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Abstract
In this manuscript we consider denoising of large rectangular matrices: given a noisy observation of
a signal matrix, what is the best way of recovering the signal matrix itself? For Gaussian noise and
rotationally-invariant signal priors, we completely characterize the optimal denoising estimator and
its performance in the high-dimensional limit, in which the size of the signal matrix goes to infinity
with fixed aspects ratio, and under the Bayes optimal setting, that is when the statistician knows
how the signal and the observations were generated. Our results generalise previous works that
considered only symmetric matrices to the more general case of non-symmetric and rectangular
ones. We explore analytically and numerically a particular choice of factorized signal prior that
models cross-covariance matrices and the matrix factorization problem. As a byproduct of our
analysis, we provide an explicit asymptotic evaluation of the rectangular Harish-Chandra-Itzykson-
Zuber integral in a special case.
Keywords: Matrix denoising, Bayes-optimality, Rotationally invariant estimator, High dimen-
sional statistics, Random matrix theory, Harish-Chandra-Itzykson-Zuber intergral, Matrix factor-
ization.

1. Introduction

In this paper we consider the problem of denoising large rectangular matrices, i.e. the problem of
reconstructing a matrix S∗ ∈ Rm×p from a noisy observation Y = Pnoise(S

∗) ∈ Rm×p. Our aim
is to characterize theoretically this problem in the Bayes optimal setting, in which the statistician
knows the details of the prior distribution of the signal Psignal and the noisy channel Pnoise. In
particular, we will consider the case of additive Gaussian noise Pnoise(S

∗) = S∗ +
√
∆Z where

∆ > 0 controls the strength of the noise, and Z ∈ Rm×p is a matrix of i.i.d. Gaussian random
variables. On the side of the signal we will consider rotationally invariant priors, i.e. those where
Psignal(S

∗) = Psignal(US∗V ) for any pair of rotation matrices U ∈ O(m),V ∈ O(p).
We are interested in particular in the case of factorized priors, i.e. S∗ = FX with F ∈ Rm×r

and X ∈ Rr×p, and both X and F having i.i.d. Gaussian entries. From the point of view of
applications, this is equivalent to the problem of denoising cross-correlation matrices, which is, for
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example, extremely relevant in modern financial portfolio theory where it allows to compute better
performing investment portfolios by reducing overfitting Bun et al. (2017).

From a theoretical point of view, the denoising problem is a simpler variant of the matrix fac-
torization problem, where one would like to reconstruct the two factors F and X from the noisy
observation Y . Matrix factorization is ubiquitous in computer science, modeling many applica-
tions, from sparse PCA Johnstone and Lu (2009) to dictionary learning Mairal et al. (2009). While
well studied in the low-rank regime r = Θ(1) and min(p,m) → ∞, where optimal estimators and
guarantees on their performances are available Lesieur et al. (2017); Miolane (2018), much less is
known in the extensive-rank regime, where r is of the same order as m and p.

This setting was studied, for generic priors on elements of F and X , in Kabashima et al. (2016),
where an analysis of the information-theoretic thresholds and the performance of approximate mes-
sage passing algorithms was attempted. The authors proposed a solution to the matrix factorisation
problem, which would also imply a solution to matrix denoising. Their result is however not exact
in the considered limit as a result of a Gaussianity assumption which proved wrong. A more recent
series of works proposed alternative analysis techniques, ranging from spectral characterizations
Schmidt (2018); Barbier and Macris (2021) to high-temperature expansions Maillard et al. (2021).
In all these cases, the analytical results obtained for rectangular matrices are not explicit and of
limited practical applicability even in the very simple case of Gaussian priors on the factors and
additive Gaussian noise. Studying the denoising problem in the Gaussian regime is thus a first step
towards a better understanding of matrix factorization in this challenging regime.

Our main results concern rotationally invariant priors, i.e. signal matrices whose information
lies exclusively in the distribution of their singular values, corrupted by additive Gaussian noise.
For this large class of priors, we compute the optimal denoising estimator (in the sense of the mean
square error on the matrix S) and its performance in the Bayes optimal setting, and we discuss in
detail the case of factorized priors where both the factors F and X have i.i.d. Gaussian compo-
nents. As a byproduct of our analysis, we also provide an explicit formula for the high-dimensional
asymptotics of the rectangular HCIZ integral Harish-Chandra (1957); Itzykson and Zuber (1980);
Guionnet and Huang (2021) in a special case. We remark that our focus is on the theoretical aspect
of the denoising problem, as we are motivated by the technical challenge of solving in the future
the extensive rank matrix factorization problem. For this reason, we leave for future work the ex-
ploration of practical applications of the results presented here, for example along the lines of (Bun
et al., 2017, Chapter 7 and 8).

The code for the numerical simulations and for reproducing the figures is available here: https:
//github.com/SPOC-group/rectangular_RIE

1.1. Definition of the model

In this paper we focus our attention to rotationally-invariant priors, i.e. Psignal(S) = Psignal(USV )
for any pair of rotation matrices U ∈ O(m),V ∈ O(p), where O(m) is the orthogonal group in m
dimensions, and additive white Gaussian noise Z being a matrix of i.i.d. Gaussian random variables
with zero mean and variance1 (mp)−1/2. The rotational invariance of the prior, together with the

1. We decided to use a symmetric normalization, that is to scale all quantities by
√
mp instead of using m or p, high-

lighting the symmetry under transposition of the problem. In matrix factorization applications, m would typically
denote the number of samples, p the dimensionality of the samples, and a more common normalization convention
would require to normalize all quantities using p. Our results can be adapted accordingly, as this normalization
change amounts to an overall rescaling by

√
R1.
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rotational invariance of Gaussian noise, implies that the observation Y will have a rotationally-
invariant distribution, and that all relevant observables of the problem will depend only on the
singular value distributions of S,Z and Y . We require that the joint probability density function
of the singular values of S is permutation-invariant in order for the empirical spectral density to be
uniquely defined.

In order for the noise-to-signal ratio (NSR)
√
∆ to be comparable over different choices of

priors, we fix the ratio between the averaged L2 norm of the signal matrix S and that of the noise
matrix Z to 1. Explicitly, one requires that

Eprior[||S||22] = Enoise[||Z||22] =
√
mp , (1)

where the L2 norm is defined as ||S||22 = Tr(SST ). We will consider the high-dimensional regime,
i.e. the limit m, p → ∞ with fixed ratio R1 ≡ p/m. Without loss of generality, we will consider
p ≥ m, i.e. R1 ≥ 1. We require that in this limit the singular values of the signal are of order
O(1), and that the corresponding empirical singular value density of the prior converges weakly to
a deterministic probability density function σS , for all ∆ ≥ 0. This is sufficient to guarantee that
the empirical singular value density of Y converges weakly, in the same limit, to a deterministic
probability density function σY Benaych-Georges (2009). We additionally require that

−
∫
dx dy σY (x)σY (y) log |x− y|, −

∫
dx σY (x) log |x| and

∫
dx σY (x)x2 (2)

are finite (−
∫

indicated that the integrals are properly regularized, see Appendix A). As a particular
choice of rotationally-invariant prior, we focus on on factorized signals, i.e.

S∗ =
FX√
r 4
√
mp

, (3)

where F ∈ Rm×r, X ∈ Rr×p are matrices with i.i.d. standard Gaussian entries. In the high
dimensional limit, we will consider the extensive-rank regime, where R2 ≡ r/m is kept constant.
We will also study the low-rank limit of this prior, i.e. the limit R2 → 0, or equivalently r ≪
m. This form of the prior models both Gaussian-factors matrix factorization and cross-covariance
matrices of two datasets of r samples in dimensions respectively m and p.

