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RESEARCH FOCUS

MVDC Technologies and Systems
▶ System Stability
▶ Protection Coordination
▶ Power Electronic Converters
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SCHEDULE

Before the coffee break

1) Semiconductor Devices
▶ An overview
▶ Si vs. WBG devices
▶ IGBT vs SiC gate driving

2) Gate Driving of SiC Devices
▶ Switching characteristics
▶ Gate driver structure and principles
▶ Auxiliary power supply considerations

3) Protection of SiC devices
▶ Crosstalk voltage elimination
▶ Short circuit protection
▶ Measurements and sensing

After the coffee break

4) High power converters with SiC
▶ State of the art solutions
▶ Features, Advantages, Benefits
▶ SiC integration challenges

5) SiC MOSFET integration
▶ Parallel connection
▶ Series connection
▶ Si/SiC hybrid solutions

6) Discussion
▶ Trends
▶ Challenges
▶ Opportunities

⇒ Tutorial pdf can be downloaded from: (Source: https://www.epfl.ch/labs/pel/publications-2/publications-talks/)
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SEMICONDUCTOR DEVICES
An overview
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POWER ELECTRONIC APPLICATIONS - SMPS

▶ By far the largest market in power electronics
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POWER ELECTRONIC APPLICATIONS - VARIABLE SPEED DRIVES
▶ Continuously improving the efficiency in industrial processes
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POWER ELECTRONIC APPLICATIONS - ELECTRIC TRANSPORTATION
▶ Moving people and goods with electrical energy
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POWER ELECTRONIC APPLICATIONS - WIND GENERATION
▶ Enabling renewable energy generation
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POWER ELECTRONIC APPLICATIONS – PHOTOVOLTAIC POWER GENERATION

▶ Enabling renewable energy generation
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POWER ELECTRONIC APPLICATIONS - PUMPED HYDRO STORAGE PLANTS
▶ Improving flexibility and efficiency in hydropower applications
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POWER ELECTRONIC APPLICATIONS – HIGH POWER DRIVES

▶ Medium voltage drives for high power applications
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POWER ELECTRONIC DEVICES

▶ Power semiconductors are key enabling technology for modern power electronics
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POWER SEMICONDUCTORS - REQUIREMENTS

Power Density Handling Capability
▶ Low on-state and switching losses (traditional trend: improved technology curves)
▶ Low thermal resistance (device active area selection and chip joining technology)
▶ High operating temperatures (low leakage current and robustness)

Controllable and Soft Switching Characteristics
▶ Soft and controllable turn-off (low overshoot voltages and EMI levels)
▶ Turn-on controllability (gate control/response for optimum transients and losses)

Ruggedness and Fault Handling
▶ SOA: Turn-off current capability (wide Safe-Operating-Area)
▶ Fault-Handling: Short circuit capability for IGBT (protection for system)
▶ Fault-Handling: Surge current capability for diode/IGCT (protection for system)

Device Reliability
▶ Current/voltage sharing paralleled/series devices (positive temp co. in on-state)
▶ Stable conduction/switching (stable device parameters)
▶ Stable voltage blocking (stable device parameters, low cosmic ray FIT)

Powerfull and Reliable Package
▶ Compact (chip packing density, low parasitic elements, optimum electrical layout)
▶ Powerful (high current, high voltage, high temperature)
▶ Reliable (temperature and power cycling, chip protection)
▶ Fault Conditions (explosion resistance, fail short)

▲ Signal processing - Lateral devices

▲ Power processing - Vertical devices

▲ Typical high power packages (Hitachi Energy)
[0] Source: Dr. Munaf Rahimo, MTAL
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LIMITS OF SILICON DEVICES

Wide Band-Gap materials are available, offering:
▶ higher operating frequencies
▶ higher operating temperatures
▶ lower leakage currents
▶ smaller devices

▲ Coverage area of different devices

Parameter Silicon SiC GaN
Band Gap – Eg eV 1.12 3.26 3.39
Critical Field – Ecrit MV/cm 0.23 2.2 3.3
Electron Mobility – μn cm2/Vs 1400 950 1500
Permitivity – εr 11.8 9.7 9
Thermal Conductivity – λ W/cmK 1.5 3.8 1.3

Ron =
4BV2

ε0εrE2crit

▲ Device limits (theoretical)
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SOME DIFFERENCES BETWEEN SIC AND SI DEVICES
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PREDICTION OF MARKET GROWTH

▶ Si devices are approaching its material limit, but still mature and reliable
▶ SiC power MOSFETs are suitable for high voltage, high efficiency and high power density applications

1970 1980 1990 2000 2010 2020 2030 20401970 1980 1990 2000 2010 2020 2030 2040

IGCTIGCT Super junction

Next generation IGBT

Net generation MOSFET
Pe

rfo
rm

an
ce

 a
nd

 M
a r

ke
t

EPE 2023, Aalborg, Denmark Sep. 08, 2023 Power Electronics Laboratory | 19 of 142



PRODUCTS

▶ Industrial products released are mainly below 1.7kV
▶ Medium voltage device (3.3kV, 6.5kV) are under development
▶ Higher voltage device (10kV, 15kV) are already demonstrated
▶ Main high power contenders are IGBT and IGCT (SCR and GTO as well)
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IGCT: CHARACTERISTICS

IGCTs’ main characteristics:
▶ Thyristor based device
▶ Lowest conduction loss of fully controllable devices
▶ Integrated in GDU
▶ Only available as press-pack
▶ Snubberless turn-off

Traditional IGCT application:
▶ Low frequency (<1 kHz)
▶ Hard switched

The main types of IGCTs:
▶ Asymmetric
▶ Reverse conducting - RC-IGCT
▶ Reverse blocking - RB-IGCT

Compared to the IGBT the IGCT:
▶ Cannot control turn-on di/dt through GDU
▶ Requires clamp circuitry
▶ Cannot turn OFF short circuit current
▶ Has significant GDU power consumption
▶ Requires bulky GDU capacitors to maintain constant

gate-cathode voltage at turn-off

▲
The press-packed GCT is always integrated into the gate driver board to minimise inductance between gate
and cathode

▲ The clamp circuit and current and voltage waveforms for the S3 and S4 during turn-on and turn-off transients
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IGCT - GATE UNIT DESIGN

SOFTGATE IGCT Gate Unit

▶ Gate unit tailored for soft switching
▶ Historically, gate unit is designed for hard turn-OFF

Integration of multiple functions into a single ON channel:
▶ Turn-ON function
▶ Retrigger function
▶ Backporch function
▶ Negative-Voltage Backporch functions

▲ Simplifed SOFTGATE circuitry

▲ Realized SOFTGATE gate unit [1]
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IGCT - GATE UNIT DESIGN.

