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Abstract

In this thesis, we address the complex issue of collision avoidance in the joint space of robots.

Avoiding collisions with both the robot’s own body parts and obstacles in the environment

is a critical constraint in motion planning and is crucial for ensuring the safety and stability

of the robot. Unlike traditional operational-space control where tasks are projected to joint

space through the Jacobian, we tackle collisions directly in joint space, where the robot can be

treated as a material point. This brings new challenges, such as computational complexity of

high-dimensional spaces, and the need for fast and accurate collision models. Nevertheless,

this approach can lead to more stable and efficient solutions and reduce the potential for

numerical instabilities and local minima that can arise in operational-space control.

In the first part of this thesis, we present a real-time self-collision avoidance method for con-

trolling humanoid robots. This is achieved by learning the feasible regions of control in the

robot’s joint space and representing these regions as smooth self-collision boundary functions.

The learned boundary functions are used as constraints in a real-time quadratic program-

based inverse kinematic solver to generate collision-free motions. The humanoid robot’s

high-dimensional joint space poses challenges in learning efficient and accurate boundary

functions. To resolve this, we partition the robot model into smaller, lower-dimensional sub-

models. We also evaluate different state-of-the-art machine learning techniques for learning

the boundary functions. Our approach has been validated on the 29 degree-of-freedom (DoF)

iCub humanoid robot, showing highly accurate real-time self-collision avoidance.

In the second part of this thesis, we extend the method to efficiently compute the distance-to-

collision between a robot in arbitrary configuration and a point in the robot’s workspace. Our

approach involves learning a neural implicit signed distance function expressed in joint space

coordinates. The differentiable nature of the function enables us to efficiently compute gradi-

ents, generating a continuous repulsive vector field in joint space. With GPU parallelization,

complex scenes with multiple obstacles can be processed in real-time. This high-resolution

collision representation can be used to achieve real-time reactive collision-free control by

integrating it as a constraint in an inverse kinematics solver or in a model predictive controller.

We demonstrate the effectiveness of our approach through experiments with a 7 DoF robot in

a reaching task with dynamic obstacles.

Lastly, we present a method for modulating dynamical systems using a sampling-based model
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Abstract

predictive control. The approach leverages on the properties of previously learned collision

detection models, and involves locally perturbing the nominal DS to ensure a meaningful

tangential component is always present near obstacles. The algorithm facilitates obstacle

avoidance in the high-dimensional joint space of a robot and has been validated in simulations

and real-world tests with a 7 DoF robot, successfully navigating a cluttered environment with

moving concave obstacles while maintaining local stability of the nominal DS.

In conclusion, this thesis presents a novel approach to learn self-collisions and signed dis-

tances in the joint space of robots. The differentiable and parallelizable nature of the learned

models allows for efficient integration into sampling-based methods, leading to a new tech-

nique for modulating dynamical systems for obstacle avoidance in high-dimensional joint

space. Our methods have been validated on a 7 DoF manipulator and a 29 DoF humanoid

robot.
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Résumé

Dans cette thèse, nous abordons la question complexe de l’évitement de collisions dans l’es-

pace conjoint des robots. Éviter les collisions avec les parties du corps du robot et les obstacles

dans l’environnement est une contrainte critique dans la planification du mouvement et est

essentiel pour assurer la sécurité et la stabilité du robot. Contrairement au contrôle de l’espace

opérationnel traditionnel où les tâches sont projetées dans l’espace conjoint par la jacobienne,

nous abordons directement les collisions dans l’espace conjoint, où le robot peut être traité

comme un point matériel. Cela apporte de nouveaux défis, tels que la complexité de calcul

des espaces de grande dimension et la nécessité de modèles de collision rapides et précis.

Cependant, cette approche peut conduire à des solutions plus stables et efficaces et réduire le

potentiel d’instabilités numériques et de minima locaux qui peuvent survenir dans le contrôle

de l’espace opérationnel.

Dans la première partie de cette thèse, nous présentons une méthode d’évitement de col-

lision en temps réel pour le contrôle de robots humanoïdes. Cela est réalisé en apprenant

les régions réalisables de contrôle dans l’espace conjoint du robot et en représentant ces

régions sous forme de fonctions de bordure de collision propre. Les fonctions de bordure

apprises sont utilisées comme contraintes dans un solveur cinématique inverse à programme

quadratique en temps réel pour générer des mouvements sans collision. La grande dimen-

sionnalité de l’espace conjoint du robot humanoïde pose un défi pour l’apprentissage de

fonctions de bordure efficaces et précises. Pour résoudre ce problème, nous partitionnons le

modèle du robot en sous-modèles plus petits et de plus basse dimensionnalité. Nous évaluons

également différentes techniques d’apprentissage automatique de pointe pour l’apprentis-

sage des fonctions de bordure. Notre approche a été validée sur le robot humanoïde iCub à

29 degrés de liberté (DoF), montrant un évitement de collision en temps réel hautement précis.

Dans la seconde partie, nous étendons la méthode pour calculer efficacement la distance

de collision entre un robot en configuration arbitraire et un point dans l’espace de travail

du robot. Notre approche implique l’apprentissage d’une fonction de distance implicite neu-

ronale exprimée dans les coordonnées de l’espace conjoint. La nature différentiable de la

fonction nous permet de calculer efficacement les gradients, générant un champ de vecteurs

répulsif continu dans l’espace conjoint. Avec la parallélisation GPU, des scènes complexes

avec plusieurs obstacles peuvent être traitées en temps réel. Cette représentation de collision

haute résolution peut être utilisée pour atteindre un contrôle sans collision réactif en temps
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réel en l’intégrant en tant que contrainte dans un solveur de cinématique inverse ou dans un

contrôleur prédictif de modèle. Nous démontrons l’efficacité de notre approche à travers des

expériences avec un robot à 7 DoF dans une tâche de portée avec des obstacles dynamiques.

Enfin, nous présentons une méthode pour moduler les systèmes dynamiques en utilisant un

contrôle prédictif de modèle basé sur des échantillons. L’approche s’appuie sur les propriétés

des modèles de détection de collision précédemment appris et implique une perturbation

locale du DS nominal pour garantir qu’une composante tangentielle significative est tou-

jours présente près des obstacles. L’algorithme permet l’évitement d’obstacles dans l’espace

conjoint de haute dimension d’un robot et a été validé dans des simulations et des tests en

situation réelle avec un robot à 7 DoF, naviguant avec succès dans un environnement encom-

bré avec des obstacles concaves en mouvement tout en maintenant la stabilité locale du DS

nominal.

En conclusion, cette thèse présente une nouvelle approche pour apprendre les auto-collisions

et les distances signées dans l’espace conjoint des robots. La nature différentiable et paralléli-

sable des modèles appris permet une intégration efficace dans les méthodes basées sur des

échantillons, conduisant à une nouvelle technique pour moduler les systèmes dynamiques

pour l’évitement d’obstacles dans l’espace conjoint de haute dimension. Nos méthodes ont

été validées sur un manipulateur à 7 DoF et un robot humanoïde à 29 DoF.
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1 Introduction

We are stepping through an explosion.

And we are living day to day and it doesn’t look like it.

— Andrej Karpathy

1.1 Motivation

We live in a technological singularity. What is one hundred years? From a cosmic perspective,

one hundred years is just a blink of an eye. Nevertheless, human civilization has transformed

significantly in the past century, constantly increasing the pace of new discoveries and tech-

nological developments. As human physical capacities are quite limited, we develop new

machinery to sustain the growth tempo: to mine resources at scale, to transport more goods,

to build new structures, and to produce more things. Once machinery becomes more than just

a masterfully engineered combination of physical processes (think of an internal combustion

engine) and requires a computer system to control it (think of a modern car), it may be called

a robotic system or, when localized into a single physical frame, a robot.

Robots and robotic systems have become indispensable part of human lives. The singularity-

like development that we observe across every domain of human activity is directly connected

to the use of robots. One particular example is a robotic arm. Such arms (refer to Figure

1.1) are utilized in countless factories and warehouses and are responsible for assembling,

painting, welding, sorting, and packaging, among dozens of other applications. Robotic arms

are capable of precise, fast, and consistent repetitions of almost any manufacturing task,

driving production costs down and making cars, furniture, and consumer electronics widely

accessible.

In industrial environments, robots operate behind safety barriers and are not expected to

interact with humans. Precise position- or velocity-controlled robots may cause severe injuries

if a human interferes with the robot’s motion. However, robots will not always be confined

to industrial applications. It is natural to envision a future in which robots constantly share
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(a) Tesla Gigafactory Berlin.1 (b) Samsung’s Bot Chef.2 (c) Franka Emika robot.

Figure 1.1: Robotic arms in (a) industrial, (b) domestic, and (c) research environments.

the environment with humans and interact with them. A robotic arm mounted on a mobile

base may be used to assist a human worker in a warehouse or even be helpful in a domestic

scenario, such as assisting with cooking and cleaning. In such situations, robot motion must

be safe for humans, and, for motions that do not involve contact, robots must be able to avoid

collisions with humans and other objects.

Environmental collisions are just one of many challenging constraints that should be consid-

ered when controlling a robot. In recent years, numerous companies have started developing

humanoid robots. These robots are designed to interact with humans and perform tasks in a

human-like manner. Control algorithms for such robots must consider balancing, locomo-

tion, and whole-body control, in addition to collision avoidance. Moreover, the robot should

avoid colliding with itself, which can occur due to redundancies in the robot’s kinematics.

Frequently, self-collisions could be harmful to the robot’s hardware; therefore, while executing

arbitrary tasks, robots must be able to avoid self-collisions.

In some cases, avoiding collisions and self-collisions can be seen as trivial task. As soon as

a potential collision is detected, the robot can halt the motion and wait for the obstacle to

move away. However, in some cases, it is not possible to just stop the motion. A humanoid

robot may require first to stabilize itself to avoid losing balance, or the task may be constrained

in time and can not be paused to avoid collisions. In other words, robots must be able to

reactively plan a collision-free motion.

The primary goal of this thesis is to develop collision and self-collision avoidance methods for

humanoid robots and robot manipulators. We approach the problem from two perspectives:

(i) how to reliably and efficiently detect collisions and self-collisions, and (ii) how to reactively

plan and execute collision-free motions.

1©Tesla Inc. https://www.youtube.com/watch?v=7-4yOx1CnXE
2©Samsung U.S. https://www.youtube.com/watch?v=OwA6-b1Z7aQ
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1.2 Main concepts and approaches

1.2 Main concepts and approaches

We established that robots must be able to avoid collisions and self-collisions, as well as

swiftly plan a collision-avoding motion in dynamic environments. But how can robot detect a

collision? What does it mean to plan a collision-free motion? In this section, we provide an

introductory overview of the main concepts and approaches that are used in the literature.

For more details on the background and related works, please refer to Chapter 2.

1.2.1 Collision detection

Humans primarily perceive collisions through physical contact. When we touch an object,

neural signals are transmitted to the brain, where the information is processed and enables us

to detect the contact. We are also capable of anticipating collisions. For example, sitting in

front of a monitor, we can almost sense a collision if we imagine extending an arm towards

it. This perception is often referred to as kinesthesia (or proprioception) - the sense of self-

movement, force, and body position. Proprioceptors, specialized neurons located in muscles,

tendons, and joints, allow us to perceive our body’s and limbs’ positions. Combined with prior

experience and our internal world model, kinesthesia not only allows us to detect collisions as

they occur but also enables us to predict and anticipate them.

These two methods of collision detection - direct sensing and model-based anticipation -

can be applied to robots as well. One approach involves equipping robots with artificial

skin that detects contacts and conveys the relevant information to the controller. However,

artificial skin modules can be costly and may add significant wiring to the robot, increasing

system complexity. While promising, this approach is not yet mature nor widespread. An

alternative method for detecting collisions involves using backdrivable joints in conjunction

with force-torque sensors. This technique allows a robotic manipulator to detect a collision

even with a lightweight object and promptly halt its motion.

However, proprioceptive sensing may not always be applicable. In addition to hardware

limitations, such as the absence of artificial skin or internal sensors for collision detection,

there may be tasks that require complete collision avoidance. For instance, a robot involved

in painting must not touch the object being painted. In such cases, the robot must rely on

sensing devices like cameras or lidars to plan collision-free motion. It may be equipped with

these sensors or receive information from an external tracking system. To achieve real-time

performance, sensor data must be rapidly processed, and the controller must quickly plan a

collision-free trajectory. While this is not a major limitation in static environments, dynamic

environments with moving obstacles require motion planning algorithms to be capable of

swiftly replanning trajectories as obstacles are changing their positions.

Motion planning algorithms rely on robot models to predict the positions of the robot along

the planned trajectory. Additionally, obstacle positions might be predicted if the motion law

is known, or using various filtering techniques. Alternatively, obstacles can be considered
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quasi-static, but only if the planner can generate collision-free motion at high frequencies.

In that case the reactivity of the controller directly depends on it’s operating frequency. For

example, if the motion plan is generated once every second (or at 1 Hz), it will take one second

for the robot to react to a collision. If the plan is generated at 100 Hz, the robot will react in

0.01 seconds. Such reduced reaction time enables collision avoidance for situations where

obstacles are moving relatively fast.

To accommodate the requirement for rapid motion generation, numerous approaches exist

to evaluate collisions between the robot’s body and detected obstacles. The most straight-

worward method involves representing all collidable bodies as triangulated meshes, defined

by a set of vertices and faces. However, this method is computationally demanding, particu-

larly when the number of vertices and faces can surpass hundreds of thousands in relatively

complex environments. Consequently, most motion planning algorithms employ simplified

collision models.

One significant simplification entails using strictly convex shapes, which allows for the imple-

mentation of efficient collision-checking algorithms such as Gilbert–Johnson–Keerthi (GJK)

(Gilbert et al., 1988). Additionally, collision bodies can be decomposed into various collision

primitives, such as capsules, bounding boxes, or spheres. While this approach is compu-

tationally feasible and suitable for real-time use, mesh simplification may be unsuitable in

certain situations. For example, a robot arm might possess a complex geometry that the

approximate collision model fails to accurately capture. In such instances, the collision model

may yield imprecise results, either excessively restricting the motion, or causing collisions that

the planner did not detect.

Apart from the simple collision detection, optimization algorithms used in motion planning

may rely on collision gradient, which points in the direction repelling the robot from the

obstacle. However, this gradient is not generally available for collision detection algorithms,

and researchers continuously strive to enhance existing algorithms to compute the collision

gradient more effectively.

Recently, with the emergence of learning-based methods, researchers have begun exploring

the potential of learning collision models from data. If the robot kinematics is assumed to

be known, the dataset containing collided and free postured can be collected, and collision

model can be learned. These learning-based approaches inherently provide collision gra-

dients, as the underlying decision functions are smooth and differentiable. Notably, such

methods often bypass the Cartesian representation and learn collisions as functions of robot

joint configurations, which are more suitable for low-level robot controllers. It is still an

open question whether such learned models can outperform traditional methods in terms

of accuracy and efficiency, however, they are promising for real-time collision avoidance. In

this thesis, we explore the learning-based collision detection approach, and demonstrate its

potential for real-time collision avoidance.
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1.2.2 Motion planning

Most robot motions are predominantly produced by electrical currents powering the motors

connected to the robot’s links. Although this may not necessarily apply to soft robots, hydraulic-

powered joint systems, or other robot types, electric-motor based robots are quite widespread.

Regardless of the power source, multiple layers of abstraction exist to enable robot motion

control. The first layer involves low-level controllers that receive commands in the form of

joint torques, velocities, or positions and convert them into the appropriate power output (e.g.,

electrical current or hydraulic pressure) for the actuators. The next layer features a controller

that takes into account the robot’s current state, detected contacts, environmental obstacles,

and numerous other potential constraints, generating joint torques (or velocities or positions)

in accordance with a high-level task. The final layer of abstraction encompasses the high-level

tasks the robot needs to execute, such as moving between points A and B, lifting an object, or

interacting with its environment.

Although developing low-level control demands substantial engineering effort, modern robots

come equipped with control boxes that accept commands and account for basic constraints

like gravity compensation. In certain limited cases, such as uncomplicated tasks in obstacle-

free environments, a relatively simple controller may suffice to achieve the desired motion.

However, in most situations, the controller must be capable of planning motion that fulfills

the high-level task while adhering to all of the constraints mentioned above. This is the task of

motion planning.

There are various approaches to motion planning problems. A fundamental challenge is that

high-level tasks exist in the three-dimensional Euclidean space, while robot motion is executed

and ultimately planned in the robot’s joint space, with a dimensionality corresponding to the

number of degrees of freedom (DoF) the robot possesses. For a robotic arm, there are typically

six or seven DoF, while humanoid robots may have up to 30 DoFs.

Consider a 7-DoF robotic manipulator equipped with a gripper. The primary task of such

a robot is to interact with objects using its end-effector. To pick up an object, the robot’s

end-effector must be positioned at the gripping location, often in a specified orientation.

Consequently, the task is defined by a 6-DoF pose (three for position and three for orientation)

of the end-effector. As the manipulator has 7-DoF, the robot is considered redundant, allowing

it to achieve the desired task in various joint configurations. This redundancy is intentional so

that the robot can utilize it to satisfy secondary constraints, such as joint limits and collision

avoidance.

The prevailing approach to generate robotic motion involves planning the robot motion in

the task space and then employing Inverse Kinematics (IK) methods to map the task-space

commands into joint-space commands. For high-dimensional systems, analytic IK is often

impractical, and IK must be solved numerically. When multiple constraints are considered,

the IK problem is usually formulated as a constrained optimization problem and solved using

various optimization techniques. Some constraints, like joint limits, are formulated directly in
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joint space, while others, such as goal reaching and collision avoidance, are formulated in task

space using the analytical forward kinematics (FK) expressions. A limitation of IK-based path-

planning methods is the difficulty of considering whole-body collision constraints, as FK is a

function of a robot joint configuration and a specific point on a robot’s body. In other words,

guaranteeing collision avoidance requires numerous FK-based minimal distance constraints,

densely covering the entire robot body. In this thesis, we demonstrate that collision avoidance

can be expressed as a single constraint formulated as a function in the joint space.

Another approach involves planning robot motion directly in the robot’s joint space. For

instance, one or multiple goal joint positions may be attained using an IK solver, and search

algorithms are then used to find a path between the current joint configuration and the goal.

However, such planning is computationally demanding, and, depending on sampling granu-

larity, may take seconds or even minutes to plan motion in a high-dimensional joint space.

Another group of algorithms for joint space motion planning are formulated as optimization

problems, aiming to find an optimal path connecting the current joint position to the goal

while satisfying various motion planning constraints. Generally, these algorithms strive to

balance computational efficiency with trajectory quality, meaning that methods can be quick

to compute but may produce suboptimal trajectories, or they can ensure desired goal-reaching

but with slow planning.

If all obstacles are known to have a convex shape, it is possible to generate a motion law

that guarantees collision-free goal-reaching. Obstacle convexity allows for simple strategies,

such as boundary following, to ensure goal reaching consistently. Such a motion law can be

computationally efficient and provide a high-frequency control loop. Although this may be

applicable in task space when combined with IK solvers, in high-dimensional joint spaces,

even a spherical obstacle near the robot has a non-trivial non-convex shape, rendering this

approach infeasible in most cases. In this thesis, we design a hybrid controller that combines

reactive and planning-based approaches to achieve collision-free motion in high-dimensional

joint spaces while leveraging the properties of learned collision models.

1.3 Thesis Objectives and Structure

In the previous section, we introduced challenges related to collision detection and motion

planning in robotics. This thesis aims to explore novel approaches for collision detection and

reactive collision-free motion generation in the high-dimensional joint spaces of robots. We

seek to utilize existing machine learning (ML) frameworks to develop efficient and robust

methods for collision detection, and to effectively use these methods in various motion

generation techniques, including the proposed novel hybrid controller. Hence, the main

objectives of this thesis are:

(i) employing a data-driven learning approach to obtain collision checking models de-

fined in a robot’s joint space, and

(ii) leveraging the properties of the learned collision models to achieve reactive collision-

free motion generation.
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The manuscript consists of six chapters. Chapter 1 introduces the main challenge of motion

planning, while the remaining chapters are organized as follows:

Chapter 2

This chapter outlines the essential background information needed to understand the work

presented in this thesis. We provide a detailed discussion on methods for detecting collisions

and planning robotic motions. Additionally, we mention state-of-the-art approaches in related

fields and corresponding publications.

Chapter 3

Further, we describe our proposed method for learning a self-collision detection model for a

humanoid robot. We first formulate self-collision detection as a binary classification problem

and then present an approach to learn a collision boundary in the robot’s joint space. We

examine various ML techniques, such as Support Vector Machines (SVM) and Neural Networks

(NN), and compare their performances in the self-collision classification problem. We then

utilize the proposed models to formulate a collision avoidance constraint in a Sequential

Quadratic Programming (QP)-based IK solver and demonstrate the effectiveness of our ap-

proach in a picking scenario with the 32-DoF humanoid robot iCub. This chapter’s material is

adapted from Koptev et al. (2021).

Chapter 4

We reformulate the collision detection problem as a regression problem and propose learning

minimal distances between a robot in a given configuration and points in its workspace. This

enables generalizing the approach beyond self-collisions and enables collision detection

between the robot and objects in its workspace. We investigate various Neural Network

architectures to build the Neural Implicit Distance model and use its properties, such as

batch processing, to enhance the performance of the state-of-the-art sampling-based Model

Predictive Path Integral (MPPI) algorithm. Moreover, similarly to the previous chapter, we

leverage the model gradients to enable the IK solver to reactively avoid collisions with moving

objects in the robot’s workspace. We verify our approach in experiments with the 7-DoF

Franka Emika robotic arm. This chapter is summarized and published in Koptev et al. (2023).

Chapter 5

Building upon the proposed learning-based models, we aim to achieve reactive motion plan-

ning in the joint space of a 7-DoF manipulator. We employ a Dynamical System (DS) modu-

lation approach that allows swift collision avoidance in the joint space, assuming a known

obstacle-repulsion direction. This direction is provided by the previously introduced Neural
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Implicit Distance model. To enhance the algorithm’s navigation capabilities, we couple it

with a policy generation controller that optimizes for perturbations near concave obstacles,

enabling navigation in cluttered environments. This planner is based on the MPPI algorithm,

and it efficiently utilizes the parallelization properties of the learned collision models. We

evaluate the resulting hybrid controller and compare it to state-of-the-art approaches in a

series of experiments with the 7-DoF Franka Emika robotic arm. The materials presented in

this chapter are submitted to a robotics journal at the time of writing.

Chapter 6

In the final chapter, we summarize the main contributions of this thesis and discuss potential

directions for future development of the proposed methods.

1.4 Thesis Assumptions

It is essential to understand the challenges this thesis aims to tackle and the challenges that are

beyond the scope of this manuscript. Throughout this thesis, we consider several assumptions.

Assumption 1: Known Robot Shape

We always assume that we know the exact shape of the robot, including the precise kinematic

model and collision meshes. We do not consider that the robot shape may change during the

experiment or that the simulated robot differs from its hardware implementation.

Assumption 2: Simple Dynamics

Assumption 1 states that there is no sim-to-real gap for the robot model. While it can be

true for kinematics, it rarely holds for models of robot’s dynamics. Although various optimal

control techniques may focus on maximizing robot performance, we assume that motion

trajectories in this thesis are not challenging enough to require complex dynamics modeling.

We assume that if a path exists in the robot’s joint space, a feasible motion can be executed

along this path. We do not investigate trajectories with very high velocity profiles that may be

challenging to execute precisely in the real world.

Assumption 3: Known Obstacle Shape

We assume that we know the exact positions of the obstacles in the environment and their

shapes. Throughout this thesis, we will approximate obstacles with a set of spheres, equivalent

to the case of a point cloud where an obstacle is represented by many spheres of small radii.

We do not consider the case of unknown obstacle shapes or unknown obstacle positions.

Throughout the thesis, we use the OptiTrack system to track the position of obstacles near
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the robot. A more applicable alternative method for real-world cases is to use camera-based

algorithms to track obstacle positions. However, this is a challenging task and is beyond the

scope of this thesis.

Assumption 4: Quasi-static Obstacles

We focus on situations where obstacles are considered quasi-static, meaning they can change

their positions in the environment, but motion planning algorithms do not account for their

dynamic properties, such as velocity or acceleration. Although solutions to estimate these

dynamics exist, they typically require either detailed information on the object’s characteristics

for precise modeling or extensive data collection and subsequent dynamics model learning.

Instead, we adopt a motion planning approach that rapidly adapts to new obstacle positions

at each iteration (100+ Hz), enabling us to address sudden and unpredictable changes in the

object’s position without the need for a complex model of the object’s dynamics or predicting

its future position. With this approach, the object’s motion speed is effectively limited by

the algorithm’s update rate, allowing for relatively fast obstacle motion when compared to

human reaction speeds1, while still remaining within the capabilities of the motion planning

algorithm’s update frequency.

1Typically, human reaction speed to a visual stimulus is 200-300 ms, which can be translated to an update rule
of approximately 5 Hz.
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2 Background

Everyone has a perspective. A vision.

— Jensen Huang

2.1 Foreword

In the previous chapter, we briefly discussed the main challenges and approaches in collision

detection and motion planning.

This chapter presents the background for collision-free motion planning, along with state

of the art works in the field. Section 2.2 covers the problem of collision detection, which is

not strictly limited to robotics, but rather emerged from fields of geometry and computer

graphics. In Section 2.3, we provide a comprehensive review of robotics-specific path- and

motion-planning methods.

2.2 Collision detection

2.2.1 Sensing-based collision detection

As mentioned in the introduction, one way to address collisions in a robotic system is to detect

them as they occur, relying on internal sensors. One approach involves covering the robot

with tactile sensors imitating skin. This technique was explored by Schmitz et al. (2011), who

developed a set of capacitive sensors to cover the body surface of the humanoid robot iCub.

Experiments demonstrated that artificial skin enables high-precision contact detection and

improves the performance of grasping tasks. An extensive review of tactile sensors for robotics

can be found in Dahiya et al. (2013).

