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Abstract

In this thesis we study the isometric representations of the groups PUp1,nq in the infinite-

dimensional hyperbolic spaces. These spaces and their isometry groups are described.

Invariants for hyperbolic representations of such groups are introduced and in terms of

them partial results about the classification of such representations are obtained.

In the case of PUp1,1q a method to obtain new representations from the known ones is

developed. With it, a family of representations is described which has not been described

before.
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Résumé

Dans cette thèse, nous étudions les représentations isométriques des groupes PUp1,nq dans

les espaces hyperboliques de dimension infinie. Ces espaces et leurs groupes d’isométrie

sont décrits.

Des invariants pour les représentations hyperboliques de ces groupes sont introduits et

des résultats partiels sur la classification de ces représentations sont obtenus en fonction

de ces invariants.

Dans le cas de PUp1,1q, une méthode permettant d’obtenir de nouvelles représentations

à partir des représentations connues est développée. Cette méthode permet de décrire une

famille de représentations qui n’a jamais été décrite auparavant.
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Introduction

This work investigates the problem of hyperbolic representations of isometry groups of

finite-dimensional complex hyperbolic spaces. Representations of one semi-simple Lie

group into another have no mysteries: by the Karpelevich–Mostow theorem (see [43], or

for a proof in the hyperbolic case, see [5]), they are all “standard” in the sense that they

correspond to totally geodesic or trivial embeddings of the corresponding symmetric spaces

of the simple factors.

The situation changes radically for representations on the infinite-dimensional spaces.

There are “exotic” representations that do not correspond to totally geodesic embeddings

(see for example [41]).

The infinite-dimensional hyperbolic spaces can be understood as limits of nested finite-

dimensional ones. Indeed, if F “ R,C and H is a Hilbert space over F, define the Hermitian

form B on F ‘V , given by

Bpa ‘ u,b ‘ vq “ ab ´xu, vy.

If κ is the dimension of H , the set of positive F-lines (with respect to B) in F ‘ H is defined

as the κ-dimensional F-hyperbolic space Hκ
F. If the Hilbert space H is considered finite-

dimensional, this definition recovers the classical definition of the finite-dimensional

hyperbolic spaces.

The group OFpBq of invertible F-linear transformations of F ‘ H preserving the form

B acts through isometries on Hκ
F. In the case F “ R, the group OFpBq induces through

projectivization the entire isometry group of Hκ
F. For F “ C, the group induced has index

2. If F “ R, the group of isometries induced by OFpBq is denoted POp1,κq and if F “ C, the

group is denoted PUp1,κq.

The object of study of this work, therefore, is homomorphisms PUp1,nq Ñ POpBqκF, for

every n ě 1. As mentioned above, the cases that are of interest or that have not already been

classified are the cases when in the target the groups considered are POp1,8q or PUp1,8q.
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The study of hyperbolic representations in general is interesting because it lies at an

intersection between the theory of Lie groups, the theory of hyperbolic lattices, geometric

group theory, theory of CAT(-1) metric spaces as well as the classical theories of unitary,

affine and projective representations of groups.

It could be said, in particular with respect to the latter two theories, that hyperbolic

representations emerged alongside unitary representations in the context of Pontryagin

spaces. Moreover, through horospherical representations, hyperbolic representations can

be considered a generalization of affine representations, and therefore also of unitary

representations.

Even if this subject has been studied from many perspectives for some time, a systematic

study for a general group is very recent and it is still to be developed. However, important

progress has been made and classification results have been obtained for the cases of

irreducible representations POp1,nq Ñ POp1,8q (Monod & Py [41]), POp1,8q Ñ POp1,8q

(Monod & Py [42]) and IsompTnq Ñ POp1,8q, where Tn is a homogeneous tree of degree

n ě 3 (Burger, Iozzi & Monod [9]).

The three classification results mentioned above have a common characteristic, the

classification is given by the displacement. Given a metric space X and an isometry g , the

displacement of g is defined as

ℓpg q “ inf
xPX

tdpg x, xqu.

If G is POp1,nq, POp1,8q or IsompTnq, for any (irreducible) representation G
ρ

ÝÑ POp1,8q,

there exists t ą 0 such that for every g P G , ℓpρpg qq “ tℓpg q. Through this text, the parame-

ter t is called the displacement of ρ and is denoted ℓpρq.

Specifically, in all three cases, the respective authors showed that two irreducible rep-

resentations are equivalent if, and only if, they have the same displacement. They also

showed that for a representation ρ of G , ℓpρq P p0,1q, if G is equal to POp1,nq or POp1,8q,

and ℓpρq P p0,8q, if G “ IsompTnq. Moreover, every t in the aforementioned intervals is

realized as the displacement of a representation.

The classification of representations POp1,nq Ñ POp1,8q will be of relevance for this

work. Due to the fact that the continuous cohomology group in degree 2 of POp1,nq is

trivial, for every n ą 3 the same classification is valid If PUp1,8q is considered instead

of POp1,8q. This classification, the statement of which is the same when considering the

group POp1,nqo instead of POp1,nq, will be used when studying representations of the

10



group PUp1,1q because PUp1,1q and POp1,2qo are isomorphic.

One of the questions that this thesis addresses is whether this same behavior occurs

for representations PUp1,nq Ñ PUp1,8q. The answer for n “ 1 is negative. There are non-

equivalent irreducible representations with the same displacement (see Theorem 3.3.1).

This leads to mention another invariant for representations PUp1,nq Ñ PUp1,8q. Given

three points x, y, z P Hκ
C, with κ finite or infinite, the Cartan argument of the triple px, y, zq is

defined as follows. Recall that Hκ
C is the set of positive complex lines in C ‘ H with respect

to the form B . The Cartan argument of px, y, zq is defined as

Arg
`

Bpx̃, ỹqBpỹ , z̃qBpz̃, x̃q
˘

P p´π
2 , π2 q,

for any representatives x̃, ỹ , z̃, and is denoted Cartpx, y, zq.

If PUp1,nq
ρ

ÝÑ PUp1,8q is an irreducible representation and x P Hn
C, there exists a

unique PUp1,nq-equivariant map Hn
C

f
ÝÑ H8

C (see Proposition 5.8 in [40]). If x P Hn
C, there

exists s P r0,1s such that for every g1, g2, g3 P PUp1,nq,

Cart
`

f pg1xq, f pg2xq, f pg3xq
˘

“ sCart
`

g1x, g2x, g3x
˘

.

The scalar s does not depend on the choice of x and the argument of ρ is defined as

Argpρq “ sπ
2 (see Remarks 1.3.15 and 3.1.6).

Constructing irreducible representations has proven to be a difficult task. In [40] Monod

developed a fruitful method for generating representations from existing ones. In the spirit

of the relationship between functions of positive type and cyclic unitary representations of

a given group, in the aforementioned paper the author defined the functions of complex

hyperbolic type.

A pair pβ,αq is a function of complex hyperbolic type defined on a group G if, and only

if, there exists a representation G
ρ

ÝÑ IsompHκ
Cqo and x P Hκ

C with a total orbit such that for

g , g1, g2, g3 P G , βpg q “ coshpdpρpg qx, xq and

αpg1, g2, g3q “ Cart
`

ρpg1qx,ρpg2qx,ρpg3qx
˘

.

Monod also showed that if t P p0,1q and pβ,αq is a function of complex hyperbolic type,

then pβt , tαq is a function of complex hyperbolic type. This is so far the only general method

for constructing new representations. In fact, with this method it is possible to construct all

irreducible representations of POp1,nq.
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The group PUp1,nq acts on Hn
C, hence there exists pβ,αq a “tautological” function of

complex hyperbolic type coming from that action. Using the “exponentiation” of functions

of complex hyperbolic type, Monod showed the existence, for every t P p0,1q, of irreducible

representation PUp1,nq
ρt
ÝÑ PUp1,8q such that

pℓpρt q,Argpρt qq “ pt , tπ
2 q.

This indicates that the behaviour of the representations of POp1,nq and of PUp1,nq are

different. In fact, since for n ą 2 the continuous cohomology in degree 2 of POp1,nq is

zero, for every irreducible representation POp1,nq
ρ

ÝÑ PUp1,8q, Argpρq “ 0. The following

is Theorem 4.1.8.

Theorem For n ą 1, every irreducible representation PUp1,nq
ρ

ÝÑ PUp1,8q is such that

Argpρq ‰ 0.

Things change if n “ 1 is consider. As the group PUp1,1q is isomorphic to POp1,2qo ,

there are two families of irreducible representations of different nature. On the one hand,

the representations PUp1,1q
ρt
ÝÑ PUp1,8q coming from the “exponentiation” described

before, and on the other hand, the representations PUp1,1q
τt
ÝÑ PUp1,8q coming from the

classification of irreducible representations POp1,2q Ñ POp1,8q. These two families are

such that

pℓpρt q,Argpρt qq “ pt , tπ
2 q

and

pℓpτt q,Argpτt qq “ pt ,0q.

It is clear that ρt and τt are non-equivalent because they have different argument.

In that direction, using the theory of functions of complex hyperbolic type, Theo-

rem 3.1.11 is proved.

Theorem Two irreducible representations PUp1,1q
ρi
ÝÑ PUp1,8q are equivalent if, and only if,

pℓpρ1q,Argpρ1qq “ pℓpρ2q,Argpρ2qq.

The results described so far are enough to show that for the groups PUp1,nq, with n ą 1,

POp1,nq, with n ą 2, and PUp1,1q the theories of complex hyperbolic representations are

completely different.

Furthermore, for PUp1,1q a phenomenon is observed that had not been described for
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the other groups mentioned. It had already been commented that the “exponentiation” was

the only general method available to obtain new representations from existing ones. For

PUp1,1q a new method, called the horospherical combination, is available. The following is

Theorem 3.2.12.

Theorem If ϕ and ψ are two irreducible representations of PUp1,1q in PUp1,8q with dis-

placement t , for every u P r0,1s, there exists an irreducible representation ϕ^
u
ψ such that

ℓpϕ^
u
ψq “ t and

Argpϕ^
u
ψq “ p1 ´ uqArgpϕq` uArgpψq.

With the horospherical combination it is possible to produce from the representations

ρt and τt described before, a continuum of non-equivalent representations all of them with

the same displacement.

Although a classification has not been achieved for the representations of PUp1,nq, it

is clear that the complex representations of these groups present a behaviour that differs

radically from the representations of POp1,nq.

The text is organized as follows. The Chapter 1 consists of preliminaries. Many of the

arguments used through the text work in a CAT(-1) generality, for this reason this spaces are

briefly reviewed. In this chapter the functions of complex hyperbolic type are addressed

and some results about them are presented.

In Chapter 2 the restriction of a representation to the stabilizer of a point at infinity is

analyzed. This technique, that was used in [41] and can be tracked back to [9], is funda-

mental for the study of the invariants defined before and in the process of constructing the

horospherical combination in the case n “ 1.

Chapter 3 focuses on the representations of PU(1,1). It is shown that the argument and

displacement of a representation is a complete invariant. The horospherical combination

is introduced and with it a new family of representations is described.

Chapter 4 deals with non-elementary representations of PUp1,nq, with n ą 1. It is shown

that every representation of PUp1,nq has non-zero argument.

13
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Chapter 1

Preliminaries

This chapter will present the preliminaries necessary for the rest of this work. None of the

results presented in this chapter is original and if any proof is given it is due to the fact that

the references in the literature are either unknown to the author or because in the specific

context of this work, such proofs can be simplified. Nevertheless, this chapter is intended

to be presented in a coherent way and not strictly as a list of results to be used.

In Section 1.1 some general results about CAT(-1) spaces are described placing special

emphasis on its visual boundary. In Section 1.2 groups of isometries of CAT(-1) spaces are

considered, as well as isometric representations of groups in CAT(-1) spaces. In this section,

particular attention is paid to the elementary and non-elementary cases.

In Section 1.3 hyperbolic spaces of any dimension are introduced with emphasis in the

non-locally compact setting. Isometry groups of the hyperbolic spaces and especially their

description with linear transformations are addressed.

Section 1.4 will briefly outline the functions of complex hyperbolic type introduced

by Monod in [40]. In Section 1.5 some applications of the theory of functions of complex

hyperbolic type that will be used in the following chapters are described. As well as its

implications with respect to the existence of “non-trivial" representations for PU(1,n).
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1.1 CAT(-1) spaces

Let X be a metric space. Given an interval I Ă R, a curve I
γ

ÝÑ X is called a geodesic if for

every x, y P I , dpx, yq “ dpγpxq,γpyqq. The geodesic γ is called complete if I “ R. A metric

space is called geodesic if for every two points there exists a geodesic (segment) connecting

them.

Let X be a geodesic metric space. For three points x, y, z P X , a geodesic triangle with

vertex x, y, z, denoted ∆px, y, zq, is the union of the images of three geodesic (segments)

connecting the points x, y, z.

Let H2
R be the real hyperbolic plane (see Section 1.3). For any geodesic metric space

X , three points x1, x2, x3 P X and a geodesic triangle ∆px1, x2, x3q, a comparison triangle in

H2
R is a geodesic triangle ∆px1, x2, x3q Ă H2

R such that such that dpxi , x j q “ dpppxi q, ppx j qq.

Observe that there exists a map

△px1, x2, x3q
p

ÝÑ△px1, x2, x3q,

called comparison map, that restricted to the sides of the triangles is an isometry. Compar-

ison triangles in H2
R always exist for any triple of points in any metric space (see Lemma

I.2.4 [7]).

A geodesic metric space X is called a CAT(-1) space if for every three points x1, x2, x3 P X ,

every comparison map

△px1, x2, x3q
p

ÝÑ△px1, x2, x3q

is such that for every x, y P△px1, x2, x3q, dpx, yq ď dpppxq, ppyqq.

Analogously, a geodesic space is called CAT(0) if the same property holds, but the

comparison triangles are considered in R2. In this work CAT(-1) spaces will always be

considered complete.

For a CAT(-1) space X , there exists a constant δ ą 0 such that every triangle in X is

δ-slim. That is to say that given three points x1, x2, x3 P X , if rxi , x j s is the geodesic segment

connecting xi and x j , then every p P rx1, x2s is at distance less than δ to some point in

rx1, x3sYrx2, x3s (see Proposition III.H.1.2 in [7]).

Let X be a metric space. Given three points x, y, z P X define the Gromov product of y
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and z with respect to x as,

py, zqx “
1

2
pdpy, xq` dpz, xq´ dpy, zqq .

A metric space X is called Gromov hyperbolic if there exists δą 0 such that for every w, x, y, z,

px, yqz ě mintpx, wqz ,pw, yqzu´δ.

A sequence pxi q in X is called a Gromov sequence if for z0 a (any) base point,

lim
n,mÑ8

pxn , xmqz0 “ 8.

Two Gromov sequences, pxi q and pyi q, are called equivalent if for z0 a (any) base point,

lim
n,mÑ8

pxn , ymqz0 “ 8.

The relation defined above in the set of Gromov sequences is an equivalence relation.

Denote Bg X the set of equivalence classes of Gromov sequences in X . The set Bg X will be

called the boundary at infinity of X.

Every CAT(-1) space is Gromov hyperbolic (Proposition 3.3.4 in [20]), therefore there are

two natural ways to define and topologize a boundary at infinity for a complete CAT(-1)

space. The first one is considering X as a Gromov hyperbolic space and taking Bg X . The

second is considering X as a CAT(0) space and defining the boundary at infinity as the

set of equivalence classes of asymptotic geodesic rays. Two geodesic rays σ,τ are called

asymptotic if the map t ÞÑ dpσptq,τptqq is bounded.

It is a classical result that for a CAT(-1) space these two notions are equivalent. A sketch

of a proof will be given later due to the author’s lack of knowledge of a reference in the

literature.

Remark 1.1.1. There is a unique topology on X YBg X such that for S Ă X YBg X , S is open

if, and only if, S X X is open for the metric topology and for every ξ P S XBg X , there exists

t ě 0 such that Nt pξq Ă S, where

Nt pξq “ ty P X YBg X | py,ξqx0 ą tu.

Let X be a complete CAT(0) space and x0 P X a base point. Given two geodesic rays σ

and τ that issue from x0, the map t ÞÑ dpσptq,τptqq is a convex non negative function that
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vanishes at 0, therefore if it is bounded it has to be constant. This observation allows to

make sense of the following definitions.

For s ą r there is a projection

Bpx0, sq
pr,s
ÝÝÑ Bpx0, sq.

This defines and inverse system of topological spaces indexed by the positive numbers. Let

X “ tr0,8q
σ
ÝÑ X |σp0q “ x0 and σ is a generalized geodesic rayu

be the inverse limit associated to this inverse system. Here a generalized geodesic ray is

either a geodesic ray rooted at x0 or a geodesic segment rooted at x0 defined in an interval

r0,r s and considered constant in rr,8q.

Remark 1.1.2. The topology of inverse limit in X (the subspace topology of the product

X Rě0 ) is the same as the topology of uniform convergence on compact sets. This topology

on X , often called the cone topology, restricts to the metric topology on X and it does not

depend on the choice of the base point x0 (see II.8.8 in [7]). Denote Bc X the set of geodesic

(infinite) rays with base point in x0 provided with subspace topology of the cone topology.

For every r ą 0, let

X
pr
ÝÑ Bpx0,r q

be the function that is the identity in Bpx0,r q and pr pσq “ σpr q, for any σ generalized

geodesic ray such is not constant on rr,8q.

Given a geodesic ray ξ, denote Upξ,R,ϵq the set of generalized rays τ such that τ|rR,8q is

not constant and dppRpτq, pRpξqq ă ϵ. Observe that given a geodesic ray ξ, the sets Upξ,R,ϵq

are a neighborhood basis for the cone topology.

The following is Lemma 3.4.10 in [20].

Lemma 1.1.3. Let X be a CAT(-1) space and suppose ξ,η P Bg X and z, w P X . If pxi q P ξ and

pyi q P η, the limits

pξ,ηqz “ lim
n,mÑ8

pxn , ymqz

and

pξ, wqz “ lim
nÑ8

pxn , wqz

exist and do not depend on the choice of representatives.

The next proposition is Lemma 3.4.22 in [20].

18



Proposition 1.1.4. Let X be a CAT(-1) space. Suppose pznq is a sequence in X and suppose

pxnq and pynq are sequences in X YBg X converging with the topology Tg (see Remark 1.1.1)

to z P X and x, y P X YBg X , respectively. Therefore

lim
nÑ8

pxn , ynqzn “ px, yqz .

The next result is often called the finite approximation Lemma, see for example Theorem

1 in Chapter 8 of [17].

Lemma 1.1.5. Suppose pX , x0q is a Gromov hyperbolic (with constant δ) geodesic space and

consider

tx1, . . . , xnu Ă X YBX .

Here a point at infinity is understood as the limit of a geodesic ray. Define Y as the union

of the geodesic segments or geodesic rays rx0, xi s. If 2n ď 2k ` 1, there exists a simplicial tree

Tr pY q and a map Y
f

ÝÑ Tr pY q with the following properties:

1. For every i , the restriction of f to rx0, xi s is an isometry.

2. For every x, y P Y ,

dpx, yq´ 2kδď dp f pxq, f pyqq ď dpx, yq.

When n “ 2 the tree of the finite approximation Lemma is a tripod where the extremes

are f pxi q, with i “ 0,1,2 (see Proposition 3.1 of Chapter 1 in [17]).

Lemma 1.1.6. If X is a CAT(-1) space, then there exists a constant C ą 0 such that for every

x, y, z P X ,

|dpx,ry, zsq´px, yqz | ă C .

Proof. This is just an easy application of the Lemma 1.1.5. Given x, y, z P X , consider

the point w P ry, zs that minimizes the distance between x and the geodesic segment

connecting y and z. Consider w as the root, and x, y, z as the other three points for the

finite approximation Lemma for four points. So it is just a matter of analyzing the possible

combinatorics of the tree that approximates the possible configurations for four points.

Lemma 1.1.7. Let X be a CAT(-1) space, suppose pxnq is a Gromov sequence and fix x0 a

base point. If σn is the geodesic connecting x0 with xn , then for every s ą 0, the sequence

pσnpsqqnPN is Cauchy.
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Proof. There is an abuse of notation because for a given s ą 0, the geodesics σn are defined

on s just for n big enough. Fix s ą 0 and consider xn and xm with n and m big enough such

that

s ă pxn , xmqx0 “ t .

Consider now the geodesic triangle △px0,σnptq,σmptqq and its comparison triangle in R2,

△px0,σnptq,σmptqq. From the finite approximation Lemma, there is a constant C ą 0 that

does not depend on n or m, such that

C

t
ě

dpσnptq,σmptqq

t
“

dpσnptq,σmptqq

t
“

dpσnpsq,σmpsqq

s
ě

dpσnpsq,σmpsqq

s
.

This proofs the claim because C and S are fixed and t goes to infinity when n and m go to

infinity.

Lemma 1.1.8. Every C AT p´1q space is a visibility space, in other words, every two points at

infinity are connected by a geodesic, moreover this geodesic is unique.

Proof. See Proposition 10.1 in [11] for the existence. Observe that if τ and σ are two

different geodesics, the function t ÞÑ dpσptq,τptqq is a convex function. If τ and σ share

their extreme points this function is bounded, but this is a contradiction (see Theorem

II.2.13 in [7]).

As it was mentioned before, the following theorem is a classic result for which the author

could not find a reference for non-proper spaces in the literature.

Theorem 1.1.9. Let X be a CAT(-1) space. There is a natural homeomorphism

ppX ,Bc X q,Tcq
Ψ
ÝÑ ppX ,Bg X q,Tg q.

Proof. Fix a base point z0 P X . Observe that for every geodesic ray τ with τp0q “ z0, the

sequence pτptnqq is a Gromov sequence for any sequence ptnq Ñ 8 and the class of equiva-

lence of this Gromov sequence does not depend on the choice of the sequence ptnq. Hence

for every geodesic ray τ with starting point at z0 there is a well defined Gromov sequence

rτs.

Let Ψ be the map such that Bc X
Ψ|Bc X
ÝÝÝÑ Bg X is defined by Ψpσq “ rσs and such that

Ψ|X is the identity. In Proposition 4 of Chapter 7 in [29] the authors showed, for proper

CAT(-1) spaces, thatΨ|Bc X is a bijection. The same proof can be applied in this context if
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convergence arguments of Arzelà-Ascoli type are exchanged by properties of convergence

of Gromov sequences and applications of the finite approximation Lemma.

Indeed, if σ and τ are two different geodesic rays issuing from x0, consider the geodesic

γ that connects the limits at infinity of σ and τ. Let z P γ be the minimizer of the distance of

points in γ to x0. Without lost of generality, suppose γp0q “ z. By Proposition 1.1.4,

prσs,rτsqx0 “ lim
nÑ8

pγpnq,γp´nqqx0 ,

and by Lemma 1.1.6, for every n,

dpx0,γq “ dpx0,rγpnq,γp´nqsq

is at distance at most C from pγpnq,γp´nqqx0 . Therefore prσs,rτsqx0 ă 8, or in other words,

rσs ‰ rτs. This shows that the mapΨ is injective.

Let pxnq be a Gromov sequence and letσn the geodesic ray issuing from x0 that contains

xn . Lemma 1.1.7 shows that γpsq “ limnÑ8σnpsq exists, the claim is that γ is a geodesic ray

and that pxnq P rγs. Indeed, if s, t ą 0,

dpγpsq,γptqq “ d
´

lim
nÑ8

σnpsq, lim
nÑ8

σnptq

¯

“ lim
nÑ8

dpσnpsq,σnptqq.

For every n, if tn ą 0 is such that xn “σnptnq, then lim
nÑ8

tn “ 8. Without lost of generality,

suppose ptnqn is increasing and observe that for fixed n,

pxn ,γptnqqx0 “ lim
r Ñ8

pxn ,σn`r ptnqqx0 .

It is a consequence of Lemma 1.1.5 in its version for three points that there exists an

independent constant C ą 0 such that

ˇ

ˇpxn , xn`r qx0 ´pxn ,σn`r ptnqqx0

ˇ

ˇă C ,

in other words,
ˇ

ˇ

ˇ
pxn ,γptnqqx0 ´ lim

r Ñ8
pxn , xn`r qx0

ˇ

ˇ

ˇ
ď C .

The sequence pxnq is Gromov, therefore

lim
nÑ8

pxn ,γptnqqx0 “ 8.

This shows that pxnqn P rγs and thatΨ is a bijection.
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The will be shown now thatΨ is a homeomorphism. Fix Nt prσsq for t ą 0 and a geodesic

rayσ issuing from z0. Call C the general constant error coming from the tree approximation

for 3 points. Fix R,ϵą 0 such that R ´ϵ´C ą t `1. Let τ‰σ be a geodesic ray from x0 such

that dpτpRq,σpRqq ă ϵ and consider any s ą R. The claim now is that if

pσpsq,τpsqqz0 ą t ` 1,

then σpsq P Nt prσsq. If this is not the case, then R ą pσpsq,τpsqqz0 and from the tripod

approximation for the points tz0,σpsq,τpsqu,

|pσpsq,τpsqqz0 ´pσpRq,τpRqqz0 | ă C .

But pσpRq,τpRqqz0 ą R ´ ϵ
2 , and therefore, pσpsq,τpsqqx0 ą t ` 1, which is a contradiction.

This shows that pσpsq,τpsqqx0 ą t ` 1 and that

prτs,rσsqx0 “ lim
sÑ8

pσpsq,τpsqqx0 ě t ` 1,

or in other words, that rτs P Nt prσsq.

Observe now that for every r ą 0,

pσps ` r q,τpsqqx0 “ 1
2

`

2s ` r ´ dpσps ` r q,τpsqq
˘

ě 1
2

`

2s ´ dpσpsq,τpsqq
˘

“ pσpsq,τpsqqz0 .

This implies that

lim
r Ñ8

pσps ` r q,τpsqqx0 “ prσs,τpsqqx0 ě t ` 1,

showing thatΨpUpσ,R,ϵqq Ă Nt prσsq.

Fix R,ϵą 0 and consider Upσ,R,ϵq. Suppose that for every t ą 0

Nt prσsq Ć Upσ,R,ϵq.

Thus, for every n P N there exists xn P NnprσsqzUpσ,R,ϵq. This means that for every n,

pxn ,rσsqz0 ě n. Choose sn such that for every r ě sn ,

pxn ,σpr qqz0 ě n.

Without lost of generality, suppose that psnqn and pdpxn , x0qqn are increasing sequences.
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Using the finite approximation lemma for

tz0, xn , xn`r ,σpsn`r qu,

it is possible to show that pxnq is a Gromov sequence. If σn is the geodesic segment that

connects z0 to xn , then

γptq “ lim
nÑ8

σnptq

is a geodesic, in fact γ is such thatΨpγq “ rpxnqs. Here an abuse of notation is made because

only for n bigger than t it is possible to assume that σnptq is defined. By construction

dpγpRq,σpRqq ě ϵ, therefore γ‰σ, but this is a contradiction because pxnq belongs to rγs

and rσs. Therefore there exists t ą 0 such that

Nt prσsq Ă Upσ,R,ϵq.

Proposition 1.1.10. If X is a CAT(-1) space and T P IsompX q, then T induces a homeomor-

phism of BX .

Proof. Consider x0 P X and two geodesic rays σ and τ issuing from x0. Observe that for

R ą 0, dpσpRq,τpRqq “ dpT pσpRqq,T pτpRqqq. This shows that T is an open map because

R ˝σ and R ˝τ are two geodesic rays issuing from T px0q and the cone topology does not

depend on the base point. As T ´1 has the same property, T induces a homeomorphism

BX Ñ BX .

Suppose X is a geodesic metric space. A function X
f

ÝÑ R is called convex if for every

geodesic I
γ

ÝÑ X , the function t ÞÑ f pγptqq is convex.

If X is a CATp0q space, x0 is a base of point of X and ξ P BX , then bξ,x0 , the Busemann

function based on ξ and normalized in x0, is defined as follows. If σ is the geodesic ray that

starts at x0 and points towards ξ, then

bξ,x0pyq “ lim
tÑ8

dpy,σptqq´ t .

This limit exists because the function t ÞÑ dpσptq, yq´ t is decreasing and and for every t ,

|dpσptq, yq ´ t | ď dpx0, yq. Observe that the map bξ,x0 is the pointwise limit of the maps

bt pyq “ dpy,σptqq´ t . For every t ě 0, the maps bt are convex, therefore bξ,x0 is convex too.
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Given two points y1, y2 P X ,

|bξ,x0py1q´ bξ,x0py2q| “ lim
tÑ8

|dpy1,σptqq´ dpy2,σptqq|

“ ď dpy1, y2q.

Hence the following lemma.

Lemma 1.1.11. If ξ P BX and x0 P X , then bξ,x0 is a convex 1-Lipschitz function.

Observe that if X is a CAT(-1) space, x0, y P X and ξ P BX , then

bξ,x0pyq` 2py,ξqx0 “ lim
tÑ8

pdpy,σptqq´ tq` lim
tÑ8

`

dpy, x0q` t ´ dpy,σptqq
˘

“ dpy, x0q.

Given two asymptotic rays σ and τ, there are associated Busemann functions bξ,σp0q and

bξ,τp0q. In a CAT(0) generality, two Busemann functions associated to asymptotic geodesic

rays differ by a constant (see Corollary II.8.20 in [7]). In the CAT(-1) context, this can be

deduced from Proposition 1.1.4. Observe that for every y P X ,

bξ,σp0qpyq “ dpy, x0q´ 2py,ξqx0

“ lim
nÑ8

p´dpτpnq, x0q` dpy,τpnqqq

“ ´bξ,τp0qpx0q` bξ,τp0qpyq.

The level sets of any Busemann function bξ,σp0q are called horospheres (centered at ξ).

In Theorem 1.1 of [12] the authors proved the main statement of 1) in the following

lemma in a more general setting. Also in Proposition 2.1 of [1] there is a similar result for

locally compact CAT(0) spaces. Using the idea of that proof, here an elementary argument

for 1) is given. Part 2) of the next lemma is Proposition 1.2 of [35]).

Lemma 1.1.12. If X is a CAT(-1) space, x0 P X and C “ tCi uiPN is a family of non-empty,

closed and convex subsets of X such that for every n, Cn`1 Ă Cn , then the following hold:

1. If limnÑ8 dpx0,Cnq “ 8, then there exists ξ P BX such that,

tξu “
č

n

BCn .

