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The cavity method is one of the cornerstones of the statistical physics of disordered systems such as
spin glasses and other complex systems. It is able to analytically and asymptotically exactly describe the
equilibrium properties of a broad range of models. Exact solutions for dynamical, out-of-equilibrium
properties of disordered systems are traditionally much harder to obtain. Even very basic questions such as
the limiting energy of a fast quench are so far open. The dynamical cavity method partly fills this gap by
considering short trajectories and leveraging the static cavity method. However, being limited to a couple of
steps forward from the initialization, it typically does not capture dynamical properties related to attractors
of the dynamics. We introduce the backtracking dynamical cavity method that instead of analyzing the
trajectory forward from initialization, it analyzes the trajectories that are found by tracking them backward
from attractors. We illustrate that this rather elementary twist on the dynamical cavity method leads to new
insight into some of the very basic questions about the dynamics of complex disordered systems. This
method is as versatile as the cavity method itself, and we hence anticipate that our paper will open many
avenues for future research of dynamical, out-of-equilibrium properties in complex systems.
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I. INTRODUCTION

The cavity method is one of the main analysis tools
to investigate equilibrium properties of disordered and
complex systems. It has been introduced in a series of
seminal works as an alternative to the replica method for
mean-field models of spin glasses [1]. Subsequent key
developments on diluted lattices also known as sparse
random graphs [2,3] and the link between the cavity
method and message-passing algorithms [4,5] have led
to an explosion of applications of the method in systems on
sparse random structures, such as error-correcting codes,
random constraints satisfaction problems, random graphs
coloring, or community detection to mention just a few of
many; see, e.g., the textbook [6]. Results obtained using the
cavity method are in many cases exact in the thermody-
namic limit which is particularly appealing for theoretical
studies in computer science and mathematics.
Many questions about complex systems of current

interest are, however, not concerned with equilibrium
properties but with dynamical, out-of-equilibrium ones.

An exact analysis of dynamical properties is much more
challenging compared to the equilibrium ones. Let us give
two concrete examples of some very basic questions about
dynamics that are so far open and that the method proposed
in this paper resolves.
Example 1: Consider the antiferromagnetic Ising model

or a spin glass with random �1 interactions on a random
d-regular graph of n nodes. Consider then the dynamics
where at each time step every spin aligns with their magnetic
field or remains in case the field is zero. We initialize each
spin randomly. To which value of energy does such a
dynamics converge at large times when n → ∞?
Example 2: Consider now the ferromagnetic Ising model

on a random d-regular graph, the same dynamical process
but initialized at magnetization −1 < m < 1. For what
values of m ≥ 0 does the dynamics go to the homogeneous
all þ1 configuration, and for what values of m ≥ 0 does it
go elsewhere when n → ∞? What other attractor types
does the dynamics converge to for other values of m?
While these are very basic questions that could be

studied numerically in an undergraduate class on statistical
mechanics, the asymptotically exact answer is so far not
known even for random graphs for which many static
properties are known exactly in the thermodynamic limit
via the cavity method [1–3].
The main contribution of this paper is to present a

method to answer dynamical questions such as the above
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by quantifying the basin of attraction of different types of
attractors for deterministic dynamics. We call it the back-
tracking dynamical cavity method (BDCM). This method
provides a solution in the sense that for models on random
graphs in the limit n → ∞ it gives a closed-form analytical
prescription of how to compute the desired values. This
leads, for instance, to the value of the limiting energy from
Example 1 for random regular graphs and to exhibiting
different types of attractors and dynamical phase transitions
between them in Example 2.
The main idea behind the backtracking dynamical cavity

method is simple. We start with the established idea of the
dynamical cavity method (DCM) [7–11] that considers the
trajectory of a spin for a finite number of time steps T. It
considers this trajectory as an augmented T-dimensional
spin variable and applies the traditional static cavity method
to this trajectory variable. The dynamical cavity method
provides an exact description of the dynamics as long as
the system is large n → ∞ and the time T ¼ Oð1Þ finite.
Evaluating the corresponding equations is in general
exponentially costly in T and thus limits the choice of T.
Consequently, properties that require not-so-small values of
T cannot be analyzed using this method unless one resolves
to approximations.
The key twist in the backtracking dynamical cavity

method is that instead of taking T steps from the beginning
of the trajectory, we take T steps from the attractor (thus,
tracking the dynamics back). This way, we can access
properties of the attractors and their basins of attraction T
steps back in an asymptotically exact manner without
further approximations. We show that by exploring the
last T ¼ Oð1Þ steps of the dynamics, the backtracking
dynamical cavity method is able to provide answers to the
two examples posed above. What comes as a surprise to us,
is that looking at T step backward covers a basin of
attraction of entropy (logarithm of the number of configu-
rations in that basin) very close to the total entropy of all
initial conditions already for very moderate values of T.
While the existing DCM is able to access properties

that happen in the first few steps of the dynamics [7–11],
and with approximations it is also able to describe
qualitatively correctly large time behavior even for local
observables [12–17], it does not provide asymptotically
exact results about the attractors of the dynamics or their
basin of attraction. BDCM does exactly that, describing the
last steps of the dynamics. Moreover, as we see in examples
below, only a few steps back into the basin of attraction
may already exhibit qualitative properties of the complete
basin of attraction. We illustrate this, in particular, on the
majority rule where the types of attractors found from
initial configurations with different magnetizations already
show when we step into the basin of attraction by only
one step.
Finally, we want to emphasize that the idea of looking at

the last T steps of the dynamics rather than the first T steps

is very generic, and open questions about the properties of
attractors are abundant in the study of dynamics of complex
systems. We thus anticipate that the BDCM will become
one of the key analytical methods in the field. Possible
applications include training dynamics of artificial neural
networks where we would want to study the basin of
attraction of a region with good generalization properties,
social dynamics on networks where we may want to
know what type of Nash equilibria will be reached, gene
regulatory networks where attractors correspond to cell
types, or various types of far-from-equilibrium physical
systems where different attractors may correspond to
different phases. The backtracking idea can be applied
not only in conjunction with the dynamical cavity method,
but also, for instance, within the dynamical mean-field
theory [18] that has been influential in the study of strongly
correlated electron systems or neural networks.

