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Abstract

In this thesis we study the isometric representations of the groups PU(1, n) in the infinite-
dimensional hyperbolic spaces. These spaces and their isometry groups are described.
Invariants for hyperbolic representations of such groups are introduced and in terms of
them partial results about the classification of such representations are obtained.
In the case of PU(1,1) a method to obtain new representations from the known ones is

developed. With it, a family of representations is described which has not been described
before.






Résumé

Dans cette these, nous étudions les représentations isométriques des groupes PU(1, n) dans
les espaces hyperboliques de dimension infinie. Ces espaces et leurs groupes d’isométrie
sont décrits.

Des invariants pour les représentations hyperboliques de ces groupes sont introduits et
des résultats partiels sur la classification de ces représentations sont obtenus en fonction
de ces invariants.

Dans le cas de PU(1, 1), une méthode permettant d’obtenir de nouvelles représentations
a partir des représentations connues est développée. Cette méthode permet de décrire une
famille de représentations qui n’a jamais été décrite auparavant.
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Introduction

This work investigates the problem of hyperbolic representations of isometry groups of
finite-dimensional complex hyperbolic spaces. Representations of one semi-simple Lie
group into another have no mysteries: by the Karpelevich-Mostow theorem (see [43], or
for a proof in the hyperbolic case, see [5]), they are all “standard” in the sense that they
correspond to totally geodesic or trivial embeddings of the corresponding symmetric spaces
of the simple factors.

The situation changes radically for representations on the infinite-dimensional spaces.
There are “exotic” representations that do not correspond to totally geodesic embeddings
(see for example [41]).

The infinite-dimensional hyperbolic spaces can be understood as limits of nested finite-
dimensional ones. Indeed, if F=R,C and H is a Hilbert space over F, define the Hermitian
form Bon F®V, given by

B(a®u,b@®v) = ab—{u,v).

If x is the dimension of H, the set of positive F-lines (with respect to B) in F® H is defined
as the x-dimensional F-hyperbolic space HE. If the Hilbert space H is considered finite-
dimensional, this definition recovers the classical definition of the finite-dimensional
hyperbolic spaces.

The group Og(B) of invertible F-linear transformations of F&® H preserving the form
B acts through isometries on Hg. In the case F = R, the group Og(B) induces through
projectivization the entire isometry group of Hg. For F = C, the group induced has index
2. If F =R, the group of isometries induced by Og(B) is denoted PO(1,«) and if F = C, the
group is denoted PU(1,x).

The object of study of this work, therefore, is homomorphisms PU(1,n) — PO(B)’lé, for
every n > 1. As mentioned above, the cases that are of interest or that have not already been
classified are the cases when in the target the groups considered are PO(1,20) or PU(1,0).



The study of hyperbolic representations in general is interesting because it lies at an
intersection between the theory of Lie groups, the theory of hyperbolic lattices, geometric
group theory, theory of CAT(-1) metric spaces as well as the classical theories of unitary,
affine and projective representations of groups.

It could be said, in particular with respect to the latter two theories, that hyperbolic
representations emerged alongside unitary representations in the context of Pontryagin
spaces. Moreover, through horospherical representations, hyperbolic representations can
be considered a generalization of affine representations, and therefore also of unitary
representations.

Even if this subject has been studied from many perspectives for some time, a systematic
study for a general group is very recent and it is still to be developed. However, important
progress has been made and classification results have been obtained for the cases of
irreducible representations PO(1, n) — PO(1,00) (Monod & Py [41]), PO(1,0) — PO(1,0)
(Monod & Py [42]) and Isom(T,) — PO(1,0), where T}, is a homogeneous tree of degree
n > 3 (Burger, lozzi & Monod [9]).

The three classification results mentioned above have a common characteristic, the
classification is given by the displacement. Given a metric space X and an isometry g, the
displacement of g is defined as

((g) = inf{d(gx,x)}.
xeX
If G is PO(1, n), PO(1,%0) or Isom(T},), for any (irreducible) representation G 2> PO(1, x),
there exists ¢ > 0 such that for every g€ G, £(p(g)) = t¢(g). Through this text, the parame-
ter ¢ is called the displacement of p and is denoted ¢(p).

Specifically, in all three cases, the respective authors showed that two irreducible rep-
resentations are equivalent if, and only if, they have the same displacement. They also
showed that for a representation p of G, ¢(p) € (0,1), if G is equal to PO(1, n) or PO(1,0),
and ¢(p) € (0,20), if G = Isom(T},). Moreover, every t in the aforementioned intervals is
realized as the displacement of a representation.

The classification of representations PO(1, n) — PO(1,0) will be of relevance for this
work. Due to the fact that the continuous cohomology group in degree 2 of PO(1, n) is
trivial, for every n > 3 the same classification is valid If PU(1,c0) is considered instead
of PO(1,00). This classification, the statement of which is the same when considering the
group PO(1, n), instead of PO(1,n), will be used when studying representations of the
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group PU(1,1) because PU(1,1) and PO(1,2), are isomorphic.

One of the questions that this thesis addresses is whether this same behavior occurs
for representations PU(1, n) — PU(1,0). The answer for n = 1 is negative. There are non-
equivalent irreducible representations with the same displacement (see Theorem 3.3.1).

This leads to mention another invariant for representations PU(1, n) — PU(1,0). Given
three points x, y,z € H’é, with « finite or infinite, the Cartan argument of the triple (x, y, z) is
defined as follows. Recall that H{ is the set of positive complex lines in C® H with respect
to the form B. The Cartan argument of (x, y, z) is defined as

Arg(B(%,7)B(7,2)B(2 %)) € (—

NS
S

),

for any representatives %, , zZ, and is denoted Cart(x, y, z).

If PU(1,n) %> PU(1,0) is an irreducible representation and x € H{, there exists a

unique PU(1, n)-equivariant map H¢ ER H{ (see Proposition 5.8 in [40]). If x € HE, there
exists s € [0, 1] such that for every g1, g2, g3 € PU(1, n),

Cart(f(g1x), f(g2x), f(g3x)) = sCart(g1x, g2x, g5X).

The scalar s does not depend on the choice of x and the argument of p is defined as

Arg(p) = 5 (see Remarks 1.3.15 and 3.1.6).

Constructing irreducible representations has proven to be a difficult task. In [40] Monod
developed a fruitful method for generating representations from existing ones. In the spirit
of the relationship between functions of positive type and cyclic unitary representations of
a given group, in the aforementioned paper the author defined the functions of complex
hyperbolic type.

A pair (B, a) is a function of complex hyperbolic type defined on a group G if, and only
if, there exists a representation G LN Isom(HY ), and x € Hf with a total orbit such that for

g,81,82,83€G, B(g) =cosh(d(p(g)x, x) and

a(g1, 8, 83) = Cart(p(g1)x, p(g2)x,p(g3)x).

Monod also showed that if € (0,1) and (8, @) is a function of complex hyperbolic type,
then (8%, ra) is a function of complex hyperbolic type. This is so far the only general method
for constructing new representations. In fact, with this method it is possible to construct all
irreducible representations of PO(1, n).

11



The group PU(1, n) acts on H{, hence there exists (5, a) a “tautological” function of
complex hyperbolic type coming from that action. Using the “exponentiation” of functions
of complex hyperbolic type, Monod showed the existence, for every ¢ € (0, 1), of irreducible
representation PU(1,7) 25 PU(1,%) such that

(€(ps),Arg(p,)) = (£, 5F).

This indicates that the behaviour of the representations of PO(1, n) and of PU(1, n) are
different. In fact, since for n > 2 the continuous cohomology in degree 2 of PO(1, n) is
zero, for every irreducible representation PO(1, ) £> PU(1,0), Arg(p) = 0. The following
is Theorem 4.1.8.

Theorem For n > 1, every irreducible representation PU(1,n) £ PU(1,0) is such that
Arg(p) # 0.

Things change if n = 1 is consider. As the group PU(1,1) is isomorphic to PO(1,2),,
there are two families of irreducible representations of different nature. On the one hand,

the representations PU(1,1) £ PU(1,%0) coming from the “exponentiation” described

before, and on the other hand, the representations PU(1,1) LIN PU(1,%0) coming from the

classification of irreducible representations PO(1,2) — PO(1,0). These two families are
such that

(¢(pe),Arg(pr)) = (t’%r)
and
(€(7:),Arg(7,)) = (1,0).

It is clear that p; and 7, are non-equivalent because they have different argument.

In that direction, using the theory of functions of complex hyperbolic type, Theo-
rem 3.1.11 is proved.

Theorem Two irreducible representations PU(1,1) 25> PU(1,0) are equivalent if, and only if,

(£(p1),Arg(p1)) = (£(p2),Arg(p2))-

The results described so far are enough to show that for the groups PU(1, n), with n > 1,
PO(1, n), with n > 2, and PU(1, 1) the theories of complex hyperbolic representations are
completely different.

Furthermore, for PU(1,1) a phenomenon is observed that had not been described for
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the other groups mentioned. It had already been commented that the “exponentiation” was
the only general method available to obtain new representations from existing ones. For
PU(1,1) a new method, called the horospherical combination, is available. The following is
Theorem 3.2.12.

Theorem If ¢ and v are two irreducible representations of PU(1,1) in PU(1,00) with dis-
placement t, for every u € |0, 1|, there exists an irreducible representation ¢ A v such that
u

(g A w)=tand
Arg(p Ap) = (1— u)Arg(¢) + uArg(y).

With the horospherical combination it is possible to produce from the representations
p: and 1, described before, a continuum of non-equivalent representations all of them with
the same displacement.

Although a classification has not been achieved for the representations of PU(1, n), it
is clear that the complex representations of these groups present a behaviour that differs
radically from the representations of PO(1, n).

The text is organized as follows. The Chapter 1 consists of preliminaries. Many of the
arguments used through the text work in a CAT(-1) generality, for this reason this spaces are
briefly reviewed. In this chapter the functions of complex hyperbolic type are addressed
and some results about them are presented.

In Chapter 2 the restriction of a representation to the stabilizer of a point at infinity is
analyzed. This technique, that was used in [41] and can be tracked back to [9], is funda-
mental for the study of the invariants defined before and in the process of constructing the
horospherical combination in the case n = 1.

Chapter 3 focuses on the representations of PU(1,1). It is shown that the argument and
displacement of a representation is a complete invariant. The horospherical combination
is introduced and with it a new family of representations is described.

Chapter 4 deals with non-elementary representations of PU(1, ), with n > 1. Itis shown
that every representation of PU(1, n) has non-zero argument.

13
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Chapter 1

Preliminaries

This chapter will present the preliminaries necessary for the rest of this work. None of the
results presented in this chapter is original and if any proof is given it is due to the fact that
the references in the literature are either unknown to the author or because in the specific
context of this work, such proofs can be simplified. Nevertheless, this chapter is intended
to be presented in a coherent way and not strictly as a list of results to be used.

In Section 1.1 some general results about CAT(-1) spaces are described placing special
emphasis on its visual boundary. In Section 1.2 groups of isometries of CAT(-1) spaces are
considered, as well as isometric representations of groups in CAT(-1) spaces. In this section,
particular attention is paid to the elementary and non-elementary cases.

In Section 1.3 hyperbolic spaces of any dimension are introduced with emphasis in the
non-locally compact setting. Isometry groups of the hyperbolic spaces and especially their
description with linear transformations are addressed.

Section 1.4 will briefly outline the functions of complex hyperbolic type introduced
by Monod in [40]. In Section 1.5 some applications of the theory of functions of complex
hyperbolic type that will be used in the following chapters are described. As well as its
implications with respect to the existence of “non-trivial" representations for PU(1,n).
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1.1 CAT(-1) spaces

Let X be a metric space. Given an interval I R, a curve [ Y, Xis called a geodesic if for
every x,y€ I, d(x,y) =d(y(x),y(y)). The geodesic y is called complete if I = R. A metric
space is called geodesic if for every two points there exists a geodesic (segment) connecting
them.

Let X be a geodesic metric space. For three points x, y, z € X, a geodesic triangle with
vertex X, y, z, denoted A(x, y, z), is the union of the images of three geodesic (segments)
connecting the points x, y, z.

Let H% be the real hyperbolic plane (see Section 1.3). For any geodesic metric space
X, three points x1, X2, x3 € X and a geodesic triangle A(x1, X2, x3), a comparison triangle in
H3 is a geodesic triangle A(X1, X2, %3) < Hi such that such that d(x;, x;) = d(p(x;), p(x;)).
Observe that there exists a map

A(x1,X2,x3) LN A(X1,%2,%3),

called comparison map, that restricted to the sides of the triangles is an isometry. Compar-
ison triangles in H% always exist for any triple of points in any metric space (see Lemma
[.2.4 [7]).

A geodesic metric space X is called a CAT(-1) space if for every three points x1, X, x3 € X,
every comparison map
p — - —
A(x1, X2, %3) = A(X1, X2, X3)

is such that for every x, y € A(x1,x2,x3), d(x,y) < d(p(x), p(y)).
Analogously, a geodesic space is called CAT(0) if the same property holds, but the

comparison triangles are considered in R?. In this work CAT(-1) spaces will always be
considered complete.

For a CAT(-1) space X, there exists a constant § > 0 such that every triangle in X is
d-slim. That is to say that given three points x;, xp, x3 € X, if [x;, x j] is the geodesic segment
connecting x; and x;, then every p € [x;, x2] is at distance less than § to some point in
[x1, %3] U [x2, x3] (see Proposition III.H.1.2 in [7]).

Let X be a metric space. Given three points x, y, z € X define the Gromov product of y
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and z with respect to x as,

(d(y,x) +d(z,x) - d(y 2)).

N | =

(1,2)x=
A metric space X is called Gromov hyperbolic if there exists 6 > 0 such that for every w, x, y, z,

(%,)z = min{(x, w)z, (w, )2} - 6.
A sequence (x;) in X is called a Gromov sequence if for zy a (any) base point,

n};iqriloo(x”’ xm)zo = 0.

Two Gromov sequences, (x;) and (y; ), are called equivalent if for z, a (any) base point,

(o ym)z, = .

The relation defined above in the set of Gromov sequences is an equivalence relation.
Denote dg X the set of equivalence classes of Gromov sequences in X. The set 0g X will be
called the boundary at infinity of X.

Every CAT(-1) space is Gromov hyperbolic (Proposition 3.3.4 in [20]), therefore there are
two natural ways to define and topologize a boundary at infinity for a complete CAT(-1)
space. The first one is considering X as a Gromov hyperbolic space and taking 0y X. The
second is considering X as a CAT(0) space and defining the boundary at infinity as the
set of equivalence classes of asymptotic geodesic rays. Two geodesic rays o, 1 are called
asymptoticif the map ¢ — d(o(t),7(t)) is bounded.

It is a classical result that for a CAT(-1) space these two notions are equivalent. A sketch
of a proof will be given later due to the author’s lack of knowledge of a reference in the
literature.

Remark 1.1.1. There is a unique topology on X U dg X such that for S X U dg X, Sis open
if, and only if, S » X is open for the metric topology and for every ¢ € S n 0g X, there exists
t > 0 such that N;(¢) S, where

Ni(§) ={y e X v dgX [ (1,€)x > 1}

Let X be a complete CAT(0) space and xy € X a base point. Given two geodesic rays o
and 7 that issue from x, the map ¢ — d(o(¢),7(¢)) is a convex non negative function that
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vanishes at 0, therefore if it is bounded it has to be constant. This observation allows to
make sense of the following definitions.

For s > r there is a projection

B(x0,5) 2% B(xo, ).
This defines and inverse system of topological spaces indexed by the positive numbers. Let
X ={[0,00) % X | 0(0) = x9 and 0 is a generalized geodesic ray}

be the inverse limit associated to this inverse system. Here a generalized geodesic ray is
either a geodesic ray rooted at xj or a geodesic segment rooted at xy defined in an interval
[0, 7] and considered constant in [r,0).

Remark 1.1.2. The topology of inverse limit in X (the subspace topology of the product
X®>0) is the same as the topology of uniform convergence on compact sets. This topology
on X, often called the cone topology, restricts to the metric topology on X and it does not
depend on the choice of the base point xq (see 11.8.8 in [7]). Denote J. X the set of geodesic
(infinite) rays with base point in x, provided with subspace topology of the cone topology.

For every r > 0, let
x b, B(xo, 1)

be the function that is the identity in B(xo,7) and p,(0) = o(r), for any o generalized
geodesic ray such is not constant on [r, ).

Given a geodesic ray ¢, denote U(¢, R, €) the set of generalized rays 7 such that g o) is
not constant and d(pg(7), pr(£)) < €. Observe that given a geodesic ray ¢, the sets U(¢, R, €)
are a neighborhood basis for the cone topology.

The following is Lemma 3.4.10 in [20].
Lemma 1.1.3. Let X be a CAT(-1) space and suppose&,ne€ 0gX and z, w e X. If (x;) € { and
(yi) €n, the limits
(f’ﬂ)z = lim (xnyJ’m)z

n,m—o
and
(& w)z = lim (xn, w),

exist and do not depend on the choice of representatives.

The next proposition is Lemma 3.4.22 in [20].

18



Proposition 1.1.4. Let X be a CAT(-1) space. Suppose (z,) is a sequence in X and suppose
(xn) and (yy) are sequences in X U 0g X converging with the topology I (see Remark 1.1.1)
toze X and x,y € X U 0gX, respectively. Therefore

Jim (% yn)z, = (6,)z

The next result is often called the finite approximation Lemma, see for example Theorem
1 in Chapter 8 of [17].

Lemma 1.1.5. Suppose (X, xo) is a Gromov hyperbolic (with constant §) geodesic space and
consider
{x1,..., 0} c XU IX.

Here a point at infinity is understood as the limit of a geodesic ray. Define Y as the union
of the geodesic segments or geodesic rays [ xo, x;]. If2n < 2% + 1, there exists a simplicial tree

Tr(Y)andamapY ER Tr(Y) with the following properties:

1. For every i, the restriction of [ to | xo, x;| is an isometry.

2. Foreveryx,yeY,
d(x,y) —2ké <d(f(x),f(y)) < d(x,y).

When n = 2 the tree of the finite approximation Lemma is a tripod where the extremes
are f(x;), with i =0,1,2 (see Proposition 3.1 of Chapter 1 in [17]).

Lemma 1.1.6. If X is a CAT(-1) space, then there exists a constant C > 0 such that for every
x,yz€X,

|d(x,[y,2]) = (%, y)e| < C.

Proof. This is just an easy application of the Lemma 1.1.5. Given x, ),z € X, consider
the point w € [y, z] that minimizes the distance between x and the geodesic segment
connecting y and z. Consider w as the root, and x, y, z as the other three points for the
finite approximation Lemma for four points. So it is just a matter of analyzing the possible
combinatorics of the tree that approximates the possible configurations for four points.

O

Lemma 1.1.7. Let X be a CAT(-1) space, suppose (x,) is a Gromov sequence and fix xo a
base point. If o, is the geodesic connecting xo with x,, then for every s > 0, the sequence
(01($)) nen is Cauchy.
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Proof. There is an abuse of notation because for a given s > 0, the geodesics o, are defined
on s just for n big enough. Fix s > 0 and consider x, and x,, with n and m big enough such
that

§$<(Xp,Xm)x, = L.

Consider now the geodesic triangle A(xg, 0 ,(t),0,(t)) and its comparison triangle in R?,
A(Xg,0,(t),0m(t)). From the finite approximation Lemma, there is a constant C > 0 that

does not depend on n or m, such that

_ don(®).om(t) _ d(on(t),om(t)) _ d(on(s).om(s) _ d(on(s).om(s))
t t s s

=0

This proofs the claim because C and S are fixed and ¢ goes to infinity when n and m go to
infinity. 0

Lemma 1.1.8. Every CAT(—1) space is a visibility space, in other words, every two points at
infinity are connected by a geodesic, moreover this geodesic is unique.

Proof. See Proposition 10.1 in [11] for the existence. Observe that if T and o are two
different geodesics, the function t — d(o(t),7(t)) is a convex function. If T and ¢ share
their extreme points this function is bounded, but this is a contradiction (see Theorem
[1.2.13 in [7]). O

As it was mentioned before, the following theorem is a classic result for which the author
could not find a reference for non-proper spaces in the literature.

Theorem 1.1.9. Let X be a CAT(-1) space. There is a natural homeomorphism

((X,00X),T2) = ((X,04X), T).

Proof. Fix a base point zp € X. Observe that for every geodesic ray T with 7(0) = z,, the
sequence (7(¢,)) is a Gromov sequence for any sequence (t,) — co and the class of equiva-
lence of this Gromov sequence does not depend on the choice of the sequence (¢,). Hence
for every geodesic ray 7 with starting point at z, there is a well defined Gromov sequence

[7].
Let ¥ be the map such that 0. X Haex, 0¢X is defined by W (o) = [o] and such that

¥|x is the identity. In Proposition 4 of Chapter 7 in [29] the authors showed, for proper
CAT(-1) spaces, that ¥|,, x is a bijection. The same proof can be applied in this context if
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convergence arguments of Arzela-Ascoli type are exchanged by properties of convergence
of Gromov sequences and applications of the finite approximation Lemma.

Indeed, if o and 7 are two different geodesic rays issuing from xj, consider the geodesic
Y that connects the limits at infinity of o and 7. Let z € y be the minimizer of the distance of
points in y to xo. Without lost of generality, suppose y(0) = z. By Proposition 1.1.4,

([o], [7Dx = lim (y(n),y(=1))x,

and by Lemma 1.1.6, for every n,

d(xo,y) = d(xo,[y(n),y(=n)])

is at distance at most C from (y(n),y(—n))y,. Therefore ([0],[7])x, < o0, or in other words,
[0] # [7]. This shows that the map ¥ is injective.

Let (x,) be a Gromov sequence and let o, the geodesic ray issuing from x, that contains
Xn. Lemma 1.1.7 shows that y(s) =lim,_,o, 0,(s) exists, the claim is that y is a geodesic ray
and that (x,) € [y]. Indeed, if s, £ > 0,

d(y(s),y(t))=d ( lim O'n(S),nli_{I(}OUn(t)) = lim d(o,(s),0,(1)).

n—aoo n—aoo

For every n, if t,, > 0 is such that x,, = 0,(¢,), then linc}O t, = o0. Without lost of generality,
n—
suppose (t5)5 is increasing and observe that for fixed n,

(X, ¥ () o = B0 (X0, 047 (£) ) xp-

It is a consequence of Lemma 1.1.5 in its version for three points that there exists an
independent constant C > 0 such that

‘(xn)xn—kr)xo - (xn,0n+r(tn))x0’ <C,

in other words,
<C.

o (1)) 50 = Jim (s 1)

The sequence (x,) is Gromov, therefore
,,}ifolo(xn’ﬂtn))x(y = 0.

This shows that (x,), € [y] and that ¥ is a bijection.
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The will be shown now that ¥ is a homeomorphism. Fix N¢([a]) for > 0 and a geodesic
ray o issuing from zj. Call C the general constant error coming from the tree approximation
for 3 points. Fix R,e > 0 such that R—e— C > ¢+ 1. Let T # o be a geodesic ray from x, such
that d(7(R),0(R)) < € and consider any s > R. The claim now is that if

(0(8),7(8))z>t+1,

then o(s) € N;([o]). If this is not the case, then R > (0(s),7(s))z and from the tripod
approximation for the points {zp, o (s),7(s)},

[(0(5),7(5)) 2 — (0(R), 7(R)) | < C.

But (0(R),7(R))z > R — £, and therefore, (0(s),7(s))x, > t + 1, which is a contradiction.
This shows that (o(s),7(s))x, > t+ 1 and that

(7). o))y = lim (a(s),7(5))sy > £+ 1,

§—00
or in other words, that [7] € N¢([a]).

Observe now that for every r > 0,

\%
NN —

(o(s+71),7(5))x (25+r—d(a(s+ r),r(s)))
(

2s—d(o(s),7(s)))

I
—~
Q
—~
[72)
N—
=
—~
[
N—
N—
&

This implies that
lim (o(s+7),7(s8))x, = ([0],7(5))x, =+ 1,

r—a0

showing that ¥ (U(o, R,€)) < N¢([o]).

Fix R,e > 0 and consider U(o, R,€). Suppose that for every ¢ > 0
Ne([o]) ¢ U(o, R,€).

Thus, for every n € N there exists x, € N,([c])\U(o,R,€). This means that for every n,
(Xn,[0])z = n. Choose s, such that for every r > s,

(Xp,0(1))z = 1.

Without lost of generality, suppose that (s;), and (d(x,, X)), are increasing sequences.
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Using the finite approximation lemma for

{ZO,xn, Xn+rs O'(Sn—l-r)}»

it is possible to show that (x,) is a Gromov sequence. If g, is the geodesic segment that
connects zg to x;, then

y(t) = lim o,(f)

n—oo
is a geodesic, in fact y is such that W(y) = [(x,)]. Here an abuse of notation is made because
only for n bigger than ¢ it is possible to assume that 0,(t) is defined. By construction
d(y(R),0(R)) =€, therefore y +# o, but this is a contradiction because (x,) belongs to [y]
and [o]. Therefore there exists ¢ > 0 such that

N:([o]) c U(o,R,e€). O

Proposition 1.1.10. If X is a CAT(-1) space and T € Isom(X), then T induces a homeomor-
phism of 0X.

Proof. Consider xp € X and two geodesic rays o and 7 issuing from xy. Observe that for
R>0,d(c(R),7(R)) =d(T(a(R)), T(r(R))). This shows that T is an open map because
Roo and Ro7 are two geodesic rays issuing from T(xy) and the cone topology does not
depend on the base point. As T~! has the same property, T induces a homeomorphism
0X — 0X. O

Suppose X is a geodesic metric space. A function X N is called convex if for every
geodesic I 5 X, the function £+ f(y(t)) is convex.

If X is a CAT(0) space, X is a base of point of X and ¢ € 0X, then b¢ x,, the Busemann
function based on ¢ and normalized in xy, is defined as follows. If ¢ is the geodesic ray that
starts at xo and points towards ¢, then

bexy(y) = lim d(y,0(1)) 1.

t—00

This limit exists because the function ¢t — d(o(t), y) — t is decreasing and and for every ¢,
|d(o(t),y)—t| <d(xo,y). Observe that the map b y, is the pointwise limit of the maps
b:(y) =d(y,o(t))— t. For every t > 0, the maps b, are convex, therefore by y, is convex too.
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Given two points y;, 2 € X,

b, (V1) = bexy (¥2)| = 1im |d(y1,0(2)) — d(y2,0(1))|
= <d(y,y2)

Hence the following lemma.

Lemma 1.1.11. If¢ € 0X and x € X, then bg x, is a convex 1-Lipschitz function.

Observe that if X is a CAT(-1) space, xg, y € X and ¢ € 0X, then

bex,(¥) +2(38)sx, = lim (d(y,0(t))— 1)+ lim (d(y, x0) + t—d(y,0(1)))
= d(y,x).

Given two asymptotic rays o and 7, there are associated Busemann functions b ;o) and
b¢ 1 (0)- In a CAT(0) generality, two Busemann functions associated to asymptotic geodesic
rays differ by a constant (see Corollary I1.8.20 in [7]). In the CAT(-1) context, this can be
deduced from Proposition 1.1.4. Observe that for every y € X,

beo(o)(¥) = d(y,x0) —2(,6)x
= lim (~d(z(n), %) +d(3,7(n)))
= —Dbgr(0)(X0) + e r(0)(¥)-
The level sets of any Busemann function bf,a(o) are called horospheres (centered at ¢).

