
1

Safe Low-Level Code Without Overhead is Practical

Solal Pirelli and George Candea

EPFL

Abstract—Developers write low-level systems code in unsafe

programming languages due to performance concerns. The lack of

safety causes bugs and vulnerabilities that safe languages avoid.

We argue that safety without run-time overhead is possible

through type invariants that prove the safety of potentially unsafe

operations. We empirically show that Rust and C# can be extended

with such features to implement safe network device drivers with-

out run-time overhead, and that Ada has these features already.

Keywords—programming languages, safety, performance

I. INTRODUCTION

Programming languages that provide type and memory safety

eliminate entire classes of bugs and security vulnerabilities, yet

unsafe languages remain in use even for new projects due to

performance concerns. Safe language compilers try to avoid

run-time checks if they can prove safety at compile-time but

rely on heuristics. Compilers often do not have the information

necessary to formally prove the safety of operations at compile-

time. We study the necessity of “unsafety”. Is there a practical

way for languages to provide safety without run-time overhead?

We write network device drivers in three safe languages and

a baseline unsafe language to empirically assess performance.

Network drivers have nanosecond-level latency requirements,

which makes even small inefficiencies matter. We use Ada,

Rust, and C# as our safe languages. We choose Ada because of

its focus on safety and its sheer number of features. We choose

Rust and C# because they are mainstream and represent two

major tradeoffs for memory safety. In addition, they both have

“unsafe” dialects that we can use to prototype new language

features. We implement two sets of drivers, both of which can

be used by network software yet are small enough to be ported

and audited with reasonable effort.

We advocate for the systematic use of type invariants for

safety. Type invariants can give compilers enough information

to prove safety while keeping reasoning local and thus scalable.

Languages with such invariants enable compilers to trivially

prove at compile-time that possibly unsafe operations are safe.

For instance, array indexing is safe if the index is guaranteed to

be within the array bounds. Some modern languages provide

types with safety-related invariants, such as Rust’s non-null ref-

erences, but they do not do so in a systematic fashion for each

potentially unsafe operation. Plus, their goal is to help develop-

ers reason about correctness, not to prove safety automatically.

Previous work suggests garbage collection in a language is

a roadblock to fast network drivers [16], but we argue that this

is not the case. Garbage collection is acceptable if the language

also provides non-garbage-collected references whose safety is

checked at compile-time as an alternative.

Since Rust and C# do not have types with all of the invariants

necessary to implement our example drivers, we extend these

languages with the features we need. These extensions enable

their respective compilers to trivially prove the safety of our

network drivers. Surprisingly, Rust’s focus on correctness

through its ownership semantics comes at the cost of forbidding

patterns necessary to safely implement the data structures we

need without run-time overhead. As a result, we extend Rust

with a new kind of reference that enforces lifetime, which is

necessary for safety, but not ownership, which only helps with

correctness. We extend C# to add arrays with bounds known at

compile-time and enhance its non-garbage-collected reference

type. We do not need to extend Ada, as it already has all the type

invariants we need.

We empirically evaluate our safe drivers and show that their

performance matches that of the same driver written in C, as we

preview in Figure 1. Thanks to type invariants, the compilers

have enough information to avoid run-time checks and thus our

safe drivers reach performance parity with the C baseline. We

also observe that the choice of compiler for C has more impact

on performance than the choice of compile-time or run-time

checks for C#, evidence that the impact of run-time checks on

performance is not as strong as one would expect compared to

other factors in compilation.

In summary, this paper provides evidence that safe low-

level code without overhead is practical using type invariants,

though tedious with current languages and compilers because

they were not designed for this.

Figure 1. Throughput vs. latency of one of our sets of drivers

until the drivers start dropping packets. All drivers are safe and

contain no compiler-inserted checks.

Appears in ICSE 2023

2

II. PROBLEM STATEMENT

In this paper, “safety” means memory safety and crash freedom:

safe code never accesses memory it does not own and never

performs invalid operations such as divisions by zero. Such

safety prevents vulnerabilities such as Heartbleed [14].

Safe languages such as Java and C# provide safety using

both compile-time and run-time checks. For instance, the Java

compiler inserts null checks before each dereference. Some

checks can be combined or elided, as in the following single-

threaded Java example:

for (int n = 0; n < array.length; n++) {
 array[n] = 0;
}

The compiler is allowed to only check that array is not null

once before the loop, and to elide the bounds check on the array

access entirely since the index is provably in bounds. The

HotSpot compiler for Java indeed elides bounds checks [34].

However, these optimizations require heuristics to recognize

specific code shapes and do not provide guarantees. The C#

compiler currently has open issues regarding elision heuristic

failures [9–11], and so does the Rust compiler [37]. Hardware

also has heuristics such as branch prediction to alleviate the cost

of safety checks, but again without guarantees. We will not dis-

cuss hardware heuristics further in this paper.

Developers of performance-sensitive code such as device

drivers often use unsafe languages such as C and C++. These

languages enable developers to write code without the run-time

overhead of safety checks, but in doing so push the burden of

ensuring safety onto developers. For data that is internal to the

program, such as data structures used to track hardware state,

no checks are necessary as long as developers write correct

code. For instance, an index into a ring buffer can be used to

index into that buffer without checks as long as it starts at a

valid value and is reset to 0 once it reaches the end of the ring

buffer. This is not feasible in a language such as Java, in which

the compiler inserts a safety check for each ring buffer access

because it lacks information to prove at compile-time that the

index is always updated properly.

Because developers make mistakes, and these have security

consequences, there is a large body of work on making C safer.

Instead of eliding checks from a safe language, such work adds

checks to C. Cyclone [23], Deputy [8], and Checked C [15] all

require developers to write annotations such as array sizes to

give information to the compiler, which inserts run-time checks

if it cannot statically prove safety. Control-C [39] instead limits

the expressivity of the language, such as requiring array indexes

to occur in specific patterns, and uses a solver to prove safety.

Control-C code that cannot convince the solver is disallowed.

Previous work has found a performance penalty from run-

time safety checks. Emmerich et al. [16] found slowdowns in

the tens of percent for network drivers in safe languages, which

they partly attribute to garbage collection. Narayanan et al. [28]

wrote a driver in Rust, which does not need garbage collection,

but still found overhead compared to C due to run-time checks

inserted by the compiler. ASAP [42] reduces the bulk of this

overhead by removing the most expensive checks, thus trading

safety for performance.

In theory, a sufficiently advanced type system combined with a

solver can guarantee safety and even correctness at compile-

time. Dependent types, for instance, enable developers to write

arbitrarily complex type invariants such as a binary tree being

balanced. Using dependent types to avoid safety checks in array

indexing was proposed by Xi and Pfenning [44], but requires

the use of SMT solving, which is an intractable problem. The

Ada 2012 language has dependent types, but checks invariants

at run-time [35], thus it supports any invariant developers may

write at the cost of run-time checks.

