
J
H
E
P
0
8
(
2
0
2
3
)
1
0
8

Published for SISSA by Springer
Received: April 27, 2023

Accepted: August 3, 2023
Published: August 18, 2023

Injecting the UV into the bootstrap: Ising Field
Theory

Miguel Correia,a,b João Penedonesb and Antoine Vuignierb
aCERN, Theoretical Physics Department,
CH-1211 Geneva 23, Switzerland
bFields and Strings Laboratory, Institute of Physics,
Ecole Polytechnique Federale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland
E-mail: miguel.correia@epfl.ch, joao.penedones@epfl.ch,
antoine.vuignier@epfl.ch

Abstract: We merge together recent developments in the S-matrix bootstrap program
to develop a dual setup in 2 space-time dimensions incorporating scattering amplitudes of
massive particles and matrix elements of local operators. In particular, the stress energy
tensor allows us to input UV constraints on IR observables in terms of the central charge
cUV of the UV Conformal Field Theory. We consider two applications: (1) We establish a
rigorous lower bound on cUV of a class of Z2 symmetric scalar theories in the IR (including
φ4); (2) We target Ising Field Theory by, first, minimizing cUV for different values of
the magnetic field and, secondly, by determining the allowed range of cubic coupling and
one-particle form-factor for fixed cUV = 1/2 and magnetic field.

In this pyramid lies Ising Field Theory

Keywords: Nonperturbative Effects, Integrable Field Theories, Lattice Quantum Field
Theory

ArXiv ePrint: 2212.03917

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP08(2023)108

mailto:miguel.correia@epfl.ch
mailto:joao.penedones@epfl.ch
mailto:antoine.vuignier@epfl.ch
https://arxiv.org/abs/2212.03917
https://doi.org/10.1007/JHEP08(2023)108


J
H
E
P
0
8
(
2
0
2
3
)
1
0
8

Contents

1 Introduction 1

2 Dual S-matrix and form factor bootstrap 4
2.1 Example: Minimization of cUV for fixed quartic coupling Λ 7

3 Applications 9
3.1 Z2 symmetric theories 9
3.2 Ising Field Theory 13

3.2.1 Minimization of cUV for fixed magnetic field 13
3.2.2 Carving out IFT parameter space: cUV = 1/2 16

4 Conclusion 19

A Analytical bootstrap 22
A.1 Z2 symmetric theories 25

A.1.1 Finding the leaf 25
A.1.2 cUV at the edges of the leaf 27
A.1.3 cUV in the interior of the leaf 29

A.2 Ising Field Theory 29
A.2.1 Minimization of the central charge cUV 29
A.2.2 Bounds on gF for fixed central charge cUV = 1/2 and maximal g 31
A.2.3 Small magnetic field limit h→ 0: Bounds on gF and extra zeros 32

B Dual bootstrap of the Sine-Gordon model 34

C Dual optimization problems 36
C.1 Z2 symmetric theories 36
C.2 Ising Field Theory 39

C.2.1 Zero in the S-matrix at s = 1− x 39
C.3 Two poles: minimization of the central charge 44

D Numerical implementation 45

E Form factor perturbation theory 47
E.1 Perturbation theory for FΘ

1 47
E.2 Perturbation theory for S(s) 53

F Integral representation for cUV: c-sum rule 55

G Normalization of the stress energy tensor form factors 57

– i –



J
H
E
P
0
8
(
2
0
2
3
)
1
0
8

1 Introduction

The S-matrix bootstrap aims at constraining scattering amplitudes in quantum field the-
ory (QFT) based on general principles, such as unitarity, causality and Lorentz invariance.
The S-matrix program arose in the 60s as a way to tackle the problem of the strong
interactions. However, imposing all the constraints in a predictive way proved difficult and,
eventually, Quantum Chromodynamics (QCD) rose to prominence with the observation of
deep inelastic scattering and the discovery of asymptotic freedom, which allowed the use of
Feynman perturbation theory at high energies.

Today, finding efficient ways to compute observables in low energy QCD and, more
generally, in non-perturbative QFTs, remains an unsolved problem at large. Besides the
S-matrix bootstrap, which has seen a revival in recent years, other modern techniques
include Monte-Carlo simulations of lattice discretizations, Hamiltonian truncation and
tensor networks. The latter techniques typically involve an UV cutoff whose extrapolation
to infinity is a non-trivial computational problem, whereas the S-matrix bootstrap is directly
set up in the continuum, as required by Poincaré invariance.

The primal approach to the S-matrix bootstrap constructs an explicitly analytic and
crossing-symmetric ansatz for the amplitude and then constrains its parameters by imposing
unitarity on the physical scattering region [1–17]. In practice, the infinite-dimensional space
of amplitudes is truncated to finite dimension N (the number of parameters in the ansatz).
By maximizing a given observable (e.g. the residue of a pole) one directly explores the
space of amplitudes from the “inside” with the true boundary of the allowed space for the
observable (presumably) reached asymptotically, i.e. as N is taken to infinity. This means
that the primal approach is incapable of producing rigorous bounds at finite N .

Conversely, the dual approach, as the name suggests, approaches the boundary of the
allowed space from the “outside” by excluding disallowed regions of parameter-space using
a finite number N of parameters. Therefore, for each N , there is a rigorous bound on the
observable. As N is increased the excluded region becomes larger, and the bound becomes
tighter. Dual formulations of the S-matrix bootstrap were first developed in 70s [18–22] and
recently revived in d = 2 [23–26] and in d = 4 [27, 28]. Reference [28], in particular, showed
that the dual approach can be formulated as a linear optimization problem amenable to
implementation in SDPB [29, 30].

The S-matrix, which dictates how asymptotic one-particle states scatter, is an IR
observable. Nonetheless, if the S-matrix originates from a UV complete QFT,1 knowledge
of the UV conformal field theory (CFT) from which the QFT flows from should further
constrain the S-matrix. This was the idea behind [31] which, besides scattering states,
considered states given by the action of local operators, such as the stress-energy tensor, on
the vacuum. Concretely, in d = 2, UV information can be included via the c-sum rule [32]
which relates the spectral density of the trace of the stress-energy tensor to cUV, the central

1A UV complete QFT can be defined non-perturbatively as a CFT in the UV deformed by relevant
deformations that trigger a renormalization group (RG) flow to the IR. The CFT in the IR is assumed to
be empty, such that the QFT has a mass gap and the S-matrix is a well-defined object.
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Figure 1. Rigorous lower bound on the UV central charge in Z2 symmetric QFTs with a single
stable particle, which is Z2 odd. The parameter Λ is defined as (minus) the value of the amplitude
at the crossing-symmetric point s = 2m2. The lower bound on cUV goes from c

(min)
UV = 1 at Λ = 0,

where the S-matrix, form factor and spectral density become that of a free massive boson, to
c
(min)
UV = 1/2 at the other end Λ = 8, where the matrix elements are that of a free massive fermion.

charge of the UV CFT,
cUV = 12π

∫ ∞
m2>0

ρ(s)
s2 ds . (1.1)

Here, we make the next logical step in this story. We merge these ideas together to
develop a dual bootstrap approach in d = 2 that encompasses S-matrix elements, form
factors and spectral densities. Our method, which is described in section 2, produces a
linear optimization problem that can be tackled with SDPB and which, moreover, converges
appreciably faster than the primal approach of [31].

With our method we can address the following question: Given a gapped unitary QFT
with no bound states how small can the central charge cUV of the UV CFT be? Our method
outputs c(min)

UV = 1/2, the central charge of the Ising CFT, which is the smallest among the
unitary conformal minimal models [33]. Indeed, our optimal S-matrix is given by S(s) = −1
corresponding to a free massive Majorana fermion in the IR, which can originate from the
pure thermal deformation of the Ising CFT.

We can refine the previous question by fixing a parameter Λ in the IR. For example:
the amplitude at the crossing-symmetric point, T (s = 2m2) = −Λ, which plays the role of
a ‘quartic coupling’. In this case we find a minimal cUV for a given Λ. The result is plotted
below in figure 1.

In section 3.1, we further refine the previous studies. Following [14], we parameterize
the theory space by (Λ,Λ(2)), where Λ(2) is the second derivative of the amplitude at the
crossing symmetric point. As in the case above, we assume no cubic coupling, i.e. no poles
on the physical sheet for the amplitude nor for the form factor. In this way, we target a class
of Z2 symmetric theories, in which φ4 theory is included. Using the numerical dual approach,
we rigorously bound cUV across the allowed range of couplings (Λ,Λ(2)) generating the
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3-dimensional plots in figure 4. Remarkably, we also found analytical expressions (described
in appendix A) that match the extremal solutions (see e.g. figures 9 to 11 for a comparison).

In section 3.2 we consider the Ising Field Theory (IFT) which can be thought of as
the QFT describing the d = 2 Ising model near the critical point. Above the critical
temperature T > Tc and for zero magnetic field h = 0 IFT reduces to the theory of a free
massive Majorana fermion. For h > 0 the theory becomes fully interacting making it an
appropriate playground for non-perturbative methods.2

We have at our disposal several pieces of information that we can use to target IFT:

1. The UV central charge of IFT has the value cUV = 1/2 given that IFT is, by definition,
a deformation of the Ising CFT. Specifically, both relevant deformations are turned
on, namely the operators conjugate to the temperature (T − Tc) and the magnetic
field h.

2. At sufficiently low h (but still outside the perturbative regime) there is only one
stable particle in the spectrum [36]. This particle self-interacts via a cubic interaction,
meaning that both S-matrix and the two-particle form factor contain a pole at the
location of the particle’s own mass.

3. As shown in [36, 37], the S-matrix has a real zero which slides towards the two-particle
threshold as h is increased.3 The position of the zero provides a non-perturbative IR
handle on the value of the magnetic field h.

We first implement points 2. and 3. and minimize the central charge cUV over a range
of magnetic fields h (parameterized by the position of the zero). We find that the lower
bound on cUV drops below cUV = 1/2 for non-zero h (see figure 12). We then fix cUV = 1/2
and find the allowed range of cubic coupling and one-particle form factors for a range of
values of the magnetic field. We carve a 3-dimensional ‘pyramid’ in these parameters inside
which IFT must lie (see figure 17). We conclude with section 4 where we discuss our results
in further detail and point out some potential future directions.

Let us now briefly outline the remaining appendices. In appendix B we present a further
application of our dual method targeting the Sine-Gordon model where we noticeably
improve on the primal result of [31]. Technical and numerical details regarding the dual
optimization problems are collected in appendices C and D. Appendix E contains the
perturbative computations of the one particle form factor and cubic coupling used to place
IFT within the dual bounds (figure 17). Finally, appendices F and G respectively review the
c-sum rule and the normalization of the 2 particle form factor of the stress energy tensor.

2The parameter space of IFT is very rich (see e.g. [34] for a short review). For T > Tc and as h increases
the number of stable particles goes from 1 to 3 [35–37], and then jumps to 8 (5 resonances become stable)
at the h→∞ integrable point where IFT becomes equivalent to the E8 affine Toda theory [35, 38, 39]. For
T < Tc the spectrum of IFT consists of a tower of “mesons” [40]. Further interesting phenomena occur when
h is taken to be complex, namely the existence of Lee-Yang edge singularities [41].

3If h is increased past a certain value the zero makes its way across the two-particle branch cut and the
associated pole pops up on the physical sheet, as the second lightest particle becomes stable. See e.g. [37].

– 3 –



J
H
E
P
0
8
(
2
0
2
3
)
1
0
8

2 Dual S-matrix and form factor bootstrap

In this section we develop our setup by recalling some definitions and results from standard
massive QFT. We will be complete but concise, more details can be found in [31, 42].

The first ingredient in our setup is the 2 to 2 scattering amplitude defined by

out 〈p1p2|k1k2〉in ≡ (2π)2δ(2)(k1 + k2 − p1 − p2)N2S(s), N2 ≡ 2
√
s
√
s− 4m2, (2.1)

with s = −(p1 + p2)2. We also define T (s), the interacting part of the scattering amplitude,
by

S(s) ≡ 1 + iN−1
2 T (s). (2.2)

We are also interested in some scalar local operator O(x), which leads us to consider its n
particles form factors

FOn (p1, p2, .., pn) ≡out 〈p1p2 . . . pn| O(0) |0〉 , (2.3)

and its spectral density

2πρO(s) ≡
∫
d2xe−ipx 〈0| O†(x)O(0) |0〉 , (2.4)

where we used Lorentz invariance to write ρO = ρO(s = −p2).
We focus on massive QFTs whose Hilbert space H is spanned by asymptotic multi

particle states |p1, . . . , pn〉 with completeness relation

1H =
∞∑
n=0

1
n!

∫
dp1

(2π)2Ep1
. . .

dpn
(2π)2Epn

|p1 . . . pn〉in in 〈p1 . . . pn|

≡
∑∫
|p1 . . . pn〉in in 〈p1 . . . pn| ,

(2.5)

where Ep ≡
√

p2 +m2 and p is the spatial part of the 2-momentum p. The complete set
of states can be inserted in the two point function (2.4) to get the relation between the
spectral density and the form factors

2πρO(s) =
∑∫

(2π)2δ(2)(p− pn)|FOn |2, (2.6)

where pn ≡ p1 + . . . + pn is the total momentum of the form factor. Note that the first
contribution is a delta function at s = m2 and the second contribution starts at s = 4m2.
Explicitly

ρO(s) = |FO1 |2δ(s−m2) + |F
O
2 (s)|2

2πN2
θ(s− 4m2) + . . . (2.7)

In this work we are interested in the trace of the stress energy tensor, so we introduce
the simplified notation

F(s) ≡ FΘ
2 (s), ρ(s) ≡ ρΘ(s), (2.8)

where the s dependence of the 2 particle form factor comes from Lorentz invariance. The
normalization of the stress energy tensor acting on one particle states implies the following
normalization of the 2 particle form factor (see appendix G)

F(s = 0) = −2m2. (2.9)

– 4 –
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Figure 2. Complex planes of the two particles form factor FO2 (s) (right) and the scattering
amplitude S(s) (left) in the presence of an asymptotic particle of mass m = 1. The red crosses
symbolize the presence of a pole and the red lines represent the branch cuts.

The value of the UV central charge can be computed from the spectral density of Θ
as [31] (in alternative, see appendix F)

cUV = 12π
(
m−4|FΘ

1 |2 +
∫ ∞

4m2
ds
ρ(s)
s2

)
. (2.10)

Let us now turn to the analytic structure of these functions depicted on figure 2.
Assuming the existence of only one massive particle of mass m, the scattering amplitude is
analytic except for a pole at s = m2 and a cut starting from the two particles production
threshold s = 4m2, and also crossing symmetric. This can be written through the dispersion
relation4

T (s)− T (2m2) = −g2
( 1
s−m2 + 1

3m2 − s
− 2
m2

)
+
∫ ∞

4m2

dz

π
ImT (z)

( 1
z − s

+ 1
z + s− 4m2 −

2
z − 2m2

)
.

(2.11)

The 2-particle form factor F(s) has a similar analytic structure except that it does not
satisfy crossing. The dispersion relation reads5

F(s)−F(0) = −gF
( 1
s−m2 + 1

m2

)
+
∫ ∞

4m2

dz

π
ImF(z)

( 1
z − s

− 1
z

)
. (2.12)

As shown in [31], the form factor residue gF is given by

gF = gFΘ
1 , (2.13)

where g is the (square root of the) residue of the scattering amplitude.
For future convenience, we define the analyticity and crossing constraints for the

S-Matrix and form factor, denoted respectively by AT (s) = 0 and AF (s) = 0, with

AT (s) ≡ T (s)− T (2m2) + g2
( 1
s−m2 + 1

3m2 − s
− 2
m2

)
−
∫ ∞

4m2

dz

π
ImT (z)

( 1
z − s

+ 1
z + s− 4m2 −

2
z − 2m2

)
,

AF (s) ≡ F(s)−F(0) + gF

( 1
s−m2 + 1

m2

)
−
∫ ∞

4m2

dz

π
ImF(z)

( 1
z − s

− 1
z

)
.

