projection, the system’s total energy is transferred from an eigenvalue basis
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Figure 9.8 – Main figure: first four mode amplitudes versus time and corresponding to the
case of figure 9.6. The free-phase amplitudes are normalized in this plot with the initial
condition (only A fn=1 6= 0), while the pinned-phase amplitude are rescaled with the value of
Bpm=1 computed at the first projection from the free-phase to the pinned-phase. The colors
are chosen in agreement with figure 9.6-(a). Filled circles represent the amplitude values at
the transition instant, while solid lines give their temporal evolutions according to their decay
rates. The total N = 30 amplitudes, computed at each projection time, t = T f (blue) and Tp

(green), are shown in the insets for different projection steps.

to the other and it is partitioned among the various modes. In the case of figure 9.8, given the

prescribed initial state, the total energy is mainly exchanged between the two corresponding

modes ( fn=1 and pm=1), with usually no more than 15 modes being excited, most of them

having a negligible small amplitude and contributing only weakly to the overall dynamics.

Given the prescribed initial condition, most of the energy is indeed contained in the first

free-mode and in the corresponding pinned-mode.

A careful convergence and error analysis in relation to the truncation number of the series,

N , is provided in the supplementary notes.

9.4 Extension to the fully nonlinear Jiang et al. model

The formalism of the projection scheme presented in §9.3.1 for Hocking’s contact line model

with hysteresis range, is based on the possibility to decompose the contact line law as the

sequence of two (non-homogeneous) linear problems satisfied in each phase by the sum of a

linear homogeneous solution and a particular static solution. For this reason, the extension

to a fully nonlinear law, e.g. Jiang et al. cubic model (Jiang et al., 2004) may look challenging.

Nevertheless, the continuous nonlinear law, e.g. cubic, can be split through a piecewise linear

function (see figure 9.9) for which the projection approach is applicable.

In other words, the contact line law is split into a user-defined number of linear sub-phases
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having an equivalent Hocking’s slope (αC a)i , in which the system can be still represented as

a homogeneous (solution of the corresponding i -th generalized eigenvalue problem) plus a

particular static solution,

qi = θ±i qi
s +

(
N∑

n=1
C i

n q̂i
neλ

i
n(t−T i ) + c.c.

)
. (9.29)

As the contact line dynamics is advanced in time, a series of transitions occur when the

contact line speed is ėi = vi (see figure 9.9), and the i -th phase solution is progressively pro-

jected from one set of eigenmodes to next one (i +1-th), following the prescribed contact line

law. As the system dissipates energy during the motion, it will eventually end in the central

nearly pinned-phase (zero equilibrium point, θ = θs , η (x) = η0, ∂tη
∣∣

x=1 = 0) where the motion

decays exponentially owing to the viscous dissipation solely.

In contrast with Hocking’s model with hysteresis, where only two phases are defined, here

one has to solve numerically a certain number of eigenvalue problems, one for each sub-phase

(see figure 9.9), thus yielding to a computationally more expensive calculation. However, the

smooth cubic contact line law facilitates the projection algorithm, i.e. at each projection the

energy is transferred only among few modes, allowing one to truncate the modal series to a

lower number of natural modes. The competition of a higher number of modes (excited at

each projection) in the case of Hocking’s law with hysteresis, when compared to the smooth

cubic law, is visible in figure 9.10-(a) and (c) (smoother time series) (Multimedia view) and

figure 9.10-(b) and (d) (shakier time series) (Multimedia view).

Figure 9.10-(a) and (b) show the contact line elevation and speed computed via the projec-

tion method and weakly nonlinear model (see Viola and Gallaire (2018)) for Jing and Perlin’s

cubic law.

From a mathematical and physical perspective, the main difference introduced by Jiang

et al. law with respect to the Hocking law with hysteresis, is the nature of the nonlinearity

at zero contact line speed. The strong nonlinearity occurring at ∂tη
∣∣

x=1 = 0 introduces in

the contact line motion a sort of solid-like friction effect at higher amplitudes (most active

in the initial dynamics), which provokes the initial circular-piecewise-like behaviour in the

phase portrait displayed in figure 9.10-(c). However, in this case, there exists only one possible

final equilibrium state with e (t )|t→+∞ = 0 and θ (t )|t→+∞ = θs , to which the system will tend

asymptotically owing to the little viscous bulk dissipation. It follows that the contact line

elevation and velocity are never exactly zero and therefore the phase portrait progressively

turns into a classic logarithmic spiral, typical of linearly damped mechanical systems. Again,

the limitations of the weakly nonlinear analysis, which predicts a final time of arrest and

hence fails in describing the subsequent small oscillations, are overcome by the projection

approach, as complementary semi-linear direct numerical simulations could confirm (see

Appendix 9.6.2 and Integral Multimedia Movie 3).

On the other hand, as visible in figure 9.10-(f) (see also figure 9.6-(a)), when a pure hys-

teresis at zero speed is considered, there exists a final time of arrest for which ė = 0 and

e = e f i nal
eq 6= e i ni t i al

eq which results in a new final equilibrium. In the test cases of figures 7
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and 11-(b) and (d), e f i nal
eq is very small, leading to a final static contact angle θ f i nal ≈ 91◦

versus an initial static angle θs = 90◦. However, this may not be always the case as e f i nal
eq mainly

depends on the imposed initial condition and, particularly, on the width of the prescribed

hysteresis range, ∆. Although a thorough parametric analysis should be carried out in order

to investigate the range of the possible e f i nal
eq , equation (9.25) says that once ∆ is assigned,

max
(
|e f i nal

eq |
)

is bounded by F0∆/2, with a maximum static angle θ = θs ±∆/2.

θs

θ

θ+
i

θ−
i

(αCa)i

vi

∂tη

Figure 9.9 – Reduction of the Jiang et al. cubic model to a piecewise linear function via
discretization of the cubic law in a set of linear steps with a given slope, (αC a)i and intercept θ±i .
The discretization introduces a series of transition conditions between two consecutive free-
phases at different contact line speeds, δi . A non-uniform discretization better approximates
the transition to the pinned-phase at a small velocity.

9.5 Conclusion

In this Chapter, we have presented a mathematical model based on successive linear eigen-

mode projections, which induce a loss of total energy and eventually contribute to the progres-

sive nonlinear damping in the liquid motion. The projection scheme allowed us to describe

and reproduce the nonlinear contact line dynamics and fluid bulk motion in confined basins

and in the limit of small oscillation amplitudes, for which the expansion (9.13) holds. We have

shown how, through the projection scheme, the actual dynamical change in the contact line

boundary condition can be accounted for, thus overcoming the limitation of the asymptotic

model. The computed instantaneous damping rate and frequency, which show a progressive

transition from the initial stick-slip contact line motion, subjected to solid-like friction, to

a final pinned state with fluid bulk oscillations damped by viscous dissipation solely, are in

qualitative agreement with previous experimental observations (Cocciaro et al., 1993; Dollet

et al., 2020).

In order to formalize the projection method presented here, a series of simplifications have

been introduced throughout the Chapter. The static contact angle was assumed equal to π/2,
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Figure 9.10 – (a) Contact line elevation versus time for pure water in a container of width
l = 1.93cm for which Bo = 50, Re = 7 367 and C a = 0.0068. The contact line parameters
for the Jiang et al. law are θs = π/2, β = 5.3. We initialize the problem setting the complex
amplitude of the first antisymmetric mode in order to have an initial contact line elevation
and speed equal to 0 and 0.2, respectively. Red and grey solid lines: weakly nonlinear model
(WNL). Black solid line: projection scheme (PROJ). t∗W N L denotes the time of arrest computed
solving amplitude equation (9.9) for the Jiang et al. model (see Viola and Gallaire (2018)). (c)
Phase portrait: contact line velocity versus contact line elevation from PROJ. The results are
obtained by discretizing the contact angle law in 61 sub-linear pieces (30 equispaced steps
in | ∂tη

∣∣
x=1 ∈ [0.01,0.2] and 31 in ∈ [0,0.01)), requiring the solution of 31 eigenvalue problem

(the law is symmetric). The series are truncated to N = 10 modes. The time evolutions were
stopped at t = 50 with a time step ∆t = 0.005. See also Appendix 9.6.2 and Integral Multimedia
Movie 3 for a full free-surface dynamic representation and comparison with semi-linear direct
numerical simulation (Multimedia view). (b) and (d) same as (a) and (c) with the contact
line parameters for the Hocking law with hysteresis θs = π/2, α = 123r ad and ∆ = 18.5◦.
The series are truncated to N = 30 modes. See also Integral Multimedia Movie 2 for full
free surface dynamic representation. Multimedia view: https://doi.org/10.1063/5.0055898.2;
https://doi.org/10.1063/5.0055898.3.

for which the free surface at rest is flat. Moreover, the contact line model was considered to be

symmetric with respect to the zero contact line speed axis, although experimental evidence

(see figure IV.2-(a)) shows that the advancing and receding dynamics usually differ from each

other. Notwithstanding such idealizations, there are no actual restrictions in considering a

non-flat static free surface, i.e. small oscillation on the top of a static meniscus η0 6= 0 (θs 6=π/2)

or in assuming non-symmetric advancing and receding phases (asymmetric contact line law).

Although the asymptotic model was shown to be only meaningful in the first phase of the

overall dynamics, its greatest advantage, together with the reduced computational cost, is
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the straightforward application to any nonlinear contact line model of experimental inspi-

ration. We have thus shown how the projection method can be generalized to any smooth

nonlinear function, e.g. a cubic law, preserving high accuracy in the final results, as shown

by the comparison with semi-linear direct numerical simulations (see Appendix 9.6.2 and

Integral Multimedia Movie 3). In reality, the static hysteresis range often exists, but at the same

time, the angle does not vary linearly with the contact line speed (for ė 6= 0) as in Hocking’s

law, but rather nonlinearly and likely as in Jiang et al. model. Therefore, a combination of the

two models, which together reduce to the nonlinear Dussan’s law (Dussan, 1979), could be in

principle more realistic.

Despite the two-dimensional idealization and semi-linear structure of the equations (ow-

ing to the small perturbation assumption), the contact line model is nonlinear, especially

in the pure hysteresis case, and makes the system numerically stiff. As a consequence, a

direct numerical simulation of the equations would require an implicit temporal integration

scheme with a small time step in order to both preserve numerical stability and accuracy,

thus yielding a high computational cost. Although the projection algorithm solves the same

full set of equations, its computational cost is very advantageous with respect to a standard

numerical time integration since only a few eigenvalue calculations are needed. Indeed, the

temporal evolution is obtained by advancing in time linear quantities (known a priori from the

eigen-calculation) according to their decay rate and oscillation frequency and whose corre-

sponding amplitudes are easily computed at each transition by exploiting the bi-orthogonality

relation of direct and adjoint modes (see also supplementary notes). Therefore, the projection

approach can be also seen as an efficient physics-based reduced order model for the under-

lying small-amplitude nonlinear dynamics. A quantitative comparison with experimental

observations was not possible due to the simplistic two-dimensional case considered, which

drastically simplifies the formulation. In fact, the transition criterion for the consecutive

projections is univocally defined by the motion of the contact line, which in two-dimension

actually reduces to a contact point, following the prescribed law. In three-dimension, different

points along the air-liquid-solid triple line have different velocities and the contact angle

becomes a function of the contact line coordinate. Thus, the three-dimensionality breaks

the uniqueness of the transition criterion, making the extension to three-dimensional vessels

challenging. Nevertheless, we underly that the model could be straightforwardly applied to

axisymmetric dynamics, where all the points along the interface perimeter behave in the

same manner (two-dimensional-like model), as in the case of liquid oscillations in the U-tube

configuration recently investigated in Dollet et al. (2020), for which quantitative comparison

with experiments would be in principle possible.

9.6 Appendix

9.6.1 Convergence analysis of the eigen-calculation

The convergence analysis of the eigenvalue calculation in the case of Hocking’s model with

hysteresis, i.e. free-phase and pinned-phase, is given in Tab. 9.1 for three relevant eigenvalues,
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nx = nz λ f1 λ f15 λ f30 max(eσ,eω)
50 -0.027+i 1.29 -1.200 +i 43.9 -2.738+i 124.9 –
60 -0.027+i 1.29 -1.219 +i 44.1 -3.138+i 125.9 14.6%
70 -0.027+i 1.29 -1.224 +i 44.2 -3.238+i 126.6 3.2%
80 -0.027+i 1.29 -1.219 +i 44.2 -3.299+i 126.9 1.9%

λp1 λp15 λp30

50 -0.001+i 1.47 -0.474 +i 45.2 -1.737+i 125.8 –
60 -0.001+i 1.47 -0.489 +i 45.3 -1.844+i 127.2 6.2%
70 -0.001+i 1.47 -0.497 +i 45.4 -1.936+i 127.8 4.9%
80 -0.001+i 1.47 -0.497 +i 45.4 -1.992+i 128.1 2.9%

Table 9.1 – Convergence analysis for the free and pinned eigenvalue calculations in the case
of figure 9.10-b), d) and f ) with Bo = 50, Re = 7 367, C a = 0.0068 and α = 77r ad . nx and
nz denote the number of grid points in the x and z direction, respectively. Three relevant
eigenvalues, λ=σ+ iω with n,m = 1, 15 and 30 (N = 30), are shown.

n,m = 1, 15 and 30 (note that the truncation number of the series is N = 30) and four different

mesh refinements. The maximum error is seen to be on the damping of mode n,m = 30 and

to decrease below 3% for nx = nz = 80, which is considered a satisfactory trade-off between

computation efficiency and accuracy. We underline that the time step used to march in time

all our simulations was set to ∆t = 0.005. This value is ten times smaller than the shortest

oscillation period, Tpm=30 ≈ 0.05, hence ensuring that no modes are filtered out artificially.

9.6.2 Validation via comparison with semi-linear DNS

(a)

t = t0 = 0-0.1
0

0.1

(b)

t = t1 = 1-0.1
0

0.1

PROJ
DNS

(c)

t = t2 = 2-0.1
0

0.1

Figure 9.11 – Black solid line: free-surface shape corresponding to the nonlinear time evolution
presented in figure 9.10 (Jiang et al. cubic contact line law) and obtained via projection
algorithm at three different non-dimensional time instants, (a) t = t0 = 0, (b) t = t1 = 1 and
(c) t = t2 = 2. Red crosses: semi-linear direct numerical simulation, advanced in time with
the same time step, i.e. ∆t = 0.005. See also Integral Multimedia Movie 3 associated with
figure 9.10-(a) and (c).
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The more sophisticated and discretized projection scheme employed in the case of the Jiang

et al. cubic model is validated by comparison with semi-linear direct numerical simulation.

Governing equations and boundary conditions (9.38)-(9.40e), linearized around the rest state

q0 = {0,−z,0}T , but subjected to the nonlinear contact line model, e.g. a cubic law, can be

written in compact matrix form as,

(∂t B−A )q1 =F

(
∂η1

∂t

∣∣∣∣
x=±1

)
, (9.30)

where B and A are, respectively, the mass matrix and the stiffness matrix implemented

numerically. The forcing vector F contains the nonlinear part of the contact line model and

hence it has non-zero components at the contact line only.

B =

Iu 0 0

0 0 0

0 0 Iη

 ,A =

 Re−1∆ −∇ 0

∇T 0 0

−I w |z=0 0 0

 (9.31)

and Iu, Iη are the identity matrices associated to u and η.