II. SETTING AND NOTATION

By an undirected graph of size n, we understand the
tuple G ¼ ðV; EÞ where V ¼ f1;…; ng is the set of nodes
and E ¼ fði; jÞji; j ∈ Vg is the set of edges. For each node
i ∈ V, we define the neighborhood of i to be the set ∂i ¼
fjjði; jÞ ∈ Eg ⊆ V with the degree of i as dðiÞ ¼ j∂ij. We
say a graph is d-regular if each node has degree d. Each
node i of the graph G can be assigned in one of the
discrete states in a set S, xi ∈ S. Such an assignment then
represents a configuration x ¼ x1;…; xn ∈ Sn. By x∂i, we
mean the subset of the configuration that includes all
neighbors of node i.
We consider time-discrete dynamical processes operating

on configurations of a graph G with n nodes. The state of
each node gets updated synchronously, and the update
depends on the node’s own state and the state of its
neighbors. The dynamical rule is specified for each node
individually using the local update function fi∶ S1þj∂ij → S.
This gives rise to a global mapping F∶ Sn → Sn governing
the dynamics of the system. For a configuration x ∈ Sn,
the ith node with neighborhood ∂i ¼ ði1;…; idðiÞÞ gets
updated according to

½FðxÞ�i ¼ fiðxi; xi1 ;…; xidðiÞ Þ:

To describe the global dynamics, the symbol x denotes a
sequence of configurations from Sn; i.e., x ¼ ðx1;…;xtÞ
for some t ∈ N. We define the configuration graph as an
oriented graph whose nodes are the configurations from Sn

with edges of the form (x; FðxÞ);x ∈ Sn. If x satisfies that
xiþ1 ¼ FðxiÞ for each i, we call it the trajectory of length t
starting from the initial configuration x1. Since the con-
figuration space is finite, each long enough trajectory
becomes eventually periodic. We call the preperiod of
the sequence the transient and its periodic part the attractor
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or limit cycle. For an attractor, the set of all configurations
converging to it is called its basin of attraction.
In this paper, we consider the majority dynamics in

models with Ising variables and random �1 edge weights
(covering the Ising ferromagnet, antiferromagnetic, and a
spin glass). Such a dynamics has attractors of length
c ∈ f1; 2g, which is due to an elegant argument on
decreasing energy functions by [19,20]. The number of
attractors and short limit cycles for closely related models
have been studied, e.g., in Refs. [21–23]. Their basin
of attraction has, as far as we know, not been studied
analytically, and we use this as an example of applications
of the backtracking dynamical cavity method developed
in this paper.

III. BACKTRACKING DYNAMICAL CAVITY

A. General idea

The key idea of the BDCM is the fact that it acts on static
objects that track the dynamics backward from the attrac-
tors instead of forward from arbitrary initial states. To
formalize this, we define a (p=c) backtracking attractor to
be a trajectory of length p that leads into a limit cycle of
length c on the configuration graph. As we increase the
length of the incoming trajectory p, such an analysis
incorporates a growing fraction of an attractor’s basin
and will illuminate important dynamical questions.

B. The distribution of backtracking attractors

For a given global update rule F, path length p, and
cycle size c, our goal is to analyze the properties of the
attractors and their transients. To do this, we introduce a
probability distribution over all sequences of configurations
x ¼ ðx1;…;xp;xpþ1;…;xpþcÞ ∈ ðSnÞpþc as follows:

PðxÞ ¼ 1

Z
1½FðxpþcÞ ¼ xpþ1�

Ypþc−1

t¼1

1½FðxtÞ ¼ xtþ1�: ð1Þ

Here, 1ð·Þ is the indicator function which is 1 if the Boolean
statement is true and 0 otherwise; Z is the normalization
constant of the probability distribution.
A sequence x has only nonzero measure if it is consistent

with the time evolution of the global update rule due to
the term

Qpþc−1
t¼1 1½FðxtÞ ¼ xtþ1�. The boundary condition

FðxpþcÞ ¼ xpþ1 ensures that this trajectory of configura-
tions ends up in a limit cycle of length c. Consequently,
only (p=c) backtracking attractors can have a nonzero
measure in the distribution (1).
Analogous to the classical cavity method for statical

analysis, the goal is then to compute the free entropy
density Φ ¼ ð1=nÞ logðZÞ, i.e., the logarithm of the num-
ber of sequences that are valid backtracking attractors.
Then, Φ can be viewed as a proxy for the size of an
attractor’s basin.

C. Adding observables

A key virtue of the BDCM is that we can obtain this
entropy Φ conditioned on backtracking attractors with
specific properties, e.g., fixed energy or magnetization or
magnetization in the attractor. This conditioning can be
achieved by flexibly weighting the sequences x in the
probability distribution according to the relevant observ-
able. Concretely, one adds the factor

e−
P

k
λkΞkðxÞ ð2Þ

on the right-hand side of Eq. (1) and adjusts the normali-
zation Z accordingly; exactly K observables ΞkðxÞ are
added as summary statistics of the backtracking attractors.
Each observable has an associated parameter λk ∈ R which
acts as a temperature from a physics perspective, or as a
Lagrangian multiplier viewing the observables as optimi-
zation constraints. We use the notation uppercase ΞkðxÞ for
the function acting on a trajectory x. The notation lower-
case ξk is used when the value of ΞkðxÞ=n is fixed to ξk,
usually as a constraint and intensive quantity. Formally, we
define the number of valid backtracking attractors condi-
tioned on fixed observables as N ðξ1;…; ξKÞ ¼ ensðξ1;…;ξKÞ
so that s is their entropy. Then, the following relation
between the entropy s and the normalization constant Z
including the extra factor (2) holds

