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Abstract
In vertex-centric programming, users express a graph algo-
rithm as a vertex program and specify the iterative behavior
of a vertex in a compute function, which is executed by all
vertices in a graph in parallel, synchronously in a sequence
of supersteps. While this programming model is straight-
forward for simple algorithms where vertices behave the
same in each superstep, for complex vertex programs where
vertices have different behavior across supersteps, a ver-
tex needs to frequently dispatch on the value of supersteps
in compute, which suffers from unnecessary interpretation
overhead and complicates the control flow.

We address this usingmeta-programming: instead of branch-
ing on the value of a superstep, users separate instructions
that should be executed in different supersteps via a staging-
time wait() instruction. When a superstep starts, computa-
tions in a vertex program resume from the last execution
point, and continue executing until the next wait(). We im-
plement this in the programming model of an agent-based
simulation framework CloudCity and show that avoiding
the interpretation overhead caused by dispatching on the
value of a superstep can improve the performance by up to
25% and lead to more robust performance.

CCS Concepts: • Software and its engineering → Do-
main specific languages; • Computing methodologies
→ Simulation languages; Parallel algorithms.

Keywords: agent-based simulations, vertex-centric program-
ming, distributed systems, staging, metaprogramming
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1 Introduction
The vertex-centric programming paradigm is first proposed
and popularized by Google’s Pregel [21] for the efficient ex-
ecution of graph algorithms over large, distributed graphs.
The core of its computational model is based on the bulk-
synchronous parallel (BSP) processing model [37], which is
an abstract machine model consisting of parallel processors
that communicate by sending messages. Computations pro-
ceed synchronously in a sequence of supersteps,1 separated
by global synchronization. Messages between parallel pro-
cessors are sent at the end of a superstep and are available
for processing at the beginning of a superstep. BSP achieves
high scalability in distributed systems by performing com-
putations in parallel. Additionally, the BSP model ensures
that a parallel program is free of deadlocks and data races,
due to its synchronous, shared-nothing architecture, hence
making parallel programming easy.
In vertex-centric programming, users specify an input

graph and express a graph algorithm as a vertex program
[21]. The vertex program contains a vertex’s state variables
and a compute function that describes the behavior of a ver-
tex, such as processing messages, performing local computa-
tions, and sending messages to other vertices. Computations
proceed in a sequence of supersteps, in each of which vertices
execute compute in parallel for exactly once.
To clarify, let 𝑠0 be the value of the initial state of an

arbitrary vertex in a graph and 𝑠𝑘 be the value of this vertex’s
state after executing compute in the𝑘-th superstep of a graph
algorithm, then we can describe the change of this vertex’s
state using the following state transition, where each arrow is
labeled with the transition name, that is, executing compute:

𝑠0
compute−−−−−−→ 𝑠1

compute−−−−−−→ 𝑠2
compute−−−−−−→ 𝑠3 . . . .

For a complex vertex program that executes different in-
structions across supersteps, interpreting compute is ineffi-
cient. We demonstrate it with the following example written
in Scala.2 Let A, B, and C represent three blocks of instruc-
tions. In every superstep, a vertex needs to check whether

1In the BSP model, a step refers to a primitive operation like reading or
writing the processor’s local memory, similar to the PRAMmodel. The term
superstep emphasizes that a processor can perform arbitrarily many steps
before synchronizing with other processors.
2We will use Scala syntax throughout this paper.
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1 var color: Int = 0

2 def compute (): Unit = {

3 if (superstep == 0) {

4 color = 1

5 // syntactically correct

6 // but semantically wrong

7 if (superstep == 1)

8 color = 2

9 if (superstep == 2)

10 color = 3

11 }

12 }

(a) Dispatching on the value of a superstep is
error-prone.

1 var color: Int = 0

2 @lift

3 def compute (): Unit ={

4 color = 1

5 wait()

6 color = 2

7 wait()

8 color = 3

9 wait()

10 }

(b) A staged vertex program ex-
pressed with wait().

1 var color: Int = 0

2 var idx: Int = 0

3 var yield: Boolean = false

4 val sc = Array(

5 ()=>{color =1; yield=true; idx=1},

6 ()=>{color =2; yield=true; idx=2},

7 ()=>{color =3; yield=true; idx =0})

8 def compute (): Unit = {

9 yield = false

10 while (!yield) {

11 sc(idx)()

12 }

13 }

(c) Vertex program generated from the staged vertex
program in (b).

Figure 1. In a vertex program, describing different vertex behavior across supersteps is commonly achieved by branching
on a superstep value. However, this suffers from interpretation overhead and permits erroneous programs like (a), where
instructions that ought to be executed in superstep 1 (line 8) can still be expressed as instructions for superstep 0 (lines 4–10)
instead. We eliminate the need to dispatch on the superstep value by introducing a staging-time coroutine-like instruction
wait() in (b), which transforms vertex behavior into an array of closures in the generated vertex program in (c).

the current superstep value is 0 (line 2) or 1 (line 4), which
is unnecessary and inefficient for a long-running program.
1 def compute (): Unit = {

2 if (superstep == 0) {

3 A // arbitrary computation , same for B, C

4 } else if (superstep == 1) {

5 B

6 } else {

7 C

8 }

9 }

The need for complex vertex programs where vertices
have different behavior across supersteps arises for agent-
based simulations, where each vertex is regarded as an agent.
Per superstep, an agent performs arbitrary local computa-
tions, sends messages, and processes received messages.3 In
such applications, agents often engage in diverse operations
across supersteps, and multiple types of concurrent agents
exhibit distinct behaviors within the same superstep. For
example, an epidemics simulation can model both hospitals
and people as agents, which have different behaviors. Peo-
ple agents also behave differently across supersteps as the
disease progresses.
We would like a vertex to only execute instructions that

are useful. Intuitively, in superstep 1, a vertex only needs
to execute line 5, without having to evaluate the conditions
on lines 2 and 4 first. We capture the intuition of useful
instructions for a given superstep in compute using notations
3For simplicity, we assume that the semantics of an agent-based simulation
is precisely the BSP model, where computations of parallel agents proceed
iteratively in a sequence of supersteps. An agent-based simulation can be
implemented as a vertex program.