We note that the very same matrices have been implemented numerically in order to solve

the eigenvalue problem in the different phases of the projection algorithm, i.e. we solved

[(σ+ iω)B−A ] q̂ = 0 with the proper boundary conditions.

Equation (9.30) is discretized in space by means of a pseudospectral Chebyshev collocation

method and integrated in time with the implicit backward differentiation formula of order 2.

The discretized state vector at the n-th time step is obtained by solving the nonlinear equation

3

2
Bqn

1 −2Bqn−1
1 + 1

2
Bqn−2

1 −∆tA qn
1 =∆tF

(
∂η1

∂t

∣∣∣∣
x=±1

)
(9.32)

with ∂tη1
∣∣

x=±1 =
(3

2η
n
1 −2ηn−1

1 + 1
2η

n−2
1

)∣∣
x=±1.

The linearization around the base flow q0 implicitly assumes that nonlinear inertial and

free surface curvature terms are negligible (only the contact line nonlinearity is kept for small

oscillation amplitudes). As a consequence, the computational domain is kept fixed in time

and it is defined by the flow configuration at rest. In figure 9.11, the interface shape computed

via projection scheme and semi-linear direct numerical simulation is shown for three different

and equispaced time instants of the nonlinear evolution discussed in figure 9.10-(a), (c) and

(e), resulting in a quantitative very good agreement.

9.6.3 The crucial role of viscosity in the convergence of the projection scheme

To ease the mathematical treatment of the lateral wall boundary condition during the free-

phase, in this study a simple perfect slip condition was assumed. When the contact line is free

to slide (free-phase), e.g. according to the Hocking linear law, the total damping coefficient is

produced by the sum of four sources, namely (i) the fluid bulk, (ii) the solid bottom, (iii) the
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sidewall and (iv) the contact line (Case and Parkinson, 1957; Hocking, 1987; Miles, 1967):

σ f r ee =σbulk +σbot tom +σsi de +σcl . (9.33)

In this work, σsi de is overlooked owing to the imposition of a stress-free condition. Moreover,

if the ratio h/L is sufficiently large (as, for example, in the test cases proposed in our study),

then the bottom term is negligible. In a vast range of typical lab-working conditions (except

for highly viscous fluids or for very shallow fluid layers), the contact line dissipation represents

the dominant term, i.e. σcl À σbulk (see Benjamin and Ursell (1954) and Hocking (1987)

among other references), so that σ f r ee ≈σcl . Hence, one may think that an inviscid model

supplemented with a contact line law, as originally proposed by Hocking (Hocking, 1987),

would be adequate to describe the free contact line dynamics and, at the same time, it would

be much simpler than the present viscous formulation. The inviscid weakly nonlinear analysis

presented in Viola et al. (2018), where only the leading order free contact line dynamics is

described, was indeed formalized in this spirit.

Whereas this reasoning applies to the free-dynamics, it should be noted that during the

pinned-phase, the contact line is at rest, so that no contact line dissipation takes place at

all, i.e. σcl = 0. During such a phase, the overall dissipation is given by (i) bulk, (ii) bottom

(negligible in the deep water regime) and (iii) sidewall. Although we are neglecting this main

contribution (iii) (see supplementary material for a thorough discussion about the stress-free

vs. no-slip lateral wall condition accounting for (iii) during the pinned phase), the remaining

bulk dissipation plays a crucial role in our projection scheme, that aims at describing the full

dynamics, i.e. transition from stick-slip to pinned.

The bulk dissipation is indeed approximately proportional to the square of the wave natural

frequency,ω2 (it was proven for a free contact line (Case and Parkinson, 1957; Miles, 1967), but

it qualitatively applies for a pinned dynamics), meaning that the bulk damping can certainly be

very small for the lowest frequency modes, yet, it tends to rapidly increase for higher frequency

modes. Figure 9 (associated with the case discussed in figure 7) shows how the convergence of

the projection algorithm is well achieved by retaining the first 30 free and pinned modes. This

is possible exactly because the linear damping (bottom+bulk+contact line in the free phase

and bottom+bulk in the pinned phase) damps out higher frequency modes rapidly enough,

i.e. before they are projected again on the next phase, hence ensuring the series and thus the

method convergence for a finite number of modes, N (truncation number). On the contrary, if

an inviscid model was to be considered, the free modes used to initialize the dynamics would

project at the first transition on several pinned modes. None of the latter modes, due to the

lack of dissipative sources, would die out during the pinned phase, hence all of them would

project back to the next free phase modes. At each free-to-pinned projection, many unphysical

pinned modes would be excited, preventing the convergence of the algorithm and describing

an unrealistic “ultraviolent catastrophe”. Furthermore, even if the loss of energy taking place

at each projection and ascribed to the nonlinear static hysteresis range eventually led the

contact line to pin, the final pinned oscillations would last indefinitely, as no dissipation is

present without viscosity.
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To conclude, keeping viscosity, albeit small, is not a mere choice, but rather a fundamental

aspect that is required to ensure that the method works properly and that it is capable to

reproduce a behaviour closer to the actual one observed in real experiments.

9.7 Supplementary Material

In §9.7.1 of the present supplementary notes we discuss more in detail the derivation of the

adjoint problem and the adjoint modes, key point of the projection algorithm presented

throughout the Chapter. In §9.7.2, we carry out a thorough convergence analysis and error

estimation, as the truncation number, N , used to describe the dynamics is varied. Lastly, in

§9.7.3, further clarifications about the treatment of the lateral wall boundary condition, i.e.

the employment of a stress-free model versus a no-slip condition at the wall for the pinned

dynamics, are provided.

9.7.1 Global adjoint modes derivation and bi-orthogonality condition

In §IV A 2 of this Chapter, the following weighted inner product is introduced:

< w,v >E=
∫
Ω

uwuv dΩ+
∫

z=0
ηwηv dx+ 1

Bo

∫
z=0

∂ηw

∂x

∂ηv

∂x
dx, (9.34)

where v = {
uv, pv,ηv

}T and w = {
uw, pw,ηw

}T are two generic vectors, the bar designates the

complex conjugate,Ω denotes the fluid bulk domain (dΩ= d xd z) and the subscript E stands

for energy. It follows that the energy norm of a generic vector v is

< v,v >E= ||v||2E =
∫
Ω

uvuv dΩ︸ ︷︷ ︸
∼ E v

k

+
∫

z=0
ηvηv dx︸ ︷︷ ︸

∼ E v
pg

+ 1

Bo

∫
z=0

∂ηv

∂x

∂ηv

∂x
dx︸ ︷︷ ︸

∼ E v
ps

, (9.35)

We can recognize that the three integrals in equation (9.35) represent a measure of the total

energy density, given by the sum of kinetic, gravitational potential and surface potential energy

densities, respectively, stored in v.

Then the concept of adjoint modes, solutions of the adjoint problem, was invoked and it was

stated that the direct modes, q̂i , and the adjoint modes, q̂†
j , form a bi-orthogonal basis with

respect to the weighted scalar product (9.34). Moreover, the adjoint modes can be normalized

such that < q̂†
j , q̂i >E= δi j , with δi j the Kronecker delta. Given a vector v, which is represented

as a linear combination of eigenvectors,

v =
N∑

i=1
Ci q̂i , (9.36)
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the complex coefficients Ci can be computed by projecting v onto the set of adjoint modes,

which are bi-orthogonal to both the direct modes and their complex conjugates, that are

both eigenvectors of the real sloshing operator, (∂t B−A ) = L (see also Appendix 9.6.2 of this

Chapter):

< q̂†
j ,v >=< q̂†

j ,
N∑

i=1
Ci q̂i >=

N∑
i=1

Ci < q̂†
j , q̂i >=C j ∈C. (9.37)

and their value is univocally determined, i.e. it does not depend on the truncation number

N . In this section of the supplementary notes we formally derive the adjoint problem used

in this Chapter, we show how the adjoint modes are readily obtained from the direct modes

(without any further computation) and we demonstrate that adjoint and direct modes form a

bi-orthogonal basis with respect to a specific weighted scalar product, i.e. (9.34). To this end,

let us briefly recall the linearized equations and boundary conditions governing the ε-order

problem, where the linearization is made around the rest state, q0 =
{

u0, p0,η0
}T = {0,−z,0}T ,

with θ0 = θs =π/2:

∇· û = 0, λû+∇p̂ − 1

Re
∆û = 0 onΩ, (9.38)

λη̂− ŵ = 0 at z = 0, (9.39)

with λ the eigenvalue, subjected to the following boundary conditions (b.c.) at the free surface,

bottom, sidewalls and contact line,

∂û

∂z
+ ∂ŵ

∂x
= 0 at z = 0, (9.40a)

−p̂ + η̂− 1

Bo

∂2η̂

∂x2 + 2

Re

∂ŵ

∂z
= 0 at z = 0, (9.40b)

û = ŵ = 0 at z =−h

l
, (9.40c)

û = 0, ŵ ± ls
∂ŵ

∂x
= 0 at x =±1, (9.40d)

∂η̂

∂x
=∓ (sinθs)−2 α̂λη̂ at x =±1, z = 0, (9.40e)

with q = {
û, p̂, η̂

}T eλt +c.c. = q̂eλt +c.c., ez = {0,0,1}T and where α̂ ∈R (constant) in (9.40e) is

a generic slope for the linear Hocking’s law. As described in Appendix 9.6.2 of this Chapter,

governing equations (9.38)-(9.39) can be written in matrix compact form as

(λB−A ) q̂ = Lq̂ = 0. (9.41)

which is forced to obey to the boundary conditions (9.40a)-(9.40e).
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Derivation of the adjoint problem

Let us introduce the following Hermitian, H , scalar product

< a,b >H=
∫
Ω

(
uaub +papb

)
dΩ+

∫
z=0

ηaηb dx, (9.42)

where a = {
ua, pa,ηa

}T and b = {
ub, pb,ηb

}T are two generic vectors. By definition, the adjoint

operator, L†, of the direct operator, L, satisfies < q†,Lq >H=< L†q†,q >H (the hat symbol on q̂

is dropped out for convenience of notation). For any pair
(
q†,q

)
, the operator L† is derived by

integration by parts and the adjoint boundary conditions are chosen in order to cancel the

boundary integrals coming from the integration by parts. Therefore, we first take the scalar

product of Lq with q†, which is still unknown at this stage,

< q†,Lq >H=
∫
Ω

u† ·(λu+∇p −Re−1∆u
)

dΩ+
∫
Ω

p† (∇·u) dΩ+
∫

z=0
η† (

λη−w
)

dx = 0, (9.43)

and integrating by part∫
Ω

(
λu† +∇p† −Re−1∆u†

)
·udΩ+

∫
Ω

p
(
∇·u†

)
dΩ+

+
∫

z=0
η† (

λη−w
)

dx−
∫
∂Ω

u† ·τn dS+
∫
∂Ω
τ†

n ·udS = 0,

(9.44)

where τn =−pn+Re−1
(∇u+∇T u

) ·n and τ†
n =−p†n+Re−1

(∇u† +∇T u†
) ·n. The two volume-

integrals are null because they contain, in brackets, the bulk adjoint equations (momentum

and continuity). The last two boundary integrals can be split into different contributions, i.e.

solid bottom, lateral sidewalls and free surface. The contribution associated with the solid

bottom is nullified if the adjoint problem satisfies (as the direct problem) the no-slip and

no-penetration conditions, thus u = u† = 0 at z =−h/l . At the lateral solid wall at x = 1, we

have

−
∫

u† (−p +2Re−1∂x u
)

dz−
∫

w†Re−1 (∂z u +∂x w) dz+∫ (
−p† +2Re−1∂x u†

)
u dz+

∫
Re−1

(
∂z u† +∂x w†

)
w dz.

(9.45)

The first and third integrals are zero if the adjoint problem satisfies the no-penetration con-

dition along the lateral wall, u = u† = 0 (it also follows that ∂z u = ∂z u† = 0 in the second and

fourth integrals), while the second and fourth boundary integrals cancel each other out if

w + ls∂x w = w† + ls∂x w† = 0. The same arguments are valid for the lateral wall at x =−1. The

remaining contributions, together with the third integral in (9.44) are all evaluated at the free

313



Chapter 9. Relaxation of capillary-gravity waves due to contact line nonlinearity: a
projection method

surface, z = 0,∫
η† (

λη−w
)

dx−
∫

w† (−p +2Re−1∂z w
)

dx+
∫

w
(
−p† +2Re−1∂z w†

)
dx = 0. (9.46)

The terms between brackets in the second integrals can be replaced using the direct dynamic

boundary condition,∫
η† (

λη−w
)

dx+
∫

w† (
η−Bo−1∂xxη

)
dx+

∫
w

(
−p† +2Re−1∂z w†

)
dx = 0. (9.47)

In order to nullify the remaining boundary integrals we can assume that the adjoint problem

satisfies

−p† +2Re−1∂z w† =+
(
η† −Bo−1∂xxη

†
)

, (9.48)

Substituting (9.48) in the third integral in (9.47), we obtain∫ [(
λη† +w†

)
η−Bo−1

(
w†∂xxη+w∂xxη

†
)]

dx = 0. (9.49)

Equation (9.49) suggests that the adjoint kinematic equation is

λη† =−w† at z = 0. (9.50)

Indeed, using such an adjoint kinematic relation, w† =−λη†, together with the direct kine-

matic equation, w = λη, and integrating by parts once the last two terms in brackets, we

obtain

Bo−1
∫ (

∂xη
†∂xη−∂xη∂xη

†
)

dx+Bo−1
[
−η†∂xη+∂xη

†η
]x=+1

x=−1
= 0. (9.51)

It is easy to recognize that the remaining boundary terms cancel out if the free-end edge

contact line condition, ∂xη = ∂xη
† = 0, or the pinned-end edge condition, η = η† = 0, are

imposed at the contact line. If the linear Hocking’s law is considered, then we have ∂xη=−α̂λη
and ∂xη

† =−α̂λη†, which also nullify the boundary expression (9.51).

To summarize, the adjoint governing equations and boundary conditions are found to be:

∇· û† = 0, λû† +∇p̂† − 1

Re
∆û† = 0 onΩ, (9.52)

λη̂† + ŵ† = 0 at z = 0, (9.53)

∂û†

∂z
+ ∂ŵ†

∂x
= 0 at z = 0, (9.54a)

−p̂† − η̂† + 1

Bo

∂2η̂†

∂x2 + 2

Re

∂ŵ†

∂z
= 0 at z = 0, (9.54b)
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û† = ŵ† = 0 at z =−h

l
, û† = 0, ŵ† + ls

∂ŵ†

∂x
= 0 at x =±1, (9.54c)

∂η̂†

∂x
=∓ (sinθs)−2 α̂λη̂† at z = 0, x =±1. (9.54d)

or, in matrix form,
(
λB† −A †

)
q̂† = L†q̂† = 0 (+b.c.), with B† 6=B, A † 6=A and λ† =λ.

Writing explicitly the direct mode as q̂ = (
û, p̂, η̂

)T = q̂r + iq̂i , it can be readily verified by

substitution and comparison with the direct problem that vector q̂†,

q̂ =

û

p̂

η̂

=

ûR + iûI

p̂R + ip̂ I

η̂R + iη̂I

 , q̂† =

û†

p̂†

η̂†

=

−ûR + iûI

−p̂R + ip̂ I

η̂R − iη̂I

=

−û

−p̂

η̂

 6= q̂, (9.55)

is a solution of (9.52)-(9.54d) and therefore it represents the adjoint mode associated with the

adjoint eigenvalue λ† =λ=σ− iω. In practice, the adjoint modes are directly obtained from

the direct modes, without any further computation.

