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Abstract
In this manuscript we consider the problem of kernel classification. While worst-case bounds on
the decay rate of the prediction error with the number of samples are known for some classifiers,
they often fail to accurately describe the learning curves of real data sets. In this work, we consider
the important class of data sets satisfying the standard source and capacity conditions, comprising
a number of real data sets as we show numerically. Under the Gaussian design, we derive the decay
rates for the misclassification (prediction) error as a function of the source and capacity
coefficients. We do so for two standard kernel classification settings, namely margin-maximizing
support vector machines and ridge classification, and contrast the two methods. We find that our
rates tightly describe the learning curves for this class of data sets, and are also observed on real
data. Our results can also be seen as an explicit prediction of the exponents of a scaling law for
kernel classification that is accurate on some real datasets.

1. Introduction and related work

A recent line of work [1–4] has empirically evidenced that the test error of neural networks often obey
scaling laws with the number of parameters of the model, training set size, or other model parameters.
Because of their implications in terms of relating performance and model size, these findings have been the
object of sustained theoretical attention. Authors of [5] relate the decay rate of the test loss with the number
of parameters to the intrinsic dimension of the data. This idea is refined by [6] for the case of regression
tasks, building on the observation that in a number of settings, the covariance of the learnt features exhibits a
power-law spectrum, whose rate of decay controls the scaling of the error. This investigation is actually very
closely related to another large body of works. In fact, the study of a power-law features spectrum (and of a
target function whose components in the corresponding eigenbasis also decay as a power-law) has a long
history in the kernel literature, dating back to the seminal works of [7, 8]. The corresponding rates governing
the power-laws are respectively known as the capacity and source coefficients, and the scaling of the test error
with the training set size can be entirely characterized in terms of these two numbers. While the study of
kernel ridge regression [7–15] therefore offers a rich viewpoint on the question of neural scaling laws with
the training set size, little is so far known for kernel classification. Since ascertaining the test error decay under
source and capacity conditions would automatically translate into neural scaling laws in classification
tasks—similarly to [6] for regression—this is a question of sizeable interest addressed in the present work.

1.1. Related works
1.1.1. Neural scaling laws
A number of works [1–4] have provided empirical evidence of scaling laws in neural networks, with the
number of parameters, training samples, compute, or other observables. These findings motivated
theoretical investigations of the underlying mechanisms. Authors of [5] show how the scaling of the test loss
with the number of parameters is related to the intrinsic dimension of the data. This dimension is further
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tied in with the kernel spectrum by [6], a work that leverages the kernel ridge regression viewpoint to
translate, in turn, the decay of the spectrum to test error rates. Authors of [16] similarly study a simple toy
model where the power-law data is processed through a random features layer. Finally, [17] investigate a toy
model of scalar integer data in the context of classification, and ascertain the corresponding scaling law.
Relating in classification settings the rate of decay of the kernel spectrum to the test error, like [6] for
regression, is still an open question.

1.1.2. Source and capacity conditions
The source and capacity conditions are standard regularity assumptions in the theoretical study of kernel
methods, as they allow to subsume a large class of learning setups, see [7, 8, 12, 13, 15, 18].

1.1.3. Kernel ridge regression
The error rates for kernel ridge regression have been extensively and rigorously characterized in terms of the
source/capacity coefficients in the seminal work of [7, 8], with a sizeable body of work being subsequently
devoted thereto [9–14, 19]. In particular, in [15] it was shown that rates derived under worst-case
assumptions [7–10, 20] are identical to the typical rates computed under the standard Gaussian design
[21–23] assumption. Crucially, it was observed that many real data-sets satisfy the source/capacity
conditions, and display learning rates in very good agreement to the theoretical values [15].

1.1.4. Worst-case analyses for SVM
The worst-case bounds for support vector machines (SVMs) classification—see e.g. [24, 25] for general
introductions thereto—are known from the seminal works of [24, 26, 27]. However, it is not known how
tightly the corresponding rates hold for a given realistic data distributions, not even for synthetic Gaussian
data. We show that, contrary to the case of ridge regression, for classification the worst case bounds are not
tight for Gaussian data. This effectively hinders the ability to predict and understand the error rates for
relevant classes of data-sets, and in particular the class of data described by source/capacity conditions, which
as mentioned above includes many real data-sets [15]. The key goal of this work is to fill this gap by
leveraging the recent work on learning curves for the Gaussian covariate model [28] specified to data
satisfying the capacity and source conditions.

1.2. Main contribution
In this work, we investigate the decay rate of the misclassification (generalization) error for noiseless kernel
classification, under the Gaussian design and source/capacity regularity assumptions with capacity
coefficient α and source coefficient r. Building on the analytic framework of [28], we consider the two most
widely used classifiers: margin-maximizing SVMs and ridge classifiers. We derive in section 3 the error rate
(describing the decay of the prediction error with the number of samples) for margin-maximizing SVM:

ϵSVMg ∼ n
−

αmin(r, 12 )
1+αmin(r, 12 ) .

As a consequence, we conclude that the worst-case rates [24, 26, 27] are indeed loose and fail to describe this
class of data. This fact alone is not at all surprising. However, it becomes remarkable in the light of the fact
that for ridge regression the worst case bounds and the typical case rates do agree [15].

We contrast the SVM rate with the rate for optimally regularized ridge classification, which we establish
in section 4 to be

ϵridgeg ∼ n−
αmin(r,1)

1+2αmin(r,1) .

We argue in the light of these findings that the SVM always displays faster rates than the ridge classifier for
the classification task considered.

Finally, we observe that some real data-sets fall in the same universality class as the considered setting, in
the sense that, as illustrated in section 5, their error rates are in very good agreement with the ones above.
This work is thus a key step for theoretically predicting the error rates of kernel classification for a broad
range of real data-sets.

2. Setting

2.1. Kernel classification
Consider a data-setD = {(xµ,yµ)}nµ=1 with n independent samples from a probability measure ν on

X ×{−1,+1}, with X ⊂ Rd. We will assume that the labels can be expressed as

yµ = sign( f ∗(xµ)) (1)

2
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for some non-stochastic target function f ∗ : X → R. Note that the noiseless setting considered here is out of
the validity domain of many worst case analyses, whose bounds become void without noise [27], whereas a
number of real learning settings are well described by a noiseless setup, see section 5. Learning to classifyD
in the direct space X for a linear f ∗ has been the object of extensive studies. In the present work, we focus on
the case where f ∗ more generically belongs to the space of square-integrable functions L2(X ). To classifyD, a
natural method is then to perform kernel classification in a p- dimensional reproducing kernel Hilbert space
(RKHS)H associated to a kernel K, by minimizing the regularized empirical risk:

R̂n( f) =
1

n

n∑
µ=1

ℓ( f(xµ),yµ)+λ||f ||2H. (2)

The function ℓ(·) is a loss function and λ is the strength of the ℓ2 regularization term. In this paper we shall
more specifically consider the losses ℓ(z,y) =max(0,1− yz) (hinge classification) and ℓ(z,y) = (y− z)2

(ridge classification), and the case of an infinite dimensional RKHS (p=∞). The risk (2) admits a dual
rewriting in terms of a standard parametric risk. To see this, diagonalize K in an orthogonal basis of kernel
features {ψk(·)}pk=1 of L

2(X ), with corresponding eigenvalues {ωk}pk=1:

ˆ
X
ν(dx ′)K(x,x ′)ψk(x

′) = ωkψk(x). (3)

It is convenient to normalize the eigenfunctions to

ˆ
X
ν(dx)ψk(x)

2 = ωk, (4)

so that the kernel K can be rewritten in simple scalar product form K(x,x ′) = ψ(x)⊤ψ(x ′), where we named
ψ(x) the p-dimensional vector with components {ψk(x)}pk=1. Furthermore, note that the covariance Σ of the
data in feature space with this choice of feature map is simply diagonal

Σ= Ex∼ν(ψ(x)ψ(x)
⊤) = diag(ω1, . . . ,ωp). (5)

Any function f ∈H can then be expressed as f(·) = w⊤ψ(·) for a vector w with square summable
components. Using this parametrization, the risk (2) can be rewritten as

R̂n(w) =
1

n

n∑
µ=1

ℓ(w⊤ψ(xµ),yµ)+λw⊤w. (6)

Throughout this manuscript we will refer to the components of the target function in the features basis as the
teacher θ∗, so that

f ∗(·) = θ⋆⊤ψ(·).

Note that any f ∗ ∈ L2(X ) can be formally written in this form with a certain θ∗ (allowing for non
square-summable components if f ∗ ∈ L2(X ) \H). Similarly, the minimizer ŵ of the parametric risk (6) is
related to the argmin f̂ of (2) by f̂(·) = ŵ⊤ψ(·), and will be referred to as the estimator in the following. We
make two further assumptions : first, we work under the Gaussian design, and assume the features ψ(x) to
follow a Gaussian distribution with covariance Σ, i.e. ψ(x)∼N (0,Σ). Note that this assumption might
appear constraining, as the distribution of the data in feature space strongly depends on its distribution in
the original space, and the feature map associated to the kernel. In fact, for a large class of data distributions
and standard kernels, the Gaussian design assumption does not hold. However, rates derived under Gaussian
design can hold more broadly. For instance, the rates established by [15] under Gaussian design were later
proven by [29] under weaker conditions on the features. We will moreover discuss in section 5 several
settings in which our theoretical rates are in good agreement with rates observed for real data.

Second, following [15], we assume that the regularization strength λ decays as a power-law of the number
of samples n with an exponent ℓ: λ= n−ℓ. Note that this form of regularization is natural, since the need for
regularizing is lesser for larger training sets. Furthermore, this allows to investigate the classical question of
the asymptotically optimal regularization [7, 8, 15], i.e. the decay ℓ of the regularization yielding fastest
decrease of the prediction error.

3
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2.2. Source and capacity conditions
Under the above assumptions of Gaussian design with features covariance Σ and existence of a teacher θ∗

that generates the labels using equation (1) we can now study the error rates. In statistical learning theory
one often uses the source and capacity conditions, which assume the existence of two parameters α > 1, r⩾ 0
(hereafter referred to as the capacity coefficient and the source coefficient respectively) so that

trΣ
1
α <∞, θ⋆⊤Σ1−2rθ∗ <∞. (7)

As in [13, 15, 21, 30, 31], we will consider the particular case where both the spectrum of Σ and the teacher
components θ∗k have exactly a power-law form satisfying the limiting source/capacity conditions (7):

ωk = k−α, θ∗k = k−
1+α(2r−1)

2 . (8)

The power-law forms (8) have been empirically found in [15] in the context of kernel regression to be a
reasonable approximation for a number of real data-sets including MNIST [32] and Fashion MNIST [33]
and a number of standard kernels such as polynomial kernels and radial basis functions. Similar observations
were also made in the present work and are discussed in appendix F and section 5.