1.2. Main Results

Our main result is the analytical characterization of the optimal denoising estimator and its predicted
performance in the high-dimensional Bayes-optimal setting, i.e. when the statistician knows the
details of the prior distribution of the signal and the noisy channel, for rotationally-invariant priors
and additive Gaussian noise. The optimal estimator here is defined as the function Y 7→ Ŝ(Y ) of
the observation that minimizes the average mean-square error (MSE) with the ground truth,

Ŝ(·) = argmin
denoisers f

1
√
mp

ES∗,Y ||S∗ − f(Y )||22 , (4)

where ES∗,Y is the joint average over the ground truth and the noisy observation. Similarly we
define the minimal mean-square error (MMSE) as the averaged MSE of the optimal estimator:

MMSE = ES∗,Y

[
MSE

(
S∗, Ŝ(Y )

)]
. (5)
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In order to state our results, let us denote by σ̂Y the symmetrized asymptotic singular value
density of a Y -distributed matrix, i.e.

σ̂Y (x) = lim
m→∞

1

m

m∑
i=1

[
1

2
δ(x− yi) +

1

2
δ(x+ yi)

]
, (6)

where yi are the singular values of a Y -distributed matrix of size m × R1m. Let us also denote
by Y = UΛV the singular value decomposition (SVD) of the actual instance of the observation
Y , where U ∈ Rm×m is orthogonal by rows, V ∈ Rm×p is orthogonal by columns and Λ =
diag(λ1, . . . , λm) is the diagonal matrix of singular values2 of Y .

Result 1 (Optimal estimator) The optimal estimator is rotationally-invariant, i.e. diagonal
in the basis of singular vectors of the observation Y , and it is given by

Ŝ(Y ) = U diag(ξ(λ1), . . . , ξ(λm))V , (7)

where the spectral denoising function ξ is given, in the limit m, p → ∞ with R1 = p/m fixed,
by

ξ(λ) = λ− 2∆√
R1

[
R1 − 1

2λ
+−
∫
dζ

σ̂Y (ζ)

λ− ζ

]
, (8)

and the integral is intended as a Cauchy principal value integral.

We obtain Result 1 in Section 2 by computing the average of the posterior distribution P (S | Y ),
i.e. the probability that a candidate signal S was used to generate the observation Y ,

P (S | Y ) =
1

ZY
Psignal(S)∆

−mp
2 exp

[
−
√
mp

2∆
Tr
(
(Y − S)(Y − S)T

)]
, (9)

where ZY is the partition function, i.e. the correct normalization factor

ZY =

∫
dS Psignal(S)∆

−mp
2 exp

[
−
√
mp

2∆
Tr
(
(Y − S)(Y − S)T

)]
. (10)

Indeed, one can prove that the posterior average is always the optimal estimator with respect to the
MSE metric Cover (1999).

Result 2 (Analytical MMSE) In the limit m, p → ∞ with R1 = p/m fixed, the MMSE is
given by

MMSE = ∆− 2∆2 ∂

∂∆

[
1

R1
−
∫
dλ dζ σ̂Y (λ)σ̂Y (ζ) log |λ− ζ|

+
R1 − 1

R1
−
∫
dλ σ̂Y (λ) log |λ|

]
,

(11)

2. By concentration of spectral densities of large matrices, the empirical spectral density of an actual instance of Y
converges to the deterministic asymptotic spectral density σ̂Y in the high-dimensional limit.
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where the dashed integral signs denote the symmetric regularization of the integrals (á la
Cauchy principal value) around the singularities of the logarithms — see Appendix A.

We obtain Result 2 in Section 2 by using the I-MMSE theorem Guo et al. (2005), which links
the performance of optimal estimators in problems with Gaussian noise with the derivative of the
partition function ZY with respect to the SNR.

Notice that to implement numerically the denoising function Eq. (7) and the MMSE Eq. (11)
one needs to compute the symmetrized asymptotic singular value density of the observation Y , σ̂Y .
We will provide details on how to compute it for generic rotationally-invariant priors in Section 3.1
and in the special case of the Gaussian factorized prior in Section 3.3.

On a more technical note, the computation of the partition function Eq. (10), from which Re-
sult 1 and Result 2 are derived, involves the computation of the asymptotics of a rectangular Harish-
Chandra-Itzykson-Zuber (HCIZ) integral, defined as

Im(A,B; τ) =

∫
µm(dU)µp(dV ) exp

[
τmTr

(
AV BTU

)]
(12)

for any pair of rectangular matrices A,B ∈ Rm×p and τ > 0, where µm(·) is the uniform measure
over them-dimensional orthogonal group O(m). Notice that the HCIZ integral depends only on the
singular values of its arguments, as the singular vectors can always be reabsorbed in the integration
over orthogonal groups.

We will justify in detail why the HCIZ integral appears in the computation of Eq. (10) in Sec-
tion 2. The idea is that, after a change of variables to the SVD decomposition of S in Eq. (10), the
coupling term Tr(SY T ) will be the only term depending on the singular vectors of S. This term,
together with integration over the singular vectors of S, will give rise to a rectangular HCIZ integral
Im(S,Y ;

√
R1/∆). The integration over the spectrum of S will be performed explicitly thanks to

a combination of a concentration argument and Nishimori identities Nishimori (1980), so that the
actual HCIZ integral we will be interested in is Im(S∗,Y ;

√
R1/∆).

In general, the asymptotics of the HCIZ integral is difficult to characterize in closed form, and
it is linked to the solution of a 1d hydrodynamical problem Matytsin (1994); Guionnet and Huang
(2021). In the special case in which the two matrices over which the HCIZ integral is evaluated differ
only by a matrix of i.i.d. Gaussian variables — which happens to be the case in our computation, as
Y −S∗ =

√
∆Z — this non-trivial problem simplifies, allowing for a closed form computation of

the asymptotics of the HCIZ integral.

Result 3 (Asymptotics of the rectangular HCIZ integral) Under the hypotheses of (Guion-
net and Huang, 2021, Theorem 1.1), and in the case in which B = A + κZ with Z a matrix
of i.i.d. Gaussian variables with zero mean and variance m−1, one has

IR1 [σ̂A, σ̂B; τ ] = lim
m→∞
p=R1m

2

m2
log Im (A,B; τ)

= C(R1, κ
√
τ)−R1 log τ + τ

∫
dλ σ̂A(λ)λ2 + τ

∫
dλ σ̂B(λ)λ2

− 2(R1 − 1)−
∫
dλ σ̂B(λ) log |λ| − 2−

∫
dλ dζ σ̂B(λ)σ̂B(ζ) log |λ− ζ|,

(13)

5



TROIANI ERBA KRZAKALA MAILLARD ZDEBOROVÁ

where σ̂A,B is the symmetrized asymptotic singular value density of, respectively, A or B
and C(R1, κ

√
τ) is an undetermined constant depending only on R1 and on the product κ

√
τ .

Again, dashed integrals need to be regularized as detailed in Appendix A.

We justify Result 3 in Section 4 by specifying the general asymptotic form given in Guionnet
and Huang (2021) to the B = A + κZ case. This result generalizes Result 3.2 of Maillard et al.
(2021) for the case of symmetric matrices to the case of rectangular ones.

Finally, let us note that we stated the main findings of the paper as Results instead of Theorems to
highlight that we shall not provide a complete rigorous justification for each step of the computation,
and leave some technical details to the reader. Nonetheless, our methods are not heuristics and we
believe that our derivation could be made entirely rigorous through a more careful control.

