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Abstract: Ever-increasing demands from the industry require better performance out of the
same system to achieve a competitive advantage. In systems functioning at different operating
points, a fundamental trade-off between robustness and performance can limit the achieved
performance. Linear Parameter Varying (LPV) controller synthesis can overcome this issue by
adapting the controller parameters with the operating points. This requires a parametric LPV
model of the system, which in many cases is difficult or costly to obtain. Recently, LPV controller
design methods based on the frequency-domain data in different operating points have shown to
result in great performance without the need of a parametric LPV model. In these approaches,
however, the scheduling parameters are assumed to be measured exactly. In this paper, a
new approach is proposed to design LPV controllers with slowly varying uncertain scheduling
parameters, using only the frequency response data of a SISO system around different operating
points. The proposed approach is applied on a rotary table, a machine used in the manufacturing
industry. The dynamics of the rotary table depend on the inertia of the object mounted on-
top which cannot be directly measured. Since the scheduling parameter cannot be measured,
it is estimated using a short sequence of data that leads to an inexact estimation with interval
uncertainty. For the system considered, the LPV controller designed by the proposed approach
shows clear improvement over the state-of-the-art robust controller synthesis approaches.

1. INTRODUCTION

Rotary tables are systems used in the manufacturing
industry to inspect machined objects, to assess if they are
up to the desired specifications. A single rotary table must
be able to rotate objects with small and large weights, and
thus such a system can encounter a relatively broad set
of dynamics during routine operation. A state-of-the-art
robust control law can account for these varying dynamics,
but may fail to achieve the desired control performance.

To obtain improved performance over traditional control
strategies, control design schemes incorporating parameter-
dependent gains (Rugh and Shamma, 2000) have been
used to design non-linear controllers using the formalism of
linear controller synthesis, with many reported successful
applications (Hoffmann and Werner, 2015). In Divide-
and-conquer gain-scheduling, the non-linear control law is
obtained by interpolating between local controllers, e.g.,
Symens et al. (2004); Paijmans et al. (2006); da Silva et al.
(2009); Dong et al. (2015). This requires tuning a possibly
large number of different controllers, and the interpolation
step can lead to loss of performance between operating
points. LPV controller synthesis offers a compelling al-
ternative to gain-scheduling method, e.g. Steinbuch et al.
(2003); Wassink et al. (2005), but requires an LPV model
of the system. In many cases, the LPV model is obtained
by interpolating local models (Tóth et al., 2011).
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An accurate LPV model is paramount to a good control
design, but obtaining a parametric model is often dif-
ficult and expensive. For mechanical systems such as a
rotary table, frequency response function (FRF) has been
a proven tool to model the dynamics (Oomen, 2018), and
is relatively easy to obtain. For LPV systems, obtaining
the FRF at different operating points can be used as an
accurate representation of the system’s local dynamics.
Different FRF based controller synthesis approaches have
been extended to parameter-dependent or LPV systems
(Kunze et al., 2007; Karimi and Emedi, 2013; Bloemers
et al., 2019a,b, 2021; Schuchert and Karimi, 2023), thus
largely bypassing the costly modelling phase when using an
LPV model. In these methods, it is assumed that the rate-
of-change of the operating point is changing sufficiently
slowly, as stability for fixed parameters implies stability
for sufficient slowly varying parameters (Mohammadpour
and Scherer, 2012). Moreover, it is assumed, often implic-
itly, that the operating points, and therefore scheduling
parameters, are known to a sufficiently high accuracy.