In Theorem 1.1 of [12] the authors proved the main statement of 1) in the following
lemma in a more general setting. Also in Proposition 2.1 of [1] there is a similar result for
locally compact CAT(0) spaces. Using the idea of that proof, here an elementary argument
for 1) is given. Part 2) of the next lemma is Proposition 1.2 of [35]).

Lemma 1.1.12. If X is a CAT(-1) space, xo € X and € = {C;}ien is a family of non-empty,
closed and convex subsets of X such that for every n, C,+1 < Cy, then the following hold:

L. If lim,_,o d(xo,Cy) = o0, then there exists { € 0X such that,

{&r=[ocn.

In particular if there is a group G acting by isometries on X and permuting the elements
of €, then ¢ is a G-fixed point.

2. lim d(xo,Cp) = if, and only if, (,,Cn = .
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Proof. Forevery n thereis x, € Cy, such that d(zg, x,) = d(zy, Cp,). There is a constant C > 0
coming from the finite approximation lemma such that for every n,meN,

|d(Z(), [x’rl, Xm]) — (Xn,x’/n>zo| < C.

If m is bigger than n,
d(zo, [xn, xm]) = d(z0, xn),

therefore (x,) is a Gromov sequence. If ¢ is its equivalence class, then ¢ € ﬂn oCy,.

Suppose there is 1) # ¢ such thatn e (), dCp. If 7 is the unique geodesic connecting 7
and ¢ (see Proposition 4.4.4 of [20]), then the image of 7 is contained in every C,,. Thisis a
contradiction because | ) ZCn=.

The last claim of 1) follows from the fact that G also permutes the elements of {0Cp } ,..

For 2) observe that if d(xy, C,) is bounded, without lost of generality the C, can be
considered bounded. Denote r = sup{d(xo, Cp,) } nen and define for every n, the convex and
closed set

D, ={yeCpn|d(x0,y) <2r—d(x0,Cp)}.

For every n, D, c C,, because if x,, € C,, is such that d(xg, C,) = d(xo, X,), then x,, € D,,.
Observe that if n < m, C,,, = C,,.

In a triangle A(a, b, ¢) € R?, if m is the midpoint of [a, b], then
2 1 2 1 2 1 2
d(c,m)”=—-d(c,a)"+-d(c,b)"—-d(a,b)",
2 2 4
thus for every x, y, z € X, if m is the midpoint of [x, y], then

1 1
d(z,m)* < =d(z,x)*+ Ed(z, y)? - Zd(x, y)2.

N | =~

Therefore if y, w € D,, and z € D,, is the midpoint of [y, w], then

d(xo,Cy)? d(xo,2)?
3d(x0, )% + 3d(x0, w)? — jd(y, w)?

2r —d(x,Cy) — 3d(y, w)?.

NN N

This implies that
d(y, w)* <8(r —d(x,Cp)).

This shows that every sequence (y,), with y, € Dy, is a Cauchy sequence, therefore it has a
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limit and because every C, is closed, this limit is in (| Cy,. O
n

Remark 1.1.13. Observe that the previous lemma is valid for nested families of convex
sets even if the families considered are not countable. This can shown by considering nets
instead of sequences in the proofs of the Lemmas 1.1.6, 1.1.7 and 1.1.12.

1.2 Groups of isometries of CAT(-1) spaces

If X is CAT(-1) and g € Isom(X), define the displacement of g as ¢(g) =inf{d(gx, x)}xex.
There are two possibilities, either ¢(g) is achieved or not. If it is achieved and ¢(g) =0, g is
called elliptic. If ¢(g) is achieved and positive, then g is called hyperbolic. And last, if £(g)
is not achieved, g is called parabolic. The type of an isometry of X (hyperbolic, parabolic or
elliptic) is invariant under conjugations.

A proof for the following well known fact can be found in Proposition 3.1 of [6].

Lemma 1.2.1. If X is a CAT(-1) space and g € Isom(X), then for every x € X,

0(g) = lim 287

n—aoo n

and foreveryneN, £(g") = né(g).
Lemma 1.2.2. If X is a CAT(-1) space and g € Isom(X), the following hold:

1. Ifg is hyperbolic, then g preserves a unique geodesic line and ¢(g) is achieved in it.

2. If g is parabolic, then £(g) = 0, g fixes a unique point in 0X and g preserves all the
horospheres centered at it.

Proof. 1) The existence of the geodesic can be found for example in Theorem I11.6.8 in [7].
If a hyperbolic isometry preserves two geodesics, then these are asymptotic, thus, up to a
reparametrization, they are equal (see Lemma 1.1.8).

d
For 2), consider the convex function x — d(gx, x). The convex and closed sets

Cn=dg'[t(g),£(g) +1/n]

are non-empty. Due to the fact that ¢(g) is not achieved, (], C, = &J. By Lemma 1.1.12,
there exists ¢ € 0X fixed by g. The claim is that this fixed point is unique. Indeed, suppose
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that g fixes another point at infinity, then g preserves the geodesic line connecting the two
fixed points. The projection onto this g-invariant subspace is a contraction and commutes
with g (see Proposition 11.2.4 in [7]). This implies that g is elliptic or hyperbolic because
¢(g) is achieved in the preserved geodesic line, which is a contradiction.

The fact that £(g) = 0 appears in [11]. Here a proof is given for completeness. Let § be a
constant such that all the triangles in X are §-slim. Suppose that g is parabolic and ¢(g) # 0.
By Lemma 1.2.1, without lost of generality, it is possible to suppose that £(g) > 25. Fix xg € X
and let x, = P, (xo), where P¢, is the projection onto Cy. As | ),,C, = &, by Lemma 1.1.12,
d(x9,x,) — 0. Observe that the sets C,, are preserved by g, thus the projection onto C,
commutes with g. Consider n large enough such that xy, and gxy do not belong to C,,.
Consider now the points xy, gxo, X, and gx,. Define the sets

A={yegxo, x| | d(y [gx0, x0]) <}

and
B ={ye[gxo,xn] | d(y,[8xn xn]) < 6}.

If AU B =[x, gxo], then there exists y € An B, therefore d(y,[gxo, gxn]) < d and
d(y,[x0, xn]) < 8. This implies that there exist z; € [gxo, §x,]| and z, € [x, x| such that
d(z1,22) < 24. This is a contradiction because

20 <d(xy,gxn) <d(z1,2).
The last inequality is a consequence of the fact that gx,, = P¢,(z;) and x,, = P¢,(z2).

Therefore, AU B # [xp,gXo|, which means that there exists y € [gxo, Xx,]| such that
d(y,[xo0,gx0]) <6 and d(y,[xn, gxn]) < 6. This implies that there exist z; € [xg, gxo| and
Zp € [gXxn, Xn]. such that d(z;, z2) < 26.

For n big enough, define w, € [xo, gxo] and z, € [x,;, gx,| the points minimizing the
distance between [xo, gxo] and [x,, gx,]. Observe that d(z,, w,) < 26 and notice that

d(xo,8x0) = d(gxo, wpn)+d(wn,xo)
> d(gxo,zn)+d(x0,2,) —2d(wp, z)
> d(gxo,8xn)+ d(x0,x,) —20.

But this a contradiction because {x,} ,en is unbounded, therefore ¢(g) = 0.

Let ¢ € 0X be the point fixed by g. For x, y € X, bg 4(0)(X) — bg,(0)(¥) does not depend
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on the choice of the geodesic ray o with limit {. Observe that

b, (0)(8X) = bg g-15(0)(X)

and
|bg g-15(0) (%) = be,o(0) (¥)| < d(g0(0),0(0)).
Thus
|be,0(0) (8%) — be,0(0) (x)| < £(g) = 0.
Hence g preserves the horospheres centered at ¢. O

Lemma 1.2.3. If G acts by isometries on a CAT(0) space X, then G fixes a point in X if, and
only if, G has bounded orbits.

Proof. By Corollary I1.2.7 of [7], if B < X is bounded there exist unique xp € X and ro > 0
such that B < B(xy, r9) and such that

ro =inf{s > 0| B< B(y,s), forsome y € X}.

Thus, if B is a bounded orbit of G, then gxy = xp. O

The following proposition can be found in Theorem 6.2.3 in [20] in a Gromov hyperbolic
generality. The arguments presented there can be simplified in the CAT(-1) context, doing
so, a much simpler proof for the CAT(-1) case will be given.

Proposition 1.2.4. If X is a CAT(-1) space and G < Isom(X), then one, and only one, of the
following cases occurs.

1. G fixes a pointin X.

2. G has unbounded orbits, fixes a point ¢ € 0X and leaves invariant all the horospheres
centered até.

3. G contains an hyperbolic element.

Lemma 1.2.5. If X is a CAT(-1) space and s > 0, there exists r = r(s) such that for every g
non-hyperbolic isometry of X, if d(gx, x) > r then (gx,g 'x)x > s, forevery x € X.

Proof. Let s > 0. Suppose that g is elliptic and non-trivial. Let y be a fixed point and x any
other point. As X is Gromov hyperbolic for some constant 9,

(8x,8 ' x)x > min{(gx,y)x, (g 'x,¥)x} —6.
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Observe that
2(gx,y)x=d(gx,x)=d(g" ' x,x) =2(g" "%, y).
Thus, if d(gx,x) > s+6 +1,then2(gx,g 1x), > s.

If g is parabolic, then let o be the geodesic segment issuing from x and with limit the
fixed point ¢ € 0X fixed by g. Observe that for every x € X,

2(gx,6)x = lim (d(gx,x)+t—d(gx,0(1)))
= d(gx,x)—bgg(0)(8)
= d(gxx)— bao(X)
= d(gxx).
Observe that
(8x,8)x=(g 'x,&) = d(gx,x),

hence there exists T > 0 such that

2min{(gx,0(T))x (8~ x,0(T))x} > d(gx,x) — 1.

Therefore
2(gx,g'x)x = 2min{(gx,0(T))x (g ' x,0(T))x}—6
> d(gx,x)—0—1.
Thusif d(gx,x)>s+6+1,then2(gx, g 'x)x=>s. O

Lemma 1.2.6. If X is a CAT(-1) space and (g,) is a sequence in [som(X) of non-hyperbolic
isometries such that d(g,x,x) — o, then (gnx) is a Gromov sequence.

Proof. Fix s > 0 such that s > 49 and let r(s) be like in Lemma 1.2.5. Let r be such that
r—s/2>r(s). Suppose that

min{d(gux, x),d(gmx,x)} > r(s),

and therefore that,
min{(gnx, g,ZIX)x, (gm=x, g;zlx)x} = S.

Suppose that (g,x, gmx)x < s/4. Hence

/2> (gnX, gmX)x+6= (gﬁlx, gmX)x,
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and therefore,

%)
\%

2(8n " X, 8mx)x.
d(gnx,x)+d(gmx,x)— d(gngmx, x)
2r—d(gngmx, Xx).

\%

Therefore,
A(gngmx,x)=2r—s>r(s),

and analogously,
d(gmgnx,x)>r(s).

The last two inequalities imply that

min{(g:8mX, &m &n ' X)x» (8m&nX, &y &m' X)x} > 5.

Notice that also either (g, x, gnx)x = s/2 or the two inequalities

(&nX,8ngmx)x = d(gnx, x) — (gilx, gmX)x=T—8/2>71(s)>s

and analogously,
(8mX, 8m8&nX)x > S.

Observe that with the same argument,

min{(g,,' %, &' 8n ' X)x, (87 X, 81 ' &' X)x} > .

Observe that

min{(gngmX, &m' & X)x: (&m' &n ' X%, &mX)x} —
min{s, (' &n ' %, §mX)x} — 6.

(gngmx, gmx>x =
=

But also,

(8m'8n' X, gmx)x = min{(g,'8n "% 8m' X)x (8m' X, gmX)x} — 6
> s—90.

Therefore, as
(gnxr gmx>x +6=> min{(gn-gm; gn)x; (gn-gmx’ gm)x}r

itis clear that (g,x, gmx)x = s — C, for some C > 0 not depending on n, m or s.
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Proof of Proposition 1.2.4. It is clear that the three cases are exclusive. Suppose that G
does not contain any hyperbolic element and that G has unbounded orbits. Let (g,) be a
sequence in G such that for x € X, d(g,x, x) — c0. By Lemma 1.2.6, (g, x) is a representative
of some ¢ € 0 X. The claim is that ¢ is fixed by G. Observe that for any other sequence (/)
in G, if d(hpx,x) — oo, then (h,x) is a Gromov sequence. Observe that if k,, = g, and
kon+1 = hp, then, by Lemma 1.2.6, (k,x) is a Gromov sequence. This shows that (g,x) and
(h,x) are equivalent. For every g € G and every n,

d(88nx,x) = d(gnx,x) — d(gx,x).
Hence ¢ is G- fixed.

If g e G is parabolic, by Lemma 1.2.2, g preserves the horospheres centered at ¢. If g is
elliptic, then g fixes a point xo € X. Consider o the geodesic ray issuing from x, and with
limit . Thus for every y € X, b (0)(8Y) = be,o(0)(¥)- O

Let G be a group acting on a space X. A function X ER Ris called quasi-invariant if for
every g there exists a constant ¢(g) such that for every x € X,

f(gx) = f(x) = c(g)-

Observe that the map c in the previous definition has to be a homomorphism. The
statement of the next lemma, but in the context of proper CAT(0) spaces, appears in Section
2 of [1]. Using Lemma 1.1.12, the arguments in the aforementioned article also work for
CAT(-1) spaces.

Lemma 1.2.7. Let a group G act by isometries on a CAT(-1) space X. If the action does not
have fixed points in X U 0X, then every continuous quasi-invariant convex function defined
on X is G-invariant, has a lower bound and the non-empty sublevel sets of it are G-invariant
and unbounded.

Proof. Suppose X L, Ris a convex quasi-invariant function. If F is not invariant, there
exists c(g) # 0 for some g € G and therefore F is not bounded below or above. Without lost
of generality suppose ¢(g) < 0 and define, for every neZ,

Co=F ' (=0,c(g")]-

Observe the sets C,, are convex, closed and nested and ﬂ C, = . By Lemma 1.1.12, there
nez
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exists a G-fixed point in 0X, which is a contradiction. Observe that the same arguments
show that F has to be bounded from below. As G does not fix points in X, every non-empty
sublevel set of F has to be unbounded (see Lemma 1.2.3).

Let G be a topological group and let X be a topological space. An action of G on X is
called orbitally continuous if for every x € X, the map g — g - x is continuous. From now on
through all the text the representations will be considered orbitally continuous.

Proposition 1.2.8. If X is a CAT(-1) space such that 0X # & and G LN Isom(X) is a repre-
sentation, then for every ¢ € 0X, the map G — 0X, given by g — p(g)¢, is continuous.

Proof. It is enough to show that the map ¢ — p(g)¢ is continuous at e € G. Fix R > 0
and xp € X. For g € G, let o0 and 7 be geodesic rays issuing from x, representing ¢ and g¢é
respectively. Observe that go and 7 are asymptotic rays, thus the map ¢ — d(7(t),go(t)) is
bounded and convex, therefore it has to be decreasing. Notice that

d(o(R),7(R)) < d(o(R),go(R))+d(7(R),go(R))
< ),80(R))+ d(xo,gx0).

=
2
=

Hence using the fact that the action of G on X is orbitally continuous it is possible to show
the continuity at e with respect to the cone topology in 0X. O

If X is a CAT(—1) space, an orbitally continuous representation G - Isom(X) is called
non-elementary if it does not have finite orbits in X U 0X. Observe that if X is a CAT(-1)
space and G LN Isom(X) is a non-elementary representation, then there exists g € G such
that p(g) is a hyperbolic isometry (see Proposition 1.2.4).

The following lemma is well known, but due to the author’s lack of knowledge of a
reference in the literature, a proof will be given.

Lemma 1.2.9. Let X be a CAT(-1) space. A representation G LN som(X) is non-elementary
if, and only if, it does not fix a point in X U 0 X and it does not preserve a geodesic.

Proof. Suppose that p does not have fixed points in X U X and that it does not preserve
a geodesic. If p has a finite orbit in X, then it has a fixed point in X (see Lemma 1.2.3).
Suppose that there is {¢1,...,¢;} a G-invariant set in 0 X with n > 3. Fix a base point xp € X
and consider the function =" | b, x,-
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Observe that b x,(gY) = bg-1¢ 615, () As the set {¢1,...,§;} is G-invariant, there is a
permutation of {1,..., 1} defined by g~'¢; = ¢(;). Therefore

b{,xo (gy) = bgflgl.,gflx0 (y)
b%(,-),g—lxo(Y) )
- bf(ﬂ(i)'x‘J(y) o bfq;(i):xo (& "x0).

As a consequence, the convex function f is quasi-invariant because

f(gy) = Z bff.Xo(gy) = Z bf;’,xo(y) - Z bfi,xo(g_lxo)'
i=1 i=1

i=1

By Lemma 1.2.7, any non-empty sublevel set of f is unbounded. Fix one non-empty
sublevel set C, and let (y,) be an unbounded sequence in C,. Up to taking a subsequence,
suppose that (y,) converges to at most one point at infinity 7. Observe that for every ¢;,

bcfi,xo (J/n) = d(yn;x0> _z(yn;éi>xo-
Thus ifn # ¢4, ..., ¢, there exists C > 0 such that for every n,
[f(yn) = 1d(yn, %0)| < C.
This is a contradiction because min(f) < f(y,) <r (see Lemma 1.2.7) and
,}erc}od@”’xo) = 0.

Now suppose that (y,) converges to n = ¢;. Observe that b, »,(y) = —d(y, x0) and,
because of the same arguments used in the previous case, there exists C’ > 0 such that for

every y,,
F(yn) = bepxo(¥n) + beyxo(Yn) + -+ beyxo (Vn)

> —d(yn %o)+ (I=1)d(yn, x0) = C'
> (1-2)d(yn, x)—C.
Therefore {d(yn, Xo)}» is bounded, which is a contradiction. O

The next lemma appears in Proposition 2.1 of [13] in the context of proper CAT(0) spaces.
The ideas in that article can be used with slight modifications for the case of CAT(-1) spaces.
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Lemma 1.2.10. Let G be a group and let X be a CAT(-1) space such that 0X # . If
G 2 Isom(X)

is a representation and G preserves a Borel probability measure in 0X, then p fixes a point in
XuoX.

Proof. Suppose that p does not have fixed points in X U dX. Fix a point xp € X and consider
the function

F(y)= L s ()di(0),

where p is the G-invariant probability measure in 0X. The function { — by x, (y) is continu-
ous (see Lemma 3.4.22 in [20]) and for every ¢ € 0X, |bg x, (¥)| < d(y, Xo0). This shows that
the integral makes sense.

Observe that for every ¢, b¢ y, is 1-Lipschitz and convex, hence F has the same properties.
Moreover, for every g € G,

F(g7'y) = Soxbex(g™'y)du(d)

= Sox bet.gxo(¥)du($)

= Sax bgs‘,xo(J’)+bg£,gx0(xo)>du(€)
Sox (bt () + bé,xo(g_lxo)) du(E)
F(y)+F(g "xo).

The last equality holds because p is G-invariant. Therefore F is quasi-invariant, and by
Lemma 1.2.7, it is a G-invariant function.

Notice that xj € Cp, the sublevel set of F associated to 0. Observe that for every ne N
there exists x, € Cy such that d(x, x,) > n (see Lemma 1.2.7). Up to taking a subsequence,
itis possible to suppose that (x,) converges at most to &y € 0X. The claim is that F(x,) — o,
which would be a contradiction. The proof for this statement will follow the ideas of Lemma
2.41in [10].

By Lemma 1.2.9, the orbit of every n € 0X is infinite, hence y is a non-atomic measure,
therefore

F(y) = f ey (1) di(£).

9X\¢o
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Forevery y,z€ X,
(y’ )xo = min{d(yr xo),d(z, xO)}’

thus, for everyn e 0X, (y,1)x, < d(y,Xo). Therefore, for every ye X andne dX,
by (¥) = d(y, %0) = 2(31).xy = —d(y, %o)-

Define for every n € N the measurable set

Vim) = {neoxX [ sup(2(xmn)a} <n}.

meN

The sequence (x,) belongs to at most ¢, therefore
ox\éo=| Jv(n)
n

For every n, V(n)  V(n+ 1), thus there exists some ng such that u(V(no)) > 3. Therefore
for every x,,,

F(xm) = §  bexo(xm)dp(s) + § be,xo (Xm)dp(S)
V(n0)\$o (0X\60)\V (n0)
> (d( xm,xo o) 1(V(no)) — (1= p(V(no))) d(xm, Xo)
= (2 )d(xm,xo) — nou(V(ng)).
Thus F(x,,) — o, which is a contradiction. O

Let G be a (Hausdorff) locally compact group. A discrete subgroup I' is called a lattice if
the space G/T’ admits a non-zero finite G-invariant Radon measure.

Corollary 1.2.11. Suppose that G is a locally compact and o -compact group, T < G isa
lattice and X is a CAT(-1) space. If G LR Isom(X) is a non-elementary representation, then
p|r is non-elementary.

Proof. If there exists 77 € 0X fixed by the action of I', using the continuous map G/T — 0X,
induced by the orbit map g — gn, itis possible to define a G-invariant probability measure
pin 0X. This is a contradiction (see Lemma 1.2.10), thus p|r does not fix any point in 0X.

If p|r permutes two points at infinity there is an index two subgroup of I that preserves
a point at infinity. A finite index subgroup of a lattice is a lattice (see for example Lemma
1.6 in [46]), thus this assumption leads to a contradiction.
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IfT has a fixed point x € X, the orbit map g — g-x induces in X a G-invariant probability
measure p. Consider a nested family of compact sets {K; } ;en such that | J; K; = G. There
exists i such that u(K;x) > 1/2, therefore for every g € G,

g KixnK;x+# &,
or in other words, there are ki, ky € K; such that gk; x = k,x. Observe that
d(gx,x) < d(gx,gkix)+d(kyx, x).

This shows that x has a bounded orbit, but this is a contradiction because G does not fix
any pointin X. O

An action of a group G on a CAT(-1) space X is called minimal if there is no non-empty,
closed, convex and G-invariant proper subset of X (see [14]).

A group G is called amenable if whenever G has a jointly continuous action by affine
maps on V, a locally convex Hausdorff topological vector space, such that there exists
K c V, anon-empty, convex and compact G-invariant set, then G fixes a point in K.

The following theorem can be found in a higher generality in Theorem 1.6 of [12]. An
easier proof for the purposes of this text will be given later adapting the arguments used in
the aforementioned paper to the context of CAT(-1) spaces.

Theorem 1.2.12. If G is an amenable group and X is a CAT(-1) space, then every representa-
tion G — Isom(X) is elementary.

Lemma 1.2.13. If X is a CAT(-1) space and G LN Isom(X) is a representation without fixed
points in X U 0X, then there exists ¢ # Y < X convex, closed G-invariant such that the
action of G on 'Y is minimal.

Proof. If the action of G on X is not minimal, then there exists a non-trivial G-invariant
convex and closed subsets of X. By Lemma 1.2.3, all of these sets have to be unbounded.
Consider the non-empty set

A={J +# Cc X|Cis G-invariant convex and closed}

ordered with the inclusion. Consider a (descending) chain D in C. If (| D = (&, then by
Lemma 1.1.12 and Remark 1.1.13, there exists ¢ € 0X such that

{&}=(){0Ca | CaeD}.
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This is a contradiction because ¢ would be a G-fixed point.

Then by Zorn’s Lemma, there exists Dy € A that does not contain any proper convex,
closed and G-invariant subset. O

If X is a CAT(-1) space, a function X 1, Ris called affine if for every geodesic I X X, the

function I ﬂ R is affine.

Let X be a CAT(-1) space and fix a point x, € X. Denote B the set of 1-Lipschitz functions
xLr such that f(xp) = 0. The vector space B endowed with the pointwise convergence
topology is a locally convex Hausdorff topological vector space. Denote K — B the set of
convex and 1-Lipschitz functions defined on X. Observe that with the subspace topology,
K is a convex and compact subset of B.

For every x € X, define i(x) € K, given by ((x)(y) = d(x,y) — d(x, xp). Denote Cy, € K
the closure, with respect to the pointwise convergence topology, of {¢(x)}xcx-

Lemma 1.2.14. If X is a CAT(-1) space such that |0X| > 3 and xo € X, then Cy, does not
contain any affine function.

Proof. Suppose that F € Cy, is affine and consider o and 7 two distinct geodesic rays issuing
from xp. Denote Y < X the union of the images of o and 7. The space Y is separable, and
therefore, there exists a sequence (x,) in Y such that «(x,)|y — F|y. If (x,) is bounded
then, up to taking a subsequence, (x,) — yo, for some y, € Y. In that case F|y = ¢(9)|v,
but this is a contradiction because for every x € X, i(x) is strictly convex.

Without lost of generality, suppose that for every n€ N, d(x,, xo) > n. If F is constant in
the image of o, then for a fixed T > 0 and for every n € N, there exists M(n) € N, such that
for every m > M(n),

\d(o(n),xm)—d(xm,xo)| <T.

Observe that for every m, m’ > M(n)

/

2(Xm) X ) xo min{2(xm, 0(1)) xp, 2(xp, (1)) x,} — 26

The previous computation shows that (x,) is a Gromov sequence and that is equivalent to
(o(n)). Observe that as T and o are not asymptotic, F is not constant on the image of 7.

Let y be the geodesic connecting the limits of 7 and o. Suppose that the positive part of
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Y points towards the limit of 7. Therefore, there exists Ty > 0 such that for every ¢ > 0,

d(F(z(1)),F(y(2)))) < d(z(2),y(1)) < To.

This shows that tlirglo F(y(t)) = +o0. With the same arguments it is possible to show that

tlim F(y(—t)) = 0. But this is a contradiction. Therefore F is not constant on any geodesic
—00
rayin X.

Consider &1, &>, {3 three distinct points in 0X and let y1,72, Y3 be the three geodesics
connecting ¢; with ¢, &, with &3 and &3 with &7, respectively. Without lost of generality
suppose that tlirrolo y1(F(t)) = co. Thus

lim v, (F(—1)) = lim y3(F(1)) = o,

—00 t—00

and therefore,
lim y3(F(—1)) = lim y2(F(1)) = o.

t—00 —00
This is a contradiction because

—o0 = lim y,(F(—1)) = lim v, (F(z)) = .

[—00 t—00

If G is a group acting by isometries on X, then G acts on B in the following way. If f € B
and g € G, then

g f(x)=f(g 'x)— f(g " x0).

It is clear that K is invariant under this action. The claim is that this action is jointly
continuous on K. Indeed, if (g4, fo) — (g, f) € Gx Kand x€ X,

(&ﬂ() f(x))

d(fa(ga'x) - fa<g;1xo> f(g 'x)—flg'%)) <
d(fa(g 1) fa(ga ' %0), fa(g ' x) fag xo)+
(fa< 'x)— falg ' x0), fg 7 x) — *xo)) <

d(gy'x,g7 %) +d(g," xo,g Lxo)+
d(fa<g_1x) fa(g™ xO)’f(g x) f(g~ xO))

Proof of Theorem 1.2.12. Suppose G LN Isom(X) is a non-elementary representation. Let
Y < X be anon-empty closed convex and G-invariant set such that the action of G restricted
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to it is minimal (see Lemma 1.2.13), in particular non-elementary. By Proposition 1.2.4,
0Y # (5, because there are no G-fixed points in Y, and by Lemma 1.2.9, 0Y is infinite.