from partial evaluation [14]. Let 𝛼 be a meta-algorithm that
partially evaluates compute when the variable superstep
has value 𝑡 . We use 𝛼 (compute, 𝑡) to denote the residual
program generated after the partial evaluation of compute
with respect to the variable superstep at value 𝑡 , which
is also referred to as useful instructions for superstep 𝑡 in
compute. The value of a vertex’s state when only executing
useful instructions in each superstep changes as below:

𝑠0
𝛼 (compute,0)
−−−−−−−−−−→ 𝑠1

𝛼 (compute,1)
−−−−−−−−−−→ 𝑠2

𝛼 (compute,2)
−−−−−−−−−−→ 𝑠3 . . . .

In our example, 𝛼 (compute, 0) = A, 𝛼 (compute, 1) = B.
Additionally, eliminating the need to branch on the value

of supersteps has the benefit of preventing erroneous pro-
grams like Figure 1a, where instructions that describe be-
havior in superstep 1 (line 8) are specified in the scope of
instructions to be executed in superstep 0 (lines 3–11).
In this work, we describe how we ensure that vertices

only execute useful instructions by making the superstep-
dependent structure in a vertex program explicit through a
coroutine-like [7] staging-time instruction wait().4 Just like
coroutines, computations of a vertex function yield when
executing wait() and later resume from the last saved exe-
cution point when the next superstep begins, avoiding the
interpretation overhead caused by dispatching on the value
of a superstep. The previous pseudocode can be expressed
as follows using wait():

4As pointed out by a reviewer, the term waitmay cause confusions with sim-
ilarly named primitives in asynchronous programming. Although a vertex
program is single-threaded and sequential, wait( ) is a blocking instruction
that delays the execution of later instructions until the next superstep starts,
not unlike asynchronous programming.
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1 def compute (): Unit = {

2 A // arbitrary computation , same for B, C

3 wait()

4 B

5 wait()

6 while(true){

7 C

8 wait()

9 }

10 }

We implement wait() in the programming model of a
distributed agent-based simulation system CloudCity [35]
and evaluate the performance benefit of staging compared
with unstaged vertex programs. Our results show that for
an agent with 5 to 20 branches, staging reduces the total
execution time by 10% – 25%. As we increase the number of
agents, the overall hardware utilization efficiency decreases
as resource contentionworsens. For 1000 agents, the speedup
of staging is around 10%. Though the speedup is modest in
both cases, staging greatly improves the robustness of the
performance. We repeat each experiment three times: the
standard deviation is 10× lower for staged programs than
unstaged ones, for both one and 1000 agents.

The rest of the paper is structured as follows. We start by
explaining in more detail what we mean by vertex-centric
programming and agent-based simulations in Section 2. Af-
terward, we describe the limitations of the current approach
in Section 3 and possible solutions. In Section 4, we examine
the staging-time wait() instruction closely. We then discuss
how we implement wait() in CloudCity in Section 5 and
evaluate the performance impact in Section 6. Finally, we
discuss related work in Section 7 and end this paper with
conclusions and future works in Section 8.

2 Background
Vertex-centric programming was first proposed and popu-
larized by Pregel [21]. Later other frameworks like GraphX
[39] and Flink [9] have also adopted this paradigm for paral-
lel graph processing, implementing the vertex-centric para-
digm via a Pregel-like operator. Though there are differences
among such frameworks concerning details such as whether
the graph topology is mutable, all these frameworks share
the same assumption as Pregel, where vertices interpret the
same user-defined function iteratively in every superstep.

In this section, we use Pregel as an example and explain its
syntax and semantics to familiarize users with vertex-centric
programming. More concretely, we show how to implement
a classic graph algorithm, PageRank [3], which represents
the target applications that Pregel is designed for. We also
explain what agent-based simulations are and how they can
be expressed as complex vertex programs.

1 abstract class Vertex[VertexValue , EdgeValue ,

MessageValue] {

2 var value: VertexValue

3 val vertexId: String

4 val numVertices: Int

5
6 def superstep: Int = 0

7
8 def compute(msgs: Iterator[MessageValue ]):

Unit

9 // type Edge is built -in

10 def getOutEdgeIterator (): Iterator[Edge]

11 def sendMessageTo(dest: String , message:

MessageValue): Unit

12 def voteToHalt (): Unit

13 }

Figure 2. Core Pregel DSL.

2.1 Pregel syntax
Pregel is a domain-specific language (DSL) for vertex-centric
computing embedded purely in the host language C++ [21].
For demonstration, we present Pregel using Scala pseudocode,
summarized in Figure 2. Each vertex has a unique id (line
3) and can obtain the current superstep (line 6). Users need
to define compute (line 8), which specifies the behavior of a
vertex that is executed in each superstep, such as updating
local states and sending messages to neighbors (lines 2, 10–
11). If there is no further work until new messages arrive, a
vertex votes to halt (line 12).

Users define a vertex program by creating a subclass that
extends the Vertex class. In particular, users provide types
for VertexValue, EdgeValue, and MessageValue (line 1)
and override the computemethod (line 8) with vertex behav-
ior. A graph algorithm can only define one vertex program.

2.2 Pregel semantics
The semantics of Pregel closely follows the BSP process-
ing model [21], which is an abstract parallel machine that
is commonly used by distributed frameworks for parallel
computing. This abstract machine contains:

• a set of processors. Each processor can be viewed as a
core-memory pair, where the memory is private to the
core. A core can perform arbitrary computations over
values stored in its memory. Processors communicate
by sending messages, which arrive at the beginning
of a superstep;

• a synchronization facility to synchronize all processors
periodically.