(2.14)

4In writing this dispersion relation, we assumed that lim|s|→∞ T (s)
s

= 0. Our dual optimization problem
will however not depend on this assumption, i.e. the behavior of the amplitude at infinity is unconstrained.
See equation (2.28) and footnote (9).

5We have used the fact that both functions are real analytic functions, i.e. T ∗(s) = T (s∗) and F∗(s) =
F(s∗), which can be traced back to LSZ and CPT invariance [43].
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Following [31], the unitarity constraints in presence of local operators such as Θ(x) can
be implemented by defining 3 states

|Ψ1〉 ≡ |p1, p2〉in ,
|Ψ2〉 ≡ |p1, p2〉out ,

|Ψ3〉 ≡ m−1
∫
d2xei(p1+p2)xΘ(x) |0〉 .

(2.15)

We now define a 3× 3 matrix by taking inner products between those states and extracting
an overall delta function, which reads

Bij × (2π)2δ(2)(p1 + p2 − p′1 − p′2) ≡
〈
Ψ′i
∣∣Ψj

〉
. (2.16)

Using equations (2.1), (2.3), (2.4) and the definition of B as inner products between states,
the unitarity of the theory imposes the semi positive definite constraint6

B(s) ≡

 1 S∗ m−1ωF∗

S 1 m−1ωF
m−1ωF m−1ωF∗ 2πm−2ρ

 < 0, ω ≡ N−1/2
2 . (2.17)

The problem we want to solve is the minimization of some parameter, say the central charge
cUV, under the bootstrap constraints which can be implemented via Lagrange multipliers.
More precisely, we write

cUV ≥ inf
T ,F ,ρ

sup
w,Λ<0

L ≥ sup
w,Λ<0

inf
T ,F ,ρ

L (2.18)

L = cUV(FΘ
1 , ρ) +

∫ ∞
4m2

ds [wT (s)AT (s) + wF (s)AF (s)− TrΛ(s)B(s)] + . . . (2.19)

where AT (s) and AF (s) are the analyticity and crossing constraints, wT and wF are
Lagrange multipliers, Λ is a hermitian and positive semidefinite 3× 3 matrix of Lagrange
multipliers and “. . . ” stands for any other constraint we would like to implement (e.g. fixing
some parameter).

The positive semidefiniteness of Λ is the direct generalisation of positiveness in the pure
S- Matrix (non-linear) dual problem from [24]. Here we are searching for the lower bound
instead of the upper bound, which accounts for the sign difference in the trace term.

We parametrize Λ as

Λ ≡

λ1 λ4 λ6
λ∗4 λ2 λ5
λ∗6 λ

∗
5 λ3

 . (2.20)

With the dual approach, we will first extremize (2.19) over the primal variables T ,F
and ρ analytically to get the dual Lagrangian, and then over the dual variables wT , wF and
λi, i = 1, . . . , 8, numerically. The problem being linear in the dual variables can be tackled
down with SDPB [29, 30].

6Here we used the relation in〈p1, p2|Θ(0) |0〉 = 〈0|Θ†(0) |p1, p2〉out = F∗(s) that comes from CPT
invariance [31].
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Having the solution for the optimal dual variables we can get optimal primal variables if
the duality gap closes, which is guaranteed because the primal problem is convex.7 Therefore,
at the optimum we have TrΛ(s)B(s) = 0 and, since Λ and B are both semipositive definite,
the product must vanish by itself8

Λ(s)B(s) = 0. (2.21)

Solving this equation we get constraints between dual variables

λ5 = λ∗6, λ1 = λ2, 2λ1|λ6|2 − λ3λ
2
1 − 2 Re(λ∗4λ2

6) + λ3|λ4|2 = 0. (2.22)

We would like to stay with entries that are linear in the dual variables in the matrix Λ, and
therefore we do not use the last constraint to eliminate one of the variables.

Since the duality gap closes we can find the optimal primal solution:

S = λ∗6λ1 − λ6λ
∗
4

λ6λ1 − λ∗6λ4
, ωF = |λ4|2 − λ2

1
λ6λ1 − λ∗6λ4

, 2πρ = (|λ4|2 − λ2
1)2

|λ6λ1 − λ∗6λ4|2
. (2.23)

Note that we automatically saturate the unitarity bounds

|S|2−1 = 0, 2πρ−|ωF|2 = 0, 2πρ(1−|S|2)−2|ωF|2 +2 Re(ω2F2S∗) = 0. (2.24)

Watson’s equation F/F∗ = S follows from using the first equation on the last equation.

2.1 Example: Minimization of cUV for fixed quartic coupling Λ

We will now present an explicit and detailed example of a dual linear bootstrap formulation.
We want to find the lower bound on the central charge cUV when there is only one particle
that is Z2 odd and the scattering amplitude obeys T (2) = −Λ. For simplicity we work in
units where m = 1. The Lagrangian reads

L = 12π
∫ ∞

4
ds
ρ(s)
s2

+
∫ ∞

4
dswT (s)

[
T (s)− T (2)−

∫ ∞
4

dz

π
ImT (z)

( 1
z − s

+ 1
z + s− 4 −

2
z − 2

)]
+
∫ ∞

4
dswF (s)

[
F(s)−F(0)−

∫ ∞
4

dz

π
ImF

( 1
z − s

− 1
z

)]
−
∫ ∞

4
dsTrΛ(s) ·B(s).

(2.25)

7Since the primal problem can be implemented in SDPB [29, 30] both the objective and the constraints
must be convex. To ensure strong duality, i.e. that the duality gap closes, we must further require that
there exists an interior point, i.e. a non-optimal primal solution. This is known as Slater’s condition [44]
(see appendix A of [24] for a proof in the S-matrix language). Slater’s condition can be shown to be satisfied
by explicitly constructing a non-optimal primal solution, as it usually happens in the primal bootstrap at
finite N [31]. Physically, moreover, the existence of such an interior point is guaranteed since we can always
have inelastic S-matrices and form factors which do not saturate unitarity.

8Indeed we have

Tr Λ ·B = Tr
√

Λ
†√

Λ ·
√
B
√
B
†

= Tr
(√

Λ
√
B
)† (√

Λ
√
B
)
≡ ‖
√

Λ
√
B‖F ,

where ‖·‖F is the Frobenius norm. It follows that Tr Λ ·B = 0⇒ ΛB = 0.
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The subtractions are chosen so that we can easily implement the constraint T (2) = −Λ and
the normalization F(0) = −2.

Following [24] we define the dual scattering function

WT (s) ≡
∫ ∞

4

dz

π
wT (z)

( 1
z − s

− 1
z + s− 4 + 2

s− 2

)
,

ImWT (s) = wT (s), ReWT (s) = −P
∫ ∞

4

dz

π
wT (z)

( 1
s− z

+ 1
s− (4− z) −

2
s− 2

)
,

(2.26)

and the dual form factor function

WF (s) ≡
∫ ∞

4

dz

π
wF (z)

( 1
z − s

+ 1
s

)
. (2.27)

The analyticity constraints can then be considerably simplified. We get9

L = 12π
∫ ∞

4
ds
ρ(s)
s2 +

∫ ∞
4

ds [Im(TWT ) + Im(FWF ) + 2 ImWF + Λ ImWT − TrΛ ·B]
(2.28)

We are now ready to eliminate the primal variables. Varying with respect to F , T and
ρ we get

λ4 = −N2
2 WT , λ6 = −i

√
N2
4 WF , λ3 = 6

s2 . (2.29)

The dual Lagrangian then reads

L =
∫ ∞

4
ds (−2λ1 + 2 ImWF −N2 ReWT + Λ ImWT ) . (2.30)

All the primal variables are eliminated and we are ready to extremize over dual variables.
We can finally formulate the dual problem that can be implemented in SDPB:

Dual Problem (cUV minimization)

Maximize
{λ1,WT ,WF}

[∫ ∞
4

ds (−2λ1 + 2 ImWF −N2 ReWT + Λ ImWT )
]

(2.31)

9Eq. (2.28) can be derived directly without introducing wT or wF . The analyticity constraint for T (s),
say, can be written as

∮
WT (s)T (s)ds = 0 where WT (s) is an analytic function, for an arbitrary closed

cycle enclosing no singularity. Now, we blow up this contour and, seeing WT (s) as infinitely many Lagrange
multipliers (one for each s), we are free to choose WT (s) so that the contour only picks up the contributions
of T (s) we wish to constrain, which is the unitarity cut s ≥ 4 and the value at T (2) = −Λ. Therefore, we let
WT have a cut for s ≥ 4, a pole at s = 2, and sufficiently fast decay at infinity (faster than T (s)). Blowing
up the contour will then lead to

0 =
∮
TWT ds = 4i

∫ ∞
4

Im(TWT )ds− 2πi [Ress=2WT ] T (2).

Note that the residue on the pole is fixed by blowing up 0 =
∮
WT ds = −2πiRess=2WT + 4i

∫∞
4 ImWT ds.

Including crossing symmetry, repeating the argument for the form factor will lead us to eq. (2.28).

– 8 –
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Subject to 
λ1

N2
2 WT i

√
N2
4 WF

N2
2 W

∗
T λ1 −i

√
N2
4 W ∗F

−i
√
N2
4 W ∗F i

√
N2
4 WF

6
s2

 < 0, ∀s ∈ [4,∞). (2.32)

The result is given in figure 1.

3 Applications

3.1 Z2 symmetric theories

A first application of our dual formalism is to explore the allowed region in the subspace
spanned by (Λ,Λ(2), cUV) where cUV is the UV central charge and

Λ ≡ −T (2), Λ(2) ≡ lim
s→2

∂2

∂s2T (s). (3.1)

Before considering the central charge we look at the space spanned by Λ and Λ(2), which
is commonly called the “leaf”, that was already explored using a primal approach in [14]
and also analytically in [16]. Exploring the same region with the dual formalism we get
figure 3 on which we also plotted the analytical bounds derived in the appendix A and
given by (A.24) that we repeat here for convenience

Λ(2)
− (Λ) = 1

32Λ2, Λ(2)
+ (Λ) = 1

32(16Λ− Λ2), Λ ∈ [0, 8], (3.2)

where Λ(2)
+ and Λ(2)

− denote respectively the analytical upper and lower bounds for Λ(2) for
a given Λ. We reproduce these bounds numerically with our dual approach purely applied
to the S-matrix sector (see figure 3 below).

We now minimize the UV central charge cUV for a given value of (Λ,Λ(2)), which we
do over the allowed region. The minimal cUV is represented in color in figure 3 over the
allowed parameter space for (Λ,Λ(2)) and also in 3D in figure 4 below.

On the edge corresponding to the lower bound Λ(2)
− , the numerical bounds on the

central charge c(min)
UV (Λ,Λ(2)) at the tips are

c
(min)
UV (0, 0) = 0.99999 . . . , c

(min)
UV (8, 2) = 0.49985.., (3.3)

corresponding to the central charges of the free boson and free fermion that are respectively
1 and 1/2. We now check that we also recover the scattering amplitudes, form factors and
spectral densities of these theories. The analytical results for the free Majorana fermion
can be found in [45] and those for the free boson can be found in [31]. We repeat them
here for convenience, they are

S(s) = 1, F(s) = −2, ρ(s) = 1
π
√
s
√
s− 4

, (free boson),

S(s) = −1, F(s) = −
√

4− s, ρ(s) =
√
s− 4

4π
√
s
, (free fermion).

(3.4)
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Figure 3. Allowed region in the (Λ,Λ(2)) plane. The boundary is obtained from the dual bootstrap
problem and matches perfectly the analytical bounds, with the color gradient corresponing to the
value of the minimal central charge discussed below. Using the non linear dual approach given by
eq. (C.11) to (C.15), the numerics for the points on the boundary were simple enough to be done on
Mathematica with only N = 2 parameters in the Ansatz.

Figure 4. Allowed region in the (Λ,Λ(2), cUV) space from different angles. We used N = 50. We
find perfect agreement with the analytical bootstrap result which assumes that the optimal S-matrix
minimizes Λ(4) = lims→2

∂4

∂s4 T (s) (see appendix A).

-

Figure 5. Scattering amplitude S(s) (on the left), form factor F(s) (in the middle) and spectral
density ρ(s) (on the right) at the free boson point (Λ = 0,Λ(2) = 0)). The blue lines are the real
parts, the orange lines are the imaginary parts, and the dashed red line is the analytical solution for
the free boson. We used N = 50.

The numerical results for these quantities at the tips of the leaf are plotted on figure 5
(at Λ = 0) and figure 6 (at Λ = 8). We observe a nice convergence of our numerics toward
the analytical results.
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Figure 6. Scattering amplitude S(s) (on the left), form factor F(s) (in the middle) and spectral
density ρ(s) (on the right) at the free fermion point (Λ = 8,Λ(2) = 2)). The blue lines are the real
parts, the orange lines are the imaginary parts, and the dashed red line is the analytical solution for
the free fermion. We used N = 25.

Figure 7. Minimal central charge in the (Λ,Λ(2), cUV) space computed with the dual approach (in
orange) and the primal (in blue). We used N = 50.

It is interesting to compute the allowed region with a primal approach and to compare
with the dual bounds. We do it10 in figure 7, and various sections of this 3D plot are shown
on figures 8. It is reassuring to see that the primal lower bound is always greater than the
dual, and that the two shapes seem to converge toward each other. We believe that the
reason for the gap is the slow convergence of the primal formalism, which we also observe
on figure 12, where the dual reaches the analytical bound.

We now compare our numerical results with the analytical results from the appendix A
where we assume that cUV minimization for fixed (Λ,Λ(2)) minimizes Λ(4) = lims→2

∂4

∂s4T (s).
For the scattering amplitude on the edges the analytical result is given by (A.6) and (A.22).
The form factor on the upper edge is given by (A.34) and (A.35), and on the lower edge
by (A.27). Figure 9 shows a point on the upper edge of the leaf, figure 10 shows one on the
lower edge and figure 11 shows a point in the middle. The agreement is perfect.

10We use the numerical primal setup from [31] and the ansatz for the scattering amplitude given by
eq. (4.4) and (4.5) in [14].
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Figure 8. Minimal central charge in the (Λ, cUV) space (left) and in the (Λ(2), cUV) space (right)
computed with the dual approach (in orange) and the primal (in blue). The value of Λ(2) is defined
by Λ(2) = 1

5
Λ2

32 + 1
5Λ (left) and on the one of Λ by Λ = 3.2 (right). We used N = 50.
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Figure 9. Comparison of the real part (in blue) and imaginary part (in orange) of the S-Matrix
(left) and the form factor (right) between the numerical (plain line) and analytical (black dashed
line) results, on the upper edge of the leaf with Λ = 2.4. We used N = 50. The numerical and
analytical central charges are c(num,min)

UV = 0.514419 . . ., c(an,min)
UV = 0.514451 . . .
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Figure 10. Comparison of the real part (in blue) and imaginary part (in orange) of the S-Matrix
(left) and the form factor (right) between the numerical (plain line) and analytical (black dashed
line) results, on the lower edge of the leaf with Λ = 2.4. We used N = 50. The numerical and
analytical central charges are c(num,min)

UV = 0.993662 . . ., c(an,min)
UV = 0.993812 . . .
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Figure 11. Comparison of the real part (in blue) and imaginary part (in orange) of the S-Matrix
(left) and the form factor (right) between the numerical (plain line) and analytical (dashed line)
results, in the interior of the leaf with Λ = 4.56 and Λ(2) = 0.85. We used N = 50. The numerical
and analytical central charges are c(num,min)

UV = 0.526354 . . ., c(an,min)
UV = 0.526591 . . ..

3.2 Ising Field Theory

Our second application is to target the Ising Field Theory. We use the fact that the S-Matrix
has a zero whose position varies with the magnetic field

S(m2(1− x)) = 0, x = x(η), η = m

h8/15 . (3.5)

The limit x → 0 corresponds to h → 0 and then should give back the free massive
Majorana fermion. When x→ 1 we are in the region just before the second lightest particle
emerges from the two particle cut.

3.2.1 Minimization of cUV for fixed magnetic field

The first exercise is to minimize the UV central charge for different values of x and the
result is shown on figure 12. We performed this analysis with both primal11 and dual
formulations and for different N to compare them. We also plotted the analytical central
charge given by (A.53) which assumes that optimal S-matrix maximizes the cubic coupling
g (and has the zero (3.5)).

