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Abstract

Despite the non-convex optimization landscape, over-parametrized shallow net-
works are able to achieve global convergence under gradient descent. The picture
can be radically different for narrow networks, which tend to get stuck in badly-
generalizing local minima. Here we investigate the cross-over between these two
regimes in the high-dimensional setting, and in particular investigate the connection
between the so-called mean-field/hydrodynamic regime and the seminal approach
of Saad & Solla. Focusing on the case of Gaussian data, we study the interplay
between the learning rate, the time scale, and the number of hidden units in the
high-dimensional dynamics of stochastic gradient descent (SGD). Our work builds
on a deterministic description of SGD in high-dimensions from statistical physics,
which we extend and for which we provide rigorous convergence rates.

Descent-based algorithms such as stochastic gradient descent (SGD) and its variants are the workhorse
of modern machine learning. They are simple to implement, efficient to run and most importantly:
they work well in practice. A detailed understanding of the performance of SGD is a major topic
in machine learning. Quite recently, significant progress was achieved in the context of learning in
shallow neural networks. In a series of works, it was shown that the optimisation of wide two-layer
neural networks can be mapped to a convex problem in the space of probability distributions over
the weights [1-4]. This remarkable result implies global convergence of two-layer networks towards
perfect learning provided that the number of hidden neurons is large, the learning rate is sufficiently
small and enough data is at disposition. This line of work is commonly referred to as the mean-field
or the hydrodynamic limit of neural networks. Mathematically, these works showed that one could
describe the entire dynamics using a partial differential equation (PDE) in d dimensions.

In a different, and older, line of work, one-pass SGD for two-layer neural networks with a finite
number p of hidden units, synthetic Gaussian input data and teacher-generated labels has been widely
studied starting with the seminal work of [5]. These works consider the limit of high-dimensional data
and show, in particular, that the stochastic process driven by gradient updates converge to a set of p?
deterministic ordinary differential equations (ODEs) as the input dimension d — oo and the learning
rate is proportional to 1/d. The validity of these ODEs in this limit was proven by [6]. However, the
picture drawn from the analysis of these ODE:s is slightly different from the mean-field/hydrodynamic
picture: in this case SGD can get stuck for long time in minima associated to no specialization of the
hidden units to the teacher hidden units, and even when it converges to specializing minima, it fails to
perfectly learn (i.e. to achieve zero population risk). In fact, in this analysis, the interplay between
the limit of the learning rate going to zero and d — oo appeared to be fundamental.
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Figure 1: A summary of our contribution on SGD learning regimes for two-layer neural networks in
the high-dimensional input layer limit d — oco. Left: phase diagram according to Eqs. (1): Perfect
learning region (x + 0 > 0), Plateau line (x + 6 = 0), Bad learning region (—1/2 < kK + d < 0)
and No ODE:s region (k + d < —1/2). Right: A solution of the ODE:s in all regions, with matching
colors (using £ =0.301, p=8, k=4, pys =05, A=1073, o(z) = erf(x/ﬂ)). The time scaling is
not uniform through the phase diagram: ¢ = k4§ on green and blue regimes and ¥ =2(x+0) on the
orange region. The green curve decays as a power law to zero excess error.

One should naturally wonder about the link between these two sets of works with, on the one hand a
d-dimensional PDE (with large p), and on the other a p?-dimensional ODE (with large d). In this
work we aim to build a bridge between these two approaches for studying one-pass SGD.

Our starting point is the framework from [5], which we build upon and expand to a much broader
range of choices of learning rate, time scales, and hidden layer width. This allows us to provide a
sharp characterisation of the performance of SGD for two-layer neural networks in high-dimensions.
We show it depends on the precise way in which the limit is taken, and in particular on how the
quantity of data, the hidden layer width, & the learning rate scales as d — oo. For different choices
of scaling, we can observe scenarios such as perfect learning, imperfect learning with an unavoidable
error, or even no learning at all. As a consequence of our analysis, we provide a phase diagram
(see Fig.1)! describing the possible scenarios arising in the high-dimensional setting. Our main
contributions are as follow:

C1 We rigorously show that the dynamics of SGD can be captured by a set of deterministic ODEs,
considerably extending the proof of [6] to accommodate for general time scalings defined by an
arbitrary learning rate, and a general range of hidden layer width. We provide much finer non-
asymptotic guarantees which are crucial for our subsequent analysis.

