
1

Motion Planning and Inertia Based Control for Impact Aware
Manipulation

Harshit Khurana1 and Aude Billard1

Abstract—In this paper, we propose a metric called hitting
flux which is used in the motion generation and controls for a
robot manipulator to interact with the environment through a
hitting or a striking motion. Given the task of placing a known
object outside of the workspace of the robot, the robot needs
to come in contact with it at a non zero relative speed. The
configuration of the robot and the speed at contact matter
because they affect the motion of the object. The physical
quantity called hitting flux depends on the robot’s configuration,
the robot speed and the properties of the environment. An
approach to achieve the desired directional pre-impact flux for
the robot through a combination of a dynamical system (DS)
for motion generation and a control system that regulates the
directional inertia of the robot is presented. Furthermore, a
Quadratic Program (QP) formulation for achieving a desired
inertia matrix at a desired position while following a motion plan
constrained to the robot limits is presented. The system is tested
for different scenarios in simulation showing the repeatability
of the procedure and in real scenarios with KUKA LBR iiwa
7 robot.

Index Terms—Coupled Dynamical Systems, Dynamic Manip-
ulation, Inertial Control, QP Control.

I. INTRODUCTION

Pick-and-place tasks for fixed manipulators, are incredibly
common in robotics. Although they are extremely helpful,
they suffer from the following restrictions:

• the initial and final positions of the object are within the
reach of the robot, i.e. in its workspace

• limitations exist on the object size, shape and mass due
to hardware limitations of the robot such as payload
capacities, gripper requirements and gripper size.

To move an object from one place to another, pushing
primitive [1] is also used. Pushing primitive refers to the
application of force on the object in the environment, pro-
ducing the desired effect. The robot remains in contact
with the object during pushing and hence at low velocities,
many different works assume such motion to be quasi-static
(ignoring the dynamic effects of the robot on the pushed
object) [2], [3] [1]. Pushing helps in both: alleviating the
limitations of pick-and-place operations for objects that are
heavier than the lifting capacity of the robot as well as in
manipulating objects that are hard to grasp, such as small or
irregular shaped objects. Most of the pushing motion by the
robot is quasi-static which normally does not impart large
velocity to the object. Hence the motion of the object is

1Harshit Khurana and Aude Billard are with the Learn-
ing Algorithms and Systems Laboratory, EPFL, Lausanne,
Switzerland, e-mail: harshit.khurana@epfl.ch and
aude.billard@epfl.ch

primarily restricted to the reachable workspace of the robot.
This motion primitive also neglects the inertial forces. We use
a hitting or striking primitive to increase the space in which
an object can be placed by a robot. Picking and throwing
is another strategy to extend the workspace of the robot.
Fast picking and throwing using a dual arm system has been
discussed in [4] where the motion planner takes into account
both fast grasping and the feasibility of throwing motions.
The process of hitting differs in the way the robot comes in
contact with the object. Hitting allows for a non zero relative
speed between the robot and the object at contact. Hitting or
striking dives into the realm of dynamic manipulation where
the inertial properties of the robot and the environment must
be considered. Such primitives can be used in many robot-
environment interactions such as sliding an object on a table
to place it in a given position; moving obstacles out of the
way for mobile manipulators; exploring different strategies
in sports such are baseball, football, boxing; learning envi-
ronment properties for better robot-environment interaction,
sorting different objects (varying in inertial properties); and
interacting with objects with non-uniform mass distribution.

In our previous work, [5], we showed that hitting can pro-
duce repeatable and predictable post-impact object motion.
The benefits of such dynamic manipulation are:

• The workspace of the robot is expanded. A fixed-base
manipulator can use its dynamics to place an object
outside its workspace.

• The robot can impart velocities to objects greater than
its velocity - exceeding the hardware limits (depending
on collision properties)

• The process is faster than quasi-static pushing.
In [5], in order to move different boxes, one needed to learn a
hitting model for each box separately, since the same robot’s
motion would induce distinct motion on the object if these
differed in their physical properties. In addition, the motion
of the robot was restricted such that the joint configuration
of the robot and thus its inertial properties on each impact
were similar. This paper addresses this issue by decoupling
the post-impact object behavior from the pre-impact robot
motion. We propose a control metric called hitting flux,
which used in a combination of DS-based motion planner and
a control system for a fixed manipulator, allows us to produce
similar post impact motion for an object with known inertial
properties. We are interested in a manipulation strategy that
exploits an intentional impact to impart motion to the object
in order to place it in a desired location. For the entire
process, the configuration of the robot is as important as
its motion when it contacts the object. To have a desired

2

Fig. 1: As seen in Section III, the robot configuration changes the inertial properties of the robot and this leads to changes in the
post-impact speed of the object, resulting in different motion of the object after impact. Thus, we deal with controlling the pre-impact
robot motion such that the post-impact object behavior is the same.

effect on the environment, i.e., imparting similar motion on
different-sized boxes, for different initial positions of the box,
the physics of collision needs to be taken into account. This
helps understand the control parameters of the problem, as
shown in Section III.

Furthermore, the tasks for manipulating the environment
are better suited to be formulated in the task space or Carte-
sian space. Writing the motion plan of the robot according to
the task requirements is intuitive in the task space and hence
can lead to easy adaptability to task changes and planning.
In the task of hitting an object, we are aware of the current
position of the object, where the object needs to be placed,
and the robot’s end effector position. The physics of the
motion of the object can be used to understand the initial
conditions (speed and direction of motion) of the object for
the desired motion. This helps generate a motion plan for
the robot in the task space, while the controller considers the
constraints that come with the limitations of the robot.

Contributions of this paper:
• Proposition of a control metric called hitting flux that

depends on robot’s inertia, speed and object mass, and
is proportional to the post impact object’s speed and
utilising it through a DS-based motion planner that
generates a hitting motion in 3D task space (R3) and
a control structure to achieve desired directional inertia
and repeatable post impact object motion (∈ R)

• A control structure to achieve a desired inertia matrix (∈
S3++) while reaching a desired position ∈ R3 utilizing
gradient of Stein distance [6]

• Validation through real robot implementation showing
applicability of generating motion using hitting flux as a
metric to hit box objects in a repeatable fashion (RMSE
error in average object motion) and its applicability to
boxes of different sizes and masses.

II. RELATED WORK

A. Pushing and Hitting Primitives for Manipulation
Pushing and hitting manipulation techniques are not new to

the manipulation literature, and are gaining popularity given

the growth of geometry-aware motion planning for robots
[7], [8], [9] and, data driven controls and planning algorithms
[10], [11]. Humans use this skill in recreational sports such
as Air-Hockey, football, table tennis, baseball, badminton
and volleyball where the striking motion is used to generate
a desired trajectory for the puck or ball. Applying those
strategies in robotics has helped advance motion planning
with intentional impacts. Robot-environment impacts exist
wherever robots interact with the environment. Such impacts
can be found in robots playing football [12], table tennis [13],
golf [14], baseball [15] and in quadrotors juggling using a
small ball [16]. In these applications, the robot does not plan
its motion according to its knowledge of the post impact
change in the environment. The contact normal between the
robot and the object passes through the center of mass of the
object due to its spherical nature and hence does not require
convergence guarantees (tuning) of the motion model to pass
though a specific area of the object.

In robotic table tennis, a substantial work exists on robot
trajectory optimization ([17], [18], [19], [20]) and learning,
such that the robot learns how to move so that the ball lands
in an appropriate place. Such trajectory optimisation methods
deal with high computational cost of solving analytical
models, can suffer from modelling errors, and also depend on
the initial guess for the solution. [21], [22] create a method
to generate high velocities to play air hockey. The method
includes creating a specific path for the end effector of the
robot to traverse. It aims to hit the puck with the fastest
achievable speed in the path designed to hit the puck by
exploiting the redundancy of the robot. Since, the inertia of
a hockey puck is negligible compared to that of the robot,
this approach makes sense. In cases of hitting objects with
higher inertia, the inertias of both, the robot and the object
need to be considered.

B. Dynamical Systems as Motion Plans
Dynamical systems [23] represent evolving phenomena by

a specific equation for the rate of change of a state. The
state is a representation of the system. In the robotics regime,
they have been used to create motion plans for robots such
as manipulators [14] and mobile platforms. The advantage

3

of using DSs is that they are able to provide stable and
closed-form motion plans that are easily controllable. They
are heavily used in learning from demonstration [24], where
the data from demonstrated trajectories is used to learn
stable DSs. Stable autonomous DSs are robust to external
disturbances, which allows for instantaneous recalculation
of trajectories for a given purpose (stability depends on its
specific definition). This makes them suitable for tasks such
as interaction with the unstructured environment. Control
strategies such as inverse kinematics control, inverse dynam-
ics control and impedance control [25] can be applied to DSs,
see [26]. DSs allow us to represent the motion of the robot
in terms of its desired task space properties, such as inertia,
end effector speed and the object position, thus not requiring
us to create a motion plan for such changes every time.