For the rotary table, during a routine day, objects of
different shape, size, and weight will be inspected, resulting
in different rotational inertias, and ultimately leading to
parameter dependent dynamics. For this system, once an
object is installed, the parameters do not change until
the next item is inspected (piece-wise constant param-
eter). After changing an object, a precise value of the
rotational inertia could be obtained from measurements
by conducting a specific experiment, but obtaining this
value is a time-consuming task, and must be repeated



every time a different object is inspected. This represents
added costs for the machine operator and therefore is not
desired. On the other hand, it is often possible to derive an
estimate of the rotational inertia from input/output data
of the rotary table system. However, this estimate is often
inexact, and the uncertainty must be considered during
controller synthesis. In the parametric case, the absence of
exact knowledge of the operating point has been studied
(Kose and Jabbari, 1999; Sato et al., 2010; Agulhari et al.,
2013), although this problem has not been studied in FRF-
based LPV approaches.

We propose an extension to the method proposed in
Schuchert and Karimi (2023), when the scheduling param-
eters are uncertain, but slowly varying. The resulting syn-
thesis problem is convex in the controller-parameters, and
is formulated as a semi-infinite program (SIP). This SIP is
sampled, and solved with an off-the-shelf convex solver. An
industrial rotary table system is considered to highlight the
applicability of the proposed method and improvements
over the state-of-the-art control design strategies.

This paper is organized as follows: in Section 2, a descrip-
tion of the system and problem to be solved is given.
In Section 3, a solution by convex optimization using
only the frequency response of the system is presented.
In Section 4, implementation considerations are discussed.
Experimental results using a real rotary table illustrate
the effectiveness of the approach in Section 5. The paper
ends with some concluding remarks.

Notation: The imaginary unit is denoted j =
√
−1. The

conjugate transpose of a complex vector F is denoted by
F ∗ and its Euclidean norm by |F | =

√
F ∗F . The H2 and

H∞ norm of an LTI system are denoted ∥ · ∥2 and ∥ · ∥∞,
respectively.

2. PROBLEM STATEMENT

2.1 System Description

A rotary table consists of a DC motor connected to
a rotating plate through a gear train. Two sensors are
available: a tachometer to measure the angular speed of the
motor, and an incremental encoder to precisely measure
the plate’s angular position. A picture of the set-up is
shown in Fig. 1. The system has to accurately position
objects with weights ranging from one to hundreds of
kilograms. This large variation in the payload results in a
significant change of the system dynamics. The dynamics
depend on the inertia of the inspected object, which cannot
be directly measured. Measurable quantities such as the
object’s mass or its position are not a complete description
of the inertia, and using the aforementioned quantities in
the scheduling parameters only increases the complexity
of the overall problem. In this paper, we propose to use an
estimate of the operating point based on a short sequence
of data (around 2 sec) before starting the inspection in an
initialization phase. Since the data is noisy and the data
length is short, the estimate will not be exact. Therefore, it
is assumed that only an estimate p̂ of the operating point
p is available:

p̂ := p+ δ, δ ∈ D (1)

where D describes the uncertainty in the estimation. In
case the operating point can be accurately measured, D is
a single point, namely D := {0}.

Fig. 1. Rotary table. A metallic frame is installed on-
top of the rotary table, where various weights can be
installed at different positions. During a routine day,
objects of different shape, size, and weight will be in-
spected, resulting in parameter dependent dynamics.

In industry, a common control scheme for such systems is
cascaded control loops: the inner-loop regulates the motor
angular speed and the outer-loop the disk angular position.
We will adopt the same control architecture, and assume
that the inner-loop is already tuned. The inner-loop is
relatively insensitive to the weights of the objects mounted
on-top due to a large reduction-ratio in the gear-train.
Therefore, a single robust control law achieves adequate
performance. The model of the outer-loop, with the inner-
loop closed, is denoted

Gp =
GpKm

1 + GpKm
,

where Gp is a single-input two-output system representing
the rotary table dynamics andKm the inner-controller. For
the outer-loop, to obtain improved performance over state-
of-the-art synthesis, it is desired to design an LPV con-
troller. The outer-loop controller to be designed is denoted
Kp̂, and a block diagram representing this interconnection
can be found in Fig. 2.