Demonstration of the bi-orthogonality condition

Let us consider the direct problem Lqi = 0 (again, the hat symbol is dropped out for conve-

nience). Multiplying by q†
j , integrating by parts and using the direct and adjoint boundary

conditions (analogously to the previous section §9.7.1), we have

< q†
j ,Lqi >H=

∫
Ω

(
λi u†

j +∇p†
j −Re−1∆u†

j

)
·ui dΩ+

∫
Ω

(
∇·u†

j

)
pi dΩ+

+
∫

z=0
λiη

†
jηi dx−Bo−1

∫
z=0

wi︸︷︷︸
λiηi

∂xxη
†
j dx+

+
∫

z=0
w†

jηi dx−Bo−1
∫

z=0
w†

j︸︷︷︸
−λ jη

†
j

∂xxηi dx =

=< L†q†
j ,qi >H=

∫
Ω

(
λ j u†

j +∇p†
j −Re−1∆u†

j

)
·ui dΩ+

∫
Ω

(
∇·u†

j

)
pi dΩ+

+
∫

z=0
λ jη

†
jηi dx+

∫
z=0

w†
jηi dx.

(9.56)

Integrating by parts once the two curvature-related integrals on the l.h.s. (with the imposition

of the contact line boundary condition) and subtracting the r.h.s. (last line) from the l.h.s., we
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obtain the following condition,

(
λi −λ j

)∫
Ω

u†
j ui dΩ+

∫
z=0

η†
jηi dx+ 1

Bo

∫
z=0

∂η†
j

∂x

∂ηi

∂x
dx

= (
λi −λ j

)< q†
j ,qi >E= 0,

(9.57)

which proves the bi-orthogonality property (if i 6= j ,λi 6=λ j ) between direct and adjoint modes

with respect to the weighted scalar product introduced in equation (9.34). The adjoint mode,

derived directly from the direct mode as shown in equation (9.55), is then independently

normalized such that < q†
j ,qi >E= δi j .

We note that the initial Hermitian scalar product (9.42) used to derive the adjoint equations

is different from that used by Viola and Gallaire (2018) (VG18) (and in Chapter 7 of this thesis),

where the adjoint mode, solution of the corresponding adjoint equations, is found to be

q†
V G18 = q and the associated bi-orthogonality condition reads

< q†
jV G18

,qi >V G18=
∫
Ω

u†
jV G18

ui dΩ−
∫

z=0
η†

jV G18
ηi dx− 1

Bo

∫
z=0

∂η†
jV G18

∂x

∂ηi

∂x
dx. (9.58)

The non-positiveness of < w,v >V G18 makes it less suitable to define a norm. On the contrary,

< w,v >E is positive-definite and thus suitable to define a norm, i.e. the energy norm (9.35),

which will be exploited in the next section to carry out a convergence analysis and error

estimation, as the truncation number of the series, N , is varied.
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Figure 9.12 – Relative error made at each projection versus time for a fixed N = 30. Inset:
relative error versus the number of modes N for a fixed projection time, highlighted with a red
circle in the main figure.

9.7.2 Convergence analysis: projection error vs. time and truncation number N

With reference to figure 6 of this Chapter, in this section we carry out a thorough convergence

analysis and error estimation by changing the number of modes N (truncation number)

included in the series expansions. We recall that the results shown in figure 6 of the Chapter

are computed considering pure water in a container of width l = 5cm for which Bo = 336,
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Re = 30717 and C a = 0.011. The static angle is set to θs = π/2 and the slope of the linear

Hocking’s law α is assumed to be 77rad. The static contact angle hysteresis is fixed to ∆= 20◦.

At each projection instant, ti , the flow fields can be simultaneously expressed as a solution of

the free-phase and of the pinned-phase. Hence, at every ti we can define two solution vectors,

vi
f and vi

p , associated with the transition between the two different phases. In other words, for

a generic projection step, we have vi
ol d and vi

new , corresponding to the solution before and

after the projection step. Let us denote their difference as ∆vi = vi
new −vi

ol d .

Using the energy norm defined by equation (9.35) and fixing the number of modes, i.e.

N = 30, we can compute the relative error introduced at each projection as

ri (ti ) =
< (

vi
new −vi

ol d

)
,
(
vi

new −vi
ol d

)>E

< vi
ol d ,vi

ol d >E
= <∆vi ,∆vi >E

< vi
ol d ,vi

ol d >E
.

(9.59)

In figure 9.12 the result of this procedure is depicted Figure 9.12 shows that the maximum

relative error (in energy norm (9.35)) for a truncation number N = 30 over the whole temporal

evolution is less than 0.002%, confirming the precision of the projection scheme. The inset in

the top-left corner of Fig. 9.12 shows the error trend as a function of N for a fixed projection

instant (ti = T i
f p = 72.73), where the free-solution is projected onto the pinned or pinned-

solution.
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ri = 0.08686
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Figure 9.13 – Relative error made at each projection versus time for a fixed N = 30. Inset:
relative error versus the number of modes N for a fixed projection time, highlighted with a red
circle in the main figure. The lateral walls are here modelled with a no-slip condition in the
pinned-phases.

9.7.3 Treatment of the lateral wall boundary condition in the pinned-phase: free-
stress vs. no-slip

The choice of a free-stress (ls À 1, ∂x w = 0) boundary condition at the lateral solid walls,

although physically unrealistic, is motivated by the need to simplify the wall and contact
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line treatment in the free-phase, which would be otherwise extremely complex. However,

when the pinned-phase is considered one immediately notices imposing a no-slip boundary

condition at the wall does not result in any stress-singularity, since the the contact line is

pinned. Hence, the no-slip condition arises as a natural boundary condition along the entire

lateral solid walls in the pinned phase. Letting unchanged the treatment of free-phase, we

can first compute the eigenmodes for the pinned-solution by imposing the no-slip b.c. at the

walls, then run the projection algorithm and eventually repeat the same convergence and

error analysis presented in §9.7.2. Figure 9.13 shows that in this case, the maximum error

over the entire data sequence is still small, i.e. < 0.25%. However, it is evident that the error

(in energy norm (9.35)) is 103 larger than the previous case with free-stress b.c. at the wall for

both phases. This discrepancy is readily understood by inspecting the location of the major

source of error, as depicted in figure 9.14. As the free-end (slip) phase is modelled with the
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Figure 9.14 – (a) Absolute value of the difference of the vertical velocity field ∆w i (x, z) =
w i

p (x, z)− w i
f (x, z), before and after projection. Only a portion of the right-half domain

(x ∈ [−1,1], z ∈ [−3,0]) is shown. (b)-(d) Three different slices taken at x∗, as indicated by the
dashed white lines in (a). The solution before, w i

f , and after, w i
p , projection are superimposed

for comparison. The lateral walls are here modeled with a no-slip condition in the pinned-
phases.

free-stress condition at x = 1, at the projection instant, t i , the flow solution vi
f will have an

uncontrolled non-zero tangential velocity at the wall, w i
f (x = 1, z). If the no-slip condition is

used in the pinned-representation, the solution vector after the projection step, vi
p , has a zero

tangential velocity by construction, since the pinned-modes satisfy ŵpm

∣∣
x=±1 = 0. It follows

that the major source of error is localized along the lateral walls and it is due to the inability to
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project between two basis satisfying different boundary conditions at the projection time. The

projection algorithm is therefore mathematically ill-posed.

In spite of this evidence, the total error is kept always lower than 0.25% (at least in the present

test case) by the projection method and hence it seems worth investigating how the no-slip

condition, which does not neglect the Stokes boundary layer at the lateral walls, therefore

being physically more relevant, modifies the damping coefficients of the pinned modes and

consequently the overall dissipation during the nonlinear dynamics.

Figure 9.15 shows the contact line elevation and the total energy versus time computed with
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Figure 9.15 – (a) Contact line elevation versus time. Comparison between the results obtained
by modelling the lateral solid walls during the pinned-phase with a free-stress (black solid
lines) and no-slip (light blue dash-dot lines). In the inset in the bottom-right corner, t∗ denotes
the time of arrest computed in the two cases. (b) Total energy density versus time. The black
solid lines correspond to the results shown in figure 6 of this Chapter.

the two different wall boundary conditions for the pinned-phase. We observe that the overall

dissipation is mainly governed by the dissipation due to the sliding contact line and the static

hysteresis (Coulomb-like friction) and the two predicted temporal evolution are indeed close

to each other. However, as figure 9.15-(b) highlights, the main difference in the final trend,

once the contact line is pinned. For t > t∗, the fluid bulk motion decays exponentially owing

to the viscous dissipation only.
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σF S
pm

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
- 2.3×10−4 - 0.0017 - 0.0044 - 0.0084 - 0.0136 - 0.0200

σN S
pm

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
- 0.0018 - 0.0031 - 0.0059 - 0.0100 - 0.0153 - 0.0219

Table 9.2 – Damping coefficient, σm , of the first six pinned-modes with free-stress (FS) and
no-slip (NS) condition at the lateral walls. The values are computed for the same setting in
figure 6 of this Chapter and recalled at the beginning of § 2 of the present supplementary
notes.
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10 Stick-slip to stick transition induced
by contact angle hysteresis: liquid
oscillations in U-shaped tubes

In this Chapter 10, the nonlinear decay of oscillations of a liquid column in a U-shaped tube is

investigated within the theoretical framework of the projection method formalized in Chapter

9. Starting from the full hydrodynamic system supplemented by a phenomenological contact

line model, this physics-inspired method uses successive linear eigenmode projections to

simulate the relaxation dynamics of liquid oscillations in the presence of sliding triple lines.

Each projection is shown to eventually induces a rapid loss of total energy in the liquid

motion, thus contributing to its nonlinear damping. A thorough quantitative comparison with

experiments by Dollet et al. (2020) (Dollet et al., 2020) demonstrates that, in contradistinction

with their simplistic one-degree-of-freedom model, the present approach not only describes

well the transient stick-slip dynamics, but it also correctly captures the global stick-slip to

stick transition, as well as the secondary bulk motion following the arrest of the contact line,

which has been so far overlooked by existing theoretical analyses. This study offers therefore a

further contribution to rationalizing the impact of contact angle hysteresis and its associated

solidlike friction on the decay of liquid oscillations in the presence of sliding triple lines.

The Chapter is organized as follows. In §10.1 we briefly summarize the experimental findings

reported by Dollet et al. (2020) and comment on the advantages and limitations of the one-

degree-of-freedom (1dof) system employed in their study to model the liquid oscillations. We

present the full hydrodynamic system in §10.2, while a numerical characterization in terms of

oscillation frequencies and damping rates associated with the various dynamical phases is

carried out in §10.3. The projection method is shortly recalled and described in §10.4. Results

and comparison with experiments are given in §10.5, and final conclusions are outlined in

§10.6.

10.1 Motivations and objectives

To clarify the role of the wetting properties on the damping of liquid oscillations, Dollet et al.

(2020) studied the decay of oscillations of liquid columns in a U-shaped tube. They experi-

mentally showed that in the presence of moving contact lines, oscillations are nonlinearly
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Figure 10.1 – (a) Rescaled interface height, h = h̄/hi n , for ethanol in the hydrophobic tube
vs time t̄ (s). Markers correspond to experiments, while the solid line is an exponential fit
h = exp

(−σω0 t̄
)
, with the best fitting parameters, ω0 = 11.1rad/s and σ= 0.0415. The inset

displays a raw space-time diagram showing (as highlighted by yellow dashes) the draining
top of the thin film deposited at the first descent. (b) Interface height h̄ (t ) mm vs time t̄ (s)
for water and ethanol in the hydrophobic tube and for an initial elevation hi n = 14.6mm.
(c) Oscillation period, T (s), vs liquid column length l (m), as predicted by the pendulum
analogy (black solid line), i.e. T = 2π/ω0 with ω2

0 = 2g /l and g the gravity acceleration, and as
measured experimentally (empty circles) for water in the hydrophobic tube and for an initial
elevation hi n = 9.3mm (as in panel (e)). (d) Rescaled interface height, h, vs time t̄ (s), for water
in the hydrophobic tube with a fixed liquid column length and at different initial elevation hi n .
The solid curves correspond to the predictions from equation (10.2) with σ= 0.06 as a free
fitting parameter common for all experiments and µ given by (10.1b). (e) Rescaled height h,
with hi n = 9.3mm vs the rescaled time t =ω0 t̄ for water in the hydrophobic tube at different
liquid column lengths. The solid curve is given by equation (10.2) with σ= 0.06 as determined
from the best fit of the experimental data. (f) Phenomenological law used in the present work
to model the apparent dynamic contact angle, θ, vs the non-dimensional contact line speed,
C a∂η/∂t , with C a = νρ√

g l /2/γ the Capillary number, ν the kinematic liquid viscosity, ρ the
liquid density and γ the liquid-air surface tension.

damped, with a finite-time arrest and a dependence on initial conditions. Consistently with

the theoretical analysis by Viola and Gallaire (2018), they also revealed that contact angle

hysteresis can explain this behaviour and quantified the solid-like friction attributable to the

contact angle hysteresis.

In the following, we will briefly summarize the experimental findings reported in Dollet et al.

(2020), which have inspired the present study. For their experiments, Dollet et al. (2020) used

two U-shaped glass tubes, one of which was rendered hydrophilic using plasma treatment,
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and the other one hydrophobic by silanization with a silicon reagent. The two straight arms of

the tubes, separated by a distance R ≈ 22.5mm (the authors provided us with this value in a

personal communication), have a constant inner radius a = 8.15±0.15mm (see figure 10.2).

They used two liquids, namely ultrapure water and absolute ethanol, whose wetting properties

have been characterized by depositing droplets on glass slides treated similarly and simulta-

neously as the tubes, and slowly injecting or withdrawing liquid from these droplets. From the

onset of contact line motion, they measured the values for the advancing, θa , and receding,

θr , contact angles. Ethanol wetted perfectly the hydrophilic slide; for water, θa = (15±5)◦

and no significant receding contact angle could be measured. On the hydrophobic slide,

θr = (68±10)◦ and θa = (93±2)◦ for water, and for ethanol, θr = (28±)2◦ and θa = (34±2)◦.

In order to study the natural decay of the liquid oscillations, they injected a controlled volume

in the tube, making a liquid column of length l along the tube centerline. They then plugged

one arm with a thin membrane under tension and injected through a flexible tube a controlled

volume of air in the resulting trapped air pocket, creating an initial height imbalance 2hi n

between the two contact lines in the left and right straight arms of the tube. Lastly, by piercing

the membrane with a needle, so as to ensure controlled initial conditions, they could record

with a camera the subsequent oscillations of one of the two interfaces.

The relaxation of liquid oscillations in the hydrophilic tube, not reported here for the sake of

brevity, was observed to be of exponential nature for both ethanol and water. More complex is

instead the scenario when dealing with the hydrophobic tube. For this condition, the relevant

results of their study are reported in figure 10.1. Panel (a) shows the relaxation dynamics

for ethanol: the oscillations are exponentially damped, without dependence on the initial

condition; a visual inspection of the raw space-time diagram highlights the draining top of

the thin film deposited at the first descent; during most of the subsequent oscillations, the

interface slides over this film.