Another theoretical possibility is to manually prove that

one’s use of unsafe operations is safe. In particular, one can use

“unsafe” dialects offered by some languages. In these dialects,

operations such as array indexing do not guarantee safety and

are thus done without checks, effectively dropping down to the

safety level of C for parts of the program. Kiselyov and Shan

proposed [25] the use of unsafe code to write “trusted kernels”

that wrap general-purpose types into richer types such as “non-

empty list” and provide safe operations on these types without

run-time checks. Yanovski et al. [45] adapted this idea to Rust

using an idea from Beingessner [4], though Rust’s type system

limits the use of such kernels to specific code patterns. How-

ever, these kernels are one-off features that each require manual

proofs to ensure they only use unsafe operations in safe ways,

which requires expertise and time.

Some programming languages offer practical automated

features to avoid safety bugs at compile-time, such as nullable

reference types in C# [29]. C# developers can annotate which

variables may or may not be null and receive warnings when a

possibly null value is assigned to a variable of a non-null type.

However, this analysis depends on trusted annotations and is

thus unsound [6], because of compatibility concerns with code

written before the introduction of this feature.

In this paper, we study whether there is a practical way for

programming languages to systematically provide safe low-

level operations without run-time overhead. Unlike prior work,

we focus on avoiding overhead entirely rather than minimizing

it, and we use mainstream programming languages that do not

require manual proof effort nor solver-based heuristics.

Another way to view the problem is whether it is possible

in practice to give enough information to a compiler so that it

can trivially prove at compile-time that each possibly unsafe

operation in the code is, in fact, safe. Since we focus on safety

rather than correctness, this is a simpler problem than the ones

solved by heavyweight techniques such as manual proofs with

dependent types. We leave the question of correctness to devel-

opers, and only require the language to provide safety without

run-time overhead.

If mainstream programing languages can provide safety

without run-time overhead, both safety and correctness will

benefit. Reasoning about unsafe languages, whether manually

or automatically, is considerably harder than reasoning about

safe languages. For instance, modeling memory in a way that

allows memory-unsafe operations adds complexity. If low-level

systems were written in safe languages, not only would entire

classes of bugs be eliminated, but verification and bug-finding

tools would be easier to develop.

3

III. CHOICE OF STUDIED LANGUAGES

To study how languages can enable safety without run-time

overhead, we start with C as a baseline for performance, and we

use three safe languages for comparison.

We choose Ada as the first safe language due to its focus on

safety and the sheer number of features it has [19]. Ada is older

than most languages still in use and was developed specifically

for safety using strong typing such as non-null references,

ranged integer types, and arrays with custom bounds. This

makes it more likely that Ada may have the features necessary

for safety without run-time overhead. Ada does contain unsafe

features that can be mixed with safe code without limits, but

these are well-known and typically start with the “Unchecked”

prefix. For instance, Unchecked_Deallocation frees any value

without preventing the developer from using the value in source

code after it was freed, which is unsafe. Despite its age, there is

a modern Ada compiler named GNAT based on GCC, ensuring

performance comparisons with modern languages are fair.

To select the remaining safe languages, we use popularity,

extensibility, and support for low-level programming as our

main criteria. We want languages that are mainstream, can be

extended with reasonable effort, and already support most of

the operations we need. We want to avoid having to alter the

design of languages to the point where they are no longer the

same language.

We start from three well-known programming language

rankings to estimate popularity: the StackOverflow Developer

Survey [38], the RedMonk rankings [40], and the TIOBE in-

dex [41]. StackOverflow directly asks developers the languages

they use. RedMonk uses GitHub repositories and questions on

StackOverflow as proxy metrics for popularity. TIOBE uses

search engine results for language names. The methodologies

are subject to discussion, but we do not know of a standard way

to estimate popularity. We include all languages that reach the

top 20 in any of the three rankings, then group them by category

as we show in Table 1.

Only two categories from the table are relevant for this

study. First, compiled languages with garbage collection, in

which we include those that use reference counting such as

Swift. Second, “other”, which only contains Rust.

Rust enforces memory safety at compile-time through its

concepts of ownership, borrowing, and lifetimes. This avoids

the need for run-time garbage collection and thus reduces the

overhead of memory management, but makes the language

harder to use [7]. Rust also enforces “aliasing XOR mutability”:

a value is, at any given time, accessible by either any number

of read-only references or by a single writeable reference, but

not both. This prevents correctness bugs such as data races in

concurrent code or accidental modification of a data structure

while iterating it in single-threaded code. Some data structures

such as doubly linked lists are incompatible with Rust’s model,

thus Rust provides an “unsafe” dialect with raw pointers whose

ownership and lifetime are not checked. Rust’s unsafe dialect

also provides unsafe operations without run-time checks such

as unchecked array indexing.

Rust is a natural candidate for this study as it is different from

other languages yet relatively mainstream, and its unsafe dialect

can be used to write custom types that internally avoid safety

checks. In fact, some parts of Rust’s standard library contain

unsafe code as they cannot be written in safe Rust.

Among the garbage-collected languages we choose C# due

to its support for low-level programming and its extensibility

thanks to its unsafe dialect. C# provides safety and developer

convenience thanks to garbage collection, but also low-level

features that remain safe but require more effort to use such as

“value types” that do not have object headers and can be passed

by reference without garbage collection. The latest C# versions

have added more low-level features such as making references

to stack-allocated data more flexible [43]. Furthermore, C# has

an unsafe dialect that allows the use of pointers, intended for

interoperability with unsafe languages. We can use this dialect

to prototype language extensions without having to change the

compiler or runtime. This also makes C# a good choice given

our choice of Rust, since both languages can be extended in a

similar fashion.

We explicitly did not choose any interpreted languages,

even those that can be compiled to native code such as Python

using PyPy. These languages have features with overhead by

default, such as Python’s unbounded “big integers”. Such over-

head is not a key issue for languages that are designed to be

interpreted, since interpretation already sacrifices speed.

There are plenty of interesting research languages we could

have used, but they are typically not designed to be as usable as

mainstream languages, and they are not always maintained. For

instance, we could have chosen a solver-aided language such as

Dafny [26], but it requires manual effort to write proofs in ad-

dition to writing code. We could have chosen a research lan-

guage such as Sing#, a C# extension used for Singularity [20],

but it is not maintained thus its compiler may be hard to extend

and not include modern optimizations. While Rust is also the

subject of formal methods research [24] to avoid bugs in unsafe

Rust, developers do not need to know this to write safe Rust.

Category Languages

Compiled, with

garbage collection

 C#, Dart, Go, Java, Kotlin,

Objective-C, Scala, Swift, Visual

Basic, VB.NET

Interpreted JavaScript, Lua, MATLAB, Perl,

PHP, PowerShell, Python, R, Ruby,

Shell, TypeScript

Markup CSS

Other Rust

Query SQL

Unsafe Assembly, C, C++, Delphi

Table 1. Programming languages in the top 20 of rankings from

the StackOverflow, RedMonk, and TIOBE rankings, sorted by

category.

