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Abstract

Efficient numerical simulations of coupled multi-component systems can be particularly

challenging. This is mostly due to the complexity of their solutions, as mutual interactions

may cause emergent behaviors, including synchronization and instabilities. Variations in the

physical parameters and the multi-query simulations arising from, e.g., control problems, pose

additional challenges. In parallel, to reduce the computational complexity while preserving

the accuracy of the underlying numerical discretization scheme, model order reduction

techniques have proven to be effective for a plethora of models and problems. The goal of this

thesis is to design model order reduction methods specifically targeted to coupled systems.

This allows one to detect (and possibly discover) emergent behaviors in multi-component

systems without the need to simulate the original, possibly expensive model. This work is

divided into three main parts.

In the first part, we assume that the coupled system is known and the full model can be

exploited to construct projection-based surrogate models. Variations in the constitutive

parameters lead to qualitatively different system behaviors, that can be explored at a reduced

level. In this setting, we propose and numerically validate an efficient reduction method for

systems exhibiting synchronization, including phase dynamics equations and a model for

circadian oscillators.

In the second part, we consider scenarios in which the full coupled model cannot be used

to construct the surrogate. This is the case when one does not know how the components

will be assembled at a later stage or repeated simulations of the full system are prohibitive

due to the high degree of complexity of the problem. The reduced models are constructed

by simulating the system components separately with a suitable (artificial) parametrization

of the boundary conditions and projecting the local discretization operators. The surrogates

can subsequently be used to recover the main features of the coupled system of interest under

parameter variations. We first apply these techniques to an oscillatory mechanical system

consisting of pendulum clocks hanging on a wooden structure (the Huygens’ experiment),

and we subsequently extend them to more general cases, including diffusion-reaction models

and fluid-structure interaction problems.

In the third part, we aim to construct reduced models for systems whose solvers are available

only as black boxes, i.e., with no access to the (local) discretization operators. We use purely
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Abstract

data-driven interpolation methods combined with data obtained from the coupled model or

an artificial parametrization, in the same spirit of the first two parts of this thesis. We show

the efficiency of our method in a variety of problems, including highly heterogeneous and

multi-physics models.

Keywords: Model order reduction, Coupled systems, Reduced basis method, Domain de-

composition, Kernel methods, Circadian oscillators, Huygens’ experiment, Multi-physics

problems, Fluid-structure interaction.
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Résumé

Les simulations numériques efficaces de systèmes couplés à composants multiples peuvent

s’avérer particulièrement difficiles. Cela est principalement dû à la complexité de leurs so-

lutions, car les interactions mutuelles peuvent entraîner des comportements émergents, y

compris la synchronisation et les instabilités. Les variations des paramètres physiques et les

simulations multi-requêtes découlant, par exemple, de problèmes de contrôle, posent des

défis supplémentaires. En parallèle, pour réduire la complexité computationnelle tout en

préservant la précision du schéma de discrétisation numérique sous-jacent, les techniques

de réduction d’ordre de modèle se sont révélées efficaces pour une multitude de modèles et

de problèmes. L’objectif de cette thèse est de concevoir des méthodes de réduction d’ordre

de modèle spécifiquement destinées aux systèmes couplés. Cela permet ainsi de détecter (et

éventuellement de découvrir) des comportements émergents dans des systèmes à composants

multiples sans avoir besoin de simuler le modèle original, qui peut être coûteux. Ce travail est

divisé en trois parties principales.

Dans la première partie, nous supposons que le système couplé est connu et que le mo-

dèle complet peut être exploité pour construire des modèles de substitution basés sur des

projections. Les variations des paramètres constitutifs conduisent à des comportements quali-

tativement différents du système, qui peuvent être explorés à un niveau réduit. Dans ce cadre,

nous proposons et validons numériquement une méthode de réduction efficace pour des

systèmes présentant une synchronisation, y compris des équations de dynamique des phases

et un modèle pour des oscillateurs circadiens.

Dans la deuxième partie, nous considérons des scénarios dans lesquels le modèle couplé

complet ne peut pas être utilisé pour construire le substitut. C’est le cas lorsqu’on ne sait

pas comment les composants seront assemblés à un stade ultérieur ou lorsque des simula-

tions répétées du système complet sont prohibitives en raison du degré élevé de complexité

du problème. Les modèles réduits sont construits en simulant les composants du système

séparément avec une paramétrisation (artificielle) appropriée des condition aux limites et

en projetant les opérateurs de discrétisation locaux. Les substituts peuvent ensuite être utili-

sés pour retrouver les principales caractéristiques du système couplé d’intérêt en fonction

des variations des paramètres. Nous appliquons d’abord ces techniques à un système mé-

canique oscillatoire composé de pendules suspendues à une structure en bois (l’expérience

de Huygens), puis nous les étendons à des cas plus généraux, y compris des modèles de
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Résumé

diffusion-réaction et des problèmes d’interaction fluide-structure.

Dans la troisième partie, nous visons à construire des modèles réduits pour les systèmes

dont les solveurs sont disponibles uniquement sous forme de boîtes noires, c’est-à-dire sans

accès aux opérateurs de discrétisation (locaux). Nous utilisons des méthodes d’interpola-

tion entièrement guidées par les données, combinées avec des données obtenues à partir

du modèle couplé ou d’une paramétrisation artificielle, dans le même esprit que les deux

premières parties de cette thèse. Nous montrons l’efficacité de notre méthode dans une variété

de problèmes, y compris des modèles hautement hétérogènes et multi-physiques.

Mots-clés : Réduction d’ordre de modèle, Systèmes couplés, Méthode des bases réduites, Dé-

composition de domaine, Méthodes à noyaux, Oscillateurs circadiens, Expérience de Huygens,

Problèmes multi-physiques, Interaction fluide-structure.
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1 Coupled systems

1.1 The importance of coupled systems

Several natural and artificial processes can be described as coupled systems, as they are a

result of the interactions among a number of different components.

Concretely, one could find examples of such systems in every scientific field. Arguably, the

main one is biology, in which networks of coupled oscillators are at the core of human life.

Neuronal cells in the human brain can be thought as simple oscillatory units, which can start

to interact and behave in a coherent way. As a result, our body adapts its functions to the

external day-night cycle and is able to optimize many processes accordingly. Without this,

the growth of human beings, as well as the correct functioning of the entire body, could be

severely impacted. At a larger scale, one of the most important coupled systems in the human

body is the cardiorespiratory one. The heart and the lungs have physiological functions of

great importance for human health, and it is crucial to correctly understand their interactions

from a biological and a mathematical level, especially to predict diseases.

Similar interacting phenomena can be found in physical systems, both at micro and macro

scales. For example, Josephson junctions can be thought as combinations of superconducting

and nonsuperconducting materials, in which electrons can create a tunneling effect [136, 96].

A coherent motion can be observed even if the junctions are not equal, especially if an array-

like structure is considered. On the other side of the spectrum, an example of a large-scale

coupled system is the weather. The interactions between the atmosphere, the oceanic waters

and surface lands give rise to, e.g., winds and waves, and ultimately lead to a chaotic system.

Large-scale mechanical structures can be viewed as a combination of smaller blocks of sim-

ilar nature, which can be coupled in a variety of ways to construct buildings. The coupling

propagates the load and the stresses throughout the system and makes the entire construc-

tion (un)stable. Similarly, multi-component mechanical systems are quite common. Any

vehicle, including cars, airplanes and rockets, can be viewed as the result of the interactions

between its constitutive components, that are governed by different physical phenomena. For

1



Chapter 1. Coupled systems

instance, the mechanical structure interacts with the engine and the electrical components,

and responds to external conditions in a variety of ways.

Similar to the biological world, chemical oscillations can be observed in a certain class of

reactions [127, 92]. A complex mixture of reacting chemical compounds interact and can give

rise to limit-cycle, periodic-like behaviors.

Finally, coupled systems can be found at the level of social sciences. Social networks are the

result of people communicating at different levels and scales, including local interactions

and large-scale connections. Recently, it has been shown [120] that there is a nontrivial

interaction between a number of social variables, democracy and higher emancipation of

citizens. Ultimately, this has economic implications, as all these variables can be related to

economic growth and the GDP.

The common denominator among all such systems is that the interactions lead to possibly

unexpected behaviors, that can be hardly deduced by looking at the single, individual com-

ponents in a separate, decoupled way. Indeed, certain properties can only be retrieved or

predicted by appropriately studying the interaction mechanism. In a broad sense, this is the

definition of emergent behavior, as the whole is greater than the sum of the parts.

Several phenomena fall under the umbrella of emergent properties and once again they appear

in a variety of fields and applications. The most common example of emergent behavior is

the synchronization. This can be defined as the adjustment of rhythms of oscillating objects

due to their (weak) interactions [101]. Historically, the first example of synchronization is the

sympathy of two pendulum clocks observed by C. Huygens in 1665 [72]. After hanging two

pendula on the same wooden beam with an initial, possibly random, phase shift, he observed

that their oscillations ultimately coincided perfectly, with a movement in opposite directions.

He correctly conjectured that the driving factor for synchronization was an imperceptible

motion of the beam. More recently, there has been a significant number of attempts to re-

create the conditions observed by Huygens [100]. This led to the discovery of other types of

synchronization patterns, including in-phase synchronization and clustering [34].

Going beyond the adjustment of rhythms, other emergent behaviors can be observed in

oscillating systems. Examples include oscillations death, in which a portion of the oscillators

entirely dissipates the energy, and chimera states, in which coherent and incoherent states

coexist [132].

Although we introduced these phenomena in the context of mechanical oscillators, a qualita-

tively similar behavior is observed in networks of neuronal oscillators. This has even more

concrete applications, as synchronization in the human cells is responsible for the circadian

rhythm. Even if the single neurons can have a different dynamics, their interaction leads to a

synchronous motion and the adaptation to the sleep-wake cycle that repeats roughly every

24 hours. Synchronization at a neuronal level and among the different systems, including

the cardiovascular and respiratory ones, is crucial for the correct functioning of our body.

2



1.1. The importance of coupled systems

Deviations from this behavior can cause imbalance and, in extreme cases, heart failures and

deaths.

Similarly, many natural phenomena are a result of synchronization among interacting agents.

For instance, fireflies are known to emit rhythmic light pulses to attract females. Synchrony is

often observed, and it is conjectured that they flash in unison possibly to optimize courtship

communication with grounded females [115, 116]. Another example can be found in bird

flocking, in which any bird within the flying murmuration is perfectly synced with its seven

closest birds [142].

Synchronization and adjustment of rhythms are not the only examples of emergent behavior.

Any macroscopic phenomenon resulting from microscopic interactions falls into this category.

For instance, the laws of thermodynamics can be deduced from modeling the local interactions

among particles. Such microscopic laws are rather complex but reversible in time, whereas

the macroscopic behavior can be described with relatively simple models and it is typically

irreversible. This difference is at the core of emergent behavior, as the global system possesses

different properties than its constituents.

Sticking to the physics framework, a number of instabilities can be cast as emergent behavior.

For instance, superimposing two fluids with different velocities at the interface can result in

the formation of wave-like rolling shapes, known as Kelvin-Helmholtz instability. Looking

at the two fluids individually, there would be no reason to expect such a behavior, as the

two components are naturally stable. It is the interactions and the physical properties of

the fluids that cause the instability of the interface and the entire system. Another typical

example is the resonance, in which an increase in the amplitude of an oscillating system

is observed, provided that the interaction with the environment through an applied load

happens at a certain frequency. Again, in the absence of external loads, the system is stable,

and the unexpected behavior is induced by the forcing term.

Similarly, fluid-structure interaction problems can have properties that can hardly be observed

if the local systems are considered independently. For instance, the interactions between

a confined fluid and an elastic object cause a deformation of the latter, which can evolve

towards nontrivial shapes. In certain cases, a complex dynamic behavior is observed, with

large oscillations of the object [129].

We finally mention the Turing patterns arising mostly in biological settings [130]. In reaction-

diffusion systems, nontrivial spatial patterns can emerge from random conditions, ranging

from simple shapes, such as squares or stripes, to more complex ones such as labyrinths [4].

This behavior is caused by the interplay between diffusion and reaction effects at the chemical

level, where the former is typically, and unexpectedly, responsible for the instability.

Naturally, one wonders what are the reasons for these nontrivial solution behaviors. The

general answer is both the coupling functions and the interaction mechanisms, although this

happens in several ways.

3



Chapter 1. Coupled systems

Firstly, through the functional form of the coupling term. Depending on its properties, includ-

ing symmetries and zeros, different phenomena can emerge. As a notable example, in the

case of phase dynamics equations [91], an odd function may induce synchronization, with

different patterns observed according to the number of harmonics included [79].

Secondly, through the connectivity. The components may interact in a global way, meaning

that there is no preferential coupling direction, and the coupling term is the same for all the

components. This is typically the case in neuronal oscillators and circadian clock models

[80]. Another option includes a local coupling, in which only a certain number of neighboring

components are connected to each other. Here, local attractors, intermittency and a chaotic

behavior can appear on top of more classical synchronized states [126]. Similarly, modular

or community structures can lead to incoherence, local synchrony, and global synchrony

[118]. In the partial differential equations framework, a particular type of local interaction

is the coupling through an interface. The exchange of information happens only through

the boundary of a given domain, which can act as both an input and an output source

for the system. This coupling type is quite common in practical applications, including

structural dynamics, multi-component mechanical systems and multi-physics problems. It

also arises when a global problem is decomposed into local subproblems defined on smaller

nonoverlapping subdomains.

Thirdly, and arguably the most relevant one for this work, through the values of the physical

parameters of the system. Depending on both the local parameter values and the coupling

strengths, which govern component-dependent physical phenomena and the intensity of the

interactions, respectively, different physical phenomena can be observed. Emergent behaviors

often appear after a suitable coupling threshold is reached, after which new equilibrium states

appear or the stability patterns change. In this sense, emergent behavior can be related to

bifurcating phenomena.

1.2 Model reduction of coupled systems

Given the intrinsic complexity of coupled systems, determining the existence of emergent

behavior at an analytical level can be prohibitive, and a numerical approach should be pre-

ferred. At this numerical level, in order to well approximate the solution of a system of interest,

a high level of accuracy is essential. This can typically be addressed by simulating large-scale

networks of ordinary differential equations or performing a spatial discretization of partial

differential equations with a large number of degrees of freedom. Additionally, in the context

of parametrized systems, several practical problems require repeated simulations of the same

differential model, albeit with different parameter values. This is the case when one wishes to

predict and discover emergent behaviors, as they often appear for certain parameter values

only. Other typical examples include optimization, control, design and uncertainty quantifica-

tion. Consequently, as the associated computational cost scales proportionally to the size of

the system and the number parameter instances, running multi-query simulations becomes
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critical. Although the increase in computing power of modern computers can mitigate this

burden, the real-time results often required in practical applications cannot be obtained,

especially if the system has a high level complexity.

A possible solution aims at designing a surrogate model of a given system, which can be

simulated in place of its original counterpart. This approximation should satisfy two main

desiderata:

• Accuracy. The surrogate should provide an approximation which is sufficiently close to

the true model output, ideally with a control on the error.

• Speedup. Simulations of the approximated model need to be significantly faster than the

original one, in order to run multi-query simulations within a reasonable computational

time.

This is the main goal of (data-driven) model order reduction techniques, which aim to control

the trade-off between these two points. Recently, there has been an explosion in the number

of such techniques, which can be broadly divided into intrusive and non-intrusive methods.

The former aim to approximate the differential problem by projecting the original model onto

a lower-dimensional space which retains the main features of the solution and the dynamics.

The latter use only input-output pairs combined with interpolation or regression methods

to accurately approximate the system response. The joining link is the use of the original,

expensive model to construct the surrogate, which can then be queried for a much larger set

of parameter values with a high level of accuracy and a controlled computational cost.

Coupled systems clearly fall into the framework of large-scale parametrized models. Being

networks of multiple interacting components, the computational cost can quickly become

intractable. This is particularly true when the number of components is large, the physical

nature of the problem is complex, or the discretization algorithm has a high computational

complexity. Moreover, parameters can play a significant role, as they are often responsible

for the emergence of a particular pattern. Motivated by the need to develop accurate and

computationally fast methods for parameterized coupled systems, the main goal of this work

is to design model reduction techniques specifically targeted to such models. These surrogates

can be used, for instance, to detect and discover emergent phenomena and to speedup

optimization problems. Three scenarios are considered.

• Firstly, we assume that the coupled problem is available, i.e., we have complete knowl-

edge of the mathematical model of the entire system. Additionally, we have full access to

the underlying implementation and the numerical software. The associated solver can

either consist of a single global solver (in the spirit of monolithic schemes) or be given

as a combination of local solvers (in the spirit of segregated/partitioned approaches),

depending on the specific application. Typically, the former is used for single-physics

problems while the latter is mostly targeted to multi-physics applications, but many
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Chapter 1. Coupled systems

exceptions can be found.

Arguably, most of the classical model reduction techniques are developed in this frame-

work, aiming to replace the original model with a surrogate obtained by projecting the

operators onto a lower-dimensional space. We borrow ideas from these methods to

construct the reduced models for our problems of interest, taking particular care of

ensuring the desired computational speedup. We show applications of this technique

to networks of limit-cycle oscillators using both the phase dynamics equations and a

model of circadian oscillators.

• However, in many cases one might not have access to the coupled problem when con-

structing the surrogate model. Indeed, one may only have access to local, independent,

component-wise models, without knowing how the components will be assembled in

future stages. On a similar line, even if one has access to the coupled system, its repeated

simulations required to generate the reduced model may not be computationally feasi-

ble. This is particularly true in the case of highly nonlinear models, high-dimensional

parameter spaces or large-scale systems, as the resulting complexity can be extremely

large.

Thus, our goal is to build local, component-wise reduced models that are robust with

respect to the possible ways to construct the coupled system. This is done by con-

sidering the components independently and introducing an artificial parametrization

of the interface boundary conditions. We show applications to a wide range of sce-

narios, including nonlinear oscillatory systems inspired by the Huygens’ experiment,

diffusion-reaction models, and fluid-structure interaction problems.

• Finally, inspired by multi-physics applications and partitioned approaches, we consider

the case in which the components are modeled with local solvers, that we assume to be

given as black boxes only. The reduced model can be constructed by relying on the cou-

pled problem, i.e., the combination of the local solvers, or by artificial parametrization,

when the coupled problem cannot be simulated.

As the implementation is hidden to the user, we can only rely on input-output pairs to

construct the surrogate. This is mainly done using interpolation methods, although re-

gression techniques are also employed. We again show the applicability of our method to

a variety of problems featuring nonlinear components or a high degree of heterogeneity.

1.3 Outline

The remainder of this thesis is mainly structured following the subdivision that we have just

presented, and it is summarized in Table 1.1. In Chapter 2 we provide a general introduction

to the model reduction techniques that are used in this work. Then, in Chapter 3 we focus on

model reduction of (globally coupled) oscillatory systems, in which the full coupled model is

available. Chapter 4 and Chapter 5 present two classes of spatially localized model reduction

techniques, targeted to the Huygens’ problem and general partial differential equations cou-

pled through interfaces, respectively. Finally, in Chapter 6 we discuss a non-intrusive approach
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1.3. Outline

Coupled model available
Coupled model unavailable

(only local, independent models
available)

Intrusive
Chapter 3 Chapter 4 and Chapter 5

model reduction
Non-intrusive

model reduction
Chapter 6

Table 1.1 – Outline of this thesis.

based on the boundary response maps and its application to coupled heterogeneous systems.

Some concluding remarks and future perspectives can be found in Chapter 7.
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2 An introduction to reduced order
modeling

This chapter introduces the main model order reduction techniques that we employ in this

work. The first part is devoted to intrusive methods, and specifically the reduced basis method.

The second part contains instead a discussion on data-driven non-intrusive techniques. The

focus is on the features of these methods and on the notation, while concrete applications

will be discussed in the dedicated chapters. Moreover, we focus on time-dependent problems,

although the discussion holds similarly for the static case.

Consider a parametrized dynamical system of the form d
d t x(t ,µ) = f(t ,x,µ), t ∈ [0,T ],

x(0,µ) = x0(µ),
(2.1)

where x ∈ RN is the state vector, µ ∈ P ⊂ RP is a vector containing the physical parameters,

and f ∈RN is the function characterizing the system dynamics. Such systems typically arise in

mathematical models of time-varying phenomena, where the solution rate-of-change in time

is a function of the system variables. In the case of partial differential equations (PDEs), (2.1)

can be viewed as the spatially semi-discretized model obtained from classical discretization

methods, such as finite differences or finite elements.

2.1 The reduced basis method

This section summarizes the reduced basis method and its variants in a concise and practical

way. More details can be found in, e.g., [103, 70].
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Chapter 2. An introduction to reduced order modeling

2.1.1 Formulation

We define the solution manifold M as the set of solutions of (2.1) under variation of the

parameters in P and time, i.e.,

M = {
x(t ,µ)|µ ∈P , t ∈ [0,T ]

}⊂RN . (2.2)

The reduced basis method relies on the assumption that M is low dimensional and can be

well approximated by the span of an appropriately chosen basis {ui }k
i=1 of cardinality k. This

notion of reducibility is rigorously encoded by the Kolmogorov k-width, which quantifies

the worst-case error arising from the projection onto the best-possible linear subspace of

dimension k. If it decays rapidly with k, only a few basis functions will suffice to get a high

level of accuracy, and the reduced basis methods will exhibit its full potential. Given such a

basis, we approximate the solution as

x(t ,µ) ≈ x̂(t ,µ) =Uα(t ,µ) =
k∑

i=1
αi (t ,µ)ui , (2.3)

where α ∈Rk denotes the vector of the latent coordinates {αi }k
i=1, and

U = [u1, . . . ,uk ] ∈RN×k

is a matrix that contains the basis vectors as columns. The value of k will identify the dimension

of the reduced model, consistent with (2.3). Now, we need to specify how to compute the

basis and the coefficients in (2.3), whose choice is at the core of the different model reduction

techniques.

2.1.2 Galerkin approximation

To construct an evolution equation for α, we replace x in (2.1) with its approximation x̂ to

obtain

U
d

d t
α(t ,µ) = f(t ,Uα(t ,µ),µ)+ r, (2.4)

where r denotes the residual due to the approximation (2.3). As the system (2.4) is overde-

termined, its dynamics can be closed by a Petrov-Galerkin projection. Considering a basis

W ∈Rn×k such that the matrix W T U is invertible, the reduced equation is found by imposing

the residual vector to be orthogonal to W . This yields

d

d t
α(t ,µ) = (W T U )−1W T f(t ,Uα,µ). (2.5)
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2.1. The reduced basis method

Unless stated otherwise, in this work we restrict to the Galerkin framework, where an orthogo-

nal basis U is considered, and W is equal to U . Thus, (2.5) becomes d
d tα(t ,µ) =U T f(t ,Uα,µ), t ∈ [0,T ],

α(0,µ) =α0(µ) =U T x0.
(2.6)

By far, the Galerkin projection is the most popular choice in the reduced basis community,

and works well in a very large number of cases, including the ones presented in this work. A

Petrov-Galerkin strategy is typically used when the standard Galerkin projection fails, e.g., in

terms of loss of stability or accuracy.

2.1.3 Basis construction

To construct the basis {ui }k
i=1 different approaches can be considered, among which one of the

most widely used is the Proper Orthogonal Decomposition (POD). Assuming that the solution

x of (2.1) is available at appropriately chosen times {ti }
p
i=1 and parameter instances

{
µ j

}q
j=1,

we define the snapshot matrix as the matrix having such solutions as columns, i.e.,

S = [
x(t1,µ1), . . . ,x(tp ,µ1), . . . ,x(t1,µq ), . . . ,x(tp ,µq )

] ∈RN×pq . (2.7)

The POD basis U minimizes the projection error of the snapshots onto the reduced space, i.e.,

it is the solution to the optimization problem

argmin
V ∈RN×k

∥∥S −V V T S
∥∥

F ,

subject to V T V = Ik ,
(2.8)

where ‖·‖F is the Frobenius norm and Ik is the identity matrix of dimension k. The Eckart-

Young theorem states that the solution of (2.8) is given by the first k left singular vectors of S.

In particular, if

S =USΣSV T
S , with ΣS = diag(σi ) ∈RN×pq

is the Singular Value Decomposition (SVD) of S, then

U =US(:,1 : k) = argmin
V ∈RN×k

∥∥S −V V T S
∥∥

F ,

∥∥S −UU T S
∥∥2

F =
min(N ,pq)∑

i=k+1
σ2

i ,

U T U = Ik .

(2.9)

A practical problem arising in many applications is the choice of k, whose value represents a

compromise between accuracy and computational efficiency. A simple criterion, inspired by
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Chapter 2. An introduction to reduced order modeling

(2.9), relies on the relative energy retained by the first k modes, defined as

E(k) =
∑k

i=1σ
2
i∑min(N ,pq)

i=1 σ2
i

. (2.10)

Here, one selects the reduced dimension as the smallest value of k satisfying E(k) ≥ 1−εPOD ,

where εPOD is a user-defined tolerance.

Several alternatives exist to construct the reduced basis. A valid one is based on a greedy

algorithm, with the goal of iteratively adding basis functions by selecting the regions in which

the reconstruction error or an appropriate estimator is maximal [16, 14]. Combinations of

POD and greedy strategies are also used [68, 67].

2.1.4 Computational efficiency

The presented description is formally sufficient to construct the reduced model, but particular

care should be given to achieving the desired speedup. Naive simulations of (2.6) require the

reconstruction of the solution Uα, the evaluation of the function f, and the projection onto the

low-dimensional space U T f(Uα). The resulting computational cost is larger than its full order

counterpart, destroying all the benefits of the dimensionality reduction. The solution to this

problem relies on a splitting into a computationally expensive offline phase, to be done once

and for all, and a cheap online evaluation, which gives the desired speedup under parameter

variations.

The basis computation can be done in the former, independently of (2.6). Thus, we can

focus on the efficient time integration of the reduced system with a given U . Assume that the

function f can be decomposed in its linear and nonlinear parts as

f(t ,x,µ) = flin(t ,x,µ)+ fnonlin(t ,x,µ) =
Q∑

q=1
Θq (t ,µ)Lq x+ fnonlin(t ,x,µ), (2.11)

where Lq are parameter-independent, constant-in-time, linear operators,Θq (t ,µ) are suitable

functions of the parameters and time, and fnonlin is a general nonlinear term. Using (2.11), the

right-hand-side of (2.6) reads

U T f(t ,Uα,µ) =
Q∑

q=1
Θq (t ,µ)U T LqUα+U T fnonlin(t ,Uα,µ). (2.12)

The operators U T LqU ∈ Rk×k can be precomputed in the offline phase, and the online

evaluation of the reduced linear part becomes independent of the full dimension N . This

concludes the discussion related to the linear term, as the desired speedup is obtained, at least

when the problem is reducible (k ¿ N ). Conversely, the evaluation of the nonlinear part does

not allow this splitting, and the reduced model suffers again from a high computational cost.
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2.1. The reduced basis method

To overcome this, several methods have been developed [10, 5, 123, 50, 141, 107], usually

referred to as hyper-reduction techniques. Unless stated otherwise, in this work we rely on the

Discrete Empirical Interpolation Method (DEIM) [26], whose main idea is to evaluate only a

selected number of components of the nonlinearity. We seek to approximate the nonlinear

function as a linear combination of suitable basis vectors {vi }k̃
i=1 as

fnonlin(t ,Uα,µ) ≈ f̂(t ,Uα,µ) =V c(t ,Uα,µ), (2.13)

where the vector c ∈ Rk̃ contains the coordinates of the approximation in the basis V =[
v1, . . . ,vk̃

] ∈ RN×k̃ . To compute it, we select k̃ rows from the overdetermined system (2.13)

and solve the resulting square linear system. Specifically, consider the matrix

P = [
ep1 , . . . ,epk̃

]
,

where
{

p1, . . . , pk̃

}
are k̃ indices selected from {1, . . . , N } and epi is the pi -th column of IN .

Assuming that the matrix P T V is invertible, the vector c is found by solving the linear system

P T fnonlin(t ,Uα,µ) = (P T V )c(t ,Uα,µ).

The basis V can be constructed by solving a problem similar to (2.8), replacing the solution

snapshots with the evaluation of the nonlinear function fnonlin for each sample included

in S. The indices
{

pi
}k̃

i=1 correspond to the components of the largest magnitude of an

appropriately defined residual vector, as proposed in [26] and summarized in Algorithm 2.1.

After replacing fnonlin with f̂ in (2.12), we obtain

Algorithm 2.1 DEIM selection procedure

Input: Projection basis V = [
v1, . . . ,vk̃

] ∈Rn×k̃ of the nonlinear snapshots
Output: DEIM indices p , DEIM matrix P

Select p1 as the index corresponding to the largest absolute component of v1.
W = [v1], P = [

ep1

]
, p = [

p1
]
.

for i = 2, . . . , k̃ do
Solve (P T W )c = P T vi for c .
Define the residual as r = vi −W c .
Select ρi as the index corresponding to the largest absolute component of r.

Update W ← [W vi ], P ← [
P epi

]
, p ← [

pT pi
]T

.
end for

U T f(t ,Uα,µ) =
Q∑

q=1
Θq (t ,µ)U T LqUα+U T V (P T V )−1P T fnonlin(t ,Uα,µ). (2.14)

Computing (2.14) requires evaluating the nonlinear term only in the rows identified by P .

If fnonlin depends sparsely on x, the evaluation of P T fnonlin requires the reconstruction of a

number O (k̃) of components, in contrast to the N required by (2.12). Although the sparsity

assumption typically holds for standard finite difference or finite element discretization of
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PDEs, for globally coupled problems or spectral methods, its validity is at stake. However, if

the coupling function belongs to a specific class, one could still achieve the desired splitting.

We refer to Chapter 3 for a detailed discussion on this subject. As the operator U T V (P T V )−1 ∈
Rk×k̃ can be precomputed during the offline phase, the online computational cost becomes

independent of N once again.

Combining (2.6) and (2.14), the POD-DEIM approximation of (2.1) reads d
d tα(t ,µ) =∑Q

q=1Θq (t ,µ)U T LqUα+U T V (P T V )−1P T fnonlin(t ,Uα,µ), t ∈ [0,T ],

α(0,µ) =α0(µ) =U T x0.
(2.15)

Generalizations of (2.11) and (2.15) can be easily derived in the presence of vector-valued

differential equations. The easiest option consists in constructing a basis for each unknown

independently, leading to a block-diagonal matrix U . This choice avoids missing relevant

features of the dynamics when the variables have different magnitudes and enhances the

interpretability of both the reduced model and the latent coordinates. However, there is

nothing specific about that, and a construction based on the entire set of unknowns can also

be used. In this setting, the use of weighted inner products can be helpful from a numerical

perspective, especially when the variables are characterized by different scales. Although

in this work we mostly rely on the first strategy, specific choices are discussed in the related

chapters.

In the following, we refer to (2.1) as the Full Order Model (FOM), while (2.6) and (2.15) consti-

tute the Reduced Order Models (ROMs). For a practical implementation of the POD-DEIM

reduced basis method we refer to Algorithm 2.2 and Algorithm 2.3.

2.1.5 Beyond reduced basis

Although the POD-Galerkin reduction, possibly equipped with the DEIM, works well for a large

number of differential problems, we briefly mention some of its issues. Firstly, possible stability

issues should be appropriately addressed. In the context of saddle-point problems, this can

be done by enriching the reduced space with suitably designed functions [8], see Chapter 5

for a concrete application. More general alternatives rely on Petrov-Galerkin projections

[21], closure modeling [131] or structure-preserving model reduction methods [1]. Secondly,

the efficiency of reduced basis method and its variants are at stake if the Kolmogorov width

has a slow decay rate, as it is the case with advection-dominated problems [94]. Even if the

manifold (2.2) is low dimensional, the linear nature of the decomposition (2.3) introduces

a strong restriction on the reduced order approximation. Alternative methods seek to relax

this assumption in a variety of ways, including nonlinear manifolds [84] and local-in-time

methods [69].
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Algorithm 2.2 POD-DEIM: offline phase

Input: Full Order Model
Output: Reduced Order Model

Select parameters µ j and time instants ti .
Compute the solution x(ti ,µ j ) of (2.1) and assemble the matrix S as in (2.7).
Compute the nonlinear terms fnonlin(ti ,x(ti ,µ j ),µ j ) and assemble the matrix S̃.
Compute [US ,ΣS ,VS] = SVD(S) and [US̃ ,ΣS̃ ,VS̃] = SVD(S̃).
Find k,k̃ using, e.g., (2.10), and set U =US(:,1 : k) and V =US̃(:,1 : k̃).
Compute the matrix P using Algorithm 2.1 with input V .
Compute the reduced linear operators U T LqU and the operator U T V (P T V )−1.