The capacity parameter α and source parameter r capture the complexity of the data-set in feature
space—i.e. after the data is transformed through the kernel feature map into {ψ(xµ),yµ}nµ=1. A large α, for
example, signals that the spectrum of the data covariance Σ displays a fast decay, implying that the data
effectively lies along a small number of directions, and has a low effective dimension. Conversely, a small
capacity αmeans that the data is effectively large dimensional, and therefore a priori harder to learn.
Similarly, a large r signals a good alignment of the teacher θ∗ with the main directions of the data, and a
priori an easier learning task. In terms of the target function f ∗, larger r correspond to smoother f ∗. Note
that r>,1/2 implies that f ∗ ∈H, while r⩽ 1/2 implies f ∗ ∈ L2(X ) \H.

Finally, note that while [18] suggested an alternative definition for the source and capacity coefficients in
the case of non-square loss functions, their redefinition is not directly applicable for the hinge loss.

2.3. Misclassification error
The performance of learning the data-setD using kernel classification (6) is quantified by the
misclassification (generalization) error

ϵg =
1

2
− 1

2
EDEx,y∼ν

(
y sign(ŵ⊤ψ(x))

)
, (9)

where ŵ is the minimizer of the risk (6). The error (9) corresponds to the probability for the predicted label
sign(ŵ⊤ψ(x)) of a test sample x to be incorrect. The rate at which the error (9) decays with the number of
samples n inD depends on the complexity of the data-set, as captured by the source and capacity coefficients
α, r equation (8). To compute this rate, we build upon the work of [28] who, following a long body of work
in the statistical physics literature [31, 34–38], provided and proved a mathematically rigorous closed form
asymptotic characterization of the misclassification error as

ϵg =
1

π
arccos(

√
η) , η =

m2

ρq
, (10)

where ρ is the squared L2(X ) norm of the target function f ∗, i.e. ρ=
´
X ν(dx)f

⋆(x)2 = θ⋆⊤Σθ∗, andm,q are
the solution of a set of self-consistent equations, which are later detailed and analyzed in section 3 for
margin-maximizing SVMs and section 4 for ridge classifiers. The order parametersm,q are known as the
magnetization and the self-overlap in statistical physics and respectively correspond to the target/estimator
and estimator/estimator L2(X ) correlations:

m= ED

ˆ
X
ν(dx)f⋆(x)̂f(x) = ED

(
ŵ⊤Σθ∗

)
, q= ED

ˆ
X
ν(dx)̂f(x)2 = ED

(
ŵ⊤Σŵ

)
. (11)

It follows from these interpretations that η has to be thought of as the cosine-similarity between the teacher
θ∗ and the estimator ŵ, with perfect alignment (η= 1) resulting in minimal error ϵg = 0 from (9).

Note that while this characterization has formally been proven in [28] in the asymptotic proportional
n,p→∞,n/p=O(1) limit, we are presently using it in the n≪ p=∞ limit, thereby effectively working at
n/p= 0+. The non-asymptotic rate guarantees of [28] are nevertheless encouraging in this respect, although
a finer control of the limit would be warranted to put the present analysis on fully rigorous grounds. Further,
[15] also build on [28] in the n/p= 0+ limit, and display solid numerics-backed results, later rigorously
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proven by [29]. We thus conjecture that this limit can be taken as well safely in our case. Finally, we mention
that a recent line of works [39–42] has explored the connections between kernel regression and Bayesian
learning for networks in the n/p=O(1) limit, where p is in this case the width of the network. While the
high-dimensional limit is indeed related to the one originally discussed in [28], which we relax here to
n/p= 0+, the main object of [39–41] was not to study kernel regression per se, but to show how observables
in Bayesian regression could be expressed in terms of well-chosen kernels. In the present work, we focus on
analyzing kernel classification in the n/p= 0+ regime.

3. Max-margin classification

3.1. Self-consistent equations
In this section we study regression using SVMs. The risk (6) then reads for the hinge loss

R̂n(w) =
1

n

n∑
µ=1

max
(
0,1− yµw⊤ψ(xµ)

)
+λw⊤w. (12)

In the following, we shall focus more specifically on the max-margin limit with λ= 0+. We show in
appendix B that zero regularization is indeed asymptotically optimal for the data following equation (8)
when the target function is characterized by a source r⩽ 1/2, i.e. f

∗ ∈ L2(X ) \H. We heuristically expect
margin maximization to be a fortiori optimal also for easier and smoother teachers f ∗ ∈H. For the risk (12)
at λ= 0+, the self-consistent equations definingm,q in (11) read (see appendix A)



ρ=
∞∑
k=1

θ⋆2k ωk,

m= r̂1
n
z

∞∑
k=1

ω2
kθ

⋆2
k

1+ n
z ωk
,

q= r̂21
n2

z2

∞∑
k=1

θ⋆2k ω
3
k

(1+ n
z ωk)2

+r̂2
n
z2

∞∑
k=1

ω2
k

(1+ n
z ωk)2

,



r̂1 =
1

2π
√
ρ

(√
2π

(
1+erf

(
1√

2q(1−η)

))
+2e

− 1
2q(1−η)

√
q(1−η)

)
1√
q´

−∞
dx e

− 1
2 x

2

√
2π

[
1+erf(

√
η

2(1−η)
x)
] ,

r̂2 =

1√
q´

−∞
dx e

− 1
2 x

2

√
2π

[
1+erf(

√
η

2(1−η)
x)
]
(1−√

qx)2
1√
q´

−∞
dx e

− 1
2 x

2

√
2π

[
1+erf(

√
η

2(1−η)
x)
]2 ,

z=

z
n

∞∑
k=1

ωk
z
n+ωk

1√
q´

−∞
dx e

− 1
2 x

2

√
2π

[
1+erf(

√
η

2(1−η)
x)
] .

(13)

Here r̂1 should be thought of as the ratio between the norms of the estimator ŵ and the teacher θ∗, while
z can be loosely interpreted as an effective regularization. A detailed derivation of these equations can be
found in appendix A.

3.2. Decay rates for max-margin
From the investigation of the equation (13), as detailed in appendix A, the following scalings are found to
hold between the order parameters:

m∼√q∼ r̂1 ∼ n
( z
n

) 1
α ∼ n

αmin(r, 12 )

1+αmin(r, 12 ) . (14)

Note that the mutual scaling betweenm, q also follows intuitively from the interpretation of these order
parameters—as the overlap of ŵ with the ground truth and itself respectively—see the discussion around
equations (11) and (13). Since the width of the margin is generically expected to shrink with the number of
samples (as more training data are likely to be sampled close to the separating hyperplane), the increase of
the norm of ŵ (as captured by q, r̂1) with n is also intuitive. Finally, an analysis of the subleading corrections
tom and q, detailed in appendix A, leads to

ϵg ∼ n
−

αmin(r, 12 )

1+αmin(r, 12 ) . (15)

The error rate (15) stands in very good agreement with numerical simulations on artificial Gaussian
features generated using the model specification (8), see figure 1. Two observations can further be made on
the decay rate (15). First, the rate is as expected an increasing function of α (low-dimensionality of the

5
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Figure 1.Misclassification error ϵg for max-margin classification on synthetic Gaussian features, as specified in (8), for different
source/capacity coefficients α, r. In blue, the solution of the closed set of equation (13) used in the characterization (9) for the
misclassification error, using the g3m package [28]. The dimension p was cut-off at 104. Red dots corresponds to simulations
using the scikit-learn SVC [43] package run for vanishing regularization λ= 10−4 and averaged over 40 instances, for
p= 104. The green dashed line indicates the power-law rate (15) derived in this work. The light blue dotted line indicates the

classical worst-case min
(
1/2,

α/(3+α)

)
rate for SVM classification (theorem 2.3 in [24]) in the cases where the theorem readily

applies (r> 1/2) (see also appendix G). The code used for the simulations is available here.

features) and r (smoothness of the target f ∗). Second, for a source r> 1/2 (corresponding to a target
f ∗ ∈H), the rate saturates, suggesting that all functions inH are all equally easy to classify, while for rougher
target f ∗ ∈ L2(X ) \H the specific roughness of the target function, as captured by its source coefficient r,
matters and conditions the rate of decay of the error.

Finally, we briefly discuss for completeness in appendix E the more general case where the label
distribution (1) includes data noise, and show that the rates display a crossover from the noiseless value (15)
to a noisy value, much like what was reported for kernel ridge regression [15].

3.3. Comparison to classical rates
To the best of the authors’ knowledge, there currently exists little work addressing the error rates for datasets
satisfying source and capacity conditions (7). The closest result is the worst-case bound of [24] for SVM
classification, which can be adapted to the present setting provided f ∗ ∈H (r> 1/2). The derivation is

detailed in appendix G and results in an upper bound of min
(
1/2,α/(3+α)

)
for the error rate for

max-margin classification, which is always slower than (15). This rate [24] is plotted for comparison in
figure 1 against numerical simulations and is visibly off, failing to capture the learning curves. It is to be
expected that the worst case rates will be loose when compared to rate that assume a specific data
distribution. What makes our result interesting is the comparison with the more commonly studied ridge
regression where, as discussed already in the introduction, the worst case rates actually match those derived
for Gaussian data, see [15].

Importantly, the rates from [24] only hold for capacity r> 1/2, while real datasets are typically
characterized by sources r< 1/2 (see for instance figure 4). The present work therefore fills an important gap
in the literature in providing rates (15) which accurately capture the learning curves of datasets satisfying
source and capacity conditions. Further discussions of [24], along with [26, 27, 44] for completeness, are
provided in appendix G. Also note that while [45] report α/(1+α) rates under Gaussianity assumptions,
they rely on very stringent assumptions which are too strong and unfulfilled in our setting.

6
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4. Ridge classification

4.1. Self-consistent equations
Another standard classification method is the ridge classifier, which corresponds to minimizing

R̂n(w) =
1

n

n∑
µ=1

(
yµ−w⊤ψ(xµ)

)2
+λw⊤w. (16)

As previously discussed in section 2, we consider a decaying regularization λ= n−ℓ. The self-consistent
equations characterizing the quantities (q,m), read for the ridge risk (16)

ρ=
∞∑
k=1

θ⋆2k ωk,

m=
√

2
πρ

n
z

∞∑
k=1

ω2
kθ

⋆2
k

1+ n
z ωk
,

q= n2

z2

∞∑
k=1

2
πρ θ

⋆2
k ω

3
k+

1+q−2m
√

2
πρ

n ω2
k

(1+ n
z ωk)

2 ,

z= nλ+ z
n

∞∑
k=1

λk
λk+

z
n
.