C2 From the analysis of the ODEs, we derive a phase diagram of SGD for two-layer neural networks
in the high-dimensional input layer limit d — co. In particular, scaling both the learning rate + and
hidden layer width p with the input dimension d as

yocd™®, pxdr, (1)

we identify 4 different learning regimes which are summarized in Fig. 1(left):

* Perfect learning (green region, x > —¢): we show that perfect learning (zero population risk) can
be asymptotically achieved with n ~ d'+*+9 samples even for tasks with additive noise.

* Plateau (blue line k = —¢): learning reaches a plateau related to the noise strength. The point
Kk = ¢ = 0 goes back to the classical work of [5].
* Bad learning ( ): here the noise dominates the learning process.

* No ODE:s (red region k + § < —1/2): the stochastic process associated to SGD is not guaranteed
to converge to a set of deterministic ODEs. This region is thus outside the scope of our analysis.

Relation to previous work — Deterministic dynamical descriptions of one-pass stochastic gradient
descent in high-dimensions have a long tradition in the statistical physics community, starting with
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single- and two-layer neural networks with few hidden units [7—11]. The seminal work by [5]
overcame previous limitations by constructing a set of deterministic ODEs for two-layer networks
with any finite number of hidden units, paving the way for a series of important contributions [12—
14, 6]. This line of work corresponds to the kK = & = 0 case of Fig. 1 (left). One of our goals is to
generalize this picture beyond fixed hidden layer size and learning rate.

A more recent line of work investigating the dynamics of SGD is the so-called mean-field limit
[1, 15, 2-4], which connects the SGD dynamics of large-width two-layer neural networks to a
diffusion equation in the hidden layer weight density. In particular, [15] provide non-asymptotic
convergence bounds for sufficiently small learning rates, corresponding to the green region of Figure
1 (with p — 00). The mean-field approach computes the empirical distribution (in R) of the hidden
layer weights, while we focus on the macroscopic overlaps between the teacher and student weights.

1 Setting

Consider a supervised learning regression task. The data set is composed of n pairs (", y")l,e[n] €
R%*! identically and independently sampled from P(z, 7). The probability P(z) is assumed to be
known and P(y|x) is modelled by a two layer neural network called the feacher. Given a feature
vector ¥ € RY, the respective label ¥ € R is defined as the output of a network with k hidden units,
fixed weights W* € R**¢ and an activation function o : R — R:
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with w* = [W*],. € R as the r-th row of the matrix W* and \** = w;"«"/\/a € R as the r-th

component of the teacher local field vector \*" € R¥. The parameter A > 0 controls the strength of
additive label noise: (¥ ~ P(¢¥) such that E¢p(¢)[¢] = 0 and E¢.op¢)[¢?] = 1.

Given a new sample  ~ P(x) outside the training data, the goal is to obtain an estimation f (x)

for the respective label . The error is quantified by a loss function £(y, f(z, ©)), where © is an
arbitrary set of parameters to be learned from data.

In this manuscript we are interested in the problem of estimating W* with another two-layer neural
network with the same activation function, which we will refer to as the student. The student network
has p hidden units and a matrix of weights W € R? *4 {0 be learned from the data. Given a feature
vector  ~ P(x) the student prediction for the respective label is given as

o _1 P w;»'—w _1 P v
f(w,W)—ij_;cf(m)—ij_;a(Aj), 3)

where w; = [W]; € R is the j-th row of the matrix W and \; = w, =/v/d € R is defined as the
j-th component of the student local field vector A € RP.