As a simple check, when x→ 0 the zero cancels the pole, so we are back to asking for
the minimal cUV for an S-matrix with no poles. With the dual for N = 30 we get

x = 0.01, mincUV = 0.498814 . . . , (3.6)

which numerically approaches the result for the free Majorana fermion where cUV = 1/2.
We now compare primal and dual methods in more detail. First, it is clear that the

duality gap closes as N →∞. We also note the difference in the rate of convergence between
the two formalisms. For the primal we parametrize the three functions T ,F and ρ while for
the dual we parametrize λ1,WT and WF . Therefore the number of numerical parameters
scales like 3N for both problems and it makes sense to compare them for a given N . Hence

11We use the primal numerical implementation described in [31].
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Figure 12. Lower bound on the UV central charge as function of x, the position of the zero of the
scattering amplitude S(m2(1− x)) = 0. The blue region is allowed. For x = 0.01 and N = 30 with
the dual we obtained c(min)

UV = 0.498814 . . .. The black line corresponds to the analytical result (A.53)
assuming that the S-matrix has maximal cubic coupling.
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Figure 13. Scattering amplitude S(s) for different values of x when there is a zero at S(m2(1−x)).
The imaginary part (in orange) and the real part (in blue) tend toward the free fermion (in dashed
gray) when x→ 0. The dashed black line is the analytical result given by (A.40). We used N=50.
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Figure 14. Two particles form factor FΘ
2 (s) for different values of x when there is a zero at

S(m2(1 − x)). The imaginary part (in orange) and the real part (in blue) tend toward the free
fermion (in dashed gray) when x→ 0. The dashed black line is the analytical result given by (A.50)
and (A.53). We used N=50.

we claim that the rate of convergence for the dual formalism is much better than the one
for the primal.

We can now look at the observables. The scattering amplitude, the two particles form
factor and the spectral density are plotted respectively on figures 13, 14, and 15.
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Figure 15. Spectral density ρΘ(s) for different values of x when there is a zero at S(m2(1− x)).
The bootstrap result (in blue) tends toward the free fermion (in dashed gray) when x → 0. We
also observe the delta function appearing at s = 4m2 when x→ 1 which corresponds to the second
lightest particle that will become stable. The dashed black line is the analytical result given by (A.50)
and (A.53) and the elasticity relation (A.1). We used N=50.
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Figure 16. Spectral density ρΘ(s) for different values of x when there is a zero at S(m2(1− x)).
We used N=50.

We also observe perfect agreement between the dual numerical results and the analytical
results derived in appendix A. They are given by (A.40), (A.50) and (A.53).

There is an interesting observation for the spectral density when x→ 1. We know that
x = 1 is exactly the point where the pole associated to the second lightest particle enters
the first sheet and exchanges place with the zero. We also know that the spectral density
has delta functions at the positions of the masses of the stable asymptotic particle states.
On the figure we see a peak forming s = 4m2, which is exactly where the zero and the
pole exchange their places. This is illustrated more precisely in figure 16, where we see the
position of the peak moving toward 4m2.

Note however that the central charge of this theory is cUV ≈ 0.34 and therefore it can
not be the IFT. Nevertheless it is still interesting to see that those two theories share the
presence of the zero in the S-Matrix and also seem to share the resonance associated to an
unstable particle when x→ 1.
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Figure 17. Allowed region (in green) in the (gFΘ
1 , x, g

2) space. The blue line is the perturbative
trajectory for g2(x) and g(x)FΘ

1 (x) in IFT (computed in appendix E), the black lines are the
analytical result (A.54) and the dashed red line is the minimal cubic coupling discussed in figure 18.

3.2.2 Carving out IFT parameter space: cUV = 1/2

We now target the IFT by fixing the central charge to cUV = 1/2 and explore the allowed
region in the (gFΘ

1 , g
2, x) 3-dimensional space, where we recall

T (s) = − g2

s−m2 + . . . , F(s) = − F
Θ
1 g

s−m2 + . . . (3.7)

We compute the bounds for g2 and gFΘ
1 for x ∈ (0, 1), which corresponds to the range

in magnetic field with only one stable particle. The result is the pyramid shown in figure 17
inside which IFT must lie.
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Figure 18. Lower edge of the pyramid corresponding to the lowest bounds on g2. This is computed
with N = 70.
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Figure 19. Allowed region in the (gFΘ
1 , g

2) plane when the central charge is cUV = 1/2 and there
is a zero in the S-Matrix at x = 1/10. The red and orange dashed line are the values of FΘ

1 and
g2 computed with perturbation theory. This is computed with N = 70. The black dots are the
analytical solutions (A.54).

We noticed that the lower edge of the pyramid, corresponding to the lowest bounds
on g2 for different x, is slightly in-curved toward the negative gFΘ

1 . The effect is tiny and
shown on figure 18.

The slice at x = 1/10 of the pyramid is shown in figure 19, where we also place IFT
using form factor perturbation theory: the cubic coupling g was computed in [46] and FΘ

1
is an original computation (both calculations are in appendix E).
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Figure 20. Left: Scattering amplitude obtained from the bootstrap (in blue) for x = 0.1. The
green dashed line is the full perturbative S-Matrix while the orange dashed line is only the elastic
contribution. Right: Relative difference between the bootstrap result and the elastic part of
perturbation theory. We used N = 20.

Figure 21. Convergence study (on a logarithmic scale) for the upper corners of the triangle
approaching the analytical roots g(±)

F .

The figure is generated by first computing the bounds on gFΘ
1 for which we got

gFΘ,(min)
1 = −0.0110843 . . . , gFΘ,(max)

1 = 0.0047159 . . . , (3.8)

and then computing the bounds on g2 with fixed values of gFΘ
1 .

Note that the perturbative result for g2 saturates the higher bound for the cubic
coupling allowed by the bootstrap. The perturbative result for FΘ

1 however does not
saturate the bounds but still is inside the allowed region. At the points where the red
and orange lines meet we can compare the optimal scattering amplitude to the one known
in perturbation theory from [46]. This is shown in figure 20. We observe that we match
perfectly with the elastic contribution of the perturbative S-Matrix. This is expected since
our bootstrap setup saturates unitary at all energies and does not account for theories
with particle production. Therefore we are not surprised that inelastic contributions are
not obtained.

In figure 21 we perform a convergence study for the upper corners of the triangle with
respect to the analytical roots given by (A.54). The corners of the allowed region coming
from the dual bootstrap approach the analytical roots

Since the perturbative result for FΘ
1 does not saturate the bootstrap bounds we can

investigate what happens when the position of the zero (or equivalently the magnetic field)
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Figure 22. Numerical scattering amplitude and form factor on the upper edge of the triangle (in
blue) compared to the analytical result (in dashed). We took the point gFΘ

1 = 0 for reference but
the data looks identical on the whole upper edge. We used N = 50.

is changed. We plot the perturbative result and the bootstrap bounds for different magnetic
fields in figure 23. We observe that both perturbation theory and bootstrap bounds scale
with x or, equivalently, with h2, but at a different rate,

g
(±)
F =

( 1
2
√

3
− 1
π
± 1√

3π
∓ 1

9

)
x ≈ (−0.1023,+0.0430 )x ≈ (−11.7601,+4.9466 )h2,

(3.9)

whereas

g
(P.T )
F = − 1

3
√

2

(15
8 + 1

2π −
√

3
)
x ≈ −0.0712x ≈ −8.1857h2. (3.10)

These numbers were computed in appendices A and E, respectively.
In figure 24 we show the bounds on g2 and gFΘ

1 in the strongly interacting regime
x = 0.7. The upper boundary is again saturated by the analytical results (A.54) and (A.43).
In particular the roots of eq. (A.54) correspond to the corners.

4 Conclusion

In this work we have merged the primal S-Matrix and form factor bootstrap proposed
in [31] with the dual S-Matrix bootstrap developed in [24]. With our method we can relate
UV data, namely the central charge cUV of the UV CFT, with couplings of the gapped
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Figure 23. Evolution of the upper boundary of the allowed region (in blue) via the numerical
bootstrap compared to the evolution of the perturbative result (in orange) in the perturbative regime
for small values of x. We observe that the bootstrap bounds and perturbation theory both scale
linearly with x, or quadratically with h. We used N = 70.

Figure 24. Allowed region in the (gF1, g
2) plane when the central charge is cUV = 1/2 and there

is a zero in the S-Matrix at x = 7/10. This is computed with N = 70. The black dots are the
analytical roots (A.54).

QFT in the IR, and place rigorous bounds on any of these parameters. We observe a vastly
improved numerical convergence compared to the primal bootstrap of [31].

We established a lower bound on cUV in a class of Z2 symmetric QFTs (figure 4) and
also for QFTs for which the particle self-interacts with a cubic coupling and where the
S-matrix has a real zero (a dial for the magnetic field in IFT) — see figure 12. In all these
cases we find that the optimal S-matrix extremizes some coupling. This allows us to find the
optimal S-matrix via pure analytical S-matrix bootstrap (viz. CDD bootstrap [47]). Then, in
appendix A, we showed how the form factor and the minimal cUV can be obtained analytically
if the S-matrix is known. We find perfect agreement between the dual optimization and the
analytical bootstrap.
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To specifically target Ising Field Theory we fix cUV = 1/2 and find the allowed space
in cubic couplings and magnetic field, see figure 17. We insert IFT inside this ‘pyramid’ for
small magnetic field — close to the tip of the pyramid — using form factor perturbation
theory (see appendix E). For larger magnetic fields we enter the non-perturbative regime of
IFT and this is where our results can be useful: IFT must lie somewhere inside the pyramid.

We know however that IFT cannot lie on the boundary of the pyramid because the
boundary is elastic: the optimal S-matrix does not have inelasticity, and we know that IFT
has particle production [46]. But even for small enough magnetic field h (where particle
production is negligible) IFT is still somewhat away from the boundary, as the bounds on
the one particle form factor go to zero as h2 with a different numerical coefficient than the
perturbative form factor (see figure 23).

We can think of several ways to improve our setup and ‘shrink’ the pyramid wherein
IFT must lie. One way is to include more UV information. So far we are only fixing
the value of the central charge, but we are not ‘telling’ the bootstrap that the RG flow
is being triggered by the thermal and magnetic deformations, ε and σ, respectively. The
central charge is straightforward to include in d = 2 due to the c-sum rule which gives
an integrated relation over the spectral density of the trace of the stress energy tensor Θ,
and not just via some asymptotic constraint at s → ∞, which is difficult to implement
numerically.12 So, can we find similar integral relations that involve somehow ε or σ (besides
the combination Θ)? One possibility is the sum rule derived in eq. (29) of [48] to fix the
scaling dimension of an operator. However, this sum rule requires knowing the vacuum
expectation value of that operator. For the case of σ, its expectation value should be related
to the magnetic field and therefore to the zero of the S-matrix, but the precise relation is
unknown to us. It should be possible to measure it using other methods like the lattice
or Hamiltonian truncation.

Another possibility is to use the twist property of the order field σ. Twist fields are
reviewed in [49, 50] and references therein. The fact that σ acts as a twist field is derived
in [51]. This could be coupled to the input from lattice measurements, for example using
tensor networks. In order to measure the two point function 〈σΘ〉 on the lattice, one needs
to map the continuum stress tensor to the lattice stress tensor. This might be done by
generalizing some ideas developed in [52] and [53]. We plan to explore this direction in the
near future.

In addition, we can include more IR information. IFT is known to interpolate between
the free massive Majorana fermion and the E8 Toda theory, which has 8 particles. While
we are studying the region close to the free fermion, where there is only one particle, it is
natural to expect, due to analyticity, that the other particles exist in other ‘sheets’, i.e. as
resonances (corresponding to zeros on the physical sheet). We already impose one zero,
which eventually becomes the second lightest particle as the magnetic field is increased.
It is possible that the other particles imply the presence of further zeros on the physical
sheet [37].

12Moreover, the normalization of the two particle form factor of Θ is fixed (see appendix G), which is one
less parameter to vary over in the bootstrap.
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If we are feeling brave, we can dial the magnetic field a bit higher and go to the regime
where more particles are stable. If we want to go beyond lightest particle scattering we
would have to import the multiple amplitude bootstrap of [7] and extend it in several
directions. Namely, to dualize it, to include form factors and, on a more fundamental level,
to understand the singularity structure of the scattering amplitude of heavier particles,
where anomalous thresholds are expected [54, 55].13

In a similar vein, we can also consider multi-particle scattering, i.e. to not only consider
2-particle states but also states of 3- or more particles. In this way we could try target the
inelasticity of IFT. However, a systematic understanding of the analyticity structure of
multi-particle amplitudes remains a big open problem dating back to the 60s.

The latter directions we have mentioned are of course relevant to many other QFTs
besides IFT. We have put a lower bound on the cUV of a class of Z2 symmetric theories but
we could have chosen to be more specific. For example, it would be interesting to target φ4

which has been the focus of many recent nonperturbative studies [14, 56–62]. This theory is
a deformation of the free massless boson, so we could fix cUV = 1 in our Z2 symmetric setup
to target it. Moreover, we could place φ4 inside our bounds, not only using perturbation
theory but also with Hamiltonian truncation data [14].

Finally, it would be interesting to generalize our setup to higher dimensions. A primal
approach incorporating UV input via the a-anomaly was developed in [15]. Can we reproduce
these bounds more rigorously and more efficiently with a dual method?
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A Analytical bootstrap

There are three objects we want to constrain. The 2 → 2 scattering matrix S(s) or
amplitude T (s), the 2-particle form factor F(s) and the spectral density ρ(s). The first
two are real analytic functions,14 and the S-matrix further satisfies crossing symmetry,

13Anomalous thresholds are indeed present at the E8 integrable point, where in d = 2 they are known as
Coleman-Thun poles [34].

14A real analytic function f(s) satisfies f∗(s) = f(s∗).
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S(s) = S(4m2 − s). There is still the constraint of unitarity which relates all of them. We
observe from the optimization problem that unitarity is “saturated”, eq. (2.24), meaning

|S(s)|2 = 1, F(s)
F∗(s) = S(s), ρ(s) = |F(s)|2

4π
√
s(s− 4m2)

, (A.1)

for s ≥ 4m2 slightly above the real axis.
Counting separately for real and imaginary parts we have five variables and three

equations, which implies that there is two-fold freedom left over from eqs. (A.1). The
general solution for (A.1) should possess this freedom.

We start by solving the first equation of eq. (A.1). It will be particularly useful to us
here to exploit a well-known trick used for solving elastic unitarity in d > 2 (see e.g. [63]).
We write S(s) in terms of the amplitude T (s),

S(s) = 1 + T (s)
2
√
s(4m2 − s)

. (A.2)

Then, elastic unitarity |S(s)|2 = 1 reads

Im T (s) = |T (s)|2

4
√
s(s− 4m2)

. (A.3)

Noting that Im [1/T (s)] = −Im T (s) / |T (s)|2 we can write the above as

Im
( 1
T (s)

)
= − 1

4
√
s(s− 4m2)

(A.4)

The general solution to the above is then

1
T (s) = − 1

4
√
s(4m2 − s)

+ A(s)
4 (A.5)

where A(s) is some crossing symmetric real function on the real line.
We then have

T (s) = 4
A(s)− 1/

√
(4m2 − s)s

, or S(s) = A(s)
√

(4m2 − s)s+ 1
A(s)

√
(4m2 − s)s− 1

. (A.6)

Now, since T (s) is analytic, A(s) must be meromorphic in the physical sheet.
Poles of A(s) translate into zeros of T (s). Note that if A(s) = const the solution for

S(s) is precisely the so-called Castillejo-Dalitz-Dyson (CDD) factor. In fact, any solution
to elastic unitarity, crossing and analyticity can be written as a product of CDD factors. It
is straightforward to show that this amounts to (A.6) with rational A(s).

The function A(s) encondes the large freedom that the first equation of (A.1) allows for.
We may further fix A(s) at certain values if further constraints are involved, e.g. bound-state
poles or zeros.