Panel (b) shows the oscillation decay for both ethanol and water, and for the same liquid

column length and initial elevation hi n . For both liquids, the oscillation period, T , is well

predicted by the theoretical dispersion relation, i.e. T = 2π/ω0, with ω2
0 = 2g /l (see also panel

(c)), however, for water, the effect of wetting conditions is striking: despite the larger viscosity

of ethanol, water oscillations are much more damped, with a finite-time contact line arrest,

tar r , and a dependence of tar r on the imposed initial condition, hi n , as illustrated in panel (d).

To rationalize such nonlinear relaxation dynamics for the contact line, the authors employed

the 1dof model reminiscent of that of Viola et al. (2018). This simple model relies on two

assumptions, namely (i) the tube curvature is neglected and (ii) the flow is hypothesized plug-

like. It is difficult to rigorously justify (i), but (ii) appears reasonable as the Stokes boundary

layer thickness in these experiments is of the order of
p

4πν/T ≈ 0.4mm ¿ a(= 8.15mm). The

1dof model then reads:
d 2h

d t 2 +2σ
dh

d t
+h +µsign

(
dh

d t

)
= 0, (10.1a)

h = h̄

hi n
, t =ω0 t̄ , σ= σ̄ω0

2πρg a2 , µ= γ (cosθr −cosθa)

ρg ahi n
, (10.1b)
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with the initial conditions h = 1 and dh/d t = 0 at t = 0 and with the bar symbol denoting

dimensional quantities. Importantly in equation (10.1a), the linear damping coefficient σ is

considered as a free-fitting parameter. Although equation (10.1a) can be solved numerically

or piecewise analytically, in the limit of small damping, i.e. σ¿ 1 and µ¿ 1, an insightful

solution can be obtained by applying the multiple scales method as outlined in Chapter 1. The

elevation h (t ) is expanded as h0 + εh1 . . ., with ε¿ 1, h0 (t ) = (1/2) A (T )e it +c.c. and a slow

time scale ∼ εt is introduced. Successively, the imposition of a solvability condition at order ε

yields

h (t ) =
[
− 2µ

πσ
+

(
1+ 2µ

πσ

)
e−αt/2

]
cos t , (10.2)

if t ≤ t0, and h = 0 if t ≥ t0, with t0 = 1
σ log

[
1+ (

πσ/2µ
)]

the time of arrest of the contact line

oscillations. Equation 10.2 predicts an envelope shape that varies from the classical exponen-

tial damping as σÀµ (nearly linear dissipation) to a linear decay in time as µÀσ (solid-like

friction). In spite of the strong oversimplifications, the 1dof model predicts fairly well the

experimental contact line dynamics once the damping σ is fitted from experiments. In the

experimental range of liquid column lengths explored, a unique value of σ, i.e. σ= 0.06 (for

water), allowed for a good overall comparison (see figure 10.1(e)).

To conclude this introductory section, one can state that the 1dof nonlinear pendulum-like

model is capable of reproducing the global features of the relaxation dynamics in the presence

of contact angle hysteresis, hence providing a powerful tool to obtain a quick estimation, e.g.,

of the finite-time arrest.

Nevertheless, a few main drawbacks are worth to be commented on. Preceding the time of

arrest, the contact line exhibits some transient stick-slip transitions (visible in figure 10.1(b)

and (d)). As discussed in Chapter 9, each time that the contact line transiently reaches a

zero speed (see figure 10.1(f)), the contact angle will have to adjust from θa to θr (or vice

versa) while the contact line remains pinned; this dynamical variation obviously requires a

certain time-interval to happen. Most importantly, after the time of arrest, the fluid bulk still

exhibits oscillations, even if the contact line is pinned. As the latter is now fully fixed, these

secondary oscillations are unaffected by nonlinear friction and, therefore, decay exponentially

under the effect of pure linear viscous dissipation. Of course, such a global stick-slip to stick

(pinned) dynamics cannot be captured by a simplistic 1dof model, as it intrinsically calls for a

modelization of the many degrees of freedom of the system. Lastly, the 1dof model requires

the fitting of the linear damping, σ, whose accurate computation can be very subtle. The

linear damping englobes multiple dissipative effects: the dissipation occurring in the Stokes

boundary laters at the tube walls, the one induced by three-dimensional effects in the curved

part of the tube and, particularly, possible extra dissipation sources linked to the contact

line motion, such as a dynamical contact angle variation at a non-zero contact line speed

(see figure 10.1(f)) which is a ubiquitous feature of similar experiments (Cocciaro et al., 1993;

Fiorini et al., 2022; Hocking, 1987; Jiang et al., 2004; Rio et al., 2005; Snoeijer and Andreotti,

2013; Xia and Steen, 2018).

With the aim of building a more refined model so as to overcome these limitations, in the

following we will characterize the present U-tube dynamics by considering the full hydrody-
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namic system of governing equations, to which we will apply the projection method developed

in Chapter 9. The most interesting case of water oscillations in the hydrophobic tube will

represent our experimental reference condition.

10.2 Full Hydrodynamic System
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2R

R

(a) (b) (c)

Figure 10.2 – Sketch of the U-tube configuration. (a) Full three-dimensional geometry (3D).
(b) Two-dimensional (2D) view of the centerline plane. The tube radius is assumed constant
and denoted by a. The length of the liquid column is l . h indicates the height difference of the
liquid column between the left and right straight channels. g is the gravity acceleration. The
advancing and receding dynamic contact angles are, respectively, θa and θr , whereas the static
contact angle is labelled as θs and it is in general 6= 90◦. (c) If the tube curvature is neglected,
the 3D geometry can be reduced to an axisymmetric configuration, by considering only half of
the liquid column, of length l/2, and by imposing anti-symmetry conditions at the bottom
boundary so as to restore the effect of the gravity term on the missing straight channel.

10.2.1 Governing equations

With regards to the experimental setup of Dollet et al. (2020) previously discussed, let us

consider a U-shaped tube of radius a and filled with a liquid column of length l , as illustrated

in figure 10.2(a,b). The section of the tube is assumed constant all over the tube length, a

first geometrical approximation already dealt with by Dollet et al. (2020). The geometry of

the problem remains intrinsically three-dimensional (3D). Nevertheless, by analogy with the

approach employed by Iguchi et al. (1982) and Dollet et al. (2020), in the following, we neglect

the tube curvature. This is certainly a strong a priori assumption, which appears worth to be

discussed. Appendix is devoted to discussing, at least partially, its justification. Under this
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hypothesis, one may then imagine cutting the tube in half and unfolding it, so as to consider

the z-axis as straight and only half of the liquid column, of length l/2. At this stage, we have

reduced the 3D geometry to an axisymmetric configuration, that can now be more easily

described in cylindrical coordinates, Orφz. The origin of the cylindrical reference system is

located at the intersection of the unperturbed free surface at z = η with the centerline axis

at r = 0. The effect of the gravity term on the missing half of the domain can be correctly

restored by considering proper anti-symmetry conditions on the bottom boundary at z =−l /2

(figure 10.2(c)). The sudden sign switching of the effect of gravity in z =−l /2 is consistent with

neglecting the curvature in the U-turn region.

The viscous flow within the U-shape tube is thus governed by the incompressible Navier-

Stokes equations

∇·u = 0,
∂u

∂t
+ (u ·∇)u+∇p − 1

Re
∆u =−1êz , (10.3)

which are made nondimensional by using the container’s characteristic length l and the

velocity
√

g l /2 (figure 10.2). Consequently, the Reynolds number is defined as Re =
p

g (l/2)3

ν

and the term −1êz denotes the nondimensional gravity acceleration. In equation (10.3),

p (r, z, t ) is the pressure field, whereas u (r, z, t ) = {u, w}T is the velocity field, with u and w the

radial and axial velocity, respectively. Note that the dynamics is assumed axisymmetric and

such assumption will be maintained throughout the manuscript. At the free surface, z = η,

kinematic and dynamic boundary conditions hold,

D
(
η− z

)
Dt

= ∂η

∂t
+u

∂η

∂r
−w = 0, (10.4a)

[
−pI+ 1

Re

(∇u+∇T u
)− 1

Bo
κ

(
η
)

I
]
·n = 0, (10.4b)

where D/Dt is the material derivative, n = (
1+η2

r

)−1/2 {−ηr ,1
}T is unit vector normal to the

interface, and κ is the free surface curvature, κ
(
η
) = [

ηr r + r−1ηr
(
1+η2

r

)] (
1+η2

r

)−3/2
. The

Bond number is defined as Bo = ρg a2

γ

(
l /2
a

)2
, with γ designating the air-liquid surface tension.

As anticipated above, the restoring effect of the missing half of the tube, is reintroduced by

imposing anti-symmetry conditions for u and w at the bottom boundary (see figure 10.2(c)).

More precisely, we impose

u = ∂w

∂z
= 0 at z =−1. (10.5)

Moreover, owing to the axisymmetric assumption, the axis boundary condition imposes

u = ∂w

∂r
= 0 at r = 0. (10.6)

10.2.2 Treatment of the sidewall: a macroscopic depth-dependent slip-length model

At the lateral wall, we adopt a slip-length model, thus assuming that the fluid speed relative to

the solid wall is proportional to the viscous stress (Lauga et al., 2007; Navier, 1823) and that,
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together with the no-penetration condition, provides the boundary conditions

u = 0, w + ls (z)
∂w

∂x
= 0 at r = a

l/2
. (10.7)

Such a condition is indeed needed in order to regularize the stress singularity at the moving

contact line (Davis, 1974; Huh and Scriven, 1971). It was hypothesized by Miles (1990) and

Ting and Perlin (1995) that the phenomenological macroscopic slip length appearing in

equation (10.7) should not be assumed constant along the wall, but rather spatially dependent

on the position along the lateral wall and vanishing at a certain distance away from the contact

line, where the flow obeys the no-slip condition. For this reason, we employ here a depth-

dependent slip length model as proposed by Bongarzone and Gallaire (2022), which has been

shown to correctly estimate the linear dissipation occurring in the Stokes boundary layers at

the lateral solid walls (see Appendix for further validations specific to present case). Briefly, we

postulate that the slip length ls (z) is described by the exponential law

ls (z) = lcl exp

(
− z

δ
log

(
lδ
lcl

))
, z ∈ [−H ,0] . (10.8)

In equation (10.8), lcl is the slip-length value at the contact line, r = a/(l/2) and z = 0, whereas

lδ is its value at a distance δ below the contact line, r = a/(l/2) and z =−δ, with δ represent-

ing the size of the slip region (Ting and Perlin, 1995). In principle, lcl , lδ and δ are all free

parameters. However, keeping in mind that, macroscopically speaking, one aims at mimicking

a stress-free condition in the vicinity of the contact line and a no-slip condition after a certain

distance δ, the natural choice is lcl À 1 (∼ 102÷104) and lδ¿ 1 (∼ 10−4÷10−6). The range of

values proposed in brackets is based on the sensitivity analysis reported in Bongarzone and

Gallaire (2022), whereas the definition of the slip region penetration depth, δ, as postulated by

Miles (1990), is assumed of the order of the non-dimensional Stokes boundary layer thickness,

i.e. δ≈ (l/2)−1δSt = (l/2)−1p2ν/ω.

10.2.3 Phenomenological contact angle model and static meniscus

Lastly, to model the contact line motion, z = η and r = a/(l/2), we include the phenomenolog-

ical law of figure 10.1(f), which describes the nonlinear contact angle dynamic as a function of

the contact line speed,

∂η

∂r
=±cotθ, θ−θs =αC a

∂η

∂t
+ ∆

2
sign

(
∂η

∂t

) (
Hocking+hysteresis

)
, (10.9)

with C a = νρ
√

g l /2/γ the Capillary number and with the value of α that will be discussed

and specified in the next section. Note that this model has already been used in Chapter 9 and

it results from a combination of the linear Hocking’s law (Hocking, 1987), of slope α, and a

static contact angle hysteresis of range ∆. In the rest of the paper, we will naively assume that

the advancing and receding phases are completely symmetric and that the hysteresis range is

centered around θs , i.e. θ+ = θa −θs =∆/2 and θ− = θr −θs =−∆/2, while being aware that the
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Figure 10.3 – Shape of the dimensional static meniscus, η0, computed numerically for θs =
(θa +θr )/2 = (93+68)/2 = 80.5◦ and for three different liquid column length, l (cm).

advancing and receding contact line dynamics are generally characterized by different value

of α, i.e. αA 6=αR (Cocciaro et al., 1993; Cox, 1986; Dussan, 1979; Gennes, 1985; Rio et al., 2005;

Voinov, 1976).

In the limit of small oscillation amplitudes and small static contact angle hysteresis, the fully

nonlinear governing equations (10.3) together with their boundary conditions (10.4a)-(10.9)

can be linearized around the rest state, characterized by zero velocity and pure hydrostatic

pressure. With regards to the experiments by Dollet et al. (2020) for water in the hydrophobic

tube, the measured advancing and receding contact angles are, respectively, θa = 93◦ and

θr = 68◦. If we hypothesize the equilibrium angle θs to be the averaged value of θa and θr ,

this amounts to θs = 80.5◦ 6= 90◦, meaning that the static free surface is not flat. We, therefore,

linearize the system of equations around an initially curved static meniscus, whose resulting

axisymmetric shape, reported in figure 10.3, is computed as the solution of the following static

equation:

η0 = 1

Bo

η0,r r + r−1η0,r

(
1+η2

0,r

)
(
1+η2

0,r

)3/2

 , with
∂η0

∂r

∣∣∣∣
r=0

= 0,
∂η0

∂r

∣∣∣∣
r=a/(l /2)

= cotθs , (10.10)

Eq. (10.10) is nonlinear in η0 and can be solved numerically using an iterative Newton method

as described in Appendix A.1 of Viola et al. (2018).

10.3 Natural properties of the system

Notwithstanding the linearization of the governing equations around the rest state, the system

is still nonlinear owing to the hysteretic contact angle model (10.9). Nevertheless, it appears

intuitive that the underlying contact line motion can be split into two distinct dynamical
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Figure 10.4 – Eigenvalue spectrum associated with the two contact line boundary conditions,
i.e. pinned (green markers) and free (blue markers), computed numerically by solving the
generalized eigenvalue problem (10.16). For the case of a free contact line condition, the
calculation here reported has been performed by imposing a value of α= 0. Both spectra are
computed for a liquid column length l = 14.6cm.
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Figure 10.5 – (a) Eigen-interface associated with the U-tube free mode computed in 10.4.
The free surface dynamics in the free-phase consists of an upward-downward oscillation of
a flat interface. (b) Eigen-interface associated with U-tube pinned mode computed in 10.4.
The surface dynamics in the pinned-phase consists instead of an interface oscillating with a
bell-like shape whose edges are anchored at the wall.

phases, namely a pinned-phase, described by the condition

∂η

∂t
= 0 (pinned-phase), (10.11)

and a free-phase with
∂η

∂r
+αC a

∂η

∂t
=−θ± (free-phase), (10.12)

both evaluated at r = a/(l/2). The non-homogeneous term in the right-hand side of equa-

tion (10.12) will be dealt with within the formalism of the projection method. Let us ignore

this term for the moment by rewriting

∂η

∂r
+αC a

∂η

∂t
= 0. (10.13)
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Then, the system of governing equations closed by these two boundary conditions, taken

independently, translate into two separated fully linear homogeneous problems, that can be

both written in the form

B f ,p
∂

∂t
q f ,p =A f ,p q f ,p . (10.14)

with q f ,p = {
u f ,p , p f ,p ,η f ,p

}T the state vector. The symbolic expressions of the mass matrix

B f ,p and the stiffness matrix A f ,p are explicitly given in Chapter 9, while the subscripts f ,p are

here used to designate either the free ( f ) or the pinned (p ) phase. By introducing the ansatz

q f ,p = q̂ f ,p eλ f ,p t + c.c., (10.15)

with λ f ,p =−σ f ,p + iω f ,p , equation (10.14) reduces to the following generalized eigenvalue

problem

λ f ,pB f ,p q̂ f ,p =A f ,p . (10.16)

Matrices A f ,p and B f ,p are numerically discretized by means of a Chebyshev collocation

method implemented in Matlab in the same fashion of Bongarzone and Gallaire (2022);

Bongarzone et al. (2021c); Viola et al. (2018); Viola and Gallaire (2018); the resulting eigenvalue

problem is also solved in Matlab via the built-in eigs function.

