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Diagrams are ubiquitous in the development and presentation of proofs, yet surprisingly uncommon in

computerized mathematics. Instead, authors and developers rely almost exclusively on line-oriented notations

(textual abbreviations and symbols). How might we enrich interactive theorem provers with on-the-fly visual

aids that are just as usable? We answer this question by identifying a key challenge: designing declarative

languages for composable diagram templates, that provide good-looking implementations of common patterns,

and allow for rapid prototyping of diagrams that remain stable across transformations and proof steps.

CCS Concepts: • Software and its engineering → Software notations and tools; • Human-centered
computing → Visualization systems and tools.

Additional Key Words and Phrases: diagrams, interactive theorem proving, diagramming languages

1 INTRODUCTION
Diagrams abound in proofs: in research papers, textbooks, documentation of proof developments,

presentation slides, whiteboards, and classroom materials. Diagrams often illustrate or even con-

stitute parts of the proof, especially in contexts where they are more natural, human-friendly

representations than mathematical symbols or words. Figure 1 shows a particularly striking exam-

ple in the context of a separation logic proof.

(sep (MCell f2 d1 c2) (sep (MCell p1
f1 b2) (sep (MCell p2 f2 b2) (sep
(MCell b1 x c2) (sep (MListSeg c2 b2
L2') (sep (MCell b2 d2 null)
(MListSeg f1 b1 L1)))))))

(a) As a Coq term, without notations.
(b) As a diagram with boxes, text, and arrows.(

𝑓2 ↦→ ⟨𝑑1, 𝑐2⟩ ★ 𝑝1 ↦→ ⟨𝑓1, 𝑏2⟩ ★ 𝑝2 ↦→ ⟨𝑓2, 𝑏2⟩ ★ 𝑏1 ↦→ ⟨𝑥, 𝑐2⟩
★ 𝑐2 ↦→ ⟨⟨𝑏2, 𝐿′2⟩⟩ ★ 𝑏2 ↦→ ⟨𝑑2, null⟩ ★ 𝑓1 ↦→ ⟨⟨𝑏1, 𝐿1⟩⟩

)
(c) In mathematical notation.

Fig. 1. Memory state while concatenating double-ended queues, adapted from [Charguéraud 2014].

But when proofs are performed with a computer instead of on paper, diagrams are glaringly

absent. The term presented as (1a) by default in Coq is turned into the more readable form (1c) by

using Coq’s textual notation system to capture common patterns, but this is still a far cry from the

diagrammatic representation like Figure 1b one would use in practice to understand and develop

a proof. If diagrams are an important component of the human development of proofs, why are
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(a) Diagrams can represent the objects which the proofs
are about, as in the case of hydra diagrams, a running
example we will use throughout this paper. Hydra di-
agrams were introduced as an object of mathematical
study in [Kirby and Paris 1982] and the figure to the left
is from the book Hydras & Co. by [Castéran et al. 2022].

Inductive Hydra: Set := node: Hydrae -> Hydra
with Hydrae: Set := hnil: Hydrae | hcons: Hydra -> Hydrae -> Hydrae

(node (hcons (node (hcons (node (hcons (node hnil) (hcons (node hnil)
hnil))) hnil)) (hcons (node hnil) hnil)))

(b) For reference, the Coq definition of hydras in Hydras & Co. as a mutually inductive type, and the
term corresponding to the diagram to the left above (Figure 2a). Intuitively, a hydrae is a set of hydras
as a linked list constructed with hcons and hnil, and a hydra is a node with a set of children (hydrae).
A hydra with no children, i.e. (node hnil), is drawn as a smiley.

(c) Or, diagrams can represent entire proof states, such as for separation logic in Figure 1b.

(d) Or, they can also constitute the proof itself, with rewrit-
ing rules for diagrams that correspond to axioms of the
underlying systems; recent work on diagrammatic calculi
with string diagrams for Boolean satisfiability is a com-
pelling example (figure taken from [Gu et al. 2023]).

Fig. 2. Diagrams can serve a few different roles in representing a proof or the objects it deals with.

they missing from proof assistants? How might we enrich proof assistants with diagramming

capabilities?

In this paper, we attempt to approach these questions by first looking at alternative representa-

tions that are widely used in proof assistants, namely, textual notations or macros (§ 2). We identify

some properties of these notation systems that we believe explain their success, and then briefly

review some existing diagramming tools (not necessarily linked to proofs) (§ 3), noticing whether

and how the visual counterparts of these properties manifest. With this background, we present

some preliminary experiments in diagrammatic notations in which we try to demonstrate some of

our desired properties (§ 4). Lastly, we summarize our proposed approach to building a diagramming

system for interactive theorem proving and the main questions we hope to address (§ 5).