With solution (A.6) in hand we can now try to solve for the form factor using the
second equation in (A.1). If we write

F(s) = −2m2B(s) eα(s)−α(0), (A.7)

– 23 –



J
H
E
P
0
8
(
2
0
2
3
)
1
0
8

where B(s) is real, Watson’s equation will only fix α(s),
F(s)
F∗(s) = S(s) =⇒ Imα(s) = − i2 logS(s+ iε), for s ≥ 4m2 (A.8)

Making use of the solution for the S-matrix (A.6) we have

Imα(s) = arccot
(
A(s)

√
(s− 4m2)s

)
Θ(s− 4m2) (A.9)

It is difficult to explicitly find a function which gives such imaginary part for a generic A(s).
We may still find numerically α(s) through a dispersion relation,

α(s)− α(0) = s

π

∫ ∞
4m2

arccot
(
A(s′)

√
(s′ − 4m2)s′

)
s′(s′ − s) ds′. (A.10)

Note that any analytic function could be added to the right hand side of the above. Such
analytic function would drop out upon taking the imaginary part meaning that eq. (A.9)
would still be satisfied. The presence of a non-trivial analytic function,15 i.e. a polynomial,
will lead to an essential singularity for F(s) so we discard this possibility.

The real function B(s) is not fixed by Watson’s equation. It plays a similar role to
A(s) in eq. (2.2), i.e. B(s) is analytic in a neighbourhood of the physical region. These
properties are of course fixed by whatever analyticity assumption we may have on F(s).
Causality requirements indicate that B(s) should at most be meromorphic, with poles
signalling potential bound-states.

We now impose the normalization

F(0) = −2m2 =⇒ B(0) = 1. (A.11)

With F(s) in hand, via eqs. (A.7) and (A.10), we can now simply solve for the spectral
density from eq. (A.1). The two-fold freedom left over from eq. (A.1) is encoded into the
meromorphic functions A(s) and B(s). A(s) can be determined if some coupling is being
extremized over in the S-matrix space, which appears to occur when cUV is minimized. B(s)
is determined by minimizing over cUV explicitly,

cUV = 12π
∫ ∞

4m2

ρ(s)
s2 ds = 12m4

∫ ∞
4m2

B2(s) e2ᾱ(s)

s2
√
s(s− 4m2)

ds, (A.12)

where we made use of the relation between ρ(s) and F(s), eq. (A.1), and eq. (A.7) for F(s),
and where ᾱ(s) is the real part of α(s)− α(0), i.e. the principal value of (A.10),

ᾱ(s) = Re [α(s)− α(0)] = s

π
−
∫ ∞

4m2

arccot
(
A(s′)

√
(s′ − 4m2)s′

)
s′(s′ − s) ds′. (A.13)

As we will see in more detail, the polynomial degree of B(s) must be bounded from
above so that the integral (A.12) for cUV is convergent. In fact, we will see that for every case
considered here B(s) is at most linear in s (apart from a very special case described in A.2.2
where it can be quadratic). The constant coefficient in B(s) is fixed by the normalization
F(0) = −2m2, so we only need to minimize cUV over the free linear coefficient, which can
be done analytically.

15By trivial we mean a constant piece which can be simply absorbed into B(s).
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A.1 Z2 symmetric theories

A.1.1 Finding the leaf

We are interested in finding the allowed space of the following parameters

Λ ≡ −T (2), Λ(2) ≡ lim
s→2

∂2

∂s2T (s), (A.14)

where S and T are related by eq. (2.2),

S(s) = 1 + T (s)
2
√
s(4m2 − s)

. (A.15)

Elastic unitarity for the S-matrix reads

|S(s)|2 = 1, for s ≥ 4m2 ∨ s ≤ 0. (A.16)

Crossing symmetry further implies

S(s) = S(4m2 − s). (A.17)

Now, we start by assuming that the S-matrix that extremizes the bounds is elastic and
has the minimal number of CDD zeros. We have two parameters that we need to fix, Λ and
Λ(2), so we need at least two CDD factors,

S = Sa−Sa+ , (A.18)

with

Sa = a−
√
s(4m2 − s)

a+
√
s(4m2 − s)

. (A.19)

Let us now set m = 1 as choice of units. From eqs. (A.15) and (A.18) we then solve for the
amplitude (A.6) to find

A(s) = −
1 + a+a−

s(4−s)
a+ + a−

. (A.20)

We now fix a− and a+ in terms of (A.14) (or (3.1) in the main text):

a± = −
2Λ2 ± 8

√
Λ3 − 32ΛΛ(2) + 64(Λ(2))2

(Λ− 16)Λ + 32Λ(2) , (A.21)

so that

A(s) =

1
4 −

4
Λ +

8
(
Λ(2)

)
Λ2

+ 1− 32Λ(2)/Λ2

s(4− s) . (A.22)

What remains to impose is the analyticity constraint. Concretely, for what values of
Λ and Λ(2) does T (s) or S(s) not develop any other singularities on the physical sheet
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Figure 25. Allowed space for (Λ,Λ(2)) such that the amplitude (A.20) has no poles on the physical
sheet. The blue region corresponds to the case where both CDD zeros are real, and is given
by

(
0 < Λ < 4 ∧

(
Λ2

32 < Λ(2) ≤ Λ
4 −

1
8
√

4Λ2 − Λ3 ∨ 1
8
√

4Λ2 − Λ3 + Λ
4 ≤ Λ(2) < 1

32
(
16Λ− Λ2))) ∨(

4 ≤ Λ < 8 ∧ Λ2

32 < Λ(2) < 1
32
(
16Λ− Λ2)). The red region corresponds to the case where the CDD

zeros are complex, and is given by 0 < Λ < 4 ∧ Λ
4 −

1
8
√

4Λ2 − Λ3 < Λ(2) < 1
8
√

4Λ2 − Λ3 + Λ
4 . Their

union is given by eq. (A.24).

besides the physical cuts for s ≥ 4m2 and s ≤ 0? We want a− and a+ to be such that the
denominator in eq. (2.2) is never zero on the physical sheet, i.e. that no pole develops and
that the CDD factors remain CDD zeros.

Note that the square root function only covers half of the complex plane. On the
principal sheet it covers the right half plane, i.e. the real part of the square root function is
always positive. This means that if

Re a− > 0 and Re a+ > 0 (A.23)

we are sure that the denominator of (A.6) is never zero. Therefore, imposing (A.23)
on (A.21) we find the allowed range for Λ and Λ(2).

So here we can split the problem in two. If the discriminant of (A.21) is positive then
a± is real, meaning that if a± > 0 the S-matrix will have two real zeros on the physical
sheet. This region is represented in blue in figure 25.

If the discriminant of (A.21) is negative then a± will be complex. However, if Re a± > 0,
i.e. (Λ−16)Λ + 32Λ(2) < 0, then the denominator of (A.6) will never be zero on the physical
sheet. Instead, the numerator will have (complex) zeros. This region is represented in red
in figure 25.
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The union of these regions is the leaf in the main text, figure 3. Explicitly, in agreement
with eqs. (A.8) and (A.10) of [16],

0 < Λ < 8 ∧ Λ2

32 < Λ(2) <
16Λ− Λ2

32 (A.24)

The optimal amplitude on the lower bound, i.e. when Λ(2) = Λ2

32 , and on the upper
bound, i.e. when Λ(2) = 16Λ−Λ2

32 is given by eq. (A.20) with, respectively,

Lower bound: A(s) = 1
2

(
1− 8

Λ

)
, Upper bound: A(s) = 2

s(4− s)

(
1− 8

Λ

)
(A.25)

It is straightforward to see that multiplying the 2-CDD ansatz (A.18) by any further CDD
zero will lead to values of Λ and Λ(2) inside the leaf, and the same holds true if inelasticity
is considered. So we conclude that the bounds are optimal.

A.1.2 cUV at the edges of the leaf

We can now find the two-particle stress tensor form factor F(s) on the edges of the leaf.
We plug eqs. (A.25) for A(s) at the edges of the leaf into eqs. (A.7) and (A.10).

We want minimize cUV over B(s). First note that B(s) must not have any poles outside
the real cut, as it would be inconsistent with the analyticity assumptions for the form
factor F(s). In principle it may have poles, e.g. at s→ 4m2 or somewhere along the real
axis, as long as the integral (A.12) converges, which can only be the case if e2ᾱ(s) cancels
such poles. While we could not find an explicit form for ᾱ(s) for either of the lower or
uppers bounds (A.25) we do observe numerically that e2ᾱ(s) is never zero, indicating that
B(s) cannot have poles and therefore be holomorphic, i.e. a polynomial.16 Finally, we can
constrain the polynomial degree of B(s) according to the convergence of the integral (A.12).

Lower edge. On the lower edge, we find that, according to eq. (A.9), Imα(∞) =
arccot (−∞) = 0, meaning that α(s → ∞) → const and e2ᾱ(s) → 1. We conclude that
the integrand of (A.12) will go as ∼ B2(s)s−3 and, therefore, B(s) must be a constant.
Otherwise, the integral will not converge. Since B(0) = 1 we are led to the following unique
choice on the lower edge,

Lower edge: B(s) = 1. (A.26)

So the form factor is entirely specified by A(s),

F(s) = −2meα(s)−α(0). (A.27)

As a simple check we may explicitly compute F(s) and cUV at the tips of the leaf, Λ = 0 and
Λ = 8. In the former case we have A(s) = 1

2

(
1− 8

Λ

)
→ −∞, for which arccot(−∞) = 0

and Imα(s) = 0. In this case eq. (A.10) gives α(s)− α(0) = 0 and we have F(s) = −2m2

and cUV = 1.
16The only way we could make e2ᾱ(s) have a zero was to have A(s) be zero at some point, making the

arccot function jump by π. However, A(s) is sign definite at the edges of the leaf (A.25).
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For Λ = 8 instead we have A(s) = 0−, meaning arccot(0−) = −π
2 . From eq. (A.10) it

follows that

α(s)− α(0) = 1
2 log

(
1− s

4m2

)
(A.28)

and

F(s) = −m
√

4m2 − s, cUV = 12m4
∫ ∞

4m2

√
s− 4m2

s

ds

s2 = 1
2 . (A.29)

For 0 < Λ < 8 we perform both integrals (A.13) and (A.10) numerically. In figure 10 we
show the optimal S(s) and F(s) at Λ = 2.4.

Upper edge. Let us now consider the upper edge of the leaf. In this case we have
A(s) = 2

s(4−s)

(
1− 8

Λ

)
> 0 across the integration region s > 4m2 in (A.10). Now we find

that e2ᾱ(s) ∼ s−1 when s→∞ so that the integrand of (A.10) goes as ∼ B2(s)s−4. We see
that B(s) can at most be linear in s to ensure convergence of the integral. Therefore,

Upper edge: B(s) = 1− b s, (A.30)

where b is a free real parameter.
Plugging into (A.12) we have

cUV(b) = I0 − 2b I1 + b2 I2, with In ≡ 12m4
∫ ∞

4m2

sn e2ᾱ(s)

s2
√
s(s− 4m2)

ds. (A.31)

We now minimize the central charge with respect to b,
dcUV
db

= 0 =⇒ bmin = I1
I2
, cUV(bmin) = I0 −

I2
1
I2
. (A.32)

We may again test these expressions for the trivial cases Λ = 0, 8. For the former we have
A(s) → ∞, for which again Imα(s) = 0 and α(s) − α(0) = 0. In this case I2 → ∞ and
we’ll trivially get bmin → 0 and cUV(bmin) = I0 = 1. For Λ → 8 we have A(s) → 0+, for
which arccot(0+) = +π

2 . From eq. (A.10) it follows that

α(s)− α(0) = −1
2 log

(
1− s

4m2

)
(A.33)

and

e2ᾱ(s) =
(

1− s

4m2

)−1
, F(s) = −4m2 1− bs√

4m2 − s
(A.34)

Plugging into (A.32) we find17

bmin = 1
4m2 , (A.35)

i.e. that the polynomial B(s) softens the singularity of integrand at s → 4m2, and we
recover eqs. (A.29).

For 0 < Λ < 8 we find ᾱ(s) numerically eq. (A.13). Then, we plug the result into
eq. (A.32) and compute the In’s numerically. In figure 9 we show the optimal S(s) and
F(s) for Λ = 2.4.

17Technically, in this limiting case, In does not converge due to the end-point singularity at s → 4m2.
However, upon regulating, the ratio I1/I2 is finite and is given by 1/4m2.

– 28 –



J
H
E
P
0
8
(
2
0
2
3
)
1
0
8

A.1.3 cUV in the interior of the leaf

To find cUV in the interior of the leaf we have to first find the optimal S-matrix. At the
edges of the leaf the S-matrix is uniquely fixed because Λ(2) is either maximal (upper edge)
or minimal (lower edge). In the interior of the leaf we consider extremizing over Λ(4), with

Λ ≡ −T (2), Λ(2) ≡ lim
s→2

∂2

∂s2T (s), Λ(4) ≡ lim
s→2

∂4

∂s4T (s), (A.36)

under the hypothesis that cUV minimization for fixed (Λ,Λ(2)) extremizes Λ(4).
We can proceed as in section A.1.1 and consider three CDD zeros which can be fixed in

terms of the three parameters (Λ,Λ(2),Λ(4)). Then explore the parameter-space for which
these zeros remain zeros and do not turn into poles. Avoiding further technical details we
find that

3
(
−Λ3 + 24Λ2 − 128ΛΛ(2) + 256(Λ(2))2

)
128(8− Λ) ≤ Λ(4) ≤

3
(
−Λ3 + 128ΛΛ(2) − 256(Λ(2))2

)
128Λ ,

(A.37)

in agreement with eq. (A.12) of [16] which determined these bounds using the Schwarz-Pick
theorem.

We observe that the optimal amplitude coming from cUV minimization is the one
for which Λ(4) is minimal, where Λ(4) assumes the lower bound of (A.37). The optimal
amplitude at the lower bound is specified by

A(s) = − 4(8− Λ)2

64Λ + Λ2 (s2 − 4s− 4)− 32Λ(2)(s− 2)2 , (A.38)

for which the S-matrix S(s) follows via (A.6). For A(s) given by eq. (A.38) we have the
same asymptotics of the upper edge of the leaf, e2ᾱ(s) ∼ s−1, so B(s) is at most linear:
B(s) = 1− bs. As in the previous section, the form factor F(s) and the minimal cUV follow
from eqs. (A.7), (A.10), (A.31) and (A.32). In figure 11 we compare the analytical result
with the output of dual optimization for Λ = 4.56 and Λ(2) = 0.85.

A.2 Ising Field Theory

Here the analyticity assumptions consist of a zero for the S-matrix S(s) at s = m2(1− x),
where x is related to the magnetic field, and a pole at s = m2, and their crossing-symmetric
counterparts. Similarly, the form factor F(s), has a pole at s = m2.

A.2.1 Minimization of the central charge cUV

The first problem consists of minimizing the central charge cUV,

cUV = 12π
(
m−4|FΘ

1 |2 +
∫ ∞

4m2
ds
ρ(s)
s2

)
(A.39)

where FΘ
1 is the 1-particle form-factor, which is a constant. The residue of the 2-particle

form factor F (s) at s→ m2 is given by gFΘ
1 , where g is the cubic coupling, i.e. −g2 is the

residue of the S-matrix pole at s→ m2.
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The minimal choice for an S-matrix with the above properties, and which is also purely
elastic, is the product of one CDD pole at s = m2 and one CDD zero at s = m2(1− x),

S±(s) = ±m
2√(1− x)(3 + x)−

√
s(4m2 − s)

m2
√

(1− x)(3 + x) +
√
s(4m2 − s)

·
√

3m2 +
√
s(4m2 − s)√

3m2 −
√
s(4m2 − s)

. (A.40)

Now, near the pole we must have S(s) ∼ − g2

s−m2 , i.e. S(s) must have a negative residue.
Only S−(s) satisfies this requirement. We again observe that S−(s) matches with the
optimal S-matrix in figure 13 coming from minimizing the central charge.