1.3. Numerical results and comparisons

Before presenting the technical details that justify Result 1, Result 2 and Result 3, we provide
numerical simulations in the case of the Gaussian factorized prior Eq. (3). We have two aims: (i)
corroborating our analytical result by showing that on actual instances of the denoising problem
the performance of our estimator Eq. (7) (empirical MMSE) equals that predicted by the MMSE
formula Eq. (11) (analytical MMSE); (ii) studying the phenomenology of the MMSE as a function
of the noise level ∆, the aspect-ratio R1 and the rank-related parameter R2.

To implement numerically the denoising function Eq. (7) and the MMSE Eq. (11) one needs
to compute the symmetrized singular value density of the observation Y , σ̂Y . We will provide
details on how to compute it in the special case of the Gaussian factorized prior in Section 3.3.
Given σ̂Y , one can compute (i) the empirical MMSE by considering a random instance of the
observation Y = S∗ +

√
∆Z, by denoising it with the optimal estimator Ŝ(·), and by computing

the MSE between S∗ and the cleaned matrix Ŝ(Y ); (ii) the analytical MMSE Eq. (11) by numerical
integration of σ̂Y . Details on numerical integration are given in Appendix B. At fixed R1, we
distinguish two regimes for R2: over-complete R2 > 1 and under-complete R2 < 1.

In the under-complete regime R2 < 1, the rank of the signal matrix is non-maximal. Fig. 1
shows a strong dependence of the MMSE on R1 for R2 < 1, with better MMSE for larger R1. In
particular, we observe that the MMSE at a given value of ∆ decreases as R1 grows larger, and the
cross-over between low and high denoising error shifts to larger values of ∆ (lower SNR). This is in
accordance with intuition: larger R1 correspond to matrices with higher aspect-ratio, and thus with
a larger number of components (recall that Y is an m × R1m matrix), while the (low) rank R2m
— here measuring the inverse degree of correlations between components of Y — remains fixed.

In the over-complete regime R2 > 1, and in particular for R2 → ∞, the prior trivializes: each
of the components of Y is a sum of a large enough number of independent variables for the central
limit theorem to hold. Thus, S∗ becomes a matrix with i.i.d. coordinates, and our problem factorizes
into simpler scalar denoising problems on each of the matrix components. Fig. 1 (right) portrays
the over-complete regime for R2 = 2. We see that the dependence on R1 is extremely weak — see
inset in Fig. 1 (left) — signaling a very fast convergence towards scalar denoising. In the R2 → ∞
limit — see Fig. 2 — the MMSE converges to that of scalar denoising, MMSEscalar = ∆/(1 +∆),
independently on R1.

In the extreme low-rank limit R2 → 0, we expect to recover the results of low-rank matrix
denoising Baik et al. (2005); Lesieur et al. (2017) as already shown for the symmetric-matrix de-
noising in Maillard et al. (2021). In particular, we expect to recover the MMSE phase transition at
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Figure 1: Overview of the behaviour of the MMSE for the Gaussian factorized priors. In each plot,
colored lines denote the analytical MMSE Eq. (11), colored dots the empirical MMSE
estimated on single instances at size m = 2000 while the black line shows the MMSE
of scalar denoising. In all panels we observe a perfect agreement between theory and
simulations. The left panel shows the dependence of the MMSE on R1 in the under-
complete case R2 < 1: we observe that the MMSE greatly improves as R1 grows. The
right shows the same in the over-complete case: the dependence on R1 in this regime is
very small, and it is highlighted in the inset where the y axis has been rescaled using the
R2 → ∞ limit of the MMSE, that of scalar denoising.

Figure 2: Limiting behaviour of the MMSE for
R2 → ∞. At fixed R1, the plot show
convergence to the scalar denoising
limit as R2 → ∞. Colored lines de-
note the analytical MMSE Eq. (11),
colored dots the empirical MMSE es-
timated on single instances at size
m = 2000 and black lines denote
the scalar denoising MMSEscalar =
∆/(∆ + 1). 10−3 10−2 10−1 100 101 102
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Scalar

∆c =
√
R1/R2. Fig. 3 (left) shows convergence towards the phase transition for a fixed value of

R1, while Fig. 3 (right) confirms that the dependence of ∆c on R1 is the expected one. We give
details on how to compute the theoretical MMSE in the low-rank limit in Appendix C.

1.4. Related works

Spectral denoisers for covariance matrices have been used extensively in finance, as in Ledoit and
Wolf (2012); Bun et al. (2016, 2017). Very recently Benaych-Georges et al. (2021) proposed an
algorithm to denoise cross correlation matrices that is in spirit similar to the one we propose, with
a crucial difference. In our setting, the signal matrix S∗ = FX is corrupted by a noisy channel,
and the objective is to get rid of the noise. In their setting, they are given two correlated datasets
F and X , and the objective is to estimate their theoretical cross-covariance, which is a non-trivial
task when the number of observations r is comparable with the dimensions m, p. Qualitatively, in
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Figure 3: Limiting behaviour of the MMSE for R2 → 0. In each plot, colored lines denote the ana-
lytical MMSE Eq. (11), colored dots the empirical MMSE estimated on single instances
at size m = 2000 and black lines denote the low-rank limiting behaviour. We rescaled
the horizontal axis to better highlight convergence to the limit. The left panel shows, at
fixed R1, convergence to the low-rank limit as R2 → 0. The right shows, at fixed small
R2, the dependence on R1 of the low-rank behaviour. Vertical lines highlight the critical
value R2∆c =

√
R1 at which the MMSE changes behaviour: above this threshold, no

denoising is possible at low-rank.

their setting the noise is a finite-size effect due to a finite sample-to-dimension ratio. The algorithm
of Benaych-Georges et al. (2021) is also a rotationally invariant estimator, i.e. one where every
eigenvalue is rescaled by a function, though their function is different from our Eq. 8.

Our proof strategy is also different from the one used in the works cited above: we derive our
estimator from a free entropy approach rooted in statistical physics, which allows us to predict
a priori the MMSE between the signal and the denoised sample. This approach was presented
for extensive-rank matrix denoising in Schmidt (2018); Maillard et al. (2021); Barbier and Macris
(2021). In Maillard et al. (2021) the denoising problem was solved for square symmetric priors,
obtaining the already known denoiser of Bun et al. (2017) and predicting its theoretical MMSE.
The authors there study denoising in the context of a high-temperature expansion approach to ma-
trix factorization. We extend their analysis to non-symmetric rectangular priors, and we find the
symmetric-case denoiser as a special case of our optimal denoiser. In Barbier and Macris (2021),
the computation of the denoising free entropy is presented as a stepping stone towards the compu-
tation of minimum mean-squared error of extensive rank matrix factorization aiming to go beyond
the rotationally invariant priors on S. The mathematical challenge in Barbier and Macris (2021) is
linked to finding closed forms for the corresponding HCIZ integral in the limit of high dimension.
The main point of their work is a closed form expression that presents a conjecture for the free
entropy for matrix denoising and factorization in terms of some spectral quantities and the HCIZ
integral. Evaluating this formula would require to compute HCIZ in a generic setting, which as
far as we know is for the moment out of reach. If the conjecture of Barbier and Macris (2021) is
correct then our results can be seen as an explicit evaluation of their formula for the special case
of rotationally invariant priors on S. Note, however, that even checking that indeed for rotationally
invariant priors the conjecture of Barbier and Macris (2021) recovers our results is so far open.