SOFTGATE IGCT Gate Unit

▶ Gate unit tailored for soft switching
▶ Historically, gate unit is designed for hard turn-OFF

Integration of multiple functions into a single ON channel:
▶ Turn-ON function
▶ Retrigger function
▶ Backporch function
▶ Negative-Voltage Backporch functions

▲ SOFTGATE units during testing ▲ IGCT stacks
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IGBT: CHARACTERISTICS

IGBTs’ main characteristics:
▶ Insulated gate
▶ Fully controllable
▶ Voltage controlled
▶ High power/voltage ratings
▶ High switching speed
▶ Simple integration
▶ Available as module and press-pack

Additional benefits:
▶ Limitation and turn-off of short circuit current
▶ Low voltage drop in ON state

Commonly available in:
▶ Modules
▶ Press-Pack
▶ StakPak

Switching performance:
▶ Can be externally affected by Gate Drive Unit
▶ Offers controllable di/dt with adequate gate resistance values
▶ Does not require external circuitry for safe operation

Voltage Current VON VON

Device Class [kV] Rating [A] @1kA[V] @2kA[V]
IGBT/diode 4.5 1600 2.30 3.40
IGBT/diode 4.5 2000 2.55 3.65

IGBT 4.5 2100 1.90 2.70
GTO 4.5 2000 2.20 2.70

Thyristor 4.5 1150 1.35 1.65
IGCT/diode 4.5 2200 2.00 2.50

IGCT 4.5 4000 1.50 1.80
▲ Typical conduction performance of common semiconductor devices

Typical ratings for MV IGBTs:

▶ 4.5 kV-6.5 kV
▶ 900 A-1200 A

▲ IGBT packaging includes modules, press-pack, and StakPak units
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IGBT - GATE DRIVER DESIGN

Multiple functions
▶ Turn on
▶ Turn off
▶ Protection
▶ Monitoring
▶ Communication

Features
▶ Power supply (isolated, Bootstrap,...)
▶ De-saturation (short circut protection)
▶ Undervoltage monitoring
▶ Interlocking time management (in dual GD)
▶ Active Miller Clamp
▶ TSEP supervision
▶ Error handling
▶ ...

Realizations
▶ Many dedicated ICs (driver core)
▶ Integration of desired features
▶ Analogue vs. digital
▶ Integration with/into device
▶ ...

▲ Various IGBT Gate Driver realizations
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GATE DRIVING OF SIC DEVICES
Reliability-oriented gate driving of SiC devices
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IMPORTANCE AND CHALLENGES

Gate driver: the link between the control and the power

▶ Suitable gate driving voltage window
▶ Protection
▶ High speed switching capability IC Driver

PWM

VEE

VCC

Rg,ON

Rg,OFF

GND

GND

GND

CP

CN

Power
Device

▲ source: AgileSwitch ▲ source: EPFL Racing Team

▲ source: Infineon
▲ Short circuit withstanding time.

⇒ Realizing reliable and noise-free gate driving of SiC MOSFET is challenging
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HIGH-SPEED SWITCHING OF SIC MOSFETS - NON-IDEAL PARAMETERS

Analyze the influence of parasitics on the switching of SiC MOSFETs

▶ Coupling of common source inductance

Ls =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ldd Mds Mdg

Msd Lss Msg

Mgd Mgs Lgg

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
▶ Nonlinear junction capacitance

Coss = f(vds)
▶ Channel current introduces heat generation [2]
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HIGH-SPEED SWITCHING OF SIC MOSFETS - CIRCUIT MODEL

Modeling of switching characteristics of SiC MOSFETs
▶ Nonlinear junction capacitance
▶ Influence of the common source inductance
▶ Influence of the Coss charging and discharging current
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Nonlinear differential equations

Case by case simplifications are required based on different configurations and switching stage [3] [4].
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HIGH-SPEED SWITCHING OF SIC MOSFETS - SWITCHING PROCESS

Modeling of switching characteristics of SiC MOSFETs
t1 − t2 : Drain-source current rising stage.
dvds
dt ≈ 0, dids

dt > 0

t2 − t3 : Drain-source voltage falling stage.
dids
dt ≈ 0, dvds

dt < 0, dvgs
dt ≈ 0

t5 − t6 : Drain-source voltage rising stage.
dids
dt ≈ 0, dvds

dt > 0, dvgs
dt ≈ 0

t6 − t7 : Drain-source current falling stage.
dvds
dt ≈ 0, dids

dt < 0
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HIGH-SPEED SWITCHING OF SIC MOSFETS - LS INFLUENCE

Common source inductor has significant influence on high speed switching
▶ di

dt is limited by common source inductor
▶ Switching loss is higher due to reduced speed
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CRITICAL ISSUES REGARDING GATE DRIVING OF SIC MOSFETS

Basic elements of a gate driver:
▶ Positive gate driving voltage
▶ Negative gate voltage
▶ Gate driver resistor
▶ Signal isolator
▶ Auxiliary power supply
▶ Common Mode Transient Immunity (CMTI)
▶ Crosstalk voltage suppression
▶ Short circuit protection
▶ Overvoltage protection
▶ Digital gate driver

Isolation barrier

PWM

VEE

VCC

Rg,ON

Rg,OFF

GND

Power
Device

CP1

D

S

s

VCC

VEE

Low voltage side High voltage side

Gate driver
 power supply

g

Signal 
isolator

CP2

▲ Source: Infineon [5] [6].
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POSITIVE GATE VOLTAGE

Tradeoff between short circuit withstanding capability and on state voltage drop:
▶ Higher positive gate source voltage brings less conduction loss
▶ Higher positive gate source voltage brings higher short circuit current

▲ Source: Infineon. Left: 1.2kV/150A Si IGBT, IKY75N120CS6. Right: 1.2kV/127A SiC MOSFET, IMW120R014M1H

⇒ Auxiliary power supply voltage should be carefully monitored
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OFF-STATE GATE VOLTAGE

Tradeoff between reliability and false turnon of the device:
▶ Lower gate-source voltage put more stress to the weak gate oxide of the device
▶ Lower threshold voltage of SiC MOSFET. Higher gate-source voltage increases risk of false turnon
▶ Lower gate-source voltage brings more third-quadrant conduction loss

▲ source: Infineon [7]
▲ source: Wolfspeed, CPM3-1200-0021A.

⇒ Tolerable negative gate source voltage of SiC MOSFET is much smaller than Si IGBT
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SELECTION OF GATE RESISTOR

Fully control of power switch is realized by changing gate source voltage (Rg, vg)[5]

▶ voltage slew rate - from load requirement
dvds
dt = 1

Cgd

VG−Vmiller
Rg

▶ Current slew rate - from voltage overshoot
dids
dt = 2km(vgs − Vth) vgsdt IC Driver

PWM

VEE

VCC

Rg,ON

Rg,OFF

GND

GND

GND

CP

CN

Power
Device

▲ Gate driver structure. ▲ Gate charge curve from the device datasheet.

▲ Dependence of turn off dv/dt on gate driving resistance.
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SIGNAL ISOLATOR
Types [8][9][10]

▶ Fiber Optics (a)
▶ Optocoupler (b)
▶ Coreless transformer (c)
▶ Transformer with magnetics (c)
▶ capacitive coupling (d)

Selection Considerations
▶ Isolation voltage
▶ Common mode transient immunity
▶ Temperature
▶ Time delay

(a) (b)

(c) (d)
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POWER SUPPLY FOR GATE DRIVERS

Selection consideration [11] [12]
▶ Higher accuracy of the power supply
▶ Enough gate driving power
▶ Importance of isolation voltage
▶ Lower coupling capacitance between primary side and secondary side

Isolation barrier
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POWER SUPPLY FOR GATE DRIVERS

Novel gate driver isolator concept
▶ Coupled inductor [13]
▶ PCB embedded transformer [14]
▶ Optic isolated power supply [15]
▶ Wireless power transfer [16] [17]

(a)  (b) 

(c) (d)
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COMMON MODE TRANSIENT IMMUNITY

Common mode transient immunity [18]
▶ Avoid false triggering of PWM > 100V/ns
▶ Reduce EMI on low voltage circuits

Isolation barrier
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PROTECTION OF SIC DEVICES
Crosstalk Phenomenon Elimination
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WHAT IS CROSSTALK PHENOMENON?