One-pass gradient descent — Typically, one minimizes the empirical risk over the full data set.
Instead, learning with one-pass gradient descent minimizes directly the population risk:

R(Wa W*) = Ew,yN]P’(ac,y) [E (f(ma W*), f(mv W)):| . (4)
Given a single sample (x”,y") the weights are updated sequentially by the gradient descent rule:
w]erl = ’LU;/ - ,va]'L (yl/7 f(wyv W)) ) (5)

with v € [n] and j € [p]. The parameter v > 0 is the learning rate. Despite being a simplification
with respect to batch learning, one-pass gradient descent is an amenable surrogate for the theoretical
analysis of non-convex optimization, since at each step the gradient is computed with a fresh data
sample, which is equivalent to performing SGD directly on the population risk. In particular, in
this manuscript we assume realizability p > k, and focus our analysis on the square loss L(y, §) =
+(y — 9)% leading to

wi = w” + LUI(A}') &y, (6)
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where
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Therefore, from the above expression we can see that to monitor the population risk along the learning
dynamics it is sufficient to track the joint distribution of the local fields (A, A*). For Gaussian data
P(x) = N(x[0,1), one can replace the expectation Eg, ,p(a.y)[-] BY Ex a-~Ar(aA7j0,2)[] and
fully describe the dynamics through the following sufficient statistics, known in the statistical physics
literature as macroscopic variables:
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with matrix elements, called order parameters in the statistical physics literature, denoted by ¢;; =
Q"1 m¥, = [M"];, and p,s = [P],s. The macroscopic state of the system at the learning step v
is given by the overlap matrix ¥ € RPHRx(p+k).
, QV Ml/
Q - |:MI/T P ’ (9)
and the population risk is completely determined by the macroscopic state:
1 . L\ 2
R(2) = 5 Exx~niaasion) Eearo) [(f(A) - f(A )) } : (10)

The training dynamics (5) defines a discrete-time stochastic process for the evolution of the overlap
matrix {Q” e REHRXEHR) ) ¢ [n] }, with P fixed and Q" and M" updated as:
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with v € [n], 5,1 € [p],r € [k] and £ = o' (A}) £”. In what follows, we will make the concentration

= d; this will be ]ustlﬁed in the proof of Theorem 2.1.

We emphasize in (11) the specific role played by each term in the right hand-side. The "learning"
terms are the fundamental ones, that actually drive the learning of the teacher by the student. We
show in Appendix C.3 that these "learning" terms are identical to those obtained in the gradient flow
approximation of SGD, whose performance is the topic of many works [1—4]. Those are precisely
the terms that draw the population risk towards zero. However, in our setting there is an additional
variance term (so that this flow approximation is incomplete) that corresponds to the fluctuations of
L(x, W, W™) around its expected value R(W, W*). In particular, this is where the effects of the
noise ¢ can be felt. These terms were sometimes denoted as (I3) and (1) in [16]. We shall see that
the additional "variance" term is the one responsible for the plateau in the critical (blue) region of
Figure 1, while its contribution vanishes in the perfect learning (green) region.

Additionally, albeit our work particularizes to Gaussian input data, we believe our conclusion, and the
phase diagram discussed in Figure 1, to hold beyond this restricted case. Indeed, while the Gaussian
assumption is crucial to reach a particular set of ODEs and their analytic expression, the approach
can be applied to more complex data distribution, as long as one can track the sufficient statistics
required to have a closed set of equations. For instance, [17] obtained very similar equations for an
arbitrary mixture of Gaussians —that would obey the same scaling analysis as ours— while [18-20]
proved that many complex distributions behave as Gaussians in high-dimensional setting, including,
e.g. realistic GAN-generated data. We thus expect our conclusions to be robust in this respect.



2 Main results

Although tg = v/d seems to be the most natural time scaling in the high-dimensional limit d — oo,
if v and p are allowed to vary with d the right-hand side (RHS) of Egs. (11) can diverge and render
the ODE approximation obsolete. Instead, for a given time scaling &¢, we can rewrite Egs. (11) as

i 7?
J A EVN - EV N —— &Y EY
ot pd5t(] Lt J)+p2d5t A
i , (12)
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In Theorem 2.1 we prove that as d — oo, £2” converges to the solution of the ODE:
d - _
—Q(t) = (Q(1)) , (13)

dt

where ¢ : RPTRIX(P+E) _y R(p+R)x(PHF) ig the expected value of the RHS of Eqs. (12), provided
that this solution stays bounded. This enhances the result of [6] by providing convergence rates to the
ODEs encompassing all scalings adopted hereafter:

Theorem 2.1 (Deterministic scaling limit of stochastic processes). Let 7 € R be the continuous time
horizon and 6t = 6t(d) be a time scaling factor such that the following assumptions hold:

1. the time scaling 0t satisfies for some constant c,

2

5t > ¢ max (;11’5‘%1) (14)
2. the activation function o is L-Lipschitz,
3. the function 1 : RPTRX@HR) _y RAR)X(0+k) 4o 1/ L inschits,.