In particular if there is a group G acting by isometries on X and permuting the elements

of C , then ξ is a G-fixed point.

2. lim
nÑ8

dpx0,Cnq “ 8 if, and only if,
Ş

n Cn “ H.
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Proof. For every n there is xn P Cn such that dpz0, xnq “ dpz0,Cnq. There is a constant C ą 0

coming from the finite approximation lemma such that for every n,m P N,

|dpz0,rxn , xmsq´pxn , xmqz0 | ă C .

If m is bigger than n,

dpz0,rxn , xmsq ě dpz0, xnq,

therefore pxnq is a Gromov sequence. If ξ is its equivalence class, then ξ P
Ş

n BCn .

Suppose there is η‰ ξ such that η P
Ş

n BCn . If τ is the unique geodesic connecting η

and ξ (see Proposition 4.4.4 of [20]), then the image of τ is contained in every Cn . This is a

contradiction because
Ş

n Cn “ H.

The last claim of 1) follows from the fact that G also permutes the elements of tBCnun .

For 2) observe that if dpx0,Cnq is bounded, without lost of generality the Cn can be

considered bounded. Denote r “ suptdpx0,CnqunPN and define for every n, the convex and

closed set

Dn “ ty P Cn | dpx0, yq ď 2r ´ dpx0,Cnqu.

For every n, Dn Ă Cn , because if xn P Cn is such that dpx0,Cnq “ dpx0, xnq, then xn P Dn .

Observe that if n ă m, Cm Ă Cn .

In a triangle ∆pa,b,cq P R2, if m is the midpoint of ra,bs, then

dpc,mq
2

“
1

2
dpc, aq

2
`

1

2
dpc,bq

2
´

1

4
dpa,bq

2,

thus for every x, y, z P X , if m is the midpoint of rx, ys, then

dpz,mq
2

ď
1

2
dpz, xq

2
`

1

2
dpz, yq

2
´

1

4
dpx, yq

2.

Therefore if y, w P Dn and z P Dn is the midpoint of ry, ws, then

dpx0,Cnq2 ď dpx0, zq2

ď 1
2 dpx0, yq2 ` 1

2 dpx0, wq2 ´ 1
4 dpy, wq2

ď 2r ´ dpx0,Cnq´ 1
4 dpy, wq2.

This implies that

dpy, wq
2

ď 8pr ´ dpx0,Cnqq.

This shows that every sequence pynq, with yn P Dn , is a Cauchy sequence, therefore it has a
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limit and because every Cn is closed, this limit is in
Ş

n
Cn .

Remark 1.1.13. Observe that the previous lemma is valid for nested families of convex

sets even if the families considered are not countable. This can shown by considering nets

instead of sequences in the proofs of the Lemmas 1.1.6, 1.1.7 and 1.1.12.

1.2 Groups of isometries of CAT(-1) spaces

If X is CAT(-1) and g P IsompX q, define the displacement of g as ℓpg q “ inftdpg x, xquxPX .

There are two possibilities, either ℓpg q is achieved or not. If it is achieved and ℓpg q “ 0, g is

called elliptic. If ℓpg q is achieved and positive, then g is called hyperbolic. And last, if ℓpg q

is not achieved, g is called parabolic. The type of an isometry of X (hyperbolic, parabolic or

elliptic) is invariant under conjugations.

A proof for the following well known fact can be found in Proposition 3.1 of [6].

Lemma 1.2.1. If X is a CAT(-1) space and g P IsompX q, then for every x P X ,

ℓpg q “ lim
nÑ8

dpg n x, xq

n

and for every n P N, ℓpg nq “ nℓpg q.

Lemma 1.2.2. If X is a CAT(-1) space and g P IsompX q, the following hold:

1. If g is hyperbolic, then g preserves a unique geodesic line and ℓpg q is achieved in it.

2. If g is parabolic, then ℓpg q “ 0, g fixes a unique point in BX and g preserves all the

horospheres centered at it.

Proof. 1) The existence of the geodesic can be found for example in Theorem II.6.8 in [7].

If a hyperbolic isometry preserves two geodesics, then these are asymptotic, thus, up to a

reparametrization, they are equal (see Lemma 1.1.8).

For 2), consider the convex function x
dg
ÞÝÑ dpg x, xq. The convex and closed sets

Cn “ d´1
g rℓpg q,ℓpg q` 1{ns

are non-empty. Due to the fact that ℓpg q is not achieved,
Ş

n Cn “ H. By Lemma 1.1.12,

there exists ξ P BX fixed by g . The claim is that this fixed point is unique. Indeed, suppose
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that g fixes another point at infinity, then g preserves the geodesic line connecting the two

fixed points. The projection onto this g -invariant subspace is a contraction and commutes

with g (see Proposition II.2.4 in [7]). This implies that g is elliptic or hyperbolic because

ℓpg q is achieved in the preserved geodesic line, which is a contradiction.

The fact that ℓpg q “ 0 appears in [11]. Here a proof is given for completeness. Let δ be a

constant such that all the triangles in X are δ-slim. Suppose that g is parabolic and ℓpg q ‰ 0.

By Lemma 1.2.1, without lost of generality, it is possible to suppose that ℓpg q ą 2δ. Fix x0 P X

and let xn “ PCn px0q, where PCn is the projection onto Cn . As
Ş

n Cn “ H, by Lemma 1.1.12,

dpx0, xnq Ñ 8. Observe that the sets Cn are preserved by g , thus the projection onto Cn

commutes with g . Consider n large enough such that x0 and g x0 do not belong to Cn .

Consider now the points x0, g x0, xn and g xn . Define the sets

A “ ty P rg x0, xns | dpy,rg x0, x0sq ă δu

and

B “ ty P rg x0, xns | dpy,rg xn , xnsq ă δu.

If A Y B “ rx0, g x0s, then there exists y P A X B , therefore dpy,rg x0, g xnsq ď δ and

dpy,rx0, xnsq ď δ. This implies that there exist z1 P rg x0, g xns and z2 P rx0, xns such that

dpz1, z2q ă 2δ. This is a contradiction because

2δă dpxn , g xnq ď dpz1, z2q.

The last inequality is a consequence of the fact that g xn “ PCn pz1q and xn “ PCn pz2q.

Therefore, A Y B ‰ rx0, g x0s, which means that there exists y P rg x0, xns such that

dpy,rx0, g x0sq ă δ and dpy,rxn , g xnsq ă δ. This implies that there exist z1 P rx0, g x0s and

z2 P rg xn , xns. such that dpz1, z2q ă 2δ.

For n big enough, define wn P rx0, g x0s and zn P rxn , g xns the points minimizing the

distance between rx0, g x0s and rxn , g xns. Observe that dpzn , wnq ď 2δ and notice that

dpx0, g x0q “ dpg x0, wnq` dpwn , x0q

ě dpg x0, znq` dpx0, znq´ 2dpwn , znq

ě dpg x0, g xnq` dpx0, xnq´ 2δ.

But this a contradiction because txnunPN is unbounded, therefore ℓpg q “ 0.

Let ξ P BX be the point fixed by g . For x, y P X , bξ,σp0qpxq´ bξ,σp0qpyq does not depend
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on the choice of the geodesic ray σ with limit ξ. Observe that

bξ,σp0qpg xq “ bξ,g ´1σp0qpxq

and

|bξ,g ´1σp0qpxq´ bξ,σp0qpxq| ď dpgσp0q,σp0qq.

Thus

|bξ,σp0qpg xq´ bξ,σp0qpxq| ď ℓpg q “ 0.

Hence g preserves the horospheres centered at ξ.

Lemma 1.2.3. If G acts by isometries on a CAT(0) space X , then G fixes a point in X if, and

only if, G has bounded orbits.

Proof. By Corollary II.2.7 of [7], if B Ă X is bounded there exist unique x0 P X and r0 ą 0

such that B Ă Bpx0,r0q and such that

r0 “ infts ą 0 | B Ă Bpy, sq, for some y P X u.

Thus, if B is a bounded orbit of G , then g x0 “ x0.

The following proposition can be found in Theorem 6.2.3 in [20] in a Gromov hyperbolic

generality. The arguments presented there can be simplified in the CAT(-1) context, doing

so, a much simpler proof for the CAT(-1) case will be given.

Proposition 1.2.4. If X is a CAT(-1) space and G ă IsompX q, then one, and only one, of the

following cases occurs.

1. G fixes a point in X .

2. G has unbounded orbits, fixes a point ξ P BX and leaves invariant all the horospheres

centered at ξ.

3. G contains an hyperbolic element.

Lemma 1.2.5. If X is a CAT(-1) space and s ą 0, there exists r “ r psq such that for every g

non-hyperbolic isometry of X , if dpg x, xq ą r then pg x, g ´1xqx ą s, for every x P X .

Proof. Let s ą 0. Suppose that g is elliptic and non-trivial. Let y be a fixed point and x any

other point. As X is Gromov hyperbolic for some constant δ,

pg x, g ´1xqx ě mintpg x, yqx ,pg ´1x, yqxu´δ.
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Observe that

2pg x, yqx “ dpg x, xq “ dpg ´1x, xq “ 2pg ´1x, yq.

Thus, if dpg x, xq ě s `δ` 1, then 2pg x, g ´1xqx ě s.

If g is parabolic, then let σ be the geodesic segment issuing from x and with limit the

fixed point ξ P BX fixed by g . Observe that for every x P X ,

2pg x,ξqx “ lim
tÑ8

`

dpg x, xq` t ´ dpg x,σptqq
˘

“ dpg x, xq´ bξ,σp0qpg xq

“ dpg x, xq´ bξ,σp0qpxq

“ dpg x, xq.

Observe that

pg x,ξqx “ pg ´1x,ξqx “ dpg x, xq,

hence there exists T ą 0 such that

2mintpg x,σpT qqx ,pg ´1x,σpT qqxu ě dpg x, xq´ 1.

Therefore
2pg x, g ´1xqx ě 2mintpg x,σpT qqx ,pg ´1x,σpT qqxu´δ

ě dpg x, xq´δ´ 1.

Thus if dpg x, xq ě s `δ` 1, then 2pg x, g ´1xqx ě s.

Lemma 1.2.6. If X is a CAT(-1) space and pgnq is a sequence in I sompX q of non-hyperbolic

isometries such that dpgn x, xq Ñ 8, then pgn xq is a Gromov sequence.

Proof. Fix s ą 0 such that s ą 4δ and let r psq be like in Lemma 1.2.5. Let r be such that

r ´ s{2 ą r psq. Suppose that

mintdpgn x, xq,dpgm x, xqu ą r psq,

and therefore that,

mintpgn x, g ´1
n xqx ,pgm x, g ´1

m xqxu ě s.

Suppose that pgn x, gm xqx ă s{4. Hence

s{2 ą pgn x, gm xqx `δě pg ´1
n x, gm xqx ,
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and therefore,
s ě 2pg ´1

n x, gm xqx .

“ dpgn x, xq` dpgm x, xq´ dpgn gm x, xq

ě 2r ´ dpgn gm x, xq.

Therefore,

dpgn gm x, xq ě 2r ´ s ą r psq,

and analogously,

dpgm gn x, xq ą r psq.

The last two inequalities imply that

min
␣

pgn gm x, g ´1
m g ´1

n xqx ,pgm gn x, g ´1
n g ´1

m xqx
(

ą s.

Notice that also either pgn x, gm xqx ě s{2 or the two inequalities

pgn x, gn gm xqx “ dpgn x, xq´pg ´1
n x, gm xqx ě r ´ s{2 ą r psq ą s

and analogously,

pgm x, gm gn xqx ą s.

Observe that with the same argument,

min
␣

pg ´1
m x, g ´1

m g ´1
n xqx ,pg ´1

n x, g ´1
n g ´1

m xqx
(

ą s.

Observe that

pgn gm x, gm xqx ě mintpgn gm x, g ´1
m g ´1

n xqx ,pg ´1
m g ´1

n x, gm xqxu´δ

ě mints,pg ´1
m g ´1

n x, gm xqxu´δ.

But also,

pg ´1
m g ´1

n x, gm xqx ě mintpg ´1
m g ´1

n x, g ´1
m xqx ,pg ´1

m x, gm xqxu´δ

ě s ´δ.

Therefore, as

pgn x, gm xqx `δě mintpgn .gm , gnqx ,pgn .gm x, gmqxu,

it is clear that pgn x, gm xqx ě s ´C , for some C ą 0 not depending on n,m or s.
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Proof of Proposition 1.2.4. It is clear that the three cases are exclusive. Suppose that G

does not contain any hyperbolic element and that G has unbounded orbits. Let pgnq be a

sequence in G such that for x P X , dpgn x, xq Ñ 8. By Lemma 1.2.6, pgn xq is a representative

of some ξ P BX . The claim is that ξ is fixed by G . Observe that for any other sequence phnq

in G , if dphn x, xq Ñ 8, then phn xq is a Gromov sequence. Observe that if k2n “ gn and

k2n`1 “ hn , then, by Lemma 1.2.6, pkn xq is a Gromov sequence. This shows that pgn xq and

phn xq are equivalent. For every g P G and every n,

dpg gn x, xq ě dpgn x, xq´ dpg x, xq.

Hence ξ is G- fixed.

If g P G is parabolic, by Lemma 1.2.2, g preserves the horospheres centered at ξ. If g is

elliptic, then g fixes a point x0 P X . Consider σ the geodesic ray issuing from x0 and with

limit ξ. Thus for every y P X , bξ,σp0qpg yq “ bξ,σp0qpyq.

Let G be a group acting on a space X . A function X
f

ÝÑ R is called quasi-invariant if for

every g there exists a constant cpg q such that for every x P X ,

f pg xq´ f pxq “ cpg q.

Observe that the map c in the previous definition has to be a homomorphism. The

statement of the next lemma, but in the context of proper CAT(0) spaces, appears in Section

2 of [1]. Using Lemma 1.1.12, the arguments in the aforementioned article also work for

CAT(-1) spaces.

Lemma 1.2.7. Let a group G act by isometries on a CAT(-1) space X . If the action does not

have fixed points in X YBX , then every continuous quasi-invariant convex function defined

on X is G-invariant, has a lower bound and the non-empty sublevel sets of it are G-invariant

and unbounded.

Proof. Suppose X
F
ÝÑ R is a convex quasi-invariant function. If F is not invariant, there

exists cpg q ‰ 0 for some g P G and therefore F is not bounded below or above. Without lost

of generality suppose cpg q ă 0 and define, for every n P Z,

Cn “ F ´1
p´8,cpg n

qs.

Observe the sets Cn are convex, closed and nested and
Ş

nPZ
Cn “ H. By Lemma 1.1.12, there
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exists a G-fixed point in BX , which is a contradiction. Observe that the same arguments

show that F has to be bounded from below. As G does not fix points in X , every non-empty

sublevel set of F has to be unbounded (see Lemma 1.2.3).

Let G be a topological group and let X be a topological space. An action of G on X is

called orbitally continuous if for every x P X , the map g ÞÑ g ¨ x is continuous. From now on

through all the text the representations will be considered orbitally continuous.

Proposition 1.2.8. If X is a CAT(-1) space such that BX ‰ H and G
ρ

ÝÑ IsompX q is a repre-

sentation, then for every ξ P BX , the map G Ñ BX , given by g ÞÑ ρpg qξ, is continuous.

Proof. It is enough to show that the map t ÞÑ ρpg qξ is continuous at e P G . Fix R ą 0

and x0 P X . For g P G , let σ and τ be geodesic rays issuing from x0 representing ξ and gξ

respectively. Observe that gσ and τ are asymptotic rays, thus the map t ÞÑ dpτptq, gσptqq is

bounded and convex, therefore it has to be decreasing. Notice that

dpσpRq,τpRqq ď dpσpRq, gσpRqq` dpτpRq, gσpRqq

ď dpσpRq, gσpRqq` dpx0, g x0q.

Hence using the fact that the action of G on X is orbitally continuous it is possible to show

the continuity at e with respect to the cone topology in BX .

If X is a C AT p´1q space, an orbitally continuous representation G
ρ

ÝÑ IsompX q is called

non-elementary if it does not have finite orbits in X Y BX . Observe that if X is a CAT(-1)

space and G
ρ

ÝÑ IsompX q is a non-elementary representation, then there exists g P G such

that ρpg q is a hyperbolic isometry (see Proposition 1.2.4).

The following lemma is well known, but due to the author’s lack of knowledge of a

reference in the literature, a proof will be given.

Lemma 1.2.9. Let X be a CAT(-1) space. A representation G
ρ

ÝÑ I sompX q is non-elementary

if, and only if, it does not fix a point in X YBX and it does not preserve a geodesic.

Proof. Suppose that ρ does not have fixed points in X YBX and that it does not preserve

a geodesic. If ρ has a finite orbit in X , then it has a fixed point in X (see Lemma 1.2.3).

Suppose that there is tξ1, . . . ,ξl u a G-invariant set in BX with n ě 3. Fix a base point x0 P X

and consider the function f “
řn

i“1 bξi ,x0 .
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Observe that bξ,x0pg yq “ bg ´1ξ,g ´1x0
pyq. As the set tξ1, . . . ,ξl u is G-invariant, there is a

permutation of t1, . . . , lu defined by g ´1ξi “ ξϕpiq. Therefore

bξ,x0pg yq “ bg ´1ξi ,g ´1x0
pyq

“ bξϕpiq,g ´1x0
pyq

“ bξϕpiq,x0pyq´ bξϕpiq,x0pg ´1x0q.

As a consequence, the convex function f is quasi-invariant because

f pg yq “

n
ÿ

i“1

bξi ,x0pg yq “

n
ÿ

i“1

bξi ,x0pyq´

n
ÿ

i“1

bξi ,x0pg ´1x0q.

By Lemma 1.2.7, any non-empty sublevel set of f is unbounded. Fix one non-empty

sublevel set Cr and let pynq be an unbounded sequence in Cr . Up to taking a subsequence,

suppose that pynq converges to at most one point at infinity η. Observe that for every ξi ,

bξi ,x0pynq “ dpyn , x0q´ 2pyn ,ξi qx0 .

Thus if η‰ ξ1, . . . ,ξl , there exists C ą 0 such that for every n,

| f pynq´ ldpyn , x0q| ă C .

This is a contradiction because minp f q ď f pynq ď r (see Lemma 1.2.7) and

lim
nÑ8

dpyn , x0q “ 8.

Now suppose that pynq converges to η “ ξ1. Observe that bξ1,x0pyq ě ´dpy, x0q and,

because of the same arguments used in the previous case, there exists C 1 ą 0 such that for

every yn ,
f pynq “ bξ1,x0pynq` bξ2,x0pynq`¨¨ ¨` bξl ,x0pynq

ě ´dpyn , x0q`pl ´ 1qdpyn , x0q´C 1

ě pl ´ 2qdpyn , x0q´C 1.

Therefore tdpyn , x0qun is bounded, which is a contradiction.

The next lemma appears in Proposition 2.1 of [13] in the context of proper CAT(0) spaces.

The ideas in that article can be used with slight modifications for the case of CAT(-1) spaces.
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Lemma 1.2.10. Let G be a group and let X be a CAT(-1) space such that BX ‰ H. If

G
ρ

ÝÑ IsompX q

is a representation and G preserves a Borel probability measure in BX , then ρ fixes a point in

X YBX .

Proof. Suppose that ρ does not have fixed points in X YBX . Fix a point x0 P X and consider

the function

F pyq “

ż

BX
bξ,x0pyqdµpξq,

where µ is the G-invariant probability measure in BX . The function ξ ÞÑ bξ,x0pyq is continu-

ous (see Lemma 3.4.22 in [20]) and for every ξ P BX , |bξ,x0pyq| ď dpy, x0q. This shows that

the integral makes sense.

Observe that for every ξ, bξ,x0 is 1-Lipschitz and convex, hence F has the same properties.

Moreover, for every g P G ,

F pg ´1 yq “
ş

BX bξ,x0pg ´1 yqdµpξq

“
ş

BX bgξ,g x0pyqdµpξq

“
ş

BX

´

bgξ,x0pyq` bgξ,g x0px0q

¯

dµpξq

“
ş

BX

´

bgξ,x0pyq` bξ,x0pg ´1x0q

¯

dµpξq

“ F pyq` F pg ´1x0q.

The last equality holds because µ is G-invariant. Therefore F is quasi-invariant, and by

Lemma 1.2.7, it is a G-invariant function.

Notice that x0 P C0, the sublevel set of F associated to 0. Observe that for every n P N
there exists xn P C0 such that dpx0, xnq ą n (see Lemma 1.2.7). Up to taking a subsequence,

it is possible to suppose that pxnq converges at most to ξ0 P BX . The claim is that F pxnq Ñ 8,

which would be a contradiction. The proof for this statement will follow the ideas of Lemma

2.4 in [10].

By Lemma 1.2.9, the orbit of every η P BX is infinite, hence µ is a non-atomic measure,

therefore

F pyq “

ż

BX zξ0

bξ,x0pyqdµpξq.
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For every y, z P X ,

py, zqx0 ď mintdpy, x0q,dpz, x0qu,

thus, for every η P BX , py,ηqx0 ď dpy, x0q. Therefore, for every y P X and η P BX ,

bη,x0pyq “ dpy, x0q´ 2py,ηqx0 ě ´dpy, x0q.

Define for every n P N the measurable set

V pnq “

"

η P BX | sup
mPN

t2pxm ,ηqx0u ď n

*

.

The sequence pxnq belongs to at most ξ0, therefore

BX zξ0 Ă
ď

n

V pnq.

For every n, V pnq Ă V pn ` 1q, thus there exists some n0 such that µpV pn0qq ą 1
2 . Therefore

for every xm ,

F pxmq “
ş

V pn0qzξ0

bξ,x0pxmqdµpξq`
ş

pBX zξ0qzV pn0q

bξ,x0pxmqdµpξq

ě
`

dpxm , x0q´ n0
˘

µpV pn0qq´
`

1 ´µpV pn0qq
˘

dpxm , x0q

“
`

2µpV pn0qq´ 1
˘

dpxm , x0q´ n0µpV pn0qq.

Thus F pxmq Ñ 8, which is a contradiction.

Let G be a (Hausdorff) locally compact group. A discrete subgroup Γ is called a lattice if

the space G{Γ admits a non-zero finite G-invariant Radon measure.

Corollary 1.2.11. Suppose that G is a locally compact and σ-compact group, Γ ď G is a

lattice and X is a CAT(-1) space. If G
ρ

ÝÑ IsompX q is a non-elementary representation, then

ρ|Γ is non-elementary.

Proof. If there exists η P BX fixed by the action of Γ, using the continuous map G{ΓÑ BX ,

induced by the orbit map g ÞÑ gη, it is possible to define a G-invariant probability measure

µ in BX . This is a contradiction (see Lemma 1.2.10), thus ρ|Γ does not fix any point in BX .

If ρ|Γ permutes two points at infinity there is an index two subgroup of Γ that preserves

a point at infinity. A finite index subgroup of a lattice is a lattice (see for example Lemma

1.6 in [46]), thus this assumption leads to a contradiction.
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If Γ has a fixed point x P X , the orbit map g ÞÑ g ¨x induces in X a G-invariant probability

measure µ. Consider a nested family of compact sets tKi uiPN such that
Ť

i Ki “ G . There

exists i such that µpKi xq ą 1{2, therefore for every g P G ,

g ¨ Ki x X Ki x ‰ H,

or in other words, there are k1,k2 P Ki such that g k1x “ k2x. Observe that

dpg x, xq ď dpg x, g k1xq` dpk2x, xq.

This shows that x has a bounded orbit, but this is a contradiction because G does not fix

any point in X .

An action of a group G on a CAT(-1) space X is called minimal if there is no non-empty,

closed, convex and G-invariant proper subset of X (see [14]).

A group G is called amenable if whenever G has a jointly continuous action by affine

maps on V , a locally convex Hausdorff topological vector space, such that there exists

K Ă V , a non-empty, convex and compact G-invariant set, then G fixes a point in K .

The following theorem can be found in a higher generality in Theorem 1.6 of [12]. An

easier proof for the purposes of this text will be given later adapting the arguments used in

the aforementioned paper to the context of CAT(-1) spaces.

Theorem 1.2.12. If G is an amenable group and X is a CAT(-1) space, then every representa-

tion G Ñ I sompX q is elementary.

Lemma 1.2.13. If X is a CAT(-1) space and G
ρ

ÝÑ IsompX q is a representation without fixed

points in X Y BX , then there exists H ‰ Y Ă X convex, closed G-invariant such that the

action of G on Y is minimal.

Proof. If the action of G on X is not minimal, then there exists a non-trivial G-invariant

convex and closed subsets of X . By Lemma 1.2.3, all of these sets have to be unbounded.

Consider the non-empty set

A “ tH ‰ C Ă X | C is G-invariant convex and closedu

ordered with the inclusion. Consider a (descending) chain D in C . If
Ş

D “ H, then by

Lemma 1.1.12 and Remark 1.1.13, there exists ξ P BX such that

tξu “
č

tBCα | Cα P Du.
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This is a contradiction because ξ would be a G-fixed point.

Then by Zorn’s Lemma, there exists D0 P A that does not contain any proper convex,

closed and G-invariant subset.

If X is a CAT(-1) space, a function X
f

ÝÑ R is called affine if for every geodesic I
γ

ÝÑ X , the

function I
f ˝γ

ÝÝÑ R is affine.

Let X be a CAT(-1) space and fix a point x0 P X . Denote B the set of 1-Lipschitz functions

X
f

ÝÑ R such that f px0q “ 0. The vector space B endowed with the pointwise convergence

topology is a locally convex Hausdorff topological vector space. Denote K Ă B the set of

convex and 1-Lipschitz functions defined on X . Observe that with the subspace topology,

K is a convex and compact subset of B .

For every x P X , define ιpxq P K , given by ιpxqpyq “ dpx, yq ´ dpx, x0q. Denote Cx0 Ă K

the closure, with respect to the pointwise convergence topology, of tιpxquxPX .

Lemma 1.2.14. If X is a CAT(-1) space such that |BX | ě 3 and x0 P X , then Cx0 does not

contain any affine function.

Proof. Suppose that F P Cx0 is affine and considerσ and τ two distinct geodesic rays issuing

from x0. Denote Y Ă X the union of the images of σ and τ. The space Y is separable, and

therefore, there exists a sequence pxnq in Y such that ιpxnq|Y Ñ F |Y . If pxnq is bounded

then, up to taking a subsequence, pxnq Ñ y0, for some y0 P Y . In that case F |Y “ ιpy0q|Y ,

but this is a contradiction because for every x P X , ιpxq is strictly convex.

Without lost of generality, suppose that for every n P N , dpxn , x0q ě n. If F is constant in

the image of σ, then for a fixed T ą 0 and for every n P N , there exists Mpnq P N, such that

for every m ą Mpnq,

|dpσpnq, xmq´ dpxm , x0q| ă T.

Observe that for every m,m1 ą Mpnq

2pxm , x 1
mqx0 ě mint2pxm ,σpnqqx0 ,2px 1

m ,σpnqqx0u´ 2δ

ě n ´ T ´ 2δ.

The previous computation shows that pxnq is a Gromov sequence and that is equivalent to

pσpnqq. Observe that as τ and σ are not asymptotic, F is not constant on the image of τ.

Let γ be the geodesic connecting the limits of τ and σ. Suppose that the positive part of
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γ points towards the limit of τ. Therefore, there exists T0 ą 0 such that for every t ą 0,

dpF pτptqq,F pγptqqqq ď dpτptq,γptqq ď T0.

This shows that lim
tÑ8

F pγptqq “ ˘8. With the same arguments it is possible to show that

lim
tÑ8

F pγp´tqq “ 0. But this is a contradiction. Therefore F is not constant on any geodesic

ray in X .

Consider ξ1,ξ2,ξ3 three distinct points in BX and let γ1,γ2,γ3 be the three geodesics

connecting ξ1 with ξ2, ξ2 with ξ3 and ξ3 with ξ1, respectively. Without lost of generality

suppose that lim
tÑ8

γ1pF ptqq “ 8. Thus

lim
tÑ8

γ1pF p´tqq “ lim
tÑ8

γ3pF ptqq “ ´8,

and therefore,

lim
tÑ8

γ3pF p´tqq “ lim
tÑ8

γ2pF ptqq “ 8.

This is a contradiction because

´8 “ lim
tÑ8

γ2pF p´tqq “ lim
tÑ8

γ1pF ptqq “ 8.

If G is a group acting by isometries on X , then G acts on B in the following way. If f P B

and g P G , then

g ¨ f pxq “ f pg ´1xq´ f pg ´1x0q.

It is clear that K is invariant under this action. The claim is that this action is jointly

continuous on K . Indeed, if pgα, fαq Ñ pg , f q P G ˆ K and x P X ,

dpgα fαpxq, g f pxqq “

d
`

fαpg ´1
α xq´ fαpg ´1

α x0q, f pg ´1xq´ f pg ´1x0q
˘

ď

d
`

fαpg ´1
α xq´ fαpg ´1

α x0q, fαpg ´1xq´ fαpg ´1x0q
˘

`

d
`

fαpg ´1xq´ fαpg ´1x0q, f pg ´1xq´ f pg ´1x0q
˘

ď

dpg ´1
α x, g ´1xq` dpg ´1

α x0, g ´1x0q`

d
`

fαpg ´1xq´ fαpg ´1x0q, f pg ´1xq´ f pg ´1x0q
˘

.

Proof of Theorem 1.2.12. Suppose G
ρ

ÝÑ IsompX q is a non-elementary representation. Let

Y Ă X be a non-empty closed convex and G-invariant set such that the action of G restricted
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to it is minimal (see Lemma 1.2.13), in particular non-elementary. By Proposition 1.2.4,

BY ‰ H, because there are no G-fixed points in Y , and by Lemma 1.2.9, BY is infinite.

Without lost of generality suppose Y “ X . If x0 P X , by Lemma 1.2.14, Cx0 does not

contain any affine function. Let convpCq be the set of convex combinations of functions in

C . It is immediate that convpCq does not contain any affine function. The set K is compact,

therefore convpCq is compact. By Lemma 4.10 in [12], convpCq does not contain any affine

function, in particular it does not contain any constant function.