Z ¼ enΦðλ1;…;λKÞ

¼
Z
x∈B

e−
P

k
λkΞkðxÞ ð3Þ

¼
Z �Y

k

dξk

�
en½sðξ1;…;ξKÞ−

P
k
λkξk�; ð4Þ

where the set B is the set of all valid (p=c) backtracking
attractors. In the large system limit, when n → ∞, applying
the saddle-point method on the right-hand side gives an
explicit form of the entropy

sðξ̂1;…; ξ̂KÞ ¼ Φðλ1;…; λKÞ þ
X
k

λkξ̂k ð5Þ

under the condition that for all k ¼ 1;…; K,

∂sðξ1;…; ξKÞ
∂ξk

����
ξk¼ξ̂k

¼ λk; ð6Þ

∂Φðλ1;…; λKÞ
∂λk

¼ −ξ̂k ¼ −
1

n
hΞki: ð7Þ

The h·i brackets define an average over the probability
measure induced by Eq. (1). As it is infeasible to directly
compute Z andΦ due to the high-dimensional integral over
x ∈ RðpþcÞ×n when n → ∞, we compute the leading order
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(in n) of the free entropy using the replica-symmetric cavity
method or equivalently belief propagation (BP) [6].

D. Factorization over the graph

For the cavity method to be exact, one requires a
probability distribution with a treelike graphical model.
To create such a graphical model for our distribution (1),
we need two properties to factorize: the global rule F and
the observables Ξ.
First, the constraint on the global rule F factorizes on the

local node neighborhoods as

1½FðxÞ ¼ x0� ¼
Yn
i¼1

1½fiðxi;x∂iÞ ¼ x0i�; ð8Þ

which holds since we define F in terms of the local rules fi.
We assume that the observables can be factorized

similarly, i.e., that we can decompose them as a sum over
functions on a single node or edge sequences. When xi ¼
ðx1i ;…; xpþc

i Þ is the sequence of states of a single node i in
x we define the node-localized or edge-localized factori-
zation of an observable as

ΞðxÞ ¼
X
i∈V

Ξ̃ðxiÞ; ΞðxÞ ¼
X
ðijÞ∈E

Ξðxi; xjÞ: ð9Þ

where Ξ̃k∶ Spþc → R and Ξ̄k∶ Spþc × Spþc → R. The
application examples in our work require four different

observables: the magnetization of the initial configuration
minit, the average magnetization in the attractor mattr, the
energy of the configuration after t time steps et, and for
c ≥ 2 the fraction of changing nodes (rattlers) in the
attractor ρ:

minitðxÞ ¼
1

n

X
i∈V

x1i ; ð10Þ

mattrðxÞ ¼
1

n

X
i∈V

1

c

Xpþc

t¼pþ1

xti; ð11Þ

etðxÞ ¼ 1

m

X
ðijÞ∈E

xtix
t
j; ð12Þ

ρðxÞ ¼ 1

n

X
i∈V

1

"
1 ≤

Xpþc−1

t¼pþ1

1
h
xti ≠ xtþ1

i

i#
: ð13Þ

Each property naturally factorizes either on the nodes or
edges. While we do not consider observables that factorize
on local neighborhoods ðxi; x∂iÞ, they can be easily inte-
grated into the framework.
Using these factorizations of F and Ξk, the distribution

over sequences x from Eq. (1) can be factorized over the
graph to read

PðxÞ ¼ 1

Z

Y
i∈V

h
e−

P
k̃
λk̃Ξ̃k̃ðxiÞ1

h
fiðxðpþcÞ

i ;xðpþcÞ
∂i Þ ¼ xpþ1

i

i Ypþc−1

t¼1

1
h
fiðxti;xt

∂iÞ ¼ xtþ1
i

ii
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Aiðxi;x∂iÞ

Y
fijg∈E

h
e−

P
k̄
λk̄Ξ̄k̄ðxi;xjÞ

i
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

aðxi;xjÞ

;

where k̃ and k̄ are meant to sum only over the observables
that are node and edge localized, respectively. This dis-
tribution defines a probabilistic model that can be repre-
sented as a factor graph where variables are the local

sequences xi. The factors Aðxi;x∂iÞ and aðxi; xjÞ ensure
that only (p=c) attractors have a nonzero probability and
are biasing toward a given observable if λk is nonzero.
However, the implicit factor graph is not locally treelike: If

FIG. 1. A subgraph of the factor graph for the BDCM on a six-regular graph. Left: original graph. Right: factor graph in the edge dual
space. The tuples in the round variable nodes can take on values of all possible trajectories x. The factor nodes on tuples can enforce the
constraints on the variables on their own. The factor nodes between d tuples correspond to the consistency constraint of the local update
rule fi. Messages χ are sent back and forth between the nodes.
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node i and j are connected by an edge, they appear together
in the two factorsAi,Aj. Hence, for every edge ði; jÞ, there
is a loop of length 4 connecting xi ↔ Ai ↔ xj ↔ Aj ↔ xi
(see Fig. 5 in Appendix A). Then, the factor graph is
incompatible with an asymptotically exact application of
BP. Nonetheless, by moving to the edge dual representation
of the graph, these small loops can be eliminated (the
resulting factor graph shows in Fig. 1; for examples of a
similar dual construction, see, e.g., Refs. [11,22]). In the
dual space, the variables of the factor graph are tuples of
node trajectories ðxi; xjÞ for all i and j that neighbor on the
original graph.