A Pregel program proceeds in a sequence of supersteps
separated by global synchronization. Initially, all vertices
are active. Per superstep, every active vertex executes its
computemethod in parallel. A superstep ends when all active
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vertices have completed executing compute. An active vertex
becomes inactive by voting to halt (through the Pregel in-
struction voteToHalt), suggesting that it has no more work
to do until new messages arrive. An inactive vertex becomes
active if it has received at least one message at the beginning
of a superstep, and remains inactive otherwise. Messages are
sent at the end of a superstep and are available for processing
at the beginning of the next superstep. In Pregel, a program
terminates when all vertices have become inactive and there
is no more message in the system.
Example 2.1 (PageRank). The PageRank algorithm com-
putes the importance of web pages based on the assumption
that a page is more important if it receives links from other
important pages [3]. Each page has a PageRank value, where
a higher value suggests that a page is more important. This
algorithm proceeds in the following two phases:

• Initialization: Assign an initial PageRank value to each
page in the system. Initially, all pages have equal PageR-
ank values;

• Iterative Update:
– For each page, calculate its new PageRank value
based on the incoming links from other pages.

– Distribute a fraction of the current page’s PageRank
to the pages it links to. The amount distributed is
proportional to the current page’s PageRank and
inversely proportional to the number of its outgoing
links.

– Update the PageRank values for all pages.
Repeat the above steps until the PageRank values con-
verge (no significant changes).

To account for user behavior, PageRank introduces a damp-
ing factor that models the probability of a user continuing to
click on links instead of jumping to a random page, typically
set to 0.85. The damping factor adjusts the distribution of a
page’s PageRank during the iterative update.

Implementing PageRank in Pregel is straightforward, shown
in Figure 3 (adapted from [21]). Each vertex has a local state
that denotes its current PageRank value (type double). In
superstep 0, the PageRank value of each vertex is the same,
given in a separate input graph file (not shown here). Per
superstep, vertices send messages to their neighbors (lines
14–16), where each message contains its current PageRank
value divided by the number of outgoing edges. Since mes-
sages take one superstep to arrive, starting from superstep 1,
each vertex also processes all received messages and updates
its value of PageRank before sending messages to neigh-
bors (lines 7–11). In this example, the PageRank algorithm
runs only for 30 supersteps (line 13); vertices vote to halt
afterward (line 18).

2.3 Agent-based simulations
Agent-based simulations are simulations in which a num-
ber of agents, each with their own thread, code, and state,

1 class PageRankVertex extends Vertex[Double ,

Unit , Double] {

2 // Attributes value , vertexId , numVertices ,

3 // getOutEdgeIterator are initialized ,

omitted

4
5 override def compute(msgs: Iterator[Double ])

: Unit = {

6 if (superstep >= 1){

7 var sum: Double = 0

8 while (msgs.hasNext) {

9 sum += msgs.next()

10 }

11 value =0.15/ numVertices +0.85* sum

12 }

13 if (superstep < 30) {

14 val n: Int = getOutEdgeIterator ().

toIterable.size

15 // A syntactic sugar for sending

messages to neighbors

16 sendMessageToAllNeighbors(value / n)

17 } else {

18 voteToHalt ()

19 }

20 }

21 }

Figure 3. PageRank implementation.

interact in a virtual environment. These simulations enable
users to make changes to the micro behavior of agents and
observe the collective impact of such changes at the macro
scale. An agent may execute arbitrary code, affecting its own
state as well as the state of the virtual world and any other
agents living within.

There are two natural flavors of agent-based simulations,
synchronous and asynchronous. Here we only consider syn-
chronous agent-based simulations, where computations pro-
ceed in a sequence of locksteps, just like supersteps in the
BSP model. An agent can be viewed as a vertex, computing
locally and communicating with other agents synchronously;
an agent-based simulation can be expressed as a graph algo-
rithm using a vertex program.

Example 2.2 (Traffic light simulation). We consider a mini-
mal traffic simulation that models a pedestrian and a traffic
light. The traffic light repeatedly iterates over three colors:
green, yellow, and red. By default, the traffic light waits for
three supersteps for each color. Additionally, the traffic light
has a pedestrian crossing button, which causes the current
signal to change to green when activated. Initially, the traffic
light is in a random color and notifies the pedestrian of the
signal. Whenever the traffic signal changes, the traffic light
notifies the pedestrian of the new color. The pedestrianwants
to cross and waits patiently for the green light. If the light is
yellow, the pedestrian presses the crossing button. If red, the

103



Multi-Stage Vertex-Centric Programming for Agent-Based Simulations GPCE ’23, October 22–23, 2023, Cascais, Portugal

pedestrian waits for up to two supersteps before pressing the
crossing button. The traffic light turns green when receiving
an activation signal from the pedestrian button.

This example highlights the need to define different vertex
behavior within the same superstep in agent-based simula-
tions, which is achieved by dispatching on the vertex id in the
current vertex-centric programming, incurring unnecessary
interpretation overhead.

3 Limitations of Vertex-Centric
Programming

Vertex-centric programming has gained wide popularity due
to its simple yet flexible programming model. Still, there are
several limitations to this approach, which we describe in
this section.

3.1 Interpretation overhead caused by dispatching
on the value of a superstep

In Pregel, users dispatch on the value of supersteps to express
different vertex behavior across supersteps. Our example in
Section 2 also illustrates this problem. The code snippet in
Figure 3 (lines 6, 13) clearly demonstrates the overhead of
dispatching on the value of supersteps.
One standard approach to eliminate such interpretation

overhead is to generate a specialized program that is more
efficient to execute by partially evaluating compute with
respect to a superstep value 𝑡 .

Since the value of the current superstep 𝑡 is only changed
by the Pregel runtime system and cannot be reassigned by a
vertex program, we can lift compute to pass the superstep
value 𝑡 as an additional input argument:

Compute
t (𝑡 : Int, 𝑚𝑠𝑔𝑠 : Iterator[Message]),

and replace function applications of superstep in compute
in a vertex program with 𝑡 via 𝛽-reduction.