4

IV. DOMAIN: NETWORK DEVICE DRIVERS

We choose the domain of network device drivers, specifically

user-space ones that bypass the kernel, to empirically evaluate

language features in terms of performance. We base our drivers

on TinyNF [31], a minimal device driver for the Intel 82599

network card in C. We reuse the TinyNF driver and write an-

other driver using the driver model of DPDK [13], a user-space

networking library. DPDK’s driver model is more flexible but

more complex due to the use of buffer pools. Our choice is

based on four reasons.

First, user-space network drivers have real-world use, they

are not toy examples. Networking code can use libraries such

as DPDK to avoid the overhead of system calls at the cost of

exclusive access to a network card. In practice, that network

card can be virtualized [30], multiplexing it into virtual cards

that applications can have exclusive access to.

Second, network drivers have strict performance require-

ments. The smallest Ethernet packet, including framing, is 84

bytes, thus handling 10 Gb/s of such packets means each packet

must be handled in 67ns. Handling packets in two directions,

which is common for network software such as firewalls, halves

the time budget. Spreading load across multiple cores can help,

but Ethernet speeds are growing as well, currently up to 400

Gb/s [21].

Third, we believe that network drivers are complex enough

to be representative of low-level systems code that uses unsafe

code for performance but would benefit from safety. The use of

buffer pools in the DPDK model means the driver uses a data

structure. Data structures are too complex for current automated

network software verification techniques, which must therefore

assume their correctness [32, 46]. In the case of a buffer pool,

the code typically accesses a single element of a buffer array at

a time, preventing the use of check elision heuristics that apply

to loops over entire arrays.

Fourth, the TinyNF codebase is small enough that we can

translate it to safe languages with reasonable human effort. It

consists of around a thousand lines of C code, compared to

larger codebases such as DPDK which have tens of thousands

of lines of code. This small size also means our translations can

be audited with reasonable effort.

When we refer to “safe” drivers in this paper, we mean the

safety of everything that is not inherently unsafe. The drivers

require unsafe operations during initialization. They must query

the PCI metadata of the network card to know where the card’s

registers are mapped in memory, then convert the integer read

from this metadata into a pointer to the block of registers. This

is done by reading and writing to PCI metadata using port-

mapped I/O then asking the OS to map the space of the network

card’s registers into virtual memory. This is unavoidable given

the hardware interface, though this unsafe code can be handled

in the OS instead, as in Singularity [20]. The driver must also

request “pinned” memory from the OS, i.e., memory whose

physical address will not change, then ask the OS for said phys-

ical address. This enables such memory to be used by the net-

work card, which uses physical addressing. No OS interactions

are needed after initialization, and performance concerns any-

way discourage such interactions during packet processing.

V. MEMORY MANAGEMENT

Network drivers use memory pools rather than explicit memory

allocation and deallocation for performance reasons, which also

helps with safety. Using a memory pool gives developers full

control over memory management, including the choice of

when to refill the pool if desired, unlike the implicit pools often

used by malloc/free implementations. Using a pool also turns

“use after free” bugs into correctness issues. For instance, if a

buffer is simultaneously used by the network card to receive

data and by the application using the driver to process a packet,

this is a correctness bug, but the code is safe. We use “safety”

here to mean that programs cannot interfere with each other or

with the OS. A safe program may still have security issues

among its own tenants, such as a firewall accidentally sharing

state between connections.

Our safe driver implementations need to avoid performance

overheads in the implementation and use of a memory pool.

Overheads in the default memory allocation and deallocation

operations, such as in garbage collection, only matter if they

prevent the implementation of an overhead-free memory pool.

Overheads due to run-time checks in operations such as array

indexing in pool implementations are the same fundamental

problem as checks in driver implementations. We can avoid

such overheads in the same way as we do in the drivers, as we

explain below.

Ada and Rust both support memory management without

run-time overhead through language features, allowing for a

memory pool that performs the same as in C. Ada does have

run-time checks for memory operations that touch different

pools, as support for storage pools is built into the language, but

these checks can be avoided by using the same pool in the entire

codebase. Rust, by design, uses only compile-time checks for

memory safety.

This leaves C#, whose garbage collection adds run-time

overhead to memory operations even when a garbage collection

is not in progress. This is a tradeoff for overall performance: in

theory, the collector could go through the entire heap every

time, but this is too slow on large heaps. Instead, the collector

tracks changes to references with help from the compiler. When

a reference to an object is modified, the compiler adds code that

sets a specific bit in a table used by the collector, ensuring that

the collector knows exactly where to look. In theory, one could

disable garbage collection entirely, but this is not practical as it

would prevent memory deallocation to preserve memory safety.

This leaves one option for garbage-collected languages:

provide some kind of reference that is not garbage-collected

and instead follows rules more akin to Ada and Rust. This is a

form of arena-based memory management, in which allocations

within an “arena” are handled specially and objects outside of

the arena cannot refer to memory inside the arena. C# has a

basic form of arena-based memory management: developers

can declare types that can only live on the stack, and a special

kind of reference that can only point to these types and that can

itself not be stored on the heap. This is an intermediate design

point that is as safe and fast as Rust but not as expressive, in

exchange for being simpler to use.

5

VI. SAFETY WITH TYPE INVARIANTS

As we defined in §II, the problem is whether developers can

give enough information to a compiler to prove at compile-time

that all possibly unsafe operations are safe.

We propose the use of type invariants as a solution to this

problem, i.e., predicates that hold on all instances of a type.

Type invariants are already used in practice, but we propose that

languages should systematically provide them for each possibly

unsafe operation. Consider the following C code:

int* value;
bool set_value(int* v) {
 if (v == NULL) { return false; }
 value = v;
 return true;
}

The set_value function guarantees that value is non-null.

Thus, a developer can use value once set_value has been

called without having to write a safety check. Consider the fol-

lowing C# code, which looks equivalent:

class Example {
 int[] value;
 Example(int[] v) {
 if (v == null) { throw new ...; }
 value = v;
 }
}

The same invariant holds: value is not null once the object is

initialized. However, this information is not available to the

compiler outside of the Example constructor, as it is not a type

invariant of int[]. The compiler can only analyze signatures

rather than implementations, since there are too many paths

within implementations [5]. Thus, it must insert a null check

when value is used, as the signature lacks information to prove

value is not null. C# developers can optionally annotate their

code with nullability information, but the compiler cannot trust

that the annotations are correct because they can describe arbi-

trarily complex conditions and thus must insert checks anyway.

Rust, however, does have an invariant for “non-null”, which

is in fact the default:

// Lifetime annotations omitted for brevity
struct Example {
 pub value: &[u32]
}

The member value in this struct is never null, thus the compiler

does not have to insert null checks when it is used. Instead, the

compiler enforces that any instance of Example is created with

a non-null value. If a developer wants a possibly absent array,

they can use Rust’s Option type to wrap the array type, at which

point the compiler requires a check before every use to ensure

the Option indeed contains an array.

Rust enables safe code without null checks, but null checks

are not the only kind of checks that are typically necessary in

safe languages. Going back to the Rust struct above, indexing

the array forces the compiler to insert a bounds check, unless

the compiler can prove that the index is in bounds, for instance

in a loop.