1.1 What is a diagram?
Before we proceed further, we will limit the scope of what we consider to be a diagram with a

few qualifiers (albeit not a rigorous definition). A diagram is a schematic representation of entities,

sub-entities, and their relationships: it follows a schema that determines what primitive components

can be used in the diagram, what they represent, and how they can be combined, akin to a grammar

for a language. This distinguishes it from a pictorial representation that aims to be photorealistic or

to approximate reality, such as a polygon mesh. A diagram only includes elements that directly

contribute to understanding or capture some information about the object. A diagram is also

interpreted schematically. E.g., a binary tree drawn with a computer, and the same drawn by hand

with slight imperfections, nevertheless represent the same object following the same schema. We
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also observe that we often want diagrams to be rendered rigidly: elements may need to be aligned

or a tightly constrained size, spacing may need to uniformly reflect conceptual organization, etc.

2 WHAT MAKES TEXT NOTATIONS SUCCESSFUL?
One might think that the experience of interactive theorem proving is somehow different, and does

not require alternative representations for complex objects—but we know that it does, because users

heavily rely on notations, implicit arguments, and other devices to make proof goals more readable.

For instance, the Coq keyword Notation (used to define a new text notation) is used 234 times

in the sources of the Hydras book, among 5,397 definitions and theorems, or about once every

23 definitions/theorems. This idea can be taken very far to enable representations quite different

from the original; e.g., lean-verbose [Massot 2023] consists of 642 lines of Lean macros originally

developed to accompany 2,502 lines of notes and exercises in an introductory semester-long course

on proof assistants, that ‘translates’ a proof script to look more like a natural language derivation.

Lean macros and Coq notations are two examples of more generally allowing the user to define

domain-specific representation languages for proofs or goal states. What explains their widespread

success? We make five observations: that they describe how notations should be composed based on

the structure of conceptual objects, rather than describing individual notated terms; that they strike

a good balance between cost (or ease of use) and benefit; that they are canonical representations,
in direct correspondence with the objects being represented; that they allow for continuous, i.e.
minimal and easy to follow, changes in the representation of an object over proof steps; and that

common specification idioms are implemented by the system in a way that makes them look good.

1. Structure-driven compositionality. Notations are compositional: their parts have independent

meaning and can be combined in systematic ways. Further, the composition of notations is driven

by the structure of the representee, or in other words, the notation of the whole is composed

of the notations of its parts mirroring how the whole is composed of those parts. Thus, instead

of converting individual objects into prettified notations, this lets the user specify a grammar

for notating any object in the domain, and the system instantiates it as needed. This productive

grammar is sometimes described as the inverse of the analogously systematic definition of a parser.

2. Balance between costs and benefits. The language for specifying notations is simple to get

started with and conveniently integrated into the proof assistant, allowing for rapid prototyping.

Very useful notations can be specified in just a couple lines while more complex notations can

be layered on progressively [Pit-Claudel and Bourgeat 2021]. No additional compilation steps are

needed, and once defined, there is no noticeable overhead of using them. This makes notations

worth it, not just for teaching, presentations, or other settings where the developer is willing to put

in additional effort for clarity, but even for ordinary proofs developed by and for a single person.

3. Canonicity. Modulo what the user chooses to ignore in the specification, a notation is in

direct, transparent correspondence with the underlying object. Equivalent objects have identical

notations. Moreover, the same conceptual transformation applied to two objects produces the same

transformation of their notations. Notations try to avoid introducing degrees of freedom that the

user would have to quotient out to understand what is being denoted.

4. Continuity. When an object evolves over proof steps, its representation changes in such a

way that the user can easily tell what has changed, and no more than it has to. (This is distinct

from canonicity because the canonical representation of the next step of an object in a proof could

conceivably be entirely different from the original, but the limited flexibility of textual notations

avoids this in most cases.) The structure-driven nature of notations often automatically makes

them continuous, because when a part of an object changes, only the corresponding part of the
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notation changes, but this is harder to achieve when global constraints are at play, such as when

reflowing text or re-laying out a diagram.

5. Idioms that look good. Identifying some common idioms used in many different textual no-

tations, the system shoulders the burden of implementing them with good defaults such that

user-defined notations that use these idioms will look reasonably good with little additional effort.