Observe that convpCq is G-invariant convex and compact, thus there exists F P convpCq

fixed by G . The function F is convex, non-constant and quasi-invariant. By Lemma 1.2.7, F

is G-invariant, but this is a contradiction because the action of G is supposed to be minimal

and the sublevel sets of F are closed and convex invariant subsets of X .

1.3 The hyperbolic spaces

Following Burger, Iozzi & Monod [9], let H be a vector space over F “ R,C such that

dimFpHq P Ně2 Yt8u. Suppose H is endowed with a non-degenerate form B , linear in the

first argument and antilinear in the second.

Define

ιpBq “ suptdimFpW q | W ď H andB |W ˆW “ 0u,

the index of B , and

ι˘pBq “ suptdimFpW q | W ď H andB |W ˆW is positive (resp. negative) definiteu.

From now on H will be a F-Hilbert space endowed with B , a non-degenerate form such

that ιpBq “ 1 and ι`pBq ď ι´pBq.

Lemma 1.3.1. If B restricted to a finite-dimensional F-subspace W is non-degenerate, then

H “ W ‘W K and B restricted to W K is non-degenerate.

Proof. Define the map H
ϕ
ÝÑ W ˚, given by ϕphqpwq “ Bpw,hq. Observe that

dimFpH{kerpϕqq ď dimFpW ˚q “ dimFpW q. On the other hand, W X kerpϕq “ 0 because

B restricted to W is non-degenerate. Therefore W ‘ kerϕ “ H and B restricted to

kerpϕq “ W K is non-degenerate.
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Lemma 1.3.2. For the form B,

ιpBq “ ι`pBq.

Proof. Suppose B restricted to some finite-dimensional subspace W ď H is positive def-

inite. It is supposed that ι´pBq ě ι`pBq, thus there exists V ď H such that dimFpW q “

dimFpV q and such that B restricted to V is negative definite.

For every 0 ‰ v P V , v “ w ` u, for some w P W and u P W K. Since Bpv, vq ă 0, then

u ‰ 0 and Bpu,uq ă 0. By the previous observation, if πW K is the projection on W K, then

B restricted to πW KpV q “ U is negative definite and dimFpUq “ dimFpV q. Observe that B

restricted to W ‘U is non-degenerate. Using the characterization of non-degenerate forms

defined on finite-dimensional spaces,

ιpB |W ‘U q “ ι`pW ‘Uq “ ι´pW ‘Uq “ dimFpW q.

This shows that ιpBq ě ι`pBq. As ιpBq “ 1 and B is not negative definite, it is possible to

conclude that ιpBq “ ι`pBq.

A form with these properties will be called a form of signature p1,mq, where m “

dimFpHq ´ 1. Throughout this section, and for the rest of this work, m will be used to

refer to dimensions either finite or infinite and n will be used for only finite ones.

Lemma 1.3.3. Let v and w be two distinct non-zero elements of H. If Bpv, vq ě 0 and

Bpw, wq ě 0, then Bpv, wq ‰ 0.

Proof. As ι`pBq “ 1, it is enough to assume that Bpv, vq “ 0 and Bpw, wq ě 0. Suppose

that Bpv, wq “ 0. Fix y P H such that Bpy, yq “ 1. The space H admits a decomposition

H “ Fy ‘ yK. Without lost of generality, suppose that in that decomposition, v “ y ` a.

Notice that Bpa, aq “ ´1. Observe that yK admits a decomposition Fa ‘paK X yKq, hence

w “ λy `γa ` u. The fact that Bpv, wq “ 0 implies that λ “ γ. Thus u ‰ 0, but this is a

contradiction because

Bpw, wq “ |λ|
2

´|λ|
2

` Bpu,uq ă 0.

Consider W ď H such that for some w P W , Bpw, wq ą 0. Observe that by Lemma 1.3.1,

W “ Fw ‘pwK
XW q,

and because ι`pBq “ 1, B restricted to wK XW is negative semi-definite. By Lemma 1.3.2,

if 0 ‰ v P wK XW , then Bpv, vq ă 0.
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Remark 1.3.4. This shows that for every F-vector subspace W of H with di mFpW q ě 2, if

there exists w P W such that Bpw, wq ą 0, then B restricted to W is a non-degenerate form

of signature p1,dimFpW q´ 1q.

For v P H , denote rvs “ Fv . Suppose di mFpHq “ m`1, where m ě 2 if F “ R, and m ě 1

if F “ C. Define

Hm
F “ trvs | Bpv, vq ą 0u.

The space Hm
F is equipped with a metric given by the formula

coshpdprvs,rwsqq “
|Bpv, wq|

Bpv, vq
1
2 Bpw, wq

1
2

.

It can be shown that d is a metric using the fact that B restricted to any finite-dimensional

subspace of H containing positive vectors is a form of signature p1,nq with n ă 8, and that

the formula above is the usual metric defined on the finite-dimensional hyperbolic spaces.

A ˘-orthogonal decomposition of H is a B-orthogonal decomposition

H “ W` ‘W´,

with B |W˘ˆW˘
positive/negative definite. Given a ˘-orthogonal decomposition of H , define

the sesquilinear form B˘ as B˘|W`ˆW`
“ B , B˘|W´ˆW´

“ ´B and BpW`,W´q “ 0. A form

of signature p1,8q on H is called strongly non-degenerate if for every (any) ˘-orthogonal

decomposition, the space pH ,B˘q is a Hilbert space (see Lemma 2.4 of [9]). The metric space

pHm
F ,dq is complete if, and only if, B is a strongly non-degenerate form (see Proposition 3.3

in [9]).

From now on the space Hm
F will be always considered associated to a strongly non-

degenerate sesquilinear form and it will be called the m-dimensional F-hyperbolic space

(see Proposition 3.7 of [9]). For further reading on these spaces see [9, 20], for the infinite-

dimensional case, and see [31], for the finite-dimensional complex case. From now on H

will denote a separable Hilbert space over F provided with B , a strongly non-degenerate

sesquilinear from of signature p1,mq.

If F “ C, let K “ R,C and if F “ R define K “ R. Denote π the projectivization map

Hzt0u Ñ PpHq. A K´hyperbolic subspace of Hm
F is the image under π of a closed K-vector

subspace L of H such that B |LˆL is non-degenerate of signature p1,m1q. The restriction

of B to L is strongly non-degenerate (see Proposition 2.8 of [9]), therefore πpLq is a (com-

plete) hyperbolic space. In the finite-dimensional case, this is a characterization for totally
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geodesic subspaces (see 3.1.11 of [31]).

For every finite set of points X of Hm
F there is W Ă H , a finite-dimensional space over F,

that contains representatives of each of the elements of X . The restriction of B to W is a

non-degenerate form of signature p1,nq, thereforeπpW q is isometric to a finite-dimensional

F-hyperbolic space. This shows that many statements about finite sets of points in H8
F can

be reduced to a finite-dimensional question. For example, the space Hm
F is a geodesically

complete CAT(-1) space because this is true for every finite dimensional Hn
F (see Proposition

II.10.10 of [7]).

Every geodesic ray in Hm
F lies inside a finite dimensional F-hyperbolic space. It is not

surprising that BHm
F , the visual boundary of Hm

F , is in a natural bijection with the set of

isotropic lines of H , because this is true at a finite-dimensional level (see Proposition 3.5.3

in [20]).

The vector space H has a well defined topology. Indeed, for any ˘-orthogonal decom-

position of H , the space H can be provided with a positive definite Hermitian form B˘

such that pH ,B˘q is a Hilbert space. The Hilbert topology on H does not depend on the

˘-orthogonal decomposition (see Lemma 2.4 in [9]).

Observe that the space

trvs P PpHq | Bpv, vq ě 0u

can be provided with the subspace topology of the projective space (with the quotient

topology) associated to H . The hyperbolic spaces are Gromov hyperbolic, hence Hm
F YBHm

F
has a natural topology (see Remark 1.1.1). In this case both topologies are the same and

coincide in Hm
F with the metric topology (see Proposition 3.5.3 of [20]).

For Hm
F there is an explicit description of the Busemann functions. If x P Hm

F , it can be

shown at a finite-dimensional level that every geodesic ray σ issuing from x admits a lift to

H of the shape t ÞÑ coshptqx̃ ` sinhptqu, where x̃ is a lift of x, Bpx̃, x̃q “ 1 “ ´Bpu,uq and

Bpx̃,uq “ 0. If y P Hm
F and ỹ is a lift of y such that Bpỹ , ỹq “ 1, then

bξ,σp0qpyq “ lim
tÑ8

dpy,σptqq´ t

“ lim
tÑ8

arccosh
`

|Bpỹ ,coshptqx̃ ` sinhptquq|
˘

´ t

“ lnp|Bpỹ , x̃ ` uq|q.

Observe that ξ is represented by the isotropic vector x̃ ` u (see Proposition 3.5.3 of [20]).

Denote OFpBq the set of F-isomorphisms of H that preserve B . Every A P OFpBq is
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a bounded operator (for the Hilbert norm) of H (see Lemma 1.4.8). It is clear from the

definition of the metric that every element of OFpBq induces an isometry of Hm
F .

Proposition 1.3.5. If x P Hm
F , y1, y2 P BHm

F and if s P OFpBq is such that s y1 “ y2 and s y2 “ y1,

then the following hold:

1. The action of OFpBq on Hm
F is transitive.

2. The action of OFpBqx is transitive on metric spheres centered at x.

3. The action of OFpBqy1 is transitive on BHm
F zty1u.

4. The action of OFpBq is double transitive on BHm
F .

5. If m ă 8 and F “ R, 1.,2., and 3. hold for SOp1,mq.

6. OFpBq “ OFpBqy1 \

´

OFpBqy1 ¨ s ¨ OFpBqy1

¯

.

7. If ă 8 and F “ R, then SOp1,mq “ SOp1,mqy1 \ SOp1,mqy1 ¨ s ¨ SOp1,mqy1 .

Proof. From the discussion at the beginning of this section, it is clear that 1. holds. For 2.,

let x P Hm
F and fix x̃ a lift of x such that Bpx̃, x̃q “ 1. Observe that the action of OFpBqx on

tv P H | Bpx̃, vq “ 0 and Bpv, vq “ ´1u

is transitive, therefore 2. holds.

For 3., let ξ1 and ξ2 be two elements of BHm
F different than y1. Chose ỹ1, ξ̃2 and ξ̃2

respective lifts of y1,ξ1 and ξ2 such that Bpỹ1, ξ̃i q “ 1. The claim is that

H “ Fỹ1 ‘ Fξ̃i ‘pỹK
1 X ξ̃K

i q.

As

H “ Fpỹ1 ` ξ̃i q`pỹ1 ` ξ̃i q
K,

then for every h P H , h “ aỹ1 ` aξ̃i ` u. Define

v “ Bpu, ỹ1qỹ1 ` Bpu, ξ̃i qξ̃i ` u

and observe that v P ỹK
1 X ξ̃K

i . Therefore

h “ pa ´ Bpu, ỹ1qqỹ1 `pa ´ Bpu, ξ̃i qqξ̃i ` v.
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To conclude observe that ỹK
1 X ξ̃K

1 and ỹK
1 X ξ̃K

2 have the same dimension and B restricted

to both spaces is negative definite.

For 4. observe that 2. implies that the action of OFpBqx is transitive in BHm
F . Thus, it

follows form 2. and 3. The claim of 5. is clear from the arguments given for 1. to 4.

For 6. observe that the intersection is empty because non of the elements of

OFpBqy1 ¨ s ¨ OFpBqy1

fixes y1. By 3., the elements of OFpBqy1 ¨ s ¨OFpBqy1 can send y1 to any element of BHm
F zty1u.

The point 7. follows from the same arguments.

Corollary 1.3.6. For every y P BHm
F , the group OFpBqy is not contained in any proper sub-

group of OFpBq.

Proof. Suppose L is a proper subgroup of OFpBq containing OFpBqy and suppose there

exist l P L and g P OFpBq such that l y ‰ y and g R L. Observe that by 3. in Proposition 1.3.5,

there exists k P OFpBqy such that kl y “ g y. This implies that g P L, which is a contradiction.

The group OFpBq is denoted by Up1,mq (resp. Op1,mq) if F “ C (resp. F “ R). For

every G ď OFpBq, denote PG the natural image under projectivization. The group POp1,nq

is equal to IsompHm
R q and PUp1,mq is an index 2 subgroup of IsompHm

C q. In fact, every

isometry of Hm
C is induced by either a C-linear map or by an antilinear one (see Theorem

2.2.3 of [20]). Denote

IsompHm
C qo “ PUp1,mq

and for m ă 8,

IsompHm
R qo “ PSOp1,mq.

Observe that the diagonal matrix act trivially on Hm
F , therefore if m ă 8, then

PSUp1,mq “ PUp1,mq. For m ă 8, the topology of these groups will be the quotient

topology of the projectivization map.

Suppose ξ P BHm
F and G ă IsomopHm

F qξ. Let bξ,σp0q be a Busemann function centered at

ξ and normalized in σp0q, for some geodesic ray σ. The geodesic ray σ admits a lift

σ̃ptq “ coshptqx̃ ` sinhptqu,
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with u, x̃ P H such that Bpx̃, x̃q “ 1 “ ´Bpu,uq and Bpu, x̃q “ 0. For every g P G , there exists

cpg q P R such that for every y P Hm
F ,

bξ,σp0qpyq “ bξ,σp0qpg yq` cpg q.

The map c : G Ñ R, called the Busemann character associated to ξ, is a continuous homo-

morphism and does not depend on the choice of σ.

Remark 1.3.7. Observe that if ỹ is a normalized lift of y , then

cpg q “ ln

ˆ

|Bpỹ , x̃ ` u|

|Bpg̃ ỹ , x̃ ` uq|

˙

,

where g̃ is any linear representative of the isometry g . Thus, if

g̃ px̃ ` uq “ θpg̃ qpx̃ ` uq,

with θpg̃ q P Czt0u, then cpg q “ lnp|θpg̃ q|q. Therefore the map g ÞÑ |θpg̃ q| P Rą0 is a continu-

ous homomorphism.

Proposition 1.3.8. If G ă POFpBqξ and c : G Ñ R is the Busemann character associated to ξ,

then

1. kerpcq “ tT P G | T is elliptic or parabolicu.

2. For every T P G, ℓpT q “ |cpT q|.

Proof. 1. Suppose ξ is represented by the isotropic element y1. Let T P G and let T̃ be a

linear representative of G . If T is hyperbolic, T̃ leaves invariant two isotropic lines with

respective representatives y1 and y2. Suppose that Bpy1, y2q “ 1. Thus, if T̃ pyi q “ θi yi , then

θ1θ2 “ 1.

The point x represented by 1?
2
py1 ` y2q belongs to the geodesic connecting y1 and y2

because 2dpT pxq, xq “ dpT 2pxq, xq. Observe that dpT pxq, xq “ | lnp|θ1|q|. This implies that

|θ1| ‰ 1, and as it was noticed before, cpg q “ lnp|θ1|q. Therefore T R kerpcq.

If T is parabolic, by Lemma 1.2.2, cpT q “ 0. If T is elliptic then T fixes pointwise every

geodesic ray representing ξ that starts on a T -fixed point in Hm
F . Hence cpT q “ 0.

The point 2. follows from the arguments of 1 and Lemma 1.2.2.
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Remark 1.3.9. Consider an F-vector space H equipped with a strongly non-degenerate

form B of signature p1,mq, where F “ R,C and m either finite or infinite, and consider Hm
F

the hyperbolic space associated. Fix η1,η2 P H two isotropic vectors such that Bpη1,η2q “ 1.

Let rη1s P BHm
F be the point represented by η1. If T P OFpBqrη1s is such that

BpT pη1q,η2q ą 0, then with respect to the decomposition

H “ Fη1 ‘ Fη2 ‘pηK
1 XηK

2 q,

T (with a small abuse of notation when F “ R) admits the matrix representation by blocks,

T “

¨

˚

˝

λ ´
λBpv,vq

2 ` i b ´λBpAp ¨q, vq

0 λ´1 0

0 v A

˛

‹

‚
,

where λą 0, b P R, v P ηK
1 XηK

2 and A is an F-isomorphism of ηK
1 XηK

2 preserving B . If F “ R,

b is always supposed to be 0. Denote T “ g pλ, v, A,bq.

The set

P “ tA P OFpBqrη1s | BpApη1q,η2q ą 0u

is a subgroup of OFpBq where the formula for the product and the inverse are

g pλ, v, A,bqg pγ, w,D,dq “ g
`

λγ,γ´1v ` Apwq, AD,λd `γ´1b ´λImpBpApwq, vqq
˘

and

g pλ, v, A,bq
´1

“ g pλ´1,´λA´1
pvq, A´1,´bq.

When F “ R the previous formulas apply if b,d and ImpBpApwq, vqq are identified with 0.

The map P Ñ IsomopHm
F qrη1s is surjective because for every A P OFpBq there exists

z P S1 Ă C such that Bpz Apη1q,η2q ą 0. It is clearly also injective.

If m ă 8, the group P is closed because it is the intersection of OFpBqrη1s and the closed

set

tT P OFpBq | BpT pη1q,η2q ě 0u.

The map Om
F Ñ POm

F is closed because it has a compact kernel. Therefore the map

P Ñ IsomopHm
F qrη1s
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is bijective, continuous and closed, hence it is an isomorphism of topological groups. From

now on the group P will be identified with IsomopHm
F qrη1s. If F “ C and n “ 1, then every

g P P is of the shape g pλ,bq, for some λ ą 0 and b P R. With a small abuse of notation,

g pλ,bq will be sometimes identified with a transformation g pλ,0, I d ,bq.

Observe that if P
c

ÝÑ R is the Busemann character associated to rη1s, then

cpg pλ, v, A,bqq “ | lnpλq|.

Therefore, by Proposition 1.3.8, the following proposition holds.

Proposition 1.3.10. An isometry g pλ, v, A,bq P P is hyperbolic if, and only if λ‰ 1.

Proposition 1.3.11. An isometry g pλ, v, A,bq P P is parabolic if, and only if, λ“ 1 and one of

the following properties holds.

1. The vector v is not contained in Im(A-Id).

2. If u is a vector such that pA ´ I dqu “ ´v, then ImpBpApuq,uqq ‰ b.

Proof. Observe that if an element g P P is elliptic, then it fixes pointwise an entire geodesic.

Therefore g fixes at least two points in BHm
F . Thus, the question if a non-hyperbolic element

g P P is parabolic or elliptic, is actually about if g fixes only η1 in BHm
F or if it fixes another

point too. By Proposition 1.3.10, if g pλ, v, A,bq is parabolic, then λ“ 1.

If x ‰ η1 is an isotropic vector, then without lost of generality, x “ aη1 `η2 `w . Observe

that

g p1, v, A,bqpaη1 `η2 ` wq “

´

a ´
Bpv,vq

2 ` i b ´ BpApwq, vq

¯

η1 `η2 ` Apwq` v.

Thus, g p1, v, A,bqpxq “ x if, and only if, pA´I dqpwq “ ´v and b “ ImpBpApwq, wqq. Indeed,

observe that pA ´ I dqpwq “ ´v implies that

Bpv, vq “ 2Bpw, wq´ 2RepBpApwq, wqq

and that

BpApwq, vq “ ´Bpw, wq` BpApwq, wq.
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Therefore

a ´
Bpv,vq

2 ` i b ´ BpApwq, vq “

a `´Bpw, wq` RepBpApwq, wqq` Bpw, wq´ BpApwq, wq` i b “

a ` i
`

´ ImpBpApwq, wqq` b
˘

.

Observe that in the case F “ C and n “ 1, the previous proposition states that the only

parabolic elements of P are the ones of the shape g p1,bq, with b ‰ 0. For the case F “ R
what the previous proposition states is that g pλ, v, A,bq is parabolic if, and only if, λ“ 1

and v R ImpA ´ I dq.

The focus will be now on the groups SUp1,1q and SOp1,3q and their relationship with

SL2pRq.

Let te1,e2u be the canonical base of C2. Fix the basis tξ1,ξ2u, where ξ1 “ 1?
2
pe1 ` e2q

and ξ2 “ 1?
2
pe1 ´ e2q. Observe that

Bpξ1,ξ1q “ 0 “ Bpξ2,ξ2q

and Bpξ1,ξ2q “ 1. With respect to the basis tξ1,ξ2u, every

g pλ,bq “

ˆ

λ i b

0 λ´1

˙

P SUp1,1qrη1s.

Let s P SUp1,1q be defined by spξ1q “ iξ2 and spξ2q “ iξ1. If

Up1,1q
π
ÝÑ PUp1,1q

is the projectivization map, by the arguments used in Proposition 1.3.5,

IsompH1
Cqo “πpPq\πpPqπpsqπpPq.

Every element of SUp1,1q has the form, with respect to the canonical basis,

Mpα,βq “

ˆ

α β

β α

˙

,
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where |α|2 ´|β|2 “ 1. The map SUp1,1q
ψ
ÝÑ SL2pRq given by

ψpMpα,βqq “

ˆ

Repαq` Impβq Repβq` Impαq

Repβq´ Impαq Repαq´ Impβq

˙

is an isomorphism. Let

T “
1

?
2

ˆ

1 ´1

1 1

˙

and define the map SUp1,1q
Ψ
ÝÑ SL2pRq asΨpAq “ T ´1ψpAqT . The mapΨ is such that

Ψpg pλ,bqq “

ˆ

λ b

0 λ´1

˙

and

Ψpsq “

ˆ

0 1

´1 0

˙

.

The group SUp1,1q admits a simple description in terms of generators and the relations

between them. The following theorem is a well known fact and a proof for it can be found

in p. 209 of [37].

Theorem 1.3.12. Let F be the free group generated by the family tupr qur PRz0 and an element

w. For r ‰ 0, denote

spr q “ wupr ´1
qwupr qwupr ´1

q.

Consider the relations

1. u is an additive homomorphism.

2. s is a multiplicative homomorphism.

3. w2 “ sp´1q

4. spaqupbqspa´1q “ upba2q, for every a,b ‰ 0.

If G is the quotient of F under these relations then G is isomorphic to SUp1,1q.

49



Let SUp1,1q
φ
ÝÑ GL3pRq be the map defined by

φpMpα,βqq “

¨

˚

˝

´1
2pβ2 `β

2
´α2 ´α2

q i
2p´β2 `β

2
´α2 `α2

q ipαβ´αβq

´ i
2pβ2 ´β

2
´α2 `α2

q 1
2pβ2 `β

2
`α2 `α2

q αβ`αβ

ipαβ´αβq αβ`αβ |α|2 `|β|2

˛

‹

‚

and let

T 1
“

1
?

2

¨

˝

0 0
?

2

1 ´1 0

1 1 0

˛

‚.

Define the map SUp1,1q
Φ
ÝÑ SOp1,2q given by

ΦpMpα,βqq “ T 1´1φpMpα,βqqT 1.

The mapΦ is a homomorphism and kerpΦq “ tI d ,´I du. With an appropriate choice of a

basis tξ1
1,ξ1

2,uu of R3, where

Bpξ1
i ,ξ1

i q “ 0 “ Bpξ1
i ,uq

and

Bpξ1
1,ξ1

2q “ 1 “ ´Bpu,uq,

the mapΦ is such that,

Φpsq “

¨

˝

0 1 0

1 0 0

0 0 ´1

˛

‚,

Φpg p1,bqq “

¨

˝

1 b2 ´
?

b

0 1 0

0 ´
?

b 1

˛

‚

and

Φpg pλ,0qq “

¨

˝

λ2 0 0

0 λ´2 0

0 0 1

˛

‚.

Every elliptic transformation is contained in a compact subgroup, therefore its image

under Φ is elliptic too (see Proposition II.2.7 of [7]). Up to conjugation, every parabolic

isometry is of the shape g p1,bq and every hyperbolic isometry is of the shape g pλ,0q (see

Proposition 1.3.5). Thus, by Propositions 1.3.10 and 1.3.11,Φ preserves the type (hyperbolic,

parabolic or elliptic).
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Observe that if g p1, v, Aq P Op1,2qrξ1
1s, then A “ ˘1, v P R and detpg p1, v, Aqq “ A. This

shows that SOp1,2qrξ1
1s ă ImpΦq. Thus, by Proposition 1.3.5,Φ is surjective.

Consider the following commutative diagram,

SUp1,1q SOp1,2q

IsompH1
Cqo IsompH2

Rqo ,

Φ

Φ

where the vertical arrows are the projectivization maps andΦ is the induced isomorphism.

Lemma 1.3.13. For every g P I somopH1
Cq,

2ℓpg q “ ℓpΦpg qq.

Proof. The map Φ preserves the type (elliptic, parabolic and hyperbolic), therefore it is

enough to prove the claim for hyperbolic elements. Up to conjugation, every hyperbolic

element in IsompH1
Cqo has a representative g pλ,0q for some λą 0. For these elements the

claim follows from the arguments in the proof of Proposition 1.3.8 and Remark 1.3.7.

Proposition 1.3.14. The group PUp1,1q is simple.

Proof. The elements of Up1,1q will be expressed with respect to a basis tξ1,ξ2u of isotropic

vectors such that Bpξ1,ξ2q “ 1. Consider the subgroups U “ tg p1,bqubPR and

P “ tg pλ,bquλą0,bPR

(see Remark 1.3.9). Let y P BH1
C be the point such that rξ1s “ y.

Denote, with a small abuse of notation, U and P the isomorphic images of U and P in

PUp1,1q. As it was noted before, P “ PUp1,1qy and by Corollary 1.3.6, P is not contained

properly in any proper subgroup of PUp1,1q.

Let L be a normal subgroup of PUp1,1q. Observe that L is not contained in P . Indeed,

if that is the case, for every g P PUp1,1q and l P L, l g pyq “ g pyq, which is a contradiction.

Thus PL “ PUp1,1q.

The group B is normal in P , therefore the group BL is normal in PUp1,1q. This means

that BL contains all the groups conjugated to B . In particular it contains the subgroup of
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PUp1,1q represented by Up1,1qξ2 . Observe that Up1,1qξ2 . contains all the matrix

ˆ

1 0

i b 1

˙

,

with b P R and notice that for a ą 0,

ˆ

1 i

0 1

˙ˆ

1 0

ip1 ´ aq 1

˙ˆ

1 ´i a´1

0 1

˙ˆ

1 0

ipa2 ´ aq 1

˙

“

ˆ

a 0

0 a´1

˙

.

This shows that P is contained in BL which means that BL “ PUp1,1q.

The group B is abelian, and PUp1,1q{L “ BL{L. Therefore L contains PUp1,1q1, the

commutator subgroup of PUp1,1q. Observe that for λą 0 and b P R

g pλ,0qg p1,bqg pλ´1,0qg p1,´dq “ g p1,dpλ2
´ 1qq,

which means that B is contained in PUp1,1q1 and therefore, L “ PUp1,1q.

Given a topological group G , define C npGq the set of continuous functions Gn`1 Ñ R

that are invariant for the diagonal action on the left of G on Gn`1. Define C npGq
Bn
ÝÑ C n`1pGq

given by

Bnp f qpg0, . . . , gn`1q “

n`1
ÿ

i“0

p´1q
i f pg0, . . . , ĝi , . . . , gn`1q.

For n ě 1, the n-continuous cohomology group of G is defined as

Hn
c pGq “ kerpBnq{impBn´1q.

Remark 1.3.15. For every n ě 1, H2
c pPUp1,nq – R (see [33]). If K is a maximal compact

subgroup of PUp1,nq, define

C m
K pPUp1,nqq Ă C m

pPUp1,nqq

as the set of f P C mpPUp1,nqq that are alternating and such that for every gi P PUp1,nq and

ki P K ,

f pg0k0, . . . , gmkmq “ f pg0, . . . , gmq.

If

C m
K pPUp1,nqq

B1
m

ÝÑ C m`1
K pPUp1,nqq
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is just the restriction of Bm then kerpB1
mq{impB1

m´1q is isomorphic to Hm
c pPUp1,nqq (see

Theorem 7.4.5 in [39] and the comments after it). Observe that by Proposition 1.3.5,

C 1
K pPUp1,nqq “ 0, thus H2

c pPUp1,nqq “ kerpB1
2q, which is a 1-dimensional real vector space.

1.4 Functions of complex hyperbolic type

In [40], Monod developed a Gelfand-Naimark-Segal type of construction for actions by

isometries on complex hyperbolic spaces. Here a brief discussion about the results of the

aforementioned paper is presented.

For m finite or infinite, denote C 3BHm
C and C 4BHm

C the set of pairwise distinct 3-tuples

and 4-tuples of BHm
C , respectively.

Lemma 1.4.1. Given any px, y, zq P pHm
C q3 or any pairwise distinct px, y, zq P C 3BHm

C , with

m either finite or infinite, it is claimed that for any lifts x̃, ỹ , z̃ of x, y, z,

Re
´

Bpx̃, ỹqBpỹ , z̃qBpz̃, x̃q

¯

ě 0.

If px, y, zqi npHm
C q3, the inequality is strict. For px, y, zq P C 3BHm

C , there is an equality if, and

only if, for any x̃, ỹ , z̃ lifts, the complex vector space generated by them has complex dimension

2.

Proof. The product

Bpx̃, ỹqBpỹ , z̃qBpz̃, x̃q

rescales by a positive real number when changing lifts of x, y or z. Thus, the statement of

this lemma does not depend on the choice of the lifts.

Suppose that x, y, z P Hm
C and choose x̃, ỹ , z̃ respective lifts such that Bpx̃, x̃q “ 1 and

Bpx̃, ỹq “ 1 “ Bpx̃, z̃q.

With respect to the decomposition H “ Cx̃ ‘ x̃K, ỹ “ 1 ‘ uy and z̃ “ 1 ‘ uz .

Now observe that

Bpx̃, ỹqBpỹ , z̃qBpz̃, x̃q “ Bpỹ , z̃q

“ 1 ` Bpuy ,uzq.
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Because of Bpỹ , ỹq and Bpz̃, z̃q are positive, |Bpuy ,uy q| and |Bpuz ,uzq| are smaller than 1.

This implies that

RepBpuy ,uzqq
2

ď Bpuy ,uy qBpuz ,uzq ă 1,

which concludes the proof in this case.