Without lost of generality suppose Y = X. If xp € X, by Lemma 1.2.14, Cy, does not
contain any affine function. Let conv(C) be the set of convex combinations of functions in
C. It is immediate that conv(C) does not contain any affine function. The set K is compact,
therefore conv(C) is compact. By Lemma 4.10 in [12], conv(C) does not contain any affine
function, in particular it does not contain any constant function.

Observe that conv(C) is G-invariant convex and compact, thus there exists F € conv(C)
fixed by G. The function F is convex, non-constant and quasi-invariant. By Lemma 1.2.7, F
is G-invariant, but this is a contradiction because the action of G is supposed to be minimal
and the sublevel sets of F are closed and convex invariant subsets of X. O

1.3 The hyperbolic spaces

Following Burger, Iozzi & Monod [9], let H be a vector space over F = R, C such that
dimg(H) € N>, U {o0}. Suppose H is endowed with a non-degenerate form B, linear in the
first argument and antilinear in the second.

Define
((B) = sup{dimg(W) | W < Hand B|w xw = 0},

the index of B, and
1+(B) =sup{dimp(W) | W < Hand B|w « w is positive (resp. negative) definite}.

From now on H will be a F-Hilbert space endowed with B, a non-degenerate form such
that((B) =1 and ¢y (B) <:_(B).

Lemma 1.3.1. If B restricted to a finite-dimensional F-subspace W is non-degenerate, then
H=W®W~ and B restricted to W= is non-degenerate.

Proof. Define the map H % W*, given by ¢(h)(w) = B(w,h). Observe that
dimg(H/ker(¢)) < dimg(W*) = dimg(W). On the other hand, W nker(¢) = 0 because
B restricted to W is non-degenerate. Therefore W @ ker¢p = H and B restricted to
ker(¢) = W is non-degenerate. O
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Lemma 1.3.2. For the form B,
((B) =14+(B).

Proof. Suppose B restricted to some finite-dimensional subspace W < H is positive def-
inite. It is supposed that (_(B) > 14 (B), thus there exists V < H such that dimg(W) =
dimg(V) and such that B restricted to V is negative definite.

Forevery0# veV,v=w+ u, forsome we Wand ue Ww-. Since B(v,v) <0, then
u # 0 and B(u, u) < 0. By the previous observation, if 7y L is the projection on Wi, then
B restricted to 7,1 (V) = U is negative definite and dimg(U) = dimg(V'). Observe that B
restricted to W@ U is non-degenerate. Using the characterization of non-degenerate forms
defined on finite-dimensional spaces,

(Blwey) =1 (WOU) =1_(WU) = dimg(W).

This shows that ((B) > 14 (B). As ¢(B) = 1 and B is not negative definite, it is possible to
conclude that ((B) = 1 (B). O

A form with these properties will be called a form of signature (1, m), where m =
dimg(H) — 1. Throughout this section, and for the rest of this work, m will be used to
refer to dimensions either finite or infinite and n will be used for only finite ones.

Lemma 1.3.3. Let v and w be two distinct non-zero elements of H. If B(v,v) > 0 and
B(w,w) >0, then B(v, w) # 0.

Proof. As 14 (B) = 1, it is enough to assume that B(v,v) = 0 and B(w, w) > 0. Suppose
that B(v, w) = 0. Fix y € H such that B(y,y) = 1. The space H admits a decomposition
H = Fy® y. Without lost of generality, suppose that in that decomposition, v = y + a.
Notice that B(a, a) = —1. Observe that y admits a decomposition Fa@® (a n y), hence
w = Ay +vya—+ u. The fact that B(v, w) = 0 implies that 1 = y. Thus u # 0, but this is a
contradiction because

B(w,w) =|A|* = |A]* + B(u, u) <0. O

Consider W < H such that for some w e W, B(w, w) > 0. Observe that by Lemma 1.3.1,
W=Fwd(w"nw),

and because ¢, (B) = 1, B restricted to w n W is negative semi-definite. By Lemma 1.3.2,
if 0 # v e w n W, then B(v,v) <0.
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Remark 1.3.4. This shows that for every F-vector subspace W of H with dimg(W) > 2, if
there exists w € W such that B(w, w) > 0, then B restricted to W is a non-degenerate form
of signature (1,dimg(W)—1).

For v e H, denote [v| = Fv. Suppose dimg(H) = m+1, where m > 2if F=R,and m > 1
if F = C. Define
HE' = {[v]| B(v,v) > 0}.

The space H}!! is equipped with a metric given by the formula
|B(v,w)|

1

B(v,v)zB(w, w)%.

cosh(d([v],[w])) =

It can be shown that d is a metric using the fact that B restricted to any finite-dimensional
subspace of H containing positive vectors is a form of signature (1, n) with n < o, and that
the formula above is the usual metric defined on the finite-dimensional hyperbolic spaces.

A +-orthogonal decomposition of H is a B-orthogonal decomposition
H=W,®oWwW_,

with B|w. . xw, positive/negative definite. Given a +--orthogonal decomposition of H, define
the sesquilinear form By as B+ |w, xw, = B, B+|w_xw_ = —B and B(W,,W_) = 0. A form
of signature (1,00) on H is called strongly non-degenerate if for every (any) +-orthogonal
decomposition, the space ( H, By ) is a Hilbert space (see Lemma 2.4 of [9]). The metric space
(H{, d) is complete if, and only if, B is a strongly non-degenerate form (see Proposition 3.3
in [9]).

From now on the space H}' will be always considered associated to a strongly non-
degenerate sesquilinear form and it will be called the m-dimensional F- hyperbolic space
(see Proposition 3.7 of [9]). For further reading on these spaces see [9, 20], for the infinite-
dimensional case, and see [31], for the finite-dimensional complex case. From now on H
will denote a separable Hilbert space over F provided with B, a strongly non-degenerate
sesquilinear from of signature (1, m).

If F=C, let K= R,C and if F = R define K = R. Denote 7 the projectivization map
H\{0} — P(H). AK—hyperbolic subspace of Hf" is the image under 7 of a closed K-vector
subspace L of H such that B|;« is non-degenerate of signature (1, m’). The restriction
of B to L is strongly non-degenerate (see Proposition 2.8 of [9]), therefore 7(L) is a (com-
plete) hyperbolic space. In the finite-dimensional case, this is a characterization for totally
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geodesic subspaces (see 3.1.11 of [31]).

For every finite set of points X of Hg? there is W < H, a finite-dimensional space over F,
that contains representatives of each of the elements of X. The restriction of B to W is a
non-degenerate form of signature (1, n), therefore (W) is isometric to a finite-dimensional
F-hyperbolic space. This shows that many statements about finite sets of points in Hy’ can
be reduced to a finite-dimensional question. For example, the space H}' is a geodesically
complete CAT(-1) space because this is true for every finite dimensional Hﬁ (see Proposition
11.10.10 of [7]).

Every geodesic ray in Hg' lies inside a finite dimensional F-hyperbolic space. It is not
surprising that JH, the visual boundary of H;', is in a natural bijection with the set of
isotropic lines of H, because this is true at a finite-dimensional level (see Proposition 3.5.3
in [20]).

The vector space H has a well defined topology. Indeed, for any +-orthogonal decom-
position of H, the space H can be provided with a positive definite Hermitian form B
such that (H, By ) is a Hilbert space. The Hilbert topology on H does not depend on the
+-orthogonal decomposition (see Lemma 2.4 in [9]).

Observe that the space
{[v]eP(H)|B(v,v) =0}

can be provided with the subspace topology of the projective space (with the quotient
topology) associated to H. The hyperbolic spaces are Gromov hyperbolic, hence Hg' U cHE'
has a natural topology (see Remark 1.1.1). In this case both topologies are the same and
coincide in H' with the metric topology (see Proposition 3.5.3 of [20]).

For H} there is an explicit description of the Busemann functions. If x € HiY', it can be
shown at a finite-dimensional level that every geodesic ray o issuing from x admits a lift to
H of the shape ¢ — cosh(#) + sinh(#)u, where % is a lift of x, B(¥,%) = 1 = —B(u, u) and
B(X,u)=0.1f ye HY and j is alift of y such that B(j, ) = 1, then

beoo)(y) = lim d(y,0(r)) ¢
= lim arccosh (|B(,cosh(#)X +sinh(t)u)|) — ¢t
= In(|B(7, X+ u)|).

Observe that ¢ is represented by the isotropic vector X + u (see Proposition 3.5.3 of [20]).

Denote Og(B) the set of F-isomorphisms of H that preserve B. Every A € Og(B) is
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a bounded operator (for the Hilbert norm) of H (see Lemma 1.4.8). It is clear from the
definition of the metric that every element of Og(B) induces an isometry of H{".

Proposition 1.3.5. Ifxe H', y1, y» € OHY' and if s € Og(B) is such that sy; = y» and sy, = y1,
then the following hold:

1. The action of Og(B) on H{' is transitive.

2. The action of Og(B) is transitive on metric spheres centered at x.

3. The action of Og(B)y, is transitive on CHE"\{y1 }.

4. The action of Og(B) is double transitive on CHF'.

5. Ifm< o andF =R, 1.,2., and 3. hold for SO(1, m).

6. Op(B) = Op(B),, L (OF(B)y1 -s-oF(B)yl>.

7. If <o andF =R, then SO(1,m) = SO(1,m), LSO(1,m),, -s-SO(1,m),,.

Proof. From the discussion at the beginning of this section, it is clear that 1. holds. For 2.,
let x € HY" and fix X a lift of x such that B(X, X) = 1. Observe that the action of Og(B) on

{ve H|B(%,v)=0and B(v,v) = —1}
is transitive, therefore 2. holds.

For 3., let ¢; and &, be two elements of HY' different than y;. Chose 371,52 and &,

respective lifts of y;,¢; and &, such that B(j;,¢;) = 1. The claim is that
H=Fjh®F;® (7 n&).

As
H=F(j +&)+ (7 +&)h

then for every he H, h = aj, + a; + u. Define

v=B(u,j1)j1+B(u,éi)éi+u
and observe that v e 371L N Eli Therefore

h=(a—B(u,j))j+(a—B(u,&;))éi + v
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To conclude observe that yli Nné IL and yli né zl have the same dimension and B restricted
to both spaces is negative definite.

For 4. observe that 2. implies that the action of Og(B), is transitive in H'. Thus, it
follows form 2. and 3. The claim of 5. is clear from the arguments given for 1. to 4.

For 6. observe that the intersection is empty because non of the elements of

OF(B)J/1 'S'OF(B)J/1

fixes yi. By 3., the elements of Og(B), - s- Og(B),, can send y; to any element of CH{"\{y1}.
The point 7. follows from the same arguments. O

Corollary 1.3.6. For every y € CHf', the group Og(B), is not contained in any proper sub-
group of Og(B).

Proof. Suppose L is a proper subgroup of Og(B) containing Og(B), and suppose there
exist [ € L and g € Og(B) such that [y # y and g ¢ L. Observe that by 3. in Proposition 1.3.5,
there exists k € Og(B), such that kly = gy. This implies that g € L, which is a contradiction.

0

The group Og(B) is denoted by U(1,m) (resp. O(1,m)) if F = C (resp. F = R). For
every G < Og(B), denote PG the natural image under projectivization. The group PO(1, )
is equal to Isom(Hy') and PU(1,m) is an index 2 subgroup of Isom(H{). In fact, every
isometry of H' is induced by either a C-linear map or by an antilinear one (see Theorem
2.2.3 of [20]). Denote

Isom(H{), =PU(1,m)
and for m < oo,

Isom(Hg'), = PSO(1, m).

Observe that the diagonal matrix act trivially on HFm, therefore if m < oo, then

PSU(1,m) = PU(1,m). For m < oo, the topology of these groups will be the quotient
topology of the projectivization map.

Suppose ¢ € CHg' and G < Isom, (Hg' ). Let b 4 () be a Busemann function centered at
¢ and normalized in ¢ (0), for some geodesic ray o. The geodesic ray o admits a lift

G(t) =cosh(t)%+sinh(¢)u,
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with u, X € H such that B(%,%) = 1= —B(u, u) and B(u, X) = 0. For every g € G, there exists
c(g) € Rsuch that for every y € HY,

be,o(0)(¥) = be o (0)(8Y) + c(8)-

The map c: G — R, called the Busemann character associated to ¢, is a continuous homo-
morphism and does not depend on the choice of 0.

Remark 1.3.7. Observe that if j is a normalized lift of y, then

B |B(J, %+ u|
6)- (G )

where g is any linear representative of the isometry g. Thus, if
§(x+u)=0(8)(x+u),

with 6(g) € C\{0}, then c(g) =1In(]0(g)|). Therefore the map g — |0(g)| € R~y is a continu-
ous homomorphism.

Proposition 1.3.8. IfG < POg(B); and c : G — R is the Busemann character associated to &,
then

1. ker(c) ={T € G| T is elliptic or parabolic}.

2. ForeveryTeG,¢(T)=|c(T)]|.

Proof. 1. Suppose ¢ is represented by the isotropic element y;. Let T € G and let T be a
linear representative of G. If T is hyperbolic, T leaves invariant two isotropic lines with
respective representatives y; and y». Suppose that B(y1, ) = 1. Thus, if T(y;) = 0;y;, then
0,0, = 1.

The point x represented by \/LE (y1+ y2) belongs to the geodesic connecting y; and y,
because 2d(T(x),x) = d(T?(x), x). Observe that d(T(x),x) = |In(|6,|)|. This implies that
|01| # 1, and as it was noticed before, ¢(g) =1In(|0;|). Therefore T ¢ ker(c).

If T is parabolic, by Lemma 1.2.2, ¢(T) = 0. If T is elliptic then T fixes pointwise every
geodesic ray representing ¢ that starts on a T-fixed point in Hf". Hence ¢(T) = 0.

The point 2. follows from the arguments of 1 and Lemma 1.2.2. O
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Remark 1.3.9. Consider an F-vector space H equipped with a strongly non-degenerate
form B of signature (1, m), where F = R, C and m either finite or infinite, and consider Hi:”
the hyperbolic space associated. Fix 11,72 € H two isotropic vectors such that B(n;,7,) = 1.

Let [n1] € OHY' be the point represented by n;. If T € Og(B)[,,] is such that
B(T(n1),m2) > 0, then with respect to the decomposition

H=Fn ®Fn,®(n nns),

T (with a small abuse of notation when F = R) admits the matrix representation by blocks,
A —2BY iy _AB(A(-),v)
T=1o0 At 0 )
0 v A

where A >0, beR, ve 171L N 17% and A is an F-isomorphism 0f171L N 17% preserving B. If F =R,
b is always supposed to be 0. Denote T = g(A, v, A, b).

The set
P ={A€Og(B)[y, | B(A(n1),n2) > 0}

is a subgroup of Og(B) where the formula for the product and the inverse are

g, v,Ab)g(y,w,D,d)=g(Ay,y 'v+ A(w), AD,Ad+y~'b—AIm(B(A(w),v)))

and
g v,Ab) =g(A7,-2A7 (v), A7, —b).

When F = R the previous formulas apply if b, d and Im(B(A(w), v)) are identified with 0.

The map P — Isom,(Hf'),, is surjective because for every A € Og(B) there exists
ze€ 8! < Csuch that B(zA(n1),n2) > 0. It is clearly also injective.

If m < oo, the group P is closed because it is the intersection of Og(B)[;,] and the closed
set
{T€0k(B) [ B(T(1m),n2) > 0}.

The map Of' — PO} is closed because it has a compact kernel. Therefore the map

P —Tsom,(Hg' ),
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is bijective, continuous and closed, hence it is an isomorphism of topological groups. From
now on the group P will be identified with Isom, (Hg')(,,1- If F= C and n = 1, then every
g € P is of the shape g(A,b), for some A > 0 and b € R. With a small abuse of notation,
g(A, b) will be sometimes identified with a transformation g(A,0, Id, b).

Observe that if P 5> R is the Busemann character associated to [1; ], then

c(g(A,v,A,b)) = [In(A)].

Therefore, by Proposition 1.3.8, the following proposition holds.
Proposition 1.3.10. An isometry g(A, v, A, b) € P is hyperbolic if, and only if A # 1.

Proposition 1.3.11. An isometry g(A, v, A, b) € P is parabolic if, and only if, A = 1 and one of
the following properties holds.

1. The vector v is not contained in Im(A-Id).

2. Ifu is a vector such that (A— Id)u = —v, then Im(B(A(u),u)) # b.

Proof. Observe that if an element g € P is elliptic, then it fixes pointwise an entire geodesic.
Therefore g fixes at least two points in JHf'. Thus, the question if a non-hyperbolic element
g € P is parabolic or elliptic, is actually about if g fixes only ; in JH}' or if it fixes another
point too. By Proposition 1.3.10, if g(A, v, A, b) is parabolic, then A = 1.

If x # n; is an isotropic vector, then without lost of generality, x = an; +n2 + w. Observe
that
g(L,v,Ab)(am+n2+w)= (a— @ +ib—B(A(w), V)>771 +n2+A(w) +v.

Thus, g(1,v, A, b)(x) = xif, and only if, (A—Id)(w) = —vand b = Im(B(A(w), w)). Indeed,
observe that (A— Id)(w) = —v implies that

B(v,v) =2B(w, w)—2Re(B(A(w), w))

and that
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Therefore

~BlY 4 i B(A(w),v) =

a+—B(w,w)+Re(B(A(w),w))+B(w,w)—B(A(w),w)+ib =
a+i(—Im(B(A(w), w))+b).

Observe that in the case F = C and n = 1, the previous proposition states that the only
parabolic elements of P are the ones of the shape g(1, b), with b # 0. For the case F =R
what the previous proposition states is that g(A, v, A, b) is parabolic if, and only if, A = 1
and v¢ Im(A—Id).

The focus will be now on the groups SU(1,1) and SO(1,3) and their relationship with
SL>(R).

Let {e}, e;} be the canonical base of C2. Fix the basis {¢1,¢,}, where &1 = \/Li(el +e2)

and &, = \/Li(el — e3). Observe that
B(§1,61) =0=B(¢2,{2)
and B(¢1,¢&,) = 1. With respect to the basis {{1,&,}, every
A ib
g(ﬂ, b) = <0 /1_1) € SU(l, 1)[771].
Let se SU(1,1) be defined by s(¢;) = i and s(&p) = ié;. If
U(1,1) 5 PU(1,1)
is the projectivization map, by the arguments used in Proposition 1.3.5,
Isom(Hg), = n(P) un(P)n(s)x(P).

Every element of SU(1,1) has the form, with respect to the canonical basis,

M(a, ) - <% g)

48



where |a|? — |2 = 1. The map SU(1,1) % SL,(R) given by

Re(a)+Im(B) Re(B)+Im(a)
v(M(a.f)) = <Re(ﬁ) “Im(a) Re(a)- Im(ﬁ))

is an isomorphism. Let

and define the map SU(1,1) AR SLy(R) as W(A) = T 'y/(A)T. The map ¥ is such that

vigao)- (5 )

W(s) = <_°1 (1))

The group SU(1,1) admits a simple description in terms of generators and the relations
between them. The following theorem is a well known fact and a proof for it can be found
in p. 209 of [37].

and

Theorem 1.3.12. Let F be the free group generated by the family {u(r)} g o and an element
w. Forr # 0, denote
s(r) = wu(r Hwu(r)wu(r).

Consider the relations

1. u is an additive homomorphism.

2. s is a multiplicative homomorphism.

4. s(a)u(b)s(a™') = u(ba?), for every a,b #0.

If G is the quotient of F under these relations then G is isomorphic to SU(1,1).
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Let SU(1,1) 2, GL3(R) be the map defined by

LB +B —a?—T) L +P —a>+T) i(aP-ap)
$(M(a,p)) = —g(ﬁz—ﬁz—cf+52) %(ﬁ2+ﬁz+a_2+az) af+ap
i(@p—ap) af+ap |af? + B
and let
L (00 V2
T = — -1 0
V2 1 1 0

Define the map SU(1,1) 2 SO(1,2) given by

o(M(a,p)) =T'""¢p(M(a, p))T".

The map @ is a homomorphism and ker(®) = {Id, —Id}. With an appropriate choice of a
basis {¢7,¢,, u} of R®, where
B(¢,¢;) =0=B(S} u)
and
B(¢),¢5) =1=—B(u,u),

the map @ is such that,

1 b2 b
d(g(1,b)=(0 1 0
0 —vVb 1
and
A2 0 0
®(g(1,0)=[0 A2 0
0 0 1

Every elliptic transformation is contained in a compact subgroup, therefore its image
under @ is elliptic too (see Proposition 11.2.7 of [7]). Up to conjugation, every parabolic
isometry is of the shape g(1, b) and every hyperbolic isometry is of the shape g(1,0) (see
Proposition 1.3.5). Thus, by Propositions 1.3.10 and 1.3.11, ® preserves the type (hyperbolic,
parabolic or elliptic).
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Observe that if g(1, v, A) € O(1,2) (¢, then A= +1, v€ R and det(g(1,v, A)) = A. This
shows that SO(1, 2)[5/1] < Im(®). Thus, by Proposition 1.3.5, ® is surjective.

Consider the following commutative diagram,

SU(1,1) —2— SO(1,2)

! !

Isom(Hg), —2 Tsom(H2),,

where the vertical arrows are the projectivization maps and @ is the induced isomorphism.

Lemma 1.3.13. For every g € Isom,(Hg),

Proof. The map @ preserves the type (elliptic, parabolic and hyperbolic), therefore it is
enough to prove the claim for hyperbolic elements. Up to conjugation, every hyperbolic
element in Isom(Hy,), has a representative g(A,0) for some A > 0. For these elements the
claim follows from the arguments in the proof of Proposition 1.3.8 and Remark 1.3.7. O

Proposition 1.3.14. The group PU(1,1) is simple.

Proof. The elements of U(1, 1) will be expressed with respect to a basis {{1,¢2} of isotropic
vectors such that B(¢;,¢,) = 1. Consider the subgroups U = {g(1, b) } peg and

P={g(A,b)}1>0,per
(see Remark 1.3.9). Let y € JH, be the point such that [¢;] = y.

Denote, with a small abuse of notation, U and P the isomorphic images of U and P in
PU(1,1). As it was noted before, P = PU(1, 1), and by Corollary 1.3.6, P is not contained
properly in any proper subgroup of PU(1,1).

Let L be a normal subgroup of PU(1,1). Observe that L is not contained in P. Indeed,
if that is the case, for every ge PU(1,1) and [ € L, Ig(y) = g(y), which is a contradiction.
Thus PL=PU(1,1).

The group B is normal in P, therefore the group BL is normal in PU(1,1). This means
that BL contains all the groups conjugated to B. In particular it contains the subgroup of
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PU(1,1) represented by U(1,1);,. Observe that U(1,1)¢,. contains all the matrix

1 0
ib 1)’
with b € R and notice that for a > 0,

((1) i) (i(ll—a) (1)> (3) _if_l) <i(a21—a) (1)) - <g a(il)'

This shows that P is contained in BL which means that BL =PU(1,1).

The group B is abelian, and PU(1,1)/L = BL/L. Therefore L contains PU(1,1)’, the
commutator subgroup of PU(1,1). Observe that for A > 0and beR

g(1,0)g(1,b)g(A7",0)g(1,—d) = g(1,d(A* 1)),

which means that B is contained in PU(1,1)" and therefore, L = PU(1,1). O

Given a topological group G, define C"(G) the set of continuous functions G"*! — R

that are invariant for the diagonal action on the left of G on G" . Define C"*(G) On, o+l (G)

given by
n+1

On(f)(80r--r8nt1) = D (1) F(80r--rGir- oo 8nt1)-
i=0
For n > 1, the n-continuous cohomology group of G is defined as

H7 (G) =ker(0y)/im(0y—1).

Remark 1.3.15. Foreveryn > 1, H%(PU(l, n) =~ R (see [33]). If K is a maximal compact
subgroup of PU(1, n), define

C¢ (PU(1,n)) < C™(PU(1,n))

as the set of f € C"™(PU(1, n)) that are alternating and such that for every g; € PU(1, n) and
kieK,

f(8oko, ..., 8mkm) = f(&os---, &m)-
If

CI(PU(1, n)) 2 CL(PU(L, )
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is just the restriction of d,, then ker(2),)/im(¢/,_,) is isomorphic to H'(PU(1,n)) (see
Theorem 7.4.5 in [39] and the comments after it). Observe that by Proposition 1.3.5,
Cx(PU(1,n)) =0, thus HZ(PU(1, n)) = ker (@), which is a 1-dimensional real vector space.

1.4 Functions of complex hyperbolic type

In [40], Monod developed a Gelfand-Naimark-Segal type of construction for actions by
isometries on complex hyperbolic spaces. Here a brief discussion about the results of the
aforementioned paper is presented.

For m finite or infinite, denote €° JH{' and € 4§Hg1 the set of pairwise distinct 3-tuples
and 4-tuples of 0H", respectively.

Lemma 1.4.1. Given any (x,y,z) € (HZ)* or any pairwise distinct (x, y, z) € €>0H}! , with
m either finite or infinite, it is claimed that for any lifts X, 7, Z of x, y, z,

Re(B(x,y)B(y,z)B(z,x)> >0.

If(x,y,2)in(H})?, the inequality is strict. For (x,y, z) € €°0H(, there is an equality if, and
onlyif, for any X, y, z lifts, the complex vector space generated by them has complex dimension
2.

Proof. The product

B(%,7)B(7,2)B(z X)
rescales by a positive real number when changing lifts of x, y or z. Thus, the statement of
this lemma does not depend on the choice of the lifts.

Suppose that x, y,z € Héi and choose X, J, Z respective lifts such that B(%, %) = 1 and
B(%,7)=1=B(%,2).
With respect to the decomposition H = Cx® icL, y=10uyand z= 1@ u,.
Now observe that

B(%,7)B(7,2)B(2,X) = B(},2)
= 1+ B(uy, uy).
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Because of B(J, 7) and B(Z, Z) are positive, | B(uy, uy)| and |B(uz, u;)| are smaller than 1.
This implies that
Re(B(uy, uz))* < B(uy, uy)B(uz u;) <1,

which concludes the proof in this case.

Suppose now that x, y, z€ JHg' are pairwise distinct and that %, j, Z are respective lifts
such that B(%, ) = 1 and that B(%, Z) = 1. With respect to a decomposition

H=Cx®Cjd (%" n i),
z=1®a® u,with a # 0.
Observe that
B(x,7)B(7,2)B(2,Xx) = B(7,2)
= a.