Dynamical systems represent a closed form solution to a
family of known trajectories, which allow fast replanning.
They are chosen firstly, because we know the basic movement
of hitting and secondly, to explicitly understand the effects
of hitting flux on the post impact speed of the boxes. They
provide fast computation and allow us to mathematically
formulate guarantees for convergence. Other motion planning
algorithms which combine motion generation and controls
such as model predictive control are a completely valid
approach for hitting and generating desired hitting flux. They
are better suited in planning motion in unknown conditions
where the solution is initially unknown and requires guar-
anteeing satisfaction of complex constraints at run time,
such as controlling for robot’s balance. They suffer from
high computational cost, modeling inaccuracies and there is
current research on the stability of MPC policies. Parallel
computation allows sampling based MPC to work for ma-
nipulators but it needs to be tested for fast dynamic motions
[27], [28]. In our work, we have an idea of the motion in
the task space and the environment is not actively in motion,
thus making the use of dynamical systems an easy choice.

C. Symmetric Positive Definite (SPD) Properties of Robot
Manipulators

Manipulators possess properties which are SPD in nature
such as manipulability matrices (velocity, dynamic) [29],
joint space mass matrices and task space inertia matrices etc.
We need to understand the behavior of SPD manifold since
we want to understand task space inertia matrices. Exten-
sive research has examined controlling manipulability metric
values for the robot to ensure non-singular configurations
during a task [30], achieving maximum end effector speed at
a certain configuration and so on. [22] [7], [9] create a way of
learning motion from human demonstrations, learning both
the trajectory, and SPD properties of the robot. Since the data
comes from the demonstrated trajectories, the task space end
effector position and the corresponding desired SPD property
are assumed to be feasible, and it does not help achieving a
desired SPD property at a certain end effector position if they
are inferred only from the task at hand. [8] can be used to
generate trajectories that achieve a desired SPD property at a
certain end effector position, provided that it is achievable but

suffers from the difficulties of finding a suitable Riemannian
metric. In this paper, we will use the SPD property of the
inertia matrix to control the configuration of the robot to
achieve a desired inertia matrix.

III. PRELIMINARIES

A. Breaking Down the Collision Problem

Fig. 2: The figure shows the process of collision between the robot
and the object. The robot moves from A to B to create an impact.
The robot-object collision imparts post-impact velocities to both the
robot and the object. The object moves to desired location C after
the impact.

The whole process of interacting with the environment
through intentional impacts is broken down into three dif-
ferent physically independent phenomena shown in Fig. 2:

1) Robot motion: The robot moves intentionally to gen-
erate an impact with the object from position A to B.

2) Robot-Object impact: The robot-object interaction im-
parts post-impact velocities to both which are extremely hard
to control but can be estimated [31]. These depend on the
type of contact, frictional parameters between the colliding
bodies, and coefficient of restitution.

3) Object motion: Object motion can be nominally de-
scribed by equations of motion under forces given the initial
state of the object (here, it is the post-impact state of the
object).

In this paper, we discuss the process of creating impacts
resulting in similar initial conditions for the object post
impact. This allows for repeatable motion for the object and
hence can make the system invertible, i.e., allowing us to
later solve the following problem: given a desired motion of
the object, how do we want the robot to come in contact
with it. The following sections assume that the collision
between the robot and the object is through a point contact
and imparts velocity at the center of the mass of the box.
Given the size of boxes and the end effector, the system can
have line contacts in both horizontal and vertical directions,
and surface contacts. The orientation of the end effector and
tuning of the hitting motion as described in the Appendix
(Section XI) allow the center of mass to be in the middle of
the end effector of the robot allowing for such assumption
to hold.

B. Collision Mechanics
We discuss the collision of the robot and the object. The

cartesian position of the robot end effector and the object

4

are χe and χo respectively (χe, χo ∈ R3). Consider, at the
moment of impact, that the task space inertia of the robot
perceived at the end effector is Λ ∈ S3++, the object mass is
Mo = moI3 ∈ S3++, and the pre- and post-impact velocities
of the end effector and the object are (χ̇−

e , χ̇
−
o) ∈ R3 and

(χ̇+
e , χ̇

+
o) ∈ R3 respectively. Let the coefficient of restitution

for the impact be E. It is defined as the ratio of the final
relative velocity between the colliding bodies to the initial
relative velocity normal to the impact and can be represented
as a scaled projection matrix along the hitting normal with
a scaling factor < 1. We make the following assumptions
for the collision equations:

Assumptions:
• The pre-impact velocity of the object, χ̇−

o = 0.
• The robot-object contact is instantaneous, i.e. the config-

uration, and hence, Λ(q), of the robot remains constant
during the collision, and there is no contact between the
robot and the object after the collision.

• The collision provides negligible tangential impulse
(normal to the hitting / impact direction). Let ϵ ∈ [0, 1]
be the coefficient of restitution along the line of impact.
It determines the energy loss in the hitting direction or
also called line of impact. This assumption requires the
motion plan to generate pre-impact robot velocity in the
hitting direction normal to the surface of the object i.e.,
χ̇−
e = ∥χ̇−

e ∥ ĥ (refer Section V, XI) and enables the
motion of the object post impact to be in the impact
direction, i.e., χ̇+

o = ∥χ̇+
o ∥ ĥ.

• If the inertia of the robot can be designed to be sub-
stantially larger in the hitting direction (refer Section
VI), its post impact speed can be assumed to remain
in the direction ĥ, because of low pre-impact momen-
tum in the orthogonal directions ĥ⊥1

, ĥ⊥2
, implying

χ̇+
e ≃ ∥χ̇+

e ∥ ĥ.
Using the above assumptions and from the principle of

conservation of momentum during the impact we have:

Λχ̇−
e +Moχ̇

−
o = Λχ̇+

e +Moχ̇
+
o (1)

Pre-multiplying Eq. 1 with ĥT and using χ̇−
o = 0, we have

ĥTΛχ̇−
e = ĥTΛχ̇+

e + ĥTMoχ̇
+
o (2)

Using χ̇−
e = ∥χ̇−

e ∥ ĥ and χ̇+
e ≃ ∥χ̇+

e ∥ ĥ we have

ĥTΛĥ
∥∥χ̇−

e

∥∥ = ĥTΛĥ
∥∥χ̇+

e

∥∥+ ĥTMoĥ
∥∥χ̇+

o

∥∥
λh

∥∥χ̇−
e

∥∥ = λh

∥∥χ̇+
e

∥∥+mo

∥∥χ̇+
o

∥∥ . (3)

We denote λh = ĥTΛĥ as the directional inertia.
From the definition of restitution [32] along the impact

normal (ĥ),

ϵ ĥT (χ̇−
e − χ̇−

o) = ĥT (χ̇+
o − χ̇+

e) . (4)

This simplifies into:

ϵ
∥∥χ̇−

e

∥∥ =
∥∥χ̇+

o

∥∥− ∥∥χ̇+
e

∥∥ . (5)

From Eq. 3 and 5, we have the post-impact object speed as:∥∥χ̇+
o

∥∥ = (1 + ϵ)(1 +
mo

λh
)−1

∥∥χ̇−
e

∥∥ . (6)

Reproducing similar post-impact conditions for the object
translates to achieving a desired post-impact object velocity,
χ̇+
o . Eq. 6 depicts the requirements for the repeatable colli-

sion and interaction with the environment. Given the post-
impact object behavior (χ̇+

o) and mass of the object Mo,
we need to control for the quantity given by (1 + ϵ)(1 +
mo

λh
)−1 ∥χ̇−

e ∥.
The coefficient of restitution in the hitting direction, ϵ can

range from 0 to 1. The coefficient of restitution scales the
motion of the object from a completely inelastic (ϵ = 0) to
completely elastic (ϵ = 1) collision. For a given object robot
pair, the motion of the object for a given robot motion should
remain statistically similar. We assume ϵ zero to provide a
reference velocity to the robot’s end effector. The post impact
object velocity would depend on the real value of ϵ and for a
given object-robot pair, the motion of the object for a given
robot motion should remain statistically similar. The main
idea that we want to convey here is that the quantity that
we control for in the robot’s motion does not depend on the
coefficient of restitution. With the above assumption, we
write the directional hitting flux as

ϕ = (1 +
mo

λh
)−1

∥∥χ̇−
e

∥∥ . (7)

Estimating ϵ is a research problem for understanding envi-
ronment behavior which we are working on in our current
research. ϵ = 0 will lead to hitting being the same as pushing
and releasing, which as shown in Section IX is not the case,
if ϵ ̸= 0.

We also define Hitting Flux, Φ ∈ R3, based on the
above assumptions. This derivation can be found in Appendix
(Section XI).

IV. PROBLEM STATEMENT

Given an object placed at Cartesian position χ∗ ∈ R3,
create and execute a motion for the end effector of the
robot to hit the object of mass mo with a desired directional
hitting flux ϕdes. Additionally, make this independent of the
direction, i.e. achieve a desired inertia matrix, Λ∗ ∈ S3++ at
a desired cartesian position, χ∗.

V. ROBOT MOTION

A. Pre-impact Dynamical System:

Fig. 3: Design intuition for the DS as a motion generator. The end
effector (EE) moves toward its projection on the desired direction
and a constant flow is added. The effect of the two different flows is
controlled by a weighting parameter, which depends on the distance
of the end effector from its projection.