In Coq, for instance, some idioms the notation system provides are:

• associativity and precedence, to disambiguate, say, 𝑎 ★𝑏 ★ 𝑐 ⇝ 𝑑 after defining ★ and⇝;

• printing format, to control line breaking and indentation; and

• recursive notations, to specify notations like [a, b, ..., c] for arbitrarily long literal lists.

Without such idioms, a developer of a set of related notations would have to either use verbose,

less readable notations, e.g. with extra parentheses and other disambiguating syntax, or expend

significant effort implementing their own versions, likely less pretty or capable.

We believe these properties of textual notation systems are key to their usability and widespread

success. The fact that alternative textual representations are widely used in proof assistants, and

diagrammatic notations in traditional ‘paper’ proofs, prompts us to draw inspiration from the

former to enable the latter in proof assistants, too. With this perspective, we turn to a brief survey

of existing diagramming tools as inspiration or potential candidates for use in a proof assistant.

3 A GUIDED TOUR OF DIAGRAMMING TOOLS
Many diagramming tools exist today, ranging widely in aims and domains. We take a look below at

a few that may have important lessons or serve as starting points. Along the way, we try to identify

visual counterparts of the properties from § 2. We disclaim upfront that this survey is necessarily

incomplete given the sheer number of existing tools, about which we hope to foster exchange.

A recent tool with aims similar to ours is Penrose [Ye et al. 2020] for mathematical diagrams.

Penrose takes three pieces of input: a DSL definition for a “domain” (e.g. set theory), a collection of

“substance” statements in that DSL (e.g. definitions of some sets and subset relations between them),

and a constraint-based, declarative “style” specification (e.g. subsumed sets are to be drawn as

contained circles). It then produces as output a diagram representing the substance in the specified

style. This is exactly what we meant by structure-driven compositionality previously. Addition-

ally, Penrose provides some idioms for use in stylesheets, such as to enforce the containment of

a shape within another or to optimize an unknown parameter subject to constraints, that make

diagrams specified with these idioms have the desired visual characteristics without much effort

from the user. On the other hand, the tool explicitly does not aim for canonicity or continuity.
Diagrams are typically underspecified, and Penrose produces multiple valid instances so that the

user can choose the ‘best’ one for their use case, or even discover examples they hadn’t foreseen.

Producing incremental diagrams corresponding to successive changes to the substance file is thus

not a primary intended application. Rather, Penrose is most useful when producing diagrams is, in

itself, the user’s goal, whether for exploration or to include in static presentation materials, which

justifies the additional cost of heavy use of optimization.

We are not the first to point out the need for visualization in proofs, either as part of a proof

presentation framework like Alectryon [Pit-Claudel 2020] for Coq, or built into the IDE like

ProofWidgets 4 [Nawrocki et al. 2023] for Lean. Fundamentally, these tools provide an interface

to standard web and graphics technology: scripting, canvas drawing, SVG, CSS, etc. This makes

it possible to produce quite sophisticated visualizations, like an animated Rubik’s cube [ibid.].

ProofWidgets in particular demonstrates the demand for and usefulness of diagrammatic notations

and smoothly integrates them into the proof assistant workflow. However, these tools do not

aim to provide their own language or idioms atop the underlying technologies for specifying
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visualizations. They let the user build diagrams—that may in fact have our desired properties, or

may just be ad hoc pictures—but hold no opinion about what makes a useful diagram, nor how
to make such diagrams easier to build. ProofWidgets and Alectryon extensions are promising

tools when the developer is willing to put in significant effort to, essentially, write a custom

diagramming program, and have seen some success already (such as with commutative diagrams

in Lean’s mathlib), but are not meant to be lightweight notation systems.

An important domain to study is data and graph visualization tools, including the highly success-

ful, general-purpose D3.js [Bostock et al. 2011] and GraphViz [Gansner and North 2000], as well

as more specialized ones like Mermaid.js [Mermaid contributors [n. d.]] (software documentation)

and Cytoscape [Shannon et al. 2003] (network data, particularly biological). What these tools

have in common is that they preserve the separation between the content (raw data or a graph)

and its rendering generated from a compositional structure-driven (data-driven) grammar, and

that they provide a limited set of possible renderings with customizable styling. For instance, D3

has a few dozen libraries of visualization components, like force-directed layouts and animation

transition interpolators, that the user can style freely and compose as permitted by the grammar.