The eigenvalue spectrum associated with the solution of the two independent eigenvalue

problems is reported in figure 10.4. This figure shows, for both wetting phases, a spectrum that

contains two families of oscillating natural modes, namely a free/pinned U-tube mode and

free/pinned capillary-gravity waves. However, these waves oscillate at a much larger frequency,

at least ten times higher, than the fundamental U-tube mode, and are typically more damped

than the U-tube mode. The latter mode, with its dynamical properties and structure, displayed

in figure 10.5, is, therefore, the mode that is expected to govern the dynamics.

Hence, in the next two sub-sections we will carefully comment on the eigenvalue properties

of such U-tube modes, tackled separately in the two dynamical phases. For simplicity, we will

start from the pinned-phase, which appears easily describable from a numerical perspective.

Successively, we will handle the free-phase, whose description hinges on the subtle modelling

of the moving contact line and slip length conditions.

10.3.1 Pinned-phase

The dependence of the oscillation period and of the damping coefficient on the liquid column

length for the U-tube pinned mode, as numerically computed, is shown in figure 10.6. Only

one experimental value has been reported by Dollet et al. (2020) (in their Supplementary

Material) and it seems in agreement with our trend, which is also reminiscent of that displayed

in figure 10.1(c), although no analytical dispersion relation exists for a pinned contact line.

More experimental values are available with regard to the damping coefficient. Although the

experimental procedure followed by Dollet et al. (2020) in measuring these values does not

allow for high accuracy, an overall fair agreement is found when compared with our numerical

estimates.
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In this regard, it is important to realize that a pinned contact line condition is mathematically

fully compatible with a no-slip wall condition, i.e. no stress singularity needs to be resolved at

the contact line, hence allowing one for a precise numerical estimation of the damping. If we

ignore experimental errors and ensure numerical convergence, the main possible source of

disagreement with these experiments is attributable to free surface contamination or three-

dimensional (3D) effects, overlooked by our ideal axisymmetric model, which neglects the

tube curvature. To be sure that 3D effects are not important, in Appendix, we perform a full

3D eigenvalue calculation so as to refine the numerical values reported in figure 10.6. This

calculation proves 3D corrections to be insignificant.
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Figure 10.6 – Dimensional oscillation period, T , and damping coefficient, σ, versus the water
column length and associated with a pinned contact line dynamics of the fundamental U-tube
mode. Green diamonds: values computed fully numerical eigenvalue calculation. White
circles: values measured experimentally as reported in Dollet et al. (2020).

10.3.2 Free-phase

Ignoring dynamical contact angle variation: α= 0

In applying the 1dof model, Dollet et al. (2020) used a non-dimensional linear damping

coefficientσfitted from experiments and whose best-fit value amounts to 0.06. This coefficient

is difficult to estimate precisely, as it englobes several contributions, among which is the

dissipation occurring in the laminar Stokes boundary layers at the lateral walls.

The numerical approach here employed, based on the slip length model previously discussed,

provides a tool to compute the dissipation associated with the Stokes boundary layers (see

Bongarzone and Gallaire (2022) for further details). By analogy with the pinned case, the

dependence of the oscillation period and of the damping coefficient on the liquid column
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Figure 10.7 – (a) Dimensional oscillation period, T , and (b) damping coefficient, σ, versus
the water column length, l (cm) and associated with a free contact line dynamics of the
fundamental U-tube mode. Blue diamonds: values computed fully numerical eigenvalue
calculation by accounting for the variable slip length model discussed in equation (10.13) with
α= 0. White circles in (a): values measured experimentally as reported in Dollet et al. (2020).
The experimental range investigated in Dollet et al. (2020) is indicated by the grey arrow in (b).
Within this range, the damping coefficient is nearly constant with the tube length.

length for the U-tube free mode is shown in figure 10.7. The numerics slightly overestimate

the oscillation period, but overall it is in good agreement with the experiments. The fact that

the experimental data are better described by the theoretical dispersion relation, which does

not account for viscous dissipation, is however counter-intuitive. Pure viscous dissipation

should indeed introduce a viscous correction to the natural frequency, which should result in

a diminished value or, equivalently, in a higher oscillation period T . This may suggest that

there is a second effect counteracting and compensating for such a viscous correction to the

natural frequency. The Appendix shows that the curved part of the U-tube has an influence on

the natural dynamics that can explain this argument.

When looking at the damping coefficient, we observe that within the experimental range

of liquid column length, l (cm), considered, the damping σ does not vary much with l , thus

explaining why a single value of σ fitted from experiments can allow a good match with those

measurements. The present numerical calculation for the damping is also compared to the

analytical estimate developed in Appendix, and that validates the numerical scheme.

Unfortunately, when taking the non-dimensional averaged value in the experimental range of

length, this amounts to σ≈ 0.027, which is less than half the one needed for a good agreement

with the data. We precise that the averaged value is computed as σ= n−1
i

∑ni

i σi
√

li /2g , with
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ni the number of lengths l used to sample the experimental range.

As discussed in Appendix, three-dimensional effects related to the tube curvature can

produce an increase in the damping of a few percentages, not sufficient to explain such

a mismatch. The extra dissipation missing in the modelization of the free phase must be

therefore linked to the contact line dynamics.

Accounting for dynamical contact angle variation: α 6= 0
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Figure 10.8 – Same as in figure 10.7 (here in σ-log scale), but with the light blue crosses
indicating the values computed by also accounting for extra contact line dissipation produced
by Hocking’s law (Bongarzone et al., 2021c; Hocking, 1987) withα= 200rad). Within this range,
the damping coefficient is nearly constant with the tube length, l , even for α= 200rad. The
average value in this range is σ≈ 0.06, which matches the one used in figure 10.1 and obtained
from the best-fit of the experiments.

In the experimental conditions considered, the extra contact line dissipation is well described

by a linear damping coefficient. Hence, adopting a linear law for the dynamic contact angle

variations with the contact line speed appears as the simplest and most natural choice. We,

therefore, reintroduce the contact line parameter that characterizes the Hocking law, i.e. α 6= 0.

Recalling the contact line condition for the free-phase (10.13), one can see how a value of

α= 0 would correspond to a contact line sliding over the solid substrate with a constant and

zero slope (dashed lines in figure 10.1). On the other hand, the pinned condition (10.11) is

nothing more than a limiting case of equation (10.12) with α→+∞. We are supposing here

to be in an intermediate situation where α, sometimes also referred to as friction coefficient

(Hamraoui et al., 2000) or mobility parameter M (Xia and Steen, 2018), assumes a finite value
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different from zero.

Let us first blindly consider α as a free fitting parameter. A value of α= 200rad leads to a

non-dimensional averaged (in the experimental range of figure 10.8) damping coefficient of

σ=σ√
l/2g ≈ 0.06, which is exactly the value we need. If this procedure shows that a simple

linear dynamic contact line model is sufficient to explain the missing dissipation, one can

wonder whether the value of α used is admissible for the experimental condition discussed

here.

Hamraoui et al. (2000) have studied the kinetics of capillary rise of pure water and pure

ethanol as well as mixtures thereof that, under static conditions, wet glass capillary tubes in

both dry and prewetting wall conditions. Specifically, they have postulated a dynamic contact

angle term that is linearly dependent on the velocity of the capillary rise and whose correction,

in this linear approximation, takes on the form of a three-phase line friction coefficient, M ,

equivalent to our parameter α, up to a proper dimensionalization factor. The value of M for

ethanol, water and a water-ethanol mixture is reported in table 10.1.

liquid ρ
(
kg/m3

)
γ (N/m) ν

(
m2/s

)
M (Pa s) ᾱ= M

γ (s/m) α= ᾱ γ
νρ (rad)

water 1000 0.072 1.0×10−6 0.2 6.25 200
mixture 983 0.050 1.0×10−6 0.14 2.8 140
ethanol 786 0.022 1.4×10−6 0.04 1.82 36

Table 10.1 – Value of the non-dimensional contact line parameter α for water, water-ethanol
mixture and pure ethanol as measured by Hamraoui et al. (2000). The dimensional value of
the friction coefficient M (denoted by β in their study) is here converted in the dimensional,
α, and non-dimensional, α, contact line parameter.

Particularly relevant to our study is the value measured by Hamraoui et al. (2000) for pure

water amounts to M = 0.2Pa s, which translates into α= 200rad, hence matching precisely

the value necessary to match the data. As a side comment, the use of the coefficient α also

produces an increase in the natural frequencies, thus bringing the numerics closer to the

experimental values.

Through this careful comparison with experiments by Hamraoui et al. (2000) and Dollet

et al. (2020), we have been capable of quantifying numerically the natural properties of the

system in the two dynamical phases of interest, handled independently. All our estimates and

hypotheses seem consistent with these measurements.

The idea is now to combine the two separated descriptions for the pinned-phase and free-

phase, so as to account for a dynamic change in the contact line boundary conditions and

predict the nonlinear relaxation dynamics. This is done in the next section by employing the

projection algorithm.
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Figure 10.9 – (a) Axisymmetric meniscus modes associated with the free-phase and (b) with
the pinned-phase. In (a), the angle, measured clockwise from the wall to the surface is 1,
whereas the contact line elevation is F0. In (b), the angle is 1/F0, whereas the contact line
elevation is 1. (c) Real part of the eigen-interface associated with the free and (d) pinned
U-tube modes, with the corresponding eigenvalues, λ f0 =−σ f0 + iω f0 and λp0 =−σp0 + iωp0

reported on top. The free mode is normalized such that the contact line elevation is 1, while
the pinned mode is normalized such that the slope at the wall is 1. For completeness, in (c), we
have also reported the interface shape when α= 0 (thin blue line) as shown in figure 10.5(a).
(e)-(i) Real part of the eigen-interface associated with the five least damped free and (j)-(n)
pinned capillary-gravity waves. The same normalization as in (c) and (d) is employed.

10.4 Projection method

10.4.1 General formalism

A detailed step-by-step description of the projection algorithm has been already provided in

Chapter 9. In this section, we recall the salient points of the method and we comment on the

few differences intrinsic to specific dynamics of the problem here considered.
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When the contact line motion is schematized using Hocking’s law amended with a static

hysteresis range, we can identify two well-distinct phases of the dynamics, one in which the

angle varies linearly with a slope α as a function of the contact line speed, C a∂η/∂t (Hocking’s

linear law) and one in which the contact line is pinned at a certain elevation with zero velocity

(static hysteresis) and the angle changes from θs +θ+ to θs +θ− (∆= θ+−θ−) or vice versa. We

denote these two phases as free, f , and pinned, p , phase, respectively.

The solution in these two phases is then expressed as the sum of the corresponding particular

static solution (meniscus mode), q fs and qps (the subscripts f ,p s
stand for free-static or pinned-

static), and a truncated basis of linear eigenmodes, q̂ fn and q̂pm , weighted by their unknown

amplitudes:

q f = θ±q fs︸ ︷︷ ︸
free-end meniscus mode

+
(

A0q̂ f0 eλ f0 (t−T f ) + c.c.
)

︸ ︷︷ ︸
free-end U-tube mode

+
(

N f∑
n=1

A fn q̂ fn eλ fn (t−T f ) + c.c.

)
︸ ︷︷ ︸

free-end capillary-gravity waves

(10.17a)

qp = e f p qps︸ ︷︷ ︸
pinned-end meniscus mode

+
(
B0q̂p0 eλp0 (t−Tp ) + c.c.

)
︸ ︷︷ ︸

pinned-end U-tube mode

+
(

Np∑
m=1

Bpm q̂pm eλpm (t−Tp ) + c.c.

)
︸ ︷︷ ︸

pinned-end capillary-gravity waves

(10.17b)

All these ingredients are visually summarized in figure 10.9. As described in the previous

section and in contradistinction with the two-dimensional system of Chapter 9, the present

U-tube dynamics is characterized by two families of oscillating natural modes, namely a

free/pinned U-tube mode and free/pinned capillary-gravity waves. However, these waves

oscillate at a much larger frequency and are more damped than the U-tube modes. Accounting

for them in the algorithm is useful if one is interested in capturing fast transients, but with

the purpose of modelling the global dynamical features of the system, their inclusion in the

analysis is not strictly necessary. Hereinafter we will ignore the capillary-gravity waves, and

we will only retain the dominant free and pinned U-tube natural modes described in §10.3

and here denoted by q̂ f0 (free) and q̂p0 (pinned), with amplitudes A0 and B0, and eigenvalues

λ f0 =−σ f0 + iω f0 and λp0 =−σp0 + iωp0 , respectively.

Including a meniscus mode in the solution form (10.17a) associated with the free-phase, i.e.

q fs , is necessary in order to properly deal with the non-homogeneous term in the right-hand-

side of the contact line condition (10.12). The particular solution resulting from this static

forcing term, −θ±, consists in a static meniscus modification η fs (with u fs = 0) that satisfies

the linearized meniscus equation

η fs −
1

Bo

 1(
1+η2

0,r

)3/2

∂2η fs

∂r 2 +
(
1+η2

0,r

)
(
1+η2

0,r

)5/2

1

r

∂η fs

∂r

= constant, with
∂η fs

∂r

∣∣∣∣
r=a/(l/2)

=−θ±,

(10.18)

with the terms in brackets representing the first-order variation of the nonlinear curvature

linearized around the static meniscus η0 and applied to η fs . For the convenience of notation,
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we encourage the reader to note that, in equation (10.18), we actually impose ∂η fs /∂r =−1

instead of −θ±, while keeping the term θ± explicit in front of the particular solution in (10.17a).

In Chapter 9, the constraint on the conservation of mass was used to set the value of the

constant appearing in (10.18), by imposing
∫

z=η0
η fs ds = 0. Here, as we consider only half of

the domain, this constraint must be relaxed, and the value of the constant let free. In practice,

this is done by solving for
(
η fs +constant

)
, instead of for η fs itself.

The pinned-condition (10.11) is homogeneous and it is explicitly accounted for in the

corresponding eigenvalue problem. However, the condition ∂η/∂t also allows for a static

particular solution with ηps = constant at the contact line r = a/(l/2) (and with ups = 0). The

meniscus mode for the pinned-phase is therefore computed as ηps = η fs /F0, with F0 the value

of η fs at the wall r = a/(l/2), so as to have a unitary value at r = a/(l/2) (see figure 10.9). This

unitary value is weighted by the contact line elevation e f p in (10.17b), with e f p fixed during

the pinned-phase and obtained as an output of the algorithm.

10.4.2 Workflow of the method
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Figure 10.10 – Workflow of the projection algorithm (from (a) to (c)).