E. BP equations

As a consequence, the factor graph has the same
structure as the original graph. This leads to BP fixed-
point equations with messages of the form

χi→j
xi;xj ¼

1

Zi→j aðxi; xjÞ
X
x
∂inj

Aiðxi;x∂iÞ
Y

k∈∂inj
χk→i
xk;xi

;

which may be iterated on a given graph until conver-
gence. At convergence, the BP result for the free entropy
follows as

nΦBP ¼
X
i∈V

logðZiÞ −
X
ðijÞ∈E

logðZijÞ; ð14Þ

Zi ¼
X
xi;x∂i

Aiðxi;x∂iÞ
Y
j∈∂i

χj→i
xj;xi ; ð15Þ

Zij ¼
X
xi;xj

aðxi; xjÞχi→j
xi;xjχ

j→i
xj;xi : ð16Þ

We can compute the entropy sðξ1;…; ξKÞ of the number
of valid configurations according to Eq. (5), as the
constraints in Eq. (7) are fulfilled by the fact that we
require the BP messages to have converged; they are
satisfied at the fixed point. Note that both the length of
the trajectory p and the size of the limit cycle c need to be
constant in n, as otherwise, the limit n → ∞ becomes
problematic.

F. Simplification for random regular graphs

The previous equations simplify considerably when we
consider regular graphs where all local degrees are d.
Furthermore, from hereon we assume that the same local
update rule f∶ Sdþ1 → S is used for every node, and we
consider only rules that are independent of the neighbors
ordering. By this permutation symmetry, all BP messages
become the same locally as

χ→x;y ¼ χi→j
xi;xj ∀ i; j ¼ 1;…; n;

and the BP messages are updated according to

χ→x;y ¼
1

Z→ aðx; yÞ
X
x;y½d−1�

Aðx; y½d−1�Þ
Y

y∈y½d−1�

χ→y;x; ð17Þ

where y½d−1� are the trajectories ðy
1
;…; y

d−1Þ of the d − 1

neighbors that are relevant for the local update f. The free
entropy density can be computed as

ΦBP ¼ logðZfacÞ − d
2
logðZvarÞ; ð18Þ

Zfac ¼
X
x;y½d�

Aðx; y½d�Þ
Y
y∈y½d�

χ→x;y; ð19Þ

Zvar ¼
X
x;y

aðx; yÞχ→y;xχ→x;y: ð20Þ

Eventually, this moves iterating OðnÞ messages on a full
graph to iterating onlyOð1Þmessages until convergence. In
addition, for random regular graphs, there are typically no
short loops of length Oðlog nÞ, which permits the appli-
cation of BP in the first place.

G. Solving the equations

For general graphs, the complexity of solving the BDCM
equations grows exponentially in dT ¼ dðpþ cÞ. Similar to
the dynamical cavity method, it is thus prohibitive to analyze
exactly long paths p or large cycles c unless one makes
approximations [12–15] or restricts oneself to oriented
graphs [8], graphs with asymmetrically weighted edges [9],
or unidirectional dynamics with absorbing states [11,24].
In this paper, we do not make any such assumptions or
approximations. The problems we address in the next section
can be solved using the BDCM directly, thanks to the
following properties: First, for the considered examples, the
cycle size c is in f1; 2g [19,20]. Second, we empirically
observe that the dynamics converge in logarithmic time of
the system size n, so short path lengths p are sufficient to
observe interesting properties (see the transient lengths in
Fig. 2). Finally, the local update rules are independent of the
order of the neighborhood which removes the exponential
dependence on d via dynamical programming [16]. Overall,
we then obtain a time complexity ofOðd2ðpþcÞÞ per iteration
of Eq. (17). Depending on the problem, this allows us to
obtain exact results for up to p ≤ 8 readily.

IV. APPLICATIONS

A. Limiting energy of a quench

As a first application of BDCM, we consider the
question posed in the Introduction as Example 1, i.e.,
the limiting energy of the considered dynamics in the
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antiferromagnetic Ising model. We note that due to the
universality properties discussed, e.g., in Refs. [22,25],
the limiting energy will be the same in the Ising spin glass,
i.e., the model with random �1 interactions with the zero-
temperature dynamics. For simplicity of the exposition of
our results, in what follows, let us describe the case of the
antiferromagnet.
The Ising antiferromagnet on a random regular graph has

energy eðxÞ ¼ ð2=dnÞPðijÞ∈E xixj. This is the energy that
an antiferromagnet at zero temperature is naturally min-
imizing. A quench is a zero-temperature dynamics where
at every time step every spin turns in the direction of its
local magnetic field or remains unchanged if the local
magnetic field is zero. Initializing spins at random, this
dynamics starts at zero energy and decreases the energy to
a value that we aim to compute. For the antiferromagnet,
this process corresponds to a specific instance of a local
synchronous update rule where each spin (or node) takes
the minority state in its neighborhood.
We now use the BDCM and compute the size of the

basin of attraction after a path of length p of all single-point
attractors (c ¼ 1) that have a given energy e�p ≔ epþ1

p . In
Table I, we report for every path length p < 8 the energy e�p
that maximizes the size of the basin of attraction, i.e., the
entropy e�p ¼ maxe spðeÞ. We report also the associated
maximal entropies sp ¼ sðe�pÞ. Concretely, the results are
obtained as follows: We numerically find a solution of
Eq. (17) via fixed-point iteration, which in turn gives us the
value of ΦBP in Eq. (18). The value of the energy e is then
obtained from Eq. (7) using this fixed point. Since the