5

An autonomous DS is used as a motion generator for the
end effector of the robot. The current position of the robot
end effector is given by χ. It needs to pass through χ∗ with
velocity χ̇∗ (refer Fig. 3). The DS is the reference velocity,
χ̇ of the end effector of the robot. Consider the following
DS:

χ̇ = f(χ) = α(χ)χ̇∗ + (1− α(χ))[A(χ− χv)]

f(χ), χ, χ̇, χ∗, χ̇∗ ∈ R3, α(χ) ∈ R, A ∈ S3−−
(8)

where,
α(χ) = e

−∥χ−χv∥
σ2 , σ ∈ R+

χv = χ∗ +
< χ− χ∗, χ̇∗ >

∥χ̇∗∥2
χ̇∗ .

(9)

< ., . > is the inner dot product, χ, χ̇, χ∗, χ̇∗ ∈ R3. χv

denotes a virtualized end effector. It is the projection of the
current end effector position along the hitting direction. The
tuning parameters depending on the robot and its workspace
are σ. Eq. [8] is a combination of two vector fields, χ̇∗

represents a continuous flow at the desired hitting speed, and
A(χ− χv) represents a converging flow towards the virtual
end effector position, if A ≺ 0. α(χ) is a weighting function
that creates the flow with the desired speed χ̇∗ once the robot
end effector is close to χv .

The DS depends on the tuning of the hyperparameter σ,
which changes how the DS converges to the line joining the
virtual end effector and the desired hitting position as shown
in Fig. 4. We can impose an adaptive σ or have a higher
bound on its value for the DS to have the desired behavior.
For further analysis, refer to Section XI.

Fig. 4: The vector field showing the flow of the end effector as in
Eq. 8. The red marker shows the position of the object that needs
to be hit. The figure also shows three different paths the robot takes
from three different initial positions (in orange, green and black)

Design intuition: Eq. 8 describes a DS that creates a
hitting motion for an object placed at the cartesian position
χ∗. Fig. 3 shows the position of the end effector and the
virtual end effector. The virtual end effector is used for two
different purposes:

• It reduces the collision problem from a 6 DoF motion
collision to a collision of two objects moving along the
direction provided by the DS i.e., the collision normal

• It provides robustness to change in position of the end
effector through external disturbances. χv captures the
variations in the position of the end effector caused by
the disturbances.

This allows us to modify the dynamical system we used in
[5] and simplify it by using a constant flow and one lin-
ear dynamical system instead of three individual dynamical
systems. There are fewer tuning parameters, which makes it
easier to implement it on the real robot.

VI. ROBOT CONTROL

The dynamics of n degrees of freedom robot manipulator
in task space can be written as

M(q)q̈ + C(q, q̇) + g(q) = τ + JT
c Fc (10)

where q ∈ Rn denotes the joint space configuration vector.
M(q) ∈ Rn×n and C(q, q̇) ∈ Rn denote the robot’s joint
space mass matrix, and the centrifugal and coriolis forces.
g(q) ∈ Rn is the vector of the gravity wrench. τ ∈ Rn

represents an external wrench applied by the robot, and Fc ∈
R6 is the control wrench of the robot. The task space inertia,
Λ(q) of the robot at the end effector is given by:

Λ(q) = (J(q)M−1(q)JT (q))−1 ∈ S6++ (11)

where, q is the joint configuration of the robot, J(q) is the
Jacobian, M(q) is the joint space mass matrix of the robot
[33].

Here, we are primarily focusing on the end effector transla-
tional tasks. Thus, we have the translational task space inertia
perceived at the robot’s end effector:

Λt(q) = (Jt(q)M
−1(q)JT

t (q))−1 ∈ S3++ . (12)

The subscript t refers to the translational part of the robot
properties. The different controllers used and introduced in
this paper are as follows:

A. Inverse Kinematics Control
To follow the reference dynamical system χ̇ = f(χ), we

can use IK controller. This controller is a solution for the
optimisation:

q̇ = argmin
q̇
∥f(χ)− J(q)q̇∥22

=⇒ q̇ = J†(q)f(χ)
(13)

where J(q)† = J(q)T (J(q)J(q)T)−1 is the Moore-Penrose
pseudo inverse of the Jacobian. This is used as a base
controller.

B. Manipulability Maximization Controller:
The robot must be able to achieve high end effector veloc-

ities. This is ensured by prioritizing the configurations that
have high velocity manipulability metrics, along the hitting
direction, ĥ ∈ R3. Finding this configuration is formed as
a least squares problem solved as SLSQP (Sequential Least
SQuares Problem) using SciPy [34].

qm = argmax
q

∥∥∥J(q)T ĥ∥∥∥2
2

s.t. FK(qm) = χ∗

ql ≤ q ≤ qu

(14)

6

where, FK(q) is the forward kinematics model of the robot,
and ql and qu are the lower and upper bounds on the joint
limits. χ∗ is the point of hit. ĥ can either be provided in
a task to be achieved or calculated from the current and
the desired position of the object (direction from current
to the desired object position). The manipulability metric,

m =
∥∥∥J(q)T ĥ∥∥∥2

2
[29]. The following equation serves as

the controller for achieving joint configurations close to the
maximum manipulability configuration (β1 ∈ R+ is the
proportional gain). This controller is used later to exploit
the redundancy of the 7DoF manipulator:

q̇ = β1(qm − q) . (15)

C. Increasing Directional inertia in the Null Space
The hitting DS (Eq. 8) aligns in the direction of hitting at

the object, and in the hitting direction, for some purposes, for
As the robot end effector moves along f(χ), the following
optimisation allows for increasing the inertia perceived at the
end effector along the direction of the vector field f(χ).

q = argmax
q

λh(q) . (16)

The increasing inertia controller is formulated in terms of
joint velocities through an iterative gradient ascent solution
of Eq. 16 that runs at the controller frequency:

q̇ = β2∇qλh(q) . (17)

Combining the controllers from Eqns. 13, 15 and 17 while
exploiting redundancies, we have the final controller equa-
tion:

q̇ = J†(q)f(χ) +N [β1(qm − q)+

β2∇qλh(q)], β1, β2 ∈ R+ (18)

where, N = I−J(q)†J(q) is the dynamically consistent Null
space for joint velocities [35], [36], and β1, β2 are hyperpa-
rameters, which control the relative weights of achieving high
manipulability configuration and moving in the direction of
increasing directional inertia.

D. Specific Directional Inertia in the Null Space:
Instead of maximizing the directional inertia, here we want

to achieve a desired directional inertia λ∗ while tracking the
dynamical system, with priority to the latter. As the robot
end effector moves along f(χ), the following optimization
allows for tracking the desired inertia perceived at the end
effector along the direction of the vector field f(χ).

q = argmin
q
|λh(q)− λ∗|22 . (19)

To control for the directional inertia in the null space, in the
gradient ascent solution for Eq. [16], ∇qλh(q)

1 is multiplied
with (λh(q)− λ∗).

q̇ = −β2∇qλh(q)(λh(q)− λ∗) . (20)

1The derivation of ∇qλh(q) is shown in Sec. XI.

This changes the joint velocities towards the configuration
with the desired directional inertia if the redundancy allows
for it. The final controller hence can be written as:

q̇ = J†(q)f(χ) +N [β1(qm − q)+

β2(−∇qλh(q)(λh(q)− λ∗))], β1, β2 ∈ R+ . (21)

With the described control system leading to directional
inertia values close enough to the desired values, here we
formulate a strategy to achieve the desired directional flux,
ϕ∗. To achieve the desired directional flux, ϕ∗, the desired
velocity, χ̇∗ in the DS f(χ) (Eq. 8) depends on ϕ∗.

∥χ̇∗∥ = ϕ∗(1 +m/λh(q)) (22)

where α(χ) and χv are the same as in Eq. [9].

Fig. 5: The diagram shows the flow of the algorithms. The desired
hitting flux and the object mass, along with the current inertia of the
robot are inputs to the DS based motion plan. The desired cartesian
velocity (output of the DS) along with the desired directional inertia
and the configuration of maximum manipulability form the input to
the controller which outputs joint velocity / torques to the robot.

VII. MOTION IN INERTIAL MANIFOLD

In the previous section, the controller is designed to
achieve the desired inertia and desired flux in a specific
direction. This exploits the redundancy of the system and
allows achieving a specific part of the inertia matrix that is
a projection of the inertia matrix along a desired direction.

7

Fig. 6: An example of stein distance on the SPD manifold. Shown
above is S2

++ manifold. It can be represented as a cone and Λq

and Λ∗ are two points on this manifold. The distance between the
points is shown as the red curve. This distance is proportional to
the stein distance g(q).

Task space inertia matrices belong to the SPD manifold.
To calculate the distance between two SPD matrices, we use
the Stein divergence [6] metric. This is an estimate of the
distance two SPD matrices are on the manifold. If at a joint
configuration q, the robot has a task space inertia Λq and the
desired task inertia is Λ∗, then the Stein divergence, g(q) is
given as:

g(q) = |log(det(Λ
∗ + Λq

2
))− 1

2
log(det(Λ∗Λq))| ∈ R .