By writing S−(s) in the form (A.6) we find (in units where m = 1)

A(s) = −
√

3−
√

(1− x)(x+ 3)
(s− 4)s+

√
3(1− x)(x+ 3)

. (A.41)

From eq. (A.6) we see that, near the pole, we have

T (s→ m2) ∼ − g2

s−m2 , (A.42)

with

g2 =
4
√

3
(
3−

√
3(1− x)(x+ 3)

)2

x(x+ 2) > 0 (A.43)

Now, given A(s), the form factor F (s) follows from eqs. (A.9) and (A.7). The function B(s)
must contain the simple pole of F (s) when s→ m2 = 1 but no other singularity. We must
therefore have

B(s) = P (s)
1− s, (A.44)

where P (s) is a polynomial, for which B(0) = 1 implies P (0) = 1. If, furthermore,

F (s→ 1) ∼ − gF
s− 1 , (A.45)

where gF ≡ gFΘ
1 , we must have, from (A.7),

P (1) = −gF e
α(0)−α(1)

2 . (A.46)

To constrain further P (s) we consider the central charge,

cUV = 12πg
2
F

g2 + 12
∫ ∞

4

P 2(s) e2ᾱ(s)

(1− s)2 s2
√
s(s− 4)

ds. (A.47)

Similarly to the previous section, we see that convergence of the above integral bounds
the degree of P (s). According to eq. (A.9), we see that Imα(s→∞) = arccot(0−) = −π

2
meaning that e2ᾱ(s) ∼ s, when s→∞. The integrand in (A.47) will then go like ∼ P 2(s)s−4.
In order for the integral to converge, we see that P (s) must be at most linear,

P (s) = 1− bs (A.48)
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where b is some real constant parameter, which can be fixed in terms of gF via equa-
tion (A.46),

b = 1 + gF e
α(0)−α(1)

2 , (A.49)

for which the form factor reads,

F(s) = −2eα(s)−α(0) + gF s

1− se
α(s)−α(1) (A.50)

and the central charge (A.47) can be expressed as

cUV = I0 + gF
(
e−ᾱ(1)I1

)
+ g2

F

(
12π
g2 + e−2ᾱ(1)

4 I2

)
, (A.51)

with

In ≡ 12
∫ ∞

4

e2ᾱ(s)

(s− 1)ns2−n
√
s(s− 4)

ds. (A.52)

We now minimize the central charge cUV with respect to gF ,

dcUV
dgF

= 0 =⇒ gF,min = − 2I1
I2 e−ᾱ(1) + 48π g−2 eᾱ(1) ,

cUV,min = I0 −
I2

1
I2 + 48π g−2 e2ᾱ(1) ,

(A.53)

with g2 given by eq. (A.43), and ᾱ(s) given by eqs. (A.13) and (A.41).

A.2.2 Bounds on gF for fixed central charge cUV = 1/2 and maximal g

For a fixed central charge cUV = 1/2 we find two possible roots for gF from eq. (A.51),

g
(±)
F =

−e−ᾱ(1)I1 ±
√
e−2ᾱ(1)I2

1 − (48πg−2 + e−2ᾱ(1)I2)
(
I0 − 1

2

)
2I0 − 1 , (A.54)

where g2 is maximal and given by (A.43) in terms of the zero x. For x = 1/10 we find

g
(−)
F = −0.011028 . . . , g

(+)
F = 0.004658 . . . . (A.55)

These correspond to the leftmost and rightmost corners in figure 19.
Note that figure 19 seems to indicate that there exists a line of solutions with the

maximal coupling connecting the two extrema (A.54), whereas our previous analysis only
provides two isolated points for an S-matrix with maximal coupling. The solution to this
apparent paradox lies in the possibility of having an S-matrix with cubic coupling arbitrarily
close to the maximal one, but with different asymptotics, such that P (s) in (A.47) can now
be quadratic with a free parameter, instead of just linear as in (A.48).

Take for example

S(s) = S−(s) a1 + a2 s(4− s)−
√
s(4− s)

a1 + a2 s(4− s) +
√
s(4− s)

, (A.56)
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where S−(s) is the maximal S-matrix given by eq. (A.40). Now, for a1 → ∞ we have
S(s)→ S−(s). On the other hand, it is not hard to see that solving for A(s) using eq. (A.6)
leads to the following asymptotics

A(s→∞)→ −
√

3− 3
√

31/10− 1/a2
s2 +O

( 1
s3

)
(A.57)

which only depends on a2. In particular, if we take a2 large enough we get back the previous
case, for which A(s→∞)→ 0−. Now, however, a2 can be tuned such that A(s→∞)→ 0+

while also keeping S(s) free of further poles, i.e. for 0 < a2 < (
√

3− 3
√

31/10)−1 ≈ 16.2. In
this case we have Imα(s → ∞) = arccot

(
0+) = +π

2 so that e2ᾱ(s) ∼ s−1. The integrand
in (A.47) will then go like ∼ P 2(s)s−6, which allows for a quadratic degree polynomial P (s).
Two of the coefficients of P (s) are fixed by the normalization P (0) = 1 and by the residue of
the form factor gF , the remaining coefficient is free, i.e. it allows for a line of solutions with
near-maximal cubic coupling (by letting a1 be arbitrarily large) as observed in figure 19.

A.2.3 Small magnetic field limit h→ 0: Bounds on gF and extra zeros

We first find how the analytical gF scales in the small magnetic field limit,

gF (x→ 0) = x g̃F . (A.58)

We assume this behavior for now, but will then confirm it by explicit computation. We
start by noting that in the limit x→ 0, the cubic coupling g2 (A.43) goes as

g2(x→ 0) = 2
√

3x (A.59)

Then, the central charge (A.47) reads

cUV = 6π√
3
g̃2
F x+ 12

∫ ∞
4

P 2(s) e2ᾱ(s)

(1− s)2 s2
√
s(s− 4)

ds+O(x2). (A.60)

We still have to determine the x → 0 limit of P (s) and ᾱ(s). Let us first consider ᾱ(s).
From (A.41) we have

A(s) = − x/
√

3
3 + s(s− 4) +O(x2) (A.61)

Plugging into (A.9) and expanding at small x

Imα(s) =
[
−π2 + x

√
s(s− 4)/3

3 + s(s− 4) +O(x2)
]

Θ(s− 4) (A.62)

We find

α(s)− α(0) = 1
2 log

(
1− s

4

)
+ x

[
α1(s)− α1(0)

]
+O(x2) (A.63)

with

α1(s) = β(s)
(s− 3)(s− 1) −

β(3)
2(s− 3) + β(1)

2(s− 1) , β(s) = − 2
π

√
s(4− s)

3 arctan
√

s

4− s.

(A.64)
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Let us now take the limit x→ 0 of the polynomial P (s) = 1− bs in (A.60), where b is given
by (A.49). We have

b = 1 + x
g̃F e

α(0)−α(1)

2 +O(x2) = 1 + x
g̃F√

3
+O(x2) (A.65)

where we made use of (A.63).
We then have

P 2(s) e2ᾱ(s)

(1− s)2 = s− 4
4 + x (s− 4)

[ √
3g̃F s

6(s− 1) + Re[α1(s)− α1(0)]
2

]
+O(x2). (A.66)

Now, replacing the above formulas into (A.60) and performing the simple integrals, we find

cUV −
1
2 = x

[
2
√

3π g̃2
F +

(
4
√

3− 2π
)
g̃F −

126− 23
√

3π
81 − 2√

3π
It

]
+O(x2), (A.67)

where

It =
∫ ∞

4

s− 4
s2 (s2 − 4s+ 3) log

(√
s− 4 +

√
s

2

)
ds = 23

648π
2 − 1

3 . (A.68)

Notice that setting x = 0 in (A.67) leads necessarily to cUV = 1/2, the central charge
of the free fermion. Since we are studying IFT we set cUV = 1/2 regardless, which leads to
a quadratic equation for the rate g̃F with the following roots

g̃
(±)
F = 1

2
√

3
− 1
π
± 1√

3π
∓ 1

9 = (−0.1023000,+0.0430304 ) (A.69)

To express this in terms of the magnetic field h we make use of the relation x = 36
√

3(Fσ1 )2 h2,
where Fσ1 = 1.3578, to find the rates,

g
(±)
F = x g̃

(±)
F = (−11.7601,+4.9466 )h2. (A.70)

Extra zeros. Let us now see what we can say about potential extra zeros of the IFT
S-matrix in the small magnetic field limit h→ 0.

For the case of IFT at lowest order in h2 we have [46] (see also eqs. (E.49) and (E.50))

SIFT(s) =−1− ih2
√

(s−4)s
(

72(Fσ1 )2

s2−4s+3 +
∫ ∞

4

(s′−2)σ2→3(s′)ds′

π
√

(s′−4)s′(s′−s)(s+s′−4)

)
+O(h4)

(A.71)

with σ2→3(s) given by eq. (E.52).
Let us now match eq. (A.71) with the general nonperturbative solution to unitarity

and crossing symmetry. In d = 2 unitarity reads

|S(s)|2 = 1− σinel(s) (A.72)
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where σinel(s) > 0 is the particle production cross-section. The general solution to this
equation and crossing symmetry S(s) = S(4m2 − s) reads [64–66]

S(s) = SCDD(s) exp
[∫ ∞

4m2

ds′

2πi log
(
1−σinel(s′)

)√ s(s−4m2)
s′(s′−4m2)

( 1
s′−s

+ 1
s′−(4m2−s)

)]
(A.73)

where |SCDD(s)|2 = 1. Now, SCDD(s) can be any product of CDD factors. In particular for
IFT, it should include the CDD pole at s = m2 = 1 and the CDD zero (3.5). So we take

SCDD(s) = S−(s)
√
a(4− a)−

√
s(4− s)√

a(4− a) +
√
s(4− s)

√
b(4− b)−

√
s(4− s)√

b(4− b) +
√
s(4− s)

· · · (A.74)

with S−(s) given by eq. (A.40) and the remaining zeros a, b, . . . we wish to constrain
as h→ 0.

Letting σinel = h2σ2→3 + O(h4) and expanding (A.73) at small h, assuming a =
a0h
−2 +O(h−4), and likewise for b and etc, we find

S(s)− SIFT(s) = 2h2
√
s(s− 4)

(
|a0|+ |b0|+ . . .

)
+O(h4) (A.75)

Since S(s) and SIFT(s) must match at order h2 we see that a0 = b0 = · · · = 0.
In case the zeros are complex we must have a = b∗ so that SCDD is real. Letting

a0 = α+ iβ, and b0 = α− iβ we have

|a0|+ |b0| =
√
a2

0 +
√
b20 =

√
α2 − β2 + 2iαβ +

√
α2 − β2 − 2iαβ = 2|α| (A.76)

Meaning that α = 0, but the imaginary part β of the zeros is unconstrained.
Therefore, the (real part of the) extra zeros must go to infinity at least as ∼ h−4

when h→ 0.

B Dual bootstrap of the Sine-Gordon model

In this appendix we reproduce one of the results of [31], namely the one presented on their
figure 3, but with the dual setup. The assumed spectrum consists of 2 particles of mass
m1 = 1 and m2 =

√
3 to target the Sine-Gordon theory. Only one pole in the scattering

amplitude is assumed, the one corresponding to an exchange of the particle m2. This
residue g is fixed and the central charge is minimized, which leads to figure 26.

The maximal value of g2 for which the problem is feasible and the corresponding
minimal central charge are

g2 = 12
√

3, cUV = 0.808823 . . . (B.1)

and they correspond to the cubic coupling and the contribution to the central charge of the
Sine-Gordon model from the particle m2 and states with two particles m1.

The advantage of our dual setup is that the bound on cUV is more accurate than what
was presented in [31]. Indeed at g = 0 we have for sure the free Majorana fermion that is
allowed and the corresponding central charge of 1/2 should not be excluded. This is in
agreement with our bound.

The optimal scattering amplitude and form factor are presented on figure 27, and
correspond also to the analytical solutions in the Sine-Gordon model.
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0.70

0.75

0.80

Figure 26. Lower bound on the central charge of the UV CFT for different values of the cubic
coupling g between two particles of mass m1 = 1 and one particle of mass m2 =

√
3. We used

N = 50 and the bound extends until g2 = 12
√

3 after which the problem is unfeasible. The red line
at cUV = 1/2 is added for convenience.
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-1.0

-0.5

0.5

1.0

5 10 15 20

-1.0

-0.8

-0.6

-0.4

-0.2

Figure 27. Scattering amplitude (on the left) and form factor (on the right) for the optimal cUV
when g2 = 12

√
3. The blue lines are the real parts and the orange lines are the imaginary parts.

They correspond to the analytical solutions of the Sine-Gordon model with m1 = 1 and m2 =
√

3,
that are plotted in dashed lines and given by eq. (4.18) and (4.19) in [31]. We used N = 50.
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C Dual optimization problems

In this appendix we derive various generalizations of the example in section 2 and present
the dual optimization problems.

C.1 Z2 symmetric theories

Here the goal is to minimize the central charge on top of the leaf parametrized by (3.2).
We do not assume any pole in the S-matrix and form factor. We have

L = 12π
∫ ∞

4
ds
ρ(s)
s2

+
∫ ∞

4
dswT (s)

[
T (s) + Λ−

∫ ∞
4

dz

π
ImT (z)

( 1
z − s

+ 1
z + s− 4 −

2
z − 2

)]
+
∫ ∞

4
dswF (s)

[
F(s)−F(0)−

∫ ∞
4

dz

π
ImF

( 1
z − s

− 1
z

)]
+
∫ ∞

4
dsTrΛ(s) ·B(s) + b

(∫ ∞
4

dz

π
Im T (z) 4

(z − 2)3 − Λ(2)
)

(C.1)

The dual scattering function is defined

WT (s) ≡
∫ ∞

4

dz

π
wT (z)

( 1
z − s

− 1
z + s− 4 + 2

s− 2

)
,

ImWT (s) = wT (s), ReWT (s) = −P
∫ ∞

4

dz

π
wT (z)

( 1
s− z

+ 1
s− (4− z) −

2
s− 2

)
,

(C.2)

where the last term is not eliminated as in the example in section 2 since we do not extremize
over the primal variable T (2) which is fixed to be −Λ.

The elimination of the primal variable T constrains the dual variables to obey

λ4 = N2
2

(
WT + 4b

π(s− 2)3

)
. (C.3)

We therefore get

Dual Problem (Minimization of the central charge on top of the leaf)

Maximize
{λ1,WT ,WF ,b}

[∫ ∞
4

ds (2λ1 + 2 ImWF +N2 ReWT + Λ ImWT ) + (1− Λ(2))b
]

(C.4)

Constrained by
λ1

N2
2 WT + 2N2b

π(s−2)3 i
√
N2
4 WF

N2
2 W

∗
T + 2N2b

π(s−2)3 λ1 −i
√
N2
4 W ∗F

−i
√
N2
4 W ∗F i

√
N2
4 WF − 6

s2

 4 0, ∀s ∈ [4,∞), (C.5)

where Λ 4 0 means −Λ < 0.
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Non-linear dual for Z2 symmetric theories. In the pure S-Matrix context the dual
problem is simpler and in particular we can get the leaf by computing the extreme values
for Λ(2) ≡ T ′′(2) and then the extreme values for Λ ≡ T (2) with fixed Λ(2) within the
allowed range.