The coupling between gate loop and power loop
▶ Gate-drain capacitance
▶ Common source inductance
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WHAT IS CROSSTALK PHENOMENON?

Side effect cause by crosstalk phenomenon
▶ Unwanted turn-on introduce extra power loss
▶ Overstress of the weak gate oxide of SiC MOSFETs

L s_L

Vg_L

Ls_H

Vg_H

VDC

Rg_L

R g_H

Lg_L

Lg_H

vds _H

vgs _L

Rg = 20Ω, low device temperature = 38°C

Rg = 5Ω, high device temperature = 86°C
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ANALYTIC MODELING OF CROSSTALK VOLTAGE

Based on device switching model
▶ Symmetrical complementary devices during switching
▶ Analytic model based on the active device model
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SUPPRESSION OF CROSSTALK VOLTAGE FROM GATE-DRAIN CAPACITANCE

For devices without common source inductor

Ls=0
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⇒ Creating low impedance gate loop during off-state is of vital importance
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CROSSTALK VOLTAGE ELIMINATION - ADDING PARALLEL CAPACITOR

For devices without common source inductor
▶ Negative gate source voltage [19]
▶ Added gate-source capacitor [20]
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CROSSTALK VOLTAGE ELIMINATION - ACTIVE MILLER CLAMP

Method reported in 2006 [21]
▶ Gate source voltage is sensed and compared with a lower value
▶ Clamping branch to bypass the turnoff resistor
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CROSSTALK VOLTAGE ELIMINATION - ACTIVE GATE DRIVER

Active gate driver [22]
▶ Large internal gate resistance cancels with the effectiveness of Miller clamp circuit
▶ Precharge/discharge gate source capacitor during different phases of switching device
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DESIGN CONSIDERATIONS FOR ACTIVE MILLER CLAMP

Influence of loop parasitic parameters [23]
▶ Clamping circuit should be palced as close to gate as possible
▶ Clamping loop impedance coordination between gate loop and the power loop oscillation frequency

Vp-p = 1.64V, Cclamp = 47nF

Vp-p = 2.46V, Cclamp = 10uF

EPE 2023, Aalborg, Denmark Sep. 08, 2023 Power Electronics Laboratory | 48 of 142



LIMITATIONS OF CONVENTIONAL METHODS

Influence of common source inductor [4]
▶ Influence of the common source inductor cannot be bypassed by low impedance off-state gate loop
▶ Measurement of gate source voltage is incorrect
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↯ Simply reducing off-state impedance may even increase the crosstalk voltage
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HIGH OFF-STATE IMPEDANCE GATE LOOP CROSSTALK VOLTAGE ELIMINATION

A bidirectional clamping branch is added in parallel with the gate-source capacitor [4]
▶ High off-state impedance gate loop to bypass influence of common source inductor
▶ Pre-charged negative gate-source voltage to eliminate influence of gate-drain capacitor
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HIGH OFF-STATE IMPEDANCE GATE LOOP CROSSTALK VOLTAGE ELIMINATION

A bidirectional clamping branch is added in parallel with the gate-source capacitor [4]
▶ High off-state impedance gate loop to bypass influence of common source inductor
▶ Pre-charged negative gate source voltage to eliminate influence of gate-drain capacitor
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EXPERIMENTAL VERIFICATION

▶ Peak negative gate source voltage is greatly reduced
▶ Crosstalk voltage is independent of switching speed
▶ Crosstalk voltage is independent of junction temperature

Compared with Miller clamp method Switching speed dependence Junction temperature dependence 

⇒ Suitable for high speed switching
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HIGH OFF-STATE IMPEDANCE GATE LOOP CROSSTALK VOLTAGE ELIMINATION

An improved version [4]
▶ Bidirectional switch based on p-MOSFETs
▶ No extra control signals are required
▶ Zero negative gate -source voltage for most of time
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PROTECTION OF SIC DEVICES
Short-circuit protection of SiC MOSFETs
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SHORT-CIRCUIT PROTECTION OF SIC MOSFET

Short-circuit (SC) withstanding time (SCWT) of SiC MOSFET is much shorter than Si IGBT
▶ Much smaller chip size for the same current ratings - 5 times smaller roughly
▶ Large short circuit current - much higher than 10 times rated current
▶ Gate oxide is sensitive to over temperature - reliability issue
▶ Extremely high dv/dt - as high as 100V/ns

Lg

N

4

1
2 3

iSC

▲ Possible short-circuit current paths.

iSC 

Time

SCWT SiC

SCWT Si IGBT

0

SCWT Objective

▲ Short-circuit Withstanding Time comparison: Si IGBT vs. SiC MOSFET

⇒ Objective: realizing ultra-fast detection, noise immune short-circuit protection for SiC MOSFETs
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MODELING OF SHORT CIRCUIT CAPABILITY

▶ Short circuit current
iSC = k(vgs − vth)2

▶ Short circuit energy density [24]
ESC = ∫ t

0 vds iSC dt = AρCpd(TC − TA)
▶ Failure mode after short circuit [7]

Thermal runaway of the devices; Melting of metal connections
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DESAT PROTECTION

Method
▶ On-state voltage drop across device is measured

compared with reference value
▶ Blanking time is inserted to bypass the influence

of switching transition

Design
▶ Voltage at DESAT:

VDESAT = IDESATRBLK + VD,HV + Vds

▶ The blanking time is set by CBLK : CBLK = CBLKVDESAT
IDESAT

Challenges
▶ Blanking time limits the response speed
▶ There is no knee voltage on Vds of SiC MOSFETs
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▲ [25].

⇒ DESAT protection of SiC MOSFETs requires accurate detection and fast response speed
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INDUCTIVE CURRENT SENSING

SC current sensing with loop leakage inductor
▶ Voltage across leakage inductor is adopted
▶ An integrator is adopted to re-construct the SC current
▶ Two types of filter is adopted to identify the SC and over current event

▲ [26].
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RESISTIVE CURRENT SENSING

Solution
▶ Current sensing with series connected shunt resistor [27] [28]
▶ Current sensing with parallel connected SenseFET [29]

Characteristics
▶ Non-isolated current detection
▶ High response speed
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ROGOWSKI COIL BASED CURRENT MEASUREMENT

SC current sensing with Rogowski Coil [30]
▶ Voltage across leakage inductor is detected
▶ An integrator is adopted to re-construct the SC current

Characteristic
▶ For AC current only
▶ Isolated current detection

▲ [30].
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TWO-STEP SHORT CIRCUIT PROTECTION

▶ Centralized protection - compact design, suitable for devices in
series/parallel

▶ Two-level turnoff - extended SCWT of devices
▶ Detection of SC current to DC capacitor - fast response
▶ Detection of SC AC voltage at phase leg output - high accuracy
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▲ Configuration of converter with multiple Kelvin source terminals.
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EXPERIMENTAL VERIFICATION

▶ SC current detected within 300ns
▶ Two-step short circuit protection with extended SC withstanding time
▶ False protection will be released after clamping time
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▲ Continuous switching / false triggering.
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GATE DRIVER WITH SC PROTECTION AND CROSSTALK VOLTAGE ELIMINATION

Combined short circuit protection and crosstalk voltage suppression
▶ High off-state Impedance gate driver
▶ Two level SC protection – increased SC withstanding time
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▲ Structure of the gate driver.
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EXPERIMENTAL VERIFICATION
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▲ Two-stwp protection method.