(17)

Further details on the derivation of (17) from [28] are provided in appendix C. Like (13), equation (17) have
been formally proven in the proportional n,p→∞, n/p=O(1) limit in [28], but are expected to hold also
in the present n≪ p=∞ setting [15, 29]. Note that comparing to (13), equation (17) correspond to a

constant student/teacher norm ratio r̂1 = 2/(πρ) and to a simple r̂2 = 1+ q− 2m
√
2/(πρ). r̂2 moreover

admits a very intuitive interpretation as the prediction mean squared error (MSE) between the true label

y= sign(θ⋆⊤ψ(x)) and the pre-activation linear predictor ŵ⊤ψ(x), i.e. r̂2 = Eψ(x)
(
sign

(
θ⋆⊤ψ(x)

)
−ŵ⊤ψ(x)

)2
.

4.2. Decay rates for ridge classification
Similarly to [15, 31], an analysis of the equation (17) (see appendix C) reveals that, depending on how the
rate of decay ℓ of the regularization compares to the capacity α, two regimes (called effectively regularized and
effectively un-regularized in [15] in the context of ridge regression) can be found:

4.2.1. Effectively regularized regime
ℓ⩽ α. In this regime, an analysis of the corrections to the self-overlap q and magnetizationm, presented in
appendix C, shows that the misclassification error scales like

ϵg ∼ n−
1
2min(2ℓmin(r,1),α−ℓ

α ). (18)

The rate (18) compares very well to numerical simulations, see figure 2. Note that the saturation for ridge
happens for r= 1, rather than r= 1/2 as for max-margin classification (see discussion in section 3): very
smooth targets f ∗ characterized by a source r⩾ 1 are all equally easily classified by ridge. For rougher
teachers f ∗ characterized by r⩽ 1 however, the rate of decay of the error (18) depends on the specific
roughness of the target, even if, in contrast to max-margin, the latter belongs toH (r> 1/2). Two important
observations should further be made on the rates (18):

• If the regularization remains small (fast decay α > ℓ > α/(1+ 2αmin(r,1))), the decay (18) is determined
only by the data capacity α, while the source r plays no role. As a matter of fact, with insufficient regulariza-
tion, the limiting factor to the learning is the tendency to overfit, which depends on the effective dimension
of the data as captured by the capacity α.
• For larger regularizations (slow decays ℓ < α/(1+ 2αmin(r,1))), the limiting factor becomes the complexity
of the teacher θ∗, as captured by the source r.

4.2.2. Effectively un-regularized regime
ℓ > α. As derived in appendix C, the error plateaus and stays of order 1:

ϵg =O(1). (19)

7



Mach. Learn.: Sci. Technol. 4 (2023) 035033 H Cui et al

Figure 2.Misclassification error ϵg for ridge classification on synthetic Gaussian features, as specified in (8), for different
source/capacity coefficients α, r, in the effectively regularized regime ℓ ⩽ α (top) and unregularized regime ℓ > α (bottom). In
blue, the solution of the equation (13) used in the characterization (9) for the misclassification error, using the g3m package [28].
The dimension p was cut-off at 104. Red dots corresponds to simulations averaged over 40 instances, for p= 104. The green
dashed lines indicate the power-laws (18) (top) and (19) (bottom) derived in this work. The slight increase of the error for larger
n in the unregularized regime (bottom) is due to finite size effects of the simulations ran at p= 104 <∞. Physically, it
corresponds to the onset of the ascent preceding the second descent that is present for finite p, see appendix D for further
discussion. The code used for the simulations is available here.

This plateau is further elaborated upon in appendix D, and is visible in numerical experiments, see figure 2.
It corresponds to the first plateau in a double descent curve, with the second descent never happening since
p=∞. Intuitively, this phenomenon is attributable to the ridge classifier overfitting the labels using the
small-variance directions of the data (8).

Interestingly, all the rates (19) and (18) correspond exactly (up to a factor 1/2) to those reported in [15]
for the MSE of ridge regression, where they are respectively called the red, blue and orange exponents.

Notably, the plateau (19) at low regularizations and the (α− ℓ)/α exponent in (18) only appeared in [15] for
noisy cases in which the labels are corrupted by an additive noise. The fact that they hold in the present
noiseless study very temptingly suggests that model mis-specification (trying to interpolate binary labels
using a linear model) effectively plays the role of a large noise.

4.3. Optimal rates
4.3.1. Optimally regularized ridge classification
In practice, the strength of the regularization λ is a tunable parameter. A natural question to ask is then the
one of the asymptotically optimal regularization, that is the regularization decay rate ℓ∗ leading to fastest
decay rates for the misclassification error. From the expressions of (18) (which hold provided ℓ < α)
and (19) (which holds provided ℓ > α), the value of ℓmaximizing the error rate is found to be

ℓ∗ =
α

1+ 2αmin(r,1)
, (20)

and the corresponding error rate for ϵ ∗g = ϵg(λ
∗ = n−ℓ

∗
) is

ϵ ∗g ∼ n−
αmin(r,1)

1+2αmin(r,1) , (21)

see the red dashed lines in figure 3. Coincidentally, the optimal rate (21) is up to a factor 1/2 identical to the
classical optimal rate known for the rather distinct problem of the MSE of kernel ridge regression on noisy
data [7, 8]. Like the max-margin exponent (15), the optimal error rate for ridge (21) is an increasing
function of both the capacity α and the source r, i.e. of the easiness of the learning task. Note that in contrast
to max-margin classification which is insensitive to the specifics of the target function f ∗, provided it is inH,
ridge is sensitive to the source (smoothness) r of f ∗ up to r= 1.

4.3.2. Comparison to max-margin
A comparison of the max-margin rate aSVM = αmin(r, 12 )/(1+αmin(r, 12 )) (15) and the optimal ridge

exponent ar = αmin(r,1)/(1+ 2αmin(r,1)) (21) reveals that for any α > 1, r⩾ 0, aSVM− ar > 0. In other

8
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Figure 3. (red) Misclassification error ϵg for ridge classification on synthetic Gaussian features, as specified in (8), for different
source/capacity coefficients α, r, for optimal regularization λ∗. The dimension p was cut-off at 104 and the regularization λ
numerically tuned to minimize the error ϵg for avery n. Red dots correspond to simulations averaged over 40 instances, for
p= 104. Optimization over λ was performed using cross validation, with the help of the python scikit-learn GridSearchCV
package. The red dashed line represents the power-law (21). In blue, the learning curves for max-margin for the same data-set are

plotted for reference, along the corresponding power law (15) (blue) and the loose classical min
(
1/2,

α/(3+α)

)
rate [24] (light

blue), see section 3. The code used for the simulations is available here.

words, the margin-maximizing SVM displays faster rates than the ridge classifier for the class of data
studied (8), see figure 3.

We finally briefly comment on support vector proliferation. [46–48] showed that in some settings almost
every training sample inD becomes a support vector for the SVM. In such settings, the estimators ŵ (and
hence the error ϵg) consequently coincide for the ridge classifier and the margin-maximizing SVM. In the
present setting however, the result aSVM− ar > 0 establishes that for features with a power-law decaying
spectrum (8), there is no such support vector proliferation. Note that this result does not follow immediately
from theorem 3 in [48]. In fact, the spiked covariance (8), with only a small number of important (large
variance) directions and a tail of unimportant (low-variance) directions does effectively not offer enough
overparametrization [20, 47] for support vector proliferation, and the support consists only of the subset of
the training set with weakest alignment with the spike.

5. Remarks for real data-sets

The source and capacity condition (8) provide a simple framework to study a large class of structured
data-sets. While idealized, we observe, similarly to [15], that many real data-sets seem to fall under this
category of data-sets, and hence display learning curves which are to a good degree described by the rates (15)
for SVM and (21) for ridge classification. We present here three examples of such data-sets : a data-set of 104

randomly sampled CIFAR 10 [49] images of animals (labelled+1) and means of transport (labelled−1), a
data-set of 14000 FashionMNIST [33] images of t-shirts (labelled+1) and coats (labelled−1), and a data-set
of 14702 MNIST [32] images of 8s (labelled+1) and 1s (labelled−1). On the one hand, the learning curves
for max-margin classification and optimally regularized ridge classification were obtained using the python
scikit-learn SVC, KernelRidge packages. On the other hand, the spectrum {ωk}k of the data
covariance Σ in feature space was computed, and a teacher θ∗ providing perfect classification of the data-set
was fitted using margin-maximizing SVM. Then, the capacity and source coefficients α, r (8) were estimated
for the data-set by fitting {ωk}k and {θ∗k }k by power laws, and the theoretical rates (15) and (21) computed
therefrom. More details on this method, adapted from [30, 31], are provided in appendix F. The results of
the simulations are presented in figure 4 and compared to the theoretical rates (15) and (21) computed from
the empirically evaluated source and capacity coefficients for a radial basis function (RBF) kernel and a

9
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Figure 4. Dots: Misclassification error ϵg of kernel classification on CIFAR 10 with a polynomial kernel (top left) and an RBF
kernel (top right), on Fashion MNIST with an RBF kernel (bottom left), on MNIST with an RBF kernel (bottom right), for
max-margin SVM (blue) and optimally regularized ridge classification (red), using respectively the python scikit-learn SVC
and KernelRidge packages. Dashed lines: Theoretical decay rates for the error ϵg (15) (blue) (21) (red), computed from
empirically estimated capacity α and source r coefficients (see section (5) and appendix F for details). The measure coefficients
are summarized in table 1. The code used for the simulations is available here.

Table 1. Values of the source and capacity coefficients (7) as estimated from the data sets, and the corresponding theoretical error rates
for SVM (15) and ridge (21). The details on the estimation procedure can be found in appendix F.

Dataset Kernel α r aSVM ar

CIFAR 10 polynomial 1.51 0.07 0.095 0.086
CIFAR 10 RBF 1.005 0.07 0.067 0.063
Fashion MNIST RBF 1.72 0.23 0.28 0.22
MNIST RBF 1.65 0.39 0.39 0.28

polynomial kernel of degree 5, with overall very good agreement. We do not compare here with the worst
case bounds because the observed values of r< 1/2 in which case we remind the known results do not apply.