A visual workflow of the algorithm is illustrated in figure 10.10. Let us suppose to initialize the

system in the upper free-phase (panel (a)) by assigning the amplitude of the free U-tube mode,

A0, at t −T f = 0. The system is let evolve in time according to (10.17a). When the contact line

speed reaches the null value, we have the first transition, i.e. from free to pinned. At this time

instant, t = Tp , we require the continuity of all variables of the system, i.e. qp (0) = q f
(
Tp −T f

)
.

This corresponds to imposing

θ+q fs +
(

A0q̂ f0 e
(−σ f0+iω f0

)
(Tp−T f ) + c.c.

)
= e f p qps +

(
B0q̂p0 + c.c.

)
, (10.19)

which, using the fact that the contact line elevation at the end of the free-phase reads (η̂ f0 = 1

at r = a/(l/2))

e f p = θ+F0 +
(

A0 e
(−σ f0+iω f0

)
(Tp−T f ) + c.c.

)
, and ηps = η fs /F0, (10.20)

337



Chapter 10. Stick-slip to stick transition induced by contact angle hysteresis: liquid
oscillations in U-shaped tubes

can be conveniently rewritten as

B0q̂p0 + c.c. = A0
(
q̂ f0 −qps

)
e

(−σ f0+iω f0

)
(Tp−T f ) + c.c. = f f p , (10.21)

where the resulting term on the right-hand side is fully known.

The amplitude of the U-tube mode pertaining to the next pinned-phase, B0, still unknown

at this stage, is computed by projecting, with respect to a specific weighted inner product, the

final-time free solution, f f p , on the initial-time pinned solution as

B0 =< q̂†
p0

, f f p >E . (10.22)

with q̂†
p0

the adjoint U-tube pinned-mode.

We are now in the pinned-phase (panel (b)). The initial contact angle is θs +∆/2 = θs +θ+,

and the time-evolution of the system is described by (10.17b). The contact angle progressively

changes with a fixed contact line elevation e f p and once it reaches the value θs −∆/2 = θs +θ−,

the second transition occurs. We impose again the continuity of the flow variables, i.e. q f (0) =
qp

(
T f −Tp

)
,

e f p qps +
(
B0q̂p0 e

(−σp0+iωp0

)
(T f −Tp ) + c.c.

)
= θ−q fs +

(
A0q̂ f0 + c.c.

)
, (10.23)

with

θ− = e f p /F0 +
(
B0 e

(−σp0+iωp0

)
(T f −Tp ) + c.c.

)
, (10.24)

so that equation (10.23) can be rearranged as

A0q̂ f0 + c.c. = B0
(
q̂p0 −q fs

)
e

(−σp0+iωp0

)
(T f −Tp ) + c.c. = fp f . (10.25)

We thus project the final-time pinned solution on the initial-time free solution, so as to

determine the new amplitude A0.

A0 =< q̂†
f0

, fp f >E . (10.26)

with q̂†
p0

the adjoint U-tube free-mode.

The system enters the lower free-phase (panel (c)) and the cycle is repeated over again. Each

projection eventually induces a rapid loss of total energy in the liquid motion and contributes

to its nonlinear damping. After a few cycles, the inertia of the oscillating liquid column will be

no more sufficient to surpass the static solid-like friction and the system will get trapped in

the pinned-phase. The secondary fluid bulk motion following the arrest of the contact line

will decay exponentially under the effect of the linear viscous dissipation characteristic of the

pinned dynamics.
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10.4.3 E-norm inner product and definition of adjoint modes

We note that, owing to the axisymmetric configuration, the inner product employed in this

context differs from that used in Chapter 9:

< w,u >E=
∫

V
uwuv r dr dz +

∫
z=η0(r )

ηwηv + 1

Bo

 1(
1+η2

0,r

)3/2

 ∂ηw

∂r

∂ηv

∂r

 r dr (10.27)

where v = {
uv, pv,ηv

}T and w = {
uw, pw,ηw

}T are two generic vectors, the bar designates the

complex conjugate and the subscript E stands for energy. We recall that (10.27) represent

the total energy norm, where the volume integral measures the kinetic energy, whereas the

two boundary terms are, respectively, the gravitational and surface elastic potential energies.

We also note that the surface integral associated with the surface energy (curvature term) is

further weighted by
(
1+η2

0,r

)−3/2
, resulting from the linearization around an initially curved

static meniscus, η0 (r ) 6= 0.

As a final comment, in equations (10.22)-(10.26) we have invoked the concept of adjoint

modes, solutions of the adjoint linearized homogeneous problem, whose formal derivation

is given in the Chapter 9. In this regard, here we limit ourselves to reporting the final result,

according to which

q̂†
f ,p =


û†

p̂†

η̂†


f ,p

=


−û

−p̂

η̂


f ,p

6= q̂ f ,p , λ†
f ,p =−σ f ,p − iω f ,p =λ f ,p . (10.28)

The abovementioned supplementary notes also provide a demonstration that direct modes,

q̂ f ,p and adjoint modes, q̂ f ,p , form a bi-orthogonal basis with respect to the scalar prod-

uct (10.27), with the adjoint modes that appear, therefore, as the most suitable choice for the

projection step.

10.5 Comparison with experiments and results

10.5.1 Contact line dynamics and finite-time arrest

In this section, the most relevant results are discussed. First, we compare the contact line

dynamics predicted by the projection method versus that predicted by the 1dof model and that

measured experimentally by Dollet et al. (2020). This comparison is outlined in figure 10.11

for different initial contact line elevations, hi n . The improvement brought by the present

projection method is not striking from this comparison. Both the 1dof model and the present

model are in fairly good agreement with experiments. Nevertheless, we can spot, e.g. in panels

(a,b,c), that our model seems to capture the stick-slip transitions preceding the contact line

arrest. Those transitions are visible in the experiments and correspond to the dynamical

phases where the contact line elevation remains approximately constant over a time interval,
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Figure 10.11 – Contact line elevation versus time for different initial conditions. Dashed line:
1dof model. Red solid lines: predictions from the projection model. Markers: experiments by
Dollet et al. (2020). We note that in performing the calculation, we have actually considered
an effective tube length of 16.2cm, where an excess length of l ′ = 1.6cm is introduced in order
to into account the fact that the cross-section along the curved part of the tube is not constant
due to the fabrication process. See Dollet et al. (2020) for further details.

The first interesting aspect highlighted by the projection model is related to the dependence

of the finite-time arrest for the contact line, tar r , on the initial elevation, hi n . The time arrest

of the contact line is indicated in figure 10.11 by the vertical black dashed lines, while its

dependence on hi n is characterized more in detail in figure 10.12, which shows how tar r

follows a step-like function.

From our knowledge, such a trend has not been reported in the literature yet, but it appears

intuitively correct. Indeed, the arrest of the contact line occurs when, after a few oscillations

cycles, the inertia of the system is no more sufficient to overcome this static friction. If for an

initial condition hi n , the time of arrest is tar r , one can imagine that small variations of hi n

will lead to the same tar r . In order to prolongate in time the oscillatory contact line motion,

the system needs to surpass this final energy barrier, which is only possible by starting from a

sufficiently larger potential energy, and thus, from a larger hi n .

340



10.5. Comparison with experiments and results

l = 14.6 cm
a = 8.15 mm

0 2 4 6 8 12 14 16 18 20
0

1

2

3

hin (mm), initial elevation

t a
rr

(s
),

fin
ite

tim
e

ar
re

st

1dof
Proj
Exp

Figure 10.12 – Finite time of arrest versus the imposed initial elevation. Black solid line:
analytical prediction from the one-degree-of-freedom model proposed by Dollet et al. (2020).
White triangles: experimental measurements by Dollet et al. (2020). Colored circles: projection
method. The black dashed line only serves to guide the eyes.

10.5.2 Global damping properties and frequency modulation

As the projection method deals with the full hydrodynamic system, we have access to all the

degrees of freedom of the system. Looking away from the contact line and rather focusing the

attention, for example, on the centerline dynamics at r = 0, then the useful insights brought

by the present approach are evident. The centerline dynamics is of course affected by what

happens at the contact line, but at the same time, it does not undergo a finite-time arrest. The

associated time series, computed for different initial elevations, is reported in figure 10.13.

An inspection of this time-signal evolution reveals, consistently with previous experimental

observations (Cocciaro et al., 1993), how the contact line arrest is followed by the secondary

bulk motion characterized by an exponential relaxation with a constant damping coefficient

(i.e. the final linear trend in the log-scale plot of figure 10.13), which is completely overlooked

by the 1dof model. By monitoring the nonlinear decay of such a signal, we can estimate

the damping rate and the modulation of the oscillation frequency as a function of the time-

dependent oscillation amplitude

The result of this procedure is explained and illustrated in figure 10.14. Similarly to the

weakly nonlinear analysis formalized by Viola and Gallaire (2018), the 1dof model predicts the

initial increase in the damping rate, DR (t ), but it diverges around t ≈ tar r . This finite-time

singularity is not surprising as the contact line arrests at t = tar r , but it is only locally correct,

and it does not represent a good description of the global damping rate. On the contrary,

the damping rate resulting from the projection shows an increase as the wave amplitude

decreases, until it reaches a maximum value, after which it decreases to a nearly constant

value. Once the pinned dynamics is established, the damping rate is approximately constant

and equal to the viscous damping coefficient of the pinned U-tube mode. Concerning the
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Figure 10.13 – Centerline free surface elevation, i.e. r = 0 and z = 0 (in log-scale), versus time
for different initial elevations, hi n . The grey solid lines show the actual signal produced by
the projection method, while the coloured solid lines indicated the amplitude envelope only.
The coloured dashed lines correspond to the analytical prediction given by the single-degree-
of-freedom model employed by Dollet et al. (2020). An almost abrupt change in the trend of
these signals is well visible. This is a clear sign of the final transition to a pinned contact line
dynamics following the contact line arrest.

frequency modulation in time, we find a smooth evolution from the characteristic value of the

initially dominant free U-tube mode to a final value, reached for t ≈ tar r and corresponding

to the natural oscillation frequency of the pinned U-tube mode. Although no experiments

concerning the damping rate and frequency modulation in time were reported in Dollet

et al. (2020), the initial and final values match well the experimental ones (as indicated in

figure 10.14 by the values of ω f r ee
exp , ωpi nn

exp and σpi nn
exp ), and the intermediate behaviour is fully

consistent with that experimentally reported by Cocciaro et al. (1993).

We note that the centerline elevation, as the contact line elevation, is also a local measurement,

but it is more representative of the overall dynamics. Similar trends for the damping and

frequency are found by monitoring, e.g., the decay of the total energy (see Bongarzone et al.

(2021c)), which represents instead a global measurement.

10.6 Conclusions

In this work, we have employed the projection method developed in Chapter 9 to study the

natural relaxation dynamic of small amplitude liquid oscillations in a U-shaped tube, as exper-

imentally investigated by Dollet et al. (2020).

First, we attempted to rationalize the linear dissipation properties of the system in both

the free and pinned dynamical phases so as to explain the fitting parameter used in the 1dof

model of Dollet et al. (2020) (see equation (10.1a)). After having numerically estimated the

contribution of the Stokes boundary layers and the effect of three-dimensionality, i.e. of the
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Figure 10.14 – (a) Dimensional damping rate and (b) frequency modulation versus time
at different initial conditions. The damping rate, DR (t ) is computed as the logarithmic
decrement of the amplitude of the centerline free surface elevation, shown in figure 10.13. The
frequency is computed from the same signal by evaluating the period from peak to peak, with
the resulting value that is then roughly assigned to the midpoint of the corresponding time
interval (coloured filled circles in (a) and (b)). The coloured solid lines represent the best fit of
these time signals, whereas the coloured dashed lines correspond to the analytical prediction
given by the single-degree-of-freedom model employed by Dollet et al. (2020).

tube curvature on the overall linear damping coefficients (see Appendix), a linear Hocking’s

law for the dynamic variation of the contact angle with the contact line speed has been ac-

counted for in order to compensate for the missing dissipation, hence allowing for a good

match with experiments. The combination of such a linear law with the static hysteresis range

considered in Dollet et al. (2020) translates into the phenomenological nonlinear contact line

model already used in Chapter 9.

The full hydrodynamic system, supplemented with this contact line model, has been then

studied in the framework of the projection approach, so as to compare the resulting predic-

tions with those from the simple 1dof model employed in Dollet et al. (2020) and with their

experimental measurements. When looking at the contact line dynamics only, the improve-

ment brought by the present model is not striking. Both the 1dof model and the present

model are in fairly good agreement with experiments and well predict the contact line arrest.

However, our model seems to correctly capture some of the stick-slip transitions occurring,

in a more pronounced way, just before the finite-time arrest. If one is interested in having a

quick estimation of the finite-time arrest for the contact line, we, therefore, recommend using

the 1dof model.
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Nevertheless, although the peculiar contact line dynamics, with its stick-slip motion and

finite-time arrest, is the main responsible for the initial nonlinear dissipation of the system, it

is not fully representative of the global dynamics. Through the projection method, we have

access to all the degrees of freedom of the system. This allowed us to explore, for example,

the centerline dynamics, which is affected by what happens at the contact line but does not

undergo a finite-time arrest. An inspection of this time-signal evolution reveals, consistently

with previous experimental observations (Cocciaro et al., 1993), how the contact line arrest

is followed by the secondary bulk motion characterized by an exponential relaxation. By

monitoring the nonlinear decay of this such a signal obtained via the projection approach, we

have been able to estimate the damping rate and the oscillation frequency (both amplitude-

dependent) of the system, hence correctly capturing the transition from an initial stick-slip

motion to a final pinned dynamics, which has been so far overlooked by the theoretical analy-

ses reported in the literature.

The projection method, here applied to the case of a piecewise linear contact line model,

has already been generalized to any smooth non-linear contact line dynamics, e.g. a cubic law

according to the Dussan model (see Bongarzone et al. (2021c)). Replacing the linear Hocking’s

law with a more sophisticated nonlinear law, e.g. cubic, and combining the latter with a

range of static hysteresis is of interest and appears somewhat straightforward. Other future

perspectives include the introduction in the model of small amplitude external forcing, i.e.

axial time-harmonic excitations, and the more challenging extension to three-dimensional

non-axisymmetric oscillatory dynamics, which is of great relevance for sloshing-related prob-

lems (Bongarzone et al., 2022a; Marcotte et al., 2023a,b) and in the description of oscillatory

sessile drop dynamics (Amberg, 2022; Ludwicki et al., 2022; Noblin et al., 2004; Xia and Steen,

2018).

10.7 Appendix

10.7.1 Effect of the tube curvature on the damping

In this Appendix, we perform the full three-dimensional eigenvalue analysis for a pinned

contact line. The latter condition is easier to resolve numerically, as no stress singularity

emerges from the imposition of a no-slip wall. Although the flow dynamics for a moving

contact line and the resulting damping properties may differ from the one considered here,

the purpose of this appendix is simply to have a rough estimation of the effect of the curved

part of the tube on the global linear damping coefficient. This computation serves us to

partially justify the fundamental assumption of neglecting the tube curvature. With respect

to the real experiment, we can only obtain a rough estimation, as the tube used by Dollet

et al. (2020) shows a significantly smaller cross-section in its curved part than in its straight

parts, where it is circular of uniform radius a = 8.15mm within a few tens of microns. As it is

difficult to measure this variation locally, the authors didn’t report any information that could

be used to mesh numerically the actual geometry. For these reasons, we will simply consider a

constant cross-section of radius a.
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Figure 10.15 – (a) Three-dimensional natural U-tube mode for a pinned contact line. The full
domain has been resolved, but only a quarter of it is shown here for visualization purposes. (b)
Axial velocity profile plotted at different sections along the tube, as indicated by the coloured
arrows. The liquid column length in (a) and (b) has been set to l = 14.6cm. (c) Dimensional
oscillation period, T = 2π/ω, associated with the pinned contact line dynamics and as a
function of the liquid column length, l . (d) Same as in (c), but for the dimensional damping
coefficient. In (c) and (d), empty circles correspond to the present 3D calculation, black crosses
are from the axisymmetric model discussed throughout the manuscript, while filled black
diamonds are experimental measurements from Dollet et al. (2020). Only one measurement
has been reported for the oscillation period.