Algorithm 2.3 POD-DEIM: online phase

Input: Reduced Order Model
Output: Reduced solution

Select parameters µ j and time instants ti , possibly different from the ones used in Algorithm
2.2.
Solve (2.15) using

∑Q
q=1Θq (t ,µ j )U T LqU and P T fnonlin(t ,Uα(t ,µ j ),µ j ) computed effi-

ciently as in [26].
Reconstruct the solution x̂(ti ,µ j ) =Uα(ti ,µ j ) for visualization and postprocessing.

2.2 Non-intrusive surrogate modeling

The reduced basis method, as well as its nonlinear variants, can be successfully applied in a

variety of problems and usually give a good compromise between accuracy and computational

cost. However, their nature requires the access to the discretization operators, from which

one can construct their reduced counterparts. This might not always be possible, especially

when proprietary software is used, as the solvers are available as black boxes only. Thus, an

alternative class of methods aims to construct non-intrusive, data-driven surrogates. From

this point of view, this reduces to a function approximation problem, which can be formulated

as follows:

Given an unknown and/or computationally expensive function f :Rn →Rm and a collection of

N input-output pairs {
xi , yi = f (xi )

}N
i=1 , (2.16)

find an approximation f̂ :Rn →Rm of f such that

f̂ (x) ≈ f (x) (2.17)

for all x ∈Rn .

In the context of parametrized dynamical systems of the form (2.1), one could think of f (·)
as the parameter-to-solution map, which associates to a given instance of the parameters

(t ,µ) the corresponding solution x(t ,µ) of the problem. However, (2.17) is a more general
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problem, which goes beyond model order reduction. In the following, we describe two possible

approaches to solve it.

2.2.1 Kernel interpolation methods

The first technique is based on kernel interpolation methods [6]. Assuming a scalar output

(m = 1) for simplicity, we seek the surrogate function of the form

f̂ (x) =
N∑
j=1

α j K (x, x j ), (2.18)

where K (x, x ′) is the so-called kernel function. The coefficientsα j can be obtained by imposing

the interpolation property

f̂ (xi ) =
N∑
j=1

α j K (xi , x j ) = f (xi ) (2.19)

for each training point i = 1, . . . ,N and solving the resulting linear system

Kα= F, with [K]i j = K (xi , x j ), [α]i =αi , [F]i = f (xi ). (2.20)

The choice of the kernel is crucial for the theoretical guarantees and numerical efficiency of

the method. In this work, we restrict to the class of Matérn kernels [106]

K (x, x ′) = K (r ) = 1

Γ(ν)2ν−1

(p
2ν

l
r

)ν
Kν

(p
2ν

l
r

)
, where r = ∥∥x ′−x

∥∥
`2

, (2.21)

which ensures, among other properties, the well-posedness of (2.19). Here, Kν(·) is a modified

Bessel function and ν, l are two hyperparameters controlling the smoothness and the length

scale of the kernel, respectively. A practical implementation is reported in Algorithm 2.4

and Algorithm 2.5, which focus on the construction of the interpolator and its evaluation

in concrete applications. The main points in favor of kernel interpolation are its strong

Algorithm 2.4 Kernel interpolation: offline phase

Input: Training set
{

xi , yi = f (xi )
}N

i=1, kernel K .
Output: Interpolation coefficients α j , training points XN = {xi }Ni=1.

Compute the kernel matrix [K]i j = K (xi , x j ).
Compute the interpolation coefficients α j by solving the linear system (2.20).

theoretical foundations, including error estimates, optimality and uniqueness statements,

which enables us to analyze the approximation properties of the kernel-based surrogate

models [66]. However, its computational complexity scales linearly (resp. superlinearly) with

the number of training points in the online (resp. offline) phase, which can quickly become

unpractical. Moreover, numerical instabilities arise from the ill-conditioning of the system

(2.20).
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2.2. Non-intrusive surrogate modeling

Algorithm 2.5 Kernel surrogate: online phase

Input: Effective training points {xi }Ni=1 selected in the offline phase, interpolation coefficients

α j , test points
{

x test
i

}Ntest

i=1
, kernel K .

Output: Evaluation of the surrogate f̂ (x test ).
Compute the kernel matrix [K]i j = K (x test

i , x j ).

Evaluate the surrogate (2.18), i.e., f̂ (x test ) = Kα.

To mitigate this effect and to enforce sparsity in the model, different methods have proven

to be effective [25, 110]. Here, we rely on greedy methods, whose idea is to select a subset of

(2.16) and solve the corresponding interpolation problem there. This selection procedure can

be efficiently done using greedy strategies, with the goal of iteratively choosing the points that

maximize a suitable error estimator or selection rule η [113, 135]. Once the new dataset is

constructed, a new interpolation problem (2.19) has to be solved. These steps are summarized

in Algorithm 2.6. Although not explicitly reported here, a more efficient training phase can be

carried out by reusing the interpolant at the previous iteration and an appropriate change of

basis [114]. The online evaluation of the surrogate model is the same as Algorithm 2.5, the

only difference being that the effective training points will be the ones selected in the offline

phase, which are typically a subset of the available data. These methods are known as Vectorial

Kernel Orthogonal Greedy Algorithms (VKOGA).

The choice of the selection criterion has been shown to affect the efficiency of the method, and

different strategies can be considered. For a set of N points XN , we define the power function

as

PN (x) = PXN (x) = ∥∥K (·, x)−ΠV (XN )(K (·, x))
∥∥

HK (D), (2.22)

where V (XN ) = span{k(·, xi ), xi ∈ XN }, D is the domain of f and HK (D) is the Reproducing

Kernel Hilbert Space associated to the kernel K , and the residual as

rN (x) = f (x)−ΠV (XN )( f )(x) = f (x)−
N∑

j=1
α j K (x, x j ).

Then, one can consider:

• The P-greedy selection: ηP (x) = PN (x). This aims at minimizing the power function,

thereby providing a uniform upper bound on the error for any function.

• The f -greedy selection: η f (x) = |rN (x)|. This aims at minimizing the residual, making

use of the data at hand to select the points.

• The f /P-greedy selection: η f /P (x) = |rN (x)|/PN (x).

• The f ·P-greedy selection: η f ·P (x) = |rN (x)| ·PN (x).

Unless stated otherwise, in this work we use the P-greedy strategy, as it is found to be a good
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Chapter 2. An introduction to reduced order modeling

compromise between accuracy and stability for our problems of interest. More details on each

strategy and the mathematical foundations of (2.22), as well as a more general discussion on

VKOGA, can be found in [114, 135]. Additionally, it can be shown [135] that VKOGA methods

share the theoretical and numerical advantages of more classical interpolation methods, and

additionally improve their stability and sparsity properties. However, the computational

complexity can still be prohibitive. Even if greedy strategies are used, this class of methods

is subject to the curse of dimensionality. The number of points needed to achieve a given

interpolation error grows exponentially with the input dimension n, making kernel methods

potentially intractable for high input dimensions [6].

Finally, we mention that an alternative formulation of kernel methods is based on a minimiza-

tion problem, from which one can naturally introduce an additional regularization term. We

refer to [66, 114] for further details on this subject.

Algorithm 2.6 Kernel greedy interpolation: offline phase

Input: Training set (XN ,YN ) =
({

xi , yi
}N

i=1

)
, kernel K , selection rule η, tolerance τ.

Output: Interpolation coefficients α j , effective training points XN = {xi }N
i=1.

Initialize N ← 0, X0 ←;.
repeat

N ← N +1.
Select xN = argmaxx∈XN \XN−1

η (x, N , XN ,YN ).
Update XN = XN−1 ∪ {xN }.
Compute the coefficients α j with dataset (XN ,YN ) using, e.g., Algorithm 2.4.

until η (xN , N , XN ,YN ) ≤ τ

2.2.2 Artificial Neural Networks

The curse of dimensionality motivates our second choice of function approximation methods,

Artificial Neural Networks (ANNs). We consider a simple multi-layer perceptron, a particular

type of deep network in which the single neurons are organized in a sequence of layers [63, 45].

The first and the last ones are named input and output layers, respectively, whereas the internal

ones are called hidden layers. The depth of the network is denoted by L, corresponding to a

total of L+1 layers whose sizes are denoted by k0 = n, kL = m and
{
k l

}L−1
l=1 in the case of the

input, output, and hidden layers, respectively. The resulting surrogate can be written as

f̂ (x) =σL ◦GL ◦σL−1 ◦GL−1 ◦ · · · ◦σ1 ◦G1(x),

where

Gl (z) =Wl z +bl

is the affine transformation of level l ∈ {1, . . . ,L}, while Wl ∈Rkl×kl−1 and bl ∈Rkl are the weights

and biases at the same level l . The functions σl (·) are called activation functions and they

play a key role in the performance of the method. Typically, one chooses σ1 = ·· · =σL−1 =σ,
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2.2. Non-intrusive surrogate modeling

whereasσL , also known as output function, can be chosen differently according to the problem

of interest, and we choose it to be the identity map. The network parameters θ = {(Wl ,bl )}l

can be learned by minimizing an appropriate loss function, which in our case takes the form

loss(θ) = 1

N

N∑
i=1

∥∥ f (xi )− f̂ (xi )
∥∥2
`2
+λ

L∑
l=1

‖Wl‖2
F , (2.23)

where λ≥ 0 is a small enough regularization parameter. The minimization problem can be

solved using variants of the gradient descent method, in which the derivatives can be effi-

ciently computed thanks to the backpropagation algorithm. This procedure is summarized in

Algorithm 2.7 and Algorithm 2.8, whereas more details can be found in, e.g., [63]. The proper-

ties of ANNs, compared to classical interpolation algorithms, are somehow complementary.

The main advantage is their compositional structure, which makes them very attractive in high

dimensions, as they are shown to alleviate the curse of dimensionality in a number of cases

[71]. However, theoretical guarantees can only be proven in specific cases, where simplifying

assumptions are made either on the architecture of the network, the class of functions that

one seeks to approximate, or the considered activation functions [90, 53]. Additionally, such

results are often not constructive or can hardly be retrieved in practice.

Algorithm 2.7 Artificial Neural Networks: offline phase

Input: Training set
{

xi , yi = f (xi )
}N

i=1, network architecture (depth L, . . . ), convergence crite-
rion c.

Output: Optimized network parameters θ = {(Wl ,bl )}l .
Split the training set into the actual training set T and validation set V .
Randomly initialize (Wl ,bl ), n ← 0.
repeat

n ← n +1.
Update weights and biases using, e.g., an iteration of gradient descent on the loss(θ)

(2.23) using T .
until c(V ,n) is satisfied

Algorithm 2.8 Artificial Neural Networks: online phase

Input: Test points
{

x test
i

}Ntest

i=1
, network architecture (depth L, . . . ), optimized network param-

eters θ = {(Wl ,bl )}l .
Output: Evaluation of the surrogate f̂ (x test ).

f̂ (x test ) ← x test .
repeat

f̂ (x test ) ←Wl f̂ (x test )+bl .
f̂ (x test ) ←σl

(
f̂ (x test )

)
.

until l == L
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Chapter 2. An introduction to reduced order modeling

2.2.3 Data preprocessing

Both the presented techniques can be directly applied to (2.17), provided that a set (2.16) is

available. However, it is good practice to preprocess the data in order to facilitate the training

phase.

In many cases the input and the output dimensions n and m can be very large, and potentially

infinite. Constructing an accurate surrogate model of f can be challenging, even if ANNs

are used [11, 13]. Dimensionality reduction techniques allow us to map the data to lower-

dimensional spaces while retaining their main features, so that the approximation problem

(2.17) can be formulated at this reduced level. We denote such reduced dimensions with N

and M , respectively. Sticking to linear methods, we seek two (orthogonal) projection operators

Πn :Rn →Rn andΠm :Rm →Rm such that

f (x) ≈Πm f (Πn x).

This reduces to finding two orthogonal matrices Ux and Uy such that the projection error of

the input (resp. output) training data onto the span of Ux (resp. Uy ), is minimized in a suitable

sense. Choosing the Frobenius norm, the optimal choice is given by the SVD, similar to (2.8)

and (2.9). Gathering the input data into a matrix X ∈Rn×N , whose SVD is given by

X =UXΣX V T
X , (2.24)

then the optimal matrix is Ux =UX (:,1 : N ). Arguing similarly for the output data, we have

f (x) ≈Πm f (Πn x) =UyU T
y f (UxU T

x x), (2.25)

so that the function approximation problem reduces to finding an approximation f̂ :RN →
RM of U T

y ◦ f ◦Ux given the projected training data. Here, the symbol ◦ denotes function

composition.

Moreover, the training samples (xi , yi ) or their projected counterparts (U T
x xi ,U T

y yi ) may have

components characterized by different magnitudes. This is enhanced if the projected data are

used, as modal coefficients often have a hierarchical structure, in which the last coefficients

typically have a low magnitude. In practice, these different input or output scales can result in

a slow or unstable learning, ultimately causing the entire process to fail. Therefore, it is good

practice to add a scaling step in which the data are appropriately normalized. Considering

for simplicity the unprojected samples, the idea is to recast the training problem using scaled

data and do the inverse transformation to retrieve the original scales. We then have

f (x) = y_inv_scale(y_scale( f (x_inv_scale(x_scale(x; X )); X );Y );Y ),

and the approximation problem becomes to find an approximation f̂ :Rn →Rm of y_scale◦
f ◦x_inv_scale given the scaled training data. Selecting a good scaling method is problem-

dependent, and we leave the details of our choice to Chapter 6.
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3 Globally coupled oscillatory systems

In this chapter1 we construct reduced models for networks of coupled oscillators, taken as

prototypes of large-scale systems exhibiting synchronization phenomena. Interactions among

a large number of simple components can cause an adjustment of the local rhythms, that we

wish to explore at the reduced level. As discussed in Chapter 1, we assume that the coupled

problem is available, also in terms of numerical implementation. Moreover, the full order

solver is given in a monolithic form, which treats the entire system as a whole. We focus on

intrusive projection-based methods, taking particular care of the efficient treatment of the

coupling term.

The first system of interest is the Kuramoto model [82], which is a typical model in the context

of synchronization. It naturally arises when modeling chemical and biological oscillators [15,

101], synchronization of metronomes [97] or Josephson junctions [35]. It describes the phase

dynamics of a network of limit-cycle oscillators through component-specific parameters, the

natural frequencies, and a coupling term which depends on the phase differences among

the oscillators. In the context of the Kuramoto model, diverse model reduction techniques

have already been proposed. Watanabe and Strogatz [133] derived an exact two-dimensional

reduced model for identical oscillators by applying a nonlinear transformation to the phases.

Ott and Antonsen [95] constructed a two-dimensional model for the thermodynamic limit

of the Kuramoto model with a Lorentz distribution of the natural frequencies, by making

an ansatz on the oscillator density. A different viewpoint is offered by Gottwald [64], who

proposed a collective coordinate approach, relying on a basis that depends on the natural

frequencies. Although all these techniques are effective, they rely on model-specific assump-

tions and/or analytical tools, which prevent their generalization to more complex coupled

problems. Effectively, these are model-driven, problem-dependent techniques, in contrast to

our main goal of constructing data-driven reduced models.

The second system we analyze is a model of biological oscillators [80, 62, 12] used to study

the circadian rhythm. It aims at modeling synchronization and entrainment of neuronal

1Large parts of this chapter are based on our research work [44]. Section 3.4 is extracted from the MSc thesis of
A. van Lamsweerde [83], that this author co-supervised.
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Chapter 3. Globally coupled oscillatory systems

cells subject to mutual interactions and a common external forcing, representing the day-

night cycle. To the best of our knowledge, no previous attempt has been done to construct a

surrogate for similar models.

The remainder of this chapter is structured as follows. In Section 3.1 we present both the phase

dynamics equations, particularly the Kuramoto model, and the circadian clock model, together

with the quantities of interest that are used to analyze synchronization. The application of

the reduced basis method to the models of interest is described in Section 3.2. Section 3.3

presents diverse numerical results, including a study of the computational performance of the

proposed models. An extension to this work conducts a parameter sensitivity analysis, which

is discussed in Section 3.4. A few concluding remarks are found in Section 3.5.

3.1 Globally coupled oscillatory systems

In this section we present the two classes of systems that are studied in this chapter.

3.1.1 Phase dynamics

Consider a network of N limit-cycle oscillators with weak mutual interactions. Using phase

reduction theory, its dynamics can be analyzed by means of the phase variables
{
φi (t )

}N
i=1,

leading to the well-known phase dynamics equations [91]. In the absence of coupling, each

phase is independent of the others, and it grows linearly at a rate ωi , the natural frequency of

each oscillator. Introducing the mutual interactions, the following model, based on a system

of N ordinary differential equations, has been proposed [102, 91]

dφi (t )

d t
=ωi + K

N

N∑
j=1

H(φ j (t )−φi (t )), (3.1)

where H(·) is a 2π-periodic function that depends only on the phase difference φ j (t )−φi (t )

between oscillators j and i . The coefficient K ≥ 0 is the coupling strength, and is assumed to

be equal for all oscillators. We remark that coupling term in (3.1) is global, meaning that all N

oscillators interact, independently of their mutual distance. A simple choice for H yields the

so-called Kuramoto model [82]

dφi (t )

d t
=ωi + K

N

N∑
j=1

sin
(
φ j (t )−φi (t )

)
. (3.2)

In the spirit of the original model, we assume the natural frequencies to be independent and

randomly distributed according to a unimodal andΩ-symmetric distribution g (ω), for a fixed

value Ω ∈ R. We recall that, although (3.1) and (3.2) are rather general models, they can be

modified to take into account local interactions only [47], high-order harmonics of H(·) [85,

79, 139], or more general distributions of the natural frequencies [146].
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3.1. Globally coupled oscillatory systems

Denoting the imaginary unit with ı and introducing the complex order parameter

Z (t ) = R(t )e ıΨ(t ) = 1

N

N∑
j=1

e ıφ j (t ), (3.3)

the level of synchronization can be measured by its absolute value, usually referred to as the

order parameter or the coherence parameter

R(t ) = |Z (t )| =
∣∣∣∣∣ 1

N

N∑
j=1

e ıφ j (t )

∣∣∣∣∣ ∈ [0,1]. (3.4)

In the case of incoherent dynamics, the phase variables are scattered in the interval [0,2π],

and their average (3.3) is characterized by low absolute values, leading to an order parameter

close to zero. Vice versa, in the case of coherent dynamics, the order parameter approaches

one, as all phases have a limited variability. In practice, one is interested in the asymptotic

synchronization properties of the system after the transient phase. Thus, (3.4) can be estimated

only for temporal instants t greater than a sufficiently large time T0 [64]. A good approximation

of this asymptotic value is found by simply evaluating (3.4) at the final simulation time T > T0,

i.e.,

R = R(t = T ). (3.5)

We refer to (3.5) as the asymptotic order parameter. As a function of the coupling strength, (3.5)

undergoes a supercritical bifurcation [124]. In the limit of an infinite number of oscillators,

there exists a critical coupling strength Kc = 2
πg (Ω) such that

• If K < Kc , then R =O (1/
p

N ) ' 0. This denotes incoherent dynamics.

• If K &Kc and g (ω) is sufficiently smooth, then

R '
√

16

πK 3
c

√
K −KC

−Kc g ′′(Ω)
∝

√
K −Kc .

• If K À Kc , then R ' 1. This denotes complete synchronization.

This confirms the intuition that a sufficiently large coupling strength induces synchronization,

and additionally shows that the transition follows a square-root scaling law.

By construction, (3.2) can be viewed as a description of the dynamics in polar coordinates

with a unitary value of the radial coordinate. Introducing the change of variables

xi (t ) = cosφi (t ), yi (t ) = sinφi (t ), (3.6)
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Chapter 3. Globally coupled oscillatory systems

the Kuramoto model can also be written as

d xi (t )

d t
=−yi (t )

(
ωi + K

N

N∑
j=1

(y j (t )xi (t )−x j (t )yi (t ))

)
,

d yi (t )

d t
= xi (t )

(
ωi + K

N

N∑
j=1

(y j (t )xi (t )−x j (t )yi (t ))

)
.

(3.7)

This change of variables does not prevent us from analyzing the synchronization properties

as above. The complex order parameter (3.3) can be computed by introducing the inverse

transformation of (3.6)

φi (t ) = atan

(
yi (t )

xi (t )

)
,

to reconstruct the phases. Alternatively, one could compute Z (t) by applying the change

of coordinates (3.6) in its definition (3.3). As the differences between the two approaches

are limited, we adopt the first strategy, which additionally ensures that R(t ) does not exceed

one. The set of coordinates (3.6) has additional advantages in the framework of model order

reduction, as discussed in Section 3.2.

3.1.2 Circadian oscillators

Practically, we might not have access to the coupling function H(·) in the phase dynamics

equation (3.1), or it can be difficult to estimate [122, 128]. Thus, oscillatory dynamical systems

are usually modeled with a more general set of coordinates, in the spirit of (3.7). The phase

variable is reconstructed from the oscillating signal at the limit cycle, after the transient period.

Here, we study a specific model for globally coupled circadian oscillators [80], comprising a

network of N neuronal oscillators. In each oscillator i ∈ {1, . . . , N }, the clock gene mRNA Xi (t )

produces a clock protein Yi (t) which activates a transcriptional inhibitor Zi (t), and this in

turn inhibits the transcription of the clock gene. The mRNA also excites the production of a

neurotransmitter Vi (t). The network dynamics is influenced by two additional factors. The

external light, modeled as a sinusoidal signal L(t ) = (L0/2)(1+ sin(ωt )), and the intercellular

coupling, which depends on the average cellular neurotransmitter

F (t ) = 1

N

N∑
i=1

Vi (t ).
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3.1. Globally coupled oscillatory systems

The resulting model becomes

τi
d Xi (t )

d t
= ν1

K 4
1

K 4
1 +Zi (t )4

−ν2
Xi (t )

K2 +Xi (t )
+νc

K F (t )

Kc +K F (t )
+ L0

2
(1+ sin(ωt )),

τi
dYi (t )

d t
= k3Xi (t )−ν4

Yi (t )

K4 +Yi (t )
,

τi
d Zi (t )

d t
= k5Yi (t )−ν6

Zi (t )

K6 +Zi (t )
,

τi
dVi (t )

d t
= k7Xi (t )−ν8

Vi (t )

K8 +Vi (t )
,

(3.8)

where ν1,ν2,ν4,ν6,ν8,K1,K2,K4,K6,K8,k3,k5, ,k7,νc ,Kc ,ω,K ,L0 are global network parame-

ters, while the τi ’s model the intrinsic heterogeneity among oscillators. The latter are assumed

to be independent and identically distributed according to a unitary-mean law g (τ).

Synchronization properties can be analyzed by means of four different indicators [80]. We

introduce the synchronization variable

Q(t ) = F (t )2

1
N

∑N
i=1 Vi (t )2

, (3.9)

and the parameter of synchrony

ρ =
√

〈Q(t )〉 ∈ [0,1], (3.10)

where 〈·〉 denotes the time average in the asymptotic state. Incoherent dynamics and complete

synchronization are characterized by a parameter ρ close to zero or one, respectively. Defining

the average gene concentration

X (t ) = 1

N

N∑
i=1

Xi (t ) (3.11)

allows us to introduce the spectral amplification factor

S = 4

L2
0

∣∣〈e−ıωt X (t )
〉∣∣2

(3.12)

and the average period T̄ as the period of the average variable X (t). We note that, given a

general sinusoidal signal, multiple techniques can be used to estimate its average period. In

this work, we adopt a simple approach, by defining the period as the mean length of the time

intervals between two consecutive maxima of the signal. This procedure is applied exclusively

for times larger than a fixed instant T∗, as the period can be defined only once the limit cycle is

reached. Finally, the phase φi of each oscillator can be estimated by recalling that it increases

by 2π in every period. Using the signal Xi (t ) for t > T∗, we first find its maximum points, i.e.,

the instants where the phase is a multiple of 2π. Then, the phase is defined in the remaining

instants by means of linear interpolation. As it is the case with the average period, alternative

techniques can be used to reconstruct the phase. We note that the choice of Xi as a driving
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signal is arbitrary, and one could use the time series of any of the system variables. Similar to

the Kuramoto model, we can define the order parameter

R(t ) =
∣∣∣∣∣ 1

N

N∑
j=1

e ıφ j (t )

∣∣∣∣∣ ∈ [0,1], (3.13)

which has an analogous interpretation. Its asymptotic value, i.e., its value at the final simula-

tion time, plays the role of the asymptotic order parameter (3.5). Depending on the parameter

values, all four quantities undergo substantial changes. In particular, it has been observed [80]

that

• If the intercellular coupling strength K increases, both the synchrony parameter (3.10)

and the average period T̄ increase.

• If L0 is sufficiently large, the system is forced to oscillate with a period 2π/ω, together

with full synchronization, measured by the order parameter (3.13).

3.2 Model reduction

We now describe how the reduced basis techniques presented in Chapter 2 can be applied to

the dynamical systems introduced in Section 3.1. To ease the notation, we omit the depen-

dence on the parameter vector µ, unless explicitly needed.

In a network of N oscillators, the evolution equation of each oscillator i ∈ {1, . . . , N } is mod-

eled by an m-dimensional system of first-order differential equations with state vector xi =
[x1

i , . . . , xm
i ]T ∈Rm . The uncoupled dynamics is governed by a function hi (xi ) ∈Rm . The global

model is constructed by stacking the local states as

x = [xT
1 , . . . ,xT

N ]T = [x1
1 , . . . , xm

1 , . . . , x1
N , . . . xm

N ]T ∈RN m . (3.14)

Assembling the functions hi (xi ) in a similar fashion yields the global uncoupled system. We

assume that the coupling terms contribute to the dynamics in an additive way, i.e., they do not

directly modify the terms hi (xi ), but they simply add a component resulting from nonlocal

contributions. We also assume that their effect is identical for all oscillators, i.e., the form

of the coupling term does not change within the network. Thus, without loss of generality,

interactions can be modeled by means of a function H = H (x) ∈ Rm , resulting in a global

system described by a function

f = f(x) =


h1(x1)+H (x)

...

hN (xN )+H (x)

 ∈RN m .

Specific forms of the coupling function will be provided in the following.
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3.2. Model reduction

As already mentioned in Chapter 2, the most natural way to reduce systems of differential

equations consists in treating each coordinate j = 1, . . . ,m separately. In our framework,

this is related to the similar structure of the mathematical models of each oscillator and the

interest in easily capturing the different features of the dynamics induced by each variable.

Other options can be considered, and would be necessary in the case of more heterogeneous

models, in which each oscillator is modeled with a different number of variables. Sticking to

the first strategy, we construct a separate basis for each coordinate j = 1, . . . ,m, and project

each variable independently of the others. Gathering the components of the state vector

(3.14) associated to the j -th variable in the vector x j = [x j
1 , . . . , x j

N ]T ∈ RN and collecting the

corresponding snapshots, we construct m separate matrices

S j =
[

x j (t1,µ1), . . . ,x j (tp ,µ1), . . . ,x j (t1,µq ), . . . ,x j (tp ,µq )
]
∈RN×pq .

Computing their singular value decomposition and selecting the first k left singular vectors,

we obtain m approximations

x j ≈ x̂ j =U jα j ,

where U j ∈RN×k is the orthogonal basis associated to variable j andα j ∈Rk is the correspond-

ing vector of latent coordinates. Globally, we can write

x ≈ x̂ =Uα=P blkdiag(
{
U j

}m
j=1)[αT

1 , . . . ,αT
m]T , (3.15)

where U ∈ RN m×km = Rn×r and α ∈ Rkm = Rr . The matrix P is defined as the permutation

matrix such that

x =


x1
...

xN

=P


x1

...

xm

 .

Similarly, instead of applying the DEIM to the entire vector associated to the nonlinearity, we

again rely on a splitting of the coordinates. Specifically, we apply the DEIM using the basis

associated to a single variable. Thus, the selected indices identify k̃ ≤ N oscillators. Then, all

variables corresponding to the selected oscillators are considered. If pre-multiplied by the

matrix P T , the global DEIM matrix P has a block-diagonal structure, similar to (3.15).

Moreover, we numerically observed that good reduction properties are found by selecting

the same basis for the Galerkin projection and the DEIM, i.e, V = U and k̃ = k. Although

there is nothing specific about it and the original DEIM formulation can be used instead, we

noticed that the latter implies that very large values of k̃ have to be chosen to ensure accuracy,

with a consequent increase in the computational cost. We conjecture that our choice gives

stronger stability properties to the reduced model, especially around synchronized states,

possibly dictated by the orthogonality property U T V = Ik in the model (2.15). The stability is

also enhanced by recalling that the models depend on random parameters, and the solution

is more stable under variations in such parameters compared to its time derivative. From

an accuracy perspective, our choice is naturally suboptimal, but is still able to achieve low
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projection errors, at least on the training set. This could be explained by the oscillatory nature

of the systems, at least in the circadian clock model, for which the dynamics of the solution

and its time derivative are similar. Therefore, this should be intended as a problem-dependent

observation that leads to an efficient reduction of the models studied in this chapter, but it

may not generalize well if more general problems are considered.

To ensure computational efficiency, the evaluation of the reduced model (2.15) should depend

on the total number of oscillators N weakly. For general globally coupled systems this is not

possible. The evaluation of H (x) requires the reconstruction of the state x for all N oscillators,

resulting in a total cost proportional to N at each time step. A sufficient condition to overcome

this bottleneck assumes a mean-field coupling. If H depends on x through an average over

the N oscillators of each variable j = 1, . . . ,m, the dependency on N can be shifted to the

offline phase. Specifically,

H (x) =H

(
1

N

N∑
i=1

x1
i , . . . ,

1

N

N∑
i=1

xm
i

)

≈H

(
1

N

N∑
i=1

k∑
j=1

(U1)i j (α1) j , . . . ,
1

N

N∑
i=1

k∑
j=1

(Um)i j (αm) j

)
=H (M1 ·α1, . . . , Mm ·αm),

(3.16)

where

(M j )l =
1

N

N∑
i=1

(U j )i l , j = 1, . . . ,m, l = 1, . . . ,k (3.17)

can be computed in the offline phase. The online evaluation requires at most m inner products

of vectors of size k, independently of N .

For small values of m, the reduced system can be written explicitly. This helps us to show that

both the modified Kuramoto model (3.7) and the circadian oscillators model (3.8) fall in the

framework of mean-field coupling. In the original coordinate system, the Kuramoto model

(3.2) has local dynamics governed by m = 1 variables, and its reduced counterpart becomes

dα

d t
= (P T U )−1P T

(
ω+K

(
1

N

N∑
j=1

sin(Uα) j

)
cos(Uα)−K

(
1

N

N∑
j=1

cos(Uα) j

)
sin(Uα)

)

= (P T U )−1

(
P Tω+K

(
1

N

N∑
j=1

sin(Uα) j

)
P T cos(Uα)−K

(
1

N

N∑
j=1

cos(Uα) j

)
P T sin(Uα)

)
,

(3.18)

where we assume that both the sine and cosine functions are evaluated componentwise. The

global coupling term has a nonlinear dependence on the reduced variable. It does not fit in

the framework of (3.16), and evaluating (3.18) has a cost that depends on N . Using the change

of coordinates proposed in (3.6), we recover the modified Kuramoto model (3.7). The local
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3.2. Model reduction

dynamics depends on m = 2 variables, and the reduced model can be written as

dα1

d t
= (P̃ T U1)−1P̃ T

[
−(U2α2)¯

(
ω+K

(
1

N

N∑
j=1

(U2α2) j

)
U1α1 −K

(
1

N

N∑
j=1

(U1α1) j

)
U2α2

)]
= (P̃ T U1)−1P̃ T [−(U2α2)¯ (ω+K (M2 ·α2)U1α1 −K (M1 ·α1)U2α2)]

= (P̃ T U1)−1 [−(P̃ T U2α2)¯ (
P̃ Tω+K (M2 ·α2)P̃ T U1α1 −K (M1 ·α1)P̃ T U2α2

)]
,

dα2

d t
= (P̃ T U2)−1P̃ T

[
(U1α1)¯

(
ω+K

(
1

N

N∑
j=1

(U2α2) j

)
U1α1 −K

(
1

N

N∑
j=1

(U1α1) j

)
U2α2

)]
= (P̃ T U2)−1P̃ T [(U1α1)¯ (ω+K (M2 ·α2)U1α1 −K (M1 ·α1)U2α2)]

= (P̃ T U2)−1 [
(P̃ T U1α1)¯ (

P̃ Tω+K (M2 ·α2)P̃ T U1α1 −K (M1 ·α1)P̃ T U2α2
)]

,

(3.19)

where P̃ contains k indices selected by applying the DEIM algorithm using either U1 or U2

and the symbol ¯ denotes the element-wise product. As it clearly fits into the mean-field

coupling framework, in (3.19) we already applied definition (3.17). The circadian clock model

(3.8) has a similar structure. As the expression of its reduced counterpart is a bit cumbersome,

we do not report it. We simply note that each oscillator is described by m = 4 variables, and

the intercellular coupling term reads

H (x) = [H1,H2,H3,H4]T = [H1,0,0,0]T ,

with

H1(x) = νc
K F

Kc +K F
= νc

K 1
N

∑N
i=1 Vi

Kc +K 1
N

∑N
i=1 Vi

= νc
K 1

N

∑N
i=1(U4α4)i

Kc +K 1
N

∑N
i=1(U4α4)i

= νc
K (M4 ·α4)

Kc +K (M4 ·α4)
,

where we use the definition of M4 as in (3.17).