(23)
We minimize the distance between the current inertia matrix
and the desired inertia matrix, while following a DS under
joint position and velocity constraints. The optimization is
formulated to output joint velocities q̇. To minimize g(q), we
use the gradient descent algorithm which finds the steepest
gradient ∇qg(q) in the direction of decreasing g(q) and
projects joint velocities along the direction of the gradient.
For a high control frequency, the evolution of g(q) can be
written as gt+dt(q) = gt(q)+ġ(q)dt = gt(q)+(∇qg(q))

T q̇dt.
This leads to g(q) decreasing in value.

q̇ =argmin
q̇

1

2
∥f(χ)− Jq̇∥22 + k1ġ(q) + k2 ∥q̇∥22

s.t. q̇min ≤ q̇ ≤ q̇max, qmin ≤ q + q̇dt ≤ qmax

k1, k2 ∈ R+

(24)

where, q is the current joint position, dt is the time taken by
one control loop, k1 and k2 are the weights for the penalties
on derivative of the stein distance 2 and the joint velocity
norm. For the real robot experiments, to not allow sudden
jumps in the joint velocities, a penalty on the norm of the
joint velocities is added to the objective function. In terms
of reaching the desired inertia matrix, the solutions (joint
configurations) become fewer and the physical limitations of
the robot come into account. This leads the solver to be stuck
in local minima. The solver used is qpOASES [37].

VIII. SIMULATION EXPERIMENTS

For the simulation, we use the PyBullet environment [38].
The robot motion and the controller scheme are implemented

2The derivation of ∇qg(q) is shown in SectionXI.

as in sections V and VI 3. To understand the applicability of
the theory described we perform the following experiments:

• Following a desired path with three different controllers
analyzing the inertia changes through the trajectory
(VIII-A)

• Hitting an object of known mass with different desired
pre-impact hitting fluxes and observing the displacement
of the object (VIII-B)

• Achieving the same desired pre-impact hitting flux at
different task space positions (VIII-B)

• Testing the controller (Eq. 24) to achieve the full
translational task space inertia matrix while following
a trajectory (VIII-B2)

A. Robot Motion:
1) Comparison of controllers: We compare, in simulation

here, the effect of including the inertia gradient in the Null
Space control. The robot is commanded to go to a final
desired position χ∗ using a stable 4 linear DS χ̇ = A(χ −
χ∗), A ≺ 0, with controllers defined in subsection VI-A,
VI-C and VI-D. Desired final position, χ∗ = [0.5, 0.5, 0.5]
and ĥ = [1, 0, 0] (hitting direction is along the X axis). The
desired directional inertia commanded for the Specific inertia
controller (Eq. 21) is 6 kg.

TABLE I: Quantitative comparison of the final achieved
directional inertia for different controllers

No. Final directional Desired directional
inertia (kg) inertia (kg)

IK 6.47 no control

IK + inc. dir. inertia 8.49 as large as possible

IK + sp. dir. inertia 6.17 specific value (6 kg here)

Fig 7a shows qualitatively, the three different configu-
rations of the robot at the desired end effector position,
with the different controllers. The IK control finds the joint
configuration closest to the initial configuration of the robot
that reaches the desired end effector position. The increasing
directional inertia controller aligns the robot in the desired di-
rection to maximize the inertia in the said direction. Reaching
the desired inertia value of 6 kg is feasible with the desired
end effector position. Hence, we see the robot reaching
a similar value of inertia with both, the increasing direc-
tional inertia controller and the specific directional inertia
controller. The comparison of the achieved final directional
inertia for the different controllers is presented in Table I.

The evolution of directional inertia through the trajectory
are shown in Fig. 8a. The Specific directional inertia con-
troller maintains the directional inertia along the path taken
by the robot when it is feasible, which is not the case with
Inverse Kinematics controller, and and with the increasing
directional inertia controller, the robot configuration changes
to increase the directional inertia.

3The code for simulation is available here - code
4Exponential Stability [39]

https://github.com/epfl-lasa/hitting_sim.git
https://github.com/epfl-lasa/hitting_sim.git

8

B. Robot-Environment Interaction
1) Hitting with different pre-impact flux: This simulation

shows the predictability with the described framework. Given
the initial position of the object, placing the object at different
positions is desired. The object is hit with different pre-
impact fluxes by the robot and the distance moved by the
object is compared. The initial position of the object is
[0.5m, 0.3m, 0.3m] and it is hit in the X direction. The
motion data is shown in Fig. 8b. The displacement of the
object follows almost a linear trend. The deviations from
the linear trend can be understood by analyzing the scenario
according to the achieved pre-impact flux. This depends on
the tuning of the controllers and the path taken by the robot.
Hence, the fluctuation in the achieved flux leads to some
deviation in the distances moved by the object.

2) Achieving same pre-impact flux: Here we show that
the robot can be controlled to have the same directional
pre-impact flux at different task space positions, if feasible.
This shows that the robot can interact with objects located at
different positions and manipulate them in the same manner.
For this experiment, the box is placed in 16 different positions
in the Y-Z plane, sampled in the range y ∈ [−0.4,−0.2] ∪
[0.2, 0.4], z ∈ [0.2, 0.6], x = 0.5 and the robot’s end effector
is initialized at 12 random points in the Y-Z plane, sampled
in the range y ∈ [−0.4, 0.4], z ∈ [0.2, 0.6], x = −0.2. This
results in 192 trajectories from multiple initial to multiple
final positions with the same desired pre-impact flux. The
hitting direction at the final positions is ĥ = [1, 0, 0]. The
desired directional hitting flux ϕdes = 0.6 m/s so that it is
known that such a quantity is feasible. 5

The mean of the final achieved directional flux values is
0.579 m/s and the standard deviation is 0.038 m/s. Out of 192
trajectories, we have 10 trajectories that reach a directional
hitting flux of < 0.5 m/s. The distribution of the data shows
that the directional hitting flux for the trajectories required
to reach higher Z values is far from the desired directional
hitting flux. This is because the inertia and velocity manipula-
bility of the system are conflicting properties of the system.
Since we want the directional inertia of the robot to align
with the hitting direction, the physical geometry of the robot
restricts the alignment of the robot in Y axis while reaching
high Z values. This can be seen in Fig. 8c. The points in blue
are those ones that show that the desired flux is not achieved
at the desired final position.

Although on average, we achieve the directional flux, the
following factors affect the final achieved hitting flux:

• Initial configuration of the robot
• The DS for the motion generation

Hence, for the experiments on the real robot, it is advised to
have initial configurations where the inertia matrix is not far
(in terms of stein distance) on the inertial manifold from the
desired inertia.

5Since, optimization for the values of directional inertia and hitting
velocity remains an open question, IK is used to provide an idea of
achievable configurations at the desired end effector position. Through
this self- motion manifold [40] samples, we have an idea of achievable
directional inertia values.

C. Achieving Desired Inertia with Desired Position:
For this experiment in simulation, for different joint con-

figurations, we store the inertia values since at a given
end effector position, we can have multiple possible joint
configurations, and hence, multiple possible inertia matrices
(using IK and self motion manifold). We choose a random
initial position and configuration, and a random final desired
position and desired inertia matrix at that position. For the
purpose of this experiment, one can choose the motion to be
governed by the DS as in Eq. 22 or a simple stable linear
DS such as,

f(χ) = A(χ− χ∗)

where A ≺ 0, and the desired translational inertia is

Λ∗ =

 3.2 3.07 −0.32
3.07 3.0 −0.31
−0.32 −0.31 0.03

 .

The robot then moves under the Inertia QP controller (Eq.
24).

TABLE II: Quantitative comparison of the final joint config-
urations for different controllers (also check Fig. 7c)

No. final joint configuration g

IK (-0.96, 2.06, -0.17, -2.06, -1.63, 1.06, 2.97) 4.04

Inertia QP (-1.94, 0.89, -1.34, -1.90, 0.54, 0.89, 1.56) 3.75

Fig. 7c shows the different configurations of the robot,
given the same path it takes (in red) while getting closer to the
desired inertia matrix. Since the QP is local optimization, the
solution is not guaranteed to be the global solution. Hence,
the robot can get stuck in a local minima or the joint limits.

IX. ROBOT EXPERIMENTS

The experimental setup consists of a KUKA LBR iiwa 7
robot arm hitting a box (shape: cuboid) of known total mass
on a planar table. The motion of the box is tracked using an
Optitrack system that streams at 250 Hz using Prime 17W
cameras. The DS described in Section V generates motion
for the end effector of the robot controlled by the different
strategies in Section VI . We use different kinds of objects
that are used in industry and show the relevance of this paper
in industries. The objects used are cardboard boxes of more
or less uniform mass distribution and open boxes containing
different objects, thus with a non uniform mass distribution
as shown in Fig. 9a.

TABLE III: Objects / Boxes used in the experiments, refer
to Fig. 9a

Object 1 2 3 4

Mass (kg) 0.34 0.95 0.4 2.0

Mass distribution uniform non-uniform uniform uniform

size (cm3) 18x19x19 31x23x21 26x25x23 26x26x27

9

(a) (b) (c)

Fig. 7: Fig. (a): The three different control systems lead to different joint configurations at the desired final position. The IK controller
leads to the joint configuration closest to the initial configuration. With the increasing directional inertia controller, the robot’s configuration
is aligned with the desired direction. Since the specific directional inertia is lower than the maximum achievable in the desired direction
and the directional inertia achieved by the inverse kinematics controller, the configuration achieved with the specific inertia controller is
least aligned with the hitting direction; Fig. (b): The simulation setup is shown - The robot follows the dynamical system to generate a
pre-impact flux to interact with the object on a table; Fig. (c) The robot achieves different configurations with two different controllers
(IK and inertia QP controller) while following the same path - The inertia QP controller tries to attain the desired inertia matrix subject
to robot constraints.