Generating a specialized program with respect to 𝑡 by par-
tially evaluating Computet with respect to 𝑡 can be described
using the following transformation [14]:

Compute
t (𝑡,𝑚𝑠𝑔𝑠) = 𝛼 (Computet, 𝑡) (𝑚𝑠𝑔𝑠),

where 𝛼 is a partial evaluation algorithm that takes the pro-
gram Compute

t and a superstep value 𝑡 as partial evaluation
variables and produces a residual program that is specialized
for the superstep 𝑡 . For our analysis, the details of 𝛼 are not
important. We assume that 𝛼 executes Computet symboli-
cally on a given value of 𝑡 .
Assuming that the test expression of a control flow that

contains 𝑡 can be evaluated at specialization time [17], the
partial evaluation approach requires precomputing a spe-
cialized program 𝛼 (Computet, 𝑡) for each possible value of 𝑡
from 0 to 𝐾 for a Pregel program that runs for 𝐾 supersteps,
as shown in Figure 4 for a vertex program that executes for

1 var idx: Int = 0

2 val instructions = Array(

3 () => {𝛼 (Computet, 0); idx = 1},

4 () => {𝛼 (Computet, 1); idx = 2},

5 () => {𝛼 (Computet, 2); idx = 3},

6 . . .,

7 () => {𝛼 (Computet, 29); idx = 30},

8 () => {idx = 30}

9 )

10 def compute(msgs: Iterator[Message ]): Unit = {

11 instructions(idx)()

12 }

Figure 4. A Pregel program with partial evaluation.

30 supersteps. The attribute instructions is an array of
generated programs 𝛼 (Computet, 𝑡) indexed by 𝑡 . At each
superstep, only useful instructions in the generated program
𝛼 (Computet, 𝑡) are interpreted, hence more efficient than
executing compute.

But precomputing residual programs for 𝑡 may not always
be feasible, since the test expression in a control flow that
contains 𝑡 can be dynamic, where 𝑡 is compared to a dynamic
variable whose value is known only at runtime. In addition,
this approach makes it difficult to exploit locality across
supersteps, where a vertex program repeatedly executes the
same instructions in different supersteps. For instance, in
the PageRank example,

𝛼 (Computet, 1) = 𝛼 (Computet, 𝑡), for 1 < 𝑡 < 30.

Instead of repeatedly computing 𝛼 (Computet, 𝑡) for 1 ≤ 𝑡 <
30, we would like to only compute 𝛼 (Computet, 1).

3.2 Lack of binding constructs for instructions
executed in different supersteps

In vertex-centric programming, there is no binding construct
for instructions executed in different supersteps. In particular,
this permits erroneous programs like in Figure 1a, where it
is syntactically correct to express instructions that should be
executed in different supersteps within the same superstep,
which are semantically incorrect.

More concretely, we summarize a simplified grammar for
vertex-centric programs in Figure 5, which contains two data
types, Booleans (line 1) and Integers (line 2), and selected
operations (line 5) over these data types. The superstep (line
3) is a constant expression whose value is that of the current
superstep. A program defined in compute is an expression in
𝐸𝑥𝑝 (line 6). This allows for incorrect programs like Figure 1a,
where instructions that should be executed in superstep 1 are
captured in the scope of instructions that should be executed
in superstep 0 instead.

We observe that this problem can be addressed by restrict-
ing the usage of superstep in 𝐸𝑥𝑝 (line 6). We introduce an
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1 Booleans b ∈ B = {true , false}

2 Integers n ∈ N = {..., -1, 0, 1, ...}

3 ConstSymbol s = {superstep}

4 VariableSymbols v ∈ 𝑆𝑦𝑚

5 Operations op ∈ {+, ≥, ==}

6 Expr e ∈ 𝐸𝑥𝑝 ::= n | b | s | v := e | e op e |

if e then e else e | e; e | while e do e

Figure 5. A simplified grammar for vertex-centric programs.

explicit binding construct:

sc(𝑠𝑡𝑒𝑝 : Int, 𝑖𝑛𝑠𝑡 : () => Unit) : Unit,
which allows programmers to express instructions that should
be executed in different supersteps. The 𝑠𝑡𝑒𝑝 is an integer
that denotes the value of a superstep, and 𝑖𝑛𝑠𝑡 denotes a
block of instructions that should be executed in the given
superstep.
The compute method contains a sequence of sc instruc-

tions. In each superstep, compute evaluates the closure spec-
ified in the sc with the current superstep value, defaulting
to no action if no such bindings are defined.

The example in Figure 1a can be expressed as below.
1 val sc = Mutable.Map[Int , () => Unit ]()

2 var color: Int = 1

3 def compute (): Unit = {

4 sc(0, () => {color = 1})

5 sc(1, () => {color = 2})

6 sc(2, () => {color = 3})

7
8 // a syntactic sugar for

9 // sc.getOrElseDefault(superstep ,()=>Unit)()

10 sc(superstep)()

11 }

In this example, lines 4–6 specify a sequence of closures in
the compute method. Per superstep, the closure defined for
the current superstep is evaluated (line 10).

3.3 Code duplication
While introducing a binding construct sc can eliminate in-
correct programs like Figure 1a, this can lead to undesir-
able code duplication when a vertex has shared instructions
across supersteps, such as in intricate branching patterns. To
demonstrate, we show how the vertex program in Figure 3
can be expressed using the new binding construct below.
1 val sc = Mutable.Map[Int , () => Unit ]()

2 def compute(msgs: Iterator[Double ]): Unit = {

3 sc(0, () => {

4 val n: Int = getOutEdgeIterator ().

toIterable.size

5 sendMessageToAllNeighbors(value / n)

6 })

7 Range(1, 30).foreach(idx => {

8 sc(idx , () => {

9 var sum: Double = 0

10 while (msgs.hasNext) {

11 sum += msgs.next()

12 }

13 value =0.15/ numVertices +0.85* sum

14 val n: Int = getOutEdgeIterator ().

toIterable.size

15 sendMessageToAllNeighbors(value / n)

16 })

