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ABSTRACT 
Flexure pivots, which are widely used for precision 

mechanisms, generally have the drawback of presenting 
parasitic shifts accompanying their rotation. The known 
solutions for canceling these undesirable parasitic translations 
usually induce a loss in radial stiffness, a reduction of the 
angular stoke, and a nonlinear moment-angle characteristics. 
This article introduces a novel family of kinematic structures 
based on coupled n-RRR planar parallel mechanisms which 
presents exact zero parasitic shifts, while alleviating the 
drawbacks of some known pivoting structures. Based on this 
invention, three symmetrical architectures have been designed 
and implemented as flexure-based pivots. The performance of 
the newly introduced pivots has been compared via Finite 
Element models with that of two known planar flexure pivots 
having theoretically zero parasitic shift. The results show that the 
newly introduced flexure pivots are an order of magnitude 
radially stiffer than the considered pivots from the state of the 
art, while having zero parasitic shift properties and equivalent 
angular strokes. These advantages are key to applications such 
as mechanical time bases, surgical robotics, or optomechanical 
mechanisms. Polymer mockups and a titanium alloy prototype 
have been manufactured for future experimental validation. 
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1. INTRODUCTION 
 Flexure pivots are commonly used in precision mechanisms 

as they can provide an accurate and repeatable rotation of 
mechanical elements. Their absence of solid friction, wear, 
lubrification and backlash and the possibility of monolithic 
manufacturing makes flexure pivots highly beneficial for micro- 
and nanopositioning systems [1-4], surgical instruments [5-7], 
space applications [8-10] and horological oscillators [11-14].  

 In high precision applications, flexure pivots must achieve a 
motion of the rotating part as close as possible to a pure rotation. 
Indeed, several of the known flexure pivots exhibit parasitic 
shifts in addition to the desired rotational motion. This defect is 

generally quantified by measuring the parasitic center shift of the 
pivot, which is the displacement of the point lying on the initial 
rotation axis and belonging to the rotating part of the pivot. Most 
flexure pivots, such as cross-spring pivots, have a parasitic shift 
which can be expanded by a second order power series with 
respect to the angular stroke. For specific geometries or 
structures, it is possible to minimize this second order term [14-
17]. For instance, the parasitic center shift of a cross-spring pivot 
is minimized if the crossing axis coincides at ~12.73% of the 
length of the beams [18].  

 A theoretically zero parasitic shift can be obtained for 
flexure pivots with rotational symmetry [9,19,20]. Nevertheless, 
most designs are either: underconstrained [4,9,21], implying 
internal vibrations; overcontrained [4,20], which can create a 
highly unpredictable restoring torque and a limited rotation 
angle; or non-planar [9,20], requiring assembly which can 
induce large assembly errors. Today, the only known rotationally 
symmetric pivot without underconstraint and slightly 
overcontrained is the triple crossed flexure named TRIVOT [19]. 
Nevertheless, its radial support stiffness appears to be relatively 
low [22].  

Depending on the application, the support stiffness of the 
pivot must be as high as possible [23]. Thus, the motion of the 
pivot does not depend on external loads applied to this pivot, 
such as gravity or linear accelerations. For flexure pivots whose 
structure is planar, the support stiffness is evaluated by its radial 
stiffness, since the out-of-plane stiffnesses are mostly dependent 
on the structure height. It was shown in Ref. [22] that the radial 
stiffness can be increased if the thickness of secondary flexures 
(i.e., flexures having a second order motion with respect to the 
applied angle) is increased. However, this also increases the 
nonlinearity of the moment-angle characteristics of the pivot. 
This nonlinearity lowers the angular stroke of the pivot and can 
be undesired for some applications. For instance, the rotation 
stiffness nonlinearity of time base flexure pivot oscillators must 
be as low as possible to minimize the isochronism defect (i.e., 
the change of frequency of the oscillator with amplitude) [11,14]. 

In this paper, we present a new family of planar flexure pivot 
designs, based on RRR planar parallel manipulators with 
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kinematic chain coupling, having theoretically no parasitic shift 
and a high radial stiffness (patent pending [24]). They aim at 
fulfilling the same function as classic cross-spring pivots, i.e., to 
provide a rotational motion using flexures, but with 
advantageous characteristics. In asymmetrical configurations, 
these mechanisms exhibit a rotation which is about a remote 
center of motion (RCM), making them highly beneficial for 
minimally invasive surgery (MIS) robotics and tool holders [25]. 
When designed with a rotational symmetry, the pivots are largely 
insensitive to the gravity orientation, which is particularly 
essential for horological applications [14,26,27]. The kinematics 
and the flexure implementations of these pivots are respectively 
described in Sections 2 and 3. Their performances are compared 
to existing planar flexure pivots in Section 4 using Finite 
Element Modeling (FEM). The FEM results, exposed in Section 
6, allow us to conclude in Section 7 that these new flexure pivots 
have a negligible parasitic shift of the center of rotation. 
Furthermore, they exhibit superior performances over existing 
flexure pivots in terms of radial stiffness.  

 
2. DESCRIPTION OF THE N-RRR PIVOT FAMILY 

The pivots presented in this article are based on two generic 
architectures that we call Type I and Type II pivots. All 
declinations of these architectures are based on three or more 
kinematic chains (𝑛 ≥ 3) based on three serial revolute joints 
(RRR) connecting in parallel the rotating platform to the fixed 
base. We thus gave the name n-RRR Pivot to this family of 
pivots. The individual architectures are then given names such 
as TRIOVOT (𝑛 = 3),  QUADRIVOT (𝑛 = 4) and HEXAVOT 
(𝑛 = 6). Based on these particular cases, it is straightforward to 
conceive other pivots of the same family having other 𝑛 values. 

 
2.1 Generic Type I Pivots 
2.1.1 Topology 

A Type I pivot is presented in Fig. 1c. It is composed of a 
mobile platform (PF) connected via three main revolute joints 
(𝐴!,	𝐴" and 𝐴#) to three main rigid links (ML1, ML2 and ML3). 
These three main links are connected via three intermediate 
revolute joints (𝐵!,	 𝐵" and 𝐵#) to three secondary rigid links 
(SL1, SL2 and SL3) respectively. The three secondary links are 
connected to the fixed base via three secondary revolute joints 
(𝐶!,	𝐶" and 𝐶#). The secondary links SL1 and SL2 are connected 
to each other via a rigid coupling link CL1 and two coupling 
revolute joints 𝐷!!,	𝐷!". The secondary links SL2 and SL3 are 
connected to each other via a rigid coupling link CL2 and two 
coupling revolute joints 𝐷"! and	 𝐷"". The geometry is built 
around a point 𝑂 called the center of the mechanism.  
 