Kp̂ Km Gp(e
jω)

−

motor tachometer

−

disk encoder

Gp(e
jω)

Fig. 2. Block diagram of the control loop architecture

The system of interest can be locally, i.e., around each
operating point p, well approximated by an LTI system.
It is usually assumed that the frozen dynamics represen-
tation at each operating point remains a valid descrip-
tion of the system. This assumption is clearly valid in
this application, as once an object is mounted on-top of
the rotating plate, the operating point does not change.
At every operating point, a unique frequency response
function Gp(e

jω) exists, which can be used to model the
(frozen) dynamics (Tóth, 2010). The frequency set is cho-
sen as ω ∈ ΩGp := (−π/Ts, π/Ts] \BGp , where BGp is the
set of frequencies corresponding to the poles of Gp on



the unit circle. The FRF can be obtained directly from
spectral identification methods (Pintelon and Schoukens,
2012), avoiding the costly parametric identification phases
(structure identification, parameter estimation and model
validation).

2.2 Frequency Response Data

Twenty-five local data sets are collected around different
operating points, by varying weights and the positions of
the object on the rotary table. Each data set consists of
T = 4000 input and output measurements sampled at
Ts = 5 · 10−3 s. The input r is a sum-of-sines signal with
random phase given by:

rt =

T/2∑
k=1

(
α+

β

k

)
sin(2πk(t− τk)/T )

where τk is a random integer in {0, . . . , T − 1} and α, β
constants to shape the reference signal spectrum. The
constant α > 0 is chosen sufficiently large to excite well
all frequencies, but not too large to saturate the input
of the DC motor. The constant β > 0 is chosen to add
additional excitation in low frequencies. The frequency
response function (FRF) computed at each of the 25
operating points at 500 logarithmically spaced frequency
points in {1, π/Ts}, and is shown in Fig. 3. The color
of the FRF is changing linearly with the frequency of
the first resonance peak ωpeak. Due to a relatively sharp
first resonance peak in the dynamics, if the operating
point is not well measured or estimated, poor closed-loop
performance may be achieved.
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Fig. 3. Frequency response of the system around different
operating points. The color of the FRF is chosen
according to the frequency of the first resonance peak.

2.3 Operating point

Different combinations of weights and positions can result
in very similar dynamics, e.g., large weights near the center
or small weights far away from it may both have the same
rotational inertia. Instead of using the rotational inertia
as operating point, it is proposed to use the frequency
corresponding to the first resonance peak in the open-loop

FRF as a proxy, i.e. p := ωpeak. In first approximation,
the transmission and rotating disk can be reasonably well
modeled by a mass-spring-damper system:

(Jrotary + Jobject)ÿdisk = −bẏdisk − kydisk + kRymotor (2)

where Jrotary is the no-load inertia and Jobject the added
inertia from the object inspected. b, k are friction and
spring constants, and R is the transmission ratio. The
angular position of the disk and motor are denoted ydisk
and ymotor, respectively. The peak frequency of this system
is given by

ωpeak =

√
k

Jrotary + Jobject
(3)

The constants in (3) can be computed once precisely in a
controlled environment if needed. Notably, the operating
point p = ωpeak belongs to the following set:

P = {ωpeak ∈ R | 65 ≤ ωpeak ≤ 137}

The operating point can clearly be obtained at the same
time as identification is done, by simply reading of the
corresponding frequency. On the workshop floor, perform-
ing a lengthy identification is not an acceptable solution
(time-wise), and only a short experiment can be done to
obtain a reasonable estimate p̂ = ω̂peak.

2.4 Synthesis objective

The inexact estimation of the operating point could be
framed as uncertainty in the model dynamics, where each
controller Kp should stabilize all models Gp+δ. This is
not done, as it requires identifying additional models at
the operating point p − δ. Instead, the synthesis objec-
tive is to design a SISO LTI controller Kp̂ such that
Kp̂ stabilizes Gp, ∀δ ∈ D,∀p ∈ P, and optimal w.r.t. a
mixed-norm mixed-sensitivity problem:

min
Kp̂

max
p∈P,δ∈D

∥Rsoft(Gp,Kp̂)∥2
subject to
∥Rhard(Gp,Kp̂)∥∞ < 1.