The asymptotic behaviour of HCIZ integrals — symmetric and rectangular — has been studied
extensively in the literature, both in the context of free probability (Guionnet and Zeitouni (2002),
Guionnet and Huang (2021)) and by the statistical physics community (Matytsin (1994); Zinn-Justin
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and Zuber (2003); Collins et al. (2020)), yet explicit forms in special cases were considered only
sporadically Bun et al. (2014). To the best of our knowledge, the explicit form given in Eq. (13) has
not been presented elsewhere.

2. Analytical derivation of the optimal estimator and its performance

As we briefly discussed in the introduction, both the optimal estimator and its MSE are related to
properties of the posterior distribution Eq. (9) and its partition function Eq. (10). Moreover, both
can be derived from the knowledge of the free entropy ΦY ≡ log(ZY )/(mp). Indeed, one can
check that the posterior average, i.e. the optimal estimator, is given by

Ŝ(Y )iµ =

∫
dS SiµP (S | Y ) = Y iµ +

∆
√
mp

1

ZY

∂ZY

∂Y iµ
= Y iµ +∆

√
mp

∂ΦY

∂Y iµ
, (14)

by computing explicitly the derivative ∂Y ZY starting from Eq. (10). For the MMSE Eq. (5), by the
I-MMSE theorem Guo et al. (2005), we have

MMSE = ∆+ 2∆2∂∆EY [ΦY ] . (15)

A sketch of the derivation of Eq. (15) with our specific normalizations and notations is given in
Appendix D. The main focus of the section will be to compute the free entropy ΦY in the high-
dimensional limit.

2.1. Asymptotics of the free entropy ΦY

To compute the free entropy, we start by performing a change of variable from S to its singular
value decomposition S = UTV in Eq. (10), with U ∈ O(m), V ∈ O(p) and diagonal T ∈ Rm×p

+

(recall that without loss of generality we took m ≤ p). We will denote the singular values as
T ll = Tl for l = 1, . . . ,m. As usual — see Anderson et al. (2010) for example — the Jacobian
of the change of variable involves the Vandermonde determinant of the squared singular values T 2,
∆(T 2) =

∏m
i<j(T

2
i − T 2

j ), as well as an additional term involving the product of singular values3

ZY = ∆−mp
2

∫
µm(dU)µp(dV ) dT Psignal(T )|∆(T 2)|

m∏
l=1

T p−m
l

× exp

[
−
√
mp

2∆

(
m∑
l=1

T 2
l +Tr(Y Y T )

)]
exp

[√
mp

∆
Tr
(
UTV Y T

)]

= ∆−mp
2 exp

[
−
√
mp

2∆
Tr
(
Y Y T

)] ∫
dT Psignal(T )|∆(T 2)|

m∏
l=1

T
(R1−1)m
l

× exp

[
−
√
mp

2∆

m∑
l=1

T 2
l

]
Im

(
T ,Y ;

√
R1

∆

)
.

(16)

where µm(·) is the uniform measure on the orthogonal group in dimension m and where we rec-
ognized that the integral over rotation matrices reduces to the rectangular HCIZ integral defined

3. The change of variable involves also a constant term depending only on the ratio p/m = R1 that will not contribute
to the computation of any relevant observable. For this reason we can safely avoid computing it explicitly, and the
resulting free entropy will be computed up to R1-dependent terms.

9
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in Eq. (12). Notice that we used the rotational invariance of the prior to argue that Psignal(S) =
Psignal(T ). In the non-rotational invariant case Psignal(S) would also depend on the singular vectors
of S.

To move forward, we notice that all quantities appearing in the integral depend on the singular
values matrix T through its symmetrized empirical singular value density σ̂(T ), and that they have
finite asymptotic limit in the exponential scale exp(m2)4. We then change integration variables
from T to its ”m-dimensional” empirical density σ̂(T ) (resulting in an integral on the space of
probability densities): in the large m limit the Jacobian of this change introduces only a term in
the exponential scale exp(Θ(m)) – related to the entropy of the probability distribution – which is
thus subleading with respect to the original integrand and that we therefore neglect5. Finally, we
use Laplace’s method to observe that the integral concentrates in the scale exp(m2) onto the value
of the integrand at a deterministic density ρ∗; Nishimori identities Nishimori (1980) guarantee then
that ρ∗ = σ̂S∗ (see also Barbier and Macris (2021); Maillard et al. (2021) for more discussions of
this phenomenon). Thus, by taking the leading asymptotic order of all terms and disregarding all
finite-size corrections and all constant terms depending only on R1

ΦY = −1

2
log∆ +

1

mp
logPsignal[σ̂S∗ ]− 1

2∆
√
R1

Var[σ̂S∗ ] +
1

R1
Σ [σ̂S∗ ]

+
R1 − 1

R1
Λ [σ̂S∗ ]− 1

2∆
√
R1

Var[σ̂(Y )] +
1

2R1
IR1

[
σ̂S∗ , σ̂(Y );

√
R1

∆

] (17)

where Var[σ] =
∫
dxσ(x)x2, Σ[σ] = −

∫
dx dy σ(x)σ(y) log |x − y| and Λ[σ] = −

∫
dxσ(x) log |x|,

and σ̂S∗ is the asymptotic symmetrized singular value densities of S∗. σ̂(Y ) instead is the sym-
metrized empirical density of singular values of the fixed instance of the observation Y . All dashed
integrals are regularized as detailed in Appendix A.

In Eq. (17) we took the high-dimensional limit of the prior term (mp)−1 logPsignal(T ) in a
rather uncontrolled way. Treating the limit rigorously is delicate, see for example the discussions
in (Barbier and Macris, 2021, Section II.C), but brings no surprises for non-pathological priors —
for example, the factorized priors in the symmetric version of our problem Maillard et al. (2021).
As mentioned at the start of the section, all quantities we are interested in depend on derivatives of
the free entropy with respect to ∆ or to Y , and the prior term brings no contribution at all in these
cases. For this reason, we do not treat it in detail.

We will show in Section 4 that at leading order

IR1

[
σ̂S∗ , σ̂(Y );

√
R1

∆

]
= CR1 +R1 log∆ +

√
R1

∆
Var[σ̂S∗ ] +

√
R1

∆
Var[σ̂(Y )]

− 2(R1 − 1)Λ[σ̂(Y )]− 2Σ[σ̂(Y )]

(18)

4. For the HCIZ, see Section 4. For the Vandermonde and the product of singular values, we notice that each product
over i = 1, . . . ,m (which converts into a sum when exponentiating) contributes to a power m in the exponential
scale.

5. Such as assumption is classical in the theoretical physics literature when considering these integrals, while a careful
rigorous treatment of this point can be found e.g. in Ben Arous and Guionnet (1997) in a closely related setting.
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for some constant CR1 depending only on R1. The asymptotic free entropy thus equals

ΦY = const(R1) +
1

mp
logPsignal[σ̂S∗ ] +

1

R1
Σ [σ̂S∗ ] +

R1 − 1

R1
Λ [σ̂S∗ ]

− 1

R1
Σ [σ̂(Y )]− R1 − 1

R1
Λ[σ̂(Y )] ,

(19)

where const(R1) gathers all constants depending on R1 that we did not trat explicitly, namely the
constant in the HCIZ asymptotics and the constant in the intial SVD change of variable. Notice that
only the last two terms depend either on Y or on ∆ (through the spectral properties of Y ).

