Aggregation and Exploration of High-Dimensional Data Using the
Sudokube Data Cube Engine

Sachin Basil John
sachin.basiljohn@epfl.ch
EPFL
Lausanne, Switzerland

Zhekai Jiang"
zhekai.jiang@mail. mcgill.ca
McGill University
Montreal, Canada

ABSTRACT

We present Sudokube, a novel system that supports interactive
speed querying on high-dimensional data using partially material-
ized data cubes. Given a storage budget, it judiciously chooses what
projections to precompute and materialize during cube construction
time. Then, at query time, it uses whatever information is available
from the materialized projections and extrapolates missing infor-
mation to approximate query results. Thus, Sudokube avoids costly
projections at query time while also avoiding the astronomical
compute and storage requirements needed for fully materialized
high-dimensional data cubes. In this paper, we show the capabili-
ties of the Sudokube system and how it approximates query results
using different techniques and materialization strategies.

KEYWORDS

data cubes, approximate query processing, online aggregation, on-
line analytical processing, data exploration, data visualization

1 INTRODUCTION

Online analytical processing (OLAP) [2] forms an important class
of querying methods for aggregated data, used extensively in busi-
ness intelligence [3], exploratory data analysis [8, 10], and feature
engineering [9]. Data cubes [5] are often used to accelerate such
queries using precomputation of several projections of the data and
materializing them in the form of cuboids. Additionally, they offer
simple operations such as roll-up, drill-down, and slice, and users
do not need to write complex code to analyze the data. However,
they cannot handle high-dimensional data very well as they can
only materialize some of the cuboids due to computation and stor-
age limitations [1, 11]. Therefore, they typically compute queries
through projection from the smallest subsuming cuboid [6], which
can be slow for large cuboids.

In this paper, we present Sudokube! [1], a novel data cube system
that allows fast querying of high-dimensional data and provides
a versatile suite of functionalities to perform OLAP tasks. Unlike
classical approaches that answer queries exactly by projecting the
smallest subsuming cuboid, Sudokube uses every available projec-
tion of a query (as shown in Figure 1) to approximate its result at
interactive speeds in an online [7] fashion. The results are updated

“Work done while at EPFL
!https://github.com/epfldata/sudokube

Peter Lindner
peterlindner@epfl.ch
EPFL
Lausanne, Switzerland

Christoph Koch
christoph.koch@epfl.ch
EPFL
Lausanne, Switzerland

199

O
O
|
i
O

Project subsuming cuboid —

\
=
il

7

Dimensionality

minl
7

Sudokube

Figure 1: Approaches for querying partial data cubes

as more projections are processed in the increasing order of dimen-
sionality, and an exact answer is obtained after processing a cuboid
that contains the entire query as its projection.

Supporting interactive-time querying for high-dimensional data
gives Sudokube several advantages over classical approaches. Firstly,
Sudokube can load all data without forcing users to build an Extract-
Transform-Load (ETL) pipeline that distills the data down to a
minimal number of dimensions. This allows off-the-shelf OLAP,
enabling even non-technical users to use the data cube’s interactive
data exploration features to architect data cleaning and transforma-
tion scripts. Secondly, Sudokube offers data scientists a simple and
interactive way to explore intrinsically high-dimensional data for
feature engineering. Thirdly, Sudokube can load denormalized data
directly, eliminating the need for users to design star or snowflake
schemas [5] to separate dimension attributes from a central fact
table. Sudokube stores each attribute of a hierarchical dimension as
individual dimensions and avoids the expensive joins required for
coarsening it at runtime. Finally, Sudokube enables users to break
down dimensions into smaller components and query every bit of
the internal binary encoding of keys in each component. This al-
lows for powerful wildcard-based pattern matching on dimensions
through simple roll-up queries.