17 }

18 sc(superstep)()

19 }

Compared with Figure 3, readers may notice that there is
no longer a voteToHalt instruction in the body of compute.
We point out that this is because we have assumed a different
termination condition than that of naive Pregel, to make it
more suitable for agent-based simulations: a user specifies
a fixed number of supersteps total that a vertex program
should run. This is desirable for agent-based simulations,
where usersmaywant to express that an agentwaits for some
supersteps before performing another action. Without such
changes, vertices that are waiting to perform the next action
will be considered inactive and Pregel simply terminates
when all vertices are waiting.5

In the code above, we see that lines 4–5 and lines 14–15
are duplicated, which is not the case for the Pregel imple-
mentation in Figure 3. To address this, we want to adjust the
granularity of the closures and let each superstep execute
multiple closures instead of one. In particular, we bind shared
instructions into closures and reference them using the De
Bruijn index [6], specifying the index of a continuation at the
end of each closure. To illustrate, the previous code snippet
can be refactored as below, where idx (line 1) denotes the
De Bruijn index of the continuation and sc is an array of
closures (lines 2–15). Now there is no more duplicated code
in the closures on lines 4–6 and lines 9–14.

1 var idx: Int = 0 // De Bruijn index

2 val sc: Array [() => Unit](

3 () => {

4 val n: Int = getOutEdgeIterator ().toIterable

.size

5 sendMessageToAllNeighbors(value / n)

6 idx = 1

7 },

8 () => {

9 var sum: Double = 0

10 while (msgs.hasNext) {

11 sum += msgs.next()

12 }

13 value =0.15/ numVertices +0.85* sum

14 idx = 0

15 })

5Assume that there are no messages in the system.
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What is missing from the code above is how to determine
which closures to execute in a given superstep. In this ex-
ample, superstep 0 should execute closure 0, and each of the
later supersteps should execute closures 1 and 0. We observe
that the computation of a new superstep resumes precisely
from the state where computations have yielded in the last
superstep, similar to coroutines [7]. Hence we introduce a
yield flag that is similar to the yield coroutine instruction.
In any superstep, a vertex program continues evaluating the
indexed closures until yield becomes true. The full vertex
program for the PageRank example can be described below.

1 var idx: Int = 0 // De Bruijn index

2 var yield: Boolean = false

3 val sc: Array [() => Unit](

4 () => {

5 val n: Int = getOutEdgeIterator ().toIterable

.size

6 sendMessageToAllNeighbors(value / n)

7 yield = true

8 idx = 1

9 },

10 () => {

11 var sum: Double = 0

12 while (msgs.hasNext) {

13 sum += msgs.next()

14 }

15 value =0.15/ numVertices +0.85* sum

16 idx = 0

17 })

18
19 def compute (): Unit = {

20 yield = false

21 while (! yield) {

22 sc(idx)()

23 }

24 }

It is easy to verify that in superstep 0, only closure 0 (lines
6–9) is executed; in later supersteps, both closures 1 (lines
12–17) and 0 are executed, just as expected.

3.4 Explicit dependency on the value of vertex ids
In Pregel, users define only one vertex program for a graph
algorithm. To express different behavior in the same super-
step, as illustrated in the traffic light simulation example,
users need to branch on the value of vertex ids. Similar to
the problem of branching on the value of supersteps as we
have just discussed, conditioning on the value of vertex ids
is error-prone and inefficient. This can be addressed by al-
lowing polymorphic vertices, where users define multiple
vertex classes that correspond to different types of vertices,
which is straightforward.

4 Staging-Time wait() Instruction
We have discussed various limitations of the existing vertex-
centric programming and how such limitations can be ad-
dressed. In particular, we have shown how users can specify
the behavior of a vertex as a sequence of closures using the
binding construct sc to avoid:

• interpretation overhead caused by dispatching on the
value of a superstep;

• incorrect programs where instructions that should be
executed in superstep 𝑡 are specified in the body of the
branch for superstep 𝑘 instead (𝑡 ≠ 𝑘); and

• duplicated code that arises from executing a single
closure in a superstep.

Still, defining such closures and their continuation directly
by users is low-level and error-prone. We want to provide
a high-level user-friendly interface and let the system auto-
matically generate such closures.

To this end, we introduce a staging-time instruction wait()
that separates instructions in a vertex program into differ-
ent supersteps, making it easy to automatically generate a
sequence of closures based on static analysis at staging time.6
The PageRank example can be expressed below using

wait(). Users no longer need to create different closures
or specify the index of the continuation that points to the
closure that should be executed next.

1 @lift

2 def compute(msgs: Iterator[Double ]): Unit = {

3 while (true) {

4 val n: Int = getOutEdgeIterator ().

toIterable.size

5 sendMessageToAllNeighbors(value / n)

6 wait()

7 var sum: Double = 0

8 while (msgs.hasNext) {

9 sum += msgs.next()

10 }

11 value =0.15/ numVertices +0.85* sum

12 }

13 }

This program is a staged program – as suggested by the
@lift annotation on line 1 – that is lifted into some inter-
mediate representation for preprocessing before generating
instructions. In the generated code, an array of closures that
specifies the behavior of a vertex is created outside the scope
of compute, which is executed only once during initialization,
like other state variables of the vertex.

6For the ease of presentation, we only discuss wait( ) with arity 0. In prac-
tice, we implement a 1-arity wait(𝑛 : Int) , which blocks until 𝑛 supersteps
have passed. This makes it straightforward to specify a vertex with idle
behavior across supersteps. For example, a vertex can perform computations
only in supersteps 0 and 100. In this case, users can use wait(99) to clarify
that a vertex is idle and has no behavior for 99 supersteps. Here we focus
on explaining how wait( ) separates instructions into different supersteps.
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5 CloudCity
We implement the staging-time wait() instruction in Cloud-
City [35], a distributed agent-based simulation system. An
agent is single-threaded and communicates by sending mes-
sages. For this purpose, each agent has a mailbox and is
uniquely addressable. Incoming messages are buffered in the
mailbox, waiting passively to be processed by the agent. An
agent-based simulation consists only of such agents.
The software stack of CloudCity is shown in Figure 6.