Remark 1. As for all pivot mechanism, the mobile platform (PF) 
and the fixed base are interchangeable elements, i.e., swapping 
them maintains all kinematic properties of the mechanism, only 
the moments of inertia are affected. 

	
2.1.2 Geometric Conditions 

Condition 1: The quadrilaterals 𝑂𝐴!𝐵!𝐶!, 𝑂𝐴"𝐵"𝐶" and 
𝑂𝐴#𝐵#𝐶#	are geometrically similar (i.e., their corresponding 

angles are congruent, and their corresponding sides are 
proportional) but not reflected.  

Condition 2: The quadrilaterals 𝐶!𝐷!!𝐷!"𝐶" and 
𝐶"𝐷"!𝐷""𝐶# are parallelograms. 

 
2.1.3 Kinematic Properties 

If Conditions 1 and 2 are respected, Type I pivots have a 
single degree of freedom (DOF) which is a pure rotation of the 
mobile platform (PF) around 𝑂. It is remarkable to note that, as 
long as singularities are avoided: 

- The parasitic shift of the mobile platform is zero, 
independently of the amplitude of the rotation, as shown 
in Fig. 1d. 

- The mechanism has no overconstraint and no internal 
DOF. 

- The center of rotation can be located outside of the 
mechanism volume, which thus constitutes an RCM.  

The pivot is said to be in neutral position when the lines drawn 
by 𝐵!𝐴!, 𝐵"𝐴" and 𝐵#𝐴# all pass through 𝑂 (e.g., as shown in 
Fig. 1e). 
 

 

 
FIGURE 1: Type I pivot. (a) 3-RRR sub-mechanism (3-DOF). (b) 
Coupling sub-mechanism (1-DOF). (c) Type I Pivot satisfying only 
Conditions 1 and 2 in an arbitrary position. (d) Mechanism in (c) after 
rotation of an angle 𝜃. (e) Type I pivot satisfying Conditions 1 to 7 in 
neutral position. (f) Mechanism in (e) after rotation of an angle 𝜃. Video 
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Figure 1. Kinematics of the generic flexure pivot by assembling a 3-RRR planar parallel
manipulator (a) with coupling mechanism (b). The resulting pivot mechanism is shown at
neutral position (c) and when an angle is applied to the platform (d). The pivot structure
exhibits no instant center shift if the arms have homothetic shapes (c-d) or if they form
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animations of the mechanisms are available under the following link: 
https://vimeo.com/806278724 (Password: Quadrivot4-RRR). 
 
2.1.4 Demonstration 

Let’s consider the sub-mechanism of Fig. 1a where the 
coupling links (CL1 and CL2) have been removed. This 
mechanism is a well know 3-RRR planar parallel structure with 
3-DOF. If we force its mobile platform to rotate exactly around 
𝑂 (i.e., with the distances 𝑂𝐴!, 𝑂𝐴" and 𝑂𝐴# remaining 
constant), then the angles of the three central vertices ∠𝐶!𝑂𝐴!, 
∠𝐶"𝑂𝐴" and ∠𝐶#𝑂𝐴# of the three quadrilaterals 𝑂𝐴!𝐵!𝐶!, 
𝑂𝐴"𝐵"𝐶" and 𝑂𝐴#𝐵#𝐶# all vary by the same value 𝜃. As a result, 
the three base vertex angles ∠𝑂𝐶!𝐵!, ∠𝑂𝐶"𝐵" and ∠𝑂𝐶#𝐵# all 
vary by the same angle 𝜃$. 

We now consider the sub-mechanism of Fig. 1b where the 
mobile platform (PL) and the main links (ML1, ML2 and ML3) 
have been removed. It is a 1-DOF mechanism where Condition 
2 stated above forces all the three base vertices 𝐶!, 𝐶" and 𝐶# to 
rotate by the same angle 𝜃$ during motion, since the parallel 
sides of parallelograms remain parallel. Therefore, this sub-
mechanism fulfills the condition required by the sub-mechanism 
of Fig. 1a to obtain a pure rotation of the mobile platform (PF).  

This proves the kinematic property stated above: indeed, 
when the two sub-mechanisms of Fig. 1a and Fig. 1b, which 
share the same secondary links SL1, SL2 and SL3, are connected 
to form the full structure of Fig. 1c, they constitute a pivot 
structure whose mobile platform rotates with no parasitic shift 
(see Fig. 1d).   

 
2.1.5 Particular Cases 

Some additional geometric conditions can be added to reach 
interesting cases: 

Condition 3: In neutral position, the lines drawn by 𝐶!𝐵! 
and 𝐵!𝐴! (respectively	𝐶"𝐵" and 𝐵"𝐴", and 𝐶#𝐵# and 𝐵#𝐴#) are 
orthogonal. Advantage: When rotating the platform in the 
vicinity of the neutral position, the rotation amplitude of the 
secondary links tends to zero. This minimizes the motion 
amplitude of the base revolute joints 𝐶!, 𝐶" and 𝐶#. 

Condition 4: In neutral position, the line segment 𝐷!!𝐷!" is 
orthogonal to 𝐶!𝐷!! as well as to 𝐶"𝐷!" (respectively 𝐷"!𝐷"" is 
orthogonal to 𝐶"𝐷"! as well as to 𝐶#𝐷""). Advantage: the forces 
transmitted through the coupling links are minimized.  

Condition 5: The distances 𝑂𝐴!, 𝑂𝐴" and 𝑂𝐴#	are equal. 
When combined to Condition 1, Condition 5 implies that the 
quadrilaterals 𝑂𝐴!𝐵!𝐶!, 𝑂𝐴"𝐵"𝐶" and 𝑂𝐴#𝐵#𝐶# are 
geometrically congruent but not reflected. Advantage: 
symmetrical design. 

Condition 6: The base pivots 𝐶!, 𝐶" and 𝐶# are located with 
a rotational symmetry around 𝑂. Advantage: symmetrical 
design. 

Condition 7: The distances 𝐶!𝐷!! and 𝐶"𝐷"! are equal. 
Advantage: the coupling chains have the same proportions, 
which improves the symmetry of the design. 