Observe that
B(z,zZ) =2Re(a)+ B(u,u) =0,

hence Re(a) > 0 and Re(a) = 0 if, and only if, Z belongs to the space generated by X and j.
O

For (x,y,2) € (HY)? or (x,y,2) € €°0H, with m either finite or infinite, the Cartan
argument of (x, y, z) is defined as

Cart(x, y, z) = Arg(B(%, 7)B(7,2)B(%,%)),
for any %, j, Z lifts of x, y, z. Here Arg denotes the principal value of the argument.
Itis clear that for any g € PU(1,m) and (x, y,z) € (H)® or (x, y, z) € ¢°H,
Cart(gx, gy, gz) = Cart(x, y, z).
Proposition 1.4.2. Let (x1,x2,x3), (y1,¥2,¥3) € 953(7Hg’. The triples are such that
Cart(x, X2, x3) = Cart(y1, y2, y3)

if, and only if, there exists g € PU(1, m) such that g(x;) = y;.
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Proof. Suppose that X; and j; are respective lifts such that
B(X1,X;) = B(%2, %3) = 1 = B(j1, J2) = B(J2, J3)-

Observe that for A > 0,
B(AZ,A71%) = B(A 1%, A%3) = 1

and
B(A%1,A%3) = A*B(%1, X3).

This shows that it is possible to choose lifts X1, X2, X3. such that
B(Xy,%2) = B(X2,%3) =1
and |B(X;, X3)| = 1. The same can be done when choosing the lifts 7;. The fact that
Arg(B(Xs, %1)) = Cart(x1, x2, x3) = Cart(y1, y2, y3) = Arg(B(Js, X1)),

implies that
B(X3,%1) = B(J3, 1)

Observe that by Lemma 1.4.1, the vectors X; are linear independent if, and only if, the
vectors j; are linear independent.

If the vectors X; are linear independent, with the choice made taking representatives and
by Remark 1.3.4, it is possible to conclude that there exists g € U(1, m) such that g(%;) = j;.

If the vectors X; are not linearly independent, then X3 = X; + aX, and j3 = j; + bj,, with
a = b. Thus, again by the same arguments used in the previous case, there exists g € U(1, m)
such that g(%;) = 7, and g(X,) = j», and by the previous observation, g(X3) = js. O

Proposition 1.4.3. Suppose (x1,%2,x3),(y1,¥2,y3) € (HE)® are such that d(x;,x;) =
d(yi,yj)- Then
Cart(x;, X, x3) = Cart(y1, y2, y3)

if, and only if, there exists g € PU(1, m) such that g(x;) = y;.

Proof. Choose X; and j; lifts such that
B(X;,%i) = 1= B(J1,Ji)-

Observe that d(x;,x;) = d(yi,y;), implies that |B(X;,%;)| = |B(J:,7;)|- It is possible to
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choose lifts such that
{B(%1,X2), B(X2, %3), B(J1, J2), B(J2, J3)} © Roo.
Hence B(X1,%2) = B(j1,J2) and B(X2, X3) = B(J», J3). Observe that
Arg(B(X3,X;)) = Cart(x, x2, x3) = Cart(y1, y2, y3) = Arg(B(73, 71))-

Therefore B(X1,X3) = B(j1,73)-

By Remark 1.3.4, if z is a vector contained in W, the complex vector subspace generated
by {X1, X2, X3}, then z = 0 if, and only if B(z,%;) =0, for i = 1,2,3.

If z=A1X; + A2 X2 + A3 X3, then z = 0 if, and only if,
/123(562,)731) + AgB()?Ig,fCl) =0,

/113(561,)732) + AgB()Eg,ng) =0

and
/113(561,5@3) + AgB()??g,ng) =0.

Hence, there exists g a complex linear map between the complex vector subspaces gener-
ated by {%;} and {j;}, respectively, such that g(X;) = j;. Reversing the arguments, it is clear
that g is an isomorphism preserving the restriction of B to these subspaces. By Lemma 1.3.1
and because ((B) = 1, the map g can be extended to a map in U(1, m). O

Proposition 1.4.4. The map
HY x H x H? S5 R

is continuous.

Proof. The first remark is that the map H x H L, Cis continuous. Observe that this is clear
because the topology of H is the one coming from considering H with a (any) Hermitian
product B4 with respect to a (any) +-orthogonal decomposition of H (see Section 1.3).
Denote C- g the set of positive vectors in H. By Lemma 1.4.1, the function Cio SR given by

S(x,y,z) =Arg(B(x,y)B(y,2)B(z,x))
is continuous.

The restriction of the projectivization map C~q - H{ is a quotient map. Thus, if m
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3
is finite, the product Cio LN (Hg)3 is a quotient map (see for example Theorem 3.3.17 of
[26]). Therefore the map
(Hm)?, Cart R
C g

is continuous.

For the case m = 0, fix x, y,z € Hg. Denote V the complex subspace of H generated by
the lifts of x, y and z and let W be a 3-dimensional complex subspace of H orthogonal to
V. By Lemma 1.3.3, the form B restricted to W is negative definite. Denote H the complex
hyperbolic space induced by V@ W.

Given any other three points p, g, r € HY' denote U the complex subspace generated by
the lifts of x, y, z, p, ¢ and r. Observe that U admits a decomposition V@ U’, where U’ is
orthogonal to V. Again by Lemma 1.3.3, there exists a complex linear map U 4 VoW that
preserves B and such that A|y = Id. The form B is strongly non-degenerate, therefore A
can be extended to a map in U(1,m). If T is the isometry induced by the extension of A,
then T|g = Id and T(p), T(q), T(r) € H. This shows that Cart is continuous at (p,q,r). O

Lemma 1.4.5. If (w,x,y,2) € (H:’f)‘*, then

Cart(x, y,z) — Cart(w, y, z) + Cart(w, x, z) — Cart(w, x,y) = 0.

Proof. Choose respective lifts 0, %, j,

<h
N
»
c
e
=
~—+
=
o
~—t

Then

0.

Arg(B(2, w)) — Arg(B(2, w))

The last equality is true because the four arguments involved are smaller in absolute value
than 7. O

The map
m m m Cart
He xHg xHg —R

is an alternating 2-cocycle and its image is contained in (-7, 7). For further reading about
the Cartan argument see [8, 31, 40].
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Aset X HE" is contained in a real hyperbolic subspace if, and only if, for every x, y,z €
X, Cart(x,y,z) =0 (see Lemma 2.1 in [8]).

A set X < Hf' is called rotal if there is not a proper and closed F-vector space that
contains the lifts of X.

The concept of function of complex hyperbolic type, due to Monod [40], is the analogous
for hyperbolic representations of the functions of positive type. It is a fundamental tool for
the study of hyperbolic representations, particularly for the results of Chapter 3.

Given a topological space X, a continuous function X x X 2, Ciscalled a complex kernel
of positive type, if for every 1;,...1, € C and every xy,...,x, € X,

Z/lizj(p(x,-,xj) = 0.
ij

See Chapter I1.C of [3] and [4] for further reading on kernels of positive type.

Following [40], a pair (a, B8) is called a function of hyperbolic type defined on a topologi-
cal group G, if

a:6'~ (-3,3)

is a continuous G-invariant (with respect to the diagonal action) alternating 2-cocycle,

is a continuous function, symmetric with respect to the inversion of the group, such that
B(e) =1 and such that the map

(8:Kk)— B(g)B(k) — e @&k p(g~ k)
is a complex kernel of positive type.

Given a representation G 2> Isom(HZ), and x € HY, if

p(g) = cosh(d(p(g)x, x))

and
a(g,k,1) = Cart(p(g) x, p(k)x, p(1)x),

then (B, a) is a function of complex hyperbolic type (see Proposition 1.9 in [40]). Later on it
will be clear that this example is prototypical (see Theorem 1.4.9).
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The following is Theorem 1.12 in [40]. It will be crucial in the rest of this work. It
constitutes a fundamental tool in the search for new representations for a given group.

Theorem 1.4.6. Let (B, a) be a function of complex hyperbolic type defined on a group G. If
0< t<1, then (B, ta) is a function of complex hyperbolic type.

Lemma 1.4.7. Fix x € H such that B(x, x) = 1 and consider the Hilbert norm associated to
the +-decomposition H = Cx@® x . Thus, for every v, w € H the following hold:

L. |v|* =2|B(v,x)|* — B(v,v).

2. |B(vw)| < v|]w].

Proof. For 1., observe that v = B(v, x)x + u, for some u orthogonal to x. Therefore,

[vl* = [B(v,x)* = B(u,u)

2|B(v,x)|* - B(v,v).

For 2., notice that if w = B(w, x)x + u/, for some v orthogonal to x, then if B is the positive
definite Hermitian product associated to the +-decomposition induced by x, then

B(v,w)|* = |B+(B(v,x)x+ u,B(w,x)x—u')|?
< |v?1B(w,x)x—u'[*
= [vl?w|?.

O
Lemma 1.4.8. Every A€ U(1,0) is a bounded operator with respect to the Hilbert norm

induced by B+..

Proof. Observe that, if the same conventions of the previous lemma are used, for ve H
such that ||v|| =1,

|A()[* = 2|B(A(v), )| — B(A(v), A(v))
= 2[B(v, A7 (x))]* = |v]* —2[B(v, x)|?
< 2(]A7 %] + [x]*) + 1.

O

The next result is Theorem 1.11 of [40]. A sketch of the proof will be given in order to
outline arguments that will often be used in the rest of this text.
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Theorem 1.4.9. The pair (a,B) is a function of hyperbolic type if, and only if, up to a
conjugation by a holomorphic isometry of H, there exist a unique representation G LN
Isom(H{'), and p € HY' such that the orbit of p is total and

B(g) =coshd(p(g)p,p)

and
a(g1,82, 83) = Cart(p(g1)p,p(g2) P, p(83)P).

Moreover 3 and a are continuous if, and only if, p is orbitally continuous.

Proof. The unicity will be clear from the arguments used in the proof. By definition

(g k) — B(g)B(k) — e @& g(g~ k)

is a complex kernel of positive type. By Theorem C.1.4 in [3], there exist a complex Hilbert

space L and a continuous function G ", I such that the image of h generates a dense
subspace of L and such that for every g,k € G,

(h(g),h(k)) = B(g)B(k) — ' “&X p(g~ k).
Define H = C@® L and provide it with the Hermitian form B given by
B(a®v,b®w) = ab—{v,w).
By construction B is a strongly non-degenerate form of signature (1,20) defined on H.

Denote G 2> H the map given by f(g) = B(g) ® h(g). Observe that by construction, for

every g€ G, B(f(g),f(g)) =1and |B(f(e), f(g))| = B(g). Let H be the complex hyperbolic
space induced by H and B. Thus, if f(g) is the point in H represented by f(g), then for

every g, ke G,
cosh (d(7() F(e)) = Blg)

d
- Cart(f(g). J(K). F(e)) = Arg(B(B(g)®h(g), B(K)®h(K))
= a(gk.e).

The image of f generates a closed vector space of H because &(e) = 0 and because the
image of h generates a closed vector space of L. Define, for every g € G,

Tg(f(K)) = (880 f(gk).
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The claim is that T, can be extended to a map in U(1,00). Thus, for every g, k,l € G,
B(Ty(£(K)), Tg(f (K))) = ela(es:8b) g~ia(esal) galeskal p( 1)
As a is a 2-cocycle,

oa(e, g, gk, gl) =
alek,l)—al(egk,gl)+a(eg gl)—ale g gk) = 0.

Therefore, |
B(Tg(f(k)), Tg(f(k))) = e@@bbp(k=11)
B(f(k), f(1))-

In particular, this shows, together with the previous observation, that for every g, k,l € G,
Cart(f(g), f(k), f(1)) = a(g, k. 1).

n
If >, A;f(k;) =0, for some A; € C, then
i=1

B( DS MiTe(F(ki)). Te(£(1)) =0,

for every I € G. The complex vector space generated by Im(f) is the one generated by
{Tg(f(1))}1cc- Hence

0.

2, MiTg(f (ki)

Denote V the complex vector space generated by Im(f). The previous observation

T,
shows that for every g € G, Tg can be extended to a complex linear map V —% V that
preserves B. Using the arguments of Lemma 1.4.8, it is possible to show that for every g € G,

T, T,
V —% H is uniformly continuous, thus it can be extended to a complex linear map H —% H
that preserves B.

For every g, k, [ € G, on the one hand

TgoTe(f(1) = Ty(ef ek f(kD))
elales kD pia(ek k) £ gk
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and on the other hand,
Tei(f(1)) = €/ *88 ) f(gkl).

Again, as «a is a 2-cocycle,
—a(g gk gkl)+ a(e gk,gkl)—a(e, g, gkl)+a(e, g, gk)=0.

This shows that
Tgo Ty = /9880 T )

Observe that this identity shows, in particular, that for every g € G, the map Ty is invertible.

Even if g — Tg is not an homomorphism, there is a well defined homomorphism
G5 Isom(H), where p(g) is the isometry represented by T.

The last claim is that for every w € H, the map g — T, (w) is continuous. Observe that
for every v € V this is true because f and a are continuous. Let U < G be a symmetric
neighborhood of e such that there exists M’ > 0 such that for every g € U, | T¢(f(e))| <
M’. Hence, by Lemma 1.4.7, for every w € H, {|Tg(w)|}gev is bounded. By the uniform
boundedness principle, there exists M > 0 such that for every g € U, | Tg| < M (see for
example Section 3.3 in [49]).

This implies that for every w € H, the map g — T, (w) is continuous at e. Indeed, if
veVand ge U, then

[Tg(w) —w] < [ Te(w) = Tg(v)| + | Tg(v) = v+ v —w]
<

(M +1)|v—w|+|Tg(v) —ul.

To conclude the proof for the continuity in e, just observe that V is dense and the map
g — Tg(v) is continuous at e. This implies that g — Tg(v) is continuous at every go € G
because the map g — T, Ty, is continuous at e. To finish the proof just consider p = f(e).

O

1.5 Hyperbolic representations

In this section, following the ideas of Monod [40], some results about representations using
the language of functions of positive type are described.

Proposition 1.5.1. LetG LR Isom(HY), be a representation and suppose x € H{' is a point
with total orbit. If there exists w, an alternating G-invariant 1-cochain, such that dw = «a,
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where «a is the 2-cocycle associated to x, then p admits a lift to a representation G LN U(l,m).

Proof. Let T the map defined in the proof of Theorem 1.4.9. Define
/ —iw(e,
Tg =e lw(e g) Tg.
Observe that on one side for every g,k € G,

Té T]/C _ e—iw(e,g) e—iw(e,k) Tg Tk
e iw(eg) p—iv(ek) pia(e.g.gk,) T

gl’l)
and that on the other side,
ale g gk)=w(e k)—w(e gk)+w(eg).

Therefore the map g — Té is a homomorphism. O

Given x, y € HC’” and ¢ € 0HY, the Cartan argument of the triple (x, y,¢) can be defined
in an analogous way that it has been done for triples of points in H' or triples of pairwise

distinct points in é’Hg“. Indeed, for any lifts respective lifts %, 7, ¢,

Re <B(5c, 7)B(7,¢)B(E, x)) > 0.

This can be shown using similar arguments as the ones used in Lemma 1.4.1. Denote

Cart(x,,¢) = Arg(B(%,7)B(7,8)B(§,%) ).

Observe that for every ¢ € CH{, the map (x, y) — Cart(x, y,¢) is alternating.
Lemma 1.5.2. Forevery{ e 0H{! the map HY! x H YR, given by

w(x, y) = Cart(x, y,¢),

is continuous.

Proof. The proof follows from the arguments used in Proposition 1.4.4 and the fact that
we(T(x), T(y)) = we(x,y), for every T € Isom(HZ'), that fixes ¢. O
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Proposition 1.5.3. Let G LR Isom(H{'), be a representation and let x € H{'. If p fixes a point
& e OH]Y, then there exists w, a continuous and alternating G-invariant 1-cochain, such that
0w = a, where « is the 2-cocycle associated to x.

Proof. Choose respective lifts %, ¢ such that B(X,&) > 0. Let  be a linear lift (not necessarily
a homomorphism) of p such that for every g € G, p(g) (&) = 0g¢, with 64 > 0. Define, for
every [, ke G,

w(1,k) = we(p(1)x, p(k)x).

The cochain w is continuous, G-invariant and alternating. Observe that

For every X1, xp, x3 € HY,
|Cart(x1, x2,x3)| <7/2

and for y e cHY,
|Cart(x1,x2,y)| < /2.

Therefore,

Arg(B(p(g)%, p(1)%)) +Arg(B(p(1)%, p(k)X)) — Arg(B(p(g)%, p(k) X)) =

In other words, dw = a. O

The following corollary is a consequence of Propositions 1.5.1 and 1.5.3.
Corollary 1.5.4. Let G LN Isom(HY), be a representation and suppose x € H{' has a total
orbit. If p fixes a point at infinity, then p admits an orbitally continuous lift p to U(1, m).

A group topological G is called topologically perfect if the closed group generated by

{xyx~1y '}syec is equal to G.

The following proposition is an immediate consequence of Lemma 1.2.3 and Lemma
2.2 and 2.6 in [40].
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Proposition 1.5.5. Let G > Isom(H') be a representation and let x e H{'. If (B, a) is the
function of complex hyperbolic type associated to p and x, then the following hold:
1. The function f is bounded if, and only if; p fixes a point in H{'.

2. The representation p preserves a real hyperbolic subspace of HZ! if, and only if, a = 0.

3. If G is perfect and for some g € G, Jlim ,B(g”)% > 1, then p is non-elementary.

Observe that the asymptotic condition in 3. of the previous proposition, just says that
for some g, p(g) is hyperbolic.

A non-elementary representation G LN Isom(Hg’), with m finite or infinite and F=R,C
is called irreducible if there is no proper F-hyperbolic subspace of Hg' invariant under p.
Observe that for such representation any point in Hg' has a total orbit.

The following theorem is Proposition 4.3 in [9]. The statement there is about real
hyperbolic spaces, however the proof for the complex case works exactly in the same way.

Theorem 1.5.6. Let F = R,C and let G 2> Isom(H{') be a representation. If p is non-
elementary, then there exists H, an F-hyperbolic subspace of H;!, invariant under p and such
that ifH' is a p-invariant F-hyperbolic subspace of H, then H c H'.

The space H in the previous representation will be called the irreducible part of the
representation p.
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Chapter 2

Representations of PU(1,n)

In this chapter the ideas of [41], that can be track to [9] are adapted for the complex case.
In Section 2.1 the restrictions of hyperbolic representations of PU(1, ) to the stabilizers,
either of a point in H¢, or of a point in 0Hg;, are studied. The latter play a fundamental role:
every irreducible representation of PU(1, n) is determined by its restriction to a stabiliser of
a point in 0H¢. This result was proved by Monod & Py [41] for irreducible representations
of PO(1, n). With the ideas of that proof it is possible to derive analogous results for the
complex case.

In Section 2.2 the concept of displacement of a representation is studied. This, by way
of a common thread, allows to put in the same perspective the results of this work with the
classifications made for irreducible representations of the isometry groups of a regular tree
(Burger, lozzi & Monod [9]), the infinite-dimensional real hyperbolic space (Monod & Py
[42]) and the finite-dimensional real hyperbolic spaces (Monod & Py [41]).

2.1 Non-elementary representations and stabilizers

Let ¢1,¢2 € JHE' and let p € HY' be the point represented by \% (51 + 52), where ¢&; are lifts of
¢; such that B(¢;,¢,) = 1. Denote (with a small abuse of notation if F = R)

A={g(1,0,1d,0)}1~0

and K = POg(B),. Observe that by Proposition 1.3.5, POg(B) = KAK.
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If G is a topological group acting on a metric space X, define for x € X the function
G R> given by dy(g) = d(gx, x). The following proposition is an observation done in
[18] in a much higher generality. A simple proof adapted to the context of this work is shown
below.

Proposition 2.1.1. Let X be a metric space and let H a finite-dimensional F-vector space
provided with a form B of signature (1, ). IfPOg(B) 2 Isom(X) is an orbitally continuous
representation, then for every x € X, the map dy, given by

d(g) = d(p(g)x x),
is either bounded or proper.

Lemma 2.1.2. IfG acts on a metric space X orbitally continuously and there exist Ky, K> and
A closed subsets of G such that K; is compact and G = K, AK>, then for x € X the following
hold:

1. The map d, is bounded if, and only if, dy| 4 is bounded.

2. The map dy is proper if, and only if, dy| 4 is proper.

Proof. Denote Q; = sup{d(kx, x)}kck,. Observe that for k; € K; and a € A,
dx(krakz) — Q1 — Q2 < dx(a) < dx(krakz) + Q1+ Q2,
which proves 1. In order to show that 2. holds, observe that for every M > 0,
dy|;'[0,M] = And;'[0,M]
and that

d; [0, M] < Ki(dx[;'[0, M + Q1 + Q2] K. 0

Proof of Proposition 2.1.1. Suppose for now that F = C. If for some x € X, dy is proper
(resp. bounded), then for every y € X, d, is proper (resp. bounded). Suppose x € X is such
that d, is non-proper, then by Lemma 2.1.2, d| 4 is non-proper. Denote g(A,0,1d,b) =
g(A,b) and suppose that (1,), is a sequence escaping compacts such that there exists
M > 0 such that for every n, d,(g(1,,0)) < M. Notice that

dy(1,0)=d.(A71,0)
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and
g(2,0)g(1,b)g(A71,0) = g(1,A°b).

Denote the subgroup L = {g(A, b)}1>0,per- Observe that there exists a compact neigh-
borhood e € W < L such that there exists M’ > 0 such that for every we W, d(w) < M’.
Define y,, = min{A,,1,,'} and notice that for every I € L, there exists n large enough such
that dy(g(y1,0)1g(y,",0)) = ue W. Therefore

dx(1) <2d,(g(An,0)) + dy(u) <2M + M/,

and by Proposition 2.1.1, d, is bounded in PU(1, m). The same proof works for the real case
(see the comments before Lemma 1.3.13). O

Recall that the notation PU(1, n) or H is used for the case n < 0. If p is a representation
of PU(1,n) and if g = g(A, v, A, b), from now on, p(g) will be denoted p(A, v, A, b).

The following theorem, but stated for R and a non-elementary representation of
PO(1, n), is Proposition 2.1 in [41]. The proof given in the aforementioned paper works, just
with few changes, for the complex case.

Theorem 2.1.3. If PU(1,n) LR Isom(H') is a non-elementary representation, then p pre-
serves the type (hyperbolic, elliptic or parabolic). If § € CHE, then p(PU(1, n)¢) fixes a unique
pointin CH{.

Proof. The representation is supposed non-elementary, thus by Proposition 2.1.1, for every
xeH{, dy is proper.

The first claim is that such a representation preserves the elliptic and the non-elliptic
types. Observe that if g € PU(1, n) is elliptic, then g is contained in a compact subgroup,
thus for every x € H”, the orbit {p(g?)x} .z is bounded. Hence, p(g) is elliptic.

Suppose p(g) is elliptic and that x € H is fixed by it. The fact that d, is proper implies
that Stab, < PU(1, n) is a compact group, or in other words, is the stabilizer of some point
in HE. This shows that g has to be elliptic.

The claim now is that the parabolic type is preserved. Let g € PU(1, n) be parabolic and,
up to conjugation, it is possible to suppose that { € JH( is the g-fixed point. Fix another
n e 0H and respective lifts ¢ and 7 such that B(¢,7) = 1. With respect to the decomposition
that this choice induces, suppose that g = g(1, v, A, b) (see Proposition 1.3.11).
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The first possibility (only if n > 1) is that v ¢ Im(A — Id). Consider the non-trivial
decomposition of C" !
ker(A—Id)@ker(A—Id)*.

In this decompositon the vector v has the form v’ + v”, for some v’ and some v” #
0. The restriction of A to ker(A — Id)" is an automorphism of this subspace, therefore

there exists w € ker(A — Id)* such that A(w) — w = v". Let D € U(n — 1) be such that if
s =dim(ker(A— Id)), then D(C°*®0) = ker(A— Id). Observe that

plap— (14 0
0 A)’

Now notice that

g(1,w,D,0) 'g(1,1,A,b)g (1 w,D 0)
g(1,—D Y (w),D7',—e)g(a, U+A D,x) =
g(1, B (A(w) - w—l—v D x) =
g(1,D~ 1AD*) =

"
g(1,D—1( ),D 1AD,d),

for some d € R. From the definition of D, the vector u = D~!(v') belongs to the space
generated C°®0. Therefore

g(l,u,1d,0)g(l,u,ld®A,d) = g(1,2u,ld®A’,d)
= g(L,u,Id®A,d)g(1,u,1d,0).

Observe that

g(2,0,1d,0)g(1,u,1d,0)g(1/2,0,1d,0) = g(2,0,1d,0)g(1/2,2u,Id,0)
= g(1,2u,1d,0)
g(1,u,Id,0)>.

The isometry h = p(1,u,1d,0) cannot be hyperbolic because it is conjugated to h?, and

therefore,
0(h)=0(h*)=2¢(h).

As the non-elliptic type is preserved, p(1, u, Id,0) is parabolic.

If p(1,u,Id ® A',d) is hyperbolic then on the one hand, because the two isometries
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commute, p(h) preserves the set of points in dH fixed by p(1,u, Id @ A d)in JH{'. On
the other hand, the isometry p(h) is parabolic, therefore p(1, u, Id® A’, d) has to preserve
the h-fixed point in JH, which is a contradiction. Indeed, / just has one fixed point in
OHZ'. This shows that p(1,u, Id ® A’,d), and therefore p(1,v, A, b), is parabolic.

For the other case, suppose g(1, v, A, b) is parabolic and such that there exists u such
that A(u) — u=vand Im(B(A(u),v)) # b.

Observe that,

g(1,—u,1d,0) 'g(1,v,A,b)g(1,—u,1d,0

g(L,v+u Ab—Im(B(v,u)))g(l,—uId,0
g(l,v+u—A(u),A,b—Im( (v,u)) — Im(B(—A(

g(l,O,A,b—Im(B(v, u))+Im(B(A(u),v))+Im(B(A(u),u

g(1,0,A,b+Im(B
g(1,0,A,b—Im(B(A

u),v+u

/\/-\
/\
\_/
-
~— —
~— —

for some d # 0.

The transformations g(1,0, A,d) and g(1,0, Id,d) commute and

g(J5,0.1d,0) 'g(1,0,1d,d)g(Z5,0,1d,0) =
8(v2,0,1d,0)g(J5,0,1d,v2d) =
g(1,0,1d,2d) =

g(1,0,1d,d)>.

From this point the proof for the claim is exactly the same as in the first case. Thus the
parabolic type is preserved.

Define H = {g(1,0,1d,b)},cr. For each h e H\{e}, the transformation h is parabolic.
Since H is abelian, p(H) has a unique common fixed point w € JH{'. Notice that H is a
normal subgroup of P, therefore for every g € P, the transformation p(g) fixes w.

Consider now the hyperbolic isometry g = g(v,0,1d,0), for some y > 0, and sup-
pose p(g) is parabolic. The group {p(A,0,1d,0)} - is abelian, hence for every 1 > 0,
p(A,0,1d,0) is parabolic. Let se Isom(Hg) be the isometry represented, in the decomposi-
tion

CEDCHD (E- nijt),

71



by the matrix

c o ~
S © o

Observe that
sg(1,0,1d,0)s 1 = g(A71,0,1d,0).

Thus, as p(1,0,1d,0) is parabolic, then p(s) fixes w. This is a contradiction because
by Proposition 1.3.5, PU(1, n) is generated by P and s and the representation p is non-
elementary.