The final step aims at selecting the parameters of interest. A reasonable assumption is a

complete knowledge of the uncoupled model, so that all the deterministic parameters of the

independent oscillators can be considered as fixed. This would correspond to isolating the

constitutive components and determining their parameters, which could possibly be done

at an experimental level. Additionally, this has the advantage of keeping the total number of

physical parameters controlled. Note that this applies only to the circadian clock model, as the

natural frequencies in the phase dynamics equation are not deterministic, and it is consistent

with similar numerical experiments [80]. Thus, the variable parameters are

• The coupling strengths. In the phase dynamics equation, they are encoded by the

parameter K . In the circadian clock model, they are encoded in both the intercellular

coupling strength K and the maximal external light L0.

• The random parameters governing the intrinsic heterogeneity of the oscillators. These
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Chapter 3. Globally coupled oscillatory systems

are the natural frequencies of the phase dynamics equations ωi and the period hetero-

geneity parameter τi in the circadian clock model. There is nothing unique about this,

and they can be considered fixed. However, allowing this flexibility makes the model

better suited for practical applications, as it is independent of the realization of the

random variables. Moreover, for large-scale systems, assuming a complete knowledge

of the natural frequency or the intrinsic heterogeneity of all oscillators seems unrealis-

tic. However, the independent nature of the parameters and their sampling makes the

reduced models moderately less efficient, as shown at a numerical level.

However, in more general problems, it might be of interest to assume variations in all the

physical parameters. A possible approach to tackle this case is discussed in Section 3.4.

3.3 Numerical results

In this section we present a number of numerical results, showing the strong reduction

properties of the systems of interest, the computational efficiency of the reduced models, and

an application to a simple control problem.

3.3.1 Phase dynamics

Unless stated otherwise, the numerical simulations of the phase dynamics equation have been

obtained with a 3rd-order explicit Runge-Kutta time integrator, with time step ∆t = 0.1 and a

final time T = 200. We assume that the phases of the oscillators are uniformly spaced in [0,π]

at the initial time. As the model is invariant under phase shifts [64], the natural frequencies

are pre-processed by subtracting their mean value.

We consider the Kuramoto model (3.2) with N = 100 oscillators and a uniform distribution

U ([a,b]) of the natural frequencies, with a = 0.97,b = 1.03. To show the reduction properties

of the system, we initially fix the instance of the random variables, considering a single

realization. Besides time, the only parameter of interest is the coupling strength K . We choose

Kmax = 0.15 and q = 15 values of K , uniformly spaced in the range [0,Kmax ]. As the critical

value is Kc = 2(b−a)/π≈ 0.04, the snapshot matrix includes both synchronized and incoherent

states. The singular values of the snapshot matrix are shown in Figure 3.1. Their exponential

decay is an indicator of the large degree of reduction of the system. The reduced model (3.18)

is simulated with k = 10.

The numerical solutions of the full and reduced order models with K = Kmax are shown in

Figures 3.2(a), 3.2(b) and 3.2(c) for 5 different oscillators. This confirms the high accuracy

of the approximated solutions, at least visually. As we aim to study the synchronization

properties of the system, we are interested in the evolution of the coherence parameter (3.4),

rather than the numerical solution. The order parameter is shown as a function of time in

Figure 3.2(d), demonstrating that the synchronization properties are captured by the reduced
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3.3. Numerical results

models. The asymptotic order parameter (3.5) for 10 uniformly spaced parameter values

is reported in Figure 3.2(e). Good agreement is found among all approaches. The reduced

models reproduce the trend obtained with the full model, which is in turn consistent with

the theoretical results outlined in Section 3.1. We remark that the 10 values of the coupling

strengths used in these simulations are not part of the ones selected to construct the snapshot

matrix. Thus, Figure 3.2(e) confirms that the reduced model generalizes well to new parameter

values.

0 20 40 60 80 100
10

-15

10
-10

10
-5

10
0

Figure 3.1 – Singular values for the Kuramoto model.
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Figure 3.2 – Numerical results for the Kuramoto model with fixed random parameters.
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The results show that using a reduced dimension k = 10, the quantity of interest is well

approximated by the reduced models, at least qualitatively. This argument can be strengthened

by considering a variable reduced dimension k. We study the approximation of the asymptotic

order parameter (Figures 3.3(a) and 3.3(b)) and the computational cost (Figure 3.3(e)) when

changing the latent dimension k, fixing the total number of oscillators N = 100 and the

coupling strength K = Kmax . The relative error in the order parameter decreases with the

increasing latent dimension, as expected. We observe that the accuracy is high even when

choosing k = 1, with an error of around 10−3. This shows that for large coupling strengths, the

dynamics is well approximated by a small number of basis functions, confirming the intuition

that the behavior near synchronization is low-dimensional. However, to accurately capture the

transition to synchronization and the asymptotic order parameter for small coupling strengths,

a larger number of basis functions is needed. This constitutes the main motivation behind

the choice of k = 10, as confirmed by Figures 3.3(c) and 3.3(d), which show the asymptotic

order parameter for 3 different values of K used in the test phase and the corresponding error

averaged over the entire test set. A very low reduced dimension struggles to accurately recover

the asymptotic order parameters, especially in the region characterized by an incoherent

dynamics. However, the increasing accuracy as a function of k is still observed, and the error

decay is similar to Figure 3.3(b). The computational cost of the POD model is larger than

the full model, as both the reconstruction and projection operations have to be added to the

evaluation of the N components of the nonlinear function. Considering the DEIM model, for

sufficiently small values of k we observe computational advantages, which are gradually lost

for larger latent dimensions. These results are combined in Figure 3.3(f), which shows the

error as a function of the computational cost. Using DEIM and a value of k = 10, we observe

a computational saving of approximately 35%, with an error of 10−6 in the asymptotic order

parameter.

Similarly, we analyze the approximation properties when the full dimension N is changed. All

other parameters are kept as in the previous simulations. The asymptotic order parameter and

its relative error for K = Kmax are shown in Figures 3.4(a) and 3.4(b), whereas the asymptotic

order parameter for 3 values of K and the corresponding relative error averaged over the

entire test set are shown in Figures 3.4(c) and 3.4(d). The computational cost is reported in

Figure 3.4(e). The reduced model does not significantly suffer from a variation in the size

of the full model, denoting a mild dependence of k with respect to N . For all models, the

computational cost increases with N , preventing the reduced model to reach its full potential

in terms of computational efficiency.

We recall that in all the simulations the reduced model is generated by selecting q = 15 samples

of the coupling strength and a time step ∆t = 0.1. The former has to be sufficiently large to

include both incoherent and synchronized states in the snapshot matrix, while the latter has

to be sufficiently small to ensure stability of the numerical scheme both at the full and the

reduced level. However, there is nothing specific about their values, and a sensitivity analysis

can be carried out. We assume that Kmax = 0.15 and T = 200 are kept fixed, as a change in their

value does not provide new insights into the dynamics. Figure 3.5(a) shows the singular values
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(f) Error vs computational cost.

Figure 3.3 – Numerical results for the Kuramoto model with fixed random parameters and
variable reduced dimension k.

of the snapshot matrix for different values of the time step. As the trend is independent of ∆t ,

we conclude that the time step has a very mild influence on the construction of the reduced

model. Indeed, ∆t is sufficiently small to accurately capture the system dynamics. On the
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(e) Computational cost.

Figure 3.4 – Numerical results for the Kuramoto model with fixed random parameters and
variable full dimension N .

other hand, the number of parameter values q has a larger influence on the performance of the

reduced model. For small values of q , the snapshots are not sufficient to completely capture

the dynamics of the system. The singular values exhibit a fast decay (Figure 3.5(b)) as the
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3.3. Numerical results

phases have limited variability, but the generalization to values of the coupling strength not

included in the snapshot matrix is relatively poor (Figure 3.5(c)). This is particularly evident

for small coupling strengths. Increasing q , a more complete representation of the dynamics is

ensured, leading to a smaller generalization error and a higher accuracy of the reduced model.
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Figure 3.5 – Sensitivity analysis for the Kuramoto model with fixed random parameters.

We consider now a variation of the natural frequencies of the system. The high dimensionality

of the random vector ω= [ω1, . . . ,ωN ]T prevents the generation of samples using stochastic

collocation methods. The only practical option is a Monte Carlo simulation, with NMC inde-

pendent instances of the random vector. For simplicity, we use the same value of NMC in both

the offline and the online phase. Let us initially choose NMC = 50, which leads to the results

shown in Figures 3.6(a) and 3.6(b) for k = 10. The exponential decay of the singular values

is lost. The first mode contains most of the energy, and a slow decay is observed for the first

NMC singular values. After a second jump, the decay is slow once again. This is due to the

large heterogeneity of the uncoupled model, which is barely reducible for large values of NMC .

A positive coupling strength mitigates this phenomenon, but it is not sufficient to recover an

optimal decay. Although a slow decay of the singular values indicates low reduction properties,

synchronized states are approximated with high accuracy. The growth of the asymptotic order

parameter, averaged over the Monte Carlo realizations, is retained, albeit with a relatively

large error for small coupling strengths. As shown in Figure 3.6(b), the amplitude of the 95%

confidence interval of the asymptotic order parameter is controlled. This suggests that using

NMC = 50 is sufficient to ensure convergence of the sampling error. Changing the number

of Monte Carlo samples to NMC = 200 leads to the results in Figures 3.6(c) and 3.6(d). The

amplitude of the confidence interval is reduced, but the trend of the order parameter is not

significantly altered. This confirms that the reconstruction error is due to the intrinsic vari-

ability of the systems, and not to sampling. We remark that a further increase in NMC leads to

even smaller confidence intervals, but the higher degree of heterogeneity of the system might

lead to poor reduction properties.

In the Kuramoto model, an important role is played by the distribution g (ω) of the natural
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Figure 3.6 – Numerical results for the Kuramoto model with Monte Carlo simulation. Singular
values and 95% confidence interval of the asymptotic order parameter vs coupling strength.

frequencies. Thus, we investigate how its choice affects the accuracy of the reduced models.

We begin our analysis by considering a uniform distribution with parameters a = 1−∆,b = 1+∆
for different values of ∆. The critical value is given by Kc = 2(b −a)/π= 4∆/π. To ensure that

both synchronized and incoherent states are captured, we select Kmax = 2.5(b − a) = 5∆,

while the other parameter values are kept as in the previous simulations. The results for

different values of N are reported in Figure 3.7. As expected, in the synchronization region

the evolution of the asymptotic order parameter is well retained at the reduced level for all

values of ∆ and N . In the incoherence region, the accuracy of the reduced models suffers

from an increase in the variability ∆. The snapshots exhibit a larger degree of heterogeneity,

which negatively affects the reduction potential of the model. However, the accuracy of the

reduced models benefits from an increase in the value of N . The quality of the reduced basis

increases, as the heterogeneity in the natural frequencies and snapshots remains controlled.

Similar conclusions can be drawn in the case of other finitely-supported distributions. On the

other hand, the reduced models appear to be moderately less effective in the case of infinitely-

supported densities. We simulate the Kuramoto model with a Lorentz distribution centered in

Ω= 1 for different values of the scaling γ. We select Kmax = 6πγ, while Kc = 2γ. The results for
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different values of N are reported in Figure 3.8. The trend of the asymptotic order parameter is

well captured, although the error is larger as compared to the uniform distribution. The larger

variability in the natural frequencies, enhanced by the presence of samples in the tails of the

distribution, leads to a higher degree of heterogeneity in the snapshots and a lower reduction

potential. In this case, to increase the accuracy of the reduced models, a larger value of the

reduced dimension k has to be chosen.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) N = 100.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) N = 1000.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) N = 4000.

Figure 3.7 – Asymptotic order parameter vs coupling strength for the Kuramoto model with a
uniform distribution with variable parameters.
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Figure 3.8 – Asymptotic order parameter vs coupling strength for the Kuramoto model with a
Lorentz distribution with variable parameters.

The main drawback of the reduced Kuramoto model (3.2) is its computational cost, as the

dependence of the coupling term on the full dimension N prevents large speedups. This can

be solved by simulating the Kuramoto model with the change of coordinates (3.6). We keep

most of the parameter values as in the original model. The maximum coupling strength is

Kmax = 0.15, the number of samples is q = 15, and the natural frequencies are drawn from

a uniform distribution with parameters a = 0.97,b = 1.03. The number of oscillators is still

N = 100, while the dimension of the system is n = 2N , and we choose a reduced dimension of

r = 2k = 20. We construct m = 2 bases U1 and U2 of dimension k = 10, and apply DEIM on the

matrix U1, selecting k = r /2 = 10 oscillators. This choice of r allows us to compare the results

obtained with the original coordinate system. With fixed natural frequencies, the singular

values exhibit once more a fast decay, as shown in Figure 3.9 for the set of variables xi in (3.7).
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Fixing the coupling strength to K = Kmax , Figures 3.10(a), 3.10(b) and 3.10(c) report the

trajectories of the variable xi of 5 different oscillators obtained with the full and the reduced

models, while Figure 3.10(d) shows the time evolution of the order parameter. The transient

behavior is well captured, and the synchronization properties are retained by the reduced

model. If K varies, the asymptotic value of the order parameter obtained with the full model

is well approximated for all values of the coupling strength, as shown in Figure 3.10(e) for 10

uniformly spaced values of K , different from the ones used in the offline phase. These results

are similar to those obtained using (3.2), although minor differences are present, especially

using DEIM.
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Figure 3.9 – Singular values for the modified Kuramoto model using the variables xi .

We now consider a variation of the latent dimension k with N = 100 oscillators. As we

are mostly interested in studying synchronization, we take the coupling strength equal to

K = Kmax , although the behavior for different values of K does not significantly change.

The asymptotic order parameter, its relative error and the computational cost are shown

in Figures 3.11(a), 3.11(b) and 3.11(c), respectively, as a function of the number of selected

oscillators k = r /2. Small latent dimensions lead to poor approximations of the order pa-

rameter, although for k & 10 the synchronization properties are well captured. This is in

partial contrast to Figure 3.3(a), where the synchronized states are retained even with an

extremely small latent dimension, but in agreement with Figure 3.3(c). The computational

cost of the reduced models increases with k, and DEIM loses its efficiency after k & 30. These

results are combined in Figure 3.11(d), which shows the error as a function of the required

computational cost. Although the approximation error is larger compared to Figure 3.3(f), it is

still controlled. In particular, using DEIM with a value of k = 10, we observe a computational

saving of approximately 30% with an error magnitude of 10−4.

The potential of the proposed change of coordinates is fully triggered when changing the

dimension of the full model n = 2N , while fixing r = 2k = 20, together with the other pa-

rameters. The asymptotic order parameter, its relative error and the computational cost are
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Figure 3.10 – Numerical results for the modified Kuramoto model with fixed random parame-
ters.

reported in Figures 3.12(a), 3.12(b) and 3.12(c), respectively, as a function of the total number

of oscillators N . The asymptotic order parameter is well approximated even for large values

of N . As expected, the computational costs of the full and the POD model increase with N ,

with the latter being slightly larger. Given the mean-field nature of the coupling term, the

cost of the DEIM model does not depend on N , guaranteeing a larger speedup as the number

of oscillators increases, while maintaining a reasonable accuracy. The mild dependence on

N = n/2 in Figure 3.12(c) is due to the reconstruction step at the end of the time integration,

which is done for the solution at all time steps. This can be avoided by only reconstructing it

at the final simulation time.

It is instructive to observe that, at the continuous level, (3.7) ensures a unitary amplitude for

all times, i.e.,

xi (t )2 + yi (t )2 = 1, i ∈ {1, . . . , N }, t ∈ [0,T ].

Although the adopted time integrator does not guarantee the exact preservation of this con-

straint at the discrete level, the amplitude error in the full model is controlled to the order

of the scheme. In turn, there is no guarantee that the same holds at the reduced level, as

the constraint is enforced neither in the model formulation nor in the construction of the

POD basis. Thus, the unitary amplitude is preserved up to the accuracy of the reduced model.

This implies that for a sufficiently large dimension k, the error in the amplitude is controlled,
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Figure 3.11 – Numerical results for the modified Kuramoto model with fixed random parame-
ters and variable reduced dimension k.

similarly to the full model. This is confirmed by computing

ErrA = max
t∈[0,T ]

max
i=1,...,N

∣∣∣∣√xi (t )2 + yi (t )2 −1

∣∣∣∣
for different values of k = r /2, as reported in Figure 3.13 for K = Kmax . Consistent with

Figure 3.9, the error of the reduced model decays exponentially with k, and it saturates at the

value of the full model. We note that for values of k ' 10, the error is less than 10%.

To conclude the analysis, we consider different instances of the natural frequencies of the

oscillators. We adopt a Monte Carlo sampling of the random parameters, choosing both NMC =
50 and NMC = 200 samples. The singular values decay slower (Figures 3.14(a) and 3.14(c)), but

the synchronization properties are not impacted (Figures 3.14(b) and 3.14(d)). After averaging

over the realizations, the order parameter reaches its asymptotic value in time, and the correct

trend is retrieved when varying the coupling strength. As in the standard Kuramoto model, the

error for small coupling strengths is due to the large degree of heterogeneity of the system.
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Figure 3.12 – Numerical results for the modified Kuramoto model with fixed random parame-
ters and variable full dimension N .
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Figure 3.13 – Amplitude error vs latent dimension.

3.3.2 Circadian oscillators

Numerical simulations of (3.8) with a general initial condition show a recurrent trend. The

solution initially exhibits a long transient phase, characterized by a large spike of the variable

Zi , while asymptotically a limit cycle is reached. Constructing a reduced model which is able

to accurately approximate the solution in both time ranges is rather challenging. However, a

large part of the transient phase can be avoided by selecting an initial state sufficiently close

to the limit cycle. As we assume a complete knowledge of the full, uncoupled model, we first

identify a state that belongs to the limit cycle of a single oscillator. This is done by simulating

the single-oscillator model for a sufficiently large time, and picking a state on the limit cycle.

We then assume that all oscillators start in this synchronized state, which is found to be close

to the limit cycle of the global model for all choices of the parameters.

The parameters determining the dynamics of each oscillator are fixed to ν1 = 0.7, ν2 = ν4 =
ν6 = 0.35, ν8 = 1, K1 = K2 = K4 = K6 = K8 = 1, k3 = k5 = 0.7, k7 = 0.35, similar to [80]. We also
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Figure 3.14 – Numerical results for the modified Kuramoto model with Monte Carlo simulation.
Singular values and 95% confidence interval of the asymptotic order parameter vs coupling
strength.

fix νc = 0.4, Kc = 1 and ω= 2π/24. The initial condition for the following experiments is

x0 = [0.0998,0.2468,2.0151,0.0339, . . . ,0.0998,0.2468,2.0151,0.0339]T ,

and we use a 3rd-order explicit Runge-Kutta time integrator, with time step ∆t = 0.5 and final

time T = 500. We consider N = 100 and a uniform distribution U ([a,b]) of the parameters τi ,

with a = 0.8,b = 1.2. First, we consider a single realization of the random variables, all of which

are fixed a priori. Thus, the only non-constant parameters are the two coupling strengths, with

a corresponding two-dimensional parameter space. Each variable is sampled uniformly in the

intervals [0,Kmax ] and [0,L0,max ], and the two-dimensional sampling points are obtained by a

tensor product of the one-dimensional counterparts. We choose Kmax = 0.6 and L0,max = 0.02,

and 5 (resp. 3) points in the first (resp. second) dimension, for a total of q = 15 different

parameter instances used for the construction of the snapshot matrix. The singular values are

shown in Figure 3.15 for the variables Vi . Although moderately slow, at least when compared

to Figure 3.1 and Figure 3.9, the decay is sufficient to obtain a good model reduction with
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r = 4k = 40. To construct the reduced model, we compute a separate basis for each of the

m = 4 variables, and the DEIM algorithm is applied to the basis U4, selecting k = 10 oscillators.

The full and the approximated solution variables Vi are shown, for 5 different oscillators, in

Figure 3.16. Here, the coupling strengths are fixed to K = Kmax ,L0 = L0,max . As expected, the
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Figure 3.15 – Singular values for the circadian oscillators model using the variables Vi .
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Figure 3.16 – Approximated solution (Vi ) of the circadian oscillators model for K = Kmax ,L0 =
L0,max .

reconstruction error is controlled. To study synchronization phenomena, we focus on the

evolution of the quantities of interest we introduced in Section 3.1. Only a subset of them are

time-dependent, and are reported in Figure 3.18. Specifically, Figure 3.17(a), Figure 3.17(b),

and Figure 3.17(c) show the synchrony variable (3.9), the average gene concentration (3.11),

and the order parameter (3.13), respectively, as time varies. In all cases, the errors between

the full and the reduced models are small. The remaining quantities of interest are shown

as the coupling strengths vary. We consider 10 different values of the intercellular coupling

K and 5 of the external source L0, uniformly spaced in the same intervals as in the offline

phase. We remark that the resulting parameter instances are different from the ones used

to construct the snapshots. We report the synchrony parameter (3.10) in Figures 3.18(a),

3.18(b) and 3.18(c), the spectral amplification factor (3.12) in Figures 3.18(d), 3.18(e) and

3.18(f), the average period in Figures 3.18(g), 3.18(h) and 3.18(i), and the asymptotic value of
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Figure 3.17 – Numerical results for the circadian oscillators model with fixed random parame-
ters as a function of time for K = Kmax ,L0 = L0,max .

the order parameter in Figures 3.18(j), 3.18(k) and 3.18(l). The quantities of interest are well

approximated by the reduced model, with higher accuracy for larger coupling strengths. The

synchrony parameter and the spectral amplification factor are well recovered at the reduced

level, as minor differences among all models are found. The transition to synchronization

measured by the order parameter is also well retained, with minor differences in the regions

with incoherent dynamics. The average period for large external sources is retained, while for

low intensities, the differences among the models are moderate.

As for the Kuramoto model, we study the reduction potential when the latent dimension is

varied. In the spirit of the modified Kuramoto model, we consider N = 100, K = Kmax and L0 =
L0,max . We report the asymptotic order parameter, its relative error and the computational

cost in Figures 3.19(a), 3.19(b) and 3.19(c), respectively, as a function of the number of selected

oscillators k = r /4. The approximation error reduces as k increases, and even with a small

reduced dimension this quantity of interest is approximated with high accuracy. As expected,

the computational cost increases with k. These results are combined in Figure 3.19(d), which

shows the error as a function of the required computational cost.

A similar analysis can be carried out when fixing the latent dimension r = 40, while varying the

dimension of the full model n. The results are reported in Figure 3.20 as a function of the num-

ber of oscillators N = n/4. The reduced model is able to approximate the quantity of interest

with a satisfactory accuracy even for large values of N . This indicates the mild dependence

of the reduced dimension on the full dimension. The advantages of the reduced model are

enhanced when analyzing the computational performance. Using the DEIM approximation,

the simulation cost does not depend strongly on N , ensuring a significant speedup. As for the

Kuramoto model, the mild dependence on N is due to the reconstruction step, and can be

avoided.

Our analysis is completed by constructing a reduced model based on multiple instances of

the random parameters. We consider a Monte Carlo sampling, using NMC = 50 instances of

the vector τ= [τ1, . . . ,τN ]T . The relevant quantities of interest are shown as a function of the

coupling strengths in Figure 3.21, after averaging over the realizations. Their most significant
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Figure 3.18 – Numerical results for the circadian oscillators model with fixed random pa-
rameters as a function of the coupling strengths. Contour plots of the quantities of interest.
Synchrony parameter: (a) FOM, (b) POD, (c) DEIM. Spectral amplification factor: (d) FOM, (e)
POD, (f) DEIM. Average period: (g) FOM, (h) POD, (i) DEIM. Asymptotic order parameter: (j)
FOM, (k) POD, (l) DEIM.

variations are captured by the reduced models, at least from a visual perspective. However,

compared to Figure 3.18 the errors are significantly larger. Although the synchrony parameter

and average period are slightly underestimated, particularly with small intercellular coupling

strenghts, their values have a similar order of magnitude as the full model. The order parameter

captures the transition to synchronization well, with larger differences for weak external
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Figure 3.19 – Numerical results for the circadian oscillators model with fixed random parame-
ters and variable reduced dimension k.

sources. As already observed in the Kuramoto model, the loss in the accuracy of the reduced

models is caused by the heterogeneity of the model, as the random variables are independently

sampled. One could indeed verify that convergence with respect to sampling is reached with a

satisfactory accuracy. Consistent with Figures 3.6(b) and 3.14(b), the discrepancies between

the full and the reduced model are enhanced for small coupling strengths.

3.3.3 A control problem

Finally, we solve a control problem based on the Kuramoto model. We seek to show that

the proposed technique finds application in more general problems, and is not limited to

recovering the synchronization patterns of the system of interest. Extensions to more complex

problems, e.g., topology inference, suppression of the oscillations, control problems with the

circadian clock model, go beyond the scope of this work. We define the optimization problem
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Figure 3.20 – Numerical results for the circadian oscillators model with fixed random parame-
ters and variable full dimension N .

as

min
K∈[0,Kmax ]

L (K ) =
√√√√ 1

N 2

N∑
i=1

N∑
j=1

(φ j (T ;K )−φi (T ;K ))2 +200K 2, (3.20)

where we stress the dependence of the phases φi on the optimization parameter K according

to the Kuramoto model (3.2). The loss (3.20) can be interpreted as a minimization of the

phase variability at time T , with a penalty term on the value of the coupling strength. We

optimize (3.20) using gradient descent with learning rate η= 10−4, where the derivatives are

estimated using first order forward finite differences with spacing ε = 10−3. We select the

number of gradient descent iteration as Niter = 50. The other hyperparameters related to

the Kuramoto model are kept as in Section 3.3.1. Figures 3.22(a), 3.22(b), 3.22(c) and 3.22(d)

show the results obtained with starting point K (0) = 0. The full and reduced models converge

to the same optimum. Consistent with Figure 3.2(e), the error obtained with the DEIM is

slightly larger as compared to the POD model, which in turn shows good agreement with the

full model. Similar to Figures 3.3(e) and 3.4(e), the DEIM ensures a computational saving of

approximately 30%. These conclusions are not altered if the starting point of the optimization

algorithm is changed. Specifically, Figures 3.22(e), 3.22(f), 3.22(g) and 3.22(h) show the results

starting from K (0) = Kmax . All models converge to the same optimum, with minor differences

between the full and the reduced models. The computational saving is again around 30%.

We recall that the global nature of the coupling term in the Kuramoto model prevents larger

computational savings. Indeed, the full potential of the reduced models is triggered by the

change of coordinates (3.6), consistent with Section 3.3.1. Thus, defining a control problem

based on the modified Kuramoto model would lead to larger speedups, as already observed in

Figure 3.12(c).

3.4 Extension: sensitivity analysis

To construct the reduced order model of the circadian clock system (3.8), we decided a-priori

that our parameters of interest were the coupling strengths. This choice was dictated by the fact
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Figure 3.21 – Numerical results for the circadian oscillators model with Monte Carlo simulation
as a function of the coupling strengths. Contour plots of the quantities of interest. Synchrony
parameter: (a) FOM, (b) POD, (c) DEIM. Spectral amplification factor: (d) FOM, (e) POD, (f)
DEIM. Average period: (g) FOM, (h) POD, (i) DEIM. Asymptotic order parameter: (j) FOM, (k)
POD, (l) DEIM.

that emergent phenomena are a consequence of the interactions, and a complete knowledge

of the local models can be assumed. However, one might be interested in studying a case in

which no a-priori assumption is made, and all parameters are allowed to vary. In principle, the

same procedure described in (3.2) could be repeated, provided that an appropriate sampling

technique of the parameters of (3.8) is available. However, the resulting reduced model
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Figure 3.22 – Numerical results for the control problem based on the Kuramoto model. Loss
landscape and optimization path ((a) K (0) = 0, (e) K (0) = Kmax ). Optimal parameter vs
number of iterations ((b) K (0) = 0, (f) K (0) = Kmax ). Loss function vs number of iterations ( (c)
K (0) = 0, (g) K (0) = Kmax ). Computational cost ((d) K (0) = 0, (h) K (0) = Kmax ).

would not be accurate, as capturing variations in the entire parameter space can become

challenging due to the high dimensionality of the parameter space. A wiser approach consists

in performing a sensitivity analysis on the parameters to understand which are the most

relevant ones for the dynamics of the problem and the synchronization patterns of the system.

The results would be used to rank the parameters according to their importance, and vary

only these in the training phase. We refer to [83] for more details on the subject.

We consider a variance-based sensitivity analysis based on first-order Sobol’ indices. Take a

parametrized model

Y =F (µ), (3.21)

where Y is the model output of interest, F (·) is a possibly unknown function, and µ =
(µ1, . . . ,µd ) is a vector of input parameters chosen in a d-dimensional hypercube. Denot-

ing with V[·] and E[·] the variance and the expectation operators, one can verify that

V(Y ) =∑
i

Vi +
∑

i

∑
j>i

Vi j + . . .+V1,2...,d , (3.22)

where

Vi =Vµi

[
Eµ∼i

[
Y |µi

]]
,

Vi j =Vµi j

[
Eµ∼i j

[
Y |µi ,µ j

]]−Vi −V j ,

and so on. Here, µ∼i denotes the set of all parameters except µi . The decomposition (3.22)

shows that the variance of the model output can be decomposed into terms attributable to

each input, as well as the interaction effects between them. This leads to the definition of the
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µi Baseline Interval
ν1 0.7 [0.6,0.8]
ν2 0.35 [0.3,0.4]
ν4 0.35 [0.3,0.4]
ν6 0.35 [0.3,0.4]
ν8 1 [0.85,1.15]
K1 1 [0.85,1.15]
K2 1 [0.85,1.15]
K4 1 [0.85,1.15]
K6 1 [0.85,1.15]
...

...
...

µi Baseline Interval
...

...
...

K8 1 [0.85,1.15]
k3 0.7 [0.6,0.8]
k5 0.7 [0.6,0.8]
k7 0.35 [0.3,0.4]
νc 0.4 [0.3,0.5]
Kc 1 [0.9,1.1]
K 0.5 [0.4,0.6]
L0 0.01 [0.005,0.02]
Ω= 2π/ω 24 [20,28]

Table 3.1 – Variation of the parameters of the circadian clock model.

first-order indices

Si = Vi

V(Y )
∈ [0,1], (3.24)

which quantify the effect ofµi averaged over the other input parameters, ignoring higher-order

interactions. Thus, the parameters with higher sensitivity index (3.24) can be classified as the

more relevant ones for the model (3.21), as they explain a larger part of the total variance.

The circadian clock system (3.8) fits into this framework. The model parameters are reported

in Table 3.1, whereas the model output of interest is the asymptotic order parameter (3.13).

The Sobol’ sensitivity analysis gives the results shown in Figure 3.23. Out of the 18 model

parameters, L0 andΩ are the most influential ones, with a large gap with the others. Recalling

(3.8), this implies that the order parameter is mostly influenced by the external coupling, both

through the strength and the frequency. This suggests that only the resulting two-dimensional

space should be sampled to construct the reduced model. Moreover, Figure 3.23(b) shows that

this discrepancy does not depend on the size of the problem, so that the sensitivity analysis can

be done with small network sizes at a controlled computational cost with good generalization

properties. The presence of small negative values in Figure 3.23 is caused by the estimation

procedure [112], but their values are found not to be statistically significantly different from

zero.

Constructing the corresponding reduced model, its accuracy is confirmed by Figure 3.24, at

least visually.

3.5 Conclusion

In this chapter we constructed reduced order models of globally coupled oscillatory systems

exhibiting synchronization. Although computational efficiency can be challenging to achieve

for globally coupled models, the assumption of a mean-field coupling ensures that the on-

line simulations of the reduced models have a computational cost independent of the full
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(a) N = 103. (b) Vs N .

Figure 3.23 – First-order Sobol’ indices of the circadian clock model.

(a) FOM. (b) POD. (c) DEIM.

Figure 3.24 – Numerical results (asymptotic order parameter) for the circadian oscillators
model with a sensitivity analysis. Contour plots of the quantity of interest.

dimension.

Numerical results are presented for two classes of prototype systems in the context of synchro-

nization. The Kuramoto model is studied both in the original formulation and using a suitable

change of coordinates. In both cases, the system possesses significant reduction properties.