A Type I pivot satisfying all the listed conditions (1 to 7) is 
shown in neutral position and in rotated position respectively in 
Figs. 1e and 1f.   

2.1.6 Quasi-Type I Pivots 
Design alternatives to Type I pivots, called Quasi-Type I 

pivots, where Conditions 1 and 2 are not fully respected, are 
presented due to their additional benefits. This new subgroup of 
the n-RRR Pivot family does however only approximate the 
kinematic properties of Type I pivots (see Section 2.1.3). The 
considered design variants, are listed below: 

Mirrored kinematic chain: Condition 1 is modified to 
obtain two mirrored kinematic chains. This symmetry allows the 
structure to obtain symmetrical behaviors when the pivot is 
rotated clockwise and counterclockwise.  

Watt’s linkage coupler: In order to couple two mirrored 
kinematic chains, Condition 2 must be modified: the 
parallelogram linkage coupler (i.e., formed by the quadrilaterals 
𝐶!𝐷!!𝐷!"𝐶" or 𝐶"𝐷"!𝐷""𝐶#), see Fig. 1b, is replaced by a Watt’s 
linkage. This fulfills the coupling of the mirrored secondary 
links, forcing them to rotate with approximately equal angle 
magnitude, but in opposite directions. Since Conditions 1 and 2 
are no longer respected, this leads to small parasitic shifts of the 
instant center of rotation for small rotation amplitudes. This 
parasitic shift is minimized if Condition 4 is respected. Note that 
the advantage of transmitting minimalized forces through the 
coupling links is also preserved with Condition 4. 

Supernumerary kinematic chains: The number 𝑛	of base 
pivots and respective kinematic chains (𝑛 = 3 in the case of 
Type I pivots) can be increased. This can lead to increased load 
capacity in out-of-plane directions.   

Supernumerary coupling links: The number 𝑚 of 
coupling links (𝑚 = 2 in the case of Type I pivots) can be 
increased. Note that additional coupling links (i.e., 𝑚 > 2) 
induce overconstraints but lead to increased load capacity in 
radial directions.   

 
2.2 Generic Type II Pivots 

Type II pivots have the same topology as Type I pivots (see 
Fig. 2). Condition 1 is however different: the quadrilaterals 
𝑂𝐴!𝐵!𝐶!, 𝑂𝐴"𝐵"𝐶" and 𝑂𝐴#𝐵#𝐶#	are parallelograms (instead of 
similar polygons for Type I). Geometrically, this implies that 
𝜃 = 𝜃$. Note that these parallelograms do not need to be similar, 
which was a constraining condition for Type I. If Condition 2 is 
respected, the geometric properties of Type I stated in Section 
2.1.3 (i.e., zero parasitic shift, no under- or overconstraints and 
the possibility of obtaining an RCM) are also valid for Type II.  

 

 
FIGURE 2: Type II pivot. (a) in an arbitrary position and (b) rotated 
by an angle 𝜃 
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Since the parallelogram kinematic chains of Type II pivots 
can have independent shapes (see Fig. 2a), these pivots do not 
have a defined neutral position. The particular cases, variants and 
respective advantages of Type I (Section 2.1.5) are not 
applicable for Type II. For this reason, Type II is not further 
explored in this paper. 

 
2.3 Selected n-RRR Pivot Architectures 

We designed three n-RRR Pivot structures, all based on 
Quasi-Type I pivots. They are called TRIOVOT (3-RRR Pivot), 
QUADRIVOT (4-RRR Pivot) and HEXAVOT (6-RRR Pivot). 
These pivots have the advantage over the Type I pivots (Fig. 1) 
to be rotationally symmetrical, and thus rotate around the center 
𝑂 without parasitic shift. Indeed, in these arrangements, 
symmetry cancels the parasitic shift of Quasi-Type I pivots and 
moreover produces isotropic radial behaviors (e.g., radial 
stiffness) which contributes to keeping the center of mass of the 
pivot precisely at the center 𝑂 when rotated under gravity. 
 
2.3.1 TRIOVOT Mechanism 

The TRIOVOT mechanism (Fig. 3) satisfies Conditions 1 to 
7 of Type I pivots but uses an extra coupling link CL3 connecting 
the secondary links SL1 and SL3 via two additional revolute 
joints 𝐷#! and 𝐷#", arranged symmetrically with respect to 𝐷!! 
and 𝐷!"  and 𝐷"! and 𝐷"".  

 

 
FIGURE 3: TRIOVOT mechanism (a) in neutral position and (b) 
rotated by an angle 𝜃 

 
2.3.2 QUADRIVOT Mechanism 

The QUADRIVOT mechanism (Fig. 4) is a quasi-Type I 
pivot variant with 𝑛 = 4 mirrored kinematic chains and 𝑚 = 4 
Watt’s linkage couplers. It satisfies the following conditions: 

- Condition 1, except that adjacent similar quadrilaterals 
are mirrored. 

- Condition 3 for the 4 kinematic chains. 
- Condition 4 for the 4 Watt’s linkage couplers. 
- Conditions 5 and 6 (rotational symmetry of order 2). 

This arrangement has the advantage of having a rotational 
symmetry of order 2 and a symmetrical kinematic behavior in 
clockwise and counterclockwise directions, which is neither the 
case for the Type I pivots, nor for the TRIOVOT. 

 

 
FIGURE 4: QUADRIVOT mechanism (a) in neutral position and (b) 
rotated by an angle 𝜃 

 
2.3.3 HEXAVOT Mechanism 

The HEXAVOT mechanism (Fig. 5) is a quasi-Type I pivot 
variant with 𝑛 = 6 mirrored kinematic chains and 𝑚 = 3 Watt’s 
linkage couplers. It satisfies the following conditions: 

- Condition 1, except that adjacent similar quadrilaterals 
are mirrored. 

- Condition 3 for the 6 kinematic chains. 
- Condition 4 for the 3 Watt’s linkage couplers. 
- Conditions 5 and 6 (rotational symmetry of order 3). 
- Condition 7 for the 3 Watt’s linkage couplers, thus all the 

couplers are identical. 
 