In this paper, we showcase the Sudokube system in two scenarios
that illustrate its utility and highlight the above-mentioned advan-
tages. We also demonstrate the trade-offs associated with different
materialization and approximation strategies.

https://orcid.org/0000-0002-1583-496X
https://orcid.org/0000-0003-2041-7201
https://orcid.org/0009-0001-0989-5926
https://orcid.org/0000-0002-9130-7205

| l Table Plot

Query
© awe

Query Interpreter || Output Handler

Data Loader

FRONTEND @Schema Base@ Prepare@ @T

ub0|d Request Query Result

Schema Encoding, Binary Translation

.......... ¢¢ ¢|

- 1
@Matenallzatlon

CORE Cube I|BU|Ider Cuboid Index Solver
Y T
Build (8) Cuboig ~Feteh Fetched
Plan Metadata Request Cuboids
BACKEND Cuboid Storage @
T [+§) En%
RAM Disk Network

Figure 2: Sudokube workflow

2 SYSTEM ARCHITECTURE

Sudokube comprises three components — frontend, core query execu-
tion engine and backend. The frontend offers a basic user interface
for data loading, querying, and displaying the results. It also pro-
vides schema support and handles the binary encoding of keys.
The rest of the Sudokube system sees only the binary dimensions
representing the individual bits of these keys. The core engine de-
cides what cuboids to materialize during cube construction time
and what cuboids to fetch and process during query time. It allows
users to choose from several solvers to extrapolate query results
from the fetched cuboids. Finally, the backend is responsible for
storing, projecting and retrieving materialized cuboids.

The workflow for using Sudokube is shown in Figure 2. First, a
preconfigured loader reads data (1) from a source and produces a
schema (2) that encodes the data to form the (binary) base cuboid (3),
which is then stored in the backend. Next, the cube builder selects
which cuboids will be materialized based on a given materialization
strategy (4). The backend is then provided with a build plan 5)
that describes which cuboids need to be materialized by projecting
other cuboids. After constructing the data cube, the core engine
indexes references to the cuboids (6) returned by the backend.

When the user submits a query (1), the frontend converts it into
a query on the binary dimensions and forwards it to the core engine.
The core then queries the cuboid index (2) to find the materialized
cuboids relevant to the query. Then, the core instructs the backend
to fetch (possibly projections of) those cuboids (3). Finally, the
fetched cuboids are fed into the solvers (4), which use them to
extrapolate the query results (5). Finally, the output handler displays
the result in the requested format.

2.1 Cube Specification and Querying

Sudokube supports all the fundamental data cube operations. Before
a cube is constructed, Sudokube requires all measures of interest
to be specified so they can be precomputed. Users can designate
individual columns as measures or specify functions that produce

Sachin Basil John, Peter Lindner, Zhekai Jiang, & Christoph Koch

> Time/ Quarter + — (> Add.) (D)

Y Product / Category = Sports (Y Add..)
% Location / Continent + — (% Add..) | Measure Sales | | Aggregation SuM) Solver Naive) ()

1000 —
900
800 —
700 -
600 —
500
400 - South
300 - North America
200 —
100 <

erica

Europe

Africa
0~

2014Q1 2014Q2 2014Q3 2014Q4 2015Q1 201502 201503 201504

Figure 3: Sudokube UI for querying

measure values from multiple columns. After the cube has been
built, users can query one or more of these measures. Sudokube
allows users to specify a variety of aggregation operations such as
sum, count, average, variance, correlation and linear regression co-
efficient. Users can pivot dimensions across both the horizontal and
vertical axes. In addition to traditional dimensional hierarchies, Su-
dokube allows fine-grained virtual hierarchies for each dimension
where the consecutive values are grouped together in sizes of pow-
ers of two. For example, users can specify a hierarchy for the time
dimensions such as Year - Month - Day, and Sudokube addition-
ally offers virtual dimensions such as Year/4 or Day/2 where four
consecutive years or two consecutive days are grouped together,
respectively. Users can then drill down on the result by either going
down one level on the hierarchy for some dimension or adding a
new one to some axis. Conversely, the user can roll up going up
the hierarchy for some dimension or removing one. Finally, users
can slice and dice on multiple dimensions to filter the keys in the
result. We provide users with a visual interface (inspired by exist-
ing visualization tools such as [12]) as shown in Figure 3 for easily
specifying such queries.

Sudokube contains a library that implements other operations
through post-processing. These operations include window-based
aggregations, user-defined grouping of values, and defining views
that transform data cubes to add, remove, or modify dimensions
in some way. High-level operations for data exploration that wrap
several basic operations are also included. For example, users can
load arbitrary semi-structured data into a data cube and analyze
possible schema changes or functional dependencies.