Lagrangian parameter ξ during the fixed-point iteration
is set to zero, the resulting fixed point will be a local
maximum of the entropy, and thus the energy is the energy
which a typical attractor has. This procedure is equivalent
to the maximization of the entropy over the energy but
numerically simpler.
To interpret the results, let us first look at the entropies sp

that quantify how many initial configurations end up in a

TABLE I. Normalized entropy sp= logð2Þ of the basins of
attraction p steps backward from an attractor obtained from
BDCM on the antiferromagnet on a four-regular random graph.
Column e�p gives the energy of the attractor for which this entropy
is reached. Column e0p gives for comparison the energy of the last
configuration of a randomly initialized trajectory after p steps
obtained with the DCM. We compare this with the empirically
obtained energy of the attractor from graphs of size n ¼ 105.
Table III in the Appendix provides analogous results for d ¼ 6.

d ¼ 4 BDCM DCM

p sp= logð2Þ e�p e0p

0 0.6026 −0.3616 0.0000
1 0.8679 −0.4759 −0.2812
2 0.9516 −0.5156 −0.4239
3 0.9812 −0.5331 −0.4945
4 0.9925 −0.5411 −0.5261
5 0.9970 −0.5447 −0.5392
6 0.9988 −0.5464 −0.5444
7 0.9995 −0.5471 −0.5463

Empirical ẽ∞ −0.5475ð1Þ

FIG. 2. Empirics of dynamical phase transitions for majority rules. We sample trajectories and attractors starting from random
initializations with varying magnetization minit on instances of random regular graphs of varying sizes n. On finite systems, every
deterministic dynamics reaches a limit cycle in finite time. Top row: properties of the sampled attractors for n ¼ 105; the magnetization
of the attractormattr and the fraction of rattlers ρ as a function ofminit. Middle row: combined, the valuesmattr and ρ are linked to the four
attractor types as defined in the main text. Bottom row: the average transient length p. The positions of the dynamical phase transitions
are marked with dashed lines estimated by the divergences in the transient lengths (see Figs. 7 and 8 in Appendix C).
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pointlike attractor in p or fewer steps. Remarkably, when
stepping away, only p ¼ 4 steps backward in time from
any point attractor; our analysis of the entropy sp shows
that one can already reach more than 99% of the full
entropy of the configuration space. With three additional
steps, p ¼ 7, the covered fraction is at more than 99.9%.
Thus, the size of the basin of attraction for point attractors
under this rule quickly encompasses almost all the
entropy as p is increased.
We next focus on the value of the energy e�p and compare

it with the final energy ẽ∞ obtained numerically on systems
of size n ¼ 105. We note that the considered synchronous
dynamics converges to an attractor, and we thus define
the stopping time of the simulation as the time when the
attractor is reached. We see that e�p converges closely to the
empirically obtained energy for already very moderate
values of p. The value of the energy matches in three
digits after only p ¼ 7 steps away from the attractor. At this
point, the fraction of the basin of attraction covered is up to
99.9% and provides a nice measure of how close to the
limiting p → ∞ result the value e�p is.
In Table I, we also compare to the results of the

standard forward DCM [7–11] for increasing lengths of
trajectories p. We note that as far as we know, this energy
has not been evaluated before using the DCM and is thus a
result of independent interest. We see that the values of the
energies also converge to the empirical value very fast, but
slightly slower than the BDCM that we propose here.
Moreover, the forward DCM does not come up with the
natural measure of convergence provided by the value of
the entropy sp. Overall, this example serves to illustrate the
main conceptual differences between the BDCM and DCM
in a concise manner. In the Appendix, we report an analog
of Table I for six-regular random graphs.
Finally, we comment on the fact that we use the replica-

symmetric version of the cavity method for the reported
results. Since we are stepping back from the attractors, it
could be that describing the statistics of the attractors
requires replica symmetry breaking. Following the standard
literature on spin glassed on sparse random graphs, we
analyze the stability toward replica symmetry breaking [1,2]
(more details on the stability in the Appendix) to conclude
that the reported results are stable where it was possible to
check them using the population dynamics method (p ≤ 5
for d ¼ 4, 6 and p ≤ 4 for d ¼ 8, 10). Also, the empirical
results still closely match the ones obtained from the replica-
symmetric BDCM; see Table II. This is quite interesting,
as in Table II we also give the energy estab below which
replica symmetry breaking (RSB) needs to be considered
at equilibrium. We obtain estabðd ¼ 4Þ ¼ −0.5774 which is
below the energy reached by the quench ẽ∞ (as analyzed
above). However, for d ≥ 6 the energy reached by a fast
synchronous quench (analyzed with the RS approach that is
stable toward RSB) is lower than the equilibrium energy at
which the RSB needs to be taken into account. Since the fast

quench does not follow equilibrium configurations, it thus
seems that it goes to out-of-equilibrium parts of the phase
space—the set of attractors of the randomly initialized
quench—that are replica symmetric, while the majority of
configurations at that same energy (the equilibrium) require
RSB. This is quite a surprising behavior, perhaps reminiscent
of other problems, such as random graph coloring, where
simple algorithms were shown to be finding valid colorings
even in regions where the equilibrium is described by replica
symmetry breaking [26,27]. A closer investigation of these
replica-symmetric subspaces of the RSB equilibrium phase
is left for future work.

B. Dynamical phase transition for majority rules

As the second illustration of the BDCM, we consider
the ferromagnetic Ising model and dynamics corresponding
to the majority rule. The questions we investigate here
can find applications, e.g., in generalized bootstrap
percolation [28], the zero-temperature Glauber dynamics
[29,30], models of segregation [31], density classification
for cellular automata [32,33], opinion dynamics [10], or
local versions of max or min cut [22,25].
We consider three basic types of deterministic majority

dynamics depending on the degree of the nodes and the
type of tiebreaking:

(i) Odd-degree, simple majority rule: At each time step,
each spin turns in the direction of the majority of its
neighbors.

(ii) Even-degree, always-change tiebreaking type: Each
spin turns to the majority among its neighbors. In the
case of balance among the neighbors, the spin always
changes to the opposite value from the previous
time step.

(iii) Even-degree, always-stay tiebreaking type: Each
spin turns to the majority among its neighbors. In
the case of balance among the neighbors, the spin
always remains at the same value as in the previous
time step.