Transition to synchronization is captured at the reduced level with sufficient accuracy, even for

a small number of basis functions. Although a moderate computational speedup is achieved

in most cases, the proposed change of coordinates leads to a reduced model whose cost is

independent of the dimension of the full model. This triggers the full potential of the reduced

model, at least after using DEIM. The circadian clock model shows a similar behavior. All

quantities of interest are well approximated, and computational efficiency is achieved even

in its original formulation. The chapter is concluded with a control problem based on the

Kuramoto model, showing the applicability of model reduction techniques in optimization

problems, and a sensitivity analysis for the circadian clock model, showing that the parameter

space is effectively two-dimensional.
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4 The Huygens’ problem

In this chapter we focus on synchronization phenomena arising from a coupled mechanical

system. The considered model is designed to recreate the Huygens’ experiment [72] discussed

in Chapter 1 by coupling pendulum clocks with a wooden structure. Similar to Chapter 3, the

main goal is to recover the synchronization patterns at the reduced level. Moreover, by going

beyond the original physical model and modifying the coupling functions, we also aim at

possibly discovering new patterns. As discussed in Chapter 1, we aim at constructing a reduced

model without simulating the coupled problem. This avoids solving a high-dimensional

nonlinear system for a large number of time steps and, possibly, different physical parameter

values. The main idea is to decouple the structure and the pendula, and construct a surrogate

for the former using either a model-based approach inspired by the underlying differential

model or an artificial parametrization of the load. Again, we restrict ourselves to intrusive

methods.

Before discussing the mathematical model and a number of model reduction methods that

could be considered, we point out that the unexpected behavior observed by Huygens led to

several follow-up works. At an experimental level, we mention the observations by W. Ellis

[49], who noticed a loss of synchronization if more than two pendula are considered. At

a theoretical level, several models have been constructed with the goal of both explaining

Huygens’ observations and suggesting other types of synchronization [41, 33, 77, 32]. These

studies have been followed by numerical simulations, in which the simplifying modeling

assumptions were relaxed [34, 100] and even more patterns have been discovered, including

amplitude death and intermittency.

Most of these models introduce problem-dependent parameters, whose variations lead to

different patterns. The willingness to discover them motivates the need of model order

reduction. In structural dynamics contexts, several techniques have been proposed in this

regard [52, 31, 51, 137, 30]. The main idea is to construct a local basis that captures both the

static and the dynamic behavior, often by splitting internal and interface degrees of freedom.

This can be done by, e.g., studying both the system response in the presence of unitary

boundary displacements and internal eigenvalue problems. Additionally, interface reduction
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methods [81] aim to further reduce the dimensionality at the component interfaces by using

basis functions related to a secondary interface eigenvalue analysis. These techniques rely on

a model-driven approach, as they use the model at hand or some simplifications to construct

the basis. Moreover, they are prone to theoretical studies and their numerical efficiency is well

established. We apply one of these techniques to our problem of interest.

However, the generalization of these methods to more complex problems, including the

models discussed in Chapter 5, can be challenging. This is particularly true when multi-physics

problems, possibly characterized by nonlinearities and a nontrivial parameter dependence,

are considered. Thus, we propose an alternative data-driven approach based on an artificial

parametrization of the boundary data. This shares some similarities with [75], but handles

problems in which the dynamical part plays a significant role. Another similar approach

is proposed in [140], although targeted to a different class of problems. A more complete

discussion on these methods, which are often targeted to coupled partial differential equations,

can be found in Chapter 5.

The remainder of this chapter is organized as follows. Section 4.1 introduces the mathematical

formulation of the full order model. Section 4.2 presents two model reduction techniques

for the structural part, which are numerically tested in Section 4.3. The cases of a parameter-

dependent structure and a generalized model are discussed in Section 4.4. A brief final

discussion is added in Section 4.5.

4.1 Mathematical model

The model described in this section is inspired by [100, 77]. We first consider two pendula,

and leave the extension to a larger number to the end of the section. Unless stated otherwise,

we use the International System of Units (SI) for all the physical variables.

4.1.1 Structure

The structure is sketched in Figure 4.1(a) and it is characterized by the physical parameters

reported in Table 4.1. The lengths l1 and l2 are related to the horizontal offsets of the vertical

beams and the location of the points where external loads can be placed, and their values are

set to

l1 = 0.0247, l2 = 0.8161,

respectively. The structure is modeled using the Euler-Bernoulli beam theory, so that the

governing equations of each beam read

ρA
∂2u

∂t 2 − ∂

∂ξ

(
E A

∂u

∂ξ

)
= pu(ξ), (4.1a)

ρA
∂2w

∂t 2 + ∂2

∂ξ2

(
E I

∂2w

∂ξ2

)
= pw (ξ), (4.1b)
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4.1. Mathematical model

(a) Structure. (b) Pendula. (c) Coupled model.

Figure 4.1 – The setup of the Huygens’ problem [100].

Property Horizontal beam Each vertical beam
Length lh = 2.4484 lv = 1
Width bh = 0.550 bv = 0.040
Thickness hh = 0.0762 hv = 0.030
Density ρh = 560 ρv = ρh

Young’s modulus Eh = 8.963 ·109 Ev = Eh

Table 4.1 – Physical parameters of the structure.

where ξ is the spatial coordinate along each beam, ρ is the density, A is the cross-sectional

area, E is the Young’s modulus, and I is the area moment of inertia, while u and w denote

the axial and transversal displacement of the beam, and pu , pw represent the external loads.

Equations (4.1a) and (4.1b) are discretized using Lagrange (linear) and Hermite (cubic) finite

elements, respectively, and we choose Nh = 99 and Nv = 100 beam elements for the horizontal

and each vertical beam. As the finite element formulation entails some intrinsic complexities,

we provide more details in Appendix 4.A. Here, we simply remark that our choice implies

that each node is associated with three degrees of freedom, modeling the axial displacement,

the transversal displacement, and the rotation ∂w/∂ξ. Moreover, we assume that the vertical

beams are fixed to the ground at the bottom, whereas at the two contact points between the

horizontal beam and the two vertical beams, the axial (reps. transversal) displacement of

the horizontal beam correspond to the transversal (resp. axial) displacement of the vertical

ones. Inspired by the original Huygens’ setup, no coupling between the rotational degrees of

freedom of the horizontal and vertical beams are imposed. Thus, we obtain a total number

of degrees of freedom equal to N = 3 · (100+2 ·101)−6−4 = 896. The corresponding finite

element model can be written as

Mq̈ +Bq̇ +Kq = f , (4.2)

where q ∈ RN contains the degrees of freedom, and M ∈ RN×N ,B ∈ RN×N , K ∈ RN×N are the

global mass, damping and stiffness matrices. The source term f ∈RN contains the external

loads. Unlike (4.1), the discretized model (4.2) already includes damping, whose specific

expression is discussed at the end of this section. Without loss of generality, we assume that

the degrees of freedom are ordered in such a way that the first 2 · 2 entries represent the

horizontal and vertical displacements of the nodes at which the pendula are attached, denoted
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by xi and yi , respectively, i.e.,

q = [
x1, y1, x2, y2, qT

I

]T
, (4.3)

where qI contains the remaining internal degrees of freedom. Similarly, f takes the form

f = [
fx1, fy1, fx2, fy2,0T ]T

, (4.4)

where fxi and fyi denote the horizontal and vertical forces exerted at the boundary point i .

A modal analysis is performed in order to determine the undamped eigenfrequencies and

corresponding eigenmodes. This is achieved by solving the eigenvalue problem[
K−ω2

i M
]
ϕi = 0, i = 1, . . . , N , (4.5)

where ωi = 2π fi is the i -th undamped angular eigenfrequency and fi is the correspond-

ing frequency. The angular frequencies and the modes can be gathered in the matrices

Ω= diag(ω1, . . . ,ωN ) and Φ= [ϕ1, . . . ,ϕN ], respectively, where an increasing ordering of the

frequencies is assumed. The normalization is set according toΦT MΦ= I, so thatΦT KΦ=Ω2.

Assuming proportional damping, the damping matrix B in (4.2) is computed according to

B = 2Φ−T ZΩΦ−1,

where Z = diag(ζ1, . . . ,ζN ), with ζi being the damping coefficient for eigenmode i . Here, we

choose ζi = ζ= 0.05.

4.1.2 Pendula

Following Figure 4.1(b), each pendulum i is modeled by a point mass of mass mi attached at

the lower end of a massless rigid bar of length Li . The damping in each pendulum is assumed

to be viscous, linear, and concentrated in the revolute joint which couples the pendulum to

the coupling structure. The rotational damping coefficient is denoted by di . The dynamical

behavior of each pendulum, if it would be coupled to the fixed world, is therefore described by

θ̈i =− g

Li
sinθi − di

mi L2
i

θ̇i + ui

mi L2
i

,

where g = 9.81 is the gravitational acceleration and θi is the rotation angle of pendulum i . The

function ui = ui (θi , θ̇i ) models the so-called escapement mechanism. In spirit, this represents

an additional source of energy provided to the pendula in order to compensate for the loss

of energy due to friction and maintain its oscillatory nature. Its design can pose challenges

from a modeling and a numerical perspective [108], and can highly affect the dynamics of the

system [41]. Inspired by [77], we model it using a simple Van der Pol-like term that admits a

limit cycle,

ui (θi , θ̇i ) = ei (γ2
i −θ2

i )θ̇i , (4.6)
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where ei measures the strength of the escapement and γi is the critical angle, at which the

escapement switches from boosting to damping. Although (4.6) does not model well the

impulsive nature of the escapement, on average it gives a good approximation when the

pendula are close to their limit cycles [97]. We consider ei = 2.1043 and γi = 0.122 for both

pendula.

4.1.3 The Huygens’ model

The coupled structure-pendula model can be derived using balance equations for the forces

and moments. The pendula are attached to the structure using revolute joints located at l1+ l2

from the endpoints of the horizontal beam as in Figure 4.1. The horizontal motion is described

by

mi
d 2

d t 2 (xi +Li sinθi ) = Hi , (4.7)

where Hi is the horizontal force exerted by the structure to the upper side of the pendulum

and xi is defined in (4.3) and Figure 4.1(b). Similarly, the vertical motion is described by

mi
d 2

d t 2

(
yi −Li cosθi

)+mi g =Vi , (4.8)

where Vi is the vertical force exerted by the structure to the upper side of the pendulum and yi

is defined in (4.3) and Figure 4.1(b). Equilibrium of moments with respect to the out-of-plane

axis going through point mass mi results in

0 =−Hi Li cosθi −Vi Li sinθi −di θ̇i +ui , (4.9)

By combining (4.7), (4.8) and (4.9), we obtain

mi L2
i θ̈i =−mi Li ẍi cosθi −mi ÿi Li sinθi −mi g Li sinθi −di θ̇i +ui .

Therefore, the dynamical model of the system depicted in Figure 4.1 is obtained by equating

the forces exerted by the structure to the pendula (Hi ,Vi ) and the load exerted by the pendula

to the structure (− fxi ,− fyi ) appearing in the vector f in (4.2). It reads

Mq̈ +Bq̇ +Kq = f , (4.10a)

mi L2
i θ̈i =−mi Li ẍi cosθi −mi ÿi Li sinθi −mi Li sinθi −di θ̇i +ui ,

where f = [−H1,−V1,−H2,−V2,0T
]T

and (Hi ,Vi ) are defined in (4.7) and (4.8). Considering

the explicit expressions of (Hi ,Vi ) and rearranging the terms, we obtain

MC (q̄) ¨̄q+BC ˙̄q+KC q̄ = FC (q̄), (4.11)
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where we introduced the global unknown vector

q̄ = [
qT ,θ1,θ2

]T
. (4.12)

The specific expression of the terms in (4.11) are

MC =

M 0 0

0 m1L2
1 0

0 0 m2L2
2

+Mc ,

where

Mc =



m1 0 0 0 0T m1L1 cosθ1 0

0 m1 0 0 0T m1L1 sinθ1 0

0 0 m2 0 0T 0 m2L2 cosθ2

0 0 0 m2 0T 0 m2L2 sinθ2

0 0 0 0 00T 0 0

m1L1 cosθ1 m1L1 sinθ1 0 0 0T 0 0

0 0 m2L2 cosθ2 m2L2 sinθ2 0T 0 0


for the mass matrix,

BC =

B 0 0

0 d1 0

0 0 d2


for the damping matrix,

KC =

K 0 0

0 0 0

0 0 0


for the stiffness matrix, and

FC =



m1L1 sinθ1θ̇
2
1

−m1L1 cosθ1θ̇
2
1 −m1g

m2L2 sinθ2θ̇
2
2

−m2L2 cosθ2θ̇
2
2 −m2g

0

−m1L1g sinθ1

−m2L2g sinθ2


+



0

0

0

0

0

u1

u2


for the nonlinear source term.

58



4.2. Localized model reduction

4.1.4 More pendula

This setup can be easily extended to construct a physical model with Np > 2 pendula. In spirit,

the physical description remains unchanged, while the vector of unknowns (4.12) becomes

q̄ = [
x1, y1, . . . , xNp , yNp , qT

I ,θ1, . . . ,θNp

]T
.

The length l1 remains unchanged, while the pendula are equally spaced with a relative distance

of l2 = lh−2·l1
Np+1 . If l2 does not correspond to a discretization node, the closest one is picked.

4.2 Localized model reduction

Although the problem has a component-wise structure, only the structural part requires a

dimensionality reduction, as the each pendulum is modeled with a scalar ordinary differential

equation. As a prototype test case for localized reduced models, we compare different tech-

niques that construct the surrogate using the decoupled problem (4.2) instead of its coupled

counterpart (4.10a). We stick to the case Np = 2, with straightforward generalization if this

number is increased.

4.2.1 Component Mode Synthesis

The first method, inspired by [100, 31, 52], is a component mode synthesis (CMS) technique

based on free-interface eigenmodes and residual flexibility modes. Recalling (4.3), the state

vector is partitioned as

q =
[

qB

qI

]
,

where qB = [x1, y1, x2, y2]T ∈RnB contains the boundary dofs and qI ∈Rnl contains the internal

dofs. Clearly, we have nB = 4 and nI = 892.

Firstly, a reduction from the N original physical dofs to nB +nK generalized dofs is performed

by

q = T1p1,

where

p1 =
[

pB

pK

]
and

T1 =
[
φB φK

]
=

[
φBB φBK

φI B φI K

]
.

Here, the matrix φK = φ(:,1 : nK ) ∈ RN×nK contains the smallest nk elastic eigenmodes of

the undamped problem (4.5), which capture frequencies up to ωnK . The matrix φB ∈Rn×nB

contains residual flexibility modes, which provide a static correction for the neglected higher
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frequency eigenmodes. These are defined as

φB = [
K−1 −φKΩ

−2
K Kφ

T
K

][
IBB

OI B

]
,

whereΩK K =Ω(1 : nK ,1 : nK ).

Secondly, for the sake of easy coupling between the structure and the pendula, the generalized

dofs p1 are replaced by the dofs p according to

p1 = T2p,

where

p =
[

qB

pK

]
and

T2 =
[
φ−1

BB −φ−1
BBφBK

0K B IK K

]
.

Finally, the projection matrix is obtained by

T = T1T2 =
[

IBB 0BK

φI Bφ
−1
BB −φI Bφ

−1
BBφBK +φI K

]
(4.13)

and the reduced equations of motion for the structure become

TT MT︸ ︷︷ ︸
Mr

p̈ +TT BT︸ ︷︷ ︸
Br

ṗ +TT KT︸ ︷︷ ︸
Kr

p = TT f︸︷︷︸
fr

. (4.14)

Unless stated otherwise, we keep only the first five eigenmodes, i.e., nk = 5. For the considered

parameter values, the reduced model will be accurate up to approximately ωc = 2π ·90, which

is clearly above the average pendulum frequency over the considered configurations, as it

lies at around 2π. The reduced model (4.14) of the structure will therefore have nB +nK = 9

dimensions.

4.2.2 Proper Orthogonal Decomposition

The second technique is based on a reduced basis, data-driven approach. Looking at the

coupled model, (4.10a) has formally the same structure as its decoupled counterpart (4.2),

the only difference being the dependence of the forcing term on the pendula. The idea is to

consider (4.2) and artificially parametrize the load in order to collect snapshots of the solution

of the structure, and compute the basis using the Proper Orthogonal Decomposition.

Thus, we consider

Mq̈ +Bq̇ +Kq = f (4.15)
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4.3. Numerical results

for a number of instances of the load term. Similar to (4.4), only the first four components

of the load can take nonzero values. As we expect an oscillatory solution, the load terms are

chosen as

fi = fi (t ) =
N f∑
j=1

α j ,i sin
(
ω j t

)
, i = 1, . . . ,nB ,

where ω j are suitably defined angular frequencies, that are chosen a priori in an interval

[ωmin,ωmax]. The coefficients α j ,i model the strength of each sinusoidal coupling, whereas

N f is the number of selected frequencies. Taking S samples of the parameters α j ,i gives the

instances of the loads f in (4.15).

Applying the POD to the obtained snapshots as discussed in Chapter 2 gives the reduced basis

T and the Galerkin reduced model

TT MT︸ ︷︷ ︸
Mr

p̈ +TT BT︸ ︷︷ ︸
Br

ṗ +TT KT︸ ︷︷ ︸
Kr

p = TT f︸︷︷︸
fr

. (4.16)

Note that the formal structure of (4.16) is the same as (4.14), the only difference being the way

in which the projection matrix is constructed. We remark that, unlike (4.13) and (4.14), we

do not enforce a specific structure to the reduced basis T, i.e., we do not explicitly split the

boundary and internal degrees of freedom and we do not impose qB to be exactly preserved at

the reduced level. This does not represent a concern, as confirmed at the numerical level.

Unless stated otherwise, we decide to take N f = 3 sinusoidal modes logarithmically spaced in

the range [1,10] and S = 13 instances of the coefficients, sampled based on Sobol’ sequences.

We also set the final time to T = 10. Because of the oscillatory nature of the problem, varying

such hyperparameters does not significantly change the efficiency of the proposed technique,

provided that the relevant frequencies are included in the snapshot matrix. In order to have

comparable results with the CMS technique, we select k = 10 modes.

4.3 Numerical results

We first validate the methods by fixing the parameter values of both the structure and the

pendula. The most relevant parameters have already been defined in Section 4.1, and only

a number of physical parameters related to the pendula are yet to be specified. We take

equal pendula, characterized by lengths L1 = L2 = 0.2286, damping coefficients d1 = d2 = 0.01

and masses m1 = m2 = 0.25. The time integration of (4.11) and its reduced counterparts is

performed by recasting the problems as first-order-in-time systems and using the implicit

Euler method until T = 200 with a time step of ∆t = 0.02. The nonlinear systems are handled

using the MATLAB in-built routine fsolve combined with the analytic expression of the

Jacobian matrix. A homogeneous initial condition is chosen for the structure displacement
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and velocity, whereas the pendula start at

θi (t = 0) = A sin
(
φi

)
, θ̇i (t = 0) = A

√
g

Li
cos

(
φi

)
,

with (φ1,φ2) = (π/2,−π/3) and A = 0.2. In order to analyze the synchronization patterns, we

define K order parameters as

Rk =
∣∣∣∣∣ Np∑
i=1

exp
(
ıkϕi

)∣∣∣∣∣ ∈ [0,1], k = 1, . . . ,K . (4.17)

Here, ϕi denotes the phase of each pendulum, which can be computed by estimating the local

maxima of the signal θi and linear interpolation as in Chapter 3. The interpretation of (4.17) is

similar to the Kuramoto model presented in Chapter 3, meaning that high values of the order

parameters are associated to a coherent dynamics. The order parameters with k > 1 allow

us to analyze more complex synchronization patterns, going beyond a simple distinction

between full synchronization and incoherent dynamics. In this regard, they can be viewed as

the higher-order counterparts of R1. In this work we take K = 5.

In Figure 4.2 we report the order parameters as a function of time for the full and reduced

models. For the selected parameter values, we see that the even order parameters R2 and R4

asymptotically take high values, whereas the odd order parameters R1, R3 and R5 converge to

values close to zero. This is a clear indication of anti-phase synchronization, which was the

behavior observed by Huygens. Comparing the full and the reduced models, no differences

are present, meaning that the surrogates are able to retrieve the behavior observed at a full

level. This can be quantitatively confirmed by computing the corresponding reduction errors,

which typically attain extremely low values, say around O (10−8). This high accuracy can be

explained by the fact that, provided that the reduced basis captures the oscillatory modes of

the structure, no differences are present between the full and the reduced models. Thus, only

the computational cost changes, and a speedup of order O (102)−O (103) is observed for the

presented test case. As a side remark, we note that the trajectory of the order parameters has

some spurious oscillations. These are due to numerical effects arising from the estimation

of the phase and the time discretization, and they do not entail any physical meaning. It is

not surprising that these effects are more evident if high values of k in (4.17) are taken. These

oscillations can be smoothed by a simple filtering technique or by further reducing the time

step. As we are mostly interested in the asymptotic properties of the system, we do not make

further effort on this matter.

Arguably, the major advantage of reduced order modeling is the possibility to efficiently solve

the systems under variations in its parameters. Here, the focus is on the long-term behavior

and stability regimes that can be observed if the characteristics of the pendula are changed.

Firstly, we consider the same physical parameters, whereas we vary the initial condition of

one of the two pendula. Specifically, we set φ1 = π/2 and vary φ2 in the interval [π/2,5π/2].

The results are shown in Figure 4.3. If the pendula start in an (anti-)symmetric configuration,

62



4.3. Numerical results

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

(a) FOM.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

(b) CMS.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

(c) POD.

Figure 4.2 – Order parameters vs time for the full and reduced models, Np = 2.

this is maintained in the entire simulation (Figures 4.3(a) and 4.3(c)). These correspond to

in-phase and anti-phase synchronization. If the initial condition lies between these two states,

they asymptotically synchronize in anti-phase, with a transient period that increases with the

distance with the perfect anti-phase condition (Figure 4.3(b)). These comments are confirmed

by Figure 4.3(d), which shows the asymptotic order parameters as a function of the initial

condition φ2. The two regimes can clearly be identified, and the intermediate regions are

characterized by intermediate values of Rk , suggesting that the synchronized state has not

been reached yet.
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(b) φ2 = 5π/4.
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(c) φ2 = 3π/2.
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(d) Asymptotic order
parameters vs φ2.

Figure 4.3 – Order parameters under variations of φ2.

Considering variations in the mass of the two pendula m1 = m2 = m, we obtain the results

shown in Figure 4.4. Changes in the mass do not modify the asymptotic state, which is of

anti-phase synchronization. However, they affect the transient phase, as the equilibrium

state is reached faster as the mass increases. This is consistent with theoretical analyses and

numerical experiments with similar models [100, 77], in which the ratio between the mass of

the pendula and the coupling structure plays the role of a coupling strength. The inconsistency

around m ' 0.375 is again due to numerical effects, as one could verify by, e.g., looking at the

time evolution of the order parameters.

A somehow opposite behavior is observed when the length l1 = l2 = l is varied. Smaller lengths

lead to shorter transient phases, as the interactions between the pendula and the structure

tend to be stronger.
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(d) Asymptotic order
parameters vs m.

Figure 4.4 – Order parameters under variations of m.
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0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

(c) l = 0.3.
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(d) Asymptotic order
parameters vs l .

Figure 4.5 – Order parameters under variations of l .

A similar discussion can be made if more than two pendula are considered. We start with

the case Np = 3. We first validate the model reduction techniques using the same physical

parameters of its corresponding counterpart with Np = 2. The results with initial conditions

(φ1,φ2,φ3) = (π/2,11π/6,−π/2) are reported in Figure 4.6. Although an asymptotic state is not

fully reached yet, it appears that R3 approaches one, whereas all the other order parameters

take low values. This is an indication of a symmetric configuration, in which the pendula oscil-

late with phase shifts of 2π/Np [33]. Again, there is virtually no loss in accuracy if the reduced

models are used, whereas a computational speedup larger than two orders of magnitude is

observed.
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Figure 4.6 – Order parameters vs time for the full and reduced models, Np = 3.

As variations in the mass and length of the pendula do not modify the conclusion we drew
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for the two-pendulum case, we focus on varying the initial conditions. We consider φ1 =π/2,

while φ2 and φ3 vary in the interval [π/2,5π/2]. The obtained asymptotic order parameters

are shown in Figure 4.3 as a function of φ2 and φ3. At the corners of the parameter domain,

in-phase synchronization is observed (R1 ' 1), as the pendula start in equal or very close

conditions. In a symmetric region around the center, a symmetric configuration with phase

shifts of 2π/3 is obtained (R3 ' 1). Finally, a clustering configuration in which two of the

pendula are in-phase and a third one is shifted by an angle of approximately π/2 is observed

for certain initial conditions (R4 ' 1).

(a) R1. (b) R2. (c) R3.

(d) R4. (e) R5.

Figure 4.7 – Order parameters under variations of φ2,φ3.

Finally, we consider the case of Np = 4 pendula. To validate the model reduction techniques,

we consider initial conditions defined by (φ1,φ2,φ3,φ4) = (π/2,7π/6,−π/2,π). The results

are reported in Figure 4.8. Again, no differences between the values of Rk obtained with the

full and the reduced order models are observed. Synchronization is not reached yet, but a

symmetric configuration with phase shifts of 2π/Np starts to appear, as R4 seems to converge

to one.

If the initial conditions φ2, φ3 and φ4 are varied in the interval [π/2,5π/2], we obtain the

asymptotic order parameters shown in Figure 4.9. Again, there exist regions in which the

in-phase synchronization (R1 ' 1) and symmetric 2π/4 configurations (R4 ' 1) are observed.

However, more complex clustering configurations are also present. An example includes

a 2-2 clustering characterized by two groups of in-phase oscillators which are mutually in

anti-phase (R2 ' R4 ' 1).
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Figure 4.8 – Order parameters vs time for the full and reduced models, Np = 4.

(a) R1. (b) R2. (c) R3.

(d) R4. (e) R5.

Figure 4.9 – Order parameters under variations of φ2,φ3,φ4.

4.4 Extensions

4.4.1 Parameter-dependent structure

Both the presented reduction techniques can naturally handle any parametrization related

to the pendula. The question that arises is whether a parametrized structure can also be

considered. With the CMS approach, one should solve a different eigenproblem for each

instance of the structural parameters and suitably combine the resulting modes. With the

POD, one should instead include snapshots generated with different parameters. However, we

observed that the bases generated with a single instance of the parameters are robust with

respect to parameter changes, and there is no need to re-construct them. This is possibly due

to the simple and oscillatory nature of the problem, in which a variation of the parameters does

not affect the oscillation modes strongly, consistent with [100]. As an example, in Figure 4.10

we consider a variation in the width bh of the horizontal beam, whose baseline value is
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bh = 0.55, as reported in Table 4.1. The accuracy of the reduced model remains very high,

despite the change in the parameter. This allows to potentially study the effect of different

structural properties on the synchronization using the reduced model. In this case, an increase

in the thickness bh leads to a stronger coupling and a shorter transient phase.
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(b) CMS, bh = 0.3.
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(c) POD, bh = 0.3.
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(d) FOM, bh = 0.8.
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(e) CMS, bh = 0.8.
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(f) POD, bh = 0.8.

Figure 4.10 – Order parameters vs time for the full and reduced models for different values of
bh .

4.4.2 Beyond Huygens: parametrized coupling

As the reduced models are generated independently of the coupled problem, more general

coupling terms can possibly be considered, beyond the standard Huygens’ model. This would

be necessary, e.g., when one is interested in understanding the possible behaviors of the

coupled system in the lack of physical laws to design the interactions. The idea is to consider a

variation of (4.10) which retains the same formal structure, but in which all the interaction

terms appearing in the right-hand-side are replaced by (artificially) parametrized terms. The

modified coupled system reads

Mq̈ +Bq̇ +Kq =
[

g s
x1, g s

y1, g s
x2, g s

y2,0T
]T

, (4.18a)

mi L2
i θ̈i =−mi Li sinθi −di θ̇i +ui + g p

xi + g p
yi ,

where each of the coupling functions g can be arbitrarily designed. Assuming that they depend

on the states and first-order derivatives only, and in order to enforce sparsity in the functions,
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we consider

g s
xi =

∑
p
β

p
i xp1

i ẋp2

i θ
p3

i θ̇
p4

i , (4.19)

where p = (p1, p2, p3, p4) is a multi-index with each entry belonging to {0, . . . ,P }, where P de-

notes an a-priori fixed maximum polynomial order, and βp
i ∈R4 are the expansion coefficients.

Expressions similar to (4.19) hold for all the coupling terms in (4.18). Simulating the system

for different instances of βp
i allows us to predict all the possible patterns that the system can

exhibit. As an example, with a specific instance of these parameters one obtains the results

shown in Figure 4.11. Although very mild differences errors appear if a POD technique is used,

the accuracy of both reduced models is high. With our choice of parameters, an in-phase

synchronization is obtained. Excluding peculiar initial conditions, this behavior was never

observed in the classical Huygens’ setup.
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(c) POD.

Figure 4.11 – Order parameters vs time for the full and reduced models for a specific instance
of (4.19).

4.5 Conclusion

In this chapter we constructed reduced order models of a locally coupled oscillatory system

that exhibits synchronization. Compared to Chapter 3, we study higher-order synchronization

patterns, similar to the Huygens’ experiment. We constructed and compared both model-

based and data-driven methods, whose offline phase is performed in the absence of the

coupled model.

The presented results confirm the efficiency of both these methods, which are able to retrieve

the synchronization patterns observed at the full level with a significant computational saving.

Variations in constitutive parameters of both the structure and the pendula are considered,

which lead to in-phase, anti-phase and clustering synchronization types.
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4.A Finite Element discretization

Here, we aim at providing a more detailed description of the finite element model used to

discretize the structural model

ρA
∂2u

∂t 2 − ∂

∂ξ

(
E A

∂u

∂ξ

)
= pu(ξ), (4.20a)

ρA
∂2w

∂t 2 + ∂2

∂ξ2

(
E I

∂2w

∂ξ2

)
= pw (ξ).

The meaning of each term and variable is discussed in Section 4.1. Without loss of generality,

here we focus on a single beamΩ= [0,L] and we assume that the equations are completed

with homogeneous boundary conditions for the horizontal displacement u, the vertical dis-

placement w and the rotation ∂w/∂ξ, so that no boundary terms are present in the following

integral formulations.

The weak form of (4.20) consists in finding u(t ) ∈V = H 1
0 (Ω) and w(t ) ∈ Z = H 2

0 (Ω) such that∫
Ω
ρA

∂2u

∂t 2 v +
∫
Ω

E A
∂u

∂ξ

∂v

∂ξ
=

∫
Ω

pu v, (4.21a)∫
Ω
ρA

∂2w

∂t 2 z +
∫
Ω

E I
∂2w

∂ξ2

∂2z

∂ξ2 =
∫
Ω

pw z,

for all v ∈V and z ∈ Z . This can be compactly written as

m

((
∂2u

∂t 2 ,
∂2w

∂t 2

)
, (v, z)

)
+a ((u, w) , (v, z)) = f ((v, z)) ,

where the definition of m(·, ·), a(·, ·) and f (·) can be directly inferred from (4.21). Introducing

suitable finite-dimensional spaces Vh ⊂V and Zh ⊂ Z that depend on a positive parameter

h, the Galerkin finite element formulation consists in finding uh(t ) ∈Vh and wh(t ) ∈ Zh such

that

m

((
∂2uh

∂t 2 ,
∂2wh

∂t 2

)
, (vh , zh)

)
+a ((uh , wh) , (vh , zh)) = f ((vh , zh)) , (4.22)

for all vh ∈ Vh and zh ∈ Zh . Particular care has to be given to the choice of the spaces Vh

and Zh , to ensure the conformity property and, ultimately, the convergence of the discrete

solution to the continuous one [105]. We first introduce a partition Th of [0,L] in N intervals

K j = [ξ j−1,ξ j ] with width h j such that 0 = ξ0 < ·· · < ξN = L, and we set h = max j h j . The

simplest choice for Vh consists in

Vh =
{

vh ∈C 0(Ω) : vh
∣∣
K j

∈P1 ∀K j ∈Th

}
∩V ,

whereas for Zh we adopt

Zh =
{

zh ∈C 1(Ω) : zh
∣∣
K j

∈P3 ∀K j ∈Th

}
∩Z .
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Note that the dimensions of Vh and Zh are N +1 and 2(N +1), respectively. As in classical

finite elements, as basis functions for Vh we select the linear Lagrange polynomials ` j . As they

satisfy ` j (ξi ) = δi j , this implies that the degrees of freedom are the nodal values of uh , i.e.,

uh(ξ, t ) =
N+1∑
j=1

uh(ξ j , t )` j (ξ).