Suppose now that x, y, z P BHm
C are pairwise distinct and that x̃, ỹ , z̃ are respective lifts

such that Bpx̃, ỹq “ 1 and that Bpx̃, z̃q “ 1. With respect to a decomposition

H “ Cx̃ ‘ Cỹ ‘px̃K
X ỹK

q,

z “ 1 ‘ a ‘ u, with a ‰ 0.

Observe that
Bpx̃, ỹqBpỹ , z̃qBpz̃, x̃q “ Bpỹ , z̃q

“ a.

Observe that

Bpz̃, z̃q “ 2Repaq` Bpu,uq “ 0,

hence Repaq ě 0 and Repaq “ 0 if, and only if, z̃ belongs to the space generated by x̃ and ỹ .

For px, y, zq P pHm
C q3 or px, y, zq P C 3BHm

C , with m either finite or infinite, the Cartan

argument of px, y, zq is defined as

Cartpx, y, zq “ Arg
`

Bpx̃, ỹqBpỹ , z̃qBpz̃, x̃q
˘

,

for any x̃, ỹ , z̃ lifts of x, y, z. Here Arg denotes the principal value of the argument.

It is clear that for any g P PUp1,mq and px, y, zq P pHm
C q3 or px, y, zq P C 3Hm

C ,

Cartpg x, g y, g zq “ Cartpx, y, zq.

Proposition 1.4.2. Let px1, x2, x3q,py1, y2, y3q P C 3BHm
C . The triples are such that

Cartpx1, x2, x3q “ Cartpy1, y2, y3q

if, and only if, there exists g P PUp1,mq such that g pxi q “ yi .
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Proof. Suppose that x̃i and ỹi are respective lifts such that

Bpx̃1, x̃2q “ Bpx̃2, x̃3q “ 1 “ Bpỹ1, ỹ2q “ Bpỹ2, ỹ3q.

Observe that for λą 0,

Bpλx̃1,λ´1x̃2q “ Bpλ´1x̃2,λx̃3q “ 1

and

Bpλx̃1,λx̃3q “λ2Bpx̃1, x̃3q.

This shows that it is possible to choose lifts x̃1, x̃2, x̃3. such that

Bpx̃1, x̃2q “ Bpx̃2, x̃3q “ 1

and |Bpx̃1, x̃3q| “ 1. The same can be done when choosing the lifts ỹi . The fact that

ArgpBpx̃3, x̃1qq “ Cartpx1, x2, x3q “ Cartpy1, y2, y3q “ ArgpBpỹ3, x̃1qq,

implies that

Bpx̃3, x̃1q “ Bpỹ3, ỹ1q.

Observe that by Lemma 1.4.1, the vectors x̃i are linear independent if, and only if, the

vectors ỹi are linear independent.

If the vectors x̃i are linear independent, with the choice made taking representatives and

by Remark 1.3.4, it is possible to conclude that there exists g P Up1,mq such that g px̃i q “ ỹi .

If the vectors x̃i are not linearly independent, then x̃3 “ x̃1 `ax̃2 and ỹ3 “ ỹ1 `bỹ2, with

a “ b. Thus, again by the same arguments used in the previous case, there exists g P Up1,mq

such that g px̃1q “ ỹ1 and g px̃2q “ ỹ2, and by the previous observation, g px̃3q “ ỹ3.

Proposition 1.4.3. Suppose px1, x2, x3q,py1, y2, y3q P pHm
C q3 are such that dpxi , x j q “

dpyi , y j q. Then

Cartpx1, x2, x3q “ Cartpy1, y2, y3q

if, and only if, there exists g P PUp1,mq such that g pxi q “ yi .

Proof. Choose x̃i and ỹi lifts such that

Bpx̃i , x̃i q “ 1 “ Bpỹi , ỹi q.

Observe that dpxi , x j q “ dpyi , y j q, implies that |Bpx̃i , x̃ j q| “ |Bpỹi , ỹ j q|. It is possible to
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choose lifts such that

tBpx̃1, x̃2q,Bpx̃2, x̃3q,Bpỹ1, ỹ2q,Bpỹ2, ỹ3qu Ă Rą0.

Hence Bpx̃1, x̃2q “ Bpỹ1, ỹ2q and Bpx̃2, x̃3q “ Bpỹ2, ỹ3q. Observe that

ArgpBpx̃3, x̃1qq “ Cartpx1, x2, x3q “ Cartpy1, y2, y3q “ ArgpBpỹ3, ỹ1qq.

Therefore Bpx̃1, x̃3q “ Bpỹ1, ỹ3q.

By Remark 1.3.4, if z is a vector contained in W , the complex vector subspace generated

by tx̃1, x̃2, x̃3u, then z “ 0 if, and only if Bpz, x̃i q “ 0, for i “ 1,2,3.

If z “λ1x̃1 `λ2x̃2 `λ3x̃3, then z “ 0 if, and only if,

λ2Bpx̃2, x̃1q`λ3Bpx̃3, x̃1q “ 0,

λ1Bpx̃1, x̃2q`λ3Bpx̃3, x̃2q “ 0

and

λ1Bpx̃1, x̃3q`λ2Bpx̃2, x̃3q “ 0.

Hence, there exists g a complex linear map between the complex vector subspaces gener-

ated by tx̃i u and tỹi u, respectively, such that g px̃i q “ ỹi . Reversing the arguments, it is clear

that g is an isomorphism preserving the restriction of B to these subspaces. By Lemma 1.3.1

and because ιpBq “ 1, the map g can be extended to a map in Up1,mq.

Proposition 1.4.4. The map

Hm
C ˆ Hm

C ˆ Hm
C

Cart
ÝÝÑ R

is continuous.

Proof. The first remark is that the map H ˆ H
B
ÝÑ C is continuous. Observe that this is clear

because the topology of H is the one coming from considering H with a (any) Hermitian

product B˘ with respect to a (any) ˘-orthogonal decomposition of H (see Section 1.3).

Denote Cą0 the set of positive vectors in H . By Lemma 1.4.1, the function C 3
ą0

S
ÝÑ R given by

Spx, y, zq “ Arg
`

Bpx, yqBpy, zqBpz, xq
˘

is continuous.

The restriction of the projectivization map Cą0
π
ÝÑ Hm

C is a quotient map. Thus, if m
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is finite, the product C 3
ą0

π3

ÝÑ pHm
C q3 is a quotient map (see for example Theorem 3.3.17 of

[26]). Therefore the map

pHm
C q

3 Cart
ÝÝÑ R

is continuous.

For the case m “ 8, fix x, y, z P Hm
C . Denote V the complex subspace of H generated by

the lifts of x, y and z and let W be a 3-dimensional complex subspace of H orthogonal to

V . By Lemma 1.3.3, the form B restricted to W is negative definite. Denote H the complex

hyperbolic space induced by V ‘W .

Given any other three points p, q,r P Hm
C denote U the complex subspace generated by

the lifts of x, y, z, p, q and r . Observe that U admits a decomposition V ‘U 1, where U 1 is

orthogonal to V . Again by Lemma 1.3.3, there exists a complex linear map U
A

ÝÑ V ‘W that

preserves B and such that A|V “ I d . The form B is strongly non-degenerate, therefore A

can be extended to a map in Up1,mq. If T is the isometry induced by the extension of A,

then T |H “ I d and T ppq,T pqq,T pr q P H. This shows that Cart is continuous at pp, q,r q.

Lemma 1.4.5. If pw, x, y, zq P pHm
C q4, then

Cartpx, y, zq´ Cartpw, y, zq` Cartpw, x, zq´ Cartpw, x, yq “ 0.

Proof. Choose respective lifts w̃ , x̃, ỹ , z̃ such that

Bpw̃ , x̃q “ Bpx̃, ỹq “ Bpỹ , z̃q “ 1.

Then
Cartpx, y, zq´ Cartpw, y, zq` Cartpw, x, zq´ Cartpw, x, yq “

ArgpBpz̃, x̃qq´ Arg
´

Bpw̃ , ỹqBpz̃, w̃q

¯

`

Arg
´

Bpx̃, z̃qBpz̃, w̃q

¯

´ ArgpBpỹ , w̃qq “

ArgpBpz̃, w̃qq´ ArgpBpz̃, w̃qq “ 0.

The last equality is true because the four arguments involved are smaller in absolute value

than π
2 .

The map

Hm
C ˆ Hm

C ˆ Hm
C

Cart
ÝÝÑ R

is an alternating 2-cocycle and its image is contained in p´π
2 , π2 q. For further reading about

the Cartan argument see [8, 31, 40].
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A set X Ă Hm
C is contained in a real hyperbolic subspace if, and only if, for every x, y, z P

X , Cartpx, y, zq “ 0 (see Lemma 2.1 in [8]).

A set X Ă Hm
F is called total if there is not a proper and closed F-vector space that

contains the lifts of X .

The concept of function of complex hyperbolic type, due to Monod [40], is the analogous

for hyperbolic representations of the functions of positive type. It is a fundamental tool for

the study of hyperbolic representations, particularly for the results of Chapter 3.

Given a topological space X , a continuous function X ˆX
ϕ
ÝÑ C is called a complex kernel

of positive type, if for every λ1, . . .λn P C and every x1, . . . , xn P X ,

ÿ

i , j

λiλ jϕpxi , x j q ě 0.

See Chapter II.C of [3] and [4] for further reading on kernels of positive type.

Following [40], a pair pα,βq is called a function of hyperbolic type defined on a topologi-

cal group G , if

α : G3
Ñ

`

´π
2 , π2

˘

is a continuous G-invariant (with respect to the diagonal action) alternating 2-cocycle,

β : G Ñ Rą0

is a continuous function, symmetric with respect to the inversion of the group, such that

βpeq “ 1 and such that the map

pg ,kq ÞÑβpg qβpkq´ e´iαpg ,k,eqβpg ´1kq

is a complex kernel of positive type.

Given a representation G
ρ

ÝÑ IsompHm
C qo and x P Hm

C , if

βpg q “ coshpdpρpg qx, xqq

and

αpg ,k, lq “ Cart
`

ρpg qx,ρpkqx,ρplqx
˘

,

then pβ,αq is a function of complex hyperbolic type (see Proposition 1.9 in [40]). Later on it

will be clear that this example is prototypical (see Theorem 1.4.9).
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The following is Theorem 1.12 in [40]. It will be crucial in the rest of this work. It

constitutes a fundamental tool in the search for new representations for a given group.

Theorem 1.4.6. Let pβ,αq be a function of complex hyperbolic type defined on a group G. If

0 ď t ď 1, then pβt , tαq is a function of complex hyperbolic type.

Lemma 1.4.7. Fix x P H such that Bpx, xq “ 1 and consider the Hilbert norm associated to

the ˘-decomposition H “ Cx ‘ xK. Thus, for every v, w P H the following hold:

1. }v}2 “ 2|Bpv, xq|2 ´ Bpv, vq.

2. |Bpv, wq| ď }v}}w}.

Proof. For 1., observe that v “ Bpv, xqx ` u, for some u orthogonal to x. Therefore,

}v}2 “ |Bpv, xq|2 ´ Bpu,uq

“ 2|Bpv, xq|2 ´ Bpv, vq.

For 2., notice that if w “ Bpw, xqx `u1, for some v orthogonal to x, then if B˘ is the positive

definite Hermitian product associated to the ˘-decomposition induced by x, then

|Bpv, wq|2 “ |B˘

`

Bpv, xqx ` u,Bpw, xqx ´ u1
˘

|2

ď }v}2}Bpw, xqx ´ u1}2

“ }v}2}w}2.

Lemma 1.4.8. Every A P Up1,8q is a bounded operator with respect to the Hilbert norm

induced by B˘.

Proof. Observe that, if the same conventions of the previous lemma are used, for v P H

such that }v} “ 1,

}Apvq}2 “ 2|BpApvq, xq|2 ´ BpApvq, Apvqq

“ 2|Bpv, A´1pxqq|2 ´}v}2 ´ 2|Bpv, xq|2

ď 2p}A´1x}2 `}x}2q` 1.

The next result is Theorem 1.11 of [40]. A sketch of the proof will be given in order to

outline arguments that will often be used in the rest of this text.
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Theorem 1.4.9. The pair pα,βq is a function of hyperbolic type if, and only if, up to a

conjugation by a holomorphic isometry of Hm
C , there exist a unique representation G

ρ
ÝÑ

IsompHm
C qo and p P Hm

C such that the orbit of p is total and

βpg q “ coshdpρpg qp, pq

and

αpg1, g2, g3q “ Cart
`

ρpg1qp,ρpg2qp,ρpg3qp
˘

.

Moreover β and α are continuous if, and only if, ρ is orbitally continuous.

Proof. The unicity will be clear from the arguments used in the proof. By definition

pg ,kq ÞÑβpg qβpkq´ e´iαpg ,k,eqβpg ´1kq

is a complex kernel of positive type. By Theorem C.1.4 in [3], there exist a complex Hilbert

space L and a continuous function G
h
ÝÑ L such that the image of h generates a dense

subspace of L and such that for every g ,k P G ,

xhpg q,hpkqy “βpg qβpkq´ e iαpe,g ,kqβpg ´1kq.

Define H “ C ‘ L and provide it with the Hermitian form B given by

Bpa ‘ v,b ‘ wq “ ab̄ ´xv, wy.

By construction B is a strongly non-degenerate form of signature p1,8q defined on H .

Denote G
f

ÝÑ H the map given by f pg q “βpg q‘ hpg q. Observe that by construction, for

every g P G , Bp f pg q, f pg qq “ 1 and |Bp f peq, f pg qq| “βpg q. Let H be the complex hyperbolic

space induced by H and B . Thus, if f̄ pg q is the point in H represented by f pg ), then for

every g ,k P G ,

cosh
`

dp f̄ pg q f̄ peqq
˘

“βpg q

and
Cart

`

f̄ pg q, f̄ pkq, f̄ peq
˘

“ Arg
`

Bpβpg q‘ hpg q,βpkq‘ hpkqq
˘

“ αpg ,k,eq.

The image of f generates a closed vector space of H because hpeq “ 0 and because the

image of h generates a closed vector space of L. Define, for every g P G ,

Tg p f pkqq “ e iαpe,g ,g kq f pg kq.
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The claim is that Tg can be extended to a map in Up1,8q. Thus, for every g ,k, l P G ,

B
`

Tg p f pkqq,Tg p f pkqq
˘

“ e iαpe,g ,g kqe´iαpe,g ,g lqeαpe,g k,g lqβpk´1lq.

As α is a 2-cocycle,

Bαpe, g , g k, g lq “

αpe,k, lq´αpe, g k, g lq`αpe, g , g lq´αpe, g , g kq “ 0.

Therefore,
B
`

Tg p f pkqq,Tg p f pkqq
˘

“ e iαpe,k,lqβpk´1lq

“ Bp f pkq, f plqq.

In particular, this shows, together with the previous observation, that for every g ,k, l P G ,

Cart
`

f̄ pg q, f̄ pkq, f̄ plq
˘

“αpg ,k, lq.

If
n
ř

i“1
λi f pki q “ 0, for some λi P C, then

B
´

n
ÿ

i“1

λi Tg p f pki qq,Tg p f plqq

¯

“ 0,

for every l P G . The complex vector space generated by Imp f q is the one generated by

tTg p f plqqulPG . Hence
n
ÿ

i“1

λi Tg p f pki qq “ 0.

Denote V the complex vector space generated by Imp f q. The previous observation

shows that for every g P G , Tg can be extended to a complex linear map V
Tg
ÝÑ V that

preserves B . Using the arguments of Lemma 1.4.8, it is possible to show that for every g P G ,

V
Tg
ÝÑ H is uniformly continuous, thus it can be extended to a complex linear map H

Tg
ÝÑ H

that preserves B .

For every g ,k, l P G , on the one hand

Tg ˝ Tkp f plqq “ Tg
`

e iαpe,k,klq f pklq
˘

“ e iαpe,g ,g klqe iαpe,k,klq f pg klq,
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and on the other hand,

Tg kp f plqq “ e iαpe,g k,g klq f pg klq.

Again, as α is a 2-cocycle,

´αpg , g k, g klq`αpe, g k, g klq´αpe, g , g klq`αpe, g , g kq “ 0.

This shows that

Tg ˝ Tk “ e iαpe,g ,g kqTg k .

Observe that this identity shows, in particular, that for every g P G , the map Tg is invertible.

Even if g ÞÑ Tg is not an homomorphism, there is a well defined homomorphism

G
ρ

ÝÑ IsompHq, where ρpg q is the isometry represented by Tg .

The last claim is that for every w P H , the map g ÞÑ Tg pwq is continuous. Observe that

for every v P V this is true because β and α are continuous. Let U Ă G be a symmetric

neighborhood of e such that there exists M 1 ą 0 such that for every g P U , }Tg p f peqq} ă

M 1. Hence, by Lemma 1.4.7, for every w P H , t}Tg pwq}ug PU is bounded. By the uniform

boundedness principle, there exists M ą 0 such that for every g P U , }Tg } ď M (see for

example Section 3.3 in [49]).

This implies that for every w P H , the map g ÞÑ Tg pwq is continuous at e. Indeed, if

v P V and g P U , then

}Tg pwq´ w} ď }Tg pwq´ Tg pvq}`}Tg pvq´ v}`}v ´ w}

ď pM 1 ` 1q}v ´ w}`}Tg pvq´ u}.

To conclude the proof for the continuity in e, just observe that V is dense and the map

g ÞÑ Tg pvq is continuous at e. This implies that g ÞÑ Tg pvq is continuous at every g0 P G

because the map g ÞÑ Tg Tg0 is continuous at e. To finish the proof just consider p “ f̄ peq.

1.5 Hyperbolic representations

In this section, following the ideas of Monod [40], some results about representations using

the language of functions of positive type are described.

Proposition 1.5.1. Let G
ρ

ÝÑ IsompHm
C qo be a representation and suppose x P Hm

C is a point

with total orbit. If there exists ω, an alternating G-invariant 1-cochain, such that Bω“α,
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where α is the 2-cocycle associated to x, then ρ admits a lift to a representation G
ρ̃

ÝÑ Up1,mq.

Proof. Let Tg the map defined in the proof of Theorem 1.4.9. Define

T 1
g “ e´iωpe,g qTg .

Observe that on one side for every g ,k P G ,

T 1
g T 1

k “ e´iωpe,g qe´iωpe,kqTg Tk

“ e´iωpe,g qe´iωpe,kqe iαpe,g ,g k,qTg h ,

and that on the other side,

αpe, g , g kq “ωpe,kq´ωpe, g kq`ωpe, g q.

Therefore the map g ÞÑ T 1
g is a homomorphism.

Given x, y P Hm
C and ξ P BHm

C , the Cartan argument of the triple px, y,ξq can be defined

in an analogous way that it has been done for triples of points in Hm
C or triples of pairwise

distinct points in BHm
C . Indeed, for any lifts respective lifts x̃, ỹ , ξ̃,

Re
´

Bpx̃, ỹqBpỹ , ξ̃qBpξ̃, x̃q

¯

ą 0.

This can be shown using similar arguments as the ones used in Lemma 1.4.1. Denote

Cartpx, y,ξq “ Arg
´

Bpx̃, ỹqBpỹ , ξ̃qBpξ̃, x̃q

¯

.

Observe that for every ξ P BHm
C , the map px, yq ÞÑ Cartpx, y,ξq is alternating.

Lemma 1.5.2. For every ξ P BHm
C the map Hm

C ˆ Hm
C

ωξ
ÝÑ R, given by

ωξpx, yq “ Cartpx, y,ξq,

is continuous.

Proof. The proof follows from the arguments used in Proposition 1.4.4 and the fact that

ωξpT pxq,T pyqq “ωξpx, yq, for every T P IsompHm
C qo that fixes ξ.
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Proposition 1.5.3. Let G
ρ

ÝÑ IsompHm
C qo be a representation and let x P Hm

C . If ρ fixes a point

ξ P BHm
C , then there exists ω, a continuous and alternating G-invariant 1-cochain, such that

Bω“α, where α is the 2-cocycle associated to x.

Proof. Choose respective lifts x̃, ξ̃ such that Bpx̃, ξ̃q ą 0. Let ρ̃ be a linear lift (not necessarily

a homomorphism) of ρ such that for every g P G , ρ̃pg qpξ̃q “ θg ξ̃, with θg ą 0. Define, for

every l ,k P G ,

ωpl ,kq “ωξpρplqx,ρpkqxq.

The cochain ω is continuous, G-invariant and alternating. Observe that

ωpl ,kq “

Cart
`

ρplqx,ρpkqx,ξ
˘

“

Arg
´

B
`

ρ̃plqx̃, ρ̃pkqx̃
˘

B
`

x̃, ρ̃pk´1qξ̃
˘

B
`

ρ̃pl ´1qξ̃, x̃
˘

¯

“

ArgpBpρ̃plqx̃, ρ̃pkqx̃qq.

For every x1, x2, x3 P Hm
C ,

|Cartpx1, x2, x3q| ăπ{2

and for y P BHm
C ,

|Cartpx1, x2, yq| ďπ{2.

Therefore,

ArgpBpρ̃pg qx̃, ρ̃plqx̃qq` ArgpBpρ̃plqx̃, ρ̃pkqx̃qq´ ArgpBpρ̃pg qx̃, ρ̃pkqx̃qq “

Arg
´

B
`

ρ̃pg qx̃, ρ̃plqx̃
˘

B
`

ρ̃plqx̃, ρ̃pkqx̃
˘

B
`

ρ̃pkqx̃, ρ̃pg qx̃
˘

¯

.

In other words, Bω“α.

The following corollary is a consequence of Propositions 1.5.1 and 1.5.3.

Corollary 1.5.4. Let G
ρ

ÝÑ IsompHm
C qo be a representation and suppose x P Hm

C has a total

orbit. If ρ fixes a point at infinity, then ρ admits an orbitally continuous lift ρ̃ to Up1,mq.

A group topological G is called topologically perfect if the closed group generated by

tx y x´1 y´1ux,yPG is equal to G .

The following proposition is an immediate consequence of Lemma 1.2.3 and Lemma

2.2 and 2.6 in [40].
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Proposition 1.5.5. Let G
ρ

ÝÑ IsompHm
C q be a representation and let x P Hm

C . If pβ,αq is the

function of complex hyperbolic type associated to ρ and x, then the following hold:

1. The function β is bounded if, and only if, ρ fixes a point in Hm
C .

2. The representation ρ preserves a real hyperbolic subspace of Hm
C if, and only if, α“ 0.

3. If G is perfect and for some g P G, lim
nÑ8

βpg nq
1
n ą 1, then ρ is non-elementary.

Observe that the asymptotic condition in 3. of the previous proposition, just says that

for some g , ρpg q is hyperbolic.

A non-elementary representation G
ρ

ÝÑ IsompHm
F q, with m finite or infinite and F “ R,C

is called irreducible if there is no proper F-hyperbolic subspace of Hm
F invariant under ρ.

Observe that for such representation any point in Hm
F has a total orbit.

The following theorem is Proposition 4.3 in [9]. The statement there is about real

hyperbolic spaces, however the proof for the complex case works exactly in the same way.

Theorem 1.5.6. Let F “ R,C and let G
ρ

ÝÑ IsompHm
F q be a representation. If ρ is non-

elementary, then there exists H, an F-hyperbolic subspace of Hm
F , invariant under ρ and such

that if H1 is a ρ-invariant F-hyperbolic subspace of Hm
F , then H Ă H1.

The space H in the previous representation will be called the irreducible part of the

representation ρ.
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Chapter 2

Representations of PU(1,n)

In this chapter the ideas of [41], that can be track to [9] are adapted for the complex case.

In Section 2.1 the restrictions of hyperbolic representations of PUp1,nq to the stabilizers,

either of a point in Hn
C or of a point in BHn

C, are studied. The latter play a fundamental role:

every irreducible representation of PUp1,nq is determined by its restriction to a stabiliser of

a point in BHn
C. This result was proved by Monod & Py [41] for irreducible representations

of POp1,nq. With the ideas of that proof it is possible to derive analogous results for the

complex case.

In Section 2.2 the concept of displacement of a representation is studied. This, by way

of a common thread, allows to put in the same perspective the results of this work with the

classifications made for irreducible representations of the isometry groups of a regular tree

(Burger, Iozzi & Monod [9]), the infinite-dimensional real hyperbolic space (Monod & Py

[42]) and the finite-dimensional real hyperbolic spaces (Monod & Py [41]).

2.1 Non-elementary representations and stabilizers

Let ξ1,ξ2 P BHm
F and let p P Hm

F be the point represented by 1?
2
pξ̃1 ` ξ̃2q, where ξ̃i are lifts of

ξi such that Bpξ1,ξ2q “ 1. Denote (with a small abuse of notation if F “ R)

A “ tg pλ,0, I d ,0quλą0

and K “ POFpBqx . Observe that by Proposition 1.3.5, POFpBq “ K AK .
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If G is a topological group acting on a metric space X , define for x P X the function

G
dx
ÝÑ Rě0 given by dxpg q “ dpg x, xq. The following proposition is an observation done in

[18] in a much higher generality. A simple proof adapted to the context of this work is shown

below.

Proposition 2.1.1. Let X be a metric space and let H a finite-dimensional F-vector space

provided with a form B of signature p1,nq. If POFpBq
ρ

ÝÑ IsompX q is an orbitally continuous

representation, then for every x P X , the map dx , given by

dxpg q “ dpρpg qx, xq,

is either bounded or proper.

Lemma 2.1.2. If G acts on a metric space X orbitally continuously and there exist K1,K2 and

A closed subsets of G such that Ki is compact and G “ K1 AK2, then for x P X the following

hold:

1. The map dx is bounded if, and only if, dx |A is bounded.

2. The map dx is proper if, and only if, dx |A is proper.

Proof. Denote Qi “ suptdpkx, xqukPKi . Observe that for ki P Ki and a P A,

dxpk1ak2q´Q1 ´Q2 ď dxpaq ď dxpk1ak2q`Q1 `Q2,

which proves 1. In order to show that 2. holds, observe that for every M ą 0,

dx |
´1
A r0, Ms “ A X d´1

x r0, Ms

and that

d´1
x r0, Ms Ă K1pdx |

´1
A r0, M `Q1 `Q2sqK2.

Proof of Proposition 2.1.1. Suppose for now that F “ C. If for some x P X , dx is proper

(resp. bounded), then for every y P X , dy is proper (resp. bounded). Suppose x P X is such

that dx is non-proper, then by Lemma 2.1.2, dx |A is non-proper. Denote g pλ,0, I d ,bq “

g pλ,bq and suppose that pλnqn is a sequence escaping compacts such that there exists

M ą 0 such that for every n, dxpg pλn ,0qq ă M . Notice that

dxpλ,0q “ dxpλ´1,0q
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and

g pλ,0qg p1,bqg pλ´1,0q “ g p1,λ2bq.

Denote the subgroup L “ tg pλ,bquλą0,bPR. Observe that there exists a compact neigh-

borhood e P W Ă L such that there exists M 1 ą 0 such that for every w P W , dxpwq ă M 1.

Define γn “ mintλn ,λ´1
n u and notice that for every l P L, there exists n large enough such

that dxpg
`

γn ,0ql g pγ´1
n ,0q

˘

“ u P W. Therefore

dxplq ď 2dxpg pλn ,0qq` dxpuq ď 2M ` M 1,

and by Proposition 2.1.1, dx is bounded in PUp1,mq. The same proof works for the real case

(see the comments before Lemma 1.3.13).

Recall that the notation PUp1,nq or Hn
C is used for the case n ă 8. If ρ is a representation

of PUp1,nq and if g “ g pλ, v, A,bq, from now on, ρpg q will be denoted ρpλ, v, A,bq.

The following theorem, but stated for R and a non-elementary representation of

POp1,nq, is Proposition 2.1 in [41]. The proof given in the aforementioned paper works, just

with few changes, for the complex case.

Theorem 2.1.3. If PUp1,nq
ρ

ÝÑ IsompHm
C q is a non-elementary representation, then ρ pre-

serves the type (hyperbolic, elliptic or parabolic). If ξ P BHn
C, then ρpPUp1,nqξq fixes a unique

point in BHm
C .

Proof. The representation is supposed non-elementary, thus by Proposition 2.1.1, for every

x P Hm
C , dx is proper.

The first claim is that such a representation preserves the elliptic and the non-elliptic

types. Observe that if g P PUp1,nq is elliptic, then g is contained in a compact subgroup,

thus for every x P Hm
C , the orbit tρpg zqxuzPZ is bounded. Hence, ρpg q is elliptic.

Suppose ρpg q is elliptic and that x P Hm
C is fixed by it. The fact that dx is proper implies

that St abx ď PUp1,nq is a compact group, or in other words, is the stabilizer of some point

in Hn
C. This shows that g has to be elliptic.

The claim now is that the parabolic type is preserved. Let g P PUp1,nq be parabolic and,

up to conjugation, it is possible to suppose that ξ P BHn
C is the g -fixed point. Fix another

η P BHn
C and respective lifts ξ̃ and η̃ such that Bpξ̃, η̃q “ 1. With respect to the decomposition

that this choice induces, suppose that g “ g p1, v, A,bq (see Proposition 1.3.11).

69



The first possibility (only if n ą 1) is that v R ImpA ´ I dq. Consider the non-trivial

decomposition of Cn´1

kerpA ´ I dq‘ kerpA ´ I dq
K.

In this decompositon the vector v has the form v 1 ` v2, for some v 1 and some v2 ‰

0. The restriction of A to kerpA ´ I dqK is an automorphism of this subspace, therefore

there exists w P kerpA ´ I dqK such that Apwq ´ w “ v2. Let D P Upn ´ 1q be such that if

s “ dimpkerpA ´ I dqq, then DpCs ‘ 0q “ kerpA ´ I dq. Observe that

D´1 AD “

ˆ

I d 0

0 A1

˙

.