? A solution for trade-off among reliability and high speed switching?

EPE 2023, Aalborg, Denmark Sep. 08, 2023 Power Electronics Laboratory | 64 of 142



PROTECTION OF SIC DEVICES
Measurement and sensing
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INTRODUCTION OF DOUBLE PULSE TEST

Double pulse test procedure
▶ First pulse to build up current
▶ t1 : Turn-off of the device under test
▶ Second pulse for freewheel of load current
▶ t2 : Turn-on of the device under test

Information acquisition
▶ Switching speed
▶ Switching loss
▶ Reverse recovery waveform
▶ Switching at different currents/voltages
▶ Switching under different temperatures
▶ Loop parasitic parameters
▶ ...

Benefits
▶ Safer and faster test
▶ Early phase design verification
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ELECTRICAL SIGNAL MEASUREMENT

Probe selection
▶ Enough accuracy
▶ Safety
▶ Less complexity

Voltage measurement
▶ Normal non-isolated probe
▶ High voltage passive probe
▶ Differential probe
▶ Optical isolated voltage probe - IsoVu Isolated Probes

Current measurement
▶ Shunt resistor
▶ Rogowski coil
▶ Hall Effect sensor
▶ Current transformer
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BASIC PRINCIPLE IN SELECTION OF PROBE

Bandwidth and 10%-90% rise time
BW = 0.35

tr

Total rise time of cascaded system
trise,t =

√
t2rise,1 + t2rise,2 + ... + t2rise,n

CMRR of the probe
Vmeasure = Ac(VDIFF +

VCM
CMRR )

CMRR should be as large as possible

Measurement consideration
▶ Measurement should be as less as possible
▶ Different delay among current measurement

and voltage measurement

Influence of probe on measurement [31]
▶ Shunt has its own impedance
▶ Current transformer introduce extra

impedance
▶ Probe has input impedance, e.g. 50Mohm
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COFFEE BREAK
Well deserved...
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HIGH POWER CONVERTERS
What are the application areas for SiC devices
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SOLID-STATE TRANSFORMER (SST)

Can SiC make a difference?
▶ SST = Switching stages + Isolation

▶ Firstly envisioned within AC grids

▶ Variety of Power Electronic Building Blocks (PEBBs)

▶ Conventional transformer vs SST?

▶ Operating frequency increase (MFT)

Grid Tx SST
Controlability No Yes
Efficiency η ≥ 99% P?
Q compensation No Yes
Fault tolerance No Yes
Size Bulky Compact
Cost Low High

Advantages at the expense of cost and reduced efficiency!

▲ Conventional AC grid transformer

PEBB

MFT

decoupling between stages

▲
Solid-State Transformer employed with the aim of interfacing two AC systems 2007_Akagi_TPEL,
2014_Kolar_IPEC

EPE 2023, Aalborg, Denmark Sep. 08, 2023 Power Electronics Laboratory | 71 of 142



SOLID STATE TRANSFORMER FOR TRACTION (ABB - 1.2MW PETT)

Characteristics
▶ 1-Phase MVAC to MVDC
▶ Power: 1.2MVA
▶ Input AC voltage: 15kV, 16.7Hz
▶ Output DC voltage: 1500 V
▶ 9 cascaded stages (n + 1)
▶ input-series output-parallel
▶ double stage conversion

99 Semiconductor Devices
▶ HV PEBB: 9 x (6 x 6.5kV IGBT)
▶ LV PEBB: 9 x (2 x 3.3kV IGBT)
▶ Bypass: 9 x (2 x 6.5kV IGBT)
▶ Decoupling: 9 x (1 x 3.3kV Diode)

9 MFTs
▶ Power: 150kW
▶ Frequency: 1.75kHz
▶ Core: Nanocrystalline
▶ Winding: Litz
▶ Insulation / Cooling: Oil
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▲ ABB PETT scheme [32], [33]

EPE 2023, Aalborg, Denmark Sep. 08, 2023 Power Electronics Laboratory | 72 of 142



SOLID STATE TRANSFORMER FOR TRACTION - DESIGN

Retrofitted to shunting locomotive
▶ Replaced LFT + SCR rectifier
▶ Propulsion motor - 450kW
▶ 12 months of field service
▶ No power electronic failures
▶ Efficiency around 96%
▶ Weight: ≈ 4.5 t

Technologies
▶ Standard 3.3kV and 6.5kV IGBTs
▶ De-ionized water cooling
▶ Oil cooling/insulation for MFTs
▶ n + 1 redundancy
▶ IGBT used for bypass switch

Displayed at:
▶ Swiss Museum of Transport
▶ https://www.verkehrshaus.ch

▲ ABB PETT prototype [32], [33]

EPE 2023, Aalborg, Denmark Sep. 08, 2023 Power Electronics Laboratory | 73 of 142



SOLID-STATE TRANSFORMER - UTILITIES

UNIFLEX-PM
▶ Reduced scale prototypes

▲ UNIFLEX-PM prototype

GE
▶ Full scale prototype

▲ GE prototype [34]

FREEDM
▶ Reduced scale prototypes

▲ FREEDM SSTs [35]

HUST
▶ Full scale prototype

▲ HUST SST [36]

HEART
▶ Reduced scale prototypes

▲ HEART project

XD Electric Company
▶ Full scale prototype

▲ XD Electric Company SST [37]
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HUST, WUHAN - 500KVA ELECTRONIC POWER TRANSFORMER - EPT

Ratings
▶ Power: 500kVA
▶ Input AC voltage: 10kV, 50Hz
▶ Output AC voltage: 400V, 50Hz
▶ Efficiency: 93.72% (at 105 kW)
▶ Cost: 10x conv. transformer

Topology
▶ AC-DC + DC-DC + DC-AC
▶ 6 cascaded stages per phase
▶ Unidirectional

Semiconductor Devices
▶ HV side: 3.3kV IGBTs
▶ LV side: 1.2kV IGBTs?

MFT
▶ Power: 30kW per MFT
▶ Frequency: 1kHz
▶ Core: Iron-based amorphous alloy
▶ Insulation / Cooling: solid /air

▲ HUST reported EPT [36]
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GE - 1MVA - SOLID STATE POWER SUBSTATION

Ratings
▶ Power: 1MVA
▶ Input AC voltage: 13.8kV, 60Hz
▶ Output AC voltage: 270V, 60Hz
▶ Efficiency: 97% (at 855 kW)
▶ Remark 1: 3 times the LFT losses
▶ Remark 2: 1/3 of the LFT weight
▶ Remark 3: 1/2 of the LFT volume

Topology
▶ AC-DC + DC-DC + DC-AC
▶ 4 cascaded stages per phase
▶ Input Series Output Parallel

Semiconductor Devices
▶ HV side: 10kV SiC MOSFET

MFT
▶ Power: 250kW per MFT
▶ Frequency: 20kHz
▶ Core: nanocrystalline
▶ Insulation / Cooling: oil /water

▲ Solid State Power Substation [34]
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PET - 300KVA - LAPLACE, TOULOUSE

Ratings
▶ Power: 300kVA
▶ Input DC voltage: 3kV
▶ Output DC voltage: 1.5kV
▶ Efficiency: 99%

Topology
▶ Back to Back test setup
▶ DC-DC (SiC SAB cells)
▶ Input Series Output Parallel

Semiconductor Devices
▶ HV side: 3.3kV SiC MOSFET
▶ LV side: 3.3kV SiC MOSFET / 3.3kV Si Diodes

MFT
▶ Power: 300kW per MFT
▶ Frequency: 15kHz

▲ ISOP SAB test setup [38]
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HOW TO HANDLE HIGH/MEDIUM VOLTAGES?