For the first problem the lagrangian is

L =
∫ ∞

4

dz

π
Im T (z) 4

(z − 2)3 +
∫ ∞

4
ds (λ(s)U(s) + w(s)A(s)) , (C.6)

where w and λ ≥ 0 are Lagrange multipliers and A is the usual analyticity and crossing
constraint for the scattering amplitude and

U(s) ≡ 2 Im T (s)− |T (s)|2

N2(s) (C.7)

is the unitarity constraint in the pure S-Matrix setup. Using the equations of motion for T
to eliminate it, we get the dual problem

L =
∫ ∞

4
dsN2(s)

√(ImW (s))2 +
(

ReW (s) + 4
π(s− 2)3

)2
+ ReW (s) + 4

π(s− 2)3

 .
(C.8)

For the second problem we start with the lagrangian

L = T (2) + b

(
Λ(2) −

∫ ∞
4

dz

π
Im T (z) 4

(z − 2)3

)
+
∫ ∞

4
ds (λ(s)U(s) + w(s)A(s)) . (C.9)

Eliminating the primal variable T we get

L = T (2)
(

1−
∫ ∞

4
ds ImW (s)

)
+ bΛ(2)

+
∫ ∞

4
dsN2(s)

√(ImW (s))2 +
(

ReW (s)− 4b
π(s− 2)3

)2
+ ReW (s)− 4b

π(s− 2)3


(C.10)

To summarize we have

Dual Problem (Λ(2) maximization)

Minimize
{W (s)}

∫ ∞
4

dsN2(s)

√(ImW (s))2 +
(

ReW (s)− 4
π(s− 2)3

)2

+ ReW (s)− 4
π(s− 2)3

 (C.11)
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Dual Problem (Λ(2) minimization)

Minimize
{W (s)}

∫ ∞
4

dsN2(s)

−
√

(ImW (s))2 +
(

ReW (s)− 4
π(s− 2)3

)2

+ ReW (s)− 4
π(s− 2)3

 (C.12)

Dual Problem (Λ maximization with fixed Λ(2))

Minimize
{b,W (s)}

bΛ(2) +
∫ ∞

4
dsN2(s)

√(ImW (s))2 +
(

ReW (s)− 4b
π(s− 2)3

)2

+ ReW (s)− 4b
π(s− 2)3

 (C.13)

Constrained by ∫ ∞
4

ds ImW (s) = 1 (C.14)

Dual Problem (Λ minimization with fixed Λ(2))

Minimize
{b,W (s)}

bΛ(2) +
∫ ∞

4
dsN2(s)

−
√

(ImW (s))2 +
(

ReW (s)− 4b
π(s− 2)3

)2

+ ReW (s)− 4b
π(s− 2)3

 (C.15)

Constrained by ∫ ∞
4

ds ImW (s) = 1 (C.16)

Following [24], for the Λ(2) maximization we use the ansatz

W (s) = 1
s(4− s)

N∑
n=0

an (ρn(s, 2)− ρn(4− s, 2)) , (C.17)

and for the Λ maximization we use

W (s) = 1
s(4− s)

(
8

π(s− 2) +
N∑
n=0

an (ρn(s, 2)− ρn(4− s, 2))
)
, (C.18)

with ρ(s, s0) defined by (D.1).
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C.2 Ising Field Theory

C.2.1 Zero in the S-matrix at s = 1− x

To implement the zero in the S-matrix we can use the subtraction

T (s)− T (1− x) = −g2
( 1
s− 1 + 1

3− s −
1

1− x− 1 −
1

3− (1− x)

)
−
∫ ∞

4

dz

π
ImT (z)

( 1
z − s

+ 1
z + s− 4 −

1
z − 1 + x

− 1
z + 1− x− 4

)
,

(C.19)

and we will fix T (1− x) = iN2(1− x) so that S(1− x) = 0. The dual scattering function is
now defined as

WT (s) =
∫ ∞

4

dz

π
wT (z)

( 1
z − s

− 1
z + s− 4 + 1

s+ x− 1 + 1
s− x− 3

)
. (C.20)

Its ansatz therefore needs to have poles at s = 1−x and s = 3 +x with residues
∫

ImWT /π

and to be odd under crossing. To moreover satisfy the fact that the objective must be
integrable we can make the ansatz18

WT (s) = a

s(4− s)

( 1
s+ x− 1 + 1

s− x− 3

)
+ 1
s(4− s)

N∑
n=1

fn(ρ(s, 2)n − ρ(4− s, 2)n),

(C.21)
where the second term is the ansatz that we make when we don’t impose the zero, defined
by (D.2).

The only modification to the lagrangian induced from the addition of the zero comes
from the subtraction of T (1− x) which gives the new term

L ⊃
∫ ∞

4
dswT (s) (−T (1− x)) = −iN2(1− x)

∫ ∞
4

ImWT . (C.22)

In summary to implement the zero in the S-Matrix, it suffices to derive the problem without
the zero and at the end we modify the lagrangian as

L → L− iN2(1− x)
∫ ∞

4
ImWT , (C.23)

and use (C.21) for WT .
18In principle the coefficient a should be fixed by the constraint on the residues. A direct computation

gives
1
π

∫ ∞
4

ImWT = a
1
4

( 1
3 + x

+ 1
1− x

)
= a

(3 + x)(1− x) .

On the other hand the residue is given by

ResWT (s)
s=1−x

= a

(1− x)(4− 1 + x) ,

and the constraint is therefore satisfied for all a that can be a free parameter.
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Minimization of the central charge. An interesting problem is the minimization of
the UV central charge when there is the zero in the S-Matrix. We start with the lagrangian

L = 12π
(
g2
F

g2 +
∫ ∞

4

ρ

s2

)
+
∫ ∞

4
(AT wT +AFwF + TrΛB), (C.24)

and primal variables T , F and ρ are eliminated as before. It remains to eliminate gF and
g2. For the former, a functional variation with respect to gF yields

gF = −WF (1)
24 g2. (C.25)

Then, variation of g2 yields the constraint

48WT (1) = WF (1)2. (C.26)

It was appearing in the lagrangian as g2(WT (1)−WF (1)2/48), with positive g2, and we are
minimizing over the primal variables g2, so it can be implemented linearly with the positive
semidefinite constraint (

WT (1) WF (1)
WF (1) 48

)
< 0. (C.27)

Therefore

Dual Problem (Minimization of the central charge cUV with a zero S(1− x) = 0)

Maximize
{λ1,WT ,WF}

[∫ ∞
4

ds (2λ1 + 2 ImWF +N2 ReWT − iN2(1− x) ImWT )
]

(C.28)

Constrained by
λ1

N2
2 WT i

√
N2
4 WF

N2
2 W

∗
T λ1 −i

√
N2
4 W ∗F

−i
√
N2
4 W ∗F i

√
N2
4 WF − 6

s2

 4 0, ∀s ∈ [4,∞),
(
WT (1) WF (1)
WF (1) 48

)
< 0.

(C.29)

Bounds in the (g2, gFΘ
1 ) plane. We will know derive the problem to get bounds on

gF ≡ gFΘ
1 and g2. We start by getting absolute bounds on gF and then we optimize g2 for

fixed values of gF . We will impose the zero in the S-Matrix at the end.
The lagrangian can be written

L = gF +
∫ ∞

4
dswT (s)

[
T (s)− T (2) + g2

( 1
s− 1 + 1

3− s − 2
)

−
∫ ∞

4

dz

π
ImT (z)

( 1
z − s

+ 1
z + s− 4 −

2
z − 2

)]
+
∫ ∞

4
dswF (s)

[
F(s)−F(0) + gF

( 1
s− 1 + 1

)
−
∫ ∞

4

dz

π
ImF

( 1
z − s

− 1
z

)]
+
∫ ∞

4
dsTrΛ(s) ·B(s)

+ cρ

[
12π

(
g2
F

g2 +
∫ ∞

4
ds
ρ(s)
s2

)
− cUV

]
,

(C.30)
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where the last term constrains the UV central charge to be cUV. The extremization over
the primal variable T (2) already gives∫ ∞

4
dswT (s) = 0. (C.31)

We can now define the dual scattering function

WT (s) ≡
∫ ∞

4

dz

π
wT (z)

( 1
z − s

− 1
z + s− 4

)
, (C.32)

and the dual form factor function

WF (s) ≡
∫ ∞

4

dz

π
wF (z)

( 1
z − s

+ 1
s

)
. (C.33)

The analyticity constraints can then considerably be simplified. We get

L = gF +
∫ ∞

4
ds (Im(TWT ) + Im(FWF ) + 2 ImWF + TrΛ(s) ·B(s))

+ cρ

[
12π

(
g2
F

g2 +
∫ ∞

4
ds
ρ(s)
s2

)
− cUV

]
+ πg2WT (1) + πgFWF (1)

(C.34)

We are now ready to eliminate the primal variables. Varying with respect to F , T and
ρ we get

λ4 = N2
2 WT , λ6 = i

√
N2
4 WF , λ3 = −6Cρ

s2 . (C.35)

The lagrangian is reduced to

L = gF +
∫ ∞

4
ds (2λ1 + 2 ImWF +N2 ReWT ) + cρ

(
12πg

2
F

g2 − cUV

)
+ πg2WT (1) + πgFWF (1).

(C.36)

To finalize the elimination of primal variables we need to do variations over gF and g2.
The former gives the equation

gF = − g2

24πCρ
(1 + πWF (1)), (C.37)

that yields the lagrangian

L = − g2

48πCρ
(1 + πWF (1))2 +

∫ ∞
4

ds (2λ1 + 2 ImWF +N2 ReWT )− cUVCρ + πg2WT (1).

(C.38)
Now extremizing over g2 we get the constraint

Cρ = (1 + πWF (1))2

48π2WT (1) . (C.39)

Therefore the lagrangian becomes

L =
∫ ∞

4
ds (2λ1 + 2 ImWF +N2 ReWT )− cUV

(1 + πWF (1))2

48π2WT (1) . (C.40)
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All the primal variables are eliminated and we’re ready to extremize over dual variables.
The last term is not linear in those variables, and it’s convenient to introduce a new variable
u such that (

−u 1 + πWF (1)
1 + πWF (1) −48π2WT (1)

)
< 0. (C.41)

We can finally add the zero in the scattering amplitude as described above and formulate
the dual problem that can be implemented in SDPB:

Dual Problem (gF maximization and S(m2(1− x)) = 0)

Minimize
{λ1,WT ,WF ,u}

[∫ ∞
4

ds (2λ1 + 2 ImWF +N2 ReWT − iN2(1− x) ImWT )− cUVu

]
(C.42)

Constrained by
λ1

N2
2 WT i

√
N2
4 WF

N2
2 W

∗
T λ1 −i

√
N2
4 W ∗F

−i
√
N2
4 W ∗F i

√
N2
4 WF −6u

s2

 < 0, ∀s ∈ [4,∞),

(
−u 1 + πWF (1)

1 + πWF (1) −48π2WT (1)

)
< 0,

(C.43)

and ∫ ∞
4

dsWT (s) = 0. (C.44)

The minimization is similar, we just have to maximize the dual objective instead of
minimizing and adjust the constraint on u so that it becomes the correct form when the
dual objective is maximized. The dual matrix Λ(s) needs also to be negative instead of
positive, or equivalently −Λ is positive. We get

Dual Problem (gF minimization and S(m2(1− x)) = 0)

Maximize
{λ1,WT ,WF ,u}

[∫ ∞
4

ds (2λ1 + 2 ImWF +N2 ReWT − iN2(1− x) ImWT )− cUVu

]
(C.45)

Constrained by
λ1

N2
2 WT i

√
N2
4 WF

N2
2 W

∗
T λ1 −i

√
N2
4 W ∗F

−i
√
N2
4 W ∗F i

√
N2
4 WF −6u

s2

 4 0, ∀s ∈ [4,∞),

(
u 1 + πWF (1)

1 + πWF (1) 48π2WT (1)

)
< 0,

(C.46)
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and ∫ ∞
4

dsWT (s) = 0. (C.47)

Now we have to maximize the cubic coupling g2 with fixed gF and we start with the
lagrangian

L = g2 +
∫ ∞

4
dswT (s)

[
T (s)− T (2) + g2

( 1
s− 1 + 1

3− s − 2
)

−
∫ ∞

4

dz

π
ImT (z)

( 1
z − s

+ 1
z + s− 4 −

2
z − 2

)]
+
∫ ∞

4
dswF (s)

[
F(s)−F(0) + gF

( 1
s− 1 + 1

)
−
∫ ∞

4

dz

π
ImF

( 1
z − s

− 1
z

)]
+
∫ ∞

4
dsTrΛ(s) ·B(s)

+ cρ

[
12π

(
g2
F

g2 +
∫ ∞

4
ds
ρ(s)
s2

)
− cUV

]
+ Cg(gF − g∗F ).

(C.48)

The primal variables are eliminated as before, and we arrive at

L = g2 +
∫ ∞

4
ds (2λ1 + 2 ImWF +N2 ReWT ) + cρ

(
12πg

2
F

g2 − cUV

)
+ πg2WT (1) + πgFWF (1) + Cg(gF − g∗F ).

(C.49)

The variations with respect to gF and then g2 give

gF = − g2

24πCρ
(πWF (1) + Cg) , Cρ = (πWF (1) + Cg)2

48π + 48π2WT (1) . (C.50)

Introducing a new variable u to linearize the objective as before, we get

Dual Problem (g2 maximization with fixed gF = g∗F and S(m2(1− x)) = 0)

Minimize
{λ1,WT ,WF ,Cg,u}

[∫ ∞
4

ds (2λ1 + 2 ImWF +N2 ReWT − iN2(1− x) ImWT )− cUVu− Cgg∗F
]

(C.51)
Constrained by 

λ1
N2
2 WT i

√
N2
4 WF

N2
2 W

∗
T λ1 −i

√
N2
4 W ∗F

−i
√
N2
4 W ∗F i

√
N2
4 WF −6u

s2

 < 0, ∀s ∈ [4,∞), (C.52)

(
−u πWF (1) + Cg

πWF (1) + Cg −48π − 48π2WT (1)

)
< 0, (C.53)
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and ∫ ∞
4

dsWT (s) = 0. (C.54)

Again the minimization is similar and we get

Dual Problem (g2
T minimization with fixed gF = g∗F and S(m2(1− x)) = 0)

Maximize
{λ1,WT ,WF ,Cg,u}

[∫ ∞
4

ds (2λ1 + 2 ImWF +N2 ReWT − iN2(1− x) ImWT )− cUVu− Cgg∗F
]

(C.55)
Constrained by

−λ1 −N2
2 WT −i

√
N2
4 WF

−N2
2 W

∗
T −λ1 i

√
N2
4 W ∗F

i
√
N2
4 W ∗F −i

√
N2
4 WF

6u
s2

 < 0, ∀s ∈ [4,∞), (C.56)

(
u πWF (1) + Cg

πWF (1) + Cg 48π + 48π2WT (1)

)
< 0, (C.57)

and ∫ ∞
4

dsWT (s) = 0. (C.58)

C.3 Two poles: minimization of the central charge

We now consider the case with two particles having masses m1 = 1 and m2 =
√

3. There
is only one pole in the scattering amplitude and in the form factor corresponding to an
exchange of the second particle between two of the lightest particles. The pole terms in the
dispersion relations are slightly modified and read

T (s)−T (2) =−g2
112

( 1
s−3 + 1

1−s+2
)

+
∫ ∞

4

dz

π
ImT (z)

( 1
z−s

+ 1
z+s−4−

2
z−2

)
,

F(s)−F(0) =−gF
( 1
s−3 + 1

3

)
+
∫ ∞

4

dz

π
ImF

( 1
z−s

− 1
z

)
.

(C.59)

We therefore have the lagrangian

L = 12π
(

g2
F

9g2
112

+
∫ ∞

4
ds
ρ(s)
s2

)

+
∫ ∞

4
dswT (s)

[
T (s)− T (2) + g2

112

( 1
s− 1 + 1

3− s − 2
)

−
∫ ∞

4

dz

π
ImT (z)

( 1
z − s

+ 1
z + s− 4 −

2
z − 2

)]
+
∫ ∞

4
dswF (s)

[
F(s)−F(0) + gF

( 1
s− 1 + 1

)
−
∫ ∞

4

dz

π
ImF

( 1
z − s

− 1
z

)]
+
∫ ∞

4
dsTrΛ(s) ·B(s).

(C.60)
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Again the steps are similar and we obtain the dual problem

Dual Problem (cUV minimization with m1 = 1,m2 =
√

3 and g112 fixed)

Maximize
{λ1,WT ,WF ,u}

[∫ ∞
4

ds (2λ1 + 2 ImWF +N2 ReWT )− 3g
2
112

16π u+ πg2
TWT (3)

]
(C.61)

Constrained by
λ1

N2
2 WT i

√
N2
4 WF

N2
2 W

∗
T λ1 −i

√
N2
4 W ∗F

−i
√
N2
4 W ∗F i

√
N2
4 WF −6u

s2

 4 0, ∀s ∈ [4,∞), (C.62)

(
1 πWF (3)

πWF (3) u

)
< 0, (C.63)

and ∫ ∞
4

dsWT (s) = 0. (C.64)

D Numerical implementation

We are now almost ready to use our linear dual formulation to get non perturbative bounds
on different quantities. The last step is to implement the dual problem numerically. The
dual functions WT and WF have branch cuts on the segment [4,∞) and it is therefore
useful to use the new variable

ρ(s, s0) ≡
√

4− s0 +
√

4− s√
4− s0 −

√
4− s

(D.1)

that maps the s complex plane in the unit disk with the cut mapped on the boundary and
that we depict on figure 28 for s0 = 2. Then any function that is analytic apart for some
poles and cuts starting at s = 4 can be expressed as the sum of the pole terms to which we
add a Taylor series in the variable ρ.