 
FIGURE 5: HEXAVOT mechanism (a) in neutral position and (b) 
rotated by an angle 𝜃  

 
3. FLEXURE IMPLEMENTATIONS 

In this section, we provide flexure implementations of the 
TRIOVOT, QUADRIVOT and HEXAVOT, see Fig. 6. For all 
these flexure pivots, the main links and respective extremity 
revolute joints are each embodied by long leaf springs, called 
main flexures. The base revolute joints are implemented by 
Remote Center of Compliance (RCC) pivots, called secondary 
flexures. The revolute joints at the extremities of the coupling 
links are replaced by two leaf springs, called coupling flexures. 
As opposed to the QUADRIVOT and the HEXAVOT, the 
TRIOVOT possesses a rigid connecting rod, called coupling 
connecting rod, placed in-between the two coupling flexures. 
Since the fixed frame and platform are interchangeable (see 
Remark 1), the inner rigid platform of the pivot is called the inner 
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body and the outer rigid part connecting all the secondary 
flexures is called the outer body. The other rigid parts of the 
flexure pivots keep the same name as their corresponding 
kinematic architectures illustrated in Figs. 3-5. 

 
Remark 2. Note that, even if each flexure has small parasitic 
shift defects, the rotational symmetry of the flexure pivots 
ensures that they rotate theoretically without parasitic center 
shift. 

 
Mockups of the TRIOVOT, QUADRIVOT and HEXAVOT 

were fabricated in polyoxymethylene (POM) using a laser 
cutting machine to qualitatively verify the behaviors of these 
new designs. The dimensions of these demonstrators are given 
in Table 1. The flexure pivots show no visible parasitic shift 
when manually rotated (Fig. 7). Furthermore, the support 
stiffness seems high when applying radial loads by hand. Since 
the center shifts are very small and because POM tends to creep 
under external loads, we did not record any experimental data of 
parasitic center shift or radial stiffness. Instead, numerical 
characterization of these designs is performed in Section 4, using 
FEM modeling. 

 

 
FIGURE 6: Flexure implementation of (a) the TRIOVOT, (b) the 
QUADRIVOT and (c) the HEXAVOT. The flexure pivots are all 
presented at equilibrium position (i.e., undeformed).  
 
4. FEM PERFORMANCE COMPARISON WITH STATE-

OF-THE-ART PLANAR FLEXURE PIVOTS 
In order to highlight the advantages of the new flexure 

pivots presented in this paper (i.e., the TRIOVOT, the 
QUADRIVOT and the HEXAVOT), we compare their 

mechanical properties with two existing planar flexure pivots 
with minimized parasitic shift, namely the co-RCC [14] and the 
TRIVOT [19]. 

 

 
FIGURE 7: Mockups (POM, outer diameter of 150 mm) of (a) the 
TRIOVOT, (b) the QUADRIVOT and (c) the HEXAVOT. The inner 
body is attached to a fixed frame and the outer body is manually rotated.  

 
4.1 Design Constraints  

In order to ensure that the results are comparable, some 
parameters are fixed or optimized: 

- Every pivot is made of POM, with a Young’s modulus of 
𝐸 = 3 GPa. 

- The outer body is identical (disc with an external diameter 
of 150 mm) to constrain the pivot size to a maximum 
allowed volume. 

- The inner body radius is limited to 𝑝 ≥ 5 mm. 
- The out-of-plane width 𝑏 of the pivots is 5 mm. 
- The thickness of the main and secondary flexures, 

respectively ℎ and ℎ$, is 1 mm. 
- Since the radial stiffness is highly dependent on the 

stiffness of the secondary and coupling flexures, they are 
dimensioned such that they have the same contribution to 
the rotation stiffness nonlinearity. In other words, the 
ratio 𝐾"/𝐾% (where the moment-angle characteristics of 
the pivot is given by 𝑀& = 𝐾%𝜃 + 𝐾!𝜃" +𝐾"𝜃# 
+	𝒪(𝜃')) is set close to 2 rad-2 for all pivots.  

- The length of the main flexures 𝐿 must be as high as 
possible (respecting the allowable volume) to minimize 
the internal stress and maximize the angular stroke, see 
Eqs. (19) and (20).  

Using these constraints, the TRIOVOT, the QUADRIVOT 
and the HEXAVOT are designed using the analytical model 
presented in Appendix A. The co-RCC and the TRIVOT are 
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respectively designed using Refs. [14] and [19]. The resulting 
dimensions are summarized in Table 1.  

 
TABLE 1: Design parameters of the flexure pivots 

 
 

4.2 FEM Model 
To obtain the characteristics of the different pivots, two 2D 

nonlinear static FEM studies are carried out using the Solid 
Mechanics module of COMSOL Multiphysics 6.0: 

Study 1: A rotation is applied to the outer body while the 
inner body is fixed (Fig. 8). The angle 𝜃 is varied from -20 deg 
to 20 deg with equal steps of 0.1 deg. The stiffness constant 𝐾% 
and nonlinear terms 𝐾! and 𝐾" are then obtained by fitting a 10th 
degree polynomial to the torque-angle relationship. The absence 
of over- and underfitting is verified. During this study, we also 
evaluate the maximum von Mises stress 𝜎()*	and the maximum 
parasitic center shifts ∆𝑥()* and ∆𝑦()* along the 𝑥 and 𝑦 axes, 
respectively.  

Study 2: A small radial displacement (0.2 mm) is applied 
along 𝑥, then along 𝑦, to the outer body, whose rotation is 
constrained to the neutral orientation, while the inner body is 
fixed. The reaction forces are extracted in order to compute the 
respective radial stiffnesses 𝐾+ and 𝐾,. We also verify that the 
structures do not buckle to ensure that the radial stiffness 
corresponds to the linear deformation of the flexures. 

For both studies, the pivots are meshed with quadrilateral 
shell elements such that all flexures have 4 elements distributed 
over their thickness and at least 50 elements along their length.  

 
5. RESULTS AND DISCUSSION 

The results of the FEM comparison are presented in Tables 
2 and 3. The pivots are compared in terms of rotation stiffness 
nonlinearity, parasitic center shift, radial stiffness magnitude and 
internal stress. The analytical model is also verified by 
comparing the theoretical and FEM data. 
 