(4)

Rsoft corresponds to non-critical objective(s) to be mini-
mized, and defined as

Rsoft =

[
W1Spp̂

W2Upp̂

W3Tpp̂

]
(5)

where the closed-loop transfer functions are defined as:

Spp̂ =
1

1 +GpKp̂
, Upp̂ =

Kp̂

1 +GpKp̂
, Tpp̂ =

GpKp̂

1 +GpKp̂

Similar to the problem formulation in Schuchert and
Karimi (2023), Rhard are formulated as H∞ constraints
to shape individually the closed-loop transfer functions:∥∥W1Spp̂

∥∥
∞ < 1,

∥∥W2Upp̂

∥∥
∞ < 1,

∥∥W3Tpp̂

∥∥
∞ < 1

∀δ ∈ D,∀p ∈ P
(6)

or equivalently Rhard = diag{W1Spp̂,W2Upp̂,W3Tpp̂}.

3. LPV CONTROLLER SYNTHESIS

The following rational controller parametrization is con-
sidered:

Kp̂ =
Xp̂

Yp̂
=

Xvar

Yvar

FX

FY
, (7)



where Xp̂ and Yp̂ are polynomials in the z-transform
variable and FX and FY are eventual fixed parts in the
controller. Xvar and Yvar are the variable parts of the con-
troller, which should be optimized. They are functions of
the estimated operating point via a user defined scheduling
vector:

θ(p̂) = [θ1(p̂), . . . , θnθ
(p̂)] (8)

The controller numerator and denominator can be rewrit-
ten as

Xp̂(z) = Xn(p̂)z
n + . . .+X1(p̂)z +X0(p̂),

Yp̂(z) = zn + . . .+ Y1(p̂)z + Y0(p̂),
(9)

where

Xi(p̂) =

nθ∑
j=1

θj(p̂)xij , Yi(p̂) =

nθ∑
j=1

θj(p̂)yij

with xij and yij the optimization variables. Using this con-
troller parametrization, the closed-loop transfer functions
can be rewritten as

Spp̂ =
Yp̂

Yp̂ +GpXp̂
, Upp̂ =

Xp̂

Yp̂ +GpXp̂
, Tpp̂ =

GpX

Yp̂ +GpXp̂

(10)

The frequency set is defined as Ω := ΩGp \ BYp̂
, where

BYp̂
is the set of frequencies corresponding to zeros of Yp̂

on the unit circle. For conciseness, denote the common
denominator of the closed-loop sensitivities

Ppp̂ = Yp̂ +GpXp̂ (11)

3.1 Multi-objective synthesis

Soft H2 requirements: Similar to the problem formu-
lation in Schuchert and Karimi (2023), the H2 synthesis
problem can be reformulated as an optimization problem
on the spectral norm as follows:

min
Kp

max
p∈P,δ∈D

∫ π

−π

µpp̂(ω)dω (12a)

subject to∣∣∣∣∣∣
W1(ω)Spp̂(e

jω)
W2(ω)Upp̂(e

jω)
W3(ω)Tpp̂(e

jω)

∣∣∣∣∣∣
2

< µpp̂(ω) (12b)

∀ω ∈ Ω,∀δ ∈ D,∀p ∈ P
where µpp̂(ω) is an upper bound of the (squared) Eu-
clidean norm of the vector of the weighted sensitivity
functions at ω, for a given (δ, p). The dependency on ω
is again omitted in further equations when possible. The
inequality in (12) can be rewritten using the sensitivities
as expressed in (10), and multiplying both sides by P ∗

pp̂Ppp̂,

where Ppp̂ is defined in (11):∣∣∣∣∣
[

W1Yp̂

W2Xp̂

W3GpXp̂

]∣∣∣∣∣
2

< µpp̂P
∗
pp̂Ppp̂ (13)