Now notice that

g p1, w,D,0q
´1g p1, v, A,bqg p1, w,D,0q “

g
`

1,´D´1pwq,D´1,´e
˘

g
`

a, v ` Apwq, AD,›
˘

“

g
`

1,B´1pApwq´ w ` vq,D´1 AD,›
˘

“

g
`

1,D´1pv2 ´ vq,D´1 AD,›
˘

“

g p1,D´1pv 1q,D´1 AD,dq,

for some d P R. From the definition of D, the vector u “ D´1pv 1q belongs to the space

generated Cs ‘ 0. Therefore

g p1,u, I d ,0qg p1,u, I d ‘ A1,dq “ g p1,2u, I d ‘ A1,dq

“ g p1,u, I d ‘ A1,dqg p1,u, I d ,0q.

Observe that

g p2,0, I d ,0qg p1,u, I d ,0qg p1{2,0, I d ,0q “ g p2,0, I d ,0qg p1{2,2u, I d ,0q

“ g p1,2u, I d ,0q

“ g p1,u, I d ,0q2.

The isometry h “ ρp1,u, I d ,0q cannot be hyperbolic because it is conjugated to h2, and

therefore,

ℓphq “ ℓph2
q “ 2ℓphq.

As the non-elliptic type is preserved, ρp1,u, I d ,0q is parabolic.

If ρp1,u, I d ‘ A1,dq is hyperbolic then on the one hand, because the two isometries
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commute, ρphq preserves the set of points in BHm
C fixed by ρp1,u, I d ‘ A1,dq in BHm

C . On

the other hand, the isometry ρphq is parabolic, therefore ρp1,u, I d ‘ A1,dq has to preserve

the h-fixed point in BHm
C , which is a contradiction. Indeed, h just has one fixed point in

BHm
C . This shows that ρp1,u, I d ‘ A1,dq, and therefore ρp1, v, A,bq, is parabolic.

For the other case, suppose g p1, v, A,bq is parabolic and such that there exists u such

that Apuq´ u “ v and ImpBpApuq, vqq ‰ b.

Observe that,

g p1,´u, I d ,0q
´1g p1, v, A,bqg p1,´u, I d ,0q “

g
`

1, v ` u, A,b ´ ImpBpv,uqq
˘

g p1,´u, I d ,0q “

g
´

1, v ` u ´ Apuq, A,b ´ ImpBpv,uqq´ ImpBp´Apuq, v ` uqq

¯

“

g
´

1,0, A,b ´ ImpBpv,uqq` ImpBpApuq, vqq` ImpBpApuq,uqq

¯

“

g
`

1,0, A,b ` ImpBpApuq, vqq
˘

“

g
`

1,0, A,b ´ ImpBpApuq,uqq
˘

“

g p1,0, A,dq,

,

for some d ‰ 0.

The transformations g p1,0, A,dq and g p1,0, I d ,dq commute and

g
`

1?
2

,0, I d ,0
˘´1

g p1,0, I d ,dqg
`

1?
2

,0, I d ,0
˘

“

g p
?

2,0, I d ,0qg
`

1?
2

,0, I d ,
?

2d
˘

“

g p1,0, I d ,2dq “

g p1,0, I d ,dq2.

.

From this point the proof for the claim is exactly the same as in the first case. Thus the

parabolic type is preserved.

Define H “ tg p1,0, I d ,bqubPR. For each h P Hzteu, the transformation h is parabolic.

Since H is abelian, ρpHq has a unique common fixed point ω P BHm
C . Notice that H is a

normal subgroup of P , therefore for every g P P , the transformation ρpg q fixes ω.

Consider now the hyperbolic isometry g “ g pγ,0, I d ,0q, for some γ ą 0, and sup-

pose ρpg q is parabolic. The group tρpλ,0, I d ,0quλąR is abelian, hence for every λ ą 0,

ρpλ,0, I d ,0q is parabolic. Let s P IsompHn
Cq be the isometry represented, in the decomposi-

tion

Cξ̃‘ Cη̃‘pξ̃K
X η̃K

q,
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by the matrix

σ“

¨

˝

0 1 0

1 0 0

0 0 I d

˛

‚.

Observe that

sg pλ,0, I d ,0qs´1
“ g pλ´1,0, I d ,0q.

Thus, as ρpλ,0, I d ,0q is parabolic, then ρpsq fixes ω. This is a contradiction because

by Proposition 1.3.5, PUp1,nq is generated by P and s and the representation ρ is non-

elementary.

To conclude, observe that given the double transitivity of PUp1,nq in BHn
C, up to a

conjugation, every g P PUp1,nq hyperbolic can be supposed of the shape g pλ,0, A,0q, for

some λą 0 and A P Upn ´ 1q.

Observe that for every T P Upn ´ 1q and γą 0, g pγ,0, I d ,0q and g p1,0,T,0q commute,

thus if ω1 ‰ ω is the other fixed point at infinity by tρpλ,0, I d ,0quλą0, then for every T ,

ρp1,0,T,0qpω1q “ω1. Therefore,

ρpλ,0, A,0qpω1
q “ ρpλ,0, I d ,0qρp1,0, A,0qpω1

q “ω1.

As g pλ,0, A,0q is hyperbolic and ρpλ,0, A,0q is neither parabolic nor elliptic, then it is

possible to conclude that the hyperbolic type is preserved.

Remark 2.1.4. The previous theorem shows that given PUp1,nq
ρ

ÝÑ IsompHm
C qo , a non-

elementary representation, there exists a map BHn
C
Γ

ÝÑ BHm
C defined in the following way. If

ξ P BHn
C and P ă PUp1,nq is its stabilizer, let Γpξq be the unique ρpPq-fixed point in BHm

C .

Observe that Γ is injective because given two distinct ξ1,ξ2 P BHn
C, the group PUp1,nq is

generated by Pξ1 YPξ2 , the respective stabilizers in PUp1,nq of ξ1 and ξ2 (see Corollary 1.3.6).

Proposition 2.1.5. Let PUp1,nq
ρ

ÝÑ IsompHm
C qo be non-elementary. For a group G ă PUp1,nq

the following hold:

1. The group G fixes a point x P Hn
C if, and only if, it fixes a point y P Hm

C .

2. If G fixes a point η P BHm
C , then G fixes a point in Hn

C YBHn
C.

Proof. The point 1. is an immediate consequence of Propositions 1.2.4 and 2.1.1.

For 2., observe that by Proposition 1.2.4, if G does not contain hyperbolic isometries

then the claim of the proposition holds. Suppose then that G contains hyperbolic elements.
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Let η P BHm
C be a ρpGq-fixed point. Suppose g ,h P G are two distinct hyperbolic isome-

tries and let ξg
1 ,ξg

2 and ξh
1 ,ξh

2 be the respective fixed points of g and h in BHn
C. The claim is

that there exist i , j P t1,2u such that ξg
i “ ξh

j . If that is not the case and Γ is the map defined

in Remark 2.1.4, observe that

tΓpξ
g
1 q,Γpξ

g
2 quXtΓpξh

1 q,Γpξh
2 qu “ H.

This is a contradiction because ρpg q and ρphq fix η P BHm
C .

This argument shows that there exists ν P BHn
C fixed by g and h and such that Γpνq “ η.

Observe that with the same argument, it is clear that every hyperbolic isometry of G fixes ν.

Let Pη ă IsompHm
C qo be the stabilizer of η and let Pη

κ
ÝÑ G be the Busemann character

associated to η (see Remark 1.3.7). The map G
κ˝ρ
ÝÝÑ R is a homomorphism and denote L its

kernel.

Due to the fact that ρ preserves the type and κpg q ‰ 0, if and only if g is hyperbolic, then

L does not contain any hyperbolic isometry. By Proposition 1.2.4, either L fixes a point in

Hn
C or it fixes a point in BHn

C.

Suppose that L fixes a point in Hn
C. Denote Y Ă Hn

C the set of L-fixed points. The space

Y is closed and convex, therefore there exists a projection Hn
C

pY
ÝÑ Y . Since L is normal

in G , the space Y is G-invariant and the map pY is G-equivariant. Hence for every g P G

hyperbolic, the space Y contains the axis preserved by g . This shows that ν is L-fixed, and

therefore, a G-fixed point.

Now suppose that L does not fix a point in Hn
C. There exists, by Proposition 1.2.4,

ξ P BHn
C that is fixed by L. If ξ‰ ν, then ρpLq preserves, and therefore fixes pointwise, the

axis connecting ν and ξ. This is a contradiction because L does not fix a point in Hn
C, hence

ξ“ ν.

Remark 2.1.6. If the representation PUp1,nq
ρ

ÝÑ IsompHm
C qo considered is irreducible the

point 1 of the previous proposition admits a much stronger statement. Indeed, if K ă

PUp1,nq is a maximal compact subgroup, by Proposition 5.8 and Remark 5.9 in [40], there

exists a unique ρpK q fixed point in Hm
C . This fact and Theorem 2.1.3 show that if PUp1,nq Ñ

IsompHm
C qo is an irreducible representation there exist unique PUp1,nq-equivariant maps

Hn
C Ñ Hm

C and BHn
C Ñ BHm

C .

Let PUp1,nq
ρ

ÝÑ IsompHm
C qo be a non-elementary representation and let ξ1,ξ2 in BHn

C
be two distinct points. By Theorem 2.1.3, after fixing ξ̃1, ξ̃2, respective lifts of ξ1,ξ2 such
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that Bpξ̃1, ξ̃2q “ 1, for every g P P “ St abpξ1q, g “ g pλ, v, A,bq. Moreover there are two

distinguished points η1,η2 P BHm
C such that ρpPqpη1q “ η1 and such that for every λą 0,

ρpλ,0, I d ,0qpη2q “ η2.

Observe that If PUp1,nq
ρ1

ÝÑ IsompHqo , with H Ă Hm
C , is the irreducible part of ρ (see

Theorem 1.5.6), then ηi P BH. Indeed, the axis fixed by ρpλ,0, I d ,0q has to be contained in

H because the projection Hm
C Ñ H is ρpPUp1,nqq-equivariant and contracting.

Remark 2.1.7. Let η̃i be lifts of ηi such that Bpη̃1, η̃2q “ 1. Observe that with respect to the

decomposition Cη̃1 ‘ Cη̃2 ‘ η̃K
1 X η̃K

2 , each transformation ρpgλ,v,A,bq has a unique linear

representation such that the image of η1 under this linear transformation is a positive

multiple of η1. That is to say, if Hm
C is induced from a Hilbert space H and a form B , for

every g P P , ρpg q has a representation with the shape,

¨

˚

˝

χpg q ´
χpg qBpcpg q,cpg qq

2 ` i∆pg q ´χpg qB
`

πpg qp¨q,cpg q
˘

0 χpg q´1 0

0 cpg q πpg q

˛

‹

‚
,

where, by Corollary 1.5.4, P
c

ÝÑ η̃K
1 X η̃K

1 and P
∆
ÝÑ R are continuous functions, P

χ
ÝÑ Rą0 is a

continuous homomorphism, and P
π
ÝÑ U, where U is the group of unitary transformations

of η̃K
1 Xη̃K

1 , is a strongly continuous unitary representation of P . For g “ g pλ, v, A,bq, denote

cpg q “ cpλ, v, A,bq and πpg q “ πpλ, v, A,bq. These conventions and notation will be used

through all this work.

Given a group G and a unitary representation π into a Hilbert space H , a map G
c

ÝÑ H is

called an affine cocycle (of π) if for every g ,k P G ,

cpg hq “ cpg q`πpg qcphq

(see Chapter 2 of [3]).

The following is an immediate observation using the matrix representations of the

elements in ρpPq.

Lemma 2.1.8. For g ,k P P, the following hold:

1. cpg kq “χpkq´1cpg q`πpg qcpkq.

2. ∆pg kq “χpg q∆pkq`χpkq´1∆pg q´ Im
`

Bpπpg qcpkq,cpg qq
˘

.
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Observe that if L “ kerpχq, then c|L is an affine cocycle of πL .

Lemma 2.1.9. For every g “ g pλ, v, A,bq P P the following hold:

1. χpg q “λt , for some t P Rzt0u.

2. cpλ,0, A,0q “ 0.

3. ∆pλ,0, A,0q “ 0.

4. cp1,λv, I d ,λ2bq “λtπpλ,0, I d ,0qcp1, v, I d ,bq.

5. ∆p1,λv, I d ,λ2bq “λ2t∆p1, v, I d ,bq

6. If g “ g p1,0, I d ,bq, then

∆p1,0, I d ,2bq “ 2∆pg q´ Im
`

Bpπpg qcpg q,cpg qq
˘

.

Proof. For 1., observe that, by Proposition 1.3.8 and Remark 1.3.7, g p1, v, A,bq is not hy-

perbolic. Thus, by Theorem 2.1.3, ρp1, v, A,bq is not hyperbolic and χpg p1, v, A,bqq “ 1.

As

g “ g pλ,0, I d ,0qg p1, v, A,λ´1bq,

then χpg pλ, v, A,bqq “χpg pλ,0, I d ,0qq.

Observe that for λ ‰ 1, χpg pλ,0, I d ,0qq ‰ 1 (see Proposition 1.3.8 and Remark 1.3.7),

therefore the map λ ÞÑχpg pλ,0, I d ,0qq is a continuous isomorphism of Rą0.

The points 2. and 3. are a consequence of the fact that the isometries ρpλ,0, I d ,0q and

ρp1,0, A,0q commute, and therefore ρpλ,0, A,0qpηi q “ ηi .

For the 4. and 5., observe that

g pλ,0, I d ,0qg p1, v, I d ,bqg pλ´1,0, I d ,0q “ g p1,λv, I d ,λ2bq.

Thus, points 2. and 3. and Lemma 2.1.8 imply that,

cp1,λv, I d ,λ2bq “λtπpλ,0, I d ,0q
`

cp1, v, I d ,bq
˘

and

∆p1,λv, I d ,λ2bq “λ2t∆p1, v, I d ,bq.
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The point 6. is an immediate consequence of the identity

g p1,0, I d ,2bq “ g p1,0, I d ,bq
2.

Let

σ“

¨

˝

0 1 0

1 0 0

0 0 I d

˛

‚

and denote s P PUp1,nq the isometry induced by σ.

Lemma 2.1.10. For every g p1, v, I d ,bq P PUp1,nq, if α“
Bpv,vq

2 ` i b, then

sg p1, v, I d ,bqsg
`

1,α´1v, I d ,b|α|
´2
˘

s “ g
`

|α|
´1,´ α

|α|
v,T,´b|α|

´1
˘

,

for some T P Up1,nq.

Proof. It will be shown first that there exists θ P C such that

σg p1, v, I d ,bqσg
`

1,α´1v, I d ,b|α|
´2
˘

σpξ̃1q “ θξ̃1.

Indeed,
σg

`

1,α´1v, I d ,b|α|´2
˘

σpξ̃1q “

σg
`

1,α´1v, I d ,b|α|´2
˘

pξ̃2q “

σ
´

´ α
|α|2 ξ̃1 ` ξ̃2 `α´1v

¯

“

ξ̃1 ´α´1ξ̃2 `α´1v

and
g p1,´v, I d ,´bqσpξ̃1q “ g p1,´v, I d ,´bqpξ2q

“ ´αξ̃1 ` ξ̃2 ´ v.

Therefore

σg p1, v, I d ,bqσg
`

1,α´1v, I d ,b|α|
´2
˘

σpξ̃1q “ ´α´1ξ̃1.

Observe that

σg p1, v, I d ,bqσg
`

1,α´1v, I d ,b|α|´2
˘

σpξ̃2q “

σg p1, v, I d ,bqpξ̃2q “

ξ̃1 `

´

´
Bpv,vq

2 ` i b
¯

ξ̃2 ` v

76



and that for u P ξ̃K
1 X ξ̃K

2 ,

σg p1, v, I d ,bqσg
`

1,α´1v, I d ,b|α|´2
˘

σpuq “

σg p1, v, I d ,bqσ
´

´
Bpu,vq

α
ξ̃1 ` u

¯

“

σg p1, v, I d ,bq

´

´
Bpu,vq

α
ξ̃2 ` u

¯

“

σ
´

´
Bpu,vq

α
ξ̃2 ´

Bpu,vq

α
v ` u

¯

“

´
Bpu,vq

α
ξ̃1 ´

Bpu,vq

α
v ` u.

Therefore, if

R “σg p1, v, I d ,bqσg p1,α´1v, I d ,b|α|
´2

qσ,

it has been shown that

1. Rpξ̃1q “ ´α´1ξ̃1.

2. Rpξ̃2q “ ξ̃1 ´αξ̃2 ` v.

3. Rpuq “ ´
Bpu,vq

α
ξ̃1 ´

Bpu,vq

α
v ` u, for every u P ξ̃K

1 X ξ̃K
2 .

Observe that ´ α
|α|

Rpξ̃1q “ |α´1|ξ̃1. Thus, after this normalization,

´ α
|α|

Rpξ2q “ ´ α
|α|
ξ̃1 `|α|ξ̃2 ´ α

|α|
v.

This shows that

sg p1, v, I d ,bqsg
`

1,α´1v, I d ,b|α|
´2
˘

s “ g
`

|α|
´1,´ α

|α|
v,T,´b|α|

´1
˘

,

for some T P Up1,nq.

The following proposition is the complex version of Lemma 2.2 and Proposition 2.4 of

[41]. The proof for the complex case require minor modifications.

Proposition 2.1.11. Let PUp1,nq
ρ

ÝÑ IsompHm
C q0 be irreducible. If V is the closed complex

vector space generated by

tcp1, v, I d ,bq | v P Cn´1 and b P Ru,
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then V “ ηK
1 X η̃K

2 and the restriction of ρ to P determines the representation.

Proof. The first claim is that the space Cη̃1 ‘ Cη̃2 ‘V is ρpPq-invariant. Observe that for

every for every g pλ, v, A,bq,

g pλ, v, A,bq “ g p1,λv, I d ,λbqg pλ,0, A,0q.

Therefore, by Lemma 2.1.9,

cpλ, v, A,bq “λ´t cp1,λv, I d ,λbq.

From this observation and by Lemma 2.1.8, it is possible to conclude that Cη̃1 ‘ Cη̃2 ‘V is

ρpPq-invariant.

Again, let s P PUp1,nq be the isometry represented, with respect to the decomposition

induced by ξ̃i , by the matrix

σ“

¨

˝

0 1 0

1 0 0

0 0 I d

˛

‚.

Due to the identity

sg pλ,0, I d ,0qs “ g pλ´1,0, I d ,0q,

the map ρpsq leaves invariant the set of fixed points at infinity of the family

tρpλ,0, I d ,0quλą0.

The representation ρ is non-elementary, therefore ρpsq exchanges η1 with η2 (see Proposi-

tion 1.3.5).

Observe that the map ρpsq admits a linear lift τ such that, with respect to the decompo-

sition induced by η̃i ,

τ“

¨

˝

0 ν´1 0

ν 0 0

0 0 A

˛

‚,

with νą 0 and A a unitary transformation.

The claim now is that A leaves invariant the space V . Define

K pv,bq “ ´
B
`

cp1, v, I d ,bq,cp1, v, I d ,bq
˘

2
` i∆p1, v, I d ,bq
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and identify the isometries ρp1, v, I d ,bq with their linear lifts such that

ρ̃p1, v, I d ,bqpη̃1q “ η̃1.

Using the notation of Lemma 2.1.10, observe that on the one hand,

τρp1, v, I d ,bqτρ
`

1,α´1v, I d ,b|α|´2
˘

τpη̃2q “

ν´1τρp1, v, I d ,bqτρ
`

1,α´1v, I d ,b|α|´2
˘

pη̃1q “

ν´1τρp1, v, I d ,bqτpη̃1q “

τρp1, v, I d ,bqpη̃2q “

τ
`

K pv,bqη̃1 ` η̃2 ` cp1, v, I d ,bq
˘

“

ν´1η̃1 `νK pv,bqη̃2 ` Acp1, v, I d ,bq

.

On the other hand,

ρ
`

|α|´1,´ α
|α|

v,T,´b|α|´1
˘

pη̃2q “

ρ
`

1,´ α
|α|2 v, I d ,´b|α|´2

˘

ρp|α|´1,0,T,0qpη̃2q “

|α|t
´

K p´ α
|α|2 v,´b|α|´2qη̃1 `η2 ` c

`

1,´ α
|α|2 v, I d ,´b|α|´2

˘

¯

“

|α|´t K p´αv,´bqη̃1 `|α|tη2 `|α|t c
`

1,´ α
|α|2 v, I d ,´b|α|´2

˘

.

Therefore
ρ
`

|α|´1,´ α
|α|

v,T,´b|α|´1
˘

pη̃2q “

K pv,bq

|K pv,bq|
pν´1η1 `νK pv,bqη2 ` Acp1, v, I d ,bqq .

The last identity implies the following:

1. K pv,bq

|K pv,bq|
Acp1, v, I d ,bq “ |α|t c

`

1,´ α
|α|2 v, I d ,´ b

|α|2

˘

.

2. ν|K pv,bq| “ |α|t .

This computations show that V is A-invariant and that A and ν are determined by the

restriction of ρ to P . Observe that they also show that Cη̃1 ` Cη̃2 `V is ρ-invariant, so as ρ

is supposed irreducible, this finishes the proof.

Remark 2.1.12. The following identities will be used extensively in Chapter 3.

1. K pv,bq

|K pv,bq|
Acp1, v, I d ,bq “ |α|t c

`

1,´ α
|α|2 v, I d ,´ b

|α|2

˘

.

79



2. ν|K pv,bq| “ |α|t .

Observe that, up to conjugating ρ with an isometry ρpλ,0, I d ,0q, it is possible to suppose

that ν takes any positive value.

2.2 Representations and displacement

Recall that given any non-elementary representation PUp1,nq
ρ

ÝÑ IsompHm
C qo , there are

fixed ξi P BHn
C, ηi P BHm

C and respective lifts of them chosen like in Theorem 2.1.3. For

u P η̃K
1 X η̃K

2 , denote }u} “ p´Bpu,uqq
1
2 . The following theorem and its proof, in their real

version, are contained in Proposition 2.3 in [41].

Proposition 2.2.1. If PUp1,nq
ρ

ÝÑ IsompHm
C qo is a non-elementary representation with a

total orbit and P
χ

ÝÑ Rą0 is such that ρpg qη̃1 “ χpg qη̃1, then for every g “ g pλ, v, A,bq P P

(see Remark 1.3.9) there exists t ą 0 such that χpg q “λt . Moreover:

1. If n ą 1, then t ď 1.

2. If n “ 1, then t ď 2.

Proof. Observe that for b ‰ 0, the isometry ρp1,0, I d ,bq is parabolic. Therefore either

∆p1,0, I d ,bq ‰ 0 or cp1,0, I d ,bq ‰ 0. In both cases, due to the continuity of ∆ and c,

lim
λÑ0

∆p1,0, I d ,λbq “ 0

and

lim
λÑ0

cp1,0, I d ,λbq “ 0.

By Lemma 2.1.9,

∆p1,0, I d ,λbq “λt∆p1,0, I d ,bq

and

}cp1,0, I d ,λbq} “λt
}cp1,0, I d ,bq},

therefore t ą 0.

For the case n ą 1, observe that for every v P Cn´1 and A P Upn ´ 1q,

g p1, v, A,0q “ g p1, v, I d ,0qg p1,0, A,0q.

80



Thus, by Lemmas 2.1.8 and 2.1.9,

∆p1, v, A,0q “∆p1, v, I d ,0q.

But g p1, v, I d ,0q “ g p1,0, A,0qg p1, A´1pvq, A´1,0q, therefore

∆p1, v, I d ,0q “∆p1, A´1
pvq, A´1,0q “∆p1, A´1

pvq, I d ,0q.

Recall that g p1, v, I d ,0q´1 “ g p1,´v, I d ,0q, therefore

∆p1, v, I d ,0q`∆p1,´v, I d ,0q´

Im
´

B
`

πp1, v, I d ,0qcp1,´v, I d ,0q,cp1, v, I d ,0q
˘

¯

“

∆p1, v, I d ,0q`∆p1,´v, I d ,0q “ 0

.

This equality shows that for every v P Cn´1zt0u, ∆p1, v, I d ,0q “ 0, and therefore, as

ρp1, v, I d ,0q is parabolic, cp1, v, I d ,0q ‰ 0. Observe that

cp1,2v, I d ,0q “ cp1, v, I d ,0q`πp1, v, I d ,0qcp1, v, I d ,0q.

Therefore for every v ‰ 0,

2t }cp1, v, I d ,0q} “ }cp1,2v, I d ,0q}

ď 2}cp1, v, I d ,0q},

which shows that if n ą 1,then t ď 1.

For the case n “ 1, observe that

cp1,2bq “ cp1,bq`πp1,bqcp1,bq,

therefore 2
t
2 |cp1,bq| ď 2|cp1,bq|. Thus, if cp1,bq ‰ 0 for some (every) b, then t ď 2. If this

is not the case, by Lemma 2.1.8, the map b ÞÑ ∆p1,bq is a (non-trivial) homomorphism.

Therefore

2t∆p1,bq “∆p1,2bq “ 2∆p1,bq,

showing that t “ 1.

Given an irreducible representation PUp1,nq
ρ

ÝÑ IsompHm
C qo , define the displacement of

ρ as ℓpρq “ t , where t is such that for every g “ g pλ, v, A,bq P P , χpg q “λt . The definition

of the displacement of a representation makes sense if ρ is just supposed non-elementary.

Indeed, If PUp1,nq
ρ

ÝÑ H is the irreducible part of ρ, then for every hyperbolic g P P , the
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hyperbolic space H contains the axis preserved by ρpg q (see Theorem 2.1.3).

Observe that by Proposition 1.3.8 and Remark 1.3.7, if g “ g pλ, v, A,bq, then ℓpg q “

| lnpλq|. Every hyperbolic isometry g P PUp1,nq can be conjugated to a hyperbolic isometry

in P . As the displacement of an isometry is invariant under conjugations and for every g

non-hyperbolic, ℓpg q “ 0, the following proposition holds.

Proposition 2.2.2. If PUp1,nq
ρ

ÝÑ IsompHm
C qo is a non-elementary representation with a

total orbit, then for every g P PUp1,nq,

ℓpρpg qq “ ℓpρqℓpg q.

Let G be a locally compact group and f , g :Ñ R` two function. Denote f ĺ g if there

exists M ą 0 and a compact subset K Ă G such that f ď M g outside K . Denote f ă g if, for

every M ą 0, there exists a compact subset K Ă G such that f ď M g outside K .

Given a topological group G and a strongly continuous unitary representation π in a

Hilbert space H , for every v P H , the continuous map G
bv
ÝÑ H , given by bv pg q “πpg qv ´ v

is a cocycle. The cocycles bv are called coboundaries.

Denote Z 1pG ,πq the set of continuous cocycles of π and B 1pG ,πq the set of cobound-

aries.

Let G be a locally compact, compactly generated group and let S Ă G be an open,

relatively compact generating set. For g P G , denote |g |S the word length of g with respect

to S. That is to say for g P G ,

|g |S “ inftk P N | g “ s1 ¨ ¨ ¨ ¨ ¨ sk , with si P Su.

Observe that if π a unitary representation of G and b P Z 1pG ,πq, then }bp¨q} ĺ | ¨ |s .

The following definitions and observations are in [19]. Let G a locally compact, com-

pactly generated group, with S an open, relatively closed generating subset and let π be a

unitary representation of G . Define

linpG ,πq “ tb P Z 1
pG ,πq | }b} ľ | ¨ |Su

and

sublinpG ,πq “ tb P Z 1
pG ,πq | }b} ă | ¨ |Su,

namely the set of cocycles with linear (respectively sublinear) growth.
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Let B 1pG ,πq be the closure of B 1pG ,πq inside Z 1pG ,πq with respect of the topology of

convergence on compact subsets. In [19], the authors showed that B 1pG ,πq Ă sublinpG ,πq.

Denote H 1pG ,πq “ Z 1pG ,πq{B 1pG ,πq, the reduced 1-cohomology of the representation π.

Theorem 2.2.3. If PUp1,nq
ρ

ÝÑ IsompHm
C qo is an irreducible representation with n ą 1, then

the following are equivalent:

1. ℓpρq “ 1.

2. There exists b P R such that cp1,0, I d ,bq “ 0.

3. For every b P R, cp1,0, I d ,bq “ 0.

4. There exists b P R such that πp1,0, I d ,bq “ I d.

5. For every b P R, πp1,0, I d ,bq “ I d.

6. For every v, w P Cn´1, πp1, v, I d ,0q and πp1, w, I d ,0q commute.

7. The map b ÞÑ∆p1,0, I d ,bq is a homomorphism and for every b P R, cp1,0, I d ,bq “ 0.

8. Up to conjugating ρ with an isometry, The map v ÞÑ cp1, v, I d ,0q is injective and

C-linear or antilinear.

9. The map v ÞÑ cp1, v, I d ,0q is R-linear and injective.

10. The group tπp1, v, I d ,bquv,b has a non-zero fixed point.

Proof. It will be shown first that the properties from 1. to 7. are equivalent. It is trivial that

5. implies 4., 8. implies 9 and it is clear, by Lemma 2.1.9, that 2. and 3. are equivalent.

To prove that 4. implies 5., observe that if b P R is such that πp1,0, I d ,bq “ I d , then for

every λą 0,

πp1,0, I d ,bq “ πpλ,0, I d ,0qπp1,0, I d ,bqπpλ´1,0, I d ,0q

“ πp1,0, I d ,λ2bq.

This, together with the fact that πp1,0, I d ,´bq “ I d , shows the implication.

To show that 5. and 6. are equivalent, observe that for every v, w P Cn´1,

πp1, v, I d ,0qπp1, w, I d ,0qπp1,´v, I d ,0qπp1,´w, I d ,0q “

π
`

1,0, I d ,´2ImpBpv, wqq
˘

.
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To deduce 7. from 6., first notice that for every b,d P R,

´Im
´

B
`

πp1,0, I d ,dqcp1,0, I d ,bq,cp1,0, I d ,dq
˘

¯

“

∆p1,0, I d ,b ` dq´∆p1,0, I d ,bq´p1,0, I d ,dq “

´Im
´

B
`

πp1,0, I d ,bqcp1,0, I d ,dq,cp1,0, I d ,bq
˘

¯

.

Hence if for every b P R, πp1,0, I d ,bq “ I d , then

´Im
´

B
`

cp1,0, I d ,bq,cp1,0, I d ,dq
˘

¯

“ ´Im
´

B
`

cp1,0, I d ,dq,cp1,0, I d ,bq
˘

¯

.