2.2 Frontend

The Sudokube frontend interacts with users through a graphical
interface. It handles data loading, query interpretation, and output,
and converts data between human-readable and binary values. Su-
dokube supports two types of schema — static and dynamic. In a
static schema, the columns in the input data are known beforehand,
and the functions mapping them to dimensions in the data cube
and all hierarchical structures are programmed into the data loader.
However, in a dynamic schema, the schema need not be known (or
even fixed) before data loading. New bits are assigned automatically
whenever Sudokube discovers a new column or that an existing
column requires larger domain. The downside of dynamic schema
is that the bits for a dimension need not be next to each other, which
slows down the binary encoding process. Sudokube can load data
from CSV or other fixed format files using a static schema and data
from JSON files using a dynamic schema.

Aggregation and Exploration of High-Dimensional Data Using the Sudokube Data Cube Engine

Sudokube uses multiple encoders to encode values to binary. The
dictionary encoder encodes a value using its position in a dictio-
nary. For a static schema, the values are sorted and added to the
dictionary before data loading, whereas, in a dynamic schema, Su-
dokube adds them when discovered during data loading. Sudokube
encodes integer and fixed-point numbers using their offset from the
minimum value in the domain for static schemas, but encodes them
using their absolute values and sign bits for dynamic schemas.

2.3 Backend

The Sudokube backend uses multiple formats for storing cuboids —
dense, sparse row, and sparse column. A cuboid stored in dense format
is a collection of multi-dimensional arrays, one for each measure. In
each array, the position encodes the values of the binary keys, and
the entry at that position is the associated measure. This format does
not require additional space to store keys and is mainly used to store
low-dimensional cuboids where most keys have associated measure
values. However, it is infeasible for high-dimensional cuboids where
the support (the number of keys with a non-zero measure value)
is small compared to the domain size. In such cases, Sudokube
opts to use the sparse format where both the key and the measure
values are stored, but only for the keys where at least one associated
measure value is non-zero. Sudokube always stores base cuboids in
the sparse format. There are two variants of the sparse format as
well. In the sparse row format, a cuboid is stored as a collection of
records containing a binary key and the associated measures. This
format is used as an intermediate representation for the base cuboid
during data loading. Once data loading is completed, Sudokube
converts the base cuboid to the sparse column format. In this format,
a cuboid is a collection of arrays, one array for each key bit and each
measure. The sparse column is better suited for materialization
as the projection operation is faster and more efficient for this
format compared to the sparse row format. While projecting a
materialized cuboid during querying, only the relevant dimensions
need to be processed, improving cache efficiency. Sudokube deploys
different techniques for duplicate elimination during projection
depending on the projection size. If the projection is sufficiently
low-dimensional and fits in memory, hashing is used for duplicate
elimination; otherwise, sorting is used.

The current Sudokube backend is single-node and loads all the
cuboids of a data cube into the main memory before it can be
queried. However, a future version of Sudokube can have a dis-
tributed backend and a caching policy that determines what cuboids
are kept in main memory while keeping the rest on disk. Perfor-
mance optimizations including just-in-time compilation and CPU
vectorization for projection operations are also planned.

2.4 Materialization Strategy

Given a base cuboid containing hundreds of binary dimensions,
precomputing and materializing all its projections is infeasible in
terms of time and space. Sudokube, therefore, employs multiple ran-
dom partial materialization strategies that randomly select which
projections are materialized. Each of these strategies selects cuboids
of different dimensionality following some probability distribution.
For a given dimensionality distribution, Sudokube supports two

ways to specify how the bits are selected for a cuboid of some par-
ticular dimensionality. The bits could be chosen either uniformly at
random or by picking prefixes of dimensions. The latter approach
yields better results as the selected cuboids closely match queries
involving hierarchical dimensions. Moreover, Sudokube has heuris-
tics to predict the storage cost of these strategies and can suggest a
preferred strategy for a given storage budget.

2.5 Query Approximation

While executing a query, Sudokube goes through three phases
— prepare, fetch, and solve. During the prepare phase, Sudokube
processes the cube meta-data to produce a fetch plan. The cuboids
relevant to a query are found by grouping the cuboids by their
intersection with the query and choosing the cheapest cuboid in
each group. We use a cuboid’s original dimensionality (before the
intersection with the query) as a heuristic for its cost. Finally, any
cuboid that contains only a subset of dimensions from another
relevant cuboid is eliminated. At the end of the prepare phase, the
core engine produces a fetch plan that lists the remaining cuboids
and what projection needs to be obtained from each.