Conversely, for Zh we select the cubic Hermite polynomialsφ j . As they satisfyφ j (ξi ) = δi j and
dφ j

dξ (ξi ) = δ(i+N+1), j for i ∈ {1, . . . , N +1} and j ∈ {1, . . . ,2(N +1)}, this implies that the degrees of

freedom are the nodal values of wh and its first derivative ∂wh/∂ξ, i.e.,

wh(ξ) =
N+1∑
j=1

wh(ξ j , t )φ j (ξ)+
N+1∑
j=1

∂wh

∂ξ
(ξ j , t )φ j+N+1(ξ).

Evaluating (4.22) for each basis function separately allows us to write the algebraic formulation

as

Muü+Kuu = fu

Mw ẅ+Kw w = fw

where u ∈ RN+1 and w ∈ R2(N+1) are vectors gathering the degrees of freedom associated

to uh(t) and wh(t), the dot symbol denotes the time derivative, Mu and Mw are the mass

matrices, Ku is the stiffness matrix associated to the first derivatives, Kw is the stiffness matrix

associated to the second derivatives, and fu and fw are the source terms. In a compact form,

we can finally write [
Mu 0

0 Mw

][
ü

ẅ

]
+

[
Ku 0

0 Kw

][
u

w

]
=

[
fu

fw

]
,

which corresponds to the undamped version of (4.2), up to an appropriate reordering of the

degrees of freedom.

For the sake of completeness, we report the explicit expression of the selected basis functions,

both in the reference element [0,1],

`1(ξ) = (1−ξ), `2(ξ) = ξ,

φ1(ξ) = (ξ−1)2(2ξ+1), φ2(ξ) = ξ2(−2ξ+3) = ξ2(1+2(1−ξ)),

φ3(ξ) = ξ(ξ−1)2, φ4(ξ) = ξ2(ξ−1),

for ξ ∈ [0,1], and in a generic interval [a,b],

`1(ξ) = b −ξ
b −a

, `2(ξ) = ξ−a

b −a

φ1(ξ) =
(

b −ξ
b −a

)2 (
2
ξ−a

b −a
+1

)
, φ2(ξ) =

(
ξ−a

b −a

)2 (
1+2

b −ξ
b −a

)
,
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φ3(ξ) = ξ−a

b −a

(
b −ξ
b −a

)2

, φ4(ξ) =
(
ξ−a

b −a

)2 (
ξ−b

b −a

)
,

for ξ ∈ [a,b]. Setting b −a = h and assuming unitary physical parameters, the corresponding

local mass and stiffness matrices read

Mu = h

6

[
2 1

1 2

]
, Ku = 1

h

[
1 −1

−1 1

]
,

Mw = h

420


156 54 22h −13h

54 156 13h −22h

22h 13h 4h2 −3h2

−13h −22h −3h2 4h2

 , Kw = 1

h3


12 −12 6h 6h

−12 12 −6h −6h

6h −6h 4h2 2h2

6h −6h 2h2 4h2

 .
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5 Localized model reduction and do-
main decomposition methods

In this chapter1 we consider coupled systems modeled through partial differential equations.

Similar to Chapter 4, the focus is still on localized reduced models, meaning that we wish to

construct approximations of local problems without simulating the fully coupled problem.

As a global, monolithic solver is often not available, a first task is to design efficient methods

to find the solution of a given coupled system of interest using local models only. Given the

component-wise structure of the system, domain decomposition, partitioned-like methods

have proven to be effective in this direction [104]. Here, the idea is to solve the local problems

independently through iterated exchanges of boundary data.

However, the dimensionality of the problem might still be large, and reduced order models

need to be designed. As discussed in Chapter 1 and Chapter 4, the a-priori unavailability of the

coupled problem prevents one from directly using classical model reduction methods. This is

also the case when the model is available, but its computational complexity is very large. This

includes scenarios in which the complexity of the underlying differential model is high, the

number of components is large, or when the parameter space is high-dimensional. Additional

complexities arise if the components are modeled using different simulation tools, as they can

be difficult to integrate. On the lines of Chapter 4, we propose a model reduction technique

that relies on local surrogates, in the form of reduced models constructed in a component-

wise, decoupled fashion. In the offline phase, the components are considered separately, and

the snapshots are collected through an artificial parametrization of the interface data. These

are subsequently used to construct a local reduced basis. During the online phase, the reduced

models are combined using a domain decomposition approach.

Localized model reduction of multi-component systems of partial differential equations has

been investigated in a number of works [17]. A first approach related to the one we propose

in this work, is the Reduced basis, Domain decomposition, Finite elements (RDF) method

[75]. The authors construct local surrogates using parametrized Lagrange or Fourier basis

functions and a greedy algorithm. This method shares many features with ours, but the use of

1Large parts of this chapter are based on our research work [43].
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the full model in a few regions of the computational domain and the application to a single

steady-state diffusion problem limit its generalization potential.

Similar methods rely on Lagrange multipliers [51, 89, 88, 24, 23] to impose the coupling

conditions. Although they can be easily constructed and efficient solvers can be designed, the

introduction of additional variables can affect the computational performance of the method

and might require modifications of the solvers to accommodate this technique. The local

bases can be computed from solutions of the local problems defined on each subdomain and

small parts of the contiguous ones with fixed Dirichlet conditions [89, 87]. This might require

further modifications to the local solvers, computational domains and meshes, that might be

challenging in general geometric settings or even impossible if the numerical implementation

does not allow it. These methods have been successfully applied in structural mechanics, fluid

dynamics, and, more recently, in haemodynamics [98].

Similarly, static condensation methods [48, 73, 74] aim to solve the coupled problem through

an interface equation obtained by a splitting of internal and boundary degrees of freedom and

a Schur complement method. Then, separate reduced bases are constructed to capture the

internal and the interface features, respectively. Snapshots obtained from simulation of the

local problems and interface eigenvalue problems are typically used for this purpose [73, 74].

Although they are not well suited for nonlinear problems, they have been proven extremely

effective in large-scale structural dynamics problems. In spirit, our approach relies on similar

ideas to construct the artificial parametrization of the interface conditions. However, we

construct the reduced basis without an a-priori separation between internal and boundary

degrees of freedom or the assembly of a Schur complement. Thus, our method requires a

minimal set of modifications in both the offline and online phase. Moreover, we focus mostly

on time-dependent heterogeneous problems, we rely on partitioned schemes and we support

mixed interface conditions.

Alternative approaches rely on randomization and oversampling [18, 119, 40]. Similar to [87],

the local problems are solved in a domain slightly larger than its physical one with random

boundary conditions, and their solutions, once restricted to the physical domain, are used

to construct the local bases. Exponential convergence in the reduced dimension can be

proven for linear problems and the low-rank properties of the problem are strengthened, but

the extension to complex nonlinear problems, possibly characterized by a high degree of

heterogeneity among the components, can be challenging. Moreover, the training procedure

requires once more a modification of the local computational domain. However, they share

with our method the notion of parametrized boundary conditions.

A final approach, based on domain truncation, constructs a local reduced model for a combus-

tion problem [140]. This method is once again related to the one presented here, and notably

analyses a complex time-dependent problem. However, the artificial parametrization is based

on a theoretical knowledge of the problem of interest, which potentially prevents the method

to generalize other classes of multi-physics problems. Moreover, the final problem is not fully
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reduced, as the surrogate model is constructed for a single subproblem only.

The remainder of this chapter is structured as follows. In Section 5.1 we present the coupled

system of interest and an overview of domain decomposition methods. Section 5.2 describes

our method, highlighting its steps in the offline and the online phase, an a-priori error estimate,

and a discussion on the computational cost. Section 5.3 presents several numerical results,

showing the potential of the proposed approach in terms of accuracy, computational efficiency

and robustness. A few concluding remarks are found in Section 5.4.

5.1 Problem formulation

In the following, we introduce the mathematical formulation of the problems of interest.

We consider multi-component systems of partial differential equations defined on different

non-overlapping subdomains, so that the local problems correspond to the components of

the system. To simplify the notation, we focus on the case of two time-dependent problems,

denoted by P1 and P2, defined on as many subdomains. We consider a time interval [0,T ]

and a spatial domain Ω ⊆ Rd such that Ω =Ω1 ∪Ω2, where Ωi is the domain on which P i

is defined. The interface between the two, where the coupling conditions are enforced, is

denoted by Γ := Ω̄1 ∩ Ω̄2.

Thus, the coupled system can be written as

∂u1

∂t
+F1 (u1) = 0, inΩ1, (5.1a)

u1(t = 0) = u1,0, inΩ1,

h1 (u1) = 0, on ∂Ω1 \Γ,

f1 (u1) = g1 (u2) , on Γ,

∂u2

∂t
+F2 (u2) = 0, inΩ2, (5.1b)

u2(t = 0) = u2,0, inΩ2,

h2 (u2) = 0, on ∂Ω2 \Γ,

f2 (u2) = g2 (u1) , on Γ,

where Fi is a generic second order differential operator modeling the dynamics of problem P i .

The initial conditions in each subdomain are denoted by ui ,0. The boundary conditions on the

physical domain boundaries are encoded by the operators hi (ui ), whereas the interactions

between the components are modeled through suitable functions fi and gi .

Typically, the coupling functions are designed to enforce constraints on physical quantities

among the components, such as continuity of the solutions and the normal fluxes. Instead

of enforcing them separately as in more classical formulations, one can consider a linear

combination of these constraints [104]. Among other advantages, this addresses concerns
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of well-posedness of the local problems and allows to design faster solution algorithms [56].

Denoting the fluxes and the unit normal vectors as σi = σi (ui ) and ni , respectively, we

consider coupling conditions of the form

σ1(u1) ·n1 +λ1u1 =σ2(u2) ·n1 +λ1u2, σ2(u2) ·n2 +λ2u2 =σ1(u1) ·n2 +λ2u1, (5.2)

where λi ∈R+ are tunable parameters.

Remark 5.1 More sophisticated coupling conditions can be considered, at least when sim-

ulating the coupled problem. Examples include adding tangential derivatives [56] or time

derivatives [59] in (5.2). However, (5.2) is a sufficiently general functional form to model the

interactions in coupled systems and it is commonly used in practical applications. Therefore, in

this work we employ this functional representation in both the offline and the online phase, as

shown in Section 5.2. We conjecture that the reduced models are robust enough such that other

boundary conditions can be employed in the online phase without re-running the offline phase

entirely.

Additionally, we mention that higher order problems require more general coupling conditions,

so that a careful definition of (5.2) is needed. An interesting example is the biharmonic operator,

for which several options can be considered [58]. However, we believe that the method proposed

in Section 5.2 can be extended to such cases while keeping the same spirit.

As our goal is to efficiently solve (5.1) promoting component independence, we simulate

the problem using a non-overlapping Schwarz method. This allows us to decouple the local

problems, for which surrogate models can be constructed. We consider the implicit Euler

scheme with time step ∆t and Nsteps = T /∆t steps, and we denote with un
i the numerical

solution of P i at time n∆t . The idea is to use fixed-point iterations, solving the local problems

P i with educated guesses on the solutions of P j , j 6= i , which are in turn updated until a

suitable convergence criterion is met. Specifically, at each iteration of the temporal loop, we

proceed as follows:

1. Take a guess on un+1
i , e.g., un+1,0

i = un
i and set s = 0.

2. Solve

un+1,s+1
1 −un

1 +∆tF1

(
un+1,s+1

1

)
= 0 (5.3)

with boundary conditions h1

(
un+1,s+1

1

)
= 0 and

f1

(
un+1,s+1

1

)
= g1

(
un+1,s

2

)
. (5.4)

3. Solve

un+1,s+1
2 −un

2 +∆tF2

(
un+1,s+1

2

)
= 0 (5.5)
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with boundary conditions h2

(
un+1,s+1

2

)
= 0 and

f2

(
un+1,s+1

2

)
= g2

(
un+1,s+1

1

)
. (5.6)

4. Compute error, e.g.,

εs+1 =

(∥∥∥un+1,s+1
1 −un+1,s

1

∥∥∥2

L2(Ω1)
+

∥∥∥un+1,s+1
2 −un+1,s

2

∥∥∥2

L2(Ω2)

)1/2

(∥∥∥un+1,s
1

∥∥∥2

L2(Ω1)
+

∥∥∥un+1,s
2

∥∥∥2

L2(Ω2)

)1/2
. (5.7)

5. Repeat Steps 2, 3, 4 until convergence, e.g., εs+1 < tol.

6. Set un+1
i =un+1,s+1

i .

Convergence of the fixed point algorithm has been proven in a number of cases, including

steady [86, 46, 104] and unsteady [59, 7, 57] problems. We remark that, to ensure and accelerate

convergence, a relaxation step might be needed [104]. As it is found not to be necessary for the

problems studied in this chapter, and more generally when Robin-type conditions (5.2) are

used, we decided not to explicitly include it in the algorithm. We also note that in Step 3 the

interface condition (5.6) is based on the updated solution of P1, so that the proposed algorithm

can be interpreted as a block Gauss-Seidel method. Alternatively, one could consider its Jacobi

counterpart, that relies on un+1,s
1 instead. A Jacobi implementation is easier to implement and

is embarrassingly parallel, but the convergence is slower. As our current implementation is

purely serial, we prefer the Gauss-Seidel strategy. A detailed discussion on the two approaches

can be found in, e.g., [22].

Extending the presented formulation to more than two subdomains is rather straightforward.

Denoting by Ii the index set of the problems P j that share an interface Γi j with P i , the

coupling conditions of each P i can be written as

σi (ui ) ·ni +λi j ui =σ j (u j ) ·ni +λi j u j ,

for each j ∈Ii . The non-overlapping Schwarz method can be generalized in a similar way. A

Jacobi implementation can be directly inferred from the two-subdomain case, whereas in the

Gauss-Seidel case one needs to take particular care of the ordering in which the elements are

processed. This problem is strictly related to the generation of a directed acyclic graph and

graph coloring [22].

5.2 Localized model reduction

We now adapt the general technique described in Chapter 2 to our problem of interest (5.1),

recalling that our main assumption is that the fully coupled model is not available when
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constructing the reduced model.

5.2.1 Offline phase

The main objective of the offline phase is the generation of the basis functions. As the coupled

problem (5.1) is not available, we consider the components separately and we build a basis for

each of them. Specifically, each problem P i in (5.1) has the form

∂u

∂t
+F (u) = 0, inΩ,

u(t = 0) = u0, inΩ,

h (u) = 0, on ∂Ω\Γ,

f (u) =σ ·n +λu = g , on Γ, (5.8a)

where the subscripts i have been omitted for simplicity and g is a generic function of the form

g =
Nexp∑
j=1

β jϕ j . (5.9)

In (5.9), ϕ j are functions used to expand the boundary datum, Nexp is their number, and β j

are the expansion coefficients. The idea is to collect snapshots of (5.8) from simulations with

different parameter values. We have two classes of parameters:

• Physical parameters and time, analogous to standard model reduction approaches.

Samples can be collected using, e.g., quasi-random sampling.

• The artificial parameters defining the boundary condition (5.8a) and (5.9). Samples are

collected using the following method:

– The Robin parameter λ is fixed a-priori. The only condition on its value is the well

posedness of (5.8), which is typically ensured if λ> 0.

– The functions ϕ j are also fixed. Inspired by similar works [2, 73], we choose them

as the smallest eigenfunctions of the Laplace-Beltrami operator on the interface Γ,

i.e.,

−∆ϕ j =ω jϕ j , on Γ, (5.10)

with suitable boundary conditions. In order not to be restricted to a specific set

of interface profiles, to increase the level of generality of the basis, and to have a

larger insight on the local dynamics, we consider both homogeneous Dirichlet and

homogeneous Neumann conditions. Moreover, we additionally found that includ-

ing the zero function in (5.9) is beneficial for the reduced model, as it contributes

to capture the dynamics of the completely decoupled problem. Thus, we select

Nexp = 2Nbasi s = NDi r +NNeu +1, where Nbasi s = NDi r +1 = NNeu is the number

of the smallest eigenvalues to be kept. If the interface is one-dimensional with
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length L, this reduces to

ϕ j ∈
{

1, . . . , cos

(
(Nbasi s −1)π

L
ξ

)
, 0, . . . , sin

(
(Nbasi s −1)π

L
ξ

)}
,

where ξ is a curvilinear coordinate defined on the interface.

– The coefficients used to generate the snapshots can vary. Assuming that we wish

to simulate the problem (5.8) Nsampl times with coefficients βi j , i ∈ {
1, . . . , Nsampl

}
,

we choose Nsampl = Nexp and

βi j = Aδi j . (5.11)

This implies that (5.8) is simulated with each eigenfunction as a boundary condi-

tion, including the zero function. The choice of the scaling factor A is arbitrary.

We only require A to scale as 1 (resp. λ) in the limits of small (resp. large) λ, corre-

sponding to Dirichlet and Neumann conditions. Thus, we consider A = max{1,λ}.

The main steps of the offline phase follow, i.e., for each instance of the physical parameters,

we simulate (5.8) using the parametrized Robin datum, collect the solution snapshots, and

construct the reduced model as in Chapter 2. These are summarized as in Algorithm 5.1.

The extension to vector-valued differential equations is rather straightforward, and can be

done by parametrizing the boundary condition of each variable independently. Similarly, the

extension to coupled problems with more than two subdomains can be easily derived. As P i

can have multiple interfaces Γi j and neighboring subdomains j ∈Ii , we repeat the proposed

procedure for each Γi j , assigning homogeneous coupling conditions on the remaining Γi j̃ ,

j̃ 6= j .

Algorithm 5.1 Offline phase

Input: Local problems
Output: Local bases Ui and local reduced operators

for all system components i do
for all instance of the physical parameter vector do

for all boundary data (5.9) using (5.10) and (5.11) do
Simulate the problem and collect the snapshots.

end for
end for
Construct the reduced basis Ui for the given component.
Compute the reduced operators.

end for

Remark 5.2 We choose to treat the physical and the artificial parameters in an independent,

separate way. Although this can lead to a large offline computational cost, this is not prohibitive,

especially in the case of a parallel implementation. Other choices can be considered, with the

goal of jointly sampling their values and reducing the associated offline cost. An example can be

found in [75], where a greedy algorithm is used.
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Remark 5.3 We stress that the choice (5.11) implies that the local problems are simulated using

the eigenfunctions ϕ j individually with constant-in-time coefficients. Different choices can be

considered, with the goal of improving the sampling of the boundary data (5.9). An option could

be a random sampling of the coefficients βi j , possibly combined with a suitable modal decay

rate. More challenging would be the introduction of a time-dependence, although theoretically

possible. In the absence of information on the coupled problem, an appropriate selection of

the time interval and/or a basis expansion in the time domain can be difficult. Both these

options would increase the offline cost, introduce additional hyperparameters, and impact

on the reduction potential, and are found not to be necessary to achieve a satisfactory level

of accuracy for our problems of interest. We note that, given the non-intrusive nature of the

approach presented in Chapter 6, a more thorough sampling, on the lines that we have just

discussed, is necessary.

Remark 5.4 Effectively, the proposed method introduces a number of additional hyperparam-

eters. The first is the number of interface basis functions Nbasi s . In practical applications,

this can be decided a-priori by fixing the number of frequencies that should be retained in the

representation of the boundary data. The second is the Robin parameter λ. If available, its

value is determined by the coupled problem. Otherwise, at least in the offline phase it can be

chosen arbitrarily, as long as the local problem (5.8) is well-posed. As shown in Section 5.3, we

numerically observed that its choice does not strongly affect our conclusions, as long as well

posedness of the local problems and convergence of the fixed point iterations are guaranteed.

Moreover, if these conditions are ensured, there is nothing that prevents one to choose λ→ 0

and λ→∞. Other hyperparameters include the number of samples of the boundary condition

Nsampl (see Remark 5.3) and the scaling factor A in (5.11).

5.2.2 Online phase

Once the local reduced models have been constructed, we combine them to approximate the

solution of a given problem of interest. Mimicking the algorithm presented in Section 5.1,

the general formulation of the domain-decomposition-based reduced order model reads as

follows:

1. Take a guess on αn+1
i , e.g., αn+1,0

i =αn
i and set s = 0.

2. Solve

αn+1,s+1
1 −αn

1 +∆tU T
1 F1

(
U1α

n+1,s+1
1

)
= 0 (5.12)

with boundary conditions h1

(
U1α

n+1,s+1
1

)
= 0 and

f1

(
U1α

n+1,s+1
1

)
= g1

(
U2α

n+1,s
2

)
. (5.13)
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3. Solve

αn+1,s+1
2 −αn

2 +∆tU T
2 F2

(
U2α

n+1,s+1
2

)
= 0 (5.14)

with boundary conditions h2

(
U2α

n+1,s+1
2

)
= 0 and

f2

(
U2α

n+1,s+1
2

)
= g2

(
U1α

n+1,s+1
1

)
. (5.15)

4. Compute error, e.g.,

εs+1 =

(∥∥∥U1α
n+1,s+1
1 −U1α

n+1,s
1

∥∥∥2

L2(Ω1)
+

∥∥∥U2α
n+1,s+1
2 −U2α

n+1,s
2

∥∥∥2

L2(Ω2)

)1/2

(∥∥∥U1α
n+1,s
1

∥∥∥2

L2(Ω1)
+

∥∥∥U2α
n+1,s
2

∥∥∥2

L2(Ω2)

)1/2
. (5.16)

5. Repeat Steps 2, 3, 4 until convergence, e.g., εs+1 < tol.

6. Set αn+1
i =αn+1,s+1

i .

A few notes are in order. Firstly, enforcing the interface boundary conditions requires recon-

structing a functional of the solution at the boundary nodes only. In the case of nonconforming

meshes, this is followed by a projection/interpolation step. The reduced problem is then solved

by a projection of the interface condition onto the reduced space. If the relevant operators

are linear and can be accessed in the offline phase, their reduced counterparts can be pre-

computed, and the online phase does not require the aforementioned reconstruction step.

Secondly, the norms required in Step 4 can be computed in practice without reconstructing

the solution. The online phase is summarized in Algorithm 5.2. Note that, if the nonlineari-

ties are treated appropriately, the computational cost of online phase becomes in principle

independent of the full dimension, consistent with the discussion in Chapter 2.

Algorithm 5.2 Online phase

Input: Local reduced problems
Output: Approximated solutions ui

for all instance of the physical parameter vector do
Simulate the reduced coupled problem to find αi

Reconstruct the solution ui when required
end for

5.2.3 Error analysis

We provide a simple but effective a-priori error analysis, identifying the different contributions

to the total numerical error. It follows and generalizes the estimate derived for the RDF method

[75]. Focusing again on the two-subdomain case, we denote with u = u11Ω1 +u21Ω2 the exact

solution and with uROM = u1,ROM1Ω1 +u2,ROM1Ω2 the reduced solution, i.e., the solution of
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the reduced coupled problem. A similar notation is used for the other variables. Here, 1Ωi

denotes the characteristic function ofΩi . Focusing on the space-time L2-norm for simplicity,

by the triangular inequality, we have

‖u −uROM‖ ≤ ‖u −uh‖+‖uh − û‖+‖û −uROM‖, (5.17)

where uh is the discrete solution and û is the discrete solution whose interface boundary con-

ditions can be written as a linear combination of the selected Laplace-Beltrami eigenfunctions,

i.e., are of the form (5.9). The first term in (5.17) behaves as

‖u −uh‖ ≤C1hp ,

where h is a measure of the mesh size of the coupled problem. The convergence rate p can

be derived using standard error estimates [103, 39] and its value depends on the regularity of

the problem, the selected discretization method, and the accuracy in computing the Robin

data when enforcing the interface conditions. The second term in (5.17) is related to the

approximation of a generic function using selected Laplace-Beltrami eigenfunctions. Splitting

the error on the different subdomains and assuming that standard stability and trace estimates

hold for each subproblem [75, 39], we have

‖uh − û‖ =
(∑

i

∥∥ui ,h − ûi
∥∥2
Ωi

)1/2

≤C

(∑
i

∥∥gi − ĝi
∥∥2
Γi

)1/2

,

where ĝi is the projection of gi using Nexp functions as in (5.9). This projection error typically

behaves [3, 20] as

C2N−r
basi s .

The rate r depends on the regularity of the problem, its spatial dimension and the compatibility

of the selected Laplace-Beltrami eigenfunctions with the boundary conditions at the physical

boundaries. An exponential decay

C3 exp(−C4Nbasi s)

can appear, e.g., when the problem is sufficiently regular and a boundary compatibility of

the high-order derivatives is satisfied [3, 20]. The third term in (5.17) is the reduction error

and highly depends on the complexity of the local problems. This can be quantified with the

Kolmogorov k-width as discussed in Chapter 2. In many cases, including diffusion equations

[16], it behaves as

C5(Nbasi s)exp(−C6(Nbasi s)k),

where k is the reduced dimension as in Chapter 2, at least assuming that the parameter space is

appropriately sampled. For transport-dominated problems, polynomial rates appear instead

[94].

Hence, the accuracy is mainly affected by the mesh size h, the number of boundary basis
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functions Nbasi s and the reduced dimension k. The constants C2,...,6 can additionally depend

on the hyperparameters defining the boundary conditions, including λ, A, Nsampl. However,

as we assume these to be fixed, we have not explicitly included them in the analysis.

5.2.4 Computational cost

We conclude this section by providing an estimate of the computational cost of our method,

considering again Robin boundary conditions and two subdomains only. For simplicity, we

focus on the linear case, so that no hyper-reduction is required. We assume that P i has size Ni

and that the meshes are conforming at the interface, which in turn has NΓ degrees of freedom.

We denote by C the cost of each step of the algorithm.

Simulations of the coupled full order problem require, for each parameter sample, time step,

and iteration of the domain decomposition algorithm:

• Computing the Robin boundary condition for P1, i.e., assembling the right-hand-side

of (5.4). C =O (NΓ).

• Solving P1 with a given Robin datum, i.e., computing the solution of (5.3) with the

boundary condition computed above. C =O (Nγ1

1 ).

• Computing the Robin boundary condition for P2, i.e., assembling the right-hand-side

of (5.6). C =O (NΓ).

• Solving P2 with a given Robin datum, i.e., computing the solution of (5.5) with with the

boundary condition computed above. C =O (Nγ2

2 ).

• Computing the error (5.7). C =O (Nκ1
1 )+O (Nκ2

2 ).

The values of γi and κi ≤ γi depend on the local underlying problems and discretization

algorithms. Typical values, at least for classical finite element discretizations, are γi = 2 and

κi = 1.

At the reduced level, both the offline and the online phases contribute to the computational

cost, although the former has to be done only once. The offline phase requires, for each system

component, parameter sample, instance of the interface boundary datum, and time step:

• Solving P i with a given Robin datum, i.e., computing the solution of (5.3) or (5.5) with

(5.8a) as interface condition for a given value of the coefficients β j in (5.9). C =O (Nγi

i ).

After all the snapshots of each component have been collected, the reduced bases have to be

computed, as well as the linear reduced operators. This has a cost C =O (N 2
i ki +Ni k2

i ). We

assumed here that the Laplace eigenfunctions can be computed analytically. If that is not the

case, an additional computational cost of C =O (N 2
basi s NΓ) should be added for each system
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component. The online phase requires, for each parameter sample, time step, and iteration of

the domain decomposition algorithm:

• Computing the Robin boundary condition for P1, i.e., assembling the right-hand-side

of (5.13), and project on basis U1. C =O (NΓ+k1NΓ+k2NΓ). Similar to Section 5.2.2, if

the boundary operators can be precomputed, the reconstruction step is not required

and the computational cost is C =O (k1k2).

• Solving P1 with a given projected Robin datum, i.e., computing the solution of (5.12)

with the projected boundary condition computed above. C =O (kδ1
1 ).

• Computing the Robin boundary condition for P2, i.e., assembling the right-hand-side

of (5.15), and project on basis U2. C = O (NΓ+k1NΓ+k2NΓ). As above, if the bound-

ary operators can be precomputed, the reconstruction step is not required, and the

computational cost is C =O (k1k2).

• Solving P2 with a given projected Robin datum, i.e., computing the solution of (5.14)

with the projected boundary condition computed above. C =O (kδ2
2 ).

• Computing the error (5.16). C =O (kθ1
1 )+O (kθ2

2 ).

As in the full model, the values of δi and θi ≤ δi depend on the local underlying problems and

discretization algorithms. Typical values are δi = 3 and θi = 2.

To summarize, assuming that the boundary operators can be precomputed, the computational

cost is:

CFOM ≈ NonlineNsteps,onlineNiter,FOM,avg O (Nγ1

1 +Nγ2

2 +NΓ),

CROM ≈ NonlineNsteps,onlineNiter,ROM,avg O (kδ1
1 +kδ2

2 +k1k2)

+ 1

C

(
NofflineNexp Nsteps,offline O (Nγ1

1 +Nγ2

2 )+N 2
1 k1 +N1k2

1 +N 2
2 k2 +N2k2

2

)
.

Here, the number of online parameter instances and time steps are denoted by Nonline and

Nsteps,online, respectively, whereas the average number of domain decomposition iterations for

the reduced order model is denoted by Niter,ROM,avg. The meaning of the remaining quantities

can be directly inferred, except for the constant C , which acts as a normalization. Indeed, the

offline cost should be either amortized with the number of online evaluations of the reduced

model, i.e., C = NonlineNsteps,onlineNiter,ROM,avg or simply ignored, i.e., C → ∞. In this case,

which is the one that is often considered in practice, the resulting speedup is:

CFOM

CROM
≈ Niter,FOM,avg O (Nγ1

1 +Nγ2

2 +NΓ)

Niter,ROM,avg O (kδ1
1 +kδ2

2 +k1k2)
.

Although it is influenced by both the dimensionality reduction factor and the ratio in the

number of domain decomposition iterations, we numerically observed that the former typ-

ically dominates. In the case of equal subdomains (N1 = N2 = N , γ1 = γ2 = γ) and re-
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duced dimensions (k1 = k2 = k, δ1 = δ2 = δ), the expected speedup scales approximately

as O (Nγ+NΓ)/O (kδ+k2) ≈O (Nγ)/O (kδ).

5.3 Numerical results

We now present a number of applications. For each coupled problem, we show that the

reduced model efficiently recovers the full solution, supporting this by analyzing relevant

quantities of interest, including the reduction error, the computational cost and the number

of domain decomposition iterations.

For each parameter value and time step, the errors between the full solution u and the reduced

one uROM are measured using the relative L2-norm in the appropriate spatial domain. This

reads

ε= ‖u −uROM‖
‖u‖ =

(∑
i

∥∥ui −ui ,ROM
∥∥2

L2(Ωi )

)1/2

(∑
i ‖ui‖2

L2(Ωi )

)1/2
, (5.19)

if a global error is considered, and

εi =
∥∥ui −ui ,ROM

∥∥
L2(Ωi )

‖ui‖L2(Ωi )
, (5.20)

if the local error of problem P i is considered instead. When necessary, (5.19) and (5.20)

are averaged over time and and a suitable parameter test set. Unless stated otherwise, the

tolerance for the Schwarz iterations is tol = 10−6.

5.3.1 Advection-diffusion-reaction

Our first system of interest is a coupled time-dependent advection-diffusion-reaction problem,

in which the coefficients are allowed to vary between the components. The main goal of

this test case is to validate our technique in a relatively simple framework, yet allowing the

constituents to be characterized by different physical phenomena. We consider Ω= [0,1]2,

divided into two subdomains by a vertical interface Γ = {0.6}× [0,1]. The time domain is

[0,T ] = [0,0.05]. The governing equation for P i is

∂ui

∂t
−µi∆ui +βi ·∇ui +σi ui = 0, inΩi ,

The coefficients µi , βi , σi control diffusion, advection and reaction, and are assumed to be

constant in space and time. Homogeneous Neumann conditions are considered at the physical

domain boundaries, whereas the initial condition is set as u0(x, y) = cos(2πx)cos
(
2πy

)
in the

entire domain. We consider Robin coupling conditions at the interface, defined by

µ1∇u1 ·n1 +λ1u1 =µ2∇u2 ·n1 +λ1u2, µ2∇u2 ·n2 +λ2u2 =µ1∇u1 ·n2 +λ2u1,
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for suitable parameters λi .