The only way this can happen is if b ÞÑ∆p1,0, I d ,bq is a homomorphism. Observe now that

cp1,0, I d ,2bq “ cp1,0, I d ,bq`πp1,0, I d ,bqcp1,0, I d ,bq “ 2cp1,0, I d ,bq.

It is also true that }cp1,0, I d ,2bq} “ 2
t
2 }cp1,0, I d ,bq}.This means that for every b P R,

cp1,0, I d , ,bq “ 0 and for every b ‰ 0, ∆p1,0, I d ,bq ‰ 0.

To show that 7. implies 1., notice that in this case, for every b P R,

2∆p1,0, I d ,bq “∆p1,0, I d ,2bq “ 2t∆p1,0, I d ,bq.

The claim now is that 1. implies 2. The restrictions of π and c to the subgroup

L “ tg p1, v, I d ,bquvPCn´1,bPR

define an affine isometric action on the Hilbert space η̃K
1 X η̃K

2 . The claim is that the cocycle

c does not have sublinear growth, in other words, it is claimed that H 1pG ,πq ‰ 0.

Recall from the proof of Proposition 2.2.1 that for every v P Cn´1,

∆p1, v, I d ,0q “ 0,

and therefore,

cp1, v, I d ,0q ‰ 0.

Define

S “ tpv, tq P Cn´1
ˆ R | }v} ă 1 and |t | ă 1u.
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Observe that for v P Cn´1, we have that

}v} ď |pv,0q|S ă }v}` 1.

As ℓpρq “ 1, for every v and every λą 0,

}cp1,λv, I d ,0q} “λ}cp1, v, I d ,0q}.

Fix v0 P Cn´1 and let M ą 0 be such that }cp1, v0, I d ,0q} “ M}v0}.

If c|L P sublinpL,πq, then for given 0 ă ϵ0 there exists a compact subset K Ă Cn`1 ˆ R
such that if pv,bq R K , then

}cp1, v, I d ,bq} ď ϵ|p1, v,bq|S .

Therefore for every λą 0 large enough,

λM}v0} “ }cp1,λv0, I d ,0q} ď ϵ|pλv0,0q|S ă ϵp}λv0}` 1q.

This is a contradiction because M is fixed and the previous inequality implies that for every

λą 0 large enough,
λM}v0}

λ}v0}` 1
ă ϵ,

or in other words, M ď ϵ, which is a contradiction. Therefore H 1pL,π|Lq ‰ 0.

Now the claim is that for every b P R, cp1,0, I d ,bq “ 0. If π is a unitary representation

of locally compact group in a separable Hilbert space, then there exists pX ,µq a standard

measure space such that τ is equivalent to a direct integral of µ-almost everywhere irre-

ducible representation
ş‘
ταdµpαq. For an introductory read on this topic and references,

see Chapter 7 of [27].

In Proposition 2.6 of Chapter III of [32], Guichardet showed that if G is a locally com-

pact group and τ“
ş‘
ταdµpαq is a unitary representation, then if for µ-almost every α,

H 1pG ,ταq “ 0, then H 1pG ,τq “ 0.

In Theorem V.6 of [21], Delorme showed that if G is a connected and solvable Lie

group and pK ,τq is an irreducible unitary representation such that dimCpK q ě 2, then

H 1pG ,τq “ 0.

Putting together all these results if pX ,µq is the standard measure space from the integral

decomposition of the representation π|L, then there exists Y Ă X , a measurable subset

such that µpY q ą 0 and such that for every α P Y , πα is a one-dimensional representation.
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Observe that for every α P Y , πα|rL:Ls is trivial. This shows that

W “ tw P η̃K
1 X η̃K

2 |πplqw “ w, for every l P rL : Lsu

is a non-zero closed vector space. The group tg p1,0, I d ,bqubPR is normal in P , therefore W is

P-invariant. Hence, the representation π preserves the decomposition W ‘W K “ η̃K
1 X η̃K

2 .

Denote c “ c1 ‘ c2 and π“π1 ‘π2.

The cocycle c1|rL:Ls is a homomorphism, but for every b P R

}cp1,0, I d ,2bq} “ 2
1
2 }cp1,0, I d ,bq}.

Therefore c1 vanishes on rL : Ls.

Observe that for every v P Cn´1 and λą 0,

}c2p1,λv, I d ,0q} “λ}c2p1, v, I d ,0q}q.

Thus, if for some v P Cn´1, c2p1, v, I d ,0q ‰ 0, then c2|L does not have sublinear growth and

therefore, H 1pL,π2|Lq ‰ 0. Thus repeating the arguments already used, W K contains a

non-zero π2prL : Lsq-invariant vector, but this is a contradiction. All the πprL : Lsq-invariant

vectors are contained in W .

This shows that for every v P Cn´1, c2p1, v, I d ,0q “ 0. Observe that this implies that

c2|L “ 0, and therefore, for every b P R, cp1,0, I d ,bq “ 0. With this, the equivalence for the

first seven properties is complete.

To show that 1.-7. imply 8., observe that for every v, w P Cn´1,

πp1, v ` w, I d ,0q “πp1, v, I d ,0qπp1, w, I d ,0q

and that

cp1, v ` w, I d ,0q “ cp1, v, I d ,0q`πp1, v, I d ,0qcp1, w, I d ,0q.

In this point the argument is the same as the one in the proof of Proposition 2.3 of [41]. For

completeness it is reproduced here. For now change the notation and write cp1, v, I d ,0q “

cpvq and πp1, v, I d ,0q “πpvq. Notice that for every v P Cn´1,

}cp2vq} “ }cpvq`πpvqcpvq} “ 2}cpvq},
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and therefore, πpvqcpvq “ cpvq. Moreover, for every v, w P Cn´1,

πpvqπpwq
`

cpvq`πpvqcpwq
˘

“ πpvqπpwq
`

cpvq` cpv ` wq´ cpvq
˘

“ πpwqcpvq` cpv ` wq´πpwqcpvq

“ cpwq`πpwqcpvq.

Hence,
cpwq “ πpvqπpwq

`

cpvq`πpvqcpwq
˘

´πpwqcpvq

“ πp2vqcpwq.
,

This shows thatπpwqcpvq “ cpvq and cpv `wq “ cpvq`cpwq. The cocycle c is a continuous

homomorphism, so it is a R-linear map.

From the proof of Proposition 2.1.11 and the fact that ℓpρq “ 1, for every v ‰ 0,

ν“
}v}2

}cp1, v, I d ,0q}2

and because for every b P Rz0, cp1,0, I d ,bq “ 0, then

ν“
|∆p1,0, I d ,bq|

|b|
.

The map b ÞÑ∆p1,0, I d ,bq is a nontrivial continuous homomorphism, hence

∆p1,0, I d ,bq “ θb,

for some θ‰ 0. Up to conjugation it is possible to suppose, without lost of generality, that

ν“ 1.

For every v P Cn´1,

g p1,0, i I d ,0qg p1, v, I d ,0q “ g p1, i v, i I d ,0q,

and therefore,

cp1, i v, I d ,0q “ cp1, i v, i I d ,0q “πp1,0, i I d ,0qcp1, v, I d ,0q.

Observe also that

g p1, v, I d ,0qg p1, i v, I d ,0q “ g
`

1, v ` i v, I d ,´Bpv, vq
˘
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and that

g
`

1, v ` i v, I d ,´Bpv, vq
˘

“ g p1,0, I d ,´Bpv, vqqg p1, v ` i v, I d ,0q.

Hence,
θBpv, vq “ ´∆p1,0, I d ,´Bpv, vqq

“ ´∆p1, v ` i v, I d ,´Bpv, vqq

“ Im
´

B
`

cp1, i v, I d ,0q,cp1, v, I d ,0q
˘

¯

“ Im
´

B
`

πp1,0, i I d ,0qcp1, v, I d ,0q,cp1, v, I d ,0q
˘

¯

.

If we consider πp1,0, i I d ,0q as a transformation of the finite-dimensional complex

vector space generated by tcp1, v, I d ,0quvPCn´1 , it is possible to decompose this space as

the orthogonal sum of the (may be trivial) vector subspaces W1, W´1, Wi and W´i , where

πp1,0, i I d ,0q acts by multiplication by 1,´1, i and ´i respectively. For every v , if

cp1, v, I d ,0q “ v1 ` v´1 ` vi ` v´i ,

where vi P Wi , observe that

Im
´

B
`

πp1,0, i I d ,0qcp1, v, I d ,0q,cp1, v ; I d ,0q
˘

¯

“ Bpvi , vi q´ Bpv´i , v´i q ‰ 0

Therefore

θBpv, vq “ Bpvi , vi q´ Bpv´i , v´i q.

It will be shown later that the case θ “ 1 or θ “ ´1 are somehow equivalent (see Re-

mark 3.1.4). So if θ “ 1, vi “ cp1, v, I d ,0q and if θ “ ´1, then v´i “ cp1, v, I d ,0q, which

shows that 8. holds.

It is clear that 9. implies 1. because

}cp1,2v, I d ,0q} “ 2t
}cp1, v, I d ,0q} “ 2}cp1, v, I d ,0q}.

The claim now is that 1. implies 10. Indeed, for every b P R, cp1,0, I d ,bq “ 0 and the map

v ÞÑ cp1, v, I d ,0q is linear, therefore

cp1, v, I d ,0q` cp1, w, I d ,0q “ cp1, v ` w, I d ,0q

“ cp1, v ` w, I d ,´ImpBpw, vqq

“ cp1, v, I d ,0q`πp1, v, I d ,0qcp1, w, I d ,0q.
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Hence for every v, w P Cn´1,

cp1, w, I d ,0q “πp1, v, I d ,0qcp1, w, I d ,0q.

Observe that for every b P R,

πp1,0, I d ,bqcp1, v, I d ,0q “ cp1, v, I d ,bq

“ cp1, v, I d ,0q.

This finishes the proof for the claim.

The claim now is that 10. implies 1. Let W be the closed subspace of fixed vectors in

η̃1 K Xη̃K
2 and let p be the orthogonal projection on this space.

Write cp1, v, I d ,bq “ u1 ` u1 and cp1, v 1, I d ,b1q “ u1
1 ` u1

2 in the decomposition V “

W ‘W K. Then

p ˝ c
`

1, v ` v 1, I d ,b ` b1 ´ ImpBpv 1, vqq
˘

“

p
`

cp1, v, I d ,bq`πp1, v, I d ,bqcp1, v 1, I d ,b1q
˘

“

p
`

u1 ` u2 `πp1, v, I d ,bqpu1
1 ` u1

2q
˘

“

u1 ` u1
1 ` ppπp1, v, I d ,bqu1

2q “

u1 ` u1
1.

In other words, the map

g p1, v, I d ,bq ÞÑ p ˝ cp1, v, I d ,bq

is an homomorphism.

It is claimed that for every b ą 0, p ˝ cp1,0, I d ,bq “ 0. Denote

cp1,0, I d ,1q “ u1 ` u2,

with respect to the decomposition W ‘W K. Observe that in the same decomposition,

cp1,0, I d ,bq “ bu1 ` wpbq,

where w is a function of b. But also

cp1,0, I d ,bq “ b
t
2πpb

1
2 ,0, I d ,0qcp1,0, I d ,1q “ b

t
2 pa1 ` a2q,
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where }a1}2 `}a2}2 “ }u1}2 `}u2}2. So for every b ě 0 the following equality holds

b2
}u1}

2
`}wpbq}

2
“ bt

p}u1}
2

`}u2}
2
q.

As 0 ă t ď 1 and }wpbq}2 ě 0, then u1 “ 0.

If for every v , p ˝ cp1, v, I d ,0q “ 0, then p ˝ cp1, v, I d ,bq “ 0, but this is a contradiction

since the vectors of the form cp1, v, I d ,bq generate a dense subspace. So let v such that

p ˝cp1, v, I d ,0q ‰ 0. With the same argument, in the decomposition W ‘W K, cp1, v, I d ,0q “

u1 ` u2 and for every λě 0,

p ˝ cp1,λv, I d ,0q “λp ˝ cp1, v, I d ,0q.

Therefore, cp1,λv, I d ,0q “λu1 ` wpλq, with w a function of λ. Again,

cp1,λv, I d ,0q “λtπpλ,0, I d ,0qcp1, v, I d ,0q “λt
pa1 ` a2q,

with }a1}2 `}a2}2 “ }u1}2 `}u2}2. This implies that for every λě 0,

λ2
}u1}

2
`}wpλq}

2
“λ2t

p}u1}
2

`}u2}
2
q.

Since u1 ‰ 0, then t “ 1.

Proposition 2.2.4. If PUp1,1q
ρ

ÝÑ IsompHm
C qo is an irreducible representation then such that

ℓpρq “ 2, then b ÞÑ cp1,bq is a non-trivial linear map and for every b P R, ∆p1,bq “ 0.

Proof. Observe that

2}cp1,bq} “ }cp1,2bq}

“ }cp1,bq`πp1,bqcp1,bq}.

Therefore πp1,bqcp1,bq “ cp1,bq. Observe that this implies that for every b,d P R

πp1,bqcp1,dq` cp1,bq “ cpb ` dq

“ πp1,b ` dqcp1,b ` dq

“ πp1,bqπp1,dq
`

cp1,dq`πp1,dqcp1,bq
˘

“ πp1,bqcp1,dq`πp1,dqcp1,bq.

Thus, for every b,d P R, πpdqcpbq “ cpbq, or in other words, the map b ÞÑ cp1,bq is linear.
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This implies that for every b P R,

Im
`

Bpπp1,bqcp1,bq,cp1,bqq
˘

“ 0.

Hence for every b P R,

4∆p1,bq “∆p1,2bq “ 2∆p1,bq.

Compare this result to the construction before Lemma 1.3.13.

It has been shown in this section that for every irreducible representation PUp1,nq
ρ

ÝÑ

IsompHm
C qo , with m infinite,

1. If n “ 1, then ℓpρq P p0,2q.

2. If n ą 1, then ℓpρq P p0,1q.

For irreducible representations POp1,nq
ρ

ÝÑ IsompH8
R q, in [41], Monod & Py showed, among

many other things, that ℓpρq P p0,1q and that the displacement is a complete invariant.

That is to say, if two such representations ρ, ρ1 are such that ℓpρq “ ℓpρ1q, then ρ and ρ1 are

equivalent. Moreover, for every t P p0,1q there exists ρ and irreducible representation such

that ℓpρq “ t .

The theory of functions of complex hyperbolic type developed by Monod in [40] allowed

him to show the existence part of the classification in a much easier way. However this has

the setback of not being a constructive proof. The argument for the complex case is shown

below, the real case is analogous.

Indeed for every x P Hn
R there is a function of complex hyperbolic type pβ,αq defined on

PUp1,nq given by βpg q “ dpg x, xq and

αpg1, g2, g3q “ Cart
`

g1x, g2x, g3x
˘

.

The functions of complex hyperbolic type defined in this way for PUp1,nq will be called

tautological functions of complex hyperbolic type. For every t P p0,1q, pβt , tαq is a

function of complex hyperbolic type. Thus, there exists a representation PUp1,nq
ρ1

t
ÝÑ

IsompHm
C q, for some m such that there exists x P Hm

C with total orbit and such that
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βt pg q “ cosh
`

dpρ1
t pg qx, xq

˘

and

tαpg1, g2, g3q “ Cart
`

ρ1
t pg1qx,ρ1

t pg2qx,ρ1
t pg3qx

˘

.

The representation ρ1
t does not need to be irreducible.

Observe that for every n, PUp1,nq admit copies of PUp1,1q acting naturally on respective

copies of H1
C. By Lemma 1.2.1 for every hyperbolic isometry g contained in any of those

copies of PUp1,1q, ρ1
t pg q is hyperbolic. By Propositions 1.3.14 and 1.5.5, the restriction of

ρ1
t to any of the copies of PUp1,1q is non-elementary. Hence, ρ1

t itself is non-elementary.

By Theorem 1.5.6, there exists ρt , the irreducible part ofρ1
t . Observe that by Lemma 1.2.1,

for every hyperbolic isometry g ,

tℓpg q “ ℓpρt pg qq.

This shows that for every t P p0,1q, with a small abuse of notation, there exist an irreducible

representation PUp1,nq
ρt
ÝÑ IsompHm

C q such that ℓpρt q “ t .

The representations ρt are of the shape PUp1,nq
ρt
ÝÑ IsompHm

C qo . The fact that m “

8 can be shown with general principles (Mostow-Karpelevich), but in Lemma 3.1.9 an

elementary proof for it will be given.
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Chapter 3

Representations of PU(1,1)

The peculiarity of PUp1,1q among the groups PUp1,nq is that it lies at the intersection of

the real and the complex worlds. With the classification of irreducible representations of

POp1,2qo done by Monod & Py [41], it is known a family of irreducible representations with

displacements between 0 and 2 and which preserve a real hyperbolic space in the target.

After Monod’s work [40], another family of representations is known which has a completely

different behaviour. It will be shown that it is possible to “interpolate” these two families

to obtain a third one which that, to the best author’s knowledge, had not been described

before.

In Section 3.3. a complete invariant for irreducible representations of PUp1,1q will be

introduced. This is done by studying the functions of complex hyperbolic type associated

with these representations.

It was shown in the previous chapter (see Proposition 2.1.11) that the restriction of an

irreducible representation of PUp1,1q to the stabilizer of a point in BH1
C determines the

representation. In Section 3.2 arguments in the reverse direction will be given. That is, for

certain representations of a stabilizer of a point at infinity, an extension to the whole group

PUp1,1q will be constructed.

With these arguments in hand, an operation between irreducible representations will

be defined. With this operation, given two non-equivalent irreducible representations

of PUp1,1q with the same displacement, it is possible to construct a third one that is not

equivalent to either of the first two.

Hence, the family irreducible representations, up to conjugation, is closed under two
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operations, the “exponentiation” introduced by Monod in [40] and this new operation that

resembles a convex combination.

Using this operation, in Section 3.3 a new family of irreducible representations of

PUp1,1q is described.

3.1 Invariants of representations

Given an irreducible representation PUp1,1q
ρ

ÝÑ IsompHm
C qo , the notations ∆p1,bq “∆pbq,

cp1,bq “ cpbq and πp1,bq “πpbq will be used in this chapter (see Remark 2.1.7).

Remark 3.1.1. Recall from the proof of Proposition 2.1.11, the definition

K pbq “
´Bpcpbq,cpbqq

2 ` i∆pbq

and that, up to a conjugation, |K p1q| “ 1. Observe that

K pbq “
´Bpη̃2,ρp1,bqη̃1q

|Bpη̃2,ρp1,bqη̃1q|
Bpρp1,bqη̃2, η̃2q.

Therefore ArgpK pbqq does not depend on the representatives of η1 and η2 if the normaliza-

tion condition Bpη̃1, η̃2q “ 1 is imposed.

Lemma 3.1.2. If PUp1,1q
ρ

ÝÑ IsompHm
C qo is an irreducible representation, for every λą 0 and

every b P R, the following hold.

1. K pλbq “λt K pbq.

2. K p´bq “ K pbq.

3. K pb ` dq “ K pbq` K pdq` Bpcpdq,cp´bqq.

Proof. Points 1. are 2. were proved in Lemma 2.1.9. For 3. observe that

B
`

cpb ` dq,cpb ` dq
˘

“

B
`

cpbq,cpbq
˘

` B
`

cpdq,cpdq
˘

` 2Re
`

B
`

πpbqcpdq,cpbq
˘˘

“

B
`

cpbq,cpbq
˘

` B
`

cpdq,cpdq
˘

´ 2Re
`

B
`

cpdq,cp´bq
˘˘

and that
∆pd ` bq “ ∆pbq`∆pdq´ Im

`

B
`

πpbqcpdq,cpbq
˘˘

“ ∆pbq`∆pdq` Im
`

Bpcpdq,cp´bqq
˘

.
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Lemma 3.1.3. For every y P H1
C,

lim
bÑ8

Cart
`

g p1,bqy, g p1,´bqy, y
˘

“ ´
π

2
.

Proof. If y is represented by w “ aξ̃1 ` ξ̃2, then Repaq ą 0 and

Cart
`

g p1,bqy, g p1,´bqy, y
˘

“

Arg
´

Bpg p1,2bqw, wqBpg p1,´bqw, wq2
¯

“

Arg
´

8Repaq3 ` 6Repaqb2 ´ i 2b3
˘

.

Therefore,

lim
bÑ8

Cart
`

g p1,bqy, g p1,´bqy, y
˘

“ ´
π

2
.

Let PUp1,nq
ρ

ÝÑ IsompHm
C qo be an irreducible representation. Suppose y P H1

C and let

K “ PUp1,nqy . Denote x P Hm
C the unique point fixed by ρpK q (see Remark 2.1.6). By

Remark 1.3.15, there exists s P R such that for every g1, g2 P PUp1,1q,

sCartpg1 y, g2 y, yq “ Cartpρpg1qx,ρpg2qx, xq.

Observe that |s| ď 1 because there exist g1, g2 P SUp1,1q such that

|Cartpg1 y, g2 y, yq|

is as close as desired to π
2 and

|Cartpρpg1qx,ρpg2qx, xq| ă
π

2
.

Remark 3.1.4. The definition of the Cartan argument comes with an choice. In fact, suppose

that H is a complex Hilbert space provided with B , a strongly non-degenerated Hermitian

form. Observe that if B 1 is defined on H as B 1pv, wq “ Bpw, vq, for every v, w P H , then

HB 1

C “ trvs | v P H and B 1
pv, vq ą 0u
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provided with the metric d 1 given by

coshpd 1
prvs,rwsqq “ |B 1

pv, wq|

is isometric to HC, the hyperbolic space induced from pH ,Bq. Regarding this, all the rep-

resentations can be considered to be such that the scalar s in the previous comment is

positive.

Lemma 3.1.5. If PUp1,1q
ρ

ÝÑ IsompHm
C qo is a non-elementary representation and x P Hm

C
has a total orbit, then

lim
bÑ8

Cartpρpbqx,ρp´bqx, xq “ ArgpK p´1qq.

Moreover, if K ď PUp1,1q the stabilizer of x is a maximal compact subgroup, y P H1
C is the

point fixed by K and 0 ă s ď 1 is such that

sCart
`

g p1,bqy, g p1,´bqy, y
˘

“ Cartpρpbqx,ρp´bqx, xq,

then sπ
2 “ ArgpK p1qq.

Proof. After a conjugation if necessary, suppose |K p1q| “ 1. If x̃ “ aη̃1 ` η̃2 ` u is a repre-

sentative of x, then

Cartpρp1,bqx,ρp1,´bqx, xq “

Arg
´

B
`

ρp1,2bqx̃, x̃
˘

B
`

ρp1,´bqx̃, x̃
˘2
¯

“

Arg
´´

2Repaq` K p2bq´ Bpπp2bqu,cp2bqq` Bpcp2bq`πp2bqu,uqˆ
´

2Repaq` K p´bq´ Bpπp´bqu,cp´bqq` B
`

cp´bq`πp´bqu,u
˘

¯2¯

.

Denote, for any b P R,

T pbq “ ´Bpπpbqu,cpbqq` B
`

cpbq`πpbqu,u
˘

` 2Repaq.

Observe that

`

K p2bq` T p2bq
˘`

K p´bq` T p´bq
˘2

“
`

K p2bq` T p2bq
˘

´

K p´bq2 ` T p´bq2 ` 2K p´bqT p´bq

¯

“

2t b3t K p´1q` 2t`1b2t T p´bq` b2t K p´1qT p2bq`

2bt K p´1qT p2bqT p´bq` 2t bt T p´bq2 ` T p2bqT p´bq2

96



There exist constants C1,C2 ą 0 such that for every b ą 0,

maxt|T p2bq|, |T p´bq|u ď C1b
t
2 `C2.

Therefore,

lim
bÑ8

Cartpρpbqx,ρp´bqx, xq “ lim
bÑ8

Arg
`

K p2bqK p´bq2
˘

“ ArgpK p´1qq.

The second claim is immediate from Lemma 3.1.3.

Remark 3.1.6. Observe that the previous lemma, Lemma 3.1.3 and the fact that the Cartan

argument is left-invariant imply that neither ArgpK p1qq nor s depend on the choice of the

point x P H8
C fixed by a maximal compact subgroup of PUp1,1q. The previous lemma shows

also that ∆p1q ě 0.

In view of the previous remark define for an irreducible representation PUp1,1q
ρ

ÝÑ

IsompHm
C qo , Argpρq, the angular invariant of ρ, as ArgpK p1qq. With this normalization, for

every ρ, 0 ď Argpρq ď π
2 .

Proposition 3.1.7. If ρ is non-elementary and Argpρq “π{2, then ρ preserves a copy of H1
C.

Proof. Observe that if RepK p1qq “ 0, then for every b P R, cpbq “ 0.

The previous proposition, trivial in this context, is contained in the much more general

Theorem 1.1 of [23].

Proposition 3.1.8. Let x P H1
C and 0 ă t ă 1. If ρ is the irreducible part of the non-elementary

representation associated to the function of hyperbolic type pβt , tαq, where pβ,αq is the

function of hyperbolic type associated to x and the tautological action of PUp1,nq on H1
C,

then

Argpρq “
tπ

2
.

Proof. Let PUp1,1q
τ

ÝÑ IsompHm
C qo be the representation associated to pβt , tαq in Theo-

rem 1.4.9 and consider its irreducible part

PUp1,1q
ρ

ÝÑ IsompHCqo .
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Denote p the projection of Hm
C onto HC. The map p is PUp1,1q-equivariant, therefore if

y P Hm
C is the distinguished point (see Theorem 1.4.9) and K is the stabilizer of x, then

y and ppyq are stabilized by K . By Remark 1.3.15, there exists s P R such that for every

g0, g1, g2 P PUp1,1q, there exists s P R such that

Cart
`

ρpg0qppyq,ρpg1qppyq,ρpg2qppyq
˘

“ sCartpg0x, g1x, g3xq.

By Theorem 1.4.9,

Cart
`

τpg0qy,τpg1qy,τpg2qy
˘

“ tCartpg0, g1, g2q.

Hence, by Lemma 3.1.5, tπ
2 “ ArgpKτp´1qq and sπ

2 “ ArgpKρp´1q, but

ArgpKτp´1qq “ ArgpKρp´1q.

The last statement is true because the irreducible part contains all the axis of the images of

the hyperbolic isometries (see Remark 3.1.1).

As it was mentioned in Section 2.2, in [41], among other things, the authors classified the

irreducible representations IsompHn
Rq

ρ
ÝÑ IsompH8

R q. They showed that for every 0 ă t ă 1

there exists a unique, up to a conjugation, irreducible representation ρt such that ℓpρq “ t .

Every representation IsompH2
Rq

ρ
ÝÑ IsompH8

R q can be lifted to a representation into

Op1,8q. By Propositions 1.3.14 and 1.5.5, ρt restricted to IsompH2
Rqo remains non-

elementary, thus it has an irreducible part. With a small abuse of notation, denote ρt

this irreducible representation. There is a natural embedding Op1,8q ă Up1,8q through

complexification. In Proposition 5.10 of [40], the author showed that the complexification

of any irreducible representation of IsompHn
Rq into Op1,8q remains irreducible. The proof

there works also for IsompH2
Rqo . Thus, the complexification of ρt ,

IsompH2
Rqo

ρC
t

ÝÑ Up1,8q

is irreducible and ℓpρC
t q “ t . This last claim is true because the formulas for the displace-

ment of the image of a hyperbolic isometry do not change.

Let

IsompH1
Cqo

Φ
ÝÑ IsompH2

Rqo

be the homomorphism of Lemma 1.3.13 and recall that if g P IsompH1
Cqo , then ℓpΦpg qq “
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2ℓpg q. Therefore for every t P p0,1q and every g P IsompH1
Cqo ,

ℓpρC
t ˝Φpg qq “ tℓpΦpg qq “ 2tℓpg q.

The previous observation shows that for every 0 ă t ă 2, there exists an irreducible

representation

IsompH1
Cqo

ρt
ÝÑ IsompH8

C qo

such that ℓpρt q “ t and Argpρt q “ 0.

By Proposition 3.1.8, for every 0 ă t ă 1, there exist irreducible representations

IsompH1
Cqo

τt
ÝÑ IsompHm

C qo

such that ℓpτt q “ t and Argpτt q “ tπ
2 .

Due to general principles (Mostow-Karpelevich) m “ 8, however the next lemma pro-

vides an elementary proof for this fact.

Lemma 3.1.9. If IsompH1
Cqo

ρ
ÝÑ IsompHm

C qo is an irreducible representation such that ℓpρq ‰

1, then the family tcpbqubPRz0 is C-linearly independent.

Proof. Suppose
řn ai cpbi q “ 0 with bi ‰ 0. Without lost of generality, suppose that b1 ą bi

for every i ‰ 1. For every d P R,

0 “ Re
`
řn ai Bpcpbi q,cpdqq

˘

“
řn Repai qRepBpcpbi q,cpdqqq´ Impai qImpBpcpbi q,cpdqqq

and
0 “ Im

`
řn ai Bpcpbi q,cpdqq

˘

“
řn Repai qImpBpcpbi q,cpdqqq` Impai qRepBpcpbi q,cpdqqq.

Consider an interval pb1,b1 ` r q such that 0 R pb1,b1 ` r q and consider d P pb1,b1 ` r q. By

Lemma 3.1.2, there are constants C0,C1,D0,D1 such that

C0d t
`

n
ÿ

RepK p1qai qpd ´ bi q
t

“ C1

and

D0d t
`

n
ÿ

ImpK p1qai qpd ´ bi q
t

“ D1.
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Thus, there exist constants E0,E1 such that for every d P pb1,b1 ` r q,

E0d t
`

n
ÿ

K p1qai pd ´ bi q
t

“ E1.

After differentiating twice the previous equality with respect to d in the interval pb1,b1 `

r q, it follows that

tpt ´ 1qE0d t´2
` tpt ´ 1q

n
ÿ

K p1qai ppd ´ bi q
t´2

“ 0.

If d Ñ b`
1 , then pd ´ b1qt´2 is unbounded, but for every i ‰ 1, pd ´ bi q

t´2 is bounded.

Therefore a1 “ 0. Repeating the same argument, it is possible to show that for every i ,

ai “ 0.