Then, there exists a constant C > 0 (depending on ¢, L, L") such that for any 0 < v < |7/6t|, the
following inequality holds:

E||Q" - Qwét)|_ < e log(p)Vdt . (15)

Our proof is based on techniques introduced in [21] (namely, their Lemma 2) which studies a different
problem with related proof techniques. The proof involves decomposing 2 as

QU = QY 4+ 5typ(QY) + (VT — QY — 6tp(RY)) ,

where the two first terms can be considered as a deterministic discrete process, and the last term is
a martingale increment. The main challenge lies in showing that the martingale contribution stays
bounded throughout the considered time period.

Although the method is similar to [6], there are a number of differences between the two approaches.
First, our proof fixes a number of holes in [6], in particular bounding ¢ by a sufficiently slowly
diverging function of v. Additionally, the techniques used in this paper yield a dependency in p that
is nearly negligible, while the previous methods imply bounds that are much too coarse for our needs.

The function v can be computed explicitly for various choices of o, which allows to check Assumption

3 directly. We provide in Appendix C the necessary computations for o (2) = erf(z/+/2); those for
the ReLU unit can be found in [22]. It can be checked that in the ReL.U case, the function 2 is not
Lipschitz around the matrices €2 satisfying

Q1 = /5
for some j # [. However, in every case we have a weaker square-root-Lipschitz property: there exists
C € R such that

le() - (@) < ||V - Ve

for any €2, ©'. Since the square root function is Lipschitz whenever the eigenvalues of §2 are bounded
away from zero (see e.g. [23]), Assumption 3 is implied by the condition

Q" = elpik;




however, this assumption is much stronger, and becomes unrealistic in the specialization phase (as
well as when p > d).

Theorem 2.1 allows us to safely navigate through Fig. 1 by keeping track of convergence rates of
the discrete process to a set ODEs. The interplay between learning rate and hidden layer width
defines the time scaling ¢t and the trade-off between the linear contribution on £; and the quadratic
one, playing a central role on whether the network achieves perfect learning or not. Specifically,
consider the following learning rate and hidden layer width scaling with d: v = ~0/d’, p = pod”®
where 79 € R and py € N are constants. The exponent § € R can be either greater or smaller than
zero, while k € R™. Replacing these scalings on Egs. (11), we find (where we have chosen 7o = po
without loss of generality):

1
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Since the distribution of the label noise (¢) is such that E¢ _p(¢)[¢] = 0, the linear contribution in
& is noiseless in the high-dimensional limit d — oo, and therefore we will refer to it as the learning
term. The noise enters in the equations through the variance computed on the quadratic contribution
&; €1, which we will refer to as the noise term; intuitively, it is a high-dimensional variance correction
which hinders learning. In order to satisfy (14), we shall take

1 1
5t:maX<d1+n+5’dl+2(n+6)) . (17)

When k 4+ § # 0, this implies that either the learning term or the noise term scale like a negative
power of d, and is negligible with respect to the other term. It is then easy to check that at a finite
time horizon 7, the resulting ODE behaves as if the negligible term was not present. We refer to
Theorem B.1 in the appendix for a quantitative proof of this phenomenon. Let us now describe the
different regimes depicted in Fig. 1.

Blue line (plateau) — When y and p are scaled such that K = —4, Egs. (16) converge to

dq;
ﬁ = Ex a (A 10,2) (€5 A+ E1 A ] 4+ Ex - onvaaj0.9) Ecore) [€5 &1 (18a)
dm;, .
dt; = Ex x ~A(aat0,0) [E5 A7) (18b)

with 6tg = 1/d. This regime is an extension of [5] for which k = § = 0. The convergence rate
to the ODEs scales with d—'/2 log(d), and the phenomenology we observe for x = § is consistent
with previous works studying the setting x = § = 0; namely the existence of an asymptotic plateau
proportional to the noise level. For instance, the asymptotic population risk R, is known to be
proportional to YA [6] when £ = § = 0 and the dynamics is driven by a rescaled version of Egs. (18).
Since the noise term does not vanish under this scaling, perfect learning to zero population risk is not
possible. There is always an asymptotic plateau related to the noise level A, and the learning rate -.