A linear lower bound of P ∗
pp̂Ppp̂ can be derived around an

arbitrary Pc:

Φpp̂ := P ∗
pp̂Pc + P ∗

c Ppp̂ − P ∗
c Pc ≤ P ∗

pp̂Ppp̂, (14)

leading to a convex approximation of (13):

min
Xp̂,Yp̂

max
p∈P,δ∈D

∫ π

−π

µpp̂(ω)dω (15a)

subject to∣∣∣∣∣
[

W1Yp̂

W2Xp̂

W3GpXp̂

]∣∣∣∣∣
2

< µpp̂Φpp̂ (15b)

Φpp̂(ω) > 0 (15c)

∀ω ∈ Ω,∀δ ∈ D,∀p ∈ P

Hard H∞ requirements: Following the same steps as in
the previous section, a similar convex constraint can be ob-
tained for the hard H∞ requirements. The H∞ constraint
is a constraint on the supremum of the singular value.
For conciseness, only ∥W1S∥∞ < 1 is detailed, which
is reformulated as a set of constraints in the frequency
domain:∣∣W1(ω)Spp̂(e

jω)
∣∣2 < 1 ∀ω ∈ Ω,∀δ ∈ D,∀p ∈ P (16)

Dependency on ω is omitted hereafter when possible.
Multiplying (16) by P ∗

pp̂Ppp̂ and using the same lower

bound as in (14) results in:∣∣W1Yp̂

∣∣2 < Φpp̂ ∀ω ∈ Ω,∀δ ∈ D,∀p ∈ P (17)

Applying the same procedure on the other closed-loop
transfer functions in (6) results in∣∣W1Yp̂

∣∣2 < Φpp̂

∣∣W2Xp̂

∣∣2 < Φpp̂

∣∣W3GpXp̂

∣∣2 < Φpp̂

∀ω ∈ Ω,∀δ ∈ D,∀p ∈ P
(18)

Similar constraints can be found when the synthesis ob-
jective is to minimize the H∞ norm, or adding hard H2

requirements.

3.2 Stability

Formulating the H2 and H∞ norm using bounds on the
spectral norms is only possible when the closed-loop is
stable. Stability analysis of the (frozen) LPV system is
equivalent to stability analysis of an LTI system with
uncertainty in the neighborhood of each operating point.
With the correct choice of Pc, stability can be embedded in
the problem formulation. Assume that an initial (possibly
LPV) stabilizing controller Kc = XcY

−1
c is known, and Yp̂

and Yc have the same degree. With the choice

Pc = Yc +GpXc, (19)

a sufficient condition for stability is

P ∗
pp̂Pc + P ∗

c Ppp̂ > 0 ∀ω ∈ Ω,∀δ ∈ D,∀p ∈ P (20)

which is enforced when Φpp̂ = P ∗
pp̂Pc +P ∗

c Ppp̂ −P ∗
c Pc ≥ 0.

If (20) holds, and if Yp̂ and Yc have the same order,
then 1 + GpKc and 1 + GpKp̂ have the same number of
unstable zeros. Since Kc is a stabilizing controller, the
closed-loop using Kp̂ is also stable. The stability proof can
be found in Schuchert and Karimi (2023) when rewriting
corresponding quantities using the fictitious operating
point

p̃ = (δ, p) ∈ D× P
and is therefore omitted. Note that stability for all fixed
p implies stability for sufficient slow varying p = p(t)
(Mohammadpour and Scherer, 2012).



4. IMPLEMENTATION CONSIDERATIONS

Similar remarks as in Karimi and Kammer (2017) and
Schuchert and Karimi (2023) are in order, and given for
completeness.