6. Conclusion

We compute the generalization error rates as a function of the source and capacity coefficients for two
standard kernel classification methods, margin-maximizing SVM and ridge classification, and show that
SVM classification consistently displays faster rates. Our results establish that known worst-case upper
bound rates for SVM classification fail to tightly capture the rates of the class of data described by
source/capacity conditions. We illustrate empirically that a number of real data-sets fall under this class, and
display error rates which are to a very good degree described by the ones derived in this work.
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Appendix A. Rates for margin maximizing SVM

In this appendix, we provide some analytical discussion of the equation (13) motivating the scaling (15)
and (14). We remind the risk for the hinge loss (12)

R̂n(w) =
1

n

n∑
µ=1

max
(
0,1− yµw⊤ψ(x)

)
+λw⊤w, (A.1)

with λ= 0+ for max-margin. The predictor is then ŷ= sign(ŵ ·ψ(x)).

A.1. Mapping from [28]
The starting point is the closed-form asymptotic characterization of the misclassification error of [28]. We
begin by reviewing the main results of [28], and detail how their setting can be mapped to ours. Consider
hinge regression on n independent p− dimensional Gaussian samplesD = {xµ,yµ}nµ=1, by minimizing the
empirical risk

R̂n(w) =
n∑

µ=1

max

(
0,1− yµ

w⊤xµ
√
p

)
+
λ

2
w⊤w (A.2)

for some constant regularization strength λ⩾ 0. Suppose that the labels are generated from a
teacher/target/oracle θ∗ ∈ Rp as yµ = sign(θ⋆⊤xµ). Then provided the assumptions

• A.1 n≫ 1, p≫ 1, n
p =O(1),

• A.2 0< 1
p ||θ

∗||22 <∞,

are satisfied, there exist constants C, c, c ′ > 0 so that for all 0< ϵ < c ′,

P
(∣∣∣∣ϵg− 1

π
arccos

(
m ∗
√
ρq ∗

)∣∣∣∣> ϵ

)
<

C

ϵ
e−cnϵ2 , (A.3)

where ρ= θ⋆⊤Σθ∗/p andm ∗, q ∗ are the solutions of the fixed point equations


m= m̂

p trΣθ
∗θ⋆⊤Σ
λ+V̂Σ

q= 1
p tr

m̂2Σθ∗θ⋆⊤Σ2+q̂Σ2

(λ+V̂Σ)2

V= 1
p tr

Σ
λ+V̂Σ

,



m̂=

n
p

V
√
ρ

1

2π

{
√
2π

[
erf

(
1√

2q(1− η)

)
− erf

(
1−V√
2q(1− η)

)]

+ 2
√
q(1− η)

(
e−

1
2q(1−η) − e−

(1−V)2

2q(1−η)

)
+
√
2πV

(
1+ erf

(
1−V√
2q(1− η)

))}

q̂= n
p

[ 1−V√
q´

−∞
dx e−

1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)]

+ 1
V2

1√
q´

1−V√
q

dx e−
1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)]

(1−√qx)2
]

V̂=
n
p

V

1√
q´

1−V√
q

dx e−
1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)]

,

with η =m2/(ρq), and Σ the covariance of the samples x. The limit λ= 0+ can be taken using the rescaling
[50]

m̂← m̂

λ
, q̂← q̂

λ
, V̂← V̂

λ
, V← λV. (A.4)
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The equation (A.4) simplify in this limit to
m= m̂

p trΣθ
∗θ⋆⊤Σ
1+V̂Σ

q= 1
p tr

m̂2Σθ∗θ⋆⊤Σ2+q̂Σ2

(1+V̂Σ)2

V= 1
p tr

Σ
1+V̂Σ

,



m̂=
n
p

V
√
ρ

1
2π

(√
2π

(
1+ erf

(
1√

2q(1−η)

))
+ 2e−

1
2q(1−η)

√
q(1− η)

)
q̂=

n
p

V2

1√
q´

−∞
dx e−

1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)]

(1−√qx)2

V̂=
n
p

V

1√
q´

−∞
dx e−

1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)] . (A.5)

Note that the risk studied by [28] (A.2) differs from the one we consider (12) by the scaling 1/
√
p, the

missing 1/n in front of the sum, and a factor 2 for the regularization strength. All those scalings can be
absorbed in λ← 2λ/n and Σ← Σ/p, leading to (13):


m= m̂p trΣθ

∗θ⋆⊤Σ
1+pV̂Σ

q= ptr pm̂
2Σθ∗θ⋆⊤Σ2+q̂Σ2

(1+pV̂Σ)2

V= tr Σ
1+pV̂Σ

,



m̂=
n
p

V
√
ρ

1
2π

(√
2π

(
1+ erf

(
1√

2q(1−η)

))
+ 2e−

1
2q(1−η)

√
q(1− η)

)
q̂=

n
p

V2

1√
q´

−∞
dx e−

1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)]

(1−√qx)2

V̂=
n
p

V

1√
q´

−∞
dx e−

1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)] ,

(A.6)

thereby completing the mapping from the setup in [28] to the present setting.

A.2. Equations for max-margin under source and capacity conditions
In the following, we detail the asymptotic scaling analysis of the equation (13). For a diagonal covariance
Σ= diag(ω1, . . . ,ωp) and θ∗ = (θ ∗

k )k, (13) reads

ρ=
p∑

k=1
θ⋆2k ωk

m= m̂p
d∑

k=1

ω2
kθ

⋆2
k

1+V̂pωk

q= p
p∑

k=1

pm̂2θ⋆2k ω
3
k+q̂ω2

k

(1+V̂pωk)2

V=
p∑

k=1

ωk

1+V̂pωk

,



m̂=
n
p

V
√
ρ

1
2π

(√
2π

(
1+ erf

(
1√

2q(1−η)

))
+ 2e−

1
2q(1−η)

√
q(1− η)

)
q̂=

n
p

V2

1√
q´

−∞
dx e−

1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)]

(1−√qx)2

V̂=
n
p

V

1√
q´

−∞
dx e−

1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)] .

(A.7)

To simplify the equation (A.7), we introduce the auxiliary variables z= n
p/V̂, r̂1 = m̂/V̂ and

r̂2 = (nq̂)/(pV̂2). The intuitive meaning of z is loosely that of an effective regularization. In the context of
kernel ridge regression where a similar variable appears, the role of z as an effective regularizing term is quite
clear in [15]. We also refer the reader to the discussion in [28], also for ridge regression, where the role of V̂
as parametrizing the gap between training and test error is mentioned. r̂1 is to be regarded as the ratio
between the norm of the estimator ŵminimizing the risk (12), and the norm of the teacher θ∗. Introducing
these variables in (A.7) allows to have a well defined p=∞ limit, which reads

ρ=
∞∑
k=1

θ⋆2k ωk

m= r̂1
n
z

∞∑
k=1

ω2
kθ

⋆2
k

1+ n
z ωk

q= n2

z2

∞∑
k=1

r̂21θ
⋆2
k ω

3
k+

1
n r̂2ω

2
k

(1+ n
z ωk)2

V=
d∑

k=1

ωk
1+ n

z ωk

,



r̂1 =
m̂
V̂
= 1

2π
√
ρ

(√
2π

(
1+erf

(
1√

2q(1−η)

))
+2e

− 1
2q(1−η)

√
q(1−η)

)
1√
q´

−∞
dx e

− 1
2 x

2

√
2π

[
1+erf(

√
η

2(1−η)
x)
]

r̂2 =
n
p q̂

V̂2 =

1√
q´

−∞
dx e

− 1
2 x

2

√
2π

[
1+erf

(√
η

2(1−η)
x

)]
(1−√

qx)2
1√
q´

−∞
dx e

− 1
2 x

2

√
2π

[
1+erf

(√
η

2(1−η)
x

)]2

. (A.8)
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From (A.7), z satisfies the self-consistent equation

z=

z
n

∞∑
k=1

ωk
z
n+ωk

1√
q´

−∞
dx e−

1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)] ≈

(
z
n

)1− 1
α
´∞
( z
n )

1
α

dx
1+xα

1√
q´

−∞
dx e−

1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)] , (A.9)

where a Riemann approximation of the sum was used. We introduce its to-be-determined scaling γ,

z∼ Czn
1−αγ , (A.10)

where Cz designates the prefactor. In the following, we discuss the scaling and the corrections of the order
parameters and express them as a function of γ, before determining its value using the numerical solution
of (A.8). Note that the scaling (A.10) implies in particular the following scaling for the integral

1√
qˆ

−∞

dx
e−

1
2 x

2

√
2π

[
1+ erf

(√
η

2(1− η)
x

)]
∼ nγ−1. (A.11)

A.3. First order corrections
We now plug the source and capacity ansatz (7) into the equation (A.8)

ωk ∼ k−α, θ∗k ∼ k−
1+α(2r−1)

2 , (A.12)

yielding



ρ=
∞∑
k=1

k−1−2αr

m= r̂1
∞∑
k=1

k−1−2αr

1+ z
n k

α

q= r̂21
∞∑
k=1

k−1−2αr

(1+ z
n k

α)2 +
r̂2
n

∞∑
k=1

1
(1+ z

n k
α)2

V= z
n

∞∑
k=1

1
1+ z

n k
α

,



r̂1 =
1

2π
√
ρ

(√
2π

(
1+erf

(
1√

2q(1−η)

))
+2e

− 1
2q(1−η)

√
q(1−η)

)
1√
q´

−∞
dx e

− 1
2 x

2

√
2π

[1+erf(
√

η
2(1−η)

x)]

r̂2 =

1√
q´

−∞
dx e

− 1
2 x

2

√
2π

[1+erf(
√

η
2(1−η)

x)](1−
√
qx)2

1√
q´

−∞
dx e

− 1
2 x

2

√
2π

[1+erf(
√

η
2(1−η)

x)]


2

.