An alternative method for detecting collisions involves detecting external forces by means

of sensors attached to the robot’s joint motors. This technique was investigated by De Luca
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et al. (2006), who demonstrated how collisions could be detected by measuring external forces

using force/torque sensors within the kinematic chain. Haddadin et al. (2017) further explored

this approach, detailing a collision event pipeline that leverages joint sensor information.

While these methods are undoubtedly useful when performing contact interactions between

a robot and a human, our focus in this thesis is on collision-free motion planning, which

requires predicting and preventing collisions before they occur.

2.2.2 Geometric collision detection

For complex motions, the controller must plan the motion in advance, using internal models

of the robot’s kinematics and dynamics to predict future positions based on control input.

To account for collisions with the environment, obstacles must be modeled and checked for

collisions with the robot’s body.

The algorithm to detect collisions between multiple bodies primarily depends on the bodies’

representations. The most straightforward way to represent a physical body in a computer

simulation is a polygonal mesh represented by vertices and faces that define the 3D geometry

of a body. A large number of different tests and queries, such as closest point computations

and various intersection tests, can be performed on bodies represented with meshes. However,

this approach is computationally expensive, especially for large meshes. Therefore, collision

detection algorithms always consist of a broad phase, which uses overly simplified body

representations, such as bounding boxes, to rule out improbable colliding body pairs; and a

narrow phase, which uses more accurate representations, such as meshes, to detect actual

collisions (Ericson, 2004).

Collision detection algorithms work almost exclusively with convex objects, as precise distance

calculation for concave shapes can be obstructed by local minima. The most common way to

represent a concave object is to use a convex hull, a convex shape that contains the original

object. Collisions between strictly convex shapes can be calculated by efficient algorithms such

as GJK (Gilbert et al., 1988) or Voronoi-clip (Mirtich, 1998). Modern collision detection libraries,

such as Flexible Collision Library (FCL) (Pan and Manocha, 2016), combine multiple state-

of-the-art methods along with various optimizations to enable quick and efficient collision

checking in robotic simulations.

2.2.3 Collision gradient

To plan a collision-free motion, the controller must not only be able to detect collisions but

also frequently require the collision gradient. The collision gradient is a vector that defines

the direction of the fastest distance increment between two bodies. This vector is used in

optimization-based motion planning methods to calculate the gradient of the cost function

(Ratliff et al., 2009).
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Authors of Escande et al. (2007) and Escande et al. (2014) address the problem of continuous

gradients for distances between convex hulls. Their proposed collision representation can

be used to formulate a minimal distance constraint in the optimization problem, enabling

collision-free motion generation for humanoid robots. Zimmermann et al. (2022) propose a

framework based on collision primitives and leverage the method’s differentiability to formu-

late collision-avoidance constraints in various optimization-based motion planners.

2.2.4 Implicit collision representation

Another method to define a body geometry is implicit representation. In this approach, bodies

are not described explicitly with faces and vertices but rather defined implicitly through a

mathematical expression. Implicit objects are often described as a function mapping from 3D

space to real numbers, f : R3 →R. An object boundary, frequently defined by the zero-set level

f = 0, is called an implicit surface. Implicit geometry representation allows for fast collision

detection and collision gradient computation (Ericson, 2004). While various primitives can

be used for implicit geometry representation, it is not straightforward to contain a complex

geometry within a single mathematical expression.

With the advent of GPU computing, universal approximators, such as Neural Networks (NNs),

became increasingly accessible at scale. It became possible to encapsulate complex geometries

using implicit signed distance representation. Park et al. (2019) present an approach to

learn Signed Distance Fields (SDFs) representing arbitrary 3D meshes using Neural Networks.

Mildenhall et al. (2020) extended this approach by learning not only the 3D geometry but also

the object texture, allowing the generation of novel views of scenes with complicated geometry

and appearance using Neural Radiance Fields (NeRFs).

The field of robotics also benefited from implicit geometry representation. Robotic controllers

require checking for collisions with obstacles along the predicted robot trajectory and rely on

collision gradients to plan collision-free motion. With such applications, implicit collision

representation takes the form f : RN → R, where N is the dimensionality of configuration

space (or C-space), that frequently (but not always) coincides with the robot’s joint space.

Figueroa et al. (2018) leveraged SVM to model the self-collision boundary of a 14-DoF dou-

ble manipulator setup and used the model’s differentiability to formulate non-penetrability

constraints in the IK solver (Salehian et al., 2018a). The sparse model representation allowed

for precise control over the number of support vectors, enabling model size tuning to achieve

the desired inference speed. Das and Yip (2020) and Zhi et al. (2021) utilized online sampling

and active learning to adapt the learned SVM collision model from a static environment to a

dynamic one. However, the update step requires adjusting the support vector set, which is a

computationally expensive procedure, and real-time performance in dynamic environments

could only be achieved for simpler robots with few DoFs.

Rakita et al. (2018) used NN to learn a self-collision cost for a humanoid robot and demon-
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strated that such a constraint may be orders of magnitude faster than traditional collision

detection methods. While they used a simplified robot geometry representation (line seg-

ments) and approximate a cost function instead of precise distances, this work was one of

the first to use joint angles as input to a Neural Network to perform collision detection. Kew

et al. (2020) learned collisions as a function of the combined robot state and parametrized

environment state. They further showed its application in a parallelized rapidly-exploring

random tree planner (RRT), proving that such a method can be more effective than traditional

collision checking for batched queries. Additionally, the authors leveraged the model’s differ-

entiability to adjust path planning. While the authors did not apply the method to achieve

real-time collision-free motion generation, they highlighted the inherent benefits of using

NNs to check for collisions for batches of inputs.

Danielczuk et al. (2021) presented a trained model that can predict the occupancy grid using

scene point-cloud and joint configuration of a robot as inputs. The learned model provides

high collision detection rates and good performance in the case of batched queries. However,

the model is reported to be unsuitable for real-time control due to slow point-cloud processing.

Chen et al. (2022) investigated the combined approach of learning the robot geometry and

collision model using a camera imaging system to collect data for a Neural Network. They

demonstrated how the model is capable of online morphology adjustment, by simulating a

broken motor, or changing the shape of the end-effector. However, they only demonstrated

this on a 4-DoF robot and did not study online motion generation, apart from simple gradient-

following goal reaching.

Liu et al. (2022) suggested a neural implicit model to learn smooth distances at various scales.

They demonstrated the framework’s applicability to a dataset of 24-DoF human postures,

learning the signed distance field as a function of human posture. This distance field was then

used to model a collision avoidance constraint for reactive collision-avoiding robot motion

generation.

In this thesis, we investigate the use of implicit collision representation for motion planning.

Our contributions build upon the work by Fernandez (2018) and involve further development

of the approach, including the introduction of a humanoid robot application and collision

detection involving external obstacles. Although some recent works in the literature share

similarities with our research, such as utilizing ML-based collision checking, it is essential

to note that these publications emerged concurrently with the development of this thesis.

Consequently, the overlaps can be attributed to the independent evolution of ideas within the

research community.

Our primary contribution lies in developing a self-contained framework for both self-collision

and external collision detection, and subsequently leveraging the strengths of learned distance

functions to create a motion planning method. While acknowledging the overlaps with other

works, this thesis provides its unique perspective on implicit collision representation and

real-time motion planning, which have been validated through peer-reviewed publications.
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2.3 Motion Planning

Motion planning has been a popular research area for nearly half a century, with a myriad

of methods and algorithms proposed to address various aspects of the problem. Initially,

research focused on path planning, which aims to find a trajectory connecting two points

in the configuration space. Over time, the scope of planning has broadened to encompass

more complex problems such as motion planning, which seeks a collision-free trajectory

that satisfies constraints such as model kinematics and dynamics, model uncertainties, and

multiple bodies (LaValle, 2006). This section offers an overview of prevalent motion planning

methods used in robotics.

2.3.1 Offline Planning Methods

A widely adopted paradigm in robotic systems is the hierarchical approach, where a feasible

path is first generated offline and then executed by a high-frequency controller. Consequently,

a significant amount of academic effort has been devoted to developing various offline trajec-

tory generation methods.

Resolution-complete methods, such as Dijkstra or A* algorithms, operate on a discretization of

possible robot configurations. If the discretization is sufficiently fine-grained, a path between

the start and goal configurations will be found within a finite time. These algorithms employ a

greedy search assisted by various heuristic functions. However, resolution-complete methods

are limited to low-dimensional C-spaces, as the number of points in the discretization grid

increases exponentially with the dimensionality of the configuration space. Thus, discretizing

high-dimensional C-spaces is computationally expensive (Hart et al., 1968). This phenomenon

is known as the "curse of dimensionality."

Sampling-based path planners form a large family of algorithms that rely on sampling the

robot’s C-space and utilizing the explored states to find a path between the start and goal

configurations. Early methods include the Probabilistic Roadmap Method (PRM) (Amato

and Wu, 1996; Kavraki et al., 1996), which incrementally constructs a feasible region of C-

space represented as a graph, where paths exist for neighboring nodes. Nevertheless, PRM

can be inefficient in cases where it is infeasible to explore the entire state-space (e.g., high-

dimensional joint space of a redundant robot). Rapidly-exploring Random Tree (RRT) (LaValle,

1998; Kuffner and LaValle, 2000) is a sampling-based method that constructs a tree of feasible

states, with each node connected to its nearest neighbor. The tree is expanded by sampling a

random state and connecting it to the nearest node. RRT can be considered as more efficient

than PRM, because it does not require exploring the entire C-space. Both PRM and RRT are

probabilistically complete methods, meaning that if a path connecting the initial and goal

states exists, it will be found within a finite time. However, the number of nodes in the graph

required to discover a path increases with the space dimensionality and additionaly grows

larger when using smaller discretization steps. As a result, the computation time can vary

from seconds to hours, depending on the complexity of the C-space.
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Over the years, numerous modifications for PRM and RRT have been proposed, addressing

various shortcomings, improving path quality (Karaman et al., 2011), and enhancing method

performance. Some consider the robot’s dynamics (Webb and van den Berg, 2013), while

others aim to increase the method’s performance to enable rapid plan generation (Kingston

et al., 2019). For a comprehensive overview of sampling-based methods, we refer the reader to

Kingston et al. (2018).

2.3.2 Optimization-based Motion Planning

The increasing computational power and development of new algorithms have led to the

growing popularity of optimization-based motion planning. These methods minimize a

state-dependent cost function, which encapsulates task-dependent constraints.

Ratliff et al. (2009) introduced Covariant Hamiltonian Optimization for Motion Planning

(CHOMP), a trajectory optimization method that employs functional gradient techniques to

iteratively refine an initial trajectory. This initial trajectory can be warm-started using another

offline planner or chosen naively, possibly containing collisions. The optimized cost function

takes into account trajectory smoothness and collision avoidance. Due to the non-convex

constraints, gradient descent techniques may result in local minima. This issue is addressed

by restarting the optimization with a perturbed initial trajectory. CHOMP has proven useful for

generating smooth trajectories in robotic grasping and quadruped locomotion tasks (Zucker

et al., 2013). However, the typical optimization time is on the order of seconds, making

the method unsuitable for complex scenes with dynamic obstacles. Notably, the collision

avoidance constraint relies on a precomputed distance field, which is not straightforward to

adjust for new obstacle positions.

Kalakrishnan et al. (2011) proposed Stochastic Trajectory Optimization for Motion Planning

(STOMP), which uses a derivative-free stochastic trajectory optimization method. The initial

trajectory, which may be unfeasible, is perturbed stochastically, and the cost function for

candidate trajectories is evaluated. This cost function considers obstacle avoidance, control

input, and various task-related constraints. The planning time is comparable to that of

CHOMP and is sub-second for 7-DoF robotic arm navigation in environments with multiple

obstacles.

Schulman et al. (2014) presented TrajOpt, a trajectory optimization method that employs

sequential convex optimization to find collision-free trajectories. Unlike STOMP and CHOMP,

which treat the trajectory optimization problem as non-convex, TrajOpt locally approximates

non-convex collision constraints using sequential convex optimization. Similar to the other

methods, planning time heavily depends on the quality of the initial trajectory guess and may

require several seconds for complex scenes.

Overall, trajectory optimization methods show promise, as computational advances will

eventually enable faster trajectory optimization, facilitating reactive replanning in response to

environmental changes.
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2.3.3 Online Optimization Methods

The methods discussed above do not consider the possibility of state changes during motion

execution. Although this assumption is reasonable for computer graphics and simulated envi-

ronments, real-world applications may involve perturbations in the robot’s state or changes in

obstacle positions. Thus, a plan should depend on information gathered during execution.

In Section 2.3.2, we described state-of-the-art optimization techniques. Optimization-based

motion planners can be classified as online or offline, depending on running frequency and

considered constraints. This section focuses on methods that can be evaluated frequently

enough (typically above 20 Hz) to incorporate changes in the environment and robot state,

integrating these changes as feedback into the optimization process.

One of the earliest works approaching the robot navigation problem as an optimization

problem is Quinlan and Khatib (1993). The authors proposed an algorithm to adjust previously

generated trajectories (e.g., by offline planners) to account for new obstacle positions. Brock

and Khatib (2002) further developed the method and demonstrated its applicability to complex

experiments and high-dimensional robots. The algorithm is expressed in closed form, allowing

evaluation at frequencies exceeding 1kHz, meaning that changes in obstacle configurations

can be reactively reflected in the planned path. To this day, this approach is used in various

applications, including collision avoidance in human-robot collaborative scenarios (Kot et al.,

2022). Among the method’s limitations is its locality, necessitating the invocation of a global

planner to generate a new trajectory when the robot is far from the initially planned path.

One way to make optimization-based motion planning more applicable for real-time feedback

is to generate plans not for the entire start-to-goal motion but for a finite (or receding) time

horizon. System tasks and dynamics are posed as constraints in a nonlinear optimization

problem, and feasible trajectories are generated dynamically. At each time step, the best

motion over the limited horizon is determined; the first action is executed, the horizon is

shifted one step forward, and the problem is solved again. Imperfect robot control resulting in

imprecise trajectory following can be integrated as feedback into this optimization scheme,

along with varying obstacle positions. This approach is known as Model Predictive Control

(MPC).

The navigational capacities of MPC methods strongly depend on the horizon length, as algo-

rithms with short look-ahead may struggle to escape local minima. However, such methods

have a wide range of applications, including autonomous driving (Frasch et al., 2013) and

humanoid robot control (Koenemann et al., 2015). Nevertheless, MPC applied to high-degree-

of-freedom robots has shown that in real-time scenarios, the planning horizon cannot be

made long enough to perform complex motions (Erez et al., 2013).

Recent advancements in computational hardware, such as GPU chips that enable massive

parallelization, have given rise to a new generation of optimization methods that rely on

sampling-based exploration to approximate the optimal input distribution (Williams et al.,
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2017). These methods can handle complex dynamics and non-differentiable cost functions.

For example, the authors of Bhardwaj et al. (2022) utilized the MPPI approach and demon-

strated online trajectory optimization via sampling-based model predictive control operating

at 125 Hz on a 7-DoF robotic manipulator. This method’s optimization routine is similar to

STOMP, but the receding horizon and GPU-parallelized treatment of samples enable high-

frequency problem solving. This method can be considered reactive because it is capable of

swiftly moving the robot away from collisions if an obstacle approaches the manipulator. Si-

multaneously, due to trajectory planning with a look-ahead horizon, this method can navigate

relatively complex environments. However, the method may still require specific sampling

heuristics, an increased number of samples, or an extended horizon to find paths in cluttered

environments (Sacks and Boots, 2022; Yoon et al., 2022).

2.3.4 Planning with Feedback

Another approach to achieving a feedback plan is defining a state-dependent potential func-

tion (LaValle, 2006). An early work in this area is Khatib (1986), which introduced the artificial

potential method. The goal state is modeled as an attractive field, while obstacles have a

repulsive potential, acting similar to magnets. The motion plan involves following the global

potential function’s gradient, expressed as a weighted sum of local potentials. Despite its

mathematical elegance and adaptability to changes in robot state and obstacle positions,

this method has the significant drawback of conflicting objectives resulting in local minima,

leading to stuck or oscillatory behaviors.

Rimon and Koditschek (1988) addressed the issue of local minima by defining a global naviga-

tion function, that, by definition, is free from local minima. To construct such a function, an

exact implicit obstacles representation is required. Consequently, these functions are challeng-

ing to generalize for arbitrary obstacle shapes and multidimensional C-spaces. This concept

further evolved into harmonic potential functions, which were inspired by physical processes

such as heat transfer or fluid flow (Connolly and Grupen, 1993; Feder and Slotine, 1997). This

method ensures global convergence to the attractor but is inherently two-dimensional and

can be impractical for high-DoF robotic systems, as solving a partial differential equation is

required. Additionally, such methods can only provide reactiveness with respect to robot state

perturbation, and any changes in the environment will require recomputing the navigation

functions, rendering these methods unapliccable in dynamic environments for high-DoF

robots.

2.3.5 Dynamical Systems for Motion Generation

Methods described in Section 2.3.4 use navigation function to define a state-dependent

motion law for the system. Such method of generating robotic motion is commonly reffered

as Dynamical Systems (DS) approach. A Dynamical System is defined by a vector field that

defines the system’s state velocity (first-order DS) or acceleration (second-order DS). The DS
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defines motion laws as closed-form functions, which typically depend on the state, inherently

providing built-in feedback for situations when the robot deviates from the planned trajectory.

Generally, DSs are formulated as a set of autonomous (or non-autonomous) differential

equations, enabling the approximation of a wide range of movement primitives for robotic

systems. Khansari-Zadeh and Billard (2011) proposed a method to approximate recorded

trajectories with a set of Gaussians, providing a globally stable autonomous DS that guarantees

convergence to a fixed attractor. This approach allows for repeating reaching motions while

providing stability guarantees and adapting motion plans for sudden changes in robot posi-

tions. Figueroa and Billard (2017) further utilized this Learning from Demonstrations (LfD)

approach to encapsulate complex multistage tasks as a sequence of DSs. Shukla and Billard

(2012) used Support Vector Regression (SVR) to formulate a multi-attractor dynamical system.

Depending on the initial state of the system, the generated motion is locally asymptotically

stable to the attractors within a finite region of attraction.

Dynamical Systems provide a motion law that can be computed at a very high rate (above 1

kHz) and adjust the command using the current robot state, thus enabling the accomplishment

of highly dynamic tasks for robots. Khansari-Zadeh et al. (2012) used DS to estimate a hitting

model in a minigolf task for a 7-DoF robotic arm, and Kim et al. (2014) demonstrated the

use of DS to define object motion in the challenging problem of catching an object in-flight.

Salehian et al. (2016) further extended this method to allow for soft catching while using DS

control law to smoothly intercept an object in flight. Many other applications of DS for various

robotic tasks are explored by Billard et al. (2022).

However, state-dependent DS formulations are not suitable for motion planning, as they

do not take environmental constraints into account when computing system velocity. As

previously mentioned, early approaches that rely on navigation functions to provide collision-

free motion are limited to simpler configuration spaces with analytically defined obstacles

or static scenarios. To address this issue, Khansari-Zadeh and Billard (2012a) proposed a

method to modulate a DS to enable collision avoidance for generated motions. Modulated

dynamical systems use a nominal DS and alter it with a modulation matrix that encapsulates

collision-avoidance behavior and depends on the implicit obstacle representation.

Modulated DS can be used to provide a collision-free motion plan for a robotic system. This

approach is similar in spirit to the navigation function approach, described previously, as

it provides a globally stable motion plan. As the modulation is calculated in closed form1,

the plan can be evaluated at frequencies exceeding 1 kHz, readily incorporating quasi-static

environments where obstacles can change positions during motion execution. The authors ex-

tended this work (Khansari-Zadeh and Billard, 2012b) for scenarios with fast-moving obstacles,

1In modulated dynamical systems, the primary computational complexity, aside from nominal dynamics, stems
from calculating the modulation matrix, which is dependent on the distance function. When the distance function
is represented by a complex model, such as a neural network, the computation remains closed form but may
become non-negligible in terms of processing time and resources. This issue is further investigated in Chapter 5 of
this thesis.
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where the quasi-static assumption is no longer required. However, in both quasi-static and

dynamic cases, the asymptotic stability and successful attractor reaching require obstacles to

have strictly convex shapes, significantly limiting the method’s applicability.

Huber et al. (2019) and Huber et al. (2022) further improved the Modulated DS approach by

changing the structure of the modulation matrix. This allowed for overcoming strict convexity

limitations and enabling avoidance of star-shaped obstacles. The method relies on selecting

a reference point inside the obstacle, which could be problematic for obstacles formulated

implicitly or in high-dimensional C-spaces. Additionally, this method only considers linear

nominal DS, and requires local linearization to handle nonlinear dynemaics.

In this thesis, we utilize the modulation framework to ensure collision-free motion genera-

tion for high-dimensional robotic systems. We address the limitations of the DS modulation

method, such as constraints on obstacle shape and the necessity to select a reference point in-

side the obstacle, by combining the low-level Modulated DS with a high-level Model-Predictive

Planner. The latter is responsible for providing exit strategies from local minimas encountered

by the modulated DS. Moreover, we leverage learned implicit distance representations to

enable the application of the method in high-dimensional configuration spaces. We showcase

the application of the method in various simulated and real-world scenarios, including a

7-DoF robotic arm operating in close proximity to a human who obstructs the robot’s motion

by creating concave arm traps.
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3 Self-Collision Avoidance for Hu-

manoid Robots

Knowing yourself is the beginning of all wisdom.

— Aristotle

3.1 Foreword

This thesis aims to address collision avoidance in various robotic systems and establish a

reliable method for generating collision-free motion. In this chapter, we begin tackling this

challenge by focusing on self-collision avoidance for redundant robotic systems. First, we

present a framework that employs a data-driven approach to learn a self-collision boundary

for a robot. Then, we demonstrate how to use the learned function for reactive collision-free

motion generation.

The work presented in this chapter has been published in M. Koptev, N. Figueroa and A. Billard,

“Real-Time Self-Collision Avoidance in Joint Space for Humanoid Robots,” in IEEE Robotics and

Automation Letters, vol. 6, no. 2, pp. 1240-1247, April 2021, doi: 10.1109/LRA.2021.3057024.

This work was also presented at the IEEE International Conference on Robotics and Automation

(ICRA) 2021.

3.2 Introduction

A prime example of a highly redundant robotic system is a humanoid robot. Humanoid robots

have a wide span of possible applications, potentially becoming universal assistants. In their

morphology, such robots resemble humans, meaning that they also posess two arms, two

legs, a torso and a head, and each limb can collide with other parts of the robot. Though they

are difficult to control due to balancing, stepping, and whole-body control considerations

(Faraji et al., 2014; Nava et al., 2017; Figueroa et al., 2020), they have many advantages. They

do not require flat floors to operate, are capable of bi-manual dexterous manipulation, and
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Figure 3.1: Self-collided postures example in simulation for humanoid robot iCub. Links in
the collided state are highlighted red. On the left – arms collide with legs in the crouching
scenario, on the right – self-collisions between the arms.

can extend their manipulation workspace by bending forward or crouching. Achieving such

behaviors is challenging, as the control schemes must additionally prevent collisions with

obstacles in the environment and between robot’s own body parts. Figure 3.1 shows possible

scenarios where self-collsions may occur. Robots with back-drivable joints (Ajoudani et al.,

2014) or equipped with soft skin (Guadarrama-Olvera et al., 2019), may allow self-collisions or

exploit self-contacts and compliance to achieve a goal. However, for robots not equipped with

such capabilities, self-collision prevention is necessary to avoid hardware damage.

We focus on providing a real-time solution to the self-collision avoidance (SCA) problem for

high-dimensional position-controlled humanoid robots. In the literature, the SCA problem

is often tackled with offline motion planning algorithms that generate optimal collision-free

paths in configuration space for robots in challenging and constrained environments (Kavraki

et al., 1996; Kuffner and LaValle, 2000; Luna et al., 2020; Ratliff et al., 2009; Schulman et al.,

2014). Yet, as the robot’s joint space dimensionality increases, so does the computational and

geometrical complexity of the problem. While these specific methods have been capable of

generating collision-free trajectories for high-DoF humanoid robots that can be dynamically-

stable, efficient and optimal, their main shortcoming is computation time. It may take seconds

to minutes to generate a single feasible trajectory. Hence, their applicability to reactive and

dynamic real-time control is limited.

To alleviate this, online reactive approaches for high-dimensional humanoid robots have been

explored. These approaches rely on distance computations between simplified geometrical

representations of segments of the robot’s body; i.e. spheres, swept-sphere volumes, capsules,

convex-hulls, patch-based bounding volumes, etc. Self-collisions are avoided by (a) using

the distance functions as "repulsive potential" functions transformed to joint velocities for

Jacobian-based inverse kinematics (IK) (Sugiura et al., 2006, 2007; Schwienbacher et al., 2011)

and to joint torques for torque control schemes (De Santis et al., 2007; Dietrich et al., 2011); or
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Figure 3.2: SCA value function Γ(q) projected to two selected dimensions. Red areas denote
negative class (Γ(q) < 0) and collided configurations, whereas blue area represent feasible
configurations (Γ(q) > 0). Arrows inside collision-free region stand for gradient ∇Γ(q) that is
pointing in the direction away from collisions.

(b) as constraints in optimization-based IK solvers (Stasse et al., 2008; Escande et al., 2014;

Quiroz-Omaña and Adorno, 2019).

Although providing better computational efficiency than the offline methods, this family

of approaches have several issues. First, the accuracy and computation time of collision

avoidance relies heavily on the precision of the geometric representation. A highly accurate

representation of the segments will yield highly accurate distance functions but are more

computationally taxing; and vice-versa. Further, the former approaches are susceptible to

numerical issues induced by Jacobian inversions and are not robust to local minima. This is

handled by the latter approaches in which inequality constraints are defined as the distances

between closest points on the robot body. Yet, in order for the optimizations to converge,

the distance functions should be continuously differentiable (Stasse et al., 2008). This can

be difficult to achieve. A distance function between two geometrical objects is continuously

differentiable only if one object is convex and the other strictly convex (Escande et al., 2014).