Vin

BC

BC

BC

BC

BC

BC

BC

BC

2LVL converter

▲ Series connection of switches

▶ Series connection of switches with snubbers
▶ Two voltage levels (nLVL = 2)
▶ Two-Level voltage waveforms

Vin

MMC arm voltage

Lbr

Lbr

▲ Modular Multilevel Converter (MMC)

▶ Series connection of Submodules (SM)
▶ nLVL depending upon number of SMs
▶ Arbitrary voltage waveform generation

Vin

Main Switch
Active Snubber

Vin

Q2L - arm voltage

▲ Quasi Two-Level (Q2L) Converter [39][40]

▶ Series connection of MMC-alike SMs
▶ nLVL depending upon number of SMs
▶ Quasi Two-Level (trapezoidal) voltage waveform
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SIC SERIES CONNECTION - FREEDM

Ratings
▶ Power: 100kVA
▶ Input DC voltage: 7.2kV
▶ Output AC voltage: 4kV
▶ Efficiency: 97%

Topology
▶ Three-phase VSI
▶ LCL output filter
▶ 3 series connected 3.3kV MOSFETs

Semiconductor Devices
▶ 3.3kV SiC MOSFET

▲ Three-phase inverter with series connected SiC devices [41]
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HV SIC SST - FREEDM

Ratings
▶ Power: 100kVA
▶ Input AC voltage: 4.16kV
▶ Output AC voltage: 480kV
▶ Efficiency: 95.5% - one power block 35kW
▶ 2-phase cooling

Topology
▶ Three-phase VSI
▶ Three-phase DAB
▶ Three-phase VSI

Semiconductor Devices
▶ HV side: 10kV SiC MOSFET
▶ LV side: 1.2kV SiC MOSFET

MFT
▶ Power: 100kW per MFT
▶ Frequency: 10kHz
▶ Core: nanocrystalline
▶ Insulation / Cooling: oil /oil

▲ Three-phase AC-AC SST (MUSE-SST) [42], [43]
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HV SIC - FREEDM

Ratings
▶ Power: 100kVA
▶ Input AC voltage: 13.8kV
▶ Output AC voltage: 480V
▶ Efficiency: 97%

Topology
▶ Three-phase B2B NPC
▶ Three-phase DAB
▶ Three-phase VSI

Semiconductor Devices
▶ HV side: 15kV SiC IGBT
▶ LV side: 1.2kV SiC MOSFET

MFT
▶ Power: 100kW per MFT
▶ Frequency: 10kHz
▶ Core: nanocrystalline
▶ Insulation / Cooling: oil /oil

▲ Three-phase SST [44], [45]
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DC-DC CONVERTERS

▶ Inherent part of the almost all SST topologies

▶ Expansion of the existing power system

▶ Enabling technology for MVDC

▶ Penetration of renewable energy sources

▶ Fast / Ultra Fast EV charging

▶ Medium Frequency conversion

DC

DC

DC

DC

EV

HVAC

MVDC

MVAC

LVDC

LVAC

DC

DC

DC

DC

DC

DC

DC

AC

DC

DC

LVAC

▲ Concept of a modern power system

DC

AC DC

AC

DC

AC DC

AC

DC

AC DC

AC

DC

AC DC

AC

DC

AC DC

AC

MFTDC

AC DC

AC

1

N

VDC

▲ Employment of a DC-DC SST within RES-based systems

DC

AC DC

AC

DC

AC

DC

DC

DC

DC

DC

AC DC

AC

DC

AC

DC

DC

DC

AC DC

AC

DC

AC

DC

DC

MFT

Vehicle side

Energy
Storage

▲ Fast EV charging concept
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DC-DC SST - BASIC CONCEPTS

Fractional power processing
▶ Multiple MFTs
▶ Equal power distribution among PEBBs
▶ MFT isolation?
▶ Various PEBB configurations

PEBB

(a) ISOP

PEBB

(b) IPOP

PEBB

(c) ISOS
▲ Different structures employed depending upon the voltage level

Vin

DC

AC

DC

AC

DC

AC

DC

AC

MFTDC

AC DC

AC

DC

DC

DC

DC

DC

DC

Vo

▲ ISOP Structure

Bulk power processing
▶ Single MFT
▶ Isolation solved only once
▶ Various configurations/operating principles

DC

AC DC

AC
MFT

VoVin

▲ Bulk power processing concept
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HITACHI ENERGY - 0.5MVA - DAB

Ratings
▶ Power: 0.55MVA
▶ Input DC voltage: 2.5kV
▶ Output DC voltage: 1.2kV
▶ Efficiency: 98.4% (at 360 kW, 2.5kHz) for Si

IGBT
▶ Efficiency: 99.2% (at 360 kW, 4kHz) for SiC

MOSFET
▶ Remark: calorimetric measurements

Topology
▶ Back to Back test setup
▶ DC-DC (Si DAB and SiC DAB cells)
▶ Input Series Output Parallel

Semiconductor Devices
▶ HV side: 3.3kV Si IGBT / SiC MOSFET
▶ LV side: 1.7kV Si IGBTs / SiC MOSFET

MFT
▶ Power: 550kW per MFT
▶ Frequency: 2.5 - 8 kHz

▲ DAB Back-to-Back test setup [46]

EPE 2023, Aalborg, Denmark Sep. 08, 2023 Power Electronics Laboratory | 84 of 142



MFT VARIETY OF DESIGNS...

ABB: 350kW, 10kHz

IKERLAN: 400kW, 1kHz

STS: 450kW, 8kHz

ABB: 3x150kW, 1.8kHz

FAU-EN: 450kW, 5.6kHz

KTH: 170kW, 4kHz

BOMBARDIER: 350kW, 8kHz

CHALMERS: 50kW, 5kHz

ETHZ: 166kW, 20kHz

ALSTOM: 1500kW, 5kHz

ETHZ: 166kW, 20kHz

EPFL: 100kW, 10kHz

IKERLAN: 400kW, 5kHz

EPFL: 300kW, 2kHz

EPFL: 1000kW, 5kHz
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HV INDUCTOR - TENNESSEE

Ratings
▶ Power: 100kVA
▶ Input DC voltage: 850V
▶ Output AC voltage: 13.8kV
▶ Efficiency: 97%

Topology
▶ DC-DC
▶ 5L CHB
▶ Three-phase VSI

Semiconductor Devices
▶ HV side: 10kV SiC MOSFET
▶ LV side: 1.7kV SiC MOSFET

Inductor
▶ L = 44mH
▶ Ratings: 4.2Arms
▶ Effective switching frequency 40kHz
▶ Core: amorphous
▶ Insulation / Cooling: solid / air
▶ AC Withstand: 31kV (60 second)
▶ BIL: 95kV

▲ Three-phase SST [47]
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MODULAR MULTILEVEL CONVERTER (MMC)

▶ Variety of conversion possibilities

▶ Variety of modulations

▶ Different types of submodules (SMs)
▶ Half-Bridge (HB)
▶ Full-Bridge (FB)
▶ Others...