Green region (perfect learning) — If x > —J we can define the time scaling 6t s = 1/d'T"+9,
By Theorem 2.1, Egs. (16) converge to the following deterministic set of ODEs:

dgji Ex x -~ (aa%10,02) Ecop(o) [E) €1
Dis Ex x ~naatjo,n) [E5 A +E1 A+ O < o , (192)
dm, .
7 = =Eaxnvaatjo.o) €5 A1) (19b)
K40

at a rate proportional to d~(1T%+9)/210g(d), where we have highlighted that the noise term vanishes
with d~(%1+9) Hence, as long as k > —& the noise does not play any role on the dynamics. This
setting could be understood by taking an effect learning rate ver o< d~"7% on R4, o< yA, which
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Figure 2: Left: Population risk dynamics for k = § = 0 (Saad & Solla scaling) : py = 8, k = 4,
prs = Ors. Activation function: o(z) = erf(x/+/2). Data distribution: P(z) = N (z|0,1). Dots
represent simulations (d = 1000), while solid lines are obtained by integration of the ODEs given
by Egs. (18). Right: Simulations (d = 1000, po = 8) for k = 0 comparing different choices of the
exponent §. Noise level: A=1073. The final plateau is proportional to the learning rate: R, o YA.

leads to zero population risk, i.e. perfect learning, in the high dimensional limit d — co. We validate
this claim by a finite size analysis in the next section.

As discussed, the time scaling determines the number of data samples required to complete one
learning step on the continuous scale. The bigger x + J, the more attenuated the noise term, thus the
closer to perfect learning. The trade-off is that the bigger « + 4, the larger the number of samples
needed is, since n = 7d %19 Given a realizable learning task, one would thus rather choose the
parameters to attain the perfect learning region, but being as close as possible to the plateau line for
not increasing too much the needed number of samples. We remark that [15] provides an alternative
deterministic approximation in this regime, with non-asymptotic bounds, whenever p > 1; this is the
so-called mean-field approximation, with known convergence guarantees [2].

Orange region (bad learning) — We now step in the unusual situation where the learning rate grows
faster with d than the hidden layer width: x < —§. In this case, by (17) the noise term dominates
over the dynamics. Defining the time scaling 0ty (. 15) = 1/d1+2(“+5), we have

dqjl

= Ex - ans(0.02) Ecore) (€ E1] + O (d°F°) (20a)
dta(rt6)
g _ o (@t (20b)
dta(r1)

According to Theorem 2.1 the convergence rate of Eqs. (16) to Eqs. (20) scales with
d=(1/2+5+0) 1og(d). Therefore the existence of the noisy ODEs above is circumscribed to the
region —1/2 < k + § < 0 and presents a convergence trade-off absent in the other regimes: the faster
of the contributions of Egs. (16) goes to zero, the worse is the convergence rate. In the present case,
the more the learning term is attenuated, i.e. the more negative is x + 9, the worse the dynamics is
described by Egs. (20). Although the weights are updated, the correlation between the teacher and the
student weights parametrized by the overlap matrix M remains fixed on its initial value M 9, which
is a fixed point of the dynamics under this scaling. Unsurprisingly, this leads to poor generalization
capacity.

Red region (no ODEs) — If k + § < —1/2, the stochastic process driven by the weight dynamics
does not converge to deterministic ODEs under the assumptions of Theorem 2.1. We are then not
able to state any claim about this regime.