These are perfect instances of common idioms identified and implemented at the system level

to produce pretty results by default (with the caveat that D3 consists almost entirely of idioms

and is designed for high-effort, high-reward use, not rapid prototyping). Likewise, GraphViz

exposes different graph layout algorithms best suited for different contexts, with global objectives

like minimizing the number of edge crossings or aligning nodes according to a hierarchy. It hence

leaves the question of representation canonicity to the user, whereas once a visualization is

defined in D3, the representation it produces of any data is canonical almost by definition, being

strictly data-driven. Lastly, continuity is an interesting consideration: some visualizations, like

scatterplots, are easy to change continuously when a new data point is added, whereas for others,

like force-directed graph layouts, the expected behavior is to globally recompute the visualization

even for a structured, compositional change in the data. Graph layout or D3-style primitives will

nonetheless likely be subproblems a proof diagramming tool would have to solve.

PGF/TikZ [Tantau 2023] and Asymptote [Bowman and Hammerlindl 2008] are two prominent

examples of a larger category of programmable drawing tools, also including libraries in many

general-purpose languages, like Diagrama [Florence [n. d.]] in Racket. These tools provide vector-

graphics–like primitives such as curves, stroke & fill settings, and linear transformations, along

with some general programming features, like variables and loops. They also sometimes provide

default implementations of common idioms; for example, TikZ defines “nodes”, and “anchors”

named by cardinal directions for every node that connectors can attach to. However, programs

written in TikZ and its kin do not typically bear much resemblance to the conceptual structure
of the object their outputs depict. For TikZ in particular, this has given rise to a plethora of

libraries and graphical interfaces on top of the base language. Some bridge the gap for specific

domains, like forest [Živanović 2017], that uses macros to convert tree-like input into tree

diagrams. Others sidestep the problem by providing a traditional manual drawing interface that

just happens to produce TikZ output, like GeoGebra [GeoGebra Contributors [n. d.]] (geometry)

or TikZiT [Kissinger 2020] (string diagrams, etc.). The existence of these tools highlights the need

for a more compositional language-based approach to diagramming, but also for extensibility,

because it is a strength of TikZ (and TEX) that a sophisticated library with a custom input language

like forest can be built on top of it at all.

3.1 What do we want from diagrammatic notations?
Drawing from our brief review above, we are ready to advance a tentative hypothesis for what

properties we might want of a diagrammatic notation system for proof assistants.
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Conceptual diagrams should be specified in a declarative language (as opposed to graphics speci-

fied as imperative drawing instructions) that lets us compose and operate on diagrams according

to a schema reflecting the structure of the underlying objects. The system should instantiate such

structure-driven, compositional specifications as concrete renderings of objects.
Defining a notation should be easy enough, and the resulting diagrams should be pretty enough,

that a proof developer finds it worth it to quickly prototype notations for themselves even in

developments not presented to anyone else. To this end, a diagram specification language may

need to incorporate some amount of constraint-based specification, graph layout, and general-

purpose programming. The system should identify common idioms used in diagrams and provide

implementations that are pretty by default, i.e. that have the expected visual characteristics without

much additional effort from the user.

The stability of a diagrammatic representation should be a fundamental concern: equivalent ob-

jects or operations should have immediately identifiable diagrams or diagrammatic transformations

(canonicity), and the evolution of the diagram of an object over small step-by-step changes in a

proof should be easy to follow (continuity). However, we do not know the final state of the proof

when we start diagramming. A usable solution might use animations to communicate changes

while maintaining stability or leave extra space in anticipation.

4 PRELIMINARY EXPERIMENTS WITH HYDRA DIAGRAMS
We present two preliminary case studies in diagramming the hydras from the book Hydras &
Co. [Castéran et al. 2022]. Each aims to illustrate different properties we want of diagramming

systems, as identified in § 3.1, but we are only advocating for the general realization of such

properties in diagrammatic notations, not for our specific implementation choices. We are not
proposing a diagram specification language or a notation system. Nonetheless, the (Racket) source

code for our implementation is available on request.

Before we begin, recall the mutually inductive type definition for hydras in Coq and the example

from Figure 2b. Note that syntactically, the children are ordered, but semantically, they’re not.

4.1 Trees (similar to Figure 2a)

(a) Horizontal, bottom-aligned juxta-
position, with bounding boxes.

(b) Vertical, center-aligned juxtaposi-
tion, with bounding boxes, with ex-
posed endpoints (‘+’) before and after
the operation.

Fig. 3. Hydra diagram juxtapositions,
without connecting lines.