5.1 Moment-Angle Characteristics 

The moment-angle characteristics of the different flexure 
pivots obtained from Study 1 is presented in Table 2 by 
providing the stiffness constant 𝐾% and nonlinearities 𝐾! and 𝐾". 
As can be seen from the data, the value of 𝐾% is proportional to 

the number of kinematic chains 𝑛 and inversely proportional to 
the length of the main flexures. For instance, the stiffness 
constant of the HEXAVOT is considerably higher due to its 𝑛 =
6 kinematic chains. Additionally, even though the TRIOVOT 
and the QUADRIVOT have a different number of kinematic 
chains (𝑛 = 3 and 𝑛 = 4	respectively), their stiffness constant is 
almost equal. This is because the TRIOVOT has significant 
shorter main flexures for a given diameter size due to its coupling 
connecting rods requiring considerable radial space, see Fig. 6a. 

 

 

 
FIGURE 8: FEM simulation of (a) the co-RCC, (b) the TRIVOT, (c) 
the TRIOVOT, (d) the QUADRIVOT and (e) the HEXAVOT rotated 
by an angle of 20 deg. The color bars give the von Mises stress in MPa. 
 

Since the stiffness constant 𝐾% is not the same between the 
pivots, we normalize the quadratic and cubic stiffness 
nonlinearities, respectively 𝐾! and 𝐾", by 𝐾%, to make their 
effects comparable. It can be observed that the TRIOVOT has a 
large quadratic stiffness nonlinearity ratio 𝐾!/𝐾% in comparison 
to the other studied flexure pivots where this value is 
negligeable. This can be explained by the fact that the 
deformation of the TRIOVOT’s main flexures strongly differs in 
CW and CCW rotation directions due to the orientation of the 

Table 1

Maximum Parasitic Shift Normalized Radial Stiffness

∆0!"# (mm) ∆1!"# (mm) 2$/2%
(mrad/mm2)

2&/2%
(mrad/mm2)

FEM FEM FEM FEM

co-RCC [14] 0.238 0.174 35.5 10.8

TRIVOT [19] 2.0×10−6 2.7×10−6 16.9 16.9

TRIOVOT 2.7×10−6 3.0×10−6 134.3 134.1

QUADRIVOT 5.8×10−7 4.4×10−7 292.3 293.6

HEXAVOT 1.8×10−6 2.4×10−6 218.5 218.3

Main Flexures Secondary Flexures Coupling 
Flexures

Dimensions in 
mm 4 5 6 7 8 4' 5' 6' 4( 5(

co-RCC [14] 50 1 6 - - 17 1 - - -

TRIVOT [19] 45 1 5 - - 20 1 - 17.5 1

TRIOVOT 40 1 5 -7.5 19 10 1 2 11 1

QUADRIVOT 50 1 5 -5 20 13.5 1 2 6 0.75

HEXAVOT 45 1 5 1 15.5 14 1 1.5 5 0.75

Table 3 Table 2
Angular Stiffness Maximum 

Stress

2% (Nmm/rad) 2)/2% (rad-1) 2*/2% (rad-2) 9!"# (MPa)

AM FEM AM FEM AM FEM AM FEM

co-RCC [14] 561.3 540.1 - 0.002 - 2.08 49.4 79.2

TRIVOT [19] 456.8 431.0 - 0.009 - 2.26 54.3 77.6

TRIOVOT 533.2 519.7 -0.14 -0.23 2.13 1.97 63.4 88.8

QUADRIVOT 532.0 522.3 0 -9.5×
10−5 2.08 2.08 49.9 69.3

HEXAVOT 913.6 886.6 0 6.0×
10−5 2.35 2.31 57.8 84.9
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kinematics chains (𝑛-. = 3 and 𝑛--. = 0, see Appendix A3). 
From Eqs. (10) and (17), obtaining 𝐾! = 0 is theoretically 
possible for the TRIOVOT, but this complicates the design 
significantly. For the QUADRIVOT and the HEXAVOT, 𝐾! is 
analytically null regardless of the main flexure dimensions 
because these flexure pivot structures have the same number of 
kinematics chains orientated CW and CCW (𝑛-. = 𝑛--. in Eq. 
(17)). This is confirmed by the negligible values obtained by 
FEM. 

As specified in Section 4.1, the cubic stiffness nonlinearity 
ratio 𝐾"/𝐾% of all the flexure pivots is close to 2 rad-2 targeted 
using the analytical model of Appendix A. Bear in mind that this 
model is based on linear beam theory, which is valid for small 
deformations, while the FEM results were obtained for larger 
deformations (±20 deg). This can explain some of the difference 
between both types of results. Nevertheless, a good agreement is 
observed overall between the analytical model and FEM results 
for the values of 𝐾%	and	𝐾", and the order of magnitude of the 
𝐾!/𝐾% ratio. This demonstrates the effectiveness of the analytical 
model for the preliminary dimensioning of such pivots, but FEM 
analysis is recommended for an accurate characterization of the 
flexure pivots at higher deformations. 
 
Remark 3. To specific conditions, the quadratic and cubic 
stiffness nonlinearities (i.e., 𝐾! and 𝐾" respectively) can be set to 
zero (see Eqs. (17) and (18)). In this case and if the flexure pivots 
are used as time base oscillators, their isochronism defect is 
therefore minimized [14]. Alternatively, 𝐾" can be set to a 
specific value to compensate for externally induced isochronism 
defects (such as the ones introduced by escapements or if the 
oscillating balance wheel has a varying inertia) [11,28]. 
 
TABLE 2: Flexure pivot angular stiffness and maximum stress 
obtained from the analytical model (AM) and the simulations (FEM) 

 
 
5.2 Maximum Stress 

The maximum value of the von Mises stress obtained with 
Study 1 is provided in Table 2. As expected, the maximum stress 
is situated at the beam extremity connected to the inner body (see 
Fig. 8) and is obtained at the maximum amplitude (i.e., ±20 deg).  

It can be noticed that the stress is consistently higher in the 
FEM data than in the analytical results (increase of ~40%). A 
safety factor should thus be considered when designing such 
flexure pivots for a specified angular stoke using the analytical 
model.  

The QUADRIVOT has the lowest maximum stress 
compared to all the other studied pivots. This also means that the 
QUADRIVOT has the maximum angular stroke. 

 
5.3 Parasitic Center Shift  

The FEM results of the parasitic center shift are given in 
Table 3 as the maximum deviation along 𝑥 and 𝑦 when 
performing Study 1. We can observe that the parasitic center 
shifts ∆𝑥()* and ∆𝑦()* are extremely small (a few nanometers 
for a pivot external diameter of 150 mm) for all the flexure pivots 
except the co-RCC (a bit less than a millimeter for the same pivot 
size). This shows the advantage of basing the design of flexure 
pivots on kinematic architectures with zero parasitic center shift, 
which is the case for all considered architectures except the co-
RCC.  