4.1 Gridding

The formulation (15) and (18) is a semi-infinite constraint,
as it must be satisfied at every ∀ω ∈ Ω,∀δ ∈ D,∀p ∈ P.
This is not feasible, but a common solution for such prob-
lems is to sample the frequencies, operating points and
estimates at a sufficiently large number of points. At every
sampled (ω, δ, p), the convex constraint can be efficiently
implemented using conic programming, in particular, ro-
tated quadratic cones. This formulation allows using for
a relatively dense gridding, as modern convex solvers can
handle many second-order constraints used to implement
(15) or (18).

When the H2 constraints are evaluated on a finite set of
frequencies and operating points, a numerical integration
scheme can be used to approximate the integral in (15a):∫ π

−π

µpp̂(ω)dω ≈ 1

2

L∑
l=2

(µl,m,n + µl,m−1,n) (ωl − ωl−1)

and µl,m,n ≥ 0 a scalar optimization variable representing
the value of µpp̂(ω) at (ωl, δm, pn).

4.2 Initial controller and iterative procedure

The proposed control design requires an initial (possibly
LPV) stabilizing controller. Other structured synthesis
approaches (Burke et al., 2006; Apkarian and Noll, 2006)
also require this, and is used as an initial starting point
for the optimization routines. It is reasonable to assume
the existence of such a controller as

(1) For stable systems, any controller with a sufficiently
small gain is stabilizing,

(2) For unstable systems, in a data-driven framework, a
stabilizing controller required to collect input-output
data.

The controller obtained after solving for the upper-bound
of (4) using (15) and (17) will depend on the choice of
Kc, and the resulting controller can be far away from the
closest local minimum. It is proposed to solve the problem
iteratively, using the optimal controller from the previous
iteration as the initial controller for the next iteration,
starting with Kc. Starting with the second iteration, the
initial controller is always a feasible solution to the convex
problem, and therefore the objective value achieved by the
optimal controller is non-increasing. The final controller
will converge to a local minimum, and conservatism from
the convex-concave approximation will be small: Φpp̂ ≈
P ∗
pp̂Ppp̂ when Ppp̂ ≈ Pc.

Note that in the case of very demanding hard require-
ments, a feasible solution to (17) may not exist in the first
iteration. If this is the case, it is proposed to first solve,
possibly iteratively, the following sub-problem:

min
Xp̂,Yp̂

γ

subject to∣∣W1Yp̂

∣∣2 < γΦpp̂

∣∣W2Xp̂

∣∣2 < γΦpp̂

∣∣W3GpXp̂

∣∣2 < γΦpp̂

Φpp̂ > 0 ∀ω ∈ Ω,∀δ ∈ D,∀p ∈ P
If this converges to γ = 0, then the resulting controller
can be used as initial controller for the original problem
(4). If this converges to any γ ̸= 0, a controller satisfying
the hard requirements cannot be found from the initial
starting point. Conflicting requirements may result in no
(globally) feasible controller.

5. EXPERIMENTAL RESULTS

The proposed method is applied to the rotary table de-
scribed in Section 2.

5.1 Coarse peak frequency estimator

During routine operation, performing a full spectral identi-
fication is too time-consuming, and therefore an estimator
for p̂ must be derived, along with the uncertainty set D
using a much shorter set of data. Since the system is linear
at each frozen operating point, it is possible to obtain a
reasonable estimate of the peak frequency using spectral
analysis. Before inspecting a new object, an estimate of
the peak frequency is obtained as follows: the rotary table
(with the object on-top) is exited with random noise for 2
s, and input/output data collected. The power-spectrum of
the input Φy and the output Φu is computed using Welch’s
method, and the peak frequency is computed as

ω̂peak = argmax
65≤ω≤137

|Φy(ω)|/|Φu(ω)|

During an initial calibration phase, this procedure has
been applied multiple times around different operating
points, and each time, an accurate ωpeak also derived using
a longer input/output sequence. From multiple experi-
ments, it has been noted that |ω̂peak − ωpeak| ≤ 3 with a
probability over 95%. The set D is of uncertain operating
point is here therefore chosen as D = [−3, 3].