TABLE II. We compare the energy to which the synchronous
dynamics on d-regular graphs with always-stay tiebreaking con-
verges to empirically, ẽ∞ (see Appendix C 1 b) and the energy
predicted by the BDCM for path length p ¼ 4 and the associated
entropy. This is compared to energies estab belowwhich equilibrium
properties are describedwith replica symmetry breaking [2], and the
corresponding ground-state energy eGS obtained using the one-step
replica symmetry-breaking ansatz computed in Refs. [2,25].

Energy after a quench Equilibrium

d ẽ∞ e�4 s4= logð2Þ estab eGS

4 −0.5475 −0.5411 0.992 −0.5774 −0.7365
6 −0.4764 −0.4656 0.981 −0.4472 −0.6097
8 −0.4283 −0.4151 0.969 −0.3780 −0.5317
10 −0.3930 −0.3785 0.958 −0.3333 −0.4775
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We then investigate the type of attractors to which the
dynamics converges when initialized at random but with
a magnetization minit fixed between −1 and 1. We remind
that the majority dynamics always converges to attractors
of length either 1 or 2 [19,20]. We distinguish among four
types of attractors, specifically the following ones:

(i) Homogeneous stable: These are length-1 attrac-
tors with almost all spins either þ1 or −1; mattr ∈
f−1;þ1g and ρ ¼ 0.

(ii) Mixed stable: These are length-1 attractors with a
finite fraction of spins in both þ1 and −1; mattr ∈
ð−1;þ1Þ and ρ ¼ 0.

(iii) Partially rattling: These are length-2 cycles where
a finite fraction of nodes is not changing during the
cycle; ρ ∈ ð0; 1Þ.

(iv) All rattling: These are length-2 attractors where
almost all nodes are switching during the cycle;
ρ ¼ 1.

Note that each of the observed attractors falls under exactly
one of these four categories. We emphasize that our
definition makes the distinction between mattr and ρ only
when they correspond to a finite fractionΘðnÞ of the nodes.
This disregards a subleading number oðnÞ of nodes that
might be of a different sign in a homogeneous stable
attractor, or oðnÞ nodes that are not rattling in the all-
rattling attractor.
To make the connection with Example 2 from the

Introduction, the homogeneous stable attractor corre-
sponds to the all-1 configuration. The question is then,
what is the least biased value of the initial magnetization

FIG. 3. The BDCM entropy of different attractors and path lengths p for majority rules. Comparison of the BDCM for the majority on
regular graphs with degree d ¼ 5 and 4 with always-stay and always-change tiebreaking. The points in the first row where p ¼ 0
indicate that the entropy of the homogeneous point attractors is exactly zero at minit ¼ �1.
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so that the dynamics converge with a high probability to
such an attractor?
On d-regular graphs, we can first observe numerically

that depending on the initial magnetization m the three
dynamical rules converge with high probability to one of
the four types of attractors defined above, as shown in
Fig. 2 in the upper panel for degree d ¼ 4 and 5. For all
three considered dynamical rules, we see that for large
enough initial magnetization the dynamics converges to the
homogeneous stable attractor. For the simple majority
dynamics, odd-degree d, initial magnetization close enough
to zero converges to the partially rattling cycle. For the
always-stay tiebreaking dynamics, an initial magnetization
close enough to zero converges to the mixed stable
attractor. For the always-change tiebreaking dynamics,
initial magnetization close enough to zero converges to
the all-rattling cycle, but an intermediate value of mag-
netization converges to the partially rattling cycle. When
we plot the length of the transient to reach the attractor,
Fig. 2 lower panel for different graph sizes and degree
d ¼ 4 and 5, we observe logarithmic divergences of the
transient lengths at values of the initial magnetization
corresponding to those where the type of attractors
changes. In statistical physics, a diverging timescale is
usually associated with a phase transition, in this case, a
dynamical phase transition. Note that simply counting the
attractors of various types, as done, e.g., in Refs. [21–23],
does not lead to any sensible explanation of these dynami-
cal phase transitions. We now illustrate how to use the
BDCM method to explain and quantify them.
In the BDCM, we compute the size of the basins of

attraction of the various types of attractors, or in other
words, the entropy of the (p=c) backtracking attractors
x ¼ ðx1;…;xðpþcÞÞ, conditioned on which type of attractor
is expressed in ðxpþ1;…;xpþcÞ. We are able to separate the
different types of attractors by introducingminit; mattr, and ρ
as observables in the BDCM. We set c according to the
attractor length and threshold themattr and ρ to analyze each
type separately. Since we solve the BP equations numeri-
cally, this amounts to thresholding the observablesmattr and

ρwith a ε ¼ 10−8. We can isolate the homogeneous and all-
rattling attractors by conditioning in the BP update on the
homogeneous attractors by forbidding all messages χx→y

with xpþ1 ≠ þ1 with c ¼ 1 for the all þ1 and similar for
the all −1 attractor. For the all-rattling attractor, we
similarly forbid any χx→y with xpþ1 ¼ xpþ2 for c ¼ 2.