To guarantee convergence, Stasse et al. (2008); Escande et al. (2014) and Quiroz-Omaña and

Adorno (2019) have proposed various novel geometrical representations and distance func-

tions that ensure differentiability. However, they rely on convex geometrical representations

and approximations which can over-constrain the problem; i.e. SCA might be too conservative.

Insights from previous work on SCA for multiple fixed based robot arms (Salehian et al., 2018b;

Figueroa et al., 2018) show that self-collision regions of a multi-body robot are static and

unique in joint space. Hence, a continuously differentiable function can be learned to model
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the self-collision boundary between collided and free joint configurations (see Figure 3.2).

Salehian et al. (2018b); Figueroa et al. (2018) use a sparse support vector machine (SVM)

formulation for fast (∼ 2ms) and accurate (∼98%) collision detection and repulsive gradient

computation. The SCA boundary functions and gradients were re-formulated as inequality

constraints in a quadratic program (QP)-based optimization problem that is solved in real-

time. This approach was validated on a 14-DoF dual-arm setup, however, it’s scalability to

higher-dimensional humanoid robots was not explored. Following this work, we propose to

learn continuously differentiable boundary functions that can be approximated in real-time to

prevent self-collisions while controlling the 29-DoF iCub humanoid. We show that the learned

SCA models can be used to actively avoid self-collisions within a real-time IK solver (< 5ms

computation time).

Self-collision boundary functions can be learned by sampling the robot’s workspace for col-

lided and non-collided joint space configurations. With a sufficiently representative dataset,

several function approximation approaches could learn the boundary functions with high

prediction accuracy. Since the dataset is collected offline, we can use precise triangle mesh

representation of the iCub robot body to acquire a highly accurate sampling of the collision

boundary. The challenge we face is that such datasets are in the order of millions of datapoints.

Further, we seek to provide high SCA prediction accuracy and computationally efficiency

while ensuring continuity requirements. We offer the former by decomposing the robot’s

29-dimensional joint space into independent submodels of lower dimensionality, each cov-

ering a sub-combination of limbs and bodies. To learn the boundary functions, we explore

and compare the sparse SVM used by Salehian et al. (2018b); Figueroa et al. (2018) known as

Cutting-Plane Subspace Pursuit (CPSP) algorithm (Joachims and Yu, 2009b), GPU-accelerated

feed-forward neural networks (NN) and GPU-accelerated SVM implementations.

Similar approach, presented by Fang et al. (2015), uses a SVM to detect self-collisions of the

31-DoF WALKMAN humanoid robot. There, the SVM is used as a prediction tool to accelerate

the online computation of the pairs of closest points. Given these predictions, the actual

Euclidean distances are used to formulate constraints fed to a task-prioritized optimization

problem as in (Stasse et al., 2008). While this approach is computationally efficient (10−20ms),

the reported misclassification rates of the learned SVMs are high and require an additional

heuristic to improve prediction accuracy. Further, this approach may suffer from convergence

issues due to the nondifferentiability of the constraints.

The idea of learning a model of a robot’s workspace with SVM and using it to detect collision is

also explored in (Das and Yip, 2020). An active learning scheme and kernel approximation are

leveraged to efficiently detect collisions. They accelerate offline motion planning approaches

such as rapidly exploring random trees (RRT) (LaValle, 2006) variants to orders of magnitude

above the state-of-the-art. This work clearly demonstrates the computational advantage

of using a learned collision function over classical pairwise distance searches. However, its

scalability to high-dimensional humanoid robots and applicability to real-time IK solvers is

yet to be demonstrated.
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3.2.1 Chapter organization

Sections 3.3-3.4 describe the proposed dataset building technique and the analysis of bound-

ary function approximation approaches. Section 3.5 describes the proposed IK optimization

problem with the learned boundary functions as constraints. In Section 3.6,we show that our

approach yields highly accurate real-time SCA for the 29-DoF iCub (Metta et al., 2010).

3.3 Problem Formulation

We seek to learn an SCA model for the iCub humanoid robot (Metta et al., 2010) in joint

space to predict and prevent self-collisions. Our motivation is to avoid repetitive geometrical

sampling and minimal distances computations by learning a continuous and continuously

differentiable (C1) function Γ(q) : Rn → R from a dataset of sampled postures q ∈ R
n . This

function should represent the cost for a self-collision constraint, describing collided and free

robot configurations. While Γ(q) ∈ R can help determine how close a given posture is to

a collided state, the gradient of this function, ∇Γ(q) ∈ R
n , can be used to navigate existing

path-planning methods away from the collision border, see Figure 3.2.

To learn Γ(.), any machine learning function approximation technique could in principle be

used. We set to compare three techniques: SVM, sparse SVM (CPSP), NN. In the case of SVM,

the number of parameters (support vectors) grows linearly with the number of datapoints

(Schölkopf and Smola, 2002). Hence, we additionally evaluate the sparse SVM version (CPSP)

(Joachims and Yu, 2009a). We then contrast this to Neural Networks with a focus on finding

the minimum number of neurons to achieve similar accuracy. We show that the resulting

constraints from any of these techniques are continuously differentiable.

3.4 Self-Collision Boundary Learning

This section describes our approach applied to the iCub humanoid robot, yet it is applicable

to any humanoid.

3.4.1 Self-Collision Dataset

To learn a self-collision detection function, we generate a dataset containing examples of

both collided and collision-free classes. The iCub has 53 actuated joints (Metta et al., 2010).

Excluding hands, eyes and the three joints associated with neck and head movements1 reduces

the number of actuated joints to 29. The resulting joint space of the iCub is equivalent to R
29,

as each joint q i is revolute and has corresponding joint limits:

q−
i < qi < q+

i , i = 1, ...,29.

1The collision space with the head moving is quasi equivalent to the collision space with the head static.

25



Chapter 3. Self-Collision Avoidance for Humanoid Robots

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 3.3: Visualization of humanoid self-collision model separation into ten independent
submodels. For each submodel 1-10 orange links are checked for collisions, while blue links’
collisions are ignored. Neighbouring links collisions are also ignored. The features of each
submodel correspond to the joints adjacent to highlighted links. For models 2, 3, 5 and 6 torso
joints are also considered as features.

As noted by Fang et al. (2015) and evidenced in our experiments, due to the complex joint

space geometry, learning a single SCA model for a high-dimensional humanoid robot that is

both highly accurate and computationally efficient is challenging, because 29-dimensional

joint space has a structure of collided and free regions too complex to be described with good

accuracy. For that reason, we simplify the problem by decomposing the 29-DoF humanoid

model into ten submodels of lower dimensionality, that independently describe possible

collisions between robot links. The links, joints and feature dimensionality for every submodel

are specified in Table 3.1 and visualized in Figure 3.3. Notably, certain pairs of submodels

become symmetric if the torso joints are mirrored. By exploiting this symmetry, we reduce the

number of models to be learned from ten to six. We indicate the symmetric submodel pairs in

Table 3.1.
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3.4 Self-Collision Boundary Learning

Table 3.1: Humanoid robot model separation (1-10). Entries marked with (∗x ) are symmetrical
to unmarked models x. Full-body is present as zero entry for comparison. Visualisation is
presented in Figure 3.3.

N Collided Links Varied Joints Features

0 Full body Full body 29
1 Left arm, right arm Left arm, right arm 14
2 Left arm, left leg Left arm, left leg, torso 16
3 Left arm, right leg Left arm, right leg, torso 16
4 Left arm, torso, head Left arm, torso 10

5∗3 Right arm, left leg Right arm, left leg, torso 16
6∗2 Right arm, right leg Right arm, right leg, torso 16
7∗4 Right arm, torso, head Right arm, torso 10

8 Left leg, right leg Left leg, right leg 12
9 Left leg, torso, head Left leg, torso 9

10∗9 Right leg, torso, head Right leg, torso 9

While many works rely on geometrical simplifications of robot structure, we use precise

triangle meshes. To detect collisions we use the Flexible Collision Library (FCL) (Pan and

Manocha, 2016). The dataset is generated by a uniform random sampling with balancing

heuristics. The dataset creation is structured so that 50% of samples are collided postures, 35%

are feasible postures with a minimal distance across link pairs lower than a threshold (to have

a better representation of collision boundary), and 15% of entries are uncollided postures

without minimal distance requirements. For every submodel, we randomly sample robot

configurations within the joint limits until the desired dataset size (for collided, within the

threshold, and free postures) is reached.

The threshold value for 35% of close-to-collision configurations is set to 5 cm. Postures are

considered collided if the minimal distance between any link pair is below 1 cm. Using joint

limits q−
i

, q+
i

all configurations are normalized, i.e. every feature belongs to (0,1). As a result,

for each submodel, we generate a normalized and balanced dataset, where 50% of samples

are of collided configuration, and 50% are uncollided configurations including safe and close-

to-collision postures. This procedure allows us to generate unlimited amounts of data, and

datasets sizes are only constrained by the computation time.

3.4.2 Self-Collision Boundary Learning via SVM

To learn a self-collision boundary from the collected data, we first follow the classic SVM

formulation, where the kernel trick is employed to lift the data to higher dimension space

and find separation hyperplane in feature space. We use the radial basis function (RBF)

kernel K (q1, q2) = e−γ||q1−q2||
2
, where parameter γ defines kernel width. For a given robot
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configuration q , the SVM decision function Γ(q) has the following form:

Γ(q) =
Nsv∑

i=1
αi yi K (q , qi )+b

=
Nsv∑

i=1
αi yi e−γ||q−qi ||

2
+b,

(3.1)

and the equation for ∇Γ is naturally derived as follows:

∇Γ(q) =
Nsv∑

i=1
αi yi

∂K (q , qi )

∂q
=

=−2γ
Nsv∑

i=1
αi yi e−γ||q−qi ||

2
(q −qi ).

(3.2)

In (3.1), qi (i = 1, ..., Nsv ) are the support vectors from the training dataset, yi are corresponding

collision labels (−1 if posture is collided, +1 otherwise), 0 ≤αi ≤C are the weights for support

vectors and b ∈ R is decision rule bias. Parameter C ∈ R is a penalty factor used to trade-off

between errors minimization and margin maximization. Parameters αi and b and the support

vectors qi are estimated by solving the optimization problem for the soft-margin kernel SVM

(Schölkopf and Smola, 2002). With large datasets, the time requirements to minimize the

corresponding problem grows, so it is important to utilize efficient computation methods.

For efficient learning of the SVM model from the sampled data, we use ThunderSVM – an

open-source library that utilizes GPUs to speed-up the computations (Wen et al., 2018).

For each of the submodels (Table 3.1) we must generate independent datasets and SVMs.

Hence, the optimal hyperparameters C and γ are different for each submodel. To find C

and γ we perform the procedure of grid-search in the following ranges: C = [1,5000] and

γ= [0.1,10] for each model. For the grid-search, we use training and testing datasets with sizes

of 100,000 and 200,000, respectively. This scheme offers faster parameter optimization with

similar results to k-fold cross-validation. The grid-search results rely heavily on the sampling

density and size of the cells in the grid. However, as we have multiple models to optimize,

dense sampling on a large range would require excessive computations. Given that, for each

model, we first localize optimal areas by performing two searches with the 5x5 grids and finally

tune precisely with the 10x10 grid. Optimal hyperparameters for submodels are provided in

Table 3.4.

After parameters C and γ are found for every submodel, we use 250,000 sampled postures

to train each SVM. We then estimate classification accuracy and the confusion matrix with

another 150,000 points previously unseen by the model. Performance validation is achieved

by repeating the training five times, each time randomly selecting points for train and test

datasets. To correctly classify collided and non-collided postures, we do not need to densely

cover all state-space, but rather have enough points in the classification boundary’s vicinity.
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3.4 Self-Collision Boundary Learning

As our sampling procedure is built to include close-to-collision configurations, we find that

250,000 points are enough to learn a model with decent performance.

To evaluate the performance of the trained model, we use metrics such as classification

Accuracy (A), True Negative Rate (TNR) and True Positive Rate (TPR). Those are computed

using the elements of the confusion matrix:

TNR =
TN

(TN+FP)
, TPR =

TP

(TP+FN)
, (3.3)

where TP stands for True Positive, TN – for True Negative, FP – for False Positive and FN –

for False Negative. Negative class here is for the collided postures, and positive class means

the robot configuration has no self-collisions. A high TPR (low FN) avoids classifying free

configurations as collided and does not remove valid configurations from feasible space.

On the other hand, a high TNR (low FP), will avoid labeling collided configurations as free.

This is the most critical metric to be maximized, as we wish to avoid classifying self-collided

configuration as feasible.

SVM Performance Evaluation

The trained models performance is provided in Table 3.4. Submodels distinguish collided and

uncollided configurations with an average accuracy of 96.0%. TNR is above 94.5% for every

submodel, while lowest value for TPR is 91%. It is worth noticing that 250,000 points randomly

sampled for 16-DoF models (submodels 2, 3, 5, 6) correspond to the grid with a density of

fewer than three points per axis. Such classification accuracy in the robot’s joint space is not

yet achieved by the traditional grid and voxel methods used in distance field computation. At

the same time, the full-body model with 29 DoF has relatively low accuracy (∼86%) even with

a training dataset of one million entries.

Learned SVM models have total support vector count Nsv = 236797 (incl. symmetrical). To

evaluate each model for a single query point, it is required to compute the squared euclidean

distance from each support vector and calculate the sum of resulting RBF kernels (as in (3.1)

and (3.2)). By means of optimized C and CUDA code, we can perform all computations

efficiently and fast enough to be used online. The computations are easy to parallelize, so

we compare the performance of single- and multithreaded CPU implementation, as well

as GPU variant. The hardware used for computations is 4.2 GHz Intel i7-7700K and Nvidia

GTX 1060. Parallelization for CPU is achieved by OpenMP, while GPU implementation uses

a combination of custom CUDA kernels and CUBLAS routines with asynchronous memory

copying and stream control to achieve maximum kernel concurrency. For accurate results, all

computations are performed with double precision. The average time needed to evaluate one

random query posture in three various ways (CPU sequential/parallel, GPU) is shown in Table

3.2. For better understanding of the iteration time, we include reference time for solving QP IK

(more on that in Section 3.5).
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CPU (1 thread) CPU (4 threads) GPU
IK (10 iter.) 3.24 ms
SCA (1 iter.) 7.74 ms 2.55 ms 1.38 ms

IK+SCA (10 iter.) 116.81 ms 40.87 ms 19.27 ms

Table 3.2: Computation time required to evaluate trained SVM classifier for one posture
(averaged between 1000 trials).

From Table 3.2, it is seen that the use of GPU allows us to control the humanoid robot with self-

collision constraints at an efficient rate of 50 Hz. However, the speed-up from multithreaded

CPU implementation is only 2x. The model needs to have significantly more support vectors

to achieve better GPU acceleration. With more CPU threads (latest processors having more

than 16 cores), it should be possible to increase the CPU implementation speed. At the same

time, GTX 1060 is a low-tier GPU released in 2016, and newer hardware with more CUDA cores

can also significantly accelerate GPU computations.

Sparse SVM (CPSP) Performance Evaluation

The previous sub-section demonstrated that it is possible to learn the self-collision boundary

in the robot’s 29-dimensional joint space with kernel-based SVM. We also showed that, in

order to achieve real-time performance, it is required to utilize high-performance CPU or even

GPU. Often, the computational capabilities of robots’ onboard computers are limited, and we

cannot assume access to GPU. It is hence important to investigate other learning methods,

which may result in self-collision models with fewer parameters. We follow the approach

proposed by Figueroa et al. (2018) and apply the CPSP method (Joachims and Yu, 2009a) that

reformulates the SVM optimization problem to put a strict upper bound on the number of

support vectors. A key difference between CPSP and classical SVM is that support vectors qi

are not necessarily points that were part of the training dataset. However, the final expression

for the functions Γ(q),∇Γ(q) ((3.1) and (3.2)), and the hyperparameters C and γ correspond to

those of classical SVM. As in the SVM model learning, we repeat training-validation process

five times, shuffling data between training and testing datasets.

To learn the sparse SVMs with CPSP optimization we use the SVMperf library (Joachims and Yu,

2009a). We set the support vector budget to Nmax = 1000 for submodels, and Nmax = 10000

for the single full-dimensional self-collision model (for evaluation purposes). The resulting

accuracy for self-collision detection in submodels is 92.1% on average. FP do not surpass

4.6%, but FN reach 10% for some models. Full metrics for the performance of learned models

are provided in Table 3.5. The sparse SVM method results in fast optimization and a reduced

number of model parameters, yet with lower prediction accuracy compared to the classical

SVM. This could be alleviated by setting a higher Nmax , however, at the expense of increased

model complexity and its computation time.
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3.4.3 Self-Collision Boundary Learning via Neural Networks

Since we learn the SCA boundary functions as a classification problem, we also explore the

use of Neural Networks (NN). By altering the depth (number of layers) and width (maximal

number of nodes in a layer) of a NN, we can control the number of weight coefficients in

the model, therefore controlling its size and evaluation time. The difficulty, however, lies in

finding the optimal depth and width that will yield the best trade-off between computational

efficiency and prediction accuracy. To ensure the necessary continuity properties for Γ(.); i.e.,

that it should be C1, we can use continuous activation functions, such as sigmoid or hyperbolic

tangent. Through empirical evaluation we found that a NN with 50−30−10 hidden layer

structure and tanh activation function (see Figure 3.4) is the optimal architecture to learn

submodels. Several network architectures with various depths and widths were evaluated. The

proposed architecture is the most computationally efficient that provides better prediction

accuracy than the SVM counterparts. The NN parameters are weight matrices Wi and bias

vectors bi , i = 1, ...,4, their dimensions vary depending on the amount of neurons on i -th layer

and dimensionality of state q across various submodels.

Figure 3.4: NN layers used to learn self-collision boundary function.

For a given posture q , the NN outputs a pair of real numbers (p1, p2):

[

p1(q), p2(q)
]T

=b4 +W4 tanh(b3 +W3 ·

tanh
(

b2 + W2 tanh
(

b1 +W1q
)))

,
(3.4)

that represent respective probabilities of belonging to two classes (free or collided) after

normalization. As we are interested in a single-valued output for our self-collision boundary

function, we set Γ(q) = p2 −p1, so that Γ(q) = 0 when p1 = p2, this i.e. posture belongs to the

self-collision boundary. For collided postures Γ(q) < 0, and for feasible postures Γ(q) > 0, as in

previously learned SVM models. Without affecting boundary detection, we may also skip the

normalization step, so that Γ(q) is not bounded. The gradient of SCA function is derived as

∇Γ(q) =
∂p2

∂q
−
∂p1

∂q
, where

[
∂p1(q)

∂q
,
∂p2(q)

∂q

]T

=−W1W2W3W4

(

tanh
(

b1 +W1q
)2
−1

)

·
(

tanh
(

b2 +W2 tanh
(

b1 +W1q
))2

−1
)

·
(

tanh
(

b3 +W3 tanh
(

b2 +W2 tanh
(

b1 +W1q
)))2

−1
)

.

(3.5)

In (3.4) and (3.5) the hyperbolic tangent functions are applied element-wise for a vector input.
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Table 3.3: Comparison for various learning methods used to learn self-collision detection
function. All parameters represent sum or average value for such parameters across ten
submodels (incl. symmetrical) from Table 3.1.

Learning Method SVM CPSP NN
Model size, # of doubles 2099422 138000 15322

Total training time, s 11250 4762 2106

Avg. accuracy 0.960 0.920 0.990

Avg. TPR 0.949 0.878 0.984

Avg. TNR 0.973 0.964 0.995

Evaluation time, ms 1.38(GPU) 0.42(CPU) 0.11(CPU)

We use the PyTorch library to learn the weights of the NNs by optimizing the negative log

likelihood loss with RMSProp running for 2000 epochs. We train six NNs to cover self-collisions

for all submodels from Table 3.1. As training time is significantly lower than in SVM models,

and the model size does not increase when a larger dataset of training points is used, we

train each submodel with 900,000 postures to achieve better accuracy, and validate using

100,000 unseen points. We repeat train-test procedure five times, shuffling data between

training and testing datasets. For the trained models, the mean accuracy is 99.0%, and the

FNR is 0.08% on average. Full results for training and validation are provided in Table 3.6. NNs

outperform SVMs in terms of accuracy, learning speed and evaluation time. Computation

of values and gradients of function Γ(.) learned via NNs requires ∼ 0.11ms on 4.2GHz Intel

i7-7700K. This includes 15 consecutive evaluations of ten submodels from Table 3.1 (our

IK algorithm requires at least 15 iterations to converge). We can compare our method with

(Quiroz-Omaña and Adorno, 2019), where the Vector Field Inequalities approach is used to

compute the distance function and its gradient to avoid collisions. In their approach, the

single evaluation of Jacobian constraint takes ∼ 5.2ms with comparable CPU. The learned

self-collision representation is visualized in Figure 3.5.

One might wonder if a single large NN is capable of modeling the SCA boundary as accurately

as our decomposed SCA-NN approach. In the first row of Table 3.6 we include the evaluation

metrics of a single 29-dimensional NN model without submodel decomposition. To find the

optimal NN structure we performed grid-search on combinations of depth and width sizes,

with ranges of 3-9 hidden layers and 50-250 neurons per layer. By training the networks on

a larger dataset (2.5 million) and running it for 5000 epochs, we found a 4-layer (including

output) NN with 250 neurons on each layer to be the optimal choice. However, the prediction

accuracy of this model reaches at most 92-93%, which is not sufficient to justify the increase

in model complexity (∼ 130k weights) and computation time.

3.4.4 Comparison across methods

In Tables 3.4, 3.5 and 3.6 we provide all the performance metrics for the three approaches,

respectively. Further quantitative comparison of performance across is shown in Table 3.3.
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(a)

(b)

Figure 3.5: Visualization of the SCA boundary for the first submodel describing collisions
between two arms (14-DoF). On the left is a two-dimensional projection of the joint space, and
on the right is the robotic visualization. (a) depicts the uncollided state, while (b) illustrates a
situation where both arms are colliding.

Such comparison depends heavily on the efforts spent on programming the techniques.1 To

provide a fair comparison, we used the most recent and efficient implementations offered for

SVM (ThunderSVM), CPSP (SVMperf), and NN (PyTorch). As expected, SVM provides better

average accuracy as well as better TPR and TNR than CPSP, whereas CPSP model is significantly

smaller and offers faster evaluation. NN gives the overall best performance with even fewer

parameters and better accuracy, as well as better TPR and TNR and the best training and

evaluation time. Notably, the NN’s performance on the test data is very similar to its training

performance. While this may be deemed as overfitting, this particular behavior can be justified

in the self-collision detection scenario. In the simulations and experiments reported next,

we used the function Γ(.) learned via NNs, as it offers the best combination of classification

accuracy and evaluation times for querying postures.

1The source code for this chapter is available at https://github.com/epfl-lasa/Joint-Space-SCA
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Table 3.4: Performance and confusion matrix elements for self-collision models trained with
classical kernel SVM. Each submodel is trained on 250,000 points dataset and tested on 150,000
unseen data points. Full model (0) is trained on 1,000,000 (one million) data samples. The
elements of the confusion matrix are presented relatively to testing dataset size, and in the
perfect scenario TP = TN = 0.5, while FP = FN = 0. All values (except for columns 1-4) are
averaged between five training-validation runs. Standard deviations σ for each cell in columns
7-14 do not exceed 0.001.

N Dim C γ Nsv
Training

time, s

Training

accuracy

Test

accuracy
TPR TNR TN TP FN FP

0 29 100 0.1 182548 15632 0.891 0.864 0.855 0.875 0.438 0.426 0.074 0.062
1 14 2000 0.5 25767 2781 0.989 0.943 0.936 0.951 0.476 0.468 0.032 0.024

2 and 6 16 400 0.4 42923 1756 0.976 0.926 0.910 0.945 0.473 0.453 0.047 0.027
3 and 5 16 1000 0.4 32788 2962 0.977 0.942 0.925 0.962 0.481 0.461 0.039 0.019
4 and 7 10 100 1.5 15886 287 0.999 0.979 0.971 0.987 0.494 0.486 0.014 0.006

8 12 5000 0.5 13988 3418 0.991 0.976 0.971 0.982 0.491 0.485 0.015 0.009
9 and 10 9 500 0.5 6924 46 0.992 0.991 0.985 0.997 0.499 0.493 0.007 0.001

Table 3.5: Performance and confusion matrix elements for self-collision models trained with
CPSP method. Each submodel is trained on 250,000 points dataset and tested on 150,000
unseen data points. Full model (0) is trained on 1,000,000 (one million) data samples. All
values (except for columns 1-5) are averaged between five training-validation runs. Standard
deviations σ for each cell in columns 7-14 do not exceed 0.002.

N Dim C γ Nsv
Training

time, s

Training

accuracy

Test

accuracy
TPR TNR TN TP FN FP

0 29 100 0.1 10000 117399 0.782 0.746 0.901 0.591 0.296 0.451 0.049 0.204
1 14 2000 0.5 1000 1052 0.916 0.906 0.869 0.943 0.476 0.434 0.066 0.028

2 and 6 16 400 0.4 1000 926 0.888 0.868 0.827 0.908 0.473 0.414 0.086 0.046
3 and 5 16 1000 0.4 1000 851 0.918 0.900 0.832 0.967 0.481 0.416 0.084 0.016
4 and 7 10 100 1.5 1000 676 0.938 0.936 0.891 0.981 0.494 0.446 0.054 0.009

8 12 5000 0.5 1000 826 0.965 0.964 0.939 0.989 0.491 0.470 0.030 0.006
9 and 10 9 500 0.5 1000 431 0.976 0.976 0.960 0.992 0.499 0.480 0.020 0.004

Table 3.6: Performance and confusion matrix elements for self-collision models trained with
NNs. Submodels are trained on 900,000 points dataset and tested on 100,000 unseen data
points. Full model (0) is trained on 2,500,000 points, and has the same feed-forward archi-
tecture with three hidden layers, but with 250 neurons on each layer. All values (except for
columns 1-3) are averaged between five training-validation runs. Standard deviations σ for
each cell in columns 5-12 do not exceed 0.001.