Massaging the expression form (and remembering z∼ n1−αγ (A.10))

m= r̂1ρ− r̂1

∞∑
k=1

k−1−2αrCz

(
k
nγ

)α
1+Cz

(
k
nγ

)α
= r̂1ρ−Czr̂1n

−γα
∞∑
k=1

k−1−2α(r− 1
2 )

1+Cz

(
k
nγ

)α
≈ r̂1ρ−1r⩾ 1

2
r̂1Cz

n−γα nγ∑
k=1

k−1−2α(r− 1
2 )

1+Cz

(
k
nγ

)α + n−2γαr

∞̂

1

x−1+α(1−2r)

1+Czxα

−1r⩽ 1
2
Czr̂1n

−2γαr

∞̂

0

x−1+α(1−2r)

1+Czxα

= r̂1

ρ−1r⩾ 1
2
CzA

n
mn

−γα−Czn
−2γαr

∞̂

Θ(r− 1
2 )

x−1+α(1−2r)

1+Czxα
+ o
(
max

(
n−γα,n−2γαr

)) , (A.13)

where we used the shorthand

An
m

def
=

nγ∑
k=1

k−1−2α(r− 1
2 )

1+Cz

(
k
nγ

)α . (A.14)
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Massaging by the same token the equation for q,

q≈ r̂21ρ− r̂21

∞∑
k=1

k−1−2αr
(
C2
z

(
k
nγ

)2α
+ 2Cz

(
k
nγ

)α)(
1+Cz

(
k
nγ

)α)2 + r̂2n
γ−1

∞̂

0

1

(1+Czxα)2

≈ r̂21ρ+ r̂2n
γ−1

∞̂

0

1

(1+Czxα)2

− 2̂r21Cz

[
1r⩾ 1

2

n−γα
nγ∑
k=1

k−1−2α(r− 1
2 )(

1+Cz

(
k
nγ

)α)2 + n−2γαr

∞̂

1

x−1+α(1−2r)

(1+Czxα)2


+1r⩽ 1

2
n−2γαr

∞̂

0

x−1+α(1−2r)

(1+Czxα)2

]

− r̂21C
2
z

[
1r⩾1

(
n−2γα

nγ∑
k=1

k−1−2α(r−1)(
1+Cz

(
k
nγ

)α)2
+ n−2γαr

∞̂

1

x−1+α(2−2r)
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2
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n
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(
2Cz
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x−1+α(1−2r)

(1+Czxα)2
+C2

z
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(1+Czxα)2

)

+ o

(
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(
r̂2
r̂21
nγ−1,n−γα,n−2γαr

))]
, (A.15)

where we defined

An
q
def
=

nγ∑
k=1

k−1−2α(r− 1
2 )(

1+Cz

(
k
nγ

)α)2 , Bn
q
def
=

nγ∑
k=1

k−1−2α(r−1)(
1+Cz

(
k
nγ

)α)2 . (A.16)

An important remark on (A.13) and (A.15) is that Am
q and An

m tend to the same limit as n→∞,

A∞
m,q =

∞∑
k=1

k−1−2α(r− 1
2 ), (A.17)

with (for r⩾ 1
2 since there is an indicator function in front of An

m,q)

n−γα|An
m−A∞|= n−2αγr

2α(r− 1
2 )
+1 1

2⩽r⩽1Czn−2αγr
1́

0

x−1−2α(r−1)

1+Czxα

+1r⩾1Czn−2γα
∞∑
k=1

k−1−2α(r−1),

n−γα|An
q −A∞| = n−2αγr

2α(r− 1
2 )
+ 21 1

2⩽r⩽1Czn−2αγr
1́

0

x−1−2α(r−1)

(1+Czxα)2

+21r⩾1Czn−2γα
∞∑
k=1

k−1−2α(r−1) + o(n−2γα).

More straightforwardly,

B∞
q =

∞∑
k=1

k−1−2α(r−1). (A.18)
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Finally, remark that the expansions (A.13) and (A.15) imply thatm∼ r̂1ρ and q∼ r̂21ρ, which echoes the
intuitive meaning ofm,q as ⟨ŵ,θ∗⟩L2(X ), ||ŵ||2L2(X ) and of r̂1 as ||ŵ||

2
L2(X )/||θ

∗||2L2(X ), see also discussion in
section 2 under equation (11).

The expansions (A.13) and (A.15) can be plugged into the expression of the cosine similarity η (9) to
access the decay rate for the misclassification error.

η =

(
1−1r⩾ 1

2
Cz

An
m

ρ
n−γα− n−2γαrCz

ρ

∞̂

Θ(r− 1
2 )

x−1+α(1−2r)

1+Czxα

)2/
(
1+

r̂2
ρr̂21

nγ−1

∞̂

0

1

(1+ xα)2
−

1r⩾ 1
2
2CzAn

qn
−γα−1r⩾1C2

zB
n
qn

−2γα

ρ

− n−2γαrCz

ρ

(
2

∞̂

Θ(r− 1
2 )

x−1+α(1−2r)

(1+Czxα)2
+Cz

∞̂

Θ(r−1)

x−1+α(2−2r)

(1+Czxα)2

))−1

= 1−O
(

r̂2
ρr̂21

nγ−1

)
+1r⩾1O

(
n−2γα

)
+O

(
n−2γαr

)
, (A.19)

where we used A∞
q = A∞

m , meaning the leading order of the n−αγ term cancels out. The scaling of the other
order parameters q,m, r̂1, r̂2 can at this point also be deduced. To see how, notice that

1√
qˆ

−∞

dx
e−

1
2 x

2

√
2π

[
1+ erf

(√
η

2(1− η)
x

)]
≈ 1
√
q

1ˆ

−∞

dx
e−

x2

2q

√
2π

[
1+ erf

(√
η

2q(1− η)
x

)]
∼ 1
√
q
, (A.20)

which together with the observation (A.11) implies

q∼ r̂21 ∼ n2(1−γ). (A.21)

In parallel, it follows from a similar change of variables in the expression of r̂2 that

r̂2 ∼
√
q∼ r̂1 ∼ n1−γ . (A.22)

Then, returning to (A.19),

1− η =O
(
n2(γ−1)

)
+1r⩾1O

(
n−2γα

)
+O

(
n−2γαr

)
. (A.23)

The final step is to determine the value of γ. Suppose self-consistently that the leading rate in (A.15) is
2(γ− 1). Since from the physical meaning of the order parameters (11) one expects the leading corrections
ofm and q to share the same decay rate—since in (11), only ŵ admits a correction with n –, and since the
leading corrections ofm has rate−2γαmin(r,1/2) (A.13), it follows from equating the two rates that γ
should be

γ =
1

1+αmin(r, 12 )
. (A.24)

Plugging the expression (A.24) back in (A.15), it can be checked that the 2(γ− 1) term is indeed leading.
(A.24) compares very well with numerical simulations, and with the numerical solution of (A.8), see figure 1.

Assuming (A.24) to be true, since ϵg = cos−1(η)∼
√
1− η,

ϵg ∼ n−γαmin(r, 12 ) = n
−

αmin(r, 12 )
1+αmin(r, 12 ) , (A.25)

which is the error rate for max-margin classification (15).

Appendix B. Rates for regularized hinge classification

In this appendix, we show that margin-maximizing SVM is optimal for classifying teachers with source
r⩽ 1

2 , i.e. in L2(X ) \H, and argue why this is also expected to extend to teachers inH. In other words, we
give evidence that the optimal regularization in the hinge classification risk (12) on the dataset (8) is for
vanishing λ= 0. To this end, we derive the rates for the misclassification error of ERM on (12) for generic
regularization λ, building upon the results of [28] in similar fashion to appendix A.
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B.1. Regularized hinge classification under source and capacity conditions
We remind the fixed point equations for the risk (12) (see appendix A):


m= m̂p trΣθ

∗θ⋆⊤Σ
nλ
2 +pV̂Σ

q= p tr pm̂
2Σθ∗θ⋆⊤Σ2+q̂Σ2

( nλ
2 +pV̂Σ)2

V= tr Σ
nλ
2 +pV̂Σ

,



m̂=

n
p

V
√
ρ

1

2π

{
√
2π

[
erf

(
1√

2q(1− η)

)
− erf

(
1−V√
2q(1− η)

)]

+ 2
√
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(
e−

1
2q(1−η) − e−

(1−V)2

2q(1−η)

)
+
√
2πV

(
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(
1−V√
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))}
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p

[ 1−V√
q´

−∞
dx e−

1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)]

+ 1
V2

1√
q´

1−V√
q

dx e−
1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)]

(1−√qx)2
]

V̂=
n
p

V
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q´

1−V√
q

dx e−
1
2 x

2

√
2π

[
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(√
η

2(1−η)x
)]

. (B.1)

Introducing the effective regularization z= αnλ
2V̂

, satisfying

z=

z
n

∞∑
k=1

λk
z
n+λk

1√
q´

1−V√
q

dx e−
1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)] ≈

(
z
n

)1− 1
α
´∞
( z
n )

1
α

dx
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1√
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1−V√
q

dx e−
1
2 x
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√
2π

[
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(√
η

2(1−η)x
)] , (B.2)

the equation (B.1) can be rewritten as



ρ=
∞∑
k=1

θ2kλk

m= r̂1
n
z

∞∑
k=1

λ2
kθ

2
k

1+ n
z λk

q= n2

z2

∞∑
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r̂21θ
2
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3
k+

1
n r̂2λ

2
k

(1+ n
z λk)2

V= 1
nλ

d∑
k=1

λk
1+ n

z λk

(B.3)
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√
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√

η
2(1−η)

x)]

+ 1
2π

√
ρ

2
√

q(1−η)
(
e
− 1

2q(1−η) −e
− (1−V)2

2q(1−η)

)
+
√
2πV

(
1+erf

(
1−V√
2q(1−η)

))
1√
q´

1−V√
q

dx e
− 1

2 x
2

√
2π

[1+erf(
√

η
2(1−η)

x)]

r̂2 =
αq̂
V̂2 =

V2

1−V√
q´

−∞
dx e

− 1
2 x

2

√
2π

[1+erf(
√

η
2(1−η)

x)]+

1√
q´

1−V√
q

dx e
− 1

2 x
2

√
2π

[1+erf(
√

η
2(1−η)

x)](1−
√
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2 x
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η
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2 .

.

Specializing to the source/capacity power-law forms (8)

ωk ∼ k−α, θk ∼ k−
1+α(2r−1)

2 , (B.4)
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one finally reaches 

ρ=
∞∑
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∞∑
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n k
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∞∑
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∞∑
k=1

1
1+ z

n k
α

(B.5)
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(B.6)

B.2. Rate analysis for targets outside the Hilbert space
In the following, we deliver an asymptotic analysis of equation (B.6). To that end, we first ascertain the
scaling of the effective regularization z using the self-consistent equation (B.2). Depending on the scaling of
the order parameter V, two regimes can be distinguished.