Type invariants can help avoid bounds checks just as they do

with null checks. Consider the following Ada declarations:

-- Ranges are inclusive in Ada,
-- i.e., 0 <= n <= 9
type Small is range 0 .. 9;
type SmallArray is array(Small) of Integer;

The first declaration is for a ranged integer, and the second is

for an array indexed by that range. Because this information is

contained within the type’s invariant, an Ada compiler can omit

bounds checks when a SmallArray is indexed by a Small, as

any value of type Small must be in bounds. The developer or

the compiler must instead insert checks when converting from

an integer with a different range, since the integer may not be

in the target range’s bounds.

Safety checks when converting a value of a general-purpose

type to a type with an invariant are not overhead compared to

C, because when writing C, developers must write these checks

manually. For instance, checking that some user input is smaller

than the size of an array is necessary if the input is used to index

that array later. But in languages without type invariants, this

check is only recorded in the implementation of some function

and in the developer’s memory. With type invariants, compilers

can use signatures to know that a check was performed and

avoid generating pointless run-time checks.

Programming languages can thus enable safe code without

overhead as long as they only permit unsafe operations on types

with invariants that trivially prove safety. Converting a piece of

untrusted data to a type with the right invariant is only needed

once, and it is not overhead since unsafe code must also convert

and potentially reject the input. Once a value is converted to a

type with an invariant, some operations on that value return a

value with that same invariant, while others need a conversion.

For instance, dividing a value of type “integer modulo N” by 2

returns a value of the same type, since the resulting value must

mathematically be below N. However, incrementing that inte-

ger returns a value with a less strict type invariant, since the

value can exceed N. Converting the result back to its original

type code can be implicit given hardware instructions that

match. For instance, incrementing an “integer modulo 256” can

be done with a “byte increment” instruction.

Type invariants also enable compilers of safe languages to

avoid memory overheads in the same way a programmer would

in an unsafe language. Consider again Rust’s Option type,

which represents “a value, or nothing”. Since Rust references

cannot be null, per their type invariant, the compiler can use the

memory representation of “null”, e.g., all-zeroes, to represent

an empty Option of a reference type, instead of using a separate

Boolean value to track whether the option contains a value.

Rust similarly has “non-zero” integer types with an invariant

enabling the compiler to optimize the representation of Option.

We present below a systematic overview of type invariants

that modern languages need to provide safety without run-time

overhead. This list matches the potentially unsafe operations

exposed by modern programming languages for low-level

code: using references, dividing integers, and indexing arrays.

It may not be exhaustive for future languages that could add

more potentially unsafe operations.

6

Valid references. To avoid overhead, memory safety must be a

type invariant, i.e., references that always point to valid

memory without the need for run-time bookkeeping. This

means references cannot be null and cannot require extra work

such as garbage collection to ensure memory is properly freed.

One way to implement this is through memory arenas: by

allocating a group of objects together, each object can refer to

any other object in the same arena without overhead, and the

arena is freed as a whole, at which point accessing any of its

contents is a compile-time error.

C# implements a limited form of memory arenas: it supports

special references that can only point to types on the stack and

cannot be stored on the heap, thus there is one arena for the

stack, with compile-time checks and no run-time overhead, and

one arena for the heap, without compile-time checks but with

the run-time overhead of garbage collection.

Rust implements valid references through its more complex

ownership model, which enables more scenarios than C#’s

stack-only references but requires more developer effort. The

lifetime of Rust references must often be specified explicitly.

Ranged integers. To avoid overhead, safe languages must

provide integer bounds as type invariants, including bounds not

known at compile-time such as the number of network cards.

This enables compilers to prove the absence of division by zero.

Most languages already provide a few specific bounds that

correspond to machine types, such as C’s uint16_t for integers

between 0 inclusive and 216 exclusive. This enables compilers

to translate operations in these types to the equivalent machine

operations, such as addition of 16-bit integers. However, some

high-level languages have no ranged integers at all. In Python,

for instance, all integers are mathematical integers of infinite

range, thus all integer operations incur the overhead of general-

purpose mathematical integer arithmetic. Even with a fast path

for “sufficiently small” integers, the code has the overhead of

checking if the fast path applies.

Ranged arrays. To avoid overhead, safe languages must

provide arrays that encode their length, i.e., the range of valid

indices, in their type. In combination with ranged integers, this

enables a compiler to prove that an array access is valid at com-

pile-time instead of requiring run-time checks.

Array ranges must be allowed to have bounds not known at

compile-time, as with integer ranges. For instance, a variable

must be allowed to contain the index of the network card that

was last queried for new packets and be used to index an array

of network cards, even though the number of network cards is

machine-dependent and unknown at compile-time. Rust in par-

ticular does not meet this criterion: its array types can include

their length, but only if the length is a compile-time constant.

All three of our proposed invariants enable developers to

give information to the compiler explicitly and formally instead

of keeping it in their head. Developers in C must keep track of

which references are guaranteed to be valid and which are not,

of what range each integer variable has, and of what range each

block of allocated memory can be indexed with. For ranges that

are not compile-time constants, this is typically done by making

the lower bound 0 and storing the upper bound in a variable, as

a compiler would for a ranged array or integer type.

VII. PROTOTYPE

We write safe drivers, as defined in §IV, in Ada, Rust, and C#,

and a baseline unsafe driver in C. To do so, we extend Rust and

C# to add limited forms of the type invariants we described.

In Ada, the only issue we have is that ranged array types by

default carry both upper and lower bounds, even if the latter is

0, requiring extra memory. We use a workaround suggested by

the AdaCore developers [1] to store only the upper bound.

In Rust, we implement a limited form of ranged arrays by

using existing compiler support for eliding checks if an access

is performed with an integer of a small enough type, such as

indexing an array with 256 elements using an 8-bit unsigned

integer. This causes small memory overheads for arrays that do

not need 256 elements but must have them to benefit from

bounds check elision, which we find acceptable for a prototype.

Interestingly, Rust’s “aliasing XOR mutability” model is too

restrictive for device drivers. Some driver instances must share

state, such as a buffer pool used by both receive and transmit

queues. Both queues must be able to mutate the pool: receive

queues take buffers and transmit queues give buffers back.

However, in safe Rust, the queues cannot simultaneously have

a mutable reference to the pool. Furthermore, drivers need to

use volatile reads and writes for memory-mapped I/O, since the

network card can change its data at any time. The card logically

has a mutable reference to its own data. But in Rust’s model, if

the card can mutate itself, then nobody else should be allowed

to even access it. The solution used by the Rust version of the

Ixy [16] network driver is to use unsafe Rust code, forgoing

safety guarantees. Instead, we write our own type of reference

that internally uses unsafe code but exposes a safe interface,

which we show in Figure 2. Our custom LPtr type enforces

lifetime, and thus memory safety, but not ownership, leaving

correctness to developers. It has a field of type PhantomData, a

special Rust type that evaporates during compilation and only

serves as a marker for data lifetime in niche scenarios such as

implementing a reference. In addition, we implement an array

type with lifetime but not ownership, matching our LPtr type.