We start with the observation that tree diagrams for hydras

are recursively compositional in much the same way that hy-

dras are themselves: a node in a tree diagram has children that

are themselves trees. In fact, we can even define a hydrae di-
agram for a set of children, where the recursive diagrammatic

counterpart of hcons is to juxtapose a child hydra diagram

beside existing children’s diagrams. Thus the overall structure

of our diagrammatic notation definition for hydra diagrams

will mirror the original type definition.

Beyond the shapes to be drawn,we also need to keep track of

the bounding box of each (sub-)diagram to align and juxtapose

them, and the endpoints for the connecting lines between a

node and its children. These computations, too, fit nicely into

the recursive diagram definition. Putting it all together:

• The diagram of hnil is empty. Its bounding box is empty and it exposes no endpoints.

• The diagram of (hcons h hs) is the horizontal, bottom-aligned juxtaposition of the

diagrams of h and hs. Its bounding box has width equal to the sum of the widths of its
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two component diagrams, plus spacing, and height equal to the greater of their heights. It

exposes all endpoints exposed by its components. See Figure 3a.

• The diagram of (node hs) is:

– When the diagram of hs is empty, a circle, with a bounding box as big as its diameter.

– Else, the vertical, center-aligned juxtaposition of a small dot and the diagram of hs.
The total bounding box is computed as for hcons. See Figure 3b. Here, the endpoints
become relevant: we draw connecting lines (not pictured) between the dot and each

endpoint of the hydrae diagram (leaving some margin at the endpoints as a stylistic

preference).

The only endpoint exposed is the circle or dot’s center.

(a) As a tree.

(b) As nested boxes.

Fig. 4. Two diagrammatic notations
for the same hydra.

Figure 3 illustrates juxtaposition operations without the con-

necting lines. Figure 4a shows an example of a hydra diagram

produced by the above procedure.

4.2 Boxes (as in Figure 4b)
Next, we attempt a different diagrammatic representation of hy-

dras, albeit still with a recursive compositional structure, using

nested boxes. Each box represents a node and contains the boxes

for its children. A node with no children is represented by an

empty box, colored red for style.

This diagram schema has many more degrees of freedom than

the trees we saw previously. There are many different possible

layouts of child boxes inside a parent box, even when we only

consider layouts that completely fill available space; and then

many possible relative distributions of space among the children;

and we are still free to choose the size of the outermost box.

Note that we ignore the (semantically irrelevant) ordering of

children. Consequently, more implementation decisions are left

to us, so what we present is only one set of choices among many reasonable ones.

We start by noticing that the layout of a box and its direct children can be neatly described using

a grid. A grid is specified by relative proportions of the rows and columns and the internal spacing.

Then, for each child, we specify its location and span in terms of grid cells. The layout so far has

been specified purely in relative terms; to actually draw it, we pass as arguments a total width and

height, and the absolute positions and dimensions of all the children are computed and passed on

to them. We also define that to transpose a grid layout is to simply treat rows as columns and vice

versa, without changing the width or height, nor rotating or reflecting any elements. This is all

illustrated in Figure 5.

Now, we wish to specify a diagrammatic notation for hydras as nested grid layouts, so we must

take some decisions to resolve the implementation freedom mentioned earlier. We proceed by

informally describing a few desired æsthetic properties and howwe implement them algorithmically.

• Leaves of the diagram should be roughly the same absolute size regardless of what total

height and width the diagram is drawn at. But we cannot control the size of the leaves

directly, so we take a different approach, assigning a weight to every (sub-)diagram. All

leaves have unit weight; the weight of a node is proportional to the sum of the weights of

its children; and space is allocated among siblings per their weight.

• The above still does not nail down an arrangement of the siblings, and we would like the

arrangement to not be too visually complex. We find that recursively dividing a box into
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(define gl
(new grid-layout% ; columns rows
[grid-defn '((1 2 1) (3 1))]
; start row, start col, row span, col span
[item-defns `((0 1 1 2 ,box))]
[gap 16] [padding 10]))

(send gl draw! 400 150)
(send (send gl transpose) draw! 400 150)

Fig. 5. A grid specification and its rendering.

quads until there are enough to lay out all the children produces grids that are both simple

enough, and for which it is easy to ensure that space is allocated proportionally to weight.

• Boxes should not be too long or too wide. Again, we cannot control the sizes of boxes

directly, but we can transpose a grid layout at any level in the hydra depending on the

computed aspect ratio. We can also switch to a linear layout if the aspect ratio is too extreme.