B.2.1. Effectively regularized regime V
n→∞−−−→∞

In this regime the denominator of (B.2) scales like

1√
qˆ

1−V√
q

dx
e−

1
2 x

2

√
2π

[
1+ erf

(√
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≈ 1
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√
2π

[
1+ erf

(√
η

2q(1− η)
x

)]
=O

(
1
√
q

)
, (B.7)

which is exactly the scaling for the corresponding integral in the vanishing regularization case λ= 0+, see
appendix A equation (A.11). In this regime, all the discussion in appendix A then carries through and the
error rate coincides with the one for margin-maximizing SVM (15)

ϵg ∼ n
−

αmin(r, 12 )

1+αmin(r, 12 ) . (B.8)

B.2.2. Effectively regularized regime V
n→∞−−−→ 0

The integral in the denominator in (B.2) then admits the following scaling

1√
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1−V√
q

dx
e−

1
2 x

2

√
2π

[
1+ erf

(√
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2(1− η)
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)]
=

1
√
q

1ˆ
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dx
e−

1
2q x

2

√
2π

[
1+ erf

(√
η

2q(1− η)
x
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(
V
√
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)
. (B.9)

This means in particular that

z=
Vnλ

1√
q´

1−V√
q

dx e−
1
2 x

2

√
2π

[
1+ erf

(√
η

2(1−η)x
)] =O(nλ√q) def∼ Czn

1−αγ , (B.10)
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where we introduced similarly to the max-margin case the to-be determined parameter γ, see also
appendix A. Note that it follows from equation (B.10) and the definition of λ= n−ℓ that

q∼ n2(ℓ−αγ). (B.11)

Since nλV∼ (z/n)1−
1
α , one also has that

V∼ n−1+γ(1−α)+ℓ. (B.12)

In particular, it can be seen from (B.12) that the assumption V
n→∞−−−→ 0 only holds for large enough

regularizations (slow enough decays ℓ < ℓ∗ for some limiting value ℓ∗), satisfying

− 1+ γ(1−α)+ ℓ < 0. (B.13)

The regularization decay ℓ= ℓ∗ gives the boundary between the effectively regularized and unregularized
regime. Because of this, the rate of q at ℓ∗ should coincide with its max-margin rate (14). This, together
with (B.13), allow to determine ℓ∗ as the solution of the system (denoting γ ∗ the value of γ at ℓ= ℓ∗)

{
−1+ γ ∗(1−α)+ ℓ= 0,

ℓ∗−αγ ∗ =
αmin(r, 12 )

1+αmin(r, 12 )
,

(B.14)

viz.

ℓ∗ = α
1+min(r, 12 )

1+αmin(r, 12 )
. (B.15)

Summarizing, for ℓ > ℓ∗, in the effectively unregularized regime, the max-margin scalings (14) and (15) hold.
In the following, we focus on pursuing the discussion for the new ℓ < ℓ∗ (effectively regularized) regime.

The expansion form and q carry over in similar fashion to max-margin (see appendix A), yielding
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n
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n
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+ o

(
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(
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r̂21
nγ−1,n−γα,n−2γαr

))
.

Therefore r̂1 ∼
√
q∼ nℓ−αγ , while a rescaling of the integrals in the equations for r̂2 also reveal that

r̂2 ∼ r̂1 ∼
√
q∼ nℓ−αγ . Summarizing

m∼ r̂2 ∼ r̂1 ∼
√
q∼ nℓ−αγ . (B.16)

Note that the mutual scaling of the order parametersm,q, r̂1 is the same as for max-margin
classification (14), which is the mutual scaling directly following from the physical interpretation ofm,q as
⟨ŵ,θ∗⟩L2(X ), ||ŵ||2L2(X ) and of r̂1 as ||ŵ||

2
L2(X )/||θ

∗||2L2(X ), see also discussion in section 2 under
equation (11). Finally,

18



Mach. Learn.: Sci. Technol. 4 (2023) 035033 H Cui et al

Figure B1.Misclassification error ϵg for hinge classification on synthetic Gaussian data, as specified in (8), for different
source/capacity coefficients α, r, for a regularization λ= n−ℓ. In blue, the solution of the closed set of equation (B.1) used in the
characterization (9) for the misclassification error, using the g3m package [28]. The dimension p was cut-off at 104. Red dots
corresponds to simulations using the scikit-learn SVC package and averaged over 40 instances, for p= 104. The green
dashed line indicates the power-law rate (B.20) derived in this work.
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r̂2
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)
= 1−O
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)
+O

(
n−2αγr

)
, (B.17)

where we specialized to r⩽ 1
2 in the last line, thereby focusing on target functions f ∗ ∈ L2(X ) \H. At this

point, it remains to heuristically determine γ, a rigorous analytical derivation of our results being left for
future work. Making the two (numerically verified) assumptions

Assumption B.1 Like the max-margin case, 1− η ∼ q−1,

Assumption B.2 The term of rate 2αγr dominates in (B.17).

γ can be guessed as

γ =
ℓ

α(1+ r)
. (B.18)

Note that consistently, the value of γ at the boundary ℓ= ℓ∗ with the unregularized regime γ ∗ coincides
with its max-margin value (A.24). In the effectively regularized regime, under these assumptions, we thus
conjecture the error to scale for r⩽ 1

2 as

ϵg ∼
√
1− η ∼ nαγ−ℓ ∼ n−ℓ

r
1+r . (B.19)
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Finally observe that the rates for the effectively unregularized regime ℓ⩾ ℓ∗ (B.8) and regularized regime
ℓ⩽ ℓ∗ (B.19) can be subsumed in the more compact form, still for r⩽ 1

2 :

ϵg ∼ n−min(ℓ,ℓ∗) r
1+r = n−min(ℓ,α 1+r

1+αr )
r

1+r . (B.20)

Figure B1 contrasts the rates (B.20) to the numerical solution of the equation (B.1) and to numerical
simulations, and displays a very good agreement. The main conclusion from (B.20) is that for any ℓ, the rate
is necessarily slower than ℓ∗r/(1+ r) = αr/(1+αr), which is the max-margin rate (15). Therefore, the
max-margin rate (15) is optimal for r⩽ 1

2 , and is achieved for any regularization λ decaying at least as fast as
n−ℓ

∗
. In particular, it is achieved for the limit case ℓ=∞, i.e. λ= 0+ a.k.a. the max-margin case, thereby

suggesting that no regularization is optimal for rough enough target functions f ∗ ∈ L2(X ) \H. Since
regularization is not needed for hard teachers (small source r), we do not a fortiori expect it to help for easier,
smoother teachers f ∗ ∈H characterized by source r⩾ 1

2 . This suggests that λ= 0+ (max-margin) should be
optimal for all sources r, i.e. any target f ∗ ∈ L2(X ). While this conjecture is observed to hold in numerical
simulations, a more thorough theoretical analysis of the error rates for r⩾ 1

2 is nevertheless warranted. We
leave this more challenging analysis to future work.

Appendix C. Rates for ridge classification

In this section we derive the rates (18) for ridge classifiers.

C.1. Ridge classification under the source and capacity conditions
The equations onm, q for ridge classification [28] can as in appendix A be adapted to the p=∞, n≫ 1 limit
as


m= m̂p trΣθ

∗θ⋆⊤Σ
nλ+pV̂Σ

q= p tr pm̂
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,


V̂=

n
p

1+V

q̂= n
p

1+q−2m
√

2
πρ

(1+V)2 = V̂2

n
p

(
1+ q− 2m

√
2
πρ

)
m̂=

√
2
πρ

n
p

1+V =
√

2
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(C.1)

Following [15], we introduce the effective regularization z
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n
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= nλ+

z

n

∞∑
k=1

λk
λk +

z
n

≈ nλ+
( z
n

)1− 1
α

∞̂

( z
n )

1
α

dx

1+ xα
. (C.2)

Like in appendix A, we denote z∼ Czn1−αγ the scaling of z. In contrast to appendices A and B for SVM, the
exponent γ for ridge classifier can be straightforwardly determined. Depending on the relative strength of
the two terms in (C.2), two possible values for γ exist:

• γ = ℓ
α if nλ≫ (z/n)1−1/α in (C.2), i.e. ℓ < α. This correspond to the effectively regularized regime [15].

• γ= 1 if nλ≪ (z/n)1−1/α in (C.2), i.e. ℓ > α. In this regime, the regularization λ is negligible and therefore
the learning is effectively un-regularized [15].

Rewriting the equation (C.1) using (C.2), the equation (17) of the main text are reached (see section 4):



ρ=
∞∑
k=1

k−1−2αr

m=
√

2
πρ

∞∑
k=1

k−1−2αr

1+ z
n k

α

q= 2
πρ

∞∑
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(1+ z
n k

α)
2 +

1+q−2m
√

2
πρ

n

∞∑
k=1

1

(1+ z
n k

α)
2

V= z
n2λ

∞∑
k=1

1
1+ z

n k
α

. (C.3)
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C.2. Scaling analysis
We proceed to deliver an scaling analysis of equation (17). We know from appendix A the following scalings

m=
√

2
πρ

[
ρ−1r⩾ 1

2
CzAn
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−γα− n−2γαrCz
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.

Once again, we defined the shorthands

An
m

def
=

nγ∑
k=1

k−1−2α(r− 1
2 )

1+Cz

(
k
nγ

)α , An
q
def
=

nγ∑
k=1

k−1−2α(r− 1
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(
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)α)2 , Bn
q
def
=
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1+Cz

(
k
nγ

)α)2 . (C.4)

We remind that, similarly to the discussion in appendix A, the sequences An
m and An

q admit identical limits as
n→∞ : A∞

q = A∞
m . The consequences of this identity are expounded below. We now focus on ascertaining

the scalings of the order parametersm, q. These scalings depend on the regime considered.

C.2.1. Regularized regime ℓ < α

In the case ℓ < α, we have γ = ℓ/α < 1. Then the expansion for q reads

q(1− o(1)) =
2

πρ

(
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2
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, (C.5)

from which it follows that
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n
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)
. (C.6)

Therefore the cosine similarity η admits the following expression

η =
m2

ρq
=

2
πρρ

2
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2
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where we used that An
q and A

n
m share the same limit. Finally, the scaling for the misclassification error can be

accessed:

ϵg ∼
√
1− η ∼ n−

1
2min(2ℓmin(r,1),α−ℓ

α ), (C.8)

which is equation (18).