In C#, we use the same bounds check elision trick as in Rust,

with the same overhead, but we first extend the language with

ranged arrays. The C# maintainers have prototyped such arrays

already [12], but they are not yet part of the language. We also

add support for arrays of stack-only references.

pub struct LPtr<'a, T> {
 ptr: NonNull<T>,
 _lifetime: PhantomData<&'a mut T>,
}
impl<'a, T> LPtr<'a, T> {
 pub fn new(src: &'a mut T) -> LPtr<'a, T>;
 pub fn read_volatile(&self) -> T;
 pub fn write_volatile(&self, value: T);
 pub fn map<U, F>(&self, f: F) -> U
 where F: FnOnce(&mut T) -> U;
}

Figure 2. Extract from our custom reference type that enforces

lifetime but not ownership. Some methods and annotations

omitted for readability.

7

VIII. EVALUATION

In this evaluation, we show that (1) our drivers are safe, (2) they

have no run-time performance overhead compared to the unsafe

baseline, and (3) our approach leads to safe code that is easy to

read but not easy to write, as current compilers are not designed

for this and thus make the task harder than it needs to be.

As we stated in §IV, we wrote safe drivers in Rust, C#, Ada,

and unsafe baselines in C, using two models: a “restricted” and

a “flexible” one. Our C baselines perform no run-time safety

checks. We use Clang 13 for C, Rust 1.58, .NET 6, and GNAT

11 for Ada. We intended to use GCC for C, but it produces a

slower binary than Clang, as we describe later. For C# we use

ahead-of-time compilation, which produces the same code as

the default just-in-time compilation, so that we can inspect the

assembly code that we run.

Are our drivers safe? Our safe drivers only use unsafe code

during initialization for the steps that are inherently unsafe as

we describe in §IV, and for the implementation of our Rust and

C# extensions. Our extensions are about 200 lines each of Rust

and C# that we believe but do not formally prove are safe. Thus,

our drivers are safe assuming the correctness of the languages

themselves as well as our extensions.

Do our safe drivers impose run-time overhead? We

benchmark our safe drivers to ensure their performance

matches our baseline in practice, since checking the exact

equivalence of assembly code is not practically feasible. We use

two machines in a setup based on RFC 2544 [36]: a “device

under test” runs the driver under test and a “tester” runs the

MoonGen packet generator [17]. Both machines run Ubuntu

18.04 on two Intel Xeon E5-2667 v2 CPUs with power-saving

features disabled and have two Intel 82599ES NICs. We use

only one Ethernet port per card to ensure PCIe bandwidth is not

a bottleneck. We measure throughput using minimally sized

packets: 64 bytes of content plus 20 bytes of Ethernet framing.

We transmit such packets for 30 seconds at a configurable rate.

Our drivers are single-threaded. We set the CPU frequency to

1.5 GHz instead of the default 3.6 GHz of this CPU model, be-

cause otherwise our drivers saturate the links and exhibit iden-

tical performance. We write “forwarder” programs on top of the

drivers that modify the source and destination MAC addresses

of each packet and forward it to the opposite card. We measure

the highest throughput at which the drivers do not drop packets,

then we measure the latency of packets in increments of 1 Gb/s

from 0 to the maximal loss-free throughput. This is the same

benchmark used to evaluate the original TinyNF driver [31].

We first benchmark the drivers for the “restricted” model,

in which a single driver instance combines reception and trans-

mission to share data structures and thus minimize overhead.

This model can only be used by network software that handles

packets one by one without reordering them. We show the re-

sults in Figure 3, which we already previewed at the beginning

of this paper. The results are nearly identical for the different

drivers, except that the Rust version sustains more throughput.

These results are consistent across different benchmark runs.

The latency bump around 11 Gb/s is odd, but the TinyNF paper

already reported it [31] even when using DPDK and Ixy, which

use entirely different codebases. It is likely a hardware issue.

We then benchmark the drivers for the “flexible” model, in

which reception and transmission use a shared buffer pool. This

model supports all network software, including those that must

reorder packets. We show the results in Figure 4. C# is still close

to C, with slightly higher latency at the highest load. Rust keeps

its advantage compared to C, though it has higher latencies at

lower loads. Surprisingly, the Ada version can sustain higher

throughput not only compared to the other drivers of the same

model but even to the drivers of the restricted model, albeit with

higher latency than the restricted model. We double-checked

the Ada code to ensure it performs the same tasks in the same

order including volatile reads and writes. The only explanation

we can find is that, to remove bounds checks from the Ada code,

we use more specific types than in other languages. In particu-

lar, we use integers bounded to the batch size for reception and

to the number of received packets for transmission. The Ada

compiler may produce better code when using Ada’s bounded

integers, since they provide additional information.

Figure 3. Throughput vs. latency until the drivers start drop-

ping packets for our drivers using the “restricted” model, with

a shaded 5-95% ranges for latencies.

Figure 4. Throughput vs. latency until the drivers start drop-

ping packets for our drivers using the “flexible” model, with a

shaded 5-95% ranges for latencies.

8

We investigate further by writing drivers using the “restricted”

model but with a static output count. That is, instead of deter-

mining the number of network cards at run-time, this number is

known at compile-time using the pre-processor in C, constant

generic parameters in Rust, and generic values in Ada. C# has

no such feature. This requires re-compiling the source code for

each deployment, but it could be practical for network software

that intrinsically has a fixed output count. For instance, a fire-

wall could have “internal” and “external” virtual devices and be

chained with a router whose number of outputs depends on the

actual number of physical devices. In theory, using static output

counts gives compilers more room for optimizations, such as

unrolling loops. We show the results in Figure 5. Ada reaches

the same maximum throughput as the version with the flexible

model but with a lower latency, which is expected given this

restricted model. Rust performs almost identically to Ada,

within the noise of small variations across experiments. The C

version barely improves with a static output count. Since we

used language features in Rust and Ada for this experiment but

had to use the more general pre-processor in C, this provides

more evidence that code using specific language features may

enable compilers to optimize better.

To measure the impact of run-time checks on performance,

we write a C# driver without our C# extensions. The compiled

assembly code of this driver thus includes run-time checks, un-

like other drivers we wrote. We compare it to our C driver using

different compilers, to use the performance difference between

compilers of the same language as a baseline. This leads to un-

expected results, which we show in Figure 6. First, using GCC

to compile our C driver leads to a larger performance penalty

than we expected. We confirm by inspecting the assembly code

that GCC spills many more values to the stack than Clang does.

Second, the impact of run-time checks in the C# version is

lower than the impact of using a different C compiler. In fact,

the C# version with run-time checks has similar performance to

the C version, though the former’s latency spikes near its break-

ing point in terms of throughput. These results suggest that run-

time safety checks may have less impact on performance than

the specific optimization choices made by compilers.

In addition to benchmarks, we compare the size of our driv-

ers in terms of lines of code and resulting assembly instructions.