Observe that the previous lemma is not valid for irreducible representations with dis-

placement 1. Indeed, the identity IsompH1
Cqo

I d
ÝÑ IsompH1

Cqo is a representation with dis-

placement 1.

Lemma 3.1.10. Let PUp1,1q
ρ

ÝÑ IsompHm
C qo be an irreducible representation. If x P H8

C
is represented by 1?

2
pη̃1 ` η̃2q, then the function of hyperbolic type associated to x can be

reconstructed from K p1q and ℓpρq.

Proof. The representation ρ is determined by its restriction to P (see Proposition 2.1.11).

The claim is that the restriction of ρ to P is entirely determined by K p1q and the parameter

t .

For every b P R and λ,γą 0, by Lemmas 2.1.9 and 3.1.2, Bpρpλ,bq 1?
2
pη̃1 ` η̃2qq can be

recovered from K p1q and ℓptq. Hence, the claim follows from Theorem 1.4.9 and the fact

that the P-orbit of 1?
2
pη̃1 ` η̃2q is total (see Proposition 2.1.11).

Theorem 3.1.11. Let ρ1 and ρ2 be two irreducible representations of IsompH1
Cqo into

IsompHm
C qo such that ℓpρ1q “ ℓpρ2q. Then ρ1 and ρ2 are equivalent if, and only if,

Argpρ1q “ Argpρ2q.

Proof. Suppose that ρ1pPq and ρ2pPq share the same fixed point in η1BHm
C and that the

families tρ1pλ,0quλą0 and tρ2pλ,0quλą0 preserve the axis connecting the points at infinity

η1 and η2.
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If ρ1 and ρ2 are equivalent, their restrictions to the group P are equivalent. Therefore

there exists T an isometry of Hm
C such that Tρ1|P T ´1 “ ρ2|P , and therefore T pηi q “ ηi .

If
Ki p1q “

´Bpci p1q,ci p1qq

2 ` i∆i p1q

“
Qpη̃2,ρi p1,1qη̃1q

|Qpη̃2,ρi p1,1qη̃1q|2 Bpρi p1,1qη̃2, η̃2q,

with η̃i respective lifts such that Bpη̃1, η̃2q “ 1, then it is clear that

ArgpK1p1qq “ ArgpK2p1qq.

Indeed, ArgpKi p1qq does not depend on the choice of the representatives of ηi , as long as

the condition Bpη̃1, η̃2q “ 1 is fulfilled.

Let η1
1,η1

2 P BHm
C be the fixed points by ρ1pλ,0q and let η2

1,η2
2 P BHm

C be the points fixed

by ρ2pλ,0q. Suppose ArgpK1p1qq “ ArgpK2p1qq. After conjugating ρ1 by an isometry ρ1pγ,0q

if needed, it is possible to suppose that K1p1q “ K2p1q. Observe that this conjugation

preserves the points η1
i .

Let xi P H8
C be the point represented by

1?
2
pη̃i

1 ` η̃i
2q.

Consider the functions of hyperbolic type of ρi associated to xi . By Lemma 3.1.10, the

representations ρ1|P and ρ2|P can be supposed identical, therefore by Proposition 2.1.11,

ρ1 and ρ2 are equivalent.

Proof. Observe that ArgpK pbqq does not depend on the choice of representatives η1, η2 as

long as Bpη̃1, η̃2q “ 1 (see the definition before Lemma 3.1.2). Therefore, if η̃1 and η̃2 are

chosen in the totally real subspace that contains the representatives of the real hyperbolic

subspace of H8
C preserved by ρ, it is clear that K pbq P R.

3.2 Extending certain parabolic representations

In this section a binary combination will be defined for representations of PUp1,1q. The

main tool used to define this combination is the Steinberg relations for SL2pRq. They will

be used to determine if a hyperbolic representation defined on a the stabilizer of a point at

infinity can be extended to the whole group.
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Fix ρ1 and ρ2 two irreducible representations of IsompH1
Cqo into IsompH8

C qo such that

ℓpρ1q “ ℓpρ2q “ t . With the conventions of the previous section, suppose without lost of

generality, that ρi share the two distinguished points ηi P BH8
C . That is, for every λą 0 and

b P R, ρi pλ,bqpη1q “ η1 and ρi pλ,0qpη2q “ η2.

In a matrix representation with respect to the decomposition

Cη1 ‘ Cη2 ‘pη̃K
1 X η̃K

2 q,

ρi pλ,bq has the shape,

¨

˚

˝

λt ´λt Bpci pλ,bq,ci pλ,bqq

2 ` i∆i pλ,bq ´λt B
`

πi pλ,bqp¨q,ci pλ,bq
˘

0 λ´t 0

0 ci pλ,bq πi pλ,dq

˛

‹

‚
,

and the isometry ρi pσq has the representation

¨

˝

0 ν´1
i 0

νi 0 0

0 0 Ai

˛

‚,

where νi ą 0 and, by Proposition 2.1.11,

Ai ci pbq “ νi Ki pbqci p1,´1{bq.

Define a model for the hyperbolic space in the following way. Consider C2 as Cη̃1 ‘ Cη̃2

and consider the Hilbert space L “ H1 ‘ H2, where Hi “ η̃K
1 X η̃K

2 . Define the form Q in

Cη1 ‘ Cη2 ‘ L which is C-linear in the first entry, antilinear in the second and that is given

by

1. Q|Hi “ B |Hi .

2. QpH1, H2q “ 0.

3. Qpηi , H j q “ 0, for i , j “ 1,2.

4. Qpηi ,ηi q “ 0, for i “ 1,2.

5. Qpη1,η2q “ 1.
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This defines a strongly non-degenerate form of signature p1,8q in

Cη1 ‘ Cη2 ‘ L.

Define, for every b P R and λą 0, cpbq “ c1pbq‘ c2pbq and πpλ,bq “π1pλ,bq‘π2pλ,bq.

Observe thatπ is a unitary representation of the group P on L. Define ρpλ,0q as the isometry

represented by
¨

˝

λt 0 0

0 λ´t 0

0 0 πpλ,0q

˛

‚

and ρp1,bq as the isometry represented by

¨

˚

˝

1 ´Bpcpbq,cpbq

2 ` i∆pbq ´B
`

πpbqp¨q,cpbq
˘

0 1 0

0 cpbq πpbq

˛

‹

‚
,

where ∆pbq “∆1pbq`∆2pbq. Denote

K pbq “
´Bpcpbq,cpbqq

2 ` i∆pbq

and

Ki pbq “
´Bpci pbq,ci pbqq

2 ` i∆i pbq.

Lemma 3.2.1. If ρ is the complexification of an irreducible representation

IsompH1
Cqo ÝÑ IsompH8

R qo ,

then for every b P R, ∆pbq “ 0.

The next proposition is a consequence of Lemmas 2.1.8 2.1.9 and 3.1.2.

Proposition 3.2.2. If c, π, K and Ki are defined as above, then for every λą 0 and b,d P R,

the following properties hold.

1. Im
`

Bpcpbq,cpdqq
˘

“∆pb ´ dq´∆pbq`∆pdq.

2. Re
`

Bpcpbq,cpdqq
˘

“ ´
Bpcpb´dq,cpb´dqq

2 `
Bpcpbq,cpbqq

2 `
Bpcpdq,cpdqq

2 .

3. K pbq “ K1pbq` K2pbq.
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4. K pλbq “λt K pbq.

5. K p´bq “ K pbq.

6. K pb ` dq “ K pbq` K pdq` Bpcpbq,cp´dqq.

7. πpλ,0qcpbq “λ´t cpλ2bq.

8. cpb ` dq “ cpbq`πpbqcpdq.

Lemma 3.2.3. For every b ‰ 0, K pbq ‰ 0.

Proof. Suppose K p1q “ 0. By Lemma 3.1.5, ∆i p1q ě 0, therefore ∆i p1q “ 0. The isometries

ρi p1,1q are parabolic, thus ci p1q ‰ 0, which is a contradiction.

Observe that

g pλ,0qg p1,bq “ g pγ,0qg p1,dq

if, and only if, λ“ γ and b “ d , and that

g pλ,0qg p1,bq “ g p1,λ2bqg pλ,0q.

It will be shown that with the formulas for ρpλ,0q and ρp1,bq it is possible to define an

homomorphism on P .

Lemma 3.2.4. For every λ,γą 0 and b,d P R, the following identities hold.

1. K pλ´1γ´1b ` dq “ K pdq`γ´t K pλ´1bq` B
`

πpγ,0qcpγ´1dq,cp´λ´1bq
˘

.

2. πpλ´1bqπpγ,0qcpγ´1dq`γ´t cpλ´1bq “πpγ,0qcpλ´1γ´2b `γ´1dq.

Proof. By Proposition 3.2.2,

K pλ´1γ´1b ` dq “

K pdq` K pλ´1γ´1bq` B
`

cpdq,cp´λ´1γ´1bq
˘

“

K pdq` K pγ´1λ´1bq`

´

γ´ t
2 cpdq,γ

t
2 cp´γ´1λ´1bq

¯

“

K pdq` K pγ´1λ´1bq` B
´

πpγ
1
2 ,0qcpγ´1dq,πpγ´ 1

2 ,0qcp´λ´1bq

¯

“

K pdq`γ´t K pλ´1bq` B
`

πpγ,0qcpγ´1dq,cp´λ´1bq
˘
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and
πpλ´1bqπpγ,0qcpγ´1dq`γ´t cpλ´1bq “

γ´tπpλ´1bqcpγdq`γ´t cpλ´1bq “

γ´t cpλ´1b `γdq “

πpγ,0qcpλ´1γ´2b `γ´1dq.

Lemma 3.2.5. For every γ,λą 0, b,d P R and u P ηK
1 XηK

2 ,

γt Bpu,cp´γ´1dqq` B
´

u,πp´γ´1dqπpγ´1,0qcp´λ´1bq

¯

“

γt B
`

u,cp1,´λ´1γ´2b ´γ´1dq
˘

.

Proof. By Proposition 3.2.2,

γt Bpu,cp´γ´1dqq` B
´

u,πp´γ´1dqπpγ´1,0qcp´λ´1bq

¯

“

γt Bpu,cp´γ´1dqq`γt B
`

u,πp´γ´1dqcp´λ´1γ´2bq
˘

“

γt B
`

u,cp1,´λ´1γ´2b ´γ´1dq
˘

.

Regarding Theorem 1.3.12, the representations will be supposed to be defined on

SUp1,1q.

Proposition 3.2.6. If ρpλ,0q and ρp1,bq are the isometries defined at the beginning of this

section, then the map g pλ,bq ÞÑ ρpλ,0qρp1,λ´1bq is a homomorphism and for every x P H8
C ,

the map g pλ,bq ÞÑ ρpλ,0qρp1,λ´1bqx is continuous.

Proof. Observe that

g pλ,bqg pγ,dq “ g pλ,0qg p1,λ´1bqg pγ,0qg p1,γ´1dq

“ g pλ,0qg pγ,0qg p1,λ´1γ´2bqg p1,γ´1dq

“ g pλγ,0qg p1,λ´1γ´2b `γ´1dq.

Therefore the first claim of the proposition is that for every λ,γą 0 and b,d P R,

ρpλ,0qρp1,λ´1bqρpγ,0qρp1,γ´1dq “ ρpλγ,0qρp1,λ´1γ´2b `γ´1dq.

It is clear that λ ÞÑ ρpλ,0q is a homomorphism, thus to show the claim is equivalent to show

that

ρp1,λ´1bqρpγ,0qρp1,γ´1dq “ ρpγ,0qρp1,λ´1γ´2b `γ´1dq.
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This will be done by comparing the columns of the matrix representations of both sides of

the identities with respect to the decomposition Cη̃1 ‘ Cη̃2 ‘ L.

It is clear from the definition of ρ that for η̃1,

ρp1,λ´1bqρpγ,0qρp1,γ´1dqη̃1 “ γt η̃1

“ ρpγ,0qρp1,γ´2b `γ´1dqη̃1.

By Proposition 3.2.2 and Lemma 3.2.4, for η̃2 observe that,

ρp1,λ´1bqρpγ,0qρp1,γ´1dqη̃2 “

ρp1,λ´1bqρpγ,0q

´

K pγ´1dqη̃1 ` η̃2 ` cpγ´1dq

¯

“

ρp1,λ´1bq

´

γt K pγ´1dqη̃1 `γ´t η̃2 `πpγ,0qcpγ´1dq

¯

“
´

K pdq`γ´t K pλ´1bq` B
`

πpγ,0qcpγ´1dq,cp´λ´1bq
˘

¯

η̃1`

γ´t η̃2 `πpλ´1bqπpγ,0qcpγ´1dq`γ´t cpλ´1bq “

K pλ´1γ´1b ` dqη̃1 `γ´t η̃2 `πpγ,0qcpλ´1γ´2b `γ´1dq “

ρpγ,0q

´

K pλ´1γ´2b `γ´1dqη̃1 ` η̃2 ` cpλ´1γ´2b `γ´1dq

¯

“

ρpγ,0qρp1,λ´1γ´2b `γ´1dqη̃2.

And last, by Proposition 3.2.2 and Lemma 3.2.5, for u P η̃K
1 X η̃K

2 ,

ρp1,λ´1bqρpγ,0qρp1,γ´1dqu “

ρp1,λ´1bqρpγ,0q

´

B
`

u,cp´γ´1dq
˘

η̃1 `πpγ1dqu
¯

“

ρp1,λ´1bq

´

γt B
`

u,cp´γ´1dq
˘

η̃1 `πpγ,0qπpγ´1dqu
¯

“
´

γt B
`

u,cp´γ´1dq
˘

` B
`

πpγ,0qπpγ´1dqu,cp´λ´1bq
˘

¯

η̃1`

πpλ´1bqπpγ,0qπpγ´1dqu “
´

γt B
`

u,cp´γ´1dq
˘

` B
`

u,πp´γ´1dqπpγ´1,0qcp´λ´1bq
˘

¯

η̃1`

π
`

γ,γ´1λ´1b ` d
˘

u “

γt B
`

u,c
`

´λ´1γ´2b ´γ´1d
˘˘

η̃1 `πpγ,0qπ
`

λ´1γ´2b `γ´1d
˘

u “

ρpγ,0q

´

B
`

u,cp´λ´1γ´2b ´γ´1dq
˘

η̃1 `π
`

λ´1γ´2b `γ´1d
˘

u
¯

“

ρpγ,0qρp1,λ´1γ´2b `γ´1dqu.

Therefore the map

g pλ,bq ÞÑ ρpλ,0qρp1,λ´1bq P IsompH8
C qo

is a homomorphism.
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For the second claim of the proposition it is enough to show that for every x P H8
C ,

the map g pλ,bq ÞÑ ρpλ,0qρp1,λ´1bqx is continuous around the identity in P . Suppose

gi “ g pλi ,bi q Ñ I d in P , then

1

4

ˇ

ˇB
`

g pλi ,bi qpξ̃1 ` ξ̃2q, ξ̃1 ` ξ̃2
˘
ˇ

ˇ

2
“

1

4

`

pλi `λ´1
i q

2
` b2

i

˘

Ñ 1,

or equivalently,

pλi ´λ´1
i q

2
` b2

i Ñ 0.

Therefore λi Ñ 1 and bi Ñ 0. If x̃ “αη̃1 `βη̃2 ` u is such that Qpx̃, x̃q “ 1, then

ρpλi ,0qρp1,λ´1
i bi qx̃ “

ρpλi ,0q

´

α`βK pλ´1
i bi q` Bpu,cp´λ´1

i bi qq

¯

η̃1`

ρpλi ,0q

´

βη̃2 `βcpλ´1
i bi q`πpλ´1

i bi qu
¯

“

λt
i

´

α`βK pλ´1
i bi q` Bpu,cp´λ´1

i bi qq

¯

η̃1 `λ´t
i βη̃2`

πpλi ,0q
`

βcpλ´1
i bi q`πpλ´1

i bi qu
˘

“
´

λt
iα`βK pbi q` B

`

u,πpλ´1
i ,0qcp´λi bi q

˘

¯

η̃1 `λ´t
i βη̃2`

λ´t
i βcpλi bi q`πpλi ,bi qu.

Therefore, since

g pλ,bq ÞÑπpλ,bq “π1pλ,bq‘π2pλ,bq

is orbitally (jointly) continuous,

lim
iÑ8

ˇ

ˇB
`

ρpλi ,0qρp1,λ´1
i bi qx, x

˘
ˇ

ˇ “

lim
iÑ8

ˇ

ˇ

ˇ
β
´

λt
iα`βK pbi q` B

`

u,πpλ´1
i ,0qcp´λi bi q

˘

¯

`αλ´t
i β`

B
`

λ´t
i βcpλi bi q`πpλi ,0qπpλi ,bi qu,u

˘

ˇ

ˇ

ˇ
“

ˇ

ˇβα`αβ` Bpu,uq
ˇ

ˇ “ 1.

Now it is possible to define the representation P
ρ

ÝÑ IsompH8
C qo given by

ρpλ,bq “ ρpλ,0qρp1,λ´1bq.

The next results are devoted to prove that ρ can be extended to a homomorphism defined

on SUp1,1q.

Lemma 3.2.7. The only point fixed in H8
C YBH8

C by ρ is η1.
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Proof. The isometries ρpλ,0q are hyperbolic by construction, therefore the only other can-

didate to be fixed by ρ is η2, but ρp1,bq does not fix it because K pbq ‰ 0 (see Lemma 3.2.3).

Observe that

K pbq “
Qpη̃2,ρp1,bqη̃1q

|Qpη̃2,ρp1,bqη̃1q|2
Qpρp1,bqη̃2, η̃2q

is also true for the representation ρ. After a conjugation by an isometry ρpγ,0q if necessary,

assume that |K p1q| “ 1. Notice that this conjugation does not change the argument of K p1q.

The following is the uniqueness part of the GNS construction (see Theorem C.1.4 of [3]).

Lemma 3.2.8. Let X be a set and let H be a Hilbert space. Suppose f and g are two functions

X Ñ H such that their images are total in H. If for every x, y P X , x f pxq, f pyqy “ xg pxq, g pyqy,

then there exists A, a unitary map of H, such that A f pxq “ g pxq.

Proposition 3.2.9. The map

Acpbq “ K pbqcp´1{bq

defines a unitary map in L1, the closed subspace generated by tcpbqubPR, such that A2 “ I d .

Proof. Due to Lemma 3.2.8, it is enough to show that

BpAcpbq, Acpdqq “ Bpcpbq,cpdqq.

Denote Bpcpbq,cpbqq “ |cpbq|2 and recall that |K p1q| “ 1. Suppose b ‰ d . By Proposi-

tion 3.2.2, on one side,

BpAcpbq, Acpdqq “

K pbqK pdqB
`

cp´1{bq,cp´1{dq
˘

“

K pbqK pdq

´

´
|cp´1{b`1{dq|2

2 `
|cp1{bq|2

2 `
|cp1{dq|2

2

¯

`

K pbqK pdqi
´

∆p´1{b ` 1{dq´∆p´1{bq`∆p´1{dq

¯

“

|b|t |d |t K
´

b
|b|

¯

K
´

´ d
|d |

¯´

´
|d´b|t

|bd |t ` 1
|b|t ` 1

|d |t

¯

|cp1q|2

2 `

|b|t |d |t K
´

b
|b|

¯

K
´

´ d
|d |

¯

i
´

|b´d |t pb´dq|bd |

|bd |t bd |b´d |
` b

|b|t |b|
´ d

|d |t |d |

¯

∆p1q “

K
´

b
|b|

¯

K
´

´ d
|d |

¯´

´|d ´ b|t `|d |t `|b|t
¯

|cp1q|2

2 `

K
´

b
|b|

¯

K
´

´ d
|d |

¯

i
´

|b´d |t pb´dq|bd |

bd |b´d |
`

|d |t b
|b|

´
|b|t d
|d |

¯

∆p1q.
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On the other side,

Bpcpbq,cpdqq “

´
|cpb´dq|2

2 `
|cpbq|2

2 `
|cpdq|2

2 ` i
`

∆pb ´ dq´∆pbq`∆pdq
˘

“
`

´|b ´ d |t `|b|t `|d |t
˘ |cp1q|2

2 ` i
` |b´d |t pb´dq

|b´d |
´

|b|t b
|b|

`
|d |t d

|d |

˘

∆p1q.

There are three cases to analyse:

1. b ą 0 ą d .

2. b ą d ą 0.

3. b ă d ă 0.

1. If b ą 0 ą d ,

K
´

b
|b|

¯

K
´

´ d
|d |

¯

“ K p1q2

and
|b´d |t pb´dq|bd |

bd |b´d |
`

|d |t b
|b|

´
|b|t d
|d |

“ ´|b ´ d |t `|b|t `|d |t .

Therefore

BpAcpbq, Acpdqq “

K p1q2
`

´|b ´ d |t `|b|t `|d |t
˘

´

|cp1q|2

2 ` i∆p1q

¯

“
`

´|b ´ d |t `|b|t `|d |t
˘

K p1q2p´K p1qq “

´
`

´|b ´ d |t `|b|t `|d |t
˘

K p1q

and
Bpcpbq,cpdqq “

`

´|b ´ d |t `|b|t `|d |t
˘

´

|cp1q|2

2 ´ i∆p1q

¯

“

´
`

´|b ´ d |t `|b|t `|d |t
˘

K p1q.

2) If b ą d ą 0,

K
´

b
|b|

¯

K
´

´ d
|d |

¯

“ 1

and
|b´d |t pb´dq|bd |

bd |b´d |
´

|b|t d
|d |

`
|d |t b

|b|
“ |b ´ d |t ´|b|t `|d |t .

Thus,
BpAcpbq, Acpdqq “

`

´|d ´ b|t `|d |t `|b|t
˘ |cp1q|2

2 `
`

|b ´ d |t `|d |t ´|b|t
˘

∆p1q
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and
Bpcpbq,cpdqq “

`

´|d ´ b|t `|d |t `|b|t
˘ |cp1q|2

2 ` i
`

|b ´ d |t ´|b|t `|d |t
˘

∆p1q.

3) If b ă d ă 0,

K
´

b
|b|

¯

K
´

´ d
|d |

¯

“ 1

and
|b´d |t pb´dq|bd |

bd |b´d |
`

|d |t b
|b|

´
|b|t d
|d |

“ ´|b ´ d |t ´|d |t `|b|t .

Therefore

BpAcpbq, Acpdqq “
`

´|d ´ b|t `|d |t `|b|t
˘ |cp1q|2

2 ` i
`

´|b ´ d |t ´|d |t `|b|t
˘

∆p1q

and
Bpcpbq,cpdqq “

`

´|b ´ d |t `|b|t `|d |t
˘ |cp1q|2

2 ` i
`

´|b ´ d |t `|b|t ´|d |t
˘

∆p1q.

The case b “ d is an immediate consequence of Proposition 3.2.2.

By Lemma 3.2.8, A induces a unitary map on L1. Observe that

A2pcpbqq “ K pbqK p´1{bqcpbq
˘

“ |b|t K p b
|b|

q 1
|b|t K p´ b

|b|
qcpbq

“ cpbq.

Consider now H8
C as the hyperbolic space associated to Cη1‘Cη2‘L1 and the restriction

of the form Q defined in the beginning of this section. Denote by σ̃ P IsompH8
C qo the order

two isometry represented by
¨

˝

0 1 0

1 0 0

0 0 A

˛

‚.

The claim is that the representation ρ can be extended to a representation of SUp1,1q using

σ̃. That is to say, if g p1,bq, with b P R, g pλ,0q, with λą 0, and

s “

ˆ

0 i

i 0

˙

are understood as elements of SUp1,1q, then the map defined by :
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1. T pg pλ,0qq “ ρpλ,0q,

2. T p´g pλ,0qq “ ρpλ,0q,

3. T pg p1,bqq “ ρp1,bq,

4. T psq “ σ̃,

is a homomorphism. Here ρpλ,0q, ρp1,bq and σ̃ are interpreted as elements of IsompH8
C qo ,

In order to prove that T is a homomorphism it is enough to show that T is coherent

with the relations of Theorem 1.3.12, that is to show that, for λą 0 and b P R,

1. ρpλ,0q “ σ̃ρp1,λ´1qσ̃ρp1,λqσ̃ρp1,λ´1q.

2. ρpλ,0q “ σ̃ρp1,´λ´1qσ̃ρp1,´λqσ̃ρp1,´λ´1q.

3. λ ÞÑ ρpλ,0q is a homomorphism.

4. b ÞÑ ρp1,bq is a homomorphism.

5. ρpλ,0qρp1,bqρpλ´1,0q “ ρp1,λ2bq.

6. σ̃2 “ I d .

Observe that T is coherent with the points from 3., 4. and 5. because ρ is a homomorphism

defined on P (see Proposition 3.2.6). By Proposition 3.2.9, point 6. holds, therefore the only

two families of relations left to be verified are that for every b ą 0,

ρpb,0q “ σρp1,b´1qσρp1,bqσρp1,b´1q

“ σρp1,´b´1qσρp1,´bqσρp1,´b´1q.

Lemma 3.2.10. For ϵ“ ˘1 and for every b ą 0,

1. 1 ` K pϵbqK pϵb´1q` BpAcpϵbq,cp´ϵb´1qq “ 0.

2. K pϵbqcpϵb´1q`πpϵb´1qAcpϵbq “ 0.
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Proof. Indeed, if Bpcp´1q,cp´1qq “ |cp´1q|2,

1 ` K pϵbqK pϵb´1q` BpAcpϵbq,cp´ϵb´1qq “

1 ` K pϵq2 ` K pϵbqBpcp´ϵb´1q,cp´ϵb´1qq “

1 ` K pϵq2 ` b´t K pϵq|cp´1q|2 “

K pϵq
´

K p´ϵq` K pϵq`|cp´1q|2
¯

“ 0.

and
K pϵbqcpϵb´1q`πpϵb´1qAcpϵbq “

K pϵbq
`

cpϵb´1q`πpϵb´1qcp´ϵb´1q
˘

“ 0.

Lemma 3.2.11. If b ą 0 and ϵ“ ˘1, then

ρpb,0q “ σ̃ρp1,ϵb´1
qσ̃ρp1,ϵbqσ̃ρp1,ϵb´1

q.

Proof. The procedure will be to compare the columns of the canonical matrix representa-

tion of both side of the identities with respect to the decomposition Cη̃1 ‘ Cη̃2 ‘ L1. In fact,

it will be shown that

σ̃ρpb,0qρp1,´ϵb´1
qσ̃“ ρp1,ϵb´1

qσ̃ρp1,ϵbq.

With a small abuse of notation, keep the notation above for the canonical linear representa-

tives of each of the isometries. Indeed, on one side,

σ̃ρpb,0qρp1,´ϵb´1qσ̃pη̃1q “

σ̃ρpb,0q

´

K p´ϵb´1qη1 `η2 ` cp´ϵb´1q

¯

“

σ̃
´

bt K p´ϵb´1qη1 ` b´tη2 ` b´t cp´ϵbq

¯

“

b´tη1 ` bt K p´ϵb´1qη2 ` b´t K p´ϵbqcpϵb´1q “

b´tη1 ` K p´ϵqη2 ` K p´ϵqcpϵb´1q,

and on the other side,

ρp1,ϵb´1
qσ̃ρp1,ϵbqpη̃1q “ K pϵb´1

qη̃1 ` η̃2 ` cpϵb´1
q.

Observe that

K p´ϵq
`

K pϵb´1
qη̃1 ` η̃2 ` cpϵb´1

q
˘

“ b´t η̃1 ` K p´ϵqη̃2 ` K p´ϵqcpϵb´1
q.
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Therefore, as linear transformations, what has to be shown is that

σ̃ρpb,0qρp1,´ϵb´1
qσ̃“ K p´ϵqρp1,ϵb´1

qσ̃ρp1,ϵbq.

For η̃2, observe that,

σ̃ρpb,0qρp1,´ϵb´1
qσ̃pη̃2q “ bt η̃2

and that

ρp1,ϵb´1qσ̃ρp1,ϵbqpη̃2q “

ρp1,ϵb´1qσ̃
´

K pϵbqη̃1 ` η̃2 ` cpϵbq

¯

“

ρp1,ϵb´1q

´

η̃1 ` K pϵbqη̃2 ` Acpϵbq

¯

“
´

1 ` K pϵbqK pϵb´1q` B
`

Acpϵbq,cp´ϵb´1q
˘

¯

η̃1 ` K pϵbqη̃2`

K pϵbqcpϵb´1q`πpϵb´1qAcpϵbq.

Therefore, by Lemma 3.2.10,

σ̃ρpb,0qρp1,´ϵb´1
qσ̃pη̃2q “ K p´ϵqρp1,ϵb´1

qσ̃ρp1,ϵbqpη̃2q.

And last, for every d P Rzt0u,

σ̃ρpb,0qρp1,´ϵb´1qσ̃pcpdqq “

K pdqσ̃ρpb,0qρp1,´ϵb´1qcp´d´1q “

K pdqσ̃ρpb,0q

´

B
`

cp´d´1q,cpϵb´1q
˘

η̃1 `πp´ϵb´1qcp´d´1q

¯

“

K pdqσ̃
´

bt B
`

cp´d´1q,cpϵb´1q
˘

η̃1 `πpb,0qπp´ϵb´1qcp´d´1q

¯

“

K pdq

´

bt
`

cp´d´1q,cpϵb´1q
˘

η̃2 ` Aπpb,0qπp´ϵb´1qcp´d´1q

¯

.

On the other hand,

ρp1,ϵb´1qσ̃ρp1,ϵbqpcpdqq “

ρp1,ϵb´1qσ̃
´

Bpcpdq,cp´ϵbqqη̃1 `πpϵbqcpdq

¯

“

ρp1,ϵb´1q

´

Bpcpdq,cp´ϵbqqη̃2 ` Aπpϵbqcpdq

¯

“
´

Bpcpdq,cp´ϵbqqK pϵb´1q` B
`

Aπpϵbqcpdq,cp´ϵb´1q
˘

¯

η̃1`

Bpcpdq,cp´ϵbqqη̃2 ` Bpcpdq,cp´ϵbqqcpϵb´1q`πpϵb´1qAπpϵbqcpdq.
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Therefore the claim is that

K p´ϵq
´

Bpcpdq,cp´ϵbqqη̃2 ` Bpcpdq,cp´ϵbqqcpϵb´1q`πpϵb´1qAπpϵbqcpdq

¯

“

K pdq

´

bt Bpcp´d´1q,cpϵb´1qqη̃2 ` Aπpb,0qπp´ϵb´1qcp´d´1q

¯

.