During the fetch phase, the specified cuboids are projected by the
backend and fetched as described by the plan. Finally, the fetched
cuboids are fed into the solver during the solve phase. Depending
on their needs, users can choose from several solvers offered by
Sudokube. First, the naive solver gives the exact result for any query
by projecting the smallest materialized cuboid that subsumes it.
However, in practice, this subsuming cuboid is almost always the
base cuboid for which projection may take a long time. Next, we
have the linear programming solver that constructs linear equations
on query result variables from the fetched cuboids and outputs
lower and upper bounds for each variable. While these bounds are
guaranteed to be correct, they can be quite lax, and their compu-
tation does not scale well to higher-dimensional queries. Finally,
we have two approximate query solvers. The moment solver [1]
extracts (stochastic) moments [14] that capture inter-dependencies
between the query dimensions from the fetched cuboids using a
process similar to the Fourier transform. It then extrapolates them
by assuming uncorrelatedness for query dimensions with unknown
interaction. Additional heuristics are employed to counteract cases
where the assumption is infeasible. This solver yields query results
very quickly but is less accurate, particularly for high-dimensional
queries. The graphical model solver uses iterative proportional fit-
ting [4, 13] to find the maximum entropy query result subject to the
constraints imposed by the fetched cuboids. It starts with a uniform
distribution of data and iteratively scales the data to fit the fetched
cuboids until convergence. This yields more accurate results but
takes more time than the moment solver.

Example 2.1. Consider a query that sums the measure values
grouped by three binary dimensions. Each of the three 2-D projec-
tions of this query yields four linear constraints with sums of two
measure values for fixed keys of the dimension pair. Alternatively,
the three 2-D projections capture dependencies between any two
dimensions, treated as random variables, in the form of three co-
variances. The linear programming solver works with the linear
constraints in the standard way. The graphical model solver recon-
structs the maximum entropy distribution subject to the constraints.

The moment solver makes use of the fact that the query result can
be exactly reconstructed from its eight moments [14]. For this, it
assumes that unknown moments are zero, such as the “generalized
covariance” of all three dimensions in this example.

Furthermore, Sudokube supports both online and batch modes for
querying. In batch mode, the base cuboid is never fetched, and the
solve phase starts after the fetch phase ends. The final (approximate)
query result is then returned to the frontend for decoding and
displaying to the user. In online mode, however, the fetch and the
solve phases are concurrent, and the query result is updated and
displayed periodically using a callback function as more and more
cuboids are fetched.

3 USE CASE SCENARIOS

We showcase the capabilities of Sudokube through two scenarios
that illustrate its key features. The first scenario lets users explore
the different materialization strategies and approximation tech-
niques available in Sudokube for typical OLAP workloads. The
second scenario demonstrates how Sudokube’s support for high-
dimensional data can facilitate tasks such as data cleaning that
typically precede data cube construction.

Scenario 1: Basic OLAP Queries using Dimension Hierarchies. This
scenario models a typical OLAP workload in Sudokube and demon-
strates the entire workflow in Figure 2, from cuboid materialization
to running exploratory queries and visualizing the results.

Users begin by selecting one of several datasets with hierarchical
dimensions whose structure is known beforehand, such as sales
data from an online retailer or flight record data. They can edit
the data and add or remove columns as needed. Next, users can
define a static schema to load the data into Sudokube and build a
data cube by either selecting a materialization strategy or manually
specifying which cuboids to materialize.

Once the data cube is built, users can interact with it using the vi-
sual interface shown in Figure 3. For example, with the sales dataset,
users can generate queries that display total sales per country over
time and later drill down to cities or roll up to continents. Users
can specify the solver used for generating query results. Sudokube
generates a plot, displaying the exact result, an approximation, or
bounds, depending on the selected solver. Users can explore the
differences in query execution time and result quality of different
solvers on other larger data cubes that have been pre-built offline.