Figure 3 depicts the entropy of the basin of attraction for
each of the four types of attractors for path lengths p < 4
toward the attractor, in four different line types each for
one type of attractor, as a function of the initial magneti-
zation. The values of the entropy correspond to the
exponent in the number of configurations of magnetization
minit that converge after p steps to an attractor of the
corresponding type. When a line for a given type of
attractor is not present, it means that this attractor with high
probability does not exist for that case.
It is remarkable to note that already with p ¼ 1 we

observe the qualitatively correct picture where the empiri-
cally observed attractors indeed correspond to those of
the largest entropy. Also, the value of the largest entropy is
already relatively close to the total entropy at the corre-
sponding magnetization. The values of the initial magneti-
zation where the maxima change for p ¼ 1 are of course
only rough approximations of those at p → ∞, but the
qualitative behavior for the three types of dynamics agrees
with the one observed empirically.
For path lengths p ¼ 1, 2, 3, we observe that the points

where the maximum entropy at that p is reached by a
different attractor type are getting closer as p grows to
the empirically observed value that would correspond to
p → ∞, as reported in Table IV. The convergence is not at
fast as we observed, e.g., for the values of the energy in the
previous section, but the fact that the maximum entropy
converges rather fast to the total entropy indicates the
qualitative correctness of the picture.
Next to the values of the entropies, the BDCM also

readily provides the values of the attractor magnetization
mattr and the fraction of rattlers in the attractor ρ. These
values are plotted in Fig. 4 (full lines) for the attractors

FIG. 4. Comparison between BDCM and empirics for p ¼ 3 and majority rules. For a given minit, we compare the magnetization and
rattlers predicted from the dominating BDCM fixed point, with the respective empirical value. The empirical results are obtained on
graphs of size n ¼ 100, and only backtracking attractors with transients of length p ¼ 3 are sampled.
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that correspond to the largest value of the entropy of the
basin of attraction after p ¼ 3 steps backward from the
attractor. We observe discontinuities in these parameters
at the initial magnetization where the type of attractor
changes. These data compare qualitatively well with
Fig. 2 that gives the numerical values for p → ∞. On
small graphs, we can also sample very many initial
conditions that lead to attractors after p ¼ 3 steps. Doing
so, we compare in Fig. 4 with the empirically obtained
values of mattr and ρ observing an excellent quantitative
agreement with the theory. The discontinuities are
smoothened due to finite-size effects.

V. CONCLUSION

In this paper, we introduce the BDCM on sparse random
graphs for models with synchronous discrete-time deter-
ministic dynamics on discrete variables. We illustrate the
method on the problem of computing the limiting energy of
a quench, finding cases where the quench goes below the
energy that marks the onset of replica symmetry breaking at
equilibrium, yet the space of attractors the quench con-
verges to is replica symmetric. We also use the method to
characterize dynamical phase transitions occurring as the
magnetization of the initial configuration changes in
majority-driven dynamics.
Here we discuss possible extensions and avenues for

future work. Generalization to dense graphs and continuous
variables will require constructing a backtracking version
of the dynamical mean-field theory. Such a generalization
will open the way to studying limiting dynamics of
quenches in dense spin glasses or those of gradient descent
in the training of neural networks.
The effects of replica symmetry breaking can be incor-

porated straightforwardly following the lines developed in
Refs. [2,3]. Future work will investigate glassy examples
where this is relevant.
Another avenue for development is the generalization of

the BDCM to stochastically evolving dynamical systems.
The dynamical cavity method can be generalized to stochas-
tic dynamics, but more work will be needed to replace the
simple counting of states in the basin of attraction with other

free-energy-like notions that will be able to pin which of the
trajectories are those from random configurations.
The BDCM shares all the limitations of the usual

cavity method [1–3] in terms of the structure of the
interactions that is restricted to mean-field-type geom-
etries. A clear limitation of the method is the fact that the
time T ¼ Oð1Þ and solving the corresponding equations
for large values of T becomes cumbersome, yet more
work can be done to investigate more efficient solvers for
large values of T.

The code for the solver is available on GitHub [34].
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APPENDIX A: FACTOR GRAPH FOR THE BDCM

In Fig. 1, the factor graph with dual variables ðxi; xjÞ is
shown, which is subsequently used to derive the BDCM
equations. This dual view allows one to prevent short
loops in the factor graph; when the naive construction is
used where a variable node contains exactly one nodes
trajectory xi, both the factor nodes i (representing the update
constraint on node i and its neighborhood) and the factor
nodes ij (representing the observables on edges) need to be
connected to the relevant variables. As shown in Fig. 5, this
construction leads to short loops of length 4, which can be
prevented by using the dual representation in Fig. 1.

APPENDIX B: STABILITY OF THE BDCM
FIXED POINTS TOWARD RSB

Since the RS ansatz that we follow in this paper may
not be correct, we check whether the fixed points obtained
from the BDCM in our results are stable toward replica

FIG. 5. Naive construction of a factor graph, which contains only a single node trajectory xi in each variable node. This leads to loops
of length 4, a problem for applying BP.
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symmetry breaking via population dynamics and its con-
vergence analysis.
We initialize the population dynamics with 300 BP

messages initialized Gaussian independent and identically
distributed. and then normalized to 1. In every iteration, 80%
of the messages are updated according to Eq. (17) applied to
d − 1 randomly selected neighbors. This process is run until
convergence. We then check whether the distribution con-
centrates on a delta function identical to the fixed point found
from the RS, or whether it converged to a nondelta
distribution over messages. If the first is the case, we say
the distribution is stable to RSB, otherwise, it is unstable.
For the experiments from Table I, we validate that the

fixed points are indeed stable for p ≤ 5 and for Table II for
p ≤ 4. Since for the larger p the computational time is
exceedingly large, we are not able to verify these results.
For the BDCM fixed points used in Fig. 3, we check
the stability of the dominating fixed point in each of 80
equally sized intervals we divided minit ∈ f−1;þ1g into,
for p ¼ 0, 1, 2, 3.