▶ Arbitrary voltage waveform generation

MMC LegMMC Branch

Vin

La

MMC branch voltage

0

Vin

▲ Modular Multilevel Converter (MMC)

InsertedHB SM Bypassed Blocked
▲ Half-Bridge submodule and its allowed states

FB SM Inserted #1

Bypassed #1 Bypassed #2 Blocked

Inserted #2

▲ Full-Bridge submodule and its allowed states
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SIC IN AUTOMOTIVE - TESLA MODEL 3

Ratings
▶ Battery voltage: 300 - 400V
▶ Inverter ratings: 165kW (peak)

Topology
▶ Three-phase VSI

Semiconductor Devices
▶ 24 x 650V, 100A SiC MOSFET
▶ ST Microelectronics
▶ 4 parallel devices per switch

▲ TESLA model 3 uses SiC MOSFETSs
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SIC MOSFET INTEGRATION
Parallel Connection of SiC MOSFETs
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MOTIVATION OF PARALLEL CONNECTION

Current rating expansion
▶ Parallel connection of chips
▶ Parallel connection of modules

Challenges
▶ Current imbalance among paralleled devices/chips
▶ Possible osculations caused by parallel connection

U Phase

▲ Source: Infineon, Rohm, Tesla.
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CURRENT IMBALANCE OF PARALLEL CONNECTION

▶ Device parameters
Threshold voltage, bodydiode, trans-conductance, junction capacitance (Cgd), etc.

▶ Uneven parasitics parameters
Common source inductor, different loop leakage inductors

▶ Gate driving signal difference
Gate driver resistor, gate driver time delay

▶ Different device temperatures

▲ source: Rohm [48]
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CURRENT IMBALANCE OF PARALLEL CONNECTION

Static current sharing
▶ Uneven device parameters in volume production
▶ Positive temperature coefficient of on-state resistance

Dynamic current sharing
▶ vgs oscillation due to parallel connection of MOSFET
▶ Uneven parasitic parameters

▲ source: Infineon [49] ▲ source: Rohm [48]

↯ Enough damping should be provided in the oscillation loop
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CURRENT BALANCE OF PARALLEL CONNECTION

Balance from package perspective
▶ Symmetrical in packaging, new package consideration (Open standard package etc.)
▶ Device selection criteria, parameters variation exists in massive production

Ideal module Coventional moduleSimiliar ideal module

Chip layout

▲ source: Mitsubishi [50] ▲ source: Hitachi Energy [51]
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CURRENT BALANCE OF PARALLEL CONNECTION

Active current balance methods [52]

Control scheme Implementation
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PARALLEL CONNECTION - A PRACTICAL EXAMPLE

Oscillation caused by variation
of bodydiode of SiC MOSFET

▶ There exists large variation
on bodydiode of SiC
MOSFETs

▶ Application with large
individual AC inductance for
the chip

▶ Oscillation happens when
device is turned on

▶ No oscillation when device
is turned off

 

 

开通过程却出现严重的振荡

关断过程的均流特性很好，两

个并联模块电流波形几乎重合

Oscillation when 
turn on

Reverse recovery 
di�erence

Oscillation when 
turn on

Oscillation when 
turn o�

source: Zinsight, https://mp.weixin.qq.com/s/dw_GXgqNq6fPyE7R_cb9ww
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PARALLEL CONNECTION - A PRACTICAL EXAMPLE

Coupled inductor
▶ Large oscillation on coupled inductor
▶ Largely eliminated but not completely removed

Separate gate driver
▶ Oscillation disappeared
▶ Separate gate driver required for parallel devices

 

 

Reducing AC inductance
▶ Improving layout of AC terminal
▶ Low cost design

Reduce AC 
inductor

⇒ Hard paralleling of SiC MOSFETs is feasible. Careful device selection and design consideration are required
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SIC MOSFET INTEGRATION
Series connection of SiC MOSFETs
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MOTIVATION

Series connection of Si devices is a widely used technology
▶ MV drive
▶ HV power transmission

GE MV6000 MV drive Hitachi HVDC Light

EPE 2023, Aalborg, Denmark Sep. 08, 2023 Power Electronics Laboratory | 98 of 142



FEATURES OF HIGH VOLTAGE SIC POWER MOSFETS

Chips
▶ High N- zone thickness
▶ low N- doping concentration
▶ high electric field

Application challenge
▶ High cost
▶ Low reliability
▶ Low efficiency

Rated
Voltage

(kV)

Doping 
Concentra
tion(cm-3)

Specific on 
resistance
(mΩ·cm2)

Breakdown 
voltage(kV)

1.2 8×1015 2.7 1.6

1.7 6×1015 3.4 1.9

6.5 1.3×1015 40 7.2

10 6×1014 125 11

15 3.6×1014 250 16

   substrate

G
g

d

s

N- 

P+
p
n+p+

Electrical field 
distribution

x

EC

slop∝1/ND

Structure of planar 
power MOSFET 

▲ source: Wolfspeed [53]

⇒ Development of high voltage SiC devices is relatively slow
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SERIES CONNECTION OF SIC MOSFETS

▶ Industrial products released at 1.2-1.7kV
▶ HV devices and modules are not commercially available

SiC
MOSFET

Wolfspeed
Fuji

GE

ST

Infineon

Rohm

Semikron

Mitsubishi

Vo
lta

ge
 (k

V)

Current (A)

0.5

1.5 

2

2.5

200 400 600 800 1kA

~ 325A1 ~800 A

~400 A ~540 A
1.2

1.7

FULL ~350A

1.2 kA
Hybrid

~ 600 A

~400 A

0.65
0.9
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SERIES CONNECTION OF SIC MOSFETS

Comparison between single device and series-connected devices

103 104

5E-06

1E-05
 SiC MOSFET
 Series Connection

Sp
ec

ifi
c 

O
n 

re
si

st
an

ce
(Ω

⋅m
2 )

Breakdown voltage(V)

 Lower epitaxy layer thickness: 1/N

≈55%
70%70% 70%

N in total

 Lower chip size: reduced by 20%
2.5

drift ∝R BV

dn-

n- n- ds

s

Epitaxy layer thichkness
0 1/N·WD WD

Series connected device has potential to break the 
theoretical on state resistance limit of SiC MOSFETs Series connected device  has lower cost

⇒ Series-connected SiC MOSFET has advantages in low on-resistance and cost
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VOLTAGE IMBALANCE INFLUENTIAL FACTORS

Cds2_L
Ls2_L

Cgd2_L

Cgs2_LVg2_L

Rg2_L

Ld

Vdc

Cds1_L
Ls1_L

Cgd1_L

Cgs1_LVg1_L

Rg1_L

IL

Cs1_L

Rs1_L

Cs2_L

Rs2_L

Cs1_H

Rs1_H

Cs2_H

Rs2_H

MOS2

MOS1

Cds2_H
Ls2_H

Cgd2_H

Cgs2_H
Rg2_H

Cds2_H
Ls2_H

Cgd2_H

Cgs2_H
Rg2_H

Vg_off

Vg_off

Voltage imbalance influential factors

Circuit 
parameters

Snubber:
Rs, Cs

Device 
parameters

Threshold 
voltage：  Vth

Capacitance:     
Cds, Cgd, Cgs

Operation 
point

Voltage:       
Vdc

Trans-
conductance: gs

Temperature:
Tj

Gate voltage: 
Vg_on,Vg_off

Gate resistance:
Rg_on, Rg_off

Gate delay: 
Δt

Gate driver 

Current:         
IL
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VOLTAGE IMBALANCE INFLUENTIAL FACTORS