N Dim Nw
Training

time, s

Training

accuracy

Test

accuracy
TPR TNR TN TP FN FP

0 29 132750 2289 0.925 0.923 0.933 0.914 0.456 0.468 0.034 0.043
1 14 2612 348 0.999 0.998 0.997 1.000 0.500 0.499 0.002 0.000

2 and 6 16 2712 354 0.971 0.971 0.958 0.985 0.492 0.479 0.021 0.008
3 and 5 16 2712 350 0.989 0.988 0.980 0.996 0.498 0.490 0.010 0.002
4 and 7 10 2412 359 0.993 0.993 0.989 0.998 0.499 0.495 0.005 0.001

8 12 2512 343 0.994 0.994 0.989 0.998 0.499 0.495 0.006 0.001
9 and 10 9 2362 352 0.998 0.998 0.996 0.999 0.500 0.498 0.002 0.000
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3.5 Application to online IK solver

3.5 Application to online IK solver

We propose to use the learned self-collision models as constraints for an online Inverse

Kinematics solver. Taking inspiration from the work by Salehian et al. (2018b), we model the

self-collision boundary as a separation hyperplane and use it as a constraint for convex QP

problem that can be solved in real-time. Compared to (Salehian et al., 2018b), our contribution

is that we extend the method to the humanoid robot and demonstrate the use of multiple

collision constraints. We propose the following quadratic problem to solve the IK (adapted

from (Figueroa et al., 2020) and (Salehian et al., 2018b)):

min
∆q ,δ

δT Qδ+∆q T R∆q

s.t.







f (q)+
∂ f (q)

∂q
∆q = x +δ

q−
i
< qi +∆qi < q+

i
, i = 1..29

−∇Γi (q)∆q ≤ ln(Γi (q)+1), i = 1..10.

(3.6)

where f (q) stands for the forward kinematics of the robot, R is equivalent to the well-known

damping term in least-squares IK methods, and Q is a diagonal matrix that sets weights for

the Cartesian tasks vector x . Tasks include positions and orientations of the feet, hands, and

the center of mass. Constraints in (3.6) represent a cartesian task x with slack δ, joint limits,

and self-collision avoidance respectively. The last constraint forces the joint angles to move

away from the self-collisions hyperplane as they approach it. When the robot is far from the

boundary and Γi (q) > 0, values ln(Γi (q)+1) are positive, which relaxes the set of self-collision

inequality constraints, i.e., the robot accurately follows the desired end-effector trajectory.

If i-th submodel is close to self-collision, then ln(Γi (q)+ 1) becomes negative, and the IK

solver is forced to align joint motion ∆q with corresponding gradient ∇Γi (q), thus moving the

robot configuration away from the collision boundary and satisfying self-collision avoidance

constraint. Recall that, due to symmetry, only six submodels (out of ten) are learned. To

calculate Γi for symmetrical submodels (i = 5,6,7,10), we mirror the torso pitch and yaw

joints: q
p
t � 1−q

p
t and q

y
t � 1−q

y
t , and invert the sign for the corresponding coordinates of

∇Γi .

Equation (3.6) is a convex QP problem with equality and inequality constraints, hence, there is

no closed-form solution for it. To solve it, we utilize CVXGEN solver, which generates C codes

tailored for the specific formulation of the optimization problem (Mattingley and Boyd, 2012).

The proposed control scheme is for the position-controlled robots, and after solving (3.6) the

desired joint angles for the next control iteration are computed as qnew = q +∆q .

3.6 Experimental Validation

In our experiment, we consider the picking-up scenario. The robot is supposed to bend from

the standing posture and reach the object located on the ground. Without SCA constraints
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(a)

(b)

Figure 3.6: The robot is trying the object close to the ground without (a) and with (b) proposed
SCA constraints in the IK solver. Collided links are highlighted red. Refer to Video Link for the
full experiment.

in Inverse Kinematics, the robot tends to have a self-collision between the elbow and the

knee (Figure 3.6a). Not only this self-collision prevents the robot from reaching the target,

but it is also harmful to the hardware, leading to torn cables and plates bending. However,

with the proposed SCA constraints in the IK solver, the robot avoids that collision by shift-

ing the hips and straightening the knees to maximize the distance between legs and arms

links (Figure 3.6b).

Figs. 3.6a and 3.6b are from simulated environment, as it is easier to demonstrate self-collisions

there. We also conducted the experiment with picking-up scenario on the real robot. As

expected, iCub is able to pick up arbitrary positioned box avoiding self-collisions. Snapshots

of one full picking-up motion are demonstrated in Figure 3.7, while grasping postures for three

different box positions are shown in Figs. 3.8b - 3.8d.

3.6.1 Comparison with other methods

To evaluate the proposed method’s performance in a general picking-up scenario, we perform

the following benchmark. The box object is placed randomly in front of the robot (red area

in Figure 3.8a), and three different IK algorithms are used to generate a grasping posture

from a fixed initial state. IK methods include (i) the proposed method (as in (3.6)), (ii) QP

solver without SCA constraint ((3.6) without last line), and (iii) the QP solver where collision-

avoidance is a task based on repulsion in Euclidean space.
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3.6 Experimental Validation

Figure 3.7: iCub is picking the box from the ground with the proposed SCA constraints. Refer
to Video Link for the full experiment.

For the case of task-space collision avoidance constraint (iii), the QP problem (3.6) is modified

to additionally minimize σT Sσ, where S is a diagonal weight matrix, and σ is a slack variable:

J SCA
i (q)∆q = sv

rep
i

+σ. (3.7)

Here, v
rep
i

∈R3 is a vector connecting two closest points of the bodies in i -th submodel (i =

1...10) in task-space; i.e. v
rep
i

=
p1−p2

||p1−p2||
where p1, p2∈R

3 are the closest points on the robot

body. s is a scaling factor for v
rep
i

to match the magnitude of ∆q . 3.7 replaces the proposed

one (last line in (3.6)) with a traditional repulsive force and constraints approaches, similar to

Sugiura et al. (2006, 2007); Schwienbacher et al. (2011) and (Stasse et al., 2008), respectively. To

speed-up the distance computations, the geometry is approximated with convex hulls instead

Table 3.7: Self-collision avoidance constraints performance for 1000 random object positions.

IK method rc , % d , cm IK time, ms
No SCA (15 iter.) 63.26 6.56 3.41
Proposed method (15 iter.) 4.86 5.78 3.61

Jacobian-based SCA (15 iter.) 14.52 7.68 15.02
Jacobian-based SCA (30 iter.) 7.74 5.69 29.14
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(a)
(b) (c) (d)

Figure 3.8: (a) - Area for random positions of the object in the benchmark. (b)-(d) - Grasping
posture of the robot for various box positions.

of precise meshes, and FCL library is used to determine closest points on the bodies.

We check the final posture for the collision and calculate the error d= 1
2

(

||pd
l
−p s

l
||+ ||pd

r −p s
r ||

)

between the desired positions for left and right hands pd
{l ,r }, and positions p s

{l ,r } given by the

IK solvers. We run the simulation 1000 times and compare the collision rate rc , average hands

position error d , and evaluation time for IK; the results are provided in Table 3.7. The colli-

sion rate rc is lowest for the proposed method, while evaluation time is almost unaffected

compared to basic IK without self-collision avoidance. At the same time, to achieve similar

performance (in terms of mean task error d) with Jacobian-based SCA, it is necessary to per-

form more iterations of the Sequential QP IK; combined with repetitive distance calculations,

that significantly slows down the computations.

3.7 Conclusion

In this chapter, we proposed a computationally efficient method to detect and avoid self-

collisions for high-DoF robots, such as humanoids. We treat self-collisions as constraints

in the robot’s joint space, allowing for direct use in the control scheme. Apart from the

demonstrated use in Sequential QP IK solver, the proposed self-collision avoidance constraint

can be employed in other algorithms. For instance, it may serve as collision detection in

RRT-navigation methods (Kuffner and LaValle, 2000), additionally providing a gradient to

guide the sampling procedure. To some extent, it can replace distance field computations

in (Ratliff et al., 2009). Although our method may require extensive computations to learn a

self-collision boundary, such computations are performed only once. Furthermore, it provides

a model for reliable and efficient self-collision detection, fitting the computation time within

real-time limitations.
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3.7 Conclusion

One drawback of our method is that it requires some heuristics, such as model separation,

to reduce the overall dimensionality of the problem. Overall, we find that systems with

dimensionality of up to 16 can be encapsulated into a single model, which would hold for

almost any robotic arm. Moreover, the presented model separation strategy can be applied to

any other humanoid robot. In one of the tangential studies (conducted as a semester project),

we successfully applied a similar self-collision detection framework to a robotic hand, where

each finger’s collisions were learned separately. As a result, we are confident that the presented

method can be applied to a wide range of robotic systems.

It would be interesting to investigate how sophisticated sampling procedures (for exam-

ple, balancing the number of collisions between every link pair) may help learn a single

29-dimensional model of feasible postures. Additionally, it is possible to include other con-

straints, such as static balance, in the classification, thus expanding the unfeasible class.
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4 Obstacle Avoidance for Robotic Ma-

nipulators

All models are wrong, but some are useful.

— George E. P. Box

4.1 Foreword

Previous chapter demonstrated that self-collisions of a redundant system could be represented

as a static boundary in the high-dimensional joint space of a robot. When this boundary is

approximated as a continuously differentiable function of class C1, the gradients with respect

to the input robot configuration essentially represent a repulsive vector field directly in the

joint space of the robot; that repulsion can be used as a constraint in a control optimization

routine.

In this chapter, this idea is extended to account for collisions with obstacles in the robot’s

workspace. We note that static collision boundaries in joint space can be interpreted as

implicit signed distance-to-collision functions, if the robot state space is complemented with

the Euclidean three-dimensional space. We present a novel approach for constructing an

implicit distance function for distance evaluation between a robot in arbitrary configurations

and any point in the three-dimensional workspace of the robot. The learned neural model

allows for efficient and highly-parallelizable batched distance and gradient queries via GPU.

The work presented in this chapter has been published in M. Koptev, N. Figueroa and A.

Billard, "Neural Joint Space Implicit Signed Distance Functions for Reactive Robot Manipulator

Control," in IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 480-487, Feb. 2023, doi:

10.1109/LRA.2022.3227860.

Parts of this work were also presented at the Motion Planning with Implicit Neural Representa-

tions of Geometry workshop, held during the the IEEE International Conference on Robotics

and Automation (ICRA) 2022.
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4.2 Introduction

Motion planning is a crucial element of robotic control and has continuously attracted the

interest of researchers throughout the years. Industrial, retail, and lately, domestic scenarios

require robotic motion to satisfy certain constraints, such as energy minimization, smooth

trajectories, goal-reaching, and orientation keeping. Yet, the most important constraint

to satisfy in any motion planning task is to avoid collisions and self-collisions. Standard

techniques avoid such collisions by computing distances between geometric approximations

of the robot’s body segments represented as spheres, ellipsoids, swept volumes and even

meshes (Gilbert et al., 1988). One can then formulate constraints or costs for the motion

planning algorithm of choice based on the computed minimum distances (Harrison et al.,

2020).

While avoiding self-collisions is important, handling external collisions, i.e., collisions between

the robot and its environment, is essential for a robot that must operate in constrained and

dynamic environments. These collisions can be categorized into two types: collisions with

static obstacles, such as furniture or walls, and collisions with moving obstacles, including

other robots or humans. Avoiding moving obstacles is crucial for consumer technology, where

robots should operate in an environment shared with humans, which assumes that the robot

must always be prepared to avoid humans in its workspace to prevent possible injuries. With

the advent of compliant collaborative robots equipped with force/torque sensors and robust

vision systems, a robot can halt its motion when a collision is detected (Haddadin et al., 2017).

Yet, advanced collaborative systems are expected to continue task execution while avoiding

any type of obstacles in both a preemptive and reactive manner. Additionally, certain scenarios

in human-robot interaction require maintaining direct contact between the robot and humans

(Khoramshahi et al., 2020; Li et al., 2021). Thus, it is essential to have a notion of a repulsive

vector field and corresponding tangential plane to handle the contact. Having those defined

directly in joint space helps to plan more efficiently.

The problem of collision avoidance is generally treated as a constraint in a path-planning rou-

tine (Ratliff et al., 2009). Optimization and collision checking computations are unfeasible to

perform in real-time, so optimal trajectories are computed offline before execution. However,

if the obstacles near the robot are moving unpredictably, the control must be reactive and

adjust the trajectory at execution time.

In this chapter, we assume the obstacles to be dynamic and, hence, investigate the applicability

of the learned distance function to achieve real-time performance with two state-of-the-art

reactive control methods: i) a collision-aware QP (quadratic program)-IK (inverse kinematics)

solver that optimizes for the next immediate step and has shown real-time performance for

high-dimensional humanoid robots (Faraji and Ijspeert, 2017), and ii) a sampling-based MPC

that has a short look-ahead horizon (Williams et al., 2017; Bhardwaj et al., 2022). Both methods

are reported to generate solutions with at least 100Hz frequency, which should allow real-time

reactive obstacle avoidance.
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4.3 Problem Formulation

4.2.1 Chapter organization

Section 4.3 presents the mathematical problem formulation, including assumptions, defini-

tions and goals of this chapter. In Section 4.4 we present our proposed approach for learning

a neural joint space implicit signed distance function (Neural-JSDF) for a given robot. Sub-

sequently, Section 4.5 covers the application of the proposed Neural-JSDF to a QP-IK solver

and sampling-based MPC approach for reactive control. Finally, we evaluate the performance

of these two reactive control techniques in simulation and with real robotic experiments in

Section 4.6.

4.3 Problem Formulation

We consider a robotic manipulator with m degrees of freedom and K links, whose state is

described by joint angles q = [q1, ..., qm] ∈ C, where C stands for configuration space (C-space).

All joints of the robot are revolute type and bounded by joint-limits q ∈ [qmi n , qmax ], thus

q ∈ C ⊂R
m .

In this work, we seek to control a robotic manipulator in joint space to reach a task-space goal

x∗ ∈SE(3) for its end-effector that could be pre-defined or generated by a task-space control

law, all the while handling collisions between the robot’s body and static and dynamic objects

in real-time; i.e., with a desired control loop frequency of ≥100Hz.

4.3.1 Assumptions & Definitions

Let us assume B ⊂R
3 to be the set of points that geometrically describe the physical body of

the robot. The points of the k-th link of the robot create subsets Bk ⊂B, k = 1, ...,K . The robot’s

kinematics is known, with forward kinematics (FK) denoted by f : C×B −→R
3, mapping a robot

configuration q ∈ C and arbitrary robot body point x ∈B to a workspace point f (q , x) ∈R
3. We

can define minimal distances between the k-th link of the robot and arbitrary point y ∈R
3 in

the workspace:

dk (q , y) = min
x∈Bk

|| f (q , x)− y ||. (4.1)

The workspace of the robot contains static and dynamic obstacles described by the sets of

points Os ⊂R
3 and Od ⊂R

3, respectively. Dynamic obstacles can be generalized and include

static, such that Os ⊂Od , hence we will herein refer to the obstacle set as O ⊂R
3 regardless of

obstacles being static or dynamic. This definition allows us to write down minimal distances

between the robot in configuration q and the environment as:

dmi n(q) = min
k,y

dk (q , y), (4.2)
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where y ∈ O are points belonging to obstacles in the workspace. Naturally, if we seek to

avoid collisions between the robot and the environment with a given margin l , any command

position q must satisfy the condition dmi n(q) > l .

4.3.2 Goals

Two main goals are defined to achieve our objective:

• The first goal of this chapter is to learn a regression function Γ(q , y) to approximate a

K -dimensional minimal distance vector d (q , y) = [d1(q , y), ...,dK (q , y)] with each entry

representing the minimal distance between the k-th link and and arbitrary 3D point.

Function Γ(q , y) represents a distance field in the robot’s workspace depending on the

joint configuration of the robot. Additionally, ∂Γ(q ,y)
∂q

is a vector field defined in the joint

space of the robot, providing information on the direction to (and away from) potential

collisions. We provide the theoretical derivation and properties of the proposed distance

field Γ(q , y) as well as the learning architecture and evaluation in Section 4.4.

• The second goal is to apply the learned function Γ(q , y) and its gradient to enhance reac-

tive control methods, by i) formulating a collision-avoidance constraint in a QP-based

IK controller (as in previous chapter), and ii) formulating a collision-avoidance cost to

leverage the parallelization properties in a sampling-based MPC approach (Bhardwaj

et al., 2022). Corresponding method formulations are described in Section 4.5. Real-time

experiments reported in Section 4.6.

4.4 Learning the Implicit Signed Distance Function

4.4.1 Implicit Signed Distance Field

Let us consider the expanded state-space R
m ×R

3, consisting of the robot state q ∈R
m and a

Euclidean point y ∈R
3 in the robot’s workspace. For each expanded state, a unique minimal

distance exists between the robot in configuration q and the 3D point at position y . Hence, a

static implicit distance field function exists in this space.

We propose to build a neural representation Γ(q , y) : Rm ×R
3 → R

K , by learning the mini-

mal distances between the robot’s links and arbitrary points in the workspace. For typical

redundant robotic manipulators m < K . For example, the 7-DoF Franka Emika Panda robotic

manipulator can be defined with m = 7 and K = 9 (excluding the gripper fingers from the

model), see Fig. 4.6. The resulting function Γ(q , y) = [Γ1, ...,ΓK ] should represent minimal

distances d (q , y) = [d1(q , y), ...,dK (q , y)] between the point and each robot link. The partial

derivative of the vector-valued distance field Γ(q , y) with respect to q results in the following
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Jacobian matrix, Jacq

(

Γ(q , y)
)

∈R
m×K ,

Jacq

(

Γ(q , y)
)

=
∂Γ(q , y)

∂q
=








∂Γ1(q ,y)
∂q1

. . . ∂ΓK (q ,y)
∂q1

...
. . .

...
∂Γ1(q ,y)
∂qm

. . . ∂ΓK (q ,y)
∂qm








(4.3)

where each k-th column vector of Jacq

(

Γ(q , y)
)

corresponds to the gradient of each k-th scalar

distance function Γk (q , y) with respect to q ; i.e., Jacq

(

Γ(q , y)
)

= [∇qΓ1(q , y), . . . ,∇qΓK (q , y)]

and ∇qΓk (q , y) ∈R
m as,

∇qΓk (q , y) =
∂Γk (q , y)

∂q
=

m∑

i=1

∂Γk (q , y)

∂qi
q̂i , (4.4)

with q̂i as the unit vector indicating the i -th dimension. Such gradient functions help explain

how each joint influences the distance-to-collision of obstacle y with the k-th link. Each k-th

distance function, Γk (q , y), can be considered an admissible potential field for obstacle avoid-

ance (Khatib, 1986; Rimon and Koditschek, 1992) in joint space. Consequently, ∇qΓk (q , y)

becomes a repulsive joint space vector field, which is helpful for control (Vahrenkamp et al.,

2012).

Therefore, learning Γ(q , y) will enable the evaluation of distances between the robot and

points on the obstacles and using ∇qΓ(q , y) to represent the repulsive vector field. Ideally,

Γ(q , y) = [d1(q , y), ...,dK (q , y)] for any combination of state q within joint-limits and point y

in the robot’s workspace. A Multi-Layer Perceptron (MLP) is used to learn Γ(q , y). The data

collection procedure and network architecture are discussed in the following subsections.

4.4.2 Dataset Generation

Given the exact geometry of the robot’s body (for example with 3D CAD models or URDFs)

allows for the collection of a synthetic dataset of exact distance values dk (q , y), as in Eq. 4.1,

for various q and y at training time. Each sample contains the robot state q , workspace point

y , and target vector d = [d1, ...,dK ] consisting of minimal distances between links of the robot

and point y . Similarly to the previous chapter, we perform a uniform random sampling within

the joint limits of the robot to generate the training dataset. The joint limits for training data

are expanded by 5% in both directions to aid generalization for predictions close to joint limits.

For each sampled robot configuration q , 1000 various workspace points y are collected.

The final dataset contains five million entries, where 50% of configurations are collided or close

to collision, meaning that ∃k : dk (q , y) ≤ 1cm, and 50% are configurations with a minimal

distance exceeding 1cm, such that ∀k,dk (q , y) > 1cm. Such balancing allows for a better

approximation of the null iso-surface, which represents the exact geometry and surface of

the robot’s body. The collided half of the dataset is balanced to include collisions for links

in equal proportions. Non-colliding data points are distributed uniformly between 1cm and
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Table 4.1: A comparison of various layer sizes N and hidden layers amount D . Each architec-
ture is trained on the same data for 10,000 epochs. The RMSE and standard deviation averaged
between all links (and across five training instances) are provided for the 200k testing dataset.

N /D 3 5 7 9

64 4.88 (3.61) 3.63 (2.67) 3.50 (2.48) 3.23 (2.22)

128 3.43 (2.53) 2.38 (1.75) 2.33 (1.62) 2.47 (1.67)
256 2.74 (2.09) 1.89 (1.38) 2.07 (1.50) 2.07 (1.40)
512 2.71 (2.06) 1.71 (1.23) 1.77 (1.27) 1.96 (1.34)

100cm from collision. Another set of one million data points with non-modified joint limits is

additionally collected for model testing and evaluation purposes.

Implementation: We compute distances between points and triangulated surfaces with code by

Frisch (2022) in combination with the fast collision checking library (FCL) (Pan and Manocha,

2016) to calculate the signed distance between the mesh of the robot and the point in the

workspace. The data collection procedure takes 90 minutes on a 12-core 3.7GHz CPU.

4.4.3 Network Architecture

Various network architecture choices were investigated to achieve the optimal performance. A

simple fully-connected MLP was used as the baseline. The rectified linear activation function

(ReLU) is used to provide faster forward and backward passes, and the root mean square error

(RMSE) is used as the loss function.

The function Γ(q , y) implicitly learns the robot’s forward kinematics; thus, it might be helpful

to build a feature vector as a concatenation of joint angles and their corresponding sine and

cosine values: qi n = [q,cos(q), si n(q)], where si n and cos are applied elementwise. Similar

positional encoding (p.e.) is discussed in the original NeRF paper by Mildenhall et al. (2020), in

which the authors conclude that it helps with learning of high-frequency features. Another

perspective on the positional encoding is that it introduces nonlinear features frequently

appearing in analytic FK equations, simplifying the regression task for NNs. To choose the

optimal network parameters (number of layers and their size) for the MLP with positional

encoding feature vector we performed a grid-search training with different depths, D, and

layer sizes, N . For each pair of N and D , the network was trained on 2M training data points

with different initial weights five times. The resulting average RMSE and its standard deviation

are reported for 200k testing data points in Table 4.1. As can be seen, increasing the value of

N improves the regression accuracy; however, as the network size is proportional to O(N 2D)

complexity, the smaller value N = 256 is chosen. For larger values of D, within the same

amount of epochs, MLP fails to improve upon shallower networks (for N > 128). The chosen

architecture used had D = 5 and N = 256.

The behavior of the RSME as we increase the depth of the networks in Table 4.1 suggests
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Figure 4.1: NN Architecture for the Γ(q , y) function, featuring positional encoding and skip-
connection option.

Table 4.2: A comparison of network architectures. Each trained on the same data for 10,000
epochs. The network parameters are D = 5 and N = 256. The results are averaged between ten
trainings. p-value indicates the result of two-sample t-test run against first row of the table.

Architecture Mean RMSE, cm p-value

MLP 2.25 (1.66) 1.0000
MLP (s.c.) 2.28 (1.65) 0.9331
MLP (p.e.) 1.89 (1.38) 0.0002

MLP (s.c + p.e.) 1.93 (1.43) 0.0013

that we have a degradation problem; i.e., either we are over-fitting or we have vanishing

and/or exploding gradients. One way to alleviate this is to introduce skip-connections (s.c.)

between the input features and deeper layers of the network, essentially convexifying the

training loss function. Apart from combating the vanishing/exploding gradients problem, we

hypothesized that reintroducing the trigonometrical input features to deeper layers could

yield better FK approximation. An example of the network with skip-connection between

input and the fourth layer is provided in Fig. 4.1. Hence, we performed a further analysis of

the MLP with and without p.e. and s.c. as shown in Table 4.2. Each architecture type is trained

ten times, and the resulting RMSE distributions are studied by means of two-sample t-test.

Each distribution is compared with the basic MLP (as in first row of Table 4.2), and resulting

p-value is reported. The p-value indicates the likelihood of two distributions to be the same

(p = 1) or to be different from each other (p = 0). For skip-connection p = 0.93, indicating

that this feature is unlikely to improve the learning. The table shows that positional encoding

leads to better distance approximation, while skip-connection does not bring significant

improvements. Based on these findings, a simple MLP with D = 5 and N = 256 along with

a positional encoding for the regression task is used. This network is similar to Fig. 4.1 but

without the skip-connection. There, i n = 10, with 7 for DoF and 3 for the workspace point

position, and out = 9 representing dk for k = 1..9 links.
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Figure 4.2: Illustration of the learned implicit distance isosurfaces Γ(q , y) = 0 cm (solid) and
Γ(q , y) = 10 cm (transparent) for various configurations of the 7 DoF (Degrees-of-Freedom)
Franka Emika Panda robot.

4.4.4 Learning Results

After selecting the hyperparameters, the NN was trained for 100,000 epochs, taking approxi-

mately 8h on RTX3090.1

Accuracy: Averaging between all links, Γ(q , y) predicts minimum distances with an RMSE

of 1.05 cm and a standard deviation of 0.81 cm. While the problem is posed as a regression,

the ability of the learned model to distinguish between collided and free configurations, i.e.,

accuracy of predicting sign(Γ(q , y)), was also investigated for configurations with dmi n < 3cm.