Remark C1. Note that only the classification error (9) tends to zero, while neither the MSE between the
label y= sign(θ⋆⊤ψ(x)) and the pre-activation linear predictor ŵ⊤ψ(x) (below denoted MSE1) nor the MSE
between the teacher and student pre-activations θ⋆⊤ψ(x), ŵ⊤ψ(x) (below denoted MSE2) tend to zero:

MSE1 = Eψ(x)
(
sign(θ⋆⊤ψ(x))− ŵ⊤ψ(x)

)2
= 1+ q− 2m

√
2

πρ

n→∞−−−→ 1− 2

π
, (C.9)

MSE2 = Eψ(x)
(
θ⋆⊤ψ(x)− ŵ⊤ψ(x)

)2
= ρ+ q− 2m

n→∞−−−→ ρ

(
1−

√
2

πρ

)2

. (C.10)

Note also the identity between the order parameter r̂2 andMSE1: r̂2 =MSE1, discussed in section 4 in themain
text.
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C.2.2. Unregularized regime ℓ > α

If ℓ > α, then γ= 1 and

q
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Hence
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Since η is now bounded away from 1, the misclassification error ϵg fails to go to 0 asymptotically, and
plateaus to a finite value:

ϵg =O(1), (C.13)

which is equation (19). This plateau is attributable to ridge classifiers overfitting the binary labels, see
appendix D for further discussion.

C.3. Rates for noisy ridge classification
In this subsection, we provide briefly the derivation of the optimal rate for noisy ridge classification, defined
by (E.1), which is plotted in figure E2 of the main text. Introducing the noise (E.1) in the equations of [28]
and mapping to our setting along identical lines as appendix A, the self-consistent equations read
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(C.14)

This differs from (C.1) by a the replacement of ρ by ρ+σ2, simply reflecting the fact that the teacher L2(X )
squared norm should now include the contribution of the additive noise.

In the regularized regime ℓ < α,the expression (C.7) for the cosine-similarity η becomes
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=
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(C.15)
Therefore the excess error reads
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∼1− η =O
(
n−min(2ℓmin(r,1),α−ℓ

α )
)
. (C.17)

Note that the noisy rate (C.17) corresponds to twice the noiseless rate (18), see figure C1.
In the unregularized regime ℓ > α, the discussion in the noiseless setting carries through and the excess

error also asymptotically saturates to a non-zero limit

ϵg− ϵ∞g =O(1) (C.18)
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Figure C1.Misclassification error ϵg for ridge classification on synthetic Gaussian data, as specified in (8) and (E.1), for different
source/capacity coefficients α, r, for a regularization λ= n−ℓ and noise strength σ. In blue, the solution of the closed set of
equation (B.1) used in the characterization (9) for the misclassification error, using the g3m package [28]. The dimension p was
cut-off at 104. Red dots corresponds to simulations using the scikit-learn SVC package and averaged over 40 instances, for
p= 104. The green dashed line indicates the power-law rate (C.17).

Appendix D. Remark on the overfitting regime of ridge classification

In this appendix, we provide further discussion on the saturation of the error (9) to a finite value in the
effectively unregularized regime of ridge classification (19), which defies the common intuition that for large
enough sample complexity n, ridge classification should be able to generalize almost perfectly. In this section,
we first provide an analytical reminder of why the error does go to zero for finite-dimensional feature spaces
(p<∞, n≫ 1), before discussing what differs in the setup at hand (1≪ n≪ p=∞). We argue that while
in the first limit a double-descent phenomenon is observed, the second limit always corresponds to a
learning regime located in the plateau/valley following the first descent. In the following, we consider directly
the λ= 0 case for the sake of simplicity.

D.1. The finite dimensional setup
We first sketch up an brief analysis for the limit of finite feature space dimension∞> p≫ 1 setting, with
large sample complexity n≫ p. Naming X ∈ Rn×p (with the µth row of X being ψ(xµ)) the matrix of the
data in feature space and y= sign(Xθ∗) ∈ Rn the corresponding vector of stacked labels, the ridge estimator
can be compactly written as

ŵ= (XTX)−1XTsign(Xθ∗). (D.1)

In the n−→∞ limit

1

n
XTX=Σ+O

(
1√
n

)
,

1

n
XTsign(Xθ∗) = EN (0,Σ)

x [xsign(x · θ∗)]+O
(

1√
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)
. (D.2)

Hence

ŵ≈ Σ−1EN (0,Σ)
x

[
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]
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1
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x

[
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1
2 θ⋆)

]
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2EN (0,1)
x∥

[
x∥sign(x∥)

] Σ
1
2 θ⋆

||Σ 1
2 θ⋆||2

, (D.3)

where we noted x∥ the component of x parallel to θ∗. So

ŵ=

√
2

π

θ⋆

||Σ 1
2 θ⋆||2

∝ θ∗. (D.4)

This means in particular the direction of the teacher is perfectly recovered, and that the prediction error ϵg
(9) goes to zero in the p≪ n→∞ limit.
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Figure D1.Misclassification error ϵg for ridge classification on artificial Gaussian data, as specified in (8), for source r= 1.2,
capacity α= 2, at regularization λ= n−3. The dimension was cut-off to p= 106. The blue curve corresponds to the numerical
solution of the equation (17) using the g3m package [28]. While for sample complexities comparable or larger than the dimension
n ⩾ p a second descent, followed by a drop of the error to zero, is observable, in the 1≪ n≪ p=∞ limit considered in the
present work the second descent, which happens for n ⪆ p (red hashed region), is no longer observed. Instead, only the plateau
following the first descent is observed, which corresponds to the saturation effect of figure 2.

D.2. Infinite dimensional feature space
We now argue why this discussion ceases to hold in the setup of interest n≪ p=∞ (plateau reached after
the first descent, see figure D1). In this limit, loosely written,

ŵ≈
(
Σ−1 +O

(
1√
n

))(
EN (0,Σ)
x

[
xsign(θ⋆Tx)

]
+O

(
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=
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||Σ 1
2 θ⋆||2

+O
(√

p

n

)
̸= cte.× θ∗. (D.5)

The last term comes from the sum of p random terms of order 1/
√
n entailed by the matrix multiplication.

In particular, this implies that the teacher fails to be perfectly recovered by ERM in this limit, causing the
misclassification error to plateau to a finite limit, see equation (19). This is due to the fact that in an
infinite-dimensional space, the ridge ERM (16) always has enough dimensions to overfit the dataset. Another
way to look at this limit is in the framework of the well-known double-descent phenomenon which occurs in
the finite dimensional limit p<∞ discussed in appendix D.1. In the p=∞ limit, the second descent, which
commences at n≈ p, happens at infinite sample complexity and is thus not observed for finitely large n. In
fact, the 1≪ n≪ p=∞ limit always correspond to the plateau following the first descent, see figure D1.

Appendix E. Crossovers in noisy kernel classification

In this appendix, we briefly discuss the noisy setup where the target function f ∗ is corrupted by a Gaussian
noise of variance σ2, i.e.

yµ = sign( f ∗(xµ)+σN (0,1)) . (E.1)

In this setting, the misclassification error (9) no longer tends asymptotically to 0, but instead converges to a
positive value dictated by the noise strength

ϵg
n→∞−−−→ ϵ∞g =

1

π
arccos

(√
ρ

ρ+σ2

)
. (E.2)

Observe that the residual error ϵ∞g corresponds to the smallest achievable 0/1 risk, and is achieved by the
teacher f ∗. In contrast to the noiseless setting (1), the stochasticity in the generation of the labels (E.1)
induces a non-zero error even for f ∗. Numerical experiments presented in figure E1 show that the rate of
decay of the excess misclassification error ϵg− ϵ∞g , when optimized over the regularization strength λ,
transitions from the noiseless rate (15) to a α/(1+α) rate as the sample complexity n is increased. Note that
interestingly the rate α/(1+α) has been reported in [24] as an upper bound for the excess misclassification
error, although it is possible to show that the noisy setup (E.1) does not satisfy the conditions of their
corresponding theorem. This crossover phenomenon is highly similar to the one observed in [15] for kernel
regression.

Finally, we note that for some real datasets the learning curves are satisfactorily described by the noisy
rate α/(1+α) [24] (see also the discussion in appendix A). This is for instance the case for Fashion MNIST
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Figure E1. Excess misclassification error ϵg − ϵ∞g for max-margin classification on synthetic Gaussian data corrupted by a

Gaussian noise of variance σ2, as specified in (8), for different source/capacity coefficients α, r, for optimal λ∗. In blue, the
solution of the closed set of equation (13) used in the characterization (9) for the misclassification error, using the g3m package
[28]. The dimension p was cut-off at 104. Red dots corresponds to simulations using the scikit-learn SVC package averaged
over 40 instances, for p= 104. Optimization over λ was performed using cross validation, with the help of the python
scikit-learn GridSearchCV package. The green dashed line indicates the power-law rate (15) derived in this work; the black
dashed line indicates the classical optimal rate α/(1+α) [24].

Figure E2. Dots: Misclassification error ϵg of kernel classification on Fashion MNIST with a polynomial kernel (left) and MNIST
with an RBF kernel, for optimally regularized SVM (blue) and optimally regularized ridge classification (red), using respectively
the python scikit-learn SVC and KernelRidge packages. Dashed lines: theoretical decay rates for the error ϵg (blue: (15),
light purple: [26], red: (21), purple: (C.17)), computed from empirically estimated capacity α and source r coefficients (see
section (5) and appendix F for details). These coefficients were estimated to α≈ 1.28, r≈ 0.28 for FashionMNIST using the
polynomial kernel and α≈ 1.5, r≈ 0.5 for MNIST using the RBF kernel, see appendix F.

when a polynomial kernel SVM is employed, see figure E2. Interestingly, the rate which describes the
learning curve of an optimally regularized ridge classifier in this setting is also the noisy rate (C.17) (see
appendix C), rather than the noiseless rate (21). For MNIST classified using an RBF kernel, both the
noiseless rates (15) and (21) and the noisy rates α/(1+α), (C.17) are observed, with a crossover
phenomenon during which the learning curve transitions from the former to the latter.

Appendix F. Details on real data-sets

F.1. Measuring the capacity and source of real datasets
In this section we provide details on the experiments on real data (section 5, figure 4), which can also be
found in [15, 30, 31]. Consider a real datasetDm = {xµ,yµ}mµ=1 of sizem. The data distribution ν defined in
section 2 is then the empirical distribution overDm:

ν(·) = 1

m

m∑
µ=1

δ(· − xµ). (F.1)

Then the definitions of the feature map ψ (3) and of the feature covariance Σ (5) admit the simple rewriting

1

m
GΨ =ΨΣ, Σ=

1

m
Ψ⊤Ψ, (F.2)

provided we introduce the Gram matrix Gµ,ν = K(xµ,xν) ∈ Rm×m and the matrix of horizontally stacked
featuresΨµk = ψ(xµ)k ∈ Rm×m. Note that for real data, one has that the dimension of the feature space p is
equal to the total size of the datasetm. A teacher θ∗ providing perfect classification y= sign(Ψθ∗) can be
found e.g. by performing max margin classification on (Ψ,y). While the method to fit a perfect classifier θ∗ is
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not unique, we observed that using logistic classifiers or regularized hinge classifiers instead of max-margin
classifiers did not significantly impact the measured source coefficient.