 
TABLE 3: Flexure pivot parasitic shift and radial stiffness obtained 
from the FEM model 

 
 

5.4 Radial Stiffness 
The FEM data of the radial stiffness 𝐾+ and 𝐾, (Study 2) are 

provided in Table 3. For comparison purposes, these values are 
normalized by the angular stiffness constant 𝐾% of the respective 
flexure pivots. As opposed to the co-RCC having a large 
anisotropy defect (𝐾+ ≅ 3.3𝐾,), the other flexure pivots have all 
a radial stiffness which is rather isotropic thanks to their 
rotational symmetry. 

The normalized radial stiffness is maximum for the 
QUADRIVOT. Indeed, the average of 𝐾+/𝐾% and 𝐾,/𝐾% is 1.3, 
2.2, 13 and 17 times higher for the QUADRIVOT compared to 
the HEXAVOT, the TRIOVOT, the co-RCC and the TRIVOT, 
respectively.  

We assume that the HEXAVOT has a lower normalized 
radial stiffness than the QUADRIVOT because it has less 
couplers and more kinematic chains. The support stiffness 
reduction in the radial directions of the TRIOVOT could be 

Table 1

Maximum Parasitic Shift Normalized Radial Stiffness

∆0!"# (mm) ∆1!"# (mm) 2$/2%
(mrad/mm2)

2&/2%
(mrad/mm2)

FEM FEM FEM FEM

co-RCC [14] 0.238 0.174 35.5 10.8

TRIVOT [19] 2.0×10−6 2.7×10−6 16.9 16.9

TRIOVOT 2.7×10−6 3.0×10−6 134.3 134.1

QUADRIVOT 5.8×10−7 4.4×10−7 292.3 293.6

HEXAVOT 1.8×10−6 2.4×10−6 218.5 218.3

Main Flexures Secondary Flexures Coupling 
Flexures

Dimensions in 
mm 4 5 6 7 8 4' 5' 6' 4( 5(

co-RCC [14] 50 1 6 - - 17 1 - - -

TRIVOT [19] 45 1 5 - - 20 1 - 17.5 1

TRIOVOT 40 1 5 -7.5 19 10 1 2 11 1

QUADRIVOT 50 1 5 -5 20 13.5 1 2 6 0.75

HEXAVOT 45 1 5 1 15.5 14 1 1.5 5 0.75

Table 3 Table 2
Angular Stiffness Maximum 

Stress

2% (Nmm/rad) 2)/2% (rad-1) 2*/2% (rad-2) 9!"# (MPa)

AM FEM AM FEM AM FEM AM FEM

co-RCC [14] 561.3 540.1 - 0.002 - 2.08 49.4 79.2

TRIVOT [19] 456.8 431.0 - 0.009 - 2.26 54.3 77.6

TRIOVOT 533.2 519.7 -0.14 -0.23 2.13 1.97 63.4 88.8

QUADRIVOT 532.0 522.3 0 -9.5×
10−5 2.08 2.08 49.9 69.3

HEXAVOT 913.6 886.6 0 6.0×
10−5 2.35 2.31 57.8 84.9

Table 1

Maximum Parasitic Shift Normalized Radial Stiffness

∆0!"# (mm) ∆1!"# (mm) 2$/2%
(mrad/mm2)

2&/2%
(mrad/mm2)

FEM FEM FEM FEM

co-RCC [14] 0.238 0.174 35.5 10.8

TRIVOT [19] 2.0×10−6 2.7×10−6 16.9 16.9

TRIOVOT 2.7×10−6 3.0×10−6 134.3 134.1

QUADRIVOT 5.8×10−7 4.4×10−7 292.3 293.6

HEXAVOT 1.8×10−6 2.4×10−6 218.5 218.3

Main Flexures Secondary Flexures Coupling 
Flexures

Dimensions in 
mm 4 5 6 7 8 4' 5' 6' 4( 5(

co-RCC [14] 50 1 6 - - 17 1 - - -

TRIVOT [19] 45 1 5 - - 20 1 - 17.5 1

TRIOVOT 40 1 5 -7.5 19 10 1 2 11 1

QUADRIVOT 50 1 5 -5 20 13.5 1 2 6 0.75

HEXAVOT 45 1 5 1 15.5 14 1 1.5 5 0.75

Table 3 Table 2
Angular Stiffness Maximum 

Stress

2% (Nmm/rad) 2)/2% (rad-1) 2*/2% (rad-2) 9!"# (MPa)

AM FEM AM FEM AM FEM AM FEM

co-RCC [14] 561.3 540.1 - 0.002 - 2.08 49.4 79.2

TRIVOT [19] 456.8 431.0 - 0.009 - 2.26 54.3 77.6

TRIOVOT 533.2 519.7 -0.14 -0.23 2.13 1.97 63.4 88.8

QUADRIVOT 532.0 522.3 0 -9.5×
10−5 2.08 2.08 49.9 69.3

HEXAVOT 913.6 886.6 0 6.0×
10−5 2.35 2.31 57.8 84.9



 8 © 2023 by ASME 

attributed to its long coupling connecting rods which can deform 
axially. This decreases the coupling efficiency and thus reduces 
the blocking of the translational motions along 𝑥 and 𝑦 of the 
pivot. The low radial stiffness of the co-RCC is attributed to the 
lack of parallel kinematics chains between the inner and outer 
bodies. Finally, the lower radial stiffness of the TRIVOT 
structure can be explained by the fact that the force transmitted 
from one secondary link to another is strongly misaligned with 
the axis of its coupling flexures, reducing drastically the 
coupling efficiency. In contrast, for the selected n-RRR Pivot 
structures, the force transmitted in the coupling flexures is 
aligned with their axis due to Condition 4. This efficient coupling 
of the kinematic chains appears to greatly increase the radial 
stiffness.  
 