Thus, the linearized governing equations with their boundary conditions have been im-

plemented in the finite-element software COMSOL Multiphysics v5.6. To mesh the physical

domain, we have adopted a hybrid quadrilateral-triangular mesh. Specifically, triangular
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elements were used in the interior, while quadrilateral elements were adopted in the neigh-

bourhood of the free surface, sidewalls and bottom, where, in addition, boundary layer

refinements were used to better model the viscous Stokes boundary layers. The equations

were manually written in their weak formulation using the Weak Form PDE tools available

in the software. We used P2 for the velocity field and P1 elements for the pressure field, so

as to avoid spurious pressure mode. The interface variable was discretized with P2 elements.

Globally, the grid is made of approximately 300 000 degrees of freedom, for which convergence

was tested.

The results of this computation are reported in figure 10.15. Panel (a), gives a picture of the

three-dimensional natural U-tube mode for a pinned contact line: the full domain has been

resolved, but for visualization purposes, only a quarter of it is shown. The non-dimensional

axial velocity profile is reported in panel (b) at different locations along the tube as indicated

by the colored arrows. We can see how the effect of the curvature is locally important from the

asymmetry in the velocity profile: the velocity is higher where the curvature is higher. This

asymmetric profile gradually adapts to a symmetric plug-like flow in the straight arm of the

tube, and eventually, it relaxes to a bell-like profile at the interface. This last profile seems

peculiar, but it is consistent with the fact that the axial velocity at the surface equals the time

derivative of the interface, which, for a pinned dynamics, has indeed a bell-like shape (see

§10.3).

Although the curvature seems to affect the flow locally, figure 10.15(c) and (d) suggest that it

does not significantly influence the eigenvalue properties of the system, i.e. the oscillation

period (panel (c)) and the damping coefficient (panel (d)). Specifically, the oscillation period

predicted by the axisymmetric model is only slightly larger than that predicted by the full

3D calculation, and both trends, with respect to variations of the liquid column length, are

consistent with the experimental measurements.

The damping coefficient is always larger than that computed via the axisymmetric model.

This increase is attributable to three-dimensional effects, and it is a consequence of the slightly

higher oscillation frequency. However, such an increase is bounded to less than 3% for the

lengths l considered. Hence, neglecting the curved part and employing a simplified axisym-

metric model appears as a justifiable assumption for the geometrical and fluid properties

examined in this work.

10.7.2 Theoretical estimate of the Stokes boundary layer contribution to the dis-
sipation and comparison with the numerical slip-length model1

In the first part of Sec. 10.3.2, which deals with a description of the natural properties of the

system in the free-phase, we have computed numerically the damping coefficient associ-

ated with the dissipation originating in the oscillating Stokes boundary layer at the lateral

wall. This numerical estimate, based on the slip-length model (10.7)-(10.8), has provided a

non-dimensional averaged damping value that amounts to σ≈ 0.027, which is less than half

1I acknowledge Bastien Ravot for the analytical derivation discussed in this Appendix.
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the one needed for a good agreement with the data (σ≈ 0.6). Such a disagreement has then

motivated the introduction of an extra source of dissipation originating in the contact line

region, which has eventually led to the desired value of σ.

The use of the phenomenological contact line model (10.13) and, specifically, of the cho-

sen value of the contact line coefficient α 6= 0, has already been justified throughout the

manuscript. Nevertheless, it is still worth making sure that the original numerical estimate,

obtained for α= 0, represents in the first place a good prediction of the lower bound for σ, so

as to not overfit the value of α required to increase σ up to the desired experimental value.

In this Appendix we therefore attempt in deriving an analytical estimation of the damping

coefficient produced by the Stokes boundary dissipation. To this end, as in Sec. 10.3.2, we

neglect the tube curvature and we assume a pure free-end edge contact line condition, i.e.

α= 0. Additionally, for the sake of mathematical tractability, we ignore here the curvature of

the static interface, i.e. η0 (r ) = 0, by taking θs = 90◦. Note that the experimentally measured

value is θs = 80.5◦; this angle produces a static meniscus whose characteristic length is approx-

imately 5-6% the tube radius, i.e. its influence is likely negligible (see Fig. 10.3). Note that the

experimentally measured value is θs = 80.5◦, which is not far from 90◦.

Under these hypotheses, the problem of free-phase U-tube oscillations is formally equivalent

to the Stokes second problem for axial oscillations governed by

∂w

∂t
= ν

(
1

r

∂w

∂r
+ ∂2w

∂r 2

)
, w |r=a =W cosω0t , (10.29)

with the additional constraint the the axial velocity remains bounded for r → 0. The solution

of equation (10.29) gives the axisymmetric axial velocity profile inside the cylinder, i.e. for

0 ≤ r ≤ a,

w (r, t ) =W Real

[
I0

(
r
p

iω0/ν
)

I0
(
a
p

iω0/ν
)e iω0t

]
, (10.30)

where I0 is the modified Bessel function of the first kind.

We can then compute the total force exerted by the fluid on the lateral wall as

F =µ ∂w

∂r

∣∣∣∣
r=a

= (πal ) µW Real

√
iω0

ν

I0
(
r
p

iω0/ν
)

I0
(
a
p

iω0/ν
)
 , (10.31)

where the term (πal ) represents the total wall surface for half tube of radius a and length l /2.

The associated power reads

P = F · w |r=a = (πal ) µW 2 Real

√
iω0

ν

I1
(
a
p

iω0/ν
)

I0
(
a
p

iω0/ν
)
 Real

[
e iω0t ] . (10.32)

The power dissipated by viscous forces during the steady-state oscillatory motion can be

expressed as

< Ė >=−2π

ω0

∫ 2π
ω0

0
P dt =−ω0πal

2
µW 2 C . (10.33)
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with the auxiliary coefficient C :

C =
∫ 2π

ω0

0
Real

√
iω0

ν

I1
(
a
p

iω0/ν
)

I0
(
a
p

iω0/ν
)
 Real

[
e iω0t ] dt . (10.34)

In the potential flow limit, the U-tube linear dynamics is described by a plug flow with an

interface rigidly oscillating in time at natural oscillation frequency ω2
0 = 2g /l and without

deforming in the radial direction. This simple dynamics can be described by introducing the

generalized coordinate q (t ), such that the interface position η and the axial velocity w read,

respectively, η= q and w = q̇ (t ).

Let us now evaluate the total mechanical energy E , sum of the kinetic (K ) and potential (P )

energies, associated with the oscillatory motion:

E = K +P = ρ

2

∫ 0

−l/2

∫ 2π

0

∫ r

0
w2 r dr dφdz + ρg

2

∫ 2π

0

∫ a

0
η2 r dr dφ= ρg

2
πa2

(
q̇2

ω2
0

+q2

)
. (10.35)

Assuming the ansatz q (t ) = Dq (t )cosω0t , one has that

E = ρgπa2

2

[
D2

q + Ḋq

(
Ḋq

cosω0t

ω2
0

−Dq
2sinω0t cosω0t

ω2
0

)]
≈ ρgπa2

2
D2

q . (10.36)

with the last approximation on the right-hand side that holds for small damping, i.e. whenever

Dq (t ) represents a slow time damping process over the characteristic fast time-scale typical of

the oscillations at frequency, 1/ω0, so that Ḋq ¿ Dq ∼ O(1). The time-derivative of the total

energy then reads

Ė = ρgπa2Dq Ḋq . (10.37)

In contradistinction with the standard Stokes second problem, where the lateral wall is

oscillating harmonically at a frequency ω0 with amplitude W , in the U-tube dynamics the

sidewall is fixed and the liquid column is oscillating at frequency ω0 with amplitude |w | = |q̇ |.
Recalling that < Ė >=−ω0πal

2 µW 2 C , we can thus express W 2 as |w |2 = |q̇|2 =ω2
0D2

q . Lastly, by

assuming that < Ė >≈ Ė , one has that

Ė = ρgπa2Dq Ḋq =−ω
3
0πal

2
µC D2

q =< Ė > =⇒ Ḋq =−ω0νC

πa
Dq , (10.38)

and

Dq = Dq0 exp

(
ω0νC

πa
t

)
=⇒ E = ρgπa2

2
D2

q0︸ ︷︷ ︸
E0

exp

(
2ω0νC

πa
t

)
, (10.39)

which eventually leads to the analytical estimation of the damping coefficient σ as

E

E0
=

(
Dq

Dq0

)2

= exp

(
2ω0νC

πa
t

)
= exp(−2ω0σt ) =⇒ σ= νC

πa
, (10.40)
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10.7. Appendix

which must be compared with the numerical estimation reported in figure 10.7. This is done

in figure 10.16. Both the theoretical and numerical models neglect the curvature of the tube

and the extra contact line dissipation. We can see that the two predictions compare very

well, hence confirming that the slip-length model (10.7)-(10.8) allows for a fair estimation of

the Stokes boundary layer dissipation, as already suggested by the analysis of Bongarzone

and Gallaire (2022). This calculation also further confirms that the laminar boundary layer

dissipation alone is not sufficient to justify the experimentally fitted damping coefficient.

The effect of U-tube curvature on the damping has been discussed in Appendix. The

increase in the damping attributable to the three-dimensionality of the flow in the U-turn

region appears too small to close to the gap with experiments, hence reinforcing the hypothesis

that the additional dissipation indeed comes from the contact line dynamics.
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Figure 10.16 – (a) Non-dimensional, σ, and (b) dimensional, σ=σ√
2g /l , damping coefficient

versus the water column length, l (cm) and associated with a free contact line dynamics of the
fundamental U-tube mode for α= 0rad. Blue diamonds: values computed fully numerical
eigenvalue calculation by accounting for the variable slip length model (10.13). The red solid
lines correspond to the analytical estimate of the damping coefficient as estimated in this
Appendix according to equation (10.40). The vertical black dashed lines in (a) and (b) indicate
the length of the U-turn region,πR ≈ 7cm. Below this length, the liquid column is all contained
in the U-turn region. In proximity and, particularly, below this limit value (as indicated by the
grey-shaded regions), neglecting the curvature of the tube is no more a justifiable assumption.
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Through this research, we have examined the self-sustained oscillations in cross-junction

jets and the resonant dynamics of geometrically confined sloshing and Faraday waves. By

drawing upon existing and homemade dedicated experiments, we have employed the tools

of linear stability analysis and asymptotic techniques to establish comprehensive theoretical

frameworks capable of explaining various flow features associated with these oscillatory

dynamics. This has enabled us to create predictive models for the fundamental hydrodynamic

processes involved, which is crucial to the effective design of related engineering devices.

Dedicated conclusions are outlined at the end of each Chapter and I encourage the reader to

review them for more comprehensive remarks and debates. In the following, I will limit myself

to giving only a very short summary, while focusing more on possible future perspectives that

I personally consider of engineeristic relevance and scientific thrill.

Cross-junction jets: 3D stability and complex jet networks

In Part I, we have described a feedback-free microfluidic oscillator based on two laminar

impinging jets interacting within a cavity with no moving parts. Experiments and numerical

simulations have been used to determine the region in the control parameter space where

self-sustained oscillations manifest. Advances in the understanding of the physical mech-

anism behind these oscillations have been made by performing linear global stability and

sensitivity analysis, which have identified a shear instability, located in the jet’s interaction

region, as the main candidate responsible for the emergence of the oscillatory regime observed

in similar fluidic devices. Further interesting nonlinear features, involving symmetry-breaking

and subcritical transitions, have also been described by means of the multiple-scales weakly

nonlinear theory.

The idealized two-dimensional (2D) analysis of Chapter 3 could well reproduce some of

the features observed experimentally, such as the scaling of the oscillation frequency. This

has been shown to be proportional to the averaged flow velocity imposed at the symmetric

inlets and inversely proportional to the distance between those inlets, irrespective of many

other parameters, such as channel width, depth, length, and Reynolds number, among others.

Nevertheless, a full three-dimensional (3D) global stability analysis appears necessary for

a quantitative characterization of the stability properties of this category of low Reynolds
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fluidic oscillators. This direction is already being pursued in the lab by one of my colleagues,

which kindly provided me with some preliminary results, reported here in panels (a) and (b)

of figure C.1.
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Figure C.1 – (a) Vertical velocity component associated with the non-oscillating global Mode
A (as defined in Chapter 3) computed for ARy = s/w = 9, ARz = h/w = 9 and Re = 30. (b)
Oscillating global Mode B (as defined in Chapter 3) computed for the same control parameters.
Both modes are unstable at

(
ARy , ARz ,Re

)= (9,9,30). The colored regions correspond to neg-
ative and positive velocity contours of equal magnitude. Figures were provided by Timothée D.
Salamon in personal communication. (c) Evolution of the dye concentration fields with time in
a micro-oscillator structure with 3 inlet channels, for Re = 32. The images are taken at regular
time intervals during one oscillation (from left to right, top to bottom). The jets width is 100µm,
the three jets are placed at 120◦ angle on a circle of 800µm in diameter, the output channels
width is 2000µm, the thickness of the device is 525µm. These images are associated with a
video winner of the 2019 American Physical Society’s Division of Fluid Dynamics (DFD) Gallery
of Fluid Motion Award, available online at https://doi.org/10.1103/APS.DFD.2019.GFM.V0036.
(d,e) Base flow (left) and linear global Mode B (right), both represented as velocity field mag-
nitude and computed for two-dimensional fluidic oscillators with 3 (d) and 4 (e) inlets for a
Reynolds number Re ≈ 30 and a ratio s/w = 7. For these parameters, Mode B is unstable.

Panels (a) and (b) show the vertical y-velocity component (imaginary part) associated with

the 3D version of the non-oscillating global Mode A and the oscillating global Mode B, as

defined in Chapter 3. Those modes are computed at Reynolds number Re = 30 for a geom-

etry with straight output channels of equal aspect ratios, ARy = s/w = 9, ARz = h/w = 9, for

which both modes A and B are found to be unstable. These results reinforce the relevance

of our previous 2D analysis and pave the way for thorough parametric stability analysis and

investigation of nonlinear global mode interactions around codimension-2 points or, possibly,

codimension-3 points and which might result in other symmetry-breaking conditions, hys-

teretic state transitions, vortex formations (Burshtein et al., 2019, 2021).
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The development of such stability tools could be then used to explore the self-sustained

oscillatory regime in more complex jet networks, as for example, the one reported in fig-

ure C.1(c). My preliminary stability calculations in 2D are in agreement with our experimental

finding that oscillations appear for multiple interacting jets crossing at some specific angles

(see figure C.1(d,e)). However, there is no guarantee that the same instability mechanism

and frequency scaling will hold for these configurations, which are therefore worth to be

investigated.