While such comparisons are not precise since individual lines

of code and assembly instructions vary in complexity, it gives

an idea of how close the sizes of our drivers are. We present the

results in Table 2. All driver sources have roughly the same size,

as expected since most lines read and write to the same network

card registers no matter the language. However, the assembly

code generated by the Rust compiler is larger than that of the

other three. We manually inspect the assembly code and find

that the Rust compiler unrolls more loops. We manually con-

firm that forcing C compilers to do the same does not change

performance, though Rust’s choice to unroll may be due to the

specifics of the assembly it produces rather than a general opti-

mization. This may be why the Rust restricted driver performs

better than the ones in other languages.

We manually inspect the assembly code to see whether the Ada,

Rust, and C# compilers insert checks. These checks call specific

functions when they fail, thus we only need to look for calls.

We confirm that there are none. We also confirm that the source

code does not contain more checks than the C version. The size

of the codebases makes such an audit tractable.

Language
 Lines of

code

 x86 instrs in main loop

 Restricted Flexible

C (unsafe) 1256 267 418

Rust 1114 586 791

C# 1277 233 439

Ada 1261 229 375

Table 2. Code metrics for our drivers. The two driver models

share initialization code thus we count the combined lines of

code. The main loop includes only packet processing code.

Figure 5. Version of Figure 3 using a static output count.

Figure 6. Version of Figure 3 using GCC for C and without our

C# extensions.

9

Does our approach lead to maintainable code? We evaluate

the maintainability of our drivers qualitatively by inspecting

their source code. To keep comparisons fair, we do not consider

our language extensions, as they are only prototypes in unsafe

code and thus require worse syntax to use than real extensions

would. Overall, the answer is mixed: the code of our drivers is

as easy to read as other code in the respective languages but

writing and evolving it is difficult due to the lack of language

and compiler support.

The source code of the final version of our drivers looks like

normal code in their respective languages. Besides the use of

our language extensions, there is little that would tip a reader

that we carefully wrote the code to avoid overhead. It is possible

to avoid overhead without having to write unusual or contorted

code, but this does not mean it is easy.

Writing our drivers was difficult because current compilers

were not designed to statically prove safety. Small changes in

the source code cause large changes in the compiled assembly

code. For instance, the GNAT Ada compiler accepts code that

looks safe to developers but in fact requires safety checks at

run-time due to language semantics and inserts checks without

a warning nor any other means of “debugging” this behavior.

The process of writing safe code without overhead today,

even in Ada, which has the necessary features already, is similar

in theory to writing manual proofs of correctness but worse in

practice because of the lack of tooling. Proofs typically read

well once they are finished, yet slight changes in which lemmas

are used and in which order can break the proof due to the proof

checker being heuristic-based. Similarly, the code of our drivers

reads well yet slight tweaks cause run-time checks as compilers

can no longer prove the checks are unnecessary. However,

whereas proof checkers enable developers to write intermediary

assertions and provide information about why the proof process

failed, compilers provide no way to access their internal logic.

Without such information, writing safe code without overhead

is tedious and slow. Developers must guess what source code

might cause the compiler’s heuristics to output the desired as-

sembly code and check that output after every change until they

find a way to convince the compiler to not insert checks.

This situation is made worse by the impact on performance

of minor differences in assembly code. We found such minor

differences that caused performance regressions on the order of

10%. Thus, one must first spend time convincing the compiler

to not insert run-time checks, then benchmark the code. If the

code is not fast enough, one must convince the compiler again,

this time using different code with the same semantics. Editing

the assembly by hand is possible but unsafe and error-prone.

The safety of Ada, Rust, and C# did help us when writing

drivers. For instance, we model network card registers as in-

dexes in a buffer. We made copy-paste errors while translating

C constants for register indexes, leaving some of them orders-

of-magnitude too large. In C, such code silently does not work,

as the OS maps more memory than we need. In safe languages,

this fails with a descriptive error message. The type invariants

we used also caught programming errors such as forgetting to

initialize variables, whereas in C the lack of such invariants

means that these errors cause compiler warnings at best.

IX. DISCUSSION

We discuss why unsafety is neither necessary nor sufficient to

avoid checks, how run-time checks impact performance, how

our recommendations could be implemented in practice, the

significance of our work for software engineering, and the lim-

itations of our proposal.

Performance requires information, not unsafety. Our

drivers are fast because we give compilers enough information

to optimize them, using our language extensions when needed.

Unsafety can be an escape hatch to implement extensions, but

it is neither necessary nor even sufficient. Unsafe languages can

also have semantics unfriendly to optimizers, causing overhead

and noise. For instance, the default aliasing model of C and C++

pointers forces compilers to assume that any pointer to char

could point to any variable. Thus, writing to a vector of 8-bit

chars in a loop is slower than the same operation to a vector of

32-bit integers because the compiler must assume the vector

length might be modified by any write to a char pointer [22].

The C99 standard improved this situation with the restrict

keyword to disable this aliasing model, and we use it in our

driver. Even with C’s unsafety, there was no way to give the

compiler aliasing information before the restrict keyword,

thus imposing a performance penalty even on unsafe code.

Thankfully, while global information is required to prove

correctness, only local information is required to prove safety

in practice. Type invariants are enough to show that individual

operations are safe, and compilers can use them automatically

because they only need to prove that a specific type matches a

specific operation rather than having to combine invariants into

higher-level proofs as for correctness.

The importance of local reasoning is also why the presence

of garbage collection is not an issue on its own. One can write

safe low-level modules without overhead in a garbage-collected

language as long as the language also has a form of memory

management without overhead. which does not need to be as

convenient as garbage collection. For instance, Frampton et

al. [18] extended Java for “high-level low-level programming”,

enabling developers to use Java for a memory manager as long

as they only use low-level operations. High-level modules can

use garbage collection if its overhead is negligible compared to

other operations such as network requests.

Run-time checks may not be as bad as one expects since

performance at the nanosecond scale already varies depending

on minor changes in compiler heuristics. The special C# driver

without language extensions we used for Figure 6 is only barely

worse than the C# driver with our language extensions, and

both are better than our C driver compiled with GCC instead of

Clang. Inspecting the assembly code does not reveal obvious

culprits, as the “CPU-friendliness” of assembly code is hard to

evaluate. This is consistent with results from Popescu et

al. [33], who insert bounds checks in Rust code that developers

manually elided with unsafe code. Adding the checks back

sometimes improves performance, for instance because a func-

tion that is not profitable to inline in practice is inlined by the

compiler when it has no bounds checks due to being small

enough. Safety checks also have an effect on code alignment,

which is important in practice especially for loops [27].

10

Tooling support is necessary for performance. We need an

evolution, not a revolution. Programming languages already

have types with invariants built in, and compilers already try to

automatically prove that run-time checks are unnecessary. To

enable safe code without run-time overhead, languages should

take a more systematic approach to the types they provide given

the possibly unsafe operations they provide, and compilers

should surface the reasoning they perform internally. The C#

language and compiler already have a limited form of this for

the C# “nullable reference types” feature: the language exposes

both nullable and non-nullable reference types, and the com-

piler warns when it cannot prove that the target of a dereference

is non-nullable. The developer then has two options: they can

attempt to modify their code to prove non-nullability, or they

can use the “null-forgiving” operator “!” to insert a run-time

check instead. In practice, even non-nullable dereferences need

a runtime check as the compiler’s analysis is unsound for com-

patibility purposes, but this does not need to be the case in a

new language.