To conclude, observe that given the double transitivity of PU(1,7) in ¢H, up to a
conjugation, every g € PU(1, n) hyperbolic can be supposed of the shape g(1,0, A,0), for
some A >0and AcU(n—1).

Observe that for every Te U(n—1) and y > 0, g(y,0,Id,0) and g(1,0, 7,0) commute,
thus if 0’ # w is the other fixed point at infinity by {p (1,0, 1d,0)},~0, then for every T,
p(1,0,T,0)(w') = . Therefore,

p(1,0,4,0)(0") = p(A,0,1d,0)p(1,0,A,0)(0’) = o’

As g(1,0,A,0) is hyperbolic and p(A,0, A,0) is neither parabolic nor elliptic, then it is
possible to conclude that the hyperbolic type is preserved. O

Remark 2.1.4. The previous theorem shows that given PU(1,n) 2 Isom(HZ),, a non-

elementary representation, there exists a map JHg L JH{ defined in the following way. If
{ e 0HE and P < PU(1, n) is its stabilizer, let I'(¢) be the unique p(P)-fixed point in JHZ'".
Observe that I is injective because given two distinct ¢1,¢> € 0H¢, the group PU(1, n) is
generated by P, U P;,, the respective stabilizers in PU(1, n) of {; and ¢, (see Corollary 1.3.6).

Proposition 2.1.5. LerPU(1,n) 2> Isom(H{'), be non-elementary. For a group G < PU(1,n)
the following hold:

1. The group G fixes a point x € Hp, if; and only if; it fixes a point y € HZ'.

2. If G fixes a pointn € cH, then G fixes a point in Hi U 0H(.

Proof. The point 1. is an immediate consequence of Propositions 1.2.4 and 2.1.1.

For 2., observe that by Proposition 1.2.4, if G does not contain hyperbolic isometries
then the claim of the proposition holds. Suppose then that G contains hyperbolic elements.
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Letne 0HZ be a p(G)-fixed point. Suppose g, h € G are two distinct hyperbolic isome-
tries and let &8, ¢& § and &P, fg be the respective fixed points of g and & in 8Hg. The claim is
that there exist i, j € {1,2} such that ¢ lig =< ? If that is not the case and I' is the map defined
in Remark 2.1.4, observe that

{T(E5),T (&)} N (TN T(E)} = 2.
This is a contradiction because p(g) and p(h) fixne JHZ.

This argument shows that there exists v € JH(;, fixed by g and & and such that I'(v) = 7.
Observe that with the same argument, it is clear that every hyperbolic isometry of G fixes v.

Let P, <Isom(HZ'), be the stabilizer of  and let P;, % G be the Busemann character

associated to n (see Remark 1.3.7). The map G X Risa homomorphism and denote L its
kernel.

Due to the fact that p preserves the type and x(g) # 0, if and only if g is hyperbolic, then
L does not contain any hyperbolic isometry. By Proposition 1.2.4, either L fixes a point in
H¢ or it fixes a point in HZ.

Suppose that L fixes a point in Hg. Denote Y Hé the set of L-fixed points. The space
Y is closed and convex, therefore there exists a projection H¢ PY, y. Since L is normal
in G, the space Y is G-invariant and the map py is G-equivariant. Hence for every ge G
hyperbolic, the space Y contains the axis preserved by g. This shows that v is L-fixed, and
therefore, a G-fixed point.

Now suppose that L does not fix a point in H¢. There exists, by Proposition 1.2.4,
¢ € OH{ that is fixed by L. If ¢ # v, then p(L) preserves, and therefore fixes pointwise, the
axis connecting v and £. This is a contradiction because L does not fix a point in Hg, hence
g=wv. O

Remark 2.1.6. If the representation PU(1, 1) 2> Isom(H), considered is irreducible the
point 1 of the previous proposition admits a much stronger statement. Indeed, if K <
PU(1, n) is a maximal compact subgroup, by Proposition 5.8 and Remark 5.9 in [40], there
exists a unique p(K) fixed point in HY'. This fact and Theorem 2.1.3 show that if PU(1,n) —
Isom(H{'), is an irreducible representation there exist unique PU(1, n)-equivariant maps
H¢ — H{ and 0HE — JH{'.

Let PU(1,n) LN Isom(HZ), be a non-elementary representation and let {1, ¢ in CHZ.
be two distinct points. By Theorem 2.1.3, after fixing 3 1 5 2, respective lifts of ¢1,¢, such
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that B(El,fg) =1, for every g € P = Stab(¢;), g = g(A, v, A, b). Moreover there are two
distinguished points 11,12 € JH{' such that p(P)(n1) = 11 and such that for every A > 0,

p(4,0,1d,0)(n2) =12.

Observe that If PU(1,n) LN Isom(H),, with H ¢ H{, is the irreducible part of p (see
Theorem 1.5.6), then n); € JH. Indeed, the axis fixed by p(A,0, Id,0) has to be contained in
H because the projection HY' — H s p(PU(1, n))-equivariant and contracting.

Remark 2.1.7. Let 7); be lifts of n; such that B(#;,72) = 1. Observe that with respect to the
decomposition C}; @ Cij» @ﬁf N ﬁé, each transformation p(gy ;4 ) has a unique linear
representation such that the image of n; under this linear transformation is a positive
multiple of n;. That is to say, if Hg is induced from a Hilbert space H and a form B, for
every g € P, p(g) has a representation with the shape,

Alg) —H&BELLAR) | () —y(g)B(n(g)(-) c(g))
0 x(g)™! 0 :
0 c(g) n(g)

where, by Corollary 1.5.4, P 5> f]lL N ﬁf and P 2 R are continuous functions, P %> R.pisa
continuous homomorphism, and P 2, U, where U is the group of unitary transformations
of ﬁli N ﬁll, is a strongly continuous unitary representation of P. For g = g(A, v, A, b), denote
c(g)=c(A,v,Ab)and n(g) =n(A, v, A b). These conventions and notation will be used
through all this work.

Given a group G and a unitary representation  into a Hilbert space H, amap G S His
called an affine cocycle (of ) if for every g,k € G,

c(gh) = c(g) +m(g)c(h)
(see Chapter 2 of [3]).

The following is an immediate observation using the matrix representations of the
elements in p(P).

Lemma 2.1.8. For g,k € P, the following hold:

1. c(gk)=x(k)~'c(g) +m(g)c(k).

2. A(gk) = x(8)A(k) + x(k)~'A(g) — Im(B(n(g)c(k), c(g)))-
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Observe that if L = ker(y), then c| is an affine cocycle of 7.

Lemma 2.1.9. Forevery g = g(A, v, A,b) € P the following hold:

~

. x(g) = A%, for some t € R\{0}.

2. ¢(1,0,A,0) =0.

3. A(1,0,4,0) =0.

4. ¢(1,Av,1d,A?b) = A'n(A,0,1d,0)c(1,v,1d, b).
5. A(1,Av,1d,A*b) = A**A(1,v,1d,b)

6. Ifg=g(1,0,1d,b), then

A(1,0,1d,2b) = 2A(g) — Im(B(n(g)c(g), c(g)))-

Proof. For 1., observe that, by Proposition 1.3.8 and Remark 1.3.7, g(1, v, A, b) is not hy-
perbolic. Thus, by Theorem 2.1.3, p(1, v, A, b) is not hyperbolic and y(g(1,v, A, b)) = 1.
As

g=1g(1,0,1d,0)g(1,v,A, A" 1D),

then y(g(A, v, A, b)) = x(g(4,0,1d,0)).

Observe that for A # 1, x(g(A,0,1d,0)) # 1 (see Proposition 1.3.8 and Remark 1.3.7),
therefore the map A — y(g(A,0,1d,0)) is a continuous isomorphism of R~ .

The points 2. and 3. are a consequence of the fact that the isometries p(1,0, Id,0) and
p(1,0,A,0) commute, and therefore p(1,0, 4,0)(n;) =n;.

For the 4. and 5., observe that
g(1,0,1d,0)g(1,v,1d,b)g(A71,0,1d,0) = g(1,Av,1d, A*b).
Thus, points 2. and 3. and Lemma 2.1.8 imply that,
c(1,Av,1d,A*b) = A'7(A,0,1d,0) (c(1,v,1d, b))

and
A(1,Av,Id, A*b) = A*'A(1,v,1d, D).
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The point 6. is an immediate consequence of the identity

g(1,0,1d,2b) = g(1,0,1d,b)*.

Let
01 O
o={1 0 0
0 0 Id

and denote s € PU(1, n) the isometry induced by o.

Lemma 2.1.10. Forevery g(1,v,1d,b) e PU(1,n), lfa— +lb then

sg(l,v,1d, b)sg(l,a_lv, Id,b|a|_2)s = g(|a|_1, v, T,—bla|” 1),

\al

forsome T e U(1,n).

Proof. It will be shown first that there exists 0 € C such that

og(1,v, Id,b)ag(l,a_lv, Id,b|a]_2)0(€1) =0¢&;.

Indeed, )
og(La 'vId,bla| ?)o(&) =
og(La 'vId,bla|?)(&) =
0'< |a|251+62+a 11)) =
S—al&b+aly
and _
g(L,—v,Id,—b)o(&1) = g(1,—v1d,—b)({2)
= —abi+&—v.
Therefore
og(l,v1d, b)ag(l,a_lv, Id,b|a|_2)0(€1) =—a 1&.
Observe that

og(L,v,1d,b)og(l,a v, 1d,bla| ?)o(&) =
og(1,v,1d,b) (&)
€1+ <—B(% J >€2 4
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and that for u e ff N EZL,

og(1,v,1d,b)og(l,a 'v,1d,bla|?)o(u) =
og(l,v,1d,b)o —@fﬂru =

og(1l,v,1d,b) —wgﬂ—u =
B(gv)g Bwv), ) =
a a
B(;v)gl_B(;v)v_i_u

Therefore, if
R=o0g(1,v,1d,b)og(1,a 'v,Id,bla| ?)0,

it has been shown that

1. R(El) = —a_lfl.
2. R(Eg) = 51 —652 + 0.

3. R(u)=—2Wvg B(;’U) v+ u, forevery ue & n&;.

Observe that —ﬁR(E 1) = |a~1|&}. Thus, after this normalization,
— 1 R(S2) = —pgré1 +lalea — gy v.

This shows that

sg(l,v,1d, b)sg(l,a_lv, Id,b|a|_2)s = g(\a|_l,—ﬁ v, T,—b]a|_1),

for some T € U(1,n).

The following proposition is the complex version of Lemma 2.2 and Proposition 2.4 of
[41]. The proof for the complex case require minor modifications.

Proposition 2.1.11. LetPU(1,7n) 2 Isom(H ) be irreducible. If V is the closed complex
vector space generated by

{c(1,v,1d,b)|veC" 'andbeR},
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thenV = nf N ﬁ% and the restriction of p to P determines the representation.

Proof. The first claim is that the space Cij; ®Cfj> @ V is p(P)-invariant. Observe that for
every for every g(A, v, A, b),

g(A,v,Ab)=g(1,Av,1d,Ab)g(A,0, A,0).
Therefore, by Lemma 2.1.9,
c(A,v,A,b)=A1""c(1,Av,1d,Ab).

From this observation and by Lemma 2.1.8, it is possible to conclude that Ci); ®Ci, @V is
p(P)-invariant.

Again, let s € PU(1, n) be the isometry represented, with respect to the decomposition
induced by &;, by the matrix

0
0

Q
I
o -~ O
c o~

Id

Due to the identity
sg(1,0,1d,0)s=g(A~1,0,1d,0),

the map p(s) leaves invariant the set of fixed points at infinity of the family

{p(1,0,1d,0)} 1=0.

The representation p is non-elementary, therefore p(s) exchanges 1, with 1, (see Proposi-
tion 1.3.5).

Observe that the map p(s) admits a linear lift T such that, with respect to the decompo-
sition induced by 7;,

0 vl o
7={v O 01,
O 0 A

with v > 0 and A a unitary transformation.
The claim now is that A leaves invariant the space V. Define

B(c(1,v,1d,b),c(1,v,1d,b))
2

K(v,b) =— +iA(1,v,1d,D)
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and identify the isometries p(1, v, Id, b) with their linear lifts such that

p(1,v,1d,b) (1) =M.

Using the notation of Lemma 2.1.10, observe that on the one hand,

tp(L,v,1d,b)tp(l,a™* v 1d,bla| )t (f2) =

v ltp(L,v,1d,b)tp(L,a v, Id, bla|™?) (1) =
v itp(1,v,1d,b)T(7) =

10(1,v,1d,b)(72) =

T(K(v,b) + 72+ c(1,v,1d,b)) =

v+ vK (v, b)iz + Ac(1,v,1d, b)

On the other hand,
p(lal™h —Gu T.=bla[™!) (@) =
p(l,—#v,ld,—b\od 2p(la|710,T,0)(72) =

|a|t<K(—#v,—b|a|_2)ﬁ1+n2+c(1 sz,]d —bla|™ 2)) =
la| 'K (—av,—b)i +|a|n2+ |a|'c(1,— raz v 1d,—bla|” 2)

Therefore
p(lal ™"~ & v, T,~bla| ") (72) =

(v~ Im +vK(v,b)na + Ac(1,v,1d, b)).

K(vb)
[K (D)l

The last identity implies the following:

K(v,

L &b

§|A (Lv,1d,b) =|a|’c(1, ‘zvld |a|2)

" a

2. v|K(v,b)| = |al.

This computations show that V' is A-invariant and that A and v are determined by the
restriction of p to P. Observe that they also show that C#j; + Cfj2 + V is p-invariant, so as p
is supposed irreducible, this finishes the proof. O

Remark 2.1.12. The following identities will be used extensively in Chapter 3.

K(v
1. \KE b§|Ac(1vId b) = |al’c(1,— b ld,— |a|2)
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2. v|K(v,b)| = |al’.

Observe that, up to conjugating p with an isometry p(A,0, Id,0), it is possible to suppose
that v takes any positive value.

2.2 Representations and displacement

Recall that given any non-elementary representation PU(1, n) 2 Isom(HY),, there are
fixed ¢; € 8H(’§, n; € &Hg and respective lifts of them chosen like in Theorem 2.1.3. For

uefiy Ny, denote | ul| = (—B(u,u)) 2. The following theorem and its proof, in their real
version, are contained in Proposition 2.3 in [41].

Proposition 2.2.1. If PU(1,n) LN Isom(H{'), is a non-elementary representation with a

total orbit and P %> R- is such that p(g)7, = x(8)M1, then foreveryg =g(A,v,A,b)e P
(see Remark 1.3.9) there exists t > 0 such that x(g) = A'. Moreover:

1. Ifn>1, thent < 1.
2. Ifn=1, then t <2.

Proof. Observe that for b # 0, the isometry p(1,0, Id, b) is parabolic. Therefore either
A(1,0,1d,b) #0or ¢(1,0,1d,b) +# 0. In both cases, due to the continuity of A and c,

lim A(1,0,1d,Ab) = 0
A—0

and
lim ¢(1,0,1d,Ab) = 0.
A—0

By Lemma 2.1.9,
A(1,0,1d,Ab) = A'A(1,0,1d, b)

and
|c(1,0,1d,AD)| = )LtHc(l,O, Id,b)|,

therefore ¢t > 0.

For the case n > 1, observe that for every ve C" ! and Ae U(n—1),

g(1,v,A,0)=g(1,v,1d,0)g(1,0, A,0).
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Thus, by Lemmas 2.1.8 and 2.1.9,
A(1,v,A,0) = A(1, v, Id,0).
But g(1,v,1d,0) = g(1,0,A,0)g(1, A"} (v), A~1,0), therefore
A(1,v,1d,0) = A(1,A" (v),A"1,0) = A(1,A"  (v),1d,0).
Recall that g(1,v,1d,0) ! = g(1,—v,1d,0), therefore

A(L,v,1d,0)+A(1,—v,1d,0)—
Im(B(n(l,v,Id,O) (1,—v,1d,0),¢(1,v,1d,0)) ) =
A(1,v,1d,0)+A(1,—v,1d,0) = 0

This equality shows that for every v € C"~!\{0}, A(1,v,1d,0) = 0, and therefore, as
p(1,v,1d,0) is parabolic, ¢(1, v, Id,0) # 0. Observe that

c(1,2v,1d,0) = c(1,v,1d,0) + n(1,v,1d,0)c(1,v,1d,0).
Therefore for every v # 0,

2t|c(1,v,1d,0)| = |c(1,2v,1d,0)]|
< 2|c(1,v,1d,0)],

which shows that if n > 1,then ¢ < 1.

For the case n = 1, observe that
c(1,2b) = ¢(1,b) +n(1,b)c(1,b),

therefore 22 |¢(1, b)| < 2|c(1, b)|. Thus, if ¢(1,b) # 0 for some (every) b, then ¢ < 2. If this
is not the case, by Lemma 2.1.8, the map b — A(1, b) is a (non-trivial) homomorphism.
Therefore

'A(1,b) = A(1,2b) = 2A(1, b),

showing that r = 1. O
Given an irreducible representation PU(1, n) 2 Isom(H{'),, define the displacement of
p as ¢(p) = t, where t is such that for every g = g(1,v,A,b) € P, x(g) = A'. The definition

of the displacement of a representation makes sense if p is just supposed non-elementary.
Indeed, If PU(1,n) . His the irreducible part of p, then for every hyperbolic g € P, the
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hyperbolic space H contains the axis preserved by p(g) (see Theorem 2.1.3).

Observe that by Proposition 1.3.8 and Remark 1.3.7, if g = g(A, v, A, b), then ¢(g) =
|In(A)|. Every hyperbolic isometry g € PU(1, n) can be conjugated to a hyperbolic isometry
in P. As the displacement of an isometry is invariant under conjugations and for every g
non-hyperbolic, ¢(g) = 0, the following proposition holds.

Proposition 2.2.2. If PU(1,n) LN Isom(H{'), is a non-elementary representation with a
total orbit, then for every g € PU(1, n),

Let G be a locally compact group and f, g:— R two function. Denote f < g if there
exists M > 0 and a compact subset K — G such that f < Mg outside K. Denote f < g if, for
every M > 0, there exists a compact subset K — G such that f < Mg outside K.

Given a topological group G and a strongly continuous unitary representation x in a

Hilbert space H, for every v € H, the continuous map G by, b, given by b,(g) =n(g)v—v
is a cocycle. The cocycles b, are called coboundaries.

Denote Z!(G, ) the set of continuous cocycles of 7 and B(G, n) the set of cobound-
aries.

Let G be a locally compact, compactly generated group and let S € G be an open,
relatively compact generating set. For g € G, denote |g|s the word length of g with respect
to S. Thatis to say for ge G,

|g|ls=inf{keN|g=s----- Sk, with s; € S}.
Observe that if 7 a unitary representation of G and be Z'(G, ), then |b(-)| < |- |s.

The following definitions and observations are in [19]. Let G a locally compact, com-
pactly generated group, with S an open, relatively closed generating subset and let = be a
unitary representation of G. Define

lin(G,m) = {be Z' (G,n) | |b] = |-|s}

and
sublin(G,7) = {be Z' (G, n) | |b| < |-|s},

namely the set of cocycles with linear (respectively sublinear) growth.
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Let B1(G, 7) be the closure of B'(G, ) inside Z' (G, 7) with respect of the topology of
convergence on compact subsets. In [19], the authors showed that B! (G, ) < sublin(G, ).
Denote H'(G,n) = Z'(G,n)/B}(G,n), the reduced 1-cohomology of the representation 7.

Theorem 2.2.3. If PU(1,n) 2 Isom(HL'), is an irreducible representation with n > 1, then
the following are equivalent:

1 ¢(p)=1.

2. There exists b € R such that ¢(1,0,Id, b) = 0.

3. ForeverybeR, ¢(1,0,1d,b) = 0.

4. There exists b € R such thatn(1,0,1d,b) = Id.

5. ForeverybeR, n(1,0,1d,b) = Id.

6. Foreveryv,weC" !, 7n(1,v,1d,0) and n(1, w,1d,0) commute.

7. The map b— A(1,0,1d,b) is a homomorphism and for every be R, ¢(1,0,1d, b) = 0.

8. Up to conjugating p with an isometry, The map v — c(1,v,1d,0) is injective and
C-linear or antilinear.

9. The map v+ c(1,v,1d,0) is R-linear and injective.
10. The group{n(1,v,1d,b)},, has a non-zero fixed point.
Proof. It will be shown first that the properties from 1. to 7. are equivalent. It is trivial that
5. implies 4., 8. implies 9 and it is clear, by Lemma 2.1.9, that 2. and 3. are equivalent.

To prove that 4. implies 5., observe that if b € Ris such that 7(1,0, Id, b) = Id, then for
every A >0,

n(1,0,1d,b) = m(A,0,1d,0)7(1,0,1d,b)n(A~1,0,1d,0)
n(1,0,1d,A?b).

This, together with the fact that 7(1,0, Id, —b) = Id, shows the implication.
To show that 5. and 6. are equivalent, observe that for every v, w e c

7(1,v,1d,0)n(1,w,1d,0)n(1,—v,1d,0)n(1,—w,1d,0) =
(1,0, Id,—2Im(B(v, w))).
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To deduce 7. from 6., first notice that for every b, d € R,

—Im(B(n(l,O,Id,d)c(l,O,Id,b),c(l,O,Id,d))) =
A(1,0,1d,b+d) — A(1,0,1d,b) — (1,0, Id,d) =
—Im(B (7(1,0,1d,b)c(1,0,1d,d),c(1,0,1d, b))).

Hence if for every be R, 7(1,0,Id, b) = Id, then
—Im(B(c(l,O,Id,b),c(l,O,Id,d))) = —Im(B(c(l,O,Id,d),c(l,O, Id, b))).
The only way this can happen is if b — A(1,0, Id, b) is a homomorphism. Observe now that
c(1,0,1d,2b) = ¢(1,0,1d,b) + n(1,0,1d,b)c(1,0,Id,b) = 2¢(1,0,Id, b).

It is also true that ||c(1,0,1d,2b)| = 2z|¢(1,0,Id,b)|.This means that for every b € R,
¢(1,0,1d,,b) =0 and for every b # 0, A(1,0,Id, b) # 0.

To show that 7. implies 1., notice that in this case, for every beR,

2A(1,0,1d,b) = A(1,0,1d,2b) =2'A(1,0,1d, D).

The claim now is that 1. implies 2. The restrictions of 7 and ¢ to the subgroup

L= {g(lr v, 1d, b)}veC"*I,beR

define an affine isometric action on the Hilbert space 171L N f)j The claim is that the cocycle
¢ does not have sublinear growth, in other words, it is claimed that H! (G, x) # 0.

Recall from the proof of Proposition 2.2.1 that for every v e G,
A(1,v,1d,0) =0,

and therefore,
c(1,v,1d,0) # 0.

Define
S={(v,t)eC”_1 xR||v|<1and|t| <1}.
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Observe that for v € C"~!, we have that
[vl <[(v,0)]s < [v]+1.
As ¢(p) =1, for every v and every A > 0,
lc(1,Av,1d,0)| = Allc(1,v,1d,0)|.
Fix vg € C" ! and let M > 0 be such that | c(1, vy, Id,0)| = M| vy]|.

If ¢|; € sublin(L, 7), then for given 0 < €, there exists a compact subset K = C"*1 x R
such thatif (v, b) ¢ K, then
lc(1,v,1d,b)|| <€|(1,v,b)]s.

Therefore for every A > 0 large enough,
AM||vol| = | c(1, Avo, Id,0)| <€|(Avo,0)|s <e(|Avg| +1).

This is a contradiction because M is fixed and the previous inequality implies that for every

A > 0 large enough,
AM vy |

AMvo| +1

’

or in other words, M < €, which is a contradiction. Therefore E(L, 7|p) #0.

Now the claim is that for every be R, ¢(1,0,Id, b) = 0. If 7 is a unitary representation
of locally compact group in a separable Hilbert space, then there exists (X, ) a standard
measure space such that 7 is equivalent to a direct integral of y-almost everywhere irre-
ducible representation S@ 74du(a). For an introductory read on this topic and references,
see Chapter 7 of [27].

In Proposition 2.6 of Chapter III of [32], Guichardet showed that if G is a locally com-
pact group and 7 =ﬁrad u(a) is a unitary representation, then if for y-almost every «,
HY(G,14) =0, then H!(G, 1) =0.

In Theorem V.6 of [21], Delorme showed that if G is a connected and solvable Lie
group and (K, 7) is an irreducible unitary representation such that dim¢(K) > 2, then
H'(G,7)=0.

Putting together all these results if (X, u) is the standard measure space from the integral
decomposition of the representation 7|, then there exists Y — X, a measurable subset
such that y(Y) > 0 and such that for every a € Y, 7, is a one-dimensional representation.
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Observe that for every a € Y, 74| (r.z] is trivial. This shows that
W ={weft nijy | n(l)w = w, forevery I € [L: L]}

is a non-zero closed vector space. The group {g(1,0, Id, b) } ,cr is normal in P, therefore W is
P-invariant. Hence, the representation i preserves the decomposition W@ wit= 1’/1L N 1”7%.
Denote c=c; ®cy, and 7 = 11 D 7o.

The cocycle ¢ | (z:z] is @ homomorphism, but for every b€ R

lc(1,0,1d,2b)| = 22| c(1,0, Id, b)|.
Therefore ¢; vanishes on [L: L].

Observe that for every v e C* land 1 >0,
lc2(1,Av,1d,0)| = Al|c2(1, v, Id,0)|)).

Thus, if for some v e C"}, ¢,(1,1,1d,0) # 0, then c;|; does not have sublinear growth and
therefore, ﬁ(L, 72|1) # 0. Thus repeating the arguments already used, W+ contains a
non-zero 72 ([ L: L])-invariant vector, but this is a contradiction. All the 7([L: L])-invariant
vectors are contained in W.

This shows that for every v e C"™1, ¢;(1,v,1d,0) = 0. Observe that this implies that
2|1 =0, and therefore, for every beR, ¢(1,0,1d, b) = 0. With this, the equivalence for the
first seven properties is complete.

To show that 1.-7. imply 8., observe that for every v, w e cr 1,
7(l,v+w,1d,0)=n(1,v,1d,0)n(1, w, Id,0)

and that
c(l,v+w,Id,0)=c(1,v,1d,0) +7(1,v,1d,0)c(1,w,1d,0).

In this point the argument is the same as the one in the proof of Proposition 2.3 of [41]. For
completeness it is reproduced here. For now change the notation and write ¢(1, v, Id,0) =
c(v) and 7(1,v,1d,0) = n(v). Notice that for every ve C"* 1,

le(2v)][ = lle(v) +a(v)e(v)] = 2]e(v)],
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and therefore, 7(v)c(v) = c(v). Moreover, for every v, we C" 1,

a(v)n(w)(c(v) +n(v)e(w)) = n(w)a(w)(c(v)+c(v+w)—c(v))
= n(w)e(v)+c(v+w)—n(w)c(v)
c(w)+m(w)e(v).

Hence,
c(w) = a(v)n(w)(c(v)+n(v)c(w))—m(w)c(v)
= 7(2v)c(w). ’
This shows that 7(w)c(v) = ¢(v) and ¢(v+ w) = ¢(v)+c(w). The cocycle ¢ is a continuous
homomorphism, so it is a R-linear map.