Accounting for the fact thatWT is odd under crossing and N2 ReWT must be integrable,
we make the ansatz

WT (s) = 1
s(4− s)

N∑
n=1

fn(ρ(s, 2)n − ρ(4− s, 2)n). (D.2)

In the case of Z2 odd theories, WT also has a pole as can be seen from eq. (2.26). To
account for this singularity and match the residue, the ansatz is modified as

WT (s) = − 8
πs(s− 2)(s− 4) + 1

s(4− s)

N∑
n=1

fn(ρ(s, 2)n − ρ(4− s, 2)n). (D.3)

As derived in section C.2.1 when there is a zero in the scattering amplitude at s = 1− x
the ansatz becomes

WT (s) = f0
s(4− s)

( 1
s+ x− 1 + 1

s− x− 3

)
+ 1
s(4− s)

N∑
n=1

fn(ρ(s, 2)n−ρ(4−s, 2)n). (D.4)
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Figure 28. Map ρ(s) from the s complex plane to the unit disk given in eq. (D.1). Figure taken
from [3].

The second dual function WF must have an integrable imaginary part, and the definition
((2.27) implies the existence of a pole at s = 0 with residue

∫
ImWF/π. We therefore

propose the ansatz

WF (s) = 1
s− 4

N∑
n=0

gnρ(s, 0)n + h0 + 1
πs

∫ ∞
4

ds ImWF (s)

=
N∑
n=0

gn

(
ρ(s, 0)n

s− 4 − (−1)n

s

)
+ h0,

(D.5)

where we were careful to include the contribution of the pole term in the imaginary part

1
4− s = 1

4− s̄− iε = PV 1
4− s̄ + iπδ(s̄− 4), (D.6)

where we wrote explicitely s = s̄ + iε, s̄ ∈ R. Finally the remaining dual variable λ1 is a
real function that needs to be integrable. We use the ansatz

λ1(s) = 1
s
√
s− 4

( 1∑
n=0

an
ρ(s, 0)n + ρ(s, 0)n,∗

2 +
N∑
n=1

bn
ρ(s, 0)n − ρ(s, 0)n,∗

2i

)
. (D.7)

In some cases we observed the numerical convergence is improved if the ansatz for λ1 is
modified as

λ̃1(s) = λ1(s) + 1
s2

10∑
n=1

cn
ρ(s, 0)n − ρ(s, 0)n,∗

2i . (D.8)

In this work we use (D.4) and (D.8) in section 3.1, and (D.2) and (D.7) in section 3.2.
To implement the semipositive definite constraint on the interval [4m2,∞), we discretize

it on a Chebyshev grid with 200 points. We also checked, without rigorous analysis, that
increasing this number does not change the results. Then we optimize numerically over
the free parameters an, bn, fn, gn, h0 and eventually cn using SDPB to solve the dual
optimization problem.
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E Form factor perturbation theory

In this appendix we present our perturbative calculation for the one particle form factor FΘ
1

and then we review Zamolodchikov’s result for the perturbative scattering amplitude [46].19

The Ising Field Theory has been extensively studied e.g. in [36, 40, 46] for non integrable
directions. The starting point for perturbation theory will be the action

SIFT = S
(c=1/2)
CFT + m

2π

∫
d2xε(x) + h

∫
d2xσ(x), (E.1)

where the scaling dimensions of the operators ε and σ are respectively

∆ε = 1, ∆σ = 1
8 . (E.2)

E.1 Perturbation theory for FΘ
1

In the interacting theory the trace of the stress energy tensor can be deduced from (E.1)
and (E.2) and takes the form20

Θ(x) = m

2πε(x) + 15h
8 σ(x). (E.3)

We can split the IFT action in the thermal deformation part S0 and treat the magnetic
deformation as a perturbation, which reads

S = S0 + h

∫
d2xσ(x). (E.4)

First approach. Our goal is now to use the two point function of the trace of the stress
energy tensor to extract the one particle form factor FΘ

1 . To this end we can use the
Euclidean spectral decomposition

〈Θ(x)Θ(0)〉c =
∫ ∞

0
dsρΘ(s)∆E(x, s)

= |FΘ
1 |2∆E(x,m2) +O(e−2mx),

(E.5)

where we used to explicit form of the Euclidean propagator and its asymptotic form

∆E(x,m2) = 1
2πK0(mx) ∼

x→∞
1

2π

√
π

2mxe
−mx. (E.6)

19Form factor perturbation theory was first proposed in [67] and was applied in different contexts (see
e.g. [68, 69]).

20When h = 0, one can check that the normalization for Θ is compatible with FΘ
2 (s = 0) = −2m2 and

the CFT normalization of the operator ε. On the one hand, we have

〈Θ(x)Θ(0)〉0 =
(
m

2π

)2
〈ε(x)ε(0)〉 −−−→

x→0

(
m

2π

)2 1
|x|2 .

On the other hand, using that only the n = 2 form factor FΘ
2 = im

√
s− 4m2 is non vanishing when h = 0

we also have
〈Θ(x)Θ(0)〉0 =

∫ ∞
4m2

ds
|FΘ

2 (s)|2

4π
√
s(s− 4m2)

∆E(x, s) −−−→
x→0

(
m

2π

)2 1
|x|2 ,

showing that the normalizations are compatible.
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On the other hand the two point function (E.5) can be written as a path integral

〈Θ(x)Θ(0)〉= 1
Z

∫
[Dφ]e−S0

(
1−h

∫
d2yσ(y)+ h2

2

∫
d2yd2zσ(y)σ(z)+O(h3)

)
Θ(x)Θ(0).

(E.7)
We can therefore get a perturbative expression for this two point function in terms of
correlation functions in the theory with h = 0, which we denote as 〈. . .〉0. We get

〈Θ(x)Θ(0)〉c =
(
m

2π

)2
〈ε(x)ε(0)〉0 +

(15h
8

)2
〈σ(x)σ(0)〉0

− 15mh2

8π

∫
d2y〈ε(x)σ(0)σ(y)〉0

+
(
m2h2

8π2

)∫
d2yd2z〈ε(x)ε(0)σ(y)σ(z)〉0 +O(h3).

(E.8)

Comparing (E.5) and (E.8), the one particle form factor can be computed as

|FΘ
1 |2 = h2

[(15
8

)2
G(2) − 15m

8π G(3) + m2

8π2G
(4)
]

+O(h3), (E.9)

where the coefficients G(i) are defined as

G(2) ≡ lim
|x|→∞

1
∆E(x,m2)〈σ(x)σ(0)〉0,

G(3) ≡ lim
x→∞

1
∆E(x,m2)

∫
d2y〈ε(x)σ(0)σ(y)〉0,

G(3) ≡ lim
x→∞

1
∆E(x,m2)

∫
d2yd2z〈ε(x)ε(0)σ(y)σ(z)〉0.

(E.10)

The two point function contribution is immediately obtained by using again the spectral
representation

G(2) = lim
x→∞

1
∆E(x,m2)

∫ ∞
0

ρσ(s)∆E(x, s) = |Fσ1 |2. (E.11)

To evaluate the 3 and 4 point functions in the thermal deformation we can use the known
form factors [45, 70]

F ε2(p1, p2) = −2π
√

4m2 − s12,

Fσ3 (p1, p2, p3) = 2Fσ1

√
4m2 − s12

s12

√
4m2 − s13

s13

√
4m2 − s23

s23
,

Fσ1 = 21/12e−1/8m1/8A
3/2
G ≈ 1.3578 . . . ,

(E.12)

where AG is the Glaisher’s constant and we use the s Mandelstam variable defined as

s12 ≡ −(p1 + p2)2 = 2m2 + 2(Ep1Ep2 − p1p2). (E.13)

We will also need the parity reversed 2-momentum p̃ and the rest frame 2-momentum k̄

defined as
p ≡

(
Ep

p

)
, p̃ ≡

(
Ep

−p

)
, k̄ ≡

(
m

0

)
. (E.14)
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We can evaluate the correlation functions written as a time ordered vacuum correlator.
Without loss of generality, we choose x to be pointing in the Euclidean time direction and
we parametrize y as

x =
(
|x|
0

)
, y =

(
y1

y2

)
. (E.15)

Then, we can write∫
d2y〈ε(x)σ(0)σ(y)〉0 =

∫
dy2

∫ 0

−∞
dy1 〈0| ε(x)σ(0)σ(y) |0〉

+
∫
dy2

∫ |x|
0

dy1 〈0| ε(x)σ(y)σ(0) |0〉

+
∫
dy2

∫ ∞
|x|

dy1 〈0|σ(y)ε(x)σ(0) |0〉 .

(E.16)

Using that the operators can be translated as21

O(y) = eP1y1−iP2y2O(0)e−P1y1+iP2y2
, (E.17)

the first term in (E.16) reads

G
(3)
1 ≡

∫
dy2

∫ 0

−∞
dy1 〈0| ε(x)σ(0)σ(y) |0〉

=
∫
dy2

∫ 0

−∞
dy1

∫
dΦ12dΦ3 〈0| ε(0) |p1, p2〉in in 〈p1, p2|σ(0) |p3〉out out 〈p3|σ(0) |0〉

× e−|x|(Ep1+Ep2 )ey
1Ep3e−iy

2p3 +O(e−2m|x|)

=
∫
dΦ12

1
4m2 e

−|x|(Ep1+Ep2 )F ε2(p1, p2)Fσ,∗3 (k̄,−p1,−p2)Fσ1 +O(e−2m|x|) =O(e−2m|x|).

(E.18)

In the first line we inserted a complete set of states between each operator, using (2.5) and
the notation

dΦ12...n = 1
n!

dp1
(2π)2Ep1

. . .
dpn

(2π)2Epn

. (E.19)

Between ε(x) and σ(0) only two particle states can contribute because ε can only create two
particles from the vacuum. Between σ(0) and σ(y), there are many states that contribute
to the correlator but only the single particle state can hope to survive the limit (E.10).
In the second line we integrated over y2 to get a spatial delta function that we used to
integrate over p3, and we also integrated over y1. We also used [31]

out 〈p1, . . . , pn| O(0) |k1, . . . , km〉in = FOm+n(p1, . . . , pn,−k1, . . . ,−km) , (E.20)

for hermitian operators O. This contribution does not survive the limit (E.10).
21With these conventions, P1 is the hamiltonian and P2 is the spatial momentum and both are hermitian

operators on the physical Hilbert space.
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We now treat the second term in (E.16) that reads

G
(3)
2 ≡

∫
dy2

∫ |x|
0

dy1 〈0| ε(x)σ(y)σ(0) |0〉

=
∫
dy2

∫ |x|
0

dy1
∫
dΦ12dΦ3 〈0| ε(0) |p1, p2〉in in 〈p1, p2|σ(0) |p3〉out out 〈p3|σ(0) |0〉

× e−|x|(Ep1+Ep2 )ey
1(Ep1+Ep2−Ep3 )e−iy

2(p1+p2−p3) +O(e−2m|x|)

=
∫
dΦ12

1
2Ep1+p2

1
Ep1 + Ep2 − Ep1+p2

e−|x|Ep1+p2F ε2(p1, p2)Fσ,∗3 (p3,−p1,−p2)Fσ1

+O(e−2m|x|).
(E.21)

where p3 = (Ep1+p2 ,p1 + p2). The steps are identical as above and we now get a non-zero
contribution to the limit (E.10). A similar calculation shows that the third term (E.16) is

G
(3)
3 ≡

∫
dy2

∫ ∞
|x|

dy1 〈0|σ(y)ε(x)σ(0) |0〉 =
∫
dΦ1

1
2m2 e

−Ep1 |x|(Fσ1 )2F ε,∗2 (p1,−k̄) (E.22)

To evaluate the x→∞ limit we can use that the x dependence in the integrand only
comes from the exponential. If the integral is only over p we have

lim
x→∞

1
∆E(x,m2)

∫
dpf(p)e−|x|Ep =

= lim
x→∞

1
∆E(x,m2)

∫
dp√
|x|
f

(
p√
|x|

)
e−|x|(m+p2/(2m|x|))+O

(
p3/
√
|x|
)

= 4πf(0), (E.23)

where we rescaled the integration variable by 1/
√
|x| and expanded the energy with its

Taylor series. When we have an integral over p1 and p2 and the exponential damping
contains Ep1+p2 , we get

lim
x→∞

1
∆E(x,m2)

∫
dp1dp2f(p1,p2)e−|x|Ep1+p2 = 4π

∫
dpf(p,−p). (E.24)

This result is obtained by first changing variables to p1 + p2 and p1−p2 and then rescaling
as above.

Using these results we can take the limit (E.10) and get the contribution of the 3 point
function that reads

G(3) = 4π 1
8πm3F

ε,∗
2 (k̄,−k̄)(Fσ1 )2

− 4πi
∫
dp

1
2(2π2Ep)2

1
2m

1
2Ep −m

F ε2(p, p̃)Fσ1 F
σ,∗
3 (k̄,−p,−p̃)

(E.25)

The contributions from the 4 point function are similar. We have

∫
d2yd2z〈ε(x)ε(0)σ(y)σ(z)〉0 = 2

∫
dy2dz2

∫ ∞
−∞

dy1
∫ y1

−∞
dz1〈ε(x)ε(0)σ(y)σ(z)〉0. (E.26)
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Splitting up the integrals in time-ordered correlators, we get four contributing terms

G
(4)
1 ≡

∫
dy2dz2

∫ |x|
0

dy1
∫ 0

−∞
dz1 〈0| ε(x)σ(y)ε(0)σ(z) |0〉

=
∫
dΦ2

1
2m2

1
Ep1 +Ep2−Ep1+p2

e−|x|(Ep1+p2 )F ε2(p1, p2)Fσ,∗3 (p1, p2,−p3)Fσ1 F ε2(−p3, k̄),

(E.27)

where p3 = (Ep1+p2 ,p1 + p2),

G
(4)
2 ≡

∫
dy2dz2

∫ |x|
0

dy1
∫ y1

0
dz1 〈0| ε(x)σ(y)σ(z)ε(0) |0〉

=
∫
dΦ2dΦ′2

1
2Ep1+p2

1
Ep1 + Ep2 − Ep1+p2

1
Ep1 + Ep2 − Ep′1+p′2

e−|x|(Ep1+p2 )

(2π)δ(p1 + p2 − p′1 − p′2) × F ε2(p1, p2)F ε,∗2 (p′1, p′2)Fσ3 (p′1, p′2,−p′3)Fσ,∗3 (p1, p2,−p3),
(E.28)

where p3 = (Ep1+p2 ,p1 + p2) and p′3 = (Ep′1+p′2
,p′1 + p′2),

G
(4)
3 ≡

∫
dy2dz2

∫ ∞
|x|

dy1
∫ 0

−∞
dz1 〈0|σ(y)ε(x)ε(0)σ(z) |0〉

=
∫
dΦ1

1
4m2 e

−|x|Ep1 (Fσ1 )2|F ε2(−p1, k̄)|2,
(E.29)

and finally

G
(4)
4 ≡

∫
dy2dz2

∫ ∞
|x|

dy1
∫ |x|

0
dz1 〈0|σ(y)ε(x)σ(z)ε(0) |0〉

=
∫
dΦ2

1
2m2

1
Ep1 +Ep2−Ep1+p2

e−|x|(Ep1+p2 )F ε2(p1, p2)Fσ,∗3 (p1, p2,−p3)Fσ1 F ε2(−p3, k̄)

=G
(4)
1 ,

(E.30)

where p3 = (Ep1+p2 ,p1 + p2). We can take the |x| → ∞ limit and we get for the total 4
point function contribution

G(4) = 32π
∫
dp

1
2(2π2Ep)2

1
4m3

1
2Ep − 2mF

ε
2(p, p̃)Fσ,∗3 (p, p̃,−k̄)F ε2(−k̄, k̄)Fσ1

+ 16π
∫
dp1dp2

1
2(2π2Ep1)2

1
2(2π2Ep2)2

1
2m

1
2Ep1 −m

1
2Ep2 −m

(2π)

× F ε2(p1, p̃1)F ε,∗2 (p2, p̃2)Fσ3 (p2, p̃2,−k̄)Fσ,∗3 (p1, p̃1,−k̄)

+ 16π 1
2π2m

(Fσ1 )2

4m4 |F
ε
2(−k̄, k̄)|2.