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) (c) Achieved directional hitting flux

Fig. 8: Fig. (a): Quantitative comparison of the controllers - The three curves show the different directional inertia of the robot while
following a trajectory with three different controllers. The green curve shows the controller trying to maintain the directional inertia along
the trajectory equal to 6 kg while following the trajectory; Fig. (b): Displacement of the object with different pre-impact fluxes of the
robot; Fig. (c): Final achieved directional hitting flux for the final position of the end effector in the 192 simulated trajectories.

(a) Objects used in the experiment (b) Experimental Setup

Fig. 9: Fig. (a) shows the different boxes used in the experiments with different properties such as size, masses, and mass distribution as
indicated. Fig. (b) shows the experimental setup used: A KUKA LBR iiwa 7 arm that hits or intercepts the boxes moving on the table.
The table is marked to better access the distance moved by the object.

10

Fig. 10: Experiment for object hitting and interception - the arrows
how the different direction of motion of the robot during hitting an
object and intercepting the object.

We also compare the performance of our approach to
a control system based solely on velocity modulation, as
proposed in [22] (mentioned later as high speed impact
controller). In the experiments, we use a simple block as an
end effector that does not significantly extend the length of
the robot and thus, the physical limits of the robot as in [22].
This allows us to see significant changes in the configuration
of the robot when controlling for its inertia.

High Speed Impact Controller: In this method [22], we
generate the motion using the DS and modulate the end
effector speed using a scaling factor.

χ̇∗
max = γĥ, γ ∈ R+

where γ is a scaling factor that can be given as an input to
the system and ĥ is the hitting direction. In the null space
of the first task, the robot is trying to achieve the anchor
configuration (qm) obtained by manipulability maximization
(refer Eq. 14).
Hence the joint velocities passed as an input to the controller
can be written as:

q̇ = J†(q)f(χ) + βN (qm − q), β ∈ R+ . (25)

We create three scenarios that confirm the contributions
of the paper described in Section I, and compare the per-
formance of our method to the high-speed impact controller
(Eq. 25). The difference in performance that we expect is
hypothesized in the respective scenarios and then the results
are discussed.

A. Scenario 1 - Hitting stationary boxes

We systematically test the hitting action on boxes. First,
we see the difference between pushing and releasing, as
compared to hitting the object. Hitting the object at high
speed should impart larger motion to the object, as opposed
to pushing and releasing at high speed. This is confirmed ex-
perimentally. We then compare the difference between using
the high-speed impact controller and the directional inertia

controller with the hitting flux-based DS. The repeatability
of our method is also shown in these experiments.

Hypothesis - Since our method considers the dynamic
properties of the objects and the robot, hitting different ob-
jects with the same pre-impact flux should lead the different
objects to move similar distances (assuming the coefficient
of restitution is similar and so are the friction coefficients
between the objects and the table) whereas the same hitting
speed will make different objects move differently.

1) Pushing and releasing: Here we compare the motion
of the object after being pushed and hit with the same motion
of the robot (Fig. 11). The expectation is that the object can
achieve higher velocities than the robot velocity at the time of
the hit as it is lower in mass than the robot, while in push and
release it will have the same speed as the robot at the time
of release. This should allow the hit object to move faster
and more distance. The robot achieves the same end effector
speed and directional flux during the hitting and the pushing
tasks as shown in Fig. 11 To keep the experiment setup
consistent, the motion of the robot remains the same. The
object is released at the same point in the push and release,
where it is hit in the hitting scenario. The accompanying
supplemental video shows the two different processes.

TABLE IV: Object Mass = 0.4 kg, Pushing / Hitting speed
= 0.95 m/s, Flux = 0.85 m/s, 10 repetitions

Push distance Hit distance

0.37 m 0.54 m

From the Table. IV we see that the object moves on
average larger distance when it’s hit than pushed at a high
speed.

2) Different objects and same hitting velocity: Table V
shows the distances moved by different objects when they
are hit with the same end effector speed (controlled using the
high-speed impact controller). Since this velocity is limited
by the torque limits of the robot, this is the largest distance
the respective objects move. Since the distances covered by
the object when the robot hits them with the same speed
are different, this shows that the velocity of hit is not the
only important factor to consider. To control the motion of
an object that is similar in mass to the directional inertia of
the robot (e.g., object 1 of mass 2 kg), we must include the
masses of object and the robot in our calculation.

TABLE V: Distances moved by objects 1 and 2 at highest
achieved velocity and highest achieved flux (experiment
repeated 10 times each)

Highest speed achieved Box mass Distance covered
(average) (average)

1.2 m/s 0.4 kg 0.65 m

1.2 m/s 2.0 kg 0.32 m

3) Different objects subject to hitting flux: Hypothesis -
Since our method considers the dynamic properties of the

11

Fig. 11: The robot velocities and hitting fluxes during pushing and hitting the object

objects and the robot, hitting different objects with the same
pre-impact flux should lead the different objects to move
similar distances (assuming the coefficient of restitution
is similar and so are the friction coefficients between the
objects and the table) whereas the same hitting speed will
make different objects move differently.

Fig. 13 shows the effect when object 1 (2.0 kg) and
object 2 (0.4 kg) are hit with multiple fluxes. For object
2, we reach the velocity limit of the robot for hitting flux
∼ 0.6 m/s. Hence we cannot compare the motion of both
objects after this flux value.

First we compare the difference between the desired flux
and the achieved flux values. According to Table IX, we see
slight errors in achieving the desired flux. This is because the
directional inertia of the robot is being controlled in the null
space of the first task, which is to achieve a desired velocity.
In the total of 110 different hitting experiments, the RMSE
(Root Mean Squared Error) of the flux achieved is 0.008 m/s,
which in relative terms is 0.004 or 0.4% error.

Analysis of motion of different objects being subject to
same hitting flux: Fig. 13 shows similarity in the motion of
both objects when subjected to similar flux. Fig. 12 shows
the mean and variance in the motion of objects after being
hit (flux values used = 0.3 and 0.6 m/s for this plot). For a
similar achieved flux, we have, on average, similar distances
moved by objects that are similar in material. The differences
in motion may also be affected by different friction and
restitution parameters, the identification of which is another
research problem.

Relation between object motion and hitting flux: Having
seen the repeatability of the control of the robot to produce
similar effects on similar objects with different masses, in
theory scaling the hitting flux should result in a proportional
change in the distances moved by the objects. From Table IX
and Fig. 12, we see a small discrepancy. Double the hitting
flux leads to slightly more than double the distance covered
(for both objects). The linear effect on the motion of the
object is visible through the plot in Fig. 13, although after a
threshold of the hitting flux, the slope of the linear behavior
changes. This requires further analysis, but one explanation is
the dependence of friction coefficient on the speed of sliding
of the object [41] and considering the stick-slip phenomenon
[42]. The low flux values do not provide enough energy
transfer to overcome the spontaneous jerking motion when
the object starts sliding on the table. This creates a research

object 1 (2.0 kg) object 2 (0.4 kg)

0.124

0.126

0.128

0.13

0.132

Flux = 0.3 m/s

object 1 (2.0 kg) object 2 (0.4 kg)

0.28

0.29

0.3

0.31

0.32

Flux = 0.6 m/s

Fig. 12: The plots show the variability in the final position achieved
by two different objects for two different flux values. For a similar
achieved flux value, the displacement of two different boxes is
similar.

problem of identifying the initial non-linearity between the
hitting flux and the distance traveled by the object given the
restitution and friction coefficients.

4) Sensitivity analysis to the known mass: To produce
similar post-impact object motion, we need to know the mass
of the object. In the industrial setting, there can be small
fluctuations in the masses of similar objects, or fluctuation in
the known mass of an object. The estimation techniques can
also produce errors in the known values of the masses. Thus,
the desired hitting flux value may not lead to the motion of
the object that is desired. Here, we analyze the sensitivity of
the post-impact object motion on errors in the known mass.

12

Fig. 13: Average distance covered by the two objects on being
subjected to various hitting fluxes. Both objects behave similarly
flow small flux values, which aren’t the same motion for the robot.
For high flux values for object 1, it deviates from the original
linear relation, which can be attributed to velocity dependent friction
behavior, but needs further research.

TABLE VI: Hitting Flux = 0.85 m/s, Actual mass = 0.4 kg,
Actual distance = 0.59 m

Box mass Achieved Theoretical Experimental
known (kg) distance (m) error (Rel RMSE) error (Rel RMSE)

0.32 0.58 (-)0.016 (-)0.01

0.36 0.586 (-)0.008 (-)0.006

0.44 0.594 0.008 0.008

0.48 0.598 0.016 0.015

TABLE VII: Hitting Flux = 0.48 m/s, Actual mass = 2.0 kg,
Actual distance = 0.26 m

Box mass Achieved Theoretical Experimental
known (kg) distance (m) error (Rel RMSE) error (Rel RMSE)

1.6 0.195 (-)0.06 (-)0.057

1.8 0.202 (-)0.03 (-)0.023

2.2 0.263 0.03 0.01

2.4 0.283 0.06 0.08

For a given desired flux, the error in known mass of
the object changes the desired pre-impact speed of the end
effector of the robot.
Theoretical sensitivity analysis (Relative RMSE):

∆χ̇+
o

ϕ
= (

∆mo

λ+mo
) (26)

where ϕ is the commanded flux, mo is the correct mass and
∆mo is the error in the known mass value. Check Section XI
for the derivation of the relative sensitivity. The theoretical
and experimental relative RMSE errors can be found in Table
VI and VII. The (−) indicates that the object covers less
distance than what is expected. We see from the Relative

RMSE in Table VI and VII that difference in experimental
errors and predicted errors is low. Hence, the physics model
is quite robust to errors in the estimated mass of the object.