APPENDIX C: ADDITIONAL RESULTS
AND SUPPORTING EMPIRICS

1. Limiting energy of a quench

a. Energetic results for d = 6

In Table III, we present the BDCM and DCM results for
the energy of the antiferromagnet or a spin glass on a six-
regular random graph, analogous to Table I from the main
text. As before, for large enough p the BDCM and DCM
are close to the energy that is observed empirically. Again,
the BDCM is slightly more precise given the same number
of steps into the attractor’s basin p. The size of the basin
of attraction as measured by the normalized entropy
sp= logð2Þ converges very fast to 1 but slightly slower in
p than for d ¼ 4. For the interested reader, we also provide
the energies measured by the BDCM at the start of the path
going into the attractor, i.e., the energy estart. The obser-
vation that the estart quickly grows to zero, the energy of a
random configuration, implies that it takes only a loga-
rithmic number of steps between the initial random
configuration and the final energy. This can be viewed
as an alternative measure to the entropy that allows one to
assess the quality of the BDCM prediction after p steps.

b. Empirical results

To determine the limiting energy of the quench empiri-
cally, we sample 2048 random regular graphs per graph
size n. We initialize them with a random configuration
where the number of þ1 and −1 spins is equal. The
synchronous dynamics are run until convergence, and
we report the sample average for the energy in the first
configuration of the attractor. These empirical results for
p → ∞ are shown in Fig. 6. We extrapolate ẽ∞ in terms
of n; this is used to compare against the BDCM and DCM
results in Tables I and III.

TABLE III. Same as Table I for random regular graphs of
degree d ¼ 6, except that additionally estartp is provided, the
energy at the start of the path for the BDCM.

d ¼ 6 BDCM DCM

p sp= logð2Þ e�p estartp e0p

0 0.5542 −0.3138 −0.3138 0.0000
1 0.8223 −0.4079 −0.1520 −0.1953
2 0.9205 −0.4407 −0.0865 −0.3100
3 0.9617 −0.4568 −0.0531 −0.3803
4 0.9807 −0.4656 −0.0337 −0.4226
5 0.9901 −0.4705 −0.0216 −0.4477
6 0.9949 −0.4732 −0.0138 −0.4617

Empirical ẽ∞ −0.4764ð1Þ

FIG. 6. Empirical dynamics of the quench. Results for the energy reached from a randomly sampled balanced initial configuration
on d-regular graphs with n nodes. Top row: average transient length until an attractor is reached. We see a growth logarithmic in n.
Bottom row: average energy in the attractor for different n. The red line extrapolates the energy for n → ∞.
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c. The energetic landscape of the spin glass

In Table II, we compare the energies reached by the
quench and obtained from the BDCM with characteristics
of the equilibrium energetic landscape. Note that the energy
reached by the synchronous dynamics for d ≥ 6 is lower
than the energy below which replica-symmetric breaking is
required to describe the equilibrium estab. However, the
BDCM is still stable toward RSB in the investigated cases
of d ¼ 6 and p ≤ 5 and d ¼ 8, 10 with p ≤ 4. For larger
values, the stability check we perform is numerically too
costly, and we anticipate we would also find stable results.

2. Dynamical phase transitions for majority rules

In Figs. 2 and 3, we find four different dynamical phase
transitions. By the �1 symmetry, we look only at the
transitions occurring for minit > 0. These are
(1) for d ¼ 5.
(2) for d ¼ 4, always-change tiebreaking.
(3) for d ¼ 4, always-change tiebreaking.
(4) for d ¼ 4, always-stay tiebreaking.

Note that bounds on the transition (1) as well as its
empirical positions were investigated thoroughly for a
range of different d in Ref. [10].

FIG. 7. Transient lengths: the average transient length maximized over the magnetization minit to determine the position of the
dynamical phase transitions. We show the four types of dynamical phase transitions from Table IV. The position m̃�

∞ðnÞ of the
maximal average transient spike is shown and extrapolated to n → ∞. We use these results as a reference for the empirical phase
transitions at p → ∞.

FIG. 8. Enlargement of the transient lengths for different dynamical phase transitions. According to the four types of transitions
defined in Table IV, this plot shows enlargements of the transients obtained in the same manner as in the lower panel of Fig. 2. Every
sample is the average over the dynamics run on 2048 graph instances with random initializations.

TABLE IV. Dynamical phase transition for fixed p via BDCM. The table shows all of the different types of
dynamical phase transitions that are observed in Fig. 3 (considering the �1 symmetry). Four different dynamical
phase transitions occur for the majority rules between different types of attractors: homogenous stable, mixed
stable, partially rattling, and all rattling. In addition, we show the size of the basin of attraction taken into
account proportional to the maximal entropy HðmÞ for a configuration of a given magnetizationm. We compare the
results to the empirically observed transition at p → ∞ (from Fig. 7).

d ¼ 5 d ¼ 4 always change d ¼ 4 always stay

(1) (2) (3) (4)

p m�
p sðm�

pÞ=Hðm�
pÞ m�

p sðm�
pÞ=Hðm�

pÞ m�
p sðm�

pÞ=Hðm�
pÞ m�

p sðm�
pÞ=Hðm�

pÞ
1 0.443 0.627 0.132 0.832 0.902 0.925 0.617 0.880
2 0.302 0.795 0.179 0.912 0.872 0.968 0.496 0.951
3 0.231 0.874 0.200 0.945 0.855 0.983 0.457 0.977

m̃�
∞ 0.0528(1) 0.312(1) 0.81(1) 0.46(1)
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a. Empirical results

We obtain the accurate positions of the dynamical
phase transitions above for p → ∞ by numerical simu-
lations. Figure 8 shows an enlargement for the lower panel
of Fig. 2—the averages of the transient lengths p as a
function minit for different sizes n. Averages are taken over
4096 samples of random regular graphs and initial con-
figurations. Then, Fig. 7 shows the extrapolation of the
position of the maxima for large n.

b. Transitions from the BDCM

We give the locations of dynamical phase transitions
shown in Fig. 3 in Table IV. The values of the transitions
for small values of p with the BDCM are not very close to
the empirically found transitions m̃�

∞. However, as p grows
they become more accurate. This is in line with the
observation that for the example of the quench, the fraction
of the basin of attraction was much closer to 1 than it is in
the examples shown here.
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