Language support could also make writing code that uses

precise types easier, such as Scala 3’s path-dependent types [3]

that let developers define the return type of a function in terms

of its parameters. Without such support, writing functions such

as “index of a character in a string” is cumbersome as it requires

explicitly defining the type and bounds of the string.

The benefits of safety without run-time overhead go be-

yond pure performance improvements for safe code. The need

for performance is a key reason unsafe languages are still used

for new projects, rather than being relegated to legacy code-

bases. Past safe languages such as Pascal or Objective-C have

all but disappeared in favor of modern safe languages such as

Java and Swift, but the unsafe C and C++ are still in use.

Giving software engineers the performance benefits of C

with the safety benefits of modern high-level languages would

free resources used to maintain tooling for unsafe languages. In

particular, the need to provide safety for modern codebases

written in unsafe languages requires engineering and research

time. Handling C-style unsafe semantics in a verification tool

requires considerable effort compared to handling languages

that provide memory and type safety. Even if an analyzer for C

code requires memory safety, it must properly detect and report

code that is not memory safe to have good usability, since a

programmer might accidentally write unsafe code.

We do not mean that languages such as Cyclone [23] and

Checked C [15] are not useful compared to our proposal. When

the risks of existing legacy code are high enough, annotating

and adding run-time checks to existing C code is valuable. They

also enable developers to use their existing C expertise.

The limitations of our proposal to provide type invariants

to enable developers to write safe code without overhead are

related to developer effort. Software engineers can write safe

code in unsafe languages without explicitly proving why their

code is safe. With our proposal, this is not possible. Engineers

must either explicitly use the right types for their code and

structure their code so the invariants hold or accept a run-time

check and the corresponding performance penalty.

X. THREATS TO VALIDITY

This study is limited by scale. The effort of writing safe drivers

without run-time overhead scales exponentially with the num-

ber of languages and hardware platforms, particularly due to the

time it takes to implement a change in a safe language while

also convincing the compiler to not insert checks.

Internal validity. We used one kind of network card on one

kind of server. Our results may not reproduce exactly on other

kinds of hardware since performance at the nanosecond scale is

particularly affected by minor variations such as cache size.

Faster network speeds, such as 400 Gb/s Ethernet, may bring

new challenges. The specific compiler versions we used may

also affect results, as we have already noticed a performance

difference between GCC and Clang for the baseline C driver.

Construct validity. We inspected the compiled code of our

drivers to confirm the lack of run-time checks and we measured

their performance empirically, but these are only proxy metrics

for equivalence. Ideally, we would prove that the compiled code

of each safe driver is exactly equivalent to that of the baseline,

but this is not currently feasible given the complexity of x86

assembly code, the complexity of automated verification, and

the lack of a definition for what equivalence even means, given

that not all side effects are relevant.

We assumed that the safe languages we use are safe. This

may not be true, since neither the language specifications nor

the compilers we use are formally proven to be correct. Ada’s

specification, in particular, is so complex that the authors of

GNAT do not believe they fully understand the rules around

reference safety [2].

External validity. We chose network drivers for reasons we

outlined in §IV, but they may not generalize to all kinds of low-

level systems. In particular, we did not need high-level safety

features such as Rust’s ownership system that prevents data

races as we do not use multi-threading. In fact, in this study,

Rust’s ownership system was more of a hindrance than a help.

XI. CONCLUSION

We provide evidence that safety without run-time overhead is

practical. If languages provide types with invariants that match

the requirements of potentially unsafe operations, such as

ranged integers and arrays, compilers can trivially prove safety

at compile-time. Checking that untrusted data satisfies the in-

variant is necessary, but this is also the case in unsafe code.

We build network card drivers in Ada, Rust, and C#, as well

as a baseline in C. To do so, we extend Rust and C# with new

features that enable the driver code to not need any run-time

checks. Empirical performance evaluation at the nanosecond

scale reveals that the performance is indeed on par with C as we

expect. Interestingly, Ada already has the necessary features for

safety without run-time overhead.

We hope these results encourage future work on safe low-

level systems code without overhead.

XII. DATA AVAILABILITY

All code and data for this paper are publicly available at

https://github.com/dslab-epfl/tinynf.

https://github.com/dslab-epfl/tinynf

11

REFERENCES

[1] Ada RFC: Lower Bound Constraint:

https://github.com/AdaCore/ada-spark-rfcs/blob/mas-

ter/considered/rfc-lower-bound.rst.

[2] Ada RFC: Simpler accessibility rules:

https://github.com/AdaCore/ada-spark-rfcs/pull/47.

[3] Amin, N., Rompf, T. and Odersky, M. 2014. Foundations

of Path-Dependent Types. Proceedings of the 2014 ACM

International Conference on Object Oriented Program-

ming Systems Languages & Applications (New York, NY,

USA, 2014), 233–249.

[4] Beingessner, A. You can’t spell trust without Rust. Carleton

University.

[5] Boonstoppel, P., Cadar, C. and Engler, D. 2008. RWset:

Attacking Path Explosion in Constraint-Based Test Gener-

ation. Tools and Algorithms for the Construction and Anal-

ysis of Systems (Berlin, Heidelberg, 2008), 351–366.

[6] C# Reserved attributes: Nullable static analysis: 2021.

https://docs.microsoft.com/en-us/dotnet/csharp/language-

reference/attributes/nullable-analysis.

[7] Coblenz, M., Mazurek, M.L. and Hicks, M. 2022. Garbage

Collection Makes Rust Easier to Use: A Randomized Con-

trolled Trial of the Bronze Garbage Collector. 2022

IEEE/ACM 44th International Conference on Software

Engineering (ICSE) (2022), 1021–1032.

[8] Condit, J., Harren, M., Anderson, Z., Gay, D. and Necula,

G.C. 2007. Dependent Types for Low-Level Program-

ming. Proceedings of the 16th European Symposium on

Programming (Berlin, Heidelberg, 2007), 520–535.

[9] dotnet/runtime issue #9422: Loop condition doesn’t elide

bounds check: 2021. https://github.com/dotnet/runtime/is-

sues/9422.

[10] dotnet/runtime issue #11359: Regressions in span indexer

performance: https://github.com/dotnet/runtime/is-

sues/11359.

[11] dotnet/runtime issue #44415: Bounds checks are no longer

elided when using nint for indexing:

https://github.com/dotnet/runtime/issues/44415.

[12] dotnet/runtime pull request #60519: ValueArray:

https://github.com/dotnet/runtime/pull/60519.

[13] DPDK: 2021. https://www.dpdk.org/.

[14] Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J.,

Payer, M., Weaver, N., Adrian, D., Paxson, V., Bailey, M.

and Halderman, J.A. 2014. The Matter of Heartbleed. Pro-

ceedings of the 2014 Conference on Internet Measurement

Conference (New York, NY, USA, 2014), 475–488.