Firstly, we assume all relevant parameters to be fixed. We consider µ1 = 1/3, β1 = [3,2]T ,

σ1 = 1, µ2 = 1, β2 = [0,0]T , σ2 = 0, while the Robin coefficients are set to λ1 = 10, λ2 = 10 in

the offline and the online phase. The snapshots are generated from numerical simulations

of the decoupled problems with Nbasi s = 15 and a final time T = 0.05. The discretization is

done using a second-order finite difference method in space with grid spacing∆x =∆y = 1/40,

and implicit Euler in time, with a time step obtained using a CFL condition with C = 1. The

reduced dimension is set to k = 80 for each problem. The singular values of the local problems

are reported in Figure 5.1, whereas the first four corresponding POD modes are shown in

Figure 5.2. The exponential decay of the singular values indicates that both problems can

be efficiently reduced, at least at a decoupled level. The most relevant modes capture the

main features of the dynamics. The first mode appears to be highly influenced by the initial

condition, whereas the successive ones capture additional low-frequency characteristics. The

solution of the coupled problem at the final time is shown in Figure 5.3 for both the full and

the reduced model, together with the reduction error. This shows the high accuracy of the

reduced model, and it qualitatively validates our method. Although the bases are generated

independently of the coupling, the surrogates are able to capture the features of the dynamics

induced by the interaction terms. Additionally, in Figure 5.4 we report relevant quantities of

interest as a function of time. We observe that, for the selected parameter values, the relative

error between the full and the reduced solutions is O (10−4). The number of iterations of the

domain decomposition algorithm does not vary between the full and the reduced model,

consistent with the high accuracy observed in Figure 5.3. This suggests that the computational

speedup is uniquely determined by the dimensionality reduction factor, and it is in this case

around 8. Although this is not extremely large, at this point we didn’t aim to optimize the

hyperparameters, as we simply wanted to validate the method. A lower reduced dimension

could be used as well, without significantly compromising the accuracy. However, we should

remark that the construction proposed in Section 5.2.1 is not specific to a given coupled

problem, and the reduced basis needs to be robust with respect to different values of the

coupling functions. This implies that the speedup will be lower compared to more standard

reduced basis approaches, as we need to select a larger value of k to achieve a given error

value. We mention that, consistent with a theoretical analysis [57], the number of iterations

depends on ∆t in both the full and the reduced model. As our focus is on model reduction, we

used the same timestep in the two cases. However, there is nothing specific about that, and it

can be changed if required by a specific application.

Now, we study the effects of varying hyperparameters on the reduction. Figure 5.5 reports the

relative error, the computational cost and the number of iterations, averaged over time, for

different values of the reduced dimension and boundary basis functions used to generate the

reduced basis in the offline phase. Looking at both Figure 5.5(a) and Figure 5.5(d), we observe

that an increase in the reduced dimension leads to a smaller reduction error, as expected.

For a sufficiently large k, the reduction error saturates to a value related to the projection

error of the Robin data onto the space spanned by the boundary basis functions. In turn,
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Figure 5.1 – Singular values of the advection-diffusion-reaction problem.

(a) P1, u1. (b) P1, u2. (c) P1, u3. (d) P1, u4.

(e) P2, u1. (f) P2, u2. (g) P2, u3. (h) P2, u4.

Figure 5.2 – POD modes of the advection-diffusion-reaction problem.

increasing Nbasi s , we observe a trade-off. On one hand, as more snapshots are available, the

dynamics of the full system can be better captured, and the accuracy of the reduced model

improves. On the other, the heterogeneity in the snapshot matrix increases, leading to a larger

variability in the reduced basis and an increase in the number of modes needed to accurately

represent the solution. For a fixed number of latent variables, the former effect dominates

when Nbasi s is small, and adding more snapshots improves the reduced model. When too

many basis functions are added, the reduced model starts to be affected by the increasing

variability, resulting in a lower level of accuracy. For these reasons, in Figure 5.5(a) we can

identify two regions. For large Nbasi s and small k, the reduced basis error dominates, similar

to more standard approaches. Instead, for small Nbasi s and large k the boundary projection

error is the dominant component, as the basis is sufficiently rich to capture the system

dynamics but is unaware of the high-frequency components induced by higher boundary

harmonics. The behavior of the computational cost (Figures 5.5(b) and 5.5(e)) and number of
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(a) P1, FOM. (b) P1, ROM. (c) P1, error.

(d) P2, FOM. (e) P2, ROM. (f) P2, error.

Figure 5.3 – Numerical solutions and reduction error of the advection-diffusion-reaction
problem.

iterations (Figures 5.5(c) and 5.5(f)) can be interpreted in a more straightforward way. The

number of boundary basis functions does not impact the computational cost per number

of iterations, as Nbasi s does not play a role in the online phase. As the number of domain

decomposition iterations is not significantly altered when varying the hyperparameters, the

total computational cost is only affected by k, up to minor variations.

Although the offline phase is based on a parametrization of Robin data with a fixed λ, the

reduced basis is able to capture the dynamics of the system with other coupling functions,

including, e.g., Robin data with different coefficients. Figure 5.6 shows a comparison of

different quantities of interest under variations in the Robin parameter used in the online

phase. The reduction error is rather robust with respect to variations of λ, although minor

differences are present. These are unavoidable, but the features of the dynamics are well

captured even with a single offline instance of λ. Notably, the error decay as a function of

k is not affected by changes in λ. The number of domain decomposition iterations, and

consequently the computational cost, exhibit more significant changes. The former is related

to the optimization of the interface conditions in domain decomposition methods, in which

the value of λ is shown to impact the convergence rate [59]. The latter varies accordingly, as it

is proportional to the number of iterations.

Additionally, in Figure 5.7 we report the trend observed when the Robin parameter used in

the training phase is varied, while keeping the λ used in the testing phase constant. The

reduction error is slightly affected, with lower accuracy for extreme values of λ. However, this

does not have a significant impact on the error behavior as a function of k. The number of
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Figure 5.4 – Quantities of interest of the advection-diffusion-reaction problem.

iterations and the computational cost are not strongly influenced by a change in λ, as they

mostly depend on the parameters used in the online phase.

To conclude, we mention that the reduced model can be used to speedup optimization

problems. For instance, one could be interested in tuning the Robin parameters in order to

minimize the number of domain decomposition iterations. Although constructing an appro-

priate control problem goes beyond the scope of this work, we argue that the surrogate model

could be used in such a context. Figure 5.8 shows the iterations of the domain decomposition

method under variations in the Robin parameters λ1 and λ2 for the two problems. The differ-

ences between the full and reduced model are mild. In turn, the associated computational

cost, although not reported here, exhibits significant changes, similar to Figure 5.4.

5.3.2 Checkerboard diffusion

We now focus on another problem, a steady parametrized diffusion equation. We seek to show

that the method can be efficiently applied to parametrized problems, proving its effectiveness

also in high-dimensional parameter spaces. The computational domain isΩ= [0,1]2, divided
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Figure 5.5 – Comparison (number of basis functions and reduced dimension) of the time-
averaged quantities of interest of the advection-diffusion-reaction problem.

into two subdomains by a vertical interface Γ= {2
3

}× [0,1]. Problem P i is governed by

−∇· (µi∇ui ) = 0, inΩi .

We take the diffusion coefficients to be piecewise constant in the domain in a checkerboard

fashion, i.e., we assume

µ1 =µ1
11[0, 1

3 ]×[0, 1
3 ]+µ2

11[0, 1
3 ]×[ 1

3 , 2
3 ]+µ3

11[0, 1
3 ]×[ 2

3 ,1]+µ4
11[ 1

3 , 2
3 ]×[0, 1

3 ]+µ5
11[ 1

3 , 2
3 ]×[ 1

3 , 2
3 ]+µ6

11[ 1
3 , 2

3 ]×[ 2
3 ,1]

and

µ2 =µ1
21[ 2

3 ,1]×[0, 1
3 ] +µ2

21[ 2
3 ,1]×[ 1

3 , 2
3 ] +11[ 2

3 ,1]×[ 2
3 ,1].

We consider parametrized non-homogeneous Dirichlet boundary conditions at the left bound-

ary ofΩ1 and at the right boundary ofΩ2, i.e.,

u1 = g1 on {0}× [0,1], u2 = g2 on {1}× [0,1],

whereas homogeneous Dirichlet conditions are assumed on all the other physical boundaries.

As in the previous example, at the interface we impose Robin boundary conditions of the form

µ1∇u1 ·n1 +λ1u1 =µ2∇u2 ·n1 +λ1u2, µ2∇u2 ·n2 +λ2u2 =µ1∇u1 ·n2 +λ2u1.

The parameters of interest are µi
1 ∈ [0.1,10] for i = 1, . . . ,6, µi

2 ∈ [0.1,10] for i = 1,2, g1 ∈ [1,5],

g2 ∈ [1,5], so that the global parameter space has dimension 10. This splits into two local
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Figure 5.6 – Comparison (Robin parameter of the online phase) of the time-averaged quantities
of interest of the advection-diffusion-reaction problem.

spaces of dimensions 7 and 3, respectively.

The reduced models are generated by sampling 50 parameter values using a Latin Hypercube

Sampling in each subdomain and Nbasi s = 15. The discretization is done using P1 finite

elements with grid spacing h ≈ p
2/60. The reduced dimension is set to k = 40 for each

subdomain. The singular values of the local problems are reported in Figure 5.9, whereas the

solution of the coupled problem and the corresponding reduction error for a single parameter

instance not included in the training set are reported in Figure 5.10. As in the previous test

case, the reduced models accurately approximate the high-fidelity solution.

We now study the reduction error, the computational cost and the number of iterations

as a function of the reduced dimension. They are reported in Figures 5.11(a), 5.11(b) and

5.11(c), and Figures 5.11(d), 5.11(e) and 5.11(f) for 20 and 200 offline parameter samples per

subdomain, respectively. In both cases, they have been computed by averaging the relative

error (5.19), the cost and the number of iterations over 100 parameter values generated again

using a Latin Hypercube Sampling, but different from the training samples. Increasing the

reduced dimension improves the accuracy, until a saturation level, related to the projection of

the boundary datum onto the set spanned by the Laplace-Beltrami eigenfunctions, is reached.

In turn, increasing Nbasi s improves the accuracy by reducing the saturation value, without

impacting on the online computational cost.

Furthermore, Figure 5.11 allows us to compare the performance of the reduced bases generated

using either the decoupled problems or the coupled problem. The second basis is generated
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Figure 5.7 – Comparison (Robin parameter of the offline phase) of the time-averaged quantities
of interest of the advection-diffusion-reaction problem.

from localized snapshots obtained from simulations of the coupled problem, keeping the

other hyperparameters unchanged. In this way, the basis functions remain localized to each

component, but they are aware of the dynamics of the coupled problem. We observe that if

the number of parameter samples is sufficiently large or a relatively low level of accuracy is

sufficient for the specific application, the basis generated with the coupled problem is more

effective. This is tailored for that specific system, so it is expected to perform better than

a general, system-independent, model. However, when the online parameters are chosen

in such a way that the dynamics is very different from the one of the snapshots, using the

decoupled systems allows one to achieve a low reduction error, thanks to the generality of the

model. This is particularly evident when the number of offline parameter samples is small, as

in Figure 5.11(a). The sampling error in the coupled model is large, limiting the accuracy of

the reduced model. This effect is mitigated by considering the systems independently, as the

local parameter spaces can be sampled more effectively, despite the need to parametrize the

interface boundary conditions. As the dimension of the parameter space grows, this effect

becomes more significant. Finally, we recall that in many applications the global coupled

problem is not available when constructing the basis. Thus, although in some cases the

basis generated from localized snapshots outperforms the proposed method, it might not be

possible to construct it.
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Figure 5.8 – Comparison (Robin parameters λ1 and λ2) of the time-averaged number of
iterations of the advection-diffusion-reaction problem.
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Figure 5.9 – Singular values of the checkerboard diffusion problem.

5.3.3 Multiple subdomains

To further increase the complexity of the problem, we consider a variation in the number of

subdomains. The global spatial domain is Ω = [0,1]2, which is split into M 2 square subdo-

mains, obtained by dividing each direction into M intervals. Here, we focus on M = 2 and

M = 3 only, as they already retain the properties that larger problems would feature. The

problem we consider is a time-dependent diffusion equation, where the viscosity is assumed

to be constant in each subdomain. Thus, problem P i is governed by

∂ui

∂t
−µi∆ui = fi , inΩi .

The diffusion coefficients are chosen as shown in Figure 5.12, whereas fi = 1 in each subprob-

lem. Moreover, homogeneous Neumann conditions are considered at the physical boundaries,

the initial condition is u0(x, y) = cos(2πx)cos
(
2πy

)
, and the final time is T = 0.2. At each
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(a) P1, FOM. (b) P1, ROM. (c) P1, error.

(d) P2, FOM. (e) P2, ROM. (f) P2, error.

Figure 5.10 – Numerical solutions and reduction error of the checkerboard diffusion problem.

interface Γi j of problem P i , we impose Robin boundary conditions of the form

µi∇ui ·ni +λi j ui =µ j∇u j ·ni +λi j u j ,

where ui and u j denote the local and neighboring solution, respectively. We choose all the

Robin parameters λi j equal to 1. The discretization is done using P1 finite elements with

grid spacing h ≈p
2/(20M) and a time step ∆t = 0.01. This implies that the local number of

degrees of freedom is independent of M , in the spirit of a weak scaling analysis [22].

As a visual comparison of the full and reduced solution gives satisfactory results, in Figure 5.13

we directly report the relevant quantities of interest as a function of the reduced dimension

for different Nbasi s . The results are similar to the previous problems, to which we refer for a

more detailed discussion. We note that increasing the number of subdomains and keeping the

other parameter values unchanged leads to a slight increase in the error, especially for large

Nbasi s . This is expected, as the complexity of the local solutions increase due to the larger

number of interfaces. An increase in the number of subdomains also leads to an increase

in the number of the DD iterations. This is again consistent with our expectations, as more

iterations are needed for information to propagate throughout the entire domain when it is

decomposed into more components. To conclude, we mention that in our simulations we

processed the elements using a two-color, checkerboard pattern. A different choice may lead

to a different number of iterations and a different number of sequential step required in a

parallel implementation [22], both at the full and the reduced level.
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Figure 5.11 – Comparison (number of basis functions and reduced dimension) of the
parameter-averaged quantities of interest of the checkerboard diffusion problem. The terms
‘Dec’ and ‘Cou’ refer to the bases generated using the decoupled problems or the coupled
problem, respectively.

5.3.4 FitzHugh-Nagumo

We now consider the two-dimensional FitzHugh-Nagumo model, as an example of a reaction-

diffusion problem. Because of the nonlinear reaction terms, the solution develops Turing

patterns [55]. The main goal is to extend the presented approach to both vector-valued

differential equations and nonlinear problems. We consider Ω = [0,π]2, divided into two

subdomains by a vertical interface Γ= {
π
2

}× [0,π]. The time domain is [0,T ] = [0,0.2]. The

governing equation for P i is
∂ui
∂t −∆ui −Γ

(−u3
i +ui − vi

) = 0, inΩi ,
∂vi
∂t −d∆vi −Γ

(
β (ui −αvi )

) = 0, inΩi .

The variables ui and vi represent the electric potential and a recovery variable, respectively,

while the coefficients β, α, d , Γ govern different physical phenomena. They are chosen to have

the same value in the two subdomains. Homogeneous Neumann conditions are considered at

the physical domain boundaries, whereas the initial condition is set asu0(x, y) = εexp
(
− (x−π/2)2

2σ2 − (y−π/2)2

2σ2

)
,

v0(x, y) = εexp
(
− (x−π/2)2

2σ2 − (y−π/2)2

2σ2

)
,
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Figure 5.12 – Viscosity distribution of the multiple subdomains problem.
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Figure 5.13 – Comparison (number of basis functions and reduced dimension) of the time-
averaged quantities of interest of the multiple subdomains problem.

where ε controls the amplitude. We consider Robin coupling conditions at the interface,

defined by∇u1 ·n1 +λ1u1 =∇u2 ·n1 +λ1u2, ∇u2 ·n2 +λ2u2 =∇u1 ·n2 +λ2u1,

d∇v1 ·n1 +λ1v1 = d∇v2 ·n1 +λ1v2, d∇v2 ·n2 +λ2v2 = d∇v1 ·n2 +λ2v1,

for suitable parameters λi .

Firstly, we focus again on a specific setting, by fixing the relevant parameters. Following a

theoretical analysis [55], they are chosen asα= 0.1, β= 11, ε= 0.1, d =β(
2
p

1−α+2−α)
(ε2+

1) ' 42.1887, Γ=−64d/(αβ−d) ' 65.731. The Robin coefficients are set to λ1 = 10, λ2 = 10 in

the offline and the online phase. The snapshots are generated from numerical simulations
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of the decoupled problems with a number of basis Nbasi s = 10 for both u and v and a final

time T = 0.2. The discretization is done using second-order finite differences in space with

grid spacing ∆x = ∆y = 1/40, and implicit Euler in time, with a time step obtained using a

CFL condition with C = 40. The reduced dimension is set to k = 80 for each problem and

variable. The nonlinear term is treated efficiently in the reduced model using DEIM, with a

corresponding basis size k̃ = k. The first k singular values of the local problems are reported

in Figure 5.14 for each variable. Again, they have a large reduction potential. Similarly, in

Figure 5.15 we show the singular values associated to the nonlinear term and the indices

selected by the DEIM as described in Section 5.2. The decay is again quite fast, and the effect

of the nonlinearity appears to be stronger closer to the interface. This is not surprising, as

in the offline phase we impose a large variability of the coupling conditions, which seems

to affect the nonlinearity in a stronger way. The solution u of the coupled problem at the

final time is reported in Figure 5.16 for both the full and the reduced model, together with

the reduction error. Although the nonlinear term increases the complexity of the dynamics

and the reduced model, the solution is well approximated with the reduced basis. Relevant

indicators are shown in Figure 5.17 as a function of time. We observe that the reduced model

accurately reproduces the solution (the relative error is around 1%), resulting in a speedup

factor of 15. Again, the number of local iterations is practically independent of the dimension

of the problem.
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Figure 5.14 – Singular values of the FitzHugh-Nagumo problem.

The effect of varying hyperparameters on the reduction is studied in Figure 5.18. We report

the main performance indicators, averaged over time, for different values of the reduced

dimension and boundary basis functions used in the offline phase. In terms of reduction

error, the behavior as a function of the reduced dimension reflects our expectations, as the

trend is exponentially decreasing. When the number of boundary basis functions is varied,

we still experience the trade-off between higher accuracy and larger variability, at least when

the number of latent variables is sufficiently large. The number of domain decomposition

iterations has a larger variation compared to the previous test cases, and it is influenced by

both the reduced dimension and the number of boundary basis functions. This reflects on the
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Figure 5.15 – Singular values of the nonlinear term and DEIM indices of the FitzHugh-Nagumo
problem.

(a) P1, FOM. (b) P1, ROM. (c) P1, error.

(d) P2, FOM. (e) P2, ROM. (f) P2, error.

Figure 5.16 – Numerical solutions and reduction error (first component) of the FitzHugh-
Nagumo problem.

computational cost, which depends on the dimensionality reduction factor and the varying

number of iterations.

5.3.5 Stokes-Darcy coupling

We now switch to a simple multi-physics problem, modeling the interaction between an in-

compressible flow governed by the unsteady Stokes equations and a porous medium described

by the unsteady Darcy equation [2]. Although in a relatively simple context, this problem

retains the main features of a multi-physics system, and is used to validate our technique with

a more heterogeneous coupled system. We considerΩ= [0,1]2, divided into two subdomains

by a horizontal interface Γ= [0,1]× {0.9}. The time domain is [0,T ] = [0,10]. The governing
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Figure 5.17 – Quantities of interest of the FitzHugh-Nagumo problem.

equation for P1 is ∂u
∂t −∇·σ(u, p) = 0, inΩ1,

∇·u = 0, inΩ1,
(5.21)

where σ
(
u, p

)= ν(∇u +∇uT
)−p I is the Cauchy stress tensor, ν= 0.04 the fluid viscosity and

u and p are the fluid velocity and pressure. The model for P2 is

∂q

∂t
−∇· (K∇q) = 0, inΩ2,

where K = 0.2 is the permeability coefficient. The fluid problem is completed by no-slip condi-

tions at the lateral boundaries {0,1}×[0.9,1] and a constant velocity profile u = (0,−10x(1−x))T

at the top boundary [0,1]×{1}, while the Darcy problem is solved with homogeneous Neumann

conditions at the lateral boundaries {0,1}× [0,0.9] and homogeneous Dirichlet at the bottom

boundary [0,1]× {0}. The initial condition is set to zero for both problems. At the interface we

consider

σ(u, p)n1 ·n1 =−q, K∇q ·n2 = u ·n1,
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Figure 5.18 – Comparison (number of basis functions and reduced dimension) of the time-
averaged quantities of interest of the FitzHugh-Nagumo problem.

together with a zero tangential velocity component for the fluid problem. We note that

Neumann interface conditions are used to define the coupled problem. This is common

practice for this problem, as they naturally arise in the weak form of the coupled problem and

lead to a symmetric system [42]. By introducing suitable coefficients, they can be combined in

a Robin form. As our main goal is to show that we can efficiently recover the solution of the

coupled problem by constructing local reduced models, rather than optimizing the coupling

conditions, we stick to this formulation for both the offline and online phase. Moreover,

as shown for simpler problems, we can expect that a nonzero Robin parameter would not

significantly alter the results.

Our numerical setting comprises a number of basis Nbasi s = 10 and a final time T = 10. The

spatial discretization is done using P2-P1, respectively P2, finite elements with a characteristic

mesh size h ≈p
2/40 for the Stokes, respectively Darcy, problem. An implicit Euler method

with a timestep ∆t = 0.5 is used for time integration. As this leads to a saddle point problem

for the fluid component, particular care has to be given to the construction of the reduced

model, as the vanilla reduced-basis model introduced in Chapter 2 may not be (inf-sup) stable.

Specifically, integrating (5.21) requires solving a system of the form[
A BT

B 0

][
u

p

]
=

[
f

g

]
. (5.22)

With our choice of the finite element spaces for the approximation of u and p, (5.22) is well-

posed. The reduced counterpart, constructed by computing the velocity and pressure bases

Uu and Up as described in Chapter 2,[
U T

u AUu U T
u BT Up

U T
p BUu 0

][
αu

αp

]
=

[
U T

u f

U T
p g

]
(5.23)

does not enjoy the same property. For this reason, we enrich the velocity basis Uu with

properly chosen (approximated) supremizer solutions [8]. The idea is to map each element

of the pressure space to a suitable velocity element ensuring the inf-sup condition, and to

include these in the velocity space. This leads to an enriched reduced space, making (5.23)
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stable. Consequently, we solve a problem of the form

K s(p j ) = BT p j (5.24)

for each pressure snapshot p j , collect the solutions s(p j ), and apply the POD to obtain a

number of supremizer modes that are added to the matrix Uu. The matrix K in (5.24) can be

chosen as the one arising from the discretization of the Laplace operator for u. We remark

that the supremizer enrichment is not the only technique that ensures stability of the reduced

system. Examples are the pressure Poisson formulation of the Navier-Stokes equations [121]

and the artificial compressibility method [36], which ensure stability at the full and the reduced

level for more general velocity-pressure spaces without the need to enrich the velocity space.

For this particular problem, the reduced dimension is set to k = 40 for each problem and

variable, and the velocity space is enriched with 40 supremizer modes. The singular values

of the local problems are reported in Figure 5.19 for each variable. The decay is quite fast,

meaning that the intrinsic dimension of the local problems is quite small. The solution of the

coupled problem at the final time is reported in Figure 5.20, together with the reduction error.

All components are accurately reproduced at a reduced level. Relevant indicators are shown in

Figure 5.21 as a function of time. For the selected hyperparameters, both the level of accuracy

and the computational speedup reach high values. We note that, although the introduction of

the supremizers negatively affects the computational cost, the speedup is still significant. The

number of iterations is found to be independent of the dimension of the problem.
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Figure 5.19 – Singular values of the Stokes-Darcy problem.

Concerning variations in the hyperparameters of the reduced model, Figure 5.22 reports the

relevant quantities of interest for different values of the reduced dimension and basis functions

used to generate the snapshots in the offline phase. Most of the comments related to the

previous test cases remain valid, even though the trend of the reduction error is less smooth

as compared to Figure 5.5. This is possibly due to the larger heterogeneity and complexity of

the problem, the addition of the supremizer modes, or a higher level of noise introduced by

higher frequency components.
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Figure 5.20 – Numerical solutions and reduction error of the Stokes-Darcy problem.

5.3.6 Fluid-Structure Interaction I

Our next test case involves a more complex, heterogeneous multi-physics problem, selected

as a prototype of general fluid-structure interaction problems. This is used to show the

applicability of our reduction method in a scenario which is even closer to practical multi-

physics problems. We considerΩ= [0,1.2]× [0,0.5], divided into two subdomains by a curved

interface as depicted in Figure 5.23. The time domain is [0,T ] = [0,0.5]. The governing

equations for P1 are again the Stokes equationsρ f ∂u
∂t −∇·σ f (u, p) = 0, inΩ1,

∇·u = 0, inΩ1,

where σ f
(
u, p

) = µ f
(∇u +∇uT

)−p I is the Cauchy stress tensor, ρ f = 1.0 and µ f = 1.0 are

the fluid density and viscosity, respectively, and u and p are the fluid velocity and pressure.

Conversely, the governing equation for P2 is the linear elasticity equation

ρs ∂
2η

∂t 2 −∇·σs(η) = 0, inΩ2, (5.25)

where

σs(η) = Eν

(1+ν)(1−2ν)

(∇·η)
I + E

2(1+ν)

(∇η+∇ηT )
is the elastic stress tensor. The physical parameters, ρs ,E and ν represent the density of the

solid, the Young’s modulus and the Poisson’s ratio, respectively. For this test we have used

[2] ρs = 1.0, E = 104, ν= 0.48. Equation (5.25) is split into two first-order systems in time by

defining

ξ= ∂η

∂t
.
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Figure 5.21 – Quantities of interest of the Stokes-Darcy problem.

The fluid problem is completed by no-slip conditions at the top and bottom boundaries

([0,1.2]× {0,0.5}) \ ([0.3,0.5]× {0}), a constant velocity profile u = (10y(0.5− y),0)T at the inlet

boundary {0}× [0,0.5], and no-stress at the outlet {1.2}× [0,0.5]. For the elastic problem we

assume homogeneous Dirichlet at the bottom boundary [0.3,0.5]× {0}. The initial conditions

are set to zero for both problems. At the interface we consider

u = ξ, σs(η)ns =−σ f (
u, p

)
n f ,

corresponding to a Dirichlet-Neumann coupling. As in the Stokes-Darcy problem, they can

be generalized to Robin conditions, but for the present problem this is not necessary. Thus,

we maintain this formulation, parametrizing the Dirichlet and Neumann data respectively.

We consider a number of basis Nbasi s = 10 and a final time T = 0.5. The discretization of the

fluid, respectively elastic, problem is done using P2-P1, respectively P2, finite elements in

space based on the mesh reported in Figure 5.23, and implicit Euler in time with ∆t = 0.02.

The reduced dimension is set to k = 80 for each problem and variable, and the velocity space

is enriched with 80 supremizer modes.

The singular values of the local problems are reported in Figure 5.24 for each variable. The

decay for the fluid problem, although exponential, is slower when compared to the previous

test case. This is not surprising, as the current problem exhibits more complex features. In

the elastic problem, the differences among the x- and y- component are minor, at least in

terms of singular values decay. The solution of the coupled problem and the corresponding

reduction error at the final time are reported in Figure 5.25 and Figure 5.26 for the fluid and

elastic subdomain, respectively. All the solution components are accurately reproduced at a
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Figure 5.22 – Comparison (number of basis functions and reduced dimension) of the time-
averaged quantities of interest of the Stokes-Darcy problem.

(a) Fluid. (b) Structure.

Figure 5.23 – Physical domain and computational mesh of the fluid-structure interaction
problem.

reduced level. Relevant quantities of interest are shown in Figure 5.27 as a function of time, for

which most of the comments made for the previous test cases remain valid. The complexity

of the problem, especially for the fluid component, leads to a lower efficiency of the reduced

model in comparison to the Stokes-Darcy problem, at least in terms of relative error.

Concerning variations in the hyperparameters of the reduced model, Figure 5.28 reports the

relevant quantities of interest for different values of k and Nbasi s . The results are consistent

with the previous test cases, although the error decay is negatively impacted by the high degree

of heterogeneity and complexity of the problem.
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Figure 5.24 – Singular values of the fluid-structure interaction problem.

(a) P1, ux , FOM. (b) P1, ux , ROM. (c) P1, ux , error.

(d) P1, uy , FOM. (e) P1, uy , ROM. (f) P1, uy , error.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0

20

40

(g) P1, p, FOM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0

20

40

(h) P1, p, ROM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

-0.1

-0.05

0

0.05

(i) P1, p, error.

Figure 5.25 – Numerical solutions and reduction error (fluid) of the fluid-structure interaction
problem.

5.3.7 Fluid-Structure Interaction II

With the aim of further increasing the complexity of the problem and reducing the simplifying

assumptions on the model and the discretization, we present a final test case in the fluid-

structure interaction framework. Indeed, the movement of the structure modifies the fluid

domain, which should be appropriately taken into account at a numerical level. This can be

done by means of the Arbitrary Lagrangian Eulerian (ALE) formulation, which introduces the

mesh displacement in the fluid domain as an additional variable. Performing a pull–back of
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Figure 5.26 – Numerical solutions and reduction error (structure) of the fluid-structure inter-
action problem.

the fluid equations onto the fluid reference configuration allows us to re-cast the problem in

our framework [93]. The test case we consider is the flow past two leaflets located in symmetric

positions in a confined channel, inspired by [93], and is characterized by three subproblems.

The geometrical setup is shown in Figure 5.29, in which the fluid domain has a dimension of

10×2.5 and each leaflet is 0.2×1.1 large and is located at x = 1 downstream. The governing

equations for the fluid problem P1 are the Navier-Stokes equations coupled with the mesh

displacement equation
−∆d f = 0, inΩ1,

ρ f J
∂u f

∂t +ρ f J∇u f F−1
(
u f − ∂d f

∂t

)
−∇· (Jσ f (u f , p f )F−T

) = 0, inΩ1,

∇· (JF−1u f
) = 0, inΩ1,

(5.26)

where u f , p f and d f are the fluid velocity, pressure and the mesh displacement, respectively.

Moreover,

σ f (
u f , p f

)=µ f
(
∇u f F−1 + (∇u f F−1)T

)
−p f I

is the Cauchy stress tensor, F = I +∇d f is the gradient of the ALE map, I is the identity tensor

and J = detF . Conversely, the governing equations for P2 and P3 are the linear elasticity

equation

ρs ∂
2η

∂t 2 −∇·σs(η) = 0, inΩ2, Ω3, (5.27)

where

σs(η) = Eν

(1+ν)(1−2ν)

(∇·η)
I + E

2(1+ν)

(∇η+∇ηT )
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Figure 5.27 – Quantities of interest of the fluid-structure interaction problem.
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Figure 5.28 – Comparison (number of basis functions and reduced dimension) of the time-
averaged quantities of interest of the fluid-structure interaction problem.

is the elastic stress tensor. The physical variables are the fluid density ρ f = 1.0 and viscosity

µ f = 0.035, the solid density ρs = 1.1 and the Lamé parameters µs = E
2(1+ν) = 105 and λs =

Eν
(1+ν)(1−2ν) = 8 ·105. As before, (5.27) is split into two first-order systems in time by defining

ξ= ∂η

∂t
.

The fluid problem is completed by no-slip conditions at the top and bottom boundaries, a

constant pressure p = 200 at the inlet boundary and no-stress at the outlet. For the elastic

problems we assume homogeneous Dirichlet at the corresponding physical boundaries. The

initial conditions are set to zero for both problems. At the interfaces P1-P2 and P1-P3 we

consider

u = ξ, d f =η, σs(η)ns =−Jσ f (
u f , p f

)
F−T n f ,
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corresponding to a Dirichlet-Neumann coupling. We consider a number of basis Nbasi s = 5

(a) Fluid. (b) Leaflets.

Figure 5.29 – Physical domain and computational mesh of the fluid-structure interaction
problem with ALE formulation.

for each variable and a final time T = 0.4. The discretization of the fluid, elastic, and geometric

problem is done using P2-P1, P2 and P2 finite elements in space based on the mesh reported

in Figure 5.29. Concerning the time discretization, in order to avoid solving a nonlinear system

at each iteration, we use the semi-implicit scheme proposed in [7] with a time step ∆t = 0.05.

For illustration purposes, we set the reduced dimension of the fluid problem to k = 180 for

each variable, with the velocity space enriched with an equal number of supremizer modes,

while the reduced dimension of the elastic and the geometric problem are set to k = 40 and

k = 10, respectively.

The singular values of the local problems are reported in Figure 5.30 for each variable. The

decay for the fluid problem is quite slow, consistent with the increasing complexity of the

fluid problem. This is enhanced by the nonlinear convective term in (5.26). Conversely, due

to the diffusion-dominated nature of the elastic and the geometric problem, high reduction

potential is expected for both. The solution of the coupled problem and the corresponding

reduction error at the final time are reported in Figure 5.31 and Figure 5.32 for the fluid and

elastic subdomain, respectively. The largest errors are observed around the interfaces and

close to the bottleneck, but with the reduced model we are still able to recover the main

components of the dynamics. Concerning variations in the hyperparameters of the reduced
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Figure 5.30 – Singular values of the fluid-structure interaction problem with ALE formulation.

model, Figure 5.34 reports the relevant quantities of interest for different reduced dimensions.