6. CONCLUSION 

The new n-RRR Pivot family introduced in this article leads 
to two kinds (Type I and Type II) of exact zero parasitic shift 
pivoting kinematic structures. Based on this generic invention, 
we designed three symmetrical kinematic variants (TRIOVOT, 
QUADRIVOT and HEXAVOT) approaching the geometric 
properties of the exact Type I and proposed flexure-based 
implementations. We confronted the performance of these novel 
flexure pivots with equivalent planar flexure pivots from the 
state of the art (TRIVOT and co-RCC) having the same volume 
(150 mm diameter, 5 mm height), same minimal blade thickness 
(1 mm), same material (POM) and same angular stiffness 
nonlinearity. The comparison which was based on FEM models 
covered the parasitic shift, the admissible angular stroke and the 
radial stiffness. In summary the newly introduced flexure pivots 
are all 8 to 13 times radially stiffer than the considered pivots 
from the state of the art, while having zero parasitic shift 
properties and equivalent angular strokes. 

 

 
FIGURE 9: QUADRIVOT time base oscillator (titanium alloy) ready 
for experimental testing 

 
Our future work will focus on experimentally validating the 

designs presented in this article. A large-scale TiAl4V6 (75 mm 
diameter) flexure-based rotating oscillator prototype based on 
the QUADRIVOT structure was built for this purpose (Fig. 9). 
Subsequent research will include the miniaturization of this 

mechanism and its fabrication in monocrystalline silicon for 
integration in mechanical wristwatches. A large spectrum of 
other applications such as optomechanical systems for aerospace 
applications, RCM mechanisms for MIS robotics or micro- and 
nanopositioning systems are also foreseen. 
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APPENDIX A: ANALYTICAL MODEL 

This Appendix introduces the generic theoretical model 
used to design all the flexure pivots described in Section 3. For 
the calculations, we consider that all kinematic chains of a given 
flexure pivot have the same dimensions and deforms equally. 
Therefore, we first consider the rotation stiffness of a single main 
flexure (Section A1), then of the secondary and coupling 
flexures (Section A2), to finally compute the nonlinear moment-
angle relationship of a whole flexure pivot based on its number 
of kinematic chains and coupling links (Section A3). The 
admissible stroke of the flexure pivot is also evaluated (Section 
A4). 

 
A1 Rotation Stiffness of the Main Flexures 

Figure 10 illustrates the deformation and the load case of 
one of the main flexures. Each consists of an initially straight 
slender beam hinged at two pivot joints at 𝑂 (main pivot) and at 
𝐶 (secondary pivot). The main pivot (virtual) corresponds to the 
rotation of the whole flexure pivot. The secondary pivot 
represents the rotation of the secondary flexure. Since the 
stiffness of the secondary flexures will be considered in Section 
A2, no restoring torque is applied to the secondary pivot at point 
𝐶 in Fig. 10. At equilibrium (Fig. 10a), the beam axis is 
horizontal and intersects the center 𝑂. The distance between 𝑂 
and the left extremity of the beam is denoted 𝑝. The horizontal 
and vertical distances between the right extremity of the beam 
and the center 𝐶 are named 𝑒 and 𝑟, respectively. As opposed to 
the beam, the links (i.e., the platform and the secondary link) are 
considered rigid. In Fig. 10b, the main pivot is rotated by an 
angle 𝜃 when a moment 𝑀&,!01)( is applied to it. Due to the 
beam shortening along the horizontal axis, the secondary pivot 
rotates by an angle 𝜃$. The beam deflection 𝑦(𝑥) and the 
reaction forces 𝑃 and 𝑉, respectively along 𝑥 and 𝑦, and the 
bending moment 𝑀 are illustrated in Fig. 10c. 

To obtain simple closed-form solutions of the beam 
deflection, the impact of the axial force 𝑃 on the beam curvature 
is neglected and considering small deformations, the Euler-
Bernoulli equation gives: 
 

𝑀(𝑥) = 𝐸𝐼𝑦!!(𝑥) = 𝑀" + 𝑉𝑥              (1) 
 
where 𝐸𝐼 is the flexural rigidity of the beam. Applying the 
boundary conditions 𝑦(0) = 0, 𝑦2(0) = 𝜃, 𝑦2(𝑙) = 𝜃$ and 

10 mm
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𝑦(𝑙) = −𝑝(𝜃 − 𝜃#/6) − 𝑒𝜃$ based on small-angle 
approximations and solving the differential equation (1), the 
beam deflection becomes: 

 

𝑦(𝑥) = 𝜃𝑥 + #3
$%

&4

'
+ (

$%
&5

)
                 (2)	

where: 

𝑀" =
$%*+,5-'('/01+),-'(/013),64

/4
            (3)	

 

𝑉 = '$%*-+,501(/0'+),01(/0'3),64
/5

            (4)	
 

 
FIGURE 10: (a) As-fabricated, (b) deformed and (c) free-body 
diagram of one of the main flexures 

 
The axial load 𝑃	can be derived using the boundary condition of 
the bending moment at the right beam extremity 𝑀(𝑙) = 𝑀7 =
−𝑃(𝑟 − 𝑒𝜃$) − 𝑉(𝑒 + 𝑟𝜃$): 

 

𝑃 = − ((30/05,6)0#3
(5-3,6)

                       (5)	
 
The secondary pivot rotation 𝜃$ is related to the beam 

shortening ∆𝑙 = 𝐿 − 𝑙 which can be approximated by: 
 

∆𝑙 = ∫
678(&)8

4

'
𝑑𝑥/

" = −𝑝 ,
4

'
+ 𝑟𝜃9 − 𝑒

,6
4

'
      (6) 

 
Substituting the differentiation of Eq. (2) in Eq. (6), we can 
obtain the relation between the main pivot and the secondary 
pivot using series expansions around 𝜃 = 0 up to the third order: 

𝜃9 =
:
:;

:0<+̅0<+̅4

5̅
𝜃'   

      − :
>;"

(:-13̅-1+̅-1)3̅+̅)*:0<+̅0<+̅44
5̅4

𝜃1 + 𝒪(𝜃>)   

(7) 
 
where �̅� = 𝑝/𝑙 , �̅� = 𝑒/𝑙, �̅� = 𝑟/𝑙.  