From the proof of Proposition 2.1.11 and the fact that £(p) = 1, for every v # 0,

[v]?

" e(1,v,1d,0)|2

and because for every be R\0, ¢(1,0, Id, b) = 0, then

|A(1,0,1d,b)|
Iq

The map b — A(1,0,Id, b) is a nontrivial continuous homomorphism, hence
A(1,0,1d,b) = 6D,

for some 0 # 0. Up to conjugation it is possible to suppose, without lost of generality, that
v=1.

For every ve C"1,
g(1,0,i1d,0)g(1,v,1d,0) = g(1,iv,i1d,0),
and therefore,
¢(1,iv,1d,0) = ¢(1,iv,iId,0) = 7(1,0,iId,0)c(1,v,1d,0).
Observe also that

g(1,v,1d,0)g(1,iv,1d,0) = g(1,v+iv,Id,—B(v,v))
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and that
g(1,v+ivId,—B(v,v)) =g(1,0,1d,—B(v,v))g(1,v+iv,I1d,0).

Hence,
0B(v,v) = —A(1,0,Id,—B(v,v))
- A(l v+lv,1d —B(v,v))

= c(1,iv,1d,0), (1,v,ld,0))>
_ 7(1,0,i1d,0)c(1, v,Id,O),c(l,v,Id,O))).

If we consider 7(1,0,i1d,0) as a transformation of the finite-dimensional complex
vector space generated by {c(1,v,1d,0)} ccn—1, it is possible to decompose this space as
the orthogonal sum of the (may be trivial) vector subspaces W;, W_;, W; and W_;, where
7(1,0,iId,0) acts by multiplication by 1,—1,7 and —i respectively. For every v, if

C(l, v, Id,()) =N +V_1+Vit+v_
where v; € W;, observe that
Im (B (7(1,0,i1d,0)c(1,v,1d,0),¢(1,v; 1d,o))> =B(v;,v;) —B(v_;,v_;) #0

Therefore
0B(v,v) = B(v,v;) —B(v—j,v_;).

It will be shown later that the case 8 = 1 or 8§ = —1 are somehow equivalent (see Re-
mark 3.1.4). Soif 6 =1, v; = ¢(1,v,1d,0) and if 6 = —1, then v_; = ¢(1,v,1d,0), which
shows that 8. holds.

It is clear that 9. implies 1. because
le(1,2v,1d,0)| = 2" c(1,v,1d,0)| = 2||c(1, v, Id,0)].

The claim now is that 1. implies 10. Indeed, for every be R, ¢(1,0, Id, b) = 0 and the map
v c(1,v,1d,0) is linear, therefore

c(,v,1d,0)+c(1,w,1d,0) = c(l,v+w,Id,0)
= c¢(l,v+w,Id,—Im(B(w,v))
c(1,v,1d,0)+n(1,v,1d,0)c(1, w, Id,0).
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Hence for every v, w e c 1
c(l,w,1d,0) =n(1,v,1d,0)c(1,w, 1d,0).
Observe that for every be R,

7(1,0,1d,b)c(1,v,1d,0) = c¢(1,v,1d,Db)
c(1,v,1d,0).

This finishes the proof for the claim.

The claim now is that 10. implies 1. Let W be the closed subspace of fixed vectors in
L mﬁ% and let p be the orthogonal projection on this space.

Write ¢(1,v,1d,b) = uy + u; and ¢(1,v',1d,b’) = u} + u, in the decomposition V =
W @®W-. Then

poc(Lv+v,Id,b+b —Im(B(V,v))
p(c(L,v,1d,b)+n(1,v,1d,b)c(1,V, Id b')
p(u+uz+n(1,v,1d, b ) (U + uhy)
ur+uy+p(n(l,v1d,b)u,

u1+u1.

)
) =
) =
)

In other words, the map
g(lL,v,Id,b)— poc(l,v,1d,b)

is an homomorphism.

It is claimed that for every b > 0, po ¢(1,0, Id, b) = 0. Denote
c(1,0,1d,1) = uy + uy,
with respect to the decomposition W @ W, Observe that in the same decomposition,
c(1,0,1d,b) = bu; + w(b),
where w is a function of b. But also

¢(1,0,1d,b) = b2n(b2,0,1d,0)c(1,0,1d,1) = b? (a1 + az),
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where |[a) | + | az|? = ||u1 | + | uz2|*. So for every b > 0 the following equality holds
b |u]® + w(b)* = b' (ur|* + | u2]*).
AsO<t<1land||w(b)|?>0,then u; =0.

If for every v, poc(1,v,1d,0) =0, then poc(1,v,1d,b) = 0, but this is a contradiction
since the vectors of the form ¢(1, v, Id, b) generate a dense subspace. So let v such that
poc(1,v,1d,0) # 0. With the same argument, in the decomposition W@ W, ¢(1,v,Id,0) =
u; + up and for every A > 0,

poc(l,Av,1d,0)=Apoc(l,v,1d,0).
Therefore, ¢(1,Av,Id,0) = Au; + w(A), with w a function of A. Again,
c(1,Av,1d,0) = A'n(A,0,1d,0)c(1,v,1d,0) = A (a1 + az),
with |[a1 | + |az||> = ||u1 |? + | uz2|?. This implies that for every A > 0,
A |+ [w (AP = 22 (Jur|* + [ua]?).

Since u; # 0, then ¢t = 1. O

Proposition 2.2.4. IfPU(1,1) % Isom(H('), is an irreducible representation then such that
¢(p) =2, then b — c(1,b) is a non-trivial linear map and for everybe R, A(1,b) =

Proof. Observe that

2)e(L,b)| = [e(1,2b)]
= |le(1,b)+n(1,b)c(1,b)|.

Therefore 7(1,b)c(1,b) = ¢(1, b). Observe that this implies that for every b,d € R

n(1,b)c(1,d)+¢c(1,b) = c(b+d)
1,

= n(l,b+d)c(l,b+4d)
= (L,b)w(1,d)(c(1,d)+m(1,d)c(1,b))
= m(1,b)e(1,d) +n(1,d)c(1,b).

Thus, for every b,d € R, n(d)c(b) = ¢(b), or in other words, the map b — ¢(1, ) is linear.
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This implies that for every b e R,
Im(B(m(1,b)c(1,b),c(1,b))) =0.

Hence for every beR,
4A(1,b) = A(1,2b) = 2A(1, b).

Compare this result to the construction before Lemma 1.3.13.

It has been shown in this section that for every irreducible representation PU(1, n) LN

Isom(H{'),, with m infinite,

1. If n=1,then ¢(p) € (0,2).

2. Ifn>1,then ¢(p)e(0,1).

For irreducible representations PO(1, n) LN Isom(Hf{O), in [41], Monod & Py showed, among
many other things, that ¢(p) € (0,1) and that the displacement is a complete invariant.
That is to say, if two such representations p, p’ are such that ¢(p) = ¢(p’), then p and p’ are
equivalent. Moreover, for every ¢ € (0,1) there exists p and irreducible representation such
that £(p) = t.

The theory of functions of complex hyperbolic type developed by Monod in [40] allowed
him to show the existence part of the classification in a much easier way. However this has
the setback of not being a constructive proof. The argument for the complex case is shown
below, the real case is analogous.

Indeed for every x € Hy there is a function of complex hyperbolic type (8, a) defined on
PU(1,n) given by f(g) = d(gx, x) and

a(g1, 82, 83) = Cart(g1x, g2X, g3%).

The functions of complex hyperbolic type defined in this way for PU(1, n) will be called
tautological functions of complex hyperbolic type. For every ¢ € (0,1), (8%, ta) is a
function of complex hyperbolic type. Thus, there exists a representation PU(1, n) LN
Isom(HZ), for some m such that there exists x € HY' with total orbit and such that
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B'(g) = cosh (d(p}(g)x, x)) and
ta(g1, 82, 83) = Cart(pi(81)x, pi(82) X, P (8)x).
The representation p’, does not need to be irreducible.

Observe that for every n, PU(1, n) admit copies of PU(1, 1) acting naturally on respective
copies of Hé By Lemma 1.2.1 for every hyperbolic isometry g contained in any of those
copies of PU(1,1), p’,(g) is hyperbolic. By Propositions 1.3.14 and 1.5.5, the restriction of
p', to any of the copies of PU(1, 1) is non-elementary. Hence, p/, itself is non-elementary.

By Theorem 1.5.6, there exists p;, the irreducible part of p’,. Observe that by Lemma 1.2.1,
for every hyperbolic isometry g,

tl(g)=1¢(p:(8))

This shows that for every t € (0, 1), with a small abuse of notation, there exist an irreducible
representation PU(1,n) 25 Isom(H{') such that £(p,) = t.

The representations p; are of the shape PU(1,7n) 2 Isom(HZ),. The fact that m =
oo can be shown with general principles (Mostow-Karpelevich), but in Lemma 3.1.9 an
elementary proof for it will be given.
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Chapter 3

Representations of PU(1,1)

The peculiarity of PU(1,1) among the groups PU(1, n) is that it lies at the intersection of
the real and the complex worlds. With the classification of irreducible representations of
PO(1,2), done by Monod & Py [41], it is known a family of irreducible representations with
displacements between 0 and 2 and which preserve a real hyperbolic space in the target.
After Monod’s work [40], another family of representations is known which has a completely
different behaviour. It will be shown that it is possible to “interpolate” these two families
to obtain a third one which that, to the best author’s knowledge, had not been described
before.

In Section 3.3. a complete invariant for irreducible representations of PU(1, 1) will be
introduced. This is done by studying the functions of complex hyperbolic type associated
with these representations.

It was shown in the previous chapter (see Proposition 2.1.11) that the restriction of an
irreducible representation of PU(1,1) to the stabilizer of a point in JHg, determines the
representation. In Section 3.2 arguments in the reverse direction will be given. That is, for
certain representations of a stabilizer of a point at infinity, an extension to the whole group
PU(1,1) will be constructed.

With these arguments in hand, an operation between irreducible representations will
be defined. With this operation, given two non-equivalent irreducible representations
of PU(1, 1) with the same displacement, it is possible to construct a third one that is not
equivalent to either of the first two.

Hence, the family irreducible representations, up to conjugation, is closed under two
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operations, the “exponentiation” introduced by Monod in [40] and this new operation that
resembles a convex combination.

Using this operation, in Section 3.3 a new family of irreducible representations of
PU(1,1) is described.

3.1 Invariants of representations

Given an irreducible representation PU(1,1) 2 Isom(H'),, the notations A(1, b) = A(b),
c(1,b) = c(b) and 7(1, b) = n(b) will be used in this chapter (see Remark 2.1.7).

Remark 3.1.1. Recall from the proof of Proposition 2.1.11, the definition

and that, up to a conjugation, |[K(1)| = 1. Observe that

—B(72,p(L, b))
|B(712,0(1, b))

Therefore Arg(K (b)) does not depend on the representatives of n; and 7, if the normaliza-
tion condition B(71,72) = 1 is imposed.

K(b) =

B(p(1,b)1j2,112).

Lemma3.1.2. IfPU(1,1) % Isom(H('), is an irreducible representation, for every A > 0 and
every be R, the following hold.
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Lemma 3.1.3. ForeveryycH.,,

- T
lim Cart(g(1,b)y,g(1,—b)y,y) = -5

b—0

Proof. If y is represented by w = aé; + &, then Re(a) > 0 and

Cart(g(1,b)y,8(1,~b)y,y) =
Arg(B(g(1,2b)w, w)B(g(1,~b)w,w)?) =

Arg<8Re(a)3 +6Re(a)b? — i2D°).

Therefore, .
lim Cart(g(1,b)y,8(1,—b)y,y) = -3

b—0

Let PU(1,n) & Isom(H(!), be an irreducible representation. Suppose y € Hg, and let
K =PU(1,n),. Denote x € H? the unique point fixed by p(K) (see Remark 2.1.6). By
Remark 1.3.15, there exists s € R such that for every g1, g» € PU(1, 1),

sCart(g1y, 82, y) = Cart(p(g1)x, p(82) X, x).

Observe that |s| < 1 because there exist g1, g» € SU(1, 1) such that

|Cart(g1y, 821, )|

is as close as desired to % and

4
|Cart(p(g1)x, p(g2) x, x)[ < 7.

Remark 3.1.4. The definition of the Cartan argument comes with an choice. In fact, suppose
that H is a complex Hilbert space provided with B, a strongly non-degenerated Hermitian
form. Observe that if B’ is defined on H as B’ (v, w) = B(w, v), for every v, w € H, then

HE = {[v]| ve Hand B'(v,v) > 0}
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provided with the metric d’ given by

cosh(d'([v],[w])) = |B'(v, w)]

is isometric to Hc, the hyperbolic space induced from ( H, B). Regarding this, all the rep-
resentations can be considered to be such that the scalar s in the previous comment is
positive.

Lemma 3.1.5. If PU(1,1) LN Isom(H{'), is a non-elementary representation and x € HY
has a total orbit, then

lim Cart(p(b)x,p(—b)x,x) = Arg(K(—1)).

b—00

Moreover, if K < PU(1,1) the stabilizer of x is a maximal compact subgroup, y € Hé is the
point fixed by K and 0 < s < 1 is such that

sCart(g(1,b)y,g(1,—b)y,y) = Cart(p(b)x, p(—b)x, x),

then 55 = Arg(K(1)).

Proof. After a conjugation if necessary, suppose |K(1)| = 1. If X = af}; + 72 + u is a repre-
sentative of x, then

Cart(p(1, b)x, < >,x> .
Arg(B (1,2b)x 5c) ( 2) =

Arg((2Re(a) + K(2b) — B(m(2b)u,c(2b)) + B(c(2 >+n<2b>uu>x

(2Re(a) + K(~b) ~ B(x(~b)uc(~b)) + B(e(~b) + a(~buu)) ).

Denote, for any beR,
T(b) = —B(n(b)u,c(b)) + B(c(b) + m(b)u, u) + 2Re(a).
Observe that

(K(2b) + T(2b)) (K(=b)+ T(=b))* =

(K(2b) + T(2b)) (K(_b)2 + T(—b)? +2K(—b)T(—b)
2'B3TK(—1) + 2" 1B T (—b) + b*'K(—1)T(2b)
2b'K(—1)T(2b)T(—b) +2'b'T(—b)?> + T(2b) T(—D)

+ ~—
|

\S]
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There exist constants Cy, C, > 0 such that for every b > 0,

max{|T(2b)|,|T(~b)|} < C1b? + C».

Therefore,
Jim Cart(p(b)x,p(—b)x,x) = bli_r)loloArg(K(Zb)K(—b)z)
= Arg(K(-1)).
The second claim is immediate from Lemma 3.1.3. O

Remark 3.1.6. Observe that the previous lemma, Lemma 3.1.3 and the fact that the Cartan
argument is left-invariant imply that neither Arg(K (1)) nor s depend on the choice of the
point x € HY fixed by a maximal compact subgroup of PU(1,1). The previous lemma shows
also that A(1) > 0.

In view of the previous remark define for an irreducible representation PU(1,1) 2
Isom(HZ'),, Arg(p), the angular invariant of p, as Arg(K(1)). With this normalization, for
every p, 0 <Arg(p) < 7.

Proposition 3.1.7. Ifp is non-elementary and Arg(p) = 71 /2, then p preserves a copy of Hé
Proof. Observe that if Re(K(1)) =0, then for every be R, ¢(b) =0. O

The previous proposition, trivial in this context, is contained in the much more general
Theorem 1.1 of [23].

Proposition 3.1.8. Letx e Hé and0 < t < 1. If p is the irreducible part of the non-elementary
representation associated to the function of hyperbolic type (B', ta), where (B, ) is the
function of hyperbolic type associated to x and the tautological action of PU(1,n) on Hé,

then
tm

Arg(p) = -

Proof. Let PU(1,1) 5 Isom(H}'), be the representation associated to (f', ta) in Theo-
rem 1.4.9 and consider its irreducible part

PU(1,1) % Isom(Hc),.
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Denote p the projection of HY' onto Hc. The map p is PU(1, 1)-equivariant, therefore if
ye HCm is the distinguished point (see Theorem 1.4.9) and K is the stabilizer of x, then
y and p(y) are stabilized by K. By Remark 1.3.15, there exists s € R such that for every
80, 81,82 € PU(1,1), there exists s € R such that

Cart(p(go)p(y),p(81)p(¥),p(g2)p(y)) = sCart(gox, g1 X, g5X).

By Theorem 1.4.9,

Cart(7(g0)y,7(81)y,7(82)y) = tCart(go, g1, 82)-

Hence, by Lemma 3.1.5, 2 = Arg(K;(—1)) and 3 = Arg(K,(—1), but
Arg(Kr(—1)) = Arg(Ky(—1).

The last statement is true because the irreducible part contains all the axis of the images of
the hyperbolic isometries (see Remark 3.1.1). O

As it was mentioned in Section 2.2, in [41], among other things, the authors classified the
irreducible representations Isom(Hg) LN Isom(Hy ). They showed that for every 0 < ¢ <1
there exists a unique, up to a conjugation, irreducible representation p; such that ¢(p) = t.

Every representation Isom(H3) LN Isom(Hy') can be lifted to a representation into
O(1,%0). By Propositions 1.3.14 and 1.5.5, p, restricted to Isom(H%), remains non-
elementary, thus it has an irreducible part. With a small abuse of notation, denote p;
this irreducible representation. There is a natural embedding O(1,00) < U(1,0) through
complexification. In Proposition 5.10 of [40], the author showed that the complexification
of any irreducible representation of Isom(Hg) into O(1, c0) remains irreducible. The proof
there works also for Isom(Hﬁ)o. Thus, the complexification of py,

C
Isom(HZ), LN U(1,00)

is irreducible and ¢(p€) = . This last claim is true because the formulas for the displace-
ment of the image of a hyperbolic isometry do not change.

Let _
Isom(Hg ), 2, Isom(Hg),

be the homomorphism of Lemma 1.3.13 and recall that if g € Isom(H,),, then £(®(g)) =
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2¢(g). Therefore for every ¢ € (0,1) and every g € Isom(Hg)o,

0(pFo®(g)) = tl(D(g)) =2tL(g).

The previous observation shows that for every 0 < ¢ < 2, there exists an irreducible
representation
Isom(HL), 25 Isom(HE),

such that ¢(p;) = t and Arg(p;) = 0.

By Proposition 3.1.8, for every 0 < ¢ < 1, there exist irreducible representations
Isom(Hg), —> Isom(HY),

such that ¢(7;) = r and Arg(7,) = ZF.

Due to general principles (Mostow-Karpelevich) m = oo, however the next lemma pro-
vides an elementary proof for this fact.

Lemma 3.1.9. IfIsom(Hg), LN Isom(H{'), is an irreducible representation such that £(p) #
1, then the family {c(D)} g\ is C-linearly independent.

Proof. Suppose >." a;c(b;) = 0with b; # 0. Without lost of generality, suppose that b; > b;
forevery i # 1. For every d € R,

0 = Re(X"a;iB(c(b;),c(d)))
= >"Re(a;)Re(B(c(b;),c(d))) —Im(a;)Im(B(c(b;), c(d)))

nd
) 0 = Im(>"a;iB(c(b;),c(d)))
= >"Re(a;)Im(B(c(b;),c(d))) +Im(a;)Re(B(c(b;),c(d))).

Consider an interval (by, by + r) such that 0 ¢ (by, by + r) and consider d € (by, by + ). By
Lemma 3.1.2, there are constants Cy, Cy, Dy, D7 such that

Cod‘+iRe(mai)(d— b)) =C

and

Dod" +Zn:1m(K(1)a,-)(d —b;)' =Dy.
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Thus, there exist constants Ey, E; such that for every d € (by, by + 1),
n ——
Eod' +) K(1)a;(d—b;)"' = Ey.

After differentiating twice the previous equality with respect to d in the interval (b;, by +
r), it follows that

t(t—1)Egd 2+ t(1— l)imai((d— b)) 72 =0.

If d — b/, then (d — by)"? is unbounded, but for every i # 1, (d — b;)"~? is bounded.
Therefore a; = 0. Repeating the same argument, it is possible to show that for every i,
a; =0. O

Observe that the previous lemma is not valid for irreducible representations with dis-

placement 1. Indeed, the identity Isom(Hg,), 1, Isom(Hg,), is a representation with dis-
placement 1.

Lemma 3.1.10. Ler PU(1,1) 5 Isom(HZ), be an irreducible representation. If x € HY
is represented by \/LE (71 +72), then the function of hyperbolic type associated to x can be
reconstructed from K(1) and ¢(p).

Proof. The representation p is determined by its restriction to P (see Proposition 2.1.11).
The claim is that the restriction of p to P is entirely determined by K(1) and the parameter
L.

For every be Rand A,y > 0, by Lemmas 2.1.9 and 3.1.2, B(p(A, b) \/Li(ﬁl +132)) can be
recovered from K (1) and ¢(t). Hence, the claim follows from Theorem 1.4.9 and the fact
that the P-orbit of \%(ﬁl +1),) is total (see Proposition 2.1.11). O

Theorem 3.1.11. Let p, and p, be two irreducible representations of Isom(H}:)o into
Isom(HZ), such that £(p1) = ¢(p2). Then p1 and p, are equivalent if, and only if,
Arg(p1) = Arg(p2).

Proof. Suppose that p;(P) and p,(P) share the same fixed point in n;JH{' and that the
families {p1(1,0)}1~0 and {p2(A,0)}1~¢ preserve the axis connecting the points at infinity
11 and 3.

100



If p; and p; are equivalent, their restrictions to the group P are equivalent. Therefore
there exists T an isometry of H! such that Tp;|pT~! = p2|p, and therefore T(n;) =1;.

If
Ki(1) = *B(Ci(;)vci(l))_i_iAi(l)

|§((f;722_;ii((11,'11)),~711))‘2 B (pi (1, 1)772; ﬁz)y

with 7; respective lifts such that B(7;,72) = 1, then it is clear that
Arg(Ki (1)) = Arg(Kz(1)).

Indeed, Arg(K;(1)) does not depend on the choice of the representatives of 1);, as long as
the condition B(7);,7,) = 1 is fulfilled.

Let n},m3 € H be the fixed points by p;(A,0) and let 57,75 € CH be the points fixed
by p2(A,0). Suppose Arg(K; (1)) = Arg(K»(1)). After conjugating p; by an isometry p;(y,0)
if needed, it is possible to suppose that K;(1) = K»(1). Observe that this conjugation
preserves the points 17%.

Let x; € HY be the point represented by

L]+ 7L)-
Consider the functions of hyperbolic type of p; associated to x;. By Lemma 3.1.10, the
representations p;|p and p»|p can be supposed identical, therefore by Proposition 2.1.11,
p1 and p, are equivalent. O

Proof. Observe that Arg(K (b)) does not depend on the choice of representatives 7, 17, as
long as B(71,72) = 1 (see the definition before Lemma 3.1.2). Therefore, if f); and 7, are
chosen in the totally real subspace that contains the representatives of the real hyperbolic
subspace of HY preserved by p, it is clear that K(b) € R. O

3.2 Extending certain parabolic representations

In this section a binary combination will be defined for representations of PU(1,1). The
main tool used to define this combination is the Steinberg relations for SL,(R). They will
be used to determine if a hyperbolic representation defined on a the stabilizer of a point at
infinity can be extended to the whole group.
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Fix p; and p; two irreducible representations of Isom(H(lj)o into Isom(H{’), such that
?(p1) = ¢(p2) = t. With the conventions of the previous section, suppose without lost of
generality, that p; share the two distinguished points n; € cH. That is, for every A > 0 and

beR, p;i(A,b)(n1) =n1 and p;(4,0)(n2) =n>.
In a matrix representation with respect to the decomposition
CnL@®Cn2@ (77 N y),

pi(A, b) has the shape,

Al —/lfB(Ci(/léb),Ci(/l,b)) +iAi(A, D) —AtB(ﬂi(ﬂl, b)(),ci(A, b))
0 At 0 )
0 Ci /1,19) J'[i(/l,d>

and the isometry p; (o) has the representation

0 v;' 0
Vi 0 01,
0 0 A

where v; > 0 and, by Proposition 2.1.11,
AiCi(b) = ViKi(b)Ci(l, —l/b).

Define a model for the hyperbolic space in the following way. Consider C? as C#j; @ Cfj,
and consider the Hilbert space L = H) ® H,, where H; = 1’7{ ) ﬁj Define the form Q in
Cn1 ®Cny @ L which is C-linear in the first entry, antilinear in the second and that is given
by

1. Q|u, = B|g;-

2. Q(Hy, Hy) =0.
3. Q(ni,Hj)=0,fori, j=1,2.

4. Q(ni,ni)=0,fori=1,2.

5. Q(n1,m2) =1.
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This defines a strongly non-degenerate form of signature (1,0) in

Cni1®Cn2® L.

Define, for every be Rand A > 0, ¢(b) = ¢1(b) @ c2(b) and n1(A, b) = 1 (A, b) D72 (A, b).
Observe that 7 is a unitary representation of the group P on L. Define p(A,0) as the isometry
represented by

AL 0 0
0 A°° 0
0 0 n(A,0)

and p(1, b) as the isometry represented by
—B(c¢(b),c(b .
1 Bed) L inb) —B(n(D)(-),c(D))

0 c(b) 7(b)

where A(b) = A1 (b) + Ay (b). Denote

and
— i b), i b .
Ki(p) = 22albha®) | n,(p).
Lemma 3.2.1. Ifp is the complexification of an irreducible representation

Isom(Hg), — Isom(Hy ),

then for everybe R, A(b) = 0.

The next proposition is a consequence of Lemmas 2.1.8 2.1.9 and 3.1.2.

Proposition 3.2.2. Ifc, n, K and K; are defined as above, then for every A >0 and b,d € R,
the following properties hold.

1. Im(B(c(b),c(d))) =A(b—d)—A(b) + A(d).

2. Re(B(c(b),c(d))) — — Bletb=d)clb=d)) _ Ble(b)(b))  Ble(d)old)

3. K(b) = Ki(b) + Ka(b).
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5. K(—b) = K(b).
6. K(b+d) = K(b) + K(d) + B(c(b),c(—d)).
7. 1(1,0)c(b) = A~'c(A2D).
8. c(b+d) = c(b) +n(b)c(d).

Lemma 3.2.3. Forevery b+ 0, K(b) #0.

Proof. Suppose K(1) =0. By Lemma 3.1.5, A;(1) = 0, therefore A; (1) = 0. The isometries
pi(1,1) are parabolic, thus c;(1) # 0, which is a contradiction. O

Observe that
g(1,0)g(1,b) = g(7,0)g(1,d)
if, and only if, A = y and b = d, and that
g(1,0)g(1,b) = g(1,A*b)g(1,0).

It will be shown that with the formulas for p(A,0) and p(1, b) it is possible to define an
homomorphism on P.

Lemma 3.2.4. Forevery A,y >0 and b,d € R, the following identities hold.

1. KA Yy 'b+d)=K(d)+y '"K(A7'b)+ B(n(y,0)c(y 'd),c(—1"'b)).

2. 1(A7ID)n(y,0)c(ytd) +y " tc(A71b) = n(y,0)c(A" Yy 2b +y1d).