Observe that

K pϵqK pdqbt Bpcp´d´1q,cpϵb´1qq “

B
`

K pdqcp´d´1q,K p´ϵbqcpb´1q
˘

“

BpAcpdq, Acp´ϵbqq “ Bpcpdq,cp´ϵbqq.

Therefore

K p´ϵqBpcpdq,cp´ϵbqq “ K pdqbt Bpcp´d´1
q,cpϵb´1

qq.

The only identity remaining to show is that

K pdqAπpb,0qπp´ϵb´1qcp´d´1q “

K p´ϵq
´

Bpcpdq,cp´ϵbqqcpϵb´1q`πpϵb´1qAπpϵbqcpdq

¯

.

Suppose 0 ‰ d ‰ ϵb. Notice that

πpϵb´1qAπpϵbqcpdq “

πpϵb´1qA
`

cpϵb ` dq´ cpϵbq
˘

“

πpϵb´1q

´

K pϵb ` dqcp´pϵb ` dq´1q´ K pϵbqcp´ϵb´1qq

¯

“

K pϵb ` dq
`

cp d
ϵbpϵb`dq

q´ cpϵb´1q
˘

` K pϵbqcpϵb´1q “
`

K pϵbq` K pdq` Bpcpdq,cp´ϵbqq
˘`

cp d
ϵbpϵb`dq

q´ cpϵb´1q
˘

` K pϵbqcpϵb´1q “

K pϵb ` dqcp d
ϵbpϵb`dq

q´
`

K pdq` Bpcpdq,cp´ϵbqq
˘

cpϵb´1q.

Therefore if R “ K p´ϵqπpϵb´1qAπpϵbqcpdq,

K p´ϵq
´

Bpcpdq,cp´ϵbqqcpϵb´1q`πpϵb´1qAπpϵbqcpdq

¯

“

K p´ϵqBpcpdq,cp´ϵbqqcpϵb´1q` R “

K p´ϵq
´

K pϵb ` dqcp d
ϵbpϵb`dq

q´ K pdqcpϵb´1q

¯

.
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On the other hand

Aπpb,0qπp´ϵb´1qcp´d´1q “

Aπpb,0q
`

cp´dϵb
ϵbd q´ cp´ϵb´1q

˘

“

b´t A
`

cp´
ϵbpdϵbq

d q´ cp´ϵbq
˘

“

b´t
´

K p´
ϵbpdϵbq

d qcp d
ϵbpdϵbq

q´ K p´ϵbqcpϵb´1q

¯

“

K p´
ϵpdϵbq

d qcp d
ϵbpdϵbq

q´ K p´ϵqcpϵb´1q.

Therefore, what is left is to show that

K pdq

´

K p´
ϵpdϵbq

d qcp d
ϵbpdϵbq

q´ K p´ϵqcpϵb´1q

¯

“

K p´ϵq
´

K pϵb ` dqcp d
ϵbpϵb`dq

q´ K pdqcpϵb´1q

¯

,

which is equivalent to show that

K pdqK p´ϵd´b
d q “ K p´ϵqK pϵb ` dq.

This is can be easily proved considering all the different cases.

Define

fϵbpdq “ K pdqAπpb,0qπp´ϵb´1
qcp´d´1

q

and

gϵbpdq “ K p´ϵq
´

Bpcpdq,cp´ϵbqqcpϵb´1
q`πpϵb´1

qAπpϵbqcpdq

¯

.

Observe that for a given value b0 P Rzt0u, the functions fb0pdq and gb0pdq are continuous

on d and such that fb0p0q “ 0 “ gb0p0q. It has been shown that for every 0 ‰ d ‰ ϵb0,

fb0pdq “ gb0pdq, therefore by continuity fb0 “ gb0 .

This concludes the proof for the equalities,

ρpb,0q “ σ̃ρp1,b´1qσ̃ρp1,bqσ̃ρp1,b´1q

“ σ̃ρp1,´b´1qσ̃ρp1,´bqσ̃ρp1,´b´1q.

The previous lemma completes the argument that shows that

SUp1,1q
T
ÝÑ IsompH8

C qo
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is a homomorphism. Observe that by construction, T p´I dq “ I d , therefore T induces a

representation PUp1,1q Ñ IsompH8
C qo .

Theorem 3.2.12. The map T induces an irreducible (orbitally continuous) representation

PUp1,1q
ρ

ÝÑ IsompH8
C qo with ℓpρq “ t and

Argpρq “ ArgpK1p1q` K2p1qq.

Proof. Observe that T does not have fixed points in H8
C Y BH8

C because σ̃ does not fix

η1 (see Lemma 3.2.7). If T preserves a geodesic, then it permutes the two limits of it,

but this is a contradiction because every homomorphism PUp1,1q ÝÑ Z2 is constant (see

Proposition 1.3.14).

Let SUp1,1q
π
ÝÑ IsompH1

Cqo be the projectivization map. The group πpPq is closed in

IsompH1
Cqo and, by Proposition 1.3.5, there is a decomposition

IsompH1
Cqo “πpPsPq\πpPq.

Therefore πpPsPsq is an open neighborhood of I d P IsompH1
Cqo . Thus, it is enough to show

that, if pg j q is a sequence in πpPsPq such that pg j q Ñπpsq, then for every x P H8
C ,

ρpg j qx Ñ T psqx “ σ̃x.

Observe that every element of PsP can be written as

g pλ,bqsg p1,dq “

ˆ

´b ipλ´ bdq

iλ´1 ´λ´1d

˙

.

If

g j “π
`

pg pλ j ,b j qsg p1,d j q
˘

,

then b j Ñ 0, λ j Ñ 1 and d j Ñ 0. Therefore, for every x P H8
C , ρpλ j ,b j qx Ñ x and

ρp1,d j qx Ñ x, hence with a triangle inequality argument it is possible to conclude that

g j x Ñ σ̃x.

The irreducible part of ρ contains the axis, and its limits, preserved by the maps ρpλ,0q,

therefore ρ is irreducible by construction.
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3.3 A new family of representations

With the results of the previous section a continuum of non-equivalent representations will

be constructed.

Given an irreducible representation ρ denote K p1q “ K p1qρ. If p, q P R ą 0 and ρ,τ :

PUp1,1q Ñ IsompH8
C q are two irreducible representations such that ℓpρq “ ℓpτq “ t , let

ρp and τq be two irreducible representations, equivalent to ρ and τ respectively, such

that |K p1qρp | “ p and |K p1qτq | “ q (see Proposition 2.1.11 and Remark 2.1.12). Observe

that with the procedure describe in Theorem 3.2.12 it is possible to obtain an irreducible

representation ω such that ℓpϕq “ t and

Argpϕq “ Arg

ˆ

pKρp1q

|Kρp1q|
`

qKτp1q

|Kτp1q|

˙

.

Therefore for every

s P rmintArgpρq,Argpτqu,maxtArgpρq,Argpτqus

there is an irreducible representation φ such that ℓpφq “ t and Argpφq “ s.

Given u P r0,1s, denote ρ^
u
τ the irreducible representation such that

1. ℓpρ^
u
τq “ t .

2. Argpρ^
u
τq “ p1 ´ uqArgpρq` uArgpτq.

This representation will be called a horospherical combination of ρ and τ.

The representation ρ^
u
τ is well defined in the following sense. If ℓpρq “ ℓpτq and

ρ1 and τ1 are equivalent to ρ and τ respectively, then ρ^
u
τ is equivalent to ρ1 ^

u
τ1 (see

Theorem 3.1.11).

Although in the definition of the horospherical combination, for simplicity, the repre-

sentations were supposed acting on the same hyperbolic space, nothing prevents to define

the horospherical combination of two irreducible representations with one possibly having

finite-dimensional target. This could be the case, by Mostow-Karpelevich theorem or in

particular by Lemma 3.1.9, only if t “ 1.

Using the families constructed in [40, 41] and described in Section 3.1 and the horo-
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spherical combination, a new family of non-equivalent representations is built.

Recall that for every 0 ă t ă 2 on the one hand, up to a conjugation, there exists a unique

irreducible representation

IsompH1
Cqo

ρt
ÝÑ IsompH8

C qo

such that ℓpρt q “ t and that preserves a real hyperbolic space. These representations are

such that Argpρt q “ 0 (see Remark 3.1.1, Theorem 3.1.11 and Lemma 3.2.1). On the other

hand, for every 0 ă t ă 1 there exists an irreducible representation

IsompH1
Cqo

τt
ÝÑ IsompH8

C qo

such that Argpτt q “ tπ
2 and ℓpτt q “ t (see Lemma 1.2.1 and Proposition 3.1.8).

Theorem 3.3.1. If 0 ă t ă 1 and r P r0, tπ{2s or if t “ 1 and r P r0,π{2q, there exists a unique,

up to a conjugation, irreducible representation ρt ,r such that

1. Argpρt ,r q “ r .

2. ℓpρt ,r q “ t .

Proof. For t ă 1, consider the family of irreducible representations ρt ^
u
τt . For t “ 1, let

I d be the identity map IsompH1
Cqo Ñ IsompH1

Cqo . Observe that for every u P r0,1q, by con-

struction the representation ρt ^
u

i d is irreducible and the target is an infinite-dimensional

complex hyperbolic space. This is true because the representation ρt has as a target an

infinite-dimensional hyperbolic space. The unicity is a consequence of Theorem 3.1.11.

By Lemma 3.1.5, the representations listed in the previous theorem are representatives

of all the irreducible representations of PUp1,1q into IsompH8
C qo with displacement 1.
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Chapter 4

Non-elementary representations of
PU(1,n), with n>1

In this chapter it will be shown that for n ą 1, there are no non-elementary representations

PUp1,nq Ñ IsompH8
R q. In terms of the argument of a representation, contrary to the case

when n “ 1, this is equivalent to say that for every complex hyperbolic representation of

PUp1,nq, with n ą 1, has non-zero argument.

The proof of this fact relies strongly on ideas of [15] and [22]: the existence of smooth har-

monic maps Hn
C Ñ H8

R associated to a non-elementary representation of ΓÑ IsompH8
R q,

where Γă PUp1,nq is a uniform lattice, together with the strong restrictions on the rank of

such maps (see [47]).

4.1 Harmonic functions, lattices and representations

At the finite dimensional level, the main theorem of this chapter follows from rather ele-

mentary arguments.

Proposition 4.1.1. If n,n1 ă 8, there are no non-elementary representations

PUpn,1q Ñ POp1,n1
q.
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Proof. Suppose ξ P BHn
C and consider the group

L “ tg p1, v, I d ,bq | v P Cn´1 and b P Ru

contained in the stabilizer of ξ. By the arguments of Proposition 2.1.11, it can be shown that

ρ preserves the type and ρpLq preserves a point η P BHn1

R . Every element in L is parabolic,

therefore, ρpLq ă B , where

B “ tg p1, w, Aq | w P Rn1´1 and A P Opn1
´ 1qu.

The group B is equivalent to the group of affine isometries of Rn1´1. Every connected

nilpotent subgroup of the group of affine isometries of Rn1´1 is abelian (see the proof of

Corollary 4.1.13 in [48]). Hence, the group ρpLq is abelian. This is a contradiction because L

is a non-abelian solvable group consisting of parabolic isometries, and because the type is

preserved by ρ, ρ|L is injective.

In the infinite-dimensional case the arguments of the previous proposition do not

hold. The group L is solvable, hence amenable. Every amenable group satisfies Haagerup’s

property (see 1.2.6 in [16]). That is to say, L admits a metrically proper representation in the

group of affine isometries of real Hilbert space, which naturally induces a representation

L
τ

ÝÑ IsompH8
R q such that ρpLq fixes a point in BH8

R and all the horospheres centered at it

(see Section 1.3).

Lemma 4.1.2. Let Γ1 and Γ2 be two uniform lattices of a locally compact group G and let

X
fi

ÝÑ Y , i “ 1,2 be two continuous functions between X a topological space and Y a metric

space. Suppose G acts transitively on X with compact stabilizers, by isometries on Y and

orbitally continuously on both. If fi is Γi -equivariant, then there exists C ą 0 such that for

every x P X , dp f1pxq, f2pxqq ă C .

Proof. There exist compact sets Ki Ă G such that Γi Ki “ G (see for example Lemma 2.46

in [27]). Fix x0 P X and take y P X . There exist γi P Γi and ki P Ki , such that γi ki x0 “ y.

Therefore,

dp f1pyq, f2pyqq “ d
`

γ1 f1pk1x0q,γ2 f2pk2x0q
˘

“ d
`

γ´1
2 γ1 f1pk1x0q, f2pk2x0q

˘

ď suptd
`

z f1pl1x0q, f2pl2x0q
˘

| z P K2Stabpx0qK ´1
1 , li P Ki u.

120



Lemma 4.1.3. Let tHnunPNě1 be a sequence of finite-dimensional hyperbolic spaces embed-

ded in H8
R , where for n ě 2, Hn is isometric to Hn

R and H1 is a geodesic. Suppose that for every

n ě 1, Hn Ă Hn`1 and
ď

ně1

Hn “ H8
R ,

then for every n ě 2 and y1, y2 P H8
R , there exists ϕ P IsompH8

R q such that, ϕ|Hn “ I d and

ϕpty1, y2uq Ă Hn`2.

Proof. Given Hn Ă Hn`2 and y1, y2 P H8
R , there exists m ě n ` 2 and H isometric to Hm

R
such that yi P H and Hn`2 Ă H. Observe that every isometry of H can be extended to an

isometry of H8
R . Therefore the problem can be reduced to a statement about Hm

R , where the

claim is clear (see the proof of Proposition 1.4.4).

Let M be a Riemannian manifold and let U Ă M be an open set contained in a chart

pV ,φq. Suppose that U Ă V and φ´1pUq “ Bpp,r q Ă Rm . For every ϕ P C 0pBUq, there exists

a unique hϕ P C 0pUq XC 2pUq which solves the Dirichlet problem, in other words, hϕ is

harmonic in U (∆hϕ|U “ 0) and hϕ|BU “ ϕ|BU (see Lemma 6.10 in [30]). For references

about harmonic maps in the Riemannian setting see [44] and for harmonic maps with a

CAT(0) codomain see [35, 36].

For every x P U , the claim is that the map

C 0pBUq Ñ R
ϕ ÞÑ hϕpxq

is a positive linear functional, in other words, it defines a probability measure pU
x in BU .

Indeed, in every U as above, a harmonic map defined on U achieves its maximum (mini-

mum) in BU and if there exists u P U such that the maximum (minimum) of h is achieved

in u, then h is constant in U (see Theorem 3.1 in [30]). Thus

hϕ ď max
yPBU

hϕpyq “ max
yPBU

ϕpyq,

therefore the linear map ϕ ÞÑ hϕpxq is positive and continuous for every x P U .

A continuous function M
ϕ
ÝÑ R is called subharmonic if for every U as above and every

x P U ,

ϕpxq ď

ż

BU

ϕd pU
x .
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If ϕ P C 2pMq, then ϕ is subharmonic if, and only if, ∆ f ě 0 (see page 103 of [30]).

Observe that every non-constant subharmonic function ϕ defined on U satisfies a

maximum principle: the maximum of ϕ is achieved only in the boundary.

Lemma 4.1.4. Let M be a Riemannian manifold and let pϕnq be a sequence of subharmonic

functions defined in M. If pϕnq Ñϕ uniformly on compact sets, then ϕ is subharmonic.

The proof of the next lemma follows some of the ideas in Theorem 2.3 in [38].

Lemma 4.1.5. Let X be a homogeneous and complete Riemannian manifold and let

u, v : X Ñ H8
R

be two harmonic and Lipschitz continuous functions of class C 2. If there exists C ą 0 such

that for every x P X , dpupxq, vpxqq ă C , then either u “ v or the images of u and v are

contained in one geodesic.

Proof. Suppose that K ą 0 is a Lipschitz constant for u and v . Let tyi uiPN Ă H8
R be such

that if for every n ě 1, Hn is the smallest hyperbolic space that contains ty0, . . . , ynu, then

the family tHnuně1 satisfies the hypothesis of Lemma 4.1.3.

Let pxnqně1 be a sequence in X such that

dpu, vq “ sup
xPX

tdpupxq, vpxqqu “ lim
nÑ8

dpupxnq, vpxnqq.

Fix x0 P X and for every i chooseϕi P IsompH8
R q such thatϕi px0q “ xi . Define ui “ u˝ϕi

and vi “ v ˝ϕi . For every i there exist an isometry T 1
i such that T 1

i ˝ ui px0q “ y0 and

T 1
i ˝ vi px0q P H1. Observe that for every i ,

dpT 1
i ˝ ui px0q,T 1

i ˝ vi px0qq ď dpu, vq.

H1 is locally compact, therefore there exists a subsequence
`

T 1
1,i ˝ v1,i px0q

˘

iPN of
`

T 1
i ˝

vi px0q
˘

iPN which is convergent.

Let tzi uiPNě1 be a dense subset of X . Observe that for every i , there exists an isometry

T 2
i such that T 2

i |H1 “ I d and

tT 2
i ˝ T 1

1,i ˝ u1,i pz1q,T 2
i ˝ T 1

1,i ˝ v1,i pz1qu Ă H3.
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Notice that for every i ,

d
´

T 2
i ˝ T 1

1,i ˝ u1,i pz1q,T 2
i ˝ T 1

1,i ˝ u1,i px0q

¯

ď K dpz1, x0q,

but

T 2
i ˝ T 1

1,i ˝ u1,i px0q “ T 1
1,i ˝ u1,i px0q “ y0.

Therefore
´

T 2
i ˝ T 1

1,i ˝ u1,i pz1q

¯

iPNě1

is a bounded sequence in H3. Also, for every i ,

d
´

T 2
i ˝ T 1

1,i ˝ u1,i pz1q,T 2
i ˝ T 1

1,i ˝ v1,i pz1q

¯

ď dpu, vq.

Thus,
´

T 2
i ˝ T 1

1,i ˝ v1,i pz1q

¯

iě1

is again a bounded sequence in H3. So it is possible to chose respective subsequences,

´

T 2
2,i ˝ T 1

2,i ˝ u2,i pz1q

¯

iě1

and
´

T 2
2,i ˝ T 1

2,i ˝ v2,i pz1q

¯

iě1

that are convergent.

By induction on n, suppose that for every for every 2 ď m ď n and for every i ě 1 there

are isometries T m
m,i , and T 1

n,i such that

1. T 1
n,i ˝ ui px0q “ y0 and

`

T 1
n,i ˝ vi px0q

˘

iě1 is a convergent sequence in H1.

2. T m
n,i |H1`2pm´2q

“ I d .

3.
´

T m
n,i ˝¨ ¨ ¨˝T 1

n,i ˝un,i pzm´1q

¯

iě1
and

´

T m
n,i ˝¨ ¨ ¨˝T 1

n,i ˝ vn,i pzm´1q

¯

iě1
are converging

sequences in H1`2pm´1q.

For every i ě 1, let T n`1
i be an isometry with the following properties,

1. T n`1
i |H1`2pn`1´2q

“ I d .
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2. T n`1
i ˝ ¨ ¨ ¨ ˝ T 1

n,i ˝ un,i pznq and T n`1
i ˝ ¨ ¨ ¨ ˝ T 1

n,i ˝ vn,i pznq are elements of H1`2pn`1´1q.

Observe that
´

T n`1
i ˝ ¨ ¨ ¨ ˝ T 1

n,i ˝ un,i pznq

¯

iě1

is a bounded sequence in H1`2pn`1´1q, indeed

d
´

T n`1
i ˝ ¨ ¨ ¨ ˝ T 1

n,i ˝ un,i pznq , T n`1
i ˝ ¨ ¨ ¨ ˝ T 1

n,i ˝ un,i px0q

¯

ď K dpzn , x0q,

but

T n`1
i ˝ ¨ ¨ ¨ ˝ T 1

n,i ˝ un,i px0q “ y0.

Moreover, for every i ,

d
´

T n`1
i ˝ ¨ ¨ ¨ ˝ T 1

n,i ˝ un,i pznq , T n`1
i ˝ ¨ ¨ ¨ ˝ T 1

n,i ˝ vn,i pznq

¯

ď dpu, vq.

Therefore
´

T n`1
i ˝ ¨ ¨ ¨ ˝ T 1

n,i ˝ un,i pznq

¯

iě1

and
´

T n`1
i ˝ ¨ ¨ ¨ ˝ T 1

n,i ˝ vn,i pznq

¯

iě1

are bounded sequences in H1`2pn`1´1q. Hence it is possible to choose convergent subse-

quences
´

T n`1
n`1,i ˝ ¨ ¨ ¨ ˝ T 1

n`1,i ˝ un`1,i pznq

¯

iě1

and
´

T n`1
n`1,i ˝ ¨ ¨ ¨ ˝ T 1

n`1,i ˝ vn`1,i pznq

¯

iě1
.

Define now,

Upznq “ lim
iÑ8

T i
i ,i ˝ ¨ ¨ ¨ ˝ T 1

i ,i ˝ ui ,i pznq

and

V pznq “ lim
iÑ8

T i
i ,i ˝ ¨ ¨ ¨ ˝ T 1

i ,i ˝ vi ,i pznq.

Observe that there exists M ą 0 such that,

Upznq “ lim
iÑ8

T i
i ,i ˝ ¨ ¨ ¨ ˝ T 1

i ,i ˝ ui ,i pznq

“ lim
iÑ8

T M
i ,i ˝ ¨ ¨ ¨ ˝ T 1

i ,i ˝ ui ,i pznq

“ lim
iÑ8

T M
M ,i ˝ ¨ ¨ ¨ ˝ T 1

M ,i ˝ uM ,i pznq
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and

V pznq “ lim
iÑ8

T M
M ,i ˝ ¨ ¨ ¨ ˝ T 1

M ,i ˝ vM ,i pznq.

Given zn and zm , there exists M 1 ą 0 such that

dpUpznq,Upzmqq “ lim
iÑ8

dpu ˝ϕM 1,i pznq,u ˝ϕM 1,i pzmqq

ď K dpzn , zmq,

and with the same reasoning,

dpV pznq,V pzmqq ď K pdpzn , zmqq.

Therefore U and V can be extended to X .

For every m ě 1, define

Rm “ T m
m,m ˝ ¨ ¨ ¨ ˝ T 1

m,m ˝ um,m

and

Sm “ T m
m,m ˝ ¨ ¨ ¨ ˝ T 1

m,m ˝ vm,m .

Observe that for every m, Rm and Sm are Lipschitz continuous functions with Lipschitz

constant smaller or equal than K . Therefore tRnun and tSnun are equicontinuous families.

If the function Ln is defined as Lnpzq “ dpRnpzq,Snpzqq, then the family tLnun is equicon-

tinuous and pointwise convergent to z ÞÑ dpUpzq,V pzqq, thus by Arzelà-Ascoli Theorem,

the convergence is uniform on compact sets.

The functions u and v are C 2, and for every i , ϕi is an isometry, therefore ui and vi are

harmonic functions (see for example Proposition 2.2 in [34]). Moreover, for every i , j , the

map T j
i ,i is an isometry, therefore for every m, the functions Rm and Sm defined above are

harmonic. For one reference for the last statement see the corollary at the end of page 131

of [25].

The distance function H8
R ˆ H8

R
d
ÝÑ R is a (geodesically) convex function and for every

m, the map x ÞÑ dpRmpxq,Smpxqq is harmonic (see the second example in page 133 of [25]).

Therefore, for every m the function Lm is subharmonic (see Theorem 3.4 in [34]) and by

Lemma 4.1.4, the map z ÞÑ dpUpzq,V pzqq is subharmonic.
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Notice that for every z P X dpu, vq ě dpUpzq,V pzqq, also

dpUpx0q,V px0qq “ lim
m

dpTmpx0q,Smpx0qq

“ lim
m

dpum,mpx0q, vm,mpx0qq

“ lim
m

dpupxm,mq, vpxm,mqq “ dpu, vq.

Therefore dpUpzq,V pzqq is constant as a consequence of the maximum principle for sub-

harmonic maps. By construction, for every z,

dpUpzq,V pzqq “ dpupzq, vpzqq,

hence, by Lemma 2.2 in [38], either u “ v or the images of u and v are contained in a

geodesic.

Lemma 4.1.6. If Γ is a torsion-free uniform lattice of SUp1,nq, then the following hold:

1. All the non-trivial elements act as hyperbolic isometries of Hn
C.

2. If ℓpg q is the translation length of g acting as an isometry of Hn
C, then

inftℓpγq | γ P Γzteuu ą 0.

3. There exists g P SUp1,nq such that gΓg ´1 and Γ are non-commensurable.

Proof. For 1) and 2) see Proposition II.6.10 in [7] and observe that if g P Γzteu acts as an

elliptic isometry, then it is contained in a compact (finite) subgroup of Γ and this cannot be

the case.

For 3) observe that every γ P Γzteu preserves a unique axis in Hn
C and that Γ is finitely

generated (see Theorem 6.15 and Remark 6.18 in [46]). Define

X “ tξ P BHn
C | γξ“ ξ for some γ P Γu.

Let x P X and g P SUp1,nq be such that g x R X . This is possible because X is countable. The

claim is that gΓg ´1 and Γ are not commensurable. Indeed, g x is fixed by some θ P gΓg ´1,

but for every n, θ and θn share the axis, therefore the two lattices cannot be commensurable.

The existence of uniform lattices in connected, non compact and semisimple groups

is due to Borel, for one reference see Chapter XIV in [46]. Any of these lattices is finitely
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generated and as a consequence of Selberg’s Lemma (see [2]) they are also virtually torsion-

free. This two facts together with the previous observations show that there exist Γ1 and Γ2,

non-commensurable uniform lattices in SUp1,nq.

Following [28], a pair pG , Hq is called a Borel pair if G does not admit non-trivial homo-

morphisms to a compact group, H is a closed subgroup and G{H admits a finite G-invariant

measure. In this article the author showed that if pG , Hq is a Borel pair, where G is a con-

nected real algebraic group, then H is Zariski-dense in G (see Corollary 4 in [28]).

The claim is that SUp1,nq does not have homomorphisms to compact Lie groups. If

G
ϕ
ÝÑ H is an homomorphism of Lie groups, where G is connected, semisimple and with

finite center, then the image of ϕ is closed (see Corollary 1.2 and the proof of Corollary 1.3

in [45]). Therefore if there exists a non-trivial Lie group homomorphism G
ψ
ÝÑ K , where

K is a compact Lie group, then the image is a compact and semisimple Lie group. This

produces a decomposition in g, the Lie algebra of G , g“ a`aK, where a is the kernel of dψ

and aK is the complement with respect to the Killing form. The map dψ restricted to aK is

an isomorphism, therefore the Killing form of aK is negative definite. The normal subgroup

associated to this ideal is compact (see Corollary 3.6.3 in [24]). This shows that SUp1,nq

does not admit non-trivial homomorphisms to compact Lie groups because SUp1,nq does

not admit compact normal subgroups.

Lemma 4.1.7. Given two non-commensurable lattices Γ1 and Γ2 of SUp1,nq (or any con-

nected real semisimple linear algebraic group without compact factors), the group H gener-

ated by Γ1 YΓ2 is dense in SUp1,nq.

Proof. Observe that H , the closure of H for the usual topology, is Zariski-dense in SUp1,nq.

Consider h the Lie subalgebra of H . This space is invariant under the action of H , therefore

it is SUp1,nq-invariant because the action is Zariski-continuous. This means that H 0 is

a normal subgroup of SUp1,nq, but SUp1,nq is simple. Suppose H o is the trivial group.

Observe that H{Γi carries a finite invariant measure (see Lemma 1.6 in [46]), therefore Γ1

and Γ2 have finite index in H . This implies that Γ1 and Γ2 are commensurable, which is a

contradiction.

Let SUp1,nq
φ
ÝÑ PUp1,nq be the projectivization map. This is a surjective homomor-

phism. The map φ has finite kernel, therefore if Γ1 and Γ2 are as above, φpΓ1q and φpΓ2q

are two uniform non-commensurable lattices of PUp1,nq. Indeed, observe that Γi kerpφq is

closed and countable (discrete), therefore there is U an open subset of SUp1,nq such that

U XpΓi kerpφqq “ teu. This shows that φpΓi q is a discrete subgroup of PUp1,nq. For the exis-

tence of a finite φpSUp1,nqq-invariant measure observe that there is a natural continuous
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G-equivariant bijection

SUp1,nq{Γi ÑφpSUp1,nqq{φpΓi q

where the domain is compact. The latticesφpΓ1q andφpΓ2q are not commensurable because

kerpφq is finite. The group generated by φpΓ1q and φpΓ2q is dense because Γ1 and Γ2

generate a dense subgroup of SUp1,nq.

Theorem 4.1.8. For n ě 2, PUp1,nq does not admit non-elementary representations into

I sompH8
R q.

Proof. Let ρ be a non-elementary representation, given a torsion-free uniform lattice Γ of

PUp1,nq, the restriction of ρ to Γ is non-elementary. Therefore there exists a Γ-equivariant,

harmonic and Lipschitz continuous map Hn
C

u
ÝÑ H8

R (see Theorem 2.3.1 of [35]). In Section

3.2 of [22], the authors showed that this map is C 8.

Given Γ1 and Γ2 two non-commensurable and uniform lattices of PUp1,nq, there are

C 2, harmonic, Lipschitz and Γi -equivariant functions, Hn
C

ui
ÝÑ H8

R . Therefore, it follows

from Lemmas 4.1.2 and 4.1.5 that u1 “ u2. This implies that the function u “ ui is PUp1,nq-

equivariant. In Proposition 8 of [22], the authors showed that the real rank of u is at most 2.

The arguments used there go back to the work of Sampson (see [47]). If x P Hn
C, the kernel

of d fx is nontrivial. The group St abpxq acts transitively in spheres of the tangent space of x

and u is PUp1,nq-equivariant, therefore u is constant, but this is a contradiction.
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