2.2. Explicit form of the MMSE and the optimal estimator

The MMSE can be computed directly by combining Eq. (15) with Eq. (19), obtaining

MMSE = ∆− 2∆2 ∂

∂∆
EY

[
1

R1
Σ[σ̂(Y )] +

R1 − 1

R1
Λ[σ̂(Y )]

]
. (20)

Thanks to the concentration of spectral densities in the high-dimensional limit, the average over Y
can be performed directly by substituting the empirical symmetrized singular value density σ̂(Y )
of the specific instance of the observation Y with the asymptotic singular value density σ̂Y of the
observation, which is a deterministic quantity: it depends only on the statistical properties of Y ,
and not on its specific value. Thus, we obtain Result 2.

To compute the explicit form of the optimal estimator, we start from Eq. (14) and notice that the
free entropy depends only on spectral properties of the actual instance of the observation Y . Thus,
the derivative of the free entropy w.r.t. one component of Y can be decomposed on the eigenvalues
of Y as follows

Ŝ(Y )iµ = Y iµ +∆
√
mp

∂ΦY

∂Y iµ
= Y iµ +∆

√
mp

m∑
l=1

∂ΦY

∂yl

∂yl
∂Y iµ

, (21)

where in the last passage we called {yi}mi=1 the singular values of Y .
To compute the derivative, we use a variant of the Hellman-Feynman theorem Cohen-Tannoudji

et al. (1977). The Hellman-Feynman theorem considers a symmetric matrix depending on a param-
eter, and relates the derivative of an eigenvalue of the matrix with respect to that parameter with
the derivative of the matrix itself. In Appendix E we show that the Hellman-Feynman theorem can
be adapted to the case of rectangular matrices and singular values, and in particular we show that
∂λy = uT · ∂λM · v, if M is a matrix, y one of its singular values, u and v the corresponding left
and right singular vectors, and all these quantities depend on a parameter λ.

To compute ∂yl/∂Y i0µ0 we need to perturb the original matrix Y as Y (λ)µi = Y iµ+λδii0δµµ0

so that (here ul and vl are the left and right singular values of Y corresponding to the l-th singular
vector)

∂yl
∂Y i0µ0

=
∂yl
∂λ

= (ul)T · ∂λY (λ) · vl =
m,p∑
i,µ=1

uliδii0δµµ0v
l
µ = uli0v

l
µ0
. (22)

11
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For clarity, uli is the i-th component of the left singular vector corresponding to the l-th singular
value, and similarly for vlµ. Thus

⟨Siµ⟩ = Y iµ +∆
√
mp

m∑
l=1

∂ΦY

∂yl
uliv

l
µ =

m∑
l=1

[
yl +∆

√
mp

∂ΦY

∂yl

]
uliv

l
µ =

m∑
l=1

ξ(yl)u
l
iv

l
µ , (23)

where we used that Y iµ =
∑m

l=1 ylu
l
iv

l
µ by definition of SVD and we introduced the spectral

denoising function ξ(y). This proves the first claim of Result 1, i.e. that the optimal denoising
estimator is diagonal in the bases of left and right singular vectors of the observation Y .

To obtain an explicit form for the spectral denoising function ξ, we need to compute ∂ΦY /∂yl.
For this, we consider the part of the free entropy depending on Y , call it ΨY , in the discrete setting
(all following equalities are intended at leading order for large m), i.e.

ΨY = −R1 − 1

R1

1

m

∑
l:yl ̸=0

log |yl| −
1

R1

1

m2

∑
l ̸=l′

log |yl − yl′ | , (24)

so that

√
mp

∂ΨY

∂yl
= −R1 − 1

yl
√
R1

− 2√
R1

1

m

∑
k

1

yl − yk
= − 1√

R1

R1 − 1

yl
− 2√

R1
−
∫
dx

σ̂(Y )(x)

yl − x
, (25)

and the spectral denoising function is finally given by

ξ(y) = y − 2∆√
R1

[
R1 − 1

2y
+−
∫
dζ

σ̂(Y )(ζ)

y − ζ

]
. (26)

We thus recover the second part of Result 1, i.e. the expression for the denoising function ξ, by
invoking once again concentration of spectral densities, so that σ̂(Y ) can be safely substituted by
its asymptotic deterministic counterpart σ̂Y in the high-dimensional limit.

3. Specific priors

In this section we provide all the ingredients needed to specialize Result 1 and Result 2 to specific
choices of rotationally-invariant priors. We then analyze in detail the case of the Gaussian factorized
matrix prior defined in Eq. (3).

3.1. General remarks

The two main ingredients needed to make our results explicit for a specific form of the prior are the
symmetrized singular value density of the observation σ̂Y and its Hilbert transform H[σ̂Y ](y) =
1
π
−
∫
dζ σ̂Y (ζ)/(y − ζ). Now we show how to compute them analytically.
The first ingredient needed is the so-called Stieltjes transform of the symmetrized singular value

density σ̂A(x), i.e.

gA(z) =

∫
dx
σ̂A(x)

z − x
for z ∈ C \ supp σ̂A , (27)

where supp σ̂A denotes the support σ̂A. Indeed, one can show that (see for example Potters and
Bouchaud (2020))

σ̂A(x) =
1

π
lim
ϵ→0+

ℑgA(x− iϵ) and −
∫
dx

σ̂A(x)

y − x
= lim

ϵ→0+
ℜgA(x− iϵ) (28)

12
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where the second equality follows from Kramers–Kronig relations (Jackson (1975)). Thus, from the
knowledge of gA one can recover both the symmetrized singular value density and the correspond-
ing Hilbert transform, obtaining all the ingredients needed to make the optimal estimator Eq. (7)
and the MMSE Eq. (11) explicit for a given prior. Notice that, while in the following we will focus
on cases in which gA can be computed analytically, our algorithm can be in principle applied to any
rotationally-invariant ensemble of random matrices A by sampling a large matrix and computing
its singular values to estimate gA as in Ledoit and Péché (2011).

Thus, the questions shifts to how to compute the Stieltjes transform of σ̂A, which in turn entails
two sub-problems: determining the Stieltjes transform of the prior gS∗(z), and then adding the
effect of the noise.

In order to compute the Stieltjes transform of the prior6, we consider the matrix AAT . Indeed, if
A has SVD A = UBV with diagonal B, then AAT = UBBTUT , from which we see that there
is a one-to-one correspondence between singular values of A and eigenvalues of AAT . Namely
the former are the positive square roots of the latter (notice that AAT is symmetric and positive
semi-definite)7. This eigenvalues-singular values relations has a consequence on the corresponding
Stieltjes transforms. Indeed

gA(z) =

∫
dx

σ̂A(x)

z − x
=

∫ ∞

0
dx

2z σA(x)

z2 − x2
=

∫ ∞

0
dλ

z σAAT (λ)

z2 − λ
= zgAAT (z2) (29)

where σAAT is the usual spectral density of AAT . Thus, Eq. (29) links the Stieltjes transform
of the singular value density of a rectangular matrix, which is in principle a very generic and non-
trivial quantity to compute, to the Stieltjes transform of the eigenvalue density of a symmetric square
matrix, for which many explicit analytical and numerical results already exist in the literature Potters
and Bouchaud (2020).

Notice that the procedure just described is of no help in order to add the noise: in fact, (A +
Z)(A + Z)T is a sum of products of matrices that are not independent (free) between each other.
Thus, usual free probability techniques based on the R or S transforms and free convolution of
symmetric matrices would fail to treat this problem.