This test case being mostly a proof of concept, we did not make any effort in implementing a

hyper-reduction method, and we simply focus on the accuracy and the domain decomposition

iterations. Moreover, as the fluid problem is the most challenging component, we consider
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(a) P1, ux , FOM. (b) P1, ux , ROM. (c) P1, ux , error.

(d) P1, uy , FOM. (e) P1, uy , ROM. (f) P1, uy , error.

(g) P1, p, FOM. (h) P1, p, ROM. (i) P1, p, error.

Figure 5.31 – Numerical solutions and reduction error (fluid) of the fluid-structure interaction
problem with ALE formulation.
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Figure 5.32 – Numerical solutions and reduction error (leaflets) of the fluid-structure interac-
tion problem. Top: second leaflet (P3). Bottom: first leaflet (P2).

variations in the reduced dimension of this problem only. The error magnitude is larger

compared to the previous test cases, but increasing the size of the reduced problem appears

to have a beneficial effect for all the variables.
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(a) dx , FOM. (b) dx , ROM. (c) dx , error.

(d) dy , FOM. (e) dy , ROM. (f) dy , error.

Figure 5.33 – Numerical solutions and reduction error (geometry) of the fluid-structure inter-
action problem with ALE formulation.
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Figure 5.34 – Comparison (number of basis functions) of the time-averaged quantities of
interest of the fluid-structure interaction problem with ALE formulation.

5.4 Conclusion

In this chapter, we proposed a reduced basis method for coupled heterogeneous systems. Our

approach requires no offline simulations of the coupled problem, as it relies on local solvers
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5.4. Conclusion

only. The modifications to the local models are minimal, making the approach straightfor-

ward and easily generalizable to other problems of interest. The offline phase introduces an

artificial parametrization of the boundary conditions at the interface, which is used to collect

snapshots of a given subsystem. The online phase couples the reduced models using a domain

decomposition strategy inherited from the full order problem.

We showed that the solution of a given coupled, possibly multi-physics, problem can be effi-

ciently approximated by the reduced model. The reduction error depends on both the number

of boundary basis functions used in the offline phase and the reduced dimension, and a sweet

spot clearly appears. The computational cost is mainly influenced by the dimensionality

reduction factor, as the number of domain decomposition iterations is only mildly affected by

the reduction. Finally, the reduced models are found to be robust with respect to changes in

the coupling functions and parameters.

111





6 Non-intrusive approximations of the
boundary response maps

This chapter targets differential models similar to Chapter 5. We again assume that only

local solvers are available, meaning that each component possesses its own numerical im-

plementation. This is often the case in multi-physics problems, as discussed in Chapter 1.

Additionally, we assume that we not have access to the discretization operators and software

implementation, i.e., the local models are given as black boxes only. Each component can

therefore be thought as an input-output map, whereas the coupled system consists of the

interaction among them, as in Figure 6.1. Although our approach can potentially be applied

to any coupled system of this form, in the spirit of Chapter 5, we restrict ourselves to the PDE

case, meaning that each component is modeled through a differential equation. Although

S
x y = S (x)

(a) A single component.

S1 S2

ν

λ

(b) The coupled system.

Figure 6.1 – Coupled system modeled with black boxes.

the final goal would be to construct reduced models that are local in both the offline and

the online phase as in Chapter 5, we consider two different training strategies, depending on

whether the coupled model, i.e., the combination of the local solvers, is used or not.

This non-intrusive formulation requires recasting the domain decomposition algorithm in-

troduced in Chapter 5 in an operator form, modeling the boundary response of the system

[109]. Among other advantages, this formulation also incorporates the cases in which one

is interested in approximating the effect of a system onto another without particular rea-

sons to compute the solution [2], or when only boundary functionals can be accessed [111].

Then, after collecting input-output pairs of the relevant operators, the reduced models can be

constructed and combined as described in Chapter 2 and Chapter 5.
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Chapter 6. Non-intrusive approximations of the boundary response maps

In the intrusive framework, a variety of surrogate modeling techniques to construct local

reduced models, at least in the online phase, has already been proposed. If the coupled

problem is known, the problem boils down to reduced basis methods applied to multi-physics

[78, 93] or multi-component contexts [76, 144, 145, 9]. If unknown, one could apply the ideas

from Chapter 5, to which we refer for a detailed discussion. We take the main ideas from those

methods, but we wish to construct purely data-driven variants.

In the context of non-intrusive reduced models, several methods have been developed [143].

The most common examples include using Radial Basis Function interpolation [138], artificial

neural networks [71, 28, 54, 29], Gaussian Process Regression [65], operator inference [99]

and Dynamic Mode Decomposition [117], but many other alternatives exist. The learning

process is often split into a dimensionality reduction phase, which can be done using linear

or nonlinear methods, and the actual function approximation problem, similar to Chapter 2.

Depending on the specific application, the goal is to construct data-driven approximations

of the solution or the underlying differential operators. Such methods are usually easy to

design and they have proven their efficiency and robustness in a large number of complex

problems. However, they are not local, as their input typically includes the set of parameters of

the coupled problem, and they are not explicitly targeted to approximate the operators arising

from domain decomposition methods.

An alternative approach [2] constructs an approximation of the boundary response map, also

referred to as the Poincaré-Steklov operator, by simulating a local problem with a specific

set of input data. This method has been successfully applied in a number of multi-physics

problems, and can be viewed as a simpler version of the one that we present here. Indeed,

this method considers reduction of one subdomain only, in which the underlying differential

problem is linear, steady and non-parametrized, thereby significantly restricting its range of

applicability. A recent work [27] constructs an approximation of the local system response

through artificial neural networks. This method shares many features with our approach,

notably on the local and non-intrusive nature of the reduction technique. However, the use

of overlapping domain decomposition requires a careful definition of the system response

maps, for which their boundary nature is partially lost, and an a-priori knowledge of the size

of the overlap. Although it targets a complex multiscale problem, no physical parameters or

multi-physics systems are considered, which is in turn the focus of this work.

Thus, our method can be viewed as a combination of these classes of reduced models, as it is

local, data-driven and in principle agnostic to the nature of the underlying equations. Notably,

it can handle cases in which the coupled problem is not available in the offline phase, does not

require any knowledge of the discretization operators, and relies on the boundary response of

each subsystem.

The remainder of this chapter is structured as follows. In Section 6.1 we introduce the problem

of interest and its solution algorithm. Then, Section 6.2 presents our method, highlighting its

features in the offline and the online phase, an a-priori error estimate, and a discussion on the
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6.1. Problem formulation

computational cost. Section 6.3 presents different numerical results, showing the efficiency of

our method in a number of heterogeneous multi-physics problems. A few concluding remarks

are found in Section 6.4.

6.1 Problem formulation

We introduce a general mathematical formulation of coupled heterogeneous systems [61], leav-

ing the discussion on specific instances to Section 6.3. Although the focus is on parametrized

problems, at this stage we omit the parameter dependence of the relevant operators to avoid

complicating the notation. Moreover, as the majority of this chapter is devoted to steady

problems, we restrict here to this framework. Similarly, we consider two components only,

defined on as many subdomains. Appropriate comments concerning the extension to such

cases can be found at the end of this section.

LetΩ be a domain, and let ∂Ω be its boundary. Moreover, letΩ1,Ω2 be two non-overlapping

subdomains such thatΩ=Ω1 ∪Ω2. The interface between the two is denoted by Γ. We are

interested in coupled systems of the form

Li (ui ) = fi , inΩi , (6.1a)

hi (ui ) = 0, on ∂Ωi \Γ,

Φ1 (u1) =Φ2 (u2) , on Γ,

Ψ2 (u2)+Ψ1 (u1) = 0, on Γ,

for i = 1,2, where Li is a generic second order differential operator modeling the dynamics of

problem P i and fi is a given source term. Moreover, the boundary conditions on the physical

domain boundaries are encoded by the operators hi (ui ), whereas the interactions between

the components are modeled through suitable functionsΦi andΨi [61]. Although the specific

form of these functions is problem-dependent, they are typically designed to enforce compat-

ibility constraints across the domains, including continuity of the solution and the normal

fluxes or stresses. Therefore, the functions Φi model Dirichlet-like conditions, that can be

typically enforced by choosing appropriate functional spaces, whereas the functionsΨi model

Neumann-like conditions, that enter directly in the weak formulation of the problems. More

general coupling terms can be considered, including Robin-like conditions as in Chapter 5,

but the general form (6.1) remains unchanged.

Remark 6.1 The formulation considered in (6.1) is equivalent to the one introduced in Chap-

ter 5, i.e., (5.1), up to a change in the notation. This helps to highlight the different nature of

the Dirichlet-like and Neumann-like conditions, rather than the similar structure of the local

problems and the artificial parametrization as was done in Chapter 5.

As we aim to compute the solution of (6.1) using local solvers only, the non-overlapping

Schwarz iterative algorithm discussed in Chapter 5 can still be used. This allows us to decouple
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Chapter 6. Non-intrusive approximations of the boundary response maps

the local problems, for which ad-hoc independent models are available, that can in turn be

replaced by appropriate surrogates. The idea is to use fixed-point iterations, solving the local

problems P i with educated guesses on the respective boundary conditions, which are in turn

iteratively corrected using the updated local solutions. Denoting such iterations with s, and

assuming that a suitable guess us
i on the local solutions ui is given, one can proceed as follows:

1. Solve L1(us+1
1 ) = f1 with boundary conditions h1

(
us+1

1

)= 0 and

Φ1
(
us+1

1

)=Π12Φ2
(
us

2

)
.

2. Solve L2(us+1
2 ) = f2 with boundary conditions h2

(
us+1

2

)= 0 and

Ψ2
(
us+1

2

)+Π21Ψ1
(
us+1

1

)= 0.

3. Do a relaxation step, i.e.,Φ2
(
us+1

2

)←ωΦ2
(
us+1

2

)+ (1−ω)Φ2
(
us

2

)
, for some ω ∈ (0,1].

These steps are repeated until a suitable convergence criterion is met. Unless stated otherwise,

here we adopt

εs+1 = ∥∥Φ2
(
us+1

2

)−Φ2
(
us

2

)∥∥
Γ.

Unlike the general formulation (6.1), in Steps 1 and 2 we explicitly introduced the mesh

projection operators Πi j . They allow us to exchange interface data from problem P j to

problem P i , which can be discretized with two independent meshes that may not feature

interface conformity [145]. We note that the use of a Gauss-Seidel algorithm exhibits faster

convergence rates and simplifies the description of our method. Additional details on the

procedure can be found in Chapter 5.

In this form, the algorithm requires an explicit computation of the local solutions at each

iteration. However, only specific boundary functionals are required to propagate information

throughout the fixed-point iterations [109, 2]. Therefore, we can introduce the following

boundary operators:

A :Π12Φ2(u2) 7→Ψ1(u1), (6.2)

and

B : −Π21Ψ1(u1) 7→Φ2(u2). (6.3)

They encode the boundary response of each local problem when subject to a given boundary

condition. In practice, this stands for: take an interface datum that depends on the neighboring

solution, solve the local problem with the appropriate boundary condition, compute a boundary

functional of the solution itself. As the functionsΦi andΨi are associated to Dirichlet-like and

Neumann-like conditions, the operators (6.2) and (6.3) can be respectively interpreted as the

Dirichlet-to-Neumann and Neumann-to-Dirichlet maps, which play a crucial role in domain

decomposition methods [37]. They are also referred to as Poincaré-Steklov operators, although

this terminology has been historically introduced for a Laplace equation only. Critically, (6.2)
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6.1. Problem formulation

and (6.3) are local to a given subdomain, and they can in principle be defined independently

of the coupled system. Using them, the iterative Schwarz procedure can be recast, assuming

that a suitable guessΦ2(us
2) is given, as:

1. ComputeΨ1(us+1
1 ) =A (Π12Φ2(us

2)).

2. ComputeΦ2(us+1
2 ) =B(−Π21Ψ1(us+1

1 )).

3. Do a relaxation step, i.e.,Φ2
(
us+1

2

)←ωΦ2
(
us+1

2

)+ (1−ω)Φ2
(
us

2

)
, for some ω ∈ (0,1].

Introducing the variable

λ=Φ2 (u2) , (6.4)

the algorithm further simplifies to a single fixed-point equation as

λs+1 =ωB
(−Π21A

(
Π12λ

s))+ (1−ω)λs . (6.5)

Remark 6.2 In this work, we always deal with parametrized problems. This implies that all

the operators in (6.1), as well as the solutions ui , are parameter-dependent. Thus, the Dirichlet-

to-Neumann and Neumann-to-Dirichlet maps would look like

A :
(
Π12Φ2(u2(µ1,µ2),µ2),µ1

) 7→Ψ1(u1(µ1,µ2),µ1), (6.6)

and

B :
(−Π21Ψ1(u1(µ1,µ2),µ1),µ2

) 7→Φ2(u2(µ1,µ2),µ2), (6.7)

where µi is a vector containing the parameters of problem P i . Therefore, the input of the

operators will always include the values of µi in addition to the boundary datum. This does not

add any significant change to the proposed procedure, which is mainly designed to deal with

the input boundary condition, i.e., the first input of (6.6) and (6.7). This is why we omit this

dependence, unless strictly necessary.

Formally, the algorithm does not involve internal solution values, as the operators are defined

on Γ. Thus, if one is interested in retrieving the full solution, an option is to solve the local

problems (6.1a) with appropriate boundary conditions once convergence is reached. An

alternative consists of constructing a local interpolation method similar to [71], but this is left

as an extension of our method, which instead focuses on propagating information across the

boundary. However, we mention that in several cases there is no specific need to reconstruct

the entire solution as only the effect of a subsystem is necessary [2], and the local solvers might

give access to boundary quantities only [111].

Remark 6.3 We assume that the black-box solvers can be queried to retrieve the output of the

operators (6.2) and (6.3) directly, in the spirit of [111]. If this is not the case, and only the solution
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values can be accessed, a pre-processing step can be added in order to compute the boundary

functionals associated to the operators.

Remark 6.4 Assuming that the solution values can be accessed, one could construct a reduced

model to approximate the local solution at each step of the fixed point method, similar to [71],

and reconstruct the boundary functional in a post-processing step to propagate the relevant

information. There is nothing that prevents one from doing this, and it would arguably be

needed if physics-informed variants of the method have to be designed [28] or if one wishes to

reconstruct the solution at convergence without solving an additional problem or constructing

another surrogate. However, in its naive version, we conjecture that learning the full solution

would lead to less accurate methods, as one would have to approximate the solution in the

entire domain instead of a boundary functional only.

Before concluding this section, we briefly discuss the case of more complex problems. If

more than two subdomains are considered, the main ideas carry over, up to a few aspects.

Firstly, one needs to take particular care in assuring well-posedness of the local problems and

the iterative scheme, which can be at stake if Dirichlet-Neumann iterations are considered.

Secondly, the boundary maps are defined on the entire interface of each subproblem, say

Γi =⋃
j∈Ii

Γi j , where Ii is the index set of the subproblems that share an interface Γi j with

problem P i . In this regard, combinations of Dirichlet and Neumann data may appear both

at the input and the output. Thirdly, an appropriate processing of the elements should be

designed if a Gauss-Seidel procedure is used [22]. Extending the method to unsteady cases

can potentially be more challenging. An option is to embed the time loop into the fixed point

iterations. This implies that at each step of the domain decomposition loop, a parabolic-like

problem is solved with appropriate time-dependent boundary conditions, similar to (6.2) and

(6.3) [104]. The dual option, consisting of solving an interface equation at each time step,

could also be considered [37]. Although the latter appears to be more natural, in view of the

reduction procedure proposed in Section 6.2, we stick to the former.

6.2 Non-intrusive model reduction

Now, we present how to construct data-driven approximations of (6.2), (6.3) and ultimately

(6.5). We discuss features, training procedures, accuracy and computational complexity.

6.2.1 Approximating boundary maps

As our operator approximation problem falls in the class described in Chapter 2, we refer to

that for more details. Here, we highlight a few additional problem-specific aspects.

As discussed in Remark 6.2, the problems are parameter-dependent. For the Dirichlet-to-

Neumann map (6.6), this implies that:
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6.2. Non-intrusive model reduction

• The input consists of instances of the boundary input Π12Φ2(u2) and the physical

parameter values µ1. The dimensionality reduction discussed in Chapter 2 is applied

only to the former, as the dimensionality of the parameter space is typically small, and

adding an additional reduction step might lead to a loss in the physical interpretability

of the values of µ1. The scaling is instead kept as discussed in Chapter 2. We numerically

observed that a min-max scaling appears to give the best results.

• The output consists of instances of the boundary outputΨ1(u1). The dimensionality

reduction and the scaling are carried out as in Chapter 2, and a standard scaler is chosen.

A similar discussion holds for the Neumann-to-Dirichlet map (6.7).

The generation of the training set plays a significant role, and can be done in two alternative

ways:

• If the coupled problem is available and its computational cost is not prohibitive, train-

ing data can be generated by repeatedly simulating it. After appropriately sampling

the physical parameter space, we run the non-overlapping Schwarz method for each

parameter value. From the local problems, we extract the Dirichlet- and Neumann-like

data, and we add them to the training set.

• If the coupled problem is available but computationally expensive or is not known in the

training phase, the local problems need to be considered independently and artificial

data need to be constructed, similar to Chapter 5. Focusing on P1 for simplicity, an

option is to solve

L1(u1) = f1, inΩ1, (6.8a)

h1 (u1) = 0, on ∂Ω1 \Γ,

Φ1 (u1) = g , on Γ, (6.8b)

for different instances of the datum g . To generate physically relevant boundary condi-

tions, we first expand g as

g =
Nexp∑
j=1

β jϕ j , (6.9)

where
{
ϕ j

}Nexp

j=1 are boundary modes stemming from the eigenfunctions of the interface

Laplace-Beltrami operator

−∆ϕ j =ω jϕ j , on Γ. (6.10)

The boundary conditions of (6.10) are in general problem-dependent, and specific

choices will be discussed in Section 6.3. As a general rule, both Dirichlet and Neumann

can be used as in Chapter 5, or an appropriate lifting procedure should be designed.

However, in a number of cases, including closed interfaces or when the interface shares

its boundary with the physical one, more specific choices can be made, with the goal of
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keeping the value of Nexp controlled.

The sampling of the coefficients β j in (6.9) plays a key role, as we need to capture a

variety of possible inputs. Although many options can be considered [119], a simple

choice consists of a (quasi)-random sampling in the Nexp -dimensional hypercube

[−A, A]Nexp for a suitable constant A > 0. Additionally, to take into account a certain

smoothness of the input data, we re-scale the coefficients to impose a certain decay rate

r as the eigenfrequency increases. Both A and r are problem-dependent parameters,

but the input and output scaling appears to reduce their impact at a numerical level.

For each instance of the coefficients β j , the local problem is solved for multiple values

of the physical parameters, that can be obtained using again a random sampling. The

resulting input-output pairs constitute our training set.

Following Chapter 2, we can construct two approximations Â and B̂ of the reduced boundary

maps such that

A (x) ≈UA
y Â ([UA

x ]T x),

and

B(x) ≈UB
y B̂([UB

x ]T x),

where UA
y ,UA

x ,UB
y ,UB

x perform the dimensionality reduction as in (2.24) and (2.25). The

fixed-point algorithm becomes then:

1. Compute áΨ1(us+1
1 ) =UA

y Â ([UA
x ]TΠ12

àΦ2(us
2)).

2. Compute áΦ2(us+1
2 ) =UB

y B̂(−[UB
x ]TΠ21

áΨ1(us+1
1 )).

3. Do a relaxation step, i.e., áΦ2
(
us+1

2

)←ω áΦ2
(
us+1

2

)+ (1−ω) àΦ2
(
us

2

)
, for some ω ∈ (0,1].

Mimicking (6.4) and (6.5), we can write it as

λ̂s+1 =ωUB
y B̂

(
−[UB

x ]TΠ21UA
y Â

(
[UA

x ]TΠ12λ̂
s
))
+ (1−ω)λ̂s . (6.11)

The proposed methodology can be extended to more complex problems. If more than two

subdomains are considered, the method generalizes in a straightforward way. Note that the

functions ϕ j in (6.9) can be obtained by solving (6.10) at each subinterface. In the case of

time-dependent problems, both the input and the output are space-time functions. The

dimensionality reduction can be done considering a space-time basis, constructed as the

Kronecker product between a spatial and a temporal basis obtained by two SVDs on the

appropriately reshaped training data [125]. The space-time analogous of (6.9) is

g (ξ, t ) =
Nexp,ξ∑

j=1

Nexp,t∑
k=1

β jϕ j (ξ)`k (t ), (6.12)
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6.2. Non-intrusive model reduction

where ξ is a curvilinear coordinate defined on the interface, t is time, and Nexp,ξ, Nexp,t denote

the number of functions used to expand the datum in space and time, respectively. For the

latter, we use a Taylor expansion.

Remark 6.5 This method is agnostic to the underlying differential problem, and can in princi-

ple be applied to any system of interest without major modifications. However, if additional

knowledge of the problem is available, other model reduction strategies could also be designed,

on the line of operator inference approaches [99]. An example concerns linear problems, in

which the boundary operators are affine in the input for each parameter value. Exploiting this,

one could solve a least-square problem to retrieve the reduced operators for each physical pa-

rameter, and do the interpolation in the physical parameter space only. This has few advantages,

including a higher accuracy and a lower computational complexity, but extending it to general

nonlinear problems might be prohibitive.

6.2.2 Error analysis

Qualitatively, the quality of the approximation will depend on both the dimensionality reduc-

tion error and the data-driven function approximation error. Here, we make this argument

more rigorous. For simplicity, we consider a steady problem with two subdomains only, and

we assume that the meshes are conforming at the interface and that no relaxation is neces-

sary for convergence. We denote with (n,m) and (N , M) the input and output dimensions

before and after the dimensionality reduction, respectively, while N is the number of training

samples. We add appropriate subscripts when necessary.

We aim at estimating the error between the solution λ of true fixed point mapping

λ=F (λ) =B (−A (λ)) , (6.13)

and its surrogate λ̂, which solves the reduced problem

λ̂= F̂ (λ̂) =UB
y B̂

(
−[UB

x ]T UA
y Â

(
[UA

x ]T λ̂
))

,

under appropriate regularity assumptions on the true operators A and B.

Following the derivation proposed in Appendix 6.A, we obtain

∥∥λ− λ̂∥∥≤ K1(params,λ,A ,B)

1−LF −K2(params,λ,A ,B)
, (6.14)

where

params= (MB , NB ,NB , MA , NA ,NA )

is the collection of the model hyperparameters and LF < 1 is the Lipschitz constant of (6.13).

The functions K1 and K2 are appropriate functions of params, the true operators A and B,

and the true solution λ, see (6.24). Note that (6.14) holds when K2 < 1−LF , which is the case
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for sufficiently large values of the model parameters.

6.2.3 Computational cost

We conclude this section with a brief remark on the computational complexity of our method

in the online phase. Let κi be the number of the degrees of freedom of problem P i and let

κΓ be the number of interface degrees of freedom for both problems. The true fixed-point

algorithm has a complexity of

CF =O (κα1 )+O (κα2 )

at each iteration, up to terms depending on κΓ. The exponent α depends on the discretization

algorithm at hand, and typically α= 2 for a classical finite element discretization. Instead, the

approximated mapping costs

CF̂ =O (κΓNA +CÂ +κΓMA )+O (κΓNB +CB̂ +κΓMB), (6.15)

at least in its naive implementation (6.11). The costs of evaluating the approximated mappings

are denoted by CÂ and CB̂ , respectively. For the VKOGA, we have

C î =O (Ni Ni +Mi Ni ), i ∈ {A ,B} , (6.16)

whereas for the ANN implementation with L+1 layers of size
{
k l

i

}L

l=0
we have

C î =O

(
Li∑

l=1
k l

i k l−1
i

)
=O

(
Ni k1

i +
Li−1∑
l=2

k l
i k l−1

i +Mi kLi−1
i

)
, i ∈ {A ,B} .

The dependence of (6.15) on κΓ can be eliminated if the mesh projection operators are linear

and one can precompute the linear terms in (6.11). To maintain a full independence between

the components, we consider its standard version.

6.3 Numerical results

We now present a number of applications, aiming to show the efficiency of our method. Unless

stated otherwise, the errors are measured using the relative L2-norm in the appropriate spatial

domain, the tolerance for the Schwarz iterations is tol = 10−6, and a zero initial guess is used

for both the full and the reduced model.

6.3.1 Diffusion on a Cartesian geometry

Our first system of interest consists of a parametrized diffusion problem, with possibly different

diffusion coefficients between the components. The parameters are designed to control the

strength of the dissipation terms, similar to [60]. The main goal of this test case is to validate

our technique in a relatively simple framework, mostly dictated by the elliptic and linear nature
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of the problem. We considerΩ= [0,1]× [0,2], divided into two subdomains by a horizontal

interface Γ located at y = 1. The governing equation for P i is

−∇· (µi∇ui
)= fi , inΩi ,

where fi = 20+10x −5y and

µi =µ+
p∑

j=1
w i

j jσ(1+ai
j ), where ai

j = sin

(⌊
j +2

2

⌋
π(x −xi

0)

)
sin

(⌈
j +2

2

⌉
π(y − y i

0)

)
.

The shift µ and decay σ are constant and equal to 1 and −1, respectively, whereas the number

of harmonics p in each subdomain is fixed to a value of 1, 2 or 3, depending on the specific

application. The sinusoidal terms are centered at (x1
0 , y1

0) = (0,1) and (x2
0 , y2

0) = (0,0), respec-

tively, and they are weighted with problem-dependent parameters w i
j ∈ [0,1]. At the physical

boundaries, we consider homogeneous Dirichlet conditions, whereas the interface coupling

conditions are of a standard Dirichlet-Neumann form, i.e.,

u1 = u2, on Γ,

µ2∇u2 ·n2 +µ1∇u1 ·n1 = 0, on Γ.

We discretize the problem using P1 finite elements in both subdomains, defined on two

meshes with approximate sizes of h ≈p
2/40.

Firstly, we consider training data stemming from the coupled problem and we fix the relevant

hyperparameters. We consider p = 2 and 247 parameter samples generated with a Latin

Hypercube Sampling technique. The singular vectors and the first 4 (resp. 6) modes obtained

with the SVD on the input (resp. output) data are reported in Figure 6.2. The singular values

decay exponentially and the dominant modes encode low frequency components, which

indicate an efficient dimensionality reduction. As expected, the differences between the input

of P1 and the output of P2, as well as between the output of P1 and the input of P2, are mild

or zero. After selecting NA = NB = 4 and MA = MB = 6, we use the VKOGA with a Matérn

kernel (ν= 2.5) to construct the interpolator, whose performance is subsequently tested for a

parameter value outside the training set. The fixed point iterations (ω= 0.5) give the results

reported in Figure 6.3. Visually, the difference between the full (λ) and the reduced (λ̂) fixed

point variable at convergence is mild. The fixed point error slightly deviates from the true line,

especially when small values are reached, but convergence is not compromised. By solving

the local problems with the converged boundary values, we obtain the solutions shown in

Figure 6.4, which confirms the high accuracy of our method and qualitatively validates its

efficiency.

We now study the effect of varying hyperparameters on the reduction. Specifically, we are

interested in how the number of input and output modes affect the accuracy of the method.

To have a more comprehensive analysis, we consider the cases with p = 1, p = 2 and p = 3

parameters per subdomain, with the other hyperparameters unchanged. The results are
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(b) P1, input singular vectors.
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(c) P1, output singular vectors.
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(d) P2, Singular values.
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(e) P2, input singular vectors.
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(f) P2, output singular vectors.

Figure 6.2 – Singular values and singular vectors associated to the diffusion problem, training
done with the coupled model.

reported in Figure 6.5. Consistent with the theoretical analysis provided in Section 6.2, an

initial increase in the output dimension has a beneficial effect, as the dimensionality reduc-

tion error decreases. This holds true until a plateau is reached, and increasing the output

dimension has no effect on the accuracy. This saturation level is due to the input projection

and interpolation errors. Here, the former dominates, as an increase in the input dimension

lowers this threshold, at least until very small error magnitudes are reached. Qualitatively, no

significant differences appear if the number of physical parameters is changed. However, the

error magnitude is negatively affected by an increase in p, as the larger snapshots variability

gives a larger dimensionality reduction error.
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(b) Fixed point error.

Figure 6.3 – Results of the diffusion problem, training done with the coupled model.
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(c) Pointwise error.

Figure 6.4 – Solution of the diffusion problem, training done with the coupled model.

2 4 6 8 10 12 14
N_output

10 7

10 6

10 5

10 4

10 3

er
ro

r

Coupled training (N_param = 1)
err (N_input=2)
err (N_input=4)
err (N_input=6)
err (N_input=8)

(a) p = 1.

2 4 6 8 10 12 14
N_output

10 5

10 4

10 3

er
ro

r

Coupled training (N_param = 2)
err (N_input=2)
err (N_input=4)
err (N_input=6)
err (N_input=8)

(b) p = 2.

2 4 6 8 10 12
N_output

10 5

10 4

10 3

er
ro

r

Coupled training (N_param = 3)
err (N_input=2)
err (N_input=4)
err (N_input=6)
err (N_input=8)

(c) p = 3.

Figure 6.5 – Reduction errors of the diffusion problem for varying number of SVD modes,
training done with the coupled model.

We now repeat the analysis using the alternative training strategy we proposed, i.e., we generate

snapshots using the two subproblems separately. All the relevant hyperparameters are kept

unchanged, except those related to the training set, which is now generated with 10 samples

of the physical parameters and 200 samples of the artificial parameters for each subproblem.

The interface Laplace problems are solved analytically with Dirichlet boundary conditions,

and only the first NA = NB = 4 modes are kept. A scaling factor of A = 10 and a decay rate

of r = 3 (resp. r = 2) is selected for P1 (resp. P2). Looking at the input singular values and

modes in Figure 6.6, we observe that only the first NA , NB have a nonzero value. As the

input data are a linear combinations of NA eigenfunctions, this is not surprising, and the

corresponding singular vectors clearly resemble the Laplace modes. This does not hold true

for the output, as the varying physical parameters prevent a similar exact reconstruction.

However, the decay appears to be exponential, so that one can conjecture that the reduction

is not severely compromised despite the different training strategy. This is confirmed by

looking at both the fixed point variables and numerical solutions obtained with a VKOGA

interpolator, reported in Figure 6.7 and Figure 6.8 respectively. Most of the comments related

to the previous analysis remain valid. However, albeit at a qualitative level, the deviations from

the full order model appear to be more evident compared to Figure 6.3 and Figure 6.4. The
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training data are generated independently of the coupled problem, and they need to be robust

with respect to any incoming datum. This increased level of robustness negatively affects the

accuracy.
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Figure 6.6 – Singular values and singular vectors associated to the diffusion problem, training
done with the decoupled model.
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Figure 6.7 – Results of the diffusion problem, training done with the decoupled model.

This argument can be made more rigorous by looking at the model accuracy as a function of

the hyperparameters, reported in Figure 6.9. Here, we use 200 artificial parameter samples for

NA ≤ 5 and 800 samples when NA > 5. Again, the total error is affected by the dimensionality

reduction and interpolation error, but its magnitude is generally larger when compared to

Figure 6.5. Given that there is no problem-dependent bias on the input data, samples need to
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Figure 6.8 – Solution of the diffusion problem, training done with the decoupled model.

be taken in a possibly high-dimensional hypercube. The curse of dimensionality has a clear

impact, and it is the main responsible for the suboptimal behavior of the error as the input

dimension is increased.
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Figure 6.9 – Reduction errors of the diffusion problem for varying number of SVD modes,
training done with the decoupled model.

6.3.2 Diffusion on a circular geometry

Our second problem, adapted from [145], has a similar physical nature to the previous one,

as it still consists of a parametrized diffusion equation with a discontinuous viscosity profile.

However, it is defined on a circular domain and features a circular interface, and the resulting

meshes possess an interface nonconformity. Thus, this test case has the main objective to

show the potential of our technique in a more geometrically challenging setting. We takeΩ

to be the circle of radius Rext = 2, which is separated into an internal circular and an external

annular region, denoted by Ω1 and Ω2 respectively, by a circular interface at Rint = 1. The

governing equation for P i is

−∇· (µi∇ui
)= fi , inΩi ,
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where fi = 10x(exp
(
y
)−1.0)sin

(
πy

)
and

µi =µ+5Ai x2,

in which µ = 5, and Ai are parameters chosen in the interval [0,1]. Only the external prob-

lem has a physical boundary, on which we set a Dirichlet condition u2 = 0.1. The interface

conditions are again of the Dirichlet-Neumann form, i.e.,

u1 = u2, on Γ,

µ2∇u2 ·n2 +µ1∇u1 ·n1 = 0, on Γ.