Proof. By Proposition 3.2.2,

KA Y b+d) =

K(d)+ KA Yy 'b)+ B(c(d),c(—A"'y7'b)) =

K(d)+K(y~'A~1h) + (Y‘ﬁc(d
K(d)+K(y~'A71b) + B(n(r5,0)e(y ' d), n(y %,0)e(~2""b

K(d)+y 'K(A™'b) + B(n(y,0)c(y~'d),c(—A"1b))

‘v
~<
N~
o
N
~<
L
N
L
Sy
S~— N~—
Il
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and

a(A7Ib)n(y,0)c(ytd) +y tc(A71b)

Yy Iw(A7b)c(yd) +y Te(A71h) =

Yy tec(A'b+yd) =
n(y,0)c(A "ty 2b+y~d).

Lemma 3.2.5. Foreveryy,A>0,b,decRandue 171L 8} 17%,

y'B(u,c(~y ')+ B(wn(~y ' d)nly ,0)e(~1"'b)) =
Y'B(u,c(1, -2~y 2b—y~1d)).

Proof. By Proposition 3.2.2,

y'B(u,c(—y~'d))+ B (u,n(—y‘ld)n(y_l,O)c(—/l_lb)> =

Y B(w,c(—y~'d)) +y'B(un(—y 'd)c(—A""y?b)) =
Y'B(u,c(1,— A"y 2b—y~'d)).

O

Regarding Theorem 1.3.12, the representations will be supposed to be defined on
SU(1,1).

Proposition 3.2.6. Ifp(A,0) and p(1, b) are the isometries defined at the beginning of this
section, then the map g(A, b) — p(1,0)p(1,A71b) is a homomorphism and for every x € HZ,
the map g(A,b) — p(A,0)p(1,A"1b)x is continuous.

Proof. Observe that

gL b)g(y,d) = g(1,0)g(1,A7'b)g ( ) (Ly™'d)
= gA,0)g(y, )g( B b)g(l y~'d)
= g(1y,0)g(1,A~ 2b+)f ld).

Therefore the first claim of the proposition is that for every A,y > 0 and b,d €R,

p(2,0)p(1,A7'b)p(y,0)p(L,y~"'d) = p(Ay,0)p(L,A 'y *b+y~'d).

It is clear that A — p(A,0) is a homomorphism, thus to show the claim is equivalent to show
that
p(LAT'D)p(y,0)p(L,y~"d) = p(y,0)p(LA~ Yy *b+yd).
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This will be done by comparing the columns of the matrix representations of both sides of
the identities with respect to the decomposition Cij; @ Cijo P L.

It is clear from the definition of p that for 7,

p(LA'b)p(y,0)p(Ly 'd)in = y'M
p(r,.0)p(Ly *b+y ' d)in.

By Proposition 3.2.2 and Lemma 3.2.4, for 7}, observe that,

p(LAT'D)p(y,0)p(1,y 1d)ﬁ
p(1LATB)p(r,0) (K(y )iy +772 + ey 'd) ) =

p(1LA7B) (Y K(y )iy +y 2+ 7(y,0)c(y ' d)
(K(d)+y "K(A1b)+ B(n(r,0)e(y ' d),e(~2"b)) )i+

Y~ +w(ATID)a(y,0)c(y1d) +y fe(A7 b)) =
KA Yy b+ d)i +y i +7(y,0)c(A Yy 2b+y~1d) =

p(1,0) (K™Y 2b+y )i+ +c(A" y 2b+ya)
p(r,0)p(LAT Y b +y d)i2.

——
Il

And last, by Proposition 3.2.2 and Lemma 3.2.5, for u e ﬁf N 1”72{

(1 A~1b)p(y,0)p(Ly d)u =
p(lﬁ*lb)p(%o)< (we(—y~'d))7 +”Yd> =
p(l,/l_lb)<y‘B(u,C(—Y ))771+7T(Y 0)r(y~'d)u) =
(rB(wc(~y~'d)) + B(n(y,0)n(y "ol >))m+
T D)l 0n(y My =
(r'B(uc(—y ) + B(wa(~yd)n(y~,0)c(~A"b)) )i +
a(y,y A b+d)u =
Y'B(u,c(— A"y 2b—y7'd)) i +a(y,0)n(A "y 2b+y 'd)u =
p(y,O)(B(u,c(—)t_l}f_zb—y_ld))ﬁl+n(/1_1y_2b+}/_1d)u> =
p(r,0)p(LA Yy ?b+y ' d)u.

Therefore the map
g(A,b)— p(1,0)p(1,A7'b) e Isom(H),

is a homomorphism.
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For the second claim of the proposition it is enough to show that for every x € HY,
the map g(A,b) — p(1,0)p(1,A71b)x is continuous around the identity in P. Suppose
gi= g(ﬂti,bi) — Id in P, then

}1 ‘B(g(/li,bi)(gl +&6),& +52) ‘2 = i((/li + /1,‘_1)2 + bzz) —1

or equivalently,
(Ai = A7 )2+ bf —0.
Therefore A; — 1 and b; — 0. If X = af}; + B2 + uis such that Q(X, %) = 1, then
p(A;,0)p(LA; b))% =
p(1:,0) (a+ﬁ1<<7r1b->+3(u c<_;r1b,))),~h+

pw,o>(ﬁnz+ﬁc< bi)+ (A b)) =
A;<a+ﬁK(A;1b)+B (u, c(— ) AT ﬁ172+
(MO)( ( bi)+n(A; 'bi)u) =
<)1l?a+ﬁK( i)+ B(u,m(A; ) )1”71+7L 'Biia+
/1 ﬁc( ibi)+m(Ai, bi)u.

Therefore, since
g(A,b) — (A, b)=m1 (A, b)Dma(A,b)

is orbitally (jointly) continuous,

}L%‘B( /ll,O)p(l,/llflbi)x,xﬂ =
ili_)rg‘ﬁ()ll?aJrﬁK(bi) +B(um(A; 1,0)c(—/1ibi))) +TA B
B(A;fﬁc(aibi)+n(Ai,o)n(/1i,bi)u,u)( -
‘Ea+§ﬁ+8(u,u)| = 1.

Now it is possible to define the representation P LR Isom(H(), given by
p(A,b) = p(1,0)p(1, A~ D).

The next results are devoted to prove that p can be extended to a homomorphism defined
onSU(1,1).

Lemma 3.2.7. The only point fixed in HY L cH by p isn1.
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Proof. The isometries p(A,0) are hyperbolic by construction, therefore the only other can-
didate to be fixed by p is 172, but p(1, b) does not fix it because K(b) # 0 (see Lemma 3.2.3).
O

Observe that _ ~
Q(f2,p(1, b))

Q712 p(1,b)71) 2
is also true for the representation p. After a conjugation by an isometry p(y,0) if necessary,
assume that |K(1)| = 1. Notice that this conjugation does not change the argument of K(1).

K(b) =

Q(p(1,b)72,12)

The following is the uniqueness part of the GNS construction (see Theorem C.1.4 of [3]).

Lemma 3.2.8. Let X be a set and let H be a Hilbert space. Suppose f and g are two functions
X — H such that their images are total in H. If for every x,y € X, (f(x), f(y)) ={g(x),g(¥)),
then there exists A, a unitary map of H, such that Af (x) = g(x).

Proposition 3.2.9. The map
Ac(b) =K(b)c(—1/b)

defines a unitary map in L, the closed subspace generated by {c(b)} per, such that A> = Id.

Proof. Due to Lemma 3.2.8, it is enough to show that
B(Ac(b), Ac(d)) = B(c(b),c(d)).

Denote B(c(b),c(b)) = |c(b)|* and recall that |[K(1)| = 1. Suppose b # d. By Proposi-
tion 3.2.2, on one side,

B(Ac(b )

K(d)B(c(~1/b),c(—1

K(b)K(a) ("= ”b“/‘”' 'C“/b>‘2+‘<l/d> +
i(A(~1/b+1/d)—A(=1/b)+A(-1/d )) =
‘bV'd'tK(L)K(_ﬁ)( o+ cﬂlc(

t & ;(lb-dlo-abdl , b

|b|"|d| K<|b\)K(_|d\>l< Barbansal e T )
(—) (= 1a= bl |dlt +|p|7) 5+

() () sl

n

N/
[—
~—

I

108



On the other side,

2 2 2 B(c(b),c(d))
Lo d)f | [eOIE | 1@DE L j(A(p— ) — A(b) + A(d))

e | (lb=d|'(b—d) |b|'b , |d|'d
(= 1p—dl|"+ b +d|") S5 +i(Fp=gr— — T + a7 ) AL).

There are three cases to analyse:

1. b>0>d.
2. b>d>0.
3. b<d<O.
1.Ifb>0>d,
b d
k(i) k() = KO
and ) . .
b—d|'(b—d)|bd| = |d|'b  |b|'d
‘ b|d(|b_d‘)‘ |+‘|l|)‘ _||(|,i‘ — —‘b—d‘t+‘b|t+’d|t.
Therefore
B(Ac(b),Ac(d)) =
K(1)2(=|b—d|*+|b|*+]d|*) (2L 4 ia(1)
(—[b- d|l+|b!t+\d\t)K(1>( K(1)) =
—(=Ib—d|"+ bl +|d|")K(1)
and
((b),C(d)) =
(—Ib—d+|p|+|a)") (XL —ia(n)) -
—(—\b—d\tHbVHdl )JK(1).
2Q)Ifb>d>0,
b d
K(m)x(—4) =1
and
|b—d|"(b—d)|bd| |bl'd | |d|'b _
balb—dl 1] b [b—d|*—[b|* +]dl".
Thus,

B(Ac(b), Ac(d)) =
+(|b—d|"+|d|* —|b]*)A(1)

(=1d—b|* +1d|*+[b]*) G
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and
B(c(b),c(d)) =
(—|d— b|f+\d|f+\b|) +z(|b d|"—|b|"+|d|")A(1).

)Ifb<d<O,
b _4a)\ _
K(g)k(-4) =1
and
|b—d|*(b—d)|bd| | |d|'b _|bl'd
bab—d T B ld —|b—d|"—|d|" +|b|".
Therefore

B(Ac(b), Ac(d)) =
(—|d—b|*+|d| +[p]") DL 4 i(— b a)t — |a|" + |b|") A1)

and
2 B(e(b),c(d)) =
(—|b—d|"+[p|* +|d|) LD 4 i(—|p—d| +|b|" — |d|")AQ1).

The case b = d is an immediate consequence of Proposition 3.2.2.

By Lemma 3.2.8, A induces a unitary map on L’. Observe that

A(c(b) = K(B)K(-1/b)e(b))
= DKL) K () e(b)

= c¢(b).

Consider now H as the hyperbolic space associated to Cn;®Cn »@L’ and the restriction
of the form Q defined in the beginning of this section. Denote by & € Isom(H{), the order
two isometry represented by

0
1
0

oS O =

0
0].
A

The claim is that the representation p can be extended to a representation of SU(1, 1) using
0. That s to say, if g(1,b), with be R, g(1,0), with A > 0, and

are understood as elements of SU(1, 1), then the map defined by :
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is a homomorphism. Here p(A,0), p(1,b) and ¢ are interpreted as elements of Isom(H{ ),

In order to prove that T is a homomorphism it is enough to show that T is coherent
with the relations of Theorem 1.3.12, that is to show that, for A > 0 and beR,

1. p(1,0)=6p(1,A7)Gp(1,1)6p(1,A71).

2. p(1,0)=6p(1,-A1HGp(1,-A1)ap(1,—A71).
3. A+ p(A,0) is a homomorphism.

4. b— p(1,b) is a homomorphism.

5. p(1,0)p(1,b)p(A",0) = p(1,A°D).

6. 62 =1d.

Observe that T is coherent with the points from 3., 4. and 5. because p is a homomorphism
defined on P (see Proposition 3.2.6). By Proposition 3.2.9, point 6. holds, therefore the only
two families of relations left to be verified are that for every b > 0,

p(b,0) = op(1,b7")op(1,b)op(1,b7")
= op(1,-b YHop(1,-b)op(1,—b71).

Lemma 3.2.10. Fore = +1 and for every b >0,
1. 1+ K(eb)K(eb™1) + B(Ac(eb),c(—eb™1)) = 0.

2. K(eb)c(eb™ ) +m(eb 1) Ac(eb) =0.
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Proof. Indeed, if B(c(—1),c(—1)) = |c(—1)[?,

1+ K(eb)K(eb™! )+B(Ac(eb),c( eb™1))
1+ K(€)? + K(eb)B(c(—eb™'),c(—eb™1))
1+ K(e)? +b fK(e)| (—1)?
K(e)(K(—e) €) + e 1)|> _
and
K(eb)c(eb™) +n(eb™ ) Ac(eb)
K(eb)(c(eb™!) +m(eb)c(—eb™t)) = 0.

Lemma 3.2.11. Ifb>0ande = +1, then

p(b,0)=6p(1,eb " )Gp(1,eb)Gp(1,eb™ ).

Proof. The procedure will be to compare the columns of the canonical matrix representa-
tion of both side of the identities with respect to the decomposition Ci; @ Cf, ® L'. In fact,
it will be shown that

p(b,0)p(1,—eb )G = p(1,eb Hap(1,eb).

With a small abuse of notation, keep the notation above for the canonical linear representa-
tives of each of the isometries. Indeed, on one side,

Gp(b,0)p(1,—eb™ )G (M

Gp(b,0) (K(—eb_ ) +n2+c(— =

6<btK(—eb’ )m+b~ n2+b c(— =

b~ 'ny +b'K(—eb™Y)no+ b~ 'K(—eb)c(eb™ 1) =
b™'m + K(=€)n2 + K(= ) < il

S~—
Il

and on the other side,
p(L,eb 1 ap(1,eb)(iy) = K(eb )iy + 12+ cleb™ ).
Observe that

K(—€)(K(eb™ "1+ 2+ c(eb™)) = b~ 'f1 + K(—€)fj2 + K(—€)c(eb™).
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Therefore, as linear transformations, what has to be shown is that

p(b,0)p(1,—eb 1) = K(—€)p(1,eb Hap(1,eb).

For 72, observe that,
ap(b,0)p(1,—eb™ )G (72) = b'Tj2
and that
p(Leb )ap(1,eb)(f2) =
(1,eb )6<K(eb)ﬁ1+ﬁ2+c(eb) .
(1,6b‘1)<1'71+K(€b)f72+Ac(eb) -
(1 + K(eb)K(eb™1) + B(Ac(eb), c(—eb‘l))>ﬁ1 + K(eb)iip+
K(eb)c(eb™ ) +m(eb™1)Ac(eb).

0 -1
I

Therefore, by Lemma 3.2.10,

5p(b,0)p(1,—eb™")3(712) = K(—€)p(1,eb™ )G p(1,€b)(72).

And last, for every d € R\{0},

60(b,0)p(1,—eb )G (c(d)
K(d)ép(b,0)p(1,—eb™1)c(—d ™!

K(d)op(b,0)(B(c(~d "), cleb™"))n +n(—eb~)e(~d )

K(d )a(bts( (—d~ 1),c(eb_1))1'71+n(b,0)n(—eb‘1)c( )

K(d )( t(c(—d 1), c(eb™1)) i + An(b,0)m(—eb V) e(—d~ 1))

On the other hand,

p(l eb 1 )ép(1,eb)(c(d))

p(1 ,eb_l)”< —eb))i + n(eb)c(d)

p(l,eb™ 1)(3 —eb)) 172+An b) (d)
(B(c(d),e(—eb))K(eb™") + B(An(eb)( b)) )i+
B(c(d),c(—€b))iz2+ B(c(d),c(—€b))c(eb )+ﬂ(€b ) n(eb)c(d).
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Therefore the claim is that

K(—¢) (B(c<d),c(—eb))r72 + B(c(d), c(—eb))c(eb™) +n(eb—1)An<eb)c<d)) -
K(d) (bts(c<—d—1),c(eb—l)>ﬁ2 +An(b,o)n(—eb_l)c(—d_1)>.

Observe that
K(e)K(d)b'B(c(—d 1), c(eb™1)) =
B(K(d)c(—d'),K(—eb)c(b™")) =
B(Ac(d),Ac(—eb)) = B(c(d),c(—eb)).
Therefore

K(—€)B(c(d),c(—eb)) = K(d)b'B(c(—d 1), c(eb™1)).

The only identity remaining to show is that

K(d)An(b,0)w(—eb™V)c(—d™!) =
K(—e¢) (B(c(d), c(—eb))c(eb™) + n(eb—l)An(eb)c(d)).

Suppose 0 # d # eb. Notice that

n(eb ) An(eb)c(d)

n(eb 1A ((eb+d eb)
)

)

n(eb™ 1)(1( (eb+d)c(—(eb+d)™1)—K(e -1
K(eb+ )( (eb(eg+d)) c(eb™ ))+K(e )
(K(eb) + K(d) + B(e(d), (b)) (el eiegy) — cleb™)) + K(eb)e
(€b+d)c( eb+d) (K(d)+B(c(d) c(— eb)))c(eb .

b c(eb !
(b

Therefore if R = K(—¢)n(eb™ 1) An(eb)c(d),

K(—e¢) (B(c(d),c(—eb))c(ebfl)+n(eb71)An(eb)c(d)) .
K(—€)B(c(d),c(—eb))c(eb ™)+ R =
K(~ )( (eb+d)c K(d>c(eb—1)).

eb(eb-i—d))
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On the other hand
An(b,O)n( ebV)c(—d™)
b,O) c(—dig —c(—eb™)) =
bt A(c(— L)y _ o(—eb))
bt (K(- L4 o( ) — K(—eb)e(eb™) ) =
)

K(— o ) — K(—€)e(eb™).

Therefore, what is left is to show that

K(d) (K(~ 252 e(pthy) — K (=e)eleb™)) =
K(—€) (K(eb-+ d)e(grtgy) — K(d)eleb™)),

which is equivalent to show that
K(d)K(=24-L) = K(—€)K(eb+ d).
This is can be easily proved considering all the different cases.

Define
fen(d) = K(d)An(b,0)n(—eb ) c(—d ™)

and
gen(d) = K(—¢) <B(c(d),c(—€b))c(€b’1) + n(eb’l)An(eb)c(d))

Observe that for a given value b, € R\ {0}, the functions f}, (d) and g, (d) are continuous
on d and such that f;,,(0) = 0 = g,,(0). It has been shown that for every 0 # d # eby,
fv,(d) = gp,(d), therefore by continuity f,, = gp,-

This concludes the proof for the equalities,

p(b,0) = Gp(1,b7")Gp(1,b)op(1,b7")
= 6p(1,—b YHap(1,—-b)op(1,—b1).

The previous lemma completes the argument that shows that

SU(1,1) 5 Isom(HZ),
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is a homomorphism. Observe that by construction, T(—1Id) = Id, therefore T induces a
representation PU(1,1) — Isom(H{ ).

Theorem 3.2.12. The map T induces an irreducible (orbitally continuous) representation
PU(1,1) % Isom(HY ), with £(p) = t and

Arg(p) = Arg(Ki(1) + Kz(1)).

Proof. Observe that T does not have fixed points in HZ U JHY because & does not fix
11 (see Lemma 3.2.7). If T preserves a geodesic, then it permutes the two limits of it,
but this is a contradiction because every homomorphism PU(1,1) — Z, is constant (see
Proposition 1.3.14).

Let SU(1,1) 5 Isom(H{,), be the projectivization map. The group 7(P) is closed in
Isom(ch)o and, by Proposition 1.3.5, there is a decomposition

Isom(Hg), = 7(PsP) un(P).

Therefore (PsPs) is an open neighborhood of Id € Isom(Hé) o- Thus, it is enough to show
that, if (g;) is a sequence in 7(PsP) such that (g;) — 7(s), then for every x e HY,

p(gj)x— T(s)x=ax.
Observe that every element of PsP can be written as

sapsga - (5 ).

If
gi=n((g(A),bj)sg(1,d;)),

then b; — 0, A; — 1 and d; — 0. Therefore, for every x € H%O, p(Aj,bj)x — x and
p(1,d;)x — x, hence with a triangle inequality argument it is possible to conclude that
gjx—0x.

The irreducible part of p contains the axis, and its limits, preserved by the maps p(A,0),
therefore p is irreducible by construction. O
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3.3 A new family of representations

With the results of the previous section a continuum of non-equivalent representations will
be constructed.

Given an irreducible representation p denote K(1) = K(1),. If p,ge R>0and p,7:
PU(1,1) — Isom(H{') are two irreducible representations such that £(p) = ¢(7) = t, let
pp and 74 be two irreducible representations, equivalent to p and 7 respectively, such
that [K(1),,| = p and [K(1);,| = g (see Proposition 2.1.11 and Remark 2.1.12). Observe
that with the procedure describe in Theorem 3.2.12 it is possible to obtain an irreducible
representation w such that ¢(¢) = t and

Pl g)

Arg(p) = Arg ( |Kp(1)] Kz ()]

Therefore for every

s€ [min{Arg(p),Arg(7)}, max{Arg(p),Arg(7)}]
there is an irreducible representation ¢ such that £(¢) = t and Arg(¢) = s.

Given u € [0,1], denote p A 7 the irreducible representation such that
u

L. [(pﬁr)z .

2. Arg(p A 7) = (1—u)Arg(p) + uArg(7).

This representation will be called a horospherical combination of p and 7.

The representation p A 7 is well defined in the following sense. If £ (p) = ¢(7) and

p’ and 1’ are equivalent to p and 7 respectively, then p A T is equivalent to o A 7’ (see
Theorem 3.1.11).

Although in the definition of the horospherical combination, for simplicity, the repre-
sentations were supposed acting on the same hyperbolic space, nothing prevents to define
the horospherical combination of two irreducible representations with one possibly having
finite-dimensional target. This could be the case, by Mostow-Karpelevich theorem or in
particular by Lemma 3.1.9, only if £ = 1.

Using the families constructed in [40, 41] and described in Section 3.1 and the horo-

117



spherical combination, a new family of non-equivalent representations is built.

Recall that for every 0 < ¢ < 2 on the one hand, up to a conjugation, there exists a unique
irreducible representation
Isom(HL), 25 Isom(HE),

such that ¢(p;) = t and that preserves a real hyperbolic space. These representations are
such that Arg(p;) = 0 (see Remark 3.1.1, Theorem 3.1.11 and Lemma 3.2.1). On the other
hand, for every 0 < ¢ < 1 there exists an irreducible representation

Isom(Hg), > Isom(HE),
such that Arg(7;) = & and ¢(7,) = t (see Lemma 1.2.1 and Proposition 3.1.8).

Theorem 3.3.1. If0<t <1landre|0,tn/2] orift =1andr €[0,7/2), there exists a unique,
up to a conjugation, irreducible representation p;,, such that

1. Arg(psr) =T.

2. [(pt)r) =T.

Proof. For t < 1, consider the family of irreducible representations p; ATe For t =1, let
Id be the identity map Isom(Hg), — Isom(Hg,),. Observe that for every u € [0,1), by con-
struction the representation p; A id is irreducible and the target is an infinite-dimensional
complex hyperbolic space. This is true because the representation p; has as a target an

infinite-dimensional hyperbolic space. The unicity is a consequence of Theorem 3.1.11.
O

By Lemma 3.1.5, the representations listed in the previous theorem are representatives
of all the irreducible representations of PU(1,1) into Isom(H{ ), with displacement 1.
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Chapter 4

Non-elementary representations of
PU(1,n), with n>1

In this chapter it will be shown that for n > 1, there are no non-elementary representations
PU(1, n) — Isom(Hy ). In terms of the argument of a representation, contrary to the case
when n = 1, this is equivalent to say that for every complex hyperbolic representation of
PU(1, n), with n > 1, has non-zero argument.

The proof of this fact relies strongly on ideas of [15] and [22]: the existence of smooth har-
monic maps Hi — Hy associated to a non-elementary representation of I' — Isom(Hy),
where I' < PU(1, n) is a uniform lattice, together with the strong restrictions on the rank of
such maps (see [47]).

4.1 Harmonic functions, lattices and representations

At the finite dimensional level, the main theorem of this chapter follows from rather ele-
mentary arguments.

Proposition 4.1.1. Ifn,n’ < oo, there are no non-elementary representations

PU(n,1) - PO(1,7).
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Proof. Suppose ¢ € dH{ and consider the group
L={g(1,v,1d,b)|veC" 'and be R}

contained in the stabilizer of {. By the arguments of Proposition 2.1.11, it can be shown that
p preserves the type and p(L) preserves a pointn e 8Hl’§/. Every element in L is parabolic,
therefore, p(L) < B, where

B={g(1,w,A)| weR" ! and AcO(n' —1)}.

The group B is equivalent to the group of affine isometries of R" L. Every connected
nilpotent subgroup of the group of affine isometries of R" ! is abelian (see the proof of
Corollary 4.1.13 in [48]). Hence, the group p(L) is abelian. This is a contradiction because L
is a non-abelian solvable group consisting of parabolic isometries, and because the type is
preserved by p, p|. is injective. O

In the infinite-dimensional case the arguments of the previous proposition do not
hold. The group L is solvable, hence amenable. Every amenable group satisfies Haagerup’s
property (see 1.2.6 in [16]). That is to say, L admits a metrically proper representation in the
group of affine isometries of real Hilbert space, which naturally induces a representation
L5 Isom(HY) such that p(L) fixes a point in 0Hy’ and all the horospheres centered at it
(see Section 1.3).

Lemma4.1.2. LetT'y and T, be two uniform lattices of a locally compact group G and let

x 1 Y, i = 1,2 be two continuous functions between X a topological space and 'Y a metric
space. Suppose G acts transitively on X with compact stabilizers, by isometries on Y and
orbitally continuously on both. If f; isT';-equivariant, then there exists C > 0 such that for
everyxe X, d(fi(x), fa(x)) <C.

Proof. There exist compact sets K; = G such that I'; K; = G (see for example Lemma 2.46
in [27]). Fix xp € X and take y € X. There exist y; € I'; and k; € K;, such that y;k;xy = y.
Therefore,

d(fi(y), () = d(yifilkixo),y2fo(k2X0))
= d(y; 'nfilkixo), fo(kaxo))
Sup{d(Zfl(lle),f2<lng>) | VAS KZStab(xo)Kl_l, ll‘ GKZ‘}.

N
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Lemma 4.1.3. Let {H,}en.., be a sequence of finite-dimensional hyperbolic spaces embed-
ded inHy , where for n > 2, Hy, is isometric to H§ and H, is a geodesic. Suppose that for every
n>1,H,c H,, and

| B, =HE,

n=1
then for every n > 2 and y1,y, € Hy, there exists ¢ € Isom(HY’) such that, ¢|p, = Id and
¢({y1,y2}) © Huso.

Proof. Given H, € H, s and y;, )2 € Hl‘f , there exists m > n + 2 and H isometric to Hy’
such that y; € Hand H, 1, < H. Observe that every isometry of H can be extended to an
isometry of H%O. Therefore the problem can be reduced to a statement about Hﬁl, where the
claim is clear (see the proof of Proposition 1.4.4). O

Let M be a Riemannian manifold and let U © M be an open set contained in a chart
(V,¢). Suppose that U = V and ¢! (U) = B(p, ) = R™. For every ¢ € €°(0U), there exists
a unique hy, € 6°(U) n €?(U) which solves the Dirichlet problem, in other words, h, is
harmonic in U (Ahy|y = 0) and hy |y = ¢|ou (see Lemma 6.10 in [30]). For references
about harmonic maps in the Riemannian setting see [44] and for harmonic maps with a
CAT(0) codomain see [35, 36].