In order to add the effect of the noise, one needs rectangular free probability techniques. We
do not enter into the details here: we refer the interested reader to Benaych-Georges (2009). The
underlying idea is not different from what happens in the more conventional symmetric case: there
exists a functional transform of the Stieltjes transform, the rectangular R transform, that linearizes
the sum of random matrices, i.e. R[gA] + R[gB] = R[gA+B] whenever the random matrices A
and B are mutually free. Thus, one can access the Stieltjes transform of the sum by computing two
direct R transforms, and one inverse R transform. The computation of the rectangular R transform
entails the numerical estimation of functional inverses as soon as one departs from the simplest
case of matrices with i.i.d. Gaussian entries. For this reason, in the special case of factorized priors
Eq. (3), we will not pursue this very general strategy. Instead, in Section 3.3 we will adapt the results
of Pennington and Worah (2017); Louart et al. (2018), which are easier to implement numerically.

As a final remark, notice that the Stieltjes transform scales under a rescaling of A as gcA(z) =
gA (z/c) /c. This will be useful to deal with the many constant terms appearing in our computations.

6. A = S∗ in the following as the reasoning holds for generic matrices A.
7. One needs to be careful here: we used that m ≤ p and A ∈ Rm×p, so that AAT has as much eigenvalues as

the number of singular values of A. In general, one needs to choose between AAT and ATA the one with lower
dimensionality in order not to add spurious null singular values

13
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3.2. Symmetric priors

The case of symmetric priors has already been treated originally in Bun et al. (2016), and more
recently in Maillard et al. (2021) with techniques akin to ours. In particular, with a symmetric
prior one can repeat our analysis using eigenvalue densities instead of singular value densities. For
positive semi-definite symmetric priors, it is immediate to see that our results reduce to those of
Bun et al. (2016); Maillard et al. (2021), as singular values coincide with eigenvalues in this case.
For generic symmetric priors, singular values are the absolute values of eigenvalues, and thus the
singular value density is simply given by the symmetrized spectral density.

3.3. The case of Gaussian factorized prior

The prior we would like to focus our attention on is given by the model of Gaussian extensive-rank
factorized signals defined in Eq. (3). As argued in Section 3.1, we need a way to compute the
Stieltjes transform of the observation Y for this specific prior in order to have access to σ̂Y — to
numerically compute the integrals in the MMSE formula Eq. (11) — and its Hilbert transform — to
be able to perform actual denoising on given instances of Y using Eq. (7).

To this end, we generalize the results given in Pennington and Worah (2017). There, the authors
study the spectrum of C = f(FX)f(FX)T , where f is a component-wise non-linearity and F ,X
matrices with i.i.d. Gaussian entries. They show that the Stieltjes transform of the spectral density
of C satisfies a degree-four algebraic equation depending only on the aspect-ratio R1, the rank
parameter R2 and two Gaussian moments of f , η =

∫
Dzf(z)2 and ζ =

[ ∫
Dzf ′(z)

]2, where Dz
denotes integration over a standard Gaussian random variable.

Recall that, thanks to Eq. (29), knowing the Stieltjes transform of the spectral density of C is
equivalent to knowing that of the singular value density of f(FX). Thus, we could compute gY by
choosing a noisy function f(x) = x + z, where z is a Gaussian random variable (actually, one for
each component of the matrix, all i.i.d.). In order to do that, we just need to show that the results of
Pennington and Worah (2017) extend to non-deterministic non-linearities — only the deterministic
case is considered therein. This happens to be the case: we provide the details of the extension
in Appendix F. The only effect of the noise of the non-linearity is a redefinition of the Gaussian
moments of f , and in particular ηnoisy = Ef

∫
Dzf(z)2 and ζnoisy = Ef

[∫
Dzf ′(z)

]2, where Ef

denotes averaging over the noise induced by f .
Thus, we can safely use the results from Pennington and Worah (2017) to compute the Stieltjes

transform of the singular value density of Y for Gaussian factorized priors. There is a non-trivial
mismatch between our normalizations and those of Pennington and Worah (2017): to fall-back
directly onto their results, we need to choose f(x) = 4

√
R1(x +

√
∆z), and set their parameters to

σx = σw = 1, ϕ = R2/R1 and ψ = R2.
With these choices, the Gaussian moments of f are given by ηnoisy = (1+∆)

√
R1 and ζnoisy =√

R1. The algebraic equation for gY (z) is given by (Pennington and Worah, 2017, SM, Eq. S42-
S43) and is reported in Appendix F.

4. Asymptotics of the HCIZ integral

In this section we consider the asymptotics of the rectangular HCIZ presented in Guionnet and
Huang (2021) and adapt them to the problem of denoising.
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We follow the notations of the paper. In particular, their parameters α and β in our case equal
α = R1 − 1 and β = 1. The HCIZ integral was defined in Eq. (12), and its asymptotic value is
defined as

Iα[σ̂A, σ̂B;λ] = lim
m→∞,p=(1+α)m

2

m2
log Im(A,B;λ) , (30)

where σ̂A,B are the asymptotic symmetrized singular value densities of A and B. Following
(Guionnet and Huang, 2021, Theorem 1.1), the asymptotic of the HCIZ integral with parameter
τ = 1 equals

Iα [σ̂A, σ̂B; τ = 1] = Cα +Var[σ̂A]− αΛ[σ̂A]− Σ[σ̂A] + Var[σ̂B]− αΛ[σ̂B]− Σ[σ̂B]

− inf
{ρ̂t}0≤t≤1

{∫ 1

0
ds

∫
dxρ̂s(x)

[
v2s(x) +

π2

3
ρ̂2s(x) +

α2

4x2

]}
(31)

where Var[σ] =
∫
dxσ(x)x2, Λ[σ] =

∫
dxσ(x) log |x|, Σ[σ] = −

∫
dxdy σ(x)σ(y) log |x − y|, Cα

is an unspecified constant depending only on α, the infimum is taken over continuous symmetric
density valued processes (ρ̂t(x))0≤t≤1 such that ρ̂0(x) = σ̂A and ρ̂1(x) = σ̂B , and where vt(x)
is a solution to the continuity equation ∂tρ̂t(x) + ∂x (ρ̂t(x)vt(x)) = 0. We refer the reader to the
original work for precise definitions and assumptions over all quantities.

The non-trivial part of Eq. (31), i.e. the optimization problem, is a mass transport problem
whose solution interpolates between the singular value densities of the two matrices A and B. This
transport problem can be understood as the evolution of a hydrodynamical system, and it can be
shown (Menon, 2017, Eq. 4.13) that the resulting density profile ρ̂t(x) (i.e. the process at which
the infimum is reached) is the symmetrized singular value density of the Dyson Brownian bridge
between A and B, i.e. the symmetrized singular value density of the matrix

X(t) = (1− t)A+ tB +
√
t(1− t)W (32)

where W is a matrix of i.i.d. Gaussian variables with mean zero and variance 1/m. It can be shown
(Guionnet and Huang, 2021, section 4) that the velocity field vt(x) satisfies

vt(x) = πH[ρ̂t](x) +
α

2x
+D(x, t) , H[ρ̂](x) =

1

π
−
∫
dy

ρ̂(y)

x− y
, (33)

where H[·] is the Hilbert transform, −
∫

the Cauchy principal value integral, and D(x, t) is a drift
term that ensures that the Brownian motion ends precisely at B when t = 1.