We discretize both problems using P1 finite elements, defined on meshes with respective sizes

of h1 ≈ 0.05 and h2 ≈ 0.1. The resulting meshes are reported in Figure 6.10, which clearly

shows the interface nonconformity. To handle this, suitable mesh transfer operators need to

be constructed. Here, we use the Radial Basis Functions [38], so that

(Π12g )(xΓ1
i ) =

NΓ2∑
j=1

φ
(∥∥∥xΓ1

i −xΓ2
j

∥∥∥)
α j .

Here, xΓi

j refers to the j -th point on the interface Γi , and α j are the interpolation coefficients,

that can be found by solving

NΓ2∑
j=1

φ
(∥∥∥xΓ2

k −xΓ2
j

∥∥∥)
α j = g (xΓ2

k ).

Unlike the original version [38], we select φ(r ) = exp(−r ) and we do not re-scale the operator.
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Figure 6.10 – Meshes of the diffusion problem on a circular geometry.

As before, we first validate our methodology using training data stemming from the coupled
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problem and fixing the relevant hyperparameters. We consider and 247 diffusion samples,

which result in the singular values reported in Figure 6.11. A relatively fast decay is observed,

thereby motivating the choice of NA = NB = 6 and MA = MB = 16, and the use of the VKOGA

interpolator (ν = 2.5). The domain decomposition iterations (ω = 0.5) lead to the results

reported in Figure 6.12 and the corresponding solutions are shown in Figure 6.13. The circular

geometry introduces, at least for this particular problem, a more complex solution profile at

the interface. Higher frequencies are present, so that a larger number of interface modes is

required to achieve a high accuracy compared to its Cartesian counterpart. If that is taken

into account, the interpolation error does not destroy the efficiency of the method, and the

resulting reduced order solution visually resembles the full order one.

0 20 40 60 80 100 120
i

10 12

10 9

10 6

10 3

100

103

i

input
output

(a) P1.

0 10 20 30 40 50 60
i

10 7

10 5

10 3

10 1

101

103

i

input
output

(b) P2.

Figure 6.11 – Singular values of the diffusion problem on a circular geometry, training done
with the coupled model.
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Figure 6.12 – Results of the diffusion problem on a circular geometry, training done with the
coupled model.

More quantitatively, we now vary the number of input and output modes. In parallel, we

also use this test case to assess the computational performance of our method. The results
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Figure 6.13 – Solution of the diffusion problem on a circular geometry, training done with the
coupled model.

of both analyses are reported in Figure 6.14. The error saturation observed in the previous

test case does not appear here, at least for the hyperparameter values that we considered

here. This is possibly due to the very simple nature of the problem, which possesses a high

reduction potential. A similar trend is observed in Figure 6.5(a). The surrogate model is shown

to be faster than its full order counterpart, with speedup values of around 25. Given the linear

nature of the full problem and its relatively mild number of degrees of freedom, at least when

compared to the training samples, this value is quite satisfactory. A further increase in the

problem complexity and a higher mesh resolution contribute to obtain larger values. No

significant changes are observed if more input or output modes are taken, suggesting that

one could take relatively large values without significantly compromising the computational

benefits.
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Figure 6.14 – Reduction errors and computational cost of the diffusion problem on a circular
geometry, training done with the coupled model.

Alternatively, one could also consider a decoupled training strategy. The snapshots are gen-

erated with 10 physical and 200 artificial parameter values, unless stated otherwise. As the

interface is a closed curve, we consider periodic boundary conditions to solve the interface
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Laplace problem, in the spirit of a classical Fourier expansion. The values of the scaling

A = 10 and the decay rates r = 3 and r = 2 are kept as in the previous test case. Considering

NA = NB = 13 = 6 ·2+1 basis functions, corresponding to sinusoidal, cosinusoidal, and the

constant function, and simulating the local problems, we obtain the singular values shown

in Figure 6.15. Solving the coupled problem using fixed point iterations at the full and the

reduced level (MA = MB = 16), we obtain the solution trace and the corresponding solutions

reported in Figure 6.16 and Figure 6.17. A larger error is observed with respect to its counter-

part shown in Figure 6.13, as the training strategy is designed to trade efficiency for robustness.
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Figure 6.15 – Singular values of the diffusion problem on a circular geometry, training done
with the decoupled model.
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Figure 6.16 – Results of the diffusion problem on a circular geometry, training done with the
decoupled model.

To conclude the analysis, in Figure 6.18 we assess the efficiency of the method in terms of

accuracy and computational cost when the hyperparameters are varied. Here, we use 200

artificial parameter samples for NA ≤ 5 and 800 samples when NA > 5. The error components
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Figure 6.17 – Solution of the diffusion problem on a circular geometry, training done with the
decoupled model.

are clearly visible, as increasing the output dimension improves the accuracy until the input

projection error starts to play a role. Due to the high frequency components of the fixed point

variable, a quite large number of basis functions are required to obtain an accurate solution.

The computational speedup obtained with the surrogate iterations ranges from 10 to 30, which

is quite satisfactory, given that the training is completely agnostic to the coupled problem.

The noticeable difference between the different values of the input dimension is due to the

choice of a different number of artificial training samples, which has an approximately linear

impact on the cost as in (6.16). Otherwise, no significant variations are present.

2 4 6 8 10 12 14 16
N_output

10 2

10 1

er
ro

r

Decoupled training
err (N_input=3)
err (N_input=5)
err (N_input=7)
err (N_input=9)
err (N_input=13)

(a) Reduction error.

2 4 6 8 10 12 14 16
N_output

10 1co
st

Decoupled training
err (N_input=3)
err (N_input=5)
err (N_input=7)
err (N_input=9)
err (N_input=13)
FOM

(b) Computational cost.

Figure 6.18 – Reduction errors and computational cost of the diffusion problem on a circular
geometry, training done with the decoupled model.

6.3.3 Fluid-Structure Interaction

We move now to a more physically complex problem, which models the interaction between a

fluid and an elastic structure [19]. This is designed to test our methodology in a more realistic

scenario, characterized by a high degree of heterogeneity between the components. Addi-

tionally, the problem involves vector-valued differential equations and coupling conditions.
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Initially, the fluid domain isΩ1 = [0,5]× [0,0.5], on top of which lies an elastic structure with

domainΩ2 = [0,5]× [0.5,0.6]. Tracking the change of the domain induced by the structural

displacement using the ALE formulation, we can re-cast the fluid-structure problem as a

coupled system of the form introduced in Section 6.1 [78]. The governing equations for P1 are

the Navier-Stokes equations coupled with the mesh displacement equation
−∆d f = 0, inΩ1,

ρ f J∇u f F−1u f −∇· (Jσ f (u f , p f )F−T
) = 0, inΩ1,

∇· (JF−1u f
) = 0, inΩ1,

where u f , p f and d f are the fluid velocity, pressure and the mesh displacement, respectively.

Moreover,

σ f (
u f , p f

)=µ f
(
∇u f F−1 + (∇u f F−1)T

)
−p f I

is the Cauchy stress tensor, F = I +∇d f is the gradient of the ALE map, I is the identity tensor

and J = detF . The governing equation for P2 is instead the elasticity equation defined by

−∇·P s(ηs) = 0, inΩ2,

where P s is the first Piola tensor, whose expression depends on the constitutive relation of the

solid. Here, we consider a Saint Venant-Kirchhoff model [78], which gives

P s = Fs
(
2µs E +λs tr{E }I

)
, where E = 1

2

(
F T

s Fs − I
)

and Fs = I +∇ηs .

The physical variables are the fluid density ρ f = 1.1 and viscosity µ f = 0.1+0.4µ0 and the

Lamé parameters µs = E
2(1+ν) and λs = Eν

(1+ν)(1−2ν) , which in turn depend on the Young modulus

E = 107 +5 ·107E0 and the Poisson ratio ν= 0.31. The physical parameters of interest are µ0

and E0, both of which vary in the unit interval. As boundary conditions on the fluid physical

domain, we impose a pressure pin = 104 ·5 ·10−3 at the inlet boundary, a zero-stress condition

at the outlet boundary, and a slip condition at the bottom boundary [19]. Homogeneous

Dirichlet and Neumann conditions are set at the left/right and top boundary of the structure,

respectively. The coupling conditions read

d f =ηs and u f = 0, on Γ, (6.17)

Ps ns +
(

Jσ f F−T )
n f = 0, on Γ. (6.18)

To ensure accuracy and stability at a full level, we discretize the fluid, structural, and geometri-

cal problem using P2-P1, P2, and P2 finite elements, respectively, on meshes with approximate

sizes of h ≈ 0.1 ·p2.

We first consider training data generated using the coupled problem. We take 247 parameter

samples, which result in the singular values reported in Figure 6.19. As the coupling conditions

(6.17) and (6.18) have a two-dimensional nature, the input and output variables naturally have
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an x and a y component, that are treated independently. This does not impact the fast decay

of the singular values. To approximate the fixed-point mapping, we project each variable using

4 modes, so that the input and output dimensions of the corresponding VKOGA interpolators

are NA = NB = 4 ·2 and MA = MB = 4 ·2. The smoothness of the Matérn kernel is ν= 1.5. The

domain decomposition iterations (ω= 1) lead to the results reported in Figure 6.20, and the

corresponding solutions are shown in Figure 6.21. Despite the input and output dimensions

being rather high, our surrogate model still gives very accurate results.
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Figure 6.19 – Singular values of the fluid-structure interaction problem, training done with the
coupled model.
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Figure 6.20 – Results of the fluid-structure interaction problem, training done with the coupled
model.

We can study more quantitatively the accuracy if the number of input and output functions

are varied. Moreover, given the complex nature of the underlying system, this is a good test

case to assess the capabilities of an ANN. This should be viewed as a proof of concept, as

we did not aim to find the best hyperparameters for this test case, but only to show that

an ANN could be used in such cases, especially for high-dimensional input values. The

selected architecture consists of 3 hidden layers with 20 neurons each. The errors obtained

with both methods are reported in Figure 6.22. The VKOGA gives good accuracy, although

134



6.3. Numerical results

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.0 1.5 3.0 4.5

(a)
∣∣u f

∣∣, FOM.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.0 1.5 3.0 4.5

(b)
∣∣u f

∣∣, ROM.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

1.2 0.8 0.4 0.0
1e 5

(c)
∣∣u f

∣∣, Pointwise error.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0 15 30 45

(d) p f , FOM.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0 15 30 45

(e) p f , ROM.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.00005 0.00000 0.00005 0.00010 0.00015

(f) p f , Pointwise error.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.0000 0.0025 0.0050 0.0075 0.0100

(g)
∣∣d f

∣∣, FOM.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.0000 0.0025 0.0050 0.0075 0.0100

(h)
∣∣d f

∣∣, ROM.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

1.00 0.75 0.50 0.25 0.00
1e 6

(i)
∣∣d f

∣∣, Pointwise error.

0 1 2 3 4 5
0.50

0.55

0.60

0.0000 0.0025 0.0050 0.0075 0.0100

(j)
∣∣ηs

∣∣, FOM.

0 1 2 3 4 5
0.50

0.55

0.60

0.0000 0.0025 0.0050 0.0075 0.0100

(k)
∣∣ηs

∣∣, ROM.

0 1 2 3 4 5
0.50

0.55

0.60

1.2 0.9 0.6 0.3 0.0
1e 8

(l)
∣∣ηs

∣∣, Pointwise error.

Figure 6.21 – Solution of the fluid-structure interaction problem, training done with the
coupled model.

for high dimensions a suboptimal behavior seems to appear, as a result of the complexity

of the problem, numerical instabilities and the curse of dimensionality. The ANN achieves

competitive accuracy values, and seems to surpass the VKOGA for high dimensions. The multi-

layer, compositional structure of the network can indeed reduce the curse of dimensionality

and achieve better generalization properties than a more classical interpolation method.

However, this is quite sensitive to the training algorithm and its intrinsic randomicity, which
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make the trend less smooth compared to the VKOGA.
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Figure 6.22 – Reduction errors of the fluid-structure interaction problem, training done with
the coupled model.

If a decoupled training strategy is considered, the results and comments of the previous test

cases do not vary significantly. However, at least for the structural component, the boundary

conditions of the input variable are not homogeneous. To capture them, we enrich the basis of

the Dirichlet eigenfunctions with two lifting functions, in the spirit of classical approximation

theory. This is not the only option, as one could consider instead both Dirichlet and Neumann

eigenfunctions or more general bases, but this choice allows us to easily control both the

basis size and the projection error. We again consider with 10 physical and 200 artificial

parameter values. The values of the scaling factors are chosen as A = 0.1 and A = 10 and

the decay rates r = 3 and r = 2 for the fluid and elastic problems, respectively. Considering

NA = NB = MA = MB = 4 ·2 basis functions as before, we obtain the singular values shown

in Figure 6.23. Solving the coupled problem using fixed point iterations, we obtain the trace

and the corresponding solutions reported in Figure 6.24 and Figure 6.25. Once more, larger

deviations from the true model are observed with respect to their counterparts Figure 6.20

and Figure 6.21.

Finally, we consider a variation in the number of input and output functions and a comparison

between the two model reduction techniques. We use 200 artificial parameter samples for

NA ≤ 5 ·2 and 800 samples when NA > 5 ·2. The results are reported in Figure 6.26, which

confirm the competitiveness of the ANN method, although the error decay suffers from

oscillations caused by the training phase. Moreover, in this problem the output projection

error appears to be small compared the other error components, as in Figure 6.26(a) the error

saturation is observed even for small output dimensions, at least with the VKOGA.
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Figure 6.23 – Singular values of the fluid-structure interaction problem, training done with the
decoupled model.
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Figure 6.24 – Results of the fluid-structure interaction problem, training done with the decou-
pled model.

6.3.4 A time-dependent problem

Our final test case is designed to assess the capabilities of our method with a time-dependent

problem. We consider a parametrized heat equation, with possibly discontinuous diffusion

coefficients at the subdomain interface. This should be regarded as a proof of concept, as a

more detailed investigation and the extension to more complex time-dependent problems go

beyond the scope of this work. We considerΩ= [0,1]× [0,2], divided into two subdomains

by a horizontal interface Γ located at y = 1. The time domain is [0,T ] = [0,1]. The governing

equation for P i is
∂ui

∂t
−∇· (µi∇ui

)= fi , inΩi × [0,T ],

where we set fi = 10x sin
(
y/2

)
and

µi =µ+ yi ,

with a shift µ= 1 and problem-dependent parameters yi ∈ [0,1]. The problem is completed

by homogeneous Dirichlet conditions at the physical boundary and an initial condition
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Figure 6.25 – Solution of the fluid-structure interaction problem, training done with the
decoupled model.

ui = sin(2πx)sin
(
πy

)
in both subdomains, whereas the interface coupling conditions read

u1 = u2, on Γ× [0,T ],

µ2∇u2 ·n2 +µ1∇u1 ·n1 = 0, on Γ× [0,T ].

As in the previous test cases, they are of a standard Dirichlet-Neumann form, but they are

imposed in the entire time interval. The problem is discretized using implicit Euler in time
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Figure 6.26 – Reduction errors of the fluid-structure interaction problem, training done with
the decoupled model.

with a time step ∆t = 0.1 and P1 finite elements in space for both subdomains, defined on two

meshes with approximate sizes of h ≈p
2/40.

As usual, we focus firstly on training data generated with the coupled problem. We consider

97 parameter samples obtained with a Latin Hypercube Sampling technique. The singular

values and the first 4 spatial modes obtained for both the input and the output spatial data,

as well as their temporal counterparts, are reported in Figure 6.27. Even if a time-dependent

problem is considered, the exponential decay of the singular values is not impacted, which

indicates good reduction properties of the training sets. After selecting NA = NB = 4 ·4 and

MA = MB = 4·4, we use the VKOGA to construct the interpolator (ν= 1.5). Taking a parameter

value outside the training set, the fixed point iterations (ω= 0.2) give the results reported in

Figure 6.28. Compared to its steady counterparts, the deviations from the true error decay

rate are slightly larger, but the true and the approximated fixed point variables visually look

similar. By solving the local problems with the converged trace values, we can reconstruct the

local solutions. Their values at time t = T , together with the corresponding pointwise error,

are reported in Figure 6.29, confirming the satisfactory accuracy of our method.

We now study the effect of varying input and output dimensions on the reduction. As function

approximation methods, we consider both the VKOGA interpolator and an ANN. For the

latter, we select 2 hidden layers with 80 neurons each. Taking the same number of spatial

and temporal modes, the results are reported in Figure 6.30. Given the tensor product nature

of the space-time basis, the input dimension quickly increases. This is the main reason why

we cannot reach extremely high accuracy in the selected range of hyperparameter values,

together with possible numerical instabilities in the training algorithm. However, we are still

able to reach errors of order O (10−4), which remains quite satisfactory. The ANN gives similar

results, and appears to outperform the VKOGA for large input dimensions.

We now repeat the analysis using data obtained from the two subproblems separately. The
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Figure 6.27 – Singular values and singular vectors associated to the time-dependent problem,
training done with the coupled model, spatial and temporal data. From top to bottom: singular
values, input singular vectors, output singular vectors.

training set is generated with 4 ·4 basis functions in the expansion (6.12), 10 samples of the

physical parameters and 20 ·20 space-time samples of the artificial parameters. We consider a

scaling factor of A = 1 (resp. A = 10) with no decay rate for P1 (resp. P2). The results of the

SVD are reported in Figure 6.31, for which the comments related to the steady counterpart

can be extended. Testing the corresponding VKOGA interpolator gives the results reported

in Figures 6.7 and 6.8, which show the fixed point variables and numerical solutions at the

final time, respectively. Given the high dimension of the input and the output space and the

relatively small number of training samples, the error between the full and the reduced models

becomes more evident. However, the main features of the dynamical behavior are captured,
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Figure 6.28 – Results of the time-dependent problem, training done with the coupled model.
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Figure 6.29 – Solution of the time-dependent problem, training done with the coupled model.
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Figure 6.30 – Reduction errors of the time-dependent problem, training done with the coupled
model.

suggesting that the chosen surrogate modeling technique can still provide a satisfactory

approximation of the solutions without the need to solve a time-dependent problem at each

iteration.

This argument can be made more rigorous by looking at the model accuracy as a function of

the hyperparameters, reported in Figure 6.34. We still use 20 ·20 artificial parameter samples.

The magnitude of the reduction error lies at around O (10−2) and seems to suffer from the curse

of dimensionality for large input dimensions. As no information from the coupled problem

is given and that the number of samples is low compared to the involved dimensions, the

obtained degree of accuracy remains acceptable.
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Figure 6.31 – Singular values and singular vectors associated to the time-dependent problem,
training done with the decoupled model, spatial and temporal data. From top to bottom:
singular values, input singular vectors, output singular vectors.

6.4 Conclusion

In this chapter, we proposed a local, non-intrusive method to accelerate the multi-query

simulations of coupled heterogeneous systems. The approximated input-output maps are

mostly constructed based on kernel methods, although artificial neural networks constitute a

valid alternative. We propose two training strategies, which make use of the coupled problem

or an artificial parametrization of the interface data, respectively. In this regard, the latter can

be viewed as the non-intrusive counterpart of Chapter 5.

We show that the solution of a given coupled problem can be efficiently retrieved at the reduced
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Figure 6.32 – Results of the time-dependent problem, training done with the decoupled model.
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Figure 6.33 – Solution of the time-dependent problem, training done with the decoupled
model.
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Figure 6.34 – Reduction errors of the time-dependent problem, training done with the decou-
pled model.

level. The accuracy depends on both dimensionality reduction errors and the quality of the

interpolation, and appears not to be strongly affected by the complexity of the underlying

differential model. Training with data from a specific coupled problem gives more accurate

results than an artificial parametrization, provided that the parameter space is sufficiently

explored in the offline phase. Consistent with any interpolation technique, the computational

cost is mostly affected by the number of training samples, at least when kernel methods are

used.

6.A A detailed error analysis

Here, we aim at quantifying the error contributions in a more detailed way. In the framework

presented in Section 6.2.2, our goal is to quantify the error between the solutions of true fixed
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point mapping

λ=F (λ) =B (−A (λ))

and its surrogate

λ̂= F̂ (λ̂) =UB
y B̂

(
−[UB

x ]T UA
y Â

(
[UA

x ]T λ̂
))

.

By subtracting the two and using the triangular inequality, we get∥∥λ− λ̂∥∥= ∥∥F (λ)−F̂ (λ̂)
∥∥≤ ∥∥F (λ)−F̂ (λ)

∥∥+∥∥F̂ (λ)−F̂ (λ̂)
∥∥, (6.19)

which allows us to study the two terms separately.

The first term quantifies the error between the two mappings with same input datum. Applying
the triangular inequality multiple times, we get∥∥F (λ)−F̂ (λ)

∥∥=
∥∥∥B (−A (λ))−UB

y B̂
(
−[UB

x ]T UA
y Â

(
[UA

x ]Tλ
))∥∥∥

≤
∥∥∥B (−A (λ))−UB

y [UB
y ]T B (−A (λ))

∥∥∥ (6.20a)

+
∥∥∥UB

y [UB
y ]T B (−A (λ))−UB

y [UB
y ]T B

(
−UB

x [UB
x ]T A (λ)

)∥∥∥ (6.20b)

+
∥∥∥UB

y [UB
y ]T B

(
−UB

x [UB
x ]T A (λ)

)
−UB

y B̂
(
−[UB

x ]T A (λ)
)∥∥∥ (6.20c)

+
∥∥∥UB

y B̂
(
−[UB

x ]T A (λ)
)
−UB

y B̂
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x ]T UA
y [UA

y ]T A (λ)
)∥∥∥ (6.20d)

+
∥∥∥UB

y B̂
(
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x ]T UA
y [UA

y ]T A (λ)
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−UB

y B̂
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x ]T UA
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+
∥∥∥UB

y B̂
(
−[UB

x ]T UA
y [UA

y ]T A
(
UA

x [UA
x ]Tλ

))
−UB

y B̂
(
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x ]T UA
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(
[UA

x ]Tλ
))∥∥∥. (6.20f)

Each of the terms is associated to a different error component:

• projection due to UB
y ∈RmB×MB ,

• projection due to UB
x ∈RnB×NB ,

• approximation due to B̂ constructed with NB samples,

• projection due to UA
y ∈RmA ×MA ,

• projection due to UA
x ∈RnA ×NA ,

• approximation due to Â constructed with NA samples.

The behavior of each term can be quantified in a more detailed way.

The projection errors depend on the training strategy and the complexity of the problem. If

data from the coupled problem are used and a diffusion-like equation is solved, an exponential

decay can be expected for both the input ((6.20b) and (6.20e)) and the output ((6.20a) and

(6.20d)) projection errors, similar to classical estimates on the Kolmogorov width. Otherwise,

if the problems are treated separately, the input projection error will depend on the accuracy

of the expansion (6.9). In turn, this depends on regularity of the problem, its spatial dimension
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and the compatibility of the selected Laplace-Beltrami eigenfunctions with the boundary

conditions at the physical boundaries. This is typically polynomial, although an exponential

decay can appear in a number of cases [3, 20]. The output projection error will again depend

on the complexity of the local problems, and an exponential decay can be expected for

diffusion-like equations.

The operator approximation errors ((6.20c) and (6.20f)) depend on the chosen technique,

the learning algorithm, the training strategy and the number of training data. If the VKOGA

method is used, one can show a polynomial decay rate in the number of training points, with

an exponent that depends on the input spatial dimension and the regularity of the kernel [113,

135]. In the case of the Matérn kernels (2.21), this is typically of the form

N −ν/N , (6.21)

where N is the input dimension, ν is the smoothness of the kernel and N is the number of

training points selected in the offline phase.

In order to appropriately bound each term in (6.20), we need suitable regularity assumptions

on the full order operators, that we assume to hold, and the approximated operator B̂ to be

Lipschitz continuous. This also holds, provided that the kernel is sufficiently smooth. More

quantitatively, a bound for the derivative D of B̂ can be obtained. Using again the triangular

inequality, we get ∥∥DxB̂(x)
∥∥≤ ‖DxB(x)‖+∥∥Dx

(
B̂(x)−B(x)

)∥∥. (6.22)

The first term is bounded with constant LB as the true operator is regular enough. The second

term quantifies the error between the true and the approximated derivative. A VKOGA method

with a Matérn kernel will give a rate [134]

N −ν/N+1/N , (6.23)

consistent with the fact that a differentiation decreases the convergence rate by a factor that

scales as the fill distance h 'N −1/N .

Assuming an exponential decay for all the projection errors and the polynomial decays (6.21)

and (6.23), we can write∥∥F (λ)−F̂ (λ)
∥∥≤C1 exp{−C2MB}+C3 exp{−C4NB}+C5N

−ν/NB

B

+C6 exp{−C7MA }+C8 exp{−C9NA }+C10N
−ν/NA

A
, (6.24)

where all the constants Ci depend on the true solution λ and the operators A and B. Com-

bining them, we can formally write∥∥F (λ)−F̂ (λ)
∥∥≤ K1(params,λ,A ,B),
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where K1 is an appropriate function of the relevant model parameters

params= (MB , NB ,NB , MA , NA ,NA ),

the true solution λ and the operators A and B. This bound is sufficient for our purposes, as

it quantifies all the error contributions. As expected, provided that the kernel is sufficiently

regular, the error asymptotically vanishes.

The second term in (6.19) is related to the application of the approximate mapping with two

different inputs. Here, we aim to show that F̂ is a contraction mapping, which can be done by

verifying that F̂ has bounded derivative D, with a bound strictly inferior to 1. The following

bound holds ∥∥DλF̂ (λ)
∥∥≤ LF +K2(params,λ,A ,B),

so that ∥∥F̂ (λ)−F̂ (λ̂)
∥∥≤ (LF +K2)

∥∥λ− λ̂∥∥.

Here, LF < 1 as the true mapping is a contraction, otherwise (6.5) would not converge, and

K2 is an appropriate function of the parameters, the true solution λ and the operators A and

B. An explicit expression for K2 can be obtained using arguments similar to (6.20), (6.22) and

(6.23). Moreover, if the values of the hyperparameters are sufficiently large and the kernel is

sufficiently smooth, the constant K2 can be made arbitrarily small, similar to (6.24). Therefore,

at least asymptotically, we have that K2 < 1−LF , so that the approximated mapping is a

contraction.

Recalling (6.19), we get∥∥λ− λ̂∥∥≤ K1(params,λ,A ,B)+ (
LF +K2(params,λ,A ,B)

)∥∥λ− λ̂∥∥,

and, in the case K2 < 1−LF , we obtain

∥∥λ− λ̂∥∥≤ K1(params,λ,A ,B)

1−LF −K2(params,λ,A ,B)
,

which is the desired estimate, as it depends on the relevant hyperparameters and the true

solution λ.
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7 Conclusion and future perspectives

This work was mainly motivated by recognizing the importance of efficient numerical simu-

lations of coupled systems. This requires not only realistic differential models and accurate

discretization schemes, but also the ability to perform multi-query simulations at a reasonable

computational cost without compromising accuracy. This led to the interest in designing

and applying model order reduction techniques specifically targeted to systems possessing

a multi-component structure. The problem has been tackled from different angles, and this

work provides contributions in each of the considered frameworks. The main conclusion

that can be drawn is that, despite the complexity of the models and numerical solutions, the

emergent behaviors observed with the high-fidelity models can be retrieved at the reduced

level. The reduction does not severely compromise accuracy, and on average we observed a

speedup of one to two orders of magnitude compared to the full order model. More specifically,

we considered three scenarios.

Firstly, we assumed that the coupled problem can be used to construct the reduced models. In

Chapter 3, we applied the POD-DEIM reduced basis method to the phase dynamics equations

and a neuronal model of circadian oscillators. Because of the global interactions, a careful

treatment of the coupling term is necessary to achieve the expected speedup. This is different

from many differential models arising from a spatial discretization of PDEs, which typically

enjoy a certain level of spatial locality. We showed that the reduced models are able to retrieve

the synchronization induced by mutual coupling or external forcing. The observed computa-

tional speedup is satisfactory, at least if a large number of oscillators is considered and the

coupling is treated appropriately. We also applied the reduction methods to a control problem,

showing that the reduced models can be used in contexts that go beyond state reconstruction.

Secondly, we considered cases in which the coupled problem cannot be used to construct the

reduced model, as it is not a-priori available (i.e., one does not know how the components will

be assembled in practical applications) or it is too complex to simulate (i.e., large parameter

spaces, large-scale models, nonlinearities, slow convergence of domain decomposition itera-

tions). In turn, one has complete access to the local models. In Chapter 4 and Chapter 5 we

extensively relied on an artificial parametrization of the boundary conditions, which allowed
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us to construct reduced models that are robust with respect to the input data. In Chapter 4

we showed that the surrogates are able to recover the synchronization patterns in a system

that mimics the Huygens’ setup involving coupled pendulum clocks. These include in-phase,

anti-phase and clustering-like synchronization. We compared our technique with more classi-

cal model-driven approaches in structural dynamics, showing similar performances. Going

beyond oscillatory systems, in Chapter 5 we showed that our approach can be generalized

to a larger class of interface-coupled heterogeneous systems. We considered Robin coupling

conditions, that usually outperform classical Dirichlet-Neumann methods, showing the ac-

curacy, computational efficiency and robustness of the reduced models. Notably, we tackled

problems ranging from linear and nonlinear diffusion-reaction to fluid-structure interaction

models. We also provided a theoretical discussion on the accuracy and the computational

complexity of our approach.

Finally, with a similar spirit, in Chapter 6 we considered a nonintrusive approach. Relying

on component-wise black-box solvers and boundary response maps, we constructed local

data-driven methods combining dimensionality reduction techniques with general-purpose

interpolation and regression methods. We proposed two strategies to generate the training

data, along the lines of the first two scenarios we described above, showing the potential and

the drawbacks of both approaches. After a theoretical discussion on the reduction error and

the computational cost, we applied these methods to steady and unsteady problems, which

include a high degree of heterogeneity or geometrical complexity.

Although this work considers different problems and proposes various solutions, we believe

that it can also represent the starting point for a number of future research directions.

The most natural extension would be a study of the applicability of the proposed methods in

larger-scale, more heterogeneous problems. This could be viewed as a further step towards

a potential final goal of incorporating the methods in scientific libraries or at an industrial

level. In the localized model reduction context discussed mostly in Chapter 5, one could

consider systems characterized by a larger number of components, higher spatial dimensions

or a geometrical parametrization. Although our method can be extended to such cases in a

relatively straightforward way, a different sampling of the artificial parameters could also be

considered, including time-dependent boundary conditions and greedy methods. Similar

extensions could also be considered in the nonintrusive context presented in Chapter 6.

Besides these, applications to more complex time-dependent problems could be investigated

in order to thoroughly test the nonintrusive method in such cases. We remark that these might

require more sophisticated choices not only on the artificial parametrization, but also on the

interpolation and regression methods, mostly to ensure a better generalization and reduce

the curse of dimensionality. In both cases, although the problems we considered possess a

significant level of heterogeneity, this can be further increased. Examples could be coupled

electro-mechanical systems or thermo-hydrodynamical problems.

The efficiency of the methods has been mostly shown in terms of the reconstruction of the
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full-order solutions. In the spirit of Chapter 3, it would be interesting to use the techniques

in applications and problems that go beyond a plain state reconstruction. Examples could

be optimization problems and uncertainty quantification. In fluid-structure interaction

models, one may be interested in studying the system response (e.g., lift/drag forces, pressure

drop caused by an obstacle) under uncertainties in constitutive parameters. Additionally,

optimization problems could be designed in order to find the optimal parameter values that

minimize this response. An appropriate reduction of the adjoint problems should also be

considered, which appears to be challenging in the context of localized models.

Effectively, all these problems add a higher level of complexity to the ones we considered. For

this reason, the reduced basis method and the kernel interpolation methods might need to be

replaced by more sophisticated techniques. An example would be the use of autoencoders in

place of the SVD, which could be beneficial in the localized context, as the high dimensionality

of the artificial parameter space can potentially reduce the efficiency of linear projection

methods. Additionally, it might allow to bridge the gap between linear data-driven methods

and nonlinear model-driven approaches, which are widely used in the Kuramoto model and

its variants. An alternative option, lying at the intersection between Chapter 5 and Chapter 6,

would be the use of interpolation or regression methods to approximate the local solution or an

appropriate reduced representation in the entire subdomains, and reconstruct the boundary

functional in a post-processing step. Such approaches have already been applied in a variety of

problems, but the application in a fixed-point iterative scheme, where an additional boundary

reconstruction is required, has not been considered yet, to the best of our knowledge. In turn,

it has been shown that they can naturally be extended to incorporate the physics of the model

in the training phase, which is arguably required in complex heterogeneous problems or when

a limited number of training samples is available.
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