There are four layers in total: users interact with the core
indirectly via the programming model in the frontend; core
refers to the distributed engine for agent-based simulations;
optimizations contain system optimizations, both at compile-
time and runtime; backend refers to the low-level distributed
library used in the implementation.

Figure 6. Software stack of CloudCity. The core refers to
the distributed agent-based simulation engine. Users inter-
act with the core indirectly via the programming model in
the frontend. There are different runtime and compile-time
system optimizations, summarized in the layer optimizations.
The backend refers to the low-level distributed library used
in the implementation.

Our discussion here concerns only the DSL in the frontend.
For simplicity, we assume that computations proceed in a
sequence of supersteps, exactly as described in BSP, and all
messages take one superstep to arrive.7
The DSL is embedded in the host language Scala, shown

in Figure 7: wait() is a synchronization instruction since it
plays the role of a barrier instruction that synchronizes all
agents at the end of a superstep.8
The DSL also contains communication instructions that

let agents communicate in a distributed environment. To
send a message, an agent calls

send(𝑟𝑖𝑑 : Long,𝑚 : Message) : Unit,
where 𝑟𝑖𝑑 is the id of the receiver agent and𝑚 is a message
object. Message class is defined in our library and can be
extended. Retrieving a message is done via

receive() : Option[Message],
7Compare with [35], we eliminate 𝑑𝑒𝑙𝑎𝑦 from the signature of RPC instruc-
tions callAndForget and asyncCall for simplicity.
8For simplicity, here we consider wait( ) , as we have discussed in the previ-
ous section. This is different from wait(n) : Unit in [35], which takes an
integer parameter. The semantics of wait( ) is the same as wait(1) .

which returns None if the mailbox is empty.
Together, send and receive implement the basic message-

passing protocol, but this protocol places no restriction on
what messages contain and how messages are processed.
Specifically, a message can be ill-formed and does not contain
all arguments that are required for processing. In practice, it
is desirable to ensure that messages are well-formed. Hence,
CloudCity also supports remote procedure calls (RPCs), a spe-
cial type of message-passing protocol that limits senders to
only send valid messages that can be processed by receivers.
RPCs have two types of messages, requests and replies.

We view public methods in an agent program as RPCmeth-
ods. An RPC request message contains the identifier of an
RPC method defined in the receiver. When processing an
RPC request, the receiver looks up the corresponding RPC
method and invokes it locally. For performance reasons, we
differentiate two types of RPC requests in our DSL, depend-
ing on whether a receiver sends an RPC reply message: a
two-sided RPC request requires the receiver to send an RPC
reply message back to the sender, which contains the return
value of the local call; a one-sided RPC request does not have
an associated reply.

Agents send a two-sided RPC request message with

asyncCall(() => 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 .𝐴𝑃𝐼 (𝑎𝑟𝑔𝑠∗) : T) : Future[T],

which returns a future object used by the sender to check
whether the RPC reply has arrived and to retrieve the return
value in the RPC reply. A future object has type Future[T],
which is defined in the CloudCity library, but with a similar
usage as that in the standard Scala library. T is a type variable
that denotes the type of return value in an RPC reply. Sending
a one-sided RPC request can be achieved using

callAndForget(() => 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 .𝐴𝑃𝐼 (𝑎𝑟𝑔𝑠∗) : T) : Unit,

which does not return a future object.
To process RPC request messages, an agent can repeatedly

call receive, parse the message, and invoke the correspond-
ing RPC methods. Alternatively, DSL allows a receiver to
retrieve and process RPC requests in batch via

handleRPC() : Unit,

which traverses received messages in an arbitrary order. Per
RPC request, the receiver calls the corresponding method
and sends a reply when applicable. An RPC reply has the
same delay and sessionId as the corresponding request.

RPC instructions like asyncCall and callAndForget are
convenient for users by isolating them from low-level imple-
mentation details such as how to package the corresponding
RPCmessage. CloudCity automatically derives available RPC
methods from agent class definitions and assigns these meth-
ods a unique method identifier at specialization time before
generating the corresponding message. In other words, such
instructions are code generators that emit different instruc-
tions during staging time. Similarly, handleRPC is also a

107



Multi-Stage Vertex-Centric Programming for Agent-Based Simulations GPCE ’23, October 22–23, 2023, Cascais, Portugal

code generator that can produce different instructions for
different agent class definitions.

callAndForget

send receive

asyncCall

handleRPC wait

Scala

synchronization:

host language:

code generators

message-passing:

RPCs:

Figure 7. DSL stack. CloudCity DSL is embedded in the host
language Scala and contains three components: message-
passing, RPCs, and synchronization. While message-passing
instructions can be implemented as Scala functions directly,
instructions in RPCs and synchronization (shown in red)
are code generators that require binding-time analysis to
dynamically generate corresponding Scala instructions.

An agent program defined using DSL is a metaprogram
since it contains code generators. The metaprogram is lifted
using Squid library [25] into A-normal form (ANF) [13] as
an intermediate representation (IR), before generating the
corresponding instructions and being transformed into a
Scala program. The ANF names intermediate results to avoid
code duplication, generating one or more closures for each
user instruction in the vertex program, which are later com-
bined to reduce the number of closures. The T-diagram of
CloudCity is shown in Figure 8.

Squid

DSL ANF

Scala

ANF Scala

Figure 8. An agent program in CloudCity written in DSL
(left) which contains wait() is lifted using Squid into ANF
before being transformed into a Scala program (right).