For every x € U, the claim is that the map

€°(0U) — R
¢ = hy(x)
is a positive linear functional, in other words, it defines a probability measure pY in 0U.
Indeed, in every U as above, a harmonic map defined on U achieves its maximum (mini-

mum) in 0U and if there exists u € U such that the maximum (minimum) of / is achieved
in u, then h is constant in U (see Theorem 3.1 in [30]). Thus

hy < maxhy(y) = :
o < maxhy(y) = maxe(y)

therefore the linear map ¢ — h,(x) is positive and continuous for every x € U.

A continuous function M % Ris called subharmonic if for every U as above and every
xeU,

p(x) < depf{-
ou
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If ¢ € 6%(M), then ¢ is subharmonic if, and only if, Af > 0 (see page 103 of [30]).

Observe that every non-constant subharmonic function ¢ defined on U satisfies a
maximum principle: the maximum of ¢ is achieved only in the boundary.

Lemma 4.1.4. Let M be a Riemannian manifold and let (¢,) be a sequence of subharmonic
functions defined in M. If (¢,) — ¢ uniformly on compact sets, then ¢ is subharmonic.

The proof of the next lemma follows some of the ideas in Theorem 2.3 in [38].
Lemma 4.1.5. Let X be a homogeneous and complete Riemannian manifold and let
u,v:X —>Hg

be two harmonic and Lipschitz continuous functions of class €. If there exists C > 0 such
that for every x € X, d(u(x),v(x)) < C, then either u = v or the images of u and v are
contained in one geodesic.

Proof. Suppose that K > 0 is a Lipschitz constant for v and v. Let {y;};en © HY’ be such
that if for every n > 1, Hy, is the smallest hyperbolic space that contains {yy,..., y,}, then
the family { H, },>; satisfies the hypothesis of Lemma 4.1.3.

Let (x,)n>1 be a sequence in X such that

d(u,v) =sup{d(u(x),v(x))} = lim d(u(x,),v(xy,)).

XX n—a0

Fix xo € X and for every i choose ¢; € Isom(Hy ) such that ¢;(xp) = x;. Define u; = uog;
and v; = vo;. For every i there exist an isometry Tl.1 such that Tl.1 o u;j(xg) = yo and
T! o vi(xo) € Hy. Observe that for every i,

d(T} oui(xo), T} o vi(x0)) < d(u, v).

H, is locally compact, therefore there exists a subsequence (T 11 ;0 vl,i(xo))
vi(x0)) ;ey Which is convergent.

ieN

Let {zi},-eN21 be a dense subset of X. Observe that for every i, there exists an isometry
T? such that T?|y, = Id and

{T7o Tll,i ou,i(z), Tf o Tll,i ovii(21)} < Hs.
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Notice that for every i,
d(Tfo T} o i(z1), T2o Tl{l.oul,,(xo)) < Kd(z1,x0),

but
T7 o Ty ;0 uri(xo) =Ty ; 0 u,i(xo) = yo.

Therefore
(Tiz o Tll,l. o ulyi(z1)>

is a bounded sequence in Hs. Also, for every i,

i€N;1

d(Ti2 o Tll,l- ouyi(z1), T,-2 o Tll,l- o vlyi(zl)) <d(u,v).

Thus,

(Tiz o Tll,l. o vlyi(zl)> -1

is again a bounded sequence in Hs. So it is possible to chose respective subsequences,

(Tzz,io Tzl,iOMZ,i(Zl))

i=1

and
(12013 0v2i(a0)).

i1

that are convergent.

By induction on n, suppose that for every for every 2 < m < n and for every i > 1 there
are isometries Tn’ff i and Té ; such that

1. T}, oui(xo) = yo and (T, ;o vi(xo)),, is a convergent sequence in Hj.

i1

m —
2. Tn,i|H1+2(m—2) = Id.
3. (Tr’l”l. o---0T! o un,i(zm_l)) . are converging

m 1 .
. and (Tnyio oTnyiovn,l(zm_l))
sequences in Hy (1)

i=1

Foreveryi>1,let Tl.”Jrl be an isometry with the following properties,

+1 _
L T iy s = 1d-

n+1-2)
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2. Tl.”+1 0.0 T’;i oup,i(zy) and Tl.”+1 0.0 T;i,i 0 Un,i(2,) are elements of Hy_p(p11-1).-

Observe that

i1

(Tin+1 0.0 T;i,i o un,i(zn)>

is a bounded sequence in Hj »(,11-1), indeed

d<Tin+1 o0...0 Trlz,i 0 Uni(zn), Tin+1 0.0 T’}M. o un,i(x0)> < Kd(zp, %),

but
+1 1
Tl'n O"‘OTn,ioun,i(xO>:y0-

Moreover, for every i,

d(TinJrl 0---0 Trlz,i oun,i(zn), Tl.n+1 0---0 Tzi,i o vnyi(zn)> <d(u,v).

Therefore
(Tin+1 0---0 Tzi,i o un,i(zn)>

i1
and
n+1 1
(Tl. 0--0T, ;0 vn,i(zn))

are bounded sequences in H _1y. Hence it is possible to choose convergent subse-
142(n+1-1)
quences

i1

n+1 1
<Tn+1,i 00Ty, ”n+1,i(zn>> i>1

and

n+1 1 .
<Tn+1,i 00T ,0 Vn+1,l(zn)) o1
Define now,

U(zy) = ih—>nolo Tii,i 0---0 Til,i ou;i(zn)

and

V(zn) = ili—{g Tii,i 00 Til,i © i,i(zn).

Observe that there exists M > 0 such that,

Ulzn) = Jim Lo o T0 uii(zn)
= i]Lno}D Ti],vilo e Til,i o u,-,,'(zn)
= ili—>rrolo TAA/;I,I.O"'OT]{,[’iOuM,i(Zn)
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and

V(zn) = iﬁ_{g Tagio 0 Tay 0 Um,i(Zn).

Given z,, and z,,, there exists M’ > 0 such that

A(U(zy),U(zm)) = lim d(uo@py i(zn), uopry i(zm))

i—0

< Kd(zp, zm),
and with the same reasoning,
A(V(zy),V(zm)) < K(d(zn,zm))-
Therefore U and V can be extended to X.

For every m > 1, define
_ m 1
Ry = Tm,m ©-:0 Tm,m ©Um,m

and

_ 7Tm 1
Sm = Tm,mo"'o Tm,mo Um,m-

Observe that for every m, R;, and S, are Lipschitz continuous functions with Lipschitz
constant smaller or equal than K. Therefore {R,}, and {S,}, are equicontinuous families.
If the function L, is defined as L,,(z) = d(R;(z), S, (z)), then the family {L,}, is equicon-
tinuous and pointwise convergent to z+— d(U(z), V(z)), thus by Arzela-Ascoli Theorem,
the convergence is uniform on compact sets.

The functions u and v are €2, and for every i, ¢; is an isometry, therefore u; and v; are
harmonic functions (see for example Proposition 2.2 in [34]). Moreover, for every i, j, the
map Tl] ; is an isometry, therefore for every m, the functions Ry, and S, defined above are
harmonic. For one reference for the last statement see the corollary at the end of page 131
of [25].

The distance function Hy' x Hy' 2 Risa (geodesically) convex function and for every
m, the map x — d (R, (x),Sm(x)) is harmonic (see the second example in page 133 of [25]).
Therefore, for every m the function L,, is subharmonic (see Theorem 3.4 in [34]) and by
Lemma 4.1.4, the map z+— d(U(z), V(z)) is subharmonic.
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Notice that for every z€ X d(u,v) = d(U(z),V(z)), also

d(U(x0),V(x0)) = lmd(Tm(xo),Sm(x0))
= lirlr}ld(um,m(xo),vm,m(xo))

= lirglnd(u(xm,m), v(xmm)) =d(u,v).

Therefore d(U(z), V(z)) is constant as a consequence of the maximum principle for sub-
harmonic maps. By construction, for every z,

hence, by Lemma 2.2 in [38], either u = v or the images of u and v are contained in a
geodesic. 0

Lemma 4.1.6. If T is a torsion-free uniform lattice of SU(1, n), then the following hold:

1. All the non-trivial elements act as hyperbolic isometries of H{.

2. If¢(g) is the translation length of g acting as an isometry of H?, then
inf{¢(y)|yel\{e}}>0.

3. There exists g € SU(1,n) such that gT g~ andT are non-commensurable.

Proof. For 1) and 2) see Proposition I1.6.10 in [7] and observe that if g € I'\{e} acts as an
elliptic isometry, then it is contained in a compact (finite) subgroup of I and this cannot be
the case.

For 3) observe that every y € I'\{ e} preserves a unique axis in H¢ and that I' is finitely
generated (see Theorem 6.15 and Remark 6.18 in [46]). Define

X ={¢{eH|y¢=¢forsomeyeTl}.

Let x€ X and g € SU(1, n) be such that gx ¢ X. This is possible because X is countable. The
claim is that gT'g~! and I are not commensurable. Indeed, gx is fixed by some f € gT'g ™!,
but for every n, 6 and 6" share the axis, therefore the two lattices cannot be commensurable.

O

The existence of uniform lattices in connected, non compact and semisimple groups
is due to Borel, for one reference see Chapter XIV in [46]. Any of these lattices is finitely
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generated and as a consequence of Selberg’s Lemma (see [2]) they are also virtually torsion-
free. This two facts together with the previous observations show that there exist I'; and I',
non-commensurable uniform lattices in SU(1, n).

Following [28], a pair (G, H) is called a Borel pair if G does not admit non-trivial homo-
morphisms to a compact group, H is a closed subgroup and G/H admits a finite G-invariant
measure. In this article the author showed that if (G, H) is a Borel pair, where G is a con-
nected real algebraic group, then H is Zariski-dense in G (see Corollary 4 in [28]).

The claim is that SU(1, n) does not have homomorphisms to compact Lie groups. If
G5 Hisan homomorphism of Lie groups, where G is connected, semisimple and with
finite center, then the image of ¢ is closed (see Corollary 1.2 and the proof of Corollary 1.3
in [45]). Therefore if there exists a non-trivial Lie group homomorphism G %K , where
K is a compact Lie group, then the image is a compact and semisimple Lie group. This
produces a decomposition in g, the Lie algebra of G, g = a + at, where a is the kernel of dy
and a is the complement with respect to the Killing form. The map di restricted to a™ is
an isomorphism, therefore the Killing form of a' is negative definite. The normal subgroup
associated to this ideal is compact (see Corollary 3.6.3 in [24]). This shows that SU(1, n)
does not admit non-trivial homomorphisms to compact Lie groups because SU(1, ) does
not admit compact normal subgroups.

Lemma 4.1.7. Given two non-commensurable latticesT'; and T, of SU(1,n) (or any con-
nected real semisimple linear algebraic group without compact factors), the group H gener-
ated byT'y UT; is dense inSU(1, n).

Proof. Observe that H, the closure of H for the usual topology, is Zariski-dense in SU(1, n).
Consider § the Lie subalgebra of H. This space is invariant under the action of H, therefore
it is SU(1, n)-invariant because the action is Zariski-continuous. This means that H is
a normal subgroup of SU(1, ), but SU(1, n) is simple. Suppose H, is the trivial group.
Observe that FI/ I'; carries a finite invariant measure (see Lemma 1.6 in [46]), therefore I'y
and ', have finite index in H. This implies that I'; and I'y are commensurable, which is a
contradiction. O

Let SU(1,n) 2, PU(1, n) be the projectivization map. This is a surjective homomor-

phism. The map ¢ has finite kernel, therefore if I'; and I'; are as above, ¢(I';) and ¢(T'2)
are two uniform non-commensurable lattices of PU(1, n). Indeed, observe that I'; ker(¢) is
closed and countable (discrete), therefore there is U an open subset of SU(1, n) such that
Un (Tiker(¢)) = {e}. This shows that ¢(I';) is a discrete subgroup of PU(1, n). For the exis-
tence of a finite ¢(SU(1, n))-invariant measure observe that there is a natural continuous
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G-equivariant bijection
SU(1,n)/Ti — ¢(SU(1,n))/$(T:)

where the domain is compact. The lattices ¢(T';) and ¢(I'») are not commensurable because
ker(¢) is finite. The group generated by ¢(I';) and ¢(T'2) is dense because I'; and I',
generate a dense subgroup of SU(1, n).

Theorem 4.1.8. For n > 2, PU(1, n) does not admit non-elementary representations into
Isom(HY).

Proof. Let p be a non-elementary representation, given a torsion-free uniform lattice I of
PU(1, n), the restriction of p to I is non-elementary. Therefore there exists a I'-equivariant,
harmonic and Lipschitz continuous map H¢ RN HY’ (see Theorem 2.3.1 of [35]). In Section
3.2 of [22], the authors showed that this map is €.

Given I'; and I', two non-commensurable and uniform lattices of PU(1, n), there are
%2, harmonic, Lipschitz and I';-equivariant functions, Hg -, Hif. Therefore, it follows
from Lemmas 4.1.2 and 4.1.5 that u; = uy. This implies that the function u = u; is PU(1, n)-
equivariant. In Proposition 8 of [22], the authors showed that the real rank of u is at most 2.
The arguments used there go back to the work of Sampson (see [47]). If x € H}, the kernel
of d fy is nontrivial. The group Stab(x) acts transitively in spheres of the tangent space of x
and u is PU(1, n)-equivariant, therefore u is constant, but this is a contradiction. O

128



Bibliography

(1]

(2]

3]

(4]

[5]

[6]

[7]

(8]

Scot Adams and Werner Ballmann. “Amenable isometry groups of Hadamard spaces”.
In: Mathematische Annalen 312.1 (1998), pp. 183-195.

Roger C. Alperin. “An elementary account of Selberg’s lemma”. In: L'Enseignement
Mathématique. Revue Internationale. 2e Série 33.3-4 (1987), pp. 269-273.

Bachir Bekka, Pierre de la Harpe, and Alain Valette. Kazhdan’s property (T). Vol. 11.
New Mathematical Monographs. Cambridge University Press, Cambridge, 2008,
pp. xiv+472. ISBN: 978-0-521-88720-5. DOI: 10.1017/CB09780511542749. URL:
https://doi.org/10.1017/CB09780511542749.

Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic analysis on
semigroups. Vol. 100. Graduate Texts in Mathematics. Theory of positive definite and
related functions. Springer-Verlag, New York, 1984, pp. x+289. 1SBN: 0-387-90925-7.
DOI: 10.1007/978-1-4612-1128-0. URL: https://doi.org/10.1007/978-1-
4612-1128-0.

Charles Boubel and Abdelghani Zeghib. “Isometric actions of Lie subgroups of the
Moebius group”. In: Nonlinearity 17.5 (2004), pp. 1677-1688. 1SSN: 0951-7715.
DOI: 10.1088/0951-7715/17/5/006. URL: https://doi.org/10.1088/0951-
7715/17/5/006.

Emmanuel Breuillard and Koji Fujiwara. “On the joint spectral radius for isometries
of non-positively curved spaces and uniform growth”. In: Université de Grenoble.
Annales de I'Institut Fourier 71.1 (2021), pp. 317-391. 1SSN: 0373-0956. URL: http:
//aif.cedram.org/item?id=AIF_2021__71_1_317_0.

Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature.
Vol. 319. Grundlehren der mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Springer-Verlag, Berlin, 1999, pp. xxii+643.

Marc Burger and Alessandra Iozzi. “Bounded cohomology and totally real subspaces
in complex hyperbolic geometry”. In: Ergodic Theory and Dynamical Systems 32.2
(2012), pp. 467-478.

129


https://doi.org/10.1017/CBO9780511542749
https://doi.org/10.1017/CBO9780511542749
https://doi.org/10.1007/978-1-4612-1128-0
https://doi.org/10.1007/978-1-4612-1128-0
https://doi.org/10.1007/978-1-4612-1128-0
https://doi.org/10.1088/0951-7715/17/5/006
https://doi.org/10.1088/0951-7715/17/5/006
https://doi.org/10.1088/0951-7715/17/5/006
http://aif.cedram.org/item?id=AIF_2021__71_1_317_0
http://aif.cedram.org/item?id=AIF_2021__71_1_317_0

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Marc Burger, Alessandra lozzi, and Nicolas Monod. “Equivariant embeddings of trees
into hyperbolic spaces”. In: International Mathematics Research Notices 22 (2005),
pp- 1331-1369.

Marc Burger and Shahar Mozes. “CAT(-1)-spaces, divergence groups and their com-
mensurators”. In: Journal of the American Mathematical Society 9.1 (1996), pp. 57—
93.

S. V. Buyalo. “Geodesics in Hadamard spaces”. In: Rossiiskaya Akademiya Nauk.
Algebra i Analiz 10.2 (1998), pp. 93-123. 1SSN: 0234-0852.

Pierre-Emmanuel Caprace and Alexander Lytchak. “At infinity of finite-dimensional
CAT(0) spaces”. In: Mathematische Annalen 346.1 (2010), pp. 1-21.

Pierre-Emmanuel Caprace and Nicolas Monod. “Isometry groups of non-positively
curved spaces: discrete subgroups”. In: Journal of Topology 2.4 (2009), pp. 701-746.

Pierre-Emmanuel Caprace and Nicolas Monod. “Isometry groups of non-positively
curved spaces: structure theory”. In: Journal of Topology 2.4 (2009), pp. 661-700.
ISSN: 1753-8416. DOI: 10.1112/jtopol/jtp026. URL: https://doi.org/10.
1112/jtopol/jtp026.

James A. Carlson and Domingo Toledo. “Harmonic mappings of Kédhler manifolds to
locally symmetric spaces”. In: Institut des Hautes Etudes Scientifiques. Publications
Mathématiques 69 (1989), pp. 173-201.

Pierre-Alain Cherix, Michael Cowling, Paul Jolissaint, Pierre Julg, and Alain Valette.
Groups with the Haagerup property. Vol. 197. Progress in Mathematics. Gromov’s
a-T-menability. Birkhduser Verlag, Basel, 2001, pp. viii+126. ISBN: 3-7643-6598-6.
DOI: 10.1007/978-3-0348-8237-8. URL: https://doi.org/10.1007/978-3-
0348-8237-8.

M. Coornaert, T. Delzant, and A. Papadopoulos. Géométrie et théorie des groupes.
Vol. 1441. Lecture Notes in Mathematics. Les groupes hyperboliques de Gromov.
[Gromov hyperbolic groups], With an English summary. Springer-Verlag, Berlin, 1990,
pp- x+165.

Yves de Cornulier. “On lengths on semisimple groups”. In: Journal of Topology and
Analysis 1.2 (2009), pp. 113-121.

Yves de Cornulier, Romain Tessera, and Alain Valette. “Isometric group actions on
Hilbert spaces: growth of cocycles”. In: Geometric and Functional Analysis 17.3
(2007), pp. 770-792.

130


https://doi.org/10.1112/jtopol/jtp026
https://doi.org/10.1112/jtopol/jtp026
https://doi.org/10.1112/jtopol/jtp026
https://doi.org/10.1007/978-3-0348-8237-8
https://doi.org/10.1007/978-3-0348-8237-8
https://doi.org/10.1007/978-3-0348-8237-8

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

Tushar Das, David Simmons, and Mariusz Urbanski. Geometry and dynamics in Gro-
mov hyperbolic metric spaces. Vol. 218. Mathematical Surveys and Monographs. With
an emphasis on non-proper settings. American Mathematical Society, Providence,
RI, 2017, pp. xxxv+281.

Patrick Delorme. “1-cohomologie des représentations unitaires des groupes de Lie
semi-simples et résolubles. Produits tensoriels continus de représentations”. In:
Bulletin de la Société Mathématique de France 105.3 (1977), pp. 281-336. ISSN: 0037-
9484. URL: http://www.numdam.org/item?id=BSMF_1977__105__281_0.

Thomas Delzant and Pierre Py. “Kédhler groups, real hyperbolic spaces and the Cre-
mona group”. In: Compositio Mathematica 148.1 (2012), pp. 153-184.

Bruno Duchesne, Jean Lécureux, and Maria Beatrice Pozzetti. “Boundary maps and
maximal representations on infinite-dimensional Hermitian symmetric spaces”. In:
Ergodic Theory and Dynamical Systems (2021), pp. 1-50. DO1: 10.1017/etds.2021.
111.

J.J. Duistermaat and J. A. C. Kolk. Lie groups. Universitext. Springer-Verlag, Berlin,
2000, pp. viii+344.

James Eells Jr. and J. H. Sampson. “Harmonic mappings of Riemannian manifolds”.
In: American Journal of Mathematics 86 (1964), pp. 109-160.

Ryszard Engelking. General topology. Second. Vol. 6. Sigma Series in Pure Mathe-
matics. Translated from the Polish by the author. Heldermann Verlag, Berlin, 1989,
pp. viii+529. 1SBN: 3-88538-006-4.

Gerald B. Folland. A course in abstract harmonic analysis. Studies in Advanced
Mathematics. CRC Press, Boca Raton, FL, 1995, pp. x+276.

Harry Furstenberg. “A note on Borel’s density theorem”. In: Proceedings of the
American Mathematical Society 55.1 (1976), pp. 209-212.

Etienne Ghys and Pierre de la Harpe. In: Sur les groupes hyperboliques d'apres Mikhael
Gromov (Bern, 1988). Vol. 83. Progr. Math. Birkhduser Boston, Boston, MA, 1990,
pp. 1-25.

David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second
order. Classics in Mathematics. Reprint of the 1998 edition. Springer-Verlag, Berlin,
2001, pp. xiv+517.

William M. Goldman. Complex hyperbolic geometry. Oxford Mathematical Mono-
graphs. Oxford Science Publications. The Clarendon Press, Oxford University Press,
New York, 1999, pp. xx+316. ISBN: 0-19-853793-X.

131


http://www.numdam.org/item?id=BSMF_1977__105__281_0
https://doi.org/10.1017/etds.2021.111
https://doi.org/10.1017/etds.2021.111

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

A. Guichardet. Cohomologie des groupes topologiques et des algebres de Lie. Vol. 2.
Textes Mathématiques [Mathematical Texts]. CEDIC, Paris, 1980, pp. xvi+394. ISBN:
2-7124-0715-6.

A. Guichardet and D. Wigner. “Sur la cohomologie réelle des groupes de Lie simples
réels”. In: Annales Scientifiques de I'Ecole Normale Supérieure. Quatrieme Série 11.2
(1978), pp. 277-292. 1SSN: 0012-9593. URL: http://www.numdam. org/item?id=
ASENS_1978_4_11_2_277_0.

Toru Ishihara. “A mapping of Riemannian manifolds which preserves harmonic
functions”. In: Journal of Mathematics of Kyoto University 19.2 (1979), pp. 215-229.

Nicholas J. Korevaar and Richard M. Schoen. “Global existence theorems for har-
monic maps to non-locally compact spaces”. In: Communications in Analysis and
Geometry 5.2 (1997), pp. 333-387.

Nicholas J. Korevaar and Richard M. Schoen. “Sobolev spaces and harmonic maps
for metric space targets”. In: Communications in Analysis and Geometry 1.3-4 (1993),
pp- 561-659.

Serge Lang. SL,(R). Vol. 105. Graduate Texts in Mathematics. Reprint of the 1975
edition. Springer-Verlag, New York, 1985, pp. xiv+428. ISBN: 0-387-96198-4.

Peter Li and Jiaping Wang. “Harmonic rough isometries into Hadamard space”. In:
Asian Journal of Mathematics 2.3 (1998), pp. 419-442.

Nicolas Monod. Continuous bounded cohomology of locally compact groups.
Vol. 1758. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2001, pp. x+214.
ISBN: 3-540-42054-1. DOI1: 10.1007/b80626. URL: https://doi.org/10.1007/
b80626.

Nicolas Monod. “Notes on functions of hyperbolic type”. In: Bulletin of the Belgian
Mathematical Society. Simon Stevin 27.2 (2020), pp. 167-202.

Nicolas Monod and Pierre Py. “An exotic deformation of the hyperbolic space”. In:
American Journal of Mathematics 136.5 (2014), pp. 1249-1299.

Nicolas Monod and Pierre Py. “Self-representations of the Mdbius group”. In: Annales
Henri Lebesgue 2 (2019), pp. 259-280. DO1: 10.5802/ahl.14. URL: https://doi.
org/10.5802/ahl. 14.

G. D. Mostow. “Some new decomposition theorems for semi-simple groups”. In:
Memoirs of the American Mathematical Society 14 (1955), pp. 31-54. 1SSN: 0065-9266.

132


http://www.numdam.org/item?id=ASENS_1978_4_11_2_277_0
http://www.numdam.org/item?id=ASENS_1978_4_11_2_277_0
https://doi.org/10.1007/b80626
https://doi.org/10.1007/b80626
https://doi.org/10.1007/b80626
https://doi.org/10.5802/ahl.14
https://doi.org/10.5802/ahl.14
https://doi.org/10.5802/ahl.14

(44]

[45]

[46]

(47]

(48]

(49]

Seiki Nishikawa. Variational problems in geometry. Vol. 205. Translations of Math-
ematical Monographs. Translated from the 1998 Japanese original by Kinetsu Abe,
Iwanami Series in Modern Mathematics. American Mathematical Society, Providence,
RI, 2002, pp. xviii+209.

Hideki Omori. “Homomorphic images of Lie groups”. In: Journal of the Mathematical
Society of Japan 18 (1966), pp. 97-117.

M. S. Raghunathan. Discrete subgroups of Lie groups. Ergebnisse der Mathematik und
ihrer Grenzgebiete, Band 68. Springer-Verlag, New York-Heidelberg, 1972, pp. ix+227.

J. H. Sampson. “Applications of harmonic maps to Kidhler geometry”. In: Complex
differential geometry and nonlinear differential equations (Brunswick, Maine, 1984).
Vol. 49. Contemp. Math. Amer. Math. Soc., Providence, RI, 1986, pp. 125-134. DO1:
10.1090/ conm/049/833809. URL: https://doi.org/10.1090/ conm/ 049/
833809.

William P. Thurston. Three-dimensional geometry and topology. Vol. 1. Vol. 35.
Princeton Mathematical Series. Edited by Silvio Levy. Princeton University Press,
Princeton, NJ, 1997, pp. x+311. 1SBN: 0-691-08304-5.

Albert Wilansky. Modern methods in topological vector spaces. McGraw-Hill Interna-
tional Book Co., New York, 1978, pp. xiii+298. 1SBN: 0-07-070180-6.

133


https://doi.org/10.1090/conm/049/833809
https://doi.org/10.1090/conm/049/833809
https://doi.org/10.1090/conm/049/833809

	Acknowledgments
	Abstract (English/Français)
	Contents
	Introduction
	Preliminaries
	CAT(-1) spaces
	Groups of isometries of CAT(-1) spaces
	The hyperbolic spaces
	Functions of complex hyperbolic type
	Hyperbolic representations

	Representations of PU(1,n)
	Non-elementary representations and stabilizers
	Representations and displacement

	Representations of PU(1,1)
	Invariants of representations
	Extending certain parabolic representations
	A new family of representations 

	Non-elementary representations of PU(1,n), with n>1
	Harmonic functions, lattices and representations

	Bibliography