4.3 Evaluation
How does this experiment stand up to the desired properties we stated earlier about diagramming

systems? First of all, these are certainly structure-driven, compositional specifications for
producing diagrams from the underlying objects. However, this is a Racket mini-library rather than

a notation system, and we have not yet explored how we might design a true notation language
(e.g. using Racket macros), nor how we might integrate with a proof assistant.

Our alternate notation for hydras (as nested boxes) highlights three features we would expect

from a fully-fledged diagrammatic notation system. First, it is feasible to switch between alternate

notations, as the notation is not built into the object. Second, we are able to let our informal stylistic

preferences guide an algorithmic resolution of the additional degrees of freedom, building on top of

the abstractions provided by the system. Third, these diagrams underscore the separation between

abstract and concrete: a nested boxes diagram can be rendered in any (sufficiently large) size,

adapting its layout at each level of hierarchy, all from one high-level declarative specification.

Another outcome of this experiment is that we confirm the utility of some common diagram-
matic idioms, offering evidence that structured diagramming may be more broadly applicable:

• the family of aligned juxtaposition operators, PQappend, that juxtapose their argument list

of diagrams along the P axis (e.g. horizontal) with the Q positions aligned (e.g. top-aligned);

• the notion that each (sub-)diagram exposes a set of endpoints for connectors, and that the

endpoints of a composition of diagrams can be a function of their endpoints;

• intuitive specifications of grid layouts that can be nested, transposed, and arbitrarily resized;

• two kinds of ‘drawable’ object interfaces, one that can try to fit its concrete rendering within

given dimensions, and one that only reports on the dimensions it ultimately occupied.

Two idioms we haven’t yet devised a clean interface for, that might yet be common and sometimes

desirable in diagrams, are the automatic layout of many siblings in a grid, and making full use

of available space for trees by “packing” (c.f. the forest TikZ package [Živanović 2017], keeping

track of the spans of diagrammatic elements with more fidelity than just rectangles).

The ‘library’ components above (inasmuch as we can make a distinction between library and

user code at this early stage) took 178 significant lines of Racket code (LOC). Then, the ‘user-defined

notations’ for tree diagrams took 18 LOC, and for nested box diagrams, 76 LOC. This cost is
proportionate to the diagrams’ flexibility.
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Fig. 6. The evolution of a hydra follow-
ing its mathematical theory.

Our last remark is about the continuity of the two nota-

tions for hydras. (We paid no explicit attention to continuity

in our prototypes, so the following are more observations

than evaluations.) Figure 6 shows a typical evolution of a

hydra in both notations without assuming the layout of the

final state at the start. We see that it is easier to follow the

evolution of the trees than of the boxes as there are fewer

visual changes unrelated to the conceptual ones (nested box

notation is also less canonical than tree notation); but the

boxes can maintain a fixed overall size, while the sizes of the

trees are dictated by their structure.

5 CONCLUSION & FUTUREWORK
Diagrams are essential to the human development of proofs,

so we would like our computerized proof assistants to

have them, too, as diagrammatic notations. For inspiration,

we turned to an existing mode of representation in proof

assistants—text notations—and to existing diagramming tools with varying aims. Our observations

helped us hypothesize tentative criteria for a good diagrammatic notation system: structure-driven,
compositional specifications in a declarative style should turn objects into conceptual diagrams;

these specifications should be low-cost and allow for rapid prototyping and use; canonical nota-
tions should give equivalent objects and transformations equivalent diagrammatic counterparts, and

continuous notations should make changes easy to follow; and the system should provide default

implementations of common diagrammatic idioms that look good. We then experimented with

two styles of diagrams for a particular domain (hydras) to try to illustrate some of these properties.

Many fundamental questions remain unanswered. For one, recall Figure 2 from our introduction—

one of those figures is not like the others. So far, we have been working under the assumption that

the objects we are representing have tree-like representations. String diagrams, however, are not

trees, but general graphs, and we do not have good answers for them yet. But existing tools like

GraphViz do, and we plan to study and incorporate their techniques.

The other major open questions concern the workflow in a proof assistant using these tools.

What can we learn from projects like Lean ProofWidgets [Nawrocki et al. 2023] about usability

and seamless prover integration? Apart from visualizing output, should we also visualize input,

or allow for diagrammatic input, like [Andersen et al. 2020]? Should the user be able to perform

computations in purely diagrammatic calculi? How should we allow the user to selectively elide

irrelevant parts of a large diagram or define ad hoc extensions to the grammar? What are the

usability considerations for our diagram language design, and how should similar existing designs,

such as in Penrose [Ye et al. 2020] and GraphViz [Gansner and North 2000], inform our work?
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