For such points, the classification accuracy of sign(Γ(q , y)) is 0.90 when averaged between

links. The performance of Γ(q , y) in terms of RMSE and its standard deviation for each robot

link is reported in Table 4.3. Fig. 4.2 shows iso-surfaces for different values of the learned

function Γ(q , y).

Computation Time: The computational performance of the learned function is investigated,

and the results are presented in Table 4.4. It shows that batching improves the per-sample per-

formance, which is expected with NN. Additionally, it shows that for a single sample, computa-

tions are more efficient on CPU. For reference, authors of (Montaut et al., 2022) report that one

distance query between two convex hulls takes 0.6µs using standard Gilbert–Johnson–Keerthi

(GJK) algorithm (Gilbert et al., 1988). The learned network calculates distances between K = 9

links and a single sphere, i.e., equivalent to performing nine such queries. Thus, if we assume

that GJK is not parallelized, we can use 5.4µs as a baseline for a single robot-obstacle distance

evaluation. If the control algorithm can benefit from batched distance queries (e.g. it is

sampling based, or there are multiple obstacles), the NN can be up to 1000x faster than the

standard GJK algorithm used to compute distances.

1The source code and supplementary video is available at https://github.com/epfl-lasa/Neural-JSDF
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Table 4.3: Performance of learned function Γ(q , y) in terms of RMSE and its standard deviation
for close query points with dk ≤ 10cm, and far ones with dk > 10cm, and in terms of the
accuracy acol l of predicting collisions, represented as sign(Γ(q , y)) for configurations with
dmi n < 3cm.

Link, k acol l Close RMSE, cm Far RMSE, cm

1 0.98 0.37 (0.24) 0.40 (0.27)
2 0.99 0.32 (0.20) 0.43 (0.28)
3 0.98 0.38 (0.24) 0.46 (0.30)
4 0.97 0.56 (0.37) 0.57 (0.39)
5 0.93 0.73 (0.51) 0.68 (0.46)
6 0.88 1.02 (0.69) 1.06 (0.74)
7 0.87 1.29 (0.85) 1.25 (0.86)
8 0.83 1.40 (0.89) 1.46 (1.00)
9 0.76 1.83 (1.17) 2.06 (1.37)

Avg 0.90 1.04 (0.78) 1.06 (0.82)

Table 4.4: Computational performance of the learned function. All results are averaged on 10k
runs with 12-core 3.7GHz CPU and RTX3090 GPU.

Batch size
CPU GPU

Batch time, µs Sample time, µs Batch time, µs Sample time, µs

1 32.141 32.141 74.340 74.340
10 115.998 11.600 79.148 7.915

100 426.743 4.267 98.689 0.987
1000 2341.552 2.342 103.147 0.103

10000 22734.501 2.273 281.336 0.028
100000 314058.185 3.141 2467.827 0.025

4.4.5 Prediction Errors Analysis for Learned Distance Function

In the previous subsection, we reported the RMSE for the learned distances. On average, the

learned Neural Network predicts distances with an error of approximately 2 cm, with the

RMSE increasing for robot links further down the kinematic chain. However, the averaged

error does not capture all aspects of inaccuracies in the approximated distances. To provide a

more comprehensive study of the learned function, we investigate the distribution of RMSE

for points at different distances from the robot.

We uniformly and randomly sample 1 million model inputs in a 10-dimensional space (7

degrees of freedom for the robot and 3 degrees of freedom for the workspace points) and com-

pare the Neural Network output with the ground truth. This additional model performance

investigation uses a testing dataset that is different from the one used in the previous section,

and it does not employ any balancing heuristics.

Figure 4.3 reports the distribution of the predicted distances by the Neural Network for various
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distances between the robot and the query point. On average, the L1 error is always below

2 cm. However, it is important to note that at any scale, there exist adversarial query inputs

that result in higher prediction errors. This effect becomes more pronounced for links further

from the base. Specifically, for the first five links, even the outliers do not exceed an error of

5 cm. However, for the last link, there are inputs that lead to Neural Network prediction errors

of up to 15 cm.

Figure 4.3: Error distribution for different distances between the robot and the workspace
point. The nine subplots correspond to the nine links of the robot. Boxplots are presented for
binned distances between the robot and the workspace point, with a bin width of 20 cm.

For a deeper exploration, we turn our attention to outliers, indicated by the gray crosses in

Figure 4.3. On average, each link has approximately 20,000 outliers (out of 1M testing data).
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Our investigation focuses on their distribution in relation to the boundaries of our sampled

data. We propose a hypothesis: as a coordinate approaches the limits of our sampled data, the

precision of the Neural Network prediction correspondingly diminishes.

To illustrate this, we plot a histogram showing the distribution of outliers based on their

proximity to normalized sampling boundaries. For instance, if a robot joint state coordinate

approaches qmi n , the associated closeness value hovers near 0. Conversely, if the robot aligns

with qmax on at least one joint angle, the corresponding joint limit closeness becomes 1. This

concept also extends to workspace points, where values of 0 or 1 imply proximity to sampling

boundaries (which are ± 1m from origin), while a value of 0.5 suggests the point is near the

robot base.

We present these results in Figure 4.4. The data demonstrates a concentration of outliers

close to the sampling boundary, and it’s evident that our model offers significantly better

predictions when inputs are beyond 20% from joint (or workspace) limits.

In light of this analysis, we suggest that future models should be trained on a broader data

range, expanding the joint limits by up to 20%, compared to the 5% limit used in this thesis.

Figure 4.4: Histogram showing the distribution of outliers with respect to their proximity to the
normalized sampling bounds. The x-axis denotes the closeness to the boundaries (0 signifies
closeness to qmi n , 1 to qmax , and 0.5 indicates neutral pose), while the y-axis represents the
count of outliers.
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4.5 Reactive Control with Neural-JSDF

As described previously, the learned function Γ(q , y) approximates the distances between the

robot’s links in a given joint configuration, q , and Euclidean point, y , in its workspace. To

treat collisions with moving, and possibly deforming obstacles of non-fixed shape and size

we approximate the obstacle shape with s = 1..S spheres with centers ys and radii rs . Note,

point-cloud obstacle representations fit naturally in such framework, with rs = 0, ∀s.

This section presents two approaches, i) QP-IK and ii) Sampling-based MPC, leveraging on

various properties of the learned Neural-JSDF Γ(q , y), such as repulsive gradient in joint space,

and efficient batch input processing.

4.5.1 Reactive Collision-Avoidance IK

Similarly to the previous chapter, the learned function Γ(q , y) can be used to formulate a

constraint in a QP-IK solver:

min
∆q ,δ

δT Qδ+∆q T R∆q

s.t.







f (q)+
∂ f (q)

∂q
∆q = x +δ

q−
i
< qi +∆qi < q+

i
, i = 1..m

−∇qΓk (q , ys)T
∆q ≤ ln(Γk (q , ys)− rs), ∀k, s.

(4.5)

In Equation 4.5, the goal is to minimize joint displacement ∆q with damping term R , to satisfy

the kinematic constraints given by forward kinematics f (q), Jacobian ∂ f (q)
∂q

and cartesian task

x ∈SE(3). These tasks may specify desired positions and orientations for chosen links, but

further we assume they only contain tasks for the end-effector. Additionally, for situations

where the solver fails to satisfy the reaching constraint, slacks δ are introduced and minimized

with corresponding weights Q . The second constraint accounts for joint-limits, which are

defined as q−
i

and q+
i

for i = 1..m joints.

Finally, the last line in (4.5) defines the proposed collision avoidance behaviour with the

learned implicit signed distance function. It represents K ×S constraints, one for each pair

of k = 1..K links and s = 1..S spherical obstacles. Γk (q , ys) is the k-th component of the

implicit distance function output vector, for k = 1..K links. Finally, ys are centers of spherical

obstacles s = 1..S with radii rs . When the robot is far from collisions and Γk (q , ys) > 0,∀k, the

set of constraints is relaxed. If the k-th link is close to the s-th obstacle, then ln(Γk (q , ys)− rs)

becomes negative, and the IK solver is forced to align joint motion ∆q with the corresponding

gradient ∇qΓk (q , ys), repelling the robot away from the collision boundary and satisfying

collision avoidance constraint.
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4.5.2 Sampling-Based Model Predictive Control

Additionally, we propose to use the learned Neural-JSDF in a more complex algorithm with a

look-ahead horizon to address the local nature of the QP controller described in the previous

section. Recent work (Bhardwaj et al., 2022) demonstrates sampling-based MPC for robotic

manipulators leveraging on massive parallelization via a GPU to speed up FK and cost function

computations. The learned function Γ(q , y) fits naturally in such framework allowing for

efficient batched collision checking. Below, the basics of Model Predictive Path Integral (MPPI)

control are introduced.

For a discrete-time system at time t , the robot is controlled by a joint space acceleration

command ut . This command is sampled from a policy πt = Π
H
h=1πt ,h , where H is a look-

ahead horizon, and policies πt ,h are simple Gaussians defined by means µt ,1, ...,µt ,H and

covariances Σt ,1, ...,Σt ,H . At every iteration the sampling-based MPC algorithm, proposed

in (Bhardwaj et al., 2022), samples a batch {ui ,h}h=1..H
i=1..N of N control sequences of length H

from current distribution πt . After that, the roll-out states {xi ,h}h=1..H
i=1..N are computed using

an approximate dynamics function. The corresponding costs, {ci ,h}h=1..H
i=1..N , are calculated as a

weighted sum of goal-reaching, joint-limit avoidance, contingency stopping, and self- and

environmental-collision avoidance costs.

The means and covariances of the Gaussian policies, πt ,h =N (ut ,h |µt ,h ,Σt ,h), are then up-

dated using a sample-based gradient of a risk-seeking objective function. The update rule for

µt ,h is:

µt ,h = (1−αµ)µt−1,h +αµ

∑N
i=1 wi ui ,h
∑N

i=1 wi

(4.6)

where αµ is a filtering coefficient, and

wi = exp
−1

β

(
H−1∑

h=1
γhc(xi ,h ,ui ,h)+γH ĉ(xi ,H ,ui ,H )

)

(4.7)

is a cost-based weighting coefficient for sampled trajectories. In Equation 4.7, c(x,u) is a task-

specific cost, ĉ(x,u) is the terminal cost, and γ ∈ [0,1] is a discount factor to balance between

immediate rewards and final goal. We refer the reader to (Williams et al., 2017; Bhardwaj et al.,

2022) for a detailed derivation of the MPPI algorithm. There, authors prove the connection

between such update rule and optimal solution of Hamilton-Jacobi Bellman equation. To

some extent, this algorithm is again presented in Chapter 5, but with different optimization

objectives and a different cost function.

The distinctive property of MPPI is that it can handle a wide range of cost formulations,

including the following formulation (Bhardwaj et al., 2022):

c(x ,u) =αp cpose +αscstop +α j cjoint+

αmcmanip +αc (ccoll + cself-coll), (4.8)
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where goal-reaching, contingency stopping, joint limit avoidance, manipulability and collision

costs are combined with respective weights. In Equation 4.8, the collision cost, ccoll, is discrete,

yielding ccoll = 1 if the robot is in collision with the environment, and ccoll = 0 otherwise.

We use sign(Γ(q , y)) to efficiently perform batched collision queries for computing the cost

function.

4.6 Evaluation in Simulation and on Real Robot

4.6.1 Evaluation scenarios and metrics

We evaluate the performance of the reactive control methods introduced in the previous sec-

tion (QP-IK and MPPI) using the learned Neural-JSDF for collision avoidance in two scenarios

of different complexity. In both cases, the robot’s goal is to perform a reaching motion from

initial configuration, to the goal defined in the task space.

Scenarios: Scenario (A) includes two disjoint spherical obstacles in front of the robot. Scenario

(B) imitates human presence in the robot’s workspace (refer to Fig. 4.5). Human body is ap-

proximated with 30 spheres of varying radii, fitting the torso, head, and right arm. Both control

methods are expected to work with at least 50Hz frequency, providing reactive behavior for

avoiding moving obstacles. However, as dynamic information (such as obstacles velocity) is

not directly incorporated into avoidance constraints, these methods are tested in a quasi-static

environment. Additionally, that helps to achieve reproducible results. The benchmark consists

of 100 experiments for randomized positions of collision obstacles. For scenario A the vertical

placement of the obstacles differs between the experiments, while scenario B simulates the

human with different arm positions, obstructing the robot’s workspace. The robot’s initial

configuration and goal position are constant across the experiments.

Figure 4.5: Benchmark scenarios for the reaching task. Goal is depicted as a green sphere,
obstacles are represented with red spheres. (left) Scenario A, where spheres placement is
different across the experiments, (right) Scenario B, human shape approximated with 30
spheres, with variable arm placement.
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QP(Sph) QP(NN) MPC(Sph) MPC(NN)
Success rate, % 1.00 1.00 1.00 1.00
Reaching time, s 4.53 3.24 4.17 2.53
Clearance, cm 1.32 1.14 0.97 0.84
Frequency, Hz 217 249 66 92

Table 4.5: Performance comparison for Scenario A (two disjoint spheres).

QP(Sph) QP(NN) MPC(Sph) MPC(NN)
Success rate, % 0.91 0.92 1.00 1.00
Reaching time, s 5.76 4.09 4.30 3.17
Clearance, cm 1.24 1.21 0.86 0.82
Frequency, Hz 204 220 49 68

Table 4.6: Performance comparison for Scenario B (human-shaped obstacle approximated
with 30 spheres).

Metrics: The results are provided in Tables 4.5 and 4.6. There, success rate indicates a number

of experiments with successful goal reaching (i.e. no collisions and free from local minima),

and clearance stands for average minimal distance-to-collision across successful trajectories.

Both methods were tuned to behave conservatively and not allow for any collisions. Overall,

QP is more reactive than MPC, but due to QP’s local nature and lack of optimization horizon,

it has a lower success rate in a more complex scenario.

4.6.2 Implementation details and discussion

Baseline Approach (Spheres Approximation)

Links of the robot are approximated with 55 spheres of various radii as shown in Fig. 4.6. This

number of spheres and their radii were chosen to best represent the actual geometry of the

robot without being overly conservative. For simplicity, pk and rk are used to denote a sphere

belonging to the k−th link of the robot. For each obstacle sphere with a center ys , and a radius

rs , the closest sphere, (pk ,rk ), belonging to the robot can be found. The distance between the

robot and the obstacle is then dk,s = ||ys −pk ||− rs − rk , and v
r ep

k,s is a vector connecting two

spheres, that acts as a repulsion in task space. For the QP-IK, collision avoidance constraints

in Equation 4.5 are then replaced with the following:

(J
r ep

k
(q)∆q)T v

r ep

k,s ≤ ln(dk,s), (4.9)

where J
r ep

k,s (q) is a Jacobian for the corresponding point on the robot body, and v
r ep

k,s is scaled

to match the magnitude of ∆q . These constraints cover all pairs of links and obstacles, forcing

the solver to generate motion in a tangential plane to the obstacles, when the distance to

collision dk,s is small.
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Essentially, our method, as described in Equation 4.5, formulates collision avoidance con-

straints directly in high-dimensional joint space, with the corresponding tangent plane be-

longing to that space. In contrast, the above-formulated baseline in Equation 4.9 uses the

Jacobian to approximate forward kinematics and avoid collisions using the tangent plane but

in the task space R
3.

Figure 4.6: (left) Mesh representation of the Franka Emika, coloured segments represent the
K = 9 links, and (right) sphere approximation (with S = 55) of the robot geometry.

QP-IK

CVXGEN (Mattingley and Boyd, 2012) is used to solve the described QP problem. The val-

ues of Γ and ∇qΓ are evaluated on the 12-core 3.7Ghz CPU and passed to the solver. We

evaluate the performance of the proposed collision avoidance IK solver using the learned

Neural-JSDF Γ(q , y) compared to formulating the collision avoidance constraint with the

traditional method to detect collisions in task-space. Our method efficiently combines the

learned function Γ(q , y) and its gradient to create the repulsive force around obstacles, show-

ing a 15% increase of computation speed for the IK solver over using the baseline technique

for collision detection. However, in general, QP approach is prone to local minima, especially

in case of non-convex obstacles, demonstrating worse success rate in Scenario B. It could be

useful as a collision-aware IK solver but it requires additional high-level planning for more

complex scenarios.

MPPI

While the authors of (Bhardwaj et al., 2022) claim that the operating frequency of their MPPI

implementation exceeds 100 Hz, they clarify that this is the case only for a static environ-

ment with precomputed distance map. Assuming that obstacles are not fixed, and since it

is impossible to pre-compute and store the scene distances, then the distance evaluations

must be repeated at each iteration. Since the sampling and rollouts are performed in joint

space, the use of our learned function is justified. At each iteration, it is required to calcu-

late distances between the environment and N ·H robot configurations. The input for the
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Figure 4.7: Snapshots of a reaching task with the human upper body as an obstacle approxi-
mated with a collection of 30 spheres.

learned function Γ(q , y) is repeated S times, once for each spherical obstacle position; thus, a

fall in performance is expected with the increase in the number of spherical obstacles. As a

baseline to compare with, we again choose to approximate the robot body with spheres and

evaluate collisions by calculating task-space distances between these spheres and spherical

obstacles in the robot’s workspace. Such baseline would seem computationally cheaper than

NN evaluation; however, a highly parallelized forward pass of the neural network turns out to

be faster. Tables 4.5 and 4.6 show the comparison between the naive distance computation

between obstacle spheres and robot geometry approximated with spheres. All experiments

were conducted on a 12-core 3.7 GHz CPU and RTX3090 GPU. For the case when there are S = 2

obstacles in the workspace, our approach shows significantly faster iterations at 92 Hz versus

66 Hz. On average, distance computation using the learned function Γ(q , y) is 40% faster

than the baseline. Additionally, Fig. 4.8 demonstrates how this controller frequency scales

with the value S. This is showcased in the multimedia attachment where we present multiple

simulations of both scenarios with increasing obstacle speeds and adversarial behaviors.

Comparison

As shown in the evaluations reported in Tables 4.5 and 4.6 and Figure 4.8, both reactive control

approaches perform well in terms of avoiding collisions using the learned Neural- JSDF. While

QP-IK is faster and exhibits more reactive behavior, it may get stuck in local minima in the

optimization, or fail to recover from an odd joint configuration caused by the instantaneous

reactivity as shown for both scenarios in the multimedia attachment. On the other hand, while

the MPC is slower than QP-IK, it manages to avoid the problematic regions where obstacles are

moving very fast, escaping oscillatory reactive behaviors exhibited by the QP-IK and ultimately

reaching the target.
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Figure 4.8: The MPPI frequency (Hz) and variance as a function of number of spherical
obstacles, S, in the workspace of the robot. The blue line is for collision checking via learned
function and the red is for the baseline with spherical approximation of the robot. Values
averaged on 10 runs.

Real Robot Experiment

We further validated the approach on a real Franka Emika Panda being controlled at 1kHz by a

custom low-level torque controller, similar to (Bhardwaj et al., 2022). Obstacles and the goal

are tracked with OptiTrack at a 120Hz rate. We replicate scenarios A and B and stress test the

system with adversarial obstacle motions as shown in the multimedia attachment. Fig. 4.7

demonstrates a successful reaching task while avoiding colliding with the human.

4.7 Conclusion

This chapter presented our method for learning the minimal distances between the robot

and its environment as a neural implicit distance function. This distance is a function of

the robot joint state and the coordinates of a point in its workspace. We can efficiently

compute distances between the robot in arbitrary configuration and obstacles represented as

a set of spheres of various radii. The gradient of the learned function with respect to inputs

can be treated as the repulsive vector in the joint space of the robot, allowing for collision

avoidance constraint formulation in the QP Inverse Kinematics solver. While the learned

network contains many parameters, due to high parallelization, it still outperforms the naive

baseline in terms of controller frequency. This property allows efficient use of the learned

function as a collision-checker in sampling-based MPC control.

While we have investigated scenarios where obstacles in the robot’s workspace are approxi-

mated with spheres, this method can also be used with obstacles represented as point clouds.

We leave corresponding implementations for future work. Another interesting direction would
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be to expand the use of repulsion gradients and apply them as a heuristic to guide the sampling

to further improve the performance of the MPPI approach, similar to (Kew et al., 2020). The

distance-to-collision and cosine similarity between the sampled acceleration and repulsion

direction could be used to introduce re-projected samples that navigate the robot around the

obstacle.

While this thesis focuses on quasi-static scenarios, it is worth noting that the derivative of

a learned implicit distance function with respect to the Euclidean point position yields a

repulsive vector in the task space. This vector can be used in motion planning that considers

obstacle dynamics and, when compared with the obstacle velocity vector, may determine

whether an obstacle is approaching or moving away from the robot. This information can be

utilized to further improve the performance of the motion planner.
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5 Collision-Free Motion Generation

The whole is greater than the sum of its parts.

— Aristotle

5.1 Foreword

In previous chapters, we introduced a framework for learning self-collisions in redundant

robots and implicit distance functions, which provide signed distance field approximations

and enable distance calculations between the robot and points within its workspace. Our

approach takes robot joint positions as input to the learned model, and the output consists of

the distance-to-collision. Since these models are differentiable, either analytically or through

autograd, we can obtain a joint-space vector representing the repulsion direction. This vector

is valuable as it can be employed to formulate collision avoidance constraints in various

motion generation algorithms. To evaluate the performance of the learned models, we applied

them to different control schemes, such as QP-IK for generating collision-free motions and

sampling-based MPC.

We demonstrated that the learned models can efficiently detect collisions and perform com-

parably or better than traditional collision-checking methods. However, we also identified the

limitations of the motion generation algorithms employed. Sequential QP-IK is susceptible to

local minima since it generates motion incrementally for one step at a time. Consequently, the

robot may become stuck in specific configurations, e.g., when trapped near a highly concave

obstacle. Sampling-based MPC (STORM, MPPI) is more robust due to its look-ahead horizon,

enabling it to plan exit strategies in cluttered environments. However, the method’s sampling

procedure does not utilize potential heuristics provided by the learned models, which could

improve its convergence properties. Although the MPC method’s frequency is close to 100 Hz,

we observed in numerous experiments that it is not highly reactive and cannot guarantee

rapid collision avoidance. Therefore, our next contribution in this thesis involves developing

a motion generation algorithm capable of generating reactive collision-free motions while
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leveraging the learned models to enhance the method’s convergence properties.

In this chapter, we introduce a hybrid controller that combines Modulated DS and sampling-

based MPC approaches. DS offers highly reactive lower-level control, generating collision-free

motions at frequencies close to 1 kHz. Since this method cannot guarantee goal-reaching in

complex environments, we combine it with sampling-based exploration, which generates

escape strategies for situations where the robot is stuck in local minima. Both control levels

(DS and MPC) rely on learned collision-checking models to estimate distances and apply

repulsive gradient heuristics.

5.2 Introduction

Modern robotic systems are expected to operate in a variety of environments and interact

with static and dynamic objects, as well as other agents, such as humans, animals, and other

robots. While direct contact may be necessary to accomplish certain tasks, almost any motion

requires a reaching phase where the robot must move its end-effector to a desired location

while avoiding collisions between the robot body and obstacles or and other agents. For future

reference, we assume that the obstacles in the environment are moving unpredictably, and

reactive motion assumes feasible plan generation on frequencies above 100 Hz.

Techniques to generate collision-free motion can be categorized into two paradigms: offline

and feedback/reactive planning (LaValle, 2006). In the former, the problem is divided into two

phases - offline planning of collision-free paths (typically sampling-based algorithms or trajec-

tory optimization) followed by trajectory execution (Spong et al., 2020). However, depending

on the complexity of the environment and the dimensionality of the robot configuration space,

offline planning may take a significant amount of time, which hinders operation in dynamic

environments with moving obstacles and active agents.

Early works in reactive collision-free motion generation rely on local alternation of the system’s

dynamics in the vicinity of obstacles via Artificial Potential Fields (Khatib, 1986) or navigation

functions (Rimon and Koditschek, 1992). Such classical feedback motion planning techniques,

although reactive, are vulnerable to local minima and limited to parametric obstacle represen-

tations such as convex (spheres, ellipsoids, etc) or star-shaped obstacles. To ensure reactive

collision-free motions with convergence guarantees the modulated dynamical system (DS)

based approach was introduced in (Khansari-Zadeh and Billard, 2012a). In this approach,

the nominal robot motion is generated by a DS that defines a vector field in the task space

for end-effector motion (in this case, an additional Inverse Kinematics controller is required)

or in joint space to describe the whole-body state-dependent motion law. The proposed

modulation locally changes this law in order to navigate around obstacles.

Local modulation of DS for obstacle avoidance is performed with relatively low computation

cost, however, convergence guarantees can only be ensured for conservative obstacle types

such as convex (Khansari-Zadeh and Billard, 2012a) or star-shaped (Huber et al., 2019; Billard
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et al., 2022). Further, a saddle-point local minimum trajectory still remains for such parametric

shapes. These shortcomings limit the applicability of reactive DS modulation approaches to

complex spaces with arbitrarily shaped obstacles that are hard to convexify such as joint space

of redundant manipulators.

Receding horizon path planning approaches such as Model Predictive Control (MPC), can be

used to generate collision-free trajectories in real-time (Erez et al., 2013; White et al., 2022).

However, these methods are often computationally expensive, and finding a balance between

computation speed and trajectory quality can be challenging (Bhardwaj et al., 2022). The

computational complexity of MPC methods grows cubically with state dimensionality and

time horizon (Richter et al., 2012), which can be prohibitive for cases when the robot with

a high number of degrees of freedom (DoF) is required to reactively navigate in cluttered

environments while avoiding obstacles.

5.2.1 Contributions

In this chapter, we aim to combine the advantages of DS motion planning and sampling-based

MPC to allow for instantaneous obstacle avoidance and swift feasible trajectory generation for

any type of environment. We adopt a modulated DS approach (Khansari-Zadeh and Billard,

2012a; Billard et al., 2022) as a primary motion generator and empower it with a popular

sampling-based MPC algorithm known as Model Predictive Path Integral (MPPI) control

(Williams et al., 2017), to navigate the robot away from the local minima caused by concave

obstacles. We prove theoretically that the impenetrability and local convergence properties of

the modulated DS are preserved with the MPC-based additive terms. Additionally, we focus

on the challenging problem of joint space control and validate the proposed method using a

7-DoF robot. Example of a reaching task executed by the robot is shown in Figure 5.2. Apart

from presenting a simulated benchmark, we demonstrate the collision avoidance controller

running at 500 Hz (on a modern laptop CPU) with a real robot, generating reaching motions

while avoiding the human that tries to obstruct the robot reaching motion with a concave arm

trap.