More concretely, we show how to implement PageRank
in CloudCity below. Line 1 is the annotation for using the
class-lifting macro in Squid. The neighborRank (lines 4–6)
is an RPC method that can be specified in RPC requests (line
12). The behavior of an agent is defined in the main method
(lines 7–15). The outNeighbors is an attribute defined in
the Agent class in CloudCity, which contains a collection of
neighboring agents that an agent can send messages to.
1 @lift

2 class Vertex(var value: Double) extends Agent{

3 var sum: Double = 0

4 def neighborRank(s: Double): Unit = {

5 sum += s

6 }

7 def main(): Unit = {

8 while (true) {

9 sum = 0

10 handleRPC ()

11 value = 0.15/ numVertices +0.85* sum /

outNeighbors.size

12 outNeighbors.foreach(i => callAndForget

(()=>i.neighborRank(value)))

13 wait()

14 }

15 }

16 }

After defining a vertex program, users lift it using Squid
into an ANF IR and compile the IR into a Scala program:

1 // Squid representation of the lifted class

2 val cls = Vertex.reflect(IR)

3 // CloudCity compiler that translates Squid IR

4 // to generate (write) a target Scala program

5 compile(cls)

CloudCity compiler rewrites the ANF IR using Squid. For
example, the rewrite rule for callAndForget using code
pattern matching in Squid is:

1 cde match {

2 case code"callAndForget[$mt ](()=>${

m@MethodApplication(msg)}:mt, $t:Int)"

=>

3 val receiverActorVar = msg.args.head.head

4 val argss = msg.args.tail.map(a => a.map(

arg => code"$arg"))

5 val methodId = methodIdMap(msg.symbol.

asTerm.name)

6 Send[T]( receiverActorVar , methodId , t,

argss)

7 }

On line 1, cde is the lifted agent definition in IR. Send (line
6) is a CloudCity compiler IR that is later translated to Scala.
Similarly for other code generator instructions.
CloudCity compiler generates an array of closures that

describe the agent behavior, as we have discussed in Section 4.
This is achieved by walking the abstract syntax tree of the
agent behavior defined in the main method, where each
node of the tree is transformed into a closure. Closures that
correspond to a sequence of straight-line instructions that
do not contain branches or wait() are later merged into one
closure to reduce the number of closures.

6 Evaluation
In this section, we quantify the performance benefit of elimi-
nating the need to dispatch on the value of supersteps empir-
ically. For hardware, we use a server that has 24 cores (two
Intel Xeon E5-2680 v2, 48 hardware threads), 128GB of RAM,
and 200GB of SSD.
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We evaluate both approaches – with and without eliminat-
ing dispatching overhead – using a microbenchmark with
nested branching, where if-statements are nested within
other if-statements, for up to two levels. In the innermost
body of a condition, we model simple computations where
an agent performs some calculations and assigns the result.
For instance, the pseudocode for a vertex programwith three
branches is shown below, for one and two levels respectively.

1 // one level

2 def compute (): Unit = {

3 if (time % period == 0)

4 color += Random.nextInt () + 1

5 else if (time % period == 1)

6 color += Random.nextInt () + 2

7 else if (time % period == 2)

8 color += Random.nextInt () + 3

9 ...

10 }

11
12 // two levels

13 def compute (): Unit = {

14 if (Random.nextBoolean ()) {

15 if (time % period == 0)

16 color += Random.nextInt () + 1

17 else if (time % period == 1)

18 color += Random.nextInt () + 2

19 else if (time % period == 2)

20 color += Random.nextInt () + 3

21 ...

22 }

23 ...

24 }

Per experiment, wemeasure the total execution time when
running 1000 supersteps, both with and without staging, and
repeat three times after warming up the cache. We first con-
sider a single agent and increase the number of the innermost
branches from 5 to 20, for both one and two levels, shown
in Figure 9. The x-axis denotes the number of branches and
the y-axis denotes the total execution time of each experi-
ment, averaged over three runs. The standard deviation is
shown using error bars. The blue bars that are shaded with
slashes (on the left) show the results for experiments without
staging, and the orange bars filled with circles (on the right)
represent the results after applying staging.
Figure 9 shows that for a single agent, staging improves

the overall average execution time by 10% to 25% for one
level branch, and 10% to 15% for nested branches of two
levels. In addition, experiments with staging behave much
more robust than those without staging, as evident from
significantly lower standard deviations for experiments with
staging: 5-14× lower for one level and 3-10× lower when
there are two nested levels of branches.
As we increase the number of agents from one to 1000,

Figure 10 shows that staging still results in modest speedup,
improving the overall average execution time by around
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Figure 9. Increase the number of branches (one agent).
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Figure 10. Increase the number of branches (1000 agents).

10%, for both one and two levels of branches. Similar to
Figure 9, staging also leads to more robust performance for
1000 agents, having significantly lower standard deviation
than branching, up to 10×. We note that for 1000 agents,
the performance benefit of applying staging is slightly less
compared with that of a single agent. This is due to the
presence of other performance factors, such as increased
cache contention, as the number of agents increases.
Ideally, the total time should remain unchanged (flat) as

the number of branches increases with staging, after we have
eliminated the overhead of dispatching. However, we see that
the total time for experiments with staging increases slightly
as the number of branches increases, in both Figures 9 and
Figure 10. This can be caused by the overhead of locating
the corresponding instructions in the array. Nevertheless,
experiments with staging have overall better performance
than those without staging for all experiments.
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7 Related Work
Our work was initially motivated by the question of how to
scale an agent-based simulation up (increase total agents)
and out (increase total machines). Agent-based simulations
have a long history [31] and a diverse set of simulation frame-
works have been developed by domain scientists [24], but
these frameworks are either single-machine [20, 22, 36] or
do not scale well. To illustrate, we explain the scalability of
one of the best-known distributed agent-based simulation
frameworks, Repast HPC [5]. A simulation in Repast HPC is
a discrete event simulation at its core: users schedule various
events at different time ticks in a global schedule queue [27].
These events can be generated from agents, but can also be
global events. At any time tick, a simulation proceeds by
executing the scheduled events sequentially. After all such
events have been processed for a given time tick, the sim-
ulation continues to the next time tick. In discrete event
simulations, events that are scheduled for the same time tick
are added sequentially with possible ordering constraints,
hence cannot be easily parallelized.