B. Scenario 3 - Intercepting boxes:
Instead of a robot imparting motion, a similar impact is

generated when the robot stops an object by intercepting it
in its trajectory. This allows for human - robot interactions
with humans passing the objects to robots for further tasks
(Fig. 10) and having low end effector velocities of the robot
post-impact is desired. We compare the end effector speed
of the robot with the two controllers (Eq. 18, Eq. 25).
Hypothesis - Higher intercepting inertia should lead to lower
end effector velocities, and will lead to more precise human-
robot interaction.

Fig. 14 and 15 show the difference in the post impact
robot speed when a human passes an object of mass 2.0
kg moving in the y direction. When controlled with the
increasing inertia controller, the robot has on average almost
half the post impact speed (0.072 m/s) compared to the robot
that intercepts a box while not changing its inertia or with
the high speed impact controller (0.129 m/s). For faster and
more precise human robot interaction, and then continuous
task performance by the robot, it is desirable for the robot to
not have high post-impact end effector velocities. This can be
achieved by controlling the robot’s inertia. Both intercepting
and hitting objects can be controlled using the same control
system that modulates the velocity and directional inertia of
the robot.

C. Motion in the Inertial Manifold:
The robot is tested to achieve a configuration that mini-

mizes the error between the desired inertia matrix (Λ∗) and
the robot’s inertia, while achieving the desired position for
the end effector. Here

Λ∗ =

4.0 1.0 3.0
3.0 3.0 2.0
3.0 2.0 3.0

 .

We compare the performance of the inverse kinematics (IK)
controller (Eq. 13) and Inertia QP controller (Eq. 24). The
desired inertia is a randomly designed inertia matrix to test
how close the robot can get to the desired inertia matrix. The
robot moves from a given initial position [0.3,−0.2, 0.5] (in
m) to a final desired position [0.3, 0.3, 0.5] (in m) while being
controlled by the above two controllers. We measure the
Stein distance between the desired inertia and robot’s inertia
throughout its motion and compare the two controllers.

Fig. 16 shows the evolution of the Stein distance between
the current inertia and the desired inertia while moving
toward the desired end effector position. We see that, the IK
controller leads to an increase of g(q), from 1.28 to 1.4, and
the final inertia is farther away than the desired inertia matrix
on the inertial manifold. With the Inertia QP controller, the
distance between the robot’s inertia and the desired inertia
decreases along the path, from 1.28 to 1.13. Fig. 17 shows the

13

(a) Directional Inertia Controller (b) High Speed Impact Controller

Fig. 14: The two different graphs show the end effector velocity of the robot after intercepting a moving object with different inertias.
In blue, we see the velocities of the end effector in y-direction (where the inertia is chosen to be high in value). In Fig. (a) the robot is
controlled using increasing inertia controller (Eq, 18) and in Fig. (b), we have high speed impact controller (Eq. 25)

directional inertia controller high speed impact controller

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

Fig. 15: Box plot showing the post-impact end effector speed after
intercepting or being hit by an object of mass 2.0 kg

initial configuration of the robot and the final configurations
of the robot achieved through IK controller and the inertia
QP controller. Since QP solves a problem locally, the solution
is susceptible to be a local minimum or reach joint limits.
Hence, the final joint configuration achieves the task inertia
that is closest to the desired inertia but depends on the initial
configuration of the robot. This opens a research problem
of designing motion planners that consider the dynamic
properties of the robot, are stable and achieve the global
minimum solution.

D. Further applications:
Further applications of this process for handling objects not

suitable for suction cups, such as open boxes with uneven
mass distribution and collecting different sized objects are
shown in the video attached.

X. DISCUSSION AND FUTURE WORK

In this paper, we propose a metric, hitting flux (Φ), which
we control to enable a manipulator to interact with the envi-
ronment focusing on the hitting or striking motion between
the robot and the environment. This is an example of dynamic
manipulation because it considers the inertial properties of

Fig. 16: The graph shows the evolution of the Stein distance while
reaching a desired end effector position.

both, the environment and the robot. This provides the robot
with the skill to create motions that have similar effects
on the environment with different inertial properties. This
is achieved using a DS-based motion planner that scales
velocity according to the current value of the robot’s di-
rectional flux and an inertia based controller that tries to
track directional inertia values by exploiting the redundancy
of the manipulator. Furthermore, a QP-based controller is
proposed to reach a target by following a dynamical system
and minimize the robot’s translational inertia matrix to a
desired inertia matrix under the joint position and velocity
constraints.

This approach relies on assuming that the directional
inertia and end effector speed are achievable at a certain end
effector position. Thus, motion planning by the DS considers
the current directional inertia value and assumes that the path
followed by the end effector leads to a feasible directional
inertia value. The redundancy of the robot allows it to achieve
multiple different inertias at the same end effector position.
Motion planning and achieving the desired inertia matrix are
not independent tasks and they can be adversarial to each
other if not planned properly. Thus, the desired directional
hitting flux may not be achievable on a path if the velocity
and the directional inertia cannot be achieved on the planned

14

(a) Initial position of the robot (b) Motion with IK Controller (c) Motion with Inertia QP Controller

Fig. 17: Fig. (a): This is the starting configuration of the robot; Figure (b): Final configuration of the robot under the IK Controller. This
configuration is moving away from the desired inertia matrix as showing in Fig. 16; Fig. (c): Final configuration of the robot under the
Inertia QP Controller. This configuration is closer to the desired inertia configuration (Fig. 16) while achieving the final position

path. This will be tackled in the future. Future work entails
the planning of robot motion or DSs to achieve the desired
inertia (or another SPD property) matrix at a desired task
space position. The main purpose of using a dynamical
system based motion planner is to have a closed form solution
that plans the trajectory depending on where the robot and
the object is. Further research includes understanding how
can we include dynamics of the robots such as inertia in the
DS based motion plan. Other methods that can be applied
to get out of the local minima of the inertia matrix is to
have Model Predictive Control, both analytical or sampling
based. The downside for such method is high computational
cost [43] and still some potential local minima. Another
approach could be to have multiple motion plans (Graph
based motion planning) that plan the motion according to
achievable inertia matrices. But these methods will suffer
from re-planning in the event of disturbances. This helps in
the intuitive programming of robots, where the task at hand
is programmed using the task space properties of the robot
and understanding how humans perform a certain task.

The repeatability of the robotic motion to interact with the
environment through intentional impacts must be adaptive
to interact predictably with other objects. This includes
learning properties such as object mass, object inertia, friction
parameters, coefficient of restitution, and residual errors in
the motion equations and real life motion. Even with the
approximate knowledge of these parameters, the DS must
be adaptive to not just the motion of the robot, but also the
differences in the actual and predicted environment motion to
enable desired environment change. This poses the research
question of learning not just object properties, but their
behavior after being subjected to impulsive forces. We intend
to use the hitting flux formulation along with data driven
motion models estimate the object and collision properties
and adapt the DS for motion generation.

ACKNOWLEDGMENTS

This work was supported by the Research Project I.AM.
through the European Union H2020 program under GA
871899. The authors would like to thank Dr. Farshad Khadi-
var for his help in robot experiments.

XI. APPENDIX

A. Hitting Flux Derivation

Here we derive the expression of Hitting Flux Φ ∈ R3.
From the principle of conservation of momentum during the
impact, and the definition of restitution [32] along the impact
normal (ĥ), we have:

Λχ̇−
e +Moχ̇

−
o = Λχ̇+

e +Moχ̇
+
o (27)

ϵ ĥT (χ̇−
e − χ̇−

o) = ĥT (χ̇+
o − χ̇+

e) . (28)

ϵ ∈ [0, 1] is the coefficient of restitution in hitting direction,
ĥ. Using the assumption that χ̇+

e ≃ ∥χ̇+
e ∥ ĥ, we can write

E(χ̇−
e − χ̇−

o) = χ̇+
o − χ̇+

e (29)

E =

 ĥT

ĥT
⊥1

ĥT
⊥2

ϵ 0 0
0 0 0
0 0 0

 [
ĥ ĥ⊥1

ĥ⊥2

]
(30)

ĥ, ĥ⊥1
, ĥ⊥1

form an orthogonal basis. From Equations 27 and
29, we have the pre-impact end effector velocity expressed
in terms of the pre- and post- impact velocities of the object:

χ̇−
e = [Λ(I +E)]−1[(Λ+Mo)χ̇

+
o +(ΛE−Mo)χ̇

−
o] . (31)

Simplifying Eq. 31 further and using χ̇−
o = 0 we have:

χ̇−
e = (I + E)−1(I + Λ−1Mo)χ̇

+
o .