▶ Gate driving time delay
▶ Gate source voltage mismatch
▶ Junction temperatures
▶ Gate driving resistance
▶ Voltages and currents

Experiments
Approximation

Experiments
Approximation

Experiments
Approximation

Experiments
Approximation

Time delay
Positive gate voltage Negative gate voltage

Turnoff resistor DC bus voltage Load Current Junction temperature

Junction temperature difference
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VOLTAGE BALANCE METHODS OVERVIEW

▶ Coarse tuning: passive snubbers
▶ Fine tuning: active gate driver time delay
▶ Accurate tuning: active gate driving voltage compensation

Larg e Middle Small

Cds1

MOS1

MOS2

MOSn

Cds2

Cdsn

Time delay 
controller

Vds1,2...n

Δt1,2...n

1t∆

2t∆

nt∆

Cds2_L

Ls2_L

Cgd2_L

Cgs2_LVg2_L

Rg2_L

Cds1_L
Ls1_L

Cgd1_L

Cgs1_LVg1_L

Rg1_L
Cs1_L

Rs1_L

Cs2_L

Rs2_L

RC snubber

RC Snubber Phase compensation of driving signal Amplitude compensation of driving signal

Cds1

MOS1

MOS2

MOSn

Cds2

Cdsn

Gate voltage
controller

Vds1,2...n

Δv
1,2...n

1v∆

2v∆

nv∆gsv
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PASSIVE SNUBBER DESIGN

Analytic modeling of voltage imbalance [54]

Cds2_L
Ls2_L

Cgd2_L

Cgs2_LVg2_L

Rg2_L

Ld

Vdc

Cds1_L
Ls1_L

Cgd1_L

Cgs1_LVg1_L

Rg1_L

IL

Cs1_L

Rs1_L

Cs2_L

Rs2_L

Cs1_H

Rs1_H

Cs2_H

Rs2_H

MOS2

MOS1

Cds2_H
Ls2_H

Cgd2_H

Cgs2_H
Rg2_H

Cds2_H
Ls2_H

Cgd2_H

Cgs2_H
Rg2_H

Vg_off

Vg_off

Vds

Vgs
t

t

PWM
t

Vth

VMiller

ich
t

k1

k2

Δt

ΔV

0

0

0

0

IL

Δt

2 DC

rv

VV t
t

∆ = ⋅∆
Δt: turn-off delay time
trv：voltage rising time
Vdc：bus voltage

Equivalent circuit Modeling of voltage imbalance 

⇒ The accurate model of the turn-off voltage rising time trv is of vital importance
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PASSIVE SNUBBER DESIGN

Design steps [54]
▶ Voltage imbalance sensitivity (VIS) versus Csnubber curve acquire by test or modeling
▶ Non-significant Miller plateau consideration
▶ Snubber capacitor is selected with lookup table from VIS-Csnubber curve

0 10 20 30 40
0

5

10

15

20

25

S 
(V

/n
s)

Snubber capacitor, Csnub(nF)

2
= dc

rv

VS
t

Voltage imbalance sensitivity: voltage 
imbalance caused by unit time delay

S = f(Csnub)

Give targeted S, select snubber capacitor based on 
the S-Csnubber curve

( )
( )

, , , , ,

, , , ,

 =


=

rv gd ds L g gs

gd ds L g gs

t f Q Q I R C k

k g Q Q I R C

Analytical model of trv

 No significant Miller plateau

( ) = −gs millerv t V kt
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VOLTAGE BALANCE BASED ON PASSIVE SNUBBER

SiC JFETs Supercascode [55]
▶ SiC MOSFET + SiC JFETs
▶ One gate signal
▶ Passive snubber

Benefits
▶ Low cost
▶ Similar on-state resistance with HV device
▶ Low thermal conductivity
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VOLTAGE BALANCE BASED ON PASSIVE SNUBBER

Characteristics [56] [57]
▶ SiC MOSFET + RCD snubber
▶ One gate signal
▶ 3.3kV/200A, three in series to 10kV/200A
▶ Integration to get three-terminal device
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ACTIVE GATE DRIVING TIME DELAY (1)

Design steps [54]
▶ Offset calibration to get the relationship between delay time and voltage imbalance
▶ Close loop adjustment based on analytic VIS model

 Proportional - delay unit
 Loop gain should be smaller than 1
 VIS is selected at highest voltage and currents

+

-

不均衡电压

灵敏度S

∆v∆ cmdt
+ i

p
KK
s

∆ cmdv

− sT se

Active time delay based on PI controller
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MOS1
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MOSn

Cds2

Cdsn

Time delay 
controller

Vds1,2...nΔt1,2...n

1t∆

2t∆

nt∆

VIS
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ACTIVE GATE DRIVING TIME DELAY (1)

Experimental verification [54]
▶ Device voltage is balanced after several switching cycles
▶ The measurement matches well with the model
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ACTIVE GATE DRIVING TIME DELAY (2)

Other methods of active gate driving signal delay
▶ (a) RCD clamping resistor as feedback [58]
▶ (b) One device voltage is sampled for two in series [59]

(a) (b) 
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ACTIVE GATE SOURCE VOLTAGE COMPENSATION (1)
dv
dt slew rate control of SiC MOSFETs [60]

▶ Voltage imbalance is introduced by parasitic capacitance from the gate driver to the ground
▶ The imbalance is compensated by dv/dt controller
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ACTIVE GATE SOURCE VOLTAGE COMPENSATION (2)
dv
dt slew rate control of SiC MOSFETs [61]

▶ Voltage imbalance is converted to snubber capacitor current deviation
▶ Isolation is realized by coupled inductor
▶ Gate source voltage is compensated
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ACTIVE GATE SOURCE VOLTAGE COMPENSATION (2)

Experimental verification [61]
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APPLICATION EXAMPLE OF SERIES CONNECTION (1)

Characteristics [62]
▶ 10kV/200A Power module
▶ Half bridge interface
▶ RC snubber
▶ 5kV/200A/20kHz switching
▶ 25kW/L power density

Parameters Value
Blocking voltage Vds 10kV

Drain current Ids 200A

On state resistance Rds,on 97.7mΩ

Gate voltage Vg_on/off 18V/-2V

Leakage inductance Ld 219nH

Snubber Cs/Csnub 5 Ω/4.7nF

Series connection of eight 
1.2kV@200A power modules

Picture of 10kV@200A power block, 
25kW/L power density

GD6 GD7 GD8GD5

GD2 GD3 GD4GD1

G1
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DC-

AC

Half bridge 
power module

Central 
controller

5kV/330kW/5kHz
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APPLICATION EXAMPLE OF SERIES CONNECTION (1)

Switching characteristics [62]
▶ Similar to single HV device
▶ 100V/ns voltage slew rate
▶ 2A/ns
▶ 100mJ total switching energy at

5kV/200A
▶ Stable switching loss with

temperature
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Device Operation point Turn on loss 
(mJ)

Turn off loss 
(mJ)

Freewheel diode 
(mJ)

Total loss 
(mJ)