In the case of only two interacting jets, we have also shown how the range of Reynolds

numbers for which oscillations are observed increases significantly when an expansion of

the output channel is added. In this regard, one promising research direction could consist

in optimizing the geometry of the microfluidic cavity and properly selecting the number

of interacting jets, so as to achieve specific requirements, e.g. on the oscillation frequency,

which could be of interest for hydrodynamic converters and switching devices in microfluidic

circuitry.

Streaming flow in sloshing and standing waves

In Part II, we have studied the harmonic and super-harmonic resonant sloshing dynamics in

orbitally-shaken cylindrical reservoirs. An amplitude equation model, capable of predicting

the finite wave amplitude saturation associated with different free surface patterns, has first

been formalized for the case of a circular container’s trajectory, which represents the usual

forcing condition for shaken bioreactors. The analysis has then been applied to the case of

longitudinal motions. This scenario is more interesting from the perspective of hydrodynamic

instability, given the variety of wave regimes exhibited by the system, such as planar, irregular

and swirling motions. Lastly, with a focus on harmonic resonances, we have bridged the gap

between these two diametrically opposed shaking conditions by investigating the case of

elliptic orbits. In particular, the counter-intuitive existence of stable swirling waves travelling

in the opposite direction of the container motion has been demonstrated experimentally for

the first time and successfully predicted by our weakly nonlinear model.

The qualitative analogies between the harmonic and super-harmonic system behaviours

highlighted in Chapters 4 and 5 for rotary and longitudinal forcing, respectively, would suggest

that such counter-propagating swirling waves could also be triggered by exciting the system

elliptically in the vicinity of the super-harmonic resonance, thus calling for new experimental

campaigns that would conclude this series of works on the surface hydrodynamics of these

fundamental sloshing resonances in orbitally-shaken cylindrical containers.

The main limitations of the amplitude equation models developed in Part II are intrinsic to

the fundamental assumption of an inviscid flow. This not only translates sometimes into an

inaccurate prediction of the bound estimates between different wave regimes, as discussed

in Chapters 5 and 6, but also precludes capturing the jump-down transition experimentally

observed. In this regard, accounting for heuristic damping improves the predictions only

partially, as typical analytical formulas (Case and Parkinson, 1957; Miles, 1967) are only valid
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for small amplitude capillary-gravity waves, whereas the dissipation rates of forced wave

motions are generally more complex and depend nonlinearly on the saturated wave amplitude

(Bongarzone et al., 2022a; Raynovskyy and Timokha, 2020). A more rigorous viscous weakly

nonlinear (WNL) analysis, in the same spirit as that developed in Chapter 7 of Part III, would

indeed produce complex eigenfunctions eventually leading to complex-valued normal form

coefficients so that the effective damping will be asymptotically proportional to the square of

the wave amplitude through the cubic term in the amplitude equation.
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Figure C.2 – (a) Cartoon of the mean flow induced by swirling a glass of wine. Such flow can be
split into a toroidal swirling flow and a poloidal recirculation. This is a modified version of
a figure by W. Herreman available at https://perso.limsi.fr/wietze/sloshing.html. (b) Mean
flow measured by Bouvard et al. (2017) by means of stroboscopic PIV left in the horizontal
plane (toroidal) at an axial coordinate z/R =−0.23 below the free surface (z = 0), and right in
the vertical plane (poloidal) at a phase π/2. Parameters: container’s radius R = 51.2mm, fluid
viscosity ν= 500mm2 s−1, forcing amplitude A/R = 0.057 and forcing frequencyΩ/ω1 = 0.67,
with A the radius of the container’s trajectory and ω1 the lowest natural frequency.

Yet, what I personally consider the most exciting direction to pursue in this context is the

modelling and prediction of the streaming flow in sloshing and Faraday waves.
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Eulerian and Lagrangian mean flow

The inviscid analysis of Part II ignores the presence of viscous boundary layers at the solid

walls and free surface. As a direct consequence, the WNL time- and azimuthal-averaged mean

flow reduces to a free-surface deformation only (further details in Chapter 4). This is in stark

contrast with the evidence of the Eulerian mean flow, also known as viscous streaming flow,

observed in experiments. Therefore, an inviscid model can characterize sufficiently well the

free surface motion but it results in a poor approximation of the total velocity flow field, hence

completely overlooking one of the essential points of interest for several applications: for

example, in biology, the poloidal streaming flow experimentally described by Bouvard et al.

(2017) (figure C.2) is of crucial importance in the design of shaken bioreactors, as it is this

vertically recirculating flow that ensures good mixing, prevents sedimentation and enhances

the gas transfer, so as to provide suitable oxygenation to the growing cell population.

For propagating waves, as for swirling waves in orbitally-shaken containers studied in Part

II, the poloidal streaming flow is only one component of the total Lagrangian mean flow,

whereas the other component is represented by the so-called Stokes drift (Bremer and Breivik,

2018), which, in first approximation, has a pure kinematic inviscid origin. On the contrary,

for standing waves, e.g. for Faraday waves studied in Part III, the Eulerian streaming flow and

Lagrangian mean flow coincide.

Secondary drift instabilities

Instabilities of this streaming flow have been sometime shown to play an important role in

the arising Faraday patterns and in their dynamics, namely in their drift (Martín et al., 2002;

Vega et al., 2001) and mode interactions (Higuera and Knobloch, 2006; Higuera et al., 2002).

For instance, the authors of a recent video winner of the 2022 American Physical Society’s

Division of Fluid Dynamics (DFD) Milton van Dyke Award (see figure C.3), have shown how,

by tuning the driving amplitude at some specific driving frequency, the standing wave pattern

in a thin annular container first enters a compression state and eventually starts to drift, as

already observed by Douady et al. (1989). They have also shown how playing with the shape

of the channel opens up many possibilities and applications, among which complex fluid

networks (figure C.3(b)) and fluid pumps (figure C.3(c)).

Whether this symmetry breaking of the mean flow can be described by a coupled set

of amplitude equations hinges again on the correct computation of the steady mean flow

correction generated by each of the counterpropagating components of the leading-order

standing wave.

Influence of the contact line region on the streaming flow generation

The streaming flow is the result of a complex mechanism that couples the flow inside the bulk

(far from the walls) and the boundary layers (near the walls) (Batchelor, 1967; Schlichting,

1932). More precisely, (i) the oscillatory flow in the bulk induces oscillating boundary layers;
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Figure C.3 – (a) Faraday waves corralled in an annulus of radial gap, b, comparable to the
excited wavelength, λ, so as to align the wavelength along the annulus. By tuning the driving
amplitude at some specific driving frequency, the standing wave pattern first enters a compres-
sion state and eventually starts to travel at a rate ω. This rotation seems rooted in the underly-
ing streaming flow due to oscillatory motions near the boundaries, which appears exacerbated
by the meniscus. Playing with the shape of the channel opens up many possibilities and
applications, among which complex fluid networks (b) and fluid pumps (c), where the rotation
can be directed with ratcheted walls. All these figures have been extracted (and modified) by a
video winner of the 2022 American Physical Society’s Division of Fluid Dynamics (DFD) Milton
van Dyke Award available online at https://doi.org/10.1103/APS.DFD.2022.GFM.V0040.

(ii) those then exert feedback on the bulk flow whose steady component originates in the

streaming; (iii) lastly, the streaming is diffused into the bulk due to a viscous process (Nicolás

and Vega, 2003). Hence, the standard approach, at least for weakly viscous fluid, uses the

boundary layer theory and multiple scale analysis to calculate the nonlinear interaction in

the viscous boundary layer that will force a mean flow in the bulk. The effect of the boundary

layer can finally be written as boundary conditions for an effective streaming flow problem in

the bulk, whose governing equations resemble the classical Navier-Stokes equations (Périnet
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et al., 2017).

However, the main drawback of this method is that it ignores the dynamics of the meniscus

region in the vicinity of the contact line, where the wave motion is also the most intense.

Neglecting the features of the flow in this corner region may lead to a strong oversimplifica-

tion. The key importance of this region has been highlighted by Bouvard et al. (2017) (see

figure C.2(b)) in the case of swirling sloshing waves. Consistently, the authors of the video com-

mented in figure C.3 have found that symmetry-breaking drift of the standing wave pattern

initially observed seems rooted in the underlying streaming flow due to oscillatory motions

near the boundaries, which appears strongly exacerbated by the curved oscillating meniscus

(see figure C.3(a)), as also suggested by Huang et al. (2020).

A correct description of the oscillating viscous wave flow near the contact line is, there-

fore, essential to achieve an accurate prediction of the streaming flow. The numerical tools

developed in Part III and Part IV made several steps in this direction and could be used as

fundamental building blocks of future research developments in this direction.

Specifically, a viscous WNL analysis has been formalized in Chapter 7 of Part III to study the

weakly nonlinear coupling of sub-harmonic parametric waves and harmonic capillary waves

produced by an axisymmetric oscillating meniscus, whose size and shape are initially set by

adjusting the static contact angle by slightly under/overfilling the container while keeping the

contact line fixed at the brim. Here the presence of the Stokes boundary layers is reintroduced

without the need to resolve any stress singularity, as a pinned contact line allows one to rig-

orously impose a no-slip sidewall condition. In contradistinction with the inviscid analysis

of Part II, such a WNL viscous analysis produced in fact a non-zero second-order Eulerian

streaming flow, but at the time this work was carried out, I almost ignored the intriguing

nature and practical relevance of such mean flow and I did not discuss nor investigate it more

thoroughly. Yet, a pinned contact line dynamics does not seem of great relevance to the cases

reported in figures C.2 and C.3, where the streaming is enhanced by the oscillating meniscus

in the corner region.

A moving contact line condition combined with a wall boundary layer description has been

introduced for the first time in this thesis in Chapter 8, where we have investigated Faraday

waves in Hele-Shaw cells by proposing a novel gap-averaged model accounting for inertial

effects induced by the unsteady terms in the Navier-Stokes equations. Nevertheless, the Hele-

Shaw approximation only gives an estimation of the global damping produced by boundary

layers and contact line friction, but precludes one from describing the details of the flow in the

neighbourhood of the contact line and it is not suitable the characterize the streaming flow.

Lastly, in Part IV, we have developed a physics-inspired mathematical model based on succes-

sive linear eigenmode projections to solve the relaxation dynamics of viscous capillary-gravity

waves subjected to a nonlinear contact line model that accounts for nonlinear Coulomb

solid-like friction. The framework of Chapter 9 considers a moving contact line showing

static (hysteresis) and dynamic contact angle variations as a function of the contact line speed.

Lastly, a curved static meniscus and the sidewall boundary layer are also introduced in Chapter

10, where the contact line stress singularity has been resolved by adopting a macroscopic and

phenomenological depth-dependent slip length model, which has been shown to give a good
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Figure C.4 – (a) Linear viscous wave with m =−1 and plotted in the vertical plane for a zero
phase. This eigenmode has a non-dimensional damping rate of 0.0414 and an oscillation
frequency of 1.3316. The color map represents the magnitude of the vertical velocity field,
normalized by its maximum value, whereas arrows represent the vectorial field. Both (a) and (b)
have been computed by accounting for a static contact angle of 45◦. This produces an initially
curved static meniscus η, better visible in figure C.5. (b) Viscous linear spectrum computed
for the same fluid and geometrical parameters of Bouvard et al. (2017) and associated with an
azimuthal wavenumber m = 0. σ denotes the damping rate, while ω denotes the oscillation
frequency, both made non-dimensional using the characteristic time-scale

√
R/g , with R

the container’s radius and g the gravity acceleration. The eigenvalues with ω 6= 0 are viscous
capillary-gravity waves, but those with ω= 0 are pure viscous modes (Martel and Knobloch,
1997), some of which are represented in figure C.5.

estimate of the associated dissipation (Bongarzone and Gallaire, 2022), in contrast with the

slip length model employed by Viola and Gallaire (2018).

The viscous modes conundrum

By means of these tools, we are now able to compute numerically the viscous linear spectrum

by accounting for static meniscus, possibly contact angle (linearized) dynamics and viscous

boundary layers. For example, let us consider the case of rotary sloshing studied by Bouvard

et al. (2017). By formulating an asymptotic weakly nonlinear expansion as in Chapter 4, at

leading order one would compute the time-oscillating swirling wave, rotating in the same

direction of the container’s direction of motion with an azimuthal structure defined by a

wavenumber m = 1 (see figure C.4(a)). At second-order, the oscillating wave, through quadratic

nonlinearities in the governing equations, would produce a forcing term for m = 0 and a zero

oscillation frequency. The resolution of this second-order problem, through the inversion

of the linearized operator, would then give the WNL time- and azimuthal-averaged Eulerian

streaming flow.
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Figure C.5 – (a)-(c) Top-view of three toroidal (azimuthal) viscous modes visualized at the free
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the very same configuration of figure C.4. The toroidal viscous modes essentially represent
an Eulerian correction to the global toroidal Lagrangian mean flow, which is expected to be
dominated by the Stokes drift. On the other hand, the poloidal viscous modes coincide with
the global poloidal Lagrangian mean flow, up to a small viscous Stokes drift correction. The
location of these modes on the viscous spectrum of figure C.4(b) is specified by the values of
the associated damping coefficients, σ, reported in each panel.
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Before going through this step it is instructive to examine the viscous linear spectrum for

m = 0, as a combination of those eigenmodes will dictate the structure of the mean flow

response. Figure C.4(b) shows an example of such a spectrum, which displays two different

classes of eigenvalues, namely, the standard viscous capillary-gravity waves, and the so-called

viscous modes, as defined by Martel and Knobloch (1997). As the forcing has zero frequency,

the only relevant family of modes for the calculation of the mean flow are the axisymmetric

viscous modes. These modes can be further classified into two families, namely, toroidal

modes (associated with a zero radial and axial flow) and poloidal modes (associated with zero

azimuthal flow). Some of the least damped viscous modes are displayed in figure C.5.

A major issue in dealing with these modes lies in the fact that, for weakly viscous fluids, many

of them decay more slowly than the gravity-capillary ones and must be therefore rigorously

included in a weakly nonlinear analysis. A naive inversion of the second-order operator could

indeed lead to a meaningless solution, as the operator, due to the small damping of some of

the least damped viscous modes, may be nearly singular. In other words, a straightforward

global resolvent response at ω= 0 could thus lead to a huge mean flow amplification, which

would ruin the asymptotic expansion, with a consequent unphysical cubic nonlinear feedback

on the wave amplitude saturation.

At this stage, one should wonder how many viscous modes shall be explicitly accounted for

in a WNL analysis. Only the first few? Many? All of them?

According to the approach followed by Vega et al. (2001) and Higuera et al. (2002), the correct

answer seems to be all of them, although using the numerics to pursue a similar approach

and derive a system of coupled wave-mean flow amplitude equations, which also englobe all

the details of the contact line dynamics, does not appear trivial at all.

What I believe to be a promising approach for this problem is a self-consistent model in the

spirit of Mantič-Lugo and Gallaire (2016). The model consists of a decomposition of the full

nonlinear Navier-Stokes equations in a mean flow equation together with a linear perturbation

equation around the mean flow, which are coupled, e.g., through the Reynolds stress. The full

oscillating response and the resulting stress are approximated by the first harmonic calculated

from the linear response to the external forcing around the aforementioned mean flow. This

closed set of coupled equations can be solved in an iterative manner as partial nonlinearity

is still preserved in the mean flow equation despite the assumed simplifications. In such a

way, one could compute the mutual interaction of the wave with its own mean flow. The

latter would contain the effect of all the viscous modes, hence hopefully providing a good

description of the streaming flow.
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