5.2.2 Chapter organization

Section 5.3 presents the mathematical problem formulation, including assumptions, defini-

tions, and goals of this chapter. In Section 5.4, we begin by presenting the background of the

DS modulation method, as it is the basis of our approach. Furthermore, Sections 5.4 and 5.6

cover the proposed approach for modulating DS with MPC. Finally, Section 5.7 presents the

validation of the method in simulation and on a real robot.
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5.3 Problem definition

5.3.1 Assumptions & Definitions

We consider a robot with K physical links and d degrees of freedom (DoF). The joint state of

the robot is defined as a vector of joint angles q = [q1, ..., qd ] ∈R
d . Additionally, it is assumed

that all the joints of the robot are revolute and are subject to joint limits, q ∈ [qmin, qmax]. The

desired robot motion is defined by a continuous time-invariant nominal DS of the following

form:

q̇ = f (q), (5.1)

which defines a state-dependent vector field guiding the robot state towards a goal (attractor

q∗ ∈R
d ). The function f (q) is autonomous, i.e., the law governing the evolution of the system

depends solely on the system’s current state q and not on time. While the system defined

in (5.1) is time-invariant, the system state q = q(t ) changes over time. For better readability,

time-dependency of the state variable is omitted in the remainder of the text.

We assume that the nominal DS f (q) is known and globally asymptotically stable (G.A.S.)

to the attractor q∗ wrt. to a Lyapunov function V (q , q∗) : Rd → R. Such G.A.S. DS can be

designed by user (Salehian et al., 2018a), or learned from a demonstration (LfD) (Khansari-

Zadeh and Billard, 2011; Kronander et al., 2015; Figueroa and Billard, 2018; Shavit et al., 2018),

and can be of arbitrary form (e.g. linear, nonlinear). While the nominal DS may implicitly

avoid collisions in some scenarios, such as when an LfD-generated trajectory avoids static

obstacles, it is not always guaranteed that it will do so in all scenarios. As shown in (Wang et al.,

2022), DS-based LfD can ensure reachability to a target q∗, but cannot ensure invariance to

unsafe boundaries, unless a boundary function is explicitly defined and enforced through

modulation or control-barrier functions (Taylor et al., 2020).

Obstacles (static or dynamic) can be defined as a set of points O ⊂R
3 in the workspace of the

robot. We assume that obstacles are known and are represented either by a point cloud or by a

set of spheres. Moreover, we consider obstacles of arbitrary shape, including concave ones.

Based on previous chapter, we define function Γ(q , y) = [Γ1, ...,ΓK ], which represents minimal

distances between point y ∈ O and each link (k = 1, ...,K ) of the robot in configuration q .

Function Γ(q , y) is differentiable (C2), and its partial derivative with respect to q results in the

following Jacobian matrix:

Jacq

(

Γ(q , y)
)

=








∂Γ1(q ,y)
∂q1

. . . ∂ΓK (q ,y)
∂q1

...
. . .

...
∂Γ1(q ,y)

∂qd
. . . ∂ΓK (q ,y)

∂qd








(5.2)

where each k-th column vector of Jacq

(

Γ(q , y)
)

corresponds to the gradient of each k-th scalar
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distance function Γk (q , y) with respect to q . For simplified notation, we use

Γ(q) = min
y∈O

min
k=1,...,K

Γk (q , y), (5.3)

and denote the corresponding column of Jacq

(

Γ(q , y)
)

as ∇Γ(q). In this way, Γ(q) represents

the minimal distance between the robot in configuration q and the nearest obstacle, and ∇Γ(q)

represents the corresponding repulsive gradient in the joint space of the robot. Similarly, we

assume the existence of function Γself(q), which represents the minimal distance between the

robot in configuration q and its own links. The gradient of Γself(q) with respect to q is denoted

as ∇Γself(q). Please refer to previous chapters for more details on learning and applications of

such distance functions.

5.3.2 Goals

The main goal of this chapter is to design a modulation algorithm that reshapes f (q) from

(5.1) with respect to the task-space obstacles O defined by Γ(q) and self-collision boundary

defined by Γself(q), enabling the robot to (a) avoid concave obstacles in joint space while (b)

maintaining local stability of the nominal DS (Equation (5.1)), and a controller capable of

(c) computing the required modulation with high frequency to enable avoidance of moving

obstacles.

To this end, we aim to leverage the parallelization and differentiability properties of the learned

function Γ(q), by combining the modulation framework (Khansari-Zadeh and Billard, 2012a;

Huber et al., 2019) with sampling-based model predictive control (Bhardwaj et al., 2022;

Williams et al., 2017). The vision is to achieve the desired properties such as local stability

of the modulated DS and the ability to reactively avoid moving obstacles of arbitrary shape,

within a single unified framework.

5.4 DS Modulation with Deflected Obstacle-Tangent Dynamics

In this section, we provide the necessary background on the DS modulation method, as it

is essential for understanding our approach. For more detailed preliminaries on dynamical

systems, please refer to Appendix A.

5.4.1 Dynamical System Modulation

A nominal Dynamical System (Equation (5.1)) defines a state-dependent vector field that can

be altered, or modulated, by rotating the field with a modulation matrix M(.), where M can

depend on different variables. The modulated Dynamical System is then defined as:

q̇ = M(.) f (q), (5.4)
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Figure 5.1: Two-dimensional toy example demonstrating the behavior of the modulated DS in
presence of obstacle (blue). The system is linear with stable attractor (red) at (8,0). Orange
lines indicate trajectories integrated forward in time. (left) Modulated DS (Khansari-Zadeh
and Billard, 2012a) has local minima in the concave region of the obstacle. (right) Our method
avoids the local minima by adding one navigation kernel with parameters estimated via
sampling-based MPC. Green arrow indicates the center q̂k and the direction ĝk of the added
deflection. Green shaded area shows the kernel activation region.

Depending on the choice of M(.), this DS can exhibit various behaviors. For example, M(q) is

a matrix-valued function of the system state q , and it can be activated differently in different

regions of the state space, reshaping the nominal DS f (q). Importantly, if we aim to preserve

some stability properties of nominal DS, certain limitations must be applied to the modulation

matrix M(.).

Intuitively, when starting from a globally asymptotically stable (G.A.S) DS f (q), reshaping it

with a full rank and locally active matrix M(q) only guarantees that the system remains stable

(no spurious attractors are introduced but limit cycles can arise) and that trajectories can be

kept arbitrarily close to the attractor q∗, if they start close enough (which is equal to local

asymptotic stability of the attractor) (Kronander et al., 2015).

DS modulation using matrix M(q ,O) ∈R
d×d that depends on the obstacles configuration O,

can be used to achieve obstacle avoidance. Further, we omit the matrix M(q) dependency on

obstacles state O for a simpler notation, and always assume that M is a function of both state

q and obstacle configuration O. To allow for obstacle avoidance, the following modulation

matrix is proposed in (Khansari-Zadeh and Billard, 2012a):

M(q) = E (q)D(q)E (q)−1, (5.5)

where M(q) is composed through eigenvalue decomposition. In Equation (5.5), D(q) is a

diagonal scaling matrix and E (q) is an orthogonal matrix defined as:

E (q) =
[

n(q) e1(q) . . . ed−1(q)
]

. (5.6)
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The first column of the matrix E (q) consists of the obstacle normal n(q)1. The remaining

columns, ei (q), form a (d−1)-dimensional orthonormal basis for the tangent space at the state

q .. The tangential hyperplane formed by this basis is referred to as the deflection hyperplane

in (Khansari-Zadeh and Billard, 2012a). Note that it is not a necessary condition for this basis

to be orthonormal. Any basis that forms a tangential hyperplane to the normal n(q) and has

linearly independent columns is valid. However, by enforcing orthonormality on the basis,

we can exploit the fact that E (q) becomes orthogonal and E (q)−1 = E (q)T , thereby improving

numerical stability.

The diagonal matrix D(q) is defined as:

D(q) =









λn(q) 0 . . . 0

0 λτ(q) . . . 0
...

...
. . .

...

0 0 . . . λτ(q)









, (5.7)

and is composed of two eigenvalues λn(q) and λτ(q) defined as a function of the distance of

the system from the obstacle Γ(q).

While the definition of Γ(q) may vary, the general idea is that D(q) should become identity

matrix when the system is far from collisions, λn(q) should approach 0 as the system is getting

closer to collision, and λn(q) = 0 at the obstacle boundary QO. In essence, the modulation

(5.5) redistributes the flow of the nominal DS (5.1) based on proximity to the obstacle, thus

allowing obstacle avoidance.

However, the collision avoidance properties of such modulation are restricted to a subset of

convex obstacles. There is also an edge case within the subset of states located on the obstacle

boundary QO. To ensure obstacle impenetrability by design, λn(q) = 0 for all q ∈QO, causing

the matrix M(q) to lose rank and create a nullspace. Consequently, velocities may vanish,

leading to the emergence of spurious attractors and destabilization of the system’s dynamics.

1n(q) is a unit vector, orthogonal to the obstacle boundary, which can be obtained, for example, by normalizing
the gradient of Γ(q).
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Definition 1 (Impenetrability 1 (Neumann boundary condition)) Consider an obstacle whose

boundary is described by a smooth function Γ(q) = 0, where Γ : Rd →R is a continuously differ-

entiable function (C1). Obstacle boundary normal is represented as n(q) = ∇Γ(q)
||∇Γ(q)||2

. A vector

field f (q) is not penetrating the obstacle boundary if its projection onto the obstacle normal

n(q) vanishes on the obstacle’s surface Γ(q) = 0:

f (q)T n(q) = 0 ∀q : Γ(q) = 0. (5.8)

Definition 1 is derived from (Khansari-Zadeh and Billard, 2012a). Nonetheless, this definition

is only valid for the continuous case, whereas any robotics application necessitates discretizing

the dynamics. Specifically, for the case convex of concave obstacle, if the integration timestep

δt is sufficiently large, a single iteration could bring the system state inside the obstacle.

Conversely, for concave obstacles, an additional mode of failure arises, in which any motion

in the tangential plane will violate the obstacle boundary if the system starts on the obstacle

surface. Therefore, we propose a more general definition of impenetrability for the discretized

case. Notably, it is still applicable for continuous dynamics.

Definition 2 (Impenetrability 2) Consider an obstacle whose boundary is described by isosur-

face Γ(q) = 0, where Γ : Rd →R. A vector field f (q) is not penetrating the obstacle boundary, if

for any trajectory {q}t that starts outside the obstacle boundary, i.e., Γ(q0) ≥ 0, and evolving

according to q̇ = f (q), the following holds: Γ({q}t ) ≥ 0, ∀t .

However, Definition 1 is still useful for analyzing the stability properties of modulation. Spuri-

ous attractors, which can be can be local minima or saddle points, are induced when the nom-

inal DS and obstacle normal are collinear at the obstacle boundary, i.e. |〈 f (q),n(q)〉| = || f (q)||

and 〈 f (q),ei (q)〉 = 0 holds for all i . Refer to Figure 5.1 for demonstration of the local minima

created with a simple concave obstacle.

An improvement upon the modulation framework for obstacle avoidance to avoid spurious

attractors and preserve stability is proposed in (Huber et al., 2019, 2022). Instead of using

the obstacle normal n(q) as the first column of E (q), the authors propose to instead use the

reference direction r̂ (q , q r ) defined as:

r̂ (q , q r ) =
q r −q

||q r −q ||
, (5.9)

where q r is a point belonging to the obstacle.

While discarding the orthonormality of the basis E (q), this modification allows for the system

to avoid obstacles with non-convex boundaries that can be represented as star-shaped ob-

stacles. The reference direction r̂ (q , q r ) is not orthogonal to any of the basis vectors ei , thus
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〈r̂ (q , q r ), f (q)〉 is projected onto tangential space, and there exists a tangential vector flow on

the obstacle boundary, alleviating the local minima issue.

Interestingly, the improved modulated DS approach using reference direction (5.9) to con-

struct E (q) can be interpreted as a nonlinear control system with the following form (See

Appendix B.1):

q̇ = M(q) · f (q)
︸ ︷︷ ︸

Modulated Dynamics

+g (q , q r )
︸ ︷︷ ︸

Input

, (5.10)

where g (q , q r ) is a nonlinear function that depends on the current state q and the obstacle

reference point q r and pushes the robot state away from local minima. This interpretation

connects the DS modulation approach to optimal control domain, as the tangent space vector

flow can be thought of as a virtual control input applied to the system. Thus, q r can be

considered a control variable that is forcing the modulation to avoid M(q) · f (q) → 0 at the

obstacle boundary.

While Equation (5.10) alleviates the creation of spurious attractors by inducing additional

tangent space velocities through the additive nonlinear function g (q , q r ), such term is difficult

to control and scale to high-dimensional problems. Specifically, g (q , q r ) is dependent on the

projection of the nominal DS f (q) and the placement of reference point q r . Finding a suitable

q r is not trivial for high-dimensional concave obstacles, thus it may be challenging to build

an algorithm that guarantees the collision avoidance and convergence in case of multiple

complex obstacles. Additionally, this method introduces the need to invert the matrix E (q) at

every iteration, which can be computationally expensive for high-frequency applications in

high-dimensional systems.

5.4.2 Locally Deflected Obstacle-Tangent Space Dynamics

Inspired by the state-input system interpretation introduced in Equation (5.10), we present

our approach for creating meaningful obstacle-tangent deflections that are locally active in the

regions of potential local minima of the modulated nominal DS. To alleviate the shortcomings

of (Khansari-Zadeh and Billard, 2012a) and (Huber et al., 2019), we propose the following

formulation for modulating the DS:

q̇ = M(q)
(

f (q)+α(q)g (q)
)

= M(q) · f (q)
︸ ︷︷ ︸

Standard Modulation

+ α(q)
︸ ︷︷ ︸

∈[0,1]

M(q) ·g (q)
︸ ︷︷ ︸

Explicit Tangent

Space Dynamics

(5.11)

where M(q) ∈ R
d×d is a modulation matrix as defined in Equations (5.5)-(5.7) and (5.13),

f (q) : Rd →R
d is the nominal DS, and g (q) : Rd →R

d is a vector field that is explicitly defined

to be locally tangential to the obstacle boundary, i.e. g (q) ⊥ n(q), with n(q) being the obstacle

normal.
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Continuous scalar-valued activation function α(q) : Rd → R indicates the regions in state-

space where the obstacle-tangential vector field g (q) is active; with α(q) ∈ [0,1]. When the

nominal modulated DS term is close to local minima (i.e. M(q) · f (q) → 0), then 0 <α(q) ≤ 1,

otherwise, α(q) = 0. Obstacle-tangential velocities g (q) are thus introduced only to avoid

generation of spurious attractors. Figure 5.1 demonstrates the possible deflection added in

the vicinity of local minima.

The advantage of Equation (5.11) over (Khansari-Zadeh and Billard, 2012a) and (Huber et al.,

2019) is that g (q) is independent of f (q) or any reference point q r , opening the possibility of

defining such tangential vector field with external optimization techniques analogous to a sta-

bilizing optimal control input. This allows an intuitive and explicit control over the tangential

component of the vector field yielding an inherent boundary impenetrable modulated DS.

5.4.3 Distance Function Adaptation

Our goal is to use a learned model of the true distance to collision, as defined in Equation

(5.3), to define the collision boundary. To preserve the collision avoidance properties of the

modulation M(q) defined in Equation (5.5), we need to properly define the functions λn(q)

and λτ(q), which are used to construct the diagonal gains matrix D(q).

We employ a parametrized sigmoid function:

σ(d1,d2,λ1,λ2,k) =

=λ1 +
λ2 −λ1

1+exp
(

−k
(

Γ(q)− (d1+d2)
2

)) , (5.12)

which smoothly connects the constant values λ1 and λ2 as a function of distance Γ(q). The

parameter k controls the width of the transition, and the offsets d1 and d2 define the transition

mid-point.

To define λn(q), we use λ1 = 0 and λ2 = 1, while for λτ(q), λ1 = 2 and λ2 = 1. Distance

parameters d1 and d2 are set to be 1cm and 10cm respectively, and parameter k is set to k = 2.

Thus, diagonal elements of matrix D(q) are defined as:

λn(q) =σ(1cm,10cm,0,1,2)

λτ(q) =σ(1cm,10cm,2,1,2)
(5.13)

With such construction, λn(q) = λτ(q) = 1 (making matrix D(q) to be identity) for Γ(q) >

10 cm. For situations when distance-to-collision is lower than thresholdΓ(q) = 1 cm, λn(q) = 0

and λτ(q) = 2, guaranteeing non-penetrability.

Theorem 1 (Impenetrability) Consider an obstacle in the task space of the robot, represented

by a set of points O ⊂R
3. Let Γ(q) : Rd →R be a continuous and continuously differentiable (C1)
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function that expresses the minimal distance between the robot in state q and set O. System

(5.11) preserves the impenetrability of the obstacle.

Proof: See Appendix B.2. �

5.4.4 Explicit Tangent Space Dynamics as Navigation Kernels

We propose to construct the vector field g (q) that will be projected onto the tangent space

of the obstacle boundary as a sum of K local dynamics ĝk , which we refer to as navigation

kernels, activated by radial-basis functions as follows:

g (q) =
K∑

k=1
ĝk exp

(

−γk ||q − q̂k ||
)

, (5.14)

where q̂k is the centroid of k-th navigation kernel, and γk regulates kernel width. Vector ĝk is

a linear local dynamics activated in the vicinity of the kernel center q̂k .

Essentially, formulation (5.14) allows g (q) to be defined by a set of K navigation kernels, so

that g (q) is present when the state q is close to the k-th kernel center q̂k , and exponentially

decays as the distance to the kernel center increases. If kernels are placed close to the obstacles

(so that Γ(q̂k ) < ε), then the added tangential modulation will be stronger in the vicinity of the

obstacle, and will decay as the distance to the obstacle increases.

5.4.5 Navigation Kernel Activation

The navigation kernels defined in Equation (5.14) are activated in the deflected dynamics

(Equation (5.11)) by a state-dependent scalar-valued function α(q) ∈ [0,1], that is used to

reduce the effect of the vector field g (q) when the system is not in the local minima induced

by the obstacle. This function consists of three components:

α(q) =







αΓ(q) ·αn(q) ·α f (q), ||q −q∗|| > r

0, ||q −q∗|| ≤ r
(5.15)

where αΓ(q) is equal to one when the system is close to the obstacle, and decays to zero with

the increase of distance to collision. For example, we can define αΓ(q) = 1−λn(q), rendering

navigation kernels inactive for any robot state that is further than 10cm from collision. Values

of αn(q) change between 0 and 1 depending on the angle between the obstacle normal and

the nominal DS direction. Finally, α f (q) continuously changes from 1 to 0 as the system state

q approaches the nominal DS attractor q∗.

Additionally, we enforce α(q) = 0 within a ball Br with radius r enclosing the attractor q∗, to

be able to preserve local stability of the attractor. Refer to Figure 5.1 for visualization of active

area for a kernel placed close to the concave obstacle. Exact mathematical definitions for

α{Γ,n, f } are provided further in section 5.6.2.
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Proposition 1 (L.A.S) Consider a modulated DS in the form q̇ = M(q) f (q). Assume that f (q)

is G.A.S. at the attractor q∗, modulation matrix M(q) has full rank ∀q ∈ R
d and is equal to

an identity matrix in a ball Br with radius r centered at q∗, i.e., M(q) = Id×d , ∀q : q ∈ Br . The

modulated DS with the tangential deflection component (as in Equations 5.11, 5.14, and 5.15)

in a form q̇ = M(q)
(

f (q)+α(q)g (q)
)

is locally asymptotically stable (L.A.S.) at the attractor

q∗ if the activation parameter α(q) = 0,∀q : q ∈ Br .

Proof: See Appendix B.3. �

5.4.6 Navigation Kernel Parameter Optimization

The combination of K kernels allows to define a policy that is locally active, and is able to

provide meaningful tangential components to the nominal DS enabling navigation around

obstacles. The described policy is defined by direction ĝk , kernel center q̂k , and kernel width

γk for each k-th kernel respectively. To determine these parameters, we propose to use MPPI

approach similar to (Bhardwaj et al., 2022).

The MPPI algorithm provides a framework for finding the optimal parameters of a navigation

policy by sampling a distribution of system parameters and then evaluating the corresponding

cost of each trajectory generated by these samples. In our proposed formulation, we apply

MPPI to learn the parameters of the navigation kernels. Specifically, the MPPI algorithm will

be used to search over the space of ĝk , which represents the local dynamics associated with

each kernel.

5.5 Navigation Kernel Parameters Optimization via Sampling-based

MPC (MPPI)

5.5.1 MPPI Algorithm Description

The idea behind the MPPI method is to sample the system parameters from a distribution,

and then to use the sampled parameters to generate a set of trajectories. The cost of each

trajectory is computed, and used to change the distribution and bias the sampling procedure

towards the parameters that lead to the lower cost. Eventually, the procedure converges to

parameters that minimize the defined cost function (Yoon et al., 2022).

Let’s consider an autonomous discrete-time Dynamical System of the form

qh = f̃ (qh−1, g1, . . . , gK ), (5.16)

where qh is the state vector at time-index h and parameters gk=1..K alter the system’s behavior.

If gk = 0,∀k, then the system behaves as some nominal DS.

At each iteration, N candidate parameter sets {gi ,k }k=1..K
i=1..N are sampled from K independent
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multivariate Gaussian distributions such that gi ,k ∼Nk (µk ,Σk ), and then used to generate

N trajectories by propagating system (5.16) forward in time for H timesteps. We denote

resulting trajectories (or roll-outs) as {qi ,h , q̇i ,h}h=1..H
i=1..N . After that, the cost for each trajectory is

defined as ci = c(qi ,1, . . . , qi ,H ). The cost is designed according to the desired bahvior, i.e. to

prefer trajectories that are close to the nominal DS, or to enable obstacle avoidance, or to be

compliant with secondary tasks. Corresponding weights are then caclulated as

wi = exp

(

−
ci

β

)

, (5.17)

and the means of the parameter distributions are updated as follows:

µnew
k = (1−αµ)µk +αµ

∑N
i=1 wi gi ,k
∑N

i=1 wi

, (5.18)

essentially shifting the distribution center towards the parameters that lead to the lowest cost.

The covariance matrix may also be updated:

Σ
new
k =(1−αΣ)Σk+

+αΣ

∑N
i=1 wi (gi ,k −µ)(gi ,k −µk )T

∑N
i=1 wi

.
(5.19)

After updating distributions parameters with µnew
k

and Σ
new
k

, each parameter gk is chosen

either as the one with lowest corresponding cost ci , or as a weighted sum (last term in (5.18)),

or as µnew
k

, and the system is propagated forward in time for one timestep, and the process is

repeated.

In (5.18)-(5.19), αµ and αΣ are the learning rates for the mean and covariance matrix, re-

spectively. The parameter β > 0 is a temperature parameter that controls the amount of

exploration. The higher the temperature, the more the distribution is spread out, and the

more the exploration is performed. Authors of Williams et al. (2017) prove that such process

iteratively converges to the optimal parameters that minimize the cost function.

5.5.2 MPPI Application

Navigation vector field g (q) is defined as sum of locally active navigation kernels (5.14), and

each kernel is defined by three parameters: local deflection direction ĝk , kernel placement q̂k

and kernel width γk .

We propose to utilize the MPPI framework to determine the local navigation direction ĝk of

each kernel. Additionally, numerous exploration trajectories produced by the MPPI algorithm

at each iteration may be used to determine the placement of the navigation kernels, i.e. values

of q̂k .
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Figure 5.2: The robot begins in the blue state (start joint configuration) and must reach the
attractor configuration (green state) while avoiding a concave task-space obstacle represented
by a set of red spheres. The nominal robot dynamics is a linear motion in joint space towards
the attractor. The standard modulated DS approach (Khansari-Zadeh and Billard, 2012a)
exhibits a local minimum (represented by the red robot state) in this scenario. Our proposed
method is able to reactively navigate around the obstacle and reach the attractor successfully.

While kernel widths γk can also be optimized via MPPI, for simplicity we fix γk = γ̂,∀k as a

hyperparameter. Kernel placement q̂k is determined during exploration using the roll-out

states. The only parameter set to find via MPPI is then {ĝk }k=1..K . Such approach enables

exploration of a large range of potential navigation strategies in the vicinity of the obstacle.

At each iteration of the MPPI algorithm, parameter set {ĝi ,k }k=1..K
i=1..N is sampled from K multivari-

ate Gaussian distributions that are parameterized by {µk ,Σk }k=1..K . We then use the sampled

parameters to generate N roll-outs {qi ,h , q̇i ,h}h=1..H
i=1..N by propagating the system dynamics H

timesteps forward in time.

Next, the cost of each trajectory is computed, which is then used to bias the sampling proce-

dure to achieve a lower cost. The weights for each sample are calculated using Equation (5.17),

and the mean of the parameter distributions is updated using Equation (5.18). Once the new

sampling distribution has been determined, we update the system state, sample new sets of

parameters, and the process repeats.

An example of a placed navigation kernel with parameters optimized using MPPI is demon-
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strated in Figure 5.1. Notably, in this two-dimensional toy example, the navigation strategy

is relatively straightforward - track the obstacle boundary in either the left or right direction.

However, in three dimensions, the tangential plane consists of an infinite number of direc-

tions to track the obstacle boundary. As dimensionality increases, it becomes exponentially

more challenging to find valid navigation strategies. We apply the MPPI algorithm to a 7-DoF

robot arm, where an infinite number of navigation strategies can be explored. Examples of

successful navigation strategies for such cases are illustrated in Figures 5.2 and 4.7.