Proposed block 5kV/200A 31 56 13 100
CREE 10kV/100A SiC 5kV/200A 161 50 - 210

Si IGBT, ABB 6.5kV/200A 5kV/200A 1328 1595 - 2923

⇒ The power block demonstrates the extremely low switching loss among counterparts
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APPLICATION EXAMPLE OF SERIES CONNECTION (1)

System efficiency analysis and comparison
Parameters

▶ Bus voltage: 5kV
▶ Power: 1MVA
▶ AC voltage: 3.3kV

Results
▶ Conversion efficiency at full load at 1kHz is 99.2%
▶ Conversion efficiency at 25% load at 1kHz is 99.6%
▶ Conduction loss dominates in the total loss - space to improve
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APPLICATION EXAMPLE OF SERIES CONNECTION (2)

Soft switching [63]
▶ Series connection
▶ Soft switching
▶ Centralized DC/DC conversion
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⇒ Soft-switching + series connection achieves voltage balancing and low loss switching
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APPLICATION EXAMPLE OF SERIES CONNECTION (3)

System parameters [64]
▶ Two 10kV SiC MOSFETs in series
▶ 11kV AC grid voltage
▶ 16kV DC
▶ 200kW power
▶ 10kHz switching frequency

▲ source: CPES
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APPLICATION EXAMPLE OF SERIES CONNECTION (4)

System parameters [65]
▶ Two 10kV SiC MOSFETs in series
▶ 13.8kV AC grid voltage
▶ 24kV DC
▶ 100kW power
▶ 10kHz switching frequency

▲ source: FREEDM
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SIC MOSFET INTEGRATION
SiC-Si Hybrid solutions
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SIC DEVICES + SI DEVICES HYBRID SOLUTIONS

Hybrid Multi-level converters with SiC & Si Devices
▶ SiC devices: High frequency switching and high cost
▶ Si Devices: Low frequency and low cost

Power Device

Si IGBT Half-bridge SiC MOSFET Half-bridge

Type FF300R12KT4 BSM300D12P2E001

Voltage rating (V) 1200

Current rating (A) 300

Temperature 25℃ 150℃ 25℃ 150℃

Eon+Eoff+Err (mJ)
@IC=300A, Vce=600V 49 88.5 21.6 20.8

Retail Price ($) 111.64 643.43

? Cost and performance trade-off: hybrid switch, hybrid converter, novel converters
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SI IGBT + SIC SBD
Improved switching performance of IGBTs [66] [19]

▶ Low reverse recovery loss
▶ Low turn-on loss
▶ Mature and commercially available

Source: RohmSource: Fuji

Source: Dynex
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SIC MOSFET + SIC SBD
Performance [66]

▶ Avoid bipolar degradation of SiC MOSFETs
▶ Reduced cost for certain application

▲ source: Rohm Datasheet
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SIC MOSFET + SI IGBT HYBRID SWITCH
Performance [67]

▶ No reverse recovery loss
▶ No tail current loss of Si IGBT
▶ Low cost
▶ High light load efficiency
▶ Increased driving complexity

EPE 2023, Aalborg, Denmark Sep. 08, 2023 Power Electronics Laboratory | 125 of 142



SIC MOSFET + SI IGBT HYBRID CONVERTER

Hybrid Multi-level converters with SiC & Si Devices [68]
▶ Hybrid ANPC Converter and Modulation
▶ Only requires 1/3 of SiC devices
▶ Si devices are low-frequency switching

D1

D2

D3

D4

Q5

Q6

Q1

Q2

Q3

Q4

D5

D6

+

-

N

Si Device

SiC Device
E

+

-
E

A

C1

C2

Output Voltage
vAN

Switching State
Q1 Q2 Q3 Q4 Q5 Q6

E 0 0 1 1 1 0

0
0 1 0 1 1 0
1 0 1 0 0 1

-E 1 1 0 0 0 1

vm:fo
1

0
1

0
1

0

VAN

1

0

-1

Phase Angle
0 2ππ

vc:fsw

Q2(Q3)
Q1Q6 

(Q5Q4 )

EPE 2023, Aalborg, Denmark Sep. 08, 2023 Power Electronics Laboratory | 126 of 142



SIC MOSFET + SI IGBT HYBRID CONVERTER

Experimental Results [68]
▶ Si IGBT Q1, Q4 are low-frequency switching
▶ SiC MOSFET Q2 is high-frequency switching
▶ Typical ANPC waveforms
▶ High efficiency is achieved
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SIC MOSFET + SI IGBT HYBRID CONVERTER
Simplified Hybrid NPC Converter: Unidirectional energy flow [69]

▶ Only requires Si diodes and SiC MOSFETs
▶ Si diodes are low-frequency switching
▶ Fewer high-frequency devices
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COMPACT CASCADING TECHNIQUE (1)

Concepts of quasi multilevel converter
▶ Replacing the specific branch of conventional multilevel converter with a string of switching cells
▶ Multilevel output voltage waveform
▶ Transition between adjacent voltage levels is with trapezoidal shape
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COMPACT CASCADING TECHNIQUE (1)

Modulation and control
▶ Vertical arm: direct series connection of the power devices, line switching frequency
▶ Horizontal arm: cascaded half bridge submodules, high switching frequency

Topology Modulation

⇒ Size of submodule can be greatly reduced
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COMPACT CASCADING TECHNIQUE (1)

Integrated SiC devices based switching cell
▶ Current commutation within sub cell – low switching loss
▶ Temporarily support output voltage – low cell capacitor

▲ Bi-directional switch ▲ Uni-directional switch

▲ [70]
▲ Source: CRRC ▲ Source: ABB
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COMPACT CASCADING TECHNIQUE (2)

Novel topologies [66]
▶ Replace switch in multi-level

converter with a string of SiC cells
▶ Reduced dc link capacitance
▶ Partial device adopts Si devices

(a) (b)

▲ source: (a) ABB-WO2019238443; (b) US2017257022A1.
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COMPACT CASCADING TECHNIQUE (3)

Topology [71]
▶ Cascaded 3L bridgeless PFC stage
▶ Series-half-bridge (SHB) LLC dc–dc stage

Control
▶ Quasi-two-level modulation for PFC
▶ Phase-shift-based 3L operation of SHB LLC

Experimental validation
▶ DC bus voltage ripple is reduced
▶ Over 98% efficiency

3L

Q2L
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SUMMARY AND DISCUSSION

EPE 2023, Aalborg, Denmark Sep. 08, 2023 Power Electronics Laboratory | 134 of 142



IS SIC DEVICES COMPLETELY NEW?

The first LED, probably first wide bandgap device, is a orange-green LED based on SiC diode, reported by H.J. Round in 1907

H.J. Round, Electrical World 49, 309, 1907. Recombination of electrons and holes

On applying a potential of 10 volts 
between two points on a crystal of 
carborundum, the crystal gave out 
a yellowish light.
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IS SIC DEVICES COMPLETELY NEW?

Electroluminescence of SiC Power MOSFETs [72]

Electroluminescence in 4H-SiC MOSFETs

Luminescence Phenomenon occurs during the forward 
conduction interval of the body diode
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HOW TO BETTER UTILIZE THIS DEVICE?

Material Device Package Integration Application Maintenance
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IN WHICH APPLICATION IT MAKES SENSE?

Renewable energy Automotive Data centers

Space SiC Quantum Tech Special power supply

Replace Si Devices

New applications
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Q & A

Thank you for your attention

…questions, discussion time…

Tutorial pdf can be downloaded from:
▶ https://www.epfl.ch/labs/pel/publications-2/publications-talks/
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