Initialization and convergence — There are two additional features worth commenting on the
high-dimensional dynamics and its connection to the mean-field/hydrodynamic approach, regarding
initialization and the specialization transition. In the ODE approach we discuss here, we always
observe a first plateau where the teacher-student overlaps are all the same. This means all the hidden
layer neurons learned the same linear separator. At this point, the two-layer network is essentially
linear. This is called a unspecialized network in [16, 5]. In fact, this is a perfectly normal phenomenon,
as with few samples even the Bayes-optimal solution would be unspecialized [24]. Only by running
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Figure 3: Networks parameters po = 8, k = 4, p,s = 6. Activation function: o (z) = erf(z/v/2).
Data distribution: P(x) = AN (x|0,1). Left: Population risk dynamics for xk = 0 and § = 1/2.
Fixed noise A = 1073 and varying d. Dots represent simulations, while the solid line is obtained by
integration of the ODEs given by Eqgs. (19). The data are compatible with the claim that as d — oo
the curve converges to zero population risk. Right: Asymptotic population risk R, from simulations
(dots) as a function of d for different noise levels under the scaling x = 0 and 6 = 1/2. The fitted
straight lines have slopes —0.458, —0.494, —0.497, for A = 10~%,1072, 102, respectively.
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Figure 4: Networks parameters pg = 8, k = 4, p,.s = d,.s. Activation function: o(z) = erf(z/v/2).
Data distribution: P(x) = AN (x|0,1). Left: Population risk dynamics for x = 0 and § = 1/4.
Fixed noise A = 103 and varying d. Dots represent simulations, while the solid line is obtained by
integration of the ODEs given by Eqgs. (19). The data are compatible with the claim that as d — oo
the curve converges to zero population risk. Right: Asymptotic population risk R, from simulations
(dots) as a function of d for different noise levels under the scaling x = 0 and 6 = 1/4. The fitted
straight lines have slopes —0.201, —0.295, —0.201, for A = 10~%,1073, 102, respectively.

the dynamics long enough the student hidden neurons start to specialize, each of them learning a
different sub-function so that the two-layer network can learn the non-trivial teacher.

Let us make two comments on this phenomenon: (i) while the "linear" learning in the unspecialized
regime may remind the reader of the linear learning in the lazy regime [25, 26] of neural nets, the two
phenomena are completely different. In lazy training, the learning is linear because weights change
very little, so that the effective network is a linear approximation of the initial one. Here, instead, the
weights are changing considerably, but each hidden neuron learns essentially the same function. (ii)
If the ODEs are initialized with weights uncorrelated with the teacher, then the unspecialized regime
is a fixed point of the ODEs: the student thus never specializes, at any time. Strikingly, such condition
arises as well in the analysis of mean-field equations (see e.g. Theorem 2 in [27] that discusses
the need to have spread initial conditions with a non-zero overlap with the teacher) to guarantee
global convergence. This raises the question about the precise dependence of the learning on the
initialization condition in the high-dimensional regime, where a random start gets a vanishing (1/+/d)
overlap. This is a challenging problem that only recently has been studied (though in a simpler
setting) in [28-30] who showed it yields an additional log(d) time-dependence. Generalizing these
results for high-dimensional two-layer nets is an open question which we leave for future work.

3 Discussion, special cases, and simulations

To illustrate the phase diagram of Fig. 1, we present now several special cases for which we can
perform simulations or numerically solve the set of ODEs. Henceforth, we take o (z) =erf(z/v/2),



for which the expectations of the ODEs and of the population risk, Eq. (10), can be calculated
analytically [5]. The explicit expressions are presented in Appendix C. Teacher weights are such that
prs = 0rs. The initial student weights are chosen such that the dimension d can be varied without
changing the initial conditions Q°, M, P and consequently the initial population risk Ro. A
detailed discussion can be found in Appendix D.

Saad & Solla scaling x = 6 = 0 — We start by recalling the well-known setting characterized by
the point x = § = 0. The convergence of the stochastic process for fixed learning rate and hidden
layer width to Eqgs. (18) was first obtained heuristically by [5]. In Fig. 2 (left) we recall this classical
result by plotting the population risk dynamics for different noise levels. Dots represent simulations,
while solid lines are obtained by integration of the ODEs, Egs. (18).

Learning is characterized by two phases after the initial decay. The first is the unspecialized plateau
where all the teacher-student overlaps are approximately the same: m, ~ m. Waiting long enough,
the dynamics reaches the specialization phase, where the student neurons start to specialize, i.e., their
overlaps with one of the teacher neurons increase and consequently the population risk decreases.
This specialization is discussed extensively in [5]. If A = 0, the population risk goes asymptotically
to zero. Instead, if A # 0, the specialization phase presents a second plateau related to the noise A.