5.5.3 Cost Function

At each iteration of the MPPI algorithm, a cost for each roll-out {qi ,h , q̇i ,h}h=1..H
i=1..N is computed.

The cost function encodes desired robot behavior, and is used to bias the sampling procedure

towards the parameters that minimize the cost. Cost function can be defined as a weighted

sum of several cost terms. In this work, we consider the following cost terms:

Goal Reaching

The first cost term is a goal reaching cost, which is defined as follows:

c
goal

i
= ||q∗−qi ,H ||2, (5.20)

where q∗ is the attractor of the nominal DS (5.1), and qi ,H is the position of the robot at the

end of the i -th roll-out.

We only consider the final position of the roll-out, as sampled trajectory may temporarily

move away from the goal while navigating around the obstacle. This cost penalizes trajectories

that do not approach to the goal in the integration horizon H .

(Self-)Collision Avoidance

Distance estimator Γ(q) provides true distance between the robot and the closest obstacle. As

the intended behavior of the motion planner is to navigate around the obstacles, a continuous

function penalizing close proximity to the obstacles may restrict the exploration of the space

of possible navigation strategies. Therefore, we use a binary collision detection function

that penalizes only trajectories that collide with the obstacle. The collision avoidance cost is

defined as follows:

ccoll
i =

H∑

h=1
ccol l

i ,h , (5.21)

where

ccoll
i ,h =







0, if Γ(qi ,h) > 0

1, otherwise.
(5.22)
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For self-collision avoidance cost c
self-coll

i
, we use the same cost function, but with the distance

estimator Γ(q) replaced by Γself(q).

Joint Limits Avoidance

We treat joint limits violation in the same way as collisions. Each state is penalized for violation

of the joint limits, and the cost is defined as follows:

c lim
i =

H∑

h=1
c lim

i ,h , (5.23)

where

c lim
i ,h =







0, if qi ,h ∈ [qmin, qmax]

1, otherwise.
(5.24)

Since we assume the DS control in the joint space, we are not concerned by low-manipulability

issues, thus do not dampen the joints close to joint-limits.

Stagnation Avoidance

The cost function also includes a term that penalizes trajectories that do not move with time.

This cost is defined as follows:

c
stay

i
=

c
goal

i

max(ε, ||qi ,1 −qi ,H ||2)
. (5.25)

This cost encourages the exploration, while penalizing the stagnant trajectories away from the

attractor, thus helping to avoid getting stuck in local minima. To some extent, this cost also

acts against appearance of limit cycles, that are theoretically possible for the DS modulation

approach. However, the length of a cycle should correspond to the horizon of the MPC path

prediction. As the trajectories converge to q∗, this cost becomes zero.

Nominal DS Similarity

Another cost component we propose to use measures the difference between the nominal DS

and the actual trajectory. This cost is defined as follows:

cDS
i =

H∑

h=1
Γ(qi ,h)||q̇i ,h − f (qi ,h)||2, (5.26)

and allows the robot to deviate from the nominal vector field when close to the obstacle.
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Total Cost

The total cost for each trajectory is defined as a weighted sum of the cost terms defined above:

ci =
∑

t∈T

wtc
t
i , (5.27)

where wt is the weight of the cost term t, and T is the set of cost terms T = {goal,coll,self-coll,

lim,stay,DS}.

5.5.4 New kernel placement

MPPI algorithm is essentially a sampling-based motion planner generating new explorative

trajectories at each iteration. For each point qi ,h at runtime the distance-to-collision Γ(qi ,h),

local obstacle repulsion n and the distance-to-goal ||q∗−qi ,h ||2 are evaluated. We may use

this exploration to better place the navigation kernels, and add them dynamically as new

obstacles are detected along the sampled trajectories.

If stable region of the nominal DS attractor is not reached yet, the distance-to-collision is

less than a threshold parameter, and system is within the region of possible local minima a

new navigation kernel can be placed. Local minima detection can be characterized as scalar

product value 〈n(q), f̂ (q)〉 being close to -1, where f̂ (q) = f (q)
|| f (q)|| is a normalized direction

of nominal DS, and n(q) is obstacle normal. Additionally we consider the proximity to the

existing set of K navigation kernels. Overall, the criteria for placing a new navigation kernel

are:

{q̂k }K+1
k=1 = qi ,h ∪ {q̂k }K

k=1 (5.28a)

m






||q∗−qi ,h ||2 > δ∗, ⇔ Far from the nominal attractor.

Γ(qi ,h) < δΓ, ⇔ Close to collision with obstacle.

〈n(q), f̂ (q)〉 <−1+δn , ⇔ Possible local minima for standard modulation.

min
k=1..K

||qi ,h − q̂k ||2 > δk . ⇔ Far from existing navigation kernels.

(5.28b)

Parameters δ∗,δΓ,δn ,δk are strictly positive and their values determine the density of the

navigation kernels placed during exploration. Notably, some conditions of kernel placing

duplicate the mechanisms of kernel activations αΓ,αn and α f . In other words, even if a

kernel is placed close to attractor q∗, it would not get activated, because α f = 0. However,

such redundancy provides more tunability for the system, and reduces the overall amount of

navigation kernels placed.

After the new candidate for a navigation kernel is found, it is added to the existing set of

kernels, centered at q̂k+1 = qi ,h , has kernel width γk = γ̂, and tangential direction gk+1 =µk∗ ,
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where k∗ stands for the index of closest existing kernel: k∗ = mink ||qi ,h − q̂k ||2. This efficiently

warmstarts the optimization of kernel parameters with the parameters of the closest existing

kernel.

The sampling policy is also changed to include the new mean µk+1 = µk∗ and covariance

Σk+1 =Σk∗ . We preserve the similar parameters between closest navigation kernels to avoid

undesired oscillatory trajectories. The described MPPI method is detailed in Algorithm 1 in

Appendix B.4.

5.6 Implementation Details

5.6.1 Tail Effect Compensation

Modulation M(q) defined in Equation (5.5) reshapes the vector field according to defined

obstacle basis E (q) and weights matrix D(q). This modulation only depends on the distance

to collision Γ(q) and does not take into account the direction of the vector field. This can lead

to a situation where the robot is slowed down by the modulation even if it is moving away

from the obstacle. This effect is called the tail effect (Khansari-Zadeh and Billard, 2012a). In

order to compensate for this effect, we redefine normal direction gain λn(q) as follows:

λ′
n(q) =λv (q)+ (1−λv (q))λn(q), (5.29)

where λv (q) is a sigmoid function that is defined as:

λv (q) =
1

1+exp
(

−100〈n(q), f (q)
|| f (q)|| 〉

) , (5.30)

such that λv (q) continuously indicates whether the nominal vector field is pointing towards

the obstacle (λv (q) = 0) or away from it (λv (q) = 1). Thus, λ′
n(q) is equal to λn(q) if the

nominal vector field is pointing towards the obstacle, and is equal to 1 if the nominal vector

field is pointing away from the obstacle, even if the distance to collision is small.

5.6.2 Navigation Kernel Activation Implementation

For the local activation of navigation kernels, we define parameters αΓ(q),αn(q) and α f (q)

from Equation (5.15) using the λn and λv .

αΓ(q) =1−λn(q),

αn(q) =1−λv (q),

α f (q) =max(1, ||q −q∗||).

(5.31)
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With such definition, even though navigation kernels are primarily activated by RBFs, they

are disabled for situations where distance to collision is large, essentially compressing RBFs

closer to the obstacle. Additionally, the tail effect is compensated, as αn(q) is equal to 0 if

the nominal vector field drives the robot away from the obstacle. Note, that αΓ(q) and αn(q)

could be merged into a single function using previously defined λ′
n(q).

5.6.3 Navigation Kernel Tangentiality

As stated in Section 5.4, we define navigation kernel dynamics to be locally tangential to the

obstacle boundary. While parameters gk are sampled from a full d-dimensional Gaussian

distribution, we may impose the following transformation on the final policy:

g (q) := M⊥(q)g (q), (5.32)

where M⊥(q) is constructed as M⊥ = E D⊥E T , and D⊥ is an identity matrix with zero as the

first element of the first column. With such transformation it is guaranteed that g (q) ⊥ n(q).

While this orthogonality is not crucial for obstacle avoidance, as by design any vector field g (q)

is modulated by M(q), it is still a nice property that restricts navigation kernels to only provide

meaningful tangential deflection, and not modulate the DS motion in undesired directions.

5.6.4 Discrete System Obstacle Impenetrability

Theorem 1 ensures that continuous dynamics defined by Equation (5.11) do not penetrate

the obstacle boundary Γ(q) = 0. However, the Neumann condition is insufficient to guarantee

impenetrability for discrete-time dynamics, especially when the integration step is large

in comparison to the speed of displacement of the robot, as this can often be the case in

real-world robotics applications. Specifically, for convex obstacles, n(q)T q̇ on the obstacle

boundary does not guarantee impenetrability, as the system can be brought through the

obstacle boundary if the timestep δt is large and the previous state is not on the boundary

(thus possibly having a nonzero velocity component along the obstacle normal). For concave

obstacles, any non-infinitesimal displacement in a tangential plane while on the obstacle

boundary within the concavity will also violate the obstacle boundary.

In practical applications, ensuring the non-penetrability of obstacles requires additional

considerations. Apart from issues arising from numerical integration, the obstacle’s normal is

provided by a learned network, which only approximates the normal, thus not guaranteeing

impenetrability. To mitigate that, a combination of safety threshold ε, local obstacle repulsion

field frep, and a sufficiently small numerical integration step δt is necessary.

By design, for system (5.11), q̇ ⊥ n(q) for all q : {Γ(q) ≤ 1cm}. In applications with discretized

system integration, the robot state may still penetrate the safety threshold Γ(q) = ε = 1cm.

When this occurs, a small repulsive force, frep(q) = krepn(q), is added to the right-hand side of

Equation (5.11) to move the state away from the obstacle boundary and maintain the safety
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threshold. Note that frep(q) = 0 for all q : {Γ(q) ≥ 1cm}.

Taking these factors into account, impenetrability for obstacles in discrete system integration

can only be violated if a single integration step results in Γ(qt ) ≥ ε transitioning to Γ(qt+1) < 0,

or if the repulsion magnitude krep is insufficient. The first case can be addressed by reducing

the numerical integration step δt to an adequately small value. As our algorithm operates at

approximately 500Hz, the value of δt is set to 0.002, ensuring that the integration steps are

small enough to prevent overcoming the safety threshold in a single step.

Assuming that the system integration is performed using the Euler method, the magnitude

krep can be estimated by calculating the current undesired penetration through the threshold:

ε−Γ(q) and introducing the offset with a timestep correction: krep =
ε−Γ(q)

δt
. As a result, the

repulsion force added to offset the threshold penetration is defined as

frep(q) =







ε−Γ(q)

δt
n(q), ∀q : Γ(q) < ε

0, otherwise.
(5.33)

The threshold ε= 1cm (defined in Equation (5.13)) in combination with a small timestep δt =

0.002 ensures impenetrability of the obstacle boundary Γ(q) = 0 in our practical application.

Overall, the continuous dynamics (5.11) take the following discrete form:

q̇t = M(qt )
(

f (qt )+α(qt )M⊥(qt )g (qt )
)

+ frep(qt ) (5.34)

qt+1 = qt + q̇tδt . (5.35)

5.6.5 Algorithm Implementation

Authors of Bhardwaj et al. (2022) report frequencies of up to 125 Hz for sampling-based MPC

scheme similar to ours, however, it is only possible due to simple integration of the roll-outs,

where the state is linear function of the control input. That enables the evaluation of the

state sequence by means of lower-triangular integration tensor, achieving parallelization both

across multiple timesteps and multiple samples. However, we rely on Γ(q) evaluation for each

timestep for modulation matrix calculation, making the system nonlinear, and restricting

parallel computation in time domain. Mainly because of that our MPC is limited to 10-

30 Hz depending on number of samples, obstacles and horizon length. The main computation

bottleneck of our algorithm is the evaluation of Γ(q) and ∆Γ(q), followed by QR decomposition

of obstacle normal to construct the tangential space basis. The latter is not comparable in

amount of operations with MLP evaluation, however, it restricts the use of algorithm to CPU.

While the method leverages the parallel execution for multiple exploration samples, and is fully

suitable for GPU implementation, we found that QR decomposition of obstacle bases can only
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be efficient on CPU, thus all setup runs exclusively on CPU. Newer generations of processors

with relatively large cache allow quick computation of the MLP, and overall performance is

satisfactory. Notably, more traditional methods to evaluate distance to collision and repulsive

gradient would lead to even more significant slowdowns.

As such frequencies may still not be sufficient for environments where obstacles are not static,

we leverage the modular structure and concurrent execution to improve the performance.

A simple one-sample one-timestep integration of modulated DS is not as computationally

expensive and can be performed with frequencies up to 700 Hz. We asynchronously compute

the modulated DS with latest known Modulation Policy, and stream the data to the low-

level impedance controller that is executed at 1 kHz. This allows us to achieve real-time

performance in dynamic environments.

Importantly, the MPC does not need to operate continuously in the background, using up

computational resources. The MPC sampling is activated only if the predicted robot state

comes close to navigation kernels, and it is not engaged in situations where there is no risk

of local minima induced by obstacles. In practice, the MPC can run asynchronously at all

times, but the number of samples can be increased dynamically. Generally, a single sample

is required to predict the future trajectory and identify local minima. Once the minima is

detected and a navigation kernel is placed, the number of samples increases to determine

the optimal deflection direction. When the nominal propagated motion encounters no local

minima (or navigation kernels), the sample complexity can be reduced back to a single sample

for trajectory prediction. This pattern is further explored in Section 5.7.

Nominal DS is a parameter to both Modulated DS module and MPC module, and obstacles

postions are streamed using Optitrack at 120 Hz. Notably, we do not use ROS for streaming, in-

stead we opt for a lightweight setup based on ZeroMQ publisher-subscriber sockets (Hintjens,

2013).

Overall flowchart of the implemented algorithm is shown in Figure 5.3. All frequencies are

reported for Apple Silicon M2 3.7 GHz CPU.1

5.6.6 Computational Complexity

The proposed hybrid controller combines two underlying algorithms - DS and MPC. For both

algorithms, the major part of computations is related to state propagation, particularly the

computation of the Modulation matrix, which depends on the implicit distance function. This

function is represented by a Multi-Layer Perceptron (MLP) with analytical computational

complexity O(s ·d ·n+m ·n2), where s is the number of input queries; d is the input dimension

(robot DoFs); m is the network depth; and n is the number of neurons per layer. Additionally,

the number of inputs s = N ·p can be expressed as the product of the number of robot states

N and the number p of collision spheres (or points) in the robot’s environment. The MPC

1The source code for this chapter is available at https://github.com/epfl-lasa/OptimalModulationDS
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algorithm performs these computations sequentially for H steps along the horizon, resulting

in a total computational complexity for the sampling-based MPC of O(H(s ·d ·n +m ·n2)).

Although the integration steps in MPC can be parallelized for multiple states and obstacles,

the nonlinear integration procedure requires sequential evaluation of the time dimension.

Consequently, the MPC evaluation frequency does not exceed 30 Hz in our experiments.

The DS can be considered as a single-step, single-sample MPC, and its computational com-

plexity can then be expressed as O(d ·n +m ·n2). Given the relatively small size of the MLP

used (n = 256,m = 4), the DS can be evaluated at frequencies up to 500-1000Hz.

Nominal
Dynamical
System

Obstacle 
Configuration

Impedance
Controller

Robot
(Real/Sim)

1000 Hz

Setup

120 Hz

Sampling-based MPC

Sample Policy Integrate
Roll-outs
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20 HzInput
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Output

Input Output
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Kernel
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Figure 5.3: Flowchart of the implemented algorithm. Message passing between modules is
performed asynchronously. Approximate operating frequencies for each module (shown in
red boxes) are estimated for execution on Apple Silicon M2 3.7 GHz CPU.

5.7 Evaluation

We systematically evaluate the proposed method in a simulated environment on a 7-DoF

Franka Panda robot. We aim to compare the performance of our approach with two state-of-

the-art methods that are capable of reactive robot motion towards the given goal configuration

while avoiding collisions with obstacles in the robot’s workspace. Specifically, we compare the

methods based on their ability to avoid collisions, achieve the goal and run at a high frequency.

Additionally, we demonstrate the application of our method for a nonlinear joint space DS

both in simulation and on a real robot.
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Figure 5.4: Reaching trajectory used in the benchmark. Robot is driven from the initial position
(in blue) to the goal position (green) by linear DS defined in joint space. Concave obstacles are
placed in the swept area in front of the robot to perform collision-avoidance benchmark.

5.7.1 Experimental Setup

We consider a reaching task, in which the robot has to perform a reaching motion towards a

goal configuration while avoiding obstacles in the workspace. We compare our method with a

standard DS modulation framework introduced in (Khansari-Zadeh and Billard, 2012a), and

with a sampling-based MPC method (STORM) introduced in (Bhardwaj et al., 2022). We define

a single desired joint state q∗ and use a simple linear dynamical system as a nominal DS:

q̇ =−
q −q∗

||q −q∗||
, (5.36)

that is normalized to achieve uniform velocity profile during the task execution. The nor-

malization is not performed when the system is close to the attractor, to avoid numerical

instabilities.

Standard modulation and our method are designed to act in the joint space given some

nominal DS, however the STORM implementation considers costs defined in task space (i.e.,

end-effector position and orientation). To enable a fair comparison, we redefine the goal

reaching and orientation costs as a quadratic cost similar to Equation (5.20). This emulates the

linear DS motion in the joint space, and allows us to compare the performance of methods on

the same task. We use the same cost weights and hyperparameters as provided in the publicly

available implementation1 of STORM. Additionally, we leverage our previous work (Koptev

et al., 2023) that introduced a Neural Network based Γ-function for collision checking, which

improves the performance (in terms of frequency) of the method.

1https://github.com/NVlabs/storm
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To make meaningful comparison in the reaching scenario, we design the experiment such that

final goal state q∗ describes position in the left part of robot’s workspace, and initial position

qinit is located in the right. To move between these two positions robot has to traverse through

the workspace in front of it, as shown in Figure 5.4.

Table 5.1: Success rate comparison for three methods involving robot motion in obstructed
environment with various obstacle sizes. Values are averaged between 100 runs, and means
(and standard deviations) are reported.

Method/Obstacle

Size
2 3 4 5 6 7

Ours 1.00 1.00 1.00 1.00 0.99 0.98

ModDS 1.00 1.00 0.86 0.72 0.65 0.62
STORM 1.00 0.98 0.82 0.81 0.80 0.79

Table 5.2: Number of iterations comparison for three methods involving robot motion in
obstructed environment with various obstacle sizes. Values are averaged between 100 runs,
and means (and standard deviations) are reported.

Method/Obstacle

Size
2 3 4 5 6 7

Ours 446 (23) 476 (47) 524 (83) 563 (144) 571 (154) 626 (391)
ModDS 451 (39) 481 (51) 534 (113) 535 (79) 554 (102) 556 (104)
STORM 416 (73) 452 (89) 477 (75) 467 (86) 463 (119) 454 (95)

Table 5.3: Trajectory time (in seconds) comparison for three methods involving robot motion
in obstructed environment with various obstacle sizes. Values are averaged between 100 runs,
and means (and standard deviations) are reported.

Method/Obstacle

Size
2 3 4 5 6 7

Ours 0.82 (0.06) 0.96 (0.12) 0.97 (0.19) 1.18 (0.37) 1.21 (0.37) 1.36 (0.94)
ModDS 0.74 (0.06) 0.86 (0.09) 0.86 (0.19) 0.88 (0.12) 0.98 (0.18) 0.93 (0.18)

STORM 4.85 (0.98) 5.34 (1.08) 6.46 (1.04) 6.05 (1.22) 5.54 (1.48) 6.26 (1.27)

For the benchmark, we consider a static cross-shaped sphere structure placed in front of the

robot. We investigate methods’ performance for various sizes of the obstacle. Some of the sizes

are shown in Figure 5.5. In general, as the size of the obstacle increases, the robot’s workspace

becomes more constrained. For each obstacle size we vary the height of the cross center and

its distance from the robot across 100 reaching motions. Benchmark results are presented

in Tables 5.1, 5.2, 5.3 and 5.4. We consider reaching successful if it is performed within 10

seconds. Otherwise, we do not consider it in calculations of average number of iterations and

trajectory time.
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Table 5.4: Frequency (in Hz) comparison for three methods involving robot motion in ob-
structed environment with various obstacle sizes. Values are averaged between 100 runs, and
means (and standard deviations) are reported.

Method/Obstacle

Size
2 3 4 5 6 7

Ours (DS) 22 (1) 22 (3) 21 (2) 22 (2) 20 (1) 19 (2)
Ours (MPC) 548 (16) 498 (14) 546 (47) 485 (26) 473 (19) 468 (20)
ModDS 613 (5) 562 (5) 622 (17) 607 (9) 567 (7) 598 (3)

STORM 86 (7) 84 (8) 74 (3) 76 (4) 75 (3) 74 (7)

Table 5.5: MPC activation metrics for the benchmark experiments. The columns indicate
obstacle size, the number of trajectories where more than one navigation kernel was placed
(i.e., MPC was required), and the corresponding proportion of iterations where the path passed
by the navigation kernels along with number of kernels placed. Values are averaged over 100
runs, with means (and standard deviations) reported. MPC activation rate and number of
kernels is averaged only for trajectories where MPC was active.

Obstacle

Size
2 3 4 5 6 7

Trajectories

requiring MPC,

rate

0.11 0.11 0.28 0.41 0.51 0.56

MPC

Activation,

rate

0.42 (0.16) 0.53 (0.18) 0.64 (0.19) 0.72 (0.16) 0.72 (0.15) 0.73 (0.15)

Number

of kernels
1.8 (0.8) 2.7 (0.8) 2.8 (1.5) 2.6 (1.9) 2.7 (1.9) 2.7 (2.5)

5.7.2 Discussion

The effectiveness of our proposed method in navigating in the presence of obstacles is demon-

strated in Tables 5.1-5.4, where it outperforms two other methods with consistently higher

success rates. While the planning part of our algorithm is slower than STORM, the running

frequency is comparable to that of a standard DS approach. It is worth noting that our algo-

rithm runs on a CPU, while STORM efficiently leverages GPUs. However, the slow planning

loop is not crucial for our method, as the primary modulated DS achieves motion reactivity

at a high frequency. We should also note that this benchmark only evaluates the algorithms

in quasi-static environments and does not consider their performance in dynamic scenarios.

Future work could address this limitation by incorporating obstacle velocities into collision-

avoidance algorithms. Nonetheless, our method is capable of reacting to dynamic changes in

the environment due to its high frequency of operation, as demonstrated in experiments with

a real robot.

The performance parameters of the MPC component are displayed in Table 5.5. As mentioned

earlier, the MPPI-based sampling policy optimization is only necessary when the robot trajec-
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Figure 5.5: Two-, three-, and four- spheres long obstacle cross configurations used in the
benchmark.

Figure 5.6: Spherical approximation of human upper body. 70 spheres of variable radii
represent head, torso and arms. Optitrack markers are used to determine six keypoints located
on the human body.

tory comes close to possible local minima induced by obstacles. The number of trajectories

where the MPC is invoked to explore exit policies increases with environmental complexity.

However, in certain situations (e.g., when the obstacle is not very close to the robot), the MPC

might be unnecessary as the nominal DS delivers required collision-free reaching motion.

Furthermore, for trajectories utilizing the MPC, it does not have to be employed throughout

the entire trajectory but can be applied only when the robot passes by the obstacle. The

corresponding MPC activation rate parameter grows with the amount of obstacles in the

robot’s workspace. Lastly, Table 5.5 reveals that an average of 2-5 navigation kernels is required

to complete the reaching task in the proposed benchmark scenario. This value can be adjusted

by configuring the hyperparameters such as kernel width γ̂ and kernel placement thresholds

δ{Γ,n,k}.

In the case of a dynamic unstructured environment, it is possible that previously placed

navigation kernels may become irrelevant after obstacles have moved. This issue is addressed
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in our method through the coefficient αΓ (as defined in Equation (5.31)) that deactivates the

deflection as obstacle moves away. If an obstacle once again comes close to such a kernel,

MPPI will automatically begin adjusting the kernel’s parameters.

5.7.3 Real Robot Experiments

We demonstrate the reactive collision-avoidance properties of our method on a setup involving

Franka Emika. We use a simple reaching trajectory similar to the one used in simulated

benchmark. We then command the robot to alternate between these nominal dynamics to

perform cyclic motion between two attractors following the reaching pattern. We fit a human

shape with 70 spheres (see Figure 5.6) with variable radii, and randomly obstruct the robot

workspace during the task execution. The keypoints on the human are tracked with OptiTrack

at a 120Hz rate. Modulated DS with latest available policy is evaluated at frequency of at

least 500Hz, and MPPI asynchronously updates the navigation policy at approximately 20Hz.

The robot is then controlled at 1 kHz by a custom low-level torque controller. Figure 5.7

demonstrates the snapshots of the experiment in which human dynamically appears in the

robot workspace and obstructs the motion.

5.7.4 Moving Obstacles

The designed hybrid controller can provide collision-free motion, even in the presence of

moving obstacles. One of the key assumptions in this thesis is that the environment is quasi-

static, where the controller does not consider the motion law of the obstacles. Given that the

update rate of the Modulated DS exceeds 500 Hz, the controller’s reaction time is approximately

2ms. Assuming that obstacles are located within the sensing range of the OptiTrack system

and that the robot’s reaction time is negligible, we can estimate the maximum permissible

obstacle speed. The controller initiates collision avoidance repulsion when an obstacle is

closer than 1 cm (see Sec. 5.6.4). With this in mind, our algorithm is suitable for scenarios

where obstacles move at speeds slower than 1 cm per 2 ms, which translates to 5 m/s. While

this is a significantly high speed, the critical assumption of negligible robot reaction time

typically does not hold in practical scenarios. Specifically, the Franka robot’s end-effector is

limited to a velocity of 2 m/s, implying that the robot cannot avoid a collision if the obstacle is

moving at speeds greater than 2 m/s.