5.2 Scheduling parameter

The controller’s coefficients are parametrized as an affine
combination of the scheduling vector θ. From (2), a good
approximation of the transmission model is an affine de-
pendency of the dynamics in the inertia, or equivalently an
affine dependency on the inverse of the squared value of
the peak frequency. The controller is therefore scheduled
with a similar dependency: θ = [1, ω̂−2

peak]. Other scheduling
parameters are possible, but it has been noted that more
complicated scheduling vectors do not result in a signif-
icant increase in performance. To showcase the benefits
of the proposed approach over state-of-the-art synthesis
methods, comparison with an LTI robust controller will
be given. This controller is obtained using the approach
proposed in Karimi and Kammer (2017), treating the
uncertain LPV dynamics as multi-model uncertainty, and
is equivalent in the proposed formulation to using the
scheduling vector θ = 1.



5.3 Controller design

To decide about the controller order, different robust
controllers have been designed using increasing orders.
After order n = 8, little improvements are noticed, and
therefore this order is chosen. For the comparison, the LPV
controller is also chosen to be of order 8.

The design objective is to minimize the (squared) tracking
error given a ramp reference. This can be formulated
as minimizing ∥W1Spp̂∥2 where W1 = 1/ (z − 1)

2
, and

following the definition in (5), W2 = W3 = 0.

Hard requirements are specified to guarantee additional
specifications during routine operation. A modulus margin
of 0.5 is required, resulting in W1 = 2. To avoid passing
the large high-frequency components to the inner-loop, a
constraint is added to the input sensitivity function Upp̂

corresponding to

W2 =

{
0 ω ≤ 360

−90dB otherwise

A final constraint is used to limit the amplitude of the
complementary sensitivity function Tpp̂, and corresponds
to the filter W3 = 0.5. The initial stabilizing controller is
chosen as

Kc = 100 +
10

z − 1
=

100z8 − 90z7

z8 − z7

and Fy = z− 1 is used as a fixed part in the denominator.
The problem is solved using the frequency grid from the
FRF, the operating points at 25 different points, and D
gridded such that δ ∈ {−3, −1.5, 0, 1.5, 3}. The control
synthesis is iterated until convergence to a local minimum.
The resulting controller, sampled at a linearly spaced grid
p is shown in Fig. 4, and the closed-loop transfer functions,
given at p̂ = p, along with (the inverse of) the weighting
function Wi in Fig. 5. The closed-loop transfer functions
using the robust controller are also given in this figure.
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Fig. 4. Frequency response of the controller at different
operating points, using the same color-code as Fig. 3.

From Fig. 5a, it is clearly visible the benefit of this LPV
controller w.r.t a robust controller. The sensitivity is about
6 dB lower in low frequencies, while satisfying the same de-
sign requirements. To showcase time-domain improvement
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(a) Sensitivity Spp̂ and W1
−1
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Fig. 5. Closed-loop transfer function using LPV controller
in color, using the same color-code as Fig. 3. Closed-
loop transfer functions using a robust controller,
shown in gray.

in performance, the rotary-table is tasked with tracking
the reference shown in Fig. 6. Note that for the desired
application, the reference is only slowly changing, and
performance mostly dictated by low-frequency behavior
of Spp̂. The tracking error using either the LPV or robust
controller is shown in Fig. 7. As it can be seen, the LPV
controller improves tracking performance, for this trajec-
tory, by a factor ≈ 2 (= 6 dB).

6. CONCLUSION

We have presented a novel approach to the design of LPV
controllers for SISO systems with uncertain scheduling
parameters. The local frequency response of the system
is used to design an LPV controller, locally optimal to a
multi-objective mixed-sensitivity problem. This method is
applied to a rotary table, where improved performance has
been obtained w.r.t. a state-of-the-art controller.
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Fig. 6. Reference trajectory obtained from inspecting
an object. For the specific inspection application,
velocity, and acceleration are limited
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Fig. 7. Tracking error around different operating points
using LPV, shown in color. Tracking error using the
robust controller, shown in gray.
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