Let (I+E) = C, since it is constant for a particular collision
pair. The above equations become the following:

(I + Λ−1Mo)
−1Cχ̇−

e = χ̇+
o . (32)

Reproducing similar post-impact conditions for the object
translates to achieving a desired post-impact object velocity,
χ̇+
o . Eq. 32 depicts the requirements for the repeatable

collision and interaction with the environment. Given the
post-impact object behavior (χ̇+

o) and mass of the object Mo,
we need to control for (I + Λ−1Mo)

−1Cχ̇−
e . In this paper,

we refer to (I + Λ−1Mo)
−1Cχ̇−

e as Φ or hitting flux.

Φ = (I + Λ−1Mo)
−1Cχ̇−

e . (33)

15

B. Mathematical tuning of the Hitting Dynamical System:

A

X

Z

Fig. 18: Diagram showing the motion of the robot end effec-
tor’s motion from the initial to the desired hitting position.
The time constraint to reach point A is less than time to cover
the distance l0 is imposed by Eq. 34.

Here we explain how to tune the parameter σ in the
hitting dynamical system given by Eq. 8, 9. The following
analysis is performed in a vertical plane w.l.o.g. because the
hitting motion generated by the dynamical system is planar
and mathematical analysis can be done for any motion by
applying a suitable rotation matrix. Let the dynamical system
be required to pass through the hitting point within an error
margin of ϵ. l and d are the distances between the end-effector
and the object in the X and Z direction respectively, with l0,
and d0 being the initial distance between the end effector and
the object in the respective directions. v represents the desired
hitting velocity. From the DS equations 8, the equations of
motions in the X and Z directions can be written as follows:

l̇ = v exp(−d/σ2)

ḋ = −(1− exp(−d/σ2))kd

where −k, k > 0 ∈ R is the eigenvalue of the gain matrix
in Eq. 8 in Z direction. We want the robot end effector to
reach the hitting radius of ϵ before it reaches the desired
hitting position. The slowest Z dynamics are:

ḋ = −(1− exp(−ϵ/σ2))kd .

The solution for this ODE is as follows:

d = d0 exp
−(1−exp(−ϵ/σ2))kt .

The fastest dynamics in the X axis would be:

l̇ = v exp(−ϵ/σ2) .

The time to reach ϵ in the Z axis should be less than the time
to reach l0 in the X axis.

l0
v exp(−ϵ/σ2)

>
ln(d0/ϵ)

k(1− exp(−ϵ/σ2))

exp(−ϵ/σ2) <
1

1 + v
kl0

ln(d0

ϵ)

=⇒ σ <

√
ϵ

ln(1 + v
kl0

ln(d0

ϵ))
. (34)

Eq. 34 provide the constraints for the robot end effector to
align with the hitting path before actually hitting the object.

C. Inertia Gradient:

The inertia derivative is calculated numerically as shown
in Alg. 1 and the algorithm is parallelizable:

Algorithm 1: Inertia Gradient
Input : Joint position - q
Output: ∇qΛ(q)
dq = 0.001
∇qΛ(q)← zeros(6, 6, size(q))
for i← 0 to size(q) do

q
′
= q

q
′
[i] = q[i] + dq
∇qΛ(q)[:, :, i]← (Λ(q)− Λ(q + dq))/dq

end
return ∇qΛ(q)

D. Stein Distance Derivative for Inertia:

From Eq. 23, we have the distance between Λ∗ and Λq

g(q) = log(det(
Λ∗ + Λq

2
))− 1

2
log(det(Λ∗Λq))

g(q) ∈ R, and we require ġ(q).

ġ(q) = ∇qg(q)
T q̇ (35)

∇qg(q) = ∇Λg(q)∇qΛq

∇qg(q) = (
1

2
(
Λ∗ + Λq

2
)−1 − 1

2
(Λq)

−1) : ∇qΛq

where, A : B = Tr(BTA) for matrices A,B

using properties,
∂

∂Λ
ln |det(Λ)| = (Λ−1)T and, ΛT = Λ

∇qg(q) = ((Λ∗ + Λq)
−1 − 1

2
(Λq)

−1) : ∇qΛq .

(36)

For the derivatives used above, refer to [44].
The derivative can be calculated numerically as well.

E. Sensitivity Analysis:

We discuss the change in the motion of the object induced
if the initial hypothesis on the mass of the object is wrong.
Assume the actual mass of the object is mo and the hypo-
thetical mass of the box to be mk = mo ± ∆mo. ϕ is the
desired hitting flux, through which we can find the hitting
speed of the end effector by ϕ = λ

λ+mk
χ̇−
e :

Theoretical sensitivity analysis:

χ̇+
o = [1 + λ−1mo]

−1χ̇−
e

= (
λ

λ+mo
)(
λ+mk

λ
)ϕ =

λ+mk

λ+mo
ϕ

(37)

16

An estimate of the mass larger than the actual mass should
hence lead to a larger speed induced on the object, hence
leading the object to cover a longer distance.

∆χ̇+
o =

λ+mk

λ+mo
ϕ− ϕ

= (
∆mo

λ+mo
)ϕ .

(38)

Relative RMSE error is given by

∆χ̇+
o

ϕ
= (

∆mo

λ+mo
) (39)

F. Results for experiments in simulation and on real robot:

TABLE VIII: Object Motion Data in Simulation - The
simulation has differences in terms of the behaviour of the
world and shows a linear relation between the hitting flux
and motion of the object

No. Pre-impact Final Position Displacement
Flux (m) (m)

1 0.1 [0.640, 0.3, 0.5] 0.140

2 0.2 [0.695, 0.3, 0.5] 0.195

3 0.3 [0.775, 0.3, 0.5] 0.275

4 0.4 [0.877, 0.3, 0.5] 0.377

5 0.5 [0.965, 0.3, 0.5] 0.465

6 0.6 [1.157, 0.3, 0.5] 0.657

7 0.7 [1.227, 0.3, 0.5] 0.727

8 0.8 [1.282, 0.3, 0.5] 0.782

9 0.9 [1.353, 0.3, 0.5] 0.852

10 1.0 [1.471, 0.3, 0.5] 0.971

TABLE IX: Average distances moved by objects 1 and 2
subject to multiple fluxes (experiment repeated 10 times
each)

Hitting Flux Hitting Flux Distance covered Distance covered
desired (m/s) achieved(m/s) 0.4 kg (m) 2.0 kg (m)

0.3 0.29 0.125 0.13

0.4 0.39 0.19 0.18

0.5 0.52 0.20 0.24

0.6 0.61 0.31 0.31

0.7 0.7 0.35 -

0.8 0.8 0.51 -

0.9 0.92 0.65 -

REFERENCES

[1] J. Stüber, C. Zito, and R. Stolkin, “Let’s push things forward: A
survey on robot pushing,” CoRR, vol. abs/1905.05138, 2019. [Online].
Available: http://arxiv.org/abs/1905.05138

[2] D. Ma and A. Rodriguez, “Friction variability in auto-collected dataset
of planar pushing: Data-collection bias and anisotropic friction,” in
IROS, 2018.

[3] M. Bauza and A. Rodriguez, “A probabilistic data-driven model for
planar pushing,” in ICRA, 2017.

[4] M. Bombile and A. Billard, “Dual-arm control for coordinated fast
grabbing and tossing of an object: Proposing a new approach,” IEEE
Robotics Automation Magazine, vol. 29, no. 3, pp. 127–138, 2022.

[5] H. Khurana, M. Bombile, and A. Billard, “Learning to hit: A statistical
dynamical system based approach,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2021, pp. 9415–
9421.

[6] S. Sra, “A new metric on the manifold of kernel matrices with
application to matrix geometric means,” in Advances in Neural In-
formation Processing Systems, F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.

[7] N. Jaquier, L. Rozo, D. G. Caldwell, and S. Calinon, “Geometry-aware
manipulability learning, tracking, and transfer,” The International
Journal of Robotics Research, vol. 40, no. 2-3, pp. 624–650, 2021,
pMID: 33994629.

[8] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, “Rie-
mannian motion policies,” 2018.

[9] F. Abu-Dakka and V. Kyrki, “Geometry-aware dynamic movement
primitives,” 01 2020.

[10] M. Bauza and A. Rodriguez, “A probabilistic data-driven model for
planar pushing,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 3008–3015.

[11] N. F. KT. Yu, M. Bauza and A. Rodriguez, “More than a million ways
to be pushed: A high-fidelity experimental dataset of planar pushing,”
in IROS. IEEE, 2016, pp. 30–37.

[12] H. Kitano, M. Asada, I. Noda, and H. Matsubara, “Robocup: robot
world cup,” IEEE Robotics and Automation Magazine, vol. 5, no. 3,
pp. 30–36, 1998.

[13] J. Tebbe, Y. Gao, M. Sastre-Rienietz, and A. Zell, “A table tennis robot
system using an industrial kuka robot arm,” in Pattern Recognition,
T. Brox, A. Bruhn, and M. Fritz, Eds. Cham: Springer International
Publishing, 2019, pp. 33–45.