5.8 Conclusion and Future Work

We have presented a method to introduce deflections into a Modulated Dynamical System

to enhance the navigation capabilities of the original approach proposed by Khansari-Zadeh

and Billard (2012a). Our method retains the properties of the Modulated DS, such as local

stability and non-penetrability of obstacle boundaries.

87



Chapter 5. Collision-Free Motion Generation

(a)

(b)

Figure 5.7: Two experiments in which human swiftly obstructs the robot motion with (a)
raised arm, and (b) concave arm trap. Robot reactively avoids the collision and navigates
the concavity, continuing the reaching task execution. Time difference between subsequent
images is approximately 700 milliseconds.

We utilize Sampling-based Model Predictive Control to optimize the deflection parameters and

leverage the Neural Signed Distance Function for real-time performance in the 7-dimensional

joint space of a robotic manipulator.

Our proposed hybrid controller enables real-time, collision-free motion generation for any

nominal DS motion. The underlying modulated DS can effectively control collision-free robot

movement at frequencies up to 600 Hz, while the navigation policy updates at 20 Hz, allowing
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for pathplanning in non-static and rapidly changing environments.

Future work could address some limitations of our approach, such as the generation of motion

exclusively in joint-space. While this is natural for robots, it may not be ideal for real-world

tasks. The hybrid controller could be enhanced by adding an Inverse Kinematics layer that

calculates the desired final joint positions for each robotic task. Additionally, considering

multiple DS attractors could fully exploit the redundancy of robot kinematics.

Another potential improvement involves developing a fully dynamic controller that considers

not only obstacle positions but also their velocities, adding a new level of reactivity to the

generated motions. This approach could be further refined by incorporating filtering and

prediction of obstacle movements, enhancing the MPC policy generation.
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6 Conclusions

In this chapter, we summarize and review the main contributions of this thesis. We then

discuss the limitations of the proposed methods and outline the potential future work.

6.1 Contributions

This thesis draws inspiration from kinesthesia, the inherent sense of self-movement, bodily

force, and positional awareness. Proprioceptors, that are specialized neurons located within

muscles, tendons, and joints, enable humans and animals to perceive their body and limb

positions. This internal perception operates independently from external senses like vision

and touch. The proprioceptive system is fundamental for our internal body schema, that

serves as the basis for controlling human body movements (Head and Holmes, 1912). Humans

develop a model of their body immediately after birth, and continuously refine it throughout

their lifespan (Hoffmann et al., 2010). With this concept in mind, we focused on developing a

collision avoidance system that is based on learned collision models.

The primary contribution of this dissertation is the provision of a generic framework for robot

collision avoidance, which is based on implicit distance functions. We outlined a data-driven

approach for learning collision detection functions and demonstrate their application in

various algorithms that generate collision-free motion. First, we concentrated on self-collision

detection in redundant humanoid robots and subsequently extend this approach to general

collision avoidance. Finally, we developed a hybrid controller that leverages the properties of

the learned collision representations to achieve reactive, collision-free motion generation for

redundant robots.

In Chapters 1 and 2, we offered an introductory overview of the robot collision avoidance

problem, addressing the state-of-the-art in collision detection and motion planning. While

collision detection has its origins in computer graphics and geometry, motion planning

primarily belongs to the field of robotics. We discussed the limitations of existing methods

and outline potential directions for ML-based techniques.
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In Chapter 3, we proposed a method that utilizes data-driven machine learning techniques to

construct a self-collision classifier. We compared the performance of SVM and NN methods ap-

plied to this classification task. The constructed classifier takes joint positions of a redundant

robot as input and provides a binary output indicating the robot’s self-collision state. Since

the underlying decision function is continuously differentiable, we can acquire gradients with

respect to the input (joint space angles). These gradients can be efficiently used to formulate a

collision avoidance constraint for a motion generation algorithm. We used the QP IK method

to compare our learned function with a more traditional approach relying on Jacobians to

translate repulsion constraints into the robot’s joint space. We validated the method on a

32-DoF humanoid robot, iCub, in both simulation and real-world experiments, demonstrating

that the learned collision model can generate collision-free motions for the robot. To our

knowledge, our work represents one of the first instances of learning a self-collision function

in high-dimensions (>30 degrees of freedom) and its application to a whole-body control of a

humanoid robot.

In Chapter 4, we built upon the proposed self-collision avoidance framework and extend

it to account for collisions with objects in the environment. We employed a data-driven

approach to construct a collision detection function, posing the problem as a regression

task. Our goal is to learn minimal distances between the robot and its environment as a

function of robot state and environment point coordinates. Consequently, we obtained an

implicit signed distance approximator that representats the robot’s signed distance field in

continiously differentiable way. We used this function to formulate the collision avoidance

constraint in QP IK, demonstrating real-time collision-free motion generation. To overcome

the local nature of this technique, we leveraged the parallelization properties of NNs, using

our implicit distance function to check for collisions in Sampling-Based MPC controllers. We

validated the method on a 7-DoF Franka Emika Panda robot, showcasing collision-free motion

in reaching tasks. This chapter further advances the learning-based approach to collision

detection and establishes the foundation for implicit distance representation in robotics, along

with examples of its application. Our method is among the first to utilize learned distances to

represent robot collision geometry, and we anticipate that this approach will gain increased

adoption in the future.

In Chapter 5, we addressed the limitations of the motion generation methods employed in

previous chapters by introducing a hybrid controller. This controller combines the reactivity

of the Modulated DS approach, generating collision-free motions at high frequencies (up to

1 kHz), with the exit strategies provided by the Sampling-Based MPC method. The learned

collision and self-collision models serve as integral components of the proposed method.

We utilized parallel distance computations to increase the sampling frequency of the MPC

and rely on collision gradients to modulate the DS for collision avoidance. We validated the

method on a 7-DoF robotic arm, demonstrating swift and reactive motion generation, as well

as the ability to seamlessly recover from concave traps surrounding the robot. Although the

concept of a hybrid approach controller, which combines fast and slow algorithms, is not

entirely new, we believe that our work is the first to integrate a DS-based obstacle avoidance
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method with Model Predictive Control. We demonstrate the efficiency and potential of such

an approach in robotics.

6.2 Limitations and future work

The work presented in this thesis provides a comprehensive framework for collision-free

motion generation, encompassing both collision model learning and motion generation

algorithms. Nonetheless, there remain some limitations that future research could address.

The proposed method for learning self-collisions can be applied to any robot with a known

kinematic model but works best for robots with fewer DoFs, such as robotic arms. With an

increasing number of DoFs, the collision boundary learning precision degrades, necessitating

the division of a 32-DoF humanoid robot into ten submodels. Due to the symmetry properties

of the robot’s kinematics, only six models need to be learned; however, this still increases the

method’s complexity. Various techniques, such as data augmentation or model architecture

optimization, could improve the method’s performance for higher DoF robots.

Similar considerations apply to the collision avoidance method presented in Chapter 4, where

the implicit distance function is learned. It is important to consider the trade-off between

model complexity and inference speed. Increasing the number of parameters (i.e., layers

and neurons) or incorporating architectural features like batch normalization or various

regularization techniques could enhance the method’s performance. However, this would also

increase computation time, which is crucial for real-time motion generation.

The extended method for computing distances between the robot and obstacles in the en-

vironment requires a point coordinate to estimate the distance. In this thesis, we assumed

that each obstacle could be approximated with a set of spheres, calculated distances to the

sphere centers, and subtracted the radii afterward. We investigated situations involving 10-100

spheres in the robot workspace and demonstrated real-time performance. For the limit case

of null radii, the obstacle representation can be considered as a point cloud, suitable for the

majority of robotic tasks. However, the performance of distance computation will suffer when

facing a large number of points common for point-cloud representations, hindering real-time

performance. Additional techniques, such as introducing a broad phase with crude spherical

approximation and a narrow phase with more precise point clouds, could be employed to

enhance the method’s performance.

The learned implicit distance function assumes that precise obstacle positions are known.

While this thesis demonstrates experiments using an OptiTrack motion tracking system in

a laboratory environment, such considerations may be unrealistic in real-world scenarios.

Environment point clouds may be obtained using LiDARs or RGB-D cameras, or, alternatively,

modern computer vision techniques enhanced with deep learning methods can estimate

obstacle positions using standard cameras. Integrating such components into the developed

collision avoidance framework would enable its application in real-world situations.
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The hybrid controller presented in Chapter 5 considers a quasi-static scenario, relying on

the controller to update the motion plan at high frequency (above 500 Hz) and adapt to

swift changes in obstacle positions. However, for truly dynamic obstacle avoidance, obstacle

velocities or even accelerations should be considered when generating a robot motion plan.

For example, MPC may consider predicted obstacle positions along the integrated trajectory

of the robot state in the rollouts. Additionally, obstacle velocity can be compared with the

learned model gradients to determine whether the obstacle is approaching or receding from

the robot, and thus inform the robot’s avoidance strategy. Developing such a method, along

with filtering and obstacle position prediction, would enable the controller’s use in highly

dynamic scenarios.
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A Technical Preliminaries on Dynamical

Systems

A.1 Dynamical Systems

In this thesis, we utilize dynamical systems (DS) to define the desired motion of the robot.

Moreover, we adopt the modulation approach, introduced in Khansari-Zadeh and Billard

(2012a), to reshape the DS in the vicinity of obstacles, enabling collision-free navigation.

While these concepts are briefly discussed in Chapter 5, this appendix offers a more in-depth

examination of the DS stability and modulation2

A continuous DS is typically represented by a set of differential equations that depend on time

t ∈R
+, a vector of state variables q ∈R

d , and a vector of control variables u ∈R
m :

q̇ = f (t , q ,u), f : R+×R
d ×R

m →R
d . (A.1)

State variables q completely define the state of a system. Specifically, this thesis assumes

that q represents the joint angles of the fully actuated robotic system. Equation (A.1) is also

referred to as the state equation. Particular case, when the DS does not explicitly considers

control u, is called unforced DS:

q̇ = f (t , q), f : R+×R
d →R

d . (A.2)

In cases where unforced DS does not depend on time and is strictly state-dependent, the DS is

considered autonomous:

q̇ = f (q), f : Rd →R
d . (A.3)

When employing a DS to control robot motion, it is vital to analyze the system’s behavior,

whether it converges to a desired state, exhibits a limit cycle, or diverges to infinity. These

behaviors are all determined by the stability of the DS.

2The material of this appendix is adapted from (Khalil, 2002)
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A.2 Stability Analysis of Dynamical Systems

The notion of DS stability requires defining the equilibrium points.

Definition 3 (Equilibrium point) A point q∗ ∈R
d is an equilibrium point of the DS (A.2) if it

has the property that whenever the state of the system starts at q∗, it remains there for all time.

For autonomous systems (A.3), the equilibrium points q∗ can be found by finding the real

roots of the equation:

f (q) = 0.

In Chapter 5, we consider that nominal motion is defined by an autonomous DS (A.3). There-

fore, we focus on the stability analysis of autonomous DS. The stability of an equilibrium point

q∗ is determined by the behavior of the system in the vicinity of q∗.

Definition 4 (Equilibrium point stability) The equilibrium point q = q∗ of autonomous DS

(A.3) is

• locally stable if for any ε> 0, there exists δ= δ(ε) > 0 such that

||q(0)−q∗|| < δ⇒||q(t )−q∗|| < ε, ∀t ≥ 0

• unstable if it is not stable

• locally asymptotically stable (L.A.S) if it is stable and δ exists such that

||q(0)−q∗|| < δ⇒ lim
t→∞

||q(t )−q∗|| = 0

This definition implies that an equilibrium point is stable if and only if it is possible to remain

arbitrarily close to it, provided that the trajectory starts close enough. Moreover, if trajectories

approach the equilibrium point over time, the equilibrium point is considered asymptotically

stable. When the point q∗ is asymptotically stable, its basin of attraction is defined as all points

from which the system converges to q∗.

Definition 5 (Global asymptotic stability) The equilibrium point q = q∗ of autonomous DS

(A.3) is globally asyptotically stable (G.A.S.), if the asymptotic stability holds for any intitial

point:

lim
t→∞

||q(t )−q∗|| = 0, ∀q(0) ∈R
d
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An alternative approach to define and analyze stability of a nonlinear dynamical system

involves usage of Lyapunov’s method. In particular, the following theorem is foundational to

this method:

Theorem 2 (Stability of equilibrium point in autonomous nonlinear DS) Let q∗ be an equi-

librium point for (A.3), D ∈ R
d be a domain containing q∗. Let V : D → R be a continuously

differentiable function such that

V (q∗) = 0 and V (q) > 0 in D − {q∗} (A.4)

V̇ (q) ≤ 0 in D. (A.5)

Then, q = q∗ is stable. Moreover, if

V̇ (q) < 0 in D, (A.6)

then q = q∗ is locally asymptotically stable.

Proof: Please refer to (Khalil, 2002). �

Such function V (q) is called a Lyapunov function. To establish a global asymptotic stability, a

following theorem is used:

Theorem 3 (Barbashin-Krasovskii) Let q∗ be an equilibrium point for (A.3). Let V : Rd →R

be a continuously differentiable function such that

V (q∗) = 0 and V (q) > 0, ∀q 6= q∗ (A.7)

||q ||→∞⇒V (q) →∞ (A.8)

V̇ (q) < 0 ,∀q 6= q∗ (A.9)

then q = q∗ is globally asymptotically stable.

Proof: Please refer to (Khalil, 2002). �
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A.3 DS Modulation

Dynamical system (Equation (A.3)) defines a state-dependent vector field that can be altered,

or modulated, by rotating the field with a modulation matrix M(.), which can depend on

different variables1. The modulated DS is then defined as:

q̇ = M(.) f (q), (A.10)

Depending on the choice of M(.), this DS can exhibit various behaviors. For example, M(q) is

a matrix-valued function of the system state q , and it can be activated differently in different

regions of the state space, locally reshaping the nominal DS f (q). The simplest local state

activation is the rotation:

M(q) = I+ (R − I)e−||q−q0||, (A.11)

with R being a rotation matrix, and q0 being the center of rotation. The effect of modulation

vanishes exponentially away from this point.

A.4 DS Modulation for Obstacle Avoidance

A.4.1 Obstacle Representation

The key element of any obstacle avoidance strategy, including DS modulation and other

path-planning methods, is the representation of the obstacle. Works Khansari-Zadeh and

Billard (2012a); Huber et al. (2019); Salehian et al. (2018a) consider a definition in which

obstacle detection function Γ(q) is designed to be a scalar valued function of the system state

Γ(q) : Rd →R, such that the isosurface Γ(q) = 1 defines the collision boundary:

Γ(q) < 1 ⇔ Inside obstacle (collision)

Γ(q) = 1 ⇔ Obstacle surface (contact)

Γ(q) > 1 ⇔ Outside obstacle (collision-free)

(A.12)

Here, it is important to note that Γ(q) depends on both the system state q and the obstacles

configuration O; however, the latter dependence is frequently omitted for simpler notation.

Additionally, Γ(q) is assumed to be differentiable, i.e. Γ ∈ C1 for all q ∈R
d . Furthermore, the

obstacle normal is defined as

n(q) =
∇Γ(q)

||∇Γ(q)||2
. (A.13)

This normal vector n(q) indicates the joint space direction from the obstacle and helps define

the repulsive gradient, which pushes away from the obstacle at q . The use of such a vector by

the controller is essential for maintaining the desired collision-free behavior.

1We adapt the description of DS modulation from Billard et al. (2022)
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A.4.2 Modulation Matrix for Obstacle Avoidance

DS modulation using matrix M(q ,O) ∈R
d×d that depends on the obstacles configuration O,

can be used to achieve obstacle avoidance. To allow for obstacle avoidance, the following

modulation matrix can be used:

M(q) = E (q)D(q)E (q)−1, (A.14)

where M(q) is composed through eigenvalue decomposition. Here, D(q) is a diagonal scaling

matrix and E (q) is an orthogonal matrix defined as:

E (q) =
[

n(q) e1(q) . . . ed−1(q)
]

. (A.15)

The first column of E (q) consists of the obstacle normal n(q) (as given in Equation (A.13)),

while the remaining columns ei (q) form a (d −1)-dimensional basis of the tangent space at

the state q .

The diagonal matrix D(q) is defined as:

D(q) =









λn(q) 0 . . . 0

0 λτ(q) . . . 0
...

...
. . .

...

0 0 . . . λτ(q)









, (A.16)

and is composed of two eigenvalues λn(q) and λτ(q) defined as:

λn(q) = 1−
1

Γ(q)
, λτ(q) = 1+

1

Γ(q)
. (A.17)

Here, Γ(q) determines the distance of the system in state q from the obstacle (as defined

in Equation (A.12)). As the system moves away from the obstacle (i.e. Γ(q) increases), D(q)

becomes more similar to the identity matrix. On the other hand, when close-to-collision (i.e.

Γ(q) approaches 1), λn(q) tends toward 0, cancelling out the normal component of the vector

field and preventing the system from violating collision boundary; while λτ(q) grows closer to

2, increasing the component of the vector field tangential to the obstacle boundary and thus

increasing the system velocity in the direction tracking the collision boundary.

In essence, the modulation (A.14) redistributes the flow of the nominal DS (A.3) based on

proximity to the obstacle, thus allowing obstacle avoidance.
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B Appendix of Chapter 5

B.1 Reference Direction Modulation Matrix Decomposition

The standard modulation approach presented in Khansari-Zadeh and Billard (2012a) defines

the modulation matrix M(q) as:

M(q) = E (q)D(q)E (q)−1, (B.1)

where D(q) is a diagonal matrix, and E (q) is an orthogonal matrix defined as:

E (q) =
[

n(q) e1(q) . . . ed−1(q)
]

. (B.2)

The first column of E (q) consists of the obstacle normal n(q) , while the remaining columns

ei (q) form a d −1-dimensional orthonormal basis of the tangent space at the state q . For

simpler notation, we drop the state dependency in matrix expressions further.

The improved approach introduced in Huber et al. (2019) proposes to use the alternative

matrix E ′ by replacing vector n(q) in Equation (B.2) with a reference direction vector r (q , q r ).

We may express the reference vector r (q , q r ) as:

r (q , q r ) = n(q)+a(q , q r ), (B.3)

rendering modulation matrix in Huber et al. (2019) to be:

M ′ =E ′DE ′−1 =

= (E + A)D (E + A)−1 ,
(B.4)

where A is a residual matrix defined as:

A =
[

a(q , q r ) 0 . . . 0
]

. (B.5)
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If a(q) 6= 0, then rank of matrix A is 1, and, following the lemma from Miller (1981),

(E + A)−1 = E−1 −
1

1+b
E−1 AE−1, (B.6)

where b = tr ace(AE−1). We further denote

B =−
1

1+b
E−1 AE−1.

Equation (B.4) can be rewritten as:

M ′ = (E + A)D (E + A)−1 =

=E D (E + A)−1 + AD (E + A)−1 =

=E D
(

E−1 +B
)

+ AD
(

E−1 +B
)

=

=E DE−1 +E DB + ADE−1 + ADB =

=M +E DB + ADE−1 + ADB

(B.7)

We may denote the last three terms as g (q , q r ), then the final expression for modulation matrix

M ′ is:

M ′ = M +g (q , q r ), (B.8)

essentially rendering the modulated system from Huber et al. (2019) to be:

q̇ =
(

M +g (q , q r )
)

f (q) =

=M f (q)+g (q , q r ) f (q),
(B.9)

that can in turn be rewritten as:

q̇ = M f (q)+g (q , q r ). (B.10)

The latter formulation is equivalent to a control law, where modulated DS is deflected (or

stabilized, depends on the choice of interpretation) by a nonlinear term g (q , q r ), which can

be considered as a deflection or stabilizing control input through the lense of a control-input

nonlinear systems from optimal control theory. The external control variable here is then the

reference state q r , that defines the reference direction r (q , q r ).

B.2 Impenetrability of Obstacle Boundary for Explicit Tangent Space

Dynamics Deflection

By Definition 1, impenetrability requires that normal velocity at boundary points QO = {q ∈

R
d : Γ(q) = 0} vanishes, i.e., n(q)T q̇ =∇Γ(q)T q̇ = 0, ∀q ∈QO. The vector field modulated by

the tangent space deflection is given by q̇ = M(q) · ( f (q)+α(q)g (q)) (Equation (5.11)).

If g (q) = 0, then n(q)T (M(q) f (q)) = 0 on the boundary, and impenetrability for obstacles is
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guaranteed following the proof of Theorem 2 in Khansari-Zadeh and Billard (2012a). Since

g (q) ⊥ n(q) (see Equation 5.32 in Section 5.6.3), then g (q) induces no velocities along the

normal direction, meaning impenetrability is preserved.

For completeness we restate the proof for the standard modulation including the explicit

tangent space dynamics. Formally, impenetrability for continuous state dynamics can be

proven if n(q)T q̇ = n(q)T M(q) · ( f (q)+α(q)g (q)) = 0 as shown below:

n(q)T q̇ = n(q)T E (q)D(q)E (q)−1( f (q)+α(q)g (q)
)

=

[

1

0d−1

]T [

0 0

0 diag(2)d−1

]

E (q)−1( f (q)+α(q)g (q)
)

= 0T
d E (q)−1( f (q)+α(q)g (q)

)

= 0

(B.11)

The second line in Equation (B.11) is obtained by plugging in the following definitions: Let

D =

[

λn 0

0 Λτ

]

∈R
d×d with λn ∈R being the eigenvalue corresponding to the direction along

the normal n(q) and Λτ = diag(λτ) ∈ R
d−1 being the eigenvalues corresponding to the or-

thonormal eigenbasis tangential to the normal Eτ = [e1, . . . ,ed−1] ∈R
d×d−1 used to construct

E = [n(q) Eτ]. Further, recall that ∀q ∈QO =⇒ λn = 0,λτ = 2, (as defined in Equations (5.12)

and (5.13)). Since the first eigenvector of E is n(q) then n(q)T n(q) = 1 and n(q)T Eτ(q) = 0d−1

rendering the term n(q)T E (q)D(q) = 0T
d

, thus proving impenetrability at the boundary for

Equation (5.11). �

B.3 Local Asymptotic Stability of the Modulated DS with the Tangen-

tial Deflection Component

If the activation parameter α(q) is equal to zero in a ball Br enclosing the attractor q∗, then the

deflection component g (q) vanishes in Br and the DS is identical to the standard modulated

DS:

M(q)( f (q)+α(q)g (q)) = M(q)( f (q)+0g (q)) = M(q) f (q), ∀q ∈ Br . (B.12)

Therefore, we need to prove that standard modulated DS M(q) f (q) is locally asymptotically

stable in Br .

The original dynamics f (q) are globally asymptotically stable, which implies (following Theo-

rem 3 in Appendix A) the existence of a Lyapunov function V : Rd →R such that:

V (q∗) = 0 and V (q) > 0, ∀q 6= q∗ (B.13)

||q ||→∞⇒V (q) →∞ (B.14)
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V̇ (q) < 0 ,∀q 6= q∗ (B.15)

Let Br be be a ball centered at the q∗ with a radius r small enough s.t. M(q) = Id×d . In other

words, modulation matrix M is equal to identity in close vicinity of the attractor. Thus, inside

Br we have

q̇ = M(q) f (q) = Id×d f (q) = f (q), ∀q ∈ Br . (B.16)

Let D ⊂ Br be the largest level set of V that lies entirely inside Br . For any q0 ∈ D , the modulated

dynamics is exactly equal to the original dynamics q̇ = f (q). Hence, V (q) > 0 and V̇ (q) < 0

holds for all q ∈ D, which proves (see Theorem 2 in Appendix A) that the system is L.A.S. at q∗

with region of attraction given by D. �
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B.4 MPPI deflection optimization algorithm

Algorithm 1: MPPI Modulated DS motion

Input :Nominal DS f (q), attractor q∗,
Cost function c = c({q , q̇}),
Obstacle points O,
Initial robot state qinit,

Output :Optimal trajectory {qs , q̇s}s=1..S
Modulation parameters {ĝk , q̂k }k=1..K

Parameters :N , H ,∆t ,∆τ
/* Initialize the iteration counter, kernel counter, and current state */

1 (s,K , qs) ← (0,0, qinit)
/* Main loop */

2 while ||qs −q∗|| > 0 do
/* Explore N trajectories */

3 for i ∈ [1, N ] do
/* Sample navigation parameters */

4 for k ∈ [1,K ] do
5 ĝi ,k ←N (µk ,Σk )

/* Integrate for H timesteps */

6 q0 ← qs

7 for h ∈ [1, H ] do
/* Evaluate nominal DS */

8 q̇nom = f (qh−1)
/* Evaluate Modulation */

9 M ← M(qh−1,O)
/* Evaluate Navigation Kernels */

10 q̇nav = g (qh−1, {ĝi ,k , q̂k }K
k=1,O)

/* Get total velocity */

11 q̇i ,h−1 = M(q̇nom + q̇nav)
/* Integrate */

12 qi ,h = qi ,h−1 + q̇i ,h−1∆t

/* Evaluate cost of trajectory */

13 ci = c({qi ,h , q̇i ,h}t=1..H )
/* Update sampling policy */

14 for k ∈ [1,K ] do
15 (µk ,Σk ) ←Update using ci (Eqns. 5.17-5.19)

/* Add new navigation kernels */

16 for i ∈ [1, N ] do
17 for h ∈ [1, H ] do
18 if qi ,h satisfies (5.28a) then
19 K ← K +1
20 k∗ = mink ||qi ,h − q̂k ||2
21 (q̂K ,µK ,ΣK ) ← (qi ,h ,µk∗ ,Σk∗)

/* Find lowest cost */

22 i∗ = mini ci

/* Update robot state */

23 q̇s−1 = q̇i∗,0
24 qs = qs−1 + q̇s−1∆τ
25 s = s +1

26 return {qs , q̇s}s=1..S , {ĝk , q̂k }k=1..K
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