From the eigenvalues {ωk}pk=1 of the covariance Σ (F.2) and the components of the teacher {θ∗k }
p
k=1, the

capacity and source α, r (8) can be estimated. From (8), the following scalings should hold:

p∑
k ′=k

ωk ′ ∼ k1−α,

p∑
k ′=k

ωk ′θ⋆2k ′ ∼ k−2αr. (F.3)

These curves are presented in figure F1 for the dataset comprised of 104 randomly samples CIFAR ten
images, see section 5 of the main text. Note that we estimate the cumulative functions (F.3) following [15, 30]
because the summation allows to smoothen out the curves, thus permitting a relatively more precise
evaluation. Because the feature space is finite, the functions (F.3) fail to be exact power-laws, and exhibit in
particular a sharp drop for n approachingm. Nonetheless, we identify for each curve a region of indices k for
which the curve looks qualitatively like a power-law, and fit the curves by a power-law using least-squares
linear regression to finally extract the coefficients α, r therefrom. These fits are shown in figure F1 for the
reduced CIFAR ten dataset discussed in the main text (see section 5), for an RBF kernel with inverse variance
10−7 and a polynomial kernel of degree 5. The capacity and source were estimated to be α≈ 1.16, r≈ 0.10
for the RBF kernel and α≈ 1.51, r≈ 0.07 for the polynomial kernel.

F.2. Details on numerical simulations
In this subsection, we provide further details on the simulations presented in figure 4 of the main text. For
each sample complexity n, a subset of size n was randomly sampled without replacements fromDm. Like in
[15, 28, 51], the whole datasetDm was used as a test set. The max-margin simulations in figure 4 were
performed using the scikit-learn SVC package at vanishing regularization λ= 10−5, and averaged over
50 realizations of the training set. The ridge simulations in figure 4 were realized using the scikit-learn
KernelRidge package, with the optimal λ estimated using scikit-learn GridSearchCV’s default 5-fold
cross validation routine over a grid λ ∈ {0}∪ (10−10,105), with logarithmic step size 0.026. The
misclassification error was also averaged over 50 realizations of the training set.

Appendix G. Comparison to the classical rates

In this appendix, we provide a detailed comparison of the presently reported rate for noiseless max-margin
classification (15) and the rate reported in [24] (equation 7.53, following from theorem 7.23 and Lemma
A.1.7), in the case of a teacher in the Hilbert space f ∗ ∈H, for which the latter result holds. We alternatively
point the reader to section 5 of [45], where the same bound, and the underlying assumptions thereof, are
reminded in concise fashion. We first provide a brief reminder of this upper bound, before proceeding to
evaluate it in the present setting (8), and show that it yields a slower rate than (15), i.e. that the bound in [24]
is loose. For completeness, we finally provide a comparison to the rates reported in [27].

G.1. Theorem 7.23 in [23]
In the following, ℓ(y,a) =max(0,1− ya) designates the hinge loss, and the script cl refers to the clipped
value [24]. Suppose that

A.1 inf
w

Eψ(x),yℓ(y,w⊤ψ(x)) = Eψ(x),yℓ(y, f∗(ψ(x))) where the Bayes estimator f∗ is defined as

f∗(ψ(x)) = argmin
a

Eψ(x),yℓ(y,a). The expectation refers to the joint distribution of the data ψ(x) and

the labels y.
A.2 (Bernstein condition) There exist B> 0, θ ∈ [0,1], V⩾ B2−θ so that for all w, ℓ(y,(w⊤ψ(x))cl)⩽ B a.s.

and

Eψ(x),y
([
ℓ(y,(w⊤ψ(x))cl)− ℓ(y, f∗(ψ(x)))

]2)⩽ V

[
Eψ(x),y

(
ℓ(y,(w⊤ψ(x))cl)− ℓ(y, f∗(ψ(x)))

)]θ
.

(G.1)

A.3 the spectrum of the covariance Σ= Eψ(x)ψ(x)ψ(x)⊤ has a polynomial decay with rate α.
A.4 The approximation errorA2(λ) =min

w
Eψ(x),yℓ(y,w⊤ψ(x))+λ||w||2− inf

w
Eψ(x),yℓ(y,w⊤ψ(x)) is

upperbounded by λb for b ∈ (0,1].
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Figure F1. Cumulative functions (F.3) for 104 CIFAR ten sampled at random, for a RBF kernel (top) and a polynomial kernel
(bottom). The slopes fitted using least-squares linear regression on the regions the curves are qualitatively resembling power-laws
are represented in dashed lines.

Then with high probability [24]

ϵg− ϵ∗g ≲ n−min( 2b
1+b ,

αb
b(2α−1−αθ+θ)+1 ). (G.2)

In (G.2), ϵ∗ refers to the infimum of the classification error over all measurable functions (as opposed to ϵg
resulting from ERM (12) over linear estimators only).
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G.2. Specialization to the noiseless source/capacity setting
We proceed to translate theorem (G.2) [24] for our setting (8) (1), in the case where the teacher f ∗ is inH
(r⩾ 1

2 ), for which assumption (A.1) is readily satisfied. To this end, one must evaluate the parameters θ, b
entering in (G.2). First note that the Bayes estimator f∗ assumes the simple form f∗(x) = sign(θ⋆⊤x) in the
presence of the teacher θ∗. As a consequence, in the noiseless setting,

Eψ(x),yℓ(y, f∗(ψ(x))) = Eψ(x)ℓ
(
sign(θ⋆⊤x), sign(θ⋆⊤x))

)
= 0. (G.3)

The Bernstein condition is straightforwardly satisfied with B= V= 2 and θ= 1, since ℓ(1, ·cl) (resp. ℓ(1, ·cl))
is a piecewise continuous function, constant equal to 0 on (1,∞) (resp(−∞,−1)) and to 2 on (−∞,−1)
(resp. (1,∞)), and linear in between. In our model, the argmin in the definition ofA2(λ) can be
approximated first as w≈ c× θ∗/||θ∗||, i.e. for a w proportional to the teacher. Note that this is an
approximation, and in general there exist a small (shrinking with λ going to 0) angle between the true
minimizer and the teacher. Typically, c will tend to infinity as λ goes to zero. Let us evaluate the
proportionality constant c:

Eψ(x),yℓ(y,w⊤ψ(x))∝
ˆ

dxe−
1
2 x

⊤Σ−1xmax(0,1− sign(θ⋆⊤x)cθ⋆⊤x/||θ∗||)

∝
ˆ

cθ⋆⊤x/||θ∗||<1

dxe−
1
2 x

⊤Σ−1x(1− sign(θ⋆⊤x)cθ⋆⊤x/||θ∗||)

x∥=θ
⋆⊤x/||θ∗||
∝

1
cˆ

− 1
c

dx∥e
−

x2∥
2θ⋆⊤Σθ∗/||θ∗||2 (1− c|x∥|)

∝ 2

1ˆ

0

dx∥e
−

x2∥
2cθ⋆⊤Σθ∗/||θ∗||2 (1− x)∼ 1

c
(G.4)

where in the last line we supposed c large. Then

A(λ)≈min
c

{
A

c
+λc2

}
(G.5)

for some constant A, for λ small (c large). Minimizing the function leads to c∼ λ− 1
3 , then toA(λ)∼ λ 1

3 , i.e.
b= 1

3 . We also checked this scaling by numerically solving the self-consistent equation (13) in the large
sample complexity limit (n≫ p), noticing that the train loss admits the following expression in terms of the
order parametersm,q,ρ,V,m̂, q̂, V̂ [28]:

A2(λ)≈ lim
n≫p

2

∞̂

0

e−
u2

2

√
2π

∞̂

−∞

e−
h2

2

√
2π

max

(
0,1− proxVmax(0,1−·)

(
m
√
ρ
s+
√
q(1− η)h

))

+λptr
pm̂2Σθ∗θ⋆⊤Σ+ q̂Σ

( nλ2 + pV̂Σ)2
, (G.6)

where the proximal map is given by

proxVmax(0,1−y·)(ω) =


ω+ yV if yω ⩽ 1−V,

y if 1−V⩽ yω ⩽ 1,

ω if yω ⩾ 1.

. (G.7)

The functionA2(λ) is plotted for several values of source/capacity coefficients α, r in figure G1 and is well
captured by a power law with rate b= 1

3 .
Finally, the bound provided by the theorem (G.2) [24] reads (notice that ϵ∗g = 0)

ϵg− ϵ∗g ≲ n
−min

(
1
2 ,

α
3

α
3 +1

)
(G.8)

Note that the rate (15) is always faster:

n
−

α
2

1+α
2 ≪ n

−min

(
1
2 ,

α
3

α
3 +1

)
. (G.9)

28
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Figure G1. Approximation errorA2(λ) as a function of the regularization strength λ. In blue, the numerical solution of the

self-consistent equation (13) using the g3m package [28]. Red dotted lines represent the power law λ
1
3 , which provides a very

satisfying fit for all values of capacity/source coefficients α, r.

In other words, the upper bound of [24] is loose in the present setting when f ∗ ∈H. While numerical
investigations suggest this is also true for f ∗ ∈ L2(X ) \H, we leave a more detailed comparison to [24] in this
case to future work.

G.3. Theorems 3.3 and 3.5 in [25]
Finally, we discuss the rates reported in [27] under margin assumptions as [26, 44]. Note that the regression
function η (ψ(x))≡ P(y= 1|ψ(x)) has in the noiseless setting (1) the compact form
η (ψ(x)) = sign(θ⋆⊤ψ(x)) and is therefore not Hölder class for any β > 0, rendering Theorems 3.3 and 3.5 in
[27] effectively inapplicable. Note that in addition, the rates would in any case be ambiguous, as both the
margin exponent α and the dimension d are infinite in our setting. Finally remark that [26, 52] provide rates
under similar margin conditions in direct space, for the particular case of Gaussian kernels. Relating those
conditions to the characterization (8) in feature space used in the present work is out of the scope of the
present manuscript.
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