The moment applied to the main pivot is obtained from the 
reaction forces and moment at the left beam extremity and by 
substituting Eq. (7) in Eqs. (3-5): 

 

𝑀,,:@ABC = −𝑀" + 𝑉𝑝 71 −
,4

'
9 − 𝑃𝑝𝜃 =  

𝐾",:@ABC𝜃 + 𝐾:,:@ABC𝜃' + 𝐾',:@ABC𝜃1 + 𝒪(𝜃>)    
(8)	

 
where: 

𝐾",:@ABC = 4 $%
D
(1 + 3�̅� + 3�̅�')					         (9)	

 

𝐾:,:@ABC = '
:;

$%
D
*:0'>+̅0<+̅44(:013̅01+̅0)3̅+̅)

5̅
      (10)	

 
𝐾',:@ABC = :

'';
$%
D

:
5̅4
(−1 + 9�̅�'  

															+	3(17 + 76�̅� + 129𝑒̅' − 300�̅�')�̅�   
																		+9(60 + 242�̅� + 339�̅�' − 200�̅�')�̅�' 
															+	27(23 + 118�̅� + 174�̅�')�̅�1   
             +	81(1 + 14�̅� + 24�̅�')�̅�>)               (11) 
 
It can be observed that the stiffness of one main flexure has 

nonlinear terms (e.g., quadratic and cubic nonlinearities 𝐾!,!01)( 
and 𝐾",!01)(, respectively) in addition to the stiffness constant 
𝐾%,!01)(. 

 
A2 Stiffness Contribution of the Secondary and 
Coupling Flexures 

Unlike the main flexures, the secondary and coupling 
flexures are modeled using the pseudo-rigid body model [29], 
i.e., their rotation stiffness is assumed constant. This is justified 
by the fact that their motion is of second order of the rotation of 
the pivot and hence their contribution is significantly smaller, see 
Eq. (7). As explained in Section 2, a coupler can be either a 
parallelogram or a Watt’s linkage, see Fig. 11. Assuming small 
deformations, we consider that the respective rotation 
magnitudes are equal (i.e., 𝜃$,! = 𝜃$," = 𝜃$). Then, the 
deformation angles of the coupling and secondary flexures are 
also the same. Since there are one secondary flexure per 
kinematic chain and two coupling flexures per coupler, it follows 
that the strain energy of the couplers given for 𝑛 kinematic chains 
and 𝑚 coupling links is: 

 
𝐸EFGBHI,JKLMNAGE =

O
'
𝐾9𝜃9' +𝑚𝐾P𝜃9'          (12) 
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where 𝐾$ and 𝐾9 stand for the angular stiffness constant of the 
secondary and coupling flexures, respectively. The moment 
applied by the secondary and coupling flexures to the flexure 
pivot rotation is computed by differentiating Eq. (12) by the 
pivot angle 𝜃 and substituting Eq. (7): 
 

𝑀,,JKLMNAGE =
Q$:;<=>?,@ABCDE<:

Q,
= 𝐾',JKLMNAGE𝜃1 	
+	𝒪(𝜃>)															 (13) 

 
where: 

𝐾',JKLMNAGE =
'(OR60'SRF)*:0<+̅0<+̅44

4

'';5̅4
      (14)	

 
As shown in Eq. (13), the secondary and coupling flexures 

bring a cubic stiffness nonlinearity to the flexure pivot rotation. 
 

Remark 4. If the secondary flexure corresponds to an RCC pivot 
and the coupling flexure is a simple beam (as shown in Fig. 6), 
their respective angular stiffnesses are 𝐾$ = 8𝐸𝐼$(1 + 3𝑝$/
𝐿$ + 3(𝑝$/𝐿$)")/𝐿$ and 𝐾9 = 𝐸𝐼9/𝐿9 (respectively Eqs. (5.6) 
and (3.1) in Ref. [30]). 
 

 
FIGURE 11: Pseudo rigid body model of the coupling of the 
secondary links by a parallelogram coupler in (a) rest and (b) deformed 
position or a Watt’s linkage coupler in (c) rest and (d) deformed position 

 
A3 Total Rotation Stiffness of the Flexure Pivot 

Since each main flexure has a second order stiffness 
nonlinearity 𝐾!,!01)(, the total stiffness of the flexure pivot 
depends on the orientation of the kinematic chains. For instance, 
the kinematic chains of the TRIOVOT are all oriented CW (or 
all CCW), but the QUADRIVOT and HEXAVOT have the same 
number of kinematic chains that are oriented CW and CCW. We 
thus define 𝑛-. and 𝑛--. as the number of main flexures 
oriented respectively as or as contrary to the main flexure 

illustrated in Fig. 10. The total moment-angle relationship of a 
flexure pivot with 𝑛 kinematic chains (note that 𝑛 = 𝑛-. +
𝑛--.) and 𝑚 couplers is finally a weighted sum of the stiffnesses 
given in Eqs. (8) and (13): 

 
𝑀, = 𝑛TU𝑀,,:@ABC(𝜃) − 𝑛TTU𝑀,,:@ABC(−𝜃) 

    +	𝑀,,JKLMNAGE = 𝐾"𝜃 + 𝐾:𝜃' + 𝐾'𝜃1 
    +	𝒪(𝜃>)                                                           (15) 
 

where: 
𝐾" = 𝑛𝐾",:@ABC																						         (16)	

 
𝐾: = (𝑛TU − 𝑛TTU)𝐾:,:@ABC										   (17)	

 
𝐾' = 𝑛𝐾',:@ABC + 𝐾',JKLMNAGE										   (18)	

 
A4 Admissible Angular Stroke 

Since the deformation of the secondary and coupling 
flexures is significantly smaller than that of the main flexures (𝜃$ 
is of second order with respect to 𝜃), it is assumed that the 
maximum internal stress 𝜎()* is observed in the main flexures 
and more specifically at the inner extremity of their beams (i.e., 
at the left extremity of the beam in Fig. 10). This assumption can 
be verified analytically (e.g., using Eq. (7)) or through FEM 
modeling, which was done in the case of the designs in this study 
(see Section 5.2). Substituting Eqs. (1) and (3) in the maximum 
stress equation of the main flexures yields: 

 

𝜎CBV =
|788(")|

$
X
'
= ('01+̅)X

$/
𝜃 + 𝒪(𝜃')      (19)	

 
where 𝐸 is the Young’s modulus of the material and ℎ is the 
thickness of the main flexure beams. The admissible angular 
stroke of the pivot 𝜃()*, which corresponds to the maximum 
stroke of one of its main flexure beams, can be evaluated using 
Eq. (19): 

 
𝜃CBV =

Y=GH/
$X('01+̅)

                      (20)	
 

where 𝜎)I( is the maximum engineering tolerated value of the 
stress that can be applied to the material (e.g., the yield or fatigue 
strengths).  
 
Remark 5. Since we consider small beam deformations, the 
parameter 𝑙 can	be	replaced	by 𝐿 in all the equations. 
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