(E.31)

The integrals in (E.25)) and (E.31) can be evaluated and we find

G(3) = |Fσ1 |2
(
2π + 2

(√
3− 1

)
π − 1

)
,

G(4) = 2|Fσ1 |2
[(

2
(√

3− 1
)
π − 1

)2
+ 8π

((√
3− 1

)
π − 1

2

)
+ 4π2

]
.

(E.32)
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Plugging those results in (E.9) we obtain

|FΘ
1 | = h|Fσ1 |

√(15
8 −

√
3 + 1

2π

)2
+O(h2)

= h|Fσ1 | × 0.302104 . . .+O(h2)
(E.33)

Second approach. This computation can be verified by doing an independent derivation.
Our strategy is to follow the lines of perturbative quantum mechanics and generalize them
to quantum field theory. We split the total hamiltonian as

H = H0 + hV, V =
∫
dxσ(x), (E.34)

where H0 is the hamiltonian of the free Majorana fermion described by the theory at h = 0.
We denote by |ψ〉 the eigenstates of the full hamiltonian H with eigenvalues E that can be
expanded as

|ψ〉 = |ψ〉(0) + h |ψ〉(1) +O(h2), E = E(0) + hE(1) +O(h2), (E.35)

where |ψ〉(0) is an eigenstate of H0 with eigenvalue E(0). In QFT a convenient basis for
those states are the multi-particle states |p1 . . . pn〉. The form factor FΘ

1 reads

FΘ
1 =out 〈p|Θ(0) |0〉in =

(
(0)
out 〈p|+

(1)
out 〈p|h

)(m
2πε(0)+ 15h

8 σ(0)
)(
|0〉(0)

in +h |0〉(1)
in

)
+O(h2)

= h

[
m

2π
(

(0)
out 〈p| ε(0) |0〉(1)

in +(1)
out 〈p| ε(0) |0〉(0)

in

)
+ 15

8 F
σ
1

]
+O(h2).

(E.36)

The problem we need to solve is now to compute the first correction to the energy eigenstates
|p〉(1) and |0〉(1). For this we expand the Schrödinger equation

H |ψ〉 = E |ψ〉 =⇒ (H0 − E(0)) |ψ〉(1) = (E(1) − V ) |ψ〉(0) , (E.37)

where the implication follows by comparing terms in first order in h. Multiplying the
equation by (0) 〈ψ| and using that the form factors of σ are zero for an even number of
particles we get E(1) = 0. Inserting the identity (2.5) we get∑∫

|p1 . . . pn〉 (E(0)
n − E(0)) 〈p1 . . . pn|ψ〉(1) = −

∑∫
|p1 . . . pn〉 〈n|V |ψ〉(0) , (E.38)

where En ≡ Ep1 + . . .+ Epn . Here we are already at order h so we can consider the states
|p1 . . . pn〉 as eigenstates of H0. We need to be careful with degeneracies. For our problem
|ψ〉(0) will either be a one particle state or the vacuum. Due to Lorentz invariance we can set
p = k̄ = (m,0) so that E(0)

p = m will never be degenerate. The vacuum is assumed to have
zero energy and is also never degenerate. If |p1 . . . pn〉 6= |ψ〉(0), we can then invert (E.38)
to get

〈p1 . . . pn|ψ〉(1) = −〈p1 . . . pn|V |ψ〉(0)

E
(0)
n − E(0)

. (E.39)
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This gives all the components of |ψ〉(1) except along |ψ〉(0). Assuming that the norm is
conserved, ie 〈ψ|ψ〉 =(0) 〈ψ|ψ〉(0) we get (0) 〈ψ|ψ〉(1) = 0. Therefore we found

|ψ〉(1) =
∑∫
n 6=ψ

|p1 . . . pn〉
〈p1 . . . pn|V |ψ〉(0)

E(0) − E(0)
n

, (E.40)

where we defined

∑∫
n 6=ψ

|p1 . . . pn〉 ≡
∑∫
|p1 . . . pn〉 −

|ψ〉(0)

(0) 〈ψ|ψ〉(0) such that (0) 〈ψ|
∑∫
n 6=ψ

|p1 . . . pn〉 = 0.

(E.41)
The result (E.40) is the direct generalization of the familiar quantum mechanical result.
We can now proceed to the evaluation of the matrix elements in (E.36). First we have

(0)
out

〈
k̄
∣∣∣ ε(0) |0〉(1)

in = −
∫

dp1
(2π)2Ep1

out
〈
k̄
∣∣∣ ε(0) |p1〉int

in 〈p1|V |0〉out
Ep1

, (E.42)

where we dropped the 0 superscripts in the r.h.s. because everything is in the free theory
sector and we used that ε only interpolates between free particles and |0〉in = |0〉out in free
theory. To continue we compute

〈p1|V |0〉out =
∫
dxe−ixp1Fσ1 = (2π)δ(p1)Fσ1 , (E.43)

where we used the time independence of the Hamiltonian to set t = 0 in σ(t,x) and
Fσ,∗1 = Fσ1 . Using this spatial delta function to perform the integral we get

(0)
out

〈
k̄
∣∣∣ ε(0) |0〉(1)

in = − 1
2m2F

ε
2(k̄,−k̄)Fσ1 = 2π

m
Fσ1 . (E.44)

The second term in (E.36) is computed by similar methods and we get

(1)
out

〈
k̄
∣∣∣ ε(0) |0〉(0)

in = −1
2

∫
dp1

(2π)2Ep1

1
2Ep1

1
2Ep1 −m

Fσ,∗3 (p1, p̃1,−k̄)F ε2(p1, p̃1)

=
(
1− 2π

(√
3− 1

))
Fσ1 .

(E.45)

Plugging those results back in (E.36) we get

FΘ
1 = hFσ1

(15
8 −

√
3 + 1

2π

)
, (E.46)

which is identical to our previous result (E.33).

E.2 Perturbation theory for S(s)

The first order correction to the scattering amplitude in presence of a small magnetic field
was computed in [46]. More precisely they derived the term S(1)(s) in

S(s) = −1 + h2S(1)(s) +O(h4). (E.47)
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We introduce the change of variables

s 7→ w(s) ≡ s(s− 4m2)
4m4 , w 7→ s(w) ≡ 2m2

(
1 +
√

1 + w
)
. (E.48)

The correction S(1) can then be written

S(1)(s) = − iA(w(s))√
w(s)

, (E.49)

where
A(w) = rw

w + 3
4

+ w

∫ ∞
45/4

dv

2π
σ2→3(s(v))
(v − w)

√
v
, (E.50)

where σ2→3 is the part of the inelastic cross section giving the total probability to scatter
2 particles and end up with 3 particles, and s(v) is the function defined in (E.48). The
numerator of the pole term is given by

r = 36|Fσ1 |2, (E.51)

and the inelastic scattering cross section can be written as

σ2→3(s) = B(s)I(s)

B(s) = 4|Fσ1 |2

π

(
√
s+ 2)

5
2 (2
√
s− 1)4 (

√
s− 3)3

(
√
s− 2)

3
2 (
√
s+ 1) (

√
s− 1)

5
2 (
√
s+ 3)

3
2 s

3
2

I(s) =
∫ 1

−1
dt

(
1− µt2

1− νt2

)2 √1− t2

(1− λt2)
5
2

λ = (
√
s+ 1) (

√
s− 3)3

(
√
s− 1) (

√
s+ 3)3 , µ = (

√
s− 2) (2

√
s+ 1)2

(
√
s+ 2) (2

√
s− 1)2λ, ν =

√
s+ 2√
s− 2λ.

(E.52)

From this result we can find out a perturbative expression for the residue g2 of the
scattering amplitude

T (s) = − g2

s−m2 + . . . =⇒ S(s) = − i

N2

g2

s−m2 + . . . (E.53)

where the dots denote all terms that are not the pole term. Using (E.48) we have N2 = 4
√
w.

Therefore we get

S(s) =− ih
2A(w(s))√
w(s)

+ . . .=−ih2r
4
N2

s(s−4m2)
s(s−4m2)+3m4 + . . .

=⇒ g2

s−m2 + . . .= 4h2r

(
1− 3

s(s−4m2)+3m4

)
+ . . .= 12h2r

1
(s−m2)(s−3m2) + . . .

= 6h2r

s−m2 + . . .

(E.54)

Therefore we have
g2 = 6rh2 +O(h4). (E.55)
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We can also get a relation between h2 and the position of the zero in the S-matrix
parametrized by x. Indeed setting S(m2(1− x)) = 0 we get

− 1− 4m4ih2 A(s = m2(1− x))√
m2(1− x)

√
m2(1− x)− 4m2 = 0, (E.56)

where we abused the notation by setting A(s) ≡ A(w(s)). Solving for h2 we have

h2 = −1
2
√

1− x
√

3 + x
1

A(s = m2(1− x)) . (E.57)

If x is sufficiently small we can expand around x = 0 to get

h ≈ 3−1/4

6Fσ1

√
x. (E.58)

F Integral representation for cUV: c-sum rule

Here we review the argument from [32] to derive a sum rule relating the two point function
of the trace of the stress energy tensor to the central charge of the UV CFT.

In Euclidean space and complex coordinates the conservation of the stress energy tensor
becomes

∂̄T + π

2 ∂Θ = 0, (F.1)

where we defined T (z, z̄) ≡ 2πTzz(z, z̄) and T̄ (z, z̄) ≡ 2πTz̄z̄(z, z̄). This gives the following
relations between two point functions

〈∂̄T (z, z̄)T (0, 0)〉 = −π2 〈∂Θ(z, z̄)T (0, 0)〉, 〈∂̄T (z, z̄)Θ(0, 0)〉 = −π2 〈∂Θ(z, z̄)Θ(0, 0)〉.
(F.2)

On the other hand we know how T and T̄ transform under rotations, and it constrains
the two point functions to take the form

〈T (z, z̄)T (0, 0)〉 = F (zz̄)
z4 , 〈T (z, z̄)Θ(0, 0)〉 = G(zz̄)

z3z̄
, 〈Θ(z, z̄)Θ(0, 0)〉 = H(zz̄)

z2z̄2 ,

(F.3)
where F , G and H are unknown functions that do not transform under rotations. Further-
more invariance under translations also gives

〈T (z, z̄)Θ(0, 0)〉 = 〈Θ(z, z̄)T (0, 0)〉. (F.4)

Comparing (F.2) and (F.3) we get that the functions F,G and H must obey

zz̄F ′ + π

2 (zz̄G′ − 3G) = 0, zz̄G′ −G+ π

2 (zz̄H ′ − 2H) = 0. (F.5)

We now define the C function by

C ≡ 2F − 2πG− 3π2

2 H. (F.6)
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Taking a derivative and multiplying by zz̄, a direct comparison with (F.5) gives

zz̄C ′(zz̄) = −3π2H. (F.7)

In the UV CFT the OPE of the stress tensor takes the form

T (z)T (w) = c/2
(z − w)4 + 2 T (w)

(z − w)2 + ∂T (w)
z − w

+ . . . , (F.8)

where the coefficient c of the most singular term is called the central charge of the 2D CFT.
With this OPE in hands it is a simple task to compute the two point functions in (F.3)

in the UV CFT, or equivalently in the short distance asymptotic regime zz̄ → 0. We get

FUV = c

2 , GUV = HUV = 0, (F.9)

where we used Θ = 0 in the CFT, as follows from invariance under global scale transforma-
tions. Going back to Euclidean cartesian coordinates we therefore have∫ ∞

0
dr2C ′(r2) = C(∞)− C(0) = CIR − CUV = cIR − cUV, (F.10)

where in the last equality we used the definition of C (F.6) and the expressions of F ,G and
H in the CFT (F.9). If we assume a massive theory the IR CFT is trivial and we have
cIR = 0. We can therefore use (F.7) and the last expression to get

cUV = −
∫ ∞

0
dr2C ′(r2) =

∫ ∞
0

2rdr3π2H(r2)
r2 = 3π

∫
d2xx2〈Θ(x)Θ(0)〉. (F.11)

Then using the Euclidean spectral representation we get∫
d2xx2〈Θ(x)Θ(0)〉 =

∫ ∞
0

ds

∫
d2xx2ρ(s)

∫
d2p

(2π)2 e
ip·x 1

p2 + s
. (F.12)

The x integral can be easily evaluated by using∫
d2xx2eipx = −(2π)2∇2

pδ
(2)(p), (F.13)

and then we integrate by parts two times to perform the p integral. We get∫
d2p

1
p2 + s

∇2
pδ

(2)(p) = ∇2
p

1
p2 + s

∣∣∣∣
p=0

= − 4
s2 . (F.14)

This finally yields the sum-rule for the central charge of the UV CFT in terms of the
spectral density of the trace of the stress energy tensor

cUV = 12π
(
m−4|FΘ

1 |2 +
∫ ∞

4m2
ds
ρ(s)
s2

)
, (F.15)

where we used (2.7) to integrate the delta function contribution to the spectral density.
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G Normalization of the stress energy tensor form factors

Here we derive a normalization condition that needs to be satisfied by FΘ
2 (s). We follow

closely [31]. Because of Lorentz invariance the most general expression for the 2 particle
form factor of the full stress tensor is

FTµν2 (p1, p2) = a1p
µpν + a2q

µqν + a3p
µqν + a4p

νqµ + a5η
µν , (G.1)

where p ≡ p1 + p2 and q ≡ p1 − p2. The symmetry condition Tµν = T νµ gives a3 = a4 and
conservation gives

∂µT
µν = 0 =⇒ (p1 + p2)µFT

µν

2 (p1, p2) = 0, (G.2)

which yields a1p
2 = −a5 and a3 = 0. Therefore the most general form for the form factor

of the stress tensor is

FTµν2 (p1, p2) = A(s)(pµpν − p2ηµν) +B(s)qµqν , (G.3)

where A and B are Lorentz invariant. However the two terms in (G.3) are linearly dependent
as it can be seen for example by going to the center of mass frame and writing the two
terms explicitly. Therefore there is no loss of generality in setting A(s) = 0, which leads to

FTµν2 (s) = B(s)qµqν , FΘ
2 (s) = (s− 4m2)B(s), (G.4)

where we used q2 = s− 4m2.
On the other hand the stress energy tensor is normalized when acting on one particle

states such that
Pµ |p〉 =

∫
dxT 0µ(x) |p〉 = pµ |p〉 . (G.5)

Hence we get

〈p1|Pµ |p2〉 = pµ2 (2π)2Ep2δ(p2 − p1)

= FT 0µ
2 (p1,−p2)

∫
dxeix·(p1−p2) = FT 0µ

2 (p1,−p2)(2π)δ(p1 − p2),
(G.6)

where in the last equality the exponential with time components simply gives 1 because the
particles have the same mass.

Analytic continuing (G.4) we have

FT 0µ
2 (p1,−p2) = B(s− 4m2)(Ep1 + Ep2)(pµ1 + pµ2 ). (G.7)

Subtracting the expressions multiplying the spatial delta function in the first and second
line of (G.6) we get (

B(s− 4m2)(pµ1 + pµ2 )− pµ2
)
δ(p1 − p2) = 0, (G.8)

where we used (G.7). Evaluating this for µ = 0 at s = 4m2 yields

B(s = 0) = 1
2 . (G.9)

Combining (G.4) and (G.9) we therefore derived the implication of the normalization of
the stress tensor on the 2 particle form factor of the trace, which reads

FΘ
2 (s = 0) = −2m2. (G.10)
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