Our aim is to make Eq. (31) explicit in the specific case B −A = κW , where W is a matrix
of i.i.d. Gaussian variables with mean zero and variance 1/m and κ a positive constant, and for this
specific case to extend Eq. (31) to τ ̸= 1. One could in principle absorb τ in the definition of the
matrix A, or B, or both. We will see shortly that if one wants to make more the asymptotic form
of the HCIZ integral explicit in the special case of B = A + Gaussian noise — relevant for the
denoising problem — one needs to be careful. In particular, the correct way to absorb τ is to split
it evenly between A and B, by defining A′ =

√
τA and B′ =

√
τB. In this way, the fact that

the difference between B′ and A′ is a matrix with Gaussian i.i.d. entries — which, as we will see
shortly, is a key property — gets preserved. Thus, Iα[σ̂A, σ̂A+κW ; τ ] = Iα[σ̂A′ , σ̂A′+

√
τκW ; 1].

Now we notice that in the particular case of B′ = A′ +
√
τκW , Eq. (32) simplifies to a Dyson

Brownian motion starting at A

X(t) = (1− t)A′ + t(A′ +
√
τκW 1) +

√
t(1− t)W 2 = A′ +

√
tW , (34)
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where we summed the two independent (more precisely, free) realizations of the Gaussian matrix
W 1 and W 2 by substituting them with a third independent Gaussian matrix W and by summing
the original variances. We also used the fact that

√
τκ = 1 in the denoising problem; we will

discuss the
√
τκ ̸= 1 briefly at the end of this section. Moreover, no drift is needed to impose that

X(1) = B′, so that in Eq. (33) D(x, t) ≡ 0 and

vt(x) = πH[ρ̂t](x) +
α

2x
. (35)

The explicit form Eq. (35) is crucial to make explicit Eq. (31). Indeed, one can show that if
Eq. (35) holds, then

G(t) = Σ[ρ̂t] + αΛ[ρ̂t]−
∫ t

0
ds

∫
dxρ̂s(x)

[
v2s(x) +

π2

3
ρ̂2s(x) +

α2

4x2

]
(36)

is a constant function of t, i.e. ∂tG(t) = 0, see Appendix G. The fact that G(0) = G(1) allows to
explicitly write the dynamical portion of Eq. (31) as∫ 1

0
ds

∫
dxρ̂s(x)

[
v2s(x) +

π2

3
ρ̂2s(x) +

α2

4x2

]
= Σ[σ̂A′ ] + αΛ[σ̂A′ ]− Σ[σ̂B′ ]− αΛ[σ̂B′ ] (37)

in all cases in which B′ = A′ + W where again W is a matrix of i.i.d. Gaussian variables with
mean zero and variance 1/m.

To sum it up and get back to the case of denoising, we have, calling τ =
√
R1/∆,

IR1

[
σ̂S , σ̂Y ; τ =

√
R1

∆

]
= IR1

[
σ̂√τS , σ̂

√
τS+W ; 1

]
= CR1 +R1 log∆ +

√
R1

∆
Var[σ̂S ] +

√
R1

∆
Var[σ̂Y ]− 2(R1 − 1)Λ[σ̂Y ]− 2Σ[σ̂Y ] ,

(38)

where CR1 hides all constants that depend exclusively on R1, and we used that σ̂√τM (x) =
σ̂M (x/

√
τ) /

√
τ .

As a final remark, in the case in which
√
τκ ̸= 1, one can replicate exactly this argument by

rescaling the time domain so that B′ = X(t =
√
τκ). This does not change anything, apart from

possibly modifying the unspecified constant CR1 into a constant C(R1,
√
τκ). This concludes our

derivation of Result 3.
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Joël Bun, Jean-Philippe Bouchaud, and Marc Potters. Cleaning large correlation matrices: Tools
from random matrix theory. Physics Reports, 666:1–109, 2017.

Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloë. Quantum mechanics; 1st ed. Wiley, New
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Appendix A. Details on the regularization of logarithmic integrals

In the expression for the free entropy Eq. (19) and for the MMSE Eq. (11), we have integrals of the
form

−
∫
dλ dζ σ̂Y (λ)σ̂Y (ζ) log |λ− ζ| , −

∫
dλ σ̂Y (λ) log |λ| , (39)

which have logarithmic divergences, respectively, on the diagonal ζ = λ and at the origin λ = 0.
This integrals must be intended as continuum limits of the corresponding discrete expressions for
finite sized matrices, i.e.

−
∫
dλ dζ σ̂Y (λ)σ̂Y (ζ) log |λ− ζ| = lim

m→∞

1

m2

m∑
i,j=1

log |σi − σj | , (40)

where {σi} is the singular spectrum of a size m matrix whose limiting singular value density con-
verges to σ̂Y , and

−
∫
dλ σ̂Y (λ) log |λ| = lim

m→∞

1

m2

m∑
i=1
σi ̸=0

log |σi| . (41)

As the spacing between singular values goes to zero as m → ∞, the correct way to interpret the
integrals is, respectively,

−
∫
dλ dζ σ̂Y (λ)σ̂Y (ζ) log |λ− ζ| = lim

ϵ→0

∫
dλ dζ σ̂Y (λ)σ̂Y (ζ) log |λ− ζ| I(|ζ − λ| > ϵ) , (42)

where I(·) is the indicator function, and

−
∫
dλ σ̂Y (λ) log |λ| = lim

ϵ→0

∫
dλ σ̂Y (λ) log |λ| I(|λ| > ϵ) . (43)

Appendix B. Details of numerical integration of Eq. (11)

The only numerical difficulty of the paper is the estimation of the integrals in Eq. (11) in the case
of the factorized prior Eq. (3). The integral is performed by quadrature using Simpson’s rule. The
function we integrate has a wide support and it peaks around the origin for R2 < 1, so we must
have more integration points in this region.

We are left with two sub-problems: estimating the support of σ̂Y , and the support of the peak at
the origin. The edges of the support of the signal S∗ can be computed exactly following Dupic and
Castillo (2014), and in particular their Appendix B, with the parameter conversions

α1 = R2 , α2 = R1 (44)

giving a bound σmax(S
∗) ≤ σsignal. An upper-bound on the largest singular value of the full

observation Y can be obtained by summing the largest support edge computed above and the largest
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support edge of the Marchenko-Pastur distribution accounting the singular value density of the
noise,

σmax(
√
∆Z) ≤ ∆(1 +

√
R1)

2

√
R1

= σnoise . (45)

Putting everything together we get:

σmax(Y ) ≤ σsignal + σnoise . (46)

The right-most edge of the peak at the origin can be upper bounded empirically by σnoise. While
there are surely tighter bounds, this one allows for reasonable performance in the integration.

Appendix C. The MMSE of low-rank denoising

The spiked matrix denoising problem is studied in Lesieur et al. (2017); Miolane (2018). We are
given an observation matrix of the form:

Y =
uvT√
m

+
√
∆Z (47)

where u ∈ Rm, v ∈ Rp and Z ∈ Rm×p all have standard Gaussian entries. The MMSE for our
problem takes the form (Miolane, 2018, section 2.6):

MMSEspiked = 1− quqv, (48)

where qu and qv are solutions of the fixed point equations:{
qu = F

(
R1qv
∆

)
,

qv = F
( qu
∆

)
,

(49)

with

F (q) = Ex∗
0,z∼N (0,1)

[∫
x∗0x0e

x0z
√
q+x0x∗

0q−
1
2
x2
0qdP (x0)∫

ex0z
√
q+x0x∗

0q−
1
2
x2
0qdP (x0)

]
, (50)

where P (x) is the standard Gaussian PDF. The integral above can be evaluated explicitly, yielding:{
qu = R1qv

∆+R1qv
,

qv = qu
∆+qu

,
(51)

whose solution is {
qu = R1−∆2

∆+R1
, qv = R1−∆2

(∆+1)R1
for 0 < ∆ <

√
R1 ,

qu = qv = 0 for ∆ >
√
R1 .