[15] Elliott, A.S., Ruef, A., Hicks, M. and Tarditi, D. 2018.

Checked C: Making C Safe by Extension. 2018 IEEE Cy-

bersecurity Development (SecDev) (2018), 53–60.

[16] Emmerich, P., Ellmann, S., Bonk, F., Egger, A., Sánchez-

Torija, E.G., Günzel, T., Luzio, S.D., Obada, A.,

Stadlmeier, M., Voit, S. and Carle, G. 2019. The Case for

Writing Network Drivers in High-Level Programming

Languages. ACM/IEEE Symposium on Architectures for

Networking and Communications Systems (ANCS 2019)

(Sep. 2019).

[17] Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F.

and Carle, G. 2015. MoonGen: A Scriptable High-Speed

Packet Generator. Proceedings of the 2015 Internet Meas-

urement Conference (New York, NY, USA, 2015), 275–

287.

[18] Frampton, D., Blackburn, S.M., Cheng, P., Garner, R.J.,

Grove, D., Moss, J.E.B. and Salishev, S.I. 2009. Demysti-

fying Magic: High-Level Low-Level Programming. Pro-

ceedings of the 2009 ACM SIGPLAN/SIGOPS Interna-

tional Conference on Virtual Execution Environments

(New York, NY, USA, 2009), 81–90.

[19] Hoare, C.A.R. 2007. The Emperor’s Old Clothes. ACM Tu-

ring Award Lectures. Association for Computing Machin-

ery. 1980.

[20] Hunt, G.C. and Larus, J.R. 2007. Singularity: Rethinking

the Software Stack. SIGOPS Oper. Syst. Rev. 41, 2 (Apr.

2007), 37–49.

DOI:https://doi.org/10.1145/1243418.1243424.

[21] IEEE Standards Association IEEE 802.3bs-2017.

[22] Incrementing Vectors: https://travis-

downs.github.io/blog/2019/08/26/vector-inc.html.

[23] Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J.

and Wang, Y. 2002. Cyclone: A Safe Dialect of C. 2002

USENIX Annual Technical Conference (USENIX ATC 02)

(Monterey, CA, Jun. 2002).

[24] Jung, R., Jourdan, J.-H., Krebbers, R. and Dreyer, D. 2017.

RustBelt: Securing the Foundations of the Rust Program-

ming Language. Proc. ACM Program. Lang. 2, POPL

(Dec. 2017). DOI:https://doi.org/10.1145/3158154.

[25] Kiselyov, O. and Shan, C. 2007. Lightweight Static Capa-

bilities. Electron. Notes Theor. Comput. Sci. 174, 7 (Jun.

2007), 79–104.

DOI:https://doi.org/10.1016/j.entcs.2006.10.039.

[26] Leino, K.R.M. 2010. Dafny: An Automatic Program Veri-

fier for Functional Correctness. Proceedings of the 16th In-

ternational Conference on Logic for Programming, Artifi-

cial Intelligence, and Reasoning (Berlin, Heidelberg,

2010), 348–370.

[27] Loop Alignment in .NET 6: https://devblogs.mi-

crosoft.com/dotnet/loop-alignment-in-net-6/.

[28] Narayanan, V., Huang, T., Detweiler, D., Appel, D., Li, Z.,

Zellweger, G. and Burtsev, A. 2020. RedLeaf: Isolation

and Communication in a Safe Operating System. 14th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI 20) (Nov. 2020), 21–39.

[29] Nullable reference types - C# guide: https://docs.mi-

crosoft.com/en-us/dotnet/csharp/nullable-references.

[30] Peter, S., Li, J., Zhang, I., Ports, D.R.K., Woos, D., Krish-

namurthy, A., Anderson, T. and Roscoe, T. 2015. Arrakis:

The Operating System Is the Control Plane. ACM Trans.

Comput. Syst. 33, 4 (Nov. 2015).

DOI:https://doi.org/10.1145/2812806.

12

[31] Pirelli, S. and Candea, G. 2020. A Simpler and Faster NIC

Driver Model for Network Functions. 14th USENIX Sym-

posium on Operating Systems Design and Implementation

(OSDI 20) (Nov. 2020), 225–241.

[32] Pirelli, S., Valentukonytė, A., Argyraki, K. and Candea, G.

2022. Automated Verification of Network Function Bina-

ries. NSDI (2022).

[33] Popescu, N., Xu, Z., Apostolakis, S., August, D.I. and

Levy, A. 2021. Safer at Any Speed: Automatic Context-

Aware Safety Enhancement for Rust. Proc. ACM Program.

Lang. 5, OOPSLA (Oct. 2021).

DOI:https://doi.org/10.1145/3485480.

[34] Range Check Elimination - OpenJDK HotSpot Wiki:

2021. https://wiki.openjdk.java.net/dis-

play/HotSpot/RangeCheckElimination.

[35] Rationale for Ada 2012 - Subtype predicates:

http://www.ada-auth.org/standards/12rat/html/Rat12-2-

5.html.

[36] RFC 2544 - Benchmarking Methodology for Network In-

terconnect Devices: 1999.

https://www.ietf.org/rfc/rfc2544.txt.

[37] rust-lang/rust issue #81253: Array bound tests with for

loop that get removed with while loops:

https://github.com/rust-lang/rust/issues/81253.

[38] StackOverflow 2022 Developer Survey: https://sur-

vey.stackoverflow.co/2022/.

[39] Sumant Kowshik, D.D. and Adve, V. 2002. Ensuring Code

Safety Without Runtime Checks for Real-Time Control

Systems. Proc. Int’l Conf. on Compilers Architecture and

Synthesis for Embedded Systems, 2002 (Grenoble, France,

Oct. 2002).

[40] The RedMonk Programming Languages Rankings: Janu-

ary 2022: https://redmonk.com/sogrady/2022/03/28/lan-

guage-rankings-1-22/.

[41] TIOBE Index: https://www.tiobe.com/tiobe-index/.

[42] Wagner, J., Kuznetsov, V., Candea, G. and Kinder, J. 2015.

High System-Code Security with Low Overhead. 2015

IEEE Symposium on Security and Privacy (2015), 866–

879.

[43] Write safe and efficient C# code: https://docs.mi-

crosoft.com/en-us/dotnet/csharp/write-safe-efficient-code.

[44] Xi, H. and Pfenning, F. 1998. Eliminating Array Bound

Checking through Dependent Types. Proceedings of the

ACM SIGPLAN 1998 Conference on Programming Lan-

guage Design and Implementation (New York, NY, USA,

1998), 249–257.

[45] Yanovski, J., Dang, H.-H., Jung, R. and Dreyer, D. 2021.

GhostCell: Separating Permissions from Data in Rust.

Proc. ACM Program. Lang. 5, ICFP (Aug. 2021).

DOI:https://doi.org/10.1145/3473597.

[46] Zhang, K., Zhuo, D., Akella, A., Krishnamurthy, A. and

Wang, X. 2020. Automated Verification of Customizable

Middlebox Properties with Gravel. 17th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI 20) (Santa Clara, CA, Feb. 2020), 221–239.