Scenario 2: Data Cleaning and Transformations on Streams. This
scenario demonstrates how Sudokube can assist users in designing
data cleaning and transformation scripts. It is based on large-scale
event logging systems, such as those used in data center operation
management, where a large number of software packages produce
events and frequently get updated. Managing the schema of such
event log streams can be challenging while a relational update
stream is loaded into the data cube, particularly when columns are
renamed without notice.

Consider a dataset where some columns were renamed after a
certain number of tuples. Loading this dataset into Sudokube using
a dynamic schema causes loaded tuples to have dimensions defined
for both the old and the new column names, with NULL values

Sachin Basil John, Peter Lindner, Zhekai Jiang, & Christoph Koch

for missing column. Even if the schema changes multiple times,
Sudokube can handle all the additional dimensions easily.

With Sudokube’s querying and data exploration facilities, users
can interactively find timestamps where earlier tuples have only
NULL values for the new columns, while newer tuples have only
NULL values for old columns. These timestamps could suggest to
the ETL designer that a schema change occurred, and that the ETL
script should be updated. After discovering renamed columns, users
can instruct Sudokube to create a view that combines them and
use it to ask queries involving the combined dimensions. Without a
tool like Sudokube, discovering and handling such schema changes
would be challenging.

REFERENCES

[1] Sachin Basil John and Christoph Koch. 2022. High-dimensional Data Cubes. In
Proceedings of the VLDB Endowment, Vol. 15. 3828-3840.

[2] Surajit Chaudhuri and Umeshwar Dayal. 1997. An Overview of Data Warehous-
ing and OLAP Technology. SIGMOD Record 26, 1 (1997), 65-74.

[3] Surajit Chaudhuri, Umeshwar Dayal, and Vivek Narasayya. 2011. An overview
of business intelligence technology. 54, 8 (aug 2011), 88-98.

[4] W. Edwards Deming and Frederick F. Stephan. 1940. On a least squares adjust-
ment of a sampled frequency table when the expected marginal totals are known.
The Annals of Mathematical Statistics 11, 4 (1940), 427-444.

[5] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data Cube: A
Relational Aggregation Operator Generalizing Group-by, Cross-Tab, and Sub
Totals. Data Mining and Knowledge Discovery 1, 1 (1997), 29-53.

[6] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. 1996. Implement-
ing Data Cubes Efficiently. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data (SIGMOD °96). 205-216.

[7] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. 1997. Online Aggregation.
In Proceedings of the 1997 ACM SIGMOD International Conference on Management
of Data (SIGMOD °97). 171-182.

[8] David C. Hoaglin, Frederick Mosteller, and John W. Tukey (Eds.). 2006. Exploring
Data Tables, Trends, and Shapes. John Wiley & Sons.

[9] Minsuk Kahng, Dezhi Fang, and Duen Horng (Polo) Chau. 2016. Visual explo-
ration of machine learning results using data cube analysis. In Proceedings of the
Workshop on Human-In-the-Loop Data Analytics (HILDA ’16). 1-6.

[10] Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi. 2014.
Distributed and interactive cube exploration. In IEEE 30th International Confer-
ence on Data Engineering (ICDE ’14). 472-483.

[11] Xiaolei Li, Jiawei Han, and Hector Gonzalez. 2004. High-Dimensional OLAP: A

Minimal Cubing Approach. In Proceedings of the 30th International Conference on

Very Large Data Bases (VLDB "04). 528-539.

Jose Juan Montes. 2016. CubesViewer - OLAP Visual Viewer and Explore Tool.
Retrieved January 13, 2023 from http://www.cubesviewer.com

Yee Whye Teh and Max Welling. 2003. On Improving the Efficiency of the Iterative
Proportional Fitting Procedure. In International Workshop on Artificial Intelligence
and Statistics. PMLR, 262-269. https://proceedings.mlr.press/r4/teh03a.html
Jozef L Teugels. 1990. Some representations of the multivariate Bernoulli and
binomial distributions. Journal of Multivariate Analysis 32, 2 (1990), 256—268.

[12

(13

[14

http://www.cubesviewer.com
https://proceedings.mlr.press/r4/teh03a.html

	Abstract
	1 Introduction
	2 System Architecture
	2.1 Cube Specification and Querying
	2.2 Frontend
	2.3 Backend
	2.4 Materialization Strategy
	2.5 Query Approximation

	3 Use Case Scenarios
	References