[14] S. M. Khansari-Zadeh, K. Kronander, and A. Billard, “Learning
to play minigolf: A dynamical system-based approach,” Advanced
Robotics, vol. 26, no. 17, pp. 27. 1967–1993, 2012. [Online].
Available: http://infoscience.epfl.ch/record/181052

[15] Y.-B. Jia, M. Gardner, and X. Mu, “Batting an in-flight object
to the target,” The International Journal of Robotics Research,
vol. 38, no. 4, pp. 451–485, 2019. [Online]. Available: https:
//doi.org/10.1177/0278364918817116

[16] M. Müller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball jug-
gling,” in 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2011, pp. 5113–5120.

[17] R. L. Anderson, A Robot Ping-Pong Player: Experiment in Real-Time
Intelligent Control. Cambridge, MA, USA: MIT Press, 1988.

[18] J. Billingsley, “Robot ping pong,” Practical Computing, vol. 6, no. 5,
1983.

[19] Y. Huang, B. Schölkopf, and J. Peters, “Learning optimal striking
points for a ping-pong playing robot,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 4587–
4592.

[20] O. Koç, G. Maeda, and J. Peters, “Online optimal trajectory
generation for robot table tennis,” Robotics and Autonomous
Systems, vol. 105, pp. 121–137, 2018. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0921889017306164

[21] A. AlAttar, L. Rouillard, and P. Kormushev, “Autonomous air-hockey
playing cobot using optimal control and vision-based bayesian track-
ing,” in Towards Autonomous Robotic Systems, K. Althoefer, J. Kon-
stantinova, and K. Zhang, Eds. Cham: Springer International Pub-
lishing, 2019, pp. 358–369.

[22] P. Liu, D. Tateo, H. Bou-Ammar, and J. Peters, “Efficient and reactive
planning for high speed robot air hockey,” 2021.

[23] A. Billard, S. Mirrazavi, and N. Figueroa, Learning for Adaptive and
Reactive Robot Control: A Dynamical Systems Approach. MIT Press,
2022.

[24] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” IEEE Transactions
on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[25] N. Hogan, “Impedance control: An approach to manipulation,” in
American Control Conference, 1984. IEEE, 1984, pp. 304–313.

[26] K. Kronander and A. Billard, “Passive interaction control with dynam-
ical systems,” IEEE Robotics and Automation Letters, vol. 1, no. 1,
pp. 106–113, 2016.

http://arxiv.org/abs/1905.05138
http://infoscience.epfl.ch/record/181052
https://doi.org/10.1177/0278364918817116
https://doi.org/10.1177/0278364918817116
https://www.sciencedirect.com/science/article/pii/S0921889017306164
https://www.sciencedirect.com/science/article/pii/S0921889017306164

17

[27] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal
of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357,
2017. [Online]. Available: https://doi.org/10.2514/1.G001921

[28] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff,
D. Fox, F. Ramos, and B. Boots, “Storm: An integrated framework for
fast joint-space model-predictive control for reactive manipulation,”
in Proceedings of the 5th Conference on Robot Learning, ser.
Proceedings of Machine Learning Research, vol. 164. PMLR, 2022,
pp. 750–759. [Online]. Available: https://proceedings.mlr.press/v164/
bhardwaj22a.html

[29] T. Yoshikawa, “Manipulability of robotic mechanisms,” The Interna-
tional Journal of Robotics Research, vol. 4, no. 2, pp. 3–9, 1985.
[Online]. Available: https://doi.org/10.1177/027836498500400201

[30] J. Haviland and P. Corke, “A purely-reactive manipulability-
maximising motion controller,” 2020.

[31] M. Jongeneel, N. van de Wouw, and A. Saccon, “Identification and
validation of impact models,” Jul. 2022, 10th European Nonlinear
Dynamics Conference, ENOC 2022, ENOC 2022 ; Conference
date: 17-07-2022 Through 22-07-2022. [Online]. Available: https:
//enoc2020.sciencesconf.org/

[32] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics,
ser. Halliday & Resnick Fundamentals of Physics. John Wiley &
Sons Canada, Limited, 2010. [Online]. Available: http://books.google.
co.uk/books?id=49h2cgAACAAJ

[33] O. Khatib, “Inertial properties in robotic manipulation: An object-level
framework,” The International Journal of Robotics Research, vol. 14,
no. 1, pp. 19–36, 1995.

[34] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors,
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[35] Y.-C. Chen and I. Walker, “A consistent null-space based approach to
inverse kinematics of redundant robots,” in [1993] Proceedings IEEE
International Conference on Robotics and Automation, 1993, pp. 374–
381 vol.3.

[36] A. Dietrich, C. Ott, and A. Albu-Schäffer, “An overview of null space
projections for redundant, torque-controlled robots,” The International
Journal of Robotics Research, vol. 34, no. 11, pp. 1385–1400, 2015.
[Online]. Available: https://doi.org/10.1177/0278364914566516

[37] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl,
“qpOASES: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp.
327–363, 2014.

[38] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

[39] H. Khalil, Nonlinear Systems, ser. Pearson Education. Prentice
Hall, 2002. [Online]. Available: https://books.google.ch/books?id=t
d1QgAACAAJ

[40] J. Burdick, “On the inverse kinematics of redundant manipulators:
characterization of the self-motion manifolds,” in Proceedings, 1989
International Conference on Robotics and Automation, 1989, pp. 264–
270 vol.1.

[41] D. Ma and A. Rodriguez, “Friction variability in planar pushing data:
Anisotropic friction and data-collection bias,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3232–3239, 2018.

[42] B. Feeny, A. Guran, N. Hinrichs, and K. Popp, “A Historical Review
on Dry Friction and Stick-Slip Phenomena,” Applied Mechanics
Reviews, vol. 51, no. 5, pp. 321–341, 05 1998. [Online]. Available:
https://doi.org/10.1115/1.3099008

[43] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model
predictive control: an engineering perspective,” The International
Journal of Advanced Manufacturing Technology, vol. 117, no. 5, pp.
1327–1349, Nov 2021. [Online]. Available: https://doi.org/10.1007/
s00170-021-07682-3

[44] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” nov
2012, version 20121115. [Online]. Available: http://www2.compute.
dtu.dk/pubdb/pubs/3274-full.html

PLACE
PHOTO
HERE

Harshit Khurana received an M.Sc. in Robotics,
Systems and Control from ETH Zurich, in 2019.
He is currently conducting research towards a
Ph.D. degree with the Learning Algorithms and
Systems Laboratory (LASA), Swiss Federal Insti-
tute of Technology in Lausanne (EPFL), Lausanne,
Switzerland. His research interests currently are
in motion planning and control for robots with
intentional impacts and learning to improve the
motion plan through understanding the motion of
the environment.

PLACE
PHOTO
HERE

Aude Billard received an M.Sc. in physics from
the Swiss Federal Institute of Technology in Lau-
sanne (EPFL), Lausanne, Switzerland, in 1995,
and an M.Sc. in knowledge-based systems and
a Ph.D. degree in artificial intelligence from the
University of Edinburgh, Edinburgh, U.K., in 1996
and 1998, respectively. She is currently a full
professor in the Institutes of Micro and Mechan-
ical Engineering and the head of the Learning
Algorithms and Systems Laboratory, School of
Engineering, EPFL. Her research interests are in

machine-learning methods for making robots adaptive and able to learn
through human guidance and practice.

https://doi.org/10.2514/1.G001921
https://proceedings.mlr.press/v164/bhardwaj22a.html
https://proceedings.mlr.press/v164/bhardwaj22a.html
https://doi.org/10.1177/027836498500400201
https://enoc2020.sciencesconf.org/
https://enoc2020.sciencesconf.org/
http://books.google.co.uk/books?id=49h2cgAACAAJ
http://books.google.co.uk/books?id=49h2cgAACAAJ
https://doi.org/10.1177/0278364914566516
https://books.google.ch/books?id=t_d1QgAACAAJ
https://books.google.ch/books?id=t_d1QgAACAAJ
https://doi.org/10.1115/1.3099008
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1007/s00170-021-07682-3
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html

	Introduction
	Related Work
	Pushing and Hitting Primitives for Manipulation
	Dynamical Systems as Motion Plans
	Symmetric Positive Definite (SPD) Properties of Robot Manipulators

	Preliminaries
	Breaking Down the Collision Problem
	Robot motion
	Robot-Object impact
	Object motion

	Collision Mechanics

	Problem Statement
	Robot Motion
	Pre-impact Dynamical System:

	Robot Control
	Inverse Kinematics Control
	Manipulability Maximization Controller:
	Increasing Directional inertia in the Null Space
	Specific Directional Inertia in the Null Space:

	Motion in Inertial Manifold
	Simulation Experiments
	Robot Motion:
	Comparison of controllers

	Robot-Environment Interaction
	Hitting with different pre-impact flux
	Achieving same pre-impact flux

	Achieving Desired Inertia with Desired Position:

	Robot Experiments
	Scenario 1 - Hitting stationary boxes
	Pushing and releasing
	Different objects and same hitting velocity
	Different objects subject to hitting flux
	Sensitivity analysis to the known mass

	Scenario 3 - Intercepting boxes:
	Motion in the Inertial Manifold:
	Further applications:

	Discussion and Future Work
	Appendix
	Hitting Flux Derivation
	Mathematical tuning of the Hitting Dynamical System:
	Inertia Gradient:
	Stein Distance Derivative for Inertia:
	Sensitivity Analysis:
	Results for experiments in simulation and on real robot:

	References
	Biographies
	Harshit Khurana
	Aude Billard