(52)

There is an undetectable phase for ∆ >
√
R1. In the main text the observation matrix is normalized

differently, which is why in Fig. 3 we have the undetectable phase for ∆R2 >
√
R1
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Appendix D. The I-MMSE theorem

Let us prove Eq. (15), i.e. that

MMSE = ES∗,Y [MSE (S∗, ⟨S⟩Y )] = ∆ + 2∆2∂∆E [ΦY ] , (53)

where in the following ES∗,Y denotes a joint average over S∗ and Y , and ⟨·⟩Y the posterior average
at fixed Y . We start by expressing the MMSE more explicitly

MMSE =
1

√
mp

ES∗,Y ||S∗ − ⟨S⟩Y ||22

=
1

√
mp

ES∗,Y

[
||S∗||22 + || ⟨S⟩Y ||22 − 2Tr

(
S∗ ⟨S⟩TY

)]
.

(54)

Now, we use Nishimori’s identity Nishimori (1980) on the last term, i.e.

ES∗,Y [⟨g(S∗,S)⟩Y ] = EY [⟨g(S1,S2)⟩Y ] , (55)

where S1,2 are two independent random variables distributed with the posterior distribution, and g
a continuous bounded function. In words, under Bayes optimality, the ground-truth is indistinguish-
able from a sample from the posterior for what concerns averages. In our particular case,

ES∗,Y

[
Tr
(
S∗ ⟨S⟩TY

)]
= EY

[
Tr
(
⟨S⟩Y ⟨S⟩TY

)]
= EY || ⟨S⟩Y ||22 . (56)

Thus

ES∗,Y [MSE (S∗, ⟨S⟩Y )] =
1

√
mp

ES∗,Y

[
||S∗||22 − || ⟨S⟩Y ||22

]
. (57)

The second step is to compute ES∗,Y [∂∆−1ΦY ]

ES∗,Y [∂∆−1ΦY ] =
1

mp
ES∗,Y

[
1

ZY
∂∆−1ZY

]

=
∆

2
− 1

2
√
mp

ES∗,Y

||S∗||22 − 2|| ⟨S⟩Y ||22 +
〈
||S||22

〉
Y
−
√
∆
∑
iµ

Ziµ ⟨Siµ⟩Y


(58)

where we used that EZZ = 0, and again Nishimori’s identity. Then, one notices that

ES∗,Y

√∆
∑
iµ

⟨ZiµSiµ⟩Y

 = ES∗,Y

[〈
||S||22

〉
Y
− || ⟨S⟩Y ||22

]
(59)

by using Stein’s lemma

ES∗,Y

√∆
∑
iµ

Ziµ ⟨Y Siµ⟩

 = ES∗,Y

√∆ 4
√
mp
∑
iµ

∂ ⟨Siµ⟩Y
∂Ziµ

 (60)

and then tediously computing the derivative. Finally

EY [∂∆−1ΦY ] =
∆

2
− 1

2
√
mp

ES∗,Y

[
||S∗||22 − || ⟨S⟩Y ||22

]
=

∆

2
− 1

2
MMSE (61)

as anticipated.
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Appendix E. The Hellman-Feynman theorem adapted to singular values

Let us consider a rectangular matrix M ∈ Rm×p with real non-negative singular values {yl}ml=1

and orthonormal singular vectors {ul}ml=1 (left) and {vl}ml=1 (right). Singular values act as if they
where eigenvalues. Explicitly,

M · vl = ylul , uT
l ·M = ylv

T
l and yl = uT

l ·M · vl . (62)

Notice that the right singular vectors must be completed by p−m other orthogonal vectors in order
to form a basis for the domain of M .

We consider now a matrix M(λ) that depends on a parameter λ. Consequently, both eigenvalues
and singular values will depend on λ, and we would like to compute the derivative w.r.t. λ of the
singular values. We restrict to the case of non-degenerate singular spectrum.

We fix a particular singular value yl with singular vectors ul and vl (we drop the l subscript in
the following, as well as the dependence on λ). We have that

∂λy = ∂λ
(
uT ·M · v

)
= uT ·M · ∂λ (v) + uT · ∂λ (M) · v + ∂λ

(
uT
)
·M · v

= y vT · ∂λ (v) + uT · ∂λ (M) · v + y ∂λ
(
uT
)
u

=
y

2
∂λ
(
vT · v + uT · u

)
+ uT · ∂λ (M) · v

= uT · ∂λ (M) · v .

(63)

where we used the relations Eq. (62) and the fact that u and v are normalized. Thus

∂λy = uT · ∂λ (M) · v . (64)

The original version of the Hellman-Feynman theorem for symmetric matrices has a very similar
proof. In that case, left and right singular vector coincide.

Appendix F. Details of Pennington and Worah (2017)

F.1. Extension of the proof to random non-linearities

The proof strategy of Pennington and Worah (2017) — based on the method of moments — is
presented in (Pennington and Worah, 2017, Supplementary Material, Section 1.2). We would like
to extend it to the case of random non-linearities. The main observation is that no hypothesis on the
non-linearity f is ever done in the proof up until Eq. (S27). Before that, the logic presented by the
authors holds as is for random f , provided that an average over f is added in Eq. (S2).

Thus, to incorporate random non-linearities into the proof of Pennington and Worah (2017) one
just needs to analyze Eq. (S27) and Eq. (S29) therein. Notice that in the random cases the first
passage of both equations is the same, with the addition of an average over the randomness of f to
be performed last. In both cases, the crucial passage is the fact that the non-linearity is factorized
over the coordinates of the matrices. In order for this factorization to hold in the random case, we
just need to require that the randomness introduced by f is i.i.d. over coordinates, so that the average
over f factorizes as well.

Thus, for non-linearities with i.i.d. randomness the proof holds as is, and the effect of the ran-
domness of f will be just a modification to the definition of the parameters η and ζ, which becomes

η = Ef

∫
Dzf(z)2 and ζ = Ef

[∫
Dzf ′(z)

]2
, (65)
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where Ef denotes averaging with respect to the randomness of f . In the case presented in this paper
η = (1 +∆)

√
R1, ζ =

√
R1.

F.2. Stieltjes transform

The Stieltjes transform of the symmetrized singular values gY (z) for factorized priors can be written
using Eq. (29) as zGz , where Gz is a root of equation

∑4
k=0 ak(z)G

k
z = 0 with coefficients:

a0 = −ψ3

a1 = ψ(ζ(ψ − ϕ) + ψ(η(ϕ− ψ) + ψz2))

a2 = −ζ2(ϕ− ψ)2 + ζ(η(ϕ− ψ)2 + ψz2(2ϕ− ψ))− ηψ2z2ϕ

a3 = −ζz2ϕ(2ζψ − 2ζϕ− 2ηψ + 2ηϕ+ ψz2)

a4 = ζz4ϕ2(η − ζ) ,

(66)

where ϕ = R2/R1 and ψ = R2.

Appendix G. Tools to compute the derivative of Eq. (36)

To show that G(t) defined in Eq. (36) is a constant function of t one needs two technical bits. The
first one is that (Maillard et al., 2021, lemma C.1):

1

3

∫
dx ρ̂(x)3 =

∫
dx ρ̂(x) (H[ρ̂](x))2 , (67)

and the second one is that (Guionnet and Huang, 2021, see between Eq. 4.20 and 4.21)∫
dx ρ̂t(x)H[ρ̂t](x)

1

x
= 0 , (68)

due to the symmetry of all symmetrized singular value densities. Using these two properties one can
directly compute the time derivative of Eq. (36) and simplify all terms, showing that the derivative
is null.
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