The asymptotic population risk R, related to the 2nd plateau is proportional to YA [6] in the
high-dimensional limit d — oo with p finite. As mentioned in the previous section, the expectation
over £; &£ in Eq. (18a) prevents one from obtaining zero population risk for a noisy teacher.

Perfect learning for « = 0 — In this section we study the line x =0 with § > 0 of Fig. 1, for
which Egs. (19) with k = 0 hold. We show that perfect learning can be asymptotically achieved in
the realizable setting for any finite hidden layer width p = pg. Keeping ¢ and A fixed, we have done
simulations increasing the input layer dimension d. In Fig. 3 (left) we set § = 1/2, A = 1073 and
vary the input layer dimension. The bigger d is, the closer we are to the ODE-derived noiseless result.

Gathering the asymptotic population risk from simulations for varying d and A we perform a finite-
size analysis to study the dependence of R, with d. This shows that the noise term goes to zero
under this setting. In Fig. 3 (right) we plot R, versus d from simulations (dots) for different noise
levels. We fit lines under the log-log scale showing that R, o< d~%, as expected. Fig. 4 draws the
same conclusion for 6 = 1/4.

As already stated, the interplay between the exponents directly affects the time scale. We end this
subsection by graphically illustrating this fact through simulations. Setting the noise to A = 1073
we compare the cases 6 =0, 1/4,3/8,1/2 in Fig. 2 (right). All simulations are rendered on the scale
dtop = 1/d to illustrate the trade-off between asymptotic performance and training time.

Bad learning for « = 0 — We now quickly discuss the uncommon case of -y growing with d within
the orange region. In Fig. 5 (left) we compare simulations varying d with the solution of the ODEs
given by Egs. (20). Both lead to poor results compared to the green & blue regions. Moreover, this
regime present strong finite-size effects, making it harder to observe the asymptotic ODEs at small
sizes. However, the trend as d increases is very clear from the simulations. As discussed in Section 2,
the more the learning term is attenuated on the ODEs, the worse they describe the dynamics.

Large hidden layer: « > 0 — Finishing our voyage through Fig. 1 with examples, we briefly
discuss the case where both input and hidden layer widths are large. Although Theorem 2.1 provides
non-asymptotic guarantees for x > 0, the number of coupled ODEs grows quadratically with p,
making the task of solving them rather challenging. Thus, we present simulations that illustrate the
regions of Fig. 1. Fixing d = 100 we show in Fig. 5 (right) learning curves for different values of x
and d. The colors are chosen to match their respective regions in the phase diagram.

Due to the relatively small sizes used in Fig. 5 (right), the green dots seem to decrease towards perfect
learning, even when § < 0, provided that « is large enough, as is predicted by the phase diagram in
Fig. 1. Moreover, since d is not large enough, when the parameters are within the orange region the
finite-size effects actually dominates, similarly to Fig. 5. The learning contribution still plays a role
and the asymptotic population risk is similar to the case x =& =0. Within the red region, which is out
of scope of our theory, the simulation gets stuck on a plateau with larger population risk.
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Figure 5: Left: Population risk dynamics for k = 0 and § = —3/8. Fixed noise A = 102 and
varying d on simulations. Dots represent simulations, while the solid line is obtained by integration
of the ODEs given by Egs. (20). Right: Simulations across different regions of Fig. 1. Networks
parameters d = 100, p = d*, v = d=9, k =4, prs = 0rs. Noise: A = 1073, Activation function:
o(z) = erf(z/v/2). Data distribution: P(x) = N (z|0, 1). Time scaling: ¢ =  + ¢ for green and
blue and ¢ = 2(k + ) for orange. The colors match Fig. 1.

4 Conclusion

Building up on classical statistical physics approaches and extending them to a broad range of
learning rate, time scales, and hidden layer width, we rendered a sharp characterisation of the
performance of SGD for two-layer neural networks in high-dimensions. Our phase diagram describes
the possible learning scenarios, characterizing learning regimes which had not been addressed by
previous classical works using ODEs. Crucially, our key conclusions do not rely on an explicit
solution, as our theory allows the characterization of the learning dynamics without solving the
system of ODEs. The introduction of scaling factors is non-trivial and has deep implications. Our
generalized description enlightens the trade-off between learning rate and hidden layer width, which
has also been crucial in the mean-field theories.
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