In computer science, the bulk-synchronous parallel (BSP)
processing model [37] has become standard for parallel pro-
gramming [1, 8, 21, 40]: computations are performed locally
over distributed data and intermediate data are combined
to advance computations. This computational model also
underpins vertex-centric programming, a programming par-
adigm for distributed graph processing: per superstep, all
vertices execute computations embarrassingly parallel; the
intermediate data shuffled across supersteps takes the form
of messages, which are sent between vertices.

Vertex-centric programming as a programming paradigm
was proposed by Google [21] and has gained wide popu-
larity due to its simplicity and demonstrated performance.
Many state-of-the-art distributed frameworks support this
paradigm, which we briefly describe below.
Giraph [4] is an open-source implementation of Pregel

and has been widely used by industry, including tech com-
panies like Facebook. GraphX [39] is a graph library built
on top of Spark [40], a general-purpose data flow processing
framework that provides a resilient distributed dataset (RDD)
abstraction that makes it easy to perform computations over
distributed data. Since graph processing is an important
workload in distributed analytics, GraphX provides built-in
implementations of commonly used graph algorithms, which
have been highly optimized to improve their performance,
compared with naive implementations on Spark. One of the
graph operators supported by GraphX is Pregel, which lets
users program in a vertex-centric way just like Pregel. Flink
[9] supports both graph and stream processing; Flink Gelly
provides a Pregel operator, similar to that in GraphX, which
supports vertex-centric programming for graphs. While dif-
fering in their target workloads, all such frameworks sup-
port vertex-centric programming as defined in Pregel, where

users define a single compute function that is executed by
every active vertex in each superstep.
A natural question is that given all existing graph pro-

cessing frameworks that already support vertex-centric pro-
gramming, why is there a need for another framework for
agent-based simulations? This question is addressed in [35],
where our experiments showed that the performance of these
existing frameworks could differ by up to three orders of
magnitude when executing a benchmark consisting of rep-
resentative agent-based simulation workloads selected from
population dynamics, economics, and epidemics, due to dif-
ferent design choices of these systems.

While applying vertex-centric programming to agent-based
simulations by modeling each agent as a vertex, it became
clear to us that the existing programmingmodel in the vertex-
centric paradigm is tailored for graph algorithmswhich often
have simple vertex behavior. The compute method becomes
tangled with branches that dispatch on the value of super-
steps as the complexity of a vertex behavior increases, such
as performing different actions across supersteps, which is
characteristic of agent-based simulations.
The problem that a vertex program becomes convoluted

and error-prone when the control flow of the vertex program
gets complex has also been examined in Fregel [12, 16], a
functional library for specifying vertex behavior. A Fregel
program provides a functional abstraction that hides the
complex control flow from users, but is then compiled to
generate a vertex program with complex control flows for
existing frameworks like Giraph, hence still suffering from
sources of inefficiency as we have discussed in this paper.
Our work is the first to introduce a staging-time instruc-

tion to make superstep-dependent program structures ex-
plicit in an iterative vertex program, which avoids complex
control flows that dispatch on the value of supersteps and
mitigates sources of inefficiency in vertex programs.
We note that staging is a standard technique used to ad-

dress sources of program inefficiency like dispatching over-
head, and is commonly used in areas such as designing
domain-specific languages (DSL) [2, 10, 11, 15, 19, 28, 32, 33]
and constructing compilers to generate more efficient code
[18, 23, 26, 29, 30]. A classic example that illustrates the use
case of staging is the generic power function power(𝑥, 𝑛)
[34]:
1 def power(x: Int , n: Int): Int = {

2 if (n==0)

3 1

4 else

5 x * power(x, n-1)

6 }

This high-level generic function provides a nice abstraction
that makes defining other special functions straightforward:
1 def square(x: Int): Int = power(x, 2)

2 def cube(x: Int): Int = power(x, 3)
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However, this abstraction comes at the cost of performance.
In particular, a low-level implementation of square that mul-
tiplies 𝑥 with itself will be faster than invoking power, which
computes the result recursively. Not all hope is lost though.
On line 1, the body of square has a constant argument 2
that is known statically. Therefore, we can apply staging
to rewrite the body of square with the partially evaluated
program generated from power(𝑥, 2), making it possible to
achieve both the high-level programming abstractions and
the high-performance of low-level implementations.
The parallelism between how staging is applied in the

classic power example and our work is clear: we similarly
exploit the fact that when dispatching on the value of su-
persteps in vertex programs, the value of supersteps in the
conditions are often known statically, which allows us to
avoid such overhead by rewriting the original program with
more efficient instructions that only compute useful code
via staging.

8 Conclusions and Future Work
In this work, we explained the limitations of existing vertex-
centric programming and described how to address such
limitations by making the superstep-dependent structure in
a vertex program explicit using a staging-time instruction
wait(). We implemented this approach in an agent-based
simulation framework CloudCity and demonstrated empiri-
cally that staging improves the overall performance of our
experiments by 10%-25% while reducing the standard devia-
tion of multiple runs by over 5×.
We have only scratched the surface of how staging can

be applied in this work. Other use cases of staging include
providing a platform-independent programming interface
while emitting platform-specific instructions for heteroge-
neous hardware [19], generating a DSL implementation from
a declarative specification [33], enabling a just-in-time com-
piler to call back into the running program to perform compile-
time computations that define custom optimizations [30].
Each of these possible use cases directs to future works that
can enable more aggressive compiler optimizations and al-
ternative approaches for designing agent-based simulations.
There is also potential for other optimizations in the future,
such as applying program slicing [38] to dynamically re-
size the array of closures in a generated vertex program at
runtime and discard closures that are no longer relevant.

More generally, vertex-centric programming is only a spe-
cial case of the BSP paradigm. It is interesting to see whether
the insight of introducing a staging-time barrier instruction
that makes static scheduling explicit in vertex programs, as
we have done in this work, can be generalized to applications
in other BSP systems, especially for latency-critical systems